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The expansion and intensification of agricultural production in human-

dominated landscapes threaten efforts to sustain natural ecosystems and maintain 

agricultural production in a changing climate. Long-term use of agricultural lands, 

combined with conversion of natural ecosystems for agricultural production, can 

rapidly degrade the health of remaining natural ecosystems. The fundamental goal of 

this dissertation was to assess the impacts of anthropogenic degradation on stocks and 

sequestration of carbon. Although degradation alters a range of ecosystem services, 

case studies of ecosystem degradation in this dissertation focus on reductions in 

vegetation productivity, carbon stocks, and the extent of natural forest cover as a 

result of human activity. Time series of satellite remote sensing data were used to 

track forest and rangeland degradation in the southwestern United States, forest 

carbon emissions from cropland expansion in the Brazilian Cerrado, and fire-driven 



 

  

forest conversion for oil palm plantations in Southeast Asia. Three major themes link 

the regional case studies: expansion and intensification of agricultural production, 

market demand and certification, and agricultural management in response to climate 

variability. Conclusions from the dissertation underscore the widespread influence of 

land management on vegetation productivity and forest carbon stocks. In the 

Southwest United States, reductions in net primary production on managed lands 

were higher in forested landscapes than other cover types. In contrast, Native 

American Indian Reservations, often considered to be more degraded, actually had 

smaller absolute reductions in net primary productivity during 2000-2011. Multi-year 

droughts in the southwest present new challenges for managing forests and 

rangelands, and climate projections suggest dry conditions will intensify in the 

coming century. In Southeast Asia, industry-led efforts to certify sustainable palm oil 

production were evaluated using satellite data on fires and forest loss.  Rates of fire-

driven deforestation and total fire activity declined following certification, 

highlighting the potential for certification to reduce ignitions during El Niño years 

and protect remaining fragments of lowland and peat forest. Aligning certification 

criteria for sustainable palm oil with satellite monitoring capabilities may help 

accelerate compliance with environmental legislation and market demands for 

deforestation-free products.  In Brazil, government and industry actions to limit 

Amazon deforestation have largely overlooked the neighboring Cerrado biome. 

Forest carbon emissions from deforestation for soy expansion in the Cerrado 

increased substantially after the implementation of the Soy Moratorium in the 

Brazilian Amazon, partially offsetting recent reductions in Amazon deforestation 



 

  

carbon emissions.  The success of policies to support sustainable agricultural 

production therefore depends on efforts to minimize cross-biome leakage and the 

ability to monitor compliance and unintended consequences. Solutions for 

management must also confront the growing influence of climate variability.  Time 

series of satellite data may allow early detection of degradation impacts and support 

efforts to mitigate the influence of sustained agricultural production on natural 

systems.  

Changes in vegetation carbon stocks from ecosystem degradation varied 

across case studies, underscoring the diverse nature of direct and indirect drivers of 

degradation across different land use systems. Direct human drivers of ecosystem 

degradation in the southwest United States from management of livestock grazing 

resulted in gradual changes in vegetation productivity, whereas mining and oil 

extraction areas showed large and permanent reductions. Forest carbon emissions 

from agriculture expansion in the Cerrado were a one-time process, as native 

vegetation is cleared for cropland expansion. In contrast, the carbon emissions from 

Southeast Asia’s forest and peatland conversion involve both sudden and gradual 

processes, as carbon accumulation in oil palm plantations partially compensates for 

emissions from forest conversion. Overall, this research made contributions to 

understanding of the regional impacts of human activity and the potential for climate 

change mitigation from sustainable land use practices in human-dominated 

landscapes. 
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 Introduction Chapter 1:
 
 
1.1 Background 

Over the last century, the cumulative impact of human activity has resulted in 

unprecedented changes in the terrestrial ecosystems (Vitousek et al., 1997; Steffen et 

al., 2004). Human impacts on the Earth system occur at all scales, from local to 

global (Foley et al., 2005). At the local scale, changes are widespread, with a high 

degree of variability across regional biomes (MEA, 2005). Indicators of global 

change, such as changes to world’s climate system (Houghton et al., 2001; Schimel et 

al., 2001), ozone concentrations (Hauglustaine & Brasseur, 2001), and patterns of 

atmospheric particles and pollutants (Steffen et al., 2004) confirm the growing 

influence human activities as direct drivers of changes in the Earth system. In many 

cases, the rise in per-capita resource consumption has amplified the impacts of 

population growth and economic activity, leading to degradation of both human and 

natural systems.  

Global population is projected to reach 7 billion by 2020 (USCB, 2016), 

adding to demand for food, fiber, and fuel.  The growing footprint of human activity 

has a profound impact on the Earth system, as agricultural expansion threatens 

remaining natural ecosystems and intensification of existing production concentrates 

water, nutrient, and agrochemical use for crop production (DeFries et al., 2004, 

Lambin et al., 2003, Foley et al., 2005, Turner et al., 2007).  Land use and land cover 

change has emerged as a critical area of study to evaluate and monitor direct human 

impacts from land management (Turner et al., 1995; Lambin et al., 1999).  Tracking 
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land areas at different points along the path from natural to managed ecosystems 

provides a conceptual framework for the degree of human appropriation of ecosystem 

services (Figure 1.1).   

 

Figure 1.1 Forest and land use transition curve. 

 

The forest transition model captures the sequence of land cover and land use 

changes that often at the agricultural frontier (Steffen et al., 2004; Morton et al., 

2006; Foley et al., 2011; Macedo et al., 2012; Lambin et al., 2013; Morton et al., 

2016). The forest transition framework emerged in the early 1990s to describe 

patterns of forest cover change together with the process of development (Mather, 

1992; Grainger, 1995). The forest transition defines the sequence of forest conversion 

in five stages (Figure 1.1): a) intact forest, b) forest degradation, c) forest 

loss/deforestation, d) forest stabilization, and e) forest regeneration. Forest transitions 

occur at different spatial and temporal scales; the amount of land in these categories 

may be in steady flux, based on the duration of land use following forest conversion.  

 

Source:	
  CIFOR 
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Satellite data have been instrumental to track transitions between cover types and 

characterize the ecosystem impacts of fragmentation and agricultural production.  

However, the trajectory of land cover and land use changes outlined in Figure 

1.1 involves a range of socioeconomic and development stages.  For example, 

Lambin and Meyfroidt (2010) suggest that forest transitions are only part of the larger 

picture of land use transitions. The drivers of land use transitions can be divided into 

two groups: a) socio-ecological (endogenous)—i.e., negative feedbacks associated 

with depletion of key resources or declining provision of key ecosystem services, or 

b) socio-economic (exogenous)—i.e., changes driven by economic development or 

globalization. The studies in this dissertation consider both ecological and socio-

economic drivers of land use transitions. The endogenous nature of land use 

transitions is explored for dryland ecosystems in the southwest United States—i.e., 

growth under resource constraints, mainly from land management (i.e., livestock 

grazing, soils, water, etc.).  Exogenous drivers of land use transitions play out across 

Southeast Asia and the Cerrado biome in Brazil, where international commodity 

markets drive land use transitions for expanded production of oil palm and soya. The 

ecosystem impacts of land use transitions are often substantial, and there is a pressing 

need for objective, repeatable, systematic, and spatially explicit measures of these 

impacts. Time series of satellite remote sensing data offer a consistent and objective 

manner to characterize ecosystem degradation from human activity. 

In dryland ecosystems, human-induced degradation is one of the major global 

environmental problems of our generation (UNCED, 1992; UNCCD, 1994; Reynolds 

et al., 2007b).  Loss of productivity in dryland ecosystems affects over 250 million 
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people, and the human impacts are projected to increase in future years from 

population growth and climate change (Reynolds et al., 2007b). The term “land” 

refers to “the terrestrial bio-productive system that comprises soil, vegetation, other 

biota, and the ecological and hydrological processes that operate within the system” 

(UNCCD, 1994). In dryland studies, land degradation results in a reduction of 

biological productivity from intensive use (Thomas & Middleton, 1994; UNCCD, 

1994; Reynolds, 2001; Prince et al., 2007; Reynolds et al., 2007b; Prince et al., 

2009), and may arise from a diversity of processes including changes in plant species 

composition or soil erosion.  

In the tropical ecosystems, the global demand for agriculture commodity 

products has led to large scale land use transitions in recent decades (Lambin & 

Meyfroidt, 2011;Nepstad et al., 2014; Gibbs et al., 2015; Morton, 2016). The forest-

soy (i.e., in Brazilian Cerrado) and forest-oil palm (i.e., in Southeast Asia) transitions 

are simultaneously extensive and intensive, causing widespread deforestation and 

degradation. While deforestation is complete removal of forests, forest degradation 

has multiple definitions, complicating science and policy efforts to reduce or mitigate 

impacts from human activity on tropical forests (IPCC, 2003). Two proposed 

definitions of forest degradation are, “a direct human-induced loss of forest values 

(particularly carbon), likely to be characterized by a reduction of tree crown cover” 

(IPCC, 2003), and "changes within the forest which negatively affect the structure or 

function of the stand and site, and thereby lower the capacity to supply products 

and/or services" (FAO, 2002). “Degradation” in this dissertation refers to reductions 

in carbon sequestration, including vegetation productivity and forest carbon 
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emissions, explored in distinct case studies across three biomes (Figure 1.2). 

There is general consensus within the framework of Reducing Emissions from 

Deforestation and forest Degradation (REDD+) that forest degradation specifically 

refers to reduction in forest carbon stocks (IPCC, 2003; Angelsen et al., 2009; Gibbs 

et al., 2007). Logging, burning, and fragmentation of forest landscapes reduce carbon 

stocks in aboveground biomass.  These degradation processes may alter forest 

structure and function, or signal the start of a land cover conversion process for 

agricultural expansion (Figure 1.1).  

 

 

 

Figure 1.2: Study sites (dark grey) across, A) southwest United States, B) Cerrado 
biome in Brazil, C) Southeast Asia, including Indonesia, Malaysia, and Papua New 
Guinea.  

 

The three regional case studies in this dissertation consider a diversity of land 

use and land cover transitions, yet the drivers of ecosystem degradation are similar 

across systems (Table 1.1). Drought impacts on vegetation productivity are common  

A

B

C
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Table 1.1: Common degradation factors across case studies 

 

 

across the study regions.  However, severe droughts associated with the El Niño 

Southern Oscillation (ENSO) specifically affect the southwest United States and 

Southeast Asia, although from opposite phases of ENSO cycle. Fires, both natural 

and human-caused, are widespread in all three regions, burning large areas of 

grassland and forest ecosystems in the southwest United States, savanna ecosystems 

in the Cerrado, and forest and peatland ecosystems in the Southeast Asia. Agriculture 

production is the primary driver of the land use transitions across the case study 

regions, and market forces link regional production to global demand for beef, soy, 

and palm oil. Finally, all three regions are managed under legal frameworks of land 

management for sustainable agriculture production that aim to maintain ecosystem 

services and reduce carbon emissions in support of climate mitigation goals .  

In this context, this dissertation explores case studies of ecosystem 

degradation from land use and land cover change across three biomes (Figure 1.2), 

with a focus on reductions in vegetation productivity, carbon stocks, and the extent of 

Key factors in 
degradation 

Case Study        
A

Case Study         
B

Case Study              
C

Predisposed to 
degradation by climate Drought/ENSO Drought ENSO

Periodic fire Grassland, forest Savanna, woodland Forest and peatland 
loss

Agriculture Livestock 
production Cropland expansion Plantation forest

Export-driven Beef Soy Palm oil

Legal controls Federal agencies Industry/Govenment 
policies

Industry/Govenment 
policies
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natural forest cover. Dryland degradation is quantified in the southwest United States 

based on reductions in vegetation productivity.  Tropical forest conversion is 

estimated based on reductions in carbon density, including losses of aboveground and 

below ground biomass in the Cerrado and fire-driven deforestation in Southeast Asia.  

Drivers of forest degradation were assessed using time series of remotely sensed data. 

The regional case studies in this dissertation highlight the influence of land 

management, policy interventions, and climate on ecosystem degradation over 

decadal time scales. 

1.2 Rangelands of Southwest United States 

 

 
 
Figure 1.3: Southwest United States study region and aridity index. 

 

Rangelands in the western United States are arid and semi-arid regions with a 

mixture of grasses, forbs, and shrubs (Havstad et al., 2009). The southwest region 

consists of New Mexico (NM), Utah (UT), Colorado (CO), and parts of Arizona 

Texas
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(AZ), west Texas (TX), Oklahoma (OK), Kansas (KS), and Nebraska (NE) (Figure 

1.3). The southwestern rangelands are often characterized by limited water and 

nutrients, mainly influenced by gradients of winter and summer rainfall, and winter 

temperatures that range from cold to warm based on latitude and elevation.  

The southwest United States is susceptible to periodic droughts, often during 

La Nina conditions of the El Nino Southern Oscillation (ENSO) in tropical Pacific 

sea surface temperatures (Herweijer et al., 2006; Cook et al., 2008). The “Dust Bowl” 

drought of the 1930s was a significant disaster for the United States that caused 

widespread economic and agricultural losses, farm abandonment, and human 

migration. The effects of drought on vegetation can be severe; recent droughts have 

compounded regional warming trends, leading to vegetation die-back in the 

southwest United States, particularly in forested ecosystems (Breshears et al., 2005; 

Shaw et al., 2005; Floyd et al., 2009; Anderegg et al., 2013).  Droughts may become 

more common and more severe in the southwest United States, as climate projections 

suggest further declines in surface-water availability in future decades (Seager et al., 

2013; Cook et al., 2014). The period between 2000-2011 was characterized by 

moderate drought years, including La Niña events in 2007-2008 and 2010-2011, and 

provides valuable insight into the vegetation response to variability in precipitation 

under different management conditions.  

Vast areas of public land in the southwest United States are managed by the 

Bureau of Land Management (BLM) and US Forest Service (USFS), and both 

agencies permit commercial livestock grazing. The region also has sizeable 

reservations under Native American land management. The combined impacts of 
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drought and intensive management include reduction in vegetation productivity, 

habitat fragmentation, non-native species invasion, and alterations to the hydrologic 

cycle.  

 

1.3 Cropland expansion in Cerrado biome 

 

 

 

Figure 1.4: The Cerrado biome and the cover types defined as forest and other 
wooded land (tree cover > 10%) and non-forest (tree cover ≤ 10%) based on the 
percent tree cover in 2000 (Hansen et al., 2013).  

 

The Cerrado is the second largest biome in South America (Figure 1.4)—a 

vast neotropical savanna that spans over 2 million square kilometers of the Brazilian 

plateau (Hunke et al., 2015). The average annual rainfall ranges between 750 mm yr-1 
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and 2000 mm yr-1. The Cerrado biome has an extended dry season between May and 

September when the region receives little or no rainfall (Oliveira et al., 2005). The 

Cerrado is also considered a biodiversity hotspot, as the diverse mix of grassland, 

shrublands, and woodlands supports a large number of endemic species (Felfili & 

Silva Júnior, 2005; Klink & Machado, 2005). Rainfall and topographic variability  

contributes to differences among Cerrado physiognomies, commonly divided into 

five formations: a) Cerrado denso, an open-canopy formation with forest and 

woodland trees reaching 25 m in height and a dense understory layers with shrubs and 

grasses, b) Cerrado ralo (open scrub) or Cerrado sensu stricto (closed scrub), 

formations dominated by shrub and grass cover with few trees; c) Campo limpo and 

campo sujo, both dominated by C4 grasses, with increasing shrub abundance between 

campo limpo and campo sujo formations  (Eiten, 1972; Ottmar et al., 2001). Cerrado 

vegetation occurs across a wide range of topographic features, from flatlands to hilly 

areas and high plateaus (Silva et al., 2006). Cerrado soils have low fertility and high 

acidity—factors that limit crop production without additions of lime and fertilizer 

(Lopes et al., 2004; Hunke et al., 2015).  

Historically, the Cerrado region had low population density, primarily for 

cattle ranching and subsistence farming (Jepson et al., 2010), but development of new 

crop varieties for Cerrado soils opened the region to large-scale grain production in 

recent decades. In the 1970s, the Brazilian government also encouraged settlement of 

the Cerrado, leading to deforestation of savanna and woodland areas for agriculture 

production and cattle grazing (Marris, 2005; Jepson et al., 2010). Expansion of crop 

production in the Cerrado (IBGE, 2013) spurred Brazil’s rise as a global leader of soy 
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production and shifted the landscape of commodity crop production towards South 

America (Aide et al., 2013; Lambin et al., 2013).  

Over the past two decades, contributions from soy expansion to Amazon 

deforestation (Morton et al., 2006) resulted in an industry moratorium on soy 

production from new Amazon deforestation (Macedo et al., 2012; Nepstad et al., 

2014; Gibbs et al., 2015). Together with stringent environmental legislation (Soares-

Filho et al., 2014), the potential land available for further soy expansion in the 

Amazon is limited (Morton et al., 2016), forcing soy producers to neighboring 

Cerrado biome. The industry’s Soy Moratorium does not apply in the Cerrado (Gibbs 

et al., 2015), and with less stringent environmental regulations, new frontiers of 

agricultural production have been developed through large-scale soy expansion into 

forest and non-forest Cerrado formations in Brazil.  

 

1.4 Oil palm in Southeast Asia 

Oil palm (Elaeis guineensis) is native to West and Central Africa and was 

introduced to Southeast Asia in 1848 (Sheil et al., 2009). The palm fruit kernel 

produces more oil on a per-hectare basis than any other tropical or temperate oil seed 

(Henderson & Osborne, 2000; Sheil et al., 2009). Palm oil is used in wide array of 

products, from cooking oil to processed foods and non-edible products such as 

detergents, cosmetics, industrial chemicals, and biodiesel (Wahid et al., 2005). By 

1966, Indonesia and Malaysia dominated the palm oil trade, surpassing African 

nations in palm oil production (Poku, 2002). Southeast Asia remains the center of  
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Figure 1.5: Extent of oil palm plantations (top panel) in Indonesia, Malaysia, and 
Papua New Guinea and peatland extent (bottom panel) in Indonesia and Malaysia. 

 

global palm oil production with large-scale oil palm plantations in Indonesia, 

Malaysia, and Papua New Guinea (Figure 1.5).  

Oil palm production in Southeast Asia has grown by expanding into lowland 

rainforest and peat areas—regions with high carbon stocks in vegetation and soils. 

Conversion of lowland rainforest and peat forests has released globally-significant 

greenhouse gas (GHG) emissions (Siegert et al., 2001; Page et al., 2002; van der 

Werf et al., 2008; Hooijer et al., 2012, Hooijer et al., 2010; Koh et al., 2011; Abood 

et al., 2015; Field et al., 2016). Oil palm certification, led by the Roundtable on 

Sustainable Palm Oil (RSPO), is one pathway for reducing emissions from palm oil 

production that is in alignment with industry set zero deforestation goals.  
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1.5 Drivers of degradation & potential mitigating policies 

Land degradation can result from direct impacts of anthropogenic activity or 

climate, indirect drivers such as governance or culture, or interactions among multiple 

drivers. Direct human drivers of ecosystem degradation include biomass extraction 

through logging or fuel wood collection, use of fertilizers and pesticides, and 

unsustainable management practices that reduce productivity on managed lands.  

Natural drivers of land degradation include climate (e.g., wind, drought, temperature, 

snowpack) and biotic factors (e.g., insect outbreaks, invasive species).  Indirect 

drivers of land degradation are related to institutions and governance systems, as well 

as cultural, technological, socioeconomic factors, which underlie other direct drivers 

at multiple scales, including poverty. The extent and severity of different drivers may 

vary within and across biomes, regions, and land use systems around the world.  

 

1.5.1 Southwest United States 

Climate variability in southwest United States is particularly influenced by 

ENSO (Chen et al., 2016). Drought conditions in the southwest United States are 

often associated with the La Nina phase of the ENSO cycle (Seager et al., 2005; Cook 

et al., 2008; Hoerling et al., 2009; Woodhouse et al., 2010; Cook et al., 2014). The 

effects of drought on vegetation can be severe; leading to vegetation die-back in the 

southwest United States, particularly in forested ecosystems (Breshears et al., 2005; 

Shaw et al., 2005; Floyd et al., 2009; Anderegg et al., 2013). The recent drought 

years of 2011 and 2012 were severe causing significant damage from reductions to 

crop yields and mortality (Hoerling et al., 2014; NCDC, 2016a), including the record 
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area burned(NCDC, 2016b). The 2012 drought year was claimed as second most 

expensive natural disaster after Hurricane Sandy (Cook et al., 2014; NCDC, 2016a). 

The significant management challenges associated with drought event range across 

broad regions and communities with different water resource constraints and 

ecosystems.  

Apart from climate drivers, other direct drivers of degradation such as 

livestock grazing, invasive species, fires, and biotic disturbances clearly contribute to 

the risk of degradation in the southwest United States. Demand for rangelands goods 

and services has increased, adding to pressure on natural systems and generating 

conflict among competing land uses: extraction of minerals, oil, and natural gas; 

recreation and wildlife habitat; and management of forage for grazers and browsers. 

