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Milagro is a water-Cherenkov detector that observes the extended air showers

produced by cosmic gamma rays of energies E & 100GeV . The effective area of

Milagro peaks at energies E & 10TeV , however it is still large even down to a few

hundred GeV (∼ 10m2 at 100GeV ). The wide field of view (∼ 2 sr) and high duty

cycle (> 90%) of Milagro make it ideal for continuously monitoring the overhead

sky for transient Very High Energy (VHE) emissions. This study searched the

Milagro data for such emissions. Even though the search was optimized primarily

for detecting the emission from Gamma-Ray Bursts (GRBs), it was still sensitive

to the emission from the last stages of the evaporation of Primordial Black Holes

(PBHs) or to any other kind of phenomena that produce bursts of VHE gamma rays.

Measurements of the GRB spectra by satellites up to few tens of GeV showed no

signs of a cutoff. Even though multiple instruments sensitive to GeV/TeV gamma

rays have performed observations of GRBs, there has not yet been a definitive

detection of such an emission yet. One of the reasons for that is that gamma rays



with energies E & 100GeV are attenuated by interactions with the extragalactic

background light or are absorbed internally at the site of the burst. There are

many models that predict VHE gamma-ray emission from GRBs. A detection or a

constraint of such an emission can provide useful information on the mechanism and

environment of GRBs. This study performed a blind search of the Milagro data of

the last five years for bursts of VHE gamma rays with durations ranging from 100µs

to 316 s. No GRB localization was provided by an external instrument. Instead, the

whole dataset was thoroughly searched in time, space, and duration. No significant

events were detected. Upper limits were placed on the VHE emission from GRBs.
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Preface

The primary purpose of this study is to detect the Very High Energy (VHE)1

emission from Gamma-Ray Bursts (GRBs). A simple calculation can show that an

expectation of such a detection is not unreasonable by Milagro. Let us assume that

GRBs emit the same amount of isotropic energy (∼ 1052 erg) in the 50GeV −10TeV

energy band as they emit in the 20 keV − 300 keV band, the satellite detectors are

sensitive to. For a GRB at a redshift z ∼ 0.1, this emission would correspond to

an energy fluence of ∼ 10−4 erg/cm2, approximating the absorption by the extra-

galactic background light (EBL) with a decrease of the non-absorbed fluence by

50%. If the emitted spectrum is on a power law distribution with index -2.2, and if

the absorption by the EBL can be approximated as an exponential spectral-break at

an energy ∼ 800GeV , then the average photon energy reaching the earth would be

∼ 130GeV . Therefore, the incoming energy fluence would correspond to a particle

fluence of 10−4 erg
130 GeV

cm−2 ' 5 × 10−4 photons/cm2. The spectrally-weighted effective

area of Milagro for such a signal is ∼ 106 cm2. Therefore, 106 × 5 × 10−4 = 500

photons fro the VHE emission of this GRB will be detected by Milagro. Let us say

that the duration of the burst was 100 s. The amount of background for a simple

binned search that uses a 2o× 2o square bin will be about ∼ 400 background events

for these 100 s, given that the background rate of Milagro is about 1event deg−2 s1.

The Poisson cumulative proability of 400 background events generating a fluctuation

as big as 400 + 500 is 10−102 or ∼ 21 standard deviations. This probability is more

than enough to claim a detection.

1 In this work, “very high energy” corresponds to the 50 GeV − 100 TeV energy range.
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The first chapter of this dissertation will give a historical outline of GRB

observations and will describe the theoretical models explaining GRBs.

GRB emission has been extensively observed in MeV and lower energies.

There are multiple theoretical models that predict that GRBs also emit in the

GeV/TeV energy range. Observations of the GRB spectra up to tens of GeV have

shown no signs of a cutoff. However, observations for their E > 50GeV emission,

provide at best only hints of such an emission. Chapter 2 will give an overview of the

theoretical models predicting such an emission and will present the observational

results that support its existence. One of the reasons why there has not yet been

a definitive detection of the E > 100GeV emission is that it is strongly attenuated

while it travels through the extragalactic space. Only a small fraction of the VHE

emission reaches the earth, making it very difficult to detect. This important effect

is described in Chapter 3.

This search is optimized primarily for detecting the VHE emission by GRBs.

However, it can also detect any phenomena that emit bursts of VHE gamma rays,

such as the explosive last stage of the evaporation of primordial black holes. The

instrument used for this search, the Milagro gamma-ray observatory, is not sensitive

enough to detect evaporating primordial black holes at a great distance. However,

the phenomenon was exciting enough that warranted a separate chapter (chap. 4)

for its description.

The Milagro gamma-ray observatory is primarily sensitive to gamma rays of

TeV energies, but it also has some sensitivity down to ∼ 40GeV . Its wide field of

view (∼ 2 sr) and high duty cycle (> 90%) make it ideal for continuously monitoring
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the overhead sky for transient VHE emissions. Milagro’s principle of operation and

capabilities will be described in Chapter 5.

The Milagro data are searched in various ways for emission from GRBs. One

way is to perform searches in coincidence with GRB triggers provided by external

instruments. Such searches have been performed, and even though they resulted

to no detections, they have placed upper limits on VHE emission on the individual

externally-detected GRBs. Another way to search the Milagro data is blindly, with-

out using any external GRB localization. This study thoroughly searched the entire

Milagro dataset in start time, space, and duration. Chapter 6 will describe the

algorithm used and compare this blind search with the other kinds of GRB searches

performed on the Milagro data.

Because of the search’s blind nature and the large extent of the analyzed

dataset, this search performed a large number of trials. When a search contains

many trials, then very improbable fluctuations of the background can appear as real

signal. In order to reduce the rate of these false positives, the requirements on the

strength of a detected signal have to be increased. This, unfortunately, limits the

sensitivity of the search. Chapter 7 will give an overview of the statistics used in

this study and of the method by which false positives were avoided in this search.

This search was a simple binned search. One of the ways it was optimized was

by adjusting its bin size to the duration and the energy of the signal under search.

Chapter 8 will describe this optimization.

After the properties of the signal under search were described, and the ca-

pabilities of the Milagro detector and of the search algorithm were calculated, the
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sensitivity of the search could be quantified. Chapter 9 will present the sensitivity of

the Milagro detector to the emission from GRBs and PBHs, and will set Milagro’s

prospects for discovering such an emission.

The final results of the search are described in Chapter 10. Unfortunately,

no bursts of VHE emission in the Milagro data were detected. A Monte Carlo

simulation of the GRB population was created, which helped to place upper limits on

the VHE emission from GRBs. Specifically, the simulation calculated the predicted

number of GRBs Milagro would expect to detect versus their VHE-emission model.

By comparing the null result of the search with the prediction of the simulation, some

of the VHE-emission models were excluded. The simulation of the GRB population

and the resulting upper limits are presented in 11.
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Chapter 1

Gamma-Ray Bursts

1.1 Introduction

Gamma-Ray Bursts (GRBs) are the brightest explosions in the universe. They

are brief and bright transient emissions of keV/MeV radiation, occurring with a

rate of a few per day uniformly in the sky. Even though they are at cosmological

distances (up to Gigaparsecs or ∼ 1028 cm), they outshine all other sources in the

gamma-ray sky, including the sun. The energy output of a single GRB in keV/MeV

gamma rays is comparable to the emission from the sun in all the electromagnetic

spectrum, over ∼ 1010 y (approximately the age of the universe), or to the emission

of the Milky Way over few years.

The initial (prompt) emission of GRBs is brief (ms to mins), highly vari-

able (in time scales of ms to tens of s), non-thermal, and observed mostly in the

keV/MeV energy range. The emission is believed to be produced by electrons ac-

celerated during collisionless shocks inside highly collimated relativistic jets. For

the majority of GRBs, the prompt emission is followed by a smoothly decaying and

long-lasting “afterglow, ” observed in longer wavelengths (from X-rays to optical),

and believed to be produced by the deceleration of the relativistic jet in the sur-

rounding interstellar or circumburst medium. GRBs of short durations (. 2s) are
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believed to be produced by mergers of compact binaries (neutron star-neutron star

or neutron star-black hole), while the GRBs of longer durations (& 2s) are most

likely produced by the collapse of the cores of massive spinning stars.

High-redshift GRBs are 100 to 1000 times brighter than high-redshift QSOs1,

and also expected to occur out to redshifts z ' 20, while QSOs occur only out to

redshift z ∼ 7 [1]. Therefore, GRBs are unique tools for probing the very distant (or

very young) universe as early in time as the epoch of reionization (Fig. 1.1). GRBs

can be used to learn about the evolution history of the universe (star formation

history, metallicity at different redshifts), its large-scale structure, and the properties

of the earliest generations of stars. The afterglow of GRBs passes through multiple

Figure 1.1: Cosmological context of GRBs. Contrary to quasi-stellar objects,
gamma-ray bursts can help us probe the properties of the universe as early in time
as the epoch of reionization. Source: [1]

regions filled with gas or radiation fields before it reaches the earth (Fig. 1.2).

Spectroscopic studies on the absorption features imprinted on the GRB afterglow at

1QSO: Quasi-Stellar Object, an extremely powerful and distant active galactic nucleus.
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each of these regions provide unique information regarding the regions’ composition

and density [2]. GRBs are also believed to be intense sources of neutrinos, cosmic

rays (up to ultra-high energies 1020 eV ), and gravitational waves. Observations of

these emissions can answer questions in astrophysics, particle physics, and general

relativity.

The diverse and intriguing properties of GRBs make them the focus of intense

scientific research and debate (Fig. 1.3), and the observational target of multiple

instruments (Fig. 1.4). Despite the fact that we have known about GRBs for over

thirty five years, and that more than eight thousand refereed papers have been writ-

ten about them, they still continue to spark scientific interest. The commissioning

of new detectors sensitive to GRB’s keV to GeV gamma-ray emission, such as the

GBM and the LAT aboard GLAST [46]; to their GeV/TeV emission, such as HAWC

[47]; sensitive to their neutrino emission, such as IceCube [48]; and sensitive to their

gravitational-wave emission, such as LISA [49], will surely renew interest and raise

new questions.

This chapter will give an overview of our current knowledge regarding GRBs.

A historical overview of GRB observations will be given in section 1.2, and the cur-

rently accepted model for the progenitor and mechanism of GRBs will be presented

in section 1.3.
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Figure 1.2: Schematic of the various environments intersected by a GRB line of
sight. The GRB emission passes through the circumstellar medium (CSM) around
the GRB progenitor; the star-forming region surrounding the GRB (HII Region, H2

Cloud); the ambient interstellar medium (ISM) of the host galaxy; the baryonic halo
of the galaxy (Halo gas); and the intergalactic medium (IGM) between the earth
and the GRB. The absorption features imprinted on the GRB signal as it passes
through these regions can reveal information about their density and composition.
Source: [2]

1.2 History of GRB Observations

1.2.1 The first years (1967-1991)

Well before GRBs became publicly known, Colgate hypothesized their exis-

tence, associating them with the ejection of relativistic shocks from supernovae [50].

GRBs were accidentally discovered in 1967 by the US Vela satellites, operated by

Los Alamos National Laboratory [51], whose purpose was to monitor from space, for

violations of the nuclear-test ban treaty. The Vela satellites carried omnidirectional

detectors sensitive to the gamma-ray pulses emitted by nuclear-weapon explosions.

However, their detectors were also sensitive to the gamma-ray emission from GRBs.

Soon after they were launched, they started detecting bursts of gamma rays that

were, fortunately, identified as coming from space. The detection of the first GRBs

was immediately classified and was not made public until seven years later [52], when
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Figure 1.3: Number of GRB-related refereed publications per year. Source: [3]

sixteen GRB detections were reported in the 0.2−1.5MeV energy range. After the

Vela satellites, a number of instruments were dedicated to detecting GRBs (Fig.

1.4). However, the number of bursts detected was small and the angular resolution

poor.

1.2.2 BATSE (1991-2000)

A breakthrough in our understanding of GRBs happened with the numerous

GRB detections from the Burst And Transient Source Explorer (BATSE) [53] ,

which flew, with other instruments, on board the Compton Gamma-Ray Observa-
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Figure 1.4: List of experiments sensitive to GRBs and approximate numbers of
detected GRBs (as of early May 2008). Source: [4]

tory (CGRO) [54]. BATSE operated from 1991 to 2000. It was sensitive to the

15 keV − 2MeV energy range, had a wide field of view (4π sr minus 30% because

of earth obscuration), and a moderate angular resolution (∼ 4o). It detected 2704

GRBs [55], a significantly larger number than the total number of GRBs in the

pre-existing catalog (few hundreds). In combination with the Energetic Gamma-

Ray Experiment Telescope (EGRET) [56], a gamma-ray detector also aboard the

CGRO, GRB observations in the extended energy range 15 keV −30GeV were made.

Before BATSE, the distance scale of GRBs was unknown. The scientific com-
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munity was divided among multiple theories predicting distance scales ranging from

our own galaxy to the edges of the known universe. Even though GRBs were ob-

served uniformly, it was believed that they come from galactic neutron stars. It was

believed that the reason we saw a uniform-in-space distribution instead the pancake

shape of our galaxy was that the pre-BATSE instruments were not sensitive enough

to probe deep enough and see the galactic structure

BATSE was sensitive enough to detect GRBs originating from distances larger

than the size of our galaxy. Its discovery that GRBs are isotropically distributed

(Fig. 1.5) narrowed down the possibilities and suggested that GRBs are most prob-

ably located at cosmological distances further away than our local group of galaxies.

Otherwise, the GRB spatial distribution would be correlated with the local distribu-

tion of mass (our galaxy, the LMC, M31, globular clusters, the Virgo cluster, etc.)

and would not be isotropic. However, the distance-scale problem was not completely

resolved, because an extended halo around our galaxy could still generate a uniform

distribution similar to the one observed.

Some GRB properties emerged from the extensive dataset of BATSE-detected

GRBs. The light curves of GRBs showed great morphological diversity, ranging

from smooth, fast rise, and quasi-exponential decays, to curves with many peaks

and with a high variability, ranging from timescales of milliseconds to many minutes

(Fig. 1.6).

The duration of GRBs is usually described by the T90 parameter, which is

equal to the time over which the burst emits from 5% to 95% of its measured

counts. The T90 distribution of GRBs (Fig. 1.7) spans a long range of durations
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Figure 1.5: Locations of all the 2704 GRBs detected by BATSE in galactic coor-
dinates. The plane of our galaxy is along the horizontal line at the middle of the
figure. The isotropic distribution of GRBs in space implied that GRBs are most
likely cosmological sources. Source: [5]

and has a bimodal shape. Based on that, GRBs were divided into two categories:

“short bursts” having T90 . 2 s, and “long bursts” having T90 & 2 s. Short bursts

constituted ∼ 30% of the BATSE sample. The spectral properties of short and long

GRBs were different. BATSE measured the fluence of a burst in different channels,

each one corresponding to a different energy range. The “Hardness Ratio,” defined

as the ratio of the fluence in channel 3 (100− 300 keV ) over the fluence in channel

2 (50 − 100 keV ), was a measure of the spectral hardness of a burst. Short bursts

were found to have on average higher hardness ratios than long bursts, as shown on
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Figure 1.6: Light curves of some of the GRBs detected by BATSE. The light curves
of GRBs show great variability and diversity. Source: J. T. Bonnell (NASA/GSFC)

figure 1.8. The existence of two distinct populations of bursts implied the existence

of two kinds of progenitors and inner engines.

The measured spectra were not thermal, and evolved with time from hard to

soft. The time-averaged spectrum followed an ad hoc function, called the “Band

function” S(E) [9], given by:
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Figure 1.7: Duration (T90) distribution of the GRBs detected by BATSE. Two
populations of bursts, separated at T90 ' 2 s, can be seen. Source: [6]

S(E) = A×


(

E
100keV

)a
e
− E

E0 E ≤ (a− β)E0(
(a−β)E0

100keV

)α−β (
E

100keV

)β
eβ−α E ≥ (a− β)E0,

(1.1)

where a and β are the low- and high-energy spectral indices, respectively. The

parameters were estimated by measurements of bright BATSE bursts to be on av-

erage α ' −1, β ' −2.25, and E0 ' 256keV (Fig. 1.9) [8]. The spectral energy

distribution ν Fν peaked at the peak energy Ep ≡ (2 − a)E0. Figure 1.10 shows

an example of a spectral fit using the Band function. Figure 1.11 shows different

possible broadband synchrotron spectra from a relativistic blast wave that accel-

erates the electrons to a power-law distribution of energies, as believed to happen

during internal shocks. The similarity between figures 1.10 and 1.11 implies that

the prompt emission from GRBs is mostly synchrotron radiation.
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Figure 1.8: Hardness ratio versus duration (T90) for BATSE GRBs. Short bursts
(T90 . 2 s) have higher hardness ratios than long bursts (T90 & 2 s), supporting the
hypothesis that short and long bursts constitute two separate populations, probably
originating from different progenitors. Source : [7]

Figure 1.9: Distributions of the Band function parameters from fits to the spectra
of bright BATSE GRBs. Left : Low-energy spectral index a, middle: break energy
E0, right : high-energy spectral index β. The units on the Y axes are number of
bursts. Source: [8]

Ghirlanda et al. found that the spectra of short GRBs can be better fitted by

a power law combined with an exponential cutoff at high energies [57]. Similarly to

long GRBs, they also found that the νFν distribution for short GRBs peaked at an
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Figure 1.10: Example of a fit to the spectrum of GRB911127 using the Band func-
tion. Here α = −0.967± 0.022 and β = −2.427± 0.07. Source: [9]

energy E0 = 355± 30 keV .

1.2.3 BeppoSAX & HETE-2 (1996-2007)

Because gamma rays can neither be reflected with mirrors nor refracted with

lenses, there are not any focusing gamma-ray telescopes used in astronomy (see [58]

for a review of the detection methods used in gamma-ray telescopes). As a result,

the angular resolution of gamma-ray telescopes such as BATSE was too wide to

allow optical telescopes, which needed arcmin localizations ((1/60)o), to search for

burst counterparts. This prevented the identification of the progenitors and the

environments of GRBs, as well as the measurement of their distances. As a result,

a verification of the cosmological origins of GRBs was still lacking. A breakthrough

happened in early 1997, when the Dutch/Italian satellite BeppoSAX [59] (1996-

2002) detected a fading X-ray emission from long GRB970228 . After a processing of

a few hours, a localization accurate enough for follow-up ground-based observations
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at optical, radio, and other wavelengths was obtained. These observations initially

identified a fading optical counterpart, and, after the burst had faded, long-duration

deep imaging identified a very distant (z = 0.498) host galaxy at the location of the

burst. This observation was the first conclusive piece of evidence that long GRBs are

cosmological sources. It also paved the way for identifications of more host galaxies

and for redshift determinations through spectroscopy of the GRBs, and settled the

distance-scale argument for long GRBs [60].

After BeppoSAX, the High-Energy Transient Explorer (HETE-2) (2000-2007)

[61] performed more afterglow observations of high quality and helped identify a new

class of sources called “X-Ray Flashes,” similar to softer GRBs identified earlier by

BeppoSAX. HETE-2 also made the first observations connecting long GRBs with

Type Ic supernovae (see subsection 1.3.5.1).

By 2005, although afterglows had been detected from about fifty long GRBs,

there were no such detections for short GRBs. The afterglows of short GRBs were

hard to detect because the detectors had to achieve precise localizations using smaller

numbers of photons, which required more time than the case of long GRBS. By

the time a precise localization was achieved and an X-ray sensitive instrument was

pointed toward the acquired location, the already weak afterglow of short GRBs

had decayed to the point of becoming undetectable.

The first afterglow from a short GRB was detected by the Swift satellite,

described next, due to its high sensitivity and fast slewing (re-pointing) capabilities.
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1.2.4 Swift (2004 - present)

In the instruments described above, there was an ∼ 8hr or longer delay be-

tween the initial burst detection and the follow-up observations. This resulted in the

loss of important information contained in the burst afterglow during that delay. A

new satellite, called Swift [62] , that could observe the afterglow of the burst swiftly

after its detection, was launched in 2004. Swift had a GRB detector combined with

a wide field X-ray and an optical/ultraviolet telescope, and the ability to do au-

tomated rapid slewing. Thus, it could localize afterglows with arcsec accuracy a

minute or so after the burst at gamma-ray, X-ray, and optical wavelengths.

Swift’s capabilities enabled us to study the transition between the energetic

and chaotic prompt emission, and the smoothly decaying softer afterglow. These

observations lead to the detection of spectral breaks in the afterglow emission (Figs.

1.12 and 1.13), which provided support to the collimated-emission model of GRBs

and allowed us to significantly constrain the energetics of GRBs (see subsection

1.3.4). Furthermore, it provided, for the first time, observations of the afterglows of

short (T90 . 2 sec) bursts, which lead to redshift measurements of short GRBs and

verified the cosmological origin for them too.

Swift’s observations of short GRBs showed that, unlike long GRBs, they usu-

ally originate from regions with a low star-formation rate. This suggested that short

GRBs are related to old stellar populations, possibly from mergers of compact-object

binaries (i.e., neutron star-neutron star or neutron star-black hole). Furthermore,

even though supernova features such as red bumps and late-time rebrightening were
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detected in the afterglows of most long GRBs close enough to allow such a detec-

tion, there were no evidence of such features in the afterglows of long GRBs. These

observations strengthened the case for long and short GRBs having different kinds

of progenitors: compact-object binaries for short GRBs versus massive stars for long

GRBs.

The GRB afterglows, as observed by Swift, decayed on a power law and pro-

gressively softened from X-rays, to optical, to radio. As of January 2008, Swift

had detected 208 bursts in gamma rays, with almost all of them having an X-ray

afterglow.

Swift is sensitive to a lower energy range (15−150 keV ) and to bursts of longer

durations than other detectors. Therefore it is more sensitive to GRBs of higher

redshifts, since the signal from such GRBs is more redshifted and time dilated. Due

to its increased sensitivity to distant GRBs, Swift observed GRB050904, the most

distant GRB ever observed. GRB050905 had a redshift of z = 6.295, and when it

exploded the age of the universe was only ∼ 6% of its current age. The redshift

distribution of Swift GRBs and pre-Swift GRBs is shown in Fig. 1.14. As can be

seen, Swift GRBs are on average more distant than pre-Swift GRBs.
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Figure 1.11: Different possible broadband synchrotron spectra from a relativistic
blast wave that accelerates the electrons to a power-law distribution of energies
(Nγ ∝ γ−p, with γ the Lorentz factor of the electrons). The different spectra are
labeled 15 from top to bottom. Different sets of physical conditions correspond to
different orderings of the break frequencies: the minimal synchrotron frequency of
the least energetic electron νmu, the self-absorption frequency νsa, and the typical
synchrotron frequency of an electron whose cooling time equals the dynamical time
of the system νc. The similarity of these spectra to the spectrum of the prompt
emission from GRBs implies that the latter is most likely synchrotron radiation.
Source: [10].
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Figure 1.12: Light curves of four well-sampled GRBs exhibiting a characteristic
range of potential jet break behavior. The light curves are composed of measure-
ments by two of Swift’s detectors: the Burst Alert Telescope (BAT-red) and the
X-Ray Telescope (XRT - blue). Source: [11]
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Figure 1.13: Synthetic sketch of a light curve based on Swift’s observations. The
initial phase, denoted by “0,” corresponds to the end of the prompt emission. Four
power-law light-curve segments together with a flaring component are identified in
the afterglow phase. The components marked with solid lines are the most common,
while the ones marked with dashed lines are observed in only a fraction of the bursts.
The typical spectral indices of the power-law decay are shown for each segment. The
break between regions III and IV occurs simultaneously for all observed frequencies
(achromatic break) and is related to the fact that the GRB emission comes from
relativistic jets. Source: [12]
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Figure 1.14: Redshift distributions of GRBs detected by Swift and of GRBs detected
by pre-Swift satellites. The average redshift of the Swift sample is higher than
redshift of the previous observations (2. 3 vs 1. 2), because of the greater sensitivity
of Swift to distant GRBs. Source: [13]
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1.3 The GRB Model

According to the generally accepted model of the progenitor and the emission

mechanism of GRBs, GRBs start with a cataclysmic event, such as the merger of

two compact objects or the collapse of the core of a rotating massive star, followed

by the creation of a rapidly spinning black hole and an accreting envelope around

it (Fig. 1.15). This model, called the ”Collapsar model”, was initially proposed

to explain long GRBs [63]. However, it was realized that the mergers of compact-

object binaries that create short GRBs also result a black hole-accretion disk system

similar to the one in the collapsar model.

Figure 1.15: Sketch showing the process leading to the formation of a GRB. Source:
[14]
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The collapse of the accreting material that is near the equator of the envelope is

somewhat inhibited by the strong centrifugal forces. Most of the accretion happens

through two funnels that form on the poles of the black hole (on the axis of rotation).

Large amounts of energy (∼ 1050 erg/s) are deposited locally on the polar regions,

possibly through neutrino-driven winds [64], magneto-hydrodynamic processes [65],

magnetic instabilities in the disk [66]. The sources for the deposited energy are the

gravitational and rotational energy of the accreting envelope and the spinning black

hole. The relative contribution of each source (envelope or black hole) is unknown

and depends on which energy-transfer mechanism is more efficient. It is more likely

that the largest fraction is supplied by the gravitational energy of the envelope.

Outward radiation and matter pressure gradually build up at the poles; how-

ever, they are initially smaller than the pressure from the in-falling material. A

point is reached, at which the matter density over the poles and the accretion rate

are reduced to a large enough degree that they cannot counter-balance the outward

pressure. At that point an explosion occurs. A hot baryon-loaded e−, e+, γ plasma

(also called the “fireball”) pushes outwards through the layers of the envelope. Mat-

ter and pressure gradients and magnetic fields collimate the outflow, until it finally

manages to erupt from the surface of the object and break free in the form of two

opposite narrow jets of half-opening angle ∼ 10o (Figs. 1.16 and 1.17). Because

the baryon load of the fireball plasma is small–Mbc
2 � E , where MB is the total

mass of the baryons, and E is the total energy of the fireball–the fireball is quickly

accelerated to relativistic velocities.

In the first stages following the ejection of the jet (preburst), the density of
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Figure 1.16: A hyper-relativistic jet (Γ ∼ 200) breaking out from the mantle of a
15M� Wolf-Rayet star, 8 s after it was launched from near the star’s center. The
jet’s luminosity is 3× 1050 erg/s. Source: [12]

the jet is very high, and any radiation produced in it is readily absorbed instead

of escaping. As a result, the jet accumulates energy, and its bulk Lorentz factor

increases further. However, as it expands, the optical depth is reduced, and radiation

can escape from it. The fact that the observed radiation is a power law and shows

great variability disfavors a model of a uniformly dense fireball expanding smoothly

in the interstellar space and radiating on a thermal spectrum. It was realized that

the observed prompt emission and the afterglow could be produced during internal

[67] and external shocks [68], respectively. The internal shocks happen inside the

jet and between shells of material moving at different velocities. Such shells can

be created if the energy-deposition mechanism is intermittent. During these shocks,
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Figure 1.17: Collapse and explosion in a 14 solar mass Wolf-Rayet star. Left :
The iron core of a highly evolved star collapses to a black hole. Material along
the rotational axis falls in quickly, but matter in the equatorial plane is slowed by
rotation and piles up in a disk. Here color represents log density at a time 20 seconds
after the initial collapse, and the highest density in the equatorial plane near the
black hole is 9 × 108 g/cm3. The figure is 1800 km across, and the inner boundary
is at 13 km. A black hole of 4.4M� has formed and has been accreting 0.1M�/s
for the last 15 seconds. During this time, magnetohydrodynamical processes (not
included in the simulation) would launch a jet along the rotational axis. Right : A
GRB supernova. A two-component jet was introduced at the origin along the top
and bottom axes of a star similar to the one above. One component had 1051 erg/s,
Lorentz factor Γ = 50, and an internal energy to mass ratio of 3. Its opening angle
was about 10o. A second component of mildly relativistic matter extended from
30o − 45o and had power 5 × 1050 erg/s and speed 14 × 103 km/s. Its composition
and properties reflected those expected for a “disk wind” blowing off the accretion
disk by viscous processes. This figure, 2 × 105 km across, shows conditions 0.94 s
after the jet was launched. Both flows are hydrodynamically focused towards the
rotational axis. Images and caption from [12].

the jet’s electrons are accelerated to ultra-relativistic velocities and emit synchrotron

radiation. Each peak of the prompt light curve is considered to be created during

such an internal shock.

The external shock occurs when the jet eventually collides with the ambient

circumburst medium, and smoothly and slowly decelerates. Similarly to internal
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shocks, relativistic electrons emit synchrotron radiation observed as an afterglow

that starts from gamma rays and gradually softens to longer wavelengths, down to

radio as the jet is attenuated by the circumburst medium.

While the general picture described by the collapsar model is accepted by the

scientific community, there is little consensus regarding some of its details. The

inner engine of GRBs is hidden from us, so we can make only indirect inferences

about its nature. As a result, there is still uncertainty regarding many aspects of the

model, such as how exactly the jets are formed; which mechanism transfers energy

from the inner engine to the jets; the baryonic load of the jets; the jets’ bulk Lorentz

factor; which physical processes are involved in the internal shocks; what specific

circumstances lead to the creation of a GRB instead of just a supernova, etc.

In the following, I will give a brief review of some of the observed GRB prop-

erties. I will mention, where applicable, how these properties support the collapsar

model. For an extensive review on the physics of GRBs, the collapsar model, and

the progenitors and hosts of GRBs see, [69, 70, 71, 72].

1.3.1 Inner engine of GRBs

The light curves of the prompt emission show a variability of milliseconds to

many minutes. These short time scales imply that a compact object is involved in

the emission, with size of the order of tens of kilometers, typical for black holes and

neutron stars. The fact that the burst duration is usually longer than the variability

suggests a prolonged and intermittent inner-engine activity in two or three different
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simultaneous time scales. This disfavors any explosive model that releases the energy

at once. The total energy emitted in gamma rays is very high, about 1051 erg, an

amount comparable to the energy release from supernovae. The above suggest that

the inner engine of GRBs consists of a massive object, most likely a newborn black

hole, with a massive (mass & 0.1M�) disk accreting into it. The accretion explains

the prolonged activity and the different time scales, and the black hole satisfies the

size and energy requirements.

1.3.2 Emission mechanism

According to the collapsar model, the observed radiation is produced at in-

ternal or external shocks. During these shocks, energy is transferred to the jet’s

electrons through a diffusive shock acceleration mechanism [73] in which magnetic

field irregularities keep scattering the particles back and forth so they cross the same

shock multiple times. During the first crossing, an electron gains an amount of en-

ergy of the order of Γ2
sh, where Γsh is the Lorentz factor of the shock front measured

in the rest frame of the jet [74]. Subsequent crossings are less efficient, and the

gain is of the order of unity [74]. During these shocks, the electrons are accelerated

to ultra-relativistic velocities (Γe up to ∼ 1000) and emit synchrotron radiation.

The shocks may also accelerate protons. However, the power of the synchrotron

emission from protons is considerably smaller than the power from the electrons,

since an electron emits (mp/me)
2 ' 107 more power through synchrotron radiation

than a proton of the same Lorentz factor. Therefore the detected radiation is likely
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produced by electrons.

While the predictions of the synchrotron model are in reasonable agreement

with afterglow observations [75, 76, 77], there are some inconsistencies between

its predictions and the observed spectral slopes [78]. Alternative models for the

emission in internal shocks include synchrotron self-Compton [79, 80] and inverse

Compton scattering of external light [81] similarly to the emission mechanism of

Active Galactic Nuclei.

1.3.3 Relativistic expansion

The GRB fireball has a high radiation density, so photon pairs of center of

mass energy ≥ 2me c
2 should readily annihilate and create e−e+ pairs, instead of

escaping from the fireball. A calculation using typical values yields an optical depth

τγγ ∼ 1015 [82]. In such a case, the emitted spectrum should be thermal and should

not contain an MeV or higher-energy component. This, in a first view creates a

paradox, the “Compactness problem,” since the observed spectrum is a power law

and extends up to energies of at least tens of GeV, with no indication of a cutoff for

long GRBs and up to tens of MeV for short GRBs.

The paradox can be solved if the radiating material is moving with relativistic

velocities towards us. In such a case, the observed GeV/MeV photons actually have

a lower energy in the fireball frame of reference. Therefore, the optical depth of

the fireball for the observed photons is actually lower, since there is now a smaller

number of photon pairs with a center of mass energy over the annihilation threshold
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(2mec
2). If we assume that the photon energies inside the fireball are distributed on

a power law IoE
−a, then this effect will decrease the opacity by factor Γ−2a, where

Γ is the bulk Lorentz factor of the fireball [69]. Furthermore, because of relativistic

contraction, the implied dimensions of the source moving towards us will be smaller

by a factor of Γ2 than its proper size. The power of two comes after considering

the curvature of the emitting region (spherical-cap shape). As a result, the source’s

density is actually smaller by a factor of Γ−4 and the optical depth smaller by a

factor Γ−2. The combined effect is that the optical depth is actually lower by a

factor of Γ−2a−2 than what it would be for a non-relativistic jet, thus solving the

paradox. Based on the above considerations and the amount of detected MeV/GeV

radiation from GRBs, lower limits on the bulk Lorentz factor of Γ & 15 were placed

for short GRBs [83] and Γ & 100 for long GRBs [84].

Another piece of evidence supporting the case for relativistic motion of the

ejecta comes from the fact that estimates of the size of the afterglow two weeks after

the burst, independently provided by radio scintillation [85] and lower-frequency self

absorption [86], can be explained only by assuming relativistic expansion.

1.3.4 Energetics and collimated emission

The afterglow light curves of GRBs exhibit achromatic spectral breaks (Fig.

1.13) that can be explained by assuming that the geometry of the ejecta is conical

(on two opposite jets) instead of spherical. Figure 1.18 shows how this can happen.

Because the fireball is moving with relativistic velocities, its emission is beamed.
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Consider an observer that is inside the projection of the emission cone of the fireball.

Initially, when the bulk Lorentz factor of the fireball is very high, the relativistically-

beamed radiation will be emitted in a very narrow cone. As a result, the observer

will not be able to see the emission from a part of the fireball. Such a case is shown

in the top picture of figure 1.18, in which radiation from the sides of the fireball

is clearly not visible by the observer. As the GRB progresses, the surface of the

fireball expands (as ∝ t2), and the emitted radiation density drops with the same

rate, causing a gradual decrease in the observed brightness of the burst. However,

because of the expansion, the bulk Lorentz factor is reduced, and the relativistic

beaming becomes wider. As a result, a larger fraction of the surface of the fireball

will come in the field of view of the observer (middle picture), reducing the decay

rate of the observed GRB brightness (now ∼∝ t−1.2 instead of ∼∝ t−2). Eventually,

all of the surface of the burst becomes visible to the observer, and a gradually

increasing fraction of the fireball is no longer able to be seen. The decay rate of the

burst’s brightness now depends only on the expansion of the fireball’s surface and

becomes proportional to t−2. This transition, appearing as an achromatic break

on the afterglow light curve, has been observed on many GRBs. For the GRB

afterglows with no observed jet breaks, it is assumed that the breaks happened at

a time long after the bursts, when no observation data exist.

