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1. Introduction 

With the rapid advance of information technology, ATIS (Advanced Traveler’s 

Information System) has become a crucial part of modern traffic management system 

especially in urban regions where recurrent and non-recurrent traffic congestion has become 

a serious social problem.  According to the Urban Mobility Report (2012), congestion causes 

urban Americans to travel 5.5 billion hours more and to purchase an extra 2.9 billion gallons 

of fuel annually. One core task of an ATIS (Advanced Traveler’s Information System) is to 

provide reliable real-time traffic information to both travelers and traffic management 

authorities to support advanced traffic management strategies such as dynamics traffic 

rerouting, real-time route guidance, and advanced traffic signal control.  

Another trend in the field of intelligent transportation system is the proliferation and 

implementation of many advanced traffic sensing system, wireless communication and 

mobile computing technology. The development of these technologies can revolutionize the 

conventional transportation management modes. Imagine a mobile device which can upload 

individual’s future trip plan onto the web server and in turn receive optimal departure time 

and routing based on predicted future traffic condition. Such traffic information service may 

not have been feasible a decade ago but is becoming more and more possible nowadays. The 

truth behind the phenomenon is that the speed by which information processing and 

communication technologies have advanced has exceeded most people’s expectation. From 

traffic surveillance point of view, large amount of GPS probe vehicles can provide real-time 

traffic information within a much wider spatial range compared with conventional fixed point 

detectors.  Wireless sensors such as Bluetooth sensors can identify vehicles traveling inside 

the network and report their experienced travel time. Vehicle-to-vehicle and vehicle-to-
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station communication technology also allows each individual driver to communicate with 

information centers. From users’ point of view, their smart phones and GPS route guidance 

systems can be used to receive or send traffic information. Hence the largest challenge of 

constructing a modern ITS system is how to effectively and smartly utilize huge amount of 

real time traffic information to alleviate congestion and improve the performance of the 

network. 

In order to provide reliable real-time traffic information to both network users and traffic 

authorities, two types of information are of most concern: the traffic flow status of the 

network in both present and future time. Generally speaking, there are three categories of 

information regarding a transportation network: the first category is the traffic flow state 

within network such as link speed, volume and density; the second category is the travel time 

experienced by network users; and the third category is the drivers’ characteristics, behavior 

and trip related information such as characteristics of driving population, OD demand 

volume, route and departure time choice and so on. This study focuses on the first two 

categories of data, namely the network traffic flow state and travel time experienced by 

drivers under different traffic conditions.  

As an essential component of ITS system, a high performance traffic state estimation and 

prediction model should have the following properties: 

1. Accuracy: The output of the model should be accurate enough for real world applications; 

2. Robustness: The performance of the model should be stable under various traffic 

conditions; 

3. Flexibility: The model should be able to take advantage of information source with 

different format and quality; 
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Therefore the primary motivation of this research is to develop a solid traffic state 

estimation framework for urban networks through which the real-time traffic information can 

be integrated and generalized both spatially and temporally. Based on the estimated current 

traffic state, the near future traffic flow states can be predicted. 

Although many research activities have been reported in the field of traffic state 

estimation, travel time prediction and data fusion, many unresolved issues still exist when 

one tries to construct a system that estimates and predicts the traffic condition of a signalized 

arterial network. First of all, compared with freeways, the traffic state estimation and 

prediction methodology for arterial network is insufficient. Due to the huge difference 

between freeways and arterial roads in terms of capacity, control mechanism and network 

topology, it is difficult to implement existing traffic flow models directly to arterial traffic 

state estimation problem. Many ITS related studies focus on one particular type of the 

detector and network structure, and as a result, the model becomes not applicable when the 

external conditions are changed even slightly. The second challenge we face in this area is 

that the integration of data sources with different quality and resolution is extremely difficult 

from a general perspective since each model needs to be developed based on particular form 

of data input. In viewing those issues, this study is dedicated to develop a well-structured 

arterial traffic state estimation framework considering heterogeneous information sources. 

Starting from the formulation of arterial traffic flow dynamics, the main part of this study 

emphasizes on establishing a robust yet flexible data fusion algorithm which can take full 

advantage of modern traffic surveillance system. 

The organization of this dissertation is as follows: Chapter 2 provides a complete 

summary of previous studies related to traffic state estimation and traffic flow theory, and 



 

 4 

 

short-term prediction methods. Based on the literature review, the objective of the study is 

also given in Chapter 2. In Chapter 3, a new type of arterial traffic flow model named 

“shifting boundary queue model” is developed. Chapter 4 discusses the data fusion algorithm 

for integrating multiple field measurements during the estimation process. Chapter 5 

discusses the relationship between traffic state and travel time and Chapter 6 presents the 

development of short-term traffic flow prediction algorithm. Then Chapter 7 and 8 

demonstrate the results of several comprehensive numerical studies in order to support the 

model validation. Finally the conclusion and future works are given in Chapter 9. 
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2. Literature Review  

Previous studies regarding real-time traffic state estimation and short-term prediction 

generally follows three avenues: traffic state estimation, short-term traffic flow prediction 

and traffic flow modeling. In this section, the major research findings of previous literature 

are summarized. 

2.1. Traffic state estimation 

 

The main focus of real-time traffic state estimation is how to scientifically utilize field 

measurements to assess the actual traffic flow condition of a transportation network. The 

real-time field measurements (such as flow, occupancy and speed) are the foundations of 

traffic state estimation. There are generally three crucial problems associated with the traffic 

surveillance device: measurement errors, limited spatial coverage and heterogeneity in data 

format and temporal resolution. Therefore the real-time traffic state estimation problem is 

usually formulated as a recursive stochastic estimation model where the transition of traffic 

state is described by some analytical traffic flow model and field measurements are used to 

adjust the prior estimation result. Since the emergence of Kalman filter technique in 1960s, 

the method was soon recognized by many transportation professionals and subsequent 

research efforts were reported in seeking its application in the field of traffic state estimation. 

Gazis and Knapp (1971) proposed a recursive estimator of freeway speed and density based on 

time-series flow and speed measurements of detectors. Szeto and Gazis (1972) first introduced 

extended Kalman filtering framework into recursive traffic state estimation applications and 

proposed a flow density and speed estimation model for freeway segments. Similar issue was 

also discussed by Nahi and Trivedi (1973) where the impact of downstream density is 
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explicitly considered when computing the upstream flow. Based on some of the previous 

works, Wang and Papageorgiou (2005, 2007) proposed a comprehensive freeway traffic state 

estimation model based on EKF technique. Additionally, Boel and Mihaylova (2006) and 

Mihaylova et al. (2007) developed a freeway traffic state estimation algorithm using particle 

filter technique. 

In recent years, traffic state estimation of signalized arterial network has received 

increasing attention. However difficulties arise when one attempts to apply KF framework in 

arterial applications due primarily to three reasons: 1) traffic flows moving inside the arterial 

network are periodically interrupted by signal lights at intersections and the periodical 

accumulation and dissipation of the queue have predominant impact on the evolution of other 

traffic flow parameters including density, speed and travel time; 2) there is a huge difference 

between the accessibility of freeway and arterial. Freeway network can be considered as a 

perfect closed system whose inflows and outflows are controlled by on-ramps and off-ramps. 

In order words, the traffic that enters or exits the system can be monitored by ramp detectors, 

however arterial network is an open system with many middle link demand generation and 

extinction. Such condition will significantly increase the estimation error for any type of 

traffic flow models; 3) last but not least, the amount of traffic surveillance information 

available is usually insufficient in arterial applications due to the more complex traffic flow 

movements and limited detector coverage. Therefore existing literature regarding arterial 

traffic state estimation is sparse compared with freeway studies. Di et al. (2010) proposed an 

arterial traffic density estimation model based on Markov compartment model and used large 

population approximation to convert the system dynamics equations into a differentiable 

form. The accuracy of their estimation result depends heavily on the penetration rate of GPS 
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probe vehicle data which is the primary information source of the study. Chris et al. (2007) 

integrated CTM (cell transmission model) into the EKF traffic state estimation framework 

using implicit switching technique. Kwong et al. (2009) proposed a travel time estimation 

model based on vehicle re-identification technique. Liu and Ma (2009), Liu et al. (2009), Wu 

and Liu (2011) and Ban et al. (2009) developed their own queue and travel time estimation 

model using high resolution signal and detector data. Recently, the integration of multiple 

data sources became a major trend. A series of studies are conducted to investigate the 

performance of mobile sensing and smart phone data on traffic state estimation (see 

Hofleitner et al. 2012, Herrera and Bayen 2010, and Work et al. 2008). Table 1 summarizes the 

abovementioned studies in this field. 

Table 1 Summary of previous studies regarding traffic state estimation 

Authors Year Network  Research Content 

Gazis 1971 Freeway Density and speed, loop detector data, EKF 

Szeto and Gazis 1972 Freeway Density and speed, loop detector data, EKF 
Nahi and Trivedi 1973 Freeway Density and speed, loop detector data, EKF 

Boel, R., and 

Mihaylova, L. 

2006 
Freeway Density and speed, loop detector data, PF 

Wang and Papageorgiou 2007 Freeway Density and speed, loop detector data, EKF 
Chris et al. 2007 Freeway Density and speed, loop detector data, CTM model with implicit Mode Switching 

Kwong et al. 2009 Freeway Travel time, vehicle re-identification 

Liu and Ma 2009 Arterial Queue and travel time, smart signal data 

Di, Liu, and Davis 
2010 

Arterial 
Density and speed, GPS probe vehicle, EHKF (extended hybrid Kalman filter) with Markov 
compartment model 

Herrera and Bayen 2010 Freeway Density, Cell phone data/GPs probe data, Newtonian relaxation 

Hofleitner et al. 2012 Arterial Travel time, density and speed, smart phone data 

2.2. Short-term traffic flow prediction 

The short-term traffic flow prediction technique received extensive amount of attention 

during the last three decades as a core component of most ITS systems. It focuses on 

forecasting future traffic flow conditions based on historical information collected by traffic 

surveillance devices. The majority of literature in this field concentrated on predicting traffic 

flow variables (volume, speed, density) of one particular location using various statistical 



 

 8 

 

methods. The underlying rationale of statistical methods belongs to either of the following 

two concepts: 1) the future value of traffic state is some function of past values; 2) the future 

traffic condition can be determined by finding the historical traffic conditions which are most 

similar to the current one. The former is basis of regression methods and the latter is the 

foundation of pattern matching techniques. 

The literature on short-term traffic flow prediction started to flourish from 1980s. The 

proposed methods ranged from time series models including linear and non-linear regression, 

ARIMA (autoregressive integrated moving average), dynamic generalized linear models (see 

Cetin and Comert 2006, Fei et al. 2011, Hamed et al. 1995, Kamarianakis and Prastacos 2003, 

Min and Wynter 2011, Vlahogianni et al. 2004, 2005, Williams and Hoel 2003, Zhang et al. 2011), 

Kalman filtering method (Okutani and Stephanedes, 1984), non-parametric statistical methods 

(Davis and Nihan 1991, Smith et al. 2002), spectral analysis methods (Stathopoulos and Karlaftis 

2003), artificial neural network methods (Chen et al. 2001, Dia 2001, Jiang and Adeli 2005, 

Park and Rilett 1998, Park et al. 1999), K-nearest neighbor methods (Qiao et al. 2012), 

sequential learning methods (Chen and Grant-Muller 2001), to cusp catastrophe theory method 

(Pushkar et al. 1995).   

Compared with local traffic state prediction models, the traffic flow theory based short-

term prediction performs forecast on a system level. The statistical methods usually do not 

consider the traffic flow property behind the detector data and treat each measurement source 

as independent data stream, meanwhile an alternative solution is to use macroscopic traffic 

flow model to approximate the future traffic flow condition based on 1) the estimated current 

traffic state and 2) the predicted inflows and other boundary conditions of the network. 



 

 9 

 

Previous research along this direction is very sparse. Szeto et al. (2009) reported a prediction 

model based on SARIMA and cell transmission model. 

2.3. Macroscopic traffic flow model 

 

The majority of literatures in this area focus on the development of mathematical 

formulations that are capable of replicating the traffic flow evolution in freeway or arterial 

networks. Starting from the earliest first order traffic fluid models developed by Lighthill and 

Whitham (1955) and Richards (1956), many subsequent research efforts have reported to 

either enhance the computational aspects of the model (Daganzo 1994 and Daganzo 1995) or 

incorporate stochastic property into the traffic flow models (see Davis and Kang 1994, 

Geroliminis and Sun 2011 and Sumalee et al. 2011). Recently, there is an increasing concern on 

the development of arterial traffic flow models that can accommodate the unique nature of 

interrupted flows under the impact of signal controls. Several relevant studies include the 

shockwave theory while estimating the arterial queue and delays (see Geroliminis and 

Skabardonis, 2005, Wu and Liu 2011) and empirical study of arterial fundamental diagram was 

also reported in literature (Wu et al. 2011). 

One the other hand, traffic flow theory in signalized network is developed revolving the 

queue evolution of signalized intersections. Many traffic problems arise when a signalized 

road network is loaded with high demand volume due to the accumulation of queues. As a 

result, the primary concern of studies of arterial traffic flow is how to effectively estimate the 

queue length at signalized intersection.  

Many early studies in off-line queue estimation focused on evaluating the queue length at 

isolated intersection with fixed cycle traffic-light using stochastic queuing theory. Important 

early works in this field include Webster (1958), McNeil (1968), Newell (1965), Darroch (1964) 



 

 10 

 

and Ohno (1978). Later the queue computation was expanded into dynamic context by 

switching from equilibrium queue length to time-dependent queue length. Relevant works 

ranged from Kimber and Hollis (1979), Akcelik (1980),  Akcelik (1988), Akcelik and Rouphail 

(1994) to Viti and Zuylen  (2010). However these offline queue models are only applicable for 

intersection design and evaluation purpose while most ITS system demands for real-time 

queue estimation technique that can take advantage of different detector data. The most 

widely used dynamic queue estimation model is called cumulative count method or input-

output method. Sharma et al (2007) proposed an on-line queue estimation method using this 

classical method. In cumulative count method, the queue length is obtained by computing the 

vertical distance between the cumulative arrival and departure curve at the intersection. The 

cumulative arrival curve is usually obtained through the traffic volume measurement of 

upstream detectors and the cumulative departure curve is usually obtained by either installing 

downstream detectors or by computation based on signal parameters. More relevant works 

include Bhaskar et al. (2009), Geroliminis and Skabardonis (2005), Liu et al. (2009), Comert and 

Cetin (2009) and Mehran et al. (2012). Unlike freeway traffic flow models, various arterial 

queue models share less common theoretical foundation and each researcher tends to develop 

their own methodology based on the available input and desired output of the application. 

2.4. Summary and research objective 

 

Through literature survey, one can find that there is a missing link between macroscopic 

traffic flow formulation and the short-term traffic flow prediction of arterial networks. Once 

applied to short-term prediction, the traffic flow theory based model will demonstrate the 

following unique advantages: 
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 The forecast of traffic flow states is conducted on a network level, therefore the model 

inherently considers the complex correlations between traffic flow measurements 

obtained from different locations; 

 The model does not require a large historical database for parameter calibration purpose; 

 The model is highly robust and flexible, therefore easy to incorporate heterogeneous data 

sources; 

 The model not only predicts traffic state variables that are directly observable from field 

detectors (flow, density, speed) but also is capable of predicting unobservable traffic flow 

variables such as queue length or turning ratios. 

 With the help of traffic flow model, the proposed prediction model can essentially 

perform what-if analysis given different traffic control strategies. Hence the model can 

also apply to signal control optimization problems. 

The objective of this research is to seek theoretical advance of real-time traffic state 

estimation and short-term prediction in the following aspects: 

 Propose an innovative real-time traffic state estimation framework for arterial network 

considering the technical challenges discussed in the earlier part of this chapter. The 

proposed framework should be accurate, flexible and applicable.  

 Discuss the mathematical formulation of traffic flow dynamics of arterial road network 

considering the impact of signal control devices. Develop appropriate expressions for system 

dynamics under different type of traffic control strategies.  

 Develop a data fusion algorithm under the proposed framework to accommodate 

heterogeneous data sources to increase the overall accuracy and flexibility of the model 
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 Discuss the relationship between arterial traffic state and travel time and establish a 

reliable travel time estimation mechanism. 

 Discuss the application of the proposed arterial traffic state estimation model in short 

term traffic state prediction and its accuracy.   

 Through extensive numerical studies, quantitatively evaluate the performance of the 

proposed model under different degrees of congestion. 
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3. The Shifting Boundary Cell Model: A New Type of Macroscopic 

Traffic Flow Model for Signalized Arterial Corridors 

3.1. State definition and notations 

Consider a hypothetical arterial corridor consisting of m consecutive links. Signal control 

devices are installed at the end of each link to control the right-of-way of through traffic 

streams. Each link of the arterial corridor is modeled as an independent unit referred to as a 

cell. The spatial boundary of each cell is aligned with the start and end point of the link in 

the longitudinal direction; and is aligned with the outer rim of the through lanes in the 

lateral direction. Figure 1 illustrates the geometric layout of the hypothetical arterial 

corridor with four links and corresponding cell network representations. 

 

Figure 1 The cell representation of a hypothetical arterial corridor 

Assuming there are no bottlenecks other than signalized intersection, each link can be 

divided into two distinct areas with different traffic flow characteristics: one is the 

“queuing area” which is in front of the signal stop line where vehicles either stop 

completely during the red phase or move at very low speed during the queue discharge 

period of the green phase; and the remaining part of the link can be viewed as the 

“moving area” where vehicles travel at a certain speed determined typically by the 
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macroscopic speed-density relationship of the link. Therefore the traffic state of cell i can 

be described by a triple variable set: the number of queued vehicles in “queuing area”, 

denoted by      ; the average travel speed of vehicles in “moving area” denoted by       

and the number of vehicles contained in the “moving area” denoted by      . 

Alternatively, the queuing and moving area can be viewed as two sub cells of its mother 

cell and the boundary between them is shifting constantly as the size of the queue 

changes.   

Figure 2 presents the above idea through graphic illustration. 

 

Figure 2 Illustration of moving and queuing area within a cell 

To facilitate the model presentation, key notations used in the state definition are 

summarized as follows: 

      is the number of queued vehicle in front of the stop line of cell i at time step t,       

is also referred to as the queue mass of cell i; 

      is the number of vehicles contained in the moving area of cell i; 

      is the average traffic flow speed of vehicles traveling in the moving area of cell i; 

      is the traffic flow density of the moving area of cell i; 

      is the physical length of the queue within cell i;  

   is the number of lanes contained in cell i; 

                         

             -           

                  

   

        -      
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   is the length of cell i; 

  is the average vehicle length; 

  is the computation time interval; 

Since all traffic flow states are time-dependent, t represents time index in all above 

definitions. 

At each time step, the traffic flow state of signalized corridor consisting of m cells can be 

quantified by the following 3m dimensional vector,     : 

     [                                                       ] (3-1) 

We define such vector X as the state variable of the arterial network.  

Although in reality the traffic flow state changes continuously with respect to time, 

one still needs to approximate it with appropriate discrete form for computational 

purpose, namely the temporal discretization of the traffic state. Now imagine the 

continuous time axis is divided into small time intervals with uniform length  , then 

          actually represents the traffic flow state at the beginning of time interval 

[         ]. And instead of t, notation u is used to represent the continuous time 

variable in the remaining part of this paper.  The continuous form of each traffic state 

variable is represented by adding a cap above their original notations. For instance, 

           represents the queue mass of cell i at the beginning of interval t while 

 ́          represents the queue mass of cell i at time u. 

The following relations are directly obtainable from the definition. 

      
       

  
    

(3-2) 

      
     

  [        ]
      

(3-3) 
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The derivation of Equation (3-2) and (3-3) is straightforward. 

