TECHNICAL RESEARCH REPORT

Dynamic Attractors and Basin Class Capacity in

Binary Neural Networks

by J. E. Dayhoff, P. J. Palmadesso

T.R. 95-82

IBR

INSTITUTE FOR SYSTEMS RESEARCH

Sponsored by

the National Science Foundation
Engineering Research Center Program,
the University of Maryland,

Harvard University,

and Industry

DYNAMIC ATTRACTORS AND BASIN
CLASS CAPACITY IN BINARY
NEURAL NETWORKS

Judith E. Dayhoff
Institute for Systems Research
University of Maryland
College Park, MD 20742

Peter J. Palmadesso
Plasma Physics Division
Naval Research Laboratory
Washington, D.C. 20375

December 21, 1994

Copyright @1995 Judith E. Dayhoff and Peter J. Palmadesso. All Rights Reserved.

Abstract

The wide repertoire of attractors and basins of attraction that appear in dynamic
neural networks not only serve as models of brain activity patterns but create possibilities
for new computational paradigms that use attractors and their basins. To develop such
computational paradigms, it is first critical to assess neural network capacity for attractors
and for differing basins of attraction, depending on the number of neurons and the weights.
In this paper we analyze the attractors and basins of attraction for recurrent, fully-
connected single layer binary networks. We utilize the network transition graph - a graph
that shows all transitions from one state to another for a given neural network - to show all
oscillations and fixed-point attractors, along with the basins of attraction. Conditions are
shown whereby pairs of transitions are possible from the same neural network. We derive a
lower bound for the number of transition graphs possible, 9"*=" for an n-neuron network.
Simulation results show a wide variety of transition graphs and basins of attraction and
sometimes networks have more attractors than neurons. We count thousands of basin
classes - networks with differing basins of attraction - in networks with as few as five
neurons. Dynamic networks show promise for overcoming the limitations of static neural
networks, by use of dynamic attractors and their basins. We show that dynamic networks
have high capacity for basin classes, can have more attractors than neurons, and have

more stable basin boundaries than in the Hopfield associative memory.

1 Introduction

Dynamic neural networks have sustained activity patterns that arise from the network’s
dynamic attractors - finite state oscillations, limit cycles, and chaotic attractors. These
dynamic attractors show potential to ultimately be used for computational purposes. In
the Hopfield Network, fixed-point attractors were used to represent memory patterns, and
when the network attained one of these fixed points (stable states), the network’s activa-
tion state was read off as the "memory” reported by the network. In dynamic networks,
attractors are not limited to fixed point stable states, but can be simple oscillations,
limit cycles, or chaotic behavior, as well as fixed points. These dynamic attractors may
be used eventually for applications in associative memory, pattern classification, pattern

completion, signal generation, and other domains.

We aim to eventually use and exploit the dynamic properties of the network’s at-
tractors, and the possible increased flexibility that dynamic attractors are expected to
offer. Towards this end, we must first explore what are the attractors and basins of at-
traction of dynamic networks under various circumstances. It will be key to know how
many different sets of attractors and basins are possible from neural networks of a given
size and configuration, and to discover what degree of control can be exerted over basin
shape. Ultimately, one could set up applications paradigms whereby the attractor that
the network enters provides a pattern class, a memory, or other information bearing on

the application.

In this research we have taken a different approach compared to Hopfield’s network
(Hopfield, 1982). In this paper, we relax the constraint that attractors be fixed points
(stable states) and include architectures that readily organize.dynamic non-fixed-point
attractors. Thus we welcome oscillatory states as attractors. We allow asymmetric re-
ciprocal weights (w,; # w,,), removing the Hopfield constraint for reciprocal equality.

We allow synchronous updating of neurons as opposed to asynchronous updating, used

in convergence proofs to attain stable states. In the Hopfield Net, where usable attrac-
tors are only fixed points, there are at most about 0.15n reliable memories for 7 neurons
(McEliece et al, 1987). Because large numbers of dynamic attractors are possible, exploit-
ing dynamic neural networks shows promise for increased capacity. In a dynamic network
the number of attractors can be greater than the number of neurons. Furthermore, in-
creased numbers of basin classes - networks with differing basin boundaries - are expected

with dynamic attractors.

Dynamic networks include fully and sparsely connected configurations as well as binary
and continuous-valued units. We chose to analyze binary networks to simplify a problem
that could otherwise be mathematically intractable. We evaluate how many attractors
are available in each neural network, and address the characteristics of these attractors
and the boundaries of their basins of attraction. We count many different possibilities for

transition graphs and for basins of attraction.

We examine whether a high capacity for attractors results, and whether there are
more possibilities for the placement of the boundaries of the basins of attraction. Since
we ultimately would like to set or adapt these boundaries, here we address the question
of how many different possibilities for boundaries exist. We have found that enormous
numbers of attractors and basin boundaries are possible, even with small networks. Thus

there is considerable freedom to design basins to order, e.g. to have ”designer basins”.

We introduce the concept of "basin class capacity” - the capacity of a set of neural
networks to exhibit a variety of different basin classes. For example, the sets of neural
networks considered here are binary networks with the same number of neurons (n) and
fully connected configurations without self-loops. The number of different basin classes
that can be generated from such a set would be its basin class capacity. A high basin
class capacity opens the possibility for a set of neural network paradigms to be developed

that train basin boundaries to desired specifications.

Since a basin of attraction is the set of states that eventually lead to the same attractor,
it is important for computational purposes to be able to control or adapt the boundaries
of basins of attraction. In Hopfield memory calculations, there is no control over the shape
or boundaries of the basins of attraction. Furthermore, the random updating procedure
leads to unstable boundary locations. Computation for weights assigns the appropriate
"memory” state as a fixed point attractor, but does not adjust its basin boundaries. The

lack of adjustment of boundaries is a glaring limitation.

For many prospective applications, adjustment of basin boundaries could be more
important than the actual attractor in the basin. The basin boundaries determine which
attractor the network goes into, and the attractor would represent the answer, result, or
memory recalled from the neural network’s computation. Thus, the exact nature of the
attractor (fixed or oscillating) and its location (particular state(s) involved) can be less

important than the basin boundaries.

We aim to eventually have paradigms that allow adjustment and training of attractor
basin boundaries in dynamic networks. The first step towards this aim, however, is to
explore how many sets of basins and basin boundaries are possible in a dynamic neural
network. To this end, we have chosen a particular type of dynamic neural network and
researched how to count the number of different basin boundaries possible with 7 neurons.

The networks analyzed here are the single layer fully connected binary networks.

The individual states of these neural networks are binary vectors. Transitions from one
state to another are ordered pairs of binary vectors. We define the transition graph, which
has as nodes all possible states of the neural network, and as edges, transitions between
states. We show how to construct a network transition graph (NT-Graph) for a neural
network given a set of Neuron Transition Tables (NT Tables), which show the transitions
of an individual neuron. For a network of n neurons, n such tables are needed. Each NT

graph shows all the attractors and basins of attraction for a set of neural networks.

We have computed a lower bound on the number of NT graphs possible for networks of
n neurons. First a lower bound on the number of NT Tables was found to be 27!, Since
n NT Tables are combined to specify an NT Graph, the lower bound on the number of NT
Tables allows us to compute a lower bound on the number of Network Transition Graphs
(NT Graphs). The lower bound on NT Graphs is 2*"~1). For a two-neuron network
there are four NT Graphs and, for a three-neuron network there are 64 such graphs. For
a 4-neuron network there are thousands of possibilities, and for n = 19 or more neurons

0100

there are over 1 possibilities, greater than an estimate for the number of particles in

the universe.