Balancing the tradeoffs among land uses and diversity of impacts from climate and 

human activity falls to a range of regional land management agencies. 

Livestock grazing is the major land use in the southwest United States, and 

over grazing is one of the key drivers of land degradation and changes in ecosystem 

structure (Asner et al., 2004). Although grazing under managed conditions can be 

sustainable (Holechek et al., 1999; Wylie et al., 2012), over grazing is common, 

leading to soil erosion and steep decline in forage production (Pellant et al., 2005). 

Leases for commercial livestock ranching are managed by a number of management 

agencies in the Southwest United states, including the Bureau of Land Management 

(BLM), United States Forest Service (USFS), and Bureau of India Affairs (BIA) 

(GAO, 2005). The BLM and USFS use a grazing permit system within its allotments 

and administer primarily through issuance of 10-year term permits. The BIA helps 
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Native Americans to manage grazing on tribal lands and private ranchers can lease 

these lands for grazing at a fee. Management of livestock grazing must also respond 

to natural fire occurrences in the region. Combined, overgrazing and severe fire 

disturbances have changed the vegetation dynamics and forage consumption in the 

region through introduction of two different non-native species such as honey 

mesquite (Prosopis glandulosa) and cheatgrass (Bromus tectorum). The honey 

mesquite is non-palatable species (i.e., for livestock consumption) and cheatgrass is 

an invasive annual grass that increases landscape connectivity, eliminating natural 

fire breaks in barren areas, leading to greater fire spread potential. Biotic disturbances 

such as bark beetles have also reduced forest productivity in tree stands, contributing 

to regional forest die-backs in the region (Hicke et al., 2012). The combined impacts 

of climate and human activity in the southwest United States have widespread 

impacts on land productivity potential and fire regime. 

 

1.5.2 Southeast Asia 

Seasonal fires are common in Southeast Asia, and often practiced for land 

clearing purposes (Stolle et al., 2003; Herawati & Santoso, 2011; Medrilzam et al., 

2014). The interannual variability of Southeast Asia’s fire frequency is largely 

influenced by the El Niño events of the ENSO phases (Ropelewski & Halpert, 1987; 

Chen et al., 2016). During El Niño years, drought conditions render Southeast Asia’s 

carbon rich forests and peat areas are susceptible to extensive burning (Page et al., 

2002; van der Werf et al., 2008; Field et al., 2016; Chen et al., 2016). Climate 

anomalies from ENSO have predictable impacts on vegetation productivity, 



 

 16 

particularly from fire events. Efforts to predict ENSO variability may ultimately alter 

management strategies for agriculture and drought impacts in these regions (Chen et 

al., 2016).  

Fire also plays a significant role in reducing the forest carbon stocks in the 

humid tropics of Southeast Asia, chiefly in Indonesia. Fire is illegal in Indonesia 

(Tacconi, 2003; Edwards & Heiduk, 2015), yet use of fire for forest and peatland 

conversion is widespread. Human modified landscapes are typically associated with 

fire related processes, especially the seasonal fires in Southeast Asia for land clearing 

(Herawati & Santoso, 2011; Medrilzam et al., 2014). However, during the extended 

drought periods in a stronger El Niño (for e.x. 1997, 2006, 2015), the seasonal fires 

gets greatly inflated burning large areas of forests and peatland and causing 

significant GHG emissions (Siegert et al., 2001; Page et al., 2002; van der Werf et 

al., 2008; Field et al., 2016), and health impacts (Marlier et al., 2015; Johnston et al., 

2015).  

Southeast Asia represent world’s third largest tropical forests and contains 

forests with high carbon content and rich biodiversity (Saatchi et al., 2011; Pimm et 

al., 2014). Southeast Asia countries of Indonesia, Malaysia, and Papua New Guinea 

contribute significantly to deforestation (Hansen et al., 2013). Among them, 

Indonesia alone account for large fraction of forest loss and contribute substantially 

towards global carbon emissions (Siegert et al., 2001; Hansen et al., 2013; Harris et 

al., 2012). The rising demands for food, fiber, timber, and other natural resources are 

driving extensive forest loss and forest degradation in the region (DeFries et al., 

2010; Foley et al., 2011; Wilcove et al., 2013). In Indonesia alone, three major 
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industrial plantations, mainly timber, fiber, and oil palm are driving the forest 

conversion process (Abood et al., 2015), taking advantage of decentralized policies 

and weak institutions that protect forests (Jepson et al., 2001; Edwards & Heiduk, 

2015).  

Palm oil from Southeast Asia is used worldwide in large number of products 

(Wahid et al., 2005). In the oil palm sector, the Roundtable on Sustainable Palm Oil 

(RSPO) certification is the most widely adopted certification standard, promoting 

sustainable production and simultaneously reducing the environmental impact of 

palm oil production (RSPO, 2004; RSPO, 2015b; Rachael et al., 2016). Worldwide, 

RSPO has certified 2.83 Mha in oil palm concessions, with Indonesia alone 

representing >50% of certified areas as of 2016 (Potts et al., 2014; RSPO, 2016). 

 

1.5.3 Brazilian Cerrado 

In the 1970s, the Brazilian government introduced various state programmes 

encouraging occupation of Cerrado and lead to deforestation of the region for 

agriculture production and cattle grazing (Marris, 2005; Jepson et al., 2010). In the 

last decade, Amazon forest protection through implementation of soy moratorium and 

stringent environmental regulation has also shifted soy expansion to the Cerrado. 

Today, the Cerrado is the breadbasket of Brazil and is one of the top soy producers in 

the world (IBGE, 2013; IBGE, 2016), following extensive research and 

experimentation to adapt temperature crop varieties for Cerrado soils and climate.  

Recent deforestation rates in the Cerrado biome have reached more than twice as high 

as those in the Amazon basin (Lambin et al., 2013), and soy production is one of the 
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major driver of deforestation (Gibbs et al., 2015; Morton, 2016). 

In the Brazilian Cerrado, landscape changes in recent decades reflect market 

forces, environmental legislation, and industry-led efforts to promote sustainable 

agriculture. Demand for Brazilian soy has risen steadily in the European (Nepstad et 

al., 2011; Garrett et al., 2013) and Asian markets (Godar et al., 2015; Lambin & 

Meyfroidt, 2011; Lathuillière et al., 2014). Besides, conservation efforts in the 

Cerrado biome have received less attention over the years (Marris, 2005; Barreto et 

al., 2013), and with recent rise in cropland expansion (Gibbs et al., 2015), Cerrado’s 

tropical savanna ecosystem is under pressure from both extensification (i.e., large 

scale forest conversion) and intensification of land for agriculture production and 

cattle grazing. Industry-led efforts promote forest protection in alongside soy 

production (Macedo et al., 2012; Nepstad et al., 2014; Gibbs et al., 2015). 

In Brazil, both Soy Moratorium and Forest Code are geared towards reducing 

deforestation in the region (Soares-Filho et al., 2014; Gibbs et al., 2015). The Soy 

Moratorium is an industry-led effort and do not extend beyond Brazilian Amazon, 

whereas the Forest Code is the Brazil’s environmental legislation with specific 

guidelines for legal reserves of natural vegetation on private properties in the Amazon 

and Cerrado. 

 

1.6 Quantifying degradation using remotely sensed data 

 Satellite data support routine monitoring of changes in vegetation productivity 

from land cover and land use change.  Time series of satellite data capture changes in 

land cover, land use, and vegetation productivity in a consistent and repeatable 
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manner. Today, the broad availability of global satellite data products has lowered the 

barriers to effective assessment and conservation of ecosystems, including satellite-

derived estimates of global vegetation productivity (Running et al., 2004b), cropland 

expansion (Gibbs et al., 2015; Morton et al., 2016), fire activity (Giglio et al., 2003; 

Schroeder et al., 2014), and forest loss (Hansen et al., 2013). In general, satellite 

remote sensing alleviates some of the inconsistency and subjectivity in the assessment 

of ecosystem services, as regional or global analyses can target the timing, extent, and 

magnitude of ecosystem changes from human activity.  

Several studies have used temporal Normalized Difference Vegetation Index 

(NDVI) data to assess desertification or land degradation (Prince & Justice, 1991; 

Tucker et al., 1991; Nicholson et al., 1998; Prince et al., 1998; Anyamba & Tucker, 

2005; Olsson et al., 2005; Wessels et al., 2004; Prince et al., 2009). The term “land 

degradation” is preferred over “desertification” as degradation focuses on human 

impacts and avoid any confusion from drought effects (Wessels, 2005). In arid and 

semi-arid regions, annually or seasonally summed NDVI (ΣNDVI) is linearly related 

to NPP (Tucker et al., 1983; Prince, 1991; Tucker et al., 1991; Rasmussen, 1992; 

Fensholt et al., 2006). Changes in NDVI derived from time series of remote sensing 

data could therefore provide the basis for detecting degradation in vegetation 

productivity. 

 The underlying challenge to use NDVI (or derived estimates of net primary 

production, NPP) to detect degradation lies in distinguishing human-induced 

degradation from variability caused by the climate. Several methods have been 

developed to identify human-induced degradation based on persistent reductions in 
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primary production relative to potential productivity under reference environmental 

conditions, such as rainfall, temperature, soil moisture, radiation, etc. (Evans & 

Geerken, 2004; Hirata et al., 2005; Wessels et al., 2007; Prince et al., 2009). These 

methods compare potential NPP—the NPP that would be expected in the absence of 

land utilization by humans—with actual NPP estimated from diagnostic models that 

utilize satellite remote sensing data (Prince, 2002).  

 Remote sensing data also provide information on vegetation carbon stocks 

needed to estimate emissions from deforestation and degradation. Benchmark 

estimates of forest carbon stocks are available for the pan-tropics (Saatchi et al., 

2011; Baccini et al., 2012), based on field measurements and multiple sources of 

remotely sensed data. Satellite-derived estimates of vegetation carbon stocks can be 

combined with satellite data on forest loss, cropland expansion, and active fire 

detections to characterize human driven reductions in forest carbon stocks from 

degradation.  

The combination of satellite remote sensing data is often helpful to capture the 

timing, extent, and transition type (e.g., forest to cropland) needed to attribute carbon 

emissions to specific drivers, such as agricultural expansion.  The use of multiple 

satellite data products can also overcome some of the inherent limitations of moderate 

resolution sensors for land cover and land use change detection.  For example, active 

fire detections from the Moderate Resolution Imaging Spectroradiometer (MODIS) 

instruments on NASA’s Terra and Aqua satellites provide a long time series of fire 

data at 1 km resolution. Higher resolution active fire detections from the Visible 

Infrared Imaging Radiometer Suite (VIIRS) I-band (375m) on the Suomi-National 
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Polar orbiting Partnership (S-NPP) satellite (Schroeder et al., 2014) and 30-m fire 

detections from the Landsat-8 Operational Land Imager (OLI, Schroeder et al., 2015) 

offer a unique way to constrain fire activities within specific management types. 

  

1.7 Research Objectives 

Human modified landscapes amplified by population rise and economic 

drivers are changing the earth’s ecosystem.  In last few decades, the intensity of land 

use and land cover change have increased substantially to meet the global demand for 

food, fiber, and fuel. The fundamental goal of this dissertation is to examine 

ecosystem degradation from human activity and land management on carbon stocks 

and sequestration. Each case study considers the influence of land management and 

specific policy interventions intended to reduce the impact of agricultural use on 

natural systems.  

 

This dissertation targeted three research objectives, with specific research questions 

regarding changes in carbon stocks and sequestration and policy options for climate 

mitigation: 

A. Estimate the reductions in vegetation productivity due to land degradation in 

the southwest United States (Chapter 2) 

1. What are the extent and severity of land degradation in the Southwest 

region of the United States of America (USA)?   

2. Does land ownership and management contribute to differences in 

satellite-based estimates of declining net primary production (NPP)?  
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B. Estimate forest carbon emissions due to cropland expansion in the Brazilian 

Cerrado (Chapter 3) 

3. Do gross forest carbon emissions from cropland expansion in the 

Cerrado biome offset recent reductions in emissions from Amazon 

deforestation?  

4. How do policy interventions in the Brazilian Amazon, including 

Brazil’s Forest Code and the industry’s Soy Moratorium, influence 

cross-biome leakage of cropland expansion in the Cerrado?  

C. Assess fire related forest and peatland conversion for oil palm expansion 

(Chapter 4) 

5. What fraction of forest and peat forest conversion for oil palm in 

Southeast Asia involves the use of fire?  

6. Does certification of oil palm production halt forest conversion and 

fire activity on certified concessions, including during El Niño drought 

conditions?   

 

1.8 Outline of Dissertation 

 This dissertation consists of five chapters. Chapter 1 presents a brief overview 

and conceptual framework to consider the interactions among land cover transitions, 

various drivers of land use and land cover change, and consequences of ecosystem 

degradation as a foundation for the work presented in this dissertation.  

Chapter 2 considers the role of management for ecosystem degradation in the 

southwest United States, a region predominantly utilized for grazing, given a 
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diversity of land management strategies by federal agencies, state agencies, native 

American tribes, and private landholders. Degraded and non-degraded areas were 

compared within the same biophysical strata, or land capability units, to understand 

the resilience and stability of ecosystem under different land management conditions. 

Changes in vegetation productivity were assessed using twelve years (2000 to 2011) 

of Normalized Difference Vegetation Index (NDVI) data derived from NASA’s 

Moderate Resolution Imaging Spectroradiometer (MODIS; 250m). This chapter 

highlights the importance of long time series of satellite data to characterize the 

productive potential of land under different land-use and land management 

conditions.  

  Chapter 3 estimates forest carbon emissions from expanding agricultural 

production in the Brazilian Cerrado. Satellite-derived estimates of forest cover and 

vegetation carbon stocks were combined with cropland expansion data to quantify 

gross forest carbon emissions from cropland expansion. This chapter explores the role 

of policy interventions, market demands, and national circumstances for changing 

land use dynamics in the Cerrado biome.  

 Chapter 4 considers the role of certification for changing dynamics of 

deforestation and fire use in and around oil palm concessions in Southeast Asia. 

Satellite-based estimates of forest cover, forest loss, planted oil palm, and active fires 

were used to estimate the spatial and temporal patterns of fire-driven deforestation 

and total fire activity.  Comparisons among certified, non-certified, and adjacent 

agricultural regions were used to identify the influence of certification on fire-driven 

deforestation dynamics and total fire activity during El Niño drought years.   
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Finally, Chapter 5 summarizes the key findings from Chapters 2-4 and 

outlines potential directions for future research using ecosystem models, new satellite 

data products, and policy and certification approaches that leverage satellite 

monitoring capabilities. 
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 Reductions in productivity due to land degradation in Chapter 2:
the drylands of the southwest United States  
 
2.1 Summary 

Dryland degradation has long been recognized at regional, national and global 

scales, yet there are no objective assessments of its location and severity. An 

assessment of reductions in net primary production (NPP) due to dryland degradation 

in the southwest (SW) U.S.A is reported. The Local NPP Scaling (LNS) approach 

was applied to map the extent and magnitude of degradation. LNS seeks to identify  

reference sites in which there is no degradation that can be used as a standard for 

comparison with other sites that share the same environment, except for degradation. 

Twelve years were analyzed (2000 to 2011), using Normalized Difference Vegetation 

Index (NDVI) data (250 m) from the Moderate Resolution Imaging 

Spectroradiometer (MODIS) satellite-borne multispectral sensor. The results 

indicated that the total NPP reductions in the study area were about 35.9±4.7 Tg C yr-

1, which equates to 0.31±0.04 Mg C ha-1 yr-1. The NPP reductions in grassland-

savanna and livestock grazing areas were large and mostly consistent between years 

in spite of large variations in overall NPP caused by differences in land-use, 

interannual variations in rainfall and other aspects of weather.  In comparison with 

other cover types, forested land generally had higher NPP reduction per unit area. The 

maps also enable attribution of degradation from the finest management units to 

entire agencies - such as the Bureau of Land Management which had 50% less 

production per unit area than U.S. Forest Service. The degradation within Native 

American Land was low with total NPP reduction of about 2.41±0.24 Tg Cyr-1 and 
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unit area reduction of productivity of just 0.21±0.02 Mg C ha-1yr-1, yet the percent 

reduction from potential was in equivalence with other land management agencies.  

 

2.2 Introduction  

Drylands cover 41% of the global terrestrial surface (UNCEDSafriel and 

Adeel (2005)) and nearly 40% of land area in the USA (White & Nackoney, 2003). 

While vegetation in drylands has low biomass and low carbon (C) sequestration per 

unit area, they still store approximately twice the amount of organic C stored in 

temperate forest ecosystems due to their large extent and to their high soil organic 

carbon (SOC) pool (Safriel & Adeel, 2005; Eswaran, 2000).  Lal (2004) and Eswaran 

(2000) estimated that global drylands store about 15% (241 Pg) of the Earth’s total 

SOC. Waltman and Bliss (1997) estimated that about 5% (75-90 Pg C) of the global 

SOC pool is stored in US soils, with 15.3-16.5 Pg alone in grazing lands.  Thus, 

dryland ecosystems are potentially large sinks for atmospheric CO2 and play an 

important role in the terrestrial C balance with feedbacks to climate change (Lal, 

2004; Wohlfahrt et al., 2008). 

Degradation is considered to be one of the major environmental problems in 

drylands (UNCED, 1992; UNCCD, 1994; Goetz et al., 1999; Reynolds et al., 2007a). 

It involves adverse changes in one or more aspects of the biota and their environment, 

loss of species diversity including palatable species, soil erosion and reduced 

biological productivity (Schlesinger et al., 1990; Milchunas & Lauenroth, 1993). 

SOC is a key indicator of soil quality (Brady & Weil, 2010) and reduction is often 

associated with degradation (Lal, 2004, Ardö & Olsson, 2003). Large portions of US 
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drylands are rangelands and management to reduce degradation has been estimated to 

be able to increase SOC by 0.1 - 0.6 Mg C ha-1year-1 (Schuman et al., 2002). When 

the vast areas of rangelands are considered, these rates translate into 43 MMg C yr-1 

(Schuman et al., 2002) addition to the total for USA.  

Despite its significance, the extent and severity of all forms of rangeland 

degradation are still unknown (Lund, 2007), mainly due to the lack of objective, 

practical methods of measurement (Verstraete, 1986; Prince, 2002). The few, 

existing, global maps of desertification (dryland degradation) are based on coarse 

resolution soil maps (Middleton & Thomas, 1997; Eswaran & Reich, 2003) from 

which vulnerability is assessed, but not the actual occurrence of degradation. The 

absence of quantitative maps of the degree of degradation of the world’s drylands is 

universally agreed to be a major hindrance to critical science questions, several 

associated with global change, and for mitigation and prevention of future 

degradation (Chasek et al., 2015).  

Several measurable indicators have been proposed to monitor land 

degradation such as: accelerated soil erosion rates (Stroosnijder 2007) deteriorating 

soil fertility (Batterbury et al., 2002) and long-term and irreversible reductions in 

vegetation cover or production efficiency (Nicholson et al., 1998; Prince et al., 1998; 

Prince, 2002; Batterbury et al., 2002).  Changes in vegetation NPP, which are 

inherently linked to the major processes that lead to degradation (Prince, 2002; 

Safriel, 2007; Nicholson, 2011), can be monitored using repeated satellite 

observations (e.g. Hansen et al., 2003, Myneni et al., 2002, Prince & Goward, 1995, 

Running et al., 2004a).  The underlying challenge to the use of NPP to detect 
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degradation lies in distinguishing human induced degradation from the variability 

caused by the climate and other environmental factors, such as soils, climate, 

vegetation type, rainfall, temperature, and others (Prince, 2015), all of which can also 

reduce NPP. Several studies have attempted to identify land degradation by long term 

and persistent reductions in NPP below the potential set by the environmental 

conditions, in the absence of land degradation caused by humans (Prince et al., 1998; 

Prince, 2002; Evans & Geerken, 2004; Hirata et al., 2005; Wessels et al., 2007; Wylie 

et al., 2012; Prince et al., 2009; Reeves & Baggett, 2014). In the present study, a 

reference NPP was estimated using the LNS method (Prince, 2004; Prince et al., 

2009). 

The objectives were to quantify and map the extent and severity of loss of 

production in the SW of the USA, having first normalized the effects of long and 

short-term natural environmental factors. The basis of LNS is to stratify the land into 

homogeneous regions, called land capability classes (LCCs), within which, in the 

absence of degradation, productivity can be expected to be the same throughout. The 

potential NPP is estimated for each LCC using the maximum NPP, which is then 

compared with all other parts of the LCC. Any deficits of NPP are regarded as 

possible cases of anthropogenic degradation. 

 

2.3 Materials and Methods   

2.3.1 Study area  

The study was conducted in the SW US based on the Southwest Regional 

Sequestration Partnership (SWRP) and the Regional Sequestration Partnership 
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Program of the U.S Department of Energy (US-DOE, 2003) (Figure 2.1). It consisted 

of New Mexico (NM), Utah (UT), Colorado (CO), parts of Arizona (AZ), west Texas 

(TX), Oklahoma (OK), Kansas (KS), and Nebraska (NE). The vegetation is diverse, 

ranging from desert in the west, changing successively to bush, grassland, savanna, 

and short grass prairie eastwards as summer rainfall increases. Land uses include 

extensive ranching on public land principally managed by the Bureau of Land 

Management and the U.S Forest Service, large areas of Native American reserves, 

large preserves of various types, some irrigated and dryland farming and small areas 

of exurban development.  