One primary purpose of this study is to formulate a set of stochastic equations to 

replicate the transition of arterial traffic states between two consecutive time intervals, 

namely 

                      (3-4) 

Here           is usually referred to as the system dynamics equations.  

Compared with the freeway traffic state estimation models, this study treats the 

number of queued vehicles at each link as an explicit state variable. The underlying 

rationale is that the evolution of traffic flow states on arterials is governed by two 

different mechanisms. Within queuing areas, the formation and dissipation of queues are 

mainly determined by the signal control changes, while in moving areas, the evolution of 

traffic flow density and speed is mainly governed by the fundamental diagram. There are 

at least two advantages in doing so. First of all, queue lengths are important traffic state 

variables in arterial applications such as travel time estimation or signal optimization. 

Those applications will certainly benefit a lot from the estimated queue lengths of the 

proposed model. Second, such state definition allows us to model the traffic condition on 

arterial roads with less number of state variables. If the freeway modeling paradigm were 

used for signalized arterial, then one needs to divide each arterial links into a large 

number of small cells in order to capture the evolution of queues. The dilemma here is 

that while cell model always adopts homogeneous assumption within each cell, the traffic 

density distribution around the boundary between the queuing and moving area is not 

homogeneous. Also, replicating arterial traffic flow with large number of cells will put 

huge computational burden for online applications in any real scale network. 
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3.2. Evolution of cell queue and density 

The change of       and       involves four types of traffic flow movements within a 

cell: 1) The incoming traffic flow from external network to cell i during interval t denoted 

by      ; 2) The traffic flow moving from cell i to cell i+1 during interval t denoted by 

         ; 3) The traffic flow exiting the network from cell i during interval t denoted by 

      ; and 4) The traffic flow passing the boundary between the moving area and the 

queuing area denoted by      . The relationship between these four types of movements 

is illustrated by Figure 3 (a).  

 

(a) 

 

(b) 

Figure 3 Traffic flow movements inside a cell (a) and traffic flow between two adjacent cells (b) 

  

                         

        -                 

      

      

      

      

      

         

fi,i  (t) 
Cell i Cell i   

          
Cell i Cell i   
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By applying vehicle conservation law to each area, one can write         and 

        as a function of          ,          ,             and      . 

                                          (3-5) 

                              (3-6) 

The main concern here is to write       and           as some explicit functions of 

            and other state variables.  

First of all, consider the number of vehicles crossing the boundary between moving 

and queuing area during interval t. The computation of       depends on the current 

queuing condition. If no vehicle is waiting before the intersection, namely if        , 

then the probability of an arbitrary vehicle inside the moving area to pass the boundary of 

the cell during current interval is  
      [       ]

  
. Here       is the probability of vehicles 

to exit network from cell i during interval t. Since there are       vehicles inside the 

moving area at the beginning of interval t, the total number of vehicles reaching the end 

of the cell follows a binomial distribution with successful rate  
      [       ]

  
.  Hence, 

                  [       ]        (3-7) 

Where       is the random error term associated with      . 

To derive Equation (3-7), one only needs to take the expectation of      . 

 (     )       
      [       ]

  
             [       ]  

(3-8) 

On the other hand, if       is greater than zero, then the boundary between the 

moving and queuing area will move toward upstream direction at a speed which can be 

determined by the LWR shockwave theory given by the following equation, 
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 (           )   (          )

        
 

(3-9) 

Where  

      is the backward shockwave speed of the boundary between the moving and queuing 

area; 

 (           ) is the flow capacity given density and queue mass, namely the 

fundamental flow-density diagram; and    is the jam density; 

The fundamental diagram   typically represents the quantitative relationship between 

the flow rate and density. In this study, we formulate the fundamental diagram   as a 

two-dimensional function of both density       and queue mass      . The modeling of 

the fundamental diagram will be elaborated in the next section. For now, let’s simply 

assume that for any given queue mass     , the flow rate is a continuous and 

differentiable function of density      . Based on condition (3-9), the maximum number 

of vehicles joining the end of the queue during the interval is           , however, 

considering possibility of vehicles exiting the network, the actual number of vehicles 

joining the queue follows a binomial distribution given by Equation (3-10), 

                [       ]        (3-10) 

Where,       is the random error associated with       and       is the shockwave speed 

given by (3-9). 

To summarize,       can be obtained by combing expression (3-7) and (3-10). 

      {
            [       ]                   

          [       ]                          
 

(3-11) 
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Note that                are time-varying model parameters representing the exit 

flow rates from cells. The estimation of       is discussed in later sections. 

So far, we have emphasized the computation of the number of arrivals observed at the 

end of queue. Now let’s move on to the modeling of flows between adjacent cells. The 

traffic flow that connects neighboring cells,         , is more sophisticated due to several 

reasons. First,           should not exceed the maximum number of vehicles that can be 

accommodated by the downstream cell; second,           is affected by the signal light 

status during time interval t; furthermore,           also depends on both the queuing 

condition at the beginning of the interval and the arrival rate during the interval.  

The analysis of           begins with defining two additional variables, the number of 

vehicles sending flow from cell i denoted by       and the maximum number of vehicle 

receivable by cell i+1 denoted by        . These two variables are usually referred to as 

the sending flow function and the receiving flow function in most literature.           can 

then be written into the minimum value between       and        , 

             (             ) (3-12) 

        depends on the remaining capacity of cell i+1 which can be computed using the 

following equation, 

                                   (3-13) 

Equation (3-12) considers both maximum number of sending flow of upstream cell and 

the maximum number of vehicle receivable by the downstream link. When downstream 

is not congested, then the shockwave propagates forward and the flow between two 

adjacent cells equals to the sending flow; contrarily, when the downstream is congested, 
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the shockwave will propagate backward toward upstream, therefore the flow between 

cells equals to the maximum number of vehicle accommodated by the downstream cell. 

The minimum operator of Equation (3-12) reflects such concept. Figure 3 (b) illustrated 

these two possible scenarios. 

In order to derive      , the following assumptions are introduced. 

Assumption 1 The traffic signal phasing of each cell remains unchanged during one time 

interval. 

Assumption 2 The number of arrivals observed at the end of the queue spreads evenly 

within each time interval, namely  ́     
     

 
   [         ]. 

Assumption 3 The maximum discharge rate during the effective green time of the 

intersection is greater than arrival rate for any cell at any time. 

The complexity of       originates from the fact that the discharge flow rate from cell i 

depends on queuing condition. Let  ́     be the sending flow rate at time u, then  ́     is a 

step-wise function of  ́     given by the following equation, 

 ́      ( ́    )      [   ( ́    )] ́                 (3-14) 

     {
     
     

 (3-15) 

Where  

      is the maximum discharge rate of queue at time u; and, 

 ́     is the arrival flow rate observed at the end of the queue at time u. 

      is also known as the saturation flow rate and is determined by signal control status 

during interval t. Given t,       is a constant due to Assumption 1. Equation (3-14) and 

(3-15) modeled sending flow rate  ́     as a stepwise linear function of  ́     and  ́    : 



 

 22 

 

when  ́     is positive,  ́     is equal to the saturation flow rate which is the maximum 

number of vehicle discharged from the queue per unit time; while when  ́     becomes 

zero,  ́     is equal to the arrival flow rate  ́    . And       is the integral form of  ́     

over time, namely, 

      ∫  ́      
      

  

 

 ∫ { ( ́    )      [   ( ́    )] ́    }  
      

  

 

(3-16) 

The closed form of integral (3-16) cannot be obtained directly since piecewise linear 

function      is not continuous. However computing the integration with numerical 

method will not only generate huge computational burden to the algorithm but also 

prevents one from exploring the mathematical property of the model. To overcome this 

issue, the following proposition is stated to provide a numerical approximation of integral 

(3-16).  

 

Proposition 1  

      
 

 
   (

   [       ]   

   [                   ]   
)        (3-17) 

Where, 

      is the maximum number of discharge during current time interval,        

        ; and, 

    are model parameters, by default one can take          . 

Proof.  
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First, create an artificial variable  ̃     to represent the change of queue mass over time 

within the current interval,  

 ̃                 [ ́          ]             (3-18) 

Equation (3-18) establishes a reversible (one-to-one) mapping between   ̃     and time u. 

Note that  ̃     may take negative value if the queue vanishes completely at certain time 

point in the middle of the interval if         ́           . In reality the value of 

queue mass  ́     never drops below zero, however, by allowing the artificial variable 

 ̃     to take negative value, we are trying to approximate the sending flow with the 

following continuous function given by condition (3-19).  

 ́     
     

     [ ̃      ]
 

 ́     
  [ ̃      ]

     [ ̃      ]
              (3-19) 

Consequently, the integral (16) can be computed analytically as follows, 

      ∫  ́      
      

  

 (3-20) 

 ∫ ,
     

     [ ̃      ]  
 ́     

  [ ̃      ]

     [ ̃      ]
-  

      

  

 (3-21) 

 
 

[ ́          ]
∫ ,

     

      
 

 ́     
   

      
-   

       [ ́          ]  

       

 (3-22) 

 
 

[ ́          ]
{
 

 
   (          ) [       ́    ]

       }|        

       [ ́          ]  
 

(3-23) 

 
 

 
   (

   [       ]   

   [       ́              ]   
)         (3-24) 
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Note that from Equation (3-21) to (3-22), we changed the variable of the integral from u 

to  ̃       using condition (3-18) and replaced  ̃       with z for simplicity purpose,  

   ̃                   [ ́          ]    (3-25) 

   
  

[ ́          ]
 (3-26) 

Therefore the corresponding upper and lower bound of the integral changed from  

[         ] to [               [ ́          ]   ] accordingly. The proof is 

finished by replacing  ̅      and        with       and       respectively. 

In order to help readers better understand the output of equation (3-17), Figure 4 plots 

      as a function of arrival rate       and initial queue       given           and 

    .  

By inserting Equation (3-13) and (3-17) into condition (3-12), the flow between adjacent 

cells           can now be written as the following explicit form: 

             (
 
 
   (

   [       ]   

   [                   ]   
+                                 + (3-27) 
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Figure 4 3-D plot of approximated sending flow rate 

3.3. Evolution of cell speed 

In the moving area of each cell, the change of traffic flow speed is induced by two 

primary causes: first, traffic flow speed is changed for the mixture between the incoming 

flow from both upstream cell and external demand sources and the existing vehicles 

within the moving area; second, the speed of vehicles also adapts dynamically to the local 

traffic conditions based on the macroscopic speed-density relationship. Again, consider 

the traffic flow movements within a cell shown in Figure 5. 
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Figure 5 Illustration of traffic flow movements and their speeds 

During interval t, the composition of the traffic flow in the moving area will change due 

to the traffic flows moving inbound and outbound. At the beginning of interval    , the 

moving area contains three groups of vehicles.  The first group is the vehicles remaining 

in the area from previous time step                  , the second group is the inflow 

vehicles from upstream cell           and the third group is the inflow vehicles from 

outside of the network      . Let       and       denote the average flow speed of the 

latter two groups, then the average speed of the mixed traffic at the beginning of interval 

    is computed as, 

 ̃       
[                 ]                               

                                 
 (3-28) 

In the above formulation,  ̃       is the anticipated flow speed only considering the 

blending effect of different movements. Meanwhile, vehicles tend to adjust their speed to 

adapt to the local traffic condition, and such behavior is usually described mathematically 

by the fundamental diagram. A majority of the literature formulated the speed as some 

decreasing function of density. While such macroscopic speed-density function is well-

accepted in general, another important relevant concept is the anticipated traffic density 

of drivers. The idea is that drivers adjust their speed not only according to the local 

density surrounding them but also the predicted traffic flow condition of downstream 

link. Several studies have discussed this issue from both theoretical and empirical 

                         

     -     -                     -                        
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prospective (see Wang and Papageorgiou 2005, 2006 and Boel  and Mihaylova 2006). 

On arterial links, drivers tend to reduce their speed when they see a red signal or queue 

accumulation. Hence the target traffic flow speed in the moving area is modeled as a 

function of both density and queue mass. The speed adjustment process is modeled with 

the following equation, 

             ̃       [      ]               (3-29) 

Where, 

               is the macroscopic speed-density-queue relationship for the moving area 

of arterial cells; and,  

     is a model parameter representing the adapting rate of traffic flow speed,        

 . 

Equation (3-29) computes         as a linear combination of  ̃       and the 

theoretical speed               . And the changing rate of speed is controlled by a time-

dependent parameter     . The specific form of speed function V is given by Equation (3-

30). 

                 (  
     

  
)  

  
     
   (3-30) 

Where, 

   is the free flow speed of the cell; 

   is the jam density; 

   is the storage capacity of link i measured by the maximum number of vehicles 

contained on the link as shown in equation (3-31);  

          (3-31) 

and,  
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  is a model parameter representing the rate of speed decay as the queue ratio increases; 

The speed function given by (3-30) is a two dimensional convex function of       and 

      in which the cell speed decreases linearly with normalized density (the ratio 

between       and   ) and exponentially with normalized queue length (the ratio 

between       and   ).  There are many alternative forms of Equation (3-30), such 

macroscopic correlation between the speed, density and queue within an arterial link 

should be determined and calibrated using field data available. The calibration of 

Equation (3-30) will be further discussed in numerical investigation sections. 

 

3.4. Dynamic estimation of model parameters 

So far we have accomplished two important tasks. First, the traffic flow state of an 

arterial corridor is defined as the collection of its link density, speed and queue length. 

Then based on such traffic state definition, we have formulated the transition equations 

for system state variables including      ,       and      . However without careful 

calibration of the model parameters that determines the property of system transition 

equations, the estimation result may quickly diverge from the actual situation. Model 

parameters defined in this study can be generally categorized into two groups: parameters 

describing the route choice behavior of the drivers such as turning fractions at each 

intersection      , and parameters that describe the driving behavior such as speed 

adaption rate     . Generally, the change of those model parameters over time is not 

dominated by any type of traffic flow model. And those model parameters need to be 

dynamically estimated because of their time-dependent nature. Such dynamic calibration 

of the model is realized by state augmentation technique. 
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To begin with, the original system state variable is expanded to incorporate additional 

model parameters. Let  ̃    be the system state variable after the state augmentation. 

 ̃    [                            ] (3-32) 

Here X(t) is original traffic state variable defined previously and 

                        are additional model parameters to be estimated. The new 

system state variable  ̃    not only contains all the traffic flow variables but also those 

unknown model parameters associated with the transition process. 

Then the change of non-traffic flow related part of  ̃    is then modeled as following 

random walk process, 

{
 
 

 
 

                

                
 

                

              

 (3-33) 

Where   is the random walk step with zero mean and unit variance. 

We have thus far formulated the transition of system state along with all its time-

varying parameters into the state-space form given by condition (3-11), (3-13), (3-15) (3-

27), (3-29) and (3-33). 

3.5. Chapter Summary 

In this chapter, an innovative macroscopic traffic flow model is developed to describe 

the arterial traffic flow dynamics under given signal timing parameters. In later parts of 

the dissertation, the traffic flow model developed in this chapter will serve as the 

theoretical foundation for the real time traffic state estimation and short-term prediction. 

Such analytical traffic flow model can become very powerful tool once combined with 

other recursive stochastic estimation methods such as Kalman filter or particle filter.  
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Compared with existing traffic flow models such as CTM, the proposed model 

emphasizes on the modeling of queue formation and dissipation along signalized arterial 

corridor. The traffic flow models discussed in this section attempts to explain the high 

non-linearity and stochastic nature of arterial traffic flow dynamics based on rigorous 

mathematical derivation. The proposed model decomposed each arterial link into two 

distinct areas (moving and queuing area) and formulated the transition of flow density, 

speed and queue length using a set of stochastic equations. Such model is capable of 

predicting the movement of the boundary between the moving and queuing area without 

dividing the entire link into many tiny cells. From a theoretical point of view, the 

proposed model attempts to overcome the homogeneity assumption adopted by most 

freeway traffic flow models. The homogeneity condition always assume that the vehicles 

are uniformly distributed within each cell and their speeds are identical within each time 

period, therefore appropriate size of the cell needs to be selected in order to validly 

replicate the propagation of shockwave along freeway. However the traffic flow 

condition in arterial corridor is considerably different from that of freeway mainly 

because shockwaves form regularly within each link due to the signal, hence each arterial 

link needs to be represented by a large number of small cells in order to implement 

conventional freeway traffic flow model. However such approach is not only 

computationally expensive but also to some extent clumsy. To contend with such issue, 

the proposed model referred as shifting boundary queue model, intended to adapt 

conventional traffic flow model to arterial networks and offer a more straightforward and 

computationally efficient modeling framework. 
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The second contribution of this study is that it proposed the existence of some 

macroscopic relationship between traffic flow speed, density and queue within an arterial 

link. In freeway traffic flow studies, the correlation between speed and density is a 

fundamental concept usually referred to as speed-concentration curve or speed-density 

curve. In this study, we first proposed the three dimensional speed-density-queue 

function as an extension of the conventional speed-density curve on arterial links. The 

three dimensional speed-density-queue diagram describes the speed of a link as a 

function of both density and the ratio between queue length and link length, therefore it 

explicitly considers drivers’ reaction to the queue in front of a signal. In later chapters, 

extensive numerical studies are conducted to fit the three dimensional speed-density-

queue curve using field dataset.  

The last noticeable contribution of the proposed model is the formulation of queue 

evolution in an analytical form considering the signal impact. Usually in stochastic 

estimation problems, the property of transition equations determines both the 

applicability and performance of the model. In this chapter, the transition of queue length 

or the boundary between queuing and moving area is a primary challenge in the modeling 

process. By using numerical approximation technique, we derived analytical transition 

expression for the queue length considering the non-continuous change of signal and 

discharging process. A further extension of the proposed model is capable of predicting 

the queue over multiple time steps during which the signal status changes according to 

some pre-fixed timing plan. Therefore the formulation obtained in this chapter is not only 

meaningful for traffic state estimation but also in other traffic control applications such as 

signal optimization. 
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4. Integrating Heterogeneous Detector Information with Particle 

Filtering 

4.1. Fundamentals of Kalman Filter and Extend Kalman Filter 

Many dynamic systems can be modeled with state-space formulations. In such 

formulation, the “state” of the system at a particular time t is represented by a vector, 

denoted by     . Each component of      represents the value of variable that characterizes 

certain aspect of the system. Thus,  

     [                   ]
  (4-1) 

X(t) is mathematical representation of the system state at time t. Consequently the 

change of system state with respect to time can be described by a set of partial differential 

equations, which is known as the fundamental dynamics equation of the system. The 

arterial traffic flow model proposed in previous section is a specific example of a dynamic 

system. If the stochastic system dynamics equation is linear then the state estimation can be 

done by using Discrete Kalman filter. Mathematically, 

                  (4-2) 

Here the continuous time t is rewritten with discrete time step k,    is the control 

variables of the system at time step k and    is the noise of system dynamics. And the 

system is also associated with the following measurement equations, thus 

            (4-3) 

Where    is the field measurements obtained at time k and    is the noise of the 

measurement. 
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If both    and    are white noises following Gaussian distribution, the optimal 

estimation of system state can be computed recursively using Kalman filter. At each time 

step, the following two expressions are used to compute the prior and posterior estimation 

of   . 

 ̃    ̂        (4-4) 

 ̂   ̃             (4-5) 

Where  

 ̃  is the prior estimation of    without considering the measurement at time k; 

 ̂  is the posterior or adjusted estimation of   ; 

   is Kalman gain at time step k; 

The weighting factor between prior estimation and the “measurement residual” between 

the actual observation and estimated measurements is called Kalman gain. The Kalman 

gain represents statistically optimal weighting factor between the estimation and 

observation values: 

   
  

   

   
     

 (4-6) 

  
        

    (4-7) 

Where    and Q are error covariance matrix of state variable    and system noise   . 