We have simulated large numbers of neural networks of varying sizes with random
weights, and found their attractors and basin classes. Sometimes there were more attrac-
tors than neurons, especially when reciprocal weights were symmetric (w,, = w;;). The
number of different basin classes was counted. Whereas fifteen basin classes were found
for networks with three neurons, thousands were found for larger nets. Cases of asym-
metric wieghts and symmetric weights were compared. Both showed large counts. Since
asymmetric weights include the cases of symmetric weights, asymmetric weights lead to
larger numbers of NT Graphs and basin classes. However in the simulation experiments
sometimes more classes were observed for symmetric weights because of the more rapid
sampling of the space. Symmetric weights caused more attractors and smaller basins on
average. Asynchronous (random) updating was also simulated, but this paradigm leads
to unstable basin boundaries unless a pre-specified ordering of neurons is used. However,

even with this ordering, random weights led to only one basin and only one basin class.

In the next section we describe the structure of the binary neural networks considered
in this paper. In Section 3, we give definitions, and explain transitions, transition graphs,
transition tables, and basin classes. In Section 4 we give relationships about the com-
patability of multiple transitions in a neural network. We also prove the lower bound on
the number of transition graphs. Section 5 gives calculations of the lower bound counts of

transition graphs, and describes simulation results, with counts on numbers of attractors

and basin classes for neural networks of varying sizes. We conclude with a discussion on
how to eventually exploit dynamic attractors and their basins for computational purposes,

and a consideration of related research in this area.

2 Neural Network Structure

We consider the set of binary neural networks with a single layer that is fully intercon-
nected. No self-loops are included. Each unit has activation level a;, and weight w,; is
the weight on the connection to unit j from unit s. At each iteration, each unit computes

1ts incoming sum as follows:
Sj(t + 1) = Z:‘zlai(t)wji (1)

where n = number of processing units ("neurons”) and w;=0. Incoming sums are thresh-

olded to yield binary activation values, as follows:

ai(t+1) = sgn(S,(t+1)) (2)

+1 if >0

sgn(z) = (3)

-1 if z<0

States of the network consist of n-tuples (ai,as, ..., an) With +1/-1 entries. Thus a
state may be denoted as an n-tuple of +/- characters such as (++ — — — — ++ —). There
are 2" possible states for a network of n neurons, and n? — n weights. Figure 1 shows

fully connected networks with 2, 3, and 4 neurons.

Simultaneous updating has been used in this study. Thus the whole network is updated
at once based on its previous state. This means that for each neuron, (1) is computed for

S;(t + 1) based on activations a;(t) at time ¢.

3 TRANSITION GRAPHS AND DEFINITIONS

Def. A transition consists of an ordered pair of binary n-tuples, denoted (a;, as, ..., a,)

— (b1, b2, ..., b,). For example, (+ + —) = (= + —) is a transition for n = 3.

A neural network performs a transition a — b if a network that starts in state a,

changes to state b after each processing unit is updated by (1) and (2).

Def. A Transition Graph is a graph whose nodes are all possible binary n-tuples, for

some value of n. Any connections are allowed.

Def. A transition graph whose nodes are n-tuples is said to have order n.

Def. Global Transition Graph of order n. Nodes: all possible 2" binary states. Con-

nections: Fully connected, directed connections, including self-loops. The global transition
graph for n = 2 appears in Figure 2. There is only one global transition graph for each

order n.

Def. Two transitions between states of length n (a — b and ¢ — d) are compatible if
there exists a matrix of weights W such that the neural network with weights W performs

those two transitions. If not compatible, then the two transitions are incompatible.

Def. A set of transitions is compatible if there exists a weight matrix W such that

the neural network with weight matrix W performs those transitions. Otherwise the set

1s incompatible.

Def. Network Transition Graph (NT Graph) of order n. Nodes: all possible 2™ binary

states. Connections: A set of transitions for which there exists a weight matrix W such
that a neural network with weights W performs exactly those transitions in the network
transition graph. There can be many network transition graphs for each order n. Figure

3 shows NT-Graphs for neural networks with n = 3 processing units.

A Network Transition Graph has the following properties. (1) The outdegree of each
node is exactly 1. This is because for each state of a neural network, when updating (1)
and (2) is applied, the network goes to a unique next state. (2) The indegree of each node
is from the set {0,1,2,...,n}. A state of the network may or may not result from another

state.

An NT-Graph shows all fixed point attractors and oscillations in the corresponding
neural networks, along with the basins of attraction. A fixed point attractor is a self-loop
in the network transition graph. An oscillation is a closed circuit in the network transition
graph. An m-state oscillation has m nodes in the closed circuit. Each basin of attraction
is a detached subgraph of the network transition graph. Any node in a basin leads either
to a fixed point attractor or an oscillator. All attractors that are not fixed points are
finite state oscillations with 2 or more states. There can be more than one weight matrix

W that implements a given network transition graph.

Def. A transition graph is complete if outdegree=1 for all nodes. All network tran-

sition graphs are complete.

Some sets of transitions are not compatible. Thus, some transition graphs are not
NT-Graphs because there does not exist a network that performs the set of transitions in
the graph. A set of compatible transitions does not have to be complete. An NT-Graph

has a complete set of compatible transitions.

Def. A penultimate subset of {1,2,...,n} contains n-1 unique elements in ascending
order (e.g., one element is removed). Let V be a penultimate subset of 1,2, ...,n. Then
Iy is the vector that includes all positions from I that appear in V, taken in the order

specified in V.

A basin is set of states that lead to the same attractor. The boundaries of the basins
are the disallowed transitions resulting from the division of states into distinct, disjoint
basins.

A basin class is a set of network transition graphs with the same basins. Two network
transition graphs in the same basin class can have different attractors and different paths
to those attractors within each basin.

The order of an attractor is 1 if a fixed point and m if an m-state oscillator.

Def. A Neuron Transition Table (NT-Table) of order n is a matrix J and a vector

¢ such that the rows of J are all possible n — 1-tuples of binary entries +1/-1, and ¢ is
a binary vector (+1/-1) with 2"~! entries. The entries in ¢ are subject to the following

restriction: There must exist a set of n — 1 values x such that
Jx OCJ 0
where O, is ">" if (, =1andis” <” if (, = —1.
An NT-Table is used to specify the state of a neuron z as a function of the previous
states of the other neurons. The vector x consists of the incoming weights to neuron z.

For a network of n neurons, with n NT-tables one can construct an NT Graph. Figure 4

illustrates an NT-Table for n=4 neurons.

4 COMPATIBLE TRANSITIONS AND COUNT-
ING OF TRANSITION GRAPHS

We next consider conditions needed for a pair or set of transitions to be compatible. First
is Lemma L1, which covers the case of networks with n=3 processing units, then Lemma
L2, which allows any number n of processing units, and covers incompatability criteria
for pairs of transitions. Lemma L3 shows how to construct an NT Graph from n NT
Tables, and computes a lower bound on the number of NT Graphs. In Section 5, we use

this result to calculate lower bounds on counts of network transition graphs.

LEMMA L1.

Given a neural network with n=3 units and all incoming sums S; non-zero.

Given two transitions, (i1,1%2,%3) = (J1,J2,J3) and (ki, ko, ks) — (I3, s, [3).

AL If (ig,1y) = (ks ky) and j, # I, for any z, y, and z such that {z,y,z} = {1,2,3}

then the two transitions given are incompatible.

B. If (i5,1y) = (-1)(ks, ky) and j, = [, for any z, y, and z such that {z,y, 2} = {1,2,3}

then the two transitions given are incompatible.

C. Conditions A and B are the only conditions under which two transitions are in-

compatible.

D. If there is a set of more than two transitions that are mutually incompatible, then

there is at least one pair of those transitions that meets condition A or B.

PROOF OF L1.

Statement L1-A.

The set {z,y} includes all the nodes in the neural network except for node 2. If the
initial state is (i1,4s,1%3), then, according to the first transition, the incoming sum, for
node z is:

Spi = 1gWag + lyWyy. (4)

where S, ; denotes incoming sum for node z given the network is in state i.
When the initial state is (&1, ko, k3), then the incoming sum for node z is:
Sek = keWzz + kyw,, (5)
According to the Case A assumption, (i,,%,) = (kg, ky), which implies that
Sai = S.x (6)
After applying threshold equation (2) to S,; and S, i, the same value must result (5, and

l,, respectively), so j, = (,.