 

 

 

Figure 2.1: (a) Study region and (b) National Land Cover Database (2006) land  

 

Land cover: The National Land Cover Database (NLCD; Fry et al., 2011) was 

used to provide land cover information at 30m resolution to identify areas belonging 

to the NLCD classes: Evergreen forest, Deciduous forest, Mixed forest, Shrubland, 

Texas

Utah

Arizona

Colorado

New Mexico

Kansas

Mixed Forest

Shrubland

Herbaceous

Deciduous Forest

Evergreen Forest
State/Private Lands

Federal Lands

Indian Reservat

a b

ion



 

 30 

and Herbaceous, for the year 2006.  Ideally, yearly land cover data would be used, but 

these were not available. All other land cover classes such as water, developed, 

barren, planted/cultivated, and wetlands were excluded from the analyses. 

Soils: Eight interpretive soil land capability classes from the U.S. Department 

of Agriculture (USDA) Natural Resources Conservation Services (NRCS) State Soil 

Geographic (STATSGO) soil database (NRCS, 2007) based on use limitation (e.g., 

soil depth, SOC, texture, erosion risk, slope, porosity, etc.) were used.  

Meteorology:  Meteorological information of annualized precipitation totals, 

yearly average maximum and minimum temperatures and the dew point at 4km 

resolution were obtained from the Parameter-elevation Regressions on Independent 

Slopes Model (PRISM; Daly et al., 2002) data sets.  

Elevation : The United States Geological Survey (USGS) Shuttle Radar 

Topography Mission (SRTM; Farr et al. 2007) 90m digital elevation model (DEM) 

was used to provide topographic information.  

Slope: The slope was calculated from the USGS SRTM 90m DEM and areas 

having slopes > 15% were excluded to minimize the presence of natural erosion 

which is more common on steeper slopes. 

Aspect: Slope and azimuth were combined in “southness” (Franklin et al., 

2000) in order to represent different exposure to the sun in one index. 

Riparian vegetation: Riparian land, although small compared to the typical 

LCC, is usually very different from the neighboring land. These were excluded using 

a stream map and a buffer, the width of which was adjusted to the flow-accumulation 

of the waterway, as available in HydroSHEDS (Lehner et al., 2008). Pixels with >450 
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upstream contributing pixels were buffered using an exponential relationship based 

on number of contributing streams. The width was varied from 200m (at 450 

contributing pixels) to 1500m maximum. In addition, the National Wetland Inventory 

(NWI; Cowardin et al., 1979; Cowardin & Golet, 1995) dataset was used to mask the 

wetlands and surface water bodies. 

Land use and land management: Croplands were masked using 2012 USDA 

National Agricultural Statistical Statistics Service (USDA-NASS, 2012) cultivated 

data layer (CDL). The Terrestrial Protected Areas of North America dataset (CEC, 

2010) was used to identify areas managed by the Bureau of Land Management 

(BLM), U.S. Forest Service (USFS), Native American Land (NAL), National Park 

Service (NPS), Department of Defense and Energy (DOD-DOE), and State Land 

Board (SLB). 

Roads: Roads and other paved areas were identified from the National Atlas 

dataset (USGS, 2004) and masked, together with one pixel on each side to create a 

750m-wide buffer to exclude verges and disturbed land associated with roads.  

NDVI: It is now generally accepted that light use efficiency models (LUE) 

forced with multi-temporal NDVI data can be used to map terrestrial gross primary 

production (Tucker et al., 1985; Prince, 1991; Rasmussen, 1992; Running et al., 

1999; Running et al., 2004a). However, in arid and semi-arid regions, annually or 

seasonally summed vegetation indices (e.g. NDVI, Enhanced Vegetation Index; EVI) 

themselves, without the added complexity of light use efficiency, have also been 

found to be adequate since they are linearly related to primary production (Fensholt et 

al., 2006; Sjöström et al., 2011). This simplification has the advantage of eliminating 
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the additional errors in the variables needed for a full LUE models. Thus NDVI was 

used as a proxy for NPP (Prince & Justice, 1991; Tucker et al., 1991; Nicholson et 

al., 1998). Yearly averages of MODIS NDVI (MOD13Q1), 250m, 16-day data for 

2000-2011 were used to calibrate the NDVI values in NPP units. 

 

2.3.2 Land capability classification 

Every dataset used, including the annualized precipitation totals, the yearly 

averages of maximum and minimum temperature and dew point were geographically 

registered to match the resolution and grid of the MOD13Q1, 250m x 250m data. The 

following steps were used to define the LCCs.  i. Potential errors caused by 

inadequate classification were minimized by removing small patches with extreme 

low or high NPP that were unrepresentative of their LCC: these included areas such 

as riparian strips, small wetlands, cropland, roads and settlements. A very 

conservative approach was used, by adding buffers around such features.  The 

excluded areas were combined to a single mask and applied to all input datasets. ii. 

The digital elevation and meteorological datasets were normalized to zero mean and 

unit variance before unsupervised classification of the pixels using ISODATA 

clustering algorithm (Ball & Hall, 1967). Unsupervised classes were derived with a 

stopping criterion of one hundred iterations and a convergence factor of 0.975. The 

class numbers were chosen to be arbitrarily large to maintain spatial heterogeneity 

and also to constrain the influence of residual environmental factors on productivity. 

iii. The unsupervised classes were intersected with land cover, soil, and land 

management maps. The final number of classes after intersection was between 3000 
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and 5000. iv. For each year, two LCC maps were generated, one based on 

unsupervised classes, soil, and land cover (UMD) and the other (UMDLM) with the 

land management agency added (federal public lands only). Both LCC maps were 

different for each year because of the differences in annual meteorological variables, 

but the land cover, land management, and soil information were assumed to be the 

same for all years. v. The LCCs were assessed by estimating the extent to which they 

reduced the correlation between the environmental factors that were used in their 

creation.  

In addition to UMD and UMDLM maps, two existing land stratifications were 

analyzed and compared with the UMD LCCs: i. USDA common resource area 

(USDA-CRA, 2004). ii. USGS-GAP National Land Cover data (USGS, 2011), which 

shows both vegetation and land use.  

 

2.3.3 Local NPP Scaling 

A reference or maximum NDVI of each LCC was estimated by finding the 

85th percentile of the frequency distribution of yearly average NDVI (Figure 2.2). The 

effect of unrepresentative, highly productive pixels was thus reduced (Prince et al., 

2009). The 85th percentile was an arbitrary cut-off. Reductions were quantified by 

subtracting the actual NDVI from the reference value. The reduction in productivity, 

therefore, was relative to a reference or standard against which degradation within its 

LCC was assessed (Prince et al., 2009). The yearly LNS maps of the differences 

between actual and reference NDVI were expressed in terms of the reduction of NPP 

(in Mg C ha-1 yr-1) compared with the reference. The reference NDVI identified using 
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85th percentile threshold within each LCC was matched with the yearly MODIS NPP 

product (MOD17A3; Running et al., 2004a), resampled at 250m resolution, to 

calibrate the NDVI data with NPP. The relative NPP reductions within a LCC were 

therefore in NPP units.  

 

 

 

Figure 2.2: Schematic diagram of the procedures used to define LCCs and create LNS 
maps 

 

LNS maps were made for each year using the appropriate annual UMD and 

UMDLM LCC classifications and also from the USDA-CRA and USGS-GAP maps. 

Thus there were 12 UMD LNS maps, taking account of weather differences between 

years; however the USDA-CRA and USGS-GAP LCCs maps were the same for all 

years.  
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It is important that the reference NDVI pixels are representative of the LCC 

for which they were selected. The extent to which this was achieved was determined 

by. i. Visual comparison with Google Earth (GE, 2014), high resolution (<4m), true 

color imagery. Although visual interpretation is subjective, the GE images were 

adequate to detect differences between the detailed land cover of the reference pixels 

and their LCC. 100 reference locations were selected using a stratified random 

sampling in each NLCD land cover type, and a binary decision of good/bad reference 

was made. ii. Very low LNS values were checked with GE to eliminate land cover 

that was not typical of the LCC (e.g. unmasked wetland, unmapped settlements). iii. 

The relationships of reference NDVI and environmental variables used to create the 

LCCs were analyzed in a one-way ANOVA to determine by how much the within LC 

variance had been reduced in the classification. iv. To determine the efficiency of 

classification to group separate classes, the variability in reference NDVI across the 

full range of LCCs was analyzed by calculating the increments of NDVI between 

pairs of LCCs ranked by NDVI.   

The UMD, USDA-CRA and USGS-GAP LNS maps were compared 

numerically. The comparison used a “fuzzy numerical” extension (Hagen-Zanker et 

al., 2006) of the simple, binary, pixel-by-pixel kappa (ҡ) test (Cohen, 1960) by using 

continuous LNS data and weighted values for spatially close mismatches, which often 

arise in map comparisons. Kappa was calculated for both entire maps (ҡ) and, in 

order to visualize the spatial distribution of differences, for individual pixels (ҡ).  
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Figure 2.3: The UMD, UMDLM, CRA and GAP LCC maps. For UMD and UMNLM 
there were 12 LCC maps, one each year. The 2010 maps are shown. (a) UMD LCCs 
created from the intersection of unsupervised classes, soil, and land cover. (b) 
UMDLM which added land management to the UMD classification. (c) USDA-CRA. 
(d) USGS-GAP. The black areas are excluded land cover and land management types. 
Owing to the large number of classes in UMD and UMDLM, only a representative 
subset illustrating the spatial heterogeneity is presented.  Colors were assigned 
arbitrarily and do not indicate the same classes across all four maps. 
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2.4 Results 

2.4.1 Land Capability Classification 

 UMD and UMDLM classifications were made for each year. Examples of one 

year are shown in Figures 2.3-a & 2.3-b. The number of classes varied between years: 

in the UMD the average was approximately 5000 and, for UMDLM, 3000.  The CRA 

and GAP maps (Figures 2.3-c & 2.3-d) differed from the two UMD LCC maps in two 

respects: i. CRA had 89 and GAP 152 LCCs - many fewer than UMD classifications 

and therefore less able to discriminate differences in land capability; ii. the 

classifications were created without consideration of interannual changes. Few of the 

CRA or GAP LCCs coincided with either of the UMD classifications. 

The majority of the UMD LCCs were in the NLCD Shrubland, Herbaceous, 

and Evergreen Forest vegetation classes, since these cover about 97% of the study 

region. The UMD LCCs were distributed across most of the elevation, precipitation, 

temperature, and dew point gradients. However, at higher elevations, some LCCs 

consisted of pixels with a wide range of “southness” values while, at lower elevation, 

about 10% were confined to narrower ranges of values. The frequency distributions 

of numbers of LCCs along the environmental variables used to derive the two UMD 

classifications all had strong central tendencies, varying degrees of skewness, and 

some slight irregularities in the numbers of LCCs in adjacent classes, reflecting 

unevenness of the occurrence of different environments in the study area. 

 

2.4.2 Local NPP Scaling 
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Using the high resolution GE imagery, the assessment of the extent to which 

the reference pixels were the same as the rest of the pixels in its LCC showed that, of 

the 100 reference pixels examined in each land cover type, the agreement was >94% 

(95% confidence limits 82 & 95). The agreement in LCCs for three of the major land 

cover types (Evergreen Forest, Shrubland, and Herbaceous) was higher, >98% (95%  

confidence limits 96 & 100). Therefore, the reference pixels were judged, albeit 

visually, to be adequately representative of their respective LCCs. 

The reference NDVI values of UMD LCCs were positively correlated with 

precipitation (r >0.8) and dew point (r<0.4) across all LCCs. Correlations with 

precipitation were even higher (r>0.8) within individual land cover types than for all 

types together, except for Deciduous (r<0.3). The correlations with dew point were 

higher in Shrubland and Herbaceous (r>0.7) than across all cover types (r<0.4). The 

one-way ANOVA found differences in reference NDVI and their environmental 

variables: the relationships of reference NDVI and the environmental variables were 

significantly different (p<0.001) between land cover types; surprisingly, the reference 

NDVI and the environment variables in the land managed by different agencies 

(BLM, USFS, NAL, NPS, DOD-DOE, and SLB) were also significantly different 

(p<0.0001).  There were strong correlations between two groups of environmental 

variables: elevation with all three temperature variables; and among the three 

temperature variables. 

A LCC classification is successful if the classes have different potential NDVI 

values and is most efficient when the reference NDVI values are equally spread over 

the full range. For the two UMD classifications, the increments in reference NDVI 
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across the entire range of values were almost equal except for the extreme low and 

high classes, but were highly variable in the CRA and GAP classifications. However, 

it should be recalled that the UMD LCCs were derived from a set of environmental 

variables that could be expected to be good predictors of potential NDVI, unlike the 

CRA and GAP classification.  

 

 
 
Figure 2.4: LNS maps for (a) UMD and (b) UMDLM expressed as NDVI units. Blue 
areas (0) are at their reference condition and therefore interpreted as not degraded 
while other colors show reductions below the reference condition. Black areas are 
masked land cover, land use types, roads, riparian buffers and slope >15% that were 
excluded from the study. Note, the panel b is for federal public lands only.  

 

The LNS maps derived from the UMD and UMDLM LCCs were nearly 

identical (Figure 2.4), but the USDA-CRA and USGS-GAP maps were noticeably 
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GAP map comparisons were low (ҡ = 0.521, 0.495, and 0.484 respectively). The 

maps of differences in individual pixels between each pair of classifications (UMD, 

USDA-CRA, and USGS-GAP LNS), measured by  ҡ, showed that the two UMD 

maps were similar, but both comparisons of UMD with  USDA-CRA and USGS-

GAP LNS maps were very different. Since the UMD LNS maps were different from 

USDA-CRA and USGS-GAP LNS maps, we used the UMD LNS maps to summarize 

the NPP reductions within the CRA and GAP classes (Tables 2.3 & 2.4). 

The mean LNS and interannual variations differed between land cover types 

(Figure 2.5). Comparisons of the 12-year average UMD LNS maps with high spatial 

resolution imagery showed many examples of correspondence of LNS with obvious 

ground conditions that can be expected to cause differences in LNS. Furthermore, the 

visual assessments showed that all the maps had some generally coherent groups of 

similar LNS values, mostly related to mountainous areas, rather than a speckle of 

pixels with different LNS. 

The average LNS values in active and abandoned mining areas were very low 

(i.e. large deficits from reference, low –ve LNS values) and had low interannual 

variability (i.e. low coefficient of variation; CV) showing clear signs of permanent 

reduction. The interannual average LNS values of grassland and savanna were high 

(i.e. small negative deficits from reference), and their CVs was high (Figure 2.5-c2), 

indicating strong interannual variability in absolute LNS (g C ha-1 yr-1), which is 

expected since precipitation plays an important role in these ecosystems (e.g. Figure 

2.5-b3) and annual precipitation totals are high variable. High variability in LNS was 
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also observed around the watering points within the grazing allotments (Figure 2.5-

c4), however, the average LNS values in these areas remained high (Figure 2.5-b4).  

 

Figure 2.5: Examples of LNS calculated using UMD LCCs representing different 
levels of degradation. a1 – 5 high spatial resolution true-color image (ESRI 2014); 
b1–5 the LNS map (average of 2000-2011); and c1 – 5 the interannual coefficient of 
variation (12-years). Black pixels in LNS and CV maps are areas excluded from the 
analyses. 
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2.4.3 Reduction in net primary production in degraded areas 

The twelve year (2000-2011) average reduction of productivity varied 

between cover types (Table 2.1). The total reduction of 35.88±4.72 Tg C yr-1 (11.80% 

below potential) and per unit area reduction of 0.31±0.04 Mg C ha-1 yr-1 among land 

cover types was largely due to reductions in Shrubland and Herbaceous cover types 

(17.20±2.02 and 10.02±1.88 Tg C yr-1). 

 

Table 2.1: Average (2000-2011) NPP reductions in land cover types  

 

Land Cover Type 
(NLCD) 

NPP reduction 
per unit area 
(Mg C ha-1 yr-1) 

Land 
Area 
(%) 

Total NPP 
reduction  
(Tg C yr-1) 

Percent reduction 
from potential 
(%) 

Shrublands 0.27±0.03 54.96 17.20±2.02 12.30 
Herbaceous 0.28±0.05 30.46 10.02±1.88 9.93 
Evergreen Forest 0.51±0.07 12.66 7.53±0.99 12.78 
Deciduous Forest 0.50±0.08 1.7 0.98±0.15 11.01 
Mixed Forest 0.56±0.10 0.22 0.14±0.03 13.00 

Total 0.31±0.04 100 35.88±4.72  
Notes: Reductions are the summed differences between each pixel and its reference, 
averaged across the twelve years with ± one standard deviation  
 

The results were also tabulated for the six agencies with the largest land 

holdings in the study area (Table 2.2). Each agency has a different mix of land cover 

types and size, so direct comparisons between them is only useful, for example, to 

inform policies and capacities for changes in C sequestration for an overall agency. 

The total reduction of productivity among land management types was 15.25±1.61 Tg 

C yr-1, 12.53% below potential. Three agencies (BLM, USFS, and NAL) together 

occupy about 91% of the land which accounted for a reduction of 14.38±1.5 Tg C yr-

1. The USFS area (24.98%) contributed 6.69 Tg C yr-1, much higher than BLM even 



 

 43 

though the land managed by BLM is approximately twice the USFS. The unit area 

reduction of productivity was highest for USFS (0.56±0.07 Mg C ha-1 yr-1) and lowest 

for DOD-DOE (0.15±0.03 Mg C ha-1 yr-1).  NAL with similar land area (23.62%) as 

USFS accounted for just 2.41 Tg C yr-1 reductions, clearly indicating lower 

productive potential. Although, the reduction expressed as a percentage of the 

potential was similar to the other agency lands (Table 2.2). 

 

Table 2.2: Average (2000-2011) NPP reductions in federal agencies with largest 
holdings 

Land Management Agency 
NPP reduction 
per unit area 
(Mg C ha-1 yr-1) 

Land 
Area 
(%) 

Total NPP 
reduction 
(Tg C yr-1) 

Percent 
reduction from 
potential 
(%) 

Bureau of Land Management 
(BLM) 

0.26±0.03 42.48 5.30±0.54 11.06 

Forest Service (USFS) 0.56±0.07 24.98 6.67±0.82 12.41 
Native American Land 
(NAL) 

0.21±0.02 23.62 2.41±0.24 9.60 

National Park Service (NPS) 0.18±0.02 3.19 0.27±0.03 8.51 
Department of Defense 
(DOD)   
and Department of Energy 
(DOE) 

0.15±0.03 3.17 0.23±0.04 7.71 

State Land Board (SLB) 0.31±0.05 2.57 0.37±0.06 9.90 
Total 0.32±0.03 100 15.25±1.61  

Notes: Reductions are the summed differences between each pixel and its reference, 
averaged across the twelve years with ± one standard deviation  
 

Forested land had the highest NPP per unit area and hence capacity for 

reduction by degradation, so the high reference NDVI and the large area of USFS 

land explains its high total reduction. In comparison with USFS, BLM had 50% less 

production per unit area, probably because of the small forest component (13%) and 

the rest occupied by Shrublands (87%), which had lower reference productivity. NAL 
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had similar land cover as BLM but a slightly lower NPP reduction per unit area. The 

NPS and DOD-DOE lands had the lowest per unit area reduction.  

Of the 89 CRAs in the study region, only 36 occupy more than 1% of land 

area (Table 2.3). Shrubland and Herbaceous account for about 85%.  Five CRAs 

(codes 35.60, 36.10, 39.10, 47.20, 48A.1) were >50% forested and the rest were 

dominated by Shrubland-Herbaceous. The average annual reduction of NPP in the 36 

CRAs was 30.68±3.97 Tg C yr-1, the highest being in CRA code 48A.1 with a 

reduction of 3.75±0.56 Tg C yr-1. The CRAs that are predominantly coniferous tree 

had the highest per unit area reduction of all the CRAs.  

The Colorado Plateau CRAs occupied the largest land area (14.86%) in the 

study region. Although their combined NPP reduction was large (4.64±0.54 Tg C yr-

1), the unit area reduction of productivity in each CRA was relatively small. The 

Chihuahuan Desert Shrubs (42.20) and Grassland (42.30) together accounted for the 

second largest area (10.73%). They also had small NPP reduction (about 0.21±0.06 

Mg C ha-1 yr-1). Another small NPP reduction per unit area was in the Central 

Rolling Red Plains, Eastern (78C.1) and Western parts (78B.1), areas that have 

distinctive rangeland vegetation and are widely used for livestock grazing.  