When applying Kalman filter, one needs to follow a two-step computation procedure: 

time update and measurement update. The former projects the estimated system state at 

previous time step to current time step, and the latter adjusts the prior estimation using 

Kalman gain. The general procedure of discrete time Kalman filter is illustrated in Figure 6. 
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The original linear KF can be used to solve the estimation problem of a dynamic system 

governed by linear stochastic differential equations. However when the system dynamics 

equation is non-linear, the EKF technique can be implemented to handle the non-linear 

transition equations. Mathematically, the system governed by non-linear stochastic partial 

differential equation can be expressed as follows, 

                   (4-8) 

            (4-9) 

All notations appearing in above equations have the same definitions as in the previous 

section. The non-linear function f and h are the fundamental system dynamics equation and 

measurement equation. 

For non-linear system, one can still use Eq. (4-10) to perform the time update, thus, 

 ̃     ̂          (4-10) 

And compute the predicted measurement using Eq. (4-11) 

 ̃    ̂        

  
        

    

Time Update 

Project the error 

covariance 

 

 

   
  

   

   
     

 

 ̂   ̃             

            
  

Measurement Update 

Compute Kalman gain 

Adjust estimation with measurements 

Update error covariance matrix 

Figure 6 Computation step of KF 
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 ̃     ̃     (4-11) 

However in order to compute Kalman gain using Eq. (4-6) ~ (4-7), the non-linear 

system dynamics equation and measurement equation need to be linearized first using 

Taylor expansion technique. The system transition and measurement are approximated by 

the following set of linear equations, 

    ̅   (    ̂   )        (4-12) 

    ̅   (    ̂   )      (4-13) 

Where  

   and     are the system state and measurement variables at time k; 

 ̂  is the posterior estimation of system state at time k; 

 ̅  is the approximated state obtained from Eq.(4-10); 

   and    are process and measurement noise; 

A, W, H and V are determined by the Jacobian matrices of   and  ; more specifically, 

  [    ]  
            

     
 (4-14) 

  [    ]  
          

     
 (4-15) 

  [    ]  
            

     
 (4-16) 

  [    ]  
          

     
 (4-17) 

All the remaining computation procedures of EKF are the same as that of KF. There are 

several noticeable points regarding the application of EKF:  

 In order to compute the linear approximation of the system, the dynamics 

equation   must be continuous and differentiable; 
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 The change of system should at least be locally linear so that the approximation 

result of (4-12) do not deviate too far from the actual state; 

 After non-linear transformation, the distribution of process and measurement 

noise     and    became no longer normal. However when computing Kalman gain with 

EKF technique, such distortion effect on the error term distributions are not considered.   

These can be regarded as the constraints of EKF. For more detail information of KF 

and EKF, readers can refer to other publications such as Paul and Howard (2005). 

4.2. Fundamentals of Particle Filter (PF) 

 

Particle filter is a type of recursive Bayesian filter designed to estimate the state of 

stochastic dynamics system with high non-linearity. The algorithm was first proposed by 

Gordon et al. (1993) and later studied and improved by many other researchers. Particle 

filter uses a large number of particles to represent the distribution of system state and 

compute the probability of each particle using the measurement function. Again let 

         be the non-linear system dynamic equations, 

              (4-18) 

where    is the noise term of system transition. And at each time step, the measurement 

values are related to the state vector via the observation equation, 

            (4-19) 

where    is the white noise of observation equation. PF uses a set of particles  

                 to represent the system state at each time step and a weight is associated 

with each particle to represent its probability,                 , thus 

 (       )       (4-20) 
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Then using the system model it is possible to obtain the prior PDF of system state at 

each time step k, 

           ∫                            (4-21) 

Where    [          ] 

Since the probabilistic model of the state evolution            is described by 

             where      is a Markov model with known distribution, therefore, 

           ∫                               (4-22) 

where      is the Dirac delta function, since the delta function arise when both      

and      are known, then    is computed based on a pure deterministic relationship. 

According to Bayes rule, 

         
                  

          
 (4-23) 

 

The above equation can be used to update the probability of each particle at every time 

step k. At each iteration in PF, first the prediction of system state is done by using system 

transition function to each particle; and then the weight of each particle is updated using 

measurement   . The prediction and update algorithm in PF is summarized below: 
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Prediction: For each particle in the set, compute its predicted value 

using system transition function,  

        (         )           

Where    is the random error drawn from the distribution of     . 

Update weight: update the weight of each particle, 

            (           ) 

 

 

For more detailed information on PF, readers can refer to articles by Gordon (1993), 

Chen and Liu (1996), and Carpenter et al. (1999). The primary advantage of PF includes two 

points. First, it does not require the computation of Jacobian matrix of the transition 

function therefore it can handle dynamic system with high non-linearity. In the arterial 

traffic flow formulation, the first order derivative of system dynamic equation is not 

continuous. As a result, it is very difficult to implement EKF using the proposed traffic 

flow model. However introducing PF technique can solve this problem. Second, in a non-

linear system, the distribution of error term in transition function will become non-normal 

after non-linear transformation, however the computation of Kalman gain is based on the 

assumption of normally distributed error term. Therefore applying EKF on a highly non-

linear system will yield considerable amount of estimation error.  To overcome this 

problem, PF uses a large number of particles to approximate the distribution of system state 

so that the algorithm remains effective even when the distribution of system state is not 

normal. That is the performance of PF is superior compared with EKF when the system 

transition is highly non-linear. 
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In this study, we use PF as a mathematical tool to incorporate detector measurements. 

 

4.3. Evaluate the probability of traffic state with fixed location detectors 

Fixed location detectors are one of the most widely deployed detectors worldwide.  The 

family of fixed detectors includes inductive loops, magnetic loops, laser detectors and so 

on. Although different types of detectors are made based on different technologies and 

have their respective accuracy and resolution, one common feature of fixed location 

detectors is that they can provide measurements of traffic flow speed, volume and 

occupancy around a particular point of the roadway.  

Traffic volume count is the most basic measurement of detectors and represents the 

number of vehicles observed during each time interval.  The traffic flow occupancy 

readings represent the proportion of time that the detector is occupied by the traffic and the 

speed reading of detector represents the average speed of passing vehicle.  

In reality, the measurement of detectors is always subject to some degree of random 

error. The random error stems from two sources. First is the measurement error where due 

to some technical or non-technical reasons the detector readings deviate from the actual 

value.  Second is the sampling error. Sampling error can be defined as the discrepancy 

between average traffic state of sampled vehicle set and the average traffic state of the 

entire traffic population on a link. More specifically, suppose m vehicle samples are 

observed by the detector during one time interval, and each of their observed speed is   , 

then the measurement vector of the link can be written as: 

   [          ] 
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We are interested in the conditional probability of link traffic speed v given above 

observation. Let    be the actual speed of vehicle j within the cell and the total number of 

vehicle at time t is n. Then the random error between measured and actual cell state can be 

computed as follows: 

 

 
∑       

 

   

 
 

 
∑  

 

   

 
(4-24) 

Where, 

   is the speed of ith vehicle captured by fixed detector, each    is a sampling of traffic 

speed of the cell; 

   is the random error associated with ith observation; 

The first term of Eq.(4-24) represents the observed average traffic flow speed and the 

second term of Eq. (4-24) represents actual average traffic flow speed. By taking the 

expectation and variance at both sides of above equation, we can obtain, 
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(4-26) 

Note that    is assumed to be I.I.D. following normal distribution with zero mean and 

fixed variance, thus, 

                  
(4-27) 

The variance of    is determined by the distribution of current system state,  
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        ∑0   
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 (4-28) 

However since the true speed of each individual vehicle is unknown during the 

estimation process, we need to approximate it with the estimated speed variance during the 

PF method.  

        ∑0 ̃  ∑   ̃ 

 

   

1

 
 

   

 (4-29) 

Where  

 ̃  is the estimated speed of cell by particle i; 

   is the weight of particle i; 

N is the total number of particle; 

The variance computed from Eq. (4-26) is influenced by three factors: 1) the number of 

observations, m; 2) the variance of measurement error   and 3) the variance of the cell 

speed. Therefore distance between estimated cell speed v and observed traffic speed 

follows a normal distribution with zero mean and variance given by Eq.(4-30). 

  
 

 
∑       

 

   

  (  
 

 
{∑0 ̃  ∑   ̃ 

 

   

1

 
 

   

  }, 
(4-30) 

Note that when m=0, the variance tends to be infinity and the conditional probability of 

any estimation will become identical. This make sense because under some rare condition, 

when no observation is obtained or the detector is occupied by one single vehicle, then no 

useful information can be obtained from the detector. Therefore the conditional probability 

of any given state should be equal to each other under such circumstance. 
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4.4. Evaluate the probability of traffic state with probe vehicle data 

Probe vehicle technique is receiving increasing attention from many transportation 

professionals due to its unique advantages. By installing GPS and wireless communication 

devices in probe vehicles, they can report their speed and location in a real-time manner to 

any information processing units around the world. And the high mobility of probe vehicles 

allow them to cover a wide range of the area in the network, another merit of probe 

vehicles is that they don’t require installation which may interrupt the normal operation of 

the network.  

This section focuses on the formulations of conditional probability of traffic state given 

speed and location information of probe vehicles. We will show that under the proposed 

framework, it is very easy to incorporate different types of traffic information into the 

process. 

First of all, according to the location of each probe vehicle and network topology, one 

can map each probe vehicle into its corresponding cell. This work should be done before 

the state estimation. Within cell, suppose the location and speed of m probe vehicles are 

reported. Suppose their location and speed are represented by the following vectors, 

[          ] 

[          ] 

Secondly, according to each of their speed, we can divide probe vehicles within the cell 

into two groups. The first group contains vehicles traveling at normal speed (higher than 

particular threshold), and vehicles assigned to the first group are considered as moving 

vehicles. The second group contains vehicles traveling at very low speed or those that are 

completely stopped, and vehicles in the second group are considered as in queuing 

condition.  
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Assume that there are    vehicle in group one and    vehicles in group two, and their 

respective speed and location are denoted as follows: 

[              
] and [              

] for group 1 and; 

[              
] and [              

] for group 2 

 

4.4.1. Probe data and flow speed at moving area 

The average flow speed of moving area should be correlated only with the observed 

vehicle speed in the first group.  Since each reported probe speed can be treated as a 

sampling process of the entire traffic population, the variance computed from Eq. (4-26) is 

also applicable to probe vehicle case. Thus, 
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[                ] (4-31) 

Therefore the conditional probability of each speed state given [              
] can 

be computed using condition (4-31). 

 

4.4.2. Probe data and flow density and queue length 

In order to discuss the conditional probability between number of probes observed at 

each group and the cell density and queue length, the concept of penetration rate of probe 

vehicles needs to be introduced. The penetration rate of probe vehicle represents the 

proportion of probe vehicle to the total number of vehicles traveling within the network. 

Hence probe penetration rate is a probability value between 0 and 1. If one randomly picks 
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a vehicle from the entire population, then the probability that the selected vehicle is a probe 

vehicle is p. 

Figure 6 illustrates a typical scenario of probe distribution within a cell.  There are    

probes in moving area and    probes in queuing area. Meanwhile, the estimated density 

and queue are k(t) and q(t) respectively, then given the probe penetration rate p, the 

conditional probability of the estimation can be computed with the following expression: 

                    

      
                       

                   

(4-32) 

Where, 

w is the number of lanes of the cell; 

     is estimated number of vehicles in moving area,          [      ] ; 

 

Figure 7 Probe vehicles in a cell 

Conditional probability expression (4-32) is quite self-explanatory, since given the 

probe penetration rate, the probability of observing    probe vehicles among      total 

vehicles follows binomial distribution. And such condition is the same in queuing area. 

Therefore a necessary condition for Eq.(4-32) to be valid is that                 , 

Moving area Queuing area

k(t) q(t)

Probe vehicles in 

moving area

Probe vehicles in 

queuing area

Non-probe vehicles
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otherwise the conditional probability should be zero since the total number of vehicle 

within each zone cannot be less than the actual observed number of probe vehicles. 

4.5. Computation procedure of PF algorithm 

This section provides a detailed summary of the computational procedure of PF applied 

in this study. The notations used in this section are first summarized as follows: 

M- total number of particles contained in the estimation set; 

      - the ith estimation particle at time step t; 

     - the particle set at time step t,      [                   ] 

     - the weight associated with particle i at time step t; 

     – the field measurements obtained from traffic sensors at time t; 

         – the system dynamics equation or system transition equation at time t; 

               –the conditional probability computation function at time t; 

The computation procedure of PF given above notations is summarized by Procedure 1. 
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Procedure 1 Computation procedure of particle filter 

1) Initialization: According to particle set size M, set 

   [                   ] and repeat step 2) ~ 4) until the 

estimation process is finished; 

 

2) Forward State Projection: For each particle, compute its projected state 

at next time step using         . 

 

                              

 

3) Update weights: For each particle, first evaluate its conditional 

probability given measurements       , and update its weight. 

 

                 (              )            

 

4) Re-sampling: Compute the number of effective samples according to the 

following condition, 

     
 

∑   
       

   

 

 

 Then perform re-sampling if the number drops below particular 

threshold. In re-sampling process, a new particle set is created with the 

following condition, 

 

 ̃      [ ̃        ̃          ̃      ] 

Where, 

 ( ̃              )          

 

4.6. Chapter Summary 

In this chapter, we emphasized the integration of estimation results from traffic flow 

models with the field observations considering the possible errors at both sides. As a 

mathematical tool, PF is selected as the primary filter algorithm in this study due to its 

unique advantages over other filtering algorithms. The simple yet flexible computation 

procedure provided by PF allows us to incorporate high non-linear and non-continuous 
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system dynamics equations. Also the estimation result of PF can provide us the entire 

distribution of traffic flow state over its mean value and by multiplying conditional 

probability obtained from multiple information sources, the framework can accommodate 

heterogeneous data sources and take full advantage of the additional information provided 

by multiple dataset.  

The applications of two types of traffic sensing technologies were discussed in this 

chapter: the fixed location detectors and probe vehicles. The correlation between the real-

time measurements from those two types of sensors and the estimated traffic state was 

analyzed. In the following chapters, a more detailed numerical investigation will be 

performed using a real world data set, and the performance of the model will be discussed 

in more detail. 
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5. Estimation of Arterial Travel Time and Its Variability 

5.1. Summary of previous studies 

Travel time estimation (TTE) techniques are designed to evaluate the current or 

historical travel time of a path based on all external information provided by traffic sensors. 

Generally speaking, there is an intimate connection between TTE and travel time prediction 

(TTP) since TTP focuses on predicting the future travel time value based on historical 

information while TTE emphases on computing the present or past travel time values. 

Although these two are closely related concepts, they are still quite different in many ways. 

First of all, as a commonly used performance indicator of transportation network, the travel 

time is not a simple state variable of the network rather it is a complex function of many 

network states including traffic flow speed and density, queue length, signal timings and so 

on. The essential part of a TTE algorithm is to develop an effective method to link those 

traffic states with the travel time. On the other hand, TTP emphasizes more on the 

prediction side of the problem, namely how to compute the future travel time value 

effectively based on existing traffic information. Also, prediction can be done with or 

without estimation process, and we can categorize TTP studies into two groups, direct and 

indirect travel time prediction models, according to whether the prediction is performed 

based on an embedded TTE algorithm or not.  

In a direct TTP, future travel time is often treated as a function of historical travel times 

and statistical methods are employed to describe the quantitative relation between the 

historical and future values. This family of algorithm includes regression methods and time 

series methods (Fei et al. 2011, Yang et al. 2004), KNN methods (Qiao et al. 2012), ANN 

methods (Kwon and Petty 2005, Park and Rilett 1998, Stathopoulos and Karlaftis 2003), 
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Kalman filter methods (Liu et al. 2005) and fuzzy regression methods (Dimitriou et al. 2008). 

All direct TTP relies on large amount of observed travel times in order to obtain stable 

parameter set for statistical models, and historical travel time data of a link or path can 

easily be obtained from various vehicle matching sensors including Bluetooth sensors, 

vehicle plate recognition cameras, magnetic sensors and video cameras. In summary, direct 

TTP methods are usually data driven models that require extensive data manipulation 

without considering the underlying traffic condition of the network.  

Contrary to direct TTP methods, indirect travel time prediction models take an 

alternative approach in terms of how to obtain the travel time value. As mentioned 

previously, the indirect TTP methods attempt to quantify the complex relationship between 

travel time and underlying traffic flow state variables. Hence in indirect TTP, future 

network traffic states are predicted first, as an intermediate step, in order to compute future 

travel times. The relationship between network infrastructure, traffic flow state, travel time 

and traffic surveillance system is illustrated in Figure8. 
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Figure 8 Relationship between traffic state, travel time and traffic surveillance data 

The traffic flow condition of an arterial network is influenced by three major factors: 

the user demand, the network capacity and traffic control strategies employed. The 

interaction between these three factors determines the density, speed and queue distribution 

of the network. According to different network status, drivers may experience different 

travel times, however it is usually very difficult to write down analytical expression of 

travel time as a function of traffic state especially in arterial case. Hence TTE often serves 

as a numerical procedure to obtain real-time travel time. On the other hand, both traffic 

state and travel time can be measured by traffic surveillance system.  

TTE is an essential component in indirect TTP method, and that’s why the terminology 

TTE and TTP are sometimes used interchangeably. There are several advantages in 

developing an indirect TTP algorithm. First of all, indirect TTP does not rely on the direct 

observation of actual travel times from vehicle matching sensors since travel time in this 
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case is computed from estimated traffic states (link speed and density). Direct observation 

of field travel time is very difficult if not impossible under certain scenarios even without 

considering the availability of the vehicle matching devices, for example, the number of 

observations decreases significantly as congestion level increases and statistical models 

cannot achieve stability without sufficient data samples.  Also in a complex network where 

the travel times between multiple OD pairs are concerned, it is very challenging to monitor 

the historical travel time between every OD pair. The indirect TTP, on the other hand, is 

able to take advantage of multiple data sources and does not rely on measurement of real-

time travel time hence it can tackle the above problems with additional modeling effort.  

Among the research that deals with TTE, trajectory method is one of the most famous 

and widely used algorithms. The core concept of trajectory method is to reconstruct the 

trajectory of a virtual probe vehicle based on estimated traffic states of the network. 

Trajectory method can be used for both freeways and arterials. Coifman (2002) first 

proposed a trajectory estimation method for freeway segments using densely deployed 

detector data. In his study, the local speed of traffic flow measured by loop detectors was 

expanded to the entire freeway segment based on kinematic shockwave theory from which 

the vehicle trajectory line was computed. Later, similar trajectory methods for arterial roads 

were discussed by several researchers including  Bhaskar et al. (2009), Liu and Ma (2009), 

Liu et al. (2009), Sharma et al. (2007) and Geroliminis and Skabardonis (2005). Compared 

with freeway trajectory methods, the arterial trajectory methods focus more on the 

estimation of queue length and delay experienced by drivers at each intersection. More 

specifically, Geroliminis and Skabardonis (2005) proposed an arterial queue model 

considering the shockwave propagation from upstream to downstream intersection based 
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on which the average delay traveling along the arterial corridor is estimated. Sharma et al. 

(2007) proposed a real-time queue estimation method using detector counts. Similar 

approach was also considered by Bhaskar et al. (2009) who employed both upstream and 

downstream vehicle counters to determine the number of queued vehicles before the 

intersection. Liu and Ma (2009) and Liu et al. (2009) proposed a queue estimation method 

considering the occupancy change of loop detector during the accumulation and dissipation 

of the queue in front of a signal. Based on their proposed dynamic queue method, a virtual 

probe method was developed to estimate the arterial travel time in which the trajectory of 

an imaginary probe vehicle traveling along the road is computed according to the estimated 

queue length. Bhaskar et al. (2009) computed arterial queue length based on detector and 

probe vehicle data explicitly considering the demand generation and extinction at mid-link 

points. In general, trajectory methods are widely used in arterials due to their capacity of 

accurately regenerating the full trajectory and travel time of vehicle. And the core part of 

arterial trajectory method is a highly effective queue estimation model since it is proved in 

multiple studies that the travel time estimated from trajectory methods are very reliable as 

long as the underlying traffic states are computed correctly.  Readers can see   numerical 

results provided in the literature. 