Therefore no set of weights (w,,, w,,) allows j, # [,, so the two transitions are incom-

patible.

Statement L1-B.

The set {z,y} includes all the nodes in the network except for node z. If the initial
state is (i1,12,43), according to the first transition, then the incoming sum, by equation
(1), for node z is:

Spi = tgWyp + Ty W,y (7)

When the initial state is (k, ko, k3), then the incoming sum for node z is:

Sz,k = kW, + kywzy (8)

10

According to the Case B assumption, (iz3y) = (- 1)(kg, ky), which implies that

Sz,i = (—1)Sz,k (9)

Now assume that S,; # 0, and apply the sgn operator to each side of (9). We get

Jz = (—1)l,. Then no set of weights {w,;, w,,} allows j, = [,.

When S,; = 0 = S,k, then j, = [, = 1, but this special case is excluded in the

assumption to this lemma.

Therefore when j, = [,, the two transitions are incompatible.

Statement L1-C.

Consider a situation where there is no subset {z,y}e{1,2,3} such that (i,,i,) =

(kz, ky) or (iz,1y) = (=1)(kq, ky).

Let O,, be an operator that is in the set of operators {>, <}, and let m = +1. Set

Om as 7>" if m=+1; set O,, as ”’<” if m = —1.

For each set {z,y} that is a penultimate subset of {1,2,3}, apply the following argu-

ment:

The pair of inequalities that govern weights w,, and w,, are as follows:
tgWeg + lyWsy O, 0 (10)

and

koW, + kywzy O, 0 (11)

z

If an operator above is <, then multiply the inequality by -1. All operators are then

either ”>” or 7 >”.

11

A pair of inequalities result, both of the form:

Fw,e + Fwy,y >, 0 (12)

Where ”>.” means either ”>” or ”>”. Each specifies a half-plane in the coordinate
axes where w,, and w,, are the two axes, and Figure 5 shows the lines dividing these

half-planes.

Case 1: Suppose the two inequalities differ by exactly one minus sign on the left. Then
each specifies a half- plane whose edge is a different line intersecting the origin and at
45 degrees from the x-axis. Therefore the two half-planes have an overlapping area, and
each point in the overlapping area specifies values for w,;, w,, that implement the pair of

transitions.

Case 2: The two inequalities in (10) and (11) have the same signs on the left. But
all operators are either ”>” or ">”", which implies a half-plane of solutions for w,;, w,,.

Thus there is a half-plane of solutions for (w,s, w,y).

Case 3: The two inequalities in (10) and (11) differ by two minus signs on the left.
Then either (iz,1y) = (ks, ky) and j, # [, (e.g., the signs on the left of (9) and (10) match
but the operators don’t), or (i,1y) = (—1)(kz, ky) and j, = I, (e.g., the signs don’t match
but the operators do). These are cases A and B, in which the pair of given transitions
are incompatible. But these cases were excluded from consideration in the first sentence

to the proof of Statement C.

Statement L1-D.

All inequalities are of the form

12

FWe +Fw, O, 0 (13)

where O, >, >.

Suppose a set of m transitions are not compatible, where m > 2. Each transition
specifies an inequality of the form in (13), and each inequality specifies a half plane
subtended by one of two lines through the origin, both lines at 45 degrees from the
horizontal axis. (See Figure 5.) Since each of the subtending lines intersects at the origin,
and they are perpendicular to each other, the only way to have the empty solution @ is to
specify two opposite sides of the same line, which means that a pair of the n transitions

is incompatible. Thus D is true. QED

Lemma L1 supplies enough information to enumerate all NT-Graphs for n = 3. Since
the system of inequalities for n = 2 is small, NT-Graphs of order 2 can be enumerated
easily. In both cases we restricted our count to networks in which all incoming sums are
non-zero, for convenience. Thus there are four NT-Graphs for n = 2 and 64 NT-Graphs

for n = 3.

The next lemma addresses pairwise incompatabilities for cases where n > 3. Unfortu-
nately, in these cases, higher order incompatabilities can arise, as we will describe after
the prrof of Lemma L2.

LEMMA L2.

Given a neural network with n units, and all incoming sums S; non-zero.

Given four network states, each binary vectors of length n: I, J, K, and L.

Given two transitions, I —+ J and K — L.

13

Let V be a penultimate subset of 1,2, ..., n.

Let Iy be the vector that includes all positions from I that appear in V', taken in the

order specified in V.
Let Z={1,2,...,n} —V and let z be the single element of Z.
Then:

A.If Iy = Jy and Kz # Lz for any penultimate subset V' of length n — 1, then the

two transitions are incompatible.

B.If Iy = (-1) Jy and Kz = Lz for any penultimate set V of length n — 1, then the

two transitions are incompatible.
PROOF L2.
Statement L2-A.
The set V includes all the nodes in the network except for node zeZ. If the initial

state is I (as in the first transition) then the incoming sum, by equation (1), for node z

is:

Sz,I = YpevizWeg (14)

where S, ; is incoming sum to unit z when the initial state is I.

When the initial state is K then the incoming sum for node z is:

14

Sz,K = Ygev KWy (15)

According to the Case A assumption, Iyy = Ky, which implies that

Sz,I = Sz,K (16)

But applying the threshold equation (2) to S, ; and S, k, we get the same result, thus

jz zlz-

Therefore no set of non-zero weights w,; allows j, # [,, so the two transitions are

incompatible.

Statement L2-B.

The set V includes all the nodes in the network except for node zeZ. If the initial

state is I, as in the first transition, then the incoming sum, by equation (1), for node z is:

Sz,I = YpevizWys (17)

When the initial state is K, then the incoming sum for node z is:

Sz,K = Emerzwzx (18)

According to the Case B assumption, I = (-1)K, which implies that

15

S.1=(-1)S.x (19)

) y

But applying the threshold equation (2) to S, 1 and S, x, and assuming no non-zero

incoming sums, we get j, = (—1)L,.

Therefore no set of weights w, ;(i€V') allows j, = l,, and the two transitions are

incompatible. QED

Lemma L2 shows how incompatabilities arise between pairs of transitions, for networks
with n = 3 neurons. Although Lemma L1 showed that pairwise incompatabilities are the
only incompatabilities for n = 3, this result does not extend to n > 3 neurons. If n > 3,
then it is possible for incompatabilities to arise among 3 (or more) transitions when every

pair of those transitions taken alone is compatable.

As an example of such a 3-way incompatability, consider the case n = 4. Each tran-
sition then defines a half-space subtended by a plane that intersects the origin. Figure 6
shows a 3-way incompatability. Three planes appear in Figure 6. The drawing looks as
though a book is placed vertically on a table, and opened a crack, with its binding still
along the table. The front and back cover of the book are two of the planes (A and B)
and the table the third plane (C). Half-space A is the side of the front cover facing the
interior of the book, and half-space B is the side of the back cover of the book facing the
interior of the book. Half-space C is the underside of the table. Any pair of half-spaces
here have an intersecting volume, but all 3 half-spaces do not intersect anywhere. Their
intersection is null. This situation could correspond to an incompatability of 3 conditions

that implies no pairwise incompatability.

We must now consider the aims of this research. An important aim is to gain knowledge
about how many NT-graphs are possible, and to demonstrate that large varietes of NT-

graphs can occur. It is relatively simple to check for pairwise incompatabilities. If all

16

incompatabilities were pairwise for n > 3, then an algorithm could easily be constructed
to count the number of NT-Graphs. However, since incompatabilities can arise that result
from more than 2 conditions, such an algorithm becomes considerably more difficult to
construct and more time-consuming to execute. To avoid such a combinatorial quagmire,
we have instead derived a formula to calculate a lower bound on the number of NT-
Graphs. The following lemma derives a formula for L(n), a lower bound on the number
of NT-Graphs for networks of n neurons. Knowledge of the lower bound will be sufficient

to show that the number of NT Graphs is very large.

LEMMA L3

A. A network transition graph of order n can be constructed from n neuron transition

tables (NT-Tables) by the following procedure.