There are 152 GAP land cover types in the study region, of which only 26 occupy 

>1% land area (Table 2.4). The NPP reduction per unit area was generally smaller 

than for the CRA classification, except for a few coniferous woodland areas, but their 

differences in area made up for the difference. The largest area (13.37%) is occupied 

by Western Great Plains Shortgrass Prairie (code 7310) which had the highest total 

NPP reductions (4.10±0.78 Tg C yr-1), followed by the Colorado Plateau Pinyon 
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Table 2.3: Average (2000-2011) NPP reductions in the USDA-Common Resource Areas 

 

Common Resource Area (CRA) CRA 
Code 

NPP reduction 
per unit area       
(Mg C ha--1 yr-1) 

Land 
Area 
(%) 

Total NPP 
reduction 
(Tg C yr-1) 

Colorado Plateau         
- Irrigated Cropland 35.10 0.32±0.04 5.73 2.16±0.28 
- Shrub - Grasslands 35.20 0.22±0.03 4.89 1.27±0.15 
- Sagebrush - Grasslands 35.30 0.24±0.05 3.24 0.89±0.20 
- Pinyon - Juniper - Sagebrush 35.60 0.27±0.05 1.00 0.32±0.06 

Southwestern Plateaus, Mesas, and Foothills 
    - Cool Subhumid Mesas and Foothills 36.10 0.51±0.08 1.03 0.61±0.09 

- Warm Semiarid Mesas and Plateaus 36.20 0.38±0.06 2.70 1.19±0.18 
Mogollon Transition 

    - Lower Interior Chaparral 38.10 0.17±0.03 1.88 0.36±0.06 
- Interior Chaparral - Woodlands 38.20 0.28±0.05 1.36 0.45±0.08 

Mogollon Plateau Coniferous Forests 39.10 0.44±0.08 2.33 1.19±0.21 
Sonoran Desert 

    - Upper  40.10 0.17±0.06 1.34 0.27±0.09 
- Middle 40.20 0.17±0.05 1.20 0.23±0.07 

Chihuahuan  
    - Sonoran Semidesert Grasslands 41.30 0.20±0.05 1.64 0.38±0.10 

Chihuahuan Desert 
    - Shrubs 42.20 0.22±0.06 4.98 1.27±0.33 

- Grassland 42.30 0.21±0.06 5.75 1.38±0.37 
Wasatch and Uinta Mountains 

    - Low Mountains and Foothills 47.10 0.53±0.09 1.13 0.69±0.12 
- High Mountains 47.20 0.74±0.14 2.10 1.81±0.34 

Southern Rocky Mountain Foothills 49.10 0.38±0.06 1.65 0.73±0.11 
Upper Arkansas Valley Rolling Plains 69.10 0.30±0.07 2.75 0.96±0.21 
Central High Tableland 72.10 0.33±0.10 2.38 0.90±0.26 
Great Salt Lake Area 

    - Sagebrush Basins and Slopes 28A.1 0.26±0.05 2.78 0.84±0.15 
- Shadscale - Dominated Saline Basins 28A.3 0.24±0.07 1.53 0.42±0.13 

Cool Central Desertic Basins and Plateaus  
    - Green River Basin 34A.1 0.46±0.06 1.12 0.60±0.08 

Warm Central Desertic Basins and Plateaus 
    - Semiarid Plateaus and Low 

Mountains 34B.1 0.35±0.04 1.46 0.60±0.06 
- Uncompahgre and Grand Valleys 34B.2 0.39±0.06 1.07 0.49±0.08 

Southern Rocky Mountains  
    - High Mountains and Valleys 48A.1 0.68±0.10 4.73 3.75±0.56 
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Central Great Plains, Southern Part 67B.1 0.29±0.07 2.66 0.89±0.20 
Northern New Mexico Highlands 70A.1 0.26±0.06 2.67 0.81±0.19 
Central Pecos Valleys and Plains 70B.1 0.21±0.05 2.38 0.59±0.15 
Central New Mexico Highlands 70C.1 0.25±0.05 2.90 0.85±0.16 
High Plains 

    - Northern Part 77A.1 0.25±0.08 1.07 0.31±0.10 
- Cotton Belt 77C.1 0.22±0.09 1.07 0.28±0.11 
- Southwestern Part 77D.1 0.16±0.05 1.70 0.32±0.10 
- Northeastern Part 77E.1 0.24±0.08 2.21 0.61±0.19 

Rolling Red Plains 
    - Western Part 78B.1 0.25±0.08 3.31 0.96±0.31 

- Eastern Part 78C.1 0.29±0.09 2.89 0.97±0.29 
Western Edwards Plateau 81A.1 0.23±0.06 1.38 0.36±0.10 

Notes: 36 USDA-CRAs that occupy more than 1% of the study area are reported. 
Average reductions with ± one standard deviation were calculated using the UMD 
LNS, expressed in NPP units.  
 

Juniper Woodland (code 4512) with a reduction of 3.28±0.45 Tg C yr-1. While this 

land cover type occupies nearly 40% less area than Western Great Plains Shortgrass 

Prairie (code 7310), it still had large NPP reductions. Furthermore, in comparison 

with Western Great Plains Shortgrass Prairie, the Colorado Plateau Pinyon-Juniper 

Woodland had higher NPP reductions per unit area (0.35±0.05 Mg C ha-1 yr-1), largely 

due to the dominance of Pinyon-juniper woodlands. Similarly, the Ponderosa Pine 

Woodland and Pinyon-Juniper Woodland in the Southern Rocky Mountain range, 

mostly with coniferous vegetation, exhibited relatively high NPP reduction per unit 

area (0.40±0.07 Tg C ha-1 yr-1). Among the 26 GAP land cover types, the Inter-

Mountain Basins Montane Sagebrush Steppe, had higher unit area reduction of 

productivity (0.72±0.11 Mg C ha-1 yr-1) than land cover types dominated by 

coniferous vegetation. Interestingly, the Sonoran Paloverde-Mixed Cacti Desert Scrub 

had low NPP reduction per unit area (0.16±0.05 Mg C ha-1 yr-1). 
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Table 2.4: Average (2000-2011) NPP reductions in the USGS-GAP land cover 
classes 

 

Land Cover (USGS-GAP) Class 
Code 

NPP reduction 
per unit area 
(Mg C ha-1 yr-1) 

Land 
Area 
(%) 

Total NPP 
reduction 
(Tg C yr-1) 

Western Great Plains Shortgrass Prairie 7310 0.26±0.05 13.37 4.10±0.78 
Western Great Plains Sandhill Steppe 5301 0.25±0.08 3.17 0.91±0.28 
Western Great Plains Mesquite Woodland and 
Shrubland 

5810 0.26±0.08 3.80 1.17±0.35 

Southern Rocky Mountain Ponderosa Pine 
Woodland 

4530 0.40±0.07 3.77 1.76±0.31 

Southern Rocky Mountain Pinyon-Juniper 
Woodland 

4534 0.42±0.07 1.28 0.62±0.10 

Southern Rocky Mountain Juniper Woodland 
and Savanna 

5606 0.25±0.05 1.08 0.31±0.07 

Sonoran Paloverde-Mixed Cacti Desert Scrub 5213 0.16±0.05 1.94 0.35±0.10 
Sonora-Mojave Creosotebush-White Bursage 
Desert Scrub 

5207 0.22±0.05 1.35 0.34±0.08 

Madrean Pinyon-Juniper Woodland 4518 0.26±0.04 1.61 0.49±0.07 
Introduced Upland Vegetation - Perennial 
Grassland and Forbland 

8407 0.22±0.05 1.23 0.31±0.08 

Introduced Upland Vegetation - Annual 
Grassland 

8404 0.22±0.05 1.11 0.28±0.06 

Inter-Mountain Basins Semi-Desert Shrub 
Steppe 

5309 0.33±0.03 4.08 1.57±0.14 

Inter-Mountain Basins Semi-Desert Grassland 7305 0.31±0.04 2.94 1.06±0.13 
Inter-Mountain Basins Montane Sagebrush 
Steppe 

5308 0.72±0.11 1.55 1.29±0.19 

Inter-Mountain Basins Mixed Salt Desert 
Scrub 

5205 0.29±0.04 2.69 0.91±0.11 

Inter-Mountain Basins Greasewood Flat 9810 0.29±0.03 1.12 0.37±0.03 
Inter-Mountain Basins Big Sagebrush 
Shrubland 

5706 0.38±0.04 3.86 1.71±0.18 

Great Basin Pinyon-Juniper Woodland 4514 0.33±0.11 1.05 0.40±0.13 
Colorado Plateau Pinyon-Juniper Woodland 4512 0.35±0.05 7.99 3.28±0.45 
Colorado Plateau Mixed Bedrock Canyon and 
Tableland 

3218 0.28±0.05 1.02 0.33±0.05 

Colorado Plateau Blackbrush-Mormon-tea 
Shrubland 

5803 0.16±0.04 1.12 0.21±0.05 

Chihuahuan Mixed Desert and Thorn Scrub 5212 0.21±0.06 2.15 0.53±0.15 
Chihuahuan Creosotebush, Mixed Desert and 
Thorn Scrub 

5201 0.23±0.05 4.27 1.16±0.25 

Central Mixedgrass Prairie 7302 0.26±0.08 3.50 1.07±0.34 
Apacherian-Chihuahuan Semi-Desert 
Grassland and Steppe 

5303 0.23±0.05 4.89 1.32±0.26 

Apacherian-Chihuahuan Mesquite Upland 
Scrub 

5211 0.18±0.05 4.09 0.85±0.22 
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Notes: 26 USGS-GAP land cover classes that occupy more than 1% of the study area 
are reported. Average reductions with ± one standard deviation were calculated using 
the UMD LNS, expressed in NPP units.  
 

2.5 Discussion 

In general, the twelve-year average UMD LNS map (Figure 2.4) indicated 

widespread, large reductions in productivity compared with their reference 

conditions. NPP reductions also varied between different land cover and land 

management types. NPP reduction per unit area was high for all areas of forest cover, 

possibly due to insect damage, diseases, fire and managed clearing (Floyd et al., 

2009; Heath et al., 2011; Hicke et al., 2012; Anderegg et al., 2013). In the Shrubland 

and Herbaceous NLCD vegetation classes, the NPP reduction per unit area was 

relatively low, but they occupy nearly 85% of the study region and therefore, in total, 

contribute large reduction of potential NPP.  

Livestock grazing allotments showed similar patterns to grassland-savanna 

with large areas of small reductions below potential, but with high interannual 

variability. Overgrazing is often stated to be one of the key drivers of land 

degradation, associated with alterations in ecosystem structure (Asner et al., 2004) 

and soil erosion, both of which may lead to steep decline in forage production 

(Pellant et al., 2005). In addition, Holechek et al. (1995) and Ganskopp (2001) have 

demonstrated strong association between water availability and forage utilization. 

Higher utilization can be observed around the cattle drinking locations within the 

grazing allotments as noted elsewhere (Pickup et al., 1998; DelCurto et al., 2005), 

including utilization by livestock in riparian areas (Bear et al., 2012; Dalldorf et al., 

2013) which are, however, generally masked in the LNS procedure. The high 
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interannual variability in the LNS around the watering points may be indicative of 

deliberate management of livestock access to water. 

The LNS maps have some sharp boundaries between degraded and less-

degraded land associated with human activities (Figure 2.5) especially at the edges of 

active and abandoned mining and oil extraction facilities, across fences between 

neighboring grazing allotments and at the edges of forest clearings. Such abrupt 

differences across boundaries are not surprising given the role of human management 

in degradation. While many LNS values were low each year, interannual variability in 

LNS could be caused by changes in land-use, such as livestock grazing and fire which 

were not used in the creation of LCCs.  

The classification into LCCs with uniform environmental variables is a critical 

step since they are a basis for comparisons between degraded and non-degraded, 

reference sites. Without such reference sites, any statement of degradation can simply 

be differences, for example, in rainfall, soil or other irrelevant factors and therefore 

have little meaning. A good example is the Native American reserves in the Four 

Corners district which are generally considered to be extreme cases of degradation, 

attributed to poor management. On the contrary, the LNS results reported here found 

that the reserves have a low reference potential and are therefore not degraded in the 

sense that it is used here. 

 There is a long history of conceptually similar land evaluation (FAO, 1976; 

McRae & Burnham, 1981), however, these are developed for specific purposes, such 

as evaluation of land for new forest plantations or suitability for the passage of heavy 

vehicles. In the case of LNS, the criterion for an LCC is an area in which productivity 
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would be equal throughout, unless there is some other factor such as degradation 

present. The environmental variables used were selected to represent the chief 

controlling factors of NPP in the study region and that were available in maps with 

adequate spatial and temporal resolutions. Precipitation is the major environmental 

factor that controls productivity in the arid and semi-arid regions (Noy-Meir, 1973; 

Graetz et al., 1988) but the effects of precipitation can be significantly more complex 

than the annual totals used here can specify. Changes in the frequency and seasonal 

distribution of precipitation may alter the vegetation response at critical times in the 

life-cycle (Knapp et al., 2008) and could influence the vegetation more strongly than 

annual totals (Ojima et al., 1993; Graetz et al., 1988).  

While more functional metrics could be included in the creation of the LCCs, 

the selection depends on having the necessary data. Naturally, the more variables 

relevant to NPP that are included in the creation of LCCs, the better their 

homogeneity. Process models that convolve the controlling factors in a more 

mechanistic representation of NPP than a statistical model, as used here, could yield 

better LCCs, but most process models need more data and parametrizations than were 

available at the scale of this study. Nevertheless, progress in LCC development using 

mechanistic NPP models is an obvious way forward.  

There are various reasons why LNS may not indicate land degradation. For 

example, if important factors that affect the potential NPP are not included in the 

LCC step, differences in LNS may be a reflection of the differences in potential rather 

than degradation.  Another is if any areas that are not representative of the LCC, such 

as wetlands and riparian areas are inadvertently included. Yet another is, if there are 
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no pixels in an LCC at their potential production, the LNS values will indicate less 

degradation than is the case. However, in spite of these shortcomings, the only other 

methods available at present involve direct field measurement of NPP, which is 

impossible for areas larger than a few km2, or a mechanistic productivity model. 

However, adequate parameterization and forcing data to resolve differences in NPP at 

a scale that is relevant to the typical areas of anthropogenic degradation is not 

possible. Given these circumstances, LNS is used here, in the knowledge of its 

limitations.  

The reductions of the potential NPP that are revealed by LNS can have many 

causes in addition to degradation. These include any natural conditions (e.g. natural 

erosion) or management (e.g. application of fertilizers) that affect NPP but are not 

normalized in the classification into LCCs. Since these factors are difficult to 

normalize, the role of LNS is to identify, map and assess the severity of reductions in 

LNS, but the causes require further interpretation. This may involve further remote 

sensing or field reconnaissance. Once sites that are affected by degradation are 

identified, then actions can be taken to better understand the causes and develop 

sustainable utilization avoiding irreversible degradation and to increase the capacity 

of land to sequester CO2. Identification of the causes of low LNS may not be possible 

if low values occur in the first year of study, which indicates degradation was caused 

prior to the study period.  

Errors in LNS can be caused if reference pixels have different potential NPP 

owing to factors other than those accounted for in the classification: for example 

small run-on patches can have a high NPP that is unrelated to the rest of the LCC.  
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Figure 2.6: Comparison of (a) UMD LNS, (b) USDA-NRI map of non-Federal 
rangelands where biotic integrity shows at least moderate departure from reference 
condition (Herrick et al., 2010), and (c) overlapping parts of Reeves and Baggett 
(2014) map of degradation represented as p-values from t-tests between the mean 
response of each pixel and reference conditions. Except USDA-NRI map, both UMD 
LNS and Reeves and Baggett (2014) maps of degradation were satellite based.  
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Similarly, overly conservative masking may eliminate some of the most degraded 

areas, such as livestock trampling near water. Even unrepresentative areas that are 

smaller than the pixel sized used could bias the classification. Finer spatial resolution 

data, such as Landsat 30m, would reduce this problem, but usually such finer spatial 

resolution data have low repeat frequency that reduces the accuracy of estimation of 

the total, seasonal NPP. Moreover, if data for environmental variables at this scale are 

not available, nothing would be gained.  

In a recent study, Reeves & Baggett, 2014 reported rangeland degradation 

relative to reference condition in the northern and southern Great Plains of the U.S. 

(Figure 2.6-c). Their method created reference areas using the NDVI of each 

individual pixel relative to the mean maximum NDVI of the ecological unit in which 

it occurred. There are three differences with LNS: i. the ecological units were the 

same in each year, irrespective of any differences in interannual environmental 

variation such as rainfall; ii. the mean maximum was influenced by the NDVI of all 

the pixels in the unit, some of which may themselves be degraded, thus the measure 

of degradation could be biased in a heavily degraded ecological unit; iii. since the 

pixel data were the mean of the maxima of NDVI across the entire study period (13 

years), any interannual variation could not be detected. Nevertheless, Reeves and 

Baggett (2014) results have some broad similarities to LNS, for example in the areas 

of eastern New Mexico and Colorado and northwestern Texas. There were, however, 

large differences in the degree of degradation, even in some known areas of 

degradation (Figure 2. 6).  

The USDA NRCS-NRI rangeland degradation assessment maps (Figure 2b) 
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(Herrick et al., 2010) differ from LNS to a much greater extent than Reeves and 

Baggett (2014). For example, the NRI map of “biotic integrity” shows intense 

degradation in areas where LNS has only moderate departure from the reference 

condition, such as in the region at the intersection of state lines of UT, CO, NM, AZ 

(“four corners”) also western TX and OK (Figure 2.6). Changes in species 

composition may reduce the “rangeland health” through reduction in biotic integrity 

and palatability but, at the same time, may increase the NPP (Knapp et al., 2008). For 

example, several studies (Asner et al., 2003; Laliberte et al., 2004; Liu et al., 2013) 

have found woody encroachment into grassland-savanna ecosystem by honey 

mesquite (Prosopis glandulosa Torr.) in the southwest US (Goslee et al., 2003) that 

changes species composition and simultaneously increases NPP. Thus, there are some 

fundamental differences in LNS and NRI’s methods that contribute to the differences. 

However, NRI was based on non-federal lands alone, while LNS included federal 

lands as well; also the NRI maps use ecosystem metrics such as “hydrologic 

function” and “soil and site stability” in addition to “biotic integrity”, and not NPP. 

Aside from these legitimate differences, the NRI maps are an interpolation between 

data from field samples (“sections”) that were between 16 and 259 ha, giving a spatial 

sampling rate of between 0.063% and 1%, but without an explicit method to allow for 

variations between point samples, whereas LNS uses satellite data with complete 

coverage.  
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2.6 Conclusions 

With growing population and increased human consumption of primary 

production (Rojstaczer et al., 2001; Haberl et al., 2007; Krausmann et al., 2013), land 

degradation is increasing. While there are broad changes that increase the risks of 

degradation, such as anthropogenic climate change, pollution and governmental 

policies, human-induced degradation is characterized by strong local spatial patterns 

caused by local differences in management. Thus the complete coverage and high 

spatial resolution of satellite-based monitoring systems are needed, coupled with field 

interpretation (Herrick et al., 2010). The elaborated methodology and the reduction 

assessments reported here will not only help local sustainable management, but also 

influence policies intended to enhance US as well as global carbon sequestration. 

Currently, policies for carbon sequestration often use the findings of “potential” 

primary production models. However, such models do not take into account of human 

modifications of land and its processes. The differences between potential production 

and actual can be very large, to the extent that potential models can be irrelevant.  

This study provides an assessment of dryland degradation and estimates of 

reductions of productivity in the SW U.S study area.  It also identifies areas where 

remediation efforts would have the greatest effects on regional C sequestration if 

applied to areas with higher productive potential and vice versa. The total NPP 

reductions were 35.9±4.7 Tg C yr-1. The reductions were large and mostly consistent 

between years in spite of large variations in overall NPP caused by interannual 

differences in rainfall and other aspects of weather.  The results indicate the overall 

difference between potential and actual NPP in the SW USA was 11.8%.  
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 Forest Carbon Emissions from Cropland Expansion Chapter 3:
in the Brazilian Cerrado Biome 
 

3.1 Summary 

 Land use, land use change, and forestry accounted for two-thirds of Brazil’s 

greenhouse gas emissions profile in 2005.  Amazon deforestation has declined by 

more than 80% over the past decade, yet Brazil’s forests extend beyond the Amazon 

biome. Understanding forest dynamics across all biomes is critical to avoid cross-

biome leakage that undermines climate change mitigation efforts such as Reducing 

Emissions from Deforestation and forest Degradation (REDD+). Satellite data on 

cropland expansion, forest cover, and vegetation carbon stocks were used to estimate 

annual gross forest carbon emissions from cropland expansion in the Cerrado biome.  

Nearly half of the Cerrado met Brazil’s definition of forest cover in 2000 (≥0.5 ha 

with ≥10% canopy cover).  In areas of established crop production, conversion of 

both forest and non-forest Cerrado formations for cropland declined during 2003-

2013.  However, forest carbon emissions from cropland expansion increased over the 

past decade in Matopiba, a new frontier of agricultural production that includes 

portions of Maranhão, Tocantins, Piauí, and Bahia states.  Gross carbon emissions 

from cropland expansion in the Cerrado averaged 16.28 Tg C yr-1 between 2003 and 

2013, with forest-to-cropland conversion accounting for 29% of emissions.  However, 

the fraction of forest carbon emissions from Matopiba was much higher; between 

2010-2013, large-scale cropland conversion in Matopiba contributed 45% of the total 

Cerrado forest carbon emissions.  Carbon emissions from Cerrado-to-cropland 

transitions partially offset emissions reductions (1.9% - 5%) from declining rates of 
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Amazon during 2011-2013. Comprehensive national estimates of forest carbon 

fluxes, including all biomes, are critical to detect cross-biome leakage within 

countries and achieve climate mitigation targets to reduce emissions from land use, 

land use change, and forestry.  