Due to the proliferation of probe vehicle technology, many recent studies focused on 

estimating the travel time with probe data. Sethi et al. (1995) proposed an incident detection 

system based on travel time measured from probe vehicle data. Cetin et al. (2005), and Chen 

and Chien (2000) discussed the determination of the number of probes for freeway travel 

time estimation problems. Chaudhuri (2011) discussed the accuracy of the probe vehicle in 

speed estimation. Comert and Cetin (2009) proposed a probabilistic model to estimate the 
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arterial queue distribution according to probe data. Hellinga and Fu (2002) discussed the 

method of reducing the bias of speed estimation from probe vehicle data. More recently 

Mehran et al. (2012) proposed a trajectory reconstruction method based on probe data and 

fixed location sensors using kinematic wave theory. In general, research on probe vehicle 

technology is very versatile and each study has its own objective and methodology. 

Another research direction in TTE is the computation of travel time variability over its 

mean value. Since travel time can be view as a complex function of the congestion level 

and other external factors such as road condition, signal control parameters and weather 

conditions, it is highly stochastic in nature especially under congested traffic condition. The 

range of travel time, not only its mean value, can affect the decision making process of 

individual drivers since depending on the expected mean value and potential range of the 

travel time, users may consider the tradeoff between the mean travel time and its reliability.  

The reliability of travel time is usually measured by its variance over the mean value. 

However due to the dynamic and high stochastic nature of the travel time, computing travel 

time reliability through mathematical derivation is a challenging task. Hence most existing 

literatures usually seek alternative approaches. We can largely categorize the research in 

this field into two groups: statistical models and simulation-based models.  Statistical 

models work on large amount of historical travel time dataset and describe the distribution 

of link travel time with particular statistical models. On the other hand, simulation based 

models try to investigate the stochastic property of travel time via microscopic simulation 

programs. Recently, the emergence of advanced vehicle matching techniques such as 

Bluetooth sensors has created more opportunity for researches to collect massive amount of 

actual travel time data (see Haghani et al. 2010, Aliari and Haghani 2012).  Fei et al. (2011) 
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propose a Bayesian inference-based dynamic linear model for predicting route travel time 

by combining an a priori known initial distribution and real-time traffic information. They 

predict the posteriori route travel time distribution in terms of the variation of travel time 

around its historical median. Hollander and Liu (2008) analyzed the travel time distribution 

of a network using repeated simulation. Both Sun et al. (2003) and Kwong et al. (2009) 

studied the distribution of travel time based on the actual path travel time measured by 

vehicle matching technique. Hollander and Liu (2007) investigated the travel time 

distribution using data generated from repeated simulation. More recently, Du et al. (2012) 

proposed a data fusion model to combine the historical travel time distribution with real-

time measurement data to obtain a more reliable short term link travel time distribution. In 

summary, compared with the estimation of mean travel time, study on the short term travel 

time reliability is sparse due to huge amount of travel time information required by such 

studies and most existing literature use artificial methods such as microscopic simulation to 

generate travel time data.  

In this chapter, the fundamentals of trajectory method are first explained. Then an 

arterial travel time estimation algorithm is proposed combining the conventional trajectory 

methods with the traffic state estimation framework proposed in this study. 

 

5.2. Trajectory Method for Arterial Travel Time Estimation 

 

As it has been mentioned earlier, the idea of trajectory method is very straightforward. 

The estimation of travel time is performed by replicating the trajectory of a virtual probe 

vehicle traveling along the designated path. Consider a vehicle traveling along a freeway 

corridor.  The freeway is divided into M segments. The average traffic flow speed within 
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segment i at time t is       (this value could be obtained from traffic state estimation 

models or through direct observation), then the travel time of the vehicle to travel through 

the corridor can be approximated by the following expression, 

     ∑
  

     

 

   

 
(5-1) 

Where  

     is the estimated travel time at time t; 

   is the length of segment i; 

The trajectory of this hypothetical probe vehicle can be described by the following set 

of points in the space-time diagram. 
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[             ∑  

 

   

] (5-3) 

 

Similar algorithm was employed by Coifman (2002), and he demonstrated the 

effectiveness of this type of simple trajectory method. (In his paper, the primary challenge 

was to obtain the traffic flow speed of the entire freeway segment using point 

measurements; the computation of travel time is only a small part of his study.)  

 

However when the problem comes down to arterial travel time, the situation turns out 

to be much more complicated. Because the travel time estimator (5-1) is no longer valid 

due to the fact that vehicles will experience additional delays at intersection if they are 

caught by red signal. Hence in arterial roads, the travel time is composed of travel time on 
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the link and waiting time before the intersection. More sophisticated trajectory method is 

required for arterial case. Liu and Ma (2009) proposed a trajectory method for arterial 

corridors where the maneuver of a virtual probe vehicle is computed based on estimated 

queue length at each time step. The model is built on another dynamic queue model which 

uses high resolution signal and detector data. 

Now suppose the time-dependent traffic flow state during the entire period of analysis 

is obtained by applying the traffic state estimation model proposed in the previous chapters. 

Then the network traffic state during the period of analysis can be represented by the 

following two matrices: 
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(5-4) 
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(5-5) 

Matrices Q and V contain N*T elements where N is the number of cells and T is the 

period of analysis. Now again suppose each element of Q and V follows normal 

distribution with estimated mean and variance. 

 (    )          (    )        (    )          (    )        

                  
(5-6) 

Note that above traffic states are outputs of our arterial traffic state estimation model. 
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Now consider a virtual probe vehicle moving along the arterial path, the objective of 

trajectory method is to reconstruct the trajectory of this imaginary vehicle based on the 

traffic state matrix Q and V.  

The trajectory of an imaginary vehicle can be computed using the procedure described 

by Procedure 2. 

Procedure 2 Description of arterial trajectory method computation procedure 

Step 1: initialization, set time t=0, simulation time step     , set the 

initial state of the vehicle to traveling, the current location of vehicle 

p(0)=0. At each time step, repeat the following computation steps. 

 

Step 2: determine the current status of the vehicle. If the vehicle is at 

traveling mode then go to step 3), otherwise go to step 4). 

 

Step 3: update the location and status of vehicle under traveling mode. 

First determine the traffic flow speed according to current time t and 

current location p(t). Then the position at next time slot would be 

             ̃     

Obtain current queue length of the link,        , compare the location of 

vehicle and the length of moving area of the link. If the vehicle is 

caught by the queue, then set the vehicle status to waiting mode and 

        and go to step 5), otherwise go to step 5) directly. 

Step 4: update the location and status of vehicle under waiting mode.  

Compute the number of vehicles departed from the queue within the 

current time slot from estimated traffic states.               . Update 

the number of vehicles that remain before the virtual probe vehicle at 

the end of current time slot,  

           

If       , then the vehicle is still in the waiting mode after time slot 
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t; otherwise if       , then it indicates that the vehicle is advancing 

to the next link, set i=i+1 and        ∑   
 
    where    is the length 

of link i.  

Step 5:  advance to the  next time step. Set t=t+1 and check if the probe 

vehicle has finished the travel based on the current location and the 

length of the path, if yes then set j=j+1 and return to step 1), otherwise 

go to step 2). 

 

 

Note that above trajectory method can be applied multiple times to form a travel time 

distribution.  

 

5.3. Chapter Summary 

In this chapter, a new type of travel time estimation algorithm is proposed to evaluate 

the reliability of travel time along a signalized arterial road. By combining the real time 

traffic state estimation and trajectory method, the advantage of the proposed TTE algorithm 

is two-fold.  First, the model can estimate the approximate distribution of travel time based 

on the traffic state estimation model discussed in the earlier chapters. Compared with other 

analytical models, the proposed method is very simple and easily understandable. Also the 

utilization of the model does not rely on particular traffic state estimation model. Second, 

compared with other simulation based models, the proposed method is computationally 

more efficient since it does not involve any microscopic simulation and obtaining the travel 

time distribution by repeatedly simulating the network which is a very time consuming task.  
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6. Short-term Traffic Flow Prediction Algorithm 

6.1. Traffic state transition equation and short-term prediction 

 

Recall the arterial traffic state definition given by (3-1),  

     [                                         ] (6-1) 

The vector X(t) represents the traffic states of the corridor at time t, later such state 

vector X(t) is expanded to include additional turning ratio variables. The enhanced traffic 

state variable  ̃    was defined by condition (3-33). And the transition of X(t) is described 

by the system transition equations developed in Chapter 3 which is summarized as follows, 

        (       )                              

 

                              

 

      {
            [       ]               

          [       ]                      
 

 

             (
 

 
   (

   [       ]   

   [                   ]   
)                                  ) 

 

             
[                 ]                               

                                 

 [       ]               

 

(6-2) 

The forecasted system state  ̃       ̃         ̃      can be obtained by 

repeatedly applying the above system transition equations to the estimated current system 

state,  ̃   , given the following two types of additional information: 
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1) The predicted inflows at all demand generating nodes from t to t+k,           

       ; 

2) The predicted turning ratio of each cell from t to t+k,                  ; 

Here K is the prediction time range defined as the maximum number of time steps to be 

predicted from the current time t. 

The above two pieces of information are both essential because they represent two 

crucial aspects of the arterial network:       represents the boundary condition of the 

network, namely the number of vehicles that will enter the network in the near future; on 

the other hand,       represents the route choice behavior of drivers within the network and 

will determine the proportion of traffic flow volume at diverging points. A common feature 

shared by these two variables is that both of their transition cannot be described by traffic 

flow models, hence statistical methods need to be employed.  

In this study, the SARIMA (Seasonal Autoregressive Integrated Moving Average) time 

series technique is applied to conduct the prediction of       and      . 

6.2. Description of SARIMA model 

 

The SARIMA is an enhanced ARIMA model considering the effect of seasonal change 

of the time series. Let {  } be a seasonal time series with period S then if the series 

                  is a stationary autoregressive moving average process (ARMA), 

then the original time series {  } is a SARIMA process whose stochastic property can be 

described by the Equation (6-3) and (6-4). 

 



 

 61 

 

                  (6-3) 

                        (6-4) 

where, 

B is the backshift operator defined by          ; 

              
       

 ; 

              
       

 ; 

              
       

 ; 

               
       

 ; 

   is the white noise error with zero mean and fixed variance,         and          

and                for any k; 

The model parameters p and P represent the non-seasonal and seasonal autoregressive 

polynomial order and q and Q represent the non-seasonal and seasonal moving average 

polynomial order respectively. And d and D are the order of differencing for non-seasonal 

and seasonal part of the time series. 

Equation (6-3) and (6-4) established a linear correlation between      and its prior 

values          , thus both the single step or multiple step prediction of {  } can be 

realized. In order to implement SARIMA model, the following four-step procedure is 

required, 

1) Model identification: Determine the structure of SARIMA(p,d,q)(P,D,Q) based on 

historical data. 

2) Parameter estimation: Estimated the unknown parameter in (6-4). 

3) Diagnostic checking: Compute the goodness of fit performance measurements. 



 

 62 

 

4) Model optimization: Select optimal model from several alternative candidates 

according to diagnosis result. 

In our model, the model identification is conducted offline using historical database. The 

inflow demand rate       is observed by detectors deployed at the demand generating links 

and turning ratio       is computed from the estimation model developed in chapter 3. 

Therefore the historical database is composed of both field observation and estimated 

results.  

 

6.3. Real-time traffic state prediction procedure 

Figure 9 illustrates the overall prediction procedure based on existing traffic state 

estimation steps. In the figure, N represents the total number of particles contained by the 

filtering algorithm and S represents the seasonal period of the prediction.       represents 

the ith particle at time t and  ̃     and  ̂     are the prior and posterior estimation of 

     .  ̌     is the predicted traffic state at time t. The system transition equation at time t is 

denoted by            and the system measurement equation is denoted by  (          ) 

where Y(t) represents the measurement vector at time t. The lower circle represents the 

real-time traffic state estimation process and the upper circle illustrates the short-term 

prediction.   represents the SARIMA prediction function. 
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Figure 9 Real-time traffic state estimation and short-term prediction flow chart 

Figure 9 presented the overall computation procedure of the proposed model. The 

estimation cycle contains three crucial procedures which are respectively state projection, 

state adjustment and resampling; on the other hand the prediction cycle also includes three 

key steps which are prediction of boundary conditions, state projection and state update. 
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The detailed computation procedure corresponding to  Figure 9 is summarized by 

Procedure 3. 

Procedure 3 Computation procedure of short-term traffic state prediction 

1) State projection (for estimation): For each particle      , compute the prior 

estimation of the particle at t+1 using transition equation.  ̃                 ; 

2) State adjustment: Using field measurement collected at time t+1, compute the 

conditional probability of each particle,               ( ̃           ); 

3) Resampling: According to the update weights at t+1, resample the particle set to 

compute the distribution of traffic state at time t+1; 

4) Prediction of boundary conditions: For prediction, the algorithm stores recent 

system state up to S previous time step,                          . Using 

the SARIMA model, predict the future inflows and turning ratio,         and 

       .  

         (                       ) 

                                   

where   represents the SARIMA model determined through offline calibration 

process. 

5) State projection (for prediction): Compute the predicted traffic state at t+1 based 

on system transition equation and         and        . 

                                   

6) State projection (for prediction): Compute the predicted traffic state at t+1 based 

on system transition equation and         and        . 
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Note that the predicting cycle needs to be repeated K times where K is the prediction time 

range. 

6.4. Chapter Summary 

 

This chapter discussed the development of short-term traffic flow prediction method 

within the proposed model framework. Key points of this chapter is summarized as 

follows, 

 Grounded on the real-time traffic state estimation results, the future traffic condition is 

predicted by repeatedly applying the system transition equation to each particle; 

 A well accepted time series model, SARIMA model, is applied in order to obtain the 

future boundary condition of the network. Future boundary condition is an extended 

concept which includes incoming demand flow rate and turning fractions of each cell; 

 The prediction model also inherited the particle set and weight system, therefore the 

future traffic flow state is predicted as distributions instead of mean values; 

 Based on the predicted traffic flow state, the future travel time can also be predicted 

using trajectory method. 
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7. Numerical Investigation Part I: Model Validation with Field Data 
 

7.1. Introduction of NGSIM dataset 

The NGSIM program is initiated by Federal Highway Administration (FWHA) and the 

main objective of the program is to validate the next generation simulation program using 

reliable field data. The NGSIM dataset contains high-resolution vehicle trajectory data 

which is collected through video devices. In this research, NGSIM data collected from two 

arterial segments are used for model validation purpose. The overall situation of arterial 

database used in this chapter is summarized in Table 2: 

Table 2 The number of trajectory data samples contained in NGSIM dataset 

Dataset  Location Time Observed Number of 

Trajectory 

1 Peachtree Street, Atlanta, 

Georgia 

12:45 to 1:00 

PM 

1114 

2 Peachtree Street Atlanta, 

Georgia 

4:00 to 4:15 

PM 

1222 

 

The study area contains four signalized intersections which are respectively the 

intersection between Peachtree Street and 10
th

 St. NE, 11
th

 St. NE, 12
th

 St. NE and 14
th

 St. 

NE. The arterial road is divided into three segments by those four intersections; hence we 

use six cells to represent the structure of the network of the study area.  

Vehicle trajectory data contained in above two dataset is collected from video devices 

deployed at high storage building within the study area. The location of each vehicle is 

extracted from the video files at an interval of 0.1 second, and all vehicle speed and 

acceleration information is obtained by parsing the vehicle trajectories. Ground truth traffic 

flow state including average flow speed, flow density and queue length in front of each 
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stop line is extracted from trajectory data using the program code developed by the author. 

For more detailed information regarding the data collection process, readers can refer to the 

original study report published by FWHA Peachtree Data Report (2007). 

The NGSIM dataset contains vehicle trajectory data of two periods, 12:45 pm to 1:00 

pm and 4:00 pm to 4:15 pm on November 8, 2006. Figure 10 shows the satellite map view 

of the target region and Figure 11 provides detailed geometric layout of the arterial corridor 

and the cell network used. The target arterial segment is modeled with a cell network 

composed of six cells which are marked by C1 ~ C6 in Figure 11 (b). In order to study the 

model performance under different types of sensors, the model is tested under two different 

scenarios (A1, A2).  In scenario A1, six virtual detectors are installed in the middle of each 

cell (marked with P1 ~ P6 in Figure 11 (a)) to provide traffic flow speed and occupancy 

readings every five seconds; and in scenario A2, 15% of the vehicles is randomly selected 

as probe vehicles and their positions and speeds are reported for each time interval. Both 

the ground truth link traffic states (queue, density and speed) and virtual detector readings 

are generated by analyzing the high resolution trajectory data. A trajectory plot sample is 

given by Figure 12 which contains the northbound vehicle trajectory between 12:45 to 1:00 

pm.  
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Figure 10 Map view of the Peachtree street 

 

 

Figure 11 The sketch of geometric layout of 

the Peachtree arterial and corresponding cell 

network structure 
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Figure 12 Trajectory plot of Peachtree street between 12:45 to 1:00 northbound traffic 

 

7.2. Calibration of speed-density-queue function using field data 

In order to implement the proposed framework, the fundamental speed-density-queue 

relationship needs to be calibrated based on observed trajectory data. The speed, density 

and queue length (queue length ratio) are extracted from the high resolution trajectory data 

provided by NGSIM database. The following two set of figures show the relationship 

between traffic flow density, queue length ratio (ratio between physical queue length and 

link length) and traffic flow speed in the form of scatter plots organized by direction and 

time period. Figure 13 displays the correlation between density and speed; Figure 14 

displays the correlation between queue and speed; and Figure 15 demonstrates the 

correlation between density, queue and speed in three dimensional scatter plots. 
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(a) 

 

(b) 

 

(c) 
 

(d) 

Figure 13 The speed density scatter plots of Peachtree street 

(a) 12:45 ~ 1:00 Northbound traffic; (b) 12:45 ~ 1:00 Southbound traffic; (c) 4:00 ~ 4:15 

Northbound traffic; (d) 4:00 ~ 4:15 Southbound traffic; 
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(a) (b) 

 

(c) 
 

(d) 

Figure 14 (a) ~ (d) The speed-queue scatter plots of Peachtree street 

(a) 12:45 ~ 1:00 Northbound traffic; (b) 12:45 ~ 1:00 Southbound traffic; (c) 4:00 ~ 4:15 

Northbound traffic; (d) 4:00 ~ 4:15 Southbound traffic; 
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(a) 
 

(b) 

 

(c) 

 

(d) 

Figure 15 (a) ~ (d) The speed-density-queue three dimensional scatter plots of Peachtree street 

(a) 12:45 ~ 1:00 Northbound traffic; (b) 12:45 ~ 1:00 Southbound traffic; (c) 4:00 ~ 4:15 

Northbound traffic; (d) 4:00 ~ 4:15 Southbound traffic; 

According to observed traffic flow data, the following functional form is selected as the 

fundamental speed-density-queue correlation: 

         (  
 

  
*      

(7-1) 

Equation 7-1 is referred to as linear-exponential speed-density-queue function where, 

k is the traffic flow density of the moving area; 

0

20

40

60

0

0.05
0.1

0.15
0.2

0.25

15

20

25

30

35

40

45

50

55

60

Link density (veh/km)
Physical Queue Ratio

S
p
e
e
d
 (

k
m

/h
)

0
10

20
30

40
50

0

0.05

0.1

0.15

0.2

0.25

10

20

30

40

50

60

Density (veh/km)Queue Ratio

S
p
e
e
d
 (

k
m

/h
)

0

20

40

60

0

0.1

0.2

0.3

0.4

15

20

25

30

35

40

45

50

55

60

Density (veh/km)

Queue Ratio

S
p
e
e
d
 (

k
m

/h
)

0

20

40

60

0
0.1

0.2
0.3

0.4

15

20

25

30

35

40

45

50

55

60

Density (veh/km)

Queue Ratio

S
p
e
e
d
 (

k
m

/h
)



 

 73 

 

  is the queue length ratio defined as the ratio between physical queue length and link 

length; 

   can be interpreted as free flow speed; 

   is the jam density; 

  is the speed decay factor; 

   and   are model parameters to be calibrated and the curve fitting is performed using 

non-linear least square method with trust region algorithm. All the curve fitting process is 

done with Matlab curve fitting toolbox. Tables 3 and 4 summarized the fitted R square and 

parameter values.  

