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Multiscale representation of a given image is the problem of constructing a

family of images, where each image in this family represents a scaled version of

the given image. This finds its motivation from biological vision studies. Using

the hierarchical multiscale image representation proposed by Tadmor et. al. [32],

an image is decomposed into sums of simpler ‘slices’, which extract more refined

information from the previous scales. This approach motivates us to propose a

novel integro-differential equation (IDE), for a multiscale image representation. We

examine various properties of this IDE.

The advantage of formulating the IDE this way is that, although this IDE is

motivated by variational approach, we no longer need to be associated with any

minimization problem and can modify the IDE, suitable to our image processing

needs. For example, we may need to find different scales in the image, while retaining

or enhancing prominent edges, which may define boundaries of objects. We propose

some edge preserving modifications to our IDE.



One of the important problems in image processing is deblurring a blurred

image. Images get blurred due to various reasons, such as unfocused camera lens,

relative motion between the camera and the object pictured, etc. The blurring can

be modeled with a continuous, linear operator. Recovering a clean image from a

blurry image, is an ill-posed problem, which is solved using Tikhonov-like regular-

ization. We propose a different IDE to solve the deblurring problem.

We propose hierarchical multiscale scheme based on (BV,L1) decomposition,

proposed by Chan, Esedoḡlu, Nikolova and Alliney [12, 25, 3]. We finally propose

another hierarchical multiscale representation based on a novel weighted (BV,L1)

decomposition.
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Chapter 1

Introduction

1.1 What are images ?

We are surrounded with images. Understanding images and interpreting them

has been a crucial for survival. Mankind has been fascinated with the concept

of storing images on paper, long before Ibn al-Haytham’s ‘Book of optics’ [2] was

written in 1021. Since then, Image capturing has been made very easy through

the advent of digital cameras. Digital images are essentially the analogue images,

sampled and quantized. If the images use b number of bits, then we have 2b number

of intensity levels available to digitally represent the image. The darkest spot in an

image is assigned the value ‘zero’ and the brightest spot is assigned the value 2b−1.

For example, in case of an 8 bit image, there are 256 intensity levels. There could

also be many channels used to describe an image. For example, in case of a typical

color image there could be three channels, one for each colors: red, green, and blue.

For mathematical purposes, a black and white digital image is viewed as a

function f : Ω ⊂ R2 7→ R, sampled on a regular grid. Here, Ω is the region where

the image is defined. The value of the function, f(x), denotes the intensity of the

image at the point x ∈ Ω, see Figure 1.1.
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(a) (b)

Figure 1.1: In (a) we can see the 24-bit image of Lenna, and in (b) we can see the

same image at an angle, viewed as a graph of a function.

1.2 Main problems in image processing

Most problems in image processing fall under two broad categories: image seg-

mentation and image restoration. Image segmentation is the problem of identifying

constituent parts of the image. However, this definition is rather ambiguous. The

meaning of segmentation mostly depend on the image at hand. For example, in

Figure 1.2 we need to divide the image into its constituent parts depending on the

difference in the texture.

Image restoration consists of denoising and deblurring. Additive noise, de-

noted by η, is inadvertently added to the image due to various reasons like limita-

tions of the image capturing facilities or transmission losses, see Figure 1.3. Besides

noise, the image could also be blurred due to reasons such as unfocused camera lens,

relative motion between the camera and the object pictured. In Figure 1.4(a), we

see a blurred image of Lenna and we seek to recover the Lenna, ideally as shown

2



(a) (b)

Figure 1.2: The problem of segmentation: can we identify components in (a) and

get a segmented image as in (b) ?

in Figure 1.4(b). This blurring is modeled by a linear, continuous blurring opera-

tor T : L2(Ω) 7→ L2(Ω), for example, convolution with a Gaussian kernel. Thus,

we express the the observed image f as f = TU + η, where U is the clean image

without blurring and noise. The recovery of this clean image U , given its blurred

and noisy version f , is called image restoration. This is an ill-posed problem and

can be solved by variational techniques using Tikhonov-like regularization [14, 36].

Several approaches like variational and PDE-based methods, filtering, stochastic

modeling and wavelets were developed for solving these image processing problems

[18, 17, 20, 21, 13].

1.3 Multiscale representation

In the absence of blurring, image-denoising naturally leads to decomposition

of the given image f into a denoised part Uα and a noisy part ηα := f−Uα, where α

3



(a) (b)

Figure 1.3: The denoising problem: can we go from a noisy image (a) to a restored

image in (b) ?

is an algorithm-specific denoising parameter. For example, in the case of Gaussian

smoothing, the variance of the Gaussian kernel acts as α. We get a larger scale

version Uα of the given image f , as the small-scale features of f , categorized as

noise, are forced to be in the noisy part ηα.

Small scale features, categorized as noise, are forced to be in ηα, resulting in

a larger scale version Uα of the original image f . Thus, denoising of f generates a

multiscale representation: {Uα}α∈A with α as a scaling parameter. In this exposi-

tion, we primarily deal with PDE-based methods, which as we shall see later, are

intimately related to the variational methods. We now see some examples where

denoising methods generate multiscale representation.
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(a) (b)

Figure 1.4: The deblurring problem: can we go from a blurred image (a) to a

restored image in (b) ?

1.4 Multiscale representation with PDE and variational methods

1.4.1 Heat equation

One of the earliest PDE-based methods for denoising a given image f := U(·, 0)

is the heat equation

∂U

∂t
= ∆U, U ≡ U(x, t) : Ω× R+ 7→ R;

∂U

∂n

∣∣∣∣
∂Ω

= 0. (1.1a)

This yields a family of images, {U(·, t) : Ω 7→ R}t≥0, which can be viewed as

smoothed versions of f . In this linear set up, smoothing is a convolution with the

two-dimensional Gaussian kernel, Gσ(x) = 1
2πσ2 exp

(
− |x|

2

2σ2

)
with standard deviation

σ =
√

2t. Hence, details with a scale smaller than
√

2t are smoothed out. We can

say that {U(·, t)}t≥0 is a multiscale representation of f , as U(·, t) diffuses from the

small scales in f into increasingly larger scales. Here, λ(t) :=
√

2t acts as a scaling

function.
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Figure 1.5: Solutions of the heat equation. As one can see the heat equation produces

different scaled versions of the image, but at the same time diffusing the edges as

well.

1.4.2 Perona-Malik model

Image denoising by the heat equation is based on isotropic diffusion, and conse-

quently blurs all edges, which contain useful information about the image. Diffusion

of the edges is observed in Figure 1.5 which depicts the results of the heat equation

(1.1a). This drawback was removed by Perona-Malik (PM) model [28], which is

based on nonlinear diffusion

∂U

∂t
= div(g(|∇U |)∇U), U ≡ U(x, t) : Ω× R+ 7→ R;

∂U

∂n

∣∣∣∣
∂Ω

= 0, (1.1b)

with an initial condition U(·, 0) := f . Here, the diffusion controlling function, g,

is a real valued function that vanishes at infinity, so that the amount of diffusion

decreases as the gradient |∇U | increases. Thus, g is responsible for the anisotropic

nature of the PM model. Typical choices of g include 1√
1+ s

β

, 1
1+( s

β
)2 , e−

s
β for some

constant β.

6



1.4.3 Catté, Lions, Coll, Morel model

The family of PM models are not well-posed. They also pose a problem for

noisy images. Since noise produces high gradients, it can be confused with relevant

edges. These shortcomings were removed by Catté et. al. [10] by replacing g(|∇U |)

with g(|Gσ ? ∇U |), where Gσ ? ∇U denotes convolution of the two-dimensional

Gaussian kernel Gσ with the gradient ∇U i.e.

∂U

∂t
= div(g(|Gσ ?∇U |)∇U), U ≡ U(x, t) : Ω× R+ 7→ R;

∂U

∂n

∣∣∣∣
∂Ω

= 0, (1.1c)

subject to U(·, 0) := f .

1.4.4 Nordström model

The models (1.1) still suffer from a major drawback: the solution U(t) diffuses

to the average value −
∫
f as t→∞. Thus, a stopping criteria t = tc must be sought,

so that the desired denoised image Uc := U(tc) is obtained. This raises the question

of an appropriate stopping time tc. The necessity of finding a stopping time is

removed by Nordström’s biased anisotropic model [26]

∂U

∂t
= f −U + div (g(|∇U |)∇U), U ≡ U(x, t) : Ω×R+ 7→ R;

∂U

∂n

∣∣∣∣
∂Ω

= 0. (1.2)

In this case, the solution U(·, t) varies from the initial condition U(·, 0) := 0 to a

desired denoised image Uc, as t → ∞. Thus, the family {U(·, t)}t≥0 is an inverse

scale representation of Uc, with t acting as an inverse scale parameter.

7



1.4.5 Rudin, Osher, Fatemi model

Variational approaches for image processing like Mumford-Shah segmentation

[23, 24], Rudin-Osher-Fatemi (ROF) decomposition [30, 29] etc. fall under a general

category of Tikhonov regularization [36], where one solves the ill-posed problem of

finding u, given f = Tu + η. The discussion of deblurring problem is postponed

to Chapter 3. We will first restrict our attention to the problem of pure denoising

with no blur i.e. T = I. Here, we seek a faithful, noise free approximation u ∈ X

of f ∈ L2, where X ( L2 is an appropriate space adapted to measure edges and

textures in images. This leads to the following minimization problem [8]

f = uλ + vλ, [uλ, vλ] := arginf
f=u+v

{ ‖u‖X + λ‖v‖2
L2}.

The term ‖u‖X is a regularizing term and λ is a positive scaling parameter. In

the case of ROF model, X = BV (Ω), the space of bounded variations [5], yields

(BV,L2) decomposition of f :

f = uλ + vλ, [uλ, vλ] := arginf
f=u+v

{ ‖u‖BV + λ‖v‖2
L2}, (1.3)

where ‖u‖BV :=
∫

Ω
|∇u|. For more details on the BV space refer to section 1.6.

The Euler-Lagrange equation characterizing the minimizer, uλ for the minimization

problem (1.3) is

uλ = f +
1

2λ
div

(
∇uλ
|∇uλ|

)
, (1.4a)

which can be obtained as a steady state solution of the following nonlinear, parabolic

differential equation

∂u

∂t
= f − u+

1

2λ
div

(
∇u
|∇u|

)
, u ≡ u(x, t) : Ω× R+ 7→ R;

∂u

∂n

∣∣∣∣
∂Ω

= 0. (1.4b)
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Subject to u(·, 0) := f , this PDE gives rise to a multiscale family {u(·, t)}t≥0, where

t is a forward scaling parameter. Also note that the variational ROF model (1.3)

relates to the PDE based Nordström model (1.2) with g(s) := 1
2λs

.

1.5 Some properties of ROF decomposition

Meyer introduced [22] following Banach space to analyze properties of ROF

model.

Definition 1.1. Let G(R2) denote the Banach space consisting of all generalized

functions v(x) which can be written as

v(x) = ∂1g1 + ∂2g2 = div g, g1, g2 ∈ L∞(R2)

The space G(R2) is

‖v‖∗ := inf
v=div g

{
‖g‖L∞ = ess sup

x∈R2

|
√

(|g1|2 + |g2|2)(x)| : g1, g2 ∈ L∞(R2)

}

With this definition and the density of C∞ ∩BV (Ω) in BV (Ω) (see Theorem

1.3 for details), we have the following lemma [22].

Lemma 1.1. If v ∈ L2(R2), then

|(u, v)2| ≤ ‖u‖BV ‖v‖∗ (1.5)

Proof. We observe that the assertion (1.5) is true by definition 1.1 for u = ϕ, a test

function. Thus, it must be true for all Sobolev functions u ∈ W 1,1
0 by the density of

the test functions. The extension to a general BV image u with zero trace is then

achieved due to Theorem 1.3 by standard mollification procedures.

9



With these tools, we now have the following properties of the ROF decomposition

(1.3) [22].

Theorem 1.1. If ‖f‖∗ > 1
2λ

, then the ROF decomposition, f = u+ v, is character-

ized by the following conditions.

‖v‖∗ =
1

2λ
and (u, v)2 =

1

2λ
‖u‖BV (1.6)

If ‖f‖∗ ≤ 1
2λ

, then u = 0 and v = f .

Proof. Since u minimizes the functional J(u) = ‖u‖BV + λ‖v‖L2 , for any h ∈ BV

and a scalar ε we have J(u) ≤ J(u+ εh), i.e.

‖u‖BV + λ‖v‖2
L2 ≤ ‖u+ εh‖BV + λ‖v − εh‖2

L2 (1.7)

≤ ‖u‖BV + |ε|‖h‖BV + λ‖v‖2
L2 − 2ελ(v, h)2 + ε2λ‖h‖2

L2 .

Thus, we now have

ε(v, h)2 ≤ |ε|
1

2λ
‖h‖BV +

ε2

2
‖h‖2

L2 .

Letting ε→ 0, we obtain

|(v, h)2| ≤
1

2λ
‖h‖BV , (1.8)

which implies that the star-norm of v does not exceed 1
2λ

i.e. ‖v‖∗ ≤ 1
2λ

. Now we

take h = u in (1.7). If ε > 0, we obtain (u, v)2 ≤ 1
2λ
‖u‖BV and if ε < 0 we get

(u, v)2 ≥ 1
2λ
‖u‖BV . When combined, we conclude that

(u, v)2 =
1

2λ
‖u‖BV .