 

3.2 Introduction 

Deforestation is an important source of global greenhouse gas emissions from 

human activity (van der Werf et al., 2009a; van der Werf et al., 2009b; Le Quéré et 

al., 2015). For tropical forest countries such as Brazil, carbon emissions from 

deforestation account for a large proportion of total greenhouse gas emissions (42% 

of CO2 emissions in 2010; BRAZIL, 2016).  Efforts to Reduce Emissions from 

Deforestation and Forest Degradation (REDD+) are therefore a critical component of 

climate mitigation activities (UNFCCC, 2015; Morton, 2016).  Over the past decade, 

deforestation in the Brazilian Amazon declined by 80% (BRAZIL, 2014), 

highlighting the potential for government, industry, and non-governmental 

organizations to achieve emissions reductions from forest regions (e.g., Soares-Filho 

et al., 2014; Gibbs et al., 2015).  However, forest cover in Brazil extends beyond the 

Amazon biome.  The success of REDD+ efforts therefore depends on complete 

national accounting of forest cover changes, including emissions from Cerrado forest 

conversion processes.  

The Cerrado biome is a vast neotropical savanna ecosystem covering more 

than 2 million km2, second only to the Amazon in terms of size. A biodiversity 

hotspot, the Cerrado comprises a diverse mix of grasslands, shrublands, and 
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woodlands (Felfili & Silva Júnior, 2005; Klink & Machado, 2005).  Aboveground 

biomass varies by Cerrado physiognomy and fractional tree cover (Ottmar et al., 

2001; Saatchi et al., 2011; de Miranda et al., 2014).  Large carbon stores are also 

found in belowground biomass and soil carbon because Cerrado vegetation allocates 

substantial resources to root production (de Miranda et al., 2014).  The combined 

above and belowground carbon stocks in Cerrado vegetation likely represent an 

important source term in Brazil’s national greenhouse gas emissions. Yet, current 

reporting either excludes forest conversion in the Cerrado (BRAZIL, 2014) or 

provides aggregated, multi-year estimates for all cover types and land uses (Lapola et 

al., 2014; BRAZIL, 2016), complicating efforts to track regional dynamics with 

satellite observations of land use change or greenhouse gas emissions. 

Nearly half of the Cerrado has been converted to pasture (29.5%) or cropland 

(11.7%) (MMA, 2015), and only a small portion (8.2%) of the biome is formally 

protected by parks or indigenous reserves (BRAZIL, 2016).  Since 1990, the Cerrado 

region has emerged as the leading producer of major export crops, and by 2014 it 

accounted for the majority of Brazil’s planted area in soy (61%), maize (61%), and 

cotton (99%) (IBGE, 2013).  As in the Brazilian Amazon (Morton et al., 2006; 

Macedo et al., 2012), soy production is an important driver of deforestation in the 

Cerrado (Gibbs et al., 2015; Morton et al., 2016), motivated primarily by 

international market demand for animal ration (Nepstad et al., 2011; Lambin & 

Meyfroidt, 2011; Garrett et al., 2013; Lathuillière et al., 2014; Godar et al., 2015).  

From 2008-2012, annual deforestation rates in the Cerrado were more than double 

that of the Brazilian Amazon (Lambin et al., 2013).  Recent expansion has been 
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concentrated in new agricultural frontiers, including the Matopiba region that 

encompasses portions of Maranhão, Tocantins, Piauí, and Bahia states (BRAZIL, 

2016; Gibbs et al., 2015; MMA, 2015; Spera et al., 2016).  The Brazilian 

government’s Matopiba Development Plan outlines a strategy for continued 

agricultural expansion in the region as part of a broader initiative on low-carbon 

agriculture. 

Recent cropland expansion in the Cerrado region also reflects important 

changes in environmental legislation and industry efforts to reduce Amazon 

deforestation. The Forest Code (FC) is a key component of Brazil’s environmental 

legislation (Soares-Filho et al., 2014), with specific guidelines for legal reserves of 

natural vegetation on private properties in the Amazon (80%) and Cerrado (35% 

within the Legal Amazon, 20% for Cerrado outside the Legal Amazon).  Changes to 

the FC legislation in 2012 removed permanent protection of “hill top” areas, opening 

large areas of the Matopiba region for potential land use (Soares-Filho et al., 2014; 

Hunke et al., 2015).   The Soy Moratorium (SoyM), an industry-led effort to reduce 

Amazon deforestation for soy production, contributed to marked reductions in 

Amazon deforestation (Macedo et al., 2012; Gibbs et al., 2015), but did not address 

forest conversion in the neighboring Cerrado biome.  Together, the SoyM and the 

new FC legislation altered the dynamics of soy expansion in the Brazilian Amazon, 

incentivizing production in other regions, including the Cerrado, where the SoyM is 

not implemented and the FC allows a larger fraction of individual properties to be 

converted for agriculture (i.e. “cross-biome leakage”). In addition to  these legal 

constraints, older frontiers of soy expansion (e.g., Mato Grosso) have few remaining 
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flat lands suitable for large-scale grain production (Morton et al., 2016), driving soy 

producers to alternative frontiers.   

In this study, satellite remote sensing data on recent cropland expansion and 

vegetation carbon stocks was combined to estimate gross forest carbon emissions 

from cropland expansion in the Cerrado.  This study addresses two primary questions 

in the context of complete carbon accounting for REDD+ (Bustamante et al., 2016; 

Morton et al., 2011) and global carbon emissions from land use change (Le Quéré et 

al., 2015): (1) Is cropland expansion an important driver of forest conversion in the 

Cerrado? (2) To what extent do carbon emissions from forest conversion in the 

Cerrado offset emissions reductions from declining Amazon deforestation?  Satellite-

based estimates of annual cropland expansion provide critical insights into the spatial 

and temporal dynamics of land use emissions in the Cerrado.  Expanding estimates of 

tropical forest carbon emissions beyond the Amazon biome is a critical step to 

improve regional and global carbon budgets, as Cerrado emissions contribute directly 

to fire carbon losses observed by regional atmospheric inversion studies (Gatti et al., 

2014; Alden et al., 2016) and global observing networks (e.g., Keppel-­‐‑Aleks et al., 

2014).  

 

3.3 Materials and methods 

3.3.1 Cropland expansion 2003-2013 

Annual estimates of cropland expansion in the Cerrado were developed using 

time series of Moderate Resolution Imaging Spectroradiometer (MODIS) data at 

250m resolution from NASA’s Terra satellite (Gibbs et al., 2015; Morton et al., 
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2016).  Although soy is an important driver of recent agricultural expansion in the 

Cerrado (IBGE, 2013), mapped cropland in this study included all mechanized 

agriculture based on phenology metrics associated with planting and harvesting row 

crops, similar to previous studies of cropland dynamics in Brazil (Morton et al., 2006; 

Galford et al., 2008; Rudorff et al., 2011; Macedo et al., 2012).  A detailed 

description of the land cover change analysis can be found in Gibbs et al. (2015).  

 

3.3.2 Cropland expansion and carbon emissions  

Annual estimates of cropland expansion with data on percent tree cover and 

vegetation carbon stocks were combined to estimate gross carbon emissions.  Forest 

and non-forest emissions were separated using fractional tree cover data (Hansen et 

al., 2013). For reporting purposes, Brazil defines ‘forest’ as land spanning more than 

0.5 hectares, with trees higher than 5 meters and a canopy cover of more than 10 

percent  (BRAZIL, 2014). Based on this definition, a threshold of 10% canopy cover 

was used to separate forests and other wooded land areas (>10%) from non-forest 

areas (≤10%) in the Cerrado.   

Vegetation carbon stocks for Cerrado vegetation were estimated using data 

from Saatchi et al. (2011) in areas of cropland expansion. Saatchi et al. (2011) used 

satellite data to model pantropical vegetation carbon stocks through 2005, including 

radar data with specific sensitivity to lower aboveground carbon stocks in savanna 

and woodland cover types.  For cropland expansion after 2005, emissions were 

calculated using spatially-explicit estimates of vegetation carbon stocks from Saatchi 

et al. (2011).  For cropland expansion prior to 2005, the relationship between 2000 
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Landsat fractional tree cover estimates (Hansen et al., 2013) and Saatchi et al. (2011) 

biomass estimates were used for remaining areas of natural Cerrado vegetation 

(MMA, 2015) to develop a look-up table of pre-conversion vegetation carbon stocks 

based on fractional tree cover in 2000. Uncertainties in vegetation carbon stocks 

(Saatchi et al., 2011) were propagated into carbon loss estimates, scaling the total 

emissions estimates using the annual average carbon stock uncertainty from cropland 

expansion pixels each year.   

 

 
 

Figure 3.1: Estimated carbon stocks in Cerrado vegetation, summarized by fractional 
tree cover intervals. Satellite-derived estimates represent above and below ground 
vegetation carbon stocks (Saatchi et al., 2011), while in-situ measurements represent 
aboveground carbon stocks in Cerrado vegetation (Ottmar et al., 2001) or total carbon 
stocks based on aboveground (Ottmar et al., 2001)and below ground carbon (de 
Miranda et al., 2014). Error bars indicate the average uncertainty in estimated total 
carbon stocks for each tree cover decile.  
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Carbon stock estimates from Saatchi et al. (2011) was compared to field 

measurements for each tree cover interval.  Satellite-based estimates of aboveground 

biomass compared favorably to field estimates from Ottmar et al. (2001), binned by 

fractional tree cover (Figure 3.1).  Saatchi et al. (2011) used a root:shoot ratio that 

scales with aboveground biomass (AGB) to estimate belowground biomass (BGB) 

and total vegetation carbon stocks: 

BGB = 0.489AGB0.89 

For low-biomass cover types (1-5 Mg ha-1), this relationship yields a root:shoot ratio 

over 40%, while the root:shoot ratio ranges from 25-30% for high-biomass cover 

types (75-300 Mg ha-1).  A recent synthesis of Cerrado field data suggests that 

average root:shoot ratios could be much higher for grasslands (334%) and shrublands 

(166%) with intermediate tree cover (de Miranda et al., 2014).  For comparison, a 

look-up table based on aboveground biomass (Ottmar et al 2001) and root:shoot ratios 

(de Miranda et al., 2014) was developed for different fractional tree cover intervals to 

estimate gross carbon emissions from cropland expansion in the Cerrado (Figure 3.1).  

Estimated gross carbon emissions from cropland expansion included both 

above and belowground biomass.  Mechanized crop production requires the complete 

removal of above and belowground woody biomass, typically through repeated 

burning of piled woody debris (DeFries et al., 2008; Morton et al., 2008; van der 

Werf et al., 2009a).  Gross and net carbon emissions from deforestation for cropland 

are therefore similar, as long-term carbon storage in annual crops is small (DeFries et 

al., 2008).  Gross carbon emissions estimates excluded changes in soil carbon pools.  

Soil carbon stocks in Cerrado cover types are large, but recent studies suggest small 
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net carbon losses following agricultural conversion (Cerri et al., 2009; Batlle-Bayer et 

al., 2010; Mello et al., 2014; Bustamante et al., 2012; Bustamante et al., 2016), in 

part due to the widespread practice of no-till agriculture.  

 Gross carbon emissions from cropland expansion in the Cerrado were 

compared to gross (committed) carbon emissions from deforestation in the Brazilian 

Amazon.   For 2003-2010, data from Brazil’s forest reference emissions level (FREL) 

report to the United Nations Framework Convention on Climate Change (UNFFCCC; 

BRAZIL, 2014) was used.  For 2011-2013, deforestation carbon emissions were 

estimated using the average vegetation carbon stocks from deforestation in 2003-2010 

(153 Mg ha-1) and annual deforestation estimates from PRODES (BRAZIL, 2014). 

Forest carbon emissions from 2011-2013 Amazon deforestation declined relative to 

the 2011-2015 baseline (247.63 Tg C yr-1, BRAZIL, 2014).  Gross carbon emissions 

from cropland expansion in the Cerrado offset some of these declines, estimated as 

the difference between deforestation carbon emissions and the 2011-2015 baseline.   

 

3.4 Results 

3.4.1 Cropland expansion 

Cropland expansion in the Cerrado biome was widespread over the decade 

from 2003-2013, totaling more than 9 Mha, of which 1.72 Mha replaced forests and 

other wooded lands.  In the first half of the decade, cropland expansion was 

concentrated in areas of established production in the south and west (Figure 3.2).  

Since 2008, however, the Matopiba region accounted for 14% of all cropland 

expansion, including 30% of all cropland expansion into forest.  MODIS-based 
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estimates of total cropland area in 2013 were 15% lower than estimates from 

TerraClass, a Landsat-based land cover classification. These differences were 

attributable to the coarser spatial resolution of MODIS data (250 m versus 30 m) and 

conservative spatio-temporal filtering used in the MODIS approach (Gibbs et al., 

2015).   

 

 
 
Figure 3.2: Cropland extent and annual cropland expansion in the Cerrado biome 
between 2001 and 2013.  Panels A & B (inset) highlight cropland expansion in the 
Matopiba region into forest and other wooded land (dark grey, tree cover > 10%) and 
non-forest land (light grey, tree cover ≤10%). 
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Figure 3.3: Cropland expansion and related carbon emissions in the Matopiba region between 2003-2013. A1-D1) Annual 
cropland expansion and associated fractional tree cover loss; A2-D2) Breakdown of estimated annual gross carbon emissions 
from cropland expansion into non-forest (tree cover ≤10%) and forest and other wooded land (tree cover > 10%). States are 
labeled as Bahia (BA), Tocantins (TO), Piauí (PI), and Maranhão (MA). 
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Figure 3.4: Annual cropland expansion into forest and non-forest Cerrado cover types 
for Brazilian states in the Cerrado biome.  States are labeled as Bahia (BA), Tocantins 
(TO), Piauí (PI), Maranhão (MA), Goiás (GO), Mato Grosso (MT), Mato Grosso do 
Sul (MS), Minas Gerais (MG), and São Paulo (SP).  

 
Overall, woody cover was not a strong barrier to cropland expansion in the 

Cerrado. On average, approximately 21% of the annual cropland expansion replaced 

forests and woodlands.  In Matopiba, however, forest conversion accounted for a 
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larger fraction of new cropland (Figure 3.3), especially in the states of Maranhão 

(51%) and Piauí (46%).  Annual rates of cropland expansion in Matopiba remained 

consistent during this period, with steady increases in forest conversion for cropland 

expansion even as cropland expansion declined in other Cerrado regions (Figure 3.4).  

 

3.4.2 Gross carbon emissions from cropland expansion 

Conversion of forest and non-forest Cerrado formations for cropland 

expansion was an important source of carbon emissions during 2003-2013.  Over the 

study period, conversion of forest and other wooded lands accounted for 29% (52 Tg 

C) of estimated total carbon emissions from cropland expansion in the Cerrado 

biome, with 127 Tg C (71%) from non-forest Cerrado physiognomies.  Annual 

emissions from forest and non-forest conversion averaged 16.3 Tg C yr-1, with 

considerable interannual variability due to changes in rates of cropland expansion and 

the proportion of forest cover types converted (Figure 3.5). Average annual emissions 

from forest conversion for cropland were 4.69 Tg C yr-1.  

Emissions estimates using the look-up table approach (Figure 3.6) were 

somewhat higher than using total vegetation carbon stock data from Saatchi et al. (see 

Figure 3.5).  Field data suggest a greater allocation to belowground biomass by 

Cerrado vegetation than estimated by Saatchi et al., leading to higher vegetation 

carbon stocks for each fractional tree cover bin (Figure 3.1).  Average carbon 

emissions from conversion of forest and non-forest Cerrado areas to cropland were 

higher in the look-up table approach by 1.09 Tg C yr-1 (18.9%) and 4.22 Tg C yr-1 

(29.3%), respectively.   
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Figure 3.5: A) Estimated annual gross carbon emissions from cropland expansion into 
non-forest (orange) and forested Cerrado cover types (green) between 2003 and 2013.  
Error bars indicate ± average uncertainty in vegetation carbon stocks within cropland 
expansion areas. B) Fractional contribution from forest conversion to gross carbon 
emissions from cropland expansion in Cerrado.  C) Comparison between gross carbon 
emissions from cropland expansion in the Cerrado to emissions from deforestation in 
the Amazon between 2003 and 2013.  
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Figure 3.6: Annual gross carbon emission estimates using the look-up table approach.  
A) Annual gross carbon emissions from cropland expansion into non-forest (orange) 
and forested Cerrado cover types (green) between 2003 and 2013. B) Comparison 
between gross carbon emissions from cropland expansion in the Cerrado and Amazon 
deforestation between 2003 and 2013. C) Difference in estimated gross carbon 
emissions, calculated as look-up table  - satellite. 
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The Matopiba region accounted for 33% of forest carbon emissions from 

cropland expansion in the Cerrado during 2003-2013 (17 Tg C, Table 3.1).  Between 

2010-2013, Matopiba forest carbon emissions accounted for a greater proportion of 

forest carbon emissions (45%), with the largest contributions from Maranhão 

(14.42%) – a state with higher biomass, spanning the transition between the Cerrado 

and Amazon biomes.  

Forest-to-cropland transitions in the Cerrado biome partially offset reductions 

in Amazon deforestation emissions over the past decade.  From 2011 to 2013, annual 

forest carbon emissions from cropland expansion in the Cerrado were more than 6% 

of estimated carbon emissions from Amazon deforestation (Figure 3.5).  Low and 

high estimates of Cerrado forest carbon stocks, including above and belowground 

biomass (Figure 3.1), bound the emissions range for 2011-2013 at between 4% and 

8.3% of carbon emissions from Amazon deforestation. Total cropland expansion into 

Cerrado vegetation, including forest and non-forest cover types, has added 16% to 

estimated carbon emissions from Amazon deforestation since 2011.   

Gross carbon emissions from cropland expansion in the Cerrado also offset 

emissions reductions from declining Amazon deforestation. Compared to Brazil’s 

baseline deforestation emissions for 2011-2015 (247.63 Tg yr-1; BRAZIL, 2014), 

declines in Amazon deforestation  reduced gross carbon emissions in 2011-2013 by 

an average of 74.82 Tg C yr-1.  Forest carbon emissions from cropland expansion in 

the Cerrado offset 1.9% of these emissions reductions during 2011-2013, and 

combined emissions from all Cerrado-to-cropland transitions offset 5% of emissions 

reductions in the Brazilian Amazon in these years. 
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Table 3.1: Annual gross carbon emissions (Tg C yr-1) from cropland expansion in 
forest and other wooded lands (F, Tree cover > 10%) and non-forest Cerrado 
formations (NF, tree cover ≤10%) for Brazilian states in the Cerrado biome.  