Table 3 Summary of speed function fitted results in NGSIM dataset 

Arterial Speed Model Direction and time period R-Square Adjusted R-Square RMSE 

Linear-Exponential model  

 

12:45 to 1:00 northbound traffic 0.158 0.147 7.608 

12:45 to 1:00 southbound traffic 0.21 0.203 7.82 

4:00 to 4:15 northbound traffic 0.18 0.178 7.8 

4:00 to 4:15 southbound traffic 0.198 0.192 6.3 

 Average 0.186 0.18 7.382 

 

Table 4 Summary of fitted parameter values in NGSIM dataset 

Arterial Speed Model Direction and time period Free flow speed (m/s) Speed decay factor 

Linear-Exponential model  

 

12:45 to 1:00 northbound traffic 14.42 3.109 

12:45 to 1:00 southbound traffic 13.87 1.27 

4:00 to 4:15 northbound traffic 14.10 1.11 

4:00 to 4:15 southbound traffic 13.36 1.087 

 Average 13.93 1.64 

 

Based on Tables 3 and 4, the following functional form is used for both traffic state 

estimation and prediction in this numerical example. 

            (  
 

     
*         

(7-2) 
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7.3. Validation of traffic state estimation 

 

First of all, we want to demonstrate the model performance in estimating the real-time 

traffic flow condition of the arterial using detector data as field observation source. Three 

quantitative performance measures including MAEB, MAPEB and CIE are computed in 

order to assess the accuracy of the model.  In all definitions, the ground truth values are 

represented by   [          ] and the estimated mean, upper and lower boundaries are 

represented by   [          ]  and  ̅  [ ̅   ̅     ̅ ]   [          ] respectively. T 

is the analysis period. The upper and lower bound of the traffic state is computed by taking 

15 and 75 percentile of the estimated distribution. 

Mean Absolute Error comparing with the boundary (MAEB) is computed as: 

     
 

 
∑[      ̅       ̅    (     )|     |]

 

   

 (7-3) 

 

Mean Absolute Percentage Error comparing with the boundary (MAPEB) is computed as: 

      
 

 
∑*      ̅  

     ̅  

  
  (     )

|     |

  
+

 

   

 (7-4) 

 

Confidence interval of the estimation (CIE) is computed as: 

    
 

 
∑| ̅    |

 

   

 (7-5) 

 

where      is the step-wise linear function defined as follows. 

     {
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Table 5 provides an overview of performance measures computed based on the model 

outputs. For each type of traffic state variable estimated (queue length, density and speed), 

the MAEB, MAPEB and CIE indices are displayed for each individual cell. The performance 

indices are organized according to the type of traffic state, detector scenario and performance 

index types. Table 6 demonstrates similar content regarding the travel time estimation. The 

units for queue, density and speed are meter, veh/km and m/s respectively. 

Table 5 Summary of model performance indices of estimation results in NGSIM dataset 

Traffic state variables Scenario Performance index 
Cell Number (Link) 

Total average 
C1 C2 C3 C4 C5 C6 

Queue length 

A1 

MAEB (m) 1.97 1.38 4.16 1.36 2.46 2.23 2.26 

MAPEB (%) 21.8% 10.0% 27.5% 17.6% 21.1% 13.0% 18.5% 

CIE (m) 4.53 2.99 7.50 2.98 3.81 5.55 4.56 

A2 

MAEB (m) 3.62 1.98 4.68 1.79 2.56 3.47 3.02 

MAPEB (%) 40.7% 14.5% 30.3% 24.5% 20.7% 23.6% 25.7% 

CIE (m) 2.12 1.70 3.54 1.54 2.39 2.77 2.34 

Traffic flow density 

A1 

MAEB (veh/km) 1.17 1.64 2.95 0.89 2.67 3.03 2.06 

MAPEB (%) 7.7% 9.6% 28.7% 9.1% 16.7% 17.7% 14.9% 

CIE  (veh/km) 6.13 7.84 7.17 4.61 9.29 7.16 7.04 

A2 

MAEB (veh/km) 1.61 2.06 2.24 1.04 1.81 2.01 1.80 

MAPEB (%) 10.7% 12.1% 21.8% 10.4% 12.6% 12.1% 13.3% 

CIE  (veh/km) 4.32 4.68 3.54 3.21 6.67 5.06 4.58 

Traffic flow speed 

A1 

MAEB (m/s) 0.92 0.45 0.84 1.70 0.60 0.62 0.85 

MAPEB (%) 10.3% 4.5% 9.2% 17.3% 6.3% 7.0% 9.1% 

CIE (m/s) 1.21 1.63 1.39 0.73 1.51 1.69 1.36 

A2 

MAEB (m/s) 1.01 0.56 1.17 1.68 0.63 0.61 0.94 

MAPEB (%) 11.3% 5.5% 12.7% 17.1% 6.6% 6.8% 10.0% 

CIE (m/s) 0.80 1.12 0.84 0.50 1.04 1.24 0.92 

 

As we can see from Table 5, the proposed model has excellent performance under all three 

types of traffic flow states. In scenario A1, the MAEB of queue length, cell density and cell 

speed are respectively 2.26 (m), 2.06 (veh/km) and 0.85 (m/s) with confidence interval 4.56 

(m), 7.04 (veh/km) and 1.36 (m/s), these numbers remain similar in scenario A2. Considering 
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another primary performance index MAPEB, among three types of traffic states, the model 

performed better in estimating the traffic flow density and speed compared with queue length. 

In A1, the relative error of density and speed estimation are 14.9% and 9.1% respectively, 

while the relative error of queue estimation is 18.5%; in A2, the relative error of density and 

speed estimation are 13.3% and 10.0% respectively, while the relative error of queue 

estimation is 25.7%. Two possible reasons that caused comparatively large error in queue 

estimation are:  

Table 6 Summary of model performance indices of travel time estimation in NGSIM dataset 

Scenario Time period and direction MAEB MAPEB CIE 

A1 (Detector) 

1245 to 100 Northbound 8.25 8.5% 0.55 

1245 to 100 Southbound 6.56 9.1% 3.19 
415 to 430 Northbound 7.08 6.7% 3.74 

415 to 430 Southbound 9.36 8.9% 9.47 

Average 7.81 8.3% 4.23 

A2 (Probe vehicle data) 

1245 to 100 Northbound 7.85 8.1% 0.49 

1245 to 100 Southbound 6.98 9.6% 2.10 

415 to 430 Northbound 6.30 6.0% 2.18 
415 to 430 Southbound 9.11 8.6% 6.26 

Average 7.56 8.1% 2.76 

 

1) For queue estimation, there are no field measurements which can be used for state 

adjustments. Therefore the estimation error will accumulate as the analysis period becomes 

longer.  

2) The proposed model assumes all queued vehicles are evenly distributed among all lanes, 

which may not be true in reality due to various reasons.  

The overall estimation accuracy in scenario A1 is higher than that of A2 indicating that 

although two types of traffic sensors are complementary to each other, the model attains 

higher degree of accuracy when receiving inputs from fixed location detectors in this dataset. 

Compared with fixed location detectors such as inductive loops, probe vehicle data does not 

provide continuous observations of traffic flows therefore the penetration rate of probe 
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vehicle is a crucial factor affecting the estimation reliability. The traffic volume along 

Peachtree street during the observation period is quite low, hence in our example, the 15% 

penetration rate only provided sparse data points for the estimation.  

To further demonstrate the model outputs versus ground truth traffic state values, the 

estimation results of individual cells are selectively displayed in Figures 20 through 22. For 

each type of traffic state variable, the estimation results of three cells are selected and plotted 

against the ground truth values. And for comparison purpose, the estimation results under 

both scenarios (detector and probe vehicle data) are presented together. The estimated and 

ground truth travel time data is plotted for each direction in Figure 16 through Figure 19. For 

a complete list of estimated traffic states, readers can refer to Appendix A. 

 

Figure 16 Estimated and ground truth travel time of PT street 12:45 to 1:00 northbound traffic 
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Figure 17 Estimated and ground truth travel time of PT street 12:45 to 1:00 southbound traffic 

 

Figure 18 Estimated and ground truth travel time of PT street 4:00 to 4:15 northbound traffic 
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Figure 19 Estimated and ground truth travel time of PT street 4:00 to 4:15 southbound traffic 
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Scenario A1 (using detector information) Scenario A2 (using probe information) 

 
(a) MAPEB= 9.9% 

 
(b) MAPEB= 13.4% 

 
(c) MAPEB=20.2% 

 
(d) MAPEB=31.2% 

 
(e) MAPEB=17.9% 

 
(f) MAPEB=17.2% 

Figure 20 Estimated and ground truth queue length plot of selected cells in NGSIM dataset 

(a) and (b) Queue of C2, 400 to 415 NB; (c) and (d) Queue of C1, 1245 to 100 NB; (e) and (f) Queue of C3, 400 

to 415 SB 
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Scenario A1 (using detector information) Scenario A2 (using probe information) 

 
(a) MAPEB= 5.46% 

 
(b) MAPEB= 7.25 

 
(c) MAPEB=11.3% 

 
(d) MAPEB=9.98 

 
(e) MAPEB=6.52% 

 
(f) MAPEB=10.8% 

Figure 21 Estimated and ground truth density plot of selected cells in NGSIM dataset 

(a) and (b) Density of C1, 400 to 415 SB; (c) and (d) Density of C3, 1245 to 100 SB; (e) and (f) Density of C1, 

400 to 415 NB 
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Scenario A1 (using detector information) Scenario A2 (using probe information) 

 
(a) MAPEB= 5.0% A1 

 
(b) MAPEB= 6.4% 

 
(c) MAPEB=4.5% 

 
(d) MAPEB=6.3% 

 
(e) MAPEB=7.6 

 
(f) MAPEB=6.7% 

Figure 22 Estimated and ground truth speed plot of selected cells in NGSIM dataset 

(a) and (b) speed of C2, 1245 to 100 SB; (c) and (d) Speed of C2, 400 to 415 NB; (e) and (f) speed of C2, 400 to 

415 SB
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7.4. Validation of traffic state prediction 

This section examines the accuracy of prediction results offered by the proposed model. 

There are two important aspects of model performance we want to investigate through this 

section: 1) the overall prediction accuracy of different type of traffic state (queue length, 

density, speed and travel time) based on the proposed prediction method; 2) the change of 

prediction accuracy w.r.t. prediction range. The prediction range is usually measured by the 

number of time steps over which the traffic state variables are predicted. It is one of the 

most important measurements of effectiveness of a particular prediction model because 

longer prediction range implies obtaining the future information in a more advanced 

manner. In this part of the study, the MAEB and MAPEB indices are computed from 1 to 

30 time step prediction. Since each time step represents a duration of 5 seconds in this 

numerical study, 30 time steps prediction represents a two and half minutes ahead 

prediction of traffic flow conditions. 

The measurement criteria of the prediction accuracy are slightly different from that of 

the estimation since the variance (uncertainty) of predicted values always becomes larger 

as the prediction range increases. Therefore fixed error tolerance boundaries are employed 

when evaluating the quality of the model outputs. The error tolerance value depends on the 

type of the traffic flow variable to be predicted, in this study, the error tolerance of queue, 

density, speed and travel time are selected as 10 (meters), 10 (veh/km), 2.5 (m/s) and 10 

(seconds) respectively. 

Tables 7 and 8 presented the summary of prediction error of travel time and Tables 9 

and 10 summarized the prediction error of queue, density and speed. The contents of tables 
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are organized vertically based on individual cells and horizontally according to different 

prediction time steps.  

Table 7 Summary of travel time prediction MAEB of different time periods in NGSIM dataset 

 Direction and time-period 1-5 5-10 10-15 15-20 20-25 25-30 

Travel time (sec.) 1245 to 100 Northbound 5.53 5.71 5.75 5.18 5.15 5.25 

1245 to 100 Southbound 5.86 6.57 5.57 5.25 5.43 5.34 

400 to 415 Northbound 3.67 3.85 4.56 4.76 4.76 4.51 

415 to 430 Southbound 7.48 7.11 6.08 5.60 5.98 5.55 

Average 5.63 5.81 5.49 5.20 5.33 5.16 

 

Table 8 Summary of travel time prediction MAPEB of different time periods in NGSIM dataset 

 Direction and time-period 1-5 5-10 10-15 15-20 20-25 25-30 

Travel time 1245 to 100 Northbound 5.7% 5.9% 6.0% 5.4% 5.3% 5.4% 

1245 to 100 Southbound 8.1% 9.1% 7.7% 7.2% 7.5% 7.4% 

400 to 415 Northbound 3.5% 3.6% 4.3% 4.5% 4.5% 4.3% 

415 to 430 Southbound 7.1% 6.7% 5.8% 5.3% 5.7% 5.3% 

Average 6.1% 6.3% 5.9% 5.6% 5.7% 5.6% 
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Table 9 Summary of average prediction MAEB of different cells and time periods in NGSIM 

dataset 

MAEB of Prediction 

Traffic State 

Variable 
Direction Cell 

Prediction Time Step (One step = 5 seconds) 

1-5 5-10 10-15 15-20 20-25 25-30 

Queue Length 

(m) 

1245 to 100 Northbound 

Cell 1 2.40 3.43 1.99 2.64 4.04 3.12 

Cell 2 0.78 1.10 0.80 0.41 0.86 0.93 

Cell 3 5.44 4.59 3.09 4.42 5.16 4.03 

1245 to 100 Southbound 

Cell 4 0.17 0.12 0.16 0.35 0.24 0.13 

Cell 5 1.07 1.13 1.02 1.14 1.27 0.53 

Cell 6 1.38 2.76 2.17 1.20 2.16 2.76 

415 to 430 Northbound 

Cell 1 1.66 1.54 0.86 1.94 2.08 1.11 

Cell 2 2.71 3.69 3.03 1.20 2.80 3.17 

Cell 3 6.70 7.68 4.66 4.13 7.04 7.24 

415 to 430 Southbound 

Cell 4 1.66 1.54 0.95 1.03 1.83 1.26 

Cell 5 4.04 4.07 2.31 0.91 3.80 3.62 

Cell 6 4.70 8.53 6.93 2.88 4.53 8.39 

Density (veh/km) 

1245 to 100 Northbound 

Cell 1 1.88 2.15 1.80 2.32 2.58 2.30 

Cell 2 3.24 4.23 3.02 1.94 4.00 4.28 

Cell 3 1.86 1.32 1.14 0.90 1.04 0.87 

1245 to 100 Southbound 

Cell 4 0.13 0.32 0.47 0.33 0.27 0.44 

Cell 5 2.34 2.05 2.40 2.69 2.72 2.64 

Cell 6 2.63 3.71 3.17 1.32 2.82 3.68 

415 to 430 Northbound 

Cell 1 1.19 1.55 1.64 1.54 1.80 1.94 

Cell 2 2.16 3.19 3.12 1.34 2.26 3.04 

Cell 3 1.32 0.74 1.39 0.52 1.18 0.62 

415 to 430 Southbound 

Cell 4 1.07 1.26 1.55 2.17 2.16 1.74 

Cell 5 5.47 0.01 0.01 2.79 3.07 3.68 

Cell 6 5.57 0.01 0.01 2.96 3.77 5.31 

Speed (m/s) 

1245 to 100 Northbound 

Cell 1 0.39 0.57 0.80 0.47 0.39 0.57 

Cell 2 0.36 0.48 0.35 0.49 0.37 0.52 

Cell 3 0.54 0.60 0.57 0.36 0.47 0.59 

1245 to 100 Southbound 

Cell 4 1.14 1.19 1.13 0.99 1.00 1.07 

Cell 5 0.61 0.76 1.16 0.77 0.60 0.72 

Cell 6 0.33 0.31 0.36 0.28 0.20 0.17 

415 to 430 Northbound 

Cell 1 0.74 0.77 0.74 0.60 0.70 0.75 

Cell 2 0.57 0.80 0.63 0.40 0.52 0.71 

Cell 3 0.93 0.63 0.73 0.87 0.88 0.57 

415 to 430 Southbound 

Cell 4 0.89 0.89 0.82 0.74 0.80 0.76 

Cell 5 0.99 1.13 0.75 0.37 0.84 0.93 

Cell 6 0.57 0.41 0.47 0.31 0.43 0.33 
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Table 10 Summary of average prediction MAPEB of different cells and time periods in NGSIM 

dataset 

MAPEB of Prediction 

Traffic State Variable Direction Cell 
Prediction Time Step (One step = 5 seconds) 

1-5 5-10 10-15 15-20 20-25 25-30 

Queue Length (m) 

1245 to 100 Northbound 

Cell 1 23.9% 34.1% 19.7% 26.2% 40.2% 31.0% 

Cell 2 7.3% 10.3% 7.5% 3.8% 8.0% 8.7% 

Cell 3 40.7% 34.3% 23.1% 33.0% 38.6% 30.1% 

1245 to 100 Southbound 

Cell 4 3.4% 2.3% 3.1% 6.8% 4.6% 2.5% 

Cell 5 18.1% 19.2% 17.3% 19.3% 21.6% 9.1% 

Cell 6 11.7% 23.3% 18.3% 10.1% 18.3% 23.3% 

415 to 430 Northbound 

Cell 1 20.3% 18.8% 10.5% 23.7% 25.4% 13.6% 

Cell 2 16.1% 21.9% 18.0% 7.2% 16.7% 18.9% 

Cell 3 40.0% 45.8% 27.8% 24.6% 42.0% 43.2% 

415 to 430 Southbound 

Cell 4 18.6% 17.2% 10.7% 11.5% 20.5% 14.2% 

Cell 5 21.7% 21.9% 12.5% 4.9% 20.5% 19.5% 

Cell 6 24.0% 43.5% 35.4% 14.7% 23.1% 42.8% 

Density (veh/km) 

1245 to 100 Northbound 

Cell 1 11.4% 13.1% 10.9% 14.1% 15.7% 13.9% 

Cell 2 18.7% 24.4% 17.4% 11.2% 23.1% 24.7% 

Cell 3 18.6% 13.1% 11.4% 9.0% 10.4% 8.6% 

1245 to 100 Southbound 

Cell 4 1.6% 3.9% 5.7% 4.0% 3.2% 5.3% 

Cell 5 20.5% 18.0% 21.0% 23.6% 23.9% 23.2% 

Cell 6 19.2% 27.2% 23.2% 9.6% 20.6% 26.9% 

415 to 430 Northbound 

Cell 1 8.7% 11.3% 12.0% 11.3% 13.2% 14.2% 

Cell 2 12.9% 19.1% 18.6% 8.0% 13.5% 18.2% 

Cell 3 12.6% 7.0% 13.3% 5.0% 11.3% 5.9% 

415 to 430 Southbound 

Cell 4 8.0% 9.4% 11.6% 16.3% 16.2% 13.0% 

Cell 5 29.1% 27.5% 27.1% 14.8% 16.3% 19.5% 

Cell 6 29.7% 33.9% 34.8% 15.8% 20.1% 28.3% 

Speed (m/s) 

1245 to 100 Northbound 

Cell 1 4.3% 6.2% 8.7% 5.2% 4.2% 6.3% 

Cell 2 3.4% 4.6% 3.3% 4.7% 3.5% 4.9% 

Cell 3 5.6% 6.3% 6.0% 3.7% 4.9% 6.2% 

1245 to 100 Southbound 

Cell 4 11.5% 12.0% 11.4% 10.0% 10.1% 10.8% 

Cell 5 5.9% 7.4% 11.2% 7.4% 5.8% 6.9% 

Cell 6 3.5% 3.2% 3.8% 2.9% 2.0% 1.8% 

415 to 430 Northbound 

Cell 1 8.4% 8.7% 8.4% 6.8% 7.9% 8.5% 

Cell 2 5.8% 8.2% 6.4% 4.1% 5.3% 7.2% 

Cell 3 10.4% 7.0% 8.1% 9.7% 9.8% 6.4% 

415 to 430 Southbound 

Cell 4 9.1% 9.2% 8.4% 7.6% 8.3% 7.8% 

Cell 5 11.3% 12.9% 8.5% 4.2% 9.6% 10.6% 

Cell 6 6.8% 4.9% 5.6% 3.6% 5.1% 3.9% 
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In the following set of figures, the change of prediction accuracy of all traffic state 

variables is plotted. The change of MAPEB versus prediction time step is the best 

representation of model performance over time. Figure 23 is the predicted MAPEB of 

travel times over time; Figures 24 and 25 are the predicted MAPEB of queue length over 

time; Figures 26 and 27 present the predicted MAPEB of density over time; and Figures 28 

and 29 present the predicted MAPEB of speed over time.  