Construct m = 2" transitions K; — L;(= 1,2,...,m) from n NT Tables by the

following steps.

Let K, Ky, ..., K, be the m = 2" binary states. To determine element z of state L,,
use the zth NT-Table. Let K,_,) be the (n — 1)-tuple taken from n-tuple K; but with
the 2** element of K; removed. Let row j be the row that matches K-z in the Zth
NT-Table. Insert ¢, from the z** NT-Table as element z of state L,. Fill in all elements

of L;(i =1,2,...,m) by this procedure to get the entire NT-Graph.
B. A lower bound on the number of neuron transition tables of order n is 271,

C. A lower bound on the number of network transition graphs of order n is L(n) =

2(n—-1)n_

PROOF / JUSTIFICATION

17

Statement L3-A.

Consider the z** NT-Table to represent the transitions of neuron z, such that row J;
signifies the states of the other neurons that send connections to z. Given state J; for the
other neurons, the new state of z is then {;. The entire construction is accomplised in
this fashion.

Statement L3-B.

Let J be the matrix on the left of the NT-Table.

Order the rows of J so that the first (n — 1) rows are linearly independent. This
step is possible because J has (n — 1) columns and its rows consist of all 2*~! possible
(n — 1)-tuples of —1,1. Let J, be row 7 of J.

Given a vector x (which corresponds to the incoming weights to neuron z).

Then for each value of i(= 1,2,...,n — 1), J;x is either > 0 or < 0.

Consider an arbitrary assignment of the operators Oy, O, ..., O,_; so that each oper-

ator is either ”>" or 7 <”.

Since Jq,J9,...,J,—1 are independent, then you can find solutions for x for

Jx O 0 i=(1,2,..,n-1) (20)

To find the solution, replace ” O; 0” with "= p,”, and make p; > 0 or < 0, appropriately.

Then the system J;x = p,(i = 1,2,...,n—1) can be used to solve for the z’s (by linear

18

algebra).

Now J, (h=n,n+1,...,2"1) are the dependent vectors. Using the solved values for

z, then Jpz is either > 0 or < 0 for each h (h=n,n+1,...,2"1). Thus

Jix O 0 h=(nn+1,.,2"1

is true for some assignment of Oy as either > or <.

Since the assignment of operators Oy, Os, ..., O,_1 was arbitrary and there were two

possibilities for each operator, there are 2"~! cases. Each case leads to solution for z.

Conclusion: There are 2"~! unique cases here that each have a set of solutions for
x. For each case, there may be multiple possibilities in the following sense. A different
choice for the value of p; could lead to different operators Op(h = n,n+1,...,2"°!). Thus
each case could include multiple possibilities for NT-Tables. Thus H(n) = 2"~! is a lower

bound.

Statement L3-C.

Each neuron in the network needs an NT-Table to specify what transitions it will
undergo. There are n neurons, so the number of NT-Tables are multiplied together for

the n neurons. Thus we have the number of NT-Tables raised to the number of neurons.

So the number of NT Graphs has as lower bound L(n) = 2(»~1",

19

5 Counts on Transition Graphs and their Basins

In this section we examine the issue of neural network capacity and flexibility regarding
- attractors and basins of attraction, considering attractors that are oscillators as well as
fixed point attractors. We consider counts of NT Graphs, attractors, and basin classes,
and address the basin class capacity of networks with varying sizes. We begin with
computations of lower bounds for NT-Graphs, then show simulation results that were
done to complement the theoretical calculations. We describe a series of simulations
on counts of basin classes and attractors. We show differences between networks with
symmetric versus asymmetric weights, and compare asynchronous updating rules used in

the Hopfield network to the synchronously updated networks studied here.

Table I shows calculation of lower bounds on the number of NT Graphs. Column 1 is
the number of neurons in the network (n), and Column 2 is the number of nodes in the
NT Graph (2"). Column 3 is H(n), the lower bound on the number of NT Tables (2771).
Column 4 is L(n), the lower bound on the number of NT graphs (2®~Y?), Formulas for

Columns 3 and 4 are taken from Lemma L3, parts B and C, respectively.

Table 1 shows how large the number of NT-Graphs becomes, even for small neural
networks. The number grows exponentially, but since n? appears in the exponent to 2
in L(n), the number is faster growing than an exponential with n in the exponent. Even
for a small number of neurons, there is a large number of NT-Graphs. Whereas n = 2
leads to at least 4 NT-Graphs, and n = 3 leads to at least 64, there are thousands for
n = 4, and for n = 5, over a million. Each of the graphs counted has a unique set of
transitions resulting from the neural network’s weights. From the large counts we can
conclude that there is a large space of behaviors among neural networks of the same size
but with different weights. When there are 19 neurons, there are more NT-Graphs than

109, a number used to estimate how many particles are in the universe.

20

We are critically interested in attractors, their basins, and the boundaries of their
basins of attraction. The NT-Graphs counted in the lower bound estimates of Table I
show the numbers in the overall pool of network transition graphs, but do not show the
properties of these graphs in terms of attractors and their basins. However, the attractors,
their basins, and the boundaries of the basins are important properties to know as these
are the properties needed for computational paradigms. Thus we need further analysis of

the enormous numbers of NT-Graphs.

Simulations were done to generate NT Graphs and to examine their properties, specifi-
cally their attractors, basins, and basin classes. Nets were generated with random weights,
with many networks having the same number of neurons. The NT Graph was calculated
for each network. The attractors, the number of attractors, and the order of each at-
tractor were found. The number of distinct basin classes found in the networks was also

tracked.

Figure 7 shows the number of attractors found in sets of simulated networks with
differing sizes, where weights were chosen at random between -1 and 1, and reciprocal
asymmetry (w;, # w,;) was allowed. Four hundred networks of each size were simulated
at random, with n = 3, 5, 10, and 12 neurons. For n = 3, Figure 7a histograms the number
of attractors found. Between 1 and 4 attractors were found. Since the maximum number
of attractors fdund was 4, the number of attractors can be greater than the number of
neurons. Figure 7b histograms the number of attractors found with 5 neurons. Between
1 and 8 attractors were found, with a peak at 3. Again, the number of attractors can
be greater than the number of neurons. Figure 7c shows attractors for networks with
10 neurons. Between 1 and 12 were found with a peak at 5 attractors. In Figure 7d,
12 neuron networks were simulated and histogrammed. A minimum of 1 attractor and
maximum of 16 attractors were observed, the maximum of 16 having a 30 % margin above
the number of neurons in the network. For larger n, there appears to be a larger number

of attractors possible plus a larger range also.

21

Table 2 summarizes the numbers of attractors for networks of varying sizes. The
size of the network is given in Column 1, and Column 2 shows the average number of
attractors observed. The minimum and maximum numbers of attractors observed are
in Columns 3 and 4. As before, sometimes the number of attractors is larger than the
number of neurons. Networks with only 1 attractor are readily observed. The numbers of
attractors are spread over a larger range for larger n. Column 5 shows the average number
of fixed point attractors and column 6 gives the average number of oscillating attractors
observed. On average, there are more oscillating attractors than fixed points, and the fixed
point attractors are limited to about one per network, on average. This attests to the
contribution of oscillating attractors in typical network dynamics. Restricting networks
to only those with fixed point attractors would prevent the use of many of the networks

simulated here.

Table 3 shows the same information for networks with symmetric weights only (e.g.
w;;, = wj;). The average number of attractors increases with the size of the network, but
much higher counts were found compared with Table 2. For a network with symmetric
weights having 10 neurons, up to 77 attractors were found whereas only 12 were found in
the asymmetric nets simulated (Table 2). For 12 neurons, a maximum of 186 were observed
in the symmetric networks whereas a maximum of only 16 was found in the asymmet-
ric networks simulated. In both cases, the number of attractors sometimes exceeded the
number of neurons, but the excess was far larger among the symmetric networks. Ironi-
cally, symmetric networks are a subset of asymmetric networks, as asymmetric networks
are not restricted to having w;; = w,; but can include equality or inequality of reciprocal
weights. The results in the table, however, reflect the sample of networks found when
400 nets were generated at random, fully connected with weights uniformly distributed
between -1 and 1. Among these simulations, symmetric nets tend to have larger numbers
of attractors than asymmetric nets. The asymmetric nets do have larger size basins (on

average) due to the smaller numbers of attractors.