  
  Goiás Bahia Tocantins 

Years F NF F NF F NF 
2003 0.72±0.24 9.26±2.97 0.11±0.04 1.44±0.46 0.06±0.02 0.62±0.20 
2004 0.72±0.24 9.59±3.08 0.27±0.09 1.27±0.41 0.20±0.07 0.93±0.30 
2005 0.30±0.10 3.33±1.04 0.29±0.10 0.88±0.28 0.20±0.07 0.79±0.25 
2006 0.31±0.10 2.85±0.90 0.46±0.17 0.80±0.26 0.15±0.05 0.43±0.14 
2007 0.16±0.05 1.22±0.38 0.27±0.10 0.38±0.12 0.09±0.03 0.25±0.08 
2008 0.31±0.10 2.60±0.80 0.40±0.15 0.66±0.21 0.18±0.06 0.42±0.13 
2009 0.14±0.05 1.19±0.37 0.61±0.22 1.00±0.32 0.17±0.06 0.50±0.16 
2010 0.09±0.03 0.55±0.17 0.49±0.18 0.61±0.20 0.10±0.03 0.30±0.10 
2011 0.31±0.10 1.79±0.56 0.53±0.19 0.59±0.19 0.24±0.08 0.50±0.16 
2012 0.27±0.09 1.50±0.47 0.39±0.14 0.63±0.20 0.21±0.07 0.48±0.15 
2013 0.30±0.10 1.62±0.50 0.38±0.13 0.47±0.15 0.17±0.06 0.51±0.16 

         Piauí Maranhão Mato Grosso 
Years F NF F NF F NF 
2003 0.07±0.02 0.35±0.11 0.23±0.08 0.70±0.23 1.73±0.59 5.57±1.79 
2004 0.15±0.05 0.53±0.17 0.60±0.20 0.79±0.26 3.04±1.04 5.70±1.83 
2005 0.25±0.09 0.35±0.12 0.64±0.22 0.55±0.18 3.18±1.12 2.65±0.85 
2006 0.40±0.14 0.43±0.14 0.59±0.20 0.49±0.16 4.84±1.72 3.31±1.06 
2007 0.28±0.10 0.20±0.07 0.57±0.20 0.33±0.11 2.41±0.84 1.22±0.39 
2008 0.35±0.12 0.24±0.08 0.68±0.23 0.38±0.12 2.26±0.80 1.67±0.53 
2009 0.44±0.15 0.36±0.12 0.70±0.24 0.46±0.15 1.86±0.65 1.01±0.32 
2010 0.36±0.13 0.29±0.10 0.55±0.19 0.22±0.07 1.15±0.40 0.52±0.17 
2011 1.08±0.37 0.43±0.14 0.93±0.32 0.34±0.11 2.28±0.80 1.63±0.52 
2012 0.59±0.21 0.37±0.12 0.52±0.18 0.21±0.07 1.07±0.37 1.00±0.32 
2013 0.68±0.24 0.26±0.08 0.53±0.19 0.16±0.05 1.55±0.54 1.05±0.33 

         Mato Grosso do Sul Minas Gerais São Paulo 
Years F NF F NF F NF 
2003 0.31±0.11 1.76±0.57 0.29±0.10 4.15±1.33 0.15±0.05 3.02±0.97 
2004 0.24±0.08 1.70±0.54 0.35±0.12 3.81±1.23 0.08±0.03 1.90±0.61 
2005 0.22±0.08 1.68±0.53 0.29±0.10 2.10±0.66 0.07±0.02 1.18±0.38 
2006 0.12±0.04 1.50±0.48 0.23±0.08 1.26±0.40 0.06±0.02 1.13±0.37 
2007 0.11±0.04 0.60±0.20 0.13±0.05 0.50±0.16 0.06±0.02 0.96±0.30 
2008 0.17±0.06 1.05±0.33 0.19±0.07 0.74±0.23 0.04±0.01 0.68±0.21 
2009 0.03±0.01 0.48±0.15 0.16±0.05 0.70±0.22 0.04±0.02 0.78±0.25 
2010 0.02±0.01 0.42±0.13 0.14±0.05 0.30±0.09 0.05±0.02 0.63±0.20 
2011 0.38±0.15 1.65±0.52 0.19±0.07 0.67±0.21 0.26±0.10 1.56±0.49 
2012 0.09±0.03 1.12±0.35 0.19±0.06 0.71±0.22 0.15±0.05 1.19±0.38 
2013 0.10±0.03 1.14±0.36 0.16±0.05 0.69±0.21 0.19±0.06 0.92±0.30 
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  Forest conversion for cropland is only one pathway of forest loss in the 

Cerrado biome.  Estimated forest carbon emissions from cropland expansion between 

2003-2013 (179 ± 58.6 Tg C) are therefore a substantial underestimate of total forest 

carbon emissions from all agricultural expansion in the Cerrado biome.  Cropland 

expansion in this study accounted for 21% of the total forest loss identified by Hansen 

et al. (2013) (Figure 3.7).  Nearly two-thirds (67%) of forest loss was associated with 

pasture conversion and a small proportion (12%) was related to other agricultural 

activities.  However, not all forest-to-cropland transitions were mapped as forest loss. 

Differences between cropland expansion and forest loss estimates may reflect 

limitations of the annual Landsat approach to detect phenology differences during the 

rapid change from forest to cropland. Some of the difference may also be attributed to 

the coarser spatial resolution of MODIS (250m) relative to Landsat (30m). 

 

 
Figure 3.7: Relationship between cropland expansion (this study), TerraClass (MMA, 
2015), and forest loss (Hansen et al., 2013), highlighting the proportional overlap 
between cropland expansion and other forest loss pathways. 

Cropland)expansion)
9.4)Mha)

Forest)loss)
4.7)Mha)

Forest'!Pasture'
3.18'Mha'
(67%)'

Forest'!'Other'Ag.''
0.55'Mha'
(12%)'

Forest''
"'

'Crop'
0.97'Mha'''
(10%)'
(21%)'

NonAForest'!'Crop'
7.7'Mha''
(82%)'

Forest'!'Crop'
0.75'Mha''

(8%)'



 

 74 

3.5 Discussion 

Complete carbon accounting is essential for national reporting of greenhouse 

gas sources and sinks and global carbon cycle studies to support climate mitigation.  

The Amazon and other tropical rainforest regions have been the primary target for 

REDD+, given high carbon stocks in tropical forests (Saatchi et al., 2011; Baccini et 

al., 2012) and rapid deforestation for agricultural expansion in recent decades 

(Hansen et al., 2013; Kim et al., 2015; Morton et al., 2016).  Forest conversion in 

other tropical biomes has received less national and international attention, despite 

growing evidence for concentrated cropland expansion in dry tropical forest regions 

(e.g., Aide et al., 2013; Lambin et al., 2013).   

In the Cerrado, emissions from large-scale cropland expansion totaled 179 Tg 

C between 2003-2013.  During the study period, the fraction of emissions from forest 

conversion increased from 12% to 37%, driven by a shift in cropland expansion to the 

Matopiba region and a steady increase in the proportion of forest conversion for 

cropland expansion.  Over the same period, the fraction of emissions from forest 

conversion in the Matopiba region increased from 13% to 56%.  A decline in Amazon 

deforestation since 2005 underscores the importance of Cerrado emissions; Cerrado 

cropland expansion during 2011-2013 added an estimated 6% (forest) and 16% 

(combined forest and non-forest transitions) to total Amazon carbon emissions, 

offsetting 1.9-5% of the reductions in Amazon deforestation emissions relative to the 

2011-2015 baseline.  Given that cropland expansion only accounted for one-fifth of 

forest loss between 2003-2013, total forest carbon emissions from the Cerrado are 

likely a substantial and growing part of Brazil’s national greenhouse gas budget and 
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should be included in regional estimates of deforestation and fire emissions (e.g., 

DeFries et al., 2008; van der Werf et al., 2009b; Gatti et al., 2014; Alden et al., 

2016).  

Emissions estimates in this study are similar to official reporting in Brazil’s 

Third National Communication to the UNFCCC (BRAZIL, 2016), yet several issues 

prevent a direct comparison of the results.  Brazil’s Third National Communication 

suggests that net emissions from agricultural expansion in the Cerrado totaled 575.2 

Tg CO2 (156.9 Tg C) between 2002-2010, with the majority of net carbon emissions 

from forest conversion to cropland (82%, 129 Tg C).  Estimated gross carbon 

emissions from cropland expansion in this study from 2003-2010 totaled 142 ± 46.41 

Tg C (see Figure 3.5), but with only 27% of emissions from forest conversion.  

Satellite data on fractional tree cover suggest a lower proportion of forest conversion 

for cropland expansion than Brazil’s Third National Communication, potentially due 

to differences in land cover classifications or deforestation information.   

Our analysis developed annual estimates of cropland expansion from satellite 

data, while the UNFCCC submission used periodic land cover information to 

generalize emissions over multi-year intervals. Ultimately, sub-annual information on 

the timing and magnitude of land use change emissions is critical to link bottom-up 

accounting with measurements of atmospheric trace gases from aircraft (e.g., Gatti et 

al., 2014) or satellite observations (Edwards et al., 2006; van der Laan-Luijkx et al., 

2015). Only gross carbon fluxes (rather than net carbon emissions) were reported and 

did not further disaggregate carbon emissions using information on fire emissions 

ratios (van Leeuwen & van der Werf, 2011) or combustion completeness (e.g., van 
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der Werf et al., 2009a). Accounting for non-carbon greenhouse gas emissions, 

including nitrous oxide from fertilizer use (Galford et al., 2010), is also critical to 

capture the full range of impacts from cropland expansion.  

To date, commodity industry commitments to zero deforestation have 

overlooked forest losses in dry forest regions such as the Cerrado.  In Brazil, the 

government, civil society, and industry have primarily focused on reducing 

deforestation in the Amazon region (e.g., the SoyM) while ignoring the Cerrado.  

More recent efforts, including the Action Plan for Prevention and Control of 

Deforestation and Burning in the Cerrado (PPCerrado) and Low Carbon Agriculture 

Program (ABC), have been implemented to reduce land use and agricultural 

emissions within the biome. Existing legislation, including Brazil’s FC, offers a 

mechanism to restrict Cerrado conversion in legal reserve areas with the full 

implementation of Brazil’s Rural Environmental Registry (Cadastro Ambiental Rural; 

CAR) of private properties (Soares-Filho et al., 2014; Gibbs et al., 2015).   

There are several barriers to effective monitoring and conservation in the 

Cerrado. First, the tools for effective satellite monitoring of private properties 

developed for the Amazon region (e.g., PRODES, DETER, and DEGRAD) are not 

operational for the Cerrado biome, with the notable exception of the recent 

TerraClass Cerrado product (MMA, 2015). Monitoring is critical to ensure 

compliance with environmental legislation; in 2014, nearly half of the Amazon 

deforestation in the states of Pará and Mato Grosso occurred within designated legal 

reserve areas (Gibbs et al., 2015).  Policies such as PPCerrado are also 

counterbalanced by government efforts to promote agricultural development in the 



 

 77 

Matopiba region (Matopiba plan; BRAZIL, 2016).  Satellite monitoring offers an 

objective perspective in the search for balance between Brazil’s goals to increase 

agricultural production, reduce greenhouse gas emissions, and adhere to 

commitments for forest restoration as part of the New York Declaration on Forests 

(UNCS, 2014).  Overall, the government strategy to expand agricultural production in 

the Matopiba region is a low carbon development pathway.  However, other 

ecosystem services are important to consider, such as biodiversity conservation, water 

recycling (Spera et al., 2016), and regional climate impacts (Pongratz et al., 2006; 

Loarie et al., 2011).  Efforts that focus on deforestation area (as opposed to carbon 

emissions), consistent with industry commitments to zero deforestation, could help 

balance land use pressures among biomes, regardless of carbon stocks. 

 Satellite-based estimates of annual cropland expansion and vegetation carbon 

stocks provide an important benchmark in support of complete national accounting of 

carbon emissions from land use change.  Higher resolution data may help future 

studies improve upon these estimates.  MODIS resolution is suitable for mapping and 

monitoring cropland expansion in the Cerrado region, but Landsat (30 m) data allows 

for more precise delineation of management areas and deforestation.  Existing 

satellite products in Brazil, including TerraClass, PRODES, and MAPBIOMAS 

(MAPBIOMAS, 2016), offer a blueprint for regular monitoring of land use changes 

in the Cerrado at Landsat resolution.   

 This study estimated gross carbon emissions from cropland expansion, since 

complete removal of above and belowground biomass for mechanized crop 

production simplified the emissions calculation.  A comprehensive assessment of 
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carbon emissions and uncertainty remains a challenge (Houghton et al., 2012), in part 

due to the broad range of land management practices for establishment and 

maintenance of pastures and croplands in the Cerrado region (e.g., van der Werf et 

al., 2009a). Second-generation biomass products, developed from upcoming lidar and 

radar satellite missions (Morton, 2016), will map aboveground biomass at higher 

resolution, consistent with the spatial scales of vegetation heterogeneity and land 

management.  Efforts to track the reduction in forest and shrub biomass from 

expansion of grazing lands will also benefit from new remote sensing data, 

particularly from radar sensors with the ability to map carbon stocks in low-biomass 

vegetation types.  Field estimates of above and belowground carbon stocks in Cerrado 

vegetation remain critical for improving estimates of vegetation carbon stocks.   

 

3.6 Conclusions 

First estimate of annual forest carbon emissions from cropland expansion in the 

Cerrado biome was generated.  Forest conversion accounts for a growing proportion 

of recent cropland expansion, particularly in newer agricultural frontiers such as the 

Matopiba region.  Although soy and other mechanized crop production are not the 

major drivers of deforestation in the Amazon or Cerrado, cropland expansion has 

larger gross and net carbon emissions per unit area than pasture expansion, based on 

the need for complete removal of above and below-ground biomass (van der Werf et 

al., 2009a).  Cropland expansion partially offset recent declines in Amazon 

deforestation emissions, highlighting the critical need for national scale accounting 

for successful climate mitigation through REDD+.  
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 Fire-driven forest conversion for oil palm in Chapter 4:
Southeast Asia: the role of certification 
 

4.1 Summary 

Indonesia and Malaysia have emerged as leading producers of palm oil in the 

past several decades, expanding production through the conversion of tropical forests 

to industrial plantations.  Growing efforts to certify palm oil production, led by the 

Roundtable on Sustainable Palm Oil (RSPO), have implemented policies to reduce 

the environmental impact of palm oil production.  Fire-driven deforestation is 

prohibited by law in both countries and therefore a stipulation of RSPO certification, 

yet the degree of environmental compliance is unclear, especially during El Niño 

events when drought conditions increase fire risk. Here, time series of satellite data 

were used to estimate the spatial and temporal patterns of fire-driven deforestation in 

and around oil palm concessions (OPCs).  In Indonesia, fire-driven deforestation 

accounted for one quarter of total forest losses in both certified and non-certified 

OPCs. Following RSPO certification in 2009, forest loss and fire-driven deforestation 

declined in certified OPCs but did stop altogether. Oil palm expansion in Malaysia 

rarely involved fire; only 6% of forest loss in certified OPCs had coincident active 

fire detections.  Interannual variability in fire detections was strongly influenced by 

El Niño and the timing of certification.  Fire activity during the 2002 and 2006 El 

Niño event was similar (0.11 km-2 yr-1) among OPCs in Indonesia that would later 

become certified, non-certified OPCs, and surrounding areas.  However, rates of fire 

activity were 70% lower in certified OPCs than non-certified OPCs during the 2009 

and 2015 El Niño events. The decline in fire activity on certified OPCs, including 
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during drought periods, highlights the potential for RSPO certification to safeguard 

carbon stocks in peatlands and remaining forests and support legislation banning 

fires.  However, aligning certification standards with satellite monitoring capabilities 

will be critical to realize sustainable palm oil production and meet industry 

commitments to zero deforestation.   

 

4.2 Introduction 

Global production of agricultural commodities such as palm oil has risen 

steadily in recent decades, driven by market demand and high economic value 

(USDA, 2009; USDA, 2010; USDA, 2016). Southeast Asia’s palm oil sector has 

growth through expansion of oil palm plantations in Malaysia, Indonesia, and more 

recently, Papua New Guinea (Gunarso et al., 2013; Carlson et al., 2013; Miettinen et 

al., 2016a; Vijay et al., 2016). By 2014, Indonesia accounted for nearly 40% of the 

global oil palm harvested area (FAO, 2016).   

In the past decade, Indonesia had the highest rate of forest loss of any country 

in Southeast Asia (Hansen et al., 2013; Margono et al., 2014; Kim et al., 2015), 

spurred by rapid forest conversion for oil palm and other industrial plantations 

(Carlson et al., 2012; Gunarso et al., 2013; Abood et al., 2015).  Between 1990-2010, 

more than one third of oil palm plantations replaced forested landscapes in Southeast 

Asia (Gunarso et al., 2013), with rates as high as 90% in regional hotspots such as the 

Indonesian province of Kalimantan (Carlson et al., 2013). Conversion of primary and 

secondary forests for oil palm, including vast areas with deep peatland soils, 

contributed to significant greenhouse gas (GHG) emissions from decomposition, fire, 



 

 81 

and peat oxidation (Page et al., 2002;  van der Werf et al., 2008; Hooijer et al., 2012; 

Ramdani & Hino, 2013; Field et al., 2016; Huijnen et al., 2016). Concerns with palm 

oil production extend beyond GHG emissions, however, as forest loss threatens 

biodiversity (Pimm et al., 2014; Vijay et al., 2016) and particulate emissions from 

fires are a major public health concern in Indonesia and downwind population centers 

such as Singapore (Murdiyarso et al., 2004; Gaveau et al., 2014; Kunii et al., 2002; 

Reddington et al., 2014; Marlier et al., 2015; Chisholm et al., 2016; Johnston et al., 

2015). 

Palm oil is the fastest growing certified agriculture commodity, and Indonesia 

accounted for >50% of certified production areas in 2016 (Potts et al., 2014; RSPO, 

2016). The push for certification within the palm oil industry reflects a growing 

consumer awareness of GHG emissions from palm oil expansion and peat oxidation 

and an overall rise in consumer demand for deforestation-free products (UNCS, 2014; 

Butler, 2015; McCarthy et al., 2016). The Roundtable on Sustainable Palm Oil 

(RSPO) certification is the most widely adopted certification standard; specific 

principles and criteria of RSPO certification promote sustainable palm oil production 

and processing (Garrett et al., 2016; RSPO, 2004; RSPO, 2015b). Among other 

provisions, RSPO certification prohibits conversion of primary and high conservation 

value (HCV) forests and bans fire use for land clearing in compliance with the 

Indonesian moratorium on fire (RSPO, 2007; Edwards & Heiduk, 2015).  RSPO does 

not independently monitor fire activity within member concessions, despite freely 

available data from NASA satellites, and the use of fire for forest conversion on 

OPCs has not previously been quantified.  
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Improving estimates of fire-driven deforestation is critical to assess 

environmental compliance by OPCs, reduce uncertainties in deforestation carbon 

emissions (Le Quéré et al., 2015; Houghton et al., 2012; van der Werf et al., 2009b), 

and characterize ignition sources that may give rise to uncontrolled burning during 

drought periods (Carlson et al., 2012; Cattau et al., 2016). The timing of GHG 

emissions from forest conversion to oil palm depends on the degree of fire use for 

deforestation (DeFries et al., 2008; Houghton et al., 2012), including the proportion 

of clearing activity through fire and the combustion completeness of initial or 

repeated burning (van der Werf et al., 2009a). Fires for forest conversion are illegal in 

both Indonesia and Malaysia (Tacconi, 2003; Edwards & Heiduk, 2015) and 

prohibited under RSPO certification (RSPO, 2007), yet fires are common in industrial 

plantations and smallholder properties (Stolle et al., 2003; Austin et al., 2015; Marlier 

et al., 2015; Miettinen et al., 2016b). Many estimates of carbon emissions from 

tropical forest conversion report committed fluxes without separating fire and 

decomposition (Koh et al., 2011; Carlson et al., 2012; Austin et al., 2015). Previous 

studies with biogeochemical or bookkeeping models suggest that fire accounts for 

30% (Houghton & Hackler, 1999) to 50% (van der Werf et al., 2009a) of carbon 

emissions from forest conversion in southeast Asia—a broad range that applies to all 

forest conversion, not strictly to oil palm expansion. Fires are not restricted to 

forested areas; El Niño conditions suppress precipitation over large parts of Southeast 

Asia, leading to widespread fire activity during drought periods, particularly in 

carbon-rich peatlands (Page et al., 2002; van der Werf et al., 2008; Field et al., 2009, 

, 2016). Understanding the contribution from fire-driven deforestation to total fire 
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activity is therefore a critical part of mitigating fire risk during drought years (e.g., 

Chen et al., 2016). 

Here, time series of satellite data on forest loss and active fire detections were 

combined to assess fire-driven forest and peatland conversion in and around OPCs. 

The combination of land management, forest loss, and active fire data provides an 

opportunity to evaluate the relative contributions from different fire types to spatial 

and temporal variability in satellite fire detections.  This study addresses three 

primary questions regarding oil palm expansion:  1) What fraction of forest and peat 

forest conversion for oil palm involves fire?  2) Does certification alter fire use for 

forest conversion or management of concession areas? and 3) During El Niño years, 

does certification reduce fire activity compared to non-certified OPCs and 

surrounding lands? Characterizing fire-driven deforestation is critical to evaluate the 

influence of RSPO certification on fire activity and improve estimates of GHG 

emissions from oil palm expansion.  

 

4.3 Material and methods 

4.3.1 Oil Palm Concessions (OPCs) 

 The government of Indonesia allocates land for oil palm production to 

companies for a limited period of time. Oil palm leases were separated into two 

categories, certified and non-certified oil palm concessions (OPCs). Certified OPCs 

are properties certified by the RSPO between 2009-2015; non-certified OPCs are 

properties allocated by the Indonesian government to companies but have not yet 
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been certified, even if other properties held by the company have been certified by 

RSPO (Carlson et al in review). Worldwide, RSPO has certified 2.83 Mha in oil 

 
 
Figure 4.1: Extent of RSPO certified and non-certified oil palm concessions in 
Indonesia.  Regional subsets highlight oil palm concessions (black polygons) on 
peatlands (green) in lowlands of Sumatra (A), Kalimantan (B), and Papua (C).  

  

palm concessions (OPCs) that produce 10.8 million tons of palm oil, or 

approximately 17% of global palm oil production (RSPO, 2016). Boundaries of 

certified OPCs were compiled from several sources, including boundary polygons 

provided by RSPO, digitized boundaries from RSPO audit reports (RSPO, 2004), and 

spatial data on plantation boundaries from companies (RSPO, 2015a). Boundaries of 

non-certified OPCs were obtained from a database of OPCs published by Greenpeace 

(Greenpeace, 2016b) and non-certified OPCs held by RSPO members (RSPO, 

2015a). In total, 140 certified and 1750 non-certified OPC boundaries for Indonesia 

were analyzed (Figure 4.1). Data on certified OPCs were also available for Malaysia 
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(n =121) and Papua New Guinea (n = 10), but boundaries of non-certified OPCs were 

not available.  See Carlson et al (in review) for a detailed description of the palm oil 

lease compilation.  