10



We now proceed to prove the converse implication. We assume that the conditions

(1.6) hold and we show that f = u + v is the ROF decomposition. From (1.8) we

have ‖u+ εh‖BV ≥ 2λ(u+ εh, v)2, and we write

‖u+ εh‖BV + λ‖v − εh‖2
L2 ≥ 2λ(u+ εh, v)2 + λ‖v‖2

L2 − 2λε(v, h)2 + λε2‖h‖2
L2

= 2λ(u, v)2 + λ‖v‖2
L2 + λε2‖h‖2

L2

= ‖u‖BV + λ‖v‖2
L2 + λε2‖h‖2

L2 (from(1.6))

≥ ‖u‖BV + λ‖v‖2
L2 .

Thus, u minimizes the ROF functional.

Finally we prove that u = 0 and v = f is the minimizing pair for the variational

problem (1.3). To this end, observe that u = 0 and v = f minimizes the ROF

functional if and only if for any h ∈ BV and any scalar ε we have the following

‖0‖BV + λ‖f‖2
L2 ≤ ‖εh‖BV + λ‖f − εh‖2

L2 .

Expanding the L2- norm we get

2λε(f, h)2 ≤ |ε|‖h‖BV + λε2‖h‖2
L2 .

Letting ε→ 0 we obtain

|(f, h)2| ≤
1

2λ
‖h‖BV .

This implies from (1.8) that ‖f‖∗ < 1
2λ

, which completes the proof.

Tadmor, Nezzar and Vese’s hierarchical multiscale image representation (TNV

model) makes use of the above theorem. The TNV scheme consists of iterative use of
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the ROF decomposition for a sequence of consecutively increasing scaling parameters

{λk}∞k=0. In the next chapter, we discuss the TNV model, as it serves as a motivation

for the integro-differential model that we will propose later in Chapter 3, but before

that we present some important results regarding the BV spaces.

1.6 BV spaces

In this section, we review some basic definitions and theorems regarding the

BV space where we follow [5, 6, 22]. Throughout this Chapter Ω denotes a generic

open set in RN andM(Ω,RN) denotes the space of all RN− values Borel measures,

which we know is the dual of the space C0(Ω,RN) of all continuous functions ϕ,

vanishing at infinity, equipped with the uniform norm.

1.6.1 Definitions and general properties of BV space

We begin with the definition.

Definition 1.2 (Function of bounded variation). We say that a function u : Ω 7→ R

is a function of bounded variation if and only if it belongs to L1(Ω) and its gra-

dient Du in the distributional sense belongs to M(Ω,RN). We denote the set of

all functions of bounded variations by BV (Ω). The following four assertions are

equivalent:

1. u ∈ BV (Ω).

2. u ∈ L1(Ω) and ∂u
∂xi
∈M(Ω) for all i = 1, . . . N .
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3. u ∈ L1(Ω) and ‖Du‖ := sup{〈Du,ϕ〉 : ϕ ∈ Cc(Ω,RN), ‖ϕ‖∞ ≤ 1} <∞.

4. u ∈ L1(Ω) and ‖Du‖ := sup{
∫

Ω
u div ϕ : ϕ ∈ Cc(Ω,RN), ‖ϕ‖∞ ≤ 1} <∞.

The product 〈·, ·〉 in 3 is defined by

〈Du,ϕ〉 :=
N∑
i=1

∫
Ω

ϕi
∂u

∂xi
.

Equivalence between 2 and 3 is a consequence of the density of the space

Cc(Ω,RN) in C0(Ω,RN) equipped with the uniform norm. Equivalence between

3 and 4 can be easily established by the density of C∞c (Ω,RN) in Cc(Ω,RN) and

C1
c (Ω,RN). Here we recall Riesz-Alexandroff representation theorem.

Theorem 1.2 (Riesz-Alexandroff representation theorem). The topological dual of

C0(Ω) can be isometrically identified with the space of bounded Borel measures. more

precisely, to each bounded linear functional Φ on C0(Ω) there is a unique Borel

measure µ on Ω such that for all f ∈ C0(Ω),

Φ(f) =

∫
Ω

f dµ

Moreover, ‖Φ‖ = |µ|(Ω).

Thus, we have in the present context ‖Du‖ is also the total mass |Du|(Ω) =∫
Ω
|Du| of the total variation Du of the measure Du.

Remark 1.1. According to the Radon-Nikodym theorem, there exists ∇u ∈ L1(Ω,RN)

and a measure Dsu, singular with respect to the N−dimensional Lebesgue measure

LN |Ω, restricted to Ω, such that Du = ∇uLN |Ω +Dsu. Consequently, W 1,1(Ω) is a

subspace of the vectorial space BV (Ω) and u ∈ W 1,1(Ω) if and only if Du = ∇uLN |Ω.
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The space BV (Ω) is equipped with the following norm, which extends to the classical

norm in W 1,1(Ω):

‖u‖BV (Ω) := ‖u‖L1(Ω) + ‖Du‖.

1.6.2 Two types of convergence processes

We define two of convergence processes in BV (Ω). The first is weak conver-

gence which provides compactness of bounded sequences. The second is an inter-

mediate convergence between the weak and strong convergence associated with the

norm.

Definition 1.3 (Weak convergence). A sequence {un}n∈N in BV (Ω) weakly con-

verges to some u in BV (Ω), and we write un ⇀ u if and only if following hold:

1. un → u strongly in L1(Ω).

2. Dun ⇀ Du weakly in M(Ω,RN).

The following proposition establishes a compactness result related to the weak

convergence, and the lower semicontinuity of the total mass.

Proposition 1.1. Let {un}n∈N be a sequence in BV (Ω) strongly converging to some

u in L1(Ω) and satisfying supn∈N
∫

Ω
|Dun| <∞. Then

1. The limit function u ∈ BV (Ω) and
∫

Ω
|Du| ≤ lim infn→∞

∫
Ω
|Dun| and

2. The sequence un weakly converges to u in BV (Ω).

Proof. For all ϕ ∈ C1
c (Ω,RN) such that ‖ϕ‖∞ ≤ 1, we have∫

Ω

u divϕ = lim
n→∞

∫
Ω

un divϕ ≤ lim inf
n→∞

∫
Ω

|Dun|,

14



and the assertion 1 is proved by taking the supremum in the first member, over all

the functions ϕ ∈ C1
c (Ω,RN), with ‖ϕ‖∞ ≤ 1. We now establish assertion (2). Since

un strongly converges to u in L1(Ω), for all ϕ ∈ C∞c (Ω,RN) we have

〈Dun, ϕ〉 = −
∫

Ω

un divϕ→ −
∫

Ω

u divϕ = 〈Du,ϕ〉.

By using the density of C∞c (Ω,RN) in C∞0 (Ω,RN) for the uniform norm and the

boundedness of {Dun}n∈N, we conclude that the sequence {Dun}n∈N weakly con-

verges to Du.

Remark 1.2. As a consequence of the semicontinuity property 1, BV (Ω) is a com-

plete normed space.

We introduce a different type of convergence called intermediate convergence.

Definition 1.4 (Intermediate convergence). Let {un}n∈N be a sequence in BV (Ω)

and u ∈ BV (Ω). We say that un converges to u in the sense of intermediate con-

vergence if and only if

1. un → u strongly in L1(Ω).

2.
∫

Ω
|Dun| →

∫
Ω
|Du|.

Remark 1.3. The term ‘intermediate convergence’ is due to Temam [35] and is

also called strict convergence.

Now we elaborate on the reason for not using the strong BV norm 1.1. The

space C∞(Ω̄) is not dense in BV (Ω) when BV (Ω) is equipped with its strong norm
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1.1. Indeed, its closure is the space W 1,1. Nevertheless, one can approximate ev-

ery element of BV (Ω) by a function of C∞(Ω̄) in the sense of the intermediate

convergence. More precisely, we have the following theorem.

Theorem 1.3. The space C∞(Ω) ∩ BV (Ω) is dense in BV (Ω) equipped with the

intermediate convergence. Consequently, C∞(Ω̄) is also dense in BV for the inter-

mediate convergence.

We refer the reader to [6] for a detailed proof of 1.3. This theorem essentially states

that for any u ∈ BV (Ω), one can find a sequence of approximations {un}∞n=0 such

that

1. un ∈ C∞(Ω) for n = 0, 1, 2, . . . ,

2. un → u in L1(Ω) as n→∞,

3.
∫

Ω
|Dun| →

∫
Ω
|Du| as n→∞.

The following theorem gives the embedding BV (Ω) ↪→ Lp(Ω).

Theorem 1.4. Let Ω be a regular open subset of RN . For all p such that 1 ≤ p ≤

N
N−1

, the embedding

BV (Ω) ↪→ Lp(Ω)

is continuous. More precisely, there exists a constant C which depends only on Ω, p,

and N , such that for all u in BV (Ω),

(∫
Ω

|u|p
) 1

p

≤ C‖u‖BV (Ω)
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Proof. First notice that C∞(Ω) ∩ BV (Ω) = C∞(Ω) ∩W 1,1(Ω). Let {un}n∈N be a

sequence of functions in C∞(Ω) ∩ BV (Ω) which converges to some u in BV (Ω) for

the intermediate convergence. Since the embedding W 1,1(Ω) ↪→ Lp(Ω) is continuous

for 1 ≤ p ≤ N
N−1

, there exists a constant C, which depends only on Ω, p and N such

that (∫
Ω

|un|p
) 1

p

≤ C

(
‖un‖L1(Ω) +

∫
Ω

|Dun|
)
<∞.

We deduce that un ⇀ u in Lp(Ω) and according to the weak lower semicontinuity

of Lp(Ω) norm, (∫
Ω

|u|p
) 1

p

≤ lim inf
n→∞

(∫
Ω

|un|p
) 1

p

≤ lim inf
n→∞

C

(
‖un‖L1(Ω) +

∫
Ω

|Dun|
)

= C‖u‖BV (Ω)

where the last equality follows from the intermediate convergence.

Remark 1.4. For image processing problems we deal with real-valued functions on

Ω ∈ R2. Thus, Theorem 1.4 implies that BV (Ω) ↪→ L2(Ω).

1.6.3 Structure of BV functions

The functions in BV (Ω) inherit their properties from their level sets [u > t] :=

{x ∈ Ω : u(x) > t}, where t varies in R. The following property generalizes the

coarea formula to BV functions [16].

Theorem 1.5 (Coarea formula). Let u be a given function in BV (Ω). Then, for

almost every t in R, the level set Et = {x ∈ Ω : u(x) > t} of u is a set of finite
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perimeter in Ω and

Du(Ω) =

∫ ∞
−∞

DχEt
dt,

|Du|(Ω) =

∫ ∞
−∞
|DχEt

| dt.

This theorem essentially states that for almost every t ∈ R, the level set [u > t]

of each BV function u has a finite perimeter in Ω. i.e.

|Du|(Ω) =

∫ ∞
−∞

Per({x ∈ Ω : u(x) > t}) dt

where the perimeter of a set Σ ⊂ RN , Per(Σ) is defined as

Per(Σ) :=

∫
RN
|DχΣ

|,

We refer the reader to [5, 6] for detailed proof.
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Chapter 2

The Tadmor-Nezzar-Vese hierarchical multiscale representation

2.1 Introduction

Tadmor, Nezzar and Vese propose in [32] a new, hierarchical and multiscale

representation particularly adapted for images lying in intermediate spaces. The

standard tool for studying intermediate spaces is forming scales of interpolation

spaces (X, Y )θ, θ ∈ [0, 1], where X ( Y , see [8, 9, 34]. The canonical example

involves the so-called K−functional

K(f, η) ≡ K(f, ζ;X, Y ) := inf
f=u+v

{ ‖u‖Y + ζ‖v‖X}.

This leads to another variant with a similar scale of intermediate spaces. In the

context of image processing, one seeks the representation in the intermediate spaces

between X = BV (Ω), the space of bounded variations and Y = L2(Ω), defined over

two-dimensional domain Ω ∈ R2 and quantified in terms of the J−functional

J(f, λ) ≡ J2(f, λ;BV,L2) := inf
f=u+v

{ ‖u‖BV + λ‖v‖2
L2} (2.1)

The functional J(f, λ) measures how well an L2- object can be approximated by its

BV features. As we have seen in the previous Chapter, the functional J(f, λ) was

introduced by Rudin, Osher and Fatemi [30]. They suggested extracting the main

features of contour discontinuities uλ, which are separated from the noisy part vλ,

by realizing the minimizing pair, [uλ, vλ], of J(f, λ). For f ∈ L2(Ω) the problem
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admits a unique minimizer [11, 1, 37], which decomposes an L2(Ω) image, f , into

two distinct components,

f = uλ + vλ, [uλ, vλ] := arginf
f=u+v

{ ‖u‖BV + λ‖v‖2
L2}.

The BV part, uλ, captures the large-scale features of f while the small-scales, inter-

preted as noise is captured in the residual vλ := f − uλ. The ROF model requires

a-priori information of the noise scaling λ. For a small values of λ, only a cartoon

representation of f consisting of only large scales in f and for large values of λ, the

image uλ contains too many details of f . The parameter λ can be estimated if some

statistical information on the noise is known [30, 11].

2.2 The hierarchical (BV,L2) decomposition

Tadmor, Nezzar and Vese observe in [32] that for a small value of the scaling

parameter λ0, the residual image vλ0 may still contain important details when viewed

at a finer scale. Thus, vλ0 can be further decomposed with a scaling parameter

λ1 > λ0,

vλ0 = uλ1 + vλ1 , [uλ1 , vλ1 ] := arginf
vλ0

=u+v
{ ‖u‖BV + λ1‖v‖2

L2}.

We can continue this process for λ0 < λ1 < λ2 . . .

vλk−1
= uλk + vλk , [uλk , vλk ] := arginf

vλk−1
=u+v
{ ‖u‖BV + λk‖v‖2

L2}.
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Repeating this refinement step, we obtain the following hierarchical decomposition

of f :

f = uλ0 + vλ0

= uλ1 + uλ1 + vλ1

= . . . . . .