The typical GRB gamma-ray fluences at the earth are of the order of 10−5 erg/cm2.

If we assumed an isotropic emission from GRBs, then this fluence, combined with

the distance scale of GRBs (say z = 2), would result to an isotropically-emitted

energy of Eiso ' 1053 erg. Such an energy emission is considerably higher than the
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Figure 1.18: Sketch showing how the relativistic beaming combined with collimated
matter emission produces an achromatic spectral break in the afterglow curve of
GRBs. Source: [14]

emission from a typical supernova (1051 erg in few months or 1049 erg in hundreds of

seconds), and is difficult to explain. However, the fact that the emission geometry
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is conical ameliorates these energy requirements. If the emission actually happened

in a solid angle ∆Ω, then the true amount of emitted energy is

Etrue = 2Eiso ∆Ω/4π

= 2Eiso
1− cos(θjet)

2

' Eiso

θ2
jet

2
,

where θjet is the half opening angle of the emission cone. Frail et al. [87] estimated

θjet for a sample of GRBs, based on the occurrence time of the achromatic break in

their afterglow curves. Based on θjet, they calculated the true amount of emitted

energy from the isotropic-equivalent amount. Their result (Fig. 1.19) showed that

even though the isotropic-equivalent emitted energy spans a wide energy range (4×

1052−2×1054 erg), the true amount of emitted energy spans a considerably narrower

energy range centered at ∼ 3 × 1050 erg. This shows that the energy emission of

GRBs is comparable to that of supernovae, and suggests that GRBs have a standard

energy reservoir. The fact that the emission is conical also increases the implied rate

of GRBs by the same factor (' θ2
jet), since only GRBs with their emission cones

pointing to the earth are detected.

1.3.5 Progenitors of GRBs

There are multiple observational pieces of evidence that suggest that not all

GRBs are the same, and that there are different kinds of progenitors and inner

engines. Specifically, the duration and the hardness ratio-duration distributions
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Figure 1.19: GRB energetics: distribution of the isotropic-equivalent emitted energy
for a selection of GRBs with known redshifts (top), distribution of the geometry-
corrected emitted energy for the same GRBs (bottom). Arrows are plotted for five
GRBs to indicate lower or upper limits to the geometry-corrected energy. Source:
[12]

(Figs. 1.7 and 1.8) show that there are two kinds of bursts: short-hard bursts and

long bursts. Deep long-duration observations of the optical afterglows of short bursts

did not show any evidence of an associated supernova [88, 7, 89]. On the other hand,

supernova-emission spectra were detected superimposed on the afterglows of most

of the long GRBs (∼ 20 GRBs) that were close enough (z . 1) to allow for such a

detection [90].

Short duration bursts are primarily observed in regions with low or no star
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formation, therefore they are likely to be related to old stellar populations. This

suggests that these bursts could be the result of mergers of compact binaries, such

as neutron star-neutron star or neutron star-black hole. The binary loses rotational

energy through the emission of gravitational radiation and eventually merges, form-

ing a black hole and an accretion disk surrounding it. The resulting system, then,

produces a GRB in a way similar to the collapsar model described above.

Long bursts are observed in regions with high star formation and are usually

accompanied by supernovae, implying that they are related to the death of massive

stars (see subsection 1.3.5.1 for more details on the GRB-supernova connection).

The massive star involved is most likely a Wolf-Rayet star, 2 given that absorption

features in the afterglow of long GRBs [91] were explained by the presence of the

fast-moving wind of such a star. Furthermore, the fact that long-GRB counterparts

are located within the blue parts of galaxies argues against high-velocity progenitors

(such as merging neutron stars). The above suggest that long GRBs likely come

from the collapse of the core of a Wolf-Rayet star that for some reason created a

GRB instead of just a supernova. Some of the differences between short and long

GRBs come from the fact that the engine of long GRBs operates at the center of a

collapsing star, therefore it is covered by the mantle of the star, while the engine of

short GRBs is more or less exposed.

2Massive stars (Mass > 20 M�) that rapidly lose their outer envelope by means of a very strong
stellar wind.
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1.3.5.1 Long GRB-supernova connection

In 1998, the optical telescope ROTSE discovered a transient emission coinci-

dent in space and time with BeppoSAX/BATSE long GRB980425 [92]. The location,

spectrum and light curve of the optical transient lead to its identification as a very

luminous Type Ic supernova3 (SN 1998bw) [93, 94]. This detection was a first of

its kind, and suggested that long GRBs are related to supernovae, and therefore to

the deaths of massive stars. Because GRB980425 was very subenergetic comparing

to other GRBs (isotropic energy emitted was ∼ 8 × 1047 erg instead of the usual

1051 − 1054 erg), the supernova-GRB connection was initially called into question.

However, a few years later, a similar event happened. Emission from a supernova

(SN2003dh [95]) was detected on the afterglow of long GRB030329. This time, the

associated GRB had a normal energy. In addition to those events, there have also

been red emission “bumps” superimposed on the afterglows of GRBs, with color,

timing, and brightness consistent with the emission of a Type Ic supernova similar

to SN 1998bw (see [72] and references therein).

Based on the above, it is now believed that most, if not all, long GRBs are

accompanied with a Type Ic supernova. It should be noted, however, that not all

Type Ic supernova create a GRB. The specific conditions that lead to the creation

of a GRB is one of the open questions of the field. Observational and theoretical

evidence imply that high rotational speeds, high progenitor masses, and regions of

low metallicity [96, 63] favor the creation of GRBs.

The collapsar model of GRBs can accommodate the existence of a Type Ic

3A Type Ic supernova has no hydrogen in its spectrum and lacks strong lines of HE I and Si II.
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supernova. Specifically, the GRB and the underlying supernova are powered by

different sources. The supernova and the 56Ni that makes it bright are produced

by a sub-relativistic disk wind [63]. The wind begins as protons and neutrons, in

about equal proportions, and after it cools, it ends up as 56Ni. The nickel comes

out in a large cone surrounding the GRB jet.
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Chapter 2

VHE Emission from GRBs

2.1 Introduction

The prompt and delayed emission from GRBs has been observed in many

wavelengths from MeV gamma rays to optical photons. The observation of each

of these components provide unique information regarding the environment and

mechanism of GRBs. However, the E > 20GeV emission from GRBs has yet not

been detected.

This chapter will present the physical processes involved in the generation

and absorption of VHE photons in GRBs, and will provide insight on which condi-

tions favor such an emission and what kind of information can be deduced from its

detection.

Section 2.2 will present the observational searches for VHE emission from

GRBs. Then, section 2.3 will give an overview of the processes that can generate

VHE photons in GRBs. Lastly, section 2.4 will describe the processes that can

absorb part of that radiation at the site of the burst.
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2.2 Searches for VHE Emission from GRBs

Even though there are multiple processes that can create E > 20GeV photons

in GRBs, there has not been a definitive detection of such an emission yet. This

is likely due to the absence of an instrument capable of detecting it, rather than

an intrinsic property of GRBs. The satellite instruments mentioned in the previous

chapter–BATSE, EGRET, Swift, etc.–were not sensitive to energies over ∼ 50GeV ,

and therefore not capable of detecting the VHE emission from GRBs. EGRET did

have some sensitivity up to ∼ 100GeV , but the flux from GRBs at that energy

range is small enough that it could not be detected by EGRET. Up until now,1 only

ground-based detectors were sensitive to such high energies.

The most sensitive ground-based detectors–Imaging Atmospheric Cherenkov

Telescopes (see section 5.2)–have a narrow field of view (. 3o) and small duty cycles

(less than 10%). As a result, they are not suitable for continuously monitoring the

overhead sky for GRBs (as satellite detectors can do). Furthermore, most IACTs

cannot refocus fast enough towards the location of a GRB detected by another

instrument in order to observe its prompt emission. Based on the above, IACTs

are better at searching for VHE emission from GRBs during the afterglow phase,

and this only for the GRBs detected by external instruments. Searches for VHE

emission from GRBs by IACTs resulted in null results [97, 98].

Milagro, on the other hand, has a wide field of view (∼ 2 sr) and a high duty

cycle (> 90%), so unlike IACTs, it can perform GRB observations both indepen-

1 The GLAST satellite, recently launched (06/09/08), carries the the wide field of view instru-
ment LAT which is sensitive to gamma rays of energies up to 300 GeV .
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dently and in coordination with other instruments. Milagro, similarly to most EAS

arrays, has ∼ 4000 times more exposure to the sky than IACTs. However, it is

considerably less sensitive than IACTs to gamma rays of energies E . 1 eV . As will

be shown in Chapter 3, the higher-energy component (E & 300GeV ) of the VHE

emission from GRBs is strongly attenuated before reaching the earth. Therefore, a

high sensitivity in the hundreds of GeV energy range is required in order to perform

observations of the VHE emission from GRBs. Milagro’s effective area is maximal

at TeV energies, so Milagro is less sensitive than IACTs to the low-energy GRB

emission reaching the earth.

Another reason for the absence of a detection of VHE emission from GRBs is

the fact that the produced VHE radiation can be self-absorbed before managing to

escape the site of the burst (see section 2.4).

Despite the absence of a definitive detection of VHE emission from GRBs,

there have been some hints of such emission in the observational data. Milagrito,

the prototype of Milagro, was used to perform observations in coincidence with the

56 BATSE GRBs in its field of view. It detected a fluctuation in coincidence in

time and in the error box of GRB970417 with a post-trials probability 1.5 × 10−3

(or 3σ) (Fig. 2.1) [15]. However, the statistical significance was not high enough for

a definitive detection to be claimed.

BATSE, as mentioned above, was on board the CGRO along with other in-

struments. One of them was EGRET, a gamma-ray detector sensitive to energies

extending past the high-energy threshold of BATSE (BATSE: 20 keV − 2MeV ,

EGRET: 30MeV− ∼ 30GeV ). EGRET performed coincident observations on the
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Figure 2.1: Skymap of the events detected by Milagrito in coincidence with
GRB970417. The 18-event fluctuation in the skymap had a probability of only
1.5 × 10−3 of being a mere fluctuation of the background, implying that it might
had been generated by a gamma-ray emission. Source: [15]

bright GRBs detected by BATSE. In two of them, it detected photons of GeV en-

ergies. It observed two 3GeV photons from GRB970217 about the same time as

the BATSE trigger, and one 18GeV photon ∼ 90min later (Fig. 2.2) [99]. That

18GeV photon was the highest-energy photon ever detected from a GRB. EGRET

also detected a 10GeV photon from GRB910503 [100].

González et al. combined the spectra of 26 bright GRBs measured by BATSE

and EGRET [17]. The combined spectrum of one of the bursts, GRB941017, had

a high-energy tail extending up to 200MeV that looked like an independent com-
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Figure 2.2: Events detected by EGRET from GRB970217. EGRET detected a
18GeV photon ∼ 90min after the GRB. Source: [16]

ponent. That component appeared ∼ 10 − 20 s after the main burst and had a

roughly constant flux, while the lower-energy component decayed by three orders of

magnitude. The higher-energy component also had a hard and rising spectral slope

(∼ 1.0). Some time after the main burst (∼ 150 s), it contained more energy than

the lower-energy peak (30 keV −2MeV ). No evidence for a cutoff was seen for that

component, therefore it could continue up to GeV/TeV energies.

2.3 Radiation-Emission Processes

VHE photons can be created in a GRB by both leptonic and hadronic pro-

cesses. Because the exact composition and the conditions at the site of a burst are

not known, the expected emission due to these processes is only moderately con-

strained. Leptonic emission processes are believed to produce the largest fraction of

the VHE radiation, so they will be described in detail.
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Figure 2.3: The combined spectrum of GRB941017 measured by BATSE and
EGRET at different times relative to the BATSE trigger, a (−18, 14 s), b (14, 47 s),
c (47, 80 s), d (80, 113 s), and e (113, 211 s). Source: [17]
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2.3.1 Hadronic emission

The protons of the GRB fireball can be accelerated to relativistic energies

(up to 1020 eV ) and emit synchrotron radiation that can be up to TeV energies

[101, 102, 103, 104]. However, synchrotron emission from protons is weak, smaller

by a factor (me/mp)
2 of the synchrotron emission by electrons.

In GRB internal and external shocks, various processes can create neutral

pions that later decay to higher energy gamma rays. These processes are:

p+ p→ p+ p+ π0,

p+ n→ p+ n+ π0,

p+ γ → ∆ → πo + p.

The produced pions will be moving relativistically along the rest of the fireball

towards the observer. For that reason, the energy of the pions and their decay

photons will be relativistically boosted to higher energies by a factor of Γ, as observed

by our reference frame. Because of the high opacity of the GRB fireball, no radiation

over ∼ 100GeV produced by pions at internal shocks is expected to be observed.

[105], However, during the early afterglow and in the case of expansion into a low

density interstellar medium (ISM), these decay photons can be observed up to TeV

energies (Fig. 2.7) [19].

Charged pions also produce higher energy photons via synchrotron emission
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of their decay electrons [104, 106]. These pions are produced by processes such as

p+ n→ n+ n+ π+,

p+ p→ p+ n+ π+,

p+ γ → ∆ → π+ + n,

and they decay through

π+ → µ+ + νµ → e+ + νe + ν̄µ + νµ

π− → µ− + ν̄µ → e− + ν̄e + νµ + ν̄µ.

The energetic decay electrons and positrons emit synchrotron radiation that could be

in the TeV energy range (especially the ones from the last process) [106]. However,

the energy radiated by this process is expected to be smaller by orders of magnitude

than the electron synchrotron component, unless only a very small fraction of the

thermal energy of the shocked material is carried by the electrons ≤ 0.01 [104, 106].

2.3.2 Leptonic emission

Because of the large amounts of energy deposited to the electrons of the fire-

ball during internal and external shocks, these electrons are accelerated to ultra-

relativistic velocities. There are two competing processes through which they dis-

sipate their energy. The first, as already has been mentioned, is believed to be

synchrotron radiation, responsible for the observed keV/MeV and lower-energy
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emission from GRBs. The second process is inverse Compton scattering, in which

the ultra-relativistic electrons upscatter low-energy photons to higher energies. The

energy of a photon that underwent inverse Compton scattering is [106]

Eic '
2Γ

1 + z

γ
′2
e E

′
sγ

1 + g
, (2.1)

where Γ is the bulk Lorentz factor of the fireball; z is the redshift of the burst; γ
′2
e is

the Lorentz factor of the electron that caused the inverse Compton scattering; E
′
sγ

is the initial energy of the seed photon that underwent Inverse Compton scattering,

and g ≡ γ
′
eE

′
sγ/mec

2. The parameters γ
′
e and E

′
sγ are for the fireball frame of

reference, and Eic is for the observer frame of reference. In the Thomson regime

(g � 1), equation 2.1 becomes

Eic,Thomson ' Γγ
′2
e E

′

sγ. (2.2)

As can be seen, the upscattered energetic photons will have on average an energy

γ2
e times higher than the target photons. If the energy of the seed photons is

high (g � 1) (for example, if they have already underwent one inverse Compton

scattering), then we are in the Klein-Nishina regime, and relativistic and quantum-

mechanical effects suppress the cross section of inverse Compton scattering.

During internal shocks, the synchrotron photons generated by the electron

population can undergo inverse Compton scattering by that same electron popula-

tion. This process is called “Synchrotron Self-Compton” (SSC), with “Self” referring
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to the electrons that both produce and upscatter the radiation. The typical Lorentz

factor of the internal shock electrons is γ2
e ∼ 103 (in the fireball’s rest frame). There-

fore, a typical synchrotron photon of ∼ 300 keV energy (from our reference frame)

will be upscattered to an energy ∼ 103×2 times higher, equal to a few hundred

GeV . This process is believed to produce a second GeV/TeV peak at the GRB

spectra, similar to the one observed in blazar spectra. If the X-ray flare photons

(E ∼ 10 keV ) are created by the synchrotron radiation of late internal shocks, then

they can also be upscattered to ∼ GeV energies [107]. In the alternative case

that the X-ray flare photons are produced by shocks between slowly moving and

fast moving matter ejected simultaneously during the onset of the prompt emission

(refreshed shocks), these photons can be upscattered to GeV/TeV energies [108].

Synchrotron emission and inverse Compton scattering are competing pro-

cesses. The cooling time through synchrotron emission is tsyn = 6πme c/(σT B
2 γe),

where στ is the Thomson cross section, and B is the magnetic field. The cooling

time through inverse Compton scattering can be written as tIC = tsyn/Y , where Y

is “Compton Y parameter”. Y is given by [109]

Y =


εe

εB
, εe

εB
� 1

√
εe

εB
, εe

εB
� 1,

(2.3)

where εe and εB are the fractions of the shocked material’s energy carried by electrons

and the magnetic field, respectively. Depending on the relative magnitudes of εe

and εB, cooling either through synchrotron emission or through inverse Compton
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scattering dominates. Cooling through inverse Compton scattering is only important

for εe > εB.

Pe’er and Waxman [18] calculated the leptonic emission from internal shocks

inside the GRB fireball. Their time-dependent numerical calculations included

all the relevant physical processes: cyclo-synchrotron emission, synchrotron self-

absorption, inverse and direct Compton scattering, e−e+ pair production and anni-

hilation, and the evolution of high-energy electromagnetic cascades.

Figure 2.4 is part of Pe’er and Waxman’s results, and shows the effect of the

ratio εe/εB on the resulting spectral energy distribution. The first peak in the figure

comes from synchrotron emission, and the second higher-energy peak comes from

inverse Compton scattering (SSC). As can be seen, the higher εB is, the larger the

amount of energy dissipated by synchrotron emission. The fact that the emission

in VHE energies can be larger than the keV/MeV energies is important for this

work. First, it implies an increased chance of Milagro detecting a GRB, and second,

it predicts a population of bursts with a very strong VHE emission that can be

excluded in case this search produces null results. The results presented in plot

2.4 are for a relatively transparent to VHE photons fireball. If the opacity of the

emitting region is moderate or high, most of the E & 1GeV radiation is expected

to be internally absorbed. Figure 2.5 shows that the emitted spectrum of the SSC

component depends weakly on the power-law index p of the electrons Ne(E) = E−p.

Pe’er and Waxman also calculated the GRB emission from the early afterglow

in a time scale of tens to hundreds of seconds following the GRB. Similarly to

their other work mentioned above, they explored the dependence of the emitted
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Figure 2.4: Synchrotron and SSC radiation produced at internal shocks for different
fractions of the jet’s energy carried by the magnetic field εB: black εB = 0.33, red
εB = 10−2, blue εB = 10−4. Here Γ = 600, εe = 0.316, ∆t = 10−3, l′ = 0.8, and the
GRB has a redshift z = 1. The calculation is for a low-opacity fireball. The higher
εB is, the smaller the fraction of the electrons’ energy dissipated through inverse
Compton scattering. Source: [18]

spectrum on various uncertain model parameters, in particular the energy density

of the magnetic field, the power-law index of the accelerated particles, and the

density of the circumburst medium. As mentioned in section 2.4.2, the density of

the surrounding medium is different for collapsars and binary mergers. Figure 2.7

shows the emitted spectra from synchrotron and inverse-Compton emission in the

early afterglow for the two different kinds of circumburst media. A comparison of

these spectra with the spectra of the emission from internal shocks can be made.

The red line in figure 2.4 shows a spectrum from internal shocks for a burst with

similar properties to the ones in figure 2.7. (The only difference is that the plot
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Figure 2.5: Synchrotron and SSC radiation produced at internal shocks for different
power-law index p of the accelerated electrons (Ne(E) ∝ E−p): solid line (p = 2.0),
dotted line (p = 2.5), dashed line (p = 3.0). The bulk Lorentz factor of the jet is
Γ = 300, the GRB has a redshift z = 1, and the fireball has a low opacity. The SSC
spectrum depend weakly on p. Source: [18]

for the external-shock case corresponds to a lower bulk Lorentz factor: 316 vs 600).

In the energy range of interest for Milagro (E > 100GeV ), both kinds of shocks

produce similar spectra and energy fluxes. Perhaps external shocks produce a larger

amount of E > 1TeV radiation than internal shocks, but this can be explained by

the different bulk Lorentz factors between the two plots.

Figure 2.8 shows the emitted spectra for different fractions of thermal energy

carried by the electrons and the magnetic field. Similar to the case of internal

shocks, the larger the relative fraction of energy carried by the electrons, the stronger

the higher-energy Inverse-Compton emission. The case of expansion into the ISM

combined with a low fraction of thermal energy carried by the magnetic field (red
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Figure 2.6: Synchrotron and SSC radiation produced at internal shocks for different
bulk Lorentz factors Γ of the jet. All the spectra correspond to a low opacity. The
time scale of the variability ∆t was adjusted so that the opacity was low for each
Γ. Blue line: (Γ = 300, ∆t = 10−2s, l′ = 2.5), red line: (Γ = 600, ∆t = 10−4s,
l′ = 0.6), black line: (Γ = 1000, ∆t = 10−4s, l′ = 0.6). The GRB has a redshift
z = 1. The fraction of the fireball’s energy carried by the electrons (εe) and the
magnetic field (εB) are εe = εB = 0.316. The higher the bulk Lorentz factor is, the
higher the energy of the GRB emission. Source: [18]

dash-dotted line in left figure), can lead to emission extending to tens of TeV, which

is easily detectable by Milagro from a nearby (z . 0.1) burst.

The spectra have a small dependency on the index p of the power-law distri-

bution of the electron’s energies, and stay flat (dN/dlogν ' constant) for most of

the energy range.
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Figure 2.7: Radiation produced by electron and proton synchrotron emission, in-
verse Compton scattering, and neutron pion decay at external shocks for differ-
ent kinds of circumburst media. Solid : expansion into a uniform low-density ISM
(n ' 1/cm3), dashed : expansion into a wind with A = 5 × 1011g/cm, dotted : ex-
pansion into a wind with A = 5× 1011g/cm with the contribution from pion decays
and proton synchrotron emission omitted. The contribution of pion decays and pro-
ton synchrotron emission is negligible for the case of expansion into an ISM. Here
εe = 10−1, εB = 10−2, p = 2, Γ = 102.5, and z = 1. No absorption effects through
interactions with the EBL were applied (see chap. 3). Source: [19]

2.4 Internal-Absorption Processes

Because of the high density of the GRB fireball, the GeV/TeV photons created

in it can be absorbed before managing to escape. There are various processes that

contribute to the opacity of the GRB fireball, such as Compton scattering, eγ →

e−e+, γγ → e−e+. The dominant process is pair creation after the scattering of

the high energy (E > 1MeV ) photons with lower-energy photons of the fireball

(γγ → e−e+). In that process, a photon with energy εγ can annihilate with another
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photon of energy & (mec
2)2/2εγ, where me is the electron mass, creating an electron-

positron pair. It is likely that the opacity at the GRB site varies from burst to burst,

depending on the local conditions, making it hard to account for. For that reason,

this study searched and placed limits on the VHE signal emitted by a GRB, instead

on the VHE signal generated at it.

In the following two subsections, the internal absorption of the VHE emission

generated at internal and external shocks will be described.

2.4.1 Absorption of the emission from internal shocks

The opacity of the emitting region depends on the radiation density. A high

radiation density provides an abundance of lower-energy target photons with which

the higher-energy photons can annihilate. The radiation density is proportional to

the luminosity of the emitting region, and inversely proportional to its size. An

estimate of the size of the emitting region can be provided by the variability time

scale of the prompt emission light curve. Each spike in the prompt light curve

corresponds to one internal shock. Therefore, emission from an internal-shock region

of width (∆R) will create a spike in the GRB light curve of duration ∆t. If the

fireball is moving towards us with a bulk Lorentz factor Γ, then ∆R = Γ c∆t, with

∆R measured in the burst frame. Using ∆R and the photon luminosity produced

from the shock L, the “comoving compactness” parameter l′ can be calculated as

l′ = ∆Rn
′
γ σT , where n

′
γ = εeL/(4πme c

3 Γ2 r2
i ) is the comoving number density of

photons with an energy (Eph) that exceeds the electron’s rest mass (Eph ≥ me c
2);
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εe is the fraction of the post-shock thermal energy carried by the electrons; ri '

2 Γ2 c∆T is the radial distance of the shock from the center of the system; and σT

is the Thomson cross section [18].

The compactness parameter gives a measure of the opacity of the burst. High-

compactness conditions (l′ & 20) will result in a suppressed VHE emission. Figure

2.9 shows the optical depths for pair production and scattering for configurations

with different values of the compactness. As can be seen, the optical depth due to

pair production is expected to be very high for photons of energies E & 100MeV

unless the compactness is very low (red dashed curve).

While the opacity of the GRB fireball constitutes an important factor that

limits our prospects of detecting VHE emission from GRBs, it also significantly

increases the importance of that detection. Based on the dependence of the opacity

on Γ, a detection can be used to place lower limits on Γ, providing information on

a key ingredient of the GRB model.

2.4.2 Absorption of the emission from external shocks

Pe’er and Waxman calculated the opacity to the radiation produced during

the early afterglow, tens to hundreds of seconds following the prompt emission [19].

Similarly to the case of absorption in internal shocks, the opacity is due primarily

to pair production and depends on the density of the medium. The emission from

external shocks is produced by the jet’s interactions with the medium surrounding

the burst. The density of the circumburst medium depends on the progenitor of
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the GRB. In the compact-binary merger scenario (responsible for short GRBs), a

number density similar to that of the interstellar medium (n ' 1/cm3) is expected.

On the other hand, in the collapsar scenario (responsible for long GRBs), stellar

winds, such as from the Wolf-Rayet star, can create a higher-density medium sur-

rounding the GRB. Such a stellar wind creates a density profile ρ(r) = A/r2, with

a typical value for A = 5 × 1011 g/cm. This corresponds to volume densities of

n ' 103 − 104/cm3, which are significantly higher than the typical density of the

ISM. Figure 2.10 shows the optical depths for the two types of surrounding medium.

As can be seen, the optical depth for GeV − TeV emission is considerably lower for

expansion into a low-density interstellar medium, a case which corresponds to short

GRBs.
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Figure 2.8: Synchrotron and inverse-Compton radiation produced at external shocks
for different kinds of circumburst media and fractions of the thermal energy carried
by the electrons εe and the magnetic field εb. Top: expansion into a low density
ISM, bottom: expansion into a stellar wind. Solid : (εe = 10−5, εb = 10−5), dashed :
(εe = 10−1, εb = 10−2), dash-dotted : (εe = 10−1, εb = 10−4). Here p = 2, Γ = 102.5,
z = 1. No absorption effects from interactions with the EBL were applied (see chap.
3). Source: [19]
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Figure 2.9: Energy-dependent optical depths for pair production and scattering.
Solid lines (∆t = 10−5 s, Γ = 300, l′ = 2500), dashed black lines (∆t = 10−4 s,
Γ = 300, l′ = 250), dashed red lines (∆t = 10−4 s, Γ = 1000, l′ = 0.6). Source [18]

Figure 2.10: Energy-dependent optical depths from pair production. Solid line:
explosion into the inter-stellar medium, dashed line: explosion into a stellar wind.
Source: [19]
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Chapter 3

Absorption of the VHE Emission from GRBs by

the EBL

3.1 Introduction

In the previous chapter it was shown that GRBs can emit VHE photons during

both their prompt and afterglow phases. However, a part of this emission is absorbed

during its passage through the extragalactic space. Specifically, VHE photons from

GRBs annihilate with low-energy photons of the Extragalactic Background Light

(EBL) and produce e−e+ pairs: γV HEγEBL → e−e+. As a result, a big part of

the VHE emission from GRBs is absorbed before reaching the earth. Milagro’s

sensitivity to GRBs (and to any other extragalactic source) depends on the amount

of this absorption.

The purpose of this chapter is to present the different models of the EBL, and

the effects of EBL absorption on the VHE emission from GRBs. Section 3.2 de-

scribes the EBL. Section 3.3 provides an overview of the currently available models,

information on how they compare with the observational constraints, and justifica-

tion for the model chosen to be used in this study. Finally, section 3.4 presents the

effects of EBL absorption on the VHE emission from GRBs.
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3.2 The EBL

The EBL is a diffuse photon background which fills the space between the

galaxies. A schematic of the EBL spectrum is shown in Figure 3.1. The near-

infrared (λ ∼ 2 − 3µm) and optical (λ ∼ 0.5µm) part is redshifted starlight,

and the λ ∼ 150µm part of the spectrum is starlight absorbed by dust and re-

emitted in the far-infrared. Because of the narrowness of the pair-production cross

section, for broad-band photon spectra over half of the interactions of a gamma ray

of energy E occur with a quite narrow interval of target photons, ∆λ ∼ (1±1/2)λ∗,

centered on λ∗ ' 1.5(E/1TeV )µm. This means that gamma rays of energy 100GeV

(100, T eV ) will interact with EBL photons of wavelength about 0.15µm (150µm)

which corresponds to the ultraviolet (infrared) part of the spectrum. The magnitude

of the absorption depends on the column density of the background photons between

the source and the observer, which means that knowledge of the EBL density for

different redshifts is needed.
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Figure 3.1: Schematic EBL spectrum as a function of wavelength. The EBL con-
sists of two kinds of light: redshifted starlight (blue line) and starlight absorbed
and remitted by dust (red line). The dashed line corresponds to the cosmic mi-
crowave background, which is shown here only for comparison purposes, since it is
not considered part of the EBL. Source [20]

3.3 EBL Models

The measurements on the present-epoch EBL density (z=0) provides a con-

straint on the integrated energy release in the universe. It is difficult to measure to-

day’s EBL directly, especially in the mid-infrared region, due to strong foregrounds.

Lower limits can be set by source counts, while upper limits can be loosely set by

direct measurements. However, the density of the EBL at different redshifts cannot

be constrained by measuring the cumulative energy output only. For that reason,

there are multiple models that try to calculate the density of the EBL at various red-

shifts and wavelengths. These models approach the problem with different methods,
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degrees of complexity, observational constraints and, inputs1:

� The backward-evolution models [22, 23] extrapolate present-day data or tem-

plate spectra of local galaxies to higher redshifts. They are simple and easily

verifiable since they predict quantities that can be compared with observa-

tions. However, they do not include known processes occurring in galaxies

such as star formation, and re-emission of radiated power by dust.

� The forward-evolution models predict the temporal evolution of galaxies as

a function of time, starting at the onset of star formation. In general, they

have been proven successful in fitting the spectra of individual galaxies, galaxy

number counts in specific bands, and the general characteristics of the EBL.

However, they do not include galaxy interactions and stochastic changes in

the star formation rate. They fail to match the 850µm galaxy number counts

without including a new population of ultraluminous infrared galaxies.

� The semi-analytical models [21] adopt the approach of the forward-evolution

models, but they also include simulations of structure formation. This way,

they can make predictions about the observable characteristics of galaxies and

the intensity and spectrum of the EBL. These models take into account mul-

tiple physical processes, such as the cooling of gas that falls in the halos, the

star formation, and the feedback mechanisms that modulate the star forma-

tion efficiency. In spite of their successes, there remain some discrepancies

between their predictions and observations. The origins of these discrepancies

1 The following information on the various models was mostly based on the detailed overviews
in [110, 20].

58



are difficult to trace because of the inherent complexity of the models and the

multitude of parameters needed by them.

� The EBL provides an integrated over-time view of the energy release by a wide

variety of physical processes and systems that have populated the universe. So,

it is expected to be dependent mostly on the global characteristics of cosmic

history. Thus, chemical-evolution models deal with the history of a few of

the globally-averaged properties of the universe instead of trying to model the

complex processes that determine galaxy formation, evolution, and emission.

The main advantages of these models are their global nature, their intrinsic

simplicity, and the fact that they do not require detailed knowledge of the

processes involved in the evolution of galaxies. They provide a picture of the

evolution of the mean density of stars, interstellar gas, metals, and radiation

averaged over the entire population of galaxies. They have been successful in

reproducing the generic spectral shape of the EBL, but they fall short of some

UV-optical and near-infrared measurements.

In general, most models predict similar cosmic infrared background spectra from

∼ 5 − 1000µm, mostly because they use similar cosmic star formation histories.

Backward evolution models assume a rising SFR up to z ∼ 1 − 1.5 with a nearly

constant rate at earlier times. Forward-evolution and semi-analytical models try

to reproduce the same SFR in order to fit number counts or comoving spectral

luminosity densities at different redshifts. Larger differences occur in the predictions

regarding the UV-optical spectral range of the EBL. Backward-evolution models do
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not include the physical processes that link the cosmic infrared background and the

UV-optical part of the spectrum. Some of them try to amend this but incorporating

template spectra. Other models, naturally arrive at a doubly-peaked EBL because

they explicitly include the absorption of starlight and the following re-emission by

dust.

Primack et al. [21] (PR), use a semi-analytical model, which in general predicts

lower optical depths for nearby sources z . 2 than the other models. Stecker et al.

(ST) [22, 23] use a backward evolution model that has been frequently updated

using new data. Their model predicts a large UV photon density and consequently

a higher gamma-ray opacity at high redshifts. Kneiske et al. [24] (KN04) use a

chemical-evolution model for the UV-optical part of the EBL and, based on recent

deep galaxy surveys, a backwards-evolution for the infrared part.

The validity of the results of these models depends on how they compare with

the existing observational constraints. In 2008, Raue & Mazin [27] performed this

comparison for most of the existing models (Fig. 3.2). They found that both Stecker

2006 models [23] are over the upper limits set by recent blazar measurements by

HESS [111, 112, 113, 114], that Primack 2005 model [21] is under the lower limits set

on the mid-infrared component of the EBL by Spitzer [112, 115], and that Kneiske

2004 high-stellar-UV and low-IR models [24], respectively are either over some upper

limits or under some lower limits.

Concluding that all the EBL models they tested disagree with at least one

observational constraint, Raue & Mazin proposed a “generic-EBL” shape that lies

in the yet not excluded range. Their EBL is not based on a theoretical framework
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Figure 3.2: Comparison between the various predictions on the present-day EBL
density and the observational constraints. Black solid curves show the predictions
from different EBL models. Grey markers are measurements and limits from direct
measurements, fluctuation analyses, and source counts. Red curves are upper limits
derived from VHE blazar gamma-ray spectra. Upper left : model from Primack et
al. [21]. Upper right : fast evolution and baseline EBL models from Stecker et al.
[22, 23]. Lower left : high and low 2004 models from Kneiske et al. [24]. Lower
right : generic EBL model from Rauen & Mazin[25, 26, 27] (blue curve). All but
the last one models are in disagreement with at least one observational constraint.
Source [27]

like all the above-mentioned models, but instead is just one of the many EBL shapes

that is not currently excluded by observations. The special property of the chosen

model is that it lies just above the lower limits. Because of the lack of a theoretical

framework, they can only provide the present-epoch (z=0) EBL. They do, however,

provide a “generic-evolution” prescription for the EBL, in which they calculate the

EBL density at a higher redshift z by scaling the present-day EBL by (1 + z)3−fevo ,

where fevo > 0. However, their generic evolution method agrees with the evolution
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predicted by other complex models (PR and KN04), only up to z ∼ 0.5.

