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ABSTRACT 

Title of 'l'hesis: Almost Symmetric Spaces and 

Richard Alfred Matzner, Doctor of Philosophy, 1967. 

Thesis di-rected fr.y-! Professor Charles w. Misner. 
/?o/'-''<-'/v/:se-7" ,· 

Techniques are given which can lead to invariant approximation tech­

niques. The basis of these techniques is a definition for 11 almost 11 Killing 

fields, which are the analogue of the Killing vector fields present when the 

space has a symmetry. The integral~ of these fields can be taken as 

coordinate lines, and then the variation of the metric tensor along these 

lines is the slowest possible, in a global sense. 

While this method can be applied to practically any situation, parti­

cularly when the deviation from symmetry is small, and might be suited 

especially to problems of slow motion and equations of motion, this work 

concentrates on applications to gravitational radiation. 

Some examples are given. After initial computations for simple situations; 

an exact calculation on a perturbed flat 2-dimensional torus, and a calcu­

lation for a linearized we~k gravitational wave pulse, we turn to the type 

of space considered by Isaacson. 

Associated with every 11 almost 11 Killing field is a real scalar functional 

A l i.J For positive cde finite spaces A>,... 0 and A-:. 0 only when ~ 
is Killing. In application to spaces of the Isaacson type, we show that A 
contains an (additive) term which measures the average value of the quantity 

T (~~ t: ll(~G jC4-v) ' 
~~ ! s over the whole space. Here ~~ is the average effective 

stress tensor defined by Isaacson 9 If f is Killing in the background, 

then >. consists only of this T(~~> $"~{'" ter1J1. We give applications of 

this fact to the Robertson-Walker metric constant time slices. 

The cosmological solution due to Taub is also investigated by these 

methods (Afpendix D). This solution has homogeneous but not isotropic 

spacelike sections. The complete spectrum of the operator 

- ./3, of which the "almost" Killing field is the ground state, is found 

in the spacelike sections of this solution. 
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An averaging scheme is given to separate the background from the waves 

in a situation with gravitational radiation in a slowly curving background, 

by means of averaging along the 11 almost 11 Killing fields and the few lowest 

eigen solutions of j) r +..\I '::'- 0 . The Taub solution is used as an 
~ ........ 

example for this also. We show an iterative averaging scheme which finds 

a background 3-sphere to the Taub closed 3-space slices. This averaging 

scheme yields an intuitively reasonable background. However, it can be 

compared with another intuitively appealing averging scheme: defining the 

average as the 3-sphere with the same volume. The two methods give different 

3-spheres as the background; 

the gravitational radiation. 

hence different energy density in the remainderJ 

Criteria have not yet been found to specify 

which background may be the optimum one for the Taub space; in particular 

neither of these backgrounds evolve like a radiation dominated Robertson­

Walker solution. However, reasons are given which make the uniqueness 

plausible for situations with high frequency radiation. 

Some applications and examples are given in the Appendices, and some of 

the remaining problems are outlined in the concluding chapter. 



FOREWORD 

Many of the principal results in this thesis will be found in the 

Appendices. This arrangement was chosen so that these topics could be 

written in a form directly suitable for journal publication. Thus Appendices 

C and D are each self contained units in the form of journal papers, while 

the main body of the thesis discusses the general setting and motivation for 

the problems treated in these Appendices, and states further, as yet unsolved, 

problems to which they lead, indicating some possible approaches to these 

further problems. Appendix C is a reproduction of a paper which has already 

been published, which was co-authored with C.W. Misner. 

When making a reference to an equation which occurs in another part of 

the thesis we shall refer to it by the notation of the table of contents. 

For example eq. (2.5) means eq. (5) of Chapter II, eq. (A-7) means eq. (7) 

of appendix A. References of the form (Synge, 19--) are to be found in the 

Bibliography at the end of the thesis. Footnotes for the main body of the 

thesis are found at the end of the main section (before the Appendices), while 

within some of the Appendices (conforming to the requirements of journals for 

which they are intended) references are given as footnotes to be found at the 

end of that same Appendix. 
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Introduction and Outline 

The theory of Relativity is based on an explicitly covariant set of 

equations: Ro((?. = cgrr(To<~- \do(~ T) . However, exact solutions to this set 

of equations are available only for very special situations, such as those 

with a high degree of symmetry. The solution to a physical problem with 

source and asymptotically flat space which is not symmetric in any sense 

involves a complexity that makes it impossible to obtain at the current 

stage in the Mathematical theory of nonlinear differential equations. 