= uλ0 + uλ1 + · · ·+ uλN + vλN .


(2.2)

This yields a hierarchical multiscale image decomposition, f ∼ uλ0 + uλ1 + · · · +

uλN , with a residual vλN . This construction of the hierarchical decomposition (2.2)

is independent of a-priori parameters. The accumulated sum,
∑N

k=0 uλk , provides

a multilayered description of f , which lies in the intermediate scale of spaces, in

between BV and L2. This multiscale representation of f is essentially nonlinear in

the sense that its ‘slices’, uλk = uλk(f), depend on the original image f .

2.3 Initialization

The question as to how to start the TNV algorithm is answered using Meyer’s

Theorem [22, Theorem 3]. It asserts that if ‖f‖∗ < 1
2λ0

then the minimization of

the functional J(f, λ0) is the trivial pair [uλ0 , vλ0 ] = [0, f ]. Thus, in order to initiate

the TNV algorithm, one must choose the initial λ0 so that λ0 ≥ 1
2‖f‖∗ . In general

the information about the star-norm of f is not known. If the initial choice of λ0 is

smaller than 1
2‖f‖∗ then we get a trivial pair as the minimizer, on the other hand, if

λ0 is too large then some larger scales may be missing. In this case, TNV propose in

[32] a refinement procedure to capture a hierarchical representation of the missing

scales.
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2.4 Convergence results for the hierarchical multiscale expansion

The BV dual norm, called the star-norm,

‖v‖∗ := sup
‖ϕ‖BV 6=0

(v, ϕ)2

‖ϕ‖BV
,

plays important role in understanding the ROF decomposition and TNV multiscale

representation. Meyer [22] interprets the minimization of the functional J(f, λ) in

(2.1) as a decomposition, of f = uλ + vλ, so that uλ extracts the main features with

smooth parts with prominent edges and vλ captures ‘textures’. As we have seen in

Theorem 1.1 if ‖f‖∗ ≤ 1
2λ

, then uλ = 0 and vλ = f , whereas if ‖f‖∗ > 1
2λ

then the

ROF decomposition is characterized by the following two conditions

‖vλ‖∗ =
1

2λ
, (uλ, vλ)2 =

1

2λ
‖uλ‖BV . (2.3)

Tadmor et. al. [32] provide the following result quantifying the convergence
∑N

k=0 uλk →

f as N →∞.

Proposition 2.1. For (BV,L2) hierarchical multiscale decomposition (3.2) we have

the following inequality

∑
k≥0

1

λk
‖uλk‖BV ≤ ‖f‖2

L2 . (2.4)

Proof. Compare the decomposition vλk = uλk+1
+ vλk+1

furnished by the minimizer

of J(vλk , λk+1), vs. the trivial pair [0, vλk ], to find

‖uλk+1
‖BV + λk+1‖vλk+1

‖2
L2 ≤ λk+1‖vλk‖2

L2 .

22



It follows that

∑
k≥0

1

λk
‖uλk‖BV =

1

λ0

‖uλ0‖BV +
∑
k=0

1

λk+1

‖uλk+1
‖BV

≤ ‖f‖2
L2 − ‖v0‖2

L2 +
∑
k=0

[
‖vλk‖2

L2 − ‖vλk+1
‖2
L2

]
≤ ‖f‖2

L2 .

A more precise (BV,L2) hierarchical statement is provided in the following theorem.

Theorem 2.1. Consider f ∈ L2. Then f admits the following hierarchical decom-

position.

f =
∞∑
k=0

uλk ,

∥∥∥∥f − ∞∑
k=0

uλk

∥∥∥∥
∗

=
1

λk+1

, (2.5)

and the following energy estimate holds:

∞∑
k=0

[
1

λk
‖uλk‖BV + ‖uλk‖2

L2

]
≤ ‖f‖2

L2 (2.6)

Proof. Recall Theorem 1.1, which states that for (BV,L2) decomposition of f , if

‖f‖∗ ≤ 1
2λ

, then uλ = 0 and vλ = f ; on the other hand, if ‖f‖∗ > 1
2λ

, then

‖vλ‖∗ = 1
2λ

and (uλ, vλ)2 = 1
2λ
‖uλ‖BV .

The first statement (2.5) follows from the basic hierarchical expansion, f =∑N
k=0 uλk + vλN , while noting that ‖vλN‖∗ = 1

2λN
. For the second statement, (2.6),

we begin by squaring the basic refinement step, uλk+1
+ vλk+1

= vλk , in the L2- inner

product:

‖vλk+1
‖2
L2 + ‖uk+1‖2

L2 + 2(uλk+1
, vλk+1

)2 = ‖vλk‖2
L2 , j = −1, 0, 1, . . . .
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Observe that the last equality holds for j = −1 with vλ−1 interpreted as vλ−1 := f .

We recall that [uλk+1
, vλk+1

] is a minimizing pair for J(vk, λk+1), and hence, by (2.3),

2(uλk+1
, vλk+1

)2 =
1

λk+1

‖uk+1‖BV

yielding a precise refinement of (2.4)

1

λk+1

‖uλk+1
‖BV + ‖uλk+1

‖2
L2 = ‖vλk‖2

L2 − ‖vλk+1
‖2
L2 .

We sum up, obtaining

N∑
k=0

[
1

λk
‖uλk‖BV + ‖uλk‖2

L2

]
=

N∑
k=−1

[
1

λk+1

‖uλk+1
‖BV + ‖uλk+1

‖2
L2

]

= ‖f‖2
L2 − ‖vλN‖2

L2 . (2.7)

Note that according to (2.7), equality holds in (2.6) if and only if we have a

string L2-convergence, ‖f−
∑N uλk‖L2 = ‖vλN‖L2 → 0. The situation is reminiscent

of the passage in a linear setup, from Bessel-energy inequality into the Parseval

equality. Since the present setup is nonlinear, the linear sense of completeness of

{uλk}k≥0 does not apply. We prove that the equality in (2.6) holds [32] by adding

minimal amount of smoothness. To this effect, we prove the following lemma.

Lemma 2.1. Consider the (BV,L2) hierarchical decomposition of f ∈ BV , f =∑∞
k=0 uλk , for an increasing sequence of scaling parameters {λk}∞k=0 such that λk

λ2k
↓ 0.

Then the residuals, vN := f −
∑N

k=0 uλk , converge strongly to 0 in L2,

lim
N→∞

‖vλN‖L2 = 0.
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Proof. The starting point is the decomposition vλ2N
=
∑2N

k=N+1 uλk + vλN . Multipli-

cation against vλ2N
yields

‖vλ2N
‖2
L2 = −

(
vλ2N

,
2N∑

k=N+1

uλk

)
2

+ (vλ2N
, vλN ) =: I + II. (2.8)

From (2.3) we know that ‖vλ2N
‖∗ = 1

2λ2N
. Thus, |(vλ2N

, h)| ≤ ‖h‖BV
2λ2N

. We get the

following limit on the first term in (2.8), I := −
(
vλ2N

,
∑2N

k=N+1 uλk

)
2

|I| ≤ 1

2λ2N

2N∑
k=N+1

‖uλk‖BV ≤
2N∑

k=N+1

1

2λk
‖uλk‖BV .

From (2.4), we note that the term
∑2N

k=N+1
1

2λk
‖uλk‖BV is a Cauchy subsequence of

the bounded series
∑

1
2λk
‖uλk‖BV ≤ ‖f‖2

L2 , and thus, it decays to zero as N →∞.

To show that the second term in (2.8), II := (vλ2N
, vλN ) also goes to zero. To

this end we note that the BV norm of vλN does not grow faster than λN ; indeed we

get the following upper bound on the BV norm of vN := f −
∑N

k=0 uλk .

‖vλk‖BV ≤ ‖f‖BV +
N∑
k=0

‖uλk‖BV

≤ ‖f‖BV + λN

N∑
k=0

1

λk
‖uλk‖BV

≤ ‖f‖BV + λN‖f‖2
L2 .

Here we made use of (2.4) in the last inequality. Using the fact II := (vλ2N
, vλN )2 ≤

1
2λ2N
‖vλN‖BV , we conclude that the term II vanishes as k →∞:

|II| ≤ 1

2λ2N

‖vλN‖BV ≤
1

2λ2N

[
‖f‖BV + λN‖f‖2

L2

]
↓ 0.

Using the Lemma 2.1 in (2.7) we get the following result:
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Theorem 2.2. Consider the (BV,L2) hierarchical decomposition of f ∈ BV , f =∑∞
k=0 uλk , with an increasing sequence of scaling parameters {λk}∞k=0 such that λk

λ2k
↓

0. Then the energy of f is given by

∞∑
k=0

[
1

λk
‖uλk‖BV + ‖uλk‖2

L2

]
= ‖f‖2

L2 .

This result can be extended to fs beyond the BV space. For example, we

can prove a similar result for f in the interpolation space Xθ := (L2, BV )θ, θ > 0.

Characterization of this scale of space can be found in [15].

Lemma 2.2. Consider the (BV,L2) hierarchical decomposition of f ∈ Xθ := (L2, BV )θ,

θ > 0, f =
∑∞

k=0 uλk , for an increasing sequence of scaling parameters {λk}∞k=0 such

that λk
λ2k
↓ 0. Then the residuals, vN := f −

∑N
k=0 uλk , converge strongly to 0 in L2,

lim
N→∞

‖vλN‖L2 = 0.

Proof. We notice that the first term I in (2.8) vanishes for arbitrary f , while we

have an upper bound for the second term II := (vλ2N
, vλN )2 using (2.3) and (2.4):

|(vλ2N
, vλN )2| =

∣∣∣∣(vλ2N
, f)2 −

N∑
k=0

(vλ2N
, uλk)2

∣∣∣∣
≤ |(vλ2N

, f)2|+
1

λ2N

N∑
k=0

‖uλk‖BV

≤ |(vλ2N
, f)2|+

λN
λ2N

N∑
k=0

1

λk
‖uλk‖BV

≤ |(vλ2N
, f)2|+

λN
λ2N

‖f‖2
L2 .

Thus, we only need to show that the moments |(vλ2N
, f)2| → 0. Let X−θ denote the

dual space, the collection of all functions v such that ‖v‖X−θ := supϕ
(v,ϕ)2

‖ϕ‖Xθ
<∞. We
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recall that vλ2N
is in L2 with ‖vλ2N

‖L2 < ‖f‖L2 and its star-norm is ‖vλ2N
‖∗ < 1

2λ2N
.

by convexity argument of Riesz we have

‖vλ2N
‖X−θ . ‖vλ2N

‖1−θ
L2 ‖vλ2N

‖θ∗ . λ−θ2N‖f‖
1−θ
2

Thus, we have that

|(vλ2N
, f)2| ≤ ‖vλ2N

‖X−θ‖f‖Xθ . λ−θ2N‖f‖
1−θ
2 ‖f‖Xθ .

This implies the strong L2-convergence of texture terms, ‖vλN‖L2 → 0.

This lemma gives us the following extension of the Theorem 2.2 when f ∈

Xθ := (L2, BV )θ, θ > 0.

Corollary 2.1. Consider the (BV,L2) hierarchical decomposition of f ∈ f ∈ Xθ :=

(L2, BV )θ, θ > 0, f =
∑∞

k=0 uλk , with an increasing sequence of scaling parameters

{λk}∞k=0 such that λk
λ2k
↓ 0. Then the energy of f is given by

∞∑
k=0

[
1

λk
‖uλk‖BV + ‖uλk‖2

L2

]
= ‖f‖2

L2 .

We observe that the condition of strong L2-convergence of the texture terms,

‖vλN‖L2 → 0 is essential to obtain the Parseval-type equality (2.1) in this non-linear

set-up. In fact, we see in the next section that similar energy equality follows in

more general setting, if the corresponding texture terms decay to zero in L2-norm.
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2.5 General hierarchical decompositions

In this section we examine properties of a general hierarchical decomposition:

f = u0 + v0

v0 = u1 + v1

. . . = . . .

vk−1 = uk + vk

. . . = . . .



(2.9)

This procedure produces a hierarchical family of pairs f ∼ {uk, vk}∞k=0. In the

context of a general decomposition of type (2.9) we derive the following result.

Lemma 2.3. Let f ∼ {uk, vk}∞k=0 and g ∼ {ûk, v̂k}∞k=0 be hierarchical decompositions

of type (2.9) so that uk, vk, ûk and v̂k belong to an inner product space X with an

inner product (·, ·)X . We define a new inner product 〈〈·, ·〉〉

〈〈f, g〉〉 :=
∞∑
k=0

(uk, ûk)X + (uk, v̂k)X + (vk, ûk)X , (2.10)

where (·, ·)X is the inner product. Then 〈〈f, g〉〉 = (f, g)X if and only if the inner

products of the residuals, (vk, v̂k)X , converge to 0.
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Proof. Noting that uk + vk = vk−1 and ûk + v̂k = v̂k−1, we obtain

〈〈f, g〉〉 =
∞∑
k=0

(vk−1, ûk)X + (uk, v̂k)X

=
∞∑
k=0

(vk−1, ûk)X + (uk, v̂k)X + (vk, v̂k)X − (vk, v̂k)X

=
∞∑
k=0

(vk−1, ûk)X + (uk + vk, v̂k)X − (vk, v̂k)X

=
∞∑
k=0

(vk−1, ûk)X + (vk−1, v̂k)X − (vk, v̂k)X

=
∞∑
k=0

(vk−1, ûk + v̂k)X − (vk, v̂k)X

=
∞∑
k=0

(vk−1, v̂k−1)X − (vk, v̂k)X .