Figures 23 to 29 are simply the graphic representation of Table 7 ~ 10, therefore readers 

can refer to the tables for detailed performance statistics. 

 

Figure 23 Plots of predicted travel time MAPEB over different prediction range using NGSIM 
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Figure 24 Plots of predicted queue length MAPEB over different prediction range with NGSIM 

Peachtree data from 12:45 to 1:00 

 

 

Figure 25 Plots of predicted queue length MAPEB over different prediction range with NGSIM 

Peachtree data from 4:00 to 4:15 
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Figure 26 Plots of predicted density MAPEB over different prediction range with NGSIM 

Peachtree data from 12:45 to 1:00 

 

Figure 27 Plots of predicted density MAPEB over different prediction range with NGSIM 

Peachtree data from 4:00 to 4:15 
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Figure 28 Plots of predicted speed MAPEB over different prediction range with NGSIM 

Peachtree data from 12:45 to 1:00 

 

Figure 29 Plots of predicted speed MAPEB over different prediction range with NGSIM 

Peachtree data from 4:00 to 4:15 
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decrease, periodic and non-periodic. The former three types of change are quite self-

explanatory, and the latter two types of trend curve refer to curves without monotonic 

increase or decrease property and with multiple local peaks and valleys. The periodic curve 

demonstrates repeated patterns at fixed intervals while in non-periodic curves no periodicity 

is observed. In prediction problems, one would expect that the accuracy of the prediction 

decays as the number of time steps increases however here that is not the case based on the 

observation from Figures 23 to 29. The trend of prediction curves of different traffic flow 

variables are summarized as follows: 

Travel time: stable 

Queue length: mostly periodic, some are stable 

Density: mostly non-periodic, some are stable 

Speed: mostly stable, some are periodic or non-periodic 

Therefore, the mean prediction error of the proposed model does not increase w.r.t. the 

prediction time range. This is a very important property because it implies that the 

performance of the prediction does not deteriorate quickly as we increase the number of 

time steps to be predicted. On the other hand, the prediction of queue, density and speed 

demonstrate different degree of periodicity in their MAPEB plots indicating that the model 

is very sensitive to the signal timing configurations.  Such phenomenon is particular obvious 

in queue prediction. One reasonable explanation is that since the proposed model relies on 

traffic flow model in order to perform prediction, the primary error source comes from the 

discrepancy between the actual traffic flow dynamics and its mathematical approximation. 

The periodicity of density and speed prediction is much weaker compared with that of queue, 

however readers can still observe such periodicity on the prediction of some cells. 
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2) The order of prediction accuracy of different traffic state variable is: travel time > 

speed > density > queue. However since the statistics of different state variables are 

computed based on different error tolerance rates, such comparison is not very rigorous and 

serves only for future reference purpose. 

To help readers further understand outputs of prediction model, the prediction curves of 

selected individual cells are presented together with corresponding ground truth values. Due 

to the space constraint of the dissertation, only the prediction result of part of the cells is 

listed here (three cells for each type of traffic state variable).  Figures 30 ~ 33 are predicted 

travel time plots and Figures 34~ 36 are queue prediction plots, Figures 37 ~ 39 are density 

prediction plots and Figure 40 ~ 42 are speed prediction plots. For a complete list of 

predicted traffic states, readers can refer to Appendix A. 

 

Figure 30 Predicted and ground truth travel time of Peachtree street northbound 12:45 to 1:00 

 

20 40 60 80 100 120 140 160
40

60

80

100

120

140

160

180

Time (sec)

T
ra

v
e
l 
ti
m

e
(s

e
c
)

 

 

Ground Truth

5 step ahead prediction

10 step ahead prediction

15 step ahead prediction

20 step ahead prediction

25 step ahead prediction

30 step ahead prediction



 

 

 

93 

 

 

Figure 31 Predicted and ground truth travel time of Peachtree street southbound 12:45 to 1:00 

 

Figure 32 Predicted and ground truth travel time of Peachtree street northbound 4:00 to 4:15 
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Figure 33 Predicted and ground truth travel time of Peachtree street southbound 4:00 to 4:15 

 

Figure 34 Predicted and ground truth queue of Peachtree street 12:45 to 1:00 cell 1 
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Figure 35 Predicted and ground truth queue of Peachtree street 12:45 to 1:00 cell 5 

 

Figure 36 Predicted and ground truth queue of Peachtree street 4:00 to 4:15 cell 5 
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Figure 37 Predicted and ground truth queue of Peachtree street 4:00 to 4:15 cell 6 

 

Figure 38 Predicted and ground truth queue of Peachtree street 4:00 to 4:15 cell 5 
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Figure 39 Predicted and ground truth queue of Peachtree street 12:45 to 1:00 cell 2 

 

Figure 40 Predicted and ground truth speed of Peachtree street 12:45 to 1:00 cell 2 
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Figure 41 Predicted and ground truth speed of Peachtree street 4:00 to 4:15 cell 3 

 

 

Figure 42 Predicted and ground truth speed of Peachtree street 4:00 to 4:15 cell 5 
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7.5. Comparison analysis using SMART signal data 

In order to vertically compare the result of the proposed model with other state of art 

methods, the SMART signal data is used for further analysis and comparison purpose. 

Henry Liu et al. (2009) proposed a real-time queue estimation method based on high 

resolution signal and detector data. In this section, a comparison study is performed for 

queue estimation between the proposed model and Liu et al.’s model. 

The study site is selected at TH-13 highway between Lynn Ave and Co-Rd 5 in state 

of Minnesota where the SMART signal system is installed.  

 

Figure 43 The map of study area along TH 13, Minnesota 

Figure 44 (a) and (b) presents respectively the detail geometric layout and the 

corresponding cell network structure applied in this example.  

                 

                 

          -     
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Figure 44 Geometric layout (a) and cell network structure (b) used in comparison study 

 

The queue length along with other traffic flow state of C1 ~ C4 (in Figure 44 (b)) is 

estimated using the proposed model. Both measured link traffic states and signal data is 

extracted from the high resolution SMART signal event based dataset. The estimated 

queue length of Liu et al.’s model is obtained through an active web application of their 

project. The test time period is selected between 7:00 and 8:00 AM on November 14
th

, 

2012. The computation time step is 10 seconds. 

Figures 45 ~ 48 demonstrate the estimated queue length from the proposed model and Liu 

et al.’s model. 
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Figure 45 Comparison of estimated queue length of cell 1 

 

Figure 46 Comparison of estimated queue length of cell 2 
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Figure 47 Comparison of estimated queue length of cell 3 

 

Figure 48 Comparison of estimated queue length of cell 4 

As we can observe from above figures, the estimation result from the proposed model 

coincides with Liu et al.’s model under most situations with slight under estimation. The 

overall difference between the two models in this example is less than 15%. The 

maximum queue length is under-estimated sometimes by the proposed model due at least 

to two reasons: 

1) First of all, the physical queue length is always larger than the theoretical queue 
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average queue length due to the propagation of backward shockwave during the 

beginning period of the green phase.  

2) The model always assumes that vehicles are evenly distributed among all the lanes. 

Such assumption may easily be violated in reality. 

Developing an extended traffic flow model in order to overcome above issues is left for 

future work.  

7.6. Chapter Summary 

 

This chapter reported the results of a first round of numerical investigation regarding 

the proposed shifting boundary cell queue model. The validation is conducted using the 

high resolution trajectory data contained in NGSIM dataset. Key findings of this chapter 

are summarized as follows: 

1) The linear exponential speed-density-queue function is adopted in this numerical study 

and the parameters of speed function is calibrated using link speed, density and queue data 

extracted from trajectory data; 

2) The Peachtree arterial dataset represents light traffic condition with stable traffic flow 

dynamics, such fact is observed from travel time plots; 

3) The real-time estimation model is capable of reproducing the arterial corridor traffic 

flow condition accurately with multiple type of data source including detector and probe 

vehicle data; 

4) The change of prediction accuracy over time measured by MAPEB is stable for travel 

time and changing periodically for queue; 
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5) The change of prediction accuracy of density and speed over time is sometimes 

periodic but sometimes non-periodic; 

6) The prediction error of the proposed model is always constrained even if the prediction 

range increases and no lagging effect is observed from the prediction curves. 

7) The queue estimation results are also compared against Liu et al.’s model using 

SMART signal dataset. 

In the next chapter, another set of numerical investigation is done to explore the 

performance of the model under heavy traffic condition where temporary cycle failure and 

queue spillback may occur. 
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8. Numerical Investigation Part II: Model Validation with Synthetic 

Data 

8.1. Network Description 

In this chapter, we want to further examine the model’s performance under congested 

traffic conditions. Due to the lack of field data, a simulated traffic flow data on a 

hypothetical arterial is employed. The simulation was conducted using VISSIM, a well-

established microscopic simulation software, on a two-directional arterial road network 

consisting four signalized intersections. The geometric layout of the arterial network is 

presented in Figure 49. 

 

Figure 49 Geometric layout of the hypothetical arterial corridor 

The arterial is divided into five links along each direction by signals which give us 

eight non-sink links. The links are numbered according to their location with regard to the 

most upstream link, eastbound links are numbered from 1 to 4 and westbound links are 

numbered from 5 to 8. The link numbers are also presented in Figure 50. The length and 

number of lane of each link and the size of turning bay associated with each link are 

summarized in Table 11. 
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Table 11 Link and turning bay length of the simulation network 

Eastbound links 

Number 1 2 3 4 

Link length (m) 303 397 196 304 

Left-turn bay(m) N/A 150 95 130 

Westbound links 

Number 5 6 7 8 

Link length(m) 794 304 196 397 

Left-turn bay(m) N/A 100 110 166 

 

The simulation experiment is designed to replicate the arterial traffic status under time-

varying demand volume and temporary over-saturated traffic condition. The performance 

of proposed traffic flow estimation and prediction model is then tested and validated using 

the trajectory data extracted from the simulator.  Figure 50 presents the location of all 

demand generation nodes and Tables 12 and 13 summarize the OD ratio table and 

incoming traffic flow rate of each demand generating node within the simulation period 

respectively.  The simulation time period is one hour and the computation is done every 10 

seconds. 

 

Figure 50 Number of demand generation and sink nodes of the simulation network 
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Table 12 The demand volume ratio between OD pairs 

Origin/Dest 1 2 3 4 5 6 7 8 9 10 11 12 

1 0.0% 7.7% 7.7% 7.7% 7.7% 38.5% 0.0% 7.7% 7.7% 7.7% 0.0% 7.7% 

2 0.0% 0.0% 14.3% 14.3% 14.3% 14.3% 0.0% 14.3% 14.3% 14.3% 0.0% 0.0% 

3 0.0% 16.7% 0.0% 16.7% 16.7% 16.7% 0.0% 0.0% 0.0% 0.0% 16.7% 16.7% 

4 0.0% 14.3% 14.3% 0.0% 14.3% 14.3% 0.0% 0.0% 0.0% 14.3% 14.3% 14.3% 

5 0.0% 14.3% 14.3% 14.3% 0.0% 0.0% 0.0% 0.0% 14.3% 14.3% 14.3% 14.3% 

7 0.0% 15.4% 7.7% 7.7% 7.7% 0.0% 0.0% 7.7% 7.7% 7.7% 7.7% 30.8% 

8 0.0% 14.3% 14.3% 14.3% 0.0% 0.0% 0.0% 0.0% 14.3% 14.3% 14.3% 14.3% 

9 0.0% 0.0% 0.0% 0.0% 20.0% 0.0% 0.0% 20.0% 0.0% 20.0% 20.0% 20.0% 

10 0.0% 0.0% 0.0% 14.3% 14.3% 14.3% 0.0% 14.3% 14.3% 0.0% 14.3% 14.3% 

11 0.0% 0.0% 14.3% 14.3% 14.3% 14.3% 0.0% 14.3% 14.3% 14.3% 0.0% 0.0% 

 

Table 13 The total demand volume of different demand generating nodes (veh/hour) 

Demand Generation Node/Time Period 0-600 600-1200 1200-1800 1800-2400 2400-3000 3000-3600 

1 1000 1400 1800 1800 1400 800 

7 1600 1800 2200 1000 1000 1000 

2 150 200 250 250 200 150 

3 150 200 250 250 200 150 

4 150 200 250 250 200 150 

5 150 200 250 250 200 150 

6 150 200 250 250 200 150 

8 150 200 250 250 200 150 

9 150 200 250 250 200 150 

10 150 200 250 250 200 150 

*Time in seconds and volume in veh/hour 

In this simulation example, we try to predict the traffic flow statistics including traffic 

density, queue and speed together with travel time along each direction of the road. The 

following figure plots the observed travel time points (captured by VISSIM) during the 

simulation period, the solid line represents the travel time along eastbound and the dash 

line represents the travel time along westbound road. As observable from the Figure 51, the 

travel time demonstrates high variability for both directions. The average free flow travel 

time under normal traffic condition is around 130 seconds according to the simulation 

results, however the highest travel time of westbound direction reached 290 seconds 
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approximately at 1970 seconds time mark due to the congestion; on the other hand, the 

eastbound traffic also experienced additional delay (but not as high as westbound traffic).   

 

Figure 51 Observed travel time of the corridor obtained from VISSIM 
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8.2. Calibration of speed-density-queue function using simulated data  

 

In order to implement the proposed framework, the fundamental speed-density-queue 

relationship needs to be calibrated based on simulated data. The speed, density and queue 

length (queue length ratio) are extracted from the trajectory data collected from the 

simulator. Figure 52 displays the correlation between density and speed. Figure 53 displays 

the correlation between queue and speed; and Figure 54 demonstrates the correlation 

between density, queue and speed in three dimensional scatter plots. 

 

 

(a) 

 

(b) 

Figure 52 Observed speed and density plot of (a) Eastbound traffic (b) Westbound traffic of the 

simulated network 
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Figure 53 Observed speed and queue ratio plot of (a) Eastbound traffic (b) Westbound traffic of 

simulated network 

  

Figure 54 Observed speed, density and queue ratio 3-D plot of (a) Eastbound traffic (b) 

Westbound traffic of simulated network 
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In Equation (8-1) and (8-2), V is the macroscopic speed-density-queue relationship; k is 

the traffic density of the moving area; q is the queue length ratio of the cell defined as the 

ratio between physical queue length and the link length; The parameters to be calibrated 

include free flow speed   , jam density    and speed decay factor  . The curve fitting is 

performed using non-linear least square method with trust region algorithm and all the 

curve fitting process is done with Matlab curve fitting toolbox. Tables 14 and 15 display 

the results of curve fitting procedure. 

 

Table 14 Summary of speed function fitted results 

Speed-Density Queue Function Direction R-Square Adjusted R-Square RMSE 

Linear-Exponential function  

(Equation 8-1) 

Eastbound traffic 0.39 0.389 9.07 

Westbound traffic 0.36 0.359 10.53 

 Average 0.375 0.374 9.8 

Parabolic-Exponential model  

(Equation 8-2) 

Eastbound traffic 0.403 0.402 8.975 

Westbound traffic 0.359 0.359 10.54 

 Average 0.381 0.38 9.75 

 

Table 15 Summary of fitted parameter values 

Speed-Density Queue Function Direction Free flow speed Jam density Speed decay factor 

Linear-Exponential function 

(Equation 8-1) 

Eastbound traffic 52.36 250 (max) 2.572 

Westbound traffic 51.98 229 3.05 

 Average 52.17 239.5 2.811 

Parabolic-Exponential model 

(Equation 8-2) 

Eastbound traffic 48.56 160.3 2.674 

Westbound traffic 47.54 111.8 3.118 

 Average 48.05 136.05 2.896 
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Figure 55 shows the three dimensional plot of fitted curve under different speed function 

form.  

Comparing the R-square of Equation (8-1) and (8-2), we can conclude that the 

parabolic-exponential speed function slightly over-performs linear-exponential speed 

function along both directions. Therefore the parabolic exponential speed-density-queue 

function is selected in this numerical example.  

            √*  (
 

      
*
 

+          (8-3) 
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(c) 

 
(d) 

Figure 55 Plots of three dimensional curves fitted under linear-exponential and parabolic 

exponential 

speed function. (a) and (b) Linear exponential function; (c) and (d) Parabolic exponential 

function 
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8.3. Validation of traffic state estimation 

First of all, we want to demonstrate the model performance in estimating the real-time 

traffic flow condition of the arterial using detector data as field observation source. Three 

quantitative performance measures including MAEB, MAPEB and CIE are computed in 

order to assess the accuracy of the model.  In all definitions, the ground truth values are 

represented by   [          ] and the estimated mean, upper and lower boundaries are 

represented by   [          ]  and  ̅  [ ̅   ̅     ̅ ]   [          ] respectively. 

T is the analysis period. The upper and lower bound of the traffic state is computed by 

taking 15 and 75 percentile of the estimated distribution. 