Recently, and after private communication with the author, T. Kneiske mod-

ified the normalization of the star-formation rate for one of her models (warm-dust

model from [24]) to make the model agree with the latest constraints set by HESS

and Spitzer. She named the model “Best-Fit06” and published data 2 of its EBL

density and optical depth versus the energy and the redshift.

Kneiske’s models are accepted by the scientific community and are used by

experiments such as MAGIC. Her new model also agrees with all the existing ob-

servational limits, including the upper limits from HESS and the lower limits from

Spitzer. Furthermore, hers is the only model that is valid for both the energy and

redshift ranges required by this study. As will be seen in Chapter 11, the calcu-

lations for setting upper limits on the VHE emission from GRBs need the optical

depths to gamma rays of energies 40GeV −15TeV originating from a redshift up to

3. For the above reasons, Kneiske’s Best-Fit06 model is the one used in this study.

3.4 Effects of Absorption by the EBL

This section will describe the effects of the EBL absorption on the VHE spectra

from distant sources.

Figure 3.3 shows the attenuation factors (e−τ(E,z)) versus photon energy and

GRB redshift for different EBL models. As can be seen, Primack’s 2004 model

predicts less absorption, while the Stecker models predict more.

Figure 3.4 shows the optical depth τ(E, z) predicted by Kneiske’s Best-Fit06

2 http://www.desy.de/˜kneiske/downloads.html
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model. As can be seen, the attenuation is positively correlated with the redshift of

the source and the photon energy.

The effects of attenuation from the EBL on the energy distribution of detected

photons are shown in figure 3.5, in which the energy distribution of triggered events

caused by sources at different redshifts is plotted. As shown, the further the GRB

is, the higher the attenuation of the higher-energy photons. For the larger redshifts,

most of the photons that Milagro would have otherwise detected are absorbed,

limiting Milagro’s sensitivity. This effect limits the volume of the observable universe

that Milagro is able to observe for VHE emission from GRBs.

In the next figure (Fig. 3.6) the median energies of the energy distributions

of detected photons are shown for different redshifts. The edges of the error bars

correspond to the 1% and 99% quantiles of the same distributions. The energies are

given now for the burst frame. According to that figure, Milagro can measure the

GRB emission with energy between ∼ 40GeV and ∼ 15TeV . Emission of energy

lower than that will not be detected because of Milagro’s limited effective area and

because emission of energy higher than that will be absorbed by the EBL before

reaching the earth. The calculation was for a GRB that emitted on a power-law

spectrum with index -2.00 from 10GeV to 100TeV .
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Figure 3.4: Optical depth τ(E, z) predicted by Kneiske’s Best-Fit06 model.
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the redshift of the source. At least 20 PMTs were required to participate in the
angular reconstruction fits, and the maximum error in the reconstructed angle for
the accepted events was 1.5o. The energies are for the observer reference frame. The
GRB is assumed to emit VHE gamma rays in the 10GeV − 100TeV energy range
(burst frame) on a power-law spectrum with index a=-2.2 and from a zenith angle
10o. Kneiske’s best-bit06 model was used to calculate the absorption by the EBL.
The normalization of the plot is arbitrary.
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Chapter 4

Primordial Black Holes

4.1 Introduction

Hawking [116] showed that fluctuations in the density of the early universe

could collapse and form mini black holes, called Primordial Black Holes (PBHs).

Primordial black holes are yet undetected relics from the first stages of the universe.

They are believed to be present in our galaxy, and are set to evaporate all their mass

through emission of Hawking radiation [117, 118]. Their evaporation rate is progres-

sively accelerated until it reaches explosive degrees in the last stages of their lifetime.

Some models predict that during these last stages, PBHs emit photons of energies

that are detectable by Milagro. Observations of the evaporation of PBHs would

allow us to probe multiple topics in physics, such as the early universe, cosmology,

gravitational collapse, particle physics, and quantum gravity.

There have been many searches for PBHs [119, 120, 121]. However, only null

results were found. Cline et al. [119, 122, 123] argued that some of the very short

GRBs (< 200ms) detected by BATSE could have been created by PBH explosions.

They claimed to have found 42 such candidates, the distribution of which matches

the spiral arms of our galaxy , suggesting they are galactic.

Because PBHs have not been detected yet and because their modeling includes

68



many unknown parameters, their behavior is not constrained. For that reason it is

risky to make concrete predictions on the detectability of the emission from PBH

evaporation. As will be shown in section 4.3, during the last stages of a PBH, a

short (∼ µs − 100s) and intense burst of emission in an energy range detectable

by Milagro could be created. Depending on the specific PBH model and on the

behavior of the poorly constrained parameter a(M) (eq. 4.6), that emission can be

strong enough to be detected.

Section 4.2 describes the mechanism with which PBHs evaporate and gives an

overview of their properties, and section 4.3 describes the emission of photons from

PBHs and its detectability by Milagro.

4.2 Properties of PBHs

Hawking showed that black holes can radiate particles whose Compton wave-

length is greater than the Schwarzschild radius of the black hole. This emission

arises from the spontaneous creation of pairs of particles near the horizon of the

black hole, induced by the strong gravitational fields there. One of the particles

has positive energy and can escape to infinity, while the other has negative energy

and can tunnel into the black hole, where particle states with negative energy with

respect to infinity exist. He showed that an uncharged, non-rotating black hole

emits particlesm that have energies in the range E to E + dE per state of angular
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momentum and spin at a rate:

d2N

dEdt
=

Γs

2π~

[
exp

(
8πGME

~c3

)
− (−1)2s

]−1

, (4.1)

where M is the mass of the black hole, and s is the spin of the emitted species. Γs

is the absorption coefficient, –a function of s, E, and M–that shows the probability

that the emitted particle would be absorbed if incident on the black hole. In the limit

ME � 1, the instantaneous emission has a black-body spectrum with temperature

T =
~c3

8πGM
' 10−7

(
M�

M

)
K ' 1.06× 10−5

(
1015g

M

)
TeV, (4.2)

where G is the gravitational constant, and M� ' 2× 1033 g is the mass of the sun.

Using equation 4.2, equation 4.1 can also be written as:

d2N

dEdt
=

Γs

2π~

[
exp

(
E

T

)
− (−1)2s

]−1

. (4.3)

The luminosity of a black hole is [124]

L = 1020

(
1015 g

M

)2

erg/s (4.4)

and the photon flux is

dN/dt = 5.97× 1034

(
1g

M

)
/s (4.5)
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As a black holes emits particles, its loses mass and slowly evaporates until it dis-

appears. Its mass-loss rate rate is inversely correlated to its mass, therefore it’s

stronger at the last stages of its life:

dM

dt
= −a(M)

M2
, (4.6)

where a(M), the running constant, is a model-dependent count of the particle de-

grees of freedom in the black hole evaporation [117, 124].

As the hole radiates and loses mass, its temperature increases and starts emit-

ting new particle species. Every time the temperature reaches the rest-mass of

a new species, a(M) smoothly rises. For the standard model of particle physics

a(M) ≥ 7.8× 1026 g3/s for M ∼ 5× 1014 g. Integrating 4.6 we can find the time it

would take for a black hole of initial mass M to evaporate completely:

∆t =
M3

3 a(M)
. (4.7)

In order for the black hole to evaporate, rather than absorb accreting matter, it

must have a temperature greater than that of the present-day black-body radiation

of the universe (2.7K). This implies (from eq. 4.2) that its mass M must be less

than 10−7M�. Since in the present epoch of the history of the universe, black holes

form only through the gravitational collapse of massive bodies, and masses less than

3M� are stable when cold in the form of neutron stars or white dwarfs, there is not

a known process that could create black holes of such a small mass.
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The initial mass of a PBH depends on the cosmological density at the time of

its creation. If a PBH was created a time tBB after the Big Bang, then its initial

mass M0(tBB) would be

M0(tBB) ∼ c3tBB

G
' 1038

(
tBB

s

)
g. (4.8)

As seen from eq. 4.8, PBHs can span an enormous initial mass range: PBHs formed

at the Planck time (10−43 s) would have an initial mass equal to the Planck Mass

(10−5 g), while those formed later, say at tBB = 1 s, would have considerable larger

masses equal to 105M�, comparable to the black holes in the centers of Active

Galactic Nuclei. Starting from equation 4.7, Halzen et al. [124] found that PBHs

with masses more than M∗ ' 5 × 1014 g would have evaporated entirely by now.

Using that mass limit with equation 4.8, we find that these black holes were formed

at the first 10−24 s of the life of the universe. PBHs with masses a bit larger than

that should be currently evaporating at a high enough rate to be observationally

significant.

4.3 Emission from PBHs

As the black hole radiates, its mass decreases and its temperature increases

until it becomes comparable to the Planck mass, at which point semi-classical calcu-

lations break down and the regime of full quantum gravity is entered. The mass-loss

rate (amount of emission integrated for all particle species) of a PBH and the types

of particles emitted by it depend on its temperature (or its mass). As the tempera-
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ture increases, becoming successively greater than the rest mass of various particle

species, the black hole starts emitting particles of these species too. The running

count a(M) in equations 4.6 and 4.7 describes the number of particles species emit-

ted from a PBH of mass M . For lower energies, the particle species are the ones of

the standard model, while at energies over the QCD scale ∼ 100MeV , multiple new

species and resonances become available for emission, causing a significant increase

in a(M) and therefore of the mass-loss rate.

Because modeling of the emission and the behavior of a PBH requires the

combination of multiple fields in physics–such as quantum gravity, particle physics,

QCD, and general relativity–the variations between the predictions of the various

models can be large. A short overview of the various models follows:

� MacGibbon and Webber model (1990) [30]

MacGibbon and Webber posited that once the temperature exceeds the quark-

hadron deconfinement temperature Λqh ∼ 100 − 300MeV , individual quarks

and gluons are emitted instead of hadrons and pions. The emitted quarks and

gluons then hadronize (combine) and create jets of pions beyond the black

hole horizon. The photons emitted by a black hole are either created by the

decay of the generated π0 and the fragmentation of the generated quarks, or

are created directly at energies ∼ 5T . The photon emission is far from being

thermal because the secondary photons (from the first two sources) dominate

over the direct thermal ones, since there are 72 quark and 16 gluon degrees of

freedom, while only two degrees for the direct photons. The authors assumed
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that the emitted particles do not interact with each other, therefore they move

and fragment independently.

� Heckler model (1997) [125]

Heckler claimed that once the black hole temperature exceeds a critical tem-

perature Tcrit ∼ 45GeV , QED interactions would produce an optically thick

chromosphere around it. In that case, the mean photon energy will be reduced

to < Eγ >' me

√
TBH/Tcrit, a value that is well below TBH . The same au-

thor also proposed that QCD effects can create a similar effect at even lower

temperatures. His arguments were disputed by MacGibbon et al. [126], who

claimed that QED and QCD interactions are never important.

� Daghigh and Kapusta Model (2002) [29]

Daghigh and Kapusta is similar to the Heckler model with the difference that

they assumed that the hadronization of quarks occurs before the onset of

(Λqh), at a temperature Tf ∼ 100 − 140MeV , and that all particle with

masses greater than Tf have been annihilated, leaving only secondary photons,

electrons, muons, and pions, before free streaming occurs.1 As a result, the

photon emission is either directly produced following a boosted black-body

spectrum or is the byproduct of the πo decays.

The instantaneous photon emission spectra from a black hole of temperature

T = 10TeV predicted by the above models are shown in figure 4.1. As expected,

the two last models (Heckler, and Daghigh & Kapusta) predict cutoffs at the higher

1Free streaming happens when the flow is unrestricted by particle-particle interactions.
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energy part of the spectrum, effected by absorption at the chromosphere around the

black hole. On the other hand, the first model considers the generated particles as

free and non-interacting. Thus, it does not include a chromosphere or hadronization

at lower energies, and the resulting spectrum extends to higher energies than the

other two models. For comparison, the gamma-ray Hawking radiation (directly

produced photons) is also shown in the figure. As can be seen, the directly produced

photons peak at an energy of 5T and comprise only a small fraction of the total

emission. In the models including a chromosphere, these photons are absorbed and

then emitted thermally at lower energies.

Figure 4.1 describes the emission spectrum at a specific instant of the black

hole’s lifetime. As the black hole shrinks, the running count a(M) increases and

new species of particles and resonances are emitted. The generation rate of (direct)

photons in the form of Hawking radiation is constant. However, the generation rate

of secondary photons increases strongly, as more species that can decay or fragment

to photons are starting to be emitted. The emitted photon emission averages to

higher energies than before.

Figure 4.2 shows the average energy of the emitted photons as a function of the

remaining lifetime of a black hole. As the evaporation progresses, the average energy

increases at a fast rate, entering the energy range at which Milagro is most efficient

(see figure 9.1 on page 189). Figure 4.3 shows the photon spectra of the emission

from a black hole with initial temperature T = 10TeV , integrated over its life. It

is encouraging that even the Daghigh-Kapusta and Heckler models, which include

a chromosphere, can create emission at an energy to which Milagro is sensitive
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Figure 4.1: Photon spectra of the instantaneous emission from a black hole with tem-
perature T = 10TeV . The spectra shown are based on the models by Heckler[28],
Kapusta[29], and MacGibbon and Webber[30]. For reference, the direct photon
Hawking radiation is also shown. Source [31].

(∼ TeV ). However, the integrated flux might be too low to be significantly detected

by Milagro.

Unlike GRBs, PBHs can be relatively close to us. Halzen et al. [124] showed

that, depending on their amount of clustering, PBHs of T = 1TeV can be as

close as 10 pc to 10 kpc. This means that, contrary to GRBs, there can be emission

from PBHs that is not attenuated by interactions with the extragalactic background

light. As shown in Chapter 3, the higher-energy emission from GRBs is strongly

attenuated, resulting in only photons up to energies of few hundreds of GeV reaching
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Figure 4.2: Average energy of the photons emitted by a black hole as a function of
its remaining lifetime. The spectra shown are based on the models by Heckler [28],
Kapusta [29], and MacGibbon and Webber [30]. For the MacGibbon-Webber plot,
Emin = 100GeV was used. Source [31]

the earth. Hence, most of the emission to which Milagro is most sensitive is absorbed,

which reduces Milagro’s chances of detecting a GRB. For the case of galactic PBHs,

this absorption does not occur, and Milagro can detect the full spectrum of their

VHE emission.

It should be noted that there is great uncertainty in the predictions of all these

models. Modeling the evaporation of a PBH involves a wide number of complicated

processes and unknown parameters. One of the big unknowns is the dependence of

the running count a(M) on M , a function that sets the lifetime of a PBH. When

the temperature of the black hole is under the QCD scale (∼ 100MeV ), the range

of emitted particles is described by the standard model and is limited. As the black
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Figure 4.3: Photon spectra of the emission from a black hole with initial temperature
T = 10TeV , integrated over its life. The spectra shown are based on the models
by Heckler [28], Kapusta [29], and MacGibbon and Webber [30]. For reference, the
direct photon Hawking radiation is also shown. Source [31]

hole temperature passes that limit, a large number of new particles and resonances

become available for emission. Then a(M) starts increasing with a higher rate as M

becomes smaller, and the evaporation is accelerated. At these high energies, there

could be a large number of yet undiscovered particles. If, for example, supersymme-

try is the theory that describes higher-energy elementary particles, then a(M) can

increase by at least a factor of three. Some other theories, such as from Hagedorn

[127], predict an exponential increase in the number hadronic resonances. In such

a case, the final stage of a black hole evaporation would happen in time scales of

microseconds and in an explosive way. As can be seen, both the time scale of the
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evaporation and the amount of radiated energy at each stage of the process strongly

depend on the poorly constrained function a(M).
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Chapter 5

Milagro

5.1 Introduction

The typical VHE gamma-ray emission from astrophysical sources is very weak.

For example, the integral particle flux from the Crab Nebula above 1TeV is 1.75×

10−11 cm−2 sec−1, which corresponds to just a little over one photon/day on an

area of 100m2. To be able to detect such a small signal in a reasonable amount

of time, detectors of large effective areas (at least thousands of square meter) are

needed. Placing such detectors in space is prohibited by the high costs involved.

VHE gamma rays are absorbed shortly after entering the atmosphere, creating ex-

tended cascades of secondary electromagnetic particles, called “Extensive Air Show-

ers” (EASs). Ground-based detectors, which can observe these EASs and have large

effective areas, can be built relatively cheaply. By measuring properties of the EAS,

such as the direction of the axis of symmetry, and the lateral and longitudinal pro-

files, ground-based detectors can estimate the energy and direction of the primary

gamma ray that created the EAS.

Milagro is a ground-based detector employing the water-Cherenkov technique

to detect gamma rays through the EASs they generate. The purpose of this chapter

is to describe the Milagro detector, its method of operation, and its capabilities.
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Initially, in order to understand how Milagro compares to the other ground-

based detectors, a very brief review of this kind of detectors will be given in section

5.2. Then, section 5.3 will describe the instrument Milagro, and sections 5.4 and

5.5 respectively will describe its data-acquisition and triggering systems. Section

5.6 will give an overview of the reconstruction, storage, and filtering of the Milagro

data, and finally section 5.7 will describe its calibration system.

5.2 Ground-Based Gamma-Ray Detectors

Ground-based gamma-ray detectors are divided into two broad categories:

Imaging Atmospheric Cherenkov Telescopes (IACTs) [128] and Extended Air Shower

Arrays (EAS Arrays), such as Milagro. First, the principle of operation of IACTs

will be described, followed by a description of EAS arrays with a focus on Milagro.

Where appropriate, a comparison of the two kinds of detection techniques will be

provided. It should be noted that because EASs can also be created by cosmic

rays, ground-based detectors have to search for a signal on top of a large cosmic-ray

background.

A way to measure the properties of EASs is through the Cherenkov light emit-

ted in the atmosphere by their energetic electrons and positrons. IACTs accomplish

this by using big (∼ 10m) mirrors to focus the Cherenkov light on sensitive photo-

multiplier tubes (PMTs) (Fig. 5.1). Because IACTs observe the whole longitudinal

development of the EASs, they obtain enough information to reconstruct accurately

both the energy and the direction of the primary gamma ray. Furthermore, by
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observing the shape of the shower, IACTs can efficiently distinguish whether the

shower was initiated by a gamma ray (signal) or a cosmic ray (background). This

ability, combined with the IACTs’ good angular resolution, results in a high signal

to noise ratio and in a high sensitivity. However, because of the IACTs’ sensitivity

to external light, they can operate only on moonless nights, and because of their

optical telescope design, they have a small field of view (few degrees1). As a result,

IACTs are good instruments for performing focused, high-quality observations of

selected sources, but they are not optimal for doing unbiased, whole-sky searches,

monitoring the overhead sky for transient emission, or detecting extended sources

(larger than their field of view).

Another ground-based method for observing EASs is to have an array of de-

tector elements set to measure the shower’s lateral profile at ground level (EAS

Arrays). Milagro accomplishes this using the water-Cherenkov technique. In this

technique, shown in Fig. 5.2, a primary particle (gamma ray as signal or cosmic

ray as background) interacts at the top of the atmosphere and initiates a cascade

of e−, e+, γ particles (the EAS). The EAS, while moving downwards with a speed

close to the speed of light, expands and develops a flat, wide, and thin shower front.

The shower front eventually reaches the ground and enters into Milagro’s water

volume (Fig. 5.3). While in the water, the EAS gamma rays convert to energetic

e−e+ pairs or transfer their energy to electrons through Compton scattering. The

produced energetic electrons and positrons, and the other charged particles of the

1New IACTs with a wider field of view are currently under development: CTA [129] and AGIS
[130]
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Figure 5.1: Principle of operation of an Imaging Atmospheric Cherenkov Telescope.
A cosmic gamma ray interacts at the top of the atmosphere creating an EAS. The air
shower contains thousands of energetic electrons and positrons that emit Cherenkov
light. Large telescopes on the ground detect this light and reconstruct the shower
and the properties of the primary gamma ray that caused it. Source: [32]

EAS emit Cherenkov light. PMTs placed in the water, then, detect this light. The

properties of the primary particle that caused the EAS are reconstructed using the

total amount of the detected signal, its lateral distribution, and the relative arrival

times of the detected particles.

The characteristics of an EAS’s profile on the ground depend on the height

of the primary particle’s first interaction. For primaries of the same energy, the

higher the first interaction is, the smaller on average the number of EAS parti-

cles that reach the ground. As a result, random fluctuations in the height of the
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Figure 5.2: A conceptual image depicting the water-Cherenkov technique. Source
[33]

first interaction cause random fluctuations in the amount of signal that reaches the

ground. EAS arrays cannot easily account for this effect, resulting in a reduced

energy-reconstruction accuracy. IACTs, on the other hand, are not sensitive to this

effect, because they measure the EAS’s integrated light emission over the whole

development of the shower in the atmosphere, which is strongly correlated to the

energy of the primary.

EAS arrays and IACTs have similar background rejection capabilities. How-

ever, because of the significantly better angular resolution of IACTs, they avoid

including most of the background around a source, and hence can acquire signals
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Figure 5.3: View of the inside of Milagro’s pond. Photo courtesy Rick Dingus.

with very high signal to noise ratios. As a result, for a typical source that is similar

to the Crab Nebula, IACTs are more sensitive than EAS arrays.

Because typical gamma-ray emissions usually follow steeply-falling power-law

spectra (spectral indices usually < −2), the signal emitted at TeV energies has a

significantly lower intensity than the one emitted at GeV energies. This means that

longer observation times are needed in order for the higher-energy component of

some emission to be detected. As mentioned above, IACTs have very low duty

factors. Therefore they cannot afford the extra observational time needed to detect

the higher energy emission from a source with high significance. On the other hand,

EAS arrays operate almost continuously and manage to accumulate more higher-

energy signal. As a result, despite their worse signal to noise ratio, EAS arrays

end up being more sensitive than IACTs to signals of higher energy (usually over

' 10TeV ).
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EAS arrays have a high duty factor (> 90%) and a wide field of view (∼ 2sr).

This enables them to monitor the overhead sky for bright transient emission from

GRBs or for flares from known sources, and to perform unbiased whole-sky searches

for both localized and extended emissions. Furthermore, since space gamma-ray

detectors also share these properties, EAS arrays can successfully collaborate with

them in multi-wavelength whole-sky monitoring for transient emissions. EAS arrays

can also act complementarily to IACTs by providing them with possible source

locations, of which the IACTs can perform high quality observations.

5.3 Detector Description

Milagro (Fig. 5.4) is located at the Jemez Mountains (latitude 35o52′45′′ and

longitude 106o40′37′′ West) near Los Alamos, New Mexico and at an altitude of

2630m. The main part of the Milagro detector is a rectangular artificial reservoir

(“the pond” - Fig. 5.3) filled with water and containing two layers of PMTs. A

sparse array of water tanks, each containing a PMT, is spread around the pond.

Because the water-Cherenkov technique was new when Milagro was proposed, the

Milagro detector was built in stages, with each stage verifying and optimizing the

technique.
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Figure 5.4: Aerial view of the complete Milagro detector. The pond, shown here
with snow on the cover, is in the middle. The buildings next to the pond house the
electronics, storage spaces and the water filtration systems. The outrigger array is
also shown (red dots) around the pond.

5.3.1 The pond

Milagro’s pond is filled with ∼ 23 million liters of highly purified water. The

pond is 8m deep and its dimensions are 80m× 60m at the surface, while it slopes

near the bottom to 30m × 50m. The Milagro pond was initially (∼ 1995) part

of “Hot Dry Rock,” a geothermal experiment at Fenton Hill, New Mexico. The

pond had to be cleaned to be used as a detector. A cover and a liner made of

black polypropylene were installed to protect the pond from nature. The cover was

inflatable and was also used to block external light. The first version of the detector,

called “Milagrissimo,” consisted of the pond and twenty eight PMTs arranged on
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a layer inside it. After encouraging initial results, the PMT grid was expanded to

contain 228 PMTs spread over the whole surface of the bottom of the pond. The

expanded version, called “Milagrito,” operated from February 1997 to April 1998

[131]. The water level was varied to determine the optimal depth of the PMTs

for shower reconstruction. Milagrito was later expanded by the addition of water-

filtration and calibration systems, the reconfiguration and expansion of the existing

PMT layer, and the addition of a whole new layer over it. The new detector was

named “Milagro.”

Milagro’s top layer of PMTs consists of 450 PMTs located ∼ 1.6m under the

surface of the water. This layer is called the “Air-Shower layer” (AS) because it

samples the light emitted by the EAS particles shortly after they enter the pond.

The hits produced at the AS layer contain the timing information necessary for

reconstructing the shower front and, from that, the initial direction of the particle

that caused the EAS. The hits from the PMTs of the AS layer are also used for

triggering. The bottom layer consists of 273 PMTs located ∼ 6m under the surface.

As will be shown later (section 5.6.6), the information from the hits of this layer are

used to discriminate between hadron- and gamma-induced showers. Because these

hits are primarily created by deeply penetrating muons, this layer is also called the

“Muon layer” (MU).

At Milagro’s altitude, EAS gamma rays outnumber the fraction of EAS e−e+

by a factor of ∼ 5. The AS layer was placed deep enough so that most of these

gamma rays convert to e−e+ pairs or transfer their energy to electrons through

Compton scattering before they reach it. The AS layer was also placed shallow
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enough so that it promptly detects the Cherenkov light with just a small dispersive

time spreading. The horizontal distance between the PMTs is such that, considering

the ' 41o half-opening angle of the Cherenkov cone and the depth of the AS layer,

the efficiency of detecting the EAS particles is high, while the required number of

PMTs is kept low. About half of the electromagnetic EAS particles are detected by

the PMTs of the AS layer, and most muons with energy E & 1GeV are detected by

the PMTs of the MU layer.

By detecting muons–particles that are mostly present in cosmic-ray initiated

showers– the muon layer of Milagro distinguishes between showers initiated by cos-

mic rays (background) versus gamma rays (signal). These muons are usually en-

ergetic enough to penetrate deeply and reach down to the muon layer, where they

create big hits in few adjacent PMTs. However, since the AS and MU layers are not

optically isolated, the PMTs of the MU layer are also exposed to the light generated

by the electromagnetic component of the EAS. If the muon layer were at a shallow

depth, then the energetic EM particles could also reach it and create big hits in its

PMTs similar to the hits from muons. If this were the case, it would be harder for

the muon layer to detect the presence of a muon, reducing the efficiency of Milagro’s

background rejection. For that reason, the muon layer was placed deep enough so

that the electromagnetic EAS particles are usually absorbed well above it, and the

light they produce creates only a few small hits on its PMTs.

Due to the horizontal spacing and depth configuration mentioned above, the

AS layer measures the arrival times of the EAS particles with high accuracy and

statistics, allowing an accurate reconstruction of the primary particle’s direction,
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and the MU layer detects and distinguishes hits from muons with high efficiency,

helping with background rejection.

Milagro’s PMTs are Hamamatsu R5912SEL PMTs. Their photocathode is

quasi semi-spherical with 8” diameter. To protect their sensitive electronics from

water damage, each PMT is attached in a water-proof way to a PVC cylindrical en-

capsulation. All the PMTs are fitted with reflective cones, called “baffles” (Fig. 5.5),

in order to prevent unwanted triggers, to improve the angular-reconstruction accu-

racy, and to increase the PMTs’ light collection area. The baffles block horizontally-

moving light, which is primarily light from higher zenith angle particles (usually

muons), and secondarily scattered or reflected light. The light from higher zenith-

angle EAS particles can be detected by multiple PMTs of the AS layer and can

trigger the detector. Such triggers are unwanted since they do not correspond to

reconstructable gamma-ray events. Scattered or reflected light comes long after the

hits by the main EAS particles and interferes with the angular reconstruction. The

reconstruction’s accuracy depends on the reconstruction algorithms being able to fit

the PMT hit times on a plane. The fewer the late hits are, the narrower the distri-

bution of hit times, the better the quality of the angular-reconstruction fit, and the

more accurate the angular resolution of the detector. Another problem caused by

late hits comes from artificially inflating the estimated number of photons detected

by a PMT, a piece of information that is used by most parts of the data analysis and

event reconstruction (see sec. 5.6.1). As can be seen, the baffles, by blocking a large

fraction of the late or the horizontal light, increase the quality of the Milagro data

and prevent unwanted triggers from higher zenith angle particles. The baffles also
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increase the collection area of the PMTs by reflecting the light that otherwise would

have missed the PMTs towards them. However, because most of that reflected light

is directed near the sides of the PMT’s photocathode, where the PMT efficiency is

reduced [132], this enhanced collection area is not proportionately translated to an

increased amount of detected light.

Figure 5.5: A diver working on a PMT during a repair operation. The baffle and
the PMT encapsulation can be seen.

Initially, the baffles were made of specularly-reflecting anodized aluminum on

the inside and black polypropylene on the outside. Since aluminum oxidizes in water,

these baffles were sprayed with a protective layer to prevent oxidation. However,

if a very small spot on the surface of the baffle was left unprotected, the oxidation

would start from that spot and slowly expand. Over the course of time, this effect

created holes in the baffles and released oxidized aluminum particles, a white chalky

powder, in the water and on the PMTs. While the holes were not big enough

to considerably affect the functionality of the baffles, the released material had a
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detrimental effect on the cleanliness of the water. As it will be shown in subsection

5.3.3, there have been noticeable reductions in the attenuation length of the pond’s

water coincident in time with the decay of the baffles. The aluminum baffles were

eventually replaced in two consecutive repair operations; about half of the baffles

were replaced in 09/2003 and the rest in 09/2005. The replacement baffles were

made of diffusely-reflecting polypropylene that is white inside and black outside.

The new baffles had a similar positive effect on the function of the detector as the

old baffles, but without reacting with the water.

The pond is covered by a light-tight 1mm thick cover. The cover is inflatable

so that people can enter the pond during repair operations. Most of the time, the

cover floats on the surface of the water. However, sometimes air can accumulate

under it. Because the reflectivity of the water to air interface is higher than the

reflectivity of the water to cover interface , the accumulation of air under the cover

can increase the amount of light detected by the AS layer. Because the PMTs of the

AS layer are used for triggering, this increased reflectivity has significant effects on

the response of the detector. The effect is particularly noticeable for few days just

after repair operations, when the cover is inflated. However, the weight of the cover

slowly pushes the air under the cover away, and the detector returns to its normal

state.
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Figure 5.6: Schematic of the main pond. Source [34]

5.3.2 The outriggers

Around the pond is a sparse array of 175 water tanks called the “Outrigger

array” (OR). Each tank is filled with ∼ 2200 l of water and contains a downwards-

facing PMT (Fig. 5.7). The tanks are made of high-density polyethylene and are

internally lined with white, diffusely-reflecting Tyvek to maximize the light collected

by the PMT. They have a 2.4m diameter and a 1m height (Fig. 5.8). Even though

the outrigger array was part of the initial plan of the Milagro detector, it was added

later, in stages, between 1999 and 2003.

The outrigger array significantly improved the sensitivity of the Milagro detec-

tor by increasing its angular resolution and its background-rejection capabilities. As

I will show, the improvement on the angular reconstruction was primarily through

the showers that landed off the pond. Milagro’s AS layer is dense enough that it

samples a large fraction of the electromagnetic particles of the EASs. As a result,
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when a shower lands inside the pond, the AS layer acquires enough information to

reconstruct the showers’ direction accurately. However, when a shower lands off the

pond, the AS layer by itself is not capable of reconstructing the shower with such

good accuracy. Because of the curvature of the shower front, the angular recon-

struction algorithms need a precise localization of the shower core on the ground

to reconstruct the direction of the shower accurately. In order for the Milagro de-

tector to locate the shower core with good accuracy, it has to contain the whole of

it. Before the addition of the outriggers, the pond could not contain the cores of

showers that landed outside of it, and the detector had a worse angular resolution

for such showers. The addition of the outrigger array increased the physical area of

the Milagro detector from ∼ 5000m2 to ∼ 40, 000m2, and provided a longer lever

arm by which it could reconstruct showers. As a result, the detector now samples

an area that is wide enough to be able to accurately reconstruct showers that land

both off and on the pond.

Off-pond showers are especially important for Milagro’s sensitivity; they con-

stitute the majority of Milagro triggers (since there is more effective area around the

pond than on it), and the gamma-hadron discrimination capabilities of Milagro are

far better for them. As will be shown in subsection 5.6.6, the gamma-hadron sepa-

ration of Milagro is based on being able to detect muons or other energetic hadrons

distant from the main shower core. Milagro detects these particles using the muon

layer. If a shower lands off the pond, then the muon layer will be properly located

far from the shower core to detect them, and thus to provide useful information on

the nature of the primary (gamma ray or cosmic ray). Because the majority of the
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gamma-ray signal, correctly identified as such by the gamma-hadron discrimination

algorithms of Milagro, is detected through off-pond showers, it is very important

to reconstruct the direction of such showers accurately. As was shown above, the

addition of the outriggers improved the angular resolution for off-pond showers and

significantly increased Milagro’s sensitivity.

The outriggers also contributed to the gamma-hadron discrimination capabil-

ities of Milagro by providing the background rejection algorithms with an improved

estimate of the size of the shower (see subsection 5.6.6).

Figure 5.7: Photo of an outrigger tank.
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Figure 5.8: Dimensions of an outrigger tank. Source: Tony Shoup

5.3.3 Water filtration system

The water of the pond is continuously circulated through a water system that

filters and disinfects it at a rate of ∼ 750 l/min. A set of filters (10µm, 1µm and

0.2µm) remove most of the suspended particles, and ultraviolet lamps prevent any

biological growth. During the aluminum-baffle epoch, the floating aluminum par-

ticles clogged the finer 0.2µm filter, and the aluminum baffles had to be removed.

The water filtration system significantly improved the initial bad quality of the wa-

ter in the Milagro pond. As can be seen from figure 5.9, water filtering continuously

improved the attenuation length of Milagro during the first years of Milagro’s oper-

ation. A significant deterioration, caused by the decay of the aluminum baffles, can

also be seen in the figure. The replacement of the last aluminum baffles effected a

gradual improvement in the water quality, as the remaining aluminum-oxide parti-

cles were filtered out of the pond.
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It should be noted that the outriggers are not connected to the water system.