Now, the nth partial sum

sn =
n∑
k=0

(vk−1, v̂k−1)X − (vk, v̂k)X

= (v−1, v̂−1)X − (vn, v̂n)X

= (f, g)X − (vn, v̂n)X .

Thus, we conclude that 〈〈f, g〉〉 = (f, g)X if and only if limk→∞(vk, v̂k)X .

Remark 2.1. Note this is a weak Lemma, in the sense that we only assume that

the inner products (uk, vk)X are defined.

Using the above Lemma we get the following energy estimate.

Corollary 2.2. For a general hierarchical decomposition f ∼ {uk, vk}∞k=0 of the type

(2.9) the following energy estimate holds

∞∑
k=0

[
‖uk‖2

X + 2(uk, vk)X
]

= ‖f‖2
L2
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if and only if the residuals, vk, converge to 0 in X− norm.

Proof. This follows directly by letting g = f in the Lemma 2.3.

Remark 2.2. We notice in Lemma 2.1 that in the case of (BV,L2) hierarchical

decomposition, f ∼ {uλk , vλk}, of a function f ∈ L2, we have

∞∑
k=0

[
‖uk‖2

L2 + 2(uk, vk)2

]
= ‖f‖2

L2

if and only if ‖vλN‖L2 → 0. By (2.3) we have (uk, vk)2 = 1
2λk

. We immediately

conclude that
∞∑
k=0

[
‖uk‖2

L2 +
1

2λk
‖uk‖BV

]
= ‖f‖2

L2 .

Similarly, from Lemma 2.2 we get the same energy equality for f in the interpolation

space Xθ := (L2, BV )θ, θ > 0

2.6 Euler-Lagrange equations

The minimizer of functional J(f, λ) are characterized by the Euler-Lagrange

differential equation

uλ −
1

2λ
div

(
∇uλ
|∇uλ|

)
= f.

When restricted to a bounded domain Ω, the Euler-Lagrange equations are aug-

mented by the Neumann boundary condition

∂uλ
∂n

∣∣∣∣
∂Ω

= 0.

To construct the hierarchical multiscale decomposition of f , f ∼
∑N

k=0 uλk , the

slices, uλk , are constructed as approximate solutions of the recursive relation gov-
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erned by the elliptic PDE

uλk+1
− 1

2λk+1

div

( ∇uλk+1

|∇uλk+1
|

)
= − 1

2λk
div

(
∇uλk
|∇uλk |

)
.

We propose a novel integro-differential equation (IDE) in the following chapter, mo-

tivated by a TNV scheme and the associated Euler-Lagrange differential equations.
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Chapter 3

Integro-differential equation for multiscale image representation

3.1 Introduction

In this Chapter we introduce a novel integro-differential equation (IDE) for

multiscale representation of f

∫ t

0

u(x, s) ds = f(x) +
1

2λ(t)
div

(
∇u(x, t)

|∇u(x, t)|

)
, u : Ω× R+ 7→ R;

∂u

∂n

∣∣∣∣
∂Ω

= 0,

(3.1)

subject to u(·, 0) := 0. The integral
∫ t

0
u(·, s) ds =: U(t) gives a scaled version of

the image f for a given t. The image U(t) evolves with t, from a coarse, larger

scale images, to consecutively smaller scale images with finer details. Thus, this

is an inverse scale method, as opposed to the forward scale methods such as heat

equation or PM models (1.1).

The motivation behind this IDE comes from the hierarchical (BV,L2) multi-

scale image decomposition [32], [33] of Tadmor et. al., which we will elaborate upon

in the next section. We will derive an important relationship between the star-norm

(see [22] for more details) of the residual image V (t) := f −
∫ t

0
u(·, s) ds and the

function λ(t) in section 3.3. In sections 3.4.1 and 3.4.3, we will propose PDE-based

modifications for our IDE.
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3.2 Motivation for the integro-differential equation

Rudin, Osher and Fatemi introduced a BV-based minimization functional for

image denoising in [30], which in turn led to the unconstrained (BV,L2) decomposi-

tion (1.3) in [11]. The minimizer of (1.3), uλ, is a coarse representation of the image

f , containing smooth parts and prominent edges, whereas the residual vλ contains

texture and finer details, declared as “noise” of f . The parameter λ is the inverse

scale parameter of uλ, i.e. a small value of λ corresponds to more details in vλ and

thus, the image uλ is more coarse and vise versa.

As a first step, we realize that the intensity of images is quantized. If we let

τ denote the small intensity quanta, then we rescale the coarse representation uλ in

τ -units. The corresponding (BV,L2) image decomposition (1.3) takes the form

f = τuλ0 + vλ0 , [uλ0 , vλ0 ] := arginf
f=τu+v

{
‖u‖BV +

λ0

τ
‖v‖2

L2

}
.

Tadmor, Nezzar and Vese observed in [32] that for a small value of the scaling param-

eter λ0, the residual image vλ0 may still contain important details when viewed at a

finer scale. Thus, vλ0 can be further decomposed using a refined scaling parameter

λ1 > λ0,

vλ0 = τuλ1 + vλ1 , [uλ1 , vλ1 ] := arginf
vλ0

=τu+v

{
‖u‖BV +

λ1

τ
‖v‖2

L2

}
.

We can continue this process for λ0 < λ1 < λ2 . . .

vλj−1
= τuλj + vλj , [uλj , vλj ] := arginf

vλj−1
=τu+v

{
‖u‖BV +

λj
τ
‖v‖2

L2

}
. (3.2)

Repeating this refinement step, we obtain the following hierarchical multiscale rep-
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resentation of f , [32]

f = τuλ0 + vλ0

= τuλ1 + τuλ1 + vλ1

= . . . . . .

= τuλ0 + τuλ1 + . . . τuλN + vλN .

Thus, we have
N∑
j=0

uλjτ = f − vλN . (3.3)

The Euler-Lagrange equations characterizing minimizers of (3.2) are

vλj−1
= τuλj −

1

2λj
div

( ∇uλj
|∇uλj |

)
. (3.4)

From (3.4) and (3.2) we get

vλj = − 1

2λj
div

( ∇uλj
|∇uλj |

)
,

and inserting this into (3.3) yields the hierarchical decomposition of f as

N∑
j=0

uλjτ = f +
1

2λN
div

(
∇uλN
|∇uλN |

)
. (3.5)

We consider a multiscale scaling, continuous in time, u(x, t) : Ω×R+ 7→ R such that

uλj(x) 7→ u(x, tj := jτ). Observe that the right hand side of (3.5) is homogeneous of

degree zero. Letting τ → 0, the hierarchical description (3.5) motivates a multiscale

representation u(x, ·) which is sought as a solution to our IDE (3.1),

∫ t

0

u(x, s) ds = f(x) +
1

2λ(t)
div

(
∇u(x, t)

|∇u(x, t)|

)
,

∂u

∂n

∣∣∣
∂Ω

= 0. (3.6)
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So far, we have not specified the parameter λ(t), which can be chosen as any

positive, increasing function, to serve as an inverse scaling function: as λ(t)→∞,

the image computed in (3.6)

U(t) :=

∫ t

0

u(x, s) ds,

extracts consecutively smaller scale slices of the original image f . Here, u(x, t) de-

notes the speed at which the image U(t) changes with time. The residual, V (t) :=

f − U(t) contains texture and noisy parts of f . An example for a multiscale repre-

sentation of an image f , {
U(·, t) :=

∫ t

0

u(·, s) ds

}
t≥0

,

is depicted in Figure 3.1. The numerical scheme for its evolution using the IDE (3.1)

is prescribed in section 6.3.

Remark 3.1. It is instructive to compare our IDE model (3.6) with the time depen-

dent PDE used in solving the ROF minimization, (1.4). In contrast to the forward

scale PDE realization of (1.4b), where the solution evolves from u(·, 0) := f to a big-

ger scale image uλ, our IDE model (3.6) is an ‘inverse scale’ model, whose solution

evolves from u(·, 0) ≡ 0 to f as λ(t)→∞.

Our IDE model is motivated by a variational formulation. An important

advantage of the IDE model, however, is that it is no longer limited to a variational

formulation and we can therefore extend it using PDE-based modifications similar

to (1.1b) and (1.1c). We will discuss these modifications in sections 3.4.1 and 3.4.3.
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Figure 3.1: The above images show
∫ t

0
u(·, s) ds for the integro-differential scheme

in (3.1) for t = 1, 2, . . . , 9. From top to bottom, left to right the images where the

function λ(t) is 0.002× 2t.

36



3.3 On the scaling function λ(t)

It is argued in [22] that the dual norm,

‖w‖∗ := sup
‖ϕ‖BV 6=0

(w,ϕ)

‖ϕ‖BV
,

is a proper norm to measure texture. The critical role of the scaling function λ(t)

in the ODE model (3.6) and its relationship with the star-norm is outlined in the

following theorem.

Theorem 3.1. Consider the IDE model (3.6)

∫ t

0

u(x, s) ds = f(x) +
1

2λ(t)
div

(
∇u(x, t)

|∇u(x, t)|

)
,

and let V (·, t) be the residual

V (·, t) := f − U(·, t).

Then size of the residual is dictated by the scaling function λ(t),

‖V (·, t)‖∗ =
1

2λ(t)
. (3.7)

Proof. For ϕ ∈ BV (Ω) we have the following

| (V (·, t), ϕ) | =
∣∣∣∣ ( 1

2λ(t)
div

(
∇u(·, t)
|∇u(·, t)|

)
, ϕ

) ∣∣∣∣ ≤ 1

2λ(t)
‖ϕ‖BV . (3.8)

Thus, we have ‖V (·, t)‖∗ ≤ 1
2λ(t)

. Letting ϕ = u(·, t), we get

∣∣∣∣ ( 1

2λ(t)
div

(
∇u(·, t)
|∇u(·, t)|

)
, u(·, t)

) ∣∣∣∣ =
1

2λ(t)
‖u(·, t)‖BV . (3.9)

From (3.8) and (3.9) we get the desired result (3.7).
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The importance of Theorem 3.1 lies in the fact that it enables us to dictate

the star-norm of the residual. For small values of λ(t), we get a significant amount

of texture in the residual and thus, the image U(t) :=
∫ t

0
u(·, s) ds will contain only

features with big scale. On the other hand, as λ(t) increases, more and more details

will appear in U(t). Hence, the function λ(t) can be viewed as an ‘inverse scale

function’ for U(t). In particular, if we choose the scaling function λ(t), such that

limt→∞ λ(t) = c with a prescribed constant c, then limt→∞‖V (t)‖∗ = 1
2c

. Thus,

Theorem 3.1 enables us to denoise images to any pre-determined level in the BV ∗

sense.

The previous theorem establishes the weak convergence, U(t)
∗
⇀ f for all L2-

images. In fact, a stronger L2-convergence holds for slightly more regular images

f ∈ BV . To this end we first prove the following energy decomposition, interesting

in its own sake, along the lines of [32, Theorem 2.2].

Theorem 3.2. Consider the IDE model (3.6)

∫ t

0

u(x, s) ds = f(x) +
1

2λ(t)
div

(
∇u(x, t)

|∇u(x, t)|

)
,

associated with an L2- image f , and let V (·, t) be the residual, V (t) = f − U(t).

Then the following energy decomposition holds

∫ t

s=0

1

λ(s)
‖u(·, s)‖BV ds+ ‖V (·, t)‖2

L2 = ‖f‖2
L2 . (3.10)

Proof. To verify (3.10), integrate (3.6) against u(·, t) in space and time to find

∫ t

s=0

(
U(·, s), Us(·, s)

)
ds−

(
f, U(·, t)

)
= −

∫ t

s=0

1

2λ(t)
‖u(·, s)‖BV ds.
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The expression on the left is then rewritten as

∫ t

s=0

(
U(·, s), Us(·, s)

)
ds−

(
f, U(·, t)

)
=

1

2
‖U(·, t)‖2

L2 −
(
f, U(·, t)

)
≡ 1

2

[(
U(·, t)− f, U(·, t)− f

)]
− 1

2
‖f‖2

L2 ,

and (3.10) follows from the last two equalities.

Remark 3.2. A different, equivalent way of stating Theorem 3.2 is that (u(t), V (t))

form a maximal pair in the sense that they turn the inequality (w,ϕ) ≤ ‖w‖BV ‖ϕ‖∗

into equality:

(u(·, t), V (·, t)) = ‖u(·, t)‖BV ‖V (·, t)‖∗. (3.11)

Indeed, differentiating (3.10) with respect to time we find

1

λ(t)
‖u(·, t)‖BV + 2 (V (·, t),−u(·, t)) = 0,

and (3.11) follows in view of (3.7), ‖V (·, t)‖∗ = 1/2λ(t).

We now turn to upper-bound the L2-size of the residual. Using the usual

duality estimate together with (3.7) to find

‖V (·, t)‖2
L2 ≤ ‖V (·, t)‖∗‖V (·, t)‖BV =

1

2λ(t)
‖V (·, t)‖BV , (3.12)

and it remains to study how fast ‖V (·, t)‖BV grows. To this end we write

V (x, t) = f(x)−
∫ t/2

s=0

u(x, s) ds−
∫ t

s=t/2

u(x, s) ds,

which implies

‖V (·, t)‖BV ≤ ‖f‖BV +λ (t/2)

∫ t/2

s=0

1

λ(s)
‖u(·, s)‖BV ds+λ(t)

∫ t

s=t/2

1

λ(s)
‖u(·, s)‖BV ds.
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Inserting this into (3.12) we end up with the desired upper bound,

‖V (·, t)‖2
L2 ≤

1

2λ(t)
‖f‖BV +

λ(t/2)

2λ(t)
‖f‖2

L2 +

∫ t

s=t/2

1

2λ(s)
‖u(·, s)‖BV ds.