The approach has thus often been to use approximation methods to 

obtain solutions when they cannot be obtained from symmetry, say. The 

approximation methods usually destroy explicit covariance of the problem. 

The result is derived in one particular coordinate frame and extreme care 

must be taken to ensure that the coordinate conditions are all explicitly 

stated and understood. Invariant methods have so far been used only when 

the space under consideration was symmetric, and so contained a Killing fieldo 

But when there is no symmetry, there has heretofore not even been a way of 

specifying the quantitative lack of symmetry in the space. This paper presents 

such a quantitative measure, and gives a definition of "almost" Killing 

fields which generalize the Killing fields of symmetric manifolds. 

Although these ideas should be very helpful in the study of slow motion 

both of the type considered by Einstein, Infeld, and Hoffmann, and of the 

type exemplified by a slowly contracting non-spherical collection of matter 

with pressure we have found it easier to apply them to some instancesof 

gravitationa·l radiation. The outline of this thesis is as follows. 

Chapters I and II are reviews of slow motion and Of gravitational 

radiation. In Chapter II we include a discussion of the results of Isaacson 

(1967) fornhigh frequency gravitational radiation. We will use Isaacson"'s 
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results frequently in the discussion of applications. Chapter III is a brief 

discussion of the equivalence principle and its relation to the problem of 

separating waves from background in situations with gravitational radiation. 

Chapter IV is a short account of Killing vectors; and their utility in 

practically every calculation that one might consider doing, and for defining 

conserved energy and momentum qua~tities. 

Chapter V is the central chapter of this work. It contains the definitions 

and a discussion of some of the properties of the fields we call almost 

Killing. These fields generalize the idea of Killing fields to spaces 

which are not symmetric. The field so defined specifies coordinate lines 

along which the variation of the metri.d: tensor is the slowest possible 

in a global sense. Thus it gener~lizes the Killing fields in spaces with a 

symmetry where the metx~c tensor does not change along Killing trajectories. 

For closed spaces with positive definite metrics, existence and differen-

tiablity of solutions to the defining equations (5.1), (5.2) can be proved, 

and we quote the relevant theiDrem. The method postulated here has strong 

analogies to elasticity theory, and:We show that in fact for 2-dimensional 

surfaces which can be imagined embedded in flat 3-space, there is an operational 

method of determining the symmetry parameter(~). It is just the square 

of the lowest vibrational frequency-- assuming a certain type of stress 

strain relation--when the surface is a physical shell constrained by rigid 

sliding contact surfaces (no normal motion and no transverse stress at the 

surfaces). This analogy to elasticity permits a simple heuristic proof of the 

existence theorem for solutions to (5.2). 

In Chapter V we also give a generalization of a theorem by Yano and 

Bochner (1952), and a brief discussion of some spaces of Minkowski 
}:~·~ ~ 

signature, where the quantity ! • 5t~~~J may equal zero euen though 
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Chapter VI presents applications of these ideas to two examples. 

In the first, we find exactly the vector field which is our almost Killing 

field under certain restrictions, for a wavelike perturbation on a flat 

2-dimensional torus. The second is an application of these ideas to a 

Minkowski 4-space containing a linearized plane gravitational wave pulse. 

Chapter VII contains the application of the techniques of almost Killing 

fields to high frequency gravitational radiation, of the type considered 

by Isaacson. It is shown that the real functional ). [ fJ associated with 
"""" 

every vector field ~ measures some parameters of the radiation. In the 

simplest case this parameter is the "energy density" of the radiation, 

but if a sufficient number of vector fields can be invariantly defined in the 

background the average gravitational "stress 11 associated with the wave may 

also be measured. 

Chapter VIII is a discussion of the problem taken up in Chapter III, 

but with a slightly more precise objective in mind. We postulate that 

the background for an Isaacson type space can be found by the method of 

averaging along the invariantly defined vector fields which are solutions 

of (5.1) and (5.2). This may be essential if Isaacson's scheme is to have 

any computational advanta0es, since his program always requires such a 

splitting. For radiation of short enough wavelength, one would expect 

any averaging to be effective. We attempt to give a method which is 

powerful enough to work even when the radiation is definitely not short 

wavelength. For instance, Appendix D discusses this scheme for the Taub 

cosmological solution which is apparantly a R.W. type of space but with 

the longest wavelength gravitational radiation that will fit into it giving 
I 

the energy density to curve up the space. These studies of averaging proce-

dures to define the background-wave decom~osition of a metric are so far 

only exploratory and give no definitive results. 