Mean Absolute Error comparing with the boundary (MAEB) is computed as: 

     
 

 
∑[      ̅       ̅    (     )|     |]

 

   

 (8-4) 

Mean Absolute Percentage Error comparing with the boundary (MAPEB) is computed as: 

      
 

 
∑*      ̅  

     ̅  

  

 

   

  (     )
|     |

  
+ 

(8-5) 

Confidence interval of the estimation (CIE) is computed as: 

    
 

 
∑| ̅    |

 

   

 (8-6) 

where      is the step-wise linear function defined by condition (8-7). 
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     {
      
     

 (8-7) 

Table 16 provides an overview of performance measures computed based on the model 

outputs. For each type of traffic state variable estimated (queue length, density and speed), 

the MAEB, MAPEB and CIE indices are displayed for each individual cell. The 

performance indices are organized according to the type of traffic state, detector scenario 

and performance index types. The units for queue, density and speed are meter, veh/km and 

m/s respectively.  
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Table 16 Summary of performance index of the model under simulation dataset 

Traffic State Variable Direction Performance index C1 C2 C3 C4 Average 

Queue Length 

Eastbound 

MAEB (m) 3.78 9.38 1.71 4.58 4.86 

MAPEB (%) 8.9% 21.8% 9.2% 22.8% 15.7% 

CIE (m) 3.58 5.84 2.66 4.05 4.03 

Westbound 

MAEB (m) 6.77 12.62 2.45 5.55 6.85 

MAPEB (%) 16.0% 29.3% 13.2% 27.6% 21.6% 

CIE (m) 3.79 4.95 2.99 4.88 4.15 

Density 

Eastbound 

MAEB (m) 5.40 6.20 6.50 6.40 6.125 

MAPEB (%) 24.3% 26.7% 23.7% 40.2% 28.7% 

CIE (m) 2.40 6.40 6.70 5.00 5.125 

Westbound 

MAEB (m) 15.90 7.20 7.00 5.20 8.825 

MAPEB (%) 40.3% 25.1% 22.7% 27.8% 29.0% 

CIE (m) 2.50 6.30 8.40 3.90 5.275 

Speed 

Eastbound 

MAEB (m/s) 0.51 0.92 1.68 0.95 1.01 

MAPEB (%) 4.0% 7.4% 12.5% 7.2% 7.8% 

CIE (m/s) 0.43 0.51 0.57 0.53 0.51 

Westbound 

MAEB (m/s) 0.50 1.06 2.12 0.86 1.14 

MAPEB (%) 3.8% 9.6% 17.4% 6.4% 9.3% 

CIE (m/s) 0.44 0.58 0.64 0.47 0.53 

Travel Time 

Eastbound 

MAEB (sec.) 7.89 

MAPEB (%) 4.73% 

CIE (sec.) 13.78 

Westbound 

MAEB (sec.) 12.57 

MAPEB (%) 6.53% 

CIE (sec.) 12.98 

 

The estimated and observed travel time is presented in Figure 56. To further demonstrate 

the model outputs versus ground truth traffic state values, the estimation results of 

individual cells are selectively displayed from Figures 57 through Figure 59. For each type 

of traffic state variable, the estimation results of three cells are selected and plotted against 

the ground truth values.  For a complete list of estimated traffic states of each individual 

cell, readers can refer Appendix B. 
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(a) 

 

(b) 

Figure 56 Estimated versus ground truth travel time plot of (a) Eastbound traffic (b) Westbound 

traffic of simulation dataset 
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As one piece of very important information, the estimated travel time result is displayed 

in Figure 56. As observable from the figure, the travel time is estimated accurately for both 

direction of the arterial, the average error in percentage is around 5% considering both 

directions. Such statistics implies that the proposed model can offer very reliable travel 

time information even under congested situation. 
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(a) 

 
(b) 

 
(c) 

Figure 57 Estimated versus ground truth queue length plot of (a) Cell 1 (b) Cell 3 (c) Cell 8 of 

simulation dataset 

50 100 150 200 250 300
0

20

40

60

80

100

120

140

Time (sec)

Q
u
e
u
e
 L

e
n
g
th

(m
)

 

 

50 100 150 200 250 300
0

10

20

30

40

50

60

70

Time (sec)

Q
u
e
u
e
 L

e
n
g
th

(m
)

 

 

50 100 150 200 250 300
0

20

40

60

80

100

Time (sec)

Q
u
e
u
e
 L

e
n
g
th

(m
)

 

 



 

 

 

120 

 

 

 

 
Figure 58 Estimated versus ground truth density plot of (a) Cell 1 (b) Cell 4 (c) Cell 6 of 

simulation dataset 
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Figure 59 Estimated versus ground truth density plot of (a) Cell 5 (b) Cell 6 (c) Cell 7 of 

simulation dataset 
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8.4. Validation of Short-term Prediction Results 

This section examines the accuracy of prediction results offered by the proposed model 

using simulated traffic state as ground truth values. There are two important aspects of 

model performance we want to investigate in this section: 1) the overall prediction 

accuracy of different types of traffic states (queue length, density, speed and travel time); 

2) the change of prediction accuracy w.r.t. the prediction range. The prediction range, 

usually measured by the number of time steps over which the traffic state variables are 

predicted, plays a very important role when investigating the potential effectiveness of 

particular prediction model. In this numerical example, the MAEB and MAPE indices are 

computed from 1 to 60 time step prediction for each individual traffic state variable. Since 

each time step represents a duration of 10 seconds, 60 time steps prediction represents a 10 

minutes ahead prediction of the traffic flow condition. 

Tables 17 and 18 present the summary of average prediction error for each type of traffic 

state including queue, density, speed and travel time at different prediction ranges. Figures 

60 and 61 are graphical presentation of Tables 17 and 18. 
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Table 17 Summary of average prediction MAEB of different traffic state variables of simulation 

dataset 

 Prediction Time Step (one step=10 seconds) 

 5 10 15 20 25 30 35 40 45 50 55 60 

Queue (m) 9.62 6.41 8.66 7.30 7.83 7.70 7.33 7.34 7.58 6.88 8.23 6.35 

Density (veh/km) 11.19 7.35 10.21 8.77 8.34 9.74 6.88 10.30 7.12 9.87 7.85 8.85 

Speed (m/s) 0.928 0.59 0.951 0.599 0.934 0.621 0.906 0.631 0.857 0.671 0.813 0.661 

Travel time (s) 10.59 10.17 10.11 10.41 10.46 9.75 9.96 9.58 9.77 9.07 8.83 8.89 

 

Table 18 Summary of average prediction MAPE of different traffic state variables of simulation 

dataset 

 Prediction Time Step (one step=10 seconds) 

 5 10 15 20 25 30 35 40 45 50 55 60 

Queue 27.4% 20.1% 24.7% 22.6% 22.4% 23.7% 20.9% 22.5% 21.4% 21.0% 22.9% 19.4% 

Density 44.3% 29.0% 39.8% 35.3% 32.1% 39.5% 26.2% 41.5% 27.5% 39.1% 30.8% 34.6% 

Speed 7.4% 4.7% 7.5% 4.7% 7.4% 4.9% 7.1% 5.0% 6.7% 5.4% 6.4% 5.3% 

Travel time 5.8% 5.6% 5.6% 5.7% 5.8% 5.4% 5.5% 5.3% 5.4% 5.0% 4.9% 4.9% 

 

 

Figure 60 Line plot of average prediction MAEB of different traffic state variables of simulation 

dataset 
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Figure 61 Line plot of average prediction MAPEB of different traffic state variables of 

simulation dataset 

There are several noticeable points regarding Tables 17 and 18. First of all, the 

prediction accuracy of travel time, queue length and speed remains relatively stable as the 

prediction time step increases; as for the density prediction, the MAPEB curve 

demonstrates periodic changing pattern. Secondly, the average prediction accuracy (since 

the MAPEB of travel time, queue and speed are stable, checking the average error is 

meaningful) of travel time, queue length and speed are respectively 5%, 18% and 5.5% 

within 60 time step prediction range. Such performance measure indicates that the 

proposed model can offer very reliable prediction of those three traffic state variables 

within comparatively long prediction time range. Compared with the remaining three 

variables, the density prediction is comparatively low and demonstrates high periodical 

fluctuation in this numerical study. The average prediction MAPEB of density fluctuates 

between 30% and 45% with the prediction range.  This implies that predicting the future 

density of each cell using the proposed model may yield large biased results. However if 
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dominated by the link speed and queue length.  Tables 19 and 20 provide more detailed 

information about the change of MAEB and MAPEB of each cell. 
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Table 19 Summary of prediction MAEB of individual cells of simulation dataset 

Traffic State 

Variable 
Direction Link 

Prediction Time Step 

5 10 15 20 25 30 35 40 45 50 55 60 

Queue 

Length (m) 

Eastbound 

Cell 1 15.48 3.32 15.16 3.61 15.00 3.86 14.73 3.95 14.45 4.28 14.07 4.41 

Cell 2 15.85 13.29 12.75 16.20 9.93 17.67 8.21 16.64 9.48 14.98 12.94 13.27 

Cell 3 3.27 1.04 2.77 1.91 2.03 2.75 1.45 3.12 1.24 3.09 1.31 2.71 

Cell 4 3.69 5.79 3.54 5.63 3.60 4.94 3.63 4.06 3.74 3.39 3.87 3.29 

Westbound 

Cell 5 15.55 5.27 15.24 5.32 15.16 5.31 14.92 5.59 14.69 6.07 14.29 6.18 

Cell 6 16.36 14.20 13.57 17.05 11.17 18.43 10.14 17.38 11.58 15.76 13.93 13.86 

Cell 7 3.20 1.32 2.89 2.19 2.34 2.88 1.98 3.11 1.71 3.11 1.56 2.84 

Cell 8 3.54 7.04 3.32 6.47 3.41 5.76 3.59 4.90 3.78 4.34 3.88 4.22 

Density 

(veh/km) 

Eastbound 

Cell 1 0.85 1.90 1.18 2.05 1.36 2.16 1.39 2.21 1.57 2.37 1.51 2.31 

Cell 2 8.35 4.79 8.07 4.84 8.27 4.68 8.41 4.46 8.27 4.45 7.87 4.23 

Cell 3 19.46 9.36 18.81 12.92 13.80 16.17 8.10 18.40 8.70 17.89 9.54 16.97 

Cell 4 10.76 7.83 8.98 10.21 6.70 11.50 5.10 11.56 6.26 10.02 7.67 8.32 

Westbound 

Cell 5 9.16 9.71 9.54 9.85 9.36 9.33 8.84 9.04 8.77 9.07 8.95 9.30 

Cell 6 11.75 7.19 11.63 6.55 11.55 6.66 11.89 7.48 11.72 7.73 11.93 7.78 

Cell 7 21.41 12.83 17.84 16.32 12.05 18.59 9.31 20.37 9.45 20.05 11.32 16.13 

Cell 8 7.76 5.17 5.65 7.43 3.63 8.83 2.04 8.90 2.26 7.36 3.96 5.78 

Speed (m/s) 

Eastbound 

Cell 1 1.176 0.36 1.194 0.377 1.177 0.382 1.182 0.372 1.124 0.381 1.091 0.365 

Cell 2 0.686 0.316 0.668 0.355 0.552 0.442 0.457 0.544 0.405 0.647 0.408 0.622 

Cell 3 0.665 0.857 0.742 0.869 0.783 0.73 0.881 0.622 0.913 0.649 0.845 0.725 

Cell 4 1.017 0.524 1.089 0.662 1.067 0.738 0.986 0.674 0.927 0.62 0.948 0.57 

Westbound 

Cell 5 1.01 0.68 1.01 0.62 0.99 0.63 0.98 0.65 0.93 0.63 0.89 0.59 

Cell 6 1.29 0.59 1.11 0.71 0.88 0.93 0.70 1.07 0.67 1.11 0.75 1.05 

Cell 7 0.80 1.00 0.99 0.75 1.25 0.60 1.34 0.60 1.20 0.82 0.91 0.91 

Cell 8 0.79 0.39 0.80 0.44 0.77 0.51 0.73 0.52 0.68 0.51 0.66 0.46 

Travel Time 

(s) 

Eastbound 
 

8.42 8.37 8.25 8.51 8.87 8.02 8.24 7.92 8.10 7.38 7.18 6.86 

Westbound 
 

12.77 11.97 11.97 12.30 12.05 11.48 11.68 11.24 11.43 10.75 10.48 10.92 

**One time step represents 10 seconds 
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Table 20 Summary of prediction MAPEB of individual cells of simulated dataset 

Traffic State 

Variable 
Direction Link 

Prediction Time Step 

5 10 15 20 25 30 35 40 45 50 55 60 

Queue Length 

Eastbound 

Cell 1 36.6% 7.9% 35.9% 8.5% 35.5% 9.1% 34.8% 9.3% 34.2% 10.1% 33.3% 10.4% 

Cell 2 36.8% 30.9% 29.6% 37.6% 23.1% 41.1% 19.1% 38.7% 22.0% 34.8% 30.1% 30.8% 

Cell 3 17.6% 5.6% 15.0% 10.3% 11.0% 14.8% 7.8% 16.8% 6.7% 16.7% 7.1% 14.6% 

Cell 4 18.4% 28.8% 17.6% 28.0% 17.9% 24.6% 18.1% 20.2% 18.6% 16.9% 19.3% 16.4% 

Westbound 

Cell 5 36.8% 12.5% 36.1% 12.6% 35.9% 12.6% 35.3% 13.2% 34.7% 14.4% 33.8% 14.6% 

Cell 6 38.0% 33.0% 31.5% 39.6% 25.9% 42.8% 23.5% 40.4% 26.9% 36.6% 32.4% 32.2% 

Cell 7 17.2% 7.1% 15.6% 11.8% 12.6% 15.5% 10.7% 16.8% 9.2% 16.8% 8.4% 15.3% 

Cell 8 17.6% 35.1% 16.5% 32.3% 17.0% 28.7% 17.9% 24.4% 18.8% 21.6% 19.3% 21.0% 

Density 

Eastbound 

Cell 1 3.8% 8.6% 5.3% 9.3% 6.1% 9.8% 6.3% 10.0% 7.1% 10.7% 6.8% 10.4% 

Cell 2 36.2% 20.8% 35.0% 21.0% 35.8% 20.3% 36.4% 19.3% 35.8% 19.3% 34.1% 18.3% 

Cell 3 71.2% 34.3% 68.8% 47.3% 50.5% 59.2% 29.7% 67.4% 31.8% 65.5% 34.9% 62.1% 

Cell 4 67.7% 49.2% 56.5% 64.2% 42.2% 72.3% 32.1% 72.7% 39.4% 63.0% 48.3% 52.3% 

Westbound 

Cell 5 23.2% 24.6% 24.2% 25.0% 23.7% 23.7% 22.4% 22.9% 22.2% 23.0% 22.7% 23.6% 

Cell 6 40.8% 24.9% 40.4% 22.7% 40.1% 23.1% 41.2% 25.9% 40.7% 26.8% 41.4% 27.0% 

Cell 7 69.9% 41.8% 58.2% 53.2% 39.3% 60.6% 30.4% 66.5% 30.8% 65.4% 36.9% 52.6% 

Cell 8 41.4% 27.6% 30.2% 39.7% 19.4% 47.2% 10.9% 47.5% 12.0% 39.3% 21.1% 30.8% 

Speed 

Eastbound 

Cell 1 9.3% 2.8% 9.4% 3.0% 9.3% 3.0% 9.3% 2.9% 8.9% 3.0% 8.6% 2.9% 

Cell 2 5.5% 2.5% 5.4% 2.9% 4.4% 3.6% 3.7% 4.4% 3.3% 5.2% 3.3% 5.0% 

Cell 3 4.9% 6.4% 5.5% 6.5% 5.8% 5.4% 6.6% 4.6% 6.8% 4.8% 6.3% 5.4% 

Cell 4 7.7% 4.0% 8.2% 5.0% 8.1% 5.6% 7.5% 5.1% 7.0% 4.7% 7.2% 4.3% 

Westbound 

Cell 5 7.5% 5.1% 7.5% 4.6% 7.4% 4.7% 7.3% 4.9% 7.0% 4.7% 6.6% 4.4% 

Cell 6 11.6% 5.3% 10.0% 6.4% 7.9% 8.4% 6.3% 9.7% 6.0% 10.0% 6.8% 9.4% 

Cell 7 6.5% 8.2% 8.1% 6.2% 10.3% 4.9% 11.0% 4.9% 9.8% 6.7% 7.5% 7.5% 

Cell 8 5.8% 2.9% 6.0% 3.3% 5.7% 3.8% 5.4% 3.9% 5.1% 3.8% 4.9% 3.4% 

Travel Time 
Eastbound 

 
5.0% 5.0% 4.9% 5.1% 5.3% 4.8% 4.9% 4.7% 4.9% 4.4% 4.3% 4.1% 

Westbound 
 

6.6% 6.2% 6.2% 6.4% 6.3% 6.0% 6.1% 5.8% 5.9% 5.6% 5.4% 5.7% 

**One time step represents 10 seconds 

To help readers further understand outputs of prediction model, the prediction curves of 

selected individual cells are presented together with corresponding ground truth values. Due 

to the space constraint of the dissertation, only the prediction result of part of the cells is 

listed here (two cells for each type of traffic state variable).  Figures 62 and 63 are predicted 

travel time plots and Figures 64 and 65 are queue prediction plots. Figures 66 and 67 are 
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density prediction plots and Figures 68 and 69 are speed prediction plots. For a complete list 

of predicted traffic states of each individual cell, readers can refer Appendix B. 

 

Figure 62 Eastbound predicted versus ground truth travel time for 5, 15, 30 and 60 time step 

prediction of simulation dataset 
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Figure 63 Westbound predicted versus ground truth travel time for 5, 15, 30 and 60 time step 

prediction of simulation dataset 

 

 

 

Figure 64 Predicted versus ground truth queue length of cell 8 of simulation dataset 
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Figure 65 Predicted versus ground truth queue length of cell 1 of simulation dataset 

 

Figure 66 Predicted versus ground truth density of cell 2 of simulation dataset 
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Figure 67 Predicted versus ground truth density of cell 4 of simulation dataset 

 

 

Figure 68 Predicted versus ground truth speed of cell 2 of simulation dataset 
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Figure 69 Predicted versus ground truth speed of cell 6 of simulation dataset 

8.5. Chapter Summary 

This chapter performed model validation using simulated arterial traffic flow data. Key 

findings of this chapter are summarized as follows: 

1) The parabolic-exponential speed-density-queue function is applied in this numerical 

study and the parameters of speed function are calibrated using link speed, density and 

queue data extracted from the simulated trajectory data; 

2) The simulation dataset represents the traffic flow dynamics of congested (near 

capacity) traffic flow condition which is observed from the travel time plots given by 

Figure 51 

3) The change of prediction accuracy over time measured by MAPEB is stable for travel 

time, queue length and speed. On the other hand, the prediction error of traffic flow density 

demonstrates high fluctuation and periodicity property; 
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4) The model can offer reliable prediction for queue length, speed and travel time under 

long prediction time range (>60 time steps). The average MAPEB of predicted queue, 

speed and travel time are 5%, 18% and 5.5% respectively. 

5) Predicting the future traffic flow density with the proposed model will generate 

considerable amount of prediction errors (30% ~ 40%); 
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9. Conclusion and Future Research Direction 

9.1. Summary of the dissertation 

This study proposed an innovative traffic state estimation and short-term prediction 

framework for signalized arterial network using an integrated solution consisting of 

macroscopic traffic flow model, particle filtering and time series method. The proposed 

method is composed of two modules: the real-time estimation module and short-term 

prediction module. The former takes traffic detector information as input and provides 

estimated current traffic flow status while the latter forecasts near future traffic flow 

conditions. The main contributions of this research are summarized as follows, 

 In the proposed model, queue length before the intersection stop lines is modeled 

as one state variable in the estimation process. Such approach not only highlighted the 

major characteristic of signalized arterial, but also significantly reduced the computational 

load of the model by avoiding segmenting links into a large number of small cells; 

 A set of system state transition equations are developed based on traffic flow and 

queuing theory. The transition equations are mathematical representation of traffic flow 

dynamics of arterial cells under the proposed state definition; 

 The study first proposed the fundamental relationship between speed, density and 

queue length of arterial links. Such concept is a natural expansion of freeway fundamental 

diagram considering drivers’ reaction toward signal change and queue formation; 

 This study established a real-time traffic state adjustment and feedback estimation 

mechanism for arterial roads using particle filtering technique. And using the flexibility 

provided by PF, this study discussed the data fusion approach to integrate real-time traffic 

information from different sources; 



 

 

 

135 

 

 The study proposed a short-term traffic flow prediction method for arterials 

through a combination of traffic flow model and time series method (SARIMA). The 

SARIMA model is employed to predict the future boundary conditions of the network and 

other traffic flow states are predicted by iteratively applying the flow transition model; 

 The study conducted a series of numerical investigation regarding the 

performance of the proposed model under different traffic conditions. Both real-world and 

synthetic data were used. The validation result showed that the proposed model can yield 

accurate queue, density and speed estimation using both detector and probe vehicle data; as 

for the prediction, the model can predict queue and speed with high degree of accuracy 

which does not deteriorate w.r.t. prediction interval; 

 Using trajectory method of imaginary vehicle, the travel time is estimated from 

the traffic states of links. Through numerical examples, the model performed excellently in 

estimating and predicting arterial travel time. Also the accuracy of travel time prediction 

remains almost constant within the entire prediction range; 

 

9.2. Conclusion 

Following the findings of existing literatures, the study developed a short-term traffic 

state prediction framework for signalized arterial corridor based on macroscopic traffic 

flow model, time-series method and stochastic estimation theory. The primary contribution 

of the study is to propose an arterial queue model called shifting boundary cell model to 

describe the periodical shockwave propagation before each intersection. Then the transition 

of arterial traffic flow state is quantified by a set of continuous system dynamic equations. 