Now, the first term on the right vanishes for f ∈ BV at the t =∞-limit as λ(t) ↑ ∞;

the second term vanishes if λ(t) increases fast enough to form a Hadamard sequence

so that λ(t)/λ(t/2) ↑ ∞ (e.g., λ(t) ∼ 2t); and the third term vanishes at t ↑ ∞ as

the tail of the uniformly bounded time integral in the energy bound (3.10). We

summarize by stating the following.

Theorem 3.3. Given an image f ∈ BV , we consider the IDE model (3.6)∫ t

0

u(x, s) ds = f(x) +
1

2λ(t)
div

(
∇u(x, t)

|∇u(x, t)|

)
,

with rapidly increasing scaling function λ(t) so that

λ(t/2)

λ(t)

t→∞−→ 0.

Then, f admits the multiscale representation (where equality is interpreted in L2-

sense)

f(x) =

∫ ∞
s=0

u(x, s) ds,

with energy decomposition

‖f‖2
L2 =

∫ ∞
s=0

1

λ(s)
‖u(·, s)‖BV ds.

3.4 Modified IDE models

One of the important advantages of formulating this IDE model is that even

though it is motivated by a variational formulation, it no longer needs to be asso-
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ciated with any minimization problem, and we can incorporate PDE-based modifi-

cations similar to (1.1b) and (1.1c), based on our image processing needs. We will

discuss these modifications in sections 3.4.1 and 3.4.3.

3.4.1 Perona-Malik models revisited

We examine the PM models and propose PM model-like modifications to IDE

(3.1). Recall that one of the drawbacks of using the heat equation:

∂U

∂t
= ∆U,

for denoising is the fact that the Laplacian operator ∆ results in an isotropic diffu-

sion. Indeed, the fundamental solution of the heat equation is

Φ(x, t) :=


1

4πt
e
|x|2
4t (x ∈ R2, t > 0)

0 (x ∈ R2 < 0)

which is essentially a Gaussian kernel with a standard deviation σ =
√

2t. Thus, the

heat equation results in smoothing of the original image f , in all directions. Objects

in a digital image are separated by prominent edges. Thus, edges are important for

the interpretation of a digital image. Heat equation smooths out these important

edges, along with noise.

Another way of interpreting the isotropic nature of the heat equation is to

examine the decomposition of the diffusion operator. For each point x ≡ (x1, x2) ∈

R2, where |∇U(x)| 6= 0, we can define the vectors N = ∇U
|∇U | and T an orthogonal

unit vector to N. With the usual notation of Ux1 , Ux2 , Ux1x2 , . . . for the first and

partial derivatives of U , we can formally write UTT and UNN , the second derivatives
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of U in the T- direction and N- direction, respectively:

UTT = (T,∇2U T)2 =
1

|∇U |2
(
U2
x1
Ux2x2 + U2

x2
Ux1x1 − 2Ux1Ux2Ux1x2

)
, (3.13)

UNN = (N,∇2U N)2 =
1

|∇U |2
(
U2
x1
Ux1x1 + U2

x2
Ux1x1 − 2Ux1Ux2Ux1x2

)
.

Using UTT and UNN we can write the Laplacian operator

∆U = UTT + UNN , (3.14)

which implies that the tangential component UTT and the normal component UNN

are equally weighted in Laplacian diffusion. In fact, decomposition of the divergence

term as a weighted sum of the two directional derivatives along T and N can be

achieved for most classical diffusion operators [19].

Perona Malik [28] introduced a nonlinear diffusion

∂U

∂t
= div(g(|∇U |)∇U), U ≡ U(x, t) : Ω× R+ 7→ R;

∂U

∂n

∣∣∣∣
∂Ω

= 0, (3.15)

The diffusion uses U(·, 0) := f as the initial condition. Before going further we note

that if we choose g = 1, we recover the heat equation. We choose the function g to

vanish at ∞ to control the diffusion near edges. Hence, in smooth regions i.e when

|∇U | is relatively small, g ≈ 0, and the PM model behaves like a heat equation,

resulting in isotropic diffusion. The gradient |∇U | takes a large value when an edge

is encountered, and the function g is close to zero. Thus, at places where the edges

are prominent the diffusion is controlled and the edges are not smoothed. More

precisely, we can use the decomposition (3.13) to get

div(g(|∇U |)∇U)

= 2(U2
x1
Ux1x1 + U2

x2
Ux2x2 + 2Ux1Ux2Ux1x2)g′(|∇U |) + (Ux1x1 + Ux2x2)g(|∇U |).
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If we define h(s) := g(s) + 2sg′(s), then the PM model reads

∂U

∂t
= g(|∇U |)UTT + h(|∇U |)UNN .

Therefore, the diffusion model now is a weighted sum of a diffusion in the T- direction

and a diffusion in the N- direction [7]. Perona, Malik recommend the functions

e−s, 1
1+s2

. The PM-models are not well-posed for these functions. Also, as we have

discussed in Chapter 1, the gradient can get larger even for smooth regions in the

presence of noise. Thus, this noise is confused as edges. These shortcomings were

removed by Catteé et. al. [10]. They propose some regularization, for example,

convolution with the Gaussian kernel, Gσ, to obtain a well posed problem (1.1c):

∂U

∂t
= div(g(|Gσ ?∇U |)∇U), U ≡ U(x, t) : Ω× R+ 7→ R;

∂U

∂n

∣∣∣∣
∂Ω

= 0,

where Gσ is defined as

Gσ(x) =
1

2πσ2
e−
|x|2

2σ2 .

We can also understand the the action of the diffusion function, g, using con-

cepts in filtering. The function g ≈ 1 in the absence of prominent edges, resulting in

isotropic diffusion. The function g, being very small near edges, stops the diffusion

and passes the edges, the high frequency, in the image U(t). Thus, the diffusion

controlling function acts as a high-pass filter. The practical usefulness of this filtered

diffusion model can be demonstrated in case when certain edges are required in the

scale-space for smaller values of t. For example, in Figure 3.3, the edges are blurred

for smaller values of t with the standard IDE (3.1), but with the filtered diffusion

IDE (3.16) we retain relevant edges, as shown in Figure 3.4.
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3.4.2 Modified IDE with filtered diffusion

Based on the discussion of the PM models, we propose the following modifi-

cation to the IDE (3.1)

∫ t

0

u(x, s) ds = f(x) +
g(|Gσ ?∇u(x, t)|)

2λ(t)
div

(
∇u(x, t)

|∇u(x, t)|

)
, (3.16)

u : Ω× R+ 7→ R;
∂u

∂n

∣∣∣∣
∂Ω

= 0,

subject to u(·, 0) := 0. The function g is a diffusion controlling function with same

properties as in the Perona-Malik model (3.15), i.e. g(0) = 1 and it vanishes at

infinity. This approach controls the smoothing of edges as expected. The numerical

experiments for (3.16) are shown in Figure 3.2.

Figure 3.2 displays the results of the modified IDE (3.16) with

1

1 + (s/β)2
,

The constant β determines how the edges are preserved. If we choose β as a small

number, the function g becomes zero very quickly, resulting in many edges being

preserved. On the other hand, large values of β makes the function g remain closer

to 1, which results in smoothing of relevant edges. Hence, one needs to compromise

between preserving the edges vs. isotropic diffusion. As choices for such a g-filter,

Detailed discussion of the numerical scheme for the filtered diffusion model

(3.16) are given in section 6.3.
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Figure 3.2: The above images show
∫ t

0
u(·, s) ds for the modified integro-differential

equation (3.16) for t = 1, 2, . . . , 9. From top to bottom, left to right the images

where the function λ(t) is 0.002 × 2t. The diffusion controlling function used is

g(s) = 1
1+(s/β)2 with β = 5.
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Figure 3.3: The images, U(t) =
∫ t

0
u(·, s) ds, of the IDE (3.1) at t = 1, . . . , 9. Here,

λ(t) = 0.002× 2t. We see that U(t) approaches the original image f as t increases.
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Figure 3.4: The images, U(t) =
∫ t

0
u(·, s) ds, of the IDE (3.16) at t = 1, . . . , 9. Here,

λ(t) = 0.002 × 2t. The diffusion controlling function used is g(s) = 1
1+(s/β)2 with

β = 5. As in Figure 3.3 U(t) approaches the original image f as t increases.
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3.4.3 IDE with tangential smoothing modification

The approach of using the diffusion controlling function works well with nat-

ural images. In case of images, in which the boundaries of objects in a given image

are marked with high gradients (for example, characteristic function χD, where D

is a disk in Ω), we can choose to smooth only in the tangential direction to the

boundaries of the objects. Indeed, as we see in (3.14), the Laplacian ∆U can be

decomposed as a sum of the tangential and normal components of the second deriva-

tive ∇2U . Thus, as in [4], we can only diffuse in the tangential direction. We look

at the following integro-differential scheme

∫ t

0

u(x, s) ds = f(x) +
g(|Gσ ?∇u(x, t)|)|∇u(x, t)|

2λ(t)
div

(
∇u(x, t)

|∇u(x, t)|

)
, (3.17)

u : Ω× R+ 7→ R;
∂u

∂n

∣∣∣∣
∂Ω

= 0,

with u(·, 0) := 0. As expected this formulation does not diffuse edges when they are

well defined. The results of the numerical experiments are shown in Figure 3.5.
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Figure 3.5: The first image above is the given blurred image f . The other images

show
∫ t

0
u(·, s) ds for t = 1, 2, . . . , 12, with a deblurring integro-differential equation

(3.17). The function λ(t) is 0.002× 2t.
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Chapter 4

Deblurring integro-differential equation model

4.1 Introduction

Blurring of an image is caused due to many reasons, for example, unfocused

lens, relative motion between the camera and an object in the image, etc. Thus,

instead of a clean image U , we capture its blurred version f = TU . Recovery of

the unblurred image U , from a given blurred image f is called image deblurring.

Blurring is modeled by a linear, continuous blurring operator, T : L2(Ω) → L2(Ω),

such as a convolution with a Gaussian kernel, directional averaging etc. In section

4.2 we review a multiscale hierarchical decomposition method proposed by Tadmor,

Nezzar Vese in [33]. In section 4.3 we propose a novel integro-differential equation

based on the TNV deblurring decomposition, and examine its properties.

4.2 Deblurring based on hierarchical (BV,L2) decomposition

In [33] Tadmor et. al. incorporate blurring in (BV,L2) decomposition

f = Tuλ + vλ, [uλ, vλ] := arginf
f=Tu+v

{‖u‖BV + λ‖v‖2
L2}. (4.1)

The Euler-Lagrange equation for (4.1) is

T ∗f = T ∗Tuλ −
1

2λ
div

(
∇uλ
|∇uλ|

)
,
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where T ∗ is the adjoint of the operator T . As discussed in [33], starting with v−1 = f

and for a sequence of increasing positive real numbers λ0 < λ1 < λ2 . . . we get the

following iteration

vλk−1
= Tuλk + vλk , arginf

vλk−1
=Tu+v

{‖u‖BV + λk‖v‖2
L2}.

This gives us a hierarchical multiscale representation of the blurred image f

f = Tuλ0 + vλ0

= Tuλ1 + Tuλ1 + vλ1

= . . . . . .

= Tuλ0 + Tuλ1 + . . . TuλN + vλN .


(4.2)

Thus,
N∑
k=0

Tuλk = f − vλN .

Tadmor et. al. [33] consider the following variational problem:

f = Tuλ + vλ, [uλ, vλ] := arginf
f=Tu+v

{‖u‖φ + λ‖v‖2
L2}. (4.3)

where the regularization functional ‖·‖ : X ⊂ L2(Ω)→ [0,∞] is a semi-norm which

takes a general form,

‖u‖φ :=

∫
Ω

φ(Dpu), p ≥ 1.

If ‖u‖φ = ‖u‖BV =
∫

Ω
|∇u| is the BV−semi-norm of u, then the variational problem

(4.3) is the same as (4.1). We have the following theorem [33] characterizing the

minimizer uλ of (4.3).

Theorem 4.1. Let T : L2(Ω) → L2(Ω) be a linear continuous blurring operator

with adjoint T ∗ then
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1. The variational problem (4.3) admits a minimizer u. Moreover, if ‖u‖φ is

strictly convex, then a minimizer uλ with ‖uλ‖φ 6= 0 is unique.

2. uλ is a minimizer of (4.3) if and only if

(Tuλ, vλ)2 = ‖uλ‖φ‖vλ‖∗ =
1

2λ
‖uλ‖φ. (4.4)

Note that the hierarchical decomposition (4.2) is of the type (2.9) described

in Chapter 2 and thus, the Lemma 2.3 applies. Combining this fact with (4.4) we

have,
∞∑
k=0

[
‖uk‖2

2 +
1

2λk
‖uk‖φ

]
= ‖f‖2

2

if and only if the residuals, vk, strongly converge to 0 in L2.

For f ∈ BV we have ‖vk‖2 → 0, which yields the following energy decompo-

sition
∞∑
k=0

[
‖uk‖2

2 +
1

2λk
‖uk‖BV

]
= ‖f‖2

2.

4.3 A novel deblurring integro-differential equation

We now extend our IDE model to deblur of images. Blurring is modeled by

a continuous, linear operator T : L2(Ω) → L2(Ω). Examples of a blurring opera-

tor include convolution with a Gaussian kernel, directional averaging etc. Thus, a

observed image is expressed as f = TU , where U is the “clean” unblurred image

which we aim to recover. Hierarchical decomposition of blurred images was dis-

cussed in [33]. To this end, one sets a sequence of increasing scaling parameters
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λ0 < λ1 < λ2 . . . . Starting with v−1 = f , we get the following iteration

vλj−1
= τTuλj + vλj , arginf

vλj−1
=τTu+v

{ ‖u‖BV +
λj
τ
‖v‖2

L2}.