Table 3 also addresses the issue of whether oscillating attractors contribute signifi-

22

cantly to network dynamics. Column 5 shows the average number of fixed point attrac-
tors, and column 6 shows the average number of oscillating attractors. For asymmetric
weight networks covered in Table 2, the average number of fixed point attractors is about
one, whereas the number of oscillating attractors grows with the network size. For the
symmetric weight networks covered in Table 3, the average number of fixed points in-
creases with network size, but the average number of oscillators increases even more. We
can conclude again that the network dynamics depends significantly on the oscillating

attractors.

The issue of fixed versus oscillating attractors arises in comparing the random networks
here to networks used in Hopfield’s associative memory. The restriction of reciprocal
weight symmetry (w;; = wj;), used by Hopfield, limits oscillators to order 2 (i.e., two
alternating states) in our simulated networks. Few networks simulated here have all fixed

points and no oscillators, as in the Hopfield networks.

Each of the attractors has a basin of attraction, and the basins can be of even greater
interest than the attractors themselves. A basin class is a set of network transition graphs
with the same basins (and same basin boundaries). In other words, the set of states in
each basin of attraction are the same in all networks in the same basin class. Two network
transition graphs in the same basin class may have different attractors and different paths
to those attractors within a basin. We can classify the nodes of the NT graph into different
sets, one for each basin. Figure 8 shows NT-Graphs for 3-neuron networks with basin
classes that match those from different networks used in Figure 3. The basin class of
Figure 8a consists of one basin and is the same basin class found in Figure 3a although a
different set of transitions occurs and a different attractor appears in the basin. The basin

class of Figure 8b has 3 attractors and matches the class for the NT-Graph in Figure 3c.

There are 2" nodes in a network transition graph of order n (n neurons). The number
of ways of dividing k nodes into two distinct classes is 2¥. Thus there are over 22"

potential basin classes. Let B(n) be the number of basin classes realized in the set of all

23

of the NT-graphs of order n. We next show simulation experiments that probe the size of
B(n). These results address how many of the basin classes are realizable under simulated

conditions.

We defined the basin class capacity to be the number of basin classes possible from a

given set of neural networks. The basin class capacity of a set of networks is a measure of
the potential utility of the networks for dividing a pattern space into desired subspaces.
Because of the large numbers of NT-Graphs shown in Table 1, the basin class capacity is
expected to be high. However, more than one NT-Graph can have the same basin class.
Thus we turn to simulations to show that large numbers of basin classes result from the
many NT-Graphs. We need to assess how many different basin classes can be generated,

and what are their properties.

Figure 9 shows the results of simulated basin class calculations. Networks were sim-
ulated with random weights, and for each network generated, its basin class was found.
The basin class calculation consisted of assigning a basin number (ID) to each node of the
NT-Graph. Two nodes were in the same basin if a path from one to the other was in the
NT-Graph. Two NT-Graphs were in the same basin class whenever the basin ID matched
for all nodes. Thus two NT-Graphs were in the same basin class whenever the basin
boundaries matched but the attractors and paths to those attractors could be different
within the same basin. Thus we can test the conjecture that large numbers of NT graphs

lead to large numbers of basin classes.

Figure 9 shows the number of distinct basin classes observed versus the number of
networks simulated. The first 2000 networks simulated are shown. Since the weights are
all randomly generated numbers, we are sampling from the space of all'binary networks
with weights in the given range [-1:1]. Figure 9a shows networks with 3 neurons, Figure
9b shows networks with 4 neurons and Figure 9c shows networks with 5 neurons. The
number of distinct basin classes initially rises quickly, but the rise slows until the graph

appears to be approaching an asymptote. Not all basin classes that are possible will

24

appear, because with random weights some basin classes are unlikely, and so may not
appear in the simulation. Higher numbers of neurons n take longer for the graph to
flatten out, as a larger basin class capacity is being sampled. For n = 3, the flat region
is found within the first 100 networks, as shown in Figure 9a. For n = 4 (Figure 9b), the
slope is still steep at the 2000 network simulated, but is less steep than the initial slope.
In Figure 9c, n = 5, and the slope is very steep even at the 2000** network. When there

is a very large number of basin classes, the initial angle continues steeply for a long time.

The number of basin classes observed in the NT Graphs generated were counted, and
Table 4 shows the results. Column 1 is the number of neurons, n, and Column 2 is
the number of networks simulated. Column 3 is the number of basin classes observed,
using asymmetric weights (w;; # w,, allowed). Column 4 is the number of basin classes
observed for symmetric weights (w;; = w,;). For n = 2, only a small number of classes
was observed (only 3 for asymmetric weights). For n = 3, the number grows to 15 for
asymmetric weights, and for n = 4, over a thousand were observed. Since L(4) = 4, 096,
the fraction of transition graphs that were observed as unique basin classes was 35 percent,

a relatively high fraction.

For networks of up to four neurons, the number of basin classes observed with asym-
metric weights was greater than the number observed with symmetric weights. This
comparison reflects the fact that networks with asymmetric weights allowed includes, as
a subset, the networks with symmetric weights. Thus the number of basin classes is
higher for networks with asymmetric weights allowed. For n = 2,3, and 4, the simulation

experiment appears to have produced close to the total count of basin classes possible.

When n > 5, many thousands of basin classes were observed during the simulations.
The first ten thousand networks simulated, in each case, resulted in 7,000 or more unique
basin classes observed. The number of basin classes observed for this size network was
larger when weights were restricted to symmetric values. The reason for this discrepancy

is that the case of asymmetric weights had more repetitions in basin classes among the

25

first 10,000 networks simulated. There still must be more total basin classes among
the networks with asymmetric weights allowed because the networks with symmetric
weights are a subset. The repetitions in basin classes observed were not surprising because
networks with asymmetric weights allowed tended to have fewer attractors with larger

basins. Thus, rearranging the transitions within a basin was more likely.

An important issue in the development of neural networks has been that of asyn-
chronous versus synchronous updating. Asynchronous updating means that neurons are
updated one at a time, and the new state of the unit updated is then used when updating
the next unit. In synchronous updating, the entire network of neurons is updated to
new activation states a;(t) at the same time, based on inputs to each neuron from other
neurons at time t-1 (a;(t — 1)). Asynchronous updating can be done by selecting the next
neuron at random, or by selecting the neurons in a given order, with the same order used

repeatedly.

When the next neuron is selected at random, the boundaries of the basins are unstable.
The same starting point leads to different attractors at different times, depending on
the sequence of neurons updated subsequently. In the case where neurons are updated
in a given order repeatedly, the basins are stable, but changing the order of neurons
changes their boundaries. Thus the boundaries are not stable with respect to the updating

procedure.

The associative memory proposed by Hopfield had symmetric weights with asyn-
chronous updates. Asynchronous updating appeared as part of the proof that the network
would eventually reach a fixed state, and a fixed state was thought to be necessary for a
computational paradigm. We argue here that fixed point attractors are not necessary for
computational paradigms, and that new paradigms are made possible by the stable and

flexible basin boundaries that appear in networks with synchronous updating,.

In biological systems, neurons tend to fire at different times. With asynchronous up-

26

dating, neurons must change activity states at different times, also. However, in biological
systems, neurons are not chosen by an externally generated random number to be the next
to update; they update naturally as a result of incoming signals that cause their excita-
tion level to surpass a threshold. The incoming signals are continuously received by each
neuron. Synchronous updating divides time into time steps, and each neuron revises its
incoming sum at each step. Neurons can still fire at different times. Thus the synchronous

updating appears a better model of biological processes.