The outriggers were filled with pond water, and their water has not been treated

since. Recent samples of outrigger water showed attenuation lengths of the order of

∼ 5m, significantly shorter than the ones in the pond. However, a short attenuation

length does not become significant until it is comparable to the dimensions of the

system that contains it. Thus, a 5m attenuation length in the 1m×2.4m outrigger

tanks is not worse than a 15m attenuation length in the 60m × 80m × 8m pond.

In other words, the light in the outriggers is probably going to be absorbed from

the internal outrigger surfaces instead of from the water.

Figure 5.9: Attenuation length of Milagro’s pond water for light of wavelength
λ = 325nm. The time when most of the aluminum baffles were replaced is also
shown in the chart. Measurements by Don Coyne and Michael Schneider.
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5.4 Data Acquisition System

In order to collect and process the PMT pulses, to perform triggering, and to

generate useful information for the online reconstruction, a data acquisition system

(DAQ) was needed. The DAQ system had to satisfy some requirements:

� It had to be able to extract information from the PMT output that could be

used to estimate the number of photons detected by a PMT in a fast and

accurate way.

� Because the angular resolution of the detector depended on the accuracy of

the PMT hit times, the DAQ system had to be able to measure these times

with high precision (. 1ns).

� The DAQ system had to be able to accommodate the trigger rate caused by

background cosmic rays (∼ 2KHz).

In the following, I will describe Milagro’s DAQ system and show how it satisfied

the above requirements. A schematic of the DAQ system is shown in Fig. 5.10. The

PMTs are divided in patches of sixteen tubes, with each patch supplied with the

same high voltage and connected to a different 16-channel front-end board (FEB).

The connection is through a single RG-59 cable that carries both the high voltage

to the PMT and the signal to the FEB. Through capacitive coupling, the FEBs pick

up the AC signal from the PMTs to process it.

Initially, the signal is split, and the halves are sent to two logarithmic amplifiers

(gains ∼ ×7 and ∼ ×1). Each amplifier integrates all the narrow (few ns width)
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Figure 5.10: Schematic of the Milagro’s electronics system. Source [35]

PMT pulses and produces a shaped pulse of ∼ 70ns width and of an amplitude

that depends on the total charge of all the integrated pulses. The amplitudes of

these shaped pulses are compared to two discrete thresholds, roughly equal to 1/4
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and 5 times the average height of a pulse produced when a PMT detects a single

photon. Every time the amplitudes of the processed PMT pulses cross any of these

thresholds, an edge (square pulse) is generated, as shown at the top left of figure

5.10. A shaped pulse with an amplitude between the two thresholds will trigger the

low-threshold discriminator twice and will cause the generation of two edges, while a

PMT pulse with a height greater than the high threshold will cross both thresholds

twice, generating four edges. These edges are sent to a digital board connected to

LeCroy FASTBUS Time to Digital Converters (TDCs), which record the times of

each edge. Because of the high precision required in the measurement of these times,

the TDCs can measure the edge times with a resolution of just 0.5ns.

Every time the detector triggers (see section 5.5 for information on how trig-

gering is performed), a stop signal is sent to the TDCs and the FASTBUS latch.

Then, a FASTBUS Smart Crate Controller reads out the digitized information from

the TDCs and copies it to a dual-port memory in a Versa Module Europa (VME)

crate. Even though a typical event lasts a few hundred nanoseconds, the TDC infor-

mation extends a longer time before and after the trigger (±1.5ms).This extended

time width allows for the inclusion of signals generated by PMTs that are far away

from the counting house (long cable lengths) and also helps the reconstruction soft-

ware with processing the edge data. Because of hits from noise or scattered light

that happened earlier or later in time than the main shower, the pulses of some

PMTs might end up creating a number of edges different than two or four. In that

case, being able to follow the PMT signal for an extended period of time before and

after the shower helps with deciding which edges were from late or early hits, and
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which from hits related to the main EAS.

The time of the trigger is given by a GPS that is connected to the latch. The

DAQ computer (PC running Linux) reads the timing information and distributes

it to a cluster of PCs (the “workers”) for reconstruction. After the event is recon-

structed, the information is sent back to the main DAQ computer for storage.

5.5 Triggering

Each time the shaped pulse of an AS-layer PMT crosses the low discriminator

threshold, the generated edge by the FEBs causes the digital board to generate a

square pulse (25mV amplitude and 180ns width) that is sent to an analog summer.

That analog sum represents a running count of the PMT hit-rate in the pond within

a 180ns time window. An EAS that lands inside or near the pond can create

hits with a rate high enough to cause a significant increase in the amplitude of

the analog sum. By comparing the sum’s amplitude to a threshold, the triggering

system decides whether to trigger the detector or not. This was the early version

of the Milagro trigger. When the analog sum crossed a threshold corresponding

to ∼ 60 AS PMTs hit in a time interval smaller than 180ns (set by the width of

the square pulses), the detector triggered, and the data shortly before and after the

trigger were processed and recorded.

The choice of the triggering threshold effectively defined the low-energy re-

sponse of Milagro. The threshold could be reduced in order to trigger on EASs of

a lower energy. However, this would add a large number of extra triggers caused
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by single large zenith-angle muons rather than by EAS. Since Milagro was already

taking data near the maximum rate permitted by its DAQ system (∼ 1700Hz), the

inclusion of these extra events would just increase the dead time.

Figure 5.11: Rate of events with an analog sum over a certain threshold. The rates
for all events (black dots) and for events that could not be reconstructed (pink
triangles) are shown. Source [35]

The times of the PMT hits caused by an EAS can be successfully fitted on a

plane, while the times of the hits by a single muon cannot. Figure 5.11 shows the

rate that the analog sum crosses different thresholds. For high thresholds, that rate

is dominated by reconstructable events, which, as mentioned, correspond to EAS.

As the threshold gets lower, the fraction of non reconstructable events increases,

implying that the extra events are mostly larger zenith-angle muons. Most of these

muons have zenith angles close to half of the opening angle of the Cherenkov cone
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in the water (∼ 41o). Therefore, some of their emitted light travels horizontally

in the pond and creates hits in multiple adjacent PMTs. An improved trigger had

to accept lower-energy events (smaller analog-sum amplitudes), while at the same

time, making sure not to trigger on muons.

The fact that the analog sum rises faster when the PMT hits are caused by an

EAS than when they are caused by a triggering muon was later used for designing

an improved triggering algorithm. The horizontal light generated by a 41o zenith-

angle muon creates hits in adjacent PMTs with time delays equal to c/n times the

horizontal distance between the PMTs, where c is the speed of light in vacuum, and

n is the refractive index of water. On the other hand, an EAS moves in the water

with the speed of light and creates hits in the AS PMTs that are considerably closer

in time than the hits from a high zenith-angle muon. In the case of an EAS that

comes from zenith, most of the hits will be created almost simultaneously (ignoring

the small shower front curvature), while for the extreme case of shower from the

horizon, the hits on adjacent AS PMTs will be created with a time delay equal to

the horizontal distance of these PMTs times the speed of light. Figure 5.12 shows

the distribution of rise times from EAS events along with the distribution from

horizontal muon events. As can be seen, the EAS distribution averages at shorter

rise times. To take advantages of this effect, a new custom VME trigger system was

built (∼March 2002), which was also able to make checks on the rise time of the

analog sum. A sample trigger configuration used in the previous years was:

� Trigger #1: nAS PMTs Hit>72.
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� Trigger #2: nAS PMTs Hit>50 & Rise time< 87.5ns.

� Trigger #3: nAS PMTs Hit>26 & Rise time< 50ns.

Figure 5.12: Distribution of the rise times of events that could/could not) be recon-
structed (top/bottom). Source [35]

Here, the rise time is defined as the time it took for the analog sum to rise from

10% to 90% of its full amplitude. If any of the above three trigger conditions were

true, then the detector would trigger and record the event. The trigger system was

reprogrammable so that the trigger conditions could be adjusted to follow changes in

the detector’s response caused by external factors (changes in water quality, PMTs

dying, etc). The combination of triggers was chosen to maximize the number of
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selected low-energy showers, as well as to retain an unbiased number of large showers.

About two years ago, the VME trigger was replaced by another system that

works similarly by making checks on the rise times and the amplitude of the analog

sum, but that monitors the analog sum on a shorter time scale (∼ 80n s) than the

VME trigger (∼ 180ns). By doing so, it becomes more sensitive to the direct light

produced by the EAS particles detected in a time scale of few tens of ns.

The implementation of the last two trigger systems brought a large increase in

the low-energy sensitivity of Milagro (Fig. 5.13). Because the E & 300GeV emis-

sion from GRBs is attenuated by interactions with the extragalactic background

light (see Chapter 3), the lower-energy response of Milagro becomes crucial in de-

termining Milagro’s chances of detecting a GRB. The last two trigger systems made

a significant contribution towards reaching that goal.
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Figure 5.13: Ratio of the effective area of Milagro with the new VME trigger system
over the effective area with the old multiplicity trigger. There is a considerable
improvement in Milagro’s sensitivity to lower-energy signals when using the new
VME trigger.
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5.6 Online Reconstruction and Filtering

The times and charges of the PMT hits can be used to reconstruct the direction

of the primary particle that created the detected EAS. As the EAS traverses the

atmosphere, it spreads out laterally, forming the shower front. The shower front

has a spherical cap shape, whose apex lies approximately on the extension of the

trajectory of the primary particle towards the ground. The location on the ground

where the apex of the shower front lands has the highest number and energy density

of EAS particles. The number and energy density are symmetrical around the

shower-core location and are quickly reduced with increasing distance from it. The

surface vector that passes from the apex of the shower front is parallel to the direction

of the primary particle that caused the EAS. Therefore, by reconstructing the shower

front, the direction of the primary particle can be found (see figure 5.2). Based on

the above, Milagro’s reconstruction first locates the shower core on the ground and

then reconstructs the shower front, and therefore the primary-particle direction,

using that core-location information and the PMT hit times.

Specifically, the online reconstruction starts by calculating the number of pho-

tons detected by a PMT using the timing information of the edges of its shaped

pulse, provided by the TDCs (sec. 5.6.1). Then, based on the photon multiplicity

information of each PMT hit, the reconstruction finds the location on the ground

where the shower core landed (sec. 5.6.2). After that, it calculates the PMT hit

times and applies some curvature corrections on them in order to simplify the shower-

plane reconstruction process (sec. 5.6.3) Next, it reconstructs the shower plane and,
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from that, the direction of the primary particle that caused the EAS (sec. 5.6.4).

Finally, it calculates the values of some gamma-hadron discrimination parameters

(sec. 5.6.6), to be used later in the detailed offline data analyses. The following

subsections will describe in detail these steps.

5.6.1 Hit size estimation

Using the time, provided by the TDCs, that a shaped PMT pulse crossed

each of the two discriminator thresholds, the duration the pulse spent over these

thresholds can be calculated. This time is called the “Time Over Threshold” (TOT).

Because the TOT correlates one-to-one with the number of photons detected by a

PMT, Milagro uses it to estimate the latter. The correlation between the two

quantities is periodically calibrated (see section 5.7).

It should be noted that the amplifiers that participate in the generation of

the shaped pulse are logarithmic, and therefore map a wide range of hit sizes to a

narrow range of TOTs. The dynamic range of the system is wide enough to process,

without saturating, hits with sizes ranging from a fraction of one photon to few

thousand photons.

Even though this is a simple method, it has some disadvantages. In the case

that the detection of a number of photons from the main shower is followed or

preceded by an isolated photon detection, the TOT of the resulting pulse can be

lengthened, resulting in an artificially inflated estimate for the number of detected

photons. Furthermore, when such late or early hits are superimposed on the main

107



PMT pulse, they can cause a number of edges that is different than 2 or 4. This

can make the TOT to number of photons conversion complex, since it requires the

identification of the good edges generated by the part of the signal detected in time

with the main EAS.

5.6.2 Reconstruction of the shower core

The knowledge of the shower-core location is needed to reconstruct the primary

particle direction accurately. There have been many core-fitting algorithms during

the lifetime of Milagro. Initially, and before the outriggers were installed, a simple

center- of-mass fitter was used, with the number of photons detected by each PMT

being used as the weight. Because of the fitter’s algorithm, it was placing all the

cores inside the boundaries of the pond, which was usually incorrect because the

majority of the triggers are created by showers that landed off the pond. That fitter

was later improved to determine whether the shower core was likely to have landed

inside or outside the pond. If the fitter determined that the shower core landed

outside the pond it placed it on a fixed distance 50m away from the center of the

pond towards the direction of the center of mass. Otherwise, it placed the core on

the center of mass. The 50m distance was determined by Monte Carlo simulations

as the most probable core radius of showers that landed outside the pond.

After the installation of the outriggers, it was easier to determine whether the

shower core actually landed inside or outside the pond. A reasonable parameter

that could be used to determine the core location, was the ratio of the number of
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hits in the OR layer over the hits in the AS layer. If that ratio determined that the

core most likely landed off the pond, the center of mass of the outrigger hits was

used to determine the core position. Otherwise, as before, the center of mass of the

AS PMT hits was used.

The next and last version of the core fitter did a least-squares fit to a 2D

Gaussian using the hits of both the AS and OR layers. The performance of that

fitter is shown in figures 5.14, 5.15 and 5.16. From figure 5.15, it can be seen that

when the shower lands farther than about 130m from the center of the pond, a

distance that roughly corresponds to the limits of the outrigger array, the recon-

struction accuracy of the core location becomes worse. This shows that it is hard to

accurately reconstruct the shower cores of showers that landed outside the detector,

a situation that is similar to when showers landed off the pond before the addition

of the outriggers. Figure 5.16 (top) suggests, on a first look, that the accuracy of

the core fitter is worse for higher energy showers. What actually happens is that

higher energy showers can trigger the detector from further away, even from outside

the edges of the detector. The cores of such showers, as mentioned above, are recon-

structed poorly. So, the median error in the core location of higher energy showers

(plotted in the figure) comes from showers that landed inside the detector and were

reconstructed accurately and from showers that landed outside the detector and

were reconstructed poorly. As the shower-energy gets lower, the contrubution from

showers that landed outside the detector becomes smaller, and the median core error

is reduced. A sample distribution on the reconstructed core locations from data is

shown in Fig. 5.14.
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Figure 5.14: Distribution of the errors in the core locations for gamma rays from
a Crab-like source. A soft cut has been applied to the data requiring at least 20
PMTs to participate in the direction-reconstruction fit.
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Figure 5.15: Median error in the core position versus true distance from the shower
core. The error bars show statistical errors on the median.
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Figure 5.17: Distribution of the reconstructed core positions.
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5.6.3 Curvature, sampling, and slewing corrections

Since the shower front is centrally (near its apex) flat, one could try to re-

construct it by fitting the PMT hit times on a plane. However, this is just an

approximation, and the resulting accuracy of the reconstructed angle is not opti-

mal. A more accurate way would be to try to fit the curved shower front on a

parabola. However, the equations involved in such a fit are not of closed form, and

the algorithms required to solve them would be slow. A solution to this problem

could be first to remove the curvature of the shower front by adjusting the PMT

hit times and then to fit it on a plane. This can be accomplished by adding time

offsets, which depend on the distance from the shower core, to the times of all hits.

The magnitude of this “curvature correction” per distance from the core is of the

order of 0.07ns/m. Such a correction allows the shower front to be reconstructed

in a simple yet accurate way.

Another correction that has to be applied comes from the way the shower

front is sampled. Since the time of a PMT hit is determined by the time of the first

detected photon, instead of by the average of the times of all detected photons, parts

of the shower front with high particle densities will create hits that, on average,

preceed hits from lower particle densities. This effect can be accounted for by

applying a “sampling correction” to the PMT hits that depends on the amount of

detected photons. The amount of both corrections were determined by tuning the

reconstruction of simulated showers and data.

The hit time of a PMT is given by the time of the first detected photon. Even
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though the latter time is not directly measured, it is correlated to the time that the

PMT shaped-pulse crossed the low threshold for the first time. The delay between

the first photon detection and the threshold crossing depends on the number of

photons detected by that PMT. Large shaped pulses rise faster and cross the low

threshold shortly after the first photon is detected, while smaller pulses can take a

longer amount of time before crossing that threshold. This effect is called “electronic

slewing,” and the relation between the time delays and the TOT of the pulses is

used for correcting the calculated PMT hit times.

5.6.4 Direction reconstruction

After the shower core has been located, and the PMT hit times are corrected

for curvature, sampling, and slewing, the shower plane is reconstructed. The AS

and OR layer PMT hit times are fit using a series of least squares fits. The weight

of each hit depends on the number of detected photons. Because very small hits

are usually from scattered light or noise, their residuals are generally high. For

that reason, small hits (less than a two photons) are not included in the first fit.

The residuals after the first iteration are calculated, and if they are within a preset

range, they are included for the second iteration. Smaller hits than before are also

included, allowing more hits to participate in the fit. The process of relaxing the

hit-size requirements and rejecting hits with large residuals is repeated five times.

The result is that more than ∼ 95% of the simulated gamma-ray showers are fit.

The corresponding percentage in data is somewhat smaller (∼ 85%), mostly because
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some of the triggers are caused by isolated horizontal muons rather than by EAS

and because the shape of cosmic-ray showers makes them somewhat harder to fit. If

the fit fails or if the results are unphysical (the reconstructed direction lies below the

horizon), the event is tagged as non-reconstructable. For a small period, information

from all three layers was used for the fit; however, there was no improvement in the

reconstruction accuracy.

The performance of the angle fitter is shown in figure 5.18, where the distri-

bution of errors in the reconstructed angles is plotted. The plot in figure 5.19 was

created by plotting the median of such a distribution for different minimum number

of PMTs participating in the fit (nfit). As expected, that figure shows that the

angular resolution of the detector depends on the number of PMTs participating

in the angular reconstruction fit. Figure 5.20 shows the correlation between the

median error in the reconstructed angle and the true distance of the shower core. It

can be seen that the reconstruction is optimum for showers that have a large part of

their cores inside the boundaries of the detector. This effect is also shown in figure

5.21, where the correlation between the median error in the reconstructed angle and

the error in the reconstructed core location is plotted. Showers that landed at the

boundaries of the detector usually have poorly reconstructed cores; therefore the

angular resolution for them is worse.

Figure 5.22 shows the median error in the reconstructed angle versus the energy

of the gamma-ray primary. The top plot shows that the median angular resolution

is worse for higher-energy showers, since these showers have on average poorly re-

constructed cores. The bottom plot shows the median of the angular resolution
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for gamma-ray signals on power law spectra with exponential cutoffs at different

energies. That plot is relevant to this study, since because of absorption by the

extragalactic background light (3), the gamma-ray signal emitted by a GRB arrives

at the earth with its high energy component absorbed. For example, the absorp-

tion of the signal from a GRB at redshift z ' 0.3 creates an exponential cutoff at

∼ 300GeV on its spectrum at the earth. From the bottom of figure 5.22, it can be

seen that the median angle error for such a signal will be of the order of 1.3o instead

of the optimal ∼ 1o for an unabsorbed signal.
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Figure 5.18: Error in the reconstructed angle for a simulated gamma-ray signal on
a power law spectrum with index -2.00. A soft cut has been applied to the data
requiring at least 20 PMTs to participate in the fit.

5.6.5 Data storage

There are two kinds of Milagro data: raw data and reconstructed data. The

raw data are generated by Milagro’s electronics and contain information on the
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Figure 5.19: Median error in the reconstructed angle versus the number of PMTs
participating in the direction reconstruction fit.

times of all edges generated by the PMT pulses and the corresponding TOTs; the

time of the event; the amplitude of the analog sum; the rise time, and other event

ID bits. The reconstructed data are the results of the processing of the raw data by

the Worker computers. They contain information such as the location of the shower

core, the direction of the primary particle that caused the EAS, values for various

gamma-hadron discrimination parameters, and brief statistics on the number/size

of hits in each layer. Even though the raw data are saved in a compressed binary

format, about 250GB of raw data are generated each day. Because the reconstructed

data contain information about the event as a whole, rather than information on

the individual edges and hits, they take significantly less space (4GB/day).

Milagro saves all of the reconstructed data but cannot afford to save all of

the raw data. However, because improved reconstruction algorithms may become
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Figure 5.20: Median error in the reconstructed angle versus the true distance of
the shower core from the center of the pond. A soft cut has been applied to the
data requiring at least 20 PMTs to participate in the fit. The error bars show the
statistical error on the median.

available in the future, a fraction of the raw data is saved. This fraction is the

one that results from the whole raw data-set after applying a soft gamma-hadron

discrimination cut (X2 & 1.5 - see next subsection) on it. The cut value is selected

so that the amount of raw data saved per day is in the range of the capabilities of

the archiving system (roughly one third of the data). In addition, all raw data are

saved when significant events such as AGN flares and GRBs happen, and all the

time for selected sources such as the Crab Nebula, the sun, and the moon. The data

is organized into runs and subruns, with each subrun containing about 5 minutes

of data. The run number is automatically incremented every time the data-taking

process is restarted or daily at 0:00 UT.
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Figure 5.21: Median error in the reconstructed angle vs error in the reconstructed
core location. The width of the error bars is equal to one standard deviation. A
soft cut requiring at least 20 PMTs participating in the fit has been applied. The
error bars show the statistical error on the median.

5.6.6 Gamma-hadron discrimination

The lateral distribution of particles of a gamma-ray induced EAS is usually

uniform and contains mostly e−, e+, and gammas. These particles are absorbed

promptly after entering Milagro’s water, and most of them do not manage to pene-

trate deep enough close to the MU layer. As a result, gamma-ray induced showers

usually produce a large number of relatively small and uniformly-spread hits in the

PMTs of the MU layer.

Because of the high transverse momentum of hadronic interactions, the longi-

tudinal development of an EAS is characterized by branches of particles separated

from the main shower. These branches usually contain charged pions that later

decay to muons, which, as minimum ionizing particles, are usually able to penetrate
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Figure 5.22: Effect of the primary particle’s energy on the angular reconstruction
accuracy. Top: median error on the reconstructed angle versus the gamma-ray
energy, bottom: the same error for power-law spectra of index -2.00 and different
exponential cutoffs.

deeply into the pond, reach down to the bottom layer, and create big hits in few

nearby PMTs. As a result, the hit distribution from a hadron-induced shower is de-
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scribed by a number of hits on the AS and OR layers that are symmetrical around

the core, accompanied with distant from the core large hits that can show up in the

MU layer.

Milagro’s first version of gamma-hadron discrimination was based on the fact

that big2 and few hits in the MU layer imply a hadronic (cosmic ray) shower, while

many small hits imply a gamma-ray induced shower. The decision regarding the

nature of the primary was based on the value of a parameter called X2:

X2 ≡
nb2

PEmax

, (5.1)

where nb2 is the number of MU-layer PMTs that detected at least two photons, and

PEmax is the largest number of photons detected by any PMT of the same layer.

The source of the gamma-hadron discriminating power of X2 lies on PEmax;

hadronic showers tend to create big hits in the muon layer (large PEmax), while

gamma-ray showers tend to create small. Thus, a large X2 means that the primary

was likely a gamma ray. However, not all hadronic showers have large PEmax.

The smaller the primary energy of a hadronic shower is, the fewer its muons–that

create the big hits in the muon layer. For such showers, a low PEmax could still

be consistent with a hadronic nature. Similarly, if a hadronic shower–that creates

many hits in the MU layer–is to be correctly identified as such (hadronic), it should

also create big hits in the MU layer (large PEmax). X2 uses nb2 to estimate the

size of the shower and to scale the minimum PEmax required to identify a shower

2with a high number of detected photons
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as hadronic.

One of the problems of X2 is that it does not take into account the shower size

information from the outriggers. A gamma-ray shower that landed on the outrigger

array and created a large number of OR hits and few and small MU hits would

be indistinguishable by X2 from a lower energy hadronic shower that landed in the

pond and did not create any big hits in the MU layer. By including the information

from the outriggers, we can increase our expectations for PEmax for the first case,

and decrease our expectations for the second case. Specifically, in the first case,

knowing that we had a large number of outriggers hit, we should expect a big hit

in the muon layer in order to identify the shower as hadronic. Also, for the second

case, seeing that the detected shower had a lower size (since it did not create many

hits in the OR and AS layers), we should not require a very large PEmax in order

to identify it as hadronic.

The next version of Milagro’s gamma-hadron discrimination parameter suc-

cessfully included the information from both the AS and OR layers. Its name is A4

and is given by:

A4 ≡
fAS + fOR

PEmax

nfit, (5.2)

where fAS and fOR are the fractions of the AS and OR PMTs hit, and nfit is the

number of AS and OR PMTs participating in the direction reconstruction fit. The

sum (fAS + fOR) provides a better than nb2 measure of the size of the shower. A4 is

particularly successful at identifying higher-energy gamma-ray showers that landed

on the outrigger array. For such showers, the large number of OR and AS hits
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combined with an absence of a big hit in the muon layer would strongly support an

electromagnetic nature. The distribution of the fraction of particles retained after

applying various A4 cuts for cosmic and gamma rays are shown in figure 5.23. As

can be seen from the figure, the distributions are very different, therefore A4 can

effectively differentiate a gamma-ray from a cosmic-ray signal.

Milagro’s sensitivity to the signal from a typical gamma-ray source, such as

the Crab Nebula, is increased by factors of ∼ 1.5 and ∼ 2.5 using X2 and A4 respec-

tively. By slicing the data based on the shower size (based on nfit) and applying

different X2 cuts on each slice, an improvement in sensitivity comparable or better

than the one of A4 can be obtained. Using an A4 based gamma-hadron separation

and event-weighting methods, Milagro’s observations of the Crab Nebula acquire

statistical significance with a rate of ∼ 8σ/
√
T/yr, where T is the observation time;

or, equivalently, Milagro can observe the Crab Nebula with a 5σ significance in 4.6

months.

Unfortunately, these gamma-hadron discrimination parameters are not effec-

tive for lower-energy signals. Because the GRB emission reaching the earth has

energies usually lower than a few hundred GeV, it will create events with only few

tens of PMTs hit on average. Such low energy gamma-ray emission cannot be easily

distinguished from lower-energy hadronic events, because such events rarely create

big hits in the PMTs of the muon layer. Furthermore, for the shorter GRB-emission

durations (. 100 s), the number of detected signal events is small, and the impor-

tance of keeping all of the signal events is very high. For such durations, only a

gamma-hadron discrimination that is extremely effective in keeping all of the sig-
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nal could increase the sensitivity. Unfortunately, such a method is not currently

available in Milagro. For the above reasons, there was no gamma-hadron separation

applied on the data searched in this study.

Figure 5.23: Distribution of the number of events retained from an A4 cut. The
distributions predicted by the Monte Carlo simulation of the detector for gamma
rays (signal) and cosmic rays (background) are shown with the blue and red curves
respectively, and the distribution for cosmic rays from data is shown with black.
Based on the fact that the distributions for cosmic rays and gamma rays are very
different, these two event types can be effectively differentiated. Source A. Abdo.

5.7 Calibration System

The pond PMTs are calibrated periodically to account for variations in the

PMT gain and timing caused by slow changes related to the components of the

PMT base and to the dynode structure. The quantities calibrated are:
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� The relation between the TOT of a PMT’s shaped pulse and the number of

photons detected by the PMT,

� the TOT’s relation with the delay between the first photon detection and the

first edge generated by a PMT (slewing corrections), and

� the delay between the first photon detection and the time the PMT signal

arrives at the FEBs (“time pedestals”).

The first two quantities are calibrated by illuminating a PMT with a light intensity

that creates a known average number of detected photons at a precisely known time,

and then measuring the TOT of its shaped pulses. The third quantity is equal to

the sum of several times, such as the time it takes for the produced photoelectron

by the PMTs photocathode to be collected by the dynode structure, the time taken

for the avalanche in the dynodes to develop, and the transit time of the PMT pulses

through the cables to the FEB, etc. The last quantity varies from PMT to PMT

and can be calibrated by illuminating a PMT and measuring the time it took for

its signal to reach the FEBs.

The calibration system consists of a fast pulsed laser, a filter wheel, and optical

fibers. The optical fibers carry the laser light into the pond or to the outriggers

and disperse it through diffusing balls glued at their edge. There are many such

illumination sources inside the pond, so that all PMTs can be directly illuminated

by at least one of them or can be potentially cross-calibrated using illumination

from different directions.
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The calibration process starts with the laser light first passing through the

least transparent part of the filter wheel and then through the fiber-optic system

driven into the pond. Initially, the PMTs might not be able to detect the laser

pulses because the light intensity is very low. However, after gradually passing the

laser beam through more transparent parts of the filter wheel, the PMTs will start

detecting some of them. The probability of a PMT detecting a photon from one

pulse can be approximated to be independent of detecting another photon from the

same pulse. Because the probability of detecting a photon is very small and the

number of available for detection photons (in each laser pulse) is large, the number

of detected photons per laser pulse follows a Poisson distribution. The fraction of the

pulses from which a PMT detected at least one photon is called the “occupancy” (η)

of the PMT. If P (n, λ) is the Poisson probability that the PMT detected n photons

per pulse when the expected (average) number of detected photons per pulse was

λ, then the occupancy is

η = P (n > 0, λ) = 1− P (n = 0, λ) = 1− e−λ. (5.3)

Solving eq. 5.3 for λ, we get λ = −ln(1− η). By just counting the number of laser

pulses that resulted in the detection of at least one photon (η), we calculated the

average number of photons detected per pulse (λ). The estimate on λ is accurate

only for small light levels because a small error in the occupancy ∆η will lead to a

very large error in λ:

∆λ =
1

1− η
∆η = eλ∆η. (5.4)
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For higher light levels, the amount of light detected by a PMT λi can be calculated

by scaling the amount of light detected at a dimmer setting by the ratio of the

filter-wheel transparencies Ti used in the two settings: λ1/λ2 = T1/T2. Based on the

average number of photons a PMT detects per pulse λ, the relations between the

TOT and λ, and between the TOT and the slewing time delays can be calibrated.
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Chapter 6

The Search

6.1 Introduction

This chapter will describe the search algorithm used in this study. Section 6.2

will describe the various methods the Milagro data are searched for emission from

GRBs, and will explain how this study differs from these methods. The chapter will

conclude with a detailed description of the search method used in this study.

6.2 Milagro’s Searches for GRBs

The Milagro data can be searched in various ways for transient gamma-ray

emission. One way is to search in coincidence with GRB detections from other

instruments. In such a case, an external instrument, such as a satellite, detects a

GRB and notifies Milagro through the GRB Coordinates Network (GCN)1. Then,

Milagro searches its data for signal related to the detected event. Because the VHE

component of the emission from GRBs detectable by Milagro is produced by physical

processes different than the ones producing the keV/MeV component, to which the

satellite detectors are sensitive, the emission durations of the two components can

be different or offset in time. For that reason, Milagro’s data is searched not only

1http://gcn.gsfc.nasa.gov/
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for emission of exactly the same duration and starting time as that of the event

detected by the external instument, but also for emissions of multiple durations and

time offsets close to the ones of the external trigger. Milagro performs two such

kinds of searches, depending on the energy of the gamma-ray signal.

As the energy of a gamma-ray signal gets smaller, the number of air shower

particles at the Milagro altitude also becomes smaller, and the resulting angular-

reconstruction accuracy becomes worse. In the extreme case of signals with energies

of tens of GeV , most of the air showers cannot even trigger the detector or, in the

best case, can trigger, but end up being reconstructed poorly. As a result, such a low-

energy gamma-ray signal usually cannot create a number of accurately reconstructed

events large enough to cause a significant detection. However, this low-energy signal

can still be detected through its effect on the hit rates of individual PMTs. Milagro

monitors these hit rates for improbable increases in coincidence with external GRB

triggers [133]; an improbably elevated hit rate close in time with a GRB localized in

Milagro’s field of view would imply that a gamma-ray signal was detected from that

GRB. One disadvantage of this method is that, in case such an increase in the PMT

hit rates happens, it would not be possible to determine where the particles that

caused this increase came from (since there will not be any reconstructed events).

Thus, it would not be possible to verify that the signal that caused the increased hit

rates actually came from the direction of the externally-detected GRB–which could

help to verify the connection between the two events. Furthermore, because of the

absence of pointing information. the background cannot be reduced. If a specific

location on the sky were searched, then pointing would reduce the background only
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the around the probed location. As a result, the scalers are always sensitive to

the background from the whole overhead sky. Lastly, this method is sensitive to

instrumental effects that could cause artificial spikes or drifts in the hit rates, such

as light leaks and fluctuations in the electronics’ temperatures and supply voltages.

Such effects can easily interfere with the background estimation, or, worse, manifest

as a real signal. Despite these disadvantages, this method is the only one available to

Milagro that can detect such low-energy signals, making it sensitive to more distant

GRBs than the other methods GRBs (z & 0.5), and to GRBs with a highly-opaque

fireball or dense surrounding material (see section 2.4 on page 49).

As the energy of the gamma-ray signal increases, the effective area of the

detector and the fraction of events with good reconstruction fits increase too. At

energies & 100GeV , a search for improbable increases in the reconstructed event

rate from a particular direction in the sky becomes more sensitive than a search for

increases in the individual PMT hit rates (described above). In this case, the search

tries to detect bursts of events reconstructed inside the error box of an externally-

detected GRB and in coincidence or shortly later in time after it. Milagro performs

such a search, and while it has not detected any significant events, it has published

upper limits on the VHE emission for most of the externally-detected GRBs in its

field of view [134, 135].

However, only a fraction of the GRBs in nature are detected by the other

external instruments, since they can be outside the instruments’ field of view, or

their emission can be too short or weak to be detected. A number of GRBs left

undetected by other instruments can still be detectable by Milagro. In this study, the
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Milagro data was searched in a blind way, independently of an external localization

provided by other instruments, for emission from such GRBs. Even though such a

search has the advantage of being able to search for VHE emission from all GRBs

in Milagro’s field of view, its blind nature and the large extent of Milagro’s dataset

require a large number of trials (individual sub-searches - ∼ 1015). As will be shown

in Chapter 7, this large number of trials decreases the sensitivity of such a search by

only a factor of ∼ 2. The searches in coincidence with external instruments do not

suffer from such a large decrease in sensitivity because of their considerably smaller

number of trials. An advantage of this search, in contrast to the triggered searches

described above, is that it is sensitive to any kind of VHE transient emission, such

as from primordial black hole evaporation or other yet undetected phenomena.