This gives us a hierarchical multiscale representation of the blurred image f pre-

sented in [33],

f = τTuλ0 + vλ0

= τTuλ1 + τTuλ1 + vλ1

= . . . . . .

= τTuλ0 + τTuλ1 + . . . τTuλN + vλN .

Thus, after applying the conjugate T ∗ to the above equation we obtain,

τ
N∑
j=0

T ∗Tuλj = T ∗f − T ∗vλN . (4.5)

Using the Euler-Lagrange characterization of the minimizer in (4.3),

T ∗vλj−1
= τT ∗Tuλj −

1

2λj
div

( ∇uλj
|∇uλj |

)
,

which, in view of T ∗vλj−1
= τT ∗Tuλj + T ∗vλj implies

T ∗vλj = − 1

2λ
div

( ∇uλj
|∇uλj |

)
.

Using the above expression we can rewrite (4.5) as

N∑
j=0

T ∗Tuλjτ = T ∗f +
1

2λN
div

(
∇uλN
|∇uλN |

)
. (4.6)

As τ → 0, the expression (4.6) motivates the following integro-differential equation

(IDE) for deblurring, where u(x, t) : Ω× R+ 7→ R is sought such that∫ t

0

T ∗Tu(x, s) ds = T ∗f(x) +
1

2λ(t)
div

(
∇u(x, t)

|∇u(x, t)|

)
;

∂u

∂n

∣∣∣∣
∂Ω

= 0. (4.7)
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(a) (b)

Figure 4.1: Image (a) shows a blurred image of Lenna blurred using a Gaussian

kernel with σ = 1. Image (b) shows the result of the deblurring integro-differential

equation (4.7), as t→∞.

In this IDE,

∫ t

0

u(·, s) ds provides a multiscale representation of the unblurred, clean

image U(x, t) :=
∫ t

0
u(x, s) ds. Note that the blurring operator T is in general non-

invertible for general L2 images, but it is assumed to be invertible on the restricted

set of multiscale representations

∫ t

0

T ∗Tu(x, s) ds. Thus, the deblurring IDE (4.7)

gives us a recipe to extract the unblurred image U from its blurred version f .

We can see the deblurring result of (4.7) in Figure 4.1. Furthermore, we can

modify the deblurring integro-differential equation using edge enhancing filtering,

where a U(x, t) =

∫ t

0

u(x, s) ds : Ω× R+ 7→ R is sought as a solution of

T ∗TU(x, t) = T ∗f(x) +
g(|Gσ ? u(x, t)|)

2λ(t)
div

(
∇u(x, t)

|∇u(x, t)|

)
;

∂u

∂n

∣∣∣∣
∂Ω

= 0. (4.8)

In the next chapter, we will discuss the (BV,L1) decomposition introduced by

Tony Chan and Selim Esedoḡlu [12]. We will propose a multiscale image decompo-

sition and its variants base on (BV,L1) decomposition.
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Chapter 5

Hierarchical (BV,L1) and weighted (BV,L1) multiscale schemes

5.1 Introduction

In the previous chapters, we focused on minimization of the ROF functional

f = uλ + vλ, [uλ, vλ] := arginf
f=u+v

{ ‖u‖BV + λ‖v‖2
L2}. (5.1)

This variational problem lead to (BV,L2) multiscale hierarchical decomposition and

the integro-differential, introduced in Chapter 3. Using the BV seminorm, ‖u‖BV ,

as a regularization term was the main contribution of the ROF model. This regu-

larization term preserves prominent edges in the image, at the same time disfavors

the small oscillations, thus, denoising the image f . Nevertheless, ROF algorithm

has certain limitations. One of the issue with ROF model is the loss of contrast in

solutions. This issue has been studied by Strong and Chan in [31], where they show

that if the given image is a characteristic function of a disk of radius R, f := χBR(0),

then any minimizer of (5.1) is of the form cf , where c ∈ [0, 1) is a constant. We never

get uλ = χBR(0), irrespective of the value of the scaling parameter λ. Moreover, it is

desirable for an image denoising method to have a large class of “noise-free” images

that are left invariant. As we have observed in Chapter 2, if the scaling parameter

λ > 1
2‖f‖∗ , then the star-norm of the residual image ‖f − uλ‖∗ = 1

2λ
. From this

property, Chan and Esedoḡlu point out in [12] that for standard ROF model this
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class consists of only the trivial image f := 0. The work of Meyer [22] has drawn

attention to the role of the fidelity term in ROF model and has inspired Vese and

Osher [38] and later Osher, Sole and Vese [27] to formulate variants of the ROF

model that replace the fidelity term with weaker norm. In their exposition in [12],

Chan and Esedoḡlu investigate the implications of using L1 norm, ‖f − u‖L1 , as a

fidelity term. They propose the following variational problem:

f = uλ + vλ, [uλ, vλ] := arginf
f=u+v

{ ‖u‖BV + λ‖v‖L1}. (5.2)

The above variational model with L1 fidelity term was introduced and studied in

the context of image denoising and deblurring by Alliney and Nikolova in [3], [25].

We follow [12] and list the following properties of the variational formulation (5.2).

1. The functional in (5.2) is not strictly convex as opposed to the functional in

(5.1). This leads to non-uniqueness of minimizers.

2. Unlike the standard model (5.1), the model (5.2) is contrast invariant in the

following sense: if uλ is a solution of the minimization problem (5.2) for a

given image f , then cuλ is a solution of the modified model for the observed

image cf .

3. The regularization imposed on solution by the L1 model is more geometric, in

the sense that it has less dependence on the contrast of image features than

their shapes.

In the next section we elaborate on these properties more.
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5.2 Basic properties of (BV,L1) model

The following proposition [13] asserts that the the (BV,L1) model almost

decouples the level sets of the given image from each other. Thus, the minimization

(5.2) becomes a geometry problem for each level set.

Proposition 5.1. Consider the energy in the minimization problem (5.2),

E(u, λ) := ‖u‖BV + λ‖f − u‖L1 , (5.3)

can be rewritten as follows:

E(u, λ) =

∫ ∞
−∞

Per({x : u(x) > t}) + λ
∣∣{x : u(x) > t}4{x : f(x) > t}

∣∣ dt
Proof. Recall the coarea formula for the BV functions [5] (also see section 1.6):

‖u‖BV =

∫ ∞
−∞

Per({x : u(x) > t})dt (5.4)

We resolve the second term in (5.3) as follows:∫
Ω

|u(x)− f(x)|dx

=

∫
{x :u(x)>f(x)}

u(x)− f(x) dx+

∫
{x : f(x)>u(x)}

f(x)− u(x) dx

=

∫
{x :u(x)>f(x)}

∫ u(x)

f(x)

dt dx+

∫
{x : f(x)>u(x)}

∫ f(x)

u(x)

dt dx

=

∫
Ω

∫ ∞
−∞

χ{x :u(x)>f(x)}χ[f(x), u(x))(t) + χ{x : f(x)>u(x)}χ[u(x), f(x))(t) dt dx

=

∫ ∞
−∞

∫
Ω

χ{x :u(x)>f(x)}χ[f(x), u(x))(t) + χ{x : f(x)>u(x)}χ[u(x), f(x))(t) dt dx

Notice that

χ{x :u(x)>f(x)}χ[f(x), u(x))(t) = 1 ,
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if and only if

x ∈ {x : u(x) > f(x)} ∩ {x : u(x) > t} ∩ {x : f(x) > t}c

and 0 otherwise. Similarly,

χ{x : f(x)>u(x)}χ[u(x), f(x))(t) = 1 ,

if and only if

x ∈ {x : f(x) > u(x)} ∩ {x : f(x) > t} ∩ {x : u(x) > t}c,

and 0 otherwise. This implies

χ{x :u(x)>f(x)}χ[f(x), u(x))(t) + χ{x : f(x)>u(x)}χ[u(x), f(x))(t) = χ{x :u(x)>t}4{x : f(x)>t}(x).

Therefore,

∫
Ω

|u(x)− f(x)|dx =

∫ ∞
−∞

∣∣{x : u(x) > t}4{x : f(x) > t}
∣∣ dt (5.5)

Putting together (5.4) and (5.5) we get the assertion of the proposition.

We noted that the class of images f which remain invariant, i.e. uλ = f ,

under minimization of the standard ROF functional (5.1) consists of only the trivial

function f = 0. Now we will examine [12] which functions remain unchanged under

the minimization of the functional E(u, λ) in (5.3).

Lemma 5.1. Given an observed image f ∈ BV (R2), if there exists a vector field g

with the following properties

1. g ∈ C1
c (RN ,RN),
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2. |g| ≤ 1 for all x ∈ RN ,

3. ‖f‖BV =
∫
f div g,

then there exists a threshold λH ≥ 0 such that uλ = f , for all λ ≥ λH .

Proof. We set λH := maxx | div g|. Then for λ ≥ λH and any u ∈ BV (Ω) we have

E(u, λ) = ‖u‖BV + λ

∫
|u− f |

≥
∫
u div g + λ

∫
|u− f |

=

∫
f div g + λ

∫
|u− f |+

∫
(u− f) div g

≥ E(f, λ) +
(
λ−max

x
| div g|

)∫
|u− f |.

Since λ > λH := maxx | div g|, the last inequality shows that E(u, λ) > E(u, λ)

unless u = f . Thus, if u = uλ is a minimizer of E(u, λ) we must have uλ = f .

This lemma can be applied to binary images to obtain important class of exact

solutions.

Theorem 5.1. Let Σ ⊂ R2 be a bounded domain with C2 boundary. let the observed

images f be given by the characteristic function of Σ, f = χΣ. Then there exists a

threshold λH ≥ 0 such that whenever λ ≥ λH , the unique minimizer of E(u, λ) is

the observed image itself, i.e. uλ = χΣ.

Proof. Since the boundary ∂Σ of the bounded domain Σ is assumed to be C2, the

outward unite normal vector field n : ∂Σ → SN−1 of ∂Σ can be extended in a C1

manner to a tubular neighborhood of ∂Σ, so one gets a vector field g ∈ C1
c (RN ,RN),
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such that g
∣∣
∂Σ

= n and |g| ≤ 1 for all x ∈ RN . This implies

∫
f div g =

∫
Σ

div g =

∫
∂Σ

g · n =

∫
∂Σ

1 = Per(∂Σ) =

∫
|∇f | = ‖f‖BV

Thus, the vector field g satisfies all the requirements of the Lemma (5.1). Hence,

the claim of the theorem follows.

The above theorem can be extended to more general form. Indeed, if the level

sets {x : f(x) = t} of a given image f vary smoothly with respect to t, the same

conclusion holds. Now we examine the case when the scale parameter λ is taken too

small.

Proposition 5.2. Let R > 0. Then there exists a threshold λL = λL(R,N) such

that, if f ∈ L1(RN) with supp(f) ⊂ BR(0), then uλ = 0 for any λ ≤ λL.

Proof. Let C = C(N) be the isoperimetric constant

‖u‖BV (RN ) ≥ C(N)‖u‖LN∗ (RN ), (5.6)

for all u ∈ BV (RN), where N∗ := N
N−1

. Then set

λL :=
C(N)

Rω
1
N
N

.

where ωN is the volume of the unit ball in RN . Take a λ > λL and let u be one of

the minimizers of the (BV,L1) functional in (5.3) for the given scale parameter λ.

Using the isoperimetric inequality (5.6) with E(u, λ) ≤ E(0, λ) we get

C(N)‖u‖LN∗ (RN ) + λ‖u− f‖L1(RN ) ≤ λ‖f‖L1(RN ) = λ‖f‖L1(BR(0)). (5.7)
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We split the first term on the left hand side into integrations over BR(0) and Bc
R(0),

‖u‖LN∗ (RN ) =

(∫
BR(0)

|u|N∗
) 1

N∗

+

(∫
BcR(0)

|u|N∗
) 1

N∗

= ‖u‖LN∗ (BR(0)) + ‖u‖LN∗ (BcR(0)) (5.8)

By Hölder’s inequality we have,∫
BR(0)

|u| ≤
(∫

BR(0)

|u|N∗
) 1

N∗
(∫

BR(0)

1

) 1
N

,

‖u‖L1(BR(0)) ≤ (RNωN)
1
N ‖u‖LN∗ (BR(0)) = Rω

1
N
N ‖u‖LN∗ (BR(0)),

Thus,

1

Rω
1
N
N

‖u‖L1(BR(0)) ≤ ‖u‖LN∗ (BR(0)). (5.9)

Using (5.8) and (5.9) in (5.7) we obtain,

C(N)

Rω
1
N
N

‖u‖L1(BR(0)) + λ‖u− f‖L1(BR(0)) + C(N)‖u‖LN∗ (BcR(0)) ≤ λ‖f‖L1(BR(0)),

(λL − λ)‖u‖L1(BR(0)) + λ‖u‖L1(BR(0)) + λ‖u− f‖L1(BR(0)) + C(N)‖u‖LN∗ (BcR(0))

≤ λ‖f‖L1(BR(0)) ≤ λ‖u‖L1(BR(0)) + λ‖u− f‖L1(BR(0)).

Thus, we have

(λL − λ)‖u‖L1(BR(0)) + C(N)‖u‖LN∗ (BcR(0)) ≤ 0. (5.10)

From (5.10) we conclude that if λ ≤ λL, then we must have

‖u‖L1(BR(0)) = ‖u‖LN∗ (BcR(0)) = 0.