Chapter IX discusses further questions that these ideas may be applied 

to, and directions for further research. 

The appendices A,B,C are examples of methods mentioned in the text. 

Appendix D, as we mentioned above, is a calculation applying the ideas here 

to the Taub comological solution. 
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Chapter I. Review:Weak Fields,Slow Motion and Equations of Motion, 

Linearized Gravitational Radiation 

The term "slow motion" immediately brings to mind the Einstein-Infeld-

Hoffmann (EIH) method, one way of treating the equations of motion in General 

Relativity. Because of thms historical fact and because the question of 

gravitational radiation has often been considered via the equations of motion 

we devote this introductory chapter to a review of this and similar methods 

(including the "Fast" approximation which does not suppose slow motion)w: 

The first approximation level to be considered in Relativity is the line~ 

approximation. This means that one assumes a small deviation from flat space 

and writes ~,.,.11-=- 'Ytf-lv t' hf"-11 where f1.,...~~ =diag( +---) is the Minkowski 

metric and t h t"'v is the difference between the actual metric and the 

assumed flat background. The procedure is to then linearize the Einstein 

equations G: = 8Tf ~~·in ch ; by a sui table choice of coordinate conditions 

these equations may be put in the form 

where (1.1) 

(Landau and Lifshitz, 1962, Ch. 11). 

These equations contain Newtonian gravitation as is well known. 

For now assume slow motions as well as weak fields. They can then be re-

duced to the form 

tl.J 00 
which gives ~ T = with 

' 
qb =the Newtonian potential 

IU -m/r. The equations of motion (which are the geodesic equations in the 

space described by this metric) then become1 

d tYYI ~i:: 
dt. dt:- (1.2) 
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the Newtonian equations of motion. These are the originalslow moti1 

which several centuries of extremely precise astronomical observat: 

verified, since their formulation by Newton. The Newtoruian equatioJ 

motion are necessarily the starting point for all slow motion apprc 

since Relativistic results must reproduce Newton~ , where the Newtc 

theory applies. The accuracy of the Newtonian predictions and the 

of the Relativistic corrections in(say) planetary motion problems c 

appreciated by noting that the Newtonian potential of the sun at U 

orbit is about lo-8 (the Earth's potential at its surface is abot 

(Synge,l960). Thus the second order correction to the motion will t 

one part in 1013. (If one thinks in an invariant manner, and calcul 

curvature tensor, the familiar result from the Schwarzschild soluti 

R ••.• Nm/r3 shows that it is given by the densityo The density of 

is ...., 6 grn/cc; the average density of the sun is ,... 1 gm/cc. Thus th 

tensor of the sun at the Earth's orbit is ,.. (He IRE)'~ ,... 10-7 gm/cc. 

invariantly described gravitational quantity for the sun is about 1 

weaker at the surface of the Earth than is the Earth's. To reconcil 

fact with the usual methods, and especially with Newtonian results, 

must realize, as Dixon (1967) has emphasized, that the relevant fea 

is the linearity of the equations for small fields. The orbit of th1 

is very similar to that of an infinitesimal test particle with the l 

initial conditions, because of this additive linearity.) 

Of course, one can also consider gravitational radiation as we~ 

motions like planetary motions which are so slow that radiation is 1 

The theory of General Relativity permits energy transport by gravit~ 

means, and this can be seen even in the weak field approximation. 1 

time dependent form of eq (1.1) contains the D'Alembertian operator 



has wave-like solutions. There ar~ problems with making such a straight-

forward statement, the problems of coordinate conditions. The specificati 

of the coordinate gage used is a matter of some taste; it can, however, 

affect the results in naive applications of pseudotensor calculations. 

Briefly bypassing these problems-- although they are really the princip~l 

questions we intend to come to grips with in this work-- calculations can 

carried out which are analogous to the calculation of radiation in classi 

electrodynamics. They give the familiar result (Landau and Lifshitz, 1962 

showing that there is no dipole radiation, but that the first nonvanishin 

radiation terms are the quadrupole terms. In fact, one finds 

' ' 

to this order for the energy loss from the system by gravitational radiat: 

as calculated by 11 common-sense 11 applications of pseudotensor methods. HerE 

D·· is the quadrupole moment tensor of the source. (An example of the 
&.J 

utility of this expression is given in Appendix A, where~the linearized 

' theory radiation is calculated for several cases of collapsing objects 

undergoing Newtonian motion.) The calculation of gravitational radiation 

by linearized theory obviously requires weak fields, and thus Newtonian 

situations such as collapse from non-Relativistic initial c9nditions. 