Based on the traffic flow model developed in this study, the real-time traffic state 
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estimation and short-term prediction are conducted by combining particle filtering and 

SARIMA technique.  

Compared with most existing short-term prediction methods, the proposed approach 

opened a new avenue to the field of short-term traffic state prediction by combining the 

advantage of traffic flow theory and other statistical methods.  Given the boundary 

conditions, the model can perform reliable prediction of near future queue, density, speed 

which can be used for various traffic control purposes including short-term travel time 

prediction and signal timing optimization.  We can argue the primary feature of the 

proposed model from several prospective: 

First of all, instead of large amount of historical data, the proposed model replies more 

on the traffic flow model to perform the short-term prediction of traffic flow state. 

Thereafter, the proposed method requires neither massive amount of historical traffic flow 

data nor long computation time for model specification and calibration purpose. Through 

state augmentation method, all the parameters associated with the shifting boundary cell 

model are automatically calibrated during the real-time traffic state estimation process. 

Meanwhile, another merit of the proposed model is that traffic flow measurements obtained 

from different types of detectors can be integrated using particle filtering framework with 

relatively less modeling effort. In the numerical example where the NGSIM dataset is used 

to examine the accuracy of the real-time estimation result, the proposed model 

demonstrated similar degree of accuracy under fixed location detector and probe vehicle 

data indicating different types of detector measurements can be integrated to yield reliable 

estimation result through the proposed approach. 
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Secondly, the proposed traffic state estimation model has its unique state definition and 

state transition equations which are developed particularly for signalized corridors. The 

computational performance of the model is significantly higher than that of other existing 

macroscopic traffic flow models such as CTM. Also, by dividing each link into two distinct 

regimes (queuing area and moving area), the model traces the movement of the end of 

queue based on detector information. By doing so, the proposed method can offer real-time 

queue estimation without dividing the link into a large number of smaller cells. Piece-wise 

continuous system state transition equations are derived for signalized cells. Thus, the 

proposed model is both analytically traceable and computationally efficient. 

Thirdly, the study revealed the important correlation between traffic flow speed, density 

and the queue length within an arterial cell. The study found that the average flow speed 

within the moving regime of each cell is significantly affected by both the traffic flow 

density of the moving area and the ratio between physical queue length and the cell length. 

Therefore traffic flow speed is then modeled as some convex function of density and queue 

length which can be viewed as arterial fundamental diagram. In this study, two types of 

arterial speed-density-queue relationship are fitted and employed: the linear-exponential 

speed function and linear-parabolic speed function. In either case, predicted traffic flow 

speed decreases linearly w.r.t. flow density and non-linearly w.r.t. physical queue ratio. 

Compared with freeway cells where speed is usually depicted as a univariable function of 

density, this study explained the complex nature of speed transition of arterial links. 

Lastly, the system transition equation developed is also used for short-term prediction 

purpose. The boundary conditions (input flows on the boundary links of the network) is 

predicted by applying SARIMA algorithm. And based on the real-time estimation results, 
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all traffic state variables are predicted by iteratively applying the system transition 

equations developed in this study. The result of numerical study showed that the proposed 

framework can be considered as an excellent multiple step prediction algorithm. The 

change of prediction error of density and queue demonstrated periodical pattern, 

meanwhile that of speed and travel time demonstrated stable nature as the prediction range 

is increased. Compared with other statistical prediction methods such as time-series model 

or KNN model, the accuracy of the proposed model deteriorates very slowly when increase 

the prediction range.  

The proposed model can have numerous applications including real-time travel time 

prediction, dynamics route guidance and signal control optimization. The real-time travel 

time prediction of urban streets is beneficial to both traffic management authority and 

network user because travel time, as a very important network performance indicator, is 

one essential piece of information regarding the near future traffic condition of the network. 

Traffic control center can monitor the current traffic flow condition of the network and 

identify all congested areas using the proposed model. Similarly drivers can also change 

their pre-planned route if bottlenecks are identified through the model. The dynamic route 

guidance is an extension of real-time travel time prediction. Based on the future travel time 

information provided by the algorithm, a dynamic route guidance system can provide 

recommended optimal path for road users. Combined with in-vehicle navigation system, 

the dynamic route guidance can balance the flow distribution of the network and mitigate 

the congestion level at bottleneck locations. The real-time signal optimization is another 

major application of the model. In arterial networks, the traffic flow is controlled by signal 

system and signal optimization is one of the most effective ways to improve the network 
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performance. Based on the proposed traffic state prediction model, one can perform signal 

timing optimization in a real-time manner. 

Overall, the study successfully developed a reliable and robust traffic flow prediction 

model for arterial network considering heterogonous data sources.  

9.3. Future research direction 

The real-time traffic state estimation and short term prediction of arterial network is a 

very challenging field of research. The following issues remain to be explored during 

future research: 

 Traffic state prediction under actuated and adaptive signal control 

So far only the traffic flow dynamics of arterial road under pre-timed signal control 

strategy is discussed. For actuated and adaptive signal controls, the signal timing plan 

cannot be obtained in advance. Therefore the model needs to estimate (predict) signal 

timing parameters simultaneously with other traffic flow states; 

 Investigate the model accuracy given precise future demand information 

In this study, we proposed a traffic state prediction model consisting of real-time traffic 

state estimation and short-term prediction modules. The future boundary conditions of the 

network are predicted with SARIMA technique. One important numerical study is to study 

the model performance given the precise future demand information. The purpose of such 

study is to isolate the demand prediction from the proposed framework and examine the 

prediction power of the traffic flow theory. 

 Study the impact of link length on the model output 

The length of arterial link is a crucial factor that affects the traffic flow dynamics due to 

the existence of platoon dispersion. It is therefore very important to study the impact of 
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link/bay length on the final output of the model. The proposed shifting boundary cell model 

approximates the traffic flow state of each arterial link with a queuing area and a moving 

area where vehicles are assumed to be uniformly distributed. Hence if the link is so short 

that vehicles departed from upstream link move as a platoon before reaching the 

downstream intersection, then the model performance will be affected. In the future study, 

we want to perform various sensitivity analyses regarding the impact of link length on the 

model performance. 

 Quantitatively investigate the benefit of integration of multiple data sources 

One unique advantage of the proposed model is that it can utilize measurements from 

different types of traffic surveillance devices and combine them to increase the 

estimation/prediction accuracy. Two types of traffic flow detectors (loop detector and 

probe vehicle) are discussed in the numerical example. In the future work, we need to 

quantitatively evaluate the effect the integrating multiple data sources. 

 Development of network flow model 

The current traffic flow model only emphasizes on the traffic flow dynamics along one 

corridor, however in reality, the arterial road is a two-dimensional network where each link 

can have more than one upstream and downstream links. Hence the traffic flow of a link is 

not only affected by the signal but also the traffic flow status of all adjacent links. In a 

network context, both flow merging, diverging, queue blockage and spillback from turning 

pockets need to be considered; 

 Numerical comparison with other prediction methods 

The short-term traffic flow prediction is very hot topic. Many statistical methods are 

proposed in literatures including time-series model, ANN model, KNN model, spectral 
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analysis method. The comparison between proposed model and other statistical model is a 

very interesting research topic. 
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10. Appendix A: Computation Result of NGSIM Dataset 
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Northbound Southbound 

  

  

  
12:45 to 1:00 Peachtree street queue estimation using detector data 
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12:45 to 1:00 Peachtree street speed estimation using detector data 
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4:00 to 4:15 Peachtree street density estimation using detector data  

40 60 80 100 120 140
0

5

10

15

20

25

30

35

40

45

50

Time (sec)

D
e
n
s
it
y
(v

e
h
/k

m
)

 

 

Estimated mean

Ground truth

Upper bound

Lower bound

40 60 80 100 120 140
0

5

10

15

20

25

30

35

40

45

Time (sec)

D
e
n
s
it
y
(v

e
h
/k

m
)

 

 

Estimated mean

Ground truth

Upper bound

Lower bound

40 60 80 100 120 140
0

5

10

15

20

25

30

35

40

45

50

Time (sec)

D
e
n
s
it
y
(v

e
h
/k

m
)

 

 

Estimated mean

Ground truth

Upper bound

Lower bound

40 60 80 100 120 140
0

20

40

60

80

100

120

Time (sec)

D
e
n
s
it
y
(v

e
h
/k

m
)

 

 

Estimated mean

Ground truth

Upper bound

Lower bound

40 60 80 100 120 140
0

5

10

15

20

25

30

35

40

Time (sec)

D
e
n
s
it
y
(v

e
h
/k

m
)

 

 

Estimated mean

Ground truth

Upper bound

Lower bound

40 60 80 100 120 140
0

10

20

30

40

50

60

70

Time (sec)

D
e
n
s
it
y
(v

e
h
/k

m
)

 

 

Estimated mean

Ground truth

Upper bound

Lower bound



 

 

 

146 

 

Northbound Southbound 

 
 

 
 

 
 

4:00 to 4:15 Peachtree street queue estimation using detector data  
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4:00 to 4:15 Peachtree street speed estimation using detector data 
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Northbound Southbound 

  

  

 
 

12:45 to 1:00 Peachtree street density prediction using detector data 
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12:45 to 1:00 Peachtree street queue prediction using detector data 
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12:45 to 1:00 Peachtree street speed prediction using detector data 

  

20 40 60 80 100 120 140 160 180
4

6

8

10

12

14

16

Time (sec)

S
p
e
e
d
(m

/s
)

 

 

Ground Truth

5 step ahead prediction

10 step ahead prediction

20 step ahead prediction

30 step ahead prediction

20 40 60 80 100 120 140 160 180
4

6

8

10

12

14

16

Time (sec)

S
p
e
e
d
(m

/s
)

 

 

Ground Truth

5 step ahead prediction

10 step ahead prediction

20 step ahead prediction

30 step ahead prediction

20 40 60 80 100 120 140 160 180
4

6

8

10

12

14

16

Time (sec)

S
p
e
e
d
(m

/s
)

 

 

Ground Truth

5 step ahead prediction

10 step ahead prediction

20 step ahead prediction

30 step ahead prediction

20 40 60 80 100 120 140 160 180
4

6

8

10

12

14

16

Time (sec)

S
p
e
e
d
(m

/s
)

 

 

Ground Truth

5 step ahead prediction

10 step ahead prediction

20 step ahead prediction

30 step ahead prediction

20 40 60 80 100 120 140 160 180
5

6

7

8

9

10

11

12

13

14

15

Time (sec)

S
p
e
e
d
(m

/s
)

 

 

Ground Truth

5 step ahead prediction

10 step ahead prediction

20 step ahead prediction

30 step ahead prediction

20 40 60 80 100 120 140 160 180
4

5

6

7

8

9

10

11

12

13

14

Time (sec)

S
p
e
e
d
(m

/s
)

 

 

Ground Truth

5 step ahead prediction

10 step ahead prediction

20 step ahead prediction

30 step ahead prediction



 

 

 

151 

 

Northbound Southbound 

 
 

 

 

 

 

4:00 to 4:15 Peachtree street density prediction using detector data 
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4:00 to 4:15 Peachtree street queue prediction using detector data 
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4:00 to 4:15 Peachtree street speed prediction using detector data 

  

20 40 60 80 100 120 140 160 180
4

6

8

10

12

14

16

Time (sec)

S
p
e
e
d
(m

/s
)

 

 

Ground Truth

5 step ahead prediction

10 step ahead prediction

20 step ahead prediction

30 step ahead prediction

20 40 60 80 100 120 140 160 180
4

6

8

10

12

14

16

Time (sec)

S
p
e
e
d
(m

/s
)

 

 

Ground Truth

5 step ahead prediction

10 step ahead prediction

20 step ahead prediction

30 step ahead prediction

20 40 60 80 100 120 140 160 180
4

6

8

10

12

14

16

Time (sec)

S
p
e
e
d
(m

/s
)

 

 

Ground Truth

5 step ahead prediction

10 step ahead prediction

20 step ahead prediction

30 step ahead prediction

20 40 60 80 100 120 140 160 180
2

4

6

8

10

12

14

16

Time (sec)

S
p
e
e
d
(m

/s
)

 

 

Ground Truth

5 step ahead prediction

10 step ahead prediction

20 step ahead prediction

30 step ahead prediction

20 40 60 80 100 120 140 160 180
4

6

8

10

12

14

16

Time (sec)

S
p
e
e
d
(m

/s
)

 

 

Ground Truth

5 step ahead prediction

10 step ahead prediction

20 step ahead prediction

30 step ahead prediction

20 40 60 80 100 120 140 160 180
4

5

6

7

8

9

10

11

12

13

14

Time (sec)

S
p
e
e
d
(m

/s
)

 

 

Ground Truth

5 step ahead prediction

10 step ahead prediction

20 step ahead prediction

30 step ahead prediction



 

 

 

154 

 

11. Appendix B: Computation Results of Simulation Dataset 
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Estimated versus ground truth density of simulated dataset eastbound  
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Estimated versus ground truth density of simulated dataset westbound  

50 100 150 200 250 300
0

20

40

60

80

100

120

140

Time (sec)

D
e
n
si

ty
(v

e
h
/k

m
)

 

 

Estimated mean

Ground truth

Upper bound

Lower bound

50 100 150 200 250 300
0

10

20

30

40

50

60

Time (sec)

D
e
n
si

ty
(v

e
h
/k

m
)

 

 

Estimated mean

Ground truth

Upper bound

Lower bound

50 100 150 200 250 300
0

10

20

30

40

50

60

Time (sec)

D
e
n
si

ty
(v

e
h
/k

m
)

 

 

Estimated mean

Ground truth

Upper bound

Lower bound

50 100 150 200 250 300
0

10

20

30

40

50

60

Time (sec)

D
e
n
si

ty
(v

e
h
/k

m
)

 

 

Estimated mean

Ground truth

Upper bound

Lower bound



 

 

 

159 

 

 

 

 

 
Estimated versus ground truth queue of simulated dataset westbound  

50 100 150 200 250 300
0

20

40

60

80

100

120

140

Time (sec)

D
e
n
si

ty
(v

e
h
/k

m
)

 

 

Estimated mean

Ground truth

Upper bound

Lower bound

50 100 150 200 250 300
0

50

100

150

200

250

Time (sec)

Q
u
e
u
e
 L

e
n
g
th

(m
)

 

 

Estimated mean

Ground truth

Upper bound

Lower bound

50 100 150 200 250 300
0

50

100

150

200

250

Time (sec)

Q
u
e
u
e
 L

e
n
g
th

(m
)

 

 

Estimated mean

Ground truth

Upper bound

Lower bound

50 100 150 200 250 300
0

20

40

60

80

100

120

140

Time (sec)

Q
ue

ue
 L

en
gt

h(
m

)

 

 

Estimated mean

Ground truth

Upper bound

Lower bound



 

 

 

160 

 

 

 

 

 
Estimated versus ground truth speed of simulated dataset westbound  

50 100 150 200 250 300
4

6

8

10

12

14

16

Time (sec)

S
p
e
e
d
(m

/s
)

 

 

Estimated mean

Ground truth

Upper bound

Lower bound

50 100 150 200 250 300
0

2

4

6

8

10

12

14

16

Time (sec)

S
p
e
e
d
(m

/s
)

 

 

Estimated mean

Ground truth

Upper bound

Lower bound

50 100 150 200 250 300
2

4

6

8

10

12

14

16

Time (sec)

S
p
e
e
d
(m

/s
)

 

 

Estimated mean

Ground truth

Upper bound

Lower bound

50 100 150 200 250 300
4

6

8

10

12

14

16

Time (sec)

S
pe

ed
(m

/s
)

 

 

Estimated mean

Ground truth

Upper bound

Lower bound



 

 

 

161 

 

 

 

 

 
Predicted versus ground truth density of simulated dataset eastbound  

50 100 150 200 250 300 350
0

5

10

15

20

25

30

35

40

45

50

Time (sec)

D
e
n
s
it
y
(v

e
h
/k

m
)

 

 

Ground Truth

5 step ahead prediction

15 step ahead prediction

30 step ahead prediction

60 step ahead prediction

50 100 150 200 250 300 350
0

10

20

30

40

50

60

70

80

90

Time (sec)

D
en

si
ty

(v
eh

/k
m

)

 

 

Ground Truth

5 step ahead prediction

15 step ahead prediction

30 step ahead prediction

60 step ahead prediction

50 100 150 200 250 300 350
0

20

40

60

80

100

120

Time (sec)

D
e
n
si

ty
(v

e
h
/k

m
)

 

 

Ground Truth

5 step ahead prediction

15 step ahead prediction

30 step ahead prediction

60 step ahead prediction

50 100 150 200 250 300 350
0

10

20

30

40

50

60

70

80

90

Time (sec)

D
e
n
s
it
y
(v

e
h
/k

m
)

 

 

Ground Truth

5 step ahead prediction

15 step ahead prediction

30 step ahead prediction

60 step ahead prediction



 

 

 

162 

 

 

 

 

 
Predicted versus ground truth queue of simulated dataset eastbound  

50 100 150 200 250 300 350
0

10

20

30

40

50

60

70

80

Time (sec)

Q
u
e
u
e
 L

e
n
g
th

(m
)

 

 

Ground Truth

5 step ahead prediction

15 step ahead prediction

30 step ahead prediction

60 step ahead prediction

50 100 150 200 250 300 350
0

10

20

30

40

50

60

70

80

90

100

110

Time (sec)

Q
u
e
u
e
 L

e
n
g
th

(m
)

 

 

Ground Truth

5 step ahead prediction

15 step ahead prediction

30 step ahead prediction

60 step ahead prediction

50 100 150 200 250 300 350
0

5

10

15

20

25

30

35

40

45

Time (sec)

Q
u
e
u
e
 L

e
n
g
th

(m
)

 

 

Ground Truth

5 step ahead prediction

15 step ahead prediction

30 step ahead prediction

60 step ahead prediction

50 100 150 200 250 300 350
0

10

20

30

40

50

60

70

80

Time (sec)

Q
u
e
u
e
 L

e
n
g
th

(m
)

 

 

Ground Truth

5 step ahead prediction

15 step ahead prediction

30 step ahead prediction

60 step ahead prediction



 

 

 

163 

 

 

 

 

 
Predicted versus ground truth speed of simulated dataset eastbound  

50 100 150 200 250 300 350
6

7

8

9

10

11

12

13

14

15

Time (sec)

S
p
e
e
d
(m

/s
)

 

 

Ground Truth

5 step ahead prediction

15 step ahead prediction

30 step ahead prediction

60 step ahead prediction

50 100 150 200 250 300 350
6

7

8

9

10

11

12

13

14

Time (sec)

S
p
e
e
d
(m

/s
)

 

 

Ground Truth

5 step ahead prediction

15 step ahead prediction

30 step ahead prediction

60 step ahead prediction

50 100 150 200 250 300 350
7

8

9

10

11

12

13

14

Time (sec)

S
p
e
e
d
(m

/s
)

 

 

Ground Truth

5 step ahead prediction

15 step ahead prediction

30 step ahead prediction

60 step ahead prediction

50 100 150 200 250 300 350
6

7

8

9

10

11

12

13

14

Time (sec)

S
p
e
e
d
(m

/s
)

 

 

Ground Truth

5 step ahead prediction

15 step ahead prediction

30 step ahead prediction

60 step ahead prediction



 

 

 

164 

 

 

 

 

 
Predicted versus ground truth density of simulated dataset westbound  
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