Thus, we conclude that if λ ≤ λL = C(N)

Rω
1
N
N

, then the unique minimizer is the trivial

minimizer u = 0.
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5.3 Hierarchical (BV,L1) image decomposition

Form Theorem 5.2 and Proposition 5.1 we see that there exist two critical

values of the scale parameter, λL and λH . If λ ≤ λL then we have a trivial minimizer,

uλ = 0. This lower critical value λL depends on the shape of the object in the the

image. This λL is in general not known a-priori.

Recall, in the case of the standard ROF model, a similar critical value of

the scale parameter exists, but it depended on the star-norm of the function f .

Moreover, in the present case of (BV,L1) model, if λ ≥ λH , then the minimizer

uλ is the given function f itself. Nevertheless, as we have noted in the Theorem

5.1, such a scaling parameter may not exist for all images, as this λH depends on

the function itself. In [12], Chan and Esedoḡlu demonstrate that the scale space

generated by λ is essentially different than the scale space generated in case of the

standard ROF model.

Using these properties as a basis we propose a hierarchical image decomposi-

tion as follows. Starting with a small value of λ0, we can decompose the given image

f using the (BV,L1) scheme as follows:

f = uλ0 + vλ0 , [uλ0 , vλ0 ] := arginf
f=u+v

{ ‖u‖BV + λ0‖v‖L1}.

The image vλ0 can further be decomposed into smaller scale with λ1 > λ0,

vλ0 = uλ1 + vλ1 , [uλ1 , vλ1 ] := arginf
vλ0

=u+v
{ ‖u‖BV + λ1‖v‖L1}.

We can continue this process for λ0 < λ1 < λ2 . . .

vλk−1
= uλk + vλk , [uλk , vλk ] := arginf

vλk−1
=u+v
{ ‖u‖BV + λk‖v‖L1}. (5.11)
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Repeating this refinement step, we obtain the following hierarchical (BV,L1) de-

composition of f :

f = uλ0 + vλ0

= uλ1 + uλ1 + vλ1

= . . . . . .

= uλ0 + uλ1 + · · ·+ uλN + vλN .


This yields a hierarchical (BV,L1) multiscale image decomposition,

f =
N∑
k=0

uλk ,

with a residual vλN .

5.4 Euler-Lagrange equations

The minimizer of the (BV,L1) functional, E(u, λ), are characterized by the

Euler-Lagrange differential equation

sgn(uλ − f)− 1

λ
div

(
∇uλ
|∇uλ|

)
= 0.

When restricted to a bounded domain Ω, the Euler-Lagrange equations are aug-

mented by the Neumann boundary condition

∂uλ
∂n

∣∣∣∣
∂Ω

= 0.

To construct the hierarchical multiscale decomposition of f , f ∼
∑N

k=0 uλk , the slices

uλk are constructed as approximate solutions of the recursive relation governed by

the PDE

sgn(uλk+1
− vλk)−

1

2λk+1

div

(
∇uλk+1

|∇uλk+1
|

)
= 0.

starting with vλ−1 := f .
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5.5 Scale-space generated by hierarchical (BV,L1) decomposition

The scale-space generated by hierarchical (BV,L1) decomposition is funda-

mentally different. The numerical result of the (BV,L1) are shown in Figure 5.1,

where the images depict
∑N

k=0 uλk , for N = 0, 1, .... As argued in Proposition 5.2,

the images do not vary continuously; rather, certain details appear abruptly. Com-

pare these results with Figure 5.5, where we see the images
∑N

k=0 uλk change rather

smoothly, with no sudden changes.

5.6 Edge enhancing modification to (BV,L1) decomposition

Recall, that the standard ROF variational problem leads to the IDE:

∫ t

0

u(x, s) ds = f(x) +
1

2λ(t)
div

(
∇u(x, t)

|∇u(x, t)|

)
,

u : Ω× R+ 7→ R;
∂u

∂n

∣∣∣∣
∂Ω

= 0,

We noted in Chapter 3 that the diffusion term can be modified by multiplication

by a diffusion controlling function g which vanished at infinity, to get the following

IDE:

∫ t

0

u(x, s) ds = f(x) +
g(Gσ ?∇u(x, t))

2λ(t)
div

(
∇u(x, t)

|∇u(x, t)|

)
,

u : Ω× R+ 7→ R;
∂u

∂n

∣∣∣∣
∂Ω

= 0,

This modification leads to controlling of the diffusion near the edges. We propose a

similar modification for hierarchical (BV,L1) decomposition, starting vλ−1 := f :

sgn(uλk+1
− vλk)−

g(Gσ ?∇uλk+1
)

2λk+1

div

(
∇uλk+1

|∇uλk+1
|

)
= 0. (5.12)
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Figure 5.2 depict results of (5.12). We observe the enhancement around the edges

due to the term g(Gσ ?∇uλk+1
).

5.7 Weighted (BV,L1) scheme

As we have seen that in section 5.2 the (BV,L1) decomposition is contrast

invariant. Nevertheless, since the (BV,L1) functional (5.3)

E(u, λ) := ‖u‖BV + λ‖f − u‖L1 ,

is it not strictly convex, we do not have a unique minimizer for E(u, λ). On the

other hand, for (BV,L2) functional, we have uniqueness of the solution, but we lose

the contrast invariance property. In this section, we introduce weighted (BV,L1)

functional:

Ep(f, λ) := ‖u‖BV + λ‖f − u‖pL1 , p > 1.

Since this is a strictly convex functional, it has a unique minimizer. If p is chosen to

be close to 1, and it behaves like (BV,L1) functional. Thus, we propose a hierarchical

image decomposition as follows. Starting with a small value of λ0,

vλ0 = uλ1 + vλ1 , [uλ1 , vλ1 ] := arginf
vλ0

=u+v
{ ‖u‖BV + λ1‖v‖pL1} p > 1.

We can continue this process for λ0 < λ1 < λ2 . . .

vλk−1
= uλk + vλk , [uλk , vλk ] := arginf

vλk−1
=u+v
{ ‖u‖BV + λk‖v‖pL1} p > 1. (5.13)

65



Repeating this refinement step, we obtain the following hierarchical (BV,L1) de-

composition of f :

f = uλ0 + vλ0

= uλ1 + uλ1 + vλ1

= . . . . . .

= uλ0 + uλ1 + · · ·+ uλN + vλN .

This yields a hierarchical weighted (BV,L1) multiscale image decomposition,

f =
N∑
k=0

uλk ,

with a residual vλN .

5.8 Euler-Lagrange equations

The minimizer of the weighted (BV,L1) functional, Ep(f, λ), are characterized

by the Euler-Lagrange differential equation

sgn(uλ − f)‖uλ − f‖p−1
L1 −

1

pλ
div

(
∇uλ
|∇uλ|

)
= 0.

When restricted to a bounded domain Ω, the Euler-Lagrange equations are aug-

mented by the Neumann boundary condition

∂uλ
∂n

∣∣∣∣
∂Ω

= 0.

To construct the hierarchical multiscale decomposition of f , f ∼
∑N

k=0 uλk , the slices

uλk are constructed as approximate solutions of the recursive relation governed by

the PDE

sgn(uλk+1
− vλk)‖u− vλk‖

p−1
L1 −

1

pλk+1

div

(
∇uλk+1

|∇uλk+1
|

)
= 0.
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starting with vλ−1 := f .

Numerical results for the weighted (BV,L1) scheme (5.13) for p = 1.2 are

depicted in Figure 5.3. The numerical results with p = 1 are shown in Figure 5.4.

Figure 5.1: The above images show the accumulated images
∑N

k=0 uλk , N = 0, . . . 16,

for the (BV,L1) multiscale scheme in (5.11). From top to bottom, left to right the

images the function λk is taken as 2j and the grid-size, h = 1/imax.
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Figure 5.2: The above images show the accumulated images
∑N

k=0 uλk , N = 0, . . . 16,

for the (BV,L1) multiscale scheme with diffusion controlling function (5.12). From

top to bottom, left to right the images the function λk is taken as 2j and the grid-size,

h = 1/imax.
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Figure 5.3: The above images show the accumulated images
∑N

k=0 uλk , N = 0, . . . 16,

for the weighted (BV,L1) multiscale scheme in (5.13) with p = 1.2. From top to

bottom, left to right the images the function λk is taken as 2j and the grid-size,

h = 1/imax.
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Figure 5.4: The above images show the accumulated images
∑N

k=0 uλk , N = 0, . . . 8,

for the weighted (BV,L1) multiscale scheme in (5.13) with p = 2. From top to

bottom, left to right the images the function λk is taken as 0.1 × 2j and the grid-

size, h = 1/imax.
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Figure 5.5: The above images show the accumulated images
∑N

k=0 uλk , N = 0, . . . 12,

for the (BV,L2) multiscale scheme in (5.11). From top to bottom, left to right the

images the function λk is taken as 0.1× 2j and the grid-size, h = 1/imax.
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Chapter 6

Numerical scheme

6.1 Introduction

In Chapters 1 through Chapter 5 we proposed numerous algorithms and pre-

sented their results. In this Chapter we describe the numerical schemes used for the

implementations of these models.

6.2 Numerical scheme for hierarchical (BV,L2) multiscale represen-

tation

We begin with the hierarchical (BV,L2) multiscale representation for a se-

quence of scale parameters {λk}k≥0, starting with vλ−1 := f ,

vλk−1
= uλk + vλk , [uλk , vλk ] := arginf

vλk−1
=u+v
{ ‖u‖BV + λk‖v‖2

L2}. (6.1)

We begin with regularization. To remove the singularity when |∇u| = 0, we replace

‖u‖BV :=
∫

Ω
|∇u| with

∫
Ω

√
ε2 + |∇u|2. The minimizer uλ0 for the regularized varia-

tional problem (6.1) with vλ−1 := f satisfies the following Euler-Lagrange equations

in u:

u = f +
1

2λ0

div

(
∇u√

ε2 + |∇u|2

)
;

∂u

∂n

∣∣∣∣
∂Ω

= 0. (6.2)

To compute the solution uλ0 we follow [32]. The region Ω is covered with computa-

tional grid (xi, yj) = (ih, jh) where h is a cell size. Let D+ = D+(h), D− = D−(h),
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and D0 := (D+ + D−)/2 denote the usual forward, backward, and centered di-

vided difference. Thus, D+xui,j = (ui+1,j − ui,j)/h, D−xui,j = (ui,j − ui−1,j)/h,

D+yui,j = (ui,j+1− ui,j)/h, D−yui,j = (ui,j − ui,j−1)/h, D0xui,j = (ui+1,j − ui−1,j)/2h

and D0yui,j = (ui,j+1− ui,j−1)/2h. With this notation (6.2) is discretized as follows:

ui,j = fi,j +
1

2λ0

D−x

[
D+xui,j√

ε2 + (D+xui,j)2 + (D0yui,j)2

]

+
1

2λ0

D−y

[
D+yui,j√

ε2 + (D0xui,j)2 + (D+yui,j)2

]

= fi,j +
1

2λ0h2

[
ui+1,j − ui,j√

ε2 + (D+xui,j)2 + (D0yui,j)2
− ui,j − ui−1,j√

ε2 + (D−xui,j)2 + (D0yui−1,j)2

]

+
1

2λ0h2

[
ui,j+1 − ui,j√

ε2 + (D0xui,j)2 + (D+yui,j)2
− ui,j − ui,j−1√

ε2 + (D0xui,j−1)2 + (D−yui,j)2

]
.

(6.3)

One can use the following fixed point iteration to solve the above discrete regularized

Euler-Lagrange equation (6.3):

un+1
i,j = fi,j +

1

2λ0h2

 uni+1,j − un+1
i,j√

ε2 + (D+xuni,j)
2 + (D0yuni,j)

2
−

un+1
i,j − uni−1,j√

ε2 + (D−xuni,j)
2 + (D0yuni−1,j)

2


+

1

2λ0h2

 uni,j+1 − un+1
i,j√

ε2 + (D0xuni,j)
2 + (D+yuni,j)

2
−

un+1
i,j − uni,j−1√

ε2 + (D0xuni,j−1)2 + (D−yuni,j)
2

 .
We introduce the following notations

cE ≡ cE(u) := 1√
ε2+(D+xuni,j)

2+(D0yuni,j)
2
,

cW ≡ cW (u) := 1√
ε2+(D−xuni,j)

2+(D0yuni−1,j)
2
,

cS ≡ cS(u) := 1√
ε2+(D0xuni,j)

2+(D+yuni,j)
2
,

cN ≡ cN(u) := 1√
ε2+(D0xuni,j−1)2+(D−yuni,j)

2
.


(6.4)

Using these notations the fixed point iteration (6.4) reads

un+1
i,j =

2λ0h
2fi,j + cEu

n
i+1,j + cWu

n
i−1,j + cSu

n
i,j+1 + cNu

n
i,j−1

2λ0h2 + cE + cW + cS + cN
. (6.5)

73



To ensure that the Neumann boundary condition ∂u
∂n
|∂Ω = 0 holds, we extend the

image by reflecting it along the boundary ∂Ω at each step of (6.5). As the ini-

tial condition we set u0
i,j = fi,j. In order to avoid grid effects, we rotate the

starting point of the scheme (6.5) between the four corners of the grid, namely,

(1, 1), (imax, 1), (imax, jmax) and (1, jmax), and alternate whether we run the algo-

rithm row by row or column by column. To initialize the iteration we set u0 = f .

The scheme (6.5) iterated for n = 0, 1, . . . , n∞, until ‖un∞ − un∞−1‖ is reduced be-

low a preassigned tolerance, so that un∞i,j produces an accurate approximation of the

fixed point steady solution uλ0(xi, yj). This completes the description of the Euler-

Lagrange scheme for a fixed λ0, which is the first step in the hierarchical (BV,L2)

multiscale decomposition, with vλ−1 := f . To continue the hierarchical scheme for a

sequence of {λk}k≥0, we reiterate this process, each time updating the value of vλk−1

to vλk = vλk−1
− uλk .