Ideally, a comparison between basin class capacities of synchronous and asynchronous
networks would be useful, but such a comparison is not possible because of the unsta-
ble boundaries in asynchronous networks. When boundaries are unstable, one cannot
compute a basin class because some states lead to different attractors at different times,
depending upon the sequence of random numbers that determine the sequence of neurons
updated. Thus we choose asynchronous ordered updating for a comparison with syn-
chronous networks. A series of simulated random networks were generated and neurons
were updated in sequential order. With this set of simulation experiments, we assessed
the basin class capacities of asynchronous networks, and compare this capacity to that of

synchronous networks. A series of networks were simulated.

Each state was used as initial position, and the target state of the next transition was
computed to build the NT-Graph. The basin classes were then assessed and new basin
classes were added to the inventory. With this approach, the number of basin classes
found was always one for asynchronously updated networks with uniformly distributed
random weights (we[—1, 1]). In this one basin class, there was only one basin of attraction.
This is not the total count possible for all weights, as the sample set was limited. Weights
were uncorrelated in the simulated set. The Hopfield Net shows that other possibilities
occur for particular weights that are correlated. We show here, though, that these cases
are unlikely when random weights are used. Hence the multiple basin classes are not very

accessible in the simulated networks.

27

In summary, a multitude of basin classes were demonstrated in asynchronous dynamic
networks. High NT-Graph counts were found, and there is an increase in basin class
counts that rises steeply with n, the number of neurons. Asynchronous networks give
unstable basin boundaries with random updates, and, although the Hopfield paradigm
for computing correlated weights yields multiple basins, a sampling of networks with

random weights showed no variation in basin boundaries at all.

6 Discussion

This paper addresses the dynamic behavior of binary neural networks and the broad span
of behaviors that can be observed, including oscillations as well as stable states. Theo-
retical results are combined with a simulation study aimed at determining the flexibility
for binary neural networks to make different transitions, depending on their weights, and
to develop attractors with differing basins. Section 2 defines the network structure with
a standard transition rule for a binary net with synchronous updates, and a fully con-
nected single layer. This connection topology allows for circuits (loops) in which a unit
is connected to itself through other units. These networks are capable of self-sustained
activity in the form of oscillations and can also evolve into stable states, depending on

the weights and starting conditions.

Section 3 defined transition graphs, transition compatability, and neuron transition
tables, used in the theoretical analysis later in this paper. Perhaps the most important
definition in Section 3 was that of the basin class. Later results on counting basin classes
showed the fundamental ability of these types of networks to divide binary n-tuples in a

large number of ways, thus to have a large basin class capacity.

Section 4 shows some mathematical relationships that govern network transition graphs

(NT-Graphs), which are graphs that show all transitions between all possible states of

28

binary neural networks. Some sets of transitions are mutually compatible (possible within
the same network) but other sets cannot be implemented in a single network with a single
weight matrix. A lower bound was found on the number of NT-Graphs (Lemma L3).
This counts the number of sets of transitions that neural networks can implement, given
any values for weights. Tremendously large numbers were computed for this lower bound,
indicating a hugh span of behaviors for binary networks. Depending on the wieght matrix,
the network may have one attractor with all states as its basin, or many attractors with

basins of varying sizes. Attractors may be fixed points or oscillators.

Since the aim of this research is to understand binary dynamic neural networks so
that we may ultimately apply them for computational purposes, it is important to assess
the attractors, basins, and basin classes of these networks. In Section 5, networks were
simulated at random and their dynamic characteristics were tracked. Large counts of
basin classes were found, indicating a high basin class capacity for these networks. The
attractors were found to sometimes outnumber the neurons, and for symmetric weights
there could be 15 times as many attractors as neurons. These networks relied on oscillatory

attractors more than fixed point attractors.

This study was limited to binary neural networks because the mathematics is more
tractable for the binary case and the simulation counts are more practical to perform. An
extension to this would address continuous-valued networks (Hopfield, 1984; Doyon et al,
1993; Dayhoff et al, 1994]. Continuous-valued networks are expected to show even greater
flexibility and basin class capacity compared with their binary counterparts, as the state
of each neuron can range between -1 and 1. The possibilities for their dynamic behavior
is even larger than the results shown here for binary networks. Although it would be of
interest to know the basin classes possible from all continuous-valued neural networks, the
flexibility of the binary networks and their capacity to implement a large number of basin
classes is sufficient to imply the potential of continuous-valued networks for applications

paradigms.

29

This research provides groundwork for further study of dynamic neural networks and
for eventual development of applications. For some applications, we will want to tailor the
boundaries of the basins of attraction to desired specifications. Setting basin boundaries
could be implemented by creating a set of disallowed transitions - transitions that, if
allowed, would connect two regions that the investigator wants to have disconnected. The
results in Section 4 form some of the groundwork to work towards such a goal analytically.
The transitions in an NT-Graph can be translated into a series of inequalities, which can
then be approached by existing methods for solving systems of inequalities (Walsh, 1985;
Gahinet and Nemirovskii, 1993). Disallowed transitions also can be represented by a set

of inequalities.

In the paradigm considered by Hopfield, associative memory is attained by using asyn-
chronous updating, symmetric weights, and fixed point attractors. Inconsistent bound-
aries between basins of attraction occur with asynchronous updating, whereby the same
initial state can lead to different attractors at different times. In the Hopfield associative
memory, the fixed point attractors were set at the memory states; in other applications
it will be important to divide the state space at the appropriate boundaries but the ac-
tual location of the attractor may not need to match a pre-set pattern. Thus additional
degrees of freedom may be found by relaxing constraints on the position of the attractor
and the nature of the attractor, to accept oscillating attractors as well as fixed points.

Then there is more freedom to set basin boundaries as desired.

In this paper we have introduced the concept of basin class capacity. The basin class
capacity represents the number of possible ways that a set of networks can divide a pattern
space (e.g. the set of all states of a network). An adequate basin class capacity is needed
for applications in which basin boundaries are set. In such an application, the initial
state of a network would be a pattern to be classified, and the attractor in its basin
would represent its pattern class. The network need only be updated until the attractor
is found. We have shown that the capacity for attractors is high for dynamic networks,

with attractors exceeding the numbers of neurons in some cases, and that binary dynamic

30

networks have high basin class capacity. Continuous-valued networks can be expected to

have even higher capacity and flexibility.

Binary single-layer networks with closed circuits have been considered previously.
Amari showed how pattern memories and pattern sequences were learned by self-organizing
nets of threshold elements (Amari, 1972b). He showed that learning was most successful
when the pattern sets and sequences consisted of orthogonal patterns. He also charac-
terized random networks with analog neuron-like elements (Amari, 1972a). Amari and
Maginu (1988) analyzed the non-equilibrium dynamical behaviors of an autocorrelation

associative memory model, built from a recurrent binary network.

Hao and coworkers have shown a method for fixing convergence balls within basins
of attraction in an asynchronous symmetric network, so that each basin is guaranteed to
include a ball of a certain diameter centered on a fixed point attractor (Hao et al, 1994).
Oscillating attractors were not considered in this work. Psaltis and coworkers considered a
set of eigenvalues that allowed partial control over some aspects of the basins of attraction
in a binary network with correlated weights and fixed point attractors (Venkatesh et al,
1990). The number of eigenvalues was limited, however, and each could only control a
region covered by a basin. Wuensche has examined transitions and attractors in Boolean

networks, which include as a subset the binary neural networks (Wuensch and Lesser,

1992).

Stability conditions for networks have been found under configurations of asymmetric
weights (Matsuoka, 1992). Correlation associative memories basen on binary networks
have been proposed by Nakano (1972), Anderson (1972), and Kohonen (1972). A variety
of dynamic networks have been studied. Oscillations and chaos have been observed in
networks built from a multitude of small oscillators, and some of these networks could
perform computational tasks (Yao and Freeman, 1990). Networks with dynamic thresh-
olds were found to have oscillations and temporal sequences of patterns (Horn and Uscher,

1989). Networks of neurons with hysteretic properties and self-connections were found

31

to have positive associative memory characteristics (Yanai and Sawada, 1990). Networks
with continuous-valued neurons were found to exhibit multistate finite oscillations, limit
cycles, and chaos as well as fixed point stable states (Sompolinsky et al, 1988; Doyon et

al, 1993.).