6.3 Overview of the Search

The search essentially searched for highly improbable increases in the rate of

reconstructed events from a particular direction on the sky.
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Figure 6.1 shows the search algorithm used in this study. As can be seen,

the search consists of a series of sub-searches (outer loop at the right), each one

for a different emission duration (Tdur). Each sub-search consists of the evaluation2

of a series of skymaps (middle loop at the right). Skymaps are 2D maps in Right

Ascension (RA) and Declination (Dec), that contain the reconstructed directions of

the events detected in a time interval extending from t0 to t1 = t0 +Tdur (step 2, see

section 6.4 for details). The width (Tdur) and the starting time (t0) of this interval

are equal to the duration and the starting time of the emission being searched. The

evaluation of each skymap is performed by scanning a rectangular “search bin” over

the map (inner loop at the right). Initially, the search bin is placed at the edge of the

skymap (step 3). The number of events under the search bin (Nsig) are counted (step

4), and the number of the expected background events is calculated (Nback) (step

5, see section 6.6 for details on calculating Nback). The probability P (Nsig, Nback),

that the expected number of background events could create a fluctuation as large

as the measured number of events, is calculated using Poisson statistics and these

numbers (step 6):

P (Nsig, Nback) =
∞∑

k=Nsig

Nk
backe

−Nback

k!
. (6.1)

The calculated probability is saved in a histogram for later processing. After that,

the search bin is translated to a nearby position on the skymap (step 8b, see section

6.4 for details) and steps 2-7 are repeated, until all of the skymap has been scanned

(until condition 7 is true). After this happens, a new skymap is created containing

2 Evaluation of a skymap means, here, checking whether the data in the skymap show any signs
of VHE emission.
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events detected in a time frame of the same duration but slightly offset from that

of the previous skymap (step 9b, see section 6.5 for details on how t0 is offset). The

new skymap is evaluated like before, by repeating steps 2-7. The process continues

until all of the available data loaded in memory have been searched for the first

emission duration (until condition 8a. is true). When this happens, the data are

searched again, this time for an emission duration (Tdur) that is slightly higher than

before (step 10, see section 6.5 on how Tdur is advanced). The process repeats for

until all the data loaded in memory have been searched for emission of all durations

(until condition 9a is true). Then, the next chunk of data is loaded in memory

and is evaluated, like before, for all durations. This repeats until all the data to be

searched are processed (until step 11 is false).

The results of the search are in the form of probability distributions, each one

corresponding to a different duration emission. By examining these distributions,

the minimum probability thresholds for claiming a discovery can be calculated, and

any significant events can be detected (step 12, see Chapter 7 for details).

Figure 6.2 shows some of the distributions and maps involved in the evalu-

ation of one skymap for the 10 s emission duration. A signal map (skymap) and

a background map are shown in the first row. For each pixel of these maps, the

Poisson probability that the signal was generated by a random fluctuation of the

background is calculated using eq. 6.1. The calculated probabilities are shown in

the probability map (bottom left) and in the probability distribution (bottom right).

By examining such probability distributions, we can check for the existence of any

significant events expected to appear as outliers far from the main distribution.
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Figure 6.2: Some of the distributions and maps involved in the evaluation of one
skymap for 10sec emission duration. Top left : signal map (skymap), top right : back-
ground map, bottom left : probability map, bottom right : probability distribution.

6.4 Skymaps

As mentioned above, a skymap is a 2D map in RA and Dec that contains the

reconstructed directions of the events detected in a predefined time interval. The

width and starting time of that time interval are equal to the duration and starting

time of the emission being searched. The skymaps are binned more finely (0.2o×0.2o
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bins) than the angular resolution of the detector (∼ 1o) so that in case there is some

transient VHE emission in the data, there would be at least one search bin centered

on or very close to the direction of that emission.

By using RA/Dec instead of Hour Angle (HA)/Dec for the skymap coordinate

system, we can account for the motion of the sky relative to the earth. The earth

rotates 0.2o in ∼ 48 s. When searching for emission of duration less than 48 s, the

sky can be approximated as being stationary, and HA and Dec can be sufficient

coordinates. However, for longer durations we have to use RA/Dec, a system that

follows the rotation of the earth so that the coordinates of objects in the sky remain

constant. Milagro’s reconstruction algorithms produce the zenith angle and azimuth

of the location of an event on the sky. Using the latitude of Milagro and its rotation

relative to the North, the HA/Dec coordinates of an event can be calculated. Then,

using the Local Sidereal Time (LST), the RA can be calculated using RA+HA =

LST .

Because the angular resolution of Milagro is finite, the events from a point

source in the sky will be reconstructed at locations around the true position of

that source. Thus, a search for a signal from a particular direction in the sky has to

include the events from an area around the true position, instead of including events

from just exactly that position. For that reason, when evaluating the contents of a

skymap, a search bin is centered on a potential source position, and all the events

under that bin are added to evaluate that position. The sensitivity of the search

depends on the dimensions of that bin. A bin that is wider than the optimal one will

include more background events, thereby decreasing the sensitivity of the search,
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while a smaller than optimal bin will fail to include many of the signal events,

resulting in similar reductions in sensitivity. The optimization of the dimensions of

the bin is a complicated process and is described separately in Chapter 8.

As shorter durations are searched, the number of events in the skymaps gets

smaller. A point is reached at which a considerable number of the trials correspond

to zero signal events. In such a case, it is not efficient to perform the search by

scanning the search bin over a mostly empty map. For emission durations Tdur <

0.2 s, an alternative method is used. While the skymaps are being constructed,

all the locations with two or more nearby events are added to a list. Next, at

the evaluation stage, instead of scanning the search bin over the whole skymap,

the search bin is placed only on the locations saved in this list. This way, the

time-consuming evaluation of a large part of the empty skymap is avoided, and the

search becomes considerably faster. It should be noted that for very short emission

durations, such as the ones of the order of milliseconds, a search that is not using

this optimization can be about a thousand times slower than the search for the one-

second emission duration. This optimization speeds up the process to such a degree

that both the millisecond and the one-second searches need comparable amounts of

time to complete.

Another speed optimization was in the evaluation of the Tdur ≥ 0.2 s skymaps.

Because the search bin has dimensions of the order of a degree, while the step

between consecutive searches in space can be as small as 0.2o, most of the data

analyzed by consecutive searches in space are the same. Because of that, every

time an improbable fluctuation happens in the data, it shows up in the results of
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multiple adjacent searches. We can reduce the number of searches by making use

of this effect. A coarse search over the whole map can be made, followed by a finer

one performed only around locations with moderately small probabilities detected

by the coarse search. The configuration used in this search was to start searching

coarsely by stepping the search bin by 0.6o and then making a finer search with a

0.2o step, around all positions with probabilities less than 10−4. With this choice,

all events that are significant enough to be GRB candidates will be detected, by

only searching about one out of nine bins of the skymaps.

To summarize the speed optimizations mentioned in the previous two para-

graphs: for Tdur < 0.2, only locations with two or more adjacent events are eval-

uated, and for Tdur ≥ 0.2, a coarse 0.6o search is performed on all of the skymap,

followed by a finer 0.2o search around locations found with probabilities less than

10−4. It should be noted that the speed optimizations also contribute to the sensitiv-

ity of the search. By having a fast algorithm, we can search more finely in time and

duration, thereby (as it will be shown in the next section) increasing the sensitivity

of the search. As a reference, the optimized version of the search contained at least

1015 trials and needed the equivalent of 80× 40 modern-CPU days to complete.

6.5 Organization of the Search in Time

The duration of the emission searched for is dictated by the nature of the phe-

nomena one tries to detect. The keV/MeV emission from GRBs has been observed

with durations ranging from few milliseconds to many minutes (Fig. 1.7). Even
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though the duration of the prompt GeV/TeV emission has not been measured yet,

its time scale should be the same as the time scale of the development of the GRB

fireball, which has already been set by the detected keV/MeV emission. The du-

ration of the late GeV/TeV emission generated by interactions of the fireball with

the circumburst medium is harder to constrain, and probably varies significantly

from burst to burst. The emission from PBH evaporation is currently unknown

because it has not been observed yet. However, the discussion on PBHs in Chapter

4 (and specifically figure 4.2) shows that the relevant timescale for PBH searches

with Milagro is less than ∼ 100s.

The duration range searched in this study was based on the duration ranges

of the keV/MeV emission from GRBs (ms to mins) and also extended to shorter

timescales. The dead time of the detector (∼ 40µs) set the limit on the shortest

duration searched (100µs), and the limitations of the search algorithm (not opti-

mized for very long durations) set the maximum duration searched (316 s)3. Since

the chosen duration range covered many orders of magnitude, the best way to uni-

formly distribute the individual durations was to space them logarithmically (the

ratio of two consecutive durations was constant).

The sensitivity of the search is maximized when it has a sub-search that can

detect all of the signal while including as few background events as possible. For

this to happen, the search always has to have a sub-search with a time interval of

the same duration and starting time as any potential gamma-ray emission. How-

3 As will be shown later, there were 53 durations total searched, or 8 durations per decade.
316 s is equal to 0.0001× 1052/8 s.
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ever, this requirement corresponds to an infinite number of durations searched, to an

infinitesimal step between consecutive searches in time, and unfortunately, to an in-

finite amount of computational time. A configuration has to be found that keeps the

sensitivity of the search as high as possible, while requiring feasible computational

resources.

Let us first examine what combination of oversampling in time and sampling

in duration is the most efficient for detecting all of the signal events. In figure

6.3, the detected fraction of signal events is plotted for different time intervals and
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Figure 6.3: Detected fraction of signal events (Z axis) versus the width of the time
interval (Y axis), and the step between consecutive searches in time (X axis).

oversampling between consecutive steps in time. If the time interval is shorter than

the emission duration (Y axis value<1), then some of the signal is always left out for
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the next or the previous sub-search. On the other hand, if the time interval is longer

than the emission duration, then all or most of the signal, depending on the relative

offset between the emission and the time interval, is detected by the search. As the

time interval of the search gets longer (high Y axis value), the probability of including

all of the signal increases. While this higher probability is something desirable,

a very long time interval will include much unwanted background, decreasing the

sensitivity of the search. The optimum case corresponds to the shortest time interval

that has the best chance of including all of the signal events. Based on figure 6.3, the

choice for the time step between consecutive trials (time offset between consecutive

skymaps) has been selected to be 10%.

After the step size in time was found, the spectrum of durations searched had

to be decided. The criterion here was that the duration space had to be sampled

finely enough so that for any possible gamma-ray emission duration, there would be

a searched duration than was large enough to include all of the signal but not so

large that it included much unwanted background. Assuming that the search, being

highly oversampled in time, always has a time interval with almost the same starting

time as that of a potential gamma-ray emission, we can examine the effects of a

mismatch between the width of the time interval and the duration of the emission.

For every emission duration less than the maximum duration searched (316 s),

there will be a number of longer searched durations, that are able to include all of

the emission’s signal events. The shorter of these durations will be the one with

the highest sensitivity, since it will include the least amount of background. The

sensitivity of the search will depend on how this best search-duration compares
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with the emission duration. For example, there can be an emission duration that

is just a bit shorter than the best search-duration, resulting in a nearly optimal

sensitivity. However, if the emission duration becomes a bit longer than that best

search-duration, the latter will not be able to include all of the signal events and will

cease being the best one. In that case, the immediately longer duration will become

the best one. However, because the new best duration can be considerably longer

than the emission duration, it may include much unwanted background. Thus, the

optimum sensitivity in this case would be lower than the previous case, in which

the emission and search durations almost matched. It should be noted that these

considerations are for a uniform-in-time signal.

Based on effects like this, the decrease in sensitivity versus the number of

durations searched and the emission duration was calculated (Fig. 6.4). As can be

seen from the figure, when only few durations are searched, the best search duration

is usually considerably longer than the emission duration, and the sensitivity of

the search is significantly reduced. The larger the number of durations searched,

the larger the probability that a search duration that almost matches the emission

duration exists. Taking into account the computational constraints and the need

to maximize the sensitivity, the number of durations searched was 52. This choice

corresponded to 8 durations searched per decade and a 33% fractional increase

between consecutive durations searched. According to the figure, the sensitivity

loss because of the mismatch between the best search duration and the emission

duration, for the chosen number of durations searched, is at worst just∼ 10%.
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Figure 6.4: Decrease in fluence sensitivity due to the mismatch between the width of
the time interval of the search and the duration of the emission. The z axis shows the
ratio of the minimum number of events needed for a 5σ post-trials detection with
90% probability for matching emission and search durations, over the minimum
number of events needed when there is a mismatch. The vertical stripes on the
map are created by increases, by one, of the small number of events needed for a
detection when the emission and search durations match (numerator of the ratio
plotted on the Z axis).

6.6 Background Estimation

To calculate the statistical significance of a number of signal events, the ex-

pected number of background events is needed. An accurate and precise estimate

of the background is essential for this search, since an underestimated background

will artificially increase the significance of events, leading to false detections. On

the other hand, an overestimated background will reduce the significance of events,

143



possibly hiding a real signal.

A simple way to calculate the background rate from some particular direction

in the sky at some specific time would be to average the event rate from that direction

before and after that specific time. The background rate of Milagro is of the order

of one event per square degree per second. To be able to calculate accurately the

background rate on a one square degree bin (say with 1% accuracy), we would need

at least 104 events (so that
√
N/N = 1%) or, equivalently, we would need to average

the event rate for about 104 s. If the background rate of Milagro stayed constant

in that time period, this simple method would be enough to provide an estimate of

the background. However, as seen from figure 6.5, the trigger rate of Milagro can

fluctuate in time scales shorter than that, causing this simple method to produce

incorrect estimates for the background. Even though the trigger rate fluctuations

can be as much as few percent over long time scales (thousands of seconds), the

relative rate of events coming from different directions in the sky is stable to a

factor of 10−4. This is because events that cause rate fluctuations, such as changes

in the atmosphere, light leaks, and temperature fluctuations affect the detector as a

whole, thereby causing fluctuations in the all-sky event rate instead of affecting its

sensitivity to signal from a particular direction on the sky. Based on the stabilility

of the relative event rate from different directions in the sky, the background rate

from a particular direction can be calculated in a reliable way by simply multiplying

the instantaneous all-sky rate with the probability that an event came from that

direction. Contrary to the method explained above, in which the event rate from a

particular direction in the sky had to be averaged over a long time in order to gather
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good statistics, the average all-sky rate can be calculated using only a few seconds

of data. This is because the all-sky rate averaged now is significantly larger than

the event rate from just one small patch of the sky. Specifically, Milagro’s all-sky

rate of events that passed the cuts is ∼ 1500Hz, which means that with just 10 s

of data, the all-sky rate average can be calculated with high statistical accuracy

(< 1%). The advantage of this background calculation method comes from the fact

that it relies on a quantity that does not fluctuate much.

Assuming an isotropic background of cosmic rays, the acceptance E(HA,Dec)

of the detector can be defined as the probability that a background event comes

from the differential angular element dΩ = dHAdDec. As mentioned in section 6.3,

during the evaluation of a skymap, a search bin is scanned over the skymap, and the

numbers of signal Nsig and background events Nback under it are calculated. If Tdur

is the time width of the skymap (or equivalently the duration searched), tc is the

center of that time width, and R(tc, Tdur) is the all-sky rate of events passing the cuts

averaged in the time interval (tc − Tdur), then the expected number of background

events under the search bin is

Nback(HA,Dec, tc, Tdur) =

�
SB

E(HA,Dec)R(tc,∆T )Tdur dΩ, (6.2)

where the integration
�

SB
dΩ is performed on the area under the search bin.

To perform this calculation, an “acceptance map” is first created in HA/Dec,

filled with the directions of all events detected for at least twenty minutes around tc

and normalized to unity. Then, the map contents around each bin of the acceptance
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map are integrated and stored in a new “integrated-acceptance map.” This way, the

acceptance map stores E(HA,Dec), and the integrated-acceptance map stores the

integral
�
E(HA, dec)dΩ (Fig. 6.6). Next, the event rate R(tc, Tdur) is calculated.

For short time intervals (Tdur < 10 s), R(tc, Tdur) is calculated by scaling down

the event rate 5s before and after the center of the time interval: R(tc, Tdur) =

R(tc, 10 s)×Tdur/10. For longer durations, Tdur > 10 s, the rate is calculated simply

by dividing the number of events in the time interval (tc, Tdur) by its duration (Tdur).
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Figure 6.5: Trigger rate averaged over 1s for modified Julian date 53699. Notice
that the rate is not constant over the day.
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(a) An acceptance map showing E(HA,Dec)

(b) An integrated-acceptance map showing
�

E(HA,Dec)dΩ. The integration has
been performed on an 1o × 1o/cos(Dec) rectangular area.

Figure 6.6: Maps involved in the background estimation. The maps were created
using 1200 s of data.
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6.7 Data Sample

Milagro’s low-energy sensitivity has not remained constant throughout the ∼ 7

years it has been operating. As mentioned in Chapter 5, the first version of Milagro

did not include the outrigger array, and hence it had a worse angular resolution than

now. Furthermore, during the first years of Milagro’s operation, a triggering system

was used (multiplicity trigger) that did not accept a large part of the lower-energy

events, which are important for this study. For these reasons, the data from those

early times were not included in this analysis. Specifically, only the last five years of

Milagro data have been analyzed: from 03/01/2003 (Modified Julian Date 52699) to

03/01/2008 (Modified Julian Date 54526). The analysis begins after the new VME

trigger was installed (01/25/2002), and at approximately the same time that the

outriggers started being used in the online reconstruction. It ends at approximately

the same time that the outrigger array started being dismantled (March 15th) as

part of the shutdown of Milagro.

6.8 Cuts

Not all events of the five years analyzed were used. Cuts were applied to the

data to improve the stability, speed, and sensitivity of the search. Specifically:

Data-quality cuts

Multiple checks were made on the data to ensure their quality. Because of

problems in the GPS or in the DAQ system, the times of some events were either
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wrong or inaccurate. Such problems could occur, for example, when the accuracy of

the GPS system was reduced because there were not enough GPS satellites available.

In the case that the worker computers responsible for analyzing and saving the data

detected that the difference between their internal time and the GPS time was

greater than a threshold, the event was tagged as having time errors. This search

rejected events with time errors corresponding to a time difference between the GPS

and the worker computer clocks greater than 50µs. Because of problems with the

electronics, the same event could be read multiple times, the times of consecutive

events could be swapped, and the events could have the wrong dates. There were

multiple checks for the presence of such errors, and the broken events were either

fixed or rejected. Because of various problems such as power failures, patches of

PMTs going offline, or problems in the electronics and the online reconstruction

computers, there could be lost blocks of data or large changes in the all-sky rate.

Detecting such problems was very important, because they could interfere with the

background estimation, usually reducing the estimated background. The event rate

was monitored in multiple time scales (ranging from seconds to minutes) for gaps

or sudden changes. In the case of time gaps, the search stopped at the gap, a new

acceptance map was created with the data after the gap, and the search continued

evaluating the post-gap data. In case that the event rate was low or had a sudden

change, the whole data block with the problematic rate was rejected.
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Angular resolution and background rejection cut

Another cut applied was on the quality of the angular reconstruction fit. The

larger the number of PMTs participating in this fit, the better its quality, and the

greater the accuracy of the results. In figure 5.19 on page 117, the median error on

the reconstructed angle versus the number of PMTs participating in the fit (nfit) is

shown. According to that figure, events with fewer than about 20 PMTs participat-

ing in the fit are reconstructed poorly, and therefore should be rejected. Another

reason to reject such low-nfit events is that various instrumental effects such as light

leaks, spikes in the supply voltages, and untagged calibration runs can create bursts

of fake events that manage to be reconstructed with a very low nfit. By applying a

soft nfit cut, these kinds of events can be rejected, improving the quality of the data

and almost eliminating false detections. For a source emitting gamma rays on an

exponential spectrum with index -2.0 and from a redshift z = 0.3, an nfit > 20 cut

keeps about ∼ 93% of the gamma-ray events that can be reconstructed accurately

enough to contribute to the significance of a detection (angle error < 2o). The same

cut also rejects ∼ 74% of the background signal from cosmic-ray protons4. Thus,

for the longer durations (Tdur & 100s), where Gaussian statistics can be applied for

the calculation of the probabilities, the sensitivity of the search is improved by a

factor Q ' 0.93√
0.26

= 1.8. This means that if a GRB were detected with a statistical

significance of S standard deviations, it would be detected with a statistical signifi-

cance of 1.8× S standard deviations after applying this cut. For shorter durations,

4Cosmic-ray protons comprise the majority (∼ 70%) of cosmic rays in Milagro’s energy range
and can be reasonably assumed to represent cosmic rays as a whole when making comparisons
between the properties of gamma-ray and cosmic-ray events.
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where Poisson statistics are applicable for calculating the significance of a measure-

ment, and where the importance of keeping every single signal event is higher, the

improvement is expected to be somewhat smaller (depending on the duration). We

see that an nfit > 20 cut not only improves the quality of the data by reducing

false alerts, but also improves the sensitivity of the search by rejecting a large part

of the usually poorly reconstructed cosmic-ray events.

Zenith-angle cut

Because the effective path length of the air showers in the atmosphere increases

with the zenith angle, showers from large zenith angles are attenuated more and

contain smaller numbers of particles at Milagro’s altitude. For these showers, the

probability of triggering the detector is smaller, and the angular reconstruction

accuracy worse. Based on this, locations on the sky with zenith angles greater than

45o were not searched for VHE emission, making the search faster.

Standard gamma-hadron discrimination cuts

The gamma-ray signal searched for is expected to be low in energy, of the

order of few hundreds of GeVs. As was mentioned in subsection 5.6.6 on page 119,

Milagro’s standard gamma-hadron rejection parameters, namely X2 and A4, are

efficient only for gamma-ray signals of higher energy. Figure 6.7 shows the change in

the sensitivity of detecting longer-duration signals that results from the application

of Milagro’s standard gamma-hadron discrimination methods. Both plots show

152



that these gamma-hadron discrimination parameters cannot bring an improvement

in Milagro’s sensitivity to such signals. The dataset analyzed to produce these

plots had nfit > 20, a maximum zenith angle of 45o, and a maximum error in the

reconstructed angle ¡2.0o for gammas. For the signal, simulated gamma rays on a

power-law spectrum with index -2.00 emitted from a source at redshift 0.3 were used,

while the background consisted of simulated protons on a power-law spectrum with

index -2.72, set by the proton cosmic-ray spectrum measured by BESS [136]. For the

shorter emission durations, where Poisson statistics are applicable, the importance

of keeping each one of the signal events is very high, and the performance of these

gamma-hadron discrimination cuts is worse. For these reasons, there was no A4 or

X2 gamma-hadron separation applied in the data searched.
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Figure 6.7: Effect of applying the standard gamma-hadron discrimination cuts to
the signal from a source emitting on a power-law spectrum with index -2.00 from
redshift 0.3. The quantity plotted is the quality factor defined as Q = fS√

fB
, where

fS and fB are the fractions of signal and background that pass a specific cut. The
quality factor shows the change in the statistical significance of a signal introduced
by applying a cut. These plots are only valid for the longer durations, where the
large statistics allow Gaussian probabilities to be used.

153



Chapter 7

Trials and Probabilities

7.1 Introduction

According to the previous chapters, this search essentially tries to detect a

gamma-ray signal on top of the cosmic-ray background. Because of the background’s

random nature, the amount of background in each consecutive sub-search (trial) is

not the same; rather it fluctuates about an average value in both time and space.

However, most of these fluctuations are small. The larger a fluctuation is, the less fre-

quently it happens. If we measured the amount of background just once (one trial),

almost surely we would find an amount almost the same as its average. However,

if we keep on searching, we would start finding larger and less frequent fluctuations

over the expected background value. Because we do not want to mis-identify these

rare, large fluctuations as a real signal, we have to increase our expectations of the

magnitude of a result that we will claim to be a real signal. As a result, a search that

consists of many trials ends up being able to detect only large amounts of signal, or

equivalently, has a reduced sensitivity.

This chapter will explain the above in detail, and will show the method used

to calculate the minimum threshold on the fluctuation magnitude over which we can

claim that a real signal was detected.
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7.2 Multi-Trial Searches

The detection of a signal by a search is equivalent to the rejection of the

hypothesis that a signal does not exist. This hypothesis, called the null hypothesis,

consists of the assumption that the data comprises of only background and that

the outcome of a search can be explained by mere fluctuations of that background.

A search for a signal starts by assuming that the null hypothesis is true and then

tries to reject this assumption. To test the validity of the null hypothesis, the search

calculates the probability that the results can be explained by it. A high probability

supports the null hypothesis and the absence of a signal. On the other hand, a very

improbable result could mean that an alternative hypothesis, one that agrees with

the data with a higher probability, is true. In that case, the null hypothesis is

rejected and replaced by the alternative hypothesis of the existence of both signal

and background. Therefore, a successful detection of a signal requires performing a

search that results in the rejection of the null hypothesis.

The larger the probability threshold used to determine the rejection or not

of the null hypothesis, the more likely it is a search on a background-only dataset

to end up erroneously rejecting the null hypothesis. The erroneous rejection of the

null hypothesis is called in statistics terminology a Type I error. On the other

hand, the smaller the probability threshold is, the more likely it is for searches

on a dataset that also includes signal to erroneously retain the validity of the null

hypothesis, thereby failing to detect that signal. This failure to detect the signal

is called a Type II error. The standard in the physics community on setting this
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threshold is such that the rate of Type I errors is very small and is set to ∼ 3×10−7.

This probability corresponds to the area under a Gaussian distribution of standard

deviation equal to one and mean equal to zero, integrated from five to infinity. Based

on that relation, this probability threshold is also referred to as being equal to “five

standard deviations” or 5σ.

A search can consist of either one or many sub-searches (trials) on the data.

For a search that consists of only one trial, the validity of the null hypothesis can be

verified by simply comparing the usual Pthres = 5σ ' 3× 10−7 probability threshold

with the probability of the result produced by its single trial (piece-wise probability

Ptrial). In this case, the probability of making a Type I error is equal to Pthres and

the probability of not making one is 1 − Pthres. Consider a search that consists of

two independent trials. Now, the family-wise probability of not making a Type I

error after finishing the whole search is (1−Pthres)× (1−Pthres) = (1−Pthres)
2. For

N trials, this probability becomes (1 − Pthres)
N . This means that the probability

of erroneously rejecting the null hypothesis (the search having a trial with Ptrial <

Pthres) has increased from Pthres for just one trial to 1 − (1 − Pthres)
N for N trials.

What happens is that the more searches undertaken, the more likely very improbable

results will be found.

A probability that includes the effects of having taken a number of trials is

called a “post-trials” probability, while a probability that does not include these

effects is called a “pre-trials” probability. In the example above, Pthres is the pre-

trials probability of one trial rejecting the null hypothesis, and 1− (1− Pthres)
N is

the post-trials probability of the whole family of trials rejecting the null hypothesis.
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The requirement on a search with any number of trials is that it should er-

roneously reject the null hypothesis with probability Pthres. In order to apply this

requirement to a multi-trial search, a new lower post-trials probability threshold for

each of the trials has to be set (P
′

thres), so that the family-wise Type I error rate

remains Pthres:

Pthres = 1− (1− P
′

thres)
N ⇔

P
′

thres = 1− (1− Pthres)
1/N . (7.1)

Equation 7.1 is called the Sidak equation and can be used to calculate the

probability threshold P
′

thres that must be used in a search with N trials so that the

family-wise Type I error rate stays Pthres. Because Pthres � 1, the exponent can be

expanded, simplifying the Sidak equation:

P
′

thres ' 1− (1− Pthres/N) = Pthres/N. (7.2)

Equation 7.2 is called the Bonferonni equation and simply says that a search with

N trials has a probability Pthres/N of having at least one event with a pre-trials

probability less than Pthres.

The GRB search in this work contains a large number of trials. Hence the

probability thresholds for claiming a detection have to be adjusted. It is straight-

forward to calculate the number of trials taken by counting the number of searches

performed on each one skymap, and multiplying by the total number of skymaps
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evaluated in the search. However, is the number of trials taken in this search the

same as the number of trials (N) in the Sidak or Bonferonni equations? These

equations are based on the fact that the trials are independent, since only for inde-

pendent trials the probability of their combined outcome is equal to the products of

their probabilities. In this search, there is a significant overlap between successive

trials in both space and time. As a consequence, the same data are analyzed by

multiple successive trials. The effect of taking a number of extra independent trials

is that the probability of making a Type I error is increased in a predefined way as

described by the Sidak equation. If these trials were not independent, then there

would still be an increase in the Type I error rate, though somewhat smaller than

in the independent case. An effective number of trials can be defined as the number

of independent trials that would cause the same increase in the Type I error rate.

7.3 Calculation of the Effective Number of Trials

7.3.1 Using the distribution of the probabilities of all trials

In the past, the effective number of trials was estimated based on the distribu-

tion of probabilities of all the trials of the search dN/dlog10(P ) for one duration (see

figure 10.5 on page 211 for an example of such a distribution). This distribution

essentially shows the chance of a trial in the search having a specific probability.

Based on this chance, the effective number of trials per trial taken can be calcu-

lated, and from this, the effective number of trials for the whole search. Starting

from the fact that the probability density dN/dP is constant, the functional form
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of that probability distribution can be calculated:

dN(P )

dP
= Ntotal ⇔

dN(P )

dlog10(P )
= Ntotal log(10)P, (7.3)

where N1 provides the normalization of the distribution and is equal to the total

number of trials. By counting how many times a trial had a probability less than

some threshold P0 (NP<P0), the number of effective trials corresponding to one taken

trial can be estimated:

Tpertrial,old '
(
NP<P0

Ntotal

)
/P0. (7.4)

This equation says that if Tpertrial,old effective trials correspond to one trial, then

the chance of one trial having a probability less than P0 is NP<P0/Ntotal. So, by

producing a distribution from all the trials of the search (that follows equation 7.3),

an effective number of trials can be found using equation 7.4. However, this is not

the case. It can be shown that this method results in an incorrect number of effective

trials.
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Starting from eq. 7.4, we can find:

Tpertrial,old '
Ntotal −NP>P0

Ntotal

1

P0

eq.7.3⇐⇒

=

(
1−

� 1

P0
Ntotal dP

Ntotal

)
1

P0

=

(
1− Ntotal(1− P0)

Ntotal

)
1

P0

⇐⇒

Tpertrial,old = 1.

The above equation says that if the probability distribution follows equation 7.3,

then the effective number of trials per trial taken is equal to one, or, equivalently,

the total effective number of trials is equal to the total number of trials. This is

incorrect.

Equation 7.3 ignores the effects of the correlations between trials to the prob-

ability distribution. Consider the following example: a dice is thrown and the result

is stored in a distribution. For an unbiased experiment, the frequency distribution

of the outcomes should be flat (because each tossing result has an equal chance of

occurring) and, in the limit of many throws, the fluctuations on the number of occur-

rences for each result should be Gaussian. Now let us say that instead of throwing

the dice once and filling the distribution with one entry, we throw the dice once

and fill the distribution twice with the same entry. This would bring a correlation

between subsecutive searches. While the average number of occurrences will remain

the same, the fluctuations should now be larger since each entry now causes a larger

fluctuation. In the limit of a very large number of throws, the fluctuations in both
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cases should be negligible, and the two distributions will be almost identical (flat).

Going back to the case of the GRB search, in short, as the search progresses,

the probability distribution shows deformities and deviations from the form de-

scribed by equation 7.3, which are slowly smoothed out as more statistics are gath-

ered. These deviations are mostly evident in the tail of the distribution, where the

statistics are always low. To illustrate this effect, a simulation of binned search,

similar to that of this study and with a high degree of correlation between consec-

utive trials, was built. Figure 7.1 shows snapshots of the probability distributions

produced by this simulation every 22 million trials. In the first snapshot (top left)

a deficit of the probability distribution (black curve) with respect to the expected

form (equation 7.3 - red line) is evident. As the search progresses, small groups

of correlated results end up in the area of the deficit and fill it up (second plot,

first row). Sometimes a very improbable fluctuation happens (third plot, first row),

creating a number of entries in the tail of the distribution, and, this time, an excess

over the predicted shape. This excess will be smoothed out too, as more statistics

are gathered. As seen, the tail of the distribution randomly exhibits a series of

deviations (excesses or deficits) from its expected form, which are usually smoothed

out before the next deviation happens.

If the distribution of the probabilities of all the trials is used for the calculation

of the effective number of trials, then the results will depend on the probability

threshold P0 used in the calculation (eq. 7.4). If P0 is large enough to be far

from the tail of the distribution, the resulting number of effective trials will be

approximately equal to the total number of trials. If, on the other hand, a P0 close
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to the tail of the distribution is used, then the resulting number of effective trials can

be a number larger or smaller than the true number of trials, depending on whether

the probability distribution had an excess or a deficit at its tail. Usually, for very

large numbers of trials (> 1010), such as the ones of the GRB search, the probability

distribution shows a deficit in its tail. Therefore, such a method usually predicts

a random number of effective trials that is usually lower than the total number of

trials, but larger than the true number of effective trials.

From the above, it is shown that the probability distribution of all trials cannot

be used in a straightforward way to estimate the effective number of trials, because

the information on the degree of correlation between the trials cannot be extracted

by this distribution in a simple way.

7.3.2 Using the distribution of the smallest probabilities in groups of

adjacent trials

In order to calculate the effective number of trials that correspond to one trial

taken, the probability that this trial erroneously rejects the null hypothesis has to

be calculated. To do this, the same trial has to be repeated a number of times, and

the fraction of times where the null hypothesis was erroneously rejected has to be

counted. The fraction of the times that the trial rejected the null hypothesis will

be equal to its probability of rejecting the null hypothesis. Using that probability

and the probability threshold selected for rejecting the null hypothesis, the effective

number of trials for this trial can be calculated using equation 7.1.
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Figure 7.1: A probability distribution produced by a simulation of a binned search
with highly correlated trials. The correlations between trials distort the probability
distribution away from its expected form shown by the black line.

In the method described in the previous subsection, the fraction of the trials

resulting to a probability less than some threshold was counted, and from the values

of the counted fraction and the selected threshold, the number of effective trials

was calculated. The problem with that method was that every time an improbable

fluctuation happened in the data, there were multiple adjacent trials affected, having

similarly reduced probabilities. That method treated all these low probability results
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as independent, since each one of them counted as a rejection of the null hypothesis.

Hence, it produced incorrectly inflated estimates of the number of effective trials.

It is clear that a method has to be found that counts each improbable fluc-

tuation that causes the erroneous rejection of the null hypothesis only once. This

can be accomplished by grouping adjacent trials together and considering whether

these trials caused the rejection of the null hypothesis as a whole. For this search,

all the trials in space and in a time interval equal to the searched duration were

grouped together, with each group containing the trials from the evaluation of ten

skymaps. Then, a distribution containing the smallest probability found in each

group was created. To avoid double counting of any improbable fluctuations that

occurred near the borders of each group, and could possibly appear in two adjacent

groups, every other group was skipped.