Planrtary motions are well suited to this method. Although strong fields 

are excluded, high velocities are apparantly not excluded. Thus the radiat 

from near-miss hyperbolic orbits can be calculated by this method, althoug 

high velocity bound orbits cafunot be so treated. We shall encounter this 

distinction again below. 

Several methods have been invented to carry the possibilities inheren 
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in the weak field approximation to higher orders. They divide-- very roughly--

into the methods associated with the names Einstein, Infeld, and Hoffmann, 

and the methods like the 11 Fast 11 approximation. 

The most famous treatment of the problem of motion in General Relativity 

is that initiated by Einstein, and carried on by Einstein, Infeld, and 

Hoffmann. The first pa~er on this topic was published by Einstein *nd 

Grammer (19~7). They showed that the geodesic motion of a test particle 

follows from the field equations. The paper of Einstein ,Infeld, and Hoffmann 

(1938) finally went beyond the simple motion of test particles on geodesics 

in an external field, and formulated an approximation method which would 

permit the simultaneous calculation of the gravitational field and the 

motion of its sources. A parallel, independent development along these lines 

was carried out by Fock and his collaborators, beginning with the papers 

by Fock on the equations of motion, published in 1939. 

The methods of Fock differ from those of EIH in that Fock fixes the 

coordinate conditions to be harmonic conditions: (-g)-t{C-g)tg«~}J, = 0 

at the outset and remains in this gage throughout his derivation, and makes 

very extensive use of the gage in simplification of the expressions which 

appearo (See, e.g., Fock, l964J Also, Fock (and Papapetrou, 1951) makes 

specific assumptions ab~ut the matter tensor; in particular that it is 

nonsingular. 

The EIH approach, on the other hand, assumes particles will be given 

by singularities in the fields, and so looks for solutions to either G~~ =0, 

or to where T~ has some .(.modified) delta function singulari ti 

The difference we are most interested in, ho~ever, is the coordinate condition 

applied in the EIH method. One possible coordinate condition is ~ l)~f = 0 , 

~N\'\mJM :. 0 , where i"""= ~~tt."'- 'Y\."'IJ (Goldberg, 1962). 
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V}/-V '= Q 
These are not harmonic conditions, since they are not the full set 0 ) v • 

\) ..-..~ 
They differ very little from harmonic coordinates when ~ is small, however, 

and the EIH method adjusts them at each step of the approximation, and iteration 

schemes allow the method to be carried out step by step, with t~ correct 

coordinate condition applied at each order. 

The recent work of Chandrasekhar (1965) is similar to the programs of 

EIH and Fock. Chandrasekhar has expanded the coupled Einstein and hydrody-

namics equations in powers of v/c, keeping terms to the first post-Newtonian 

order. As in all such work, a coordinate condition is necessary; the condition 

used by Chandrasekhar is 
)\.,i.i - 3h~ 

--\: ': 0 
'CI )(0 "<J')((. 

(where ~ .. " = "Y1 tA"' + e h "'" ) ' 

a condition which he is careful to check at the end of his calculations. 

The Chandrasekhar development presents the quantities that appear in physical~' 

intuitive terms; for instance 

where U is the Newtonian gravitational potential (in thfus coordinate 

frame) and where 

+ = v2 
+ U + -!(internal energy) +~ 

showing the effect of the energy density of the gravitational field acting 

itself to produce more gravitational field, giving the post-Newtonian 

correction to the metric. 

It might seem that similar methods could be used to give the next 

approximation after linear theory for waves. However, this is not so. 

Trautman (1965) has shown that if one starts with a linearized solution with 
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outgoing radiation and imposes a gage which is the harmonic gage condition 

to first order, one finds that the potentials satisfy 

0 \ (1) 0::. "Vl t-tV I l•l .. 
h Q(~ - I\ Y\ o(~J ru - 0 

If one then assumes the same coordinate condition for 
\ (1.\ 
n O(S and writes the 

source due to the effective stress tensor of the radiation which generates 
lt) ll.) h(ll h ota : 0~ otG ~ Q ( \;t) one finds that behaves as (logY )/r 

Thus it does not vanish fast enough at infinitu, contradicts the Sommerfeld 

condition, and gives infinite energy. Thus the approximation scheme has 

broken down. We