Attractor networks have been proposed as models that potentially explain neural ac-
tivity in the brain and nervous system. Amit has considered the relationship between
binary recurrent networks and properties of mental processing (Amit, 1989). The asso-
clative memory model of Hopfield utilizes fixed point attractors as memories. Models of
mental illness have been proposed with networks that have dynamic attractors and some-
times spurious attractors. Oscillations and repetitive motions are ubiquitous throughout
the phylogenetic tree, from invertebrate swimming to primate walking. Gross (Gross and
Tam, 1994; Tam and Gross, 1994) even observed self-organized oscillations of neurons
growing in culture. Feature binding in the visual system - a mechanism that matches
features with objects - has been proposed to occur via entrained oscillations (Grossberg

and Somers, 1991).

Dynamic attractors can be understood as a collage of exemplars instead of a single
memory, with each state in the oscillation representing a different instantiation of a pat-
tern. Instead of an individual state representing grandmother, for instance, a set of states
in the oscillator could represent grandmother from differing angles, with differing expres-
sions. Thus the question of the neural code or the neural engram might be answered in
terms of dynamic attractors. Reasoning with encoded information (e.g. objects repre-
sented by attractors) might then be accomplished via dynamic transients along the energy

landscape.

Overall, the rationale for looking into the regime of dynamic networks is to seek more
flexibility, increased computational capacity, more control over basin shapes, and a higher
capacity for basin classes. A spectrum of new paradigms are expected to arise from this

approach, in which dynamic attractors are utilized to classify patterns, to sort spatiotem-

32

poral signals, to identify memories, to generate trajectories and autonomous signals, and
to model the brain and nervous system. We conclude that these goals are likely to be
attained through the use of dynamic neural networks. Furthermore, biological systems
show much evidence of having dynamic networks, which argues towards the development

of further possibilities for new paradigms using dynamic networks and dynamic attractors.

7 References

S.-I. Amari, 1972a. Characteristics of random nets of analog neuron-like elements. IEEE

Trans. SMC, 2 (5): 643-657.

S.-I. Amari, 1972b. Learning patterns and pattern sequences by self-organizing nets

of threshold elements. IEEE Trans. Computers, 21 (11): 1197-1206.

S.-I. Amari and K. Maginu (1988). Statistical neurodynamics of associative memory.

Neural Networks 1: 63-73.

D. J. Amit (1989). Modeling Brain Function: The World of Attractor Neural Networks.

New York: Cambridge University Press.

J. A. Anderson, 1972. A simple neural network generating interactive memory. Math-

ematical Biosciences 14: 197-220.

F. Chapeau-Blondeau and G. Chauvet, 1992. Stable, oscillatory, and chaotic regimes

in the dynamics of small neural networks with delay. Neural Networks 5: 735-743.

J. E. Dayhoff, P. J. Palmadesso, and F. Richards, 1994. Developing multiple attractors

in a recurrent neural network. Proceedings, World Congress on Neural Networks (WCNN-

33

94) IV: 710-715.
B. Doyon, B. Cessac, M. Quoy, and M. Samuelides, 1993. Control of the transition to
chaos in neural networks with random connectivity. International Journal of Bifurcation

and Chaos 3 (2): 279-291.

P. Gahinet and A. Nemirovskii, 1993. LMI Lab: A package for manipulating and
solving LMI's. Natick, Massachusetts, USA: The MathWorks Inc.

G. W. Gross and D. C.Tam, 1994. Pre-conditioned correlation between neurons in

cultured networks. WCNN-94 II: 786-791.

S. Grossberg and D. Somers (1991). Synchronized oscillations during cooperative

feature linking in a cortical model of visual perception. Neural Networks 4: 453-466.

J. Hao, S. Tan, and J. Vandewalle, 1994. A new approach to the design of discrete
Hopfield associative memories. Journal of Artificial Neural Networks 1 (2): 247-266.

T. Kohonen, 1977. Associative Memory. New York: Springer.

A. Dembo, 1989. On the capacity of associative memories with linear threshold func-

tions. IEEE Trans. Infor. Theory 35 (4): 709-720.

J. J. Hopfield, 1982. Neural networks and physical systems with emergent collective

computational abilities. Proc. National Academy of Sciences 79: 2554-58.
J. J. Hopfield, 1984. Neurons with graded response have collective computational

properties like those of two-state neurons. Proc. National Academy of Sciences 81: 3088-

92.

34

D. Horn and M. Usher, 1989. Neural networks with dynamical thresholds. Physical
Review A 40 (2): 1036-1044.

T. Kohonen, 1972. Correlation matrix memories. IEEE Trans. Computing, C-21:
353-359.

R. J. McEliece, E. C. Posner, E. R. Rodemich, and S. s. Venkatesh, 1987. The capacity
of the Hopfield associative memory. IEEE Trans. Information Theory 33: 461-482.

K. Nakano, 1972. Association - a model of associative memory. IEEE Trans SMC 2:
381-388.

H. Sompolinsky, A. Crisanti, and H. J. Sommers (1988). Chaos in random neural

networks. Phys. Rev. Let. 61 (3): 259-262.

D. C. Tam and G. W. Gross, 1994. Post-conditioned correlation between neurons in

cultured networks. WCNN-94 II: 792-797.

S. S. Venkatesh, G. Pancha, D. Psaltis, and G. Sirat, 1990. Shaping attraction basins

in neural networks. Neural Networks 3: 613-623.

G. R. Walsh, 1985. An Introduction to Linear Programming. New York: John Wiley

and Sons, Inc.

A. Wuensche and M. Lesser, 1992. The Global Dynamics of Cellular Automata. Read-

ing, Massachusetts: Addison-Wesley.

H. Yanai and Y. Sawada, 1990. Associative memory network composed of neurons

with hysteretic property. Neural networks 3: 223-228.

35

Y. Yao and W. J. Freeman, 1990. Model of biological pattern recognition with spatially
chaotic dynamics. Neural Networks 3: 153-170.

8 Figures

1. Single layer neuron networks that are fully connected with no self-loops. (a) 2-neuron

network, (b) 3-neuron network, (c) 4-neuron network.
2. The global transition graph for n = 2.

3. Network transition graphs for two neural networks with n = 3 processing units. (a)
NT-Graph with one attractor having a 4-state oscillator and one basin. The basin class
is /01234567/, where nodes are numbered 0-7 and / delimits basins. (b) NT-Graph with
four attractors consisting of two fixed points and two 3-state oscillators, and four basins,
with basin class /0/124/356/7/. (c) NT-Graph with three attractors consisting of two
fixed points and one 2-state oscillator, and three basins, with basin class /0347/15/26/.

4. An NT-Table for neuron z in a 4-neuron network. Let J, be row i of matrix J.

Then J,x > 0 whenever (, = —1. This defines the transitions of unit z.

5. Two 45 degree lines with shaded areas defined by any two half-planes subtended
by the two lines. (a)-(d) give the four possibilities, depending upon which half-planes are

chosen.

6. A construction of three intersecting planes, each of which subtends a half-space.
There are choices for the half-spaces in which there is no 3-way intersection but always a

2-way intersection.

36

7. Histogram of number of attractors found in simulated networks, where weights were
chosen at random between -1 and 1. For each network size, 400 nets were simulated, and
reciprocal weights were allowed to be unequal (w,, # w;;). (a) Number of neurons n = 3
yielded 1-4 attractors. (b) Number of neurons n = 5 yielded 1-8 attractors. (c) Number
of neurons n = 10 yielded 1-12 attractors. (d) Number of neurons n = 12 yielded 1-16

attractors.

8. Two NT-Graphs in the same basin classes as graphs in Figure 3. (a) Same basin

class as Figure 3a. (b) Same basin class as Figure 3b.