From the distribution of the smallest probabilities in every other group, the

number of effective trials per group can be calculated by solving the Sidak equation

for T :

eq.7.1 ⇒ Tpergroup =
log(1− P

′
0)

log(1− P0)
, (7.5)

where P0 is a probability threshold, and P
′
0 is the fraction of times a probability

less than P0 occurred. The total number of effective trials in the search was then

calculated by multiplying the effective number of trials per group with the number

of groups in the whole search.
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7.4 Simulation of a 1D Binned Search

In order to demonstrate the above, a simple simulation of an one-dimensional

binned search was made. Initially, an one-dimensional lattice was created, composed

of 61 × 10 = 610 bins. The bins of the lattice were filled with a random number

sampled by a Poisson distribution of average five. Similarly to the GRB search

algorithm, a search bin of length equal to 61 lattice bins was scanned over the

lattice, the contents of the lattice elements under the search bin were added, and

the probability of this sum being produced by a mere fluctuation of the expected

number of events (= 5× 61) was calculated. The search bin was then translated by

just one lattice bin, and the last step was repeated. The probabilities corresponding

to each evaluation were kept in a distribution, to calculate the number of trials using

the old method described in subsection 7.3.1. Also, to allow the calculation of the

effective number of trials using the new method proposed in section 7.3.2, every

61 adjacent trials were grouped, and the smallest probability found in every other

group was recorded. The search was repeated millions of times, using different bin

contents for the lattice in each iteration.

The consecutive trials in this search were highly correlated, because for such

trials 60 out of 61 bins under the search bin were the same. Therefore, the number

of effective trials was expected to be considerably smaller than the total number of

trials (550). The effective number of trials was calculated using three methods:

� The first method calculated the true effective number of trials. The search was

repeated millions of times, and the fraction of repetitions that a probability
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smaller than some threshold was found were counted. Then, equation 7.5 was

used to calculate the effective number of trials.

� The old method, that calculates an incorrect effective number of trials from

the distribution of all the probabilities.

� The new proposed method, that calculates the effective number of trials from

the distribution of the smallest probability found in every other group of trials.

This method should give the same number of effective trials as the correct

number found by the first method.

Figure 7.2 shows the distributions of the probabilities of all trials and of the

smallest probability found in every other group of trials. As claimed above and

shown in the figure, the probability distribution of all trials (fit to the black line)

follows the form described by the equation 7.3 (red line). The ratio of the effective

number of trials calculated by each of the three methods described above over the

total number of trials taken is shown in figure 7.3. As expected, the old (second)

method incorrectly gives an effective number of trials that is almost the same as the

number of trials taken (black dashed curve). The third, newly proposed, method

(dashed red line), gives an estimate that is in agreement with the true number (stars)

calculated by the first method.

As shown above, the old method produces an incorrectly inflated effective

number of trials. As a result, the calculated post-trials probabilities are erroneously

increased, or, equivalently, their statistical significance is decreased resulting in a

reduction in the sensitivity of the search.
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The fact that the number of effective trials increases with the significance is

partially understood. The same effect has been observed in the results of the search,

although to a much smaller degree, and in calculations of the effective number of

trials in Milagro’s point-source searches [137].
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Chapter 8

Optimum Bin Size

8.1 Introduction

One of the most important factors in maximizing the sensitivity of the search

is the proper choice of its bin size. A large bin will include most of the signal events

but will also include many background events. On the other hand, a small bin will

reduce the contamination from background but will also fail to include a big part of

the signal. Both cases are non-optimal and correspond to a reduced sensitivity.

As will be shown, because of statistical fluctuations involved in the process of

converting an incoming gamma-ray flux at the earth to Milagro signal events, the

same initial flux can be detected by a specific search only a fraction of the times

(the “detection probability”). Every time an incoming gamma-ray flux creates an

excess that is larger than a mere background fluctuation, a signal detection can be

claimed. The fraction of times that a detection can be claimed for the same initial

gamma-ray signal is equal to the detection probability of that signal. The optimum

bin size is the one that maximizes that probability.

The detection probability depends on how improbable are the fluctuations

created by the incoming gamma-ray flux. Fluctuation probabilities, as described in

section 7, are calculated using Poisson statistics (eq. 6.1 on page 133). For the search
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of longer-duration emissions (duration & 100 s), the mean number of background

events under the search bin is sufficiently large that the probabilities can be also

calculated using Gaussian statistics.

The purpose of this chapter is to present the optimization of the search’s

bin size. The optimization of the bin size was performed using Poisson statistics

and is described in section 8.3. As a cross check, the optimum bin size was also

calculated using Gaussian statistics for only the longer durations & 100 s (section

8.2). The Poisson-based optimization, as expected, produces the same results as the

Gaussian-based one in the limit of a large number of events.

Because the VHE emission from GRBs is absorbed by the EBL (Chapter 3),

the GRB signal that reaches the earth cuts off at energies over few hundreds of

GeV. On the other hand, because PBHs can be galactic sources, their detectable

by Milagro emission extends to > 1TeV energies. The bin sizes calculated here are

optimal for the lower-energy signal expected from GRBs and not for the high energy

signal expected from PBHs.

8.2 Optimum Bin-Size for Gaussian Statistics

In this section, the optimum bin size will be calculated for the case of large

statistics of the background and the signal. The calculation will be performed for

square and circular bins, and for PSFs that follow a Gaussian distribution or an

arbitrary distribution. The calculation for an arbitrary PSF and a square bin rele-

vant for this search is performed in subsection 8.2.3. The results of that subsection
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were used as verification of the Poisson-based optimization of the bin size. This

calculation is valid for the searches of durations greater than about 100 s.

In the case that:

1. The background distribution is uniform,

2. the number of signal (NS) and background (NBG) events follow a Gaussian

distribution: {NBG, NS} � 1,

3. and the statistical fluctuations of the number of background and signal events

are negligible: {NBG, NS} �
{√

NBG,
√
NS

}
,

the probability that the number of signal events in a bin were created by just a

background fluctuation can be approximated, similarly to equation 6.1 on page 133,

by the cumulative Gaussian probability:

PG,C(NBG, NS) =

� ∞

NS

1√
2πNBG

e
− (NS−NBG)2

2NBG . (8.1)

The measure of the consistency of a result with the null hypothesis can be given

either by the probability PG,C or by the “Significance” S of the measurement, which

is equal to the number of signal events measured in units of standard deviations of

the background:

S ≡ Nmeas. − N̂BG

σ(N̂BG)
=

(NS +NBG)− N̂BG

σ(N̂BG)
' NS + N̂BG − N̂BG√

N̂BG

=
NS√
N̂BG

. (8.2)

As shown in figure 5.18 on page 116, the reconstructed directions of the signal events
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are distributed according to the point-spread function (PSF) of the detector, and

the reconstructed directions of the background events are assumed to be distributed

locally uniformly. Let us define the efficiency of including the signal events in a

square bin of width w, and area A = w2, as ε(w), the background rate per unit area

asR, the duration searched as T , and the total number of signal events in the Milagro

data as NS,total. Then, the number of signal events and background events included

in a bin of width w are NS(w) = NS,total ε(w) and N̂BG(w) = RT A = RT w2

respectively. Equation 8.2 then becomes

S(w, T ) =
Ns(w)√
N̂BG(w)

=
NS,total√
RT

ε(w)√
w2

=
NS,total√
RT

ε(w)

w
. (8.3)

We see that the significance is a function of the bin width w. In order to max-

imize the significance, one has to maximize the ratio ε(w)
w

. Note that the optimum

bin size does not depend on the background rate R or the total amount of signal

NS,total. Because of that, the bin size that maximizes the average significance1 that

corresponds to an incoming gamma-ray signal is equal to the one that maximizes

the detection probability of detecting the same gamma-ray signal. Therefore, in

the case of large statistics, the bin-size optimization (maximization of the detection

probability) can be performed in terms of finding the bin size that maximizes the

average significance.

1averaged over all the possible fluctuations in the conversion from an incoming gamma-ray
signal to Milagro signal events
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8.2.1 Circular bin and Gaussian PSF

Consider the case of circular bins and of a PSF that follows a Gaussian dis-

tribution of standard deviation σ. The numbers of expected signal and background

events within a bin of radius R are proportional to:

N̂S ∝
� R

0
e−r2/2σ2

σ
√

2π
r dr

N̂BG ∝
� R

0
2π dr.

(8.4)

The optical bin size R0 maximizes the significance N̂S/
√
N̂BG so that:

d

dR

{
N̂S

N̂BG

}
= 0. (8.5)

Using equation 8.4 and substituting x = r2/σ2 we obtain:

dX

dR

d

dX


� X

0
e−x/2dx√� X

0
dx

 = 0. (8.6)

For non-zero bins dX/dR 6= 0, therefore:

d

dX

{
2 (1− e−X/2)√

X

}
= 0 ⇒ (8.7)

1 +X0 = eX0/2 =⇒ (8.8)

X0 = 2.513 ⇐⇒ (8.9)

R0 = 1.585σ. (8.10)
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8.2.2 Square bin and Gaussian PSF

For a square bin and a Gaussian PSF, the optimum bin size can be calculated

following a procedure similar to the one above. In this case:

N̂S ∝
� +W

−W

� +W

−W
e−x2/2σ2

σ
√

2π
e−y2/2σ2

σ
√

2π
dxdy

N̂BG ∝
� +W

−W

� +W

−W
1 dxdy.

(8.11)

If the optimum half width is W0 then:

0 =
d

dW

{
N̂S√
N̂BG

}
(8.12)

=
d

dW


erf

(
W√
2σ

)2

2W

 (8.13)

=

√
2 erf( W0√

2σ
)e−

W2
0

2σ2

W0

√
π

− 1

2

erf
(

W0√
2σ

)2

W 2
0

. (8.14)

This can be solved numerically giving

W0 = 1.40σ '
√

2σ. (8.15)

It should be noted that equations 8.10 and 8.15 say that the area of an optimal

circular bin is almost the same as the area of an optimal square bin (less than 1%

difference).
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8.2.3 Square bin and arbitrary PSF

For any kind of PSF, the optimum bin size can be calculated numerically by

finding the bin size that maximizes the significance ratio N̂S/
√
N̂BG of equation 8.3.

In figure 8.1, this ratio is plotted versus the square bin half-width, for a detector

with the background rate and PSF of Milagro. Because the angular resolution of

the detector becomes worse with increasing zenith angles, the significance acquires a

dependence on the zenith angle. However, this effect is very small, so the optimum

half-width is almost the same for all three zenith-angle regions, and equal to ∼ 0.8o.

If the PSF of Milagro followed a Gaussian distribution, this optimum bin size would

correspond to a standard deviation of σ = 0.8/1.4 = 0.570 (according to equation

8.15).

The angular resolution of Milagro has a stronger dependence on the properties

of the gamma-ray signal being detected. This analysis used a gamma-ray signal

on a power-law energy spectrum with index -2.2 and with an attenuation due to

interactions with the EBL for a source at a redshift z = 0.2.

8.3 Using Poisson Statistics

In the case of a small number of signalNS or background eventsNB (NS 6� 1 or

NB 6� 1), the fluctuations on the number of background and signal events dominate.

In this case, equations 8.1 and 8.2 cannot be used, and a simple formula that gives

the significance does not exist, so, the chance probabilities are calculated using

Poisson statistics (eq. 6.1), and the optimum bin size depends on the amount of
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Figure 8.1: The ratio ε(w)
w

found in the significance formula (eq. 8.3) plotted versus
the bin half-width (w/2) for three zenith-angle regions. The optimum bin half-width
corresponds to the peaks of the curves and is equal to ∼ 0.8o for all three curves.
Data from a Monte Carlo simulation of the detector were used to construct these
plots.

signal and background expected in the search. An optimization of the bin size will

now require the calculation of the sensitivity versus the signal strength, the bin size,

the duration, and the background rate.

Consider the random processes starting from the conversion of an incoming

gamma-ray signal at the top of the atmosphere to the final detection of it. That

signal will initially interact with the atmosphere and create EASs. A fraction of

these EASs will be large enough to trigger Milagro, and a fraction of the generated

Milagro events will pass the data-quality and background-rejection cuts of a search

for emission from GRBs. Finally, only a fraction of these events will be reconstructed
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accurately enough and manage to be included under the search bin. Because of the

random fluctuations involved in these steps, if the same series of steps is repeated

on the same amount of initial signal, the final number of events under the search

bin will fluctuate.

Let us call the average number of events a source creates in the Milagro data

set (after cuts) N̂S,total and the actual number of events occurring in one instance

of the same process NS,total. NS,total follows a Poisson distribution (or a Gaussian

distribution for large N̂S,total) with average N̂S,total. A binned search for these events

uses a bin size that includes them with some efficiency ε(w). The average number

of events ending up in the search bin is N̂S,bin = N̂S,total ε(w). The actual number

of events ending up in the bin (number that corresponds to one repetition), NS,bin,

follows a Binomial distribution with average N̂S,bin (probability of success per trial

= ε(w) and N̂S,total trials):

PBinomial(N̂S,bin, ε(w), N̂S,total) =

 N̂S,total

N̂S,bin

 ε(w)N̂S,bin(1− ε(w))N̂S,total−N̂S,bin .

(8.16)

Because the same initial emission creates a fluctuating final number of signal events

in the Milagro data, that emission has a probability to be detected. The bin size

optimization in this section will be performed in terms of maximizing the detection

probability of a certain signal.

Let us define that a gamma-ray signal is called “detected” if it creates a fluc-

tuation on the number of events under the search bin that has a probability less
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than 5σ post trials of being just a background fluctuation. All detected events

are considered equally interesting and no further effort is taken to increase their

significance.

In this bin-size optimization, the effective number of trials is needed to calcu-

late the post-trials probability of a fluctuation and to decide whether a fluctuation

corresponds to a signal detection or not. However, the effective number of trials

depends on the bin size of the search. It can be seen that there is a circular de-

pendence since the two quantities (bin size and effective number trials) depend on

each other. It is not easy to analytically calculate the dependence of the effective

number of trials on the bin size, and it is not correct to use the easily calculable total

number of trials instead. If the total number of trials is used, then the resulting

post-trials significance of the results and the sensitivity of the search will be erro-

neously lower than their true values. To overcome the problem, the effective number

of trials from an earlier search with a fixed bin size of half width 1.5o was used, and

the approximation that a bin size with a half-width close to 1.5o corresponds to the

same number of effective trials as that of a search with a bin of half width exactly

1.5o.

Let us start the optimization by including only the fluctuations on how the

reconstructed directions of the events are distributed around the true source position.

In this stage, the probability of detecting a signal NS,total in the Milagro dataset will

be examined versus the bin size of a search for that sgnal. The same total number

of events in the Milagro data set, NS,total, can randomly lead to various different

numbers of events in the search bin NS,bin, depending on how the reconstructed event
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directions were distributed around the true source position. Each of these possible

NS,bin, depending on the number of background events for the bin size used (NBG =

RT w2), corresponds to a different chance probability PP,C of the measurement

being consistent with a background fluctuation. Let the Boolean outcome of an

NS,bin being detectable be ∆(NS,bin, NBG), with the outcome being equal to 1 if

PG,C is smaller than the probability threshold set for detection (equivalent to 5σ

post trials significance) and 0, if otherwise. The probability of detecting a signal

NS,total that can give rise to various NS,bin, is the weighted average of all of the

final outcomes ∆(NS,bin, NBG) for each NS,bin, with the weight being the occurrence

probability (eq. 8.16) of each NS,bin:

P
′

det(NS,total) =

NS,total∑
NS,bin=1

PBinomial(NS,bin,ε(w), NS,total) ∆(NS,bin, NBG). (8.17)

This quantity is plotted for different NS,total, background rates R, durations T and

bin sizes w in figures 8.2. The background rates 0.13 ev s−1 deg−2 and 0.03 ev s−1 deg−2

correspond to the average Milagro event rates from the zenith angle regions 0o−15o

and 30o − 45o, respectively. For very weak signals (NS,total), there is not any bin

size that contains enough signal events (NS,bin) to create a detection. As the num-

ber of total signal events increases, there are some bin sizes that contain detectable

amounts of signal events. For these detections, the signal events were, in an im-

probable way, distributed closer to the true source position than the one predicted

by the PSF. As can be seen, the small bins that do not include much background

but that contain most of the signal events are the ones generating the detections for
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these signal strengths. For a higher total number of signal events, the chance prob-

abilities decrease even more and a larger fraction of the events becomes detectable.

In the end, almost all of the bin sizes can generate detectable events. As the bin

size increases, the detection probabilities decrease because there is more background

included under the bin. This effect becomes stronger for longer durations and for

higher background rates.

Figure 8.2: Probability of detecting a signal consisting of Ns,total events in the Mila-
gro data set versus the half-width of the bin used by the search. The columns cor-
respond to different background rates and the rows to different durations searched.
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Now, let us extend the calculation and include the effects of fluctuations in

the conversion between the incoming gamma-ray flux on the top of the atmosphere

to Milagro triggered events that have passed the cuts. As mentioned above, the

actual number of events NS,total in the Milagro data will be distributed on a Poisson

distribution with average N̂S,total. By taking a weighted average of the detection

probability of each NS,total, with the Poisson probability of occurrence of each of

these Ns,total as the weight, the detection probability of an average total signal

N̂S,total can be calculated:

Pdet(N̂S,total) =
∞∑

Ns,total=0

PPoisson(Ns,total, N̂s,total)P
′

det(NS,total). (8.18)

Th distribution of Pdet(N̂S,total) is shown in the color map of figure 8.3 for different

N̂S,total and bin sizes, for the 10 s duration search and a background rate correspond-

ing a zenith angle 0o − 15o.

The next step would be to use maps, such as the one of figure 8.3, to find

the optimum bin size for each duration and zenith-angle range. The definition of

“optimum” depends on the specific requirements for the search. If a known signal

is searched for, then an optimum search will be the one that will detect it with the

highest probability. In our case, this is a search for a not-yet detected signal. Maybe

the only thing that it is known is that the signal levels present in the data are very

low, otherwise detection of VHE emission from GRBs by other experiments would

have happened by now. So the requirement for our optimum bin is to maximize

the probability of detecting the smallest signal possible. The distribution has a
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Figure 8.3: Map showing the detection probability of an average signal N̂S,total

versus the the half-width of the bin used by a search for that signal. Black curve:
profile of the map, red curve: polynomial fit to the profile, horizontal black line:
minimum of the fit, vertical black bar : error bars corresponding to ±15% increase
in the minimum detectable signal over the optimum case. This map corresponds to
the search for emission with duration 100 s from a zenith angle 0o − 15o.

wedge shape and the optimum bin corresponds to the tip of this wedge. In order

to calculate the bin size that corresponds to that point, a fit on the wedge has

been made. Initially, a profile of the 2D map was made by calculating the weighted

average of the contents of each row (same bin size) with weights the map-bin contents

(detection probabilities). The profile is shown with the black curve on figure 8.3.
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Map bins with a content greater than 0.9 were ignored at the creation of the profile

in order to move it towards the edge of this wedge. The profile essentially gives a

measure of the amount of signal N̂s,total, at which each bin size starts being efficient

(starts producing detections). The optimum bin corresponds to the best efficiency

for the lowest signals possible, and is equal to the minimum (signal wise) of the

profile curve. That minimum was calculated by means of a polynomial bit to the

profile (shown with the red line on figure 8.3). The resulting minimum bin size is

shown with a horizontal black line, along with error bars that correspond to a 15%

increase over the minimum signal of the profile curve.

This process was repeated for all 53 durations and three zenith-angle bands.

The results are shown in figure 8.4. As can be seen, for the shorter durations,

where the background contamination is smaller, larger bin sizes are optimum. As

the duration and the the background contamination increase, the optimum bin sizes

become gradually smaller until we slowly enter the large-number-of-events Gaussian

regime, where the optimum bin size does not depend on the amount of background.

For a cross check, the optimum bin size calculated using Gaussian probabilities

(subsec. 8.2.3) is also shown with a black solid line. The bin sizes in this section,

derived using Poisson statistics, are as expected approaching the Gaussian ones in

the limit of a large number of events (large durations).

The difference between the three zenith-angle bands results from the different

PSF and background rates. Both factors favor larger bin sizes with increasing zenith

angle. However, as seen from the figures, the optimum bin sizes are very similar

for the three zenith-angle bands. For that reason, instead of running the search in
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three parts, each one specifically optimized for a different zenith angle region, all

three regions were analyzed simultaneously using a common bin size distribution

(dashed black line). Comparing this almost optimum bin size distribution to the

error bars of the optimum bin size curves, it can be seen that at worst, it is ∼ 15%

less sensitive than the optimal case.
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Figure 8.4: Optimum bin-size half-width for three zenith-angle regions (black points
with color error bars). The error bars correspond to ±15% increase over the mini-
mum signal of the profile curve. The black solid horizontal line shows the optimum
bin size as calculated using Gaussian statistics. The dashed black curve shows the
bin size used in the search.

The improvement in the sensitivity of the search using the optimized bin sizes is
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shown in figure 8.5. Let the minimum detectable signal (with 90% CL) be NS,det,min

The quantity, plotted in figure 8.5 is the ratio of NS,det,min when the optimum bin

size from the Gaussian optimization is used over NS,det,min when the optimum bin

size from the Poisson optimization is used. As can be seen, there is an improvement

in the sensitivity up to a factor of ∼ 1.9 for the shorter durations. Equivalently, for

the shorter durations, signals that are smaller by up to 1 − 1/1.9 =∼ 45% can be

detected if the Poisson-optimized bin is used. The improvement goes to zero for the

larger durations, since the optimum bin sizes for the Gaussian and Poisson regimes

become the same. The roughness of the maps comes from the fact that for the low

durations, the improvement ratios are calculated by dividing small integer numbers.

This analysis here used a gamma-ray signal on an power-law energy spectrum

with index -2.2 and with an attenuation due to interactions with the IR background

for a source at a redshift z = 0.2. Signals from sources further away are expected to

have a lower energy, and to be reconstructed with a wider PSF, and vice versa. A

redshift z ∼ 0.2 is representative of the expected redshift of the GRBs potentially

detectable by this search. GRBs considerably further than that will create a signal

that is too low in energy to be easily detectable by Milagro, and GRBs considerably

closer than that are very rare.
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Figure 8.5: Difference in the fluence sensitivity of the search when using the optimum
bin size calculated using Poisson statistics versus the optimum bin size calculated
using Gaussian statistics. The Y axis shows the ratio of the minimum signal that
can be detected with a 90% confidence level when using a Gaussian-optimized bin
(0.8o) over the minimum signal when using a Poisson-optimized bin. The red dots
show the ratio for each duration, and the black curve is a polynomial fit to guide
the eye. The results are shown for the 0o−15o zenith angle band. The improvement
is similar for the other two zenith-angle bands.
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Chapter 9

Milagro’s Sensitivity to GRBs and Evaporating

PBHs

9.1 Introduction

The purpose of this chapter is to examine Milagro’s prospects of detecting

a signal from a GRB or a PBH. These prospects depend on the properties of the

signals under search and on Milagro’s sensitivity to those signals. The effective area

of Milagro, a quantity essential for any sensitivity calculations, will be calculated in

section 9.2. Then, section 9.3 will present the sensitivity of Milagro to the signal

of GRBs of various redshifts and durations. Lastly, section 9.4 will show Milagro’s

sensitivity to the signal from evaporating PBHs of different temperatures (lifetimes)

and from different distances.

9.2 Effective Area

The effective area Aeff (E, θ) of Milagro describes its efficiency of converting

an incoming gamma-ray flux at the top of the atmosphere in detected events. The

effective area is calculated by simulating the response of the detector to the EASs

generated by that incoming gamma-ray flux. The cores of the simulated EASs are

distributed uniformly on a wide area of surface Athrow extending over and around the
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detector. EAS of various energies and zenith angles are simulated. Only a fraction

of these showers manages to trigger the detector and create signal events that pass

the data-quality cuts. If Nthrow(E, θ) is the number of showers with energies between

E and E+dE thrown from a zenith angle θ to θ+dθ, and Npass(E, θ) is the number

of EASs that triggered the detector and passed the cuts, then the effective area of

the detector is

Aeff (E, θ) ≡ Athrow
Npass(E, θ)

Nthrow(E, θ)
. (9.1)

Figure 9.1 shows the effective area of Milagro for showers of different zenith angles.

As the zenith angle increases, the atmospheric depth increases, and the showers

are attenuated more, hence they manage to trigger Milagro with smaller efficiency.

As can be seen, Milagro’s effective area is maximum at energies E & 10TeV , and

quicky decreases for lower energies. The value of the effective area for E & 10TeV is

roughly equal to the physical area of the detector. For that energy range, all EASs

with cores landing inside the physical area of the detector cause triggered events

that have passed the cuts.

Even though Milagro’s effective area rapidly decreases with decreasing primary

energy, Milagro has some effective area even down to 100GeV (' 5m2), an energy

important for GRB searches. For comparison, the sensitive gamma-ray instrument

LAT on board the recently launched GLAST satellite has an effective area ' 5 ×

103 cm2 for energies (1GeV − 300GeV ). However, the LAT is operating almost

without any background, with the result of it being more sensitive than Milagro.
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Figure 9.1: Effective area of Milagro for gamma rays of different energies and from
different zenith-angle ranges.

9.3 Sensitivity to GRBs

In this section, Milagro’s sensitivity will be calculated for GRB signals of

different durations and from different redshifts. Consider a GRB that emitted a

signal with energy that follows a power-law energy distribution with spectral index

α. The number of photons per unit area per unit energy created by the GRB at the

earth is described by the specific flux:

Fν(I0, α, E) ≡ dN(I0, α)

dE
= I0 (E/E0)

α, (9.2)

where I0 provides the normalization of the distribution and is approximately equal

to the number of particles with energy E0 per unit of area. If the signal is absorbed
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during its passage through the extragalactic space, as in the case of GRBs, then the

specific flux reaching the earth from a redshift z will be modified to become

Fν (I0, α, E, z) ≡ I0(E/E0)
αe−τEBL(E,z), (9.3)

where τEBL(E, z) is the optical depth because of absorption from interactions with

the EBL.

If the energy emission is isotropic, then for a source at redshift z, the fluence

(energy per unit of area) reaching the earth is

S(Eiso, z) =
1 + z

4πD2
l (z)

Eiso(Emin, Emax), (9.4)

where Eiso(Emin, Emax) is the total energy emitted isotropically in the [Emin, Emax]

energy range, and D2
l (z) is the luminosity distance. Because the isotropic energy

is for the distant frame of the GRB (not redshifted), and the fluence is defined for

the frame of the observer, cosmological relativistic corrections have to be applied

in order to relate these two quantities. An amount of energy Eiso emitted from

a redshift z is observed at the earth at a redshifted, lower by a factor of (1 + z),

energy. However, equation 9.4 has the factor 1 + z in the numerator , instead of the

denominator, as would be expected based on the above consideration. The reason

for this is that the luminosity distance is already defined in a way that takes into

account all the necessary relativistic corrections. Because the luminosity distance is

in the second power in the denominator of equation 9.4, we had to multiply 1/D2
l (z)
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9.4 by (1 + z) so that the relativistic redshift was applied only once.

In a flat ΛCDM model, the luminosity distance Dl(z) is defined as:

Dl(z) =
c

H0

� z

0

dz′√
ΩM(1 + z′)3 + ΩΛ

(9.5)

c

H0

= 9.2516× 1027h−1 cm, (9.6)

where h = H0/100. The energy fluence is also equal to:

S(Emin, Emax) ≡
� Emax/(1+z)

Emin/(1+z)

E
dN

dE
dE

eq.9.3⇐⇒ (9.7)

= I0(z, Eiso)

� Emax/(1+z)

Emin/(1+z)

E (E/E0)
α e−τ(E,z)dE. (9.8)

Figure 9.2 shows the fluence at the earth from GRBs at different redshifts. In this

figure, two sets of curves are shown: the curves with the solid lines show the fluence

that reaches the earth if EBL absorption is included, and the dashed lines show

the fluence that would have arrived if no absorption by the EBL existed. For this

plot and for all plots in this chapter, ΩM = 0.3, ΩΛ = 0.7, h = 71, and a = −2.2,

Kneiske’s “best-fit06” EBL model was used, Emin = 30GeV , and Emax = 10TeV

(energies as seen from the burst, non-redshifted).

To calculate the number of photons arriving at the earth from a GRB, the

spectral normalization I0(z, Eiso) of the unabsorbed spectrum (eq. 9.2) τ(E, z) = 0
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Figure 9.2: Plot showing the effect of absorption by the EBL Energy fluence reaching
the earth from GRBs emitting different isotropic energies and of different redshifts.
The solid curves include absorption by the EBL, while the dashed ones do not.

has to be derived first. Combining equations 9.4 and 9.2, we have:

Io(z, Eiso) =
1 + z

4πD2
l

Eiso� Emax/(1+z)

Emin/(1+z)
E (E/E0)αdE

. (9.9)

Now that I0(z, Eiso) is available, the specific flux Fν(I0, α, τEBL, E) (eq.9.3) can be

calculated. This particle flux at the top of the atmosphere can be converted into a

number of Milagro signal events using the effective area. The total number of events
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detected by Milagro is

Nγ(z, θ, α) =

� Emax/(1+z)

Emin/(1+z)

Aeff (E, θ)FνdE

= I0(z, Eiso)×
� Emax/(1+z)

Emin/(1+z)

Aeff (E, θ) (E/E0)
α e−τEBL(E,z)dE. (9.10)

The curves of figure 9.3 show Nγ versus the redshift of a GRB at ∼ 10o zenith

angle for different values of the total isotropic energy emitted. The horizontal lines

show the minimum number of events Milagro needs to detect in order to be able to

claim a 5σ post-trials detection 99% of the time1. Because the background level is

proportional to the duration searched, searches of longer-duration emission require

more detected signal events to make a detection. As the distance of the source

increases, the signal is attenuated by absorption from the EBL and diluted by the

geometrical ∝ 1/D2
l decrease, so the number of detected events decreases.

By comparing the minimum signal needed for a detection (horizontal lines)

with the amount of signal created by a GRB (curves), we can find the maximum

redshift, at which GRBs can be detected. Figure 9.4 shows the maximum detectable

redshift (99% detection probability) for a GRB at zenith angle ' 10o versus the

isotropic energy emitted per decade of energy and the duration of the emission

(curves). For comparison, the data from Swift-detected GRBs are also shown. The

Swift data correspond to an energy range (1keV − 10MeV ) that is wider than the

energy range of the VHE emission used in this analysis (30GeV −10TeV ). Both the

1As described in Chapter 8, because of statistical fluctuations involved in the detection and
reconstruction of a gamma-ray signal by Milagro, the same initial signal has a probability of being
detected.
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Figure 9.3: Number of detected photons versus the redshift of the GRB and the
total isotropic energy emitted (curves), and minimum number of events needed to
claim a detection 99% of the time (horizontal lines).

Swift data and the Milagro curves were plotted versus the average energy output

per decade of energy, instead of the energy output integrated over the detector-

specific energy ranges of different widths. Based on that figure, if the GRB energy

output per decade of energy in the 30GeV − 10TeV energy range is comparable to

that measured by Swift in the 1 keV − 10MeV energy range (Eiso,Swift/decade of

energy∼ 1050 − 1053 erg), then Milagro is expected to be able to detect GRBs up

to a redshift of z ∼ 0.4. We can see from the Swift data on the figure that GRBs

with a detectable combination of energy output and redshift are rare, implying that

Milagro is expected to detect considerably fewer GRBs than Swift.
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Lastly, figure 9.5 shows the minimum detectable fluence per decade of energy

versus the duration and the redshift (curves). For comparison, the fluences of the

GRBs included in BATSE’s 4B catalog2 are also shown. Similarly to the previous

figure, the fluences are divided by the number of decades in the corresponding energy

ranges. In this case, the BATSE data plotted correspond to the measurements of

the first three BATSE’s channels (20 keV − 300 keV ). The fluence plotted is the

one that would have reached the earth if there were not any absorption by the EBL.

While the calculations include the effects of EBL absorption, the plotted fluence

curves correspond to the case of no EBL absorption. This way, a direct comparison

between the fluences of the BATSE GRBs and the Milagro fluence sensitivity can

2http://www.batse.msfc.nasa.gov/batse/grb/catalog/4b/
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be performed.
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Figure 9.5: Minimum detectable fluence versus the duration and redshift (curves).
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9.4 Sensitivity to PBH Evaporation

In this section, Milagro’s sensitivity to evaporating PBHs will be calculated.

The calculations use the favorable for Milagro model of MacGibbon and Webber

(sec. 4.3 on page 72), which does not include a chromosphere, therefore predict-

ing an unrestricted emission at E > TeV energies. According to that model, the

temperature of a black hole T is related to its remaining lifetime τ as [138]

T = (4.7× 1011/τ)1/3. (9.11)
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The time-integrated specific flux can be parametrized as:

Fν ≡
dN

dE
' 3× 1020 ×


(

E0

T

)3 (T
E

)3/2
, E < T

(
E0

E

)3
, E ≥ T

, (9.12)

where E0 = 105GeV and all the energies are measured in GeV .

Following a procedure similar to that of the previous section, the particle flux

generated by evaporating PBHs of different temperatures and from different dis-

tances was calculated. For each duration, the temperature of the PBH was calcu-

lated using equation 9.11, and then the particle flux was calculated using equations

9.12 and 9.10. Because the PBHs under consideration are galactic, no EBL ab-

sorption effects or relativistic redshift was applied. In these calculations, the PBH

emission in the 30GeV − 100TeV energy range was considered. The results are

shown in figure 9.6. The horizontal solid lines are the minimum number of detected

photons needed for a 5σ post-trials detection 99% of the time, and the dashed lines

are the number of photons created by the evaporation of PBHs of different temper-

atures (lifetimes) from different distances.

The intersections of the two sets of curves correspond to the maximum dis-

tances from which a PBH of some temperature can be detected. Figure 9.7 shows

these maximum distances. According to the figure, Milagro can detect PBHs up

to ∼ 0.037 pc 3. For reference, 0.037 pc are equal to ∼ 7200 times the distance of

the earth to the sun or ∼ 3% of the distance to our closest star Centauri Proxima.

3The CYGNUS EAS array, which had a similar field of view and duty cycle as Milagro, but a
somewhat smaller effective area , had a detection horizon of ∼ 0.02 pc [119].
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Milagro’s 0.037 pc horizon corresponds to an observable volume of 3.1 × 10−5 pc3,

using the 45o field of view of the search.

To calculate the maximum number of PBH explosions in Milagro’s observable

volume, an upper limit on the rate of PBH explosions set by previous experiments

has to be used. One way to set such a limit is to consider the diffuse particle

backgrounds created by the integrated emission from PBHs in the lifetime of the

universe. Wright, based on the density of the gamma-ray halo of our galaxy, set an

upper limit on the explosion rate of 0.3 pc−3 yr−1 [139]. Maki et al., based on the

local interstellar flux of cosmic-ray antiprotons, set an upper limit of 0.02 pc−3 yr−1

[140].