With the notations developed in this scheme, we now describe numerical

schemes for the integro-differential schemes in the next section.

6.3 Numerical scheme for integro-differential equations

In this section, we describe the numerical implementation of the proposed IDE,

rewritten here for convenience:

∫ t

0

u(x, s)ds = f(x) +
1

2λ(t)
div

(
∇u(x, t)

|∇u(x, t)|

)
, u : Ω× R+ 7→ R,

∂u

∂n

∣∣∣∣
∂Ω

= 0.

(6.6)
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Let ∆τ be the time interval step. Thus, after N steps, t = N∆τ

∫ t

0

u(x, s) ds =

∫ N∆τ

0

u(x, s) ds =
N−1∑
j=0

∫ (k+1)∆τ

k∆τ

u(x, s) ds.

With the notations:

U(t) =

∫ t

0

u(·, s) ds, UN =

∫ N∆τ

0

u(x, s) ds, ωN := uN∆τ. (6.7)

we have, the left hand side of (6.6) as

∫ N∆τ

0

u(x, s) ds = UN ≈ UN−1 + uN∆τ = UN−1 + ωN .

Hence, we get the following iteration to compute ωN = uN∆τ

ωn+1
i,j =

2λNh2(fi,j − UN−1
i,j ) + cEω

n
i+1,j + cWω

n
i−1,j + cSω

n
i,j+1 + cNω

n
i,j−1

2λNh2 + cE + cW + cS + cN
, (6.8)

where for N = 0 we take U0 ≡ 0. The coefficients cE = cE(ω), cW = cW (ω), cS =

cS(ω), cN = cN(ω) in (6.8) are as defined in (6.4), now functions of ω. We denote by

λN a discretized version of the function λ(t) at t = N∆τ . As in the case of (BV,L2)

decomposition, the Neumann condition was ensured by reflecting the image ω along

the boundary ∂Ω at each iterative step and the effect of the grid lines are minimized

by rotation of the starting point and alternating between running the algorithm

row-wise or column-wise. The scheme (6.8) iterated for n = 0, 1, . . . , n∞, until

‖ωn∞ − ωn∞−1‖ is reduced below a preassigned tolerance, so that ωn∞ produces an

accurate approximation of the fixed point steady solution ωN . Thus, we get an

accurate approximation for
∫ N∆τ

0
u(·, s) ds ≈ UN−1 + ωN .
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Now we discuss the diffusion controlling modification to the IDE

∫ t

0

u(x, s)ds = f(x) +
g(|Gσ ?∇u(x, t)|)

2λ(t)
div

(
∇u(x, t)

|∇u(x, t)|

)
, (6.9)

x ∈ Ω ⊂ R2, t > 0;
∂u

∂n

∣∣∣∣
∂Ω

= 0.

Here, the only difference is the diffusion controlling function g(|Gσ ? ∇u(x, t)|),

where Gσ is the two-dimensional Gaussian smoothing with a predetermined value

of standard deviation, σ. We approximate g(|Gσ ?∇u(x, t)|) with g
(∣∣∣Gσ ?

∇ωni,j
∆τ

∣∣∣).

The function g(s) = 1
1+(s/β)2 is used in these experiments, where β is a constant.

Using the notations (6.7) and (6.4), we get the following fixed point iteration for

the scheme (6.9)

ωn+1
i,j =

2λNh2(fi,j − UN−1
i,j ) + g

(∣∣∣Gσ ?
∇ωni,j

∆τ

∣∣∣) (cEω
n
i+1,j + cWω

n
i−1,j + cSω

n
i,j+1 + cNω

n
i,j−1)

2λNh2 + g
(∣∣∣Gσ ?

∇ωni,j
∆τ

∣∣∣) (cE + cW + cS + cN)
,

which converges to the steady state solution ωN and we get an accurate approxima-

tion for
∫ N∆τ

0
u(·, s) ds ≈ UN−1 + ωN .

We propose similar numerical scheme for IDE with tangential smoothing,

∫ t

0

u(x, s)ds = f(x) +
g(|Gσ ?∇u(x, t)|)|∇u(x, t)|

2λ(t)
div

(
∇u(x, t)

|∇u(x, t)|

)
, (6.10)

u := u(x, t), x ∈ Ω ⊂ R2, t > 0;
∂u

∂n

∣∣∣∣
∂Ω

= 0.

We propose the following fixed point iteration for (6.10)

ωn+1
i,j =

2λNh2(fi,j − UN−1
i,j ) + ξn(cEω

n
i+1,j + cWω

n
i−1,j + cSω

n
i,j+1 + cNω

n
i,j−1)

2λNh2 + ξn(cE + cW + cS + cN)
,

where ξn ≡ g
(∣∣∣Gσ ?

∇ωni,j
∆τ

∣∣∣) ∣∣∣∇ωni,j∆τ

∣∣∣. This iteration is carried out until ωn∞ ap-

proaches a good approximation for ωN and we obtain
∫ N∆τ

0
u(·, s) ds ≈ UN−1 +ωN .
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6.4 Numerical scheme for deblurring integro-differential equations

Now we will prescribe numerical schemes for the proposed models (4.7), rewrit-

ten here for convenience.

∫ t

0

T ∗Tu(x, s) ds = T ∗f(x) +
1

2λ(t)
div

(
∇u(x, t)

|∇u(x, t)|

)
,

x ∈ Ω ⊂ R2, t > 0;
∂u

∂n

∣∣∣∣
∂Ω

= 0.

As in the previous section, the right hand side of the above equation can be approx-

imated as follows

Û(t = N∆τ) =

∫ t

0

T ∗Tu(x, s) ds =

∫ N∆τ

0

T ∗Tu(x, s) ds = ÛN ,

ÛN = ÛN−1 + T ∗TuN∆τ = ÛN−1 + T ∗TωN .

Hence, we get the following gradient descent scheme to compute ωN .

ωn+1
i,j − ωni,j

δt
= Tfi,j − ÛN−1

i,j +
1

2λNh2
(cEω

n
i+1,j + cWω

n
i−1,j + cSω

n
i,j+1 + cNω

n
i,j−1)

− 1

2λNh2
ωn+1
i,j (cE + cW + cS + cN), (6.11)

where cE, cW , cS, cN are as defined before in (6.4), but now functions of ω, and λN

is the discretized version of the function λ(t). The operator T denotes the blurring

operator. In our experiments, T is modeled by Gaussian blur. The scheme (6.11)

iterated for n = 0, 1, . . . , n∞, until ‖ωn∞ − ωn∞−1‖ is reduced below a preassigned

tolerance, so that ωn∞ produces an accurate approximation of the steady solution

ωN . Thus, we get
∫ N∆τ

0
u(s) ds ≈ UN = UN−1 + ωN .

We modify this numerical scheme for deblurring IDE (4.8) with the diffusion
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controlling function, rewritten here:

∫ t

0

T ∗Tu(x, s)ds = T ∗f(x) +
g(|Gσ ? u(x, t)|)

2λ(t)
div

(
∇u(x, t)

|∇u(x, t)|

)
, (6.12)

u := u(x, t), x ∈ Ω ⊂ R2, t > 0;
∂u

∂n

∣∣∣∣
∂Ω

= 0.

We approximate g(|Gσ ? ∇u(x, t)|) with g
(∣∣∣Gσ ?

∇ωni,j
∆τ

∣∣∣). The function g(s) =

1
1+(s/β)2 is used in these experiments, where β is a constant. We get the follow-

ing gradient descent scheme for (6.12):

ωn+1
i,j − ωni,j

δt
= Tfi,j − ÛN−1

i,j

+
g
(∣∣∣Gσ ?

∇ωni,j
∆τ

∣∣∣)
2λNh2

(cEω
n
i+1,j + cWω

n
i−1,j + cSω

n
i,j+1 + cNω

n
i,j−1)

−
g
(∣∣∣Gσ ?

∇ωni,j
∆τ

∣∣∣)
2λNh2

ωn+1
i,j (cE + cW + cS + cN). (6.13)

Rest of the scheme remains the same as that of (6.11). The coefficients cE, cW , cS, cN

are as defined before in (6.4), but now functions of ω. The operator T denotes the

blurring operator which is modeled by Gaussian blur in our experiments. The

scheme (6.13) is iterated for n = 0, 1, . . . , n∞, until ωn∞ produces an accurate

approximation of the steady solution ωN . Thus, we get
∫ N∆τ

0
u(s) ds ≈ UN =

UN−1 + ωN .

6.5 Numerical scheme for hierarchical (BV,L1) scheme

Now we discuss numerical scheme for hierarchical (BV,L1) scheme:

vλk−1
= uλk + vλk , [uλk , vλk ] := arginf

vλk−1
=u+v
{ ‖u‖BV + λk‖v‖L1}. (6.14)
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Recall, that vλ−1 := f and {λk}k≥0 is an increasing sequence of positive scale pa-

rameters. The Euler-Lagrange equation associated with (6.14) for vλ−1 := f is as

follows:

sgn(uλ0 − f)− 1

λ0

div

(
∇uλ0

|∇uλ0|

)
= 0.

We regularize sgn(uλ0−f) with
uλ0
−f√

(uλ0
−f)2+δ

, where δ is a small positive scalar. Thus,

we discretize the following

u = f −
√

(uλ0 − f)2 + δ

λ0

div

(
∇u√

ε2 + |∇u|2

)
,

where u approximates uλ0 . To this effect we propose the following discretization:

ui,j = fi,j

+

√
(ui,j − fi,j)2 + δ

λ0

D−x

[
D+xui,j√

ε2 + (D+xui,j)2 + (D0yui,j)2

]

+

√
(ui,j − fi,j)2 + δ

λ0

D−y

[
D+yui,j√

ε2 + (D0xui,j)2 + (D+yui,j)2

]

= fi,j

+

√
(ui,j − fi,j)2 + δ

λ0h2

[
ui+1,j − ui,j√

ε2 + (D+xui,j)2 + (D0yui,j)2
− ui,j − ui−1,j√

ε2 + (D−xui,j)2 + (D0yui−1,j)2

]

+

√
(ui,j − fi,j)2 + δ

λ0h2

[
ui,j+1 − ui,j√

ε2 + (D0xui,j)2 + (D+yui,j)2
− ui,j − ui,j−1√

ε2 + (D0xui,j−1)2 + (D−yui,j)2

]
.

This leads us to the following fixed point iteration:

un+1
i,j = fi,j

+

√
(uni,j − fi,j)2 + δ

λ0h2

 uni+1,j − un+1
i,j√

ε2 + (D+xuni,j)
2 + (D0yuni,j)

2
−

un+1
i,j − uni−1,j√

ε2 + (D−xuni,j)
2 + (D0yuni−1,j)

2


+

√
(uni,j − fi,j)2 + δ

λ0h2

 uni,j+1 − un+1
i,j√

ε2 + (D0xuni,j)
2 + (D+yuni,j)

2
−

un+1
i,j − uni,j−1√

ε2 + (D0xuni,j−1)2 + (D−yuni,j)
2

 .
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With the notations (6.4) in the above scheme we get,

un+1
i,j =

λ0h
2fi,j +

(√
(uni,j − fi,j)2 + δ

) (
cEu

n
i+1,j + cWu

n
i−1,j + cSu

n
i,j+1 + cNu

n
i,j−1

)
λ0h2 +

(√
(uni,j − fi,j)2 + δ

)
(cE + cW + cS + cN)

.

(6.15)

As in the case of the (BV,L2) decomposition, we rotate the starting point of the

iterations and ensure the Neumann boundary conditions by reflecting the image

un along ∂Ω. The iteration (6.15) is carried out until un∞ approaches an accurate

approximation of the steady solution uλ0 . To continue the hierarchical scheme for a

sequence of {λk}k≥0, we reiterate this process, each time updating the value of vλk−1

to vλk = vλk−1
− uλk .

6.6 Numerical scheme for hierarchical weighted (BV,L1) decomposi-

tion

We proposed a hierarchical weighted (BV,L1) decomposition for a sequence

of scaling parameters {λk}k in Chapter 5.

vλk−1
= uλk + vλk , [uλk , vλk ] := arginf

vλk−1
=u+v
{ ‖u‖BV + λk‖v‖pL1} p > 1. (6.16)

with λ−1 := f . The Euler-Lagrange equation associated with variational problem

(6.16) with k = 0 is as follows:

sgn(uλ0 − f)‖uλ0 − f‖
p−1
L1 −

1

pλ0

div

(
∇uλ0

|∇uλ0 |

)
= 0.

which is augmented with Neumann boundary condition. The minimizer uλ0 can be

approximated with the solution of the following regularized Euler-Lagrange equa-
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tion:

u = f +

√
(u− f)2 + δ̂

pλ0‖u− f + δ̂‖p−1
L1

div

(
∇u
|∇u|

)
. (6.17)

where δ̂ denotes a constant function, δ̂ ≡ δ. The solution to (6.17) can be obtained

by the fixed point iteration:

un+1
i,j =

Λnh2fi,j +
(√

(uni,j − fi,j)2 + δ
) (
cEu

n
i+1,j + cWu

n
i−1,j + cSu

n
i,j+1 + cNu

n
i,j−1

)
Λnh2 +

(√
(uni,j − fi,j)2 + δ

)
(cE + cW + cS + cN)

(6.18)

where Λn := p
(∑

i,j |uni,j − fi,j|h2
)p−1

λ0. The iteration (6.18) is carried out until

un∞ approaches an accurate approximation of the steady solution uλ0 . To continue

the hierarchical scheme for a sequence {λk}k≥0, we reiterate this process, each time

updating the value of vλk−1
to vλk = vλk−1

− uλk .
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