9. The number of basin classes found as a function of the number of networks sim-
ulated. Two thousand networks of each size (n = 3,4, and 5) were simulated. Weights
were randomly selected from -1 to 1, and reciprocal weights were allowed to be unequal
(wij # w,y;). (a) For n = 3 there is initially a steep rise, then the graph flattens off with
little increase in the number of basin classes found. (b) For n = 4, there is an initial
steep rise that begins to become less steep by the 2000 network. (c) For n = 5, the
initial steepness continues throughout the first 2000 nets, and the flattening out must

occur later.

9 Tables

1. Synchronous updating, asymmetric reciprocal weights allowed. Column 1 is the number
of neurons in the network, Column 2 is the number of nodes in the network transition
graph, Column 3 is H(n) = 2"}, a lower bound on the number of NT-tables, and Column

4is L(n) = 2"»=1 the lower bound on the number of network transition graphs.

2. Synchronous updating, asymmetric reciprocal weights allowed. Column 1 gives the

number of neurons in the network, Column 2 shows the average number of attractors

37

observed, Columns 3 and 4 show the minimum and maximum number of attractors ob-
served, respectively. Column 5 shows the average number of fixed points, and Column
6 shows the average number of oscillators observed. Four hundred networks of each size

were generated with random weights, fully connected with no self-loops.

3. Synchronous updating, symmetric reciprocal weights only. Column 1 gives the
number of neurons in the network, Column 2 shows the average number of attractors
observed, Columns 3 and 4 show the minimum and maximum number of attractors ob-
served, respectively. Column 5 shows the average number of fixed points, and Column
6 shows the average number of oscillators observed. Four hundred networks of each size

were generated with random weights, fully connected with no self-loops.

4. Basin classes were counted among simulated networks which were fully connected
(no self-loops) with random weights. Column 1 shows the number of neurons in the net-
work, Column 2 shows the number of networks simulated, Column 3 shows the number of
basin classes observed when reciprocal weights were allowed to be asymmetric, and Col-
umn 4 shows the number of basin classes observed when reciprocal weights were restricted

to symmetric values.

38

N
Q
(0

Figure

Y ¥ 13

J ¢
-1)-1)-1) 1
1111
ST -1 1
11111
1{-1]-1|-1
1(-1]1 (1
1 {1 }-1]-1
1(1]1¢§-1

An NT-Table for neuron z in a 4-neuron network. Let J; be row i of matrix J.
Then J;z > 0 whenever (; = —1. This defines the transitions of unit z.

Fioure Y

(o)

(a)

d)

9

(¢)

S

Figure

F“._‘} T

(v) L abiy

si0joeI}je JO IdquInN]

0¢ ST 0T S 0

- - 00T

- -4 0¢CT

» . -1 OVl

! ! 1 09T

s)I0M)oU

Jo IaquInpy

0¢

ST

0T

(9) [»+nbd

SI030BI})E JO JIOQUINN]

0

0

0¢

0V

09

08

00T

0¢T

0vT

09T

sy I0MIoU

Jo JaqunN

(=) /.

$1030€I}3R JO JaquUINN]

0z ST 0T S 0
0
T _ _ _ ‘

i -4 00T

i 4 0¢T

.. N -1 0Vl

: | 1 09T

danilsr

SjIomjou

JO IaquInpny

0¢

0T

A-osv [, 2avb

SI030€IjIR JO JOqUUNN]

0

0

-1 00T

-1 0¢C1

1 09T

09T

" SyIoM3ou

Jo Jaquunyy

Fxgwe g (a)

Fif)w{e g (b)

()b srably

Paje[nNUIIS SYI0M)9U JO ISqUINN]

o

000c¢ 008T 009T 007vT 00cT 000T 008 009 007V 00¢
T T T T T _ T _ T

(&)

v vV

0T

‘QOQOOOOQAAAA

ST

- 0¢

4 S¢

- 0¢
PaAI9sqO Sasse[o

~ - &¢
uiseq JO JoquunpJ

=4 0V

1 SV

() b bl

PaIe[nwis sjyIomyou jo soquunp

000¢ 008T 009T 00¥T 00CT 000T 008 009 007 00¢ 0
0
T T T T T T T _ T

0o¢

007

009

PoAI9sqO Sasse[o

uiseq Jo Ioquinpj

- 008

I I ! I I ! ! 1 1 000T

OYSLE

Paje[nuis syIiomiau Jo sequun

000¢ 008T 009T 0071 002CT 000T 008 009 007 00¢ 0
0
T T _ T T T T T T

00¢

007

009

008

PaAIasqo sassey:

000T

uiseq jo Ioquinp

00CT

007T

! l I 1 1 1 l 1 I 009T

neurons 2" H(n) L(n)
2 4 2 4
3 8 4 64
4 16 8 4,096
5 32 16 > 10°
6 64 32 > 10°
10 1024 512 > 1018
19 524,288 | 262,144 | > 10199

Table 1: Synchronous updating, asymmetric reciprocal weights allowed. Column 1 is the
number of neurons in the network, Column 2 is the number of nodes in the network transition
graph, Column 3 is H(n) = 2"}, a lower bound on the number of NT-tables, and Column
4 is L(n) = 21 the lower bound on the number of network transition graphs.

neurons || ave | min | max | f.p.’s | oscill
2 203 1 3 | 1.03 | 1.00
3 223 1 4 | 097 | 1.26
4 256 | 1 10 | 1.10 | 1.46
5 2901 1 8 1.06 | 1.84
6 3201 1 9 |1.011{ 219
7 343 | 1 10 | 0.97 | 2.46
8 381 1 16 | 1.02 | 2.79
9 422 1 19 | 1.12 | 3.10
10 463 | 1 12 | 0.94 | 3.69
11 494 1 15 | 0.97 | 3.97
12 5411 1 16 | 1.05 | 4.36

Table 2: Synchronous updating, asymmetric reciprocal weights allowed. Column 1 gives
the number of neurons in the network, Column 2 shows the average number of attractors
observed, Columns 3 and 4 show the minimum and maximum number of attractors observed,
respectively. Column 5 shows the average number of fixed points, and Column 6 shows the
average number of oscillators observed. Four hundred networks of each size were generated
with random weights, fully connected with no self-loops.

neurons || ave | min | max | f.p.’s | oscill
2 3.00 3 3 2.00 | 1.00
3 3.00 3 3 2.00 | 1.00
4 4.41 3 10 | 2.38 | 2.03
5 6.43 3 14 | 3.00 | 3.43
6 8.79 3 21 | 3.48 | 5.31
7 13.03| 3 29 | 4.33 | 8.70
8 18.61 | 3 46 | 5.35 | 13.26
9 26.85| b 80 | 6.14 | 20.71
10 38.67 | 7 77 | 7.61 | 31.06
11 55.63 | 14 | 134 | 9.49 | 46.14
12 82.97 | 21 | 186 | 11.68 | 71.29
Table 3: Synchronous updating, .symmetric reciprocal weights Column 1 gives

the number of neurons in the network, Column 2 shows the average number of attractors
observed, Columns 3 and 4 show the minimum and maximum number of attractors observed,
respectively. Column 5 shows the average number of fixed points, and Column 6 shows the
average number of oscillators observed. Four hundred networks of each size were generated
with random weights, fully connected with no self-loops.

neurons nets | asym | Sym
2 100 3 2
100 15 6
10,000 | 1,418 | 300
10,000 | 7,030 | 9,355
10,000 | 8,022 | 10,000

O] O o Q2

Table 4: Basin classes were counted among simulated networks which were fully connected
(no self-loops) with random weights. Column 1 shows the number of neurons in the network,
Column 2 shows the number of networks simulated, Column 3 shows the number of basin
classes observed when reciprocal weights were allowed to be asymmetric, and Column 4 shows
the number of basin classes observed when reciprocal weights were restricted to symmetric
values.

A cknowledgements

The first author was supported by the Naval Research Laboratory (N00014-90K-2010) and
the National Science Foundation (CDR-88-03012 and BIR9309169). The second author
acknowledges support from the Office of Naval Research.