Another way to set upper limits on the rate of PBH explosions is by trying

to directly detect such an explosion. The sensitivity of such a technique strongly

depends on the model used for the running constant a(M) (defined in equation 4.6

on page 71). The running constant is a measure of the number of particle species

available for emission at a specific instant of the PBH’s life. The mass-loss rate of the

PBH is proportional to the running constant. In the case that the number of particles

species with masses over the QCD scale (E ∼ 100MeV ) is very large, then the

running constant will considerably increase when the temperature of the PBH crosses

that scale, and the evaporation process will be accelerated to explosive degrees.

Such an increase in the number of particle species can occur if supersymmetry is

the theory that describes elementary particles, or in a Hagedorn-type picture [127],

where the number of hadronic resonances exponentially increases with energy. In

such a case, the last stages of a PBH explosion would be more luminous and more
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easily detectable than in the case of the Standard Model of elementary particles,

where the number of particle species does not exhibit such an increase.

The upper limits on the rate of PBH explosions set by direct searches of ex-

ploding PBHs can either be considerably weaker, or as strong as, the limits set by

considerations of the diffuse backgrounds, depending on the the behaviour of a(M)

at energies over the QCD scale. In the case of the Standard Model, observations

with the CYGNUS experiment only placed an upper limit of 5×108 pc−3 yr−1 [119].

Porter and Weekes [141] using IACTs, set an upper limit of 7 × 105 pc−3 yr−1 for

the Standard Model and 0.04 pc−3 yr−1 for the Hagedorn model. The EGRET ex-

periment published upper limits on the explosion-rate density of PBHs versus the

total energy emitted by the explosion [142]. Page and Hawking [143] calculated

the total emitted energy in the last stages of the PBH’s lifetime for two extreme

cases: a standard Elementary Particle model where they found an energy ∼ 1030 erg,

and a Composite Particle model following Hagedorn, where they found ∼ 1035 erg.

EGRET’s upper limits for the two cases are 5× 104 pc−3 yr−1 and ∼ 0.01 pc−3 yr−1,

respectively.

Multiplying the most constraining upper limit mentioned above (0.01 pc−3 yr−1

by EGRET for the Hagedorn picture), times fives years of Milagro data searched,

times Milagro’s observable volume calculated above, gives an upper limit of 1.6×10−6

PBH explosions for the duration of this search in Milagro’s detectable volume. For

comparison, if we use EGRET’s upper limit for the Standard Model case (5 ×

104 pc−3 yr−1), we find an upper limit of 7.75 PBH explosions in Milagro’s observable

volume.
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PBHs of shorter lifetimes (τ < 1 s) emit a signal of high luminosity and en-

ergy. However the integrated number of events they can create is small so Milagro’s

sensitivity to detecting them is not optimal. On the other hand, PBHs of longer

lifetimes (τ > 10 s) will start by emitting a lower luminosity and energy signal,

which will eventually become like the one of a PBH of τ < 1 s. However, despite the

large integrated amount of events from such a long-lifetime PBH, the background

contamination will be large enough (because of the large duration) that sensitivity

in detecting it still will not be optimal. We can see that there is a trade-off between

the amount of accumulated signal and background during the lifetime of the PBH.

As can be seen from figure 9.7, Milagro’s sensitivity in detecting PBHs is optimal

when searching for events of duration τ ∼ 2− 5 s.
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Figure 9.6: Number of detected photons versus the distance and the temperature
(duration) of an evaporating PBH (dashed lines), and minimum number of detected
photons needed to claim a detection with 99% of the time (horizontal solid lines).
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remaining lifetime. The detection horizon for PBHs by Milagro is ∼ 0.037 pc.
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Chapter 10

Results of the Search

10.1 Introduction

In this chapter, the results of the search will be presented. In section 10.2,

the data set analyzed is described. Then, in section 10.3, the calculation of the

effective number of trials is made. Finally, in section 10.4, the results of the search

are presented, and the most significant events are evaluated.

10.2 Data Sample

Milagro’s low-energy sensitivity has not been the same for all of (∼ 7) the

years it has been operating. As mentioned in Chapter 5, the first version of the

Milagro detector did not include the outrigger array, which resulted in a worse

angular resolution. Furthermore, during the first years of Milagro’s operation, a

triggering system was used (multiplicity trigger) that did not accept a large part

of the lower-energy events, which are important for this study. For these reasons,

the data from those early times were not included in this analysis. Specifically, only

the last five years of Milagro data have been analyzed: from 03/01/2003 (Modified

Julian Date 52699) to 03/01/2008 (Modified Julian Date 54526). The starting date
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corresponds approximately to the time that the new VME trigger was installed

(01/25/2002) and is after the outriggers were used in the online reconstruction. The

ending date corresponds approximately to the time that the outrigger array started

being dismantled (March 15th, 2008) as part of Milagro’s shutdown.

For some of the days in the analyzed period the detector was not functioning

because of scheduled repair operations, extended power outages, or instrumental

problems. For some other days, the detector was on, but the data were so prob-

lematic that the whole Julian day had to be rejected. Reasons for rejecting a whole

day included a large number of timing errors (events with wrong times, swapped

times) and time gaps, strongly fluctuating trigger rates, abnormally low event rates

(< 700Hz), and calibration runs that were not successfully tagged as such. The

data of the bad days were either rejected directly by the code, or were detected

because they corresponded to unphysical results. The Milagro logbook contained

a satisfactory explanation for all the dubious data. The following 57 (out of 1673)

days were rejected1:

� Repairs (16 days): 2890–2897, 3626–3633

� Power-Supply Problems (7 days): 2726–2729, 2861, 3239 (+ clock errors),

4495–4496

� Time Gaps (7 days): 2740–2742, 2705–2708

� Power Outage (7 days): 3060, 3588, 3651, 4099–4100, 4472, 3099 (+ other

problems)

1the date is given in Modified Julian Date - 50000 format.
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� Other Problems (14 days): 2822 (calibrations), 2827 (overheating prob-

lems), 3101 (many clock errors), 3103 (rate fluctuations, lightnings) 3245,

3378–3380 (disk problems), 3555 (bad data), 3463–3464 (low rates), 3961 (re-

placing VME trigger card), 4445-4446 (bad data).

� DAQ Problems (7 days): 3174, 3195–3197, 3215, 3229 (+ clock errors),

3291 (too many dropped buffers, DAQ crashing).

After finishing with the analysis of the data taken in each day, the code saved

the total duration of the good data segments of that day (fig. 10.1). According to

that information, this analysis searched 1673 days (4.58yrs) worth of data, which

corresponds to ∼ 93% of the duration that Milagro was operating during the five

years analyzed. The Milagro detector was non-operating because of scheduled re-

pairs or power outages for ∼ 1.3% of those five years.
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Figure 10.1: Fraction of each day analyzed by this study. Total, 92% of the data
was analyzed.
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10.3 Effective Number of Trials

In this section the total effective number of trials of this search will be calcu-

lated. This number is the equal to the effective number of trials in space, starting

time, and duration. The following calculations follow the methodology described in

Chapter 7.

Initially, the effective number of trials in space and starting time will be cal-

culated based on the distributions of the minimum probabilities found in groups of

successive searches. For the searches of emission duration under 56 s, each group

consisted of the searches in a time width equal to twice the duration searched (20

skymaps per group, with each skymap offset in time by 10% the duration), while for

the searches of emission duration over 56 s, each group consisted of all the searches

in starting time and space made in a time width equal to the duration searched (10

skymaps per group).

The first step in the calculation is to choose the integration threshold P0 of

equation 7.5 on page 164. P0 has to be large enough so that the relative statistical

error of the integral from ∞ to P0 of the distribution is small:

√� P0

−∞
(dN/dP )dP/

� P0

−∞
(dN/dP )dP � 1. (10.1)

P0 also has to be small enough so that it is far from the peak of the distribution,

otherwise the trials factors will be erroneous. P0 was selected so that the integral

has a value of at least 104. This way the relative statistical error on the value of
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the integral is just 1%, and the relative statistical error in the number of trials per

group (T ) is

σT

T
= σP

′
0
× dT (P

′
0)

dP
× 1

T

= σP
′
0
× 1

(1− P
′
0) log(1− P )

× 1

T

' 10−2,

where P
′
0 =

� P0

−∞(dN/dP )dP/
� 1

−∞(dN/dP )dP ; σP
′
0

=
√� P0

−∞(dN/dP )dP/
� 1

−∞(dN/dP )dP

is the variance of P
′
0, T =

log(1−P
′
0)

log(1−P0)
; is the effective number of trials; and σT is the

variance of T .

For the case of the 1 s duration search, integrating up to P0 = 1.412 × 10−9

corresponds to an integral
� P0

−∞(dN/dP )dP = 12, 588. The number of entries in the

minimum-probability distribution (fig. 10.2) are
� 1

−∞(dN/dP )dP = 36, 134, 980.

This means that in a typical group of trials of the 1 s duration search, a probability

less than P0 is expected to be found P
′
0 = 12588/36134980 = 3.4836 × 10−4 of

the times. Using equation 7.5 with P0 = 1.412 × 10−9 and P
′
0 = 3.4836 × 10−4,

we find that the effective number trials in such a group of trials is T ' 246, 676.

For the 1 s duration there were 4, 330, 620 trials in each group. Therefore, each

trial corresponded to 246676/4330620 ' 0.057 effective trials. The error on the

effective number of trials per trial is 5 × 10−4. Multiplying these numbers with

the total number of trials in the search for that duration (' 3.13× 1014), the total

effective number of trials in space and starting time for that duration can be found:

1.784× 1013 ± 1.5× 1011.
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Figure 10.2: Distribution of the minimum probabilities found in groups of successive
trials for the 1 s duration search. Each entry corresponds to the minimum probability
of all the trials in space and starting time for 2 s blocks of data. Plots like this were
created for each duration and used for calculating the effective number of trials. The
integration threshold P0 used for the calculation is shown. The number of events
under the curve are

� 1

−∞(dN/dP )dP = 36, 134, 980 and the number of events under

the curve and with probabilities smaller than P0 (left of P0) are
� P0

−∞(dN/dP )dP =
12, 588.

Repeating this process for all the durations, the effective number of trials

in space and starting time for all the durations was calculated. The results are

shown in figure 10.3. The red crosses show the total number of trials in space and

starting time, and the black dots show the effective number of trials in space and

starting time. It can be seen that the ratio between the two quantities depends on

the duration and asymptotically approaches unity with increasing duration. Figure

10.4 shows the dependence of that ratio on the search duration. One of the reasons

for this dependence is that, for the short durations, most of the space and time

trials correspond to no events. Such trials have probability of one, and cannot cause

the rejection of the null hypothesis. Thus, they do not contribute to the effective
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number of trials. Another reason for the decreased number of effective trials at the

short durations, is that for these durations even at locations in space that a few

events might occur, most of the searches that include these events end up being

identical, since they end up including exactly the same events with almost the same

background rates. These trials essentially count as just one effective trial.
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Figure 10.3: Numbers of trials in space and starting time for each emission duration
searched. Black : effective number trials, red : actual number of trials. The errors
on the number of effective trials are smaller than the size of the markers.

The effective number of trials because of searching in multiple durations was

then calculated. Initially, post-trials probabilities were calculated using the effective

number of trials in space and starting time calculated above. Then, the events with

a post-trials probability less than 0.9 were counted. 187 such events were found cor-

responding to 146 independent improbable fluctuations (some of these fluctuations

appeared in multiple adjacent durations). If all 187 events were independent, then

the effective number of events due to having searched in multiple durations would

be equal to the number of durations searched (53). If the trials were maximally
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Figure 10.4: Ratio of effective number of trials over total number of trials versus
the search duration.

correlated (effective number of trials in duration equal to unity), then all 187 events

should have been generated by the same improbable fluctuation appearing in all

durations searched. In our case, 146 out of the 187 events were independent. Thus,

an estimate for the effective number of trials due to having searched in multiple

durations is ' 53 × 146/187 ' 41 ± 5. Multiplying this number with the total

effective number of trials in space and starting time (calculated above and shown

in fig. 10.3) yields the the total effective number of trials in starting space, starting

time, and duration.

10.4 Results

This section will present the results of the search. As mentioned in Chapter 6,

the results of the search code are in the form of probability distributions of all the

trials in the search of one duration. Two of the fifty-three produced distributions
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are shown in figure 10.5 2. Such probability distributions are composed of a series

of peaks, each one corresponding to a different number of signal events. Because

the background fluctuates, these peaks become wide. In the short durations, these

peaks are visible. In the top plot of fig. 10.5, the peaks corresponding to four,

three, and two events (left to right) are visible. The peak corresponding to one

event is not shown because the optimized-for-speed algorithm does not evaluate

locations, where only one event was found. For the longer durations (bottom plot

of fig. 10.5), the number of individual peaks is so large that they form a continuum.

The feature of the distribution at P = 10−4 comes from the speed optimization for

durations > 0.2 s, in which a coarse search is initially performed until a location

with probability less than 10−4 is found, and a fine search around that location is

then performed (see section 6.4).

The pre-trials probabilities from such distributions were converted to post-

trials probabilities according to:

Ppost = 1− (1− Ppre)
N , (10.2)

where Ppost is the pre-trials probability, Ppre is the corresponding pre-trials proba-

bility, and N is the number of effective trials in space and starting time calculated

in the previous section.

Figure 10.6 shows the best (smallest) post-trials probabilities found for each

duration. For this plot, if the best probabilities of multiple durations were produced

2The rest of the distributions are available.
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Figure 10.5: Sample distributions of the probabilities of all the trials in the search
of one duration. Top: Distribution for the 0.4µs search, bottom: distribution for
the 0.4 s search.

by the same improbable fluctuation, then only the most significant of them was

used for the figure. The rest of them were replaced by the second-best probabilities

of their respective durations. This way, each of the best probabilities in the figure

corresponded to a different fluctuation.
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Figure 10.6: Best (minimum) post-trials probabilities found for each duration
searched. Fluctuations creating best probabilities in multiple durations were al-
lowed to contribute only once to the plot.

The best post-trials probabilities of each duration plotted in figure 10.6 es-

sentially answer the following question: what is the probability that there is not a

burst of VHE gamma rays of some specific duration in the data? The search of each

duration can be treated as an independent statistical test; hence, the probability

distribution should have a constant density dN/dP = constant. Figure 10.7 shows

that probability distribution. A Kolmogorov test says that probability distribu-

tion is consistent with a dN/dP = constant distribution with a probability 99.8%,

supporting the validity of the statistical framework in this study.

Table 10.1 shows the details of the two events with post-trials probabilities
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Figure 10.7: Distribution of the best post-trials probabilities found for each dura-
tion searched. Fluctuations creating best probabilities in multiple durations were
allowed to contribute only once to the plot. The distribution is consistent with a
dN/dP = constant distribution supporting the validity of the search’s results and
of the subsequent statistical analysis.

smaller than 0.01. These post-trials probabilities were calculated without including

the number of trials for searching in multiple durations. The signal and probability

maps around these two events are shown in figures 10.8 and 10.9.

The probability of whether the results of this search are consistent with the

absence of a signal (the null hypothesis) is equal to the smallest post-trials probabil-

ity, now calculated using the number of trials in starting time, space and duration,

found in the whole search. That probability corresponds to Modified Julian Day

53118 and is 0.127 or 1.14σ.

A post-trials probability smaller than ' 2.866 × 10−7(5σ) would be enough

for the rejection of the null hypothesis and would constitute solid evidence for the
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Figure 10.8: Skymaps around the most significant event (post-trials) found in the
search (Modified Julian Date 53118). Top: signal map, bottom: log10(Ppre−trials)
map.

presence of a gamma-ray signal. A probability less than ' 1.3× 10−3 (3σ) would be

just enough to provide evidence for the existence of a signal. The probability of the

validity of the null hypothesis that resulted from this search (0.127) is consistent
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Figure 10.9: Skymaps around the second most significant event (post-trials) found in
the search (Modified Julian Date 53676). Top: signal map, bottom: log10(Ppre−trials)
map.

with the absence of bursts of VHE gamma rays in the Milagro data.
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Modified Julian Date 53676 53118

Duration 23.71ms 237.14 s

Universal Date 11/02/2005 04/23/2004

Universal Time 06:36:12.099316 21:10:23.285730

(R.A.,Dec.) (10.4, 2.8) deg (72.0, 43.4) deg

Signal 8 440

Expected Background 0.0344 296.4

Pre-trials Probability 4.717× 10−17 4.279× 10−15

Post-trials Probability 2.962× 10−3 (2.75σ) 2.56× 10−3 (2.80σ)

Trials (space & time) 6.270× 1013 7.633× 1011

Milagro Data File #6635-109 #5518-374

Table 10.1: Data for the two events with post-trials probabilities less than 0.01.
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Chapter 11

Upper Limits on the Prompt VHE Emission from

GRBs

11.1 Introduction

In the absence of a detection of VHE emission from GRBs, upper limits on such

an emission can be placed. Milagro has a wide field of view and a high duty cycle,

so during the 4.6 years that have been searched, there were about eight hundred1

GRBs in its field of view. A large fraction of them is expected to be close enough

to be detectable by Milagro. The results from the analysis of such a dataset can be

used to set upper limits on the VHE emission from GRBs. To accomplish this, the

number of GRBs Milagro would expect to detect versus their VHE emission was

needed. This calculation was performed by means of a Monte Carlo simulation of

the GRB population.

The simulation essentially integrated over the GRBs of some specific GRB

population multiplied by the probability of them being detected by Milagro. The

result of the integration was the number of GRBs expected to be detected by this

search versus the properties of the simulated GRB population. Because we made a

search that did not result in any detections, we could exclude the GRB populations

1See section 11.5 for the calculation.
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that correspond to a number of detected GRBs in disagreement with the search’s

null result.

Specifically, the simulation, by sampling from the (T90, Eiso, z) distributions of

Swift-detected GRBs and by assuming a model for their VHE emission, calculated

the number of VHE gamma rays that reached the earth. Then, the number of

signal events in the Milagro data generated by the incoming GRB emissions was

calculated based on the methodology in Chapter 9. Using the results from Chapter 8,

the probability of detecting each one of these GRBs was calculated. The simulation

summed all these detection probabilities to calculate how many GRBs were expected

to be detected by this search versus the VHE-emission model used. Based on the

expected number of detections and the fact that no detections were made, some of

these emission models were excluded.

The simulation used the GRB properties measured by satellite detectors.

While there have been multiple such detectors, a combination of the measurements

from all of them is not trivial. Different instruments have different detection thresh-

olds, making them sensitive to different subgroups of the GRB population. In gen-

eral, such detectors have complicated and difficult-to-simulate triggering algorithms,

making their exact triggering thresholds very difficult to calculate. From these de-

tectors, BATSE has the largest sample of detected GRBs, however it is missing

redshift information. Knowledge of the redshift is crucial for this study, because of

the need to know the correlation between the amount of gamma-ray signal arriving

at the earth versus the distance of its source. Because of absorption by the EBL, the

spectral energy distribution of the VHE GRB signal at the earth strongly depends
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on that distance. Therefore, for this study, we need to know how much energy was

emitted from each redshift.

After BATSE, there has been a series of GRB satellites (BeppoSAX, HETE2,

Integral, AGILE, Swift) that have provided accurate enough GRB localizations that

enabled resolution of the GRB redshifts. Of the GRB samples from these detectors,

the best, in terms of statistics, is the one from Swift. For that reason, this GRB

simulation was based mostly on the GRB properties measured by Swift. Swift is

sensitive to a lower energy range than BATSE (15−150KeV vs ∼ 20 keV −2MeV

for BATSE), which means that it is more sensitive to softer GRBs than BATSE.

Short GRBs are usually harder than long ones, so Swift’s sensitivity is not optimal

for short GRBs. Furthermore, because Swift’s trigger has a longer accumulation time

than BATSE, Swift is less sensitive to shorter duration bursts than BATSE [144].

Both of these effects contribute to a small relative fraction of short GRBs being

detected by Swift (∼ 10%) compared to the one for BATSE (∼ 30%). Nevertheless,

the short GRBs that Swift does not detect are the faintest ones. The validity of this

simulation, which is using Swift data, depended on the assumption that all GRBs

not detectable by Swift are also not detectable by Milagro.

Because, in general, a GRB detector is not sensitive to all GRBs in nature, the

properties of detected GRBs are usually different than the properties of all GRBs.

The distributions of detected GRBs can be calculated by folding the intrinsic ones

with the detector-specific selection functions. This approach was followed for the

calculation of the detected redshift and Eiso distributions of Swift. For the case

of redshift, the intrinsic redshift distribution of GRBs was folded with a selection
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function ψflux(z) that described which fraction of the bursts at some redshift were

detected by Swift. Similarly, for the case of the isotropic energy, an intrinsic Eiso

distribution of GRBs was constructed based on theoretical models and Swift data,

and was compared to an effective Swift trigger threshold to decide whether a GRB

of a certain Eiso − z combination would be detected or not.

In the following sections, the calculations of all the necessary elements of the

simulation of the GRB population will be described. In section 11.2 the duration

distribution of GRBs will be calculated using Swift data. In sections 11.3 and

11.4 the redshift distribution and the isotropic-equivalent emitted energies of Swift-

detected GRBs will be calculated respectively. In section 11.5, the number of GRBs

in Milagro’s field of view during the duration of the search will be estimated. Section

11.6 will describe the model for VHE emission from GRBs used in this simulation,

and section 11.7 will provide data that support the validity of the simulation’s results

and of the calculations in this chapter. Finally, section 11.8, will present the results

of the GRB simulation and will set upper limits on VHE emission from GRBs. In

all the calculations in this chapter Ωm = 0.3, ΩΛ = 0.7, and Hubble’s constant

H0 = 71km/s/Mpc.

11.2 GRB Duration Distribution

The VHE emission from GRBs is not necessarily simultaneous to the prompt

keV-MeV emission and does not necessarily have the same duration as it. According

to GRB models, the prompt VHE emission from GRBs is produced by internal to the
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GRB fireball processes. Because the prompt keV −MeV and GeV −TeV emissions

from GRBs depend on the development of the same system (GRB fireball), their

time scales are expected to be comparable. The delayed VHE emission is produced

by interactions of the GRB fireball with the circum-burst medium, usually by inverse

Compton scattering of low energy photons surrounding the site of the GRB. This

emission strongly depends on the medium around the burst and on the way it

interacts with the GRB fireball. Currently, there is not a good model describing

such emission in a global way; thus, the duration of the VHE delayed emission from

GRBs is not constrained. For that reason, the GRB duration distribution used

in this simulation, was that of the prompt keV/MeV emission, which has already

been measured by satellite detectors. Even though this search was sensitive to both

the prompt and delayed emissions from GRBs, only the prospects of detecting the

prompt emission from GRBs can be quantified by this Monte Carlo simulation.

In the presence of a reliable model for delayed VHE emission from GRBs, this

simulation can be easily extended to include both emission types.

The duration distribution (T90) used in the simulation is approximated as a fit

to the duration distribution of Swift. Because of the bias of Swift’s trigger system

against shorter duration bursts, Swift detected a smaller fraction of short bursts

than BATSE. The T90 distributions for BATSE GRBs2 and Swift [36] are shown

in figure 11.1. The curves were fit by the sum of two Gaussian distributions. D.

Band [144], based on a post-launch analysis of Swift data, found that Swift has a

detection threshold that increases with decreasing duration. For that reason, Swift’s

2 Source: latest catalog of BATSE GRBs: http://www.batse.msfc.nasa.gov/batse/grb/catalog/current/
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Detector Short Long

Width Amplitude Mean Width Amplitude Mean

BATSE 0.61 63.86 -0.64 (0.23 s) 0.43 131.05 1.54 (34.67 s)

Swift 0.54 6.11 -0.61 (0.25 s) 0.53 47.42 1.52 (33.1 s)

Table 11.1: Parameters of the fits on log10(T90) for BATSE and Swift GRBs.

T90 distribution is shaped by this threshold and is expected to be different than the

one from BATSE, especially for lower durations. The parameters of the fit are shown

in table 11.1.
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Figure 11.1: T90 distributions from the latest catalog of BATSE GRBs and from
Swift [36]. The data has been fitted with the sum of two Gaussians.

11.3 Redshift distribution

The intrinsic redshift distribution of GRBs is different from the redshift dis-

tribution of detected GRBs, because the efficiency of detecting GRBs at different

redshifts depends on the redshift. In the absence of instrumental selection effects,

such as a dependence on the duration [144], the detector’s sensitivity is described by
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the minimum peak flux it can detect. Assuming that the intrinsic peak-luminosity

distribution of GRBs is independent of their redshift, the peak flux at the earth

generated by GRBs from some redshift was calculated. Then, using the Swift’s

minimum detectable peak-flux, a flux-limited selection function ψflux(z) was con-

structed. This function shows the fraction of GRBs3 at some redshift that triggered

Swift.

Initially, in subsections 11.3.1 and 11.3.2, the intrinsic redshift distribution

of GRBs will be constructed. In section 11.3.3, details on the choice of the peak-

luminosity function of GRBs will be given, and using this information, the flux-

limited selection function ψflux(z) will be constructed (11.3.4). Finally, combining

ψflux(z) and the intrinsic redshift distributions of GRBs, the redshift distribution of

GRBs detected by Swift will be calculated (section 11.3.5). That distribution will

later be used by the Monte Carlo of the GRB population.

11.3.1 Intrinsic redshift distribution of long GRBs

This section will present the calculation of the intrinsic redshift distribution

of long GRBs. As will be shown, that distribution comes from a combination of the

Star Formation Rate (SFR) and the dependence of the average stellar metallicity

on the redshift.

The association of some long duration GRBs with supernovae implies that

they are caused by the core collapse of short-lived massive stars (see subsection

3It should be noted that this fraction only includes GRBs with properties that have already
been observed (for example, no yet-undetected low-luminosity GRBs are included).
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1.3.5.1). For that reason, the intrinsic redshift distribution of long GRBs is generally

considered as following the SFR. A SFR widely used in the early studies of GRBs

was from Porciani and Madau (PM) [39], and was constrained by experimental data

for only z . 1.5. Because of the freedom at higher redshifts, these authors provided

three different SFRs, each one with a different z > 1.5 behavior. Recently, Hopkins

and Beacom (HB) [37] have estimated the SFR by fitting recent ultraviolet and

far-infrared data (Figs. 11.2 and 11.3). These data constrain the SFR up to z ' 6,

with especially tight constraints for z < 1.

Figure 11.2: Star Formation Rate reproduced from Hopkins and Beacom [37].
The two black lines show their parametrized fits on data from far-infrared (24µm)
(hatched region and triangles), ultraviolet (squares), radio 1.4GHz (open red star)
and ultra deep field estimates (crosses). Source: [38]
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Figure 11.3: Star Formation Rates from Hopkins and Beacom (HB) [37] (black
solid curve) and from Porciani & Madau (PM) [39] (dashed lines). The curves are
normalized to intersect at z = 1 The HB model has the best agreement with the
latest experimental measurements. Older studies that had available only the PM
SFRs, found the best agreement with the BATSE & Swift data when using the
SFR3 and SFR2 models, implying an enhanced GRB rate at larger redshifts.

Initially, the SFR and the GRB intrinsic redshift distribution were considered

as just being proportional to each other (i.e. no evolution effects in the GRB rate

versus redshift). However, Swift recently detected some GRBs of very high redshift.

Based on these events, Kistler et al. [145] showed that there are ∼ 4 times more

GRBs at redshift z ' 4 than predicted by the latest HB SFR (Fig. 11.4). Other

authors also concluded that the HB SFR coupled with any kind of reasonable lu-

minosity function cannot explain both the peak flux distributions and the increased

Swift GRB rate at large redshifts [45, 146, 147]. Based on this, it was proposed that

the luminosity function evolves with redshift, favoring a large redshift population.

However, we know that long GRBs have been observed mostly in low metallicity
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Figure 11.4: The observed ratio of the GRB rate to the Hopkins and Beacom [37]
SFR as a function of Q(z) (see equation 11.5 and figure 11.6) and of z. The nor-
malization is chosen so that RGRB/SFR(0.5) = 1. Source: [40]

galaxies ([96], see, however, [148, 146]). Also, theoretical studies on the collapsar

model of long GRBs suggested that long GRBs can only be produced by stars with

metallicity Z . 0.3Z�. Otherwise, strong stellar winds would cause stars to lose

too much mass and angular momentum to form a disk around a black hole of sev-

eral solar masses, an essential condition for the production of long GRBs [149, 150].

Based on these constraints, some other authors [40] proposed that the long-GRB

rate follows the low-metallicity component of the SFR. This provides an enhanced

long-GRB rate at higher redshifts, since the earlier galaxies had lower metallicities.

The intrinsic distribution of long GRBs used in this study was derived from the HB

SFR combined with an upper metallicity limit.

The rate of long GRBs in shells of redshift dz as measured from the distant

226



frame of the GRB ṘLong(z, Zmax) is related to the SFR as

ṘLong(z, Zmax) = SFR(z) ε(z, Zmax), (11.1)

where ε(z, Zmax) is equal to the fraction of exploding stars that end up creating a

GRB, and Zmax is an upper metallicity limit. The dependence of the term ε(z, Zmax)

on z can be used to describe an enhanced GRB rate from such environments. We

can rewrite it as ε(z, Zmax) = k f(z, Zmax) , where f(z, Zmax) is the fractional mass

density belonging to metallicities lower than a limit Zmax, and k is a constant.

According to Langer & Norman [151]:

f(z,m) = 1− Γ(a+ 2,mβ 100.15βz)

Γ(a+ 2)
, (11.2)

where a ' 1.16 is the power index of the Schechter distribution function of galaxy

stellar masses [152]; β ' 2 is the slope in the linear bisector fit to the galaxy stellar

mass-metallicity relation [153]; m = Zmax/Z� is Zmax in units of the solar metallicity

Z�; Γ(x) is the gamma function; and Γ(a, x) is the incomplete gamma function. In

this equation, it is assumed that the average cosmic metallicity evolves with redshift

by -0.15 dex per unit redshift4. The function f(z,m) for different values of maximum

metallicity m along with the modified SFRs from HB is shown in figure 11.5. In

order to quantify the effects of the upper metallicity cutoff on the produced upper

limits, this study will provide multiple results, each one corresponding to a different

4-0.15 dex = 10−0.15.
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upper metallicity cutoff. The preferred value will be Zmax = 0.3Z�.
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Figure 11.5: Top: f(z,m) - fractional mass density belonging to metallicities lower
than some metallicity limit Zmax = mZ�, bottom: Hopkins and Beacom SFR for
no metallicity cutoff (black line) and with metallicity cutoffs.

228



The intrinsic redshift distribution of long GRBs is given by

dṄLong(z,m)

dz
=

Ṙlong(z,m)

(1 + z) 〈fbeam〉
dV (z)

dz
(11.3)

∝ SFR(z) f(z,m)

(1 + z) 〈fbeam〉
dV (z)

dz
, (11.4)

where Ṙlong(z)/(1 + z) is the rate of GRBs in shells of redshift dz as measured from

our reference frame, 〈fbeam〉 is a beaming factor representing the fraction of GRBs

with their emission pointing to us, and dV (z)/dZ is the comoving volume element

described in terms of the comoving distance Dc(z) = Dl/(1 + z). The volumetric

factor Q(z) ≡ dV (z)
dz

1
1+z

(shown in figure 11.6) is given by:

Q(z) ≡ dV (z)

dz

1

1 + z
=

4π(c/H0)D
2
c (z)√

(1 + z)3Ωm + (1 + z)2 Ωk + ΩΛ

1

1 + z
. (11.5)
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Figure 11.6: Volumetric factor Q(z) ≡ dV (z)/dz
1+z

(eq. 11.5)
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Equation 11.3 combined with the flux-limited selection function will give (in

subsec. 11.3.5) the redshift distribution of long GRBs detected by Swift.

11.3.2 Intrinsic redshift distribution of short GRBs

This section will present the calculation of the intrinsic redshift distribution

of short GRBs. As will be shown, that distribution comes from a combination of

the SFR with the time delay necessary for the creation and merger of the compact-

binary objects that lead to short GRBs.

In the case of long GRBs, the time interval between star formation and star

death is very small. However, this is not the case for short GRBs. The time delay

between a compact-binary merger (that can create a short GRB) and the formation

of its compact objects is not negligible. Mergers occur considerably later in time (at

a smaller redshift) than the formation of the compact objects. The longer the time

delay is, the smaller the average value of the merger-rate redshift distribution (and

of the short GRB distribution).

If P (τ) = τn is the distribution of time delays τ , then the rate of compact-

binary mergers in shells of redshift dz as measured from the binary-system reference

frame is

ṘMerger(z, τmin, n) =

� ∞

zmin(τmin)

SFR(z)P (t(z)− t(z′))
dt(z′)

dz′
dz′. (11.6)

The time t(z) is the lookback time corresponding to the redshift z, and is the differ-

ence between the age of the universe now and the time when the light we observe
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now was emitted. The minimum integration redshift zmin(τmin) is the redshift cor-

responding to a lookback time τ = t(z) + τmin. What equation 11.6 says is that

the merger rate at some redshift z is produced by the sum of the contributions of

objects formed at earlier epochs (higher redshifts - z′) weighted with a time-delay

dependent probability P (t(z)− t(z′)). The lookback time (fig. 11.7) is given by:

t(z) =
1

H0

� ∞

0

dz′

(1 + z′)
√

ΩM(1 + z′)3 + ΩK(1 + z′)2 + ΩΛ

. (11.7)

The time delay τ is the sum of two quantities: the evolutionary time, which is the
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Figure 11.7: Lookback time (eq. 11.7) versus redshift.

time required for the initially non gravitationally-interacting members of the binary

to randomly approach each other and become gravitationally bound forming the

compact binary object, and the merger time, which is the time needed for the orbital
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decay of the compact binary due to emission of gravitational radiation. Various

authors [41, 154, 155], using population synthesis methods, calculated the time-delay

distribution of such times (see, for example, figure 11.8) and found that it can be

reasonably approximated by P (τ) = 1/τ with a minimum delay time τmin ∼ 20Myr.

Berger et al [156], analyzing new high-redshift short-GRB detections from Swift,

found that if P (τ) = τn, then −1 . n . 0. Guetta and Piran [43], while trying to

estimate the luminosity function of short GRBs, used P (τ) = 1/τ , based on the time

delays of the six detected NS-NS binaries in our galaxy (fig. 11.9). Earlier studies,

based on a limited redshift distribution for short GRBs that peaked at very low

redshifts (< z >∼ 0.3), favored a time delay distribution that averaged at longer

times (∼few Gyr) than the ones mentioned above ([157, 158, 159]). However, a

redshift distribution of detected GRBs that was recently updated with more distant

short GRBs [156] showed that the distribution of time delays P (τ) actually averages

at smaller values than previously thought, and is actually consistent with P (τ) =

1/τ .