 Maps of planted oil palm were used to identify established plantations within 

certified and non-certified OPCs in Indonesia, Malaysia, and Papua New Guinea. 

Data on planted oil palm were available from Gunarso et al. (2013) for three years 

(2000, 2005, and 2010) and supplemented with additional planted oil palm 

information from Carlson et al. (2013).  

 

4.3.2 Forest definition, cover, and loss 

Estimates of forested areas and forest loss fundamentally depend on the 

definition of forest cover (Sexton et al., 2016).  The Indonesian government uses the 

definition of forest from the United Nations Food and Agriculture Organization 

(FAO) Forest Resource Assessment (FRA), i.e., canopy cover > 10% (FAO, 2010). 

Countries may use canopy cover thresholds between 10-30% for reporting under the 

United Nations Framework Convention on Climate Change (UNFCCC) REDD+ 

framework (UNFCCC, 2002). In this study, canopy cover at the top of REDD+ range 

(> 30%) were chosen as a conservative threshold for forest cover based on difficulties 

associated with discriminating tropical forests from other land cover types using 

remote sensing data for regions with little rainfall seasonality, such as Southeast Asia.  

 Forest and non-forest areas were separated using Landsat-based estimates of 

fractional tree cover in 2000 (Hansen et al., 2013). Estimates of annual forest loss 
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between 2002-2014 (Hansen et al., 2013) were used to identify the timing of forest 

conversion in and around OPCs.   

 

4.3.3 Active fires 

Active fire detections were used from the Moderate Resolution Imaging 

Spectroradiometer (MODIS) instruments on NASA’s Terra and Aqua satellites.  The 

global monthly fire location product (MCD14ML) identifies the location of actively 

burning fires at the time of satellite overpass at 1km spatial resolution (Giglio et al., 

2003). Fire counts from Terra and Aqua MODIS sensors were combined using a 1km 

grid to evaluate monthly and annual fire activity from 2002 to 2015. The density of 

fire counts per km2 was used to compare certified OPCs, non-certified OPCs, and a 

5km buffer region surrounding both certified and non-certified OPCs.  

For 2014 and 2015, higher resolution active fire detections were used to 

confirm patterns in 1 km MODIS fire data. Active fire detections were analyzed from 

the Visible Infrared Imaging Radiometer Suite (VIIRS) I-band (375m) on the Suomi-

National Polar orbiting Partnership (S-NPP) satellite (Schroeder et al., 2014) and 30-

m fire detections from the Landsat-8 Operational Land Imager (OLI; Schroeder et al., 

2015).  Finer spatial resolution fire data capture heterogeneity in fire activity that can 

be lost in coarse resolution data products such as MODIS. VIIRS and Landsat fire 

detections help to identify the location of active fire fronts, separate areas of flaming 

and smoldering fires (Elvidge et al., 2015), and improve the detection of small fires 

(Schroeder et al., 2015)—an important component of fire activity in agricultural 

landscapes (Randerson et al., 2012).  In this study, the improved spatial resolution of 



 

 87 

VIIRS and Landsat 8 fire detections aided the attribution of active fires to specific 

land management areas.   

 

4.3.4 Fire-driven forest conversion for oil palm expansion 

 Satellite remote sensing data on forest cover (2000; Hansen et al., 2013),  

forest cover change (2002-2014; Hansen et al., 2013), and active fire detections 

(2001-2014; Giglio et al., 2003) were combined to identify fire-driven forest 

conversion in certified and non-certified OPCs. The assessment in this study excluded 

forested areas identified as oil palm from Gunarso et al. (2013) and Carlson et al. 

(2013). Deforestation within OPCs was therefore limited to Hansen et al. (2013) tree 

cover loss in forested areas (tree cover >30%) outside of planted palm. Oil palm 

expansion into peatswamp forests was assessed using peatland layers created by 

Wahyunto et al. (2003; 2004; 2006). Co-located forest loss and active fire detections 

were considered for fire-driven deforestation. Given the potential for fire activity to 

pre-date the detection of forest loss (Morton et al., 2008), active fire data from the 

year of forest loss and one year before were combined to identify fire activity 

associated with forest conversion.  

 

4.4 Results 

4.4.1 Certification and Fire-driven Deforestation 

In Indonesia, forest loss in and around OPCs reduced remaining forest cover by 18-

28% between 2002-2014 (Figure 4.2).  Gross forest loss outside of planted palm areas 

totaled 4.25 Mha (Table 4.1).  Average annual rates of forest loss were similar (1.16 – 

1.35% yr-1) in certified and non-certified OPCs over this period. However, pre-
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certification rates of forest (1.66% yr-1) and peatswamp forest conversion (0.34% yr-1) 

were higher within certified OPCs than non-certified OPCs (1.09% and 0.29% yr-1, 

respectively). Given the larger extent of non-certified OPCs, mean annual forest 

losses differed by more than order of magnitude between certified and non-certified 

OPCs (16,023 ha yr-1 and 224,865 ha yr-1, respectively). Patterns of forest loss for 

buffer areas within 5 km of OPCs were similar to non-certified concessions.   

 

Table 4.1: Total and fire-driven forest loss for oil palm expansion in Indonesia from 
2002-2014 within the certified and non-certified concessions. 

 

  Lease area 
Planted palm 

by 2010 
Forest 
lossa 

Peatswamp 
Forest loss 

Fire-driven 
lossb 

  ha ha ha ha ha 
RSPO Certified 1,489,003 1,125,846 224,326 43,107 71,659 (27%) 

Non-Certified 17,963,757 3,596,501 3,148,105 833,553 987,479 (25%) 

5km Buffer 26,102,026 2,276,262 3,404,957 890,957 937,437 (22%) 
 

a Forest loss outside of peat areas 
b Combined (peat and non-peat) forest loss related to fire 
 

Although the use of fire for forest conversion is prohibited in Indonesia, 

satellite data suggest that nearly one quarter of forest clearing in both certified and 

non-certified OPCs involved fire.  For certified OPCs in Indonesia, the fraction of 

fire-driven forest loss was higher before 2008 in both lowland and peatswamp forests 

(Figure 4.2).  The proportion of fire-driven deforestation in non-certified OPCs and 

buffer areas was consistent in all years.  Notably, the proportion of fire-driven 

deforestation in El Niño years (2002, 2006, 2009) was similar to fire use in other 

years for all three management classes.   
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The time series of fire-driven forest loss for oil palm expansion differed 

between certified and non-certified OPCs after the start of RSPO certification in 

2009.  Forest loss rates declined by 60% in RSPO certified OPCs from 2009-2014  

compared to pre-certification levels.  In contrast, mean annual forest loss increased in 

non-certified OPCs (180%) and buffer areas (154%) during this period relative 

to2002-2008 (Figure 4.2).  

 
 
Figure 4.2: Forest loss within the boundaries of A) Certified OPCs, B) Non-Certified 
OPCs, and C) 5km Buffer region surrounding certified and non-certified plantations 
from 2001-2014. A1-C1) Fire (orange) and non-fire related (green) forest loss in non-
peat areas; A2-C2) fire (orange) and non-fire related (grey) forest loss on peatswamp.  
Estimates of forest loss for all management classes excluded areas of planted palm 
(Carlson et al., 2013; Gunarso et al., 2013). The solid black line indicates residual 
forest cover within the certified, non-certified, and buffer region.  
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Figure 4.3: Forest loss patch size distribution in Indonesia within the boundaries of A) 
RSPO Certified OPCs, B) Non-Certified OPCs, and C) 5km Buffer region. Patch 
sizes were assessed at the plantation level and summarized yearly to report between 
2002-2014.   

 

However, certification did not halt forest conversion altogether.  Forest loss 

continued on certified OPCs following certification, including fires for forest 

conversion, leading to an additional 6% loss of remaining forest cover.  Lower rates 

of forest loss on certified OPCs are consistent with RSPO restrictions on clearing 

HCV forest areas and other lands deemed unsuitable for palm oil production.  

Declining rates of forest loss after 2009 may also reflect limited remaining forest 

cover on certified OPCs by 2014 (13%; Figure 4.2), leading to smaller clearing sizes 

that are more difficult to assess with remote sensing data on forest loss and fire 

activity (Figure 4.3). In contrast, the contribution from larger clearing sizes increased 

over time in non-certified OPCs and remained stable for buffer areas. 
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Table 4.2: Total and fire-driven forest loss for oil palm expansion in certified oil palm 
concessions (OPCs) in Indonesia, Malaysia, and Papua New Guinea during 2001-
2014.  All areas are given in hectares (ha). 

 

 
Lease area 

Planted palm 
by 2010a Forest loss 

Peatswamp 
Forest loss 

Fire-driven 
lossb 

 
ha ha ha  ha  ha 

Indonesia (IDN) 1,489,003 1,125,846 224,326 43,107 71,659 (27%) 
Malaysia (MYS) 1,147,495 903,546 125,218 8,273 7,816 (6%) 
Papua New 
Guinea (PNG) 174,444 94,002 21,491 - 3,860 (18%) 

 

a Forest loss outside of peat areas 
b Combined (peat and non-peat) forest loss related to fire 

 

 
 

Figure 4.4: Total forest loss (green) and fire-driven deforestation (orange) in certified 
OPCs in a) Indonesia (IDN), b) Malaysia (MYS), and c) Papua New Guinea (PNG). 
Forest loss was estimated outside of planted palm (Carlson et al., 2013; Gunarso et 
al., 2013). The black line indicates residual forest as a fraction of the total lease area 
of certified OPCs in each country.   

 
Patterns of fire-driven forest loss in certified OPCs differed across Indonesia, 

Malaysia, and Papua New Guinea (Table 4.2). Overall forest loss rates were higher in  
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Figure 4.5: Forest loss patch size distribution in the RSPO Certified OPCs of a) 
Indonesia (IDN), b) Malaysia (MYS), and c) Papua New Guinea (PNG). Patch sizes 
were assessed at the plantation level and summarized yearly to report between 2001-
2014.  

 

Indonesia than Malaysia and Papua New Guinea. However, large forest clearing 

events were more common in certified OPCs in Malaysia and Papua New Guinea, 

with more than two-thirds of forest loss in patches > 10ha (Figure 4.5). Annual forest 

loss rates in Malaysia remained high following certification, with little change from 

pre-certification patterns (Figure 4.4). In Malaysia, oil palm expansion in certified 

OPCs rarely involved fire, and only 6% of total forest loss was identified as fire- 

driven deforestation. Fire detections associated with forest loss declined in all three 

countries following the start of certification in 2009.   

Certification decoupled fire detections from ENSO-driven variability in fire 

risk. Interannual variability in regional fire activity is largely governed by the timing 

and magnitude of El Niño events (Figure 4.6; Chen et al., 2015). Prior to certification,  
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Figure 4.6: Density of MODIS active fire detections in Indonesia during El Niño 
years (A-D, F) and the June 2013 drought (E), when fires from Sumatra impacted air 
quality in Singapore (Gaveau et al., 2014). The spatial distribution of fire activity was 
consistent during El Niño years, although fire densities were highest in 2006 and 
2015.  Maps show annual totals of Terra and Aqua MODIS fire detections at 0.25° 
resolution.  

 

interannual variability in fire detections was similar for certified OPCs, non-certified 

OPCs, and buffer areas in Indonesia (Figure 4.7).  Mean fire rates across land 

management classes were also consistent during El Niño events in 2002, 2004, and 

2006 (0.09-0.11 km-2 yr-1), with important contributions from fire-driven 

deforestation to total fire detections in these years.  Following certification, fire  

activity declined in certified OPCs in all years, with 67-78% fewer fires during the 

2009 and 2015 El Niño events compared to non-certified OPCs. Monthly fire counts  
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Figure 4.7: Density of MODIS active fire detections within certified OPCs, non-
certified OPCs, and the 5-km buffer region around OPCs from 2002-2014. A) Time 
series of all MODIS active fire detections; B) Time series of MODIS active fire 
detections associated with fire-driven deforestation.  

 
confirm the reduction in fire activity within certified OPCs during peak burning 

months of the 2009 and 2015 El Niño events (Figure 4.8). Evidence for reduced fire 

activity in certified OPCs highlights the potential for management of fire risk, even 

during strong El Niño drought conditions.  

Attribution of fire activity is a critical component of satellite-based monitoring 

for environment compliance.  Higher resolution active fire data from VIIRS (375 m) 
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and Landsat 8/OLI (30 m) confirm the decline in fire activity on certified OPCs 

compared to non-certified OPCs and buffer areas in both 2014 and 2015 (Figure 4.9).  

 

 
 
Figure 4.8: Monthly density of MODIS active fire detections (Terra and Aqua, 
combined) for certified OPCs, non-certified OPCs, and a 5-km buffer region 
surrounding OPCs in Indonesia during El Niño years. A climatology of average 
monthly fire detections from all years (2002-2015, grey) is shown for comparison. 
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Figure 4.9: High-resolution active fire detections confirm lower fire activity in 
certified OPCs during the 2015 El Niño event.  Map panels show active fire 
detections on Sep. 30, 2015 for peat fires in southern Sumatra from A) Terra (blue) 
and Aqua (yellow) MODIS (1 km), B) Visible Infrared Imaging Radiometer Suite 
(VIIRS) I-band (375m), and C) Landsat-8/OLI (30m). Background images in panels 
A-C are a false-color composite of Landsat 8/OLI bands 7-5-3 from the same date 
(Path/Row: 124/62). Adjacent panels show total annual fire detections in 2014 and 
2015 for certified OPCs from D) MODIS, E) VIIRS, and F) Landsat 8/OLI.   
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Figure 4.10: Landsat 8 active fire detections captured active fire fronts (B) and 
residual smoldering fires (C) in peatland areas of southern Sumatra on Sep. 30, 2015. 
White circles in panel C indicate smoldering for a subset of the image in panel B 
(dashed red outline).  The regular grid of peatland drainage canals is visible in all 
panels.   
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The VIIRS 375 m fire data provide a more complete characterization of the fire 

perimeter than MODIS on a daily basis.  Although less frequent, Landsat 8 coverage 

every 16 days captures the precise location of active fire fronts, small fires, and  

persistent smoldering in peat areas that may last for many days (Figure 4.9 & Figure 

4.10). High resolution fire data improve our understanding of fire use for 

deforestation and agricultural management, with detections that can be more 

definitively attributed to specific actors in support of monitoring, reporting, and 

verification. 

 

4.5 Discussion 

 Following certification, oil palm concessions had lower fire-driven 

deforestation and total fire activity during El Niño events.  These reductions point to 

the potential for RSPO to contribute to REDD+ and decrease fire ignitions during 

drought conditions.  However, certification did not halt forest losses or fire activity 

altogether.  In addition, certified OPCs currently account for a small fraction of total 

oil palm leases (e.g., 7% in Indonesia); non-certified OPCs maintained higher rates of 

fire-driven deforestation and fire activity in recent years, including the 2015 El Niño.  

The opportunity exists, therefore, to enhance the environmental benefits of RSPO 

certification through expansion of certified OPCs and strengthening of certification 

standards, including the use of satellite monitoring of fire activity and forest loss. 

 This study confirms the pervasive use of fire for forest conversion to oil palm 

in Indonesia, with one quarter of forest loss identified as fire-driven deforestation.  

Fire-driven deforestation was less common on certified OPCs in Malaysia and Papua 

New Guinea, and fire use for forest conversion declined to near zero after the start of 
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certification in 2009.  The fraction of fire-driven deforestation for different land 

management categories are likely conservative because satellite platforms 

underestimate of total fire activity.  Satellite sensors do not sample at the peak of 

diurnal fire activity (Giglio et al., 2000), and cloud cover (Giglio et al., 2003) and 

orbital coverage (Schroeder et al., 2005) reduce the probability of fire detections, 

particularly for low-latitude regions with a seasonal rainfall such as Southeast Asia.  

New satellite products partially overcome these limitations through improvements in 

orbital coverage (VIIRS; Schroeder et al., 2014) and spatial resolution (VIIRS, 

Landsat), especially for detection of small and low-intensity fires in deforestation or 

peatland areas (Schroeder et al., 2015; Elvidge et al., 2015).  

The proportion of fire-driven deforestation on OPCs in Indonesia (~25%) was 

similar to the estimate of combustion losses in bookkeeping models (30-40%, 

Houghton & Hackler, 1999), but fire use was much lower in Malaysia and Papua 

New Guinea.  However, this study only confirms the coincident timing and locations 

of fires and forest losses, not the combustion completeness of fires for forest 

conversion.  Removal of forest vegetation is critical to establish an oil palm 

plantation, but combustion completeness may be lower for these fires, given higher 

fuel moisture and less need for complete combustion of aboveground biomass than 

for expansion of row crop agriculture (Morton et al., 2008).  Fuel moisture also has a 

substantial influence on trace gas emissions from fire, including smoldering fires in 

peatlands (Miettinen et al., 2012; Page & Hooijer, 2016). 

 Several factors may account for the reduction in fire activity on certified 

OPCs following certification.  First, certification may reduce fire-driven deforestation 
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by directly influencing land management practices.  Collectively, all certified OPCs 

in Indonesia, Malaysia, and Papua New Guinea showed declines in fire-driven forest 

losses after 2009.  Second, declining fire activity may simply be an artifact.  If 

companies preferentially certify older plantations (Carlson et al in review), then the 

reduction in fire activity may indicate an end of the expansion process rather than a 

change in fire-driven deforestation.  Remaining forest cover was only 9-13% on 

certified OPCs in Malaysia and Indonesia; remaining forest areas may not be suitable 

for oil palm or accessible based on RSPO restrictions.  Regardless, the potential exists 

for RSPO to promote fire-free management of OPCs to protect high-value tree crops 

and remaining carbon stocks in forests and peatlands.  Large labor forces needed for 

oil palm production (Lambin et al., 2013) may aid regional fire suppression efforts, 

allowing established OPCs to maintain lower fire activity in and around plantations 

during El Niño years.  

Aligning certification criteria with existing satellite monitoring capabilities 

could improve the transparency, accountability, and impact of RSPO and other 

certification efforts.  RSPO certification prohibits specific categories of forest 

clearing that cannot be readily distinguished using satellite data.  For example, total 

forest loss can be identified using freely available satellite data products, but high 

conservation value or primary forest types cannot be confirmed with Landsat or 

MODIS data.  Changing RSPO criteria to more closely match existing products on 

forest cover would enable more rigorous monitoring of environmental compliance.  

Alternatively, public databases of set-aside areas on certified OPCs (e.g., stream 

buffers, areas deemed unsuitable for production, or HCV) could improve 
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transparency and support monitoring efforts without the need to derive forest 

conditions directly from satellite data.  New, higher resolution active fire data also 

complement the time series of MODIS active fire observations.  Landsat and VIIRS 

active fire data offer sufficient spatial detail to unambiguously attribute fire activity to 

specific land owners—an important step forward in satellite monitoring by 

governments, non-governmental organizations, or certification bodies such as RSPO.  

Fire suppression is particularly important to safeguard carbon stocks in peatlands, and 

Landsat resolution is particularly beneficial to identify small, smoldering fires 

(Schroeder et al., 2015; Elvidge et al., 2015).  

By 2020, Indonesia has pledged to double its palm oil production (Maulia, 

2010), and expanding production threatens remaining rainforest and peatland areas.  

Certification offers a path for low-carbon development of additional oil palm 

production, provided that certification standards are consistent with capabilities for 

routine satellite monitoring. RSPO certification has reduced but not eliminated forest 

loss and fire use on certified OPCs.  To realize the full potential of certification, 

requirements for RSPO certification must be updated to align environmental goals 

with objective measures of compliance.   
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 Key Conclusions from the Dissertation, Lessons for Chapter 5:
Policy Makers, and Directions for Future Research 
 
 

5.1 Summary 

The three case studies in this dissertation answer regional questions regarding 

human-induced degradation from land use and land cover change and offer lessons 

for agriculture management in response to climate variability, expansion and 

intensification of agriculture production, and market demand and certification. Three 

themes emerge from the regional studies regarding ecosystem degradation: climate 

variability and change, market demands, and carbon emissions. 

First, climate variability and climate change have distinct impacts on managed 

and natural systems. The southwest United States and Southeast Asia are particularly 

influenced by ENSO, albeit by opposite phases of the ENSO cycle.  In the southwest 

United States, La Niña conditions reduce rainfall and vegetation productivity.  In the 

last decade, La Niña drought years (i.e., 2007-2008, 2010-2011, 2012) were 

superimposed on long-term declines in regional rainfall, leading to widespread 

reductions in vegetation productivity, forest dieback, and extensive fires. In Southeast 

Asia, El Niño conditions trigger drought across regions that otherwise experience 

aseasonal rainfall.  During drought years, fires for agricultural expansion in forest and 

peat areas can get out of control, damaging large areas of forest and peatland and 

releasing globally-significant GHG emissions. In both regions, drought conditions 

from ENSO variability provides an indicator of challenges for agricultural 

management and conservation from climate change.  Regional efforts to predict and 

respond to climate variability are therefore critical to sustain agricultural production 
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and preserve ecosystem services.  