Similarly to the long-GRB case (eq. 11.3), the intrinsic redshift distribution

of short GRBs is

dṄShort(z, τmin, n)

dz
∝ ṘMerger(z, τmin, n)

(1 + z) 〈fbeam〉
dV (z)

dz
, (11.8)

where the proportionality comes from the fact that the efficiency of a binary merger

creating a short GRB is not known. The intrinsic distribution of short GRBs for

this study was calculated for P (τ) = 1/τ , τmin = 20Myr and the HB SFR. The dis-
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Figure 11.8: Top: Merger time distributions for NS-NS and BH-NS binaries. The
four NS-NS systems detected in our galaxy are shown with triangles. Bottom: Delay
time distributions. Delay times are the sum of the formation time of the compact
binaries (∼ 20Myr) and the merger times (top plot). The delay times are consistent
with a P (τ) = 1/τ distribution with τmin = 20Myr. Source: [41]

tribution of the compact-binary merger rate ṘMerger(z, τmin, n) versus the redshift,

for this set of parameters, is shown in figure 11.10.

11.3.3 Peak-luminosity function

The peak-luminosity function5 of GRBs is an essential element for the cal-

culation of the flux-limited selection function. There have been various functional

forms used to describe the probability distribution of the luminosity function such as

5Similarly to the GRB literature, the terms “peak-luminosity function” and “luminosity func-
tion” in this text, may be used interchangeably and will mean the same thing.
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Figure 11.9: Time delay distribution for the six NS-NS binary compact objects
detected in our galaxy. The distribution is consistent with a P (τ) = 1/τ distribution.
Data from Champion et al.[42], figure from Guetta & Piran [43].

power laws, broken power laws, and forms similar to a Schechter 6 function. Schmidt

[160] and Guetta & Piran [43] used a broken power law 7 luminosity function, which

describes the comoving space density of GRBs:

dN

dL
∝


(L/L∗)−α Lmin < L < L∗

(L/L∗)−β L∗ < L < Lmax

. (11.9)

Another way to describe the luminosity function (used by Li [147]) is by a

Schechter function:

dN

dL
∝ Lδe−L/Lc . (11.10)

6Function used to describe the luminosities of nearby galaxies.
7Actually, the luminosity function in these early papers was given in terms of dN/dlogL. Recent

papers give the luminosity mostly in the dN/dL form. Care has to be taken to correct for the
different spectral indices in the two cases: dN

dL = dN
dlogL

1
ln(10)L .
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Figure 11.10: Compact-binary merger rate. This rate corresponds to a distribution
of delay times between star formation and mergers P (τ) = 1/τ , and a minimum
delay time τmin = 20Myr. The HB SFR was used.

In general, authors using some assumptions about the intrinsic redshift dis-

tribution of a class of bursts (short/long) and the form of the luminosity function,

and using data from satellite detectors, such as the peak fluxes, event rates, and

the redshift distributions of detected GRBs, first calculate the distributions of de-

tected quantities by some detector, and then try to find which set of parameter

values used in their calculation produces the best fit to the observed data. One of

biggest differences between the various studies is the intrinsic redshift distribution

for GRBs. There have been multiple assumptions and experimental data used for

determining this distribution, which do not always agree with our current knowl-

edge of the subject. In the following, an overview of the different approaches taken

for the calculation of the luminosity function will be given, and the reasons that
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the derived luminosity functions are usually in disagreement with each other will be

described.

For long GRBs, the differences between the results of most studies can be

traced to the form of the SFR used (HB vs PM) and whether any upper metallicity

limit were applied. As will be shown later, luminosity functions that correspond

to higher average luminosities result in a flux-limited selection function that stays

large up to higher redshifts. If we had two studies using two different SFRs, one

that averages at high redshifts and one at low redshifts, then the first SFR would

need a flux-selection function that is smaller at higher redshifts and vice versa.

Because short GRBs are usually at lower redshifts than long GRBs, the effects

of using different SFRs in the estimation of their luminosity function are small,

since all available SFRs are in good agreement for z . 1.5. For short GRBs, the

biggest factor causing the differences between the predicted luminosity functions lies

in the assumptions regarding the time-delay distribution P (τ). Smaller delay times

favor an intrinsic redshift distribution that peaks at higher redshifts, which in turn

usually requires a flux-limited selection function that starts falling from unity at

smaller redshifts, and a luminosity-function that averages at lower luminosities.

For long GRBs, Guetta & Piran [45], using a logN-logP diagram made with

data from Swift, found that the SFR3 from PM (a SFR that is enhanced at high

redshifts) corresponds to a broken power law (eq. 11.9) with a = 1.1 , β = 3, and

L∗ = 4×1051 erg/s. Firmani et al. [161], using BATSE data and the SFR3 from PM,

found that a = 0.9± 0.4, β = 2.1± 0.2, and L∗ ' 2.6× 1050 erg/s, or for a simple

power law dN
dL
∝ L−1.58±0.04. Daigne et al. [162] using the same SFR found that
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dN
dL
∝ L−1.54±0.18. Theoretical predictions based on the internal shock model predict

a . 1 with < a >∼ 0.5, β & 1.4 with < β >∼ 1.7 and L∗ ' 4×1050−6×1051 erg/s

[163]. Dermer and Le [146], using Swift data and the uniform jet model, found that

dN
dL
∝ L−3.25.

The luminosity function for short GRBs is not yet well understood, mostly

because of the small number of short GRBs with resolved redshifts. All the studies

are based on logN-logP analyses of the peak flux distributions from BATSE. The

Swift and BATSE peak-flux detection thresholds for short GRBs are comparable,

so the results from this BATSE-based study should be also applicable to Swift.

Schmidt [164], using the SFR2 from PM (a SFR that is roughly constant for z > 2),

found that α = 1.6, β = 3, and L∗ = 3.2× 1050 erg/s. Using the same SFR, Guetta

and Piran [43] found α = 1.6, β = 3, and L∗ = 2.2 × 1051 erg/s . Salvaterra et al.

[165] found that when using a broken power law with Schmidt’s a = 1.6 and the HB

SFR, they find good agreement with BATSE peak-flux data for β = 2.8± 0.29 and

L∗ = 6.35× 1050 erg/s8.

Even though the parameters of the luminosity function are well determined,

the minimum and maximum luminosities are not. If a large number of GRB detec-

tions with resolved redshifts were available, then the limits of the luminosity range

would be defined by the minimum and maximum luminosities detected. Currently,

this is not the case, so the luminosity limits are not well constrained. Guetta & Piran

[43] quoted their results in the (7×1049, 2.2×1053) erg/s luminosity range. Zitouni et

8They quote their L∗ in the 30-2000keV energy range of BATSE. For sake of comparison, I
have calculated the equivalent luminosity in the 15-150keV range of Swift using a typical Band
spectrum (a, b, E0) = (−1,−2.25, 256 KeV ) [8]. The conversion was L∗Swift = 0.933 L∗BATSE .
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al. [163], said that usually Lmin ∼ 0.8−3×1050 erg/s and Lmax ∼ 3−5×1053 erg/s.

Daigne et al. [162] gave their results in the Lmax = (1050.3±0.7, 1053.5±0.4) erg/s lu-

minosity range. Recently, there have been Swift detections of low luminosity GRBs

L . 1049 erg/s. Various authors have examined whether these GRBs consist of a

new population or are just rare members of the normal luminosity GRBs. Liang

et al [44] have suggested a power-law luminosity function with two breaks and an

extended lower limit ( Lmin ∼ 1046 erg/s) (figure 11.11). Low luminosity GRBs

are detectable at only very low redshifts (z . 0.1) and, despite their faintness,

could potentially be detectable by Milagro. However, unless more detections of

such GRBs occur, a luminosity function that appropriately includes them cannot be

constructed. For this study, the “standard” luminosity function describing the main

sequence of GRBs was extended to include some of the lower luminosity GRBs.

In general, studies using similar initial assumptions reach compatible, within

errors, results. More data from Swift, and especially more short GRB detections

and more GRBs with resolved redshifts, would help identify the most appropriate

functional form for the luminosity function, constrain its parameters, and identify

separate GRB classes contributing to the main distributions (such as low luminosity

GRBs). The data used in this study are in agreement with the results from most

of the latest papers and are shown on table 11.2 on page 252. The limits on the

luminosity ranges are consistent with all the above mentioned studies. The low limit

is somewhat decreased, but still in agreement with other results, in order to include

the recently detected low-luminosity GRBs. As can be seen from figure 11.12, where

the luminosities of BeppoSAX/HETE2 and Swift GRBs are shown, the luminosity
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Figure 11.11: Luminosity function proposed by Liang et al [44] to include the recent
low-luminosity GRBs detected by Swift. Φ(L) ≡ dN/dL, and ρ0 is a constant.

limits used here include most of the detected GRBs.

11.3.4 Flux-limited selection function

In this section, based on the minimum peak flux detectable by Swift and the

peak luminosity function of GRBs from the previous subsection, the flux-limited

selection function will be calculated. This function can be used to calculate the

redshift distribution of Swift-detected GRBs (needed for the simulation of the GRB

239



Figure 11.12: The luminosities and redshifts of the BeppoSAX/HETE2 (BSH in the
legend) sample compared with the Swift sample. Source [45]

population) from the intrinsic redshift distribution of GRBs (calculated above).

A GRB of some peak-luminosity from some redshift will produce a peak flux

at the earth. By comparing this peak flux with the minimum peak flux a detector

can detect, a decision can be made on whether this GRB will be detected or not.

Using the distribution of peak luminosities (from previous section), the distribution

of peak-fluxes produced by GRBs at some redshift can be calculated. Comparing

this peak-flux distribution with the minimum peak-flux an instrument can detect,

the fraction of detectable GRBs of some redshift can be calculated. This fraction

depends on the redshift and is called the flux-limited selection function ψflux(z).
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The peak flux P (L, z) at the earth by a GRB of redshift z and peak luminosity

L is

P (L, z) =
L

4πD2
l (z)

κ(z), (11.11)

where Dl is the luminosity distance and κ(z) is a function of order unity called the

k-correction:

κ(z) =

� (1+z)E1

(1+z)E2
S(E)dE� E1

E2
S(E)dE

, (11.12)

where S(E) is the Band function (eq. 1.1 on page 10). The k-correction corrects

for the fact that a detector sensitive at an energy range (E1, E2) will measure the

signal emitted by a GRB of distance z emitted at the blue-shifted energy range

((1 + z)× E, (1 + z)× E2). The units of S(E) are photons s−1 keV −1. S(E)dE is

the number of photons emitted per second in the interval E to E + dE. Integrating

E × S(E)dE over some energy band gives the total energy emitted in that energy

range in the source rest frame. The values of the Band function spectral indices were

estimated by measurements of bright BATSE bursts by Preece et al. [8] as α = −1

and β = −2.25 with E0 = 256 keV . The units of the peak flux are erg cm−2 s−1,

and the units of the peak luminosity are erg/s.

If Plim is the minimum detectable peak flux, then the fraction of GRBs de-

tectable at some redshift is

ψflux(z) =

� Lmax

Llim(Plim,z)
dN
dL
dL� Lmax

Lmin

dN
dL
dL

, (11.13)

where Llim(Plim, z) is obtained by solving equation 11.11 with P (L,Z) substituted
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with Plim. The minimum peak photon fluxed Swift can detect for long and short

GRBs are ∼ 0.2ph cm−2 s−1 and ∼ 1.5ph cm−2 s−1 respectively. Some incomplete-

ness is expected just over these thresholds, so the limits used here were 0.5ph cm−2 s−1

and 2ph cm−2 s−1[165] for long and short GRBs. Using an average photon index in

the Swift sample of a = −1.5, the energy of a typical photon in the Swift 15−150 keV

energy range is < E >=
� 150
15 E S(E)dE
� 150
15 S(E)dE

= 7.34 × 10−8erg. Using < E >, the

peak photon-flux thresholds for Swift correspond to peak energy-flux thresholds of

Plim,long = 3.7×10−8 erg cm−2 s−1 and Plim,short = 1.5×10−7 erg cm−2 s−1. The typ-

ical value for the minimum detectable peak flux for BATSE is ∼ 10−7 erg cm−2 s−1.

The resulting flux-limited selection function (eq. 11.13) that corresponds to the

Swift sensitivity is shown in figure 11.13.

11.3.5 Redshift distribution of detected GRBs

After having calculated the intrinsic redshift distributions of GRBs and the

fraction of GRBs detectable at each redshift, the redshift distribution of detected

GRBs can be calculated as:

dṄdet(z)

dz
= ψflux(z)

dṄGRB(z)

dz
, (11.14)

where ψflux(z) has been calculated in the previous subsection (eq. 11.13), and

dṄGRB(z)
dz

is given by equations 11.3 and 11.8 for long and short bursts respectively.

The differential and integral redshift distributions of Swift-detected short and long

GRBs are shown in figure 11.14. These distributions will be later used in the sim-
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Figure 11.13: Flux-limited selection function.

ulation of the GRB population. The maximum simulated redshift was zmax = 3.0.

This is because for higher amounts of VHE emission, GRBs of higher redshifts be-

come detectable. This maximum redshift ensures that only a negligible fraction of

detectable GRBs will be at a redshift higher than 3.0.

11.4 Isotropic-Equivalent Emitted Energy

In this section the isotropic-equivalent emitted energy Eiso of Swift-detected

GRBs will be calculated. As in the case of the redshift distribution, it will be shown

that the Eiso distribution of detected GRBs can be calculated from a combination

of the intrinsic Eiso distribution and a detector-specific selection function. Initially,
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Figure 11.14: Redshift distribution of short and long GRBs detected by Swift.

the selection function will be calculated, and then the choice for the intrinsic Eiso

distribution used in this study will be described.

The prompt emission from GRBs was observed in the ∼ 20keV −2MeV energy

range by BATSE. However, Swift is sensitive to an energy range of smaller width
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(15 − 150KeV ). Butler et al. [36], using the strong constraints on the spectral

characteristics of GRBs set by measurements by earlier instruments, managed to

derive the bolometric (1keV − 10MeV ) peak fluxes and peak energies from 218

Swift bursts. Seventy-seven of these bursts had resolved redshifts, so in addition,

they calculated the isotropic-equivalent bolometric emitted energies. Using these

data, they calculated an effective Swift detection threshold in terms of nbol/
√
T90

(a quantity close to the signal to noise ratio). From that threshold, the minimum

Nbol/
√
T90 was also found versus redshift. Here, nbol is the number of particles per

unit of area reaching the earth integrated in the 1 keV − 10MeV energy range and

for the duration of the burst, and Nbol is the isotropic-equivalent total amount of

particles emitted from the GRB at the same energy range and duration 9. Butler et

al.’s results are shown in figure 11.15. Similarly to their work, an effective trigger

threshold can be found on S/
√
T90 and Eiso/

√
T90, something that is more directly

related to this work. As shown in figure 11.16, an effective threshold of S/
√
T90 '

10−7.2 erg cm−2 s−0.5 also exists in the Swift data. Using this threshold, the minimum

Eiso/
√
T90 can be calculated for any redshift.

Similarly to what was mentioned above regarding the redshift distributions,

the isotropic energy distribution of detected GRBs is the product of the intrinsic

distribution multiplied by the detector threshold. The intrinsic Eiso distribution of

GRBs depends on the structure of the GRB jet. In the universal jet profile model

[166], [167], all jets have the same surface energy density ε as a function of the off-

9If < E > is the average energy of an emitted photon, then Eiso =< E > ×Nbol and S =<
E > ×nbol.
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Figure 11.15: Effective Swift thresholds on nbol/
√
T90 and Niso/

√
T90 from Butler et

al. [36]

axis angle θ, and the observed differences in Eiso result from the angle θu between the

jet axis and the line of sight. This model predicts an isotropic energy distribution

following a power law: P (Eiso) ∝ E−aE
iso . If (ε ∝ θk), then aE = 1 − 2/k. Rossi et
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Figure 11.16: Effective Swift threshold on S/
√
T90.

al. [166] proposed k = −2 (aE = 2), in order to reproduce the data observed by

Frail et al. [87]. If the energy density follows a Gaussian distribution, then aE = 1

[168]. Band et al. [169], using the lag-luminosity relation, calculated the redshifts

and the isotropic energies from a large sample of BATSE GRBs. They modeled the
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Figure 11.17: Demonstration of the existence of an effective threshold in the Swift
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√
T90 used in the simulation,
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resulting Eiso sample with power law and with Gaussian probability distributions

without a redshift evolution. For the first case, they found that aE = 1.76± 0.05.

In this work, the intrinsic Eiso distribution will be modeled by a power law

with an index that brings the best agreement between the simulation results and the

experimental data. After comparing the Eiso − z and S − z distributions between

the simulation and the Swift data from Butler et al, the best agreement was for

aE = 1.45. That value was close to the results mentioned above.

11.5 GRB Rates

Because the probability that a dying star or a compact-object binary will pro-

duce a GRB are not well constrained, the absolute GRB rates cannot be accurately
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calculated directly from the SFR. Thus, the GRB rates used in this study will be

the ones detected by Swift. Up to 04/13/2008, Swift had detected 319 GRBs in

the 3.399 years of its operation. During its lifetime, 16% of the time it was not

operating because it was passing through the South Atlantic Anomaly, 15.5% of

the time it was not sensitive to new GRBs because it was slewing, and 1.5% of

the time it was not operating because of various other problems such as problems

with the gyroscopes10. So, the amount of time, in the past 3.399 years, that Swift

was sensitive to new GRBs was only 2.28 years, which means that it was detecting

140GRBs/live year. Swift’s field of view is 1.4 sr. This study searched the over-

head sky up to a zenith angle of 45o or 1.84 sr. So, according to Swift rates, there

have been 1.84/1.4∗140 = 184 detectable-by-Swift GRBs per year in Milagro’s field

of view (up to 45o zenith angle). This study searched in 4.58 yrs of Milagro data,

which corresponds to ' 843 detectable-by-Swift GRBs in Milagro’s FOV.

11.6 Model for VHE Emission from GRBs

A simple model was used for the form of the VHE emission from GRBs. Ac-

cording to this model:

� Only a fraction of GRBs has VHE emission.

� All GRBs with such an emission, emit in the same (EV HE,min,EV HE,max) en-

ergy range on a power-law spectrum with the same spectral index α.

� The amount of isotropic energy emitted in the VHE energy range is related

10Neil Gehrels, private communication.
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to the amount of isotropic energy emitted in the 1 keV −10MeV energy range.

Specifically, the energy output per decade of energy in the (EV HE,min, EV HE,max)

energy range is proportional to the energy output per decade of energy in the

1 keV − 10MeV energy range:

Eiso(EV HE.min − EV HE,max)

log10(EV HE,max/EV HE,min)
= R× Eiso(1KeV − 10MeV )

log10(104 keV/1 keV )
. (11.15)

These energies are for the non-redshifted frame of reference of the GRB.

GRB populations emitting in different VHE energy ranges, with different spec-

tral indices α, and ratios R were simulated. The spectral indices ranged from

α = −2.0 to α = −3.5. The extent of the VHE energy range was set by Mila-

gro’s sensitive energy range. According to figure 3.4 on page 62, Milagro can probe

the 40GeV − 15TeV emission from GRBs. However, because of internal absorp-

tion effects, the VHE emission from GRBs may cutoff at an energy lower than

15TeV . Various VHE emission models, each for a different maximum emitted en-

ergy EV HE,max, ranging from 150GeV to 15TeV , were simulated. The minimum

emitted energy was always EV HE,min = 40GeV . Upper limits were set for each

combination of the values of α and EV HE.max.

11.7 Verification of the GRB Simulation

In this section I will compare some of the results of the simulation with the

distributions of Swift GRBs in order to verify its validity. The combination of
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isotropic energy and redshift distributions used in the simulation will produce a

fluence distribution that should match the one from Swift data.

Figure 11.18 shows a comparison between the 1 keV − 10MeV bolometric

fluences of the GRBs in the simulation and of the GRBs detected by Swift (Butler

et al. catalog [36]). The agreement between the results of the simulation and the

measured data is excellent, considering the low statistics in the number of detected

GRBs. If any of the elements of the simulation mentioned above were considerably

wrong, then these curves would show a disagreement. It should be noted that the

fluence is measured without the need to measure a redshift, so the Swift curves

in the figure are representative of the whole population of Swift-detected bursts.

The simulation should be able to match that exact population, and the excellent

agreement provides a strong verification of the simulation.

Continuing with the verification, the simulated and detected bolometric 1 keV−

10MeV isotropic energies are shown in figure 11.19. While the agreement is not

as good as in the previous case, this does not mean the simulated distributions are

not correct. The Swift data used in this comparison are a subgroup of the large

population of Swift-detected GRBs. To be able to calculate the isotropic energy

emitted by a GRB, the redshift is needed, so the detected GRB curves correspond

to the population of Swift bursts with a resolved redshift. The population of the

GRBs with a resolved redshift is not necessarily representative of all GRBs. There

are systematics in redshift determination that depend on the redshift of the burst

(see [170, 156]).

Finally, S√
T90

is compared between simulation and data. Again, the agreement
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Quantity Value

Luminosity Function

Functional form Broken power law (eq. 11.9 on page 234)

Lmin(erg/s) 3× 1049 erg/s

Lmax(erg/s) 4× 1053 erg/s

Spectral indices (a, β) (short) (1.6, 2.8)

Spectral indices (a, β) (long) (1.1, 3)

L∗(short, long) (6.35× 1050, 4× 1051) erg/s

Intrinsic Redshift Distribution

Short HB SFR×Time delay factor(τ)

n of P (τ) = τn n = −1

τmin 20MYr

Long HB SFR×Maximum Metallicity Limit

Maximum Metallicity Zmax 0.1, 0.3, 0.6Z�

Intrinsic Eiso distribution

P (Eiso) ∝ E−aE
iso aE = 1.45

Energy range for low energy emission 1 keV − 10MeV

Minimum of the VHE range 40GeV

Maximum of the VHE range From 150GeV to 15TeV

Swift Detection Thresholds

Min peak flux (short) 2 ph cm−2 s−1 or 3.7× 10−8 erg cm−2 s−1

Min peak flux (long) 0.5 ph cm−2 s−1 or 1.5× 10−7 erg cm−2 s−1

Min S√
T90

10−7.2erg cm−2 s−0.5

Miscellaneous Parameters

Swift dead time 33%

T90 distribution Fits from Swift

Maximum simulated redshift 3.0

Energy distribution of VHE emission P (E) ∝ Eα, from α = −2.0 to α = −3.5

Table 11.2: Parameters used in the simulation of the GRB population.

252



))2(Fluence/(erg/cm
10

log
-9 -8 -7 -6 -5 -4 -3

0

0.02

0.04

0.06

0.08

0.1

(a) Short GRBs

))2(Fluence/(erg/cm
10

log
-9 -8 -7 -6 -5 -4 -30

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

(b) Long GRBs

Figure 11.18: Bolometric 1 keV − 10MeV fluence. Solid lines: results from the
simulation, dashed lines : Swift data from [36]

is very good. The detector threshold applied in the simulation of
(
S/
√
T90

)
min

=

10−7.2 erg cm−2 s−0.5) is also evident in the figure.
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(a) Short GRBs

(b) Long GRBs

Figure 11.19: Bolometric 1 keV − 10MeV isotropic-equivalent energies emitted.
Solid line: results of the simulation, dashed curve: Swift data from [36].)
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11.8 Results

In this section, I will present the results of the simulation of the GRB popula-

tion and I will set upper limits on the VHE emission from GRBs. The upper limits

will be versus the ratio R (defined in equation 11.15), the fraction of GRBs emit-

ting in very high energies, the spectral index of the VHE emission α, the maximum

energy of the VHE emission EV HE,max, and the maximum metallicity limit used

for calculating the redshift distribution of long GRBs Zmax. As mentioned in sec-

tion 11.2 on page 220, these upper limits will be on the prompt VHE emission from

GRBs. The delayed VHE emission from GRBs was not included by the simulation,

therefore no limits were set on it.

The number of GRBs Milagro would expect to detect versus the ratio R, in

the case that all GRBs have VHE emission, is shown with the solid lines in figures

11.21, 11.22, and 11.23 for Zmax equal to 0.1Z�, 0.3Z�, and 0.6Z� respectively.

The results are for different values of α (different solid lines) and EV HE,max (different

graphs). The maximum number of detectionsDexp expected at some confidence level

CL is given by Dexp = −ln(1−CL). Therefore, a VHE-emission model that predicts

a number of detections by this search higher than (2.3, 3, 4.6) is excluded at the

(0.90, 0.95, 0.99) confidence level. The dashed lines of figures 11.21, 11.22, and 11.23

show the upper limit on R at the 0.90 confidence level and for α = −2.5. The upper

limit for the case that not all GRBs have VHE emission can be easily calculated by

these plots. Specifically, if a fraction f of GRBs emits in the VHE energy range,

then the upper limit on R at the CL confidence level corresponds to −ln(1−CL)/f
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Figure 11.21: Number of detected GRBs predicted by the simulation versus the ratio
R, for different values of the spectral index α, and the maximum emitted energy
Emax of the VHE emission from GRBs (solid lines). The dashed lines show the
upper limit at the 0.90 confidence level (2.3 GRBs) for α = −2.5. These results are
for the case that all GRBs emit in very high energies, and for an upper metallicity
limit Zmax = 0.1Z�.

Figures 11.24, 11.25, and 11.26 present the upper limits (color lines) in a spec-
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Figure 11.22: Number of detected GRBs predicted by the simulation versus the ratio
R, for different values of the spectral index α, and the maximum emitted energy
Emax of the VHE emission from GRBs (solid lines). The dashed lines show the
upper limit at the 0.90 confidence level (2.3 GRBs) for α = −2.5. These results are
for the case that all GRBs emit in very high energies, and for an upper metallicity
limit Zmax = 0.3Z�.

tral energy distribution along with the prompt emission by GRBs (black curve).

Table 11.3 summarizes the upper limits for all the possible combinations of α,
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Figure 11.23: Number of detected GRBs predicted by the simulation versus the ratio
R, for different values of the spectral index α, and the maximum emitted energy
Emax of the VHE emission from GRBs (solid lines). The dashed lines show the
upper limit at the 0.90 confidence level (2.3 GRBs) for α = −2.5. These results are
for the case that all GRBs emit in very high energies, and for an upper metallicity
limit Zmax = 0.6Z�.

EV HE,max, and Zmax. The statistical error on these limits is about 1%.

It should be noted that more complex VHE-emission models can be simulated,
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PPPPPPPPPα
EV HE,max 0.150TeV 0.474TeV 1.5TeV 4.74TeV 15TeV Zmax

-2.0 100 25 20 18 18

0.1Z�
-2.5 113 31 22 18 14
-3.0 130 41 27 21 17
-3.5 149 53 36 27 22

-2.0 91 23 18 17 17

0.3Z�
-2.5 106 28 20 16 13
-3.0 121 38 25 19 16
-3.5 138 48 37 25 21

-2.0 84 21 16 15 15

0.6Z�
-2.5 95 26 18 15 13
-3.0 109 35 24 18 14
-3.5 125 45 31 23 19

Table 11.3: Upper limits at the 90% confidence level on the ratio R for different
values of the spectral index α and the maximum emitted energy EV HE,max of the
VHE emission from GRBs, and the upper metallicity limit Zmax. These results are
for the case that all GRBs emit in very high energies.

and, therefore, constrained by this study. For example, the ratio R can fluctuate

between bursts, or it can even be correlated with some of the other simulated pa-

rameters, such as the emission duration or the total amount of energy emitted. The

VHE-emission model has the freedom of making any kind of assumptions regarding

the properties of the VHE emission, with these assumptions described by one free

parameter. The GRB population can then be simulated for different values of this

parameter, and the results can be used to constrain it.

Finally, one more example of an upper limit is given. In figure 2.4 on page 46,

the synchrotron and SSC emissions produced at internal shocks were plotted for

different values of the fraction of the shock’s thermal energy stored in the magnetic

field εB. These plots were for the case of a low-opacity fireball. Two of the physical

configurations (εB = 0.33 and εB = 0.01) predict a VHE emission with spectral index
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a = −3.8, while the other one (εB = 10−4) predicts a spectral index a = −2.8. The

VHE emission of that figure extends up to 2TeV (as seen from the non-redshifted

GRB frame of reference).

Two sets of simulations were run; each one for a different spectral index. Figure

11.27 shows the upper limits set on R for these two indices. The solid lines are taken

from figure 2.4 and show the predicted SSC and synchrotron prompt emission from

GRBs, and the dashed lines show the upper limits set by this search. Each color

corresponds to a different εB. As can be seen, none of the three models is excluded,

since the model predictions (solid lines) are in the allowed range under the upper

limits (dashed lines). The results are for the case that all GRBs have VHE emission

and for Zmax = 0.3Z�. In the less extreme case, in which a fraction of GRBs does

not have a VHE emission, these upper limits would be higher. As can be seen

from figure 11.27, the higher εB is, the smaller the emission in the VHE energy

range relative to the emission in the keV/MeV energy range. If we assume that the

internal shocks of all GRBs with a low-opacity fireball have the same εB, then an

upper limit on R, set by this study, can be translated to a lower limit on εB.
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Figure 11.24: Spectral energy distribution of the emission from a GRB. Black line:
typical prompt emission spectrum, color lines : upper limits on the prompt emis-
sion set by this study. Each color corresponds to a different spectral index of the
VHE emission, and each set of plots to a different maximum energy of the VHE
emission EV HE,max. The energy of the X axis is for the GRB frame of reference
(non-redshifted). The results are for Zmax = 0.1Z� and for all GRBs having VHE
emission.
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Figure 11.25: Spectral energy distribution of the emission from a GRB. Black line:
typical prompt emission spectrum, color lines : upper limits on the prompt emis-
sion set by this study. Each color corresponds to a different spectral index of the
VHE emission, and each set of plots to a different maximum energy of the VHE
emission EV HE,max. The energy of the X axis is for the GRB frame of reference
(non-redshifted). The results are for Zmax = 0.3Z� and for all GRBs having VHE
emission.

263



(Emitted Energy/eV)
10

log

2 4 6 8 10 12 14

) 
(a

rb
. n

o
rm

al
iz

at
io

n
)

ν
Fν(

10
lo

g

5

6

7

8

9

=-2.0α
=-2.5α
=-3.0α
=-3.5α

, 40GeV-150GeV=0.6ZmaxZ

(Emitted Energy/eV)
10

log

2 4 6 8 10 12 14

) 
(a

rb
. n

o
rm

al
iz

at
io

n
)

ν
Fν(

10
lo

g

5

6

7

8

9

=-2.0α
=-2.5α
=-3.0α
=-3.5α

, 40GeV-474GeV=0.6ZmaxZ

(Emitted Energy/eV)
10

log

2 4 6 8 10 12 14

) 
(a

rb
. n

o
rm

al
iz

at
io

n
)

ν
Fν(

10
lo

g

5

6

7

8

9

=-2.0α
=-2.5α
=-3.0α
=-3.5α

, 40GeV-1500GeV=0.6ZmaxZ

(Emitted Energy/eV)
10

log

2 4 6 8 10 12 14

) 
(a

rb
. n

o
rm

al
iz

at
io

n
)

ν
Fν(

10
lo

g

5

6

7

8

9

=-2.0α
=-2.5α
=-3.0α
=-3.5α

, 40GeV-4743GeV=0.6ZmaxZ

(Emitted Energy/eV)
10

log

2 4 6 8 10 12 14

) 
(a

rb
. n

o
rm

al
iz

at
io

n
)

ν
Fν(

10
lo

g

5

6

7

8

9

=-2.0α
=-2.5α
=-3.0α
=-3.5α

, 40GeV-15000GeV=0.6ZmaxZ

Figure 11.26: Spectral energy distribution of the emission from a GRB. Black line:
typical prompt emission spectrum, color lines : upper limits on the prompt emis-
sion set by this study. Each color corresponds to a different spectral index of the
VHE emission, and each set of plots to a different maximum energy of the VHE
emission EV HE,max. The energy of the X axis is for the GRB frame of reference
(non-redshifted). The results are for Zmax = 0.6Z� and for all GRBs having VHE
emission.
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Figure 11.27: Comparison of the prompt GRB spectra predicted by simulations of
internal shocks and of the upper limits set by this search. Solid curves : Prompt
synchrotron and SSC emission, produced by simulations of internal shocks for the
case of a low-opacity fireball. These curves are the same as those of figure 2.4 on
page 46. Dashed lines : 90% confidence level upper limits set by this search for the
case that the synchrotron and SSC prompt emission from all GRBs are described
by these curves. A dashed line shows the upper limit on a solid curve of the same
color. The results are for the case that all GRBs have a VHE emission.
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Chapter 12

Conclusion

The last five years of Milagro data were searched for bursts of VHE emission

from GRBs or PBHs. The search was performed without using a localization from

external instruments. Instead, the whole dataset was searched in time, space, and

duration. The sensitivity and speed of the search algorithm were highly optimized.

The bin size of the search was adjusted according to the properties of the signal

under search in order to maximize the search’s sensitivity. The calculation of the

effective number of trials of the search was detailed and verified by Monte Carlo

simulations.

There were no significant events detected. A Monte Carlo simulation of the

GRB population was created in order to estimate the number of GRBs detected by

this search versus the VHE emission by GRBs. Based on the results of the search

and of that simulation, upper limits on the prompt VHE emission by GRBs were

placed. The next step of this research would be to translate these upper limits to

useful information about the mechanism and environment of GRBs.

The VHE emission from GRBs depends on the relative amounts of energy

carried by the electrons of the GRB fireball and the magnetic field. The smaller the

fraction of the magnetic field’s energy εB, the stronger the VHE emission. Therefore,

266



an upper limit on the ratio of the GeV/TeV over the keV/MeV emission could

translate to a lower limit on εB.

The opacity of the GRB fireball depends on its bulk Lorentz factor Γ. The

higher Γ is, the lower the opacity of the fireball, and the stronger the VHE emission

from GRBs. An upper limit on the VHE emission from GRBs could place an upper

limit on Γ. Also, an upper limit of Γ could potentially constrain the baryonic load

of the jet, since the bigger the baryonic load is, the smaller the maximum Γ.

Upper limits on the density of PBHs can also be set. However, they are likely

to be less stringent than ones currently set.

New detectors that may detect the VHE emission from GRBs are being built

or are just starting to operate . The LAT and GBM instruments aboard the GLAST

satellite, recently launched, are sensitive to gamma rays of energy from 10 keV to

∼ 300GeV . Preliminary calculations [171] show that GLAST is expected to detect

the E > 100GeV emission from about two GRBs per year. Even one such detection

would be very important and would open the way to the future observation of

GRBs in the unexplored E > 50GeV energy range. HAWC1, a recently-funded

detector, will share the strengths of Milagro, such as a wide field of view and a

high duty cycle, and will also have a larger effective area, and considerably better

background-rejection capabilities. HAWC’s sensitive energy range would be the

same as Milagro’s. Together, GLAST and HAWC will be able to perform coincident

observations on the emission from GRBs ranging from ∼ 10 keV to 100TeV .

1http://umdgrb.umd.edu/hawc
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