Second, global market forces can have profound regional impacts for 

ecosystem degradation, based on the expansion and concentration of intensively 

managed croplands to satisfy global demand for commodity products. Industry-led 

efforts to achieve sustainable production of soy in the Brazilian Amazon (Soy 

Moratorium) and palm oil in Southeast Asia (RSPO certification) have had varying 

degrees of success in reducing the environmental impact of commodity production. In 

both regions, the sustainability efforts have unintended consequences.  In Brazil, the 

Soy Moratorium only applies in the Amazon and not other biomes, including the 

Cerrado. In Southeast Asia, RSPO certification reduced but did not eliminate 

deforestation and fire from certified concessions. Industry-led efforts also must 

confront challenges from decentralized policies and weak governance. In the case of 

the Cerrado, government efforts to support environmental legislation are incomplete 

(e.g., satellite-based deforestation monitoring and complete land registries).  In 

Indonesia, corruption and weak institutions compound the limitations of RSPO 

certification to protect forests. Both cases highlight the challenges for sustainable 

production, based on the need to balance competing interests of consumers, local and 

national governments, and private companies. 

Third, carbon emissions from ecosystem degradation vary based on the 

patterns of human activity in different land use systems. In the southwest United 

States, management of livestock grazing results in a gradual changes in vegetation 

carbon stocks and soil carbon, whereas mining and oil extraction activities may 

generate a one-time pulse of carbon emissions from the complete removal of 
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vegetation, especially if damages limit the recovery of vegetation following resource 

extraction. Carbon emissions from agricultural expansion in the Cerrado are 

predominantly a one-time process, as native vegetation is cleared and burned in order 

to plant soy and grains. In contrast, carbon emissions from oil palm expansion in 

Southeast Asia involve both rapid release of vegetation and soil carbon stocks and 

slower processes of loss and gain from land management (Carlson et al., 2013). 

Forest conversion for oil palm expansion results in a rapid release of forest carbon 

through fire and decomposition.  Oil palm expansion into peat areas, facilitated by 

draining and burning, releases carbon from peat oxidation in addition to burning. In 

both systems, carbon accumulation in oil palms partially compensates for the loss of 

initial forest carbon stocks (Carlson et al., 2012).  Overall, variability in the timing 

and magnitude of carbon emissions from different land use systems informs the need 

for specific strategies to counter carbon losses in these systems in support of global 

climate change mitigation.  

 

5.2 Conclusions Related to Specific Research Questions 
 

1. What is the extent and severity of loss of production in the southwest US?  

Time series of satellite data indicated widespread and large reductions in 

productivity in grassland ecosystems compared to reference conditions [Figure 2.4]. 

The local NPP scaling (LNS) maps highlighted sharp boundaries between degraded 

and less-degraded land, mainly associated with human activities.  Sharp boundaries 

were observed at the edges of active and abandoned mining and oil extraction 

facilities, across fences between neighboring grazing allotments, and at the edges of 
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forest clearings [Figure 2.5]. The time series signature from MODIS data suggests 

permanent losses of vegetation productivity in active and abandoned mining areas. 

The LNS maps also showed high degree of interannual variability in grassland and 

savanna areas, including in the grazing allotment areas and around the watering 

points.  

 

2. Does land ownership and management contribute to differences in satellite-

based estimates of declining net primary production (NPP)? 

NPP Reductions differed across land cover and land management types [Table 

2.1 and Table 2.2]. Among all land cover types, forested ecosystems had the largest 

NPP reductions per unit area, in part based on higher NPP in forests and hence a 

greater potential capacity for degradation. The US Forest Service manages many 

forest lands in the southwest United States, and therefore US Forest Service lands 

showed higher NPP reductions per unit area than other management types. The BLM 

manages more than 50% of the land area in southwest United States. Shrub-

dominated landscapes on BLM lands showed low overall reductions in NPP, in part 

due to lower NPP in shrublands than forests.   Native American Indian Reservations, 

often referred to as more degraded, actually had smaller reductions in NPP than other 

managed lands.   

 

3. Is cropland expansion an important driver of forest conversion in the 

Cerrado? 
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Widespread cropland expansion in the Cerrado biome replaced grassland, 

shrublands, and forested Cerrado physiognomies with high carbon stocks [Figure 

3.2]. From 2003-2013, the total cropland expansion in Cerrado was more than 9 Mha. 

On average, approximately 21% of the annual cropland expansion replaced forests 

and woodlands [Figure 3.5].  However, after the implementation of the Soy 

Moratorium in the Brazilian Amazon, forest conversion for cropland expansion 

accelerated in Matopiba, the northeastern region of the Cerrado.  Since 2008, the 

Matopiba region accounted for one-third of all cropland expansion into forest and 

other wooded lands, including roughly half of all new cropland in Maranhão (51%) 

and Piauí (46%) [Figure 3.3].  Cropland expansion is one of the important drivers of 

recent forest conversion in the Cerrado biome. However, nearly two-thirds of forest 

loss was associated with expansion of pasture, as cattle ranching remains the major 

driver of forest conversion in the Cerrado.  

 

4. To what extent do carbon emissions from forest conversion in the Cerrado 

offset emissions reductions from declining Amazon deforestation?   

Cerrado carbon emissions partially offset Amazon deforestation emissions 

reductions. From 2003-2013, emissions from large-scale cropland expansion totaled 

179 Tg, and 29% (52 Tg C) of estimated carbon emissions during this period came 

from forest conversion [Figure 3.5]. The fraction of forest carbon emissions from 

cropland expansion was higher in recent years based on the growing proportion of 

expansion in Matopiba [Figure 3.3 & Figure 3.4]. Between 2010-2013, annual forest 

carbon emissions from cropland expansion in the Cerrado were more than 6% of 
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estimated carbon emissions from Amazon deforestation [Figure 3.5], partially 

offsetting the reductions in Amazon deforestation emissions from forest-to-cropland 

transitions. Total cropland expansion (including conversion of forest and non-forest 

cover types) added 16% to estimated carbon emissions from Amazon deforestation 

since 2011.   

In the context of REDD+, gross carbon emissions from cropland expansion in 

the Cerrado can also be compared to the 2011-2015 baseline for Amazon 

deforestation emissions (247.63 Tg yr-1; BRAZIL, 2014). Declining Amazon 

deforestation reduced emissions compared to the baseline.  Cropland expansion in the 

Cerrado increased Brazil’s forest carbon emissions, thereby reducing emissions 

reductions since 2011 by 1.9%.  Combined forest and non-forest cropland transitions 

offset 5% of Amazon emissions reductions relative to the baseline. Given that 

cropland expansion only accounted for one-fifth of forest loss between 2003-2013, 

total forest carbon emissions from the Cerrado are likely a substantial and growing 

part of Brazil’s national greenhouse gas budget, highlighting the need for national 

accounting to achieve climate mitigation targets with REDD+. 

 

5. What fraction of forest and peat forest conversion for oil palm involves fire?   

Satellite data suggest that nearly one quarter of forest clearing in both certified 

and non-certified oil palm concessions (OPCs) involved fire [Table 4.1]. The fraction 

of fire-driven forest loss was higher in both lowland and peatswamp forests prior to 

certification [Figure 4.2]. Following certification, fire-driven forest loss declined by 

88% in RSPO certified OPCs in Indonesia compared to 2002-2008. At the same time, 
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fire-driven forest conversion increased by 117% and 138% in non-certified OPCs and 

buffer areas, respectively. Patterns of fire-driven forest loss in certified OPCs differed 

across Indonesia, Malaysia, and Papua New Guinea [Figure 4.4], but certified OPCs 

in all three countries had lower fire activity following certification.  

 

6. Does certification alter fire use for forest conversion or management of 

concession areas?  

Certification reduced forest loss and fire activity, but did not halt deforestation 

altogether [Figure 4.2 & Figure 4.4]. Forest loss continued after certification on 

certified OPCs in Indonesia, Malaysia, and Papua New Guinea. In Indonesia alone, 

deforestation after certification led to an additional 6% loss of remaining forest cover. 

Forest loss rates declined by 60% in RSPO certified OPCs from 2009-2014 (i.e., post-

certification time frame) compared to pre-certification levels, with larger declines in 

fire-driven deforestation (88.5%). During the same time, fire-driven forest conversion 

declined to near zero on certified OPCs in Malaysia and Papua New Guinea. 

Established oil palm plantations are less likely to burn under managed conditions and 

the reductions in post-certification fire activity on certified OPCs are likely 

influenced by land management practices. Likewise, reductions in forest clearing 

after 2009 may be an artifact, as remaining forest cover on certified OPCs in 

Malaysia and Indonesia were low at the start of certification and companies 

preferentially certified OPCs with low forest cover.  
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7. During El Niño years, does certification reduce fire activity compared to non-

certified OPCs and surrounding lands? 

Certification decoupled fire detections from ENSO-driven variability in fire 

risk. Interannual variability in regional fire activity is largely governed by the timing 

and magnitude of El Niño events [Figure 4.6] (Chen et al., 2016). Prior to 

certification, interannual variability in fire detections was similar for certified OPCs, 

non-certified OPCs, and buffer areas in Indonesia, including during El Niño events in 

2002, 2004, and 2006  [Figure 4.7]. Following certification, fire activity declined in 

certified OPCs in all years, with 67-78% fewer fires during the 2009 and 2015 El 

Niño events compared to non-certified OPCs. Monthly fire counts confirm the 

reduction in fire activity within certified OPCs during peak burning months of the 

2009 and 2015 El Niño events [Figure 4.8]. Evidence for reduced fire activity in 

certified OPCs highlights the potential for management of fire risk, even during 

strong El Niño drought conditions. 

 

5.3 Satellite monitoring in support of climate mitigation and sustainable agriculture 

management  

The use of time series of satellite remote sensing data in this dissertation 

improves our understanding of the patterns, processes, and consequences of 

ecosystem degradation across biomes. The findings in Chapters 2-4 underscore some 

of the opportunities to expand and improve satellite monitoring approaches in support 

of policy efforts to reduce deforestation and degradation and promote sustainable 

agriculture.  In the context of growing human pressures on natural and managed 

ecosystems, satellite-based monitoring strategies may allow for early detection of 
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degradation impacts and increase transparency for efforts to evaluate compliance with 

industry or government initiatives.  

 

5.3.1 Rangeland monitoring in the southwest United States 

Currently, there is no comprehensive assessment of rangeland conditions in 

the western United States based on satellite data. The NRCS-NRI has a monitoring 

program using field data (~ 800,000 locations) on private lands throughout the United 

States (Herrick et al., 2010). The data from the NRI, however, are only available as 

national summaries, and access to field data is restricted to protect the privacy of 

private landowners on whose land the data was collected. In addition, NRI results are 

only for private lands; public lands (e.g. BLM, USFS) and Native American lands are 

not included. The BLM, the nation’s largest public land manager and administrator of 

livestock grazing permits (i.e., nearly 155 million acres; BLM, 2016), is required to 

monitor the ecological impacts of grazing on western rangelands. At present, BLM's 

land health standards (LHS) evaluation has no formal approach to account for past or 

historic livestock damage, as the current approach uses field data to evaluate current 

grazing management.  The NRI and LHS field inventories do have a wealth of 

information on soils and vegetation characteristics. Combining these field data with 

time series of satellite observations could provide a long-term, spatially-explicit 

perspective on changes in vegetation productivity from management of western 

rangelands.   
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5.3.2 Climate mitigation strategies for the Cerrado biome  

The Soy Moratorium—a landmark agreement among industry, civil society, 

and government agencies to prevent Amazon deforestation for soy production—was 

renewed indefinitely in 2016 (GREENPEACE, 2016a). The Soy Moratorium is 

unique in many respects, including the explicit reliance on satellite monitoring 

programs to identify non-compliance and restrict market access for farms that violate 

the prohibition on deforestation for soy (Rudorff et al., 2011; Macedo et al., 2012; 

Gibbs et al., 2015).  Soy is grown in other parts of Brazil, including the Cerrado 

biome where Soy Moratorium does not apply. Incentivizing soy producers to reduce 

Amazon deforestation while allowing forest conversion for soy in the Cerrado does 

not fully realize the potential for the Soy Moratorium to protect forest landscapes of 

Brazil. Satellite monitoring programs in support of the Soy Moratorium include 

PRODES, an annual assessment of Amazon deforestation (BRAZIL, 2014), and 

routine monitoring of crop production using MODIS satellite data (Rudorff et al., 

2011).  Expanding these efforts to consider forest conversion and soy cultivation in 

the Cerrado could directly support soy industry commitments to zero deforestation 

that have overlooked losses in dry forest regions such as the Cerrado.  

 

5.3.3 Improving transparency, accountability, and impact of Palm Oil 

Certification  

At present, the RSPO lacks the institutional and scientific capacity to 

implement satellite monitoring programs, despite freely-available products on forest 

loss, fires, and land cover from NASA satellites. The fact that current RSPO 
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certification requirements are not compatible with satellite-based monitoring is also a 

major impediment for increasing transparency in RSPO using satellite data. For 

example, the RSPO prohibits conversion of primary and High Conservation Value 

(HCV) forests, yet these forest attributes cannot be unambiguously identified using 

current satellite remote sensing data and techniques. Aligning certification criteria 

with existing satellite monitoring capabilities is crucial to achieve transparency, 

accountability, and success of RSPO and other certification efforts. Alternatively, 

public databases of set-aside areas of stream buffers, including peat areas and HCV 

forest, could improve transparency and support community monitoring efforts 

without the need to derive forest conditions directly from satellite data. Currently, 

certified OPCs only account for 7% of the all OPCs in Indonesia; expanding 

certification will only increase the need to find an operational solution to routinely 

monitor OPCs using satellite data. 

 

5.4 Future Research Directions 

Chapters 2-4 quantify the human impact on vegetation productivity and 

carbon stocks in drylands, tropical savannas, and humid forest ecosystems, yet land 

use and land cover change also impact other ecosystem services.  Assessing the 

impacts of degradation on regional climate is one important direction for future 

research.  Results from case studies in Brazil and Indonesia also highlight the role of 

influence of distant markets on local dynamics of land use and land cover change. 

Future research on the direct linkages between policies and decisions at the farm scale 

could inform efforts to reduce leakage within sectors or regions.  Finally, new 
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satellite monitoring capabilities offer the potential to develop monitoring efforts to 

safeguard carbon stocks in tropical peatlands.  

 

5.4.1 Land degradation and regional climate 

Land degradation alters water and energy fluxes and climate feedbacks 

through changes in surface roughness, albedo, and evapotranspiration (Charney, 

1975). Interactions and feedbacks between rangeland vegetation and climate are 

complex and poorly understood (Izaurralde et al., 2011). Soil-vegetation-atmosphere 

transfer (SVAT) models such as Simplified Simple Biosphere Model (SSiB-2) have 

been used in the past to study the impacts of land degradation on regional and global 

climate (Xue & Shukla, 1993; Xue et al., 2001). Using models such as SSiB-2, 

simulations could evaluate the impact of changes in vegetation productivity from 

overgrazing on regional climate and carbon cycling.  Given projected temperature 

increases across the western United States in coming decades (Seager et al., 2007; 

Seager et al., 2013; Cook et al., 2014), assessing the direct role of management for 

amplifying regional climate change impacts is an important avenue for future 

research.  

 

5.4.2 Soy “leakage” and Cerrado cropland monitoring 

Tracking leakage is one of the most difficult tasks for international policy 

efforts such as REDD+.  The Cerrado is the most active agriculture frontier in Brazil, 

and cropland expansion in the Cerrado has continued while expansion in the Amazon 

has slowed from industry and government interventions (Gibbs et al., 2015; IBGE, 
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2013). Whether soy expansion in the Cerrado represents true “leakage” (i.e., 

producers avoiding more stringent environmental governance in the Brazilian 

Amazon) is an area of ongoing research. There are several barriers to definitely 

identify leakage of soy production from the Amazon to the Cerrado. First, satellite 

monitoring of deforestation developed for Amazon biome (e.g., PRODES, DETER, 

and DEGRAD) would need to be expanded to the Cerrado biome. Second, the 

satellite-based registry of private properties is more complete in the Amazon than the 

Cerrado biome.  Completing land registries for both biomes, in combination with 

deforestation monitoring data, would support efforts to identify farmers that 1) leave 

the Amazon for the Cerrado and 2) expand production through deforestation.  

 

5.4.3 Satellite-based monitoring for forest and peatland protection 

Fire suppression is important to safeguard carbon stocks in Southeast Asia’s 

peatlands. Terra and Aqua MODIS active fire detections offer near-daily information 

on fire activity at 1 km spatial resolution (MCD14ML; Giglio et al., 2003). New, 

high-resolution fire detections from VIIRS (375 m) provide a more complete 

characterization of the fire perimeter than MODIS and improved daily coverage, 

since VIIRS does not have coverage gaps in the tropics like MODIS from swath 

width and sensor design issues. Additional data from Landsat 8/OLI (30m) fire 

detections captures the precise location of small fires, including fire use for 

smallholder agriculture or smoldering peat fires that may not be detected by 

MODIS/VIIRS [Chapter 4]. These new fire datasets offer an opportunity to improve 

our understanding of fire use for deforestation and agricultural management, with 
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detections that can be more definitively attributed to specific actors in support of 

monitoring, reporting, and verification. Future research to support peat forest 

protection is particularly important, since monitoring of oil palm expansion will only 

cover a small portion of total peatswamp forest loss across Indonesia and Malaysia 

[Figure 5.1]. Safeguarding carbon stocks in peatlands is a priority for global 

greenhouse gas mitigation efforts (Hooijer et al., 2010; Field et al., 2016; Page & 

Hooijer, 2016) and Indonesia’s intended nationally determined contribution (INDC) 

for the Paris Agreement (UNFCCC, 2015), and new satellite data can support these 

efforts through improved monitoring of fire activity in peatlands.  

 

 
 
Figure 5.1: Total peat forest loss (grey) and fire-driven forest losses (orange) for all 
peat areas of Indonesia and Malaysia during 2002-2014. Forest loss from Hansen et 
al. (2013) was summed for all peat areas with tree cover > 0%.  Peatland forest loss 
from fire was higher during the 2009 El Niño in Malaysia, but interannual variability 
in fire-driven forest loss did not track El Niño years in Indonesia.  
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5.5 Conclusions 

 Ecosystem degradation from human activity can reduce regional vegetation 

productivity, forest carbon stocks, and the extent of natural forest cover. Case studies 

of ecosystem degradation in this dissertation provide regional examples of the 

distribution and severity of human-induced degradation across biomes, based on 

objective measures of vegetation changes from satellite data. This dissertation 

underscores the pervasive impact of agriculture and land management for the 

transformation of vegetation carbon stocks in human-dominated landscapes, despite 

regional policies, and governance of land management, and certification systems for 

sustainable production.  

 Climate variability amplifies the impacts of human activity on natural 

systems. In this dissertation, both La Nina and El Niño phases of the ENSO cycle had 

widespread impacts on ecosystems and agricultural systems in the southwest United 

States and Southeast Asia. While the La Nina phase of ENSO cycle contributed to 

vegetation-die back in the southwest United States (Allen et al., 2010), the El Niño 

phase in Southeast Asia led to extensive damage to forest and peatland ecosystems 

during 2006 and 2015 (Field et al., 2016). In both case studies, climate variability and 

climate change are superimposed on top of continued human-induced land use 

changes in the region, elevating the levels of ecosystem degradation in drought years.   

Large-scale and long-term changes in vegetation carbon stocks in all three 

regions were mediated by fires.  Fire is the primary tool for land conversion in the 

Cerrado, and fire-driven deforestation accounted for at least 25% of forest conversion 

for oil palm in Indonesia.  Human ignitions are an important source of fires in the 
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southwest United States, as conditions during dry months routinely support fire 

activity.  Fires impact more than just vegetation carbon stocks.  Smoke plumes from 

peatland burning in Indonesia have far-reaching consequences; transboundary haze 

events reduce visibility, increase cases of respiratory illness, and contribute to higher 

mortality in Indonesia and major parts of Southeast Asia from poor air quality.  Fire 

from human activity therefore degrades carbon sequestration potential and other 

ecosystem services.  

Agriculture production is the single most important driver of large-scale 

ecosystem degradation, measured based on reductions in vegetation carbon stocks. 

Export-driven commodity agriculture production reduced forest carbon stocks in the 

Brazilian Cerrado and in Indonesia, where oil palm expansion replaced lowland 

rainforest and peat forest.  Efforts to promote sustainable agriculture production have 

not achieved their potential benefits, but the potential exists to reduce ecosystem 

degradation from agricultural activity through more stringent regulations and more 

transparent monitoring mechanisms—including the use of satellite data.  

Satellite remote sensing data offers an objective and repeatable pathway to 

assess ecosystem degradation across biomes in a consistent manner. Aligning 

sustainability standards with satellite-based monitoring approaches will improve 

transparency, needed to in support zero-deforestation goals. Certification, laws and 

improved management could also contribute to large and sustained reductions in 

carbon emissions from land use change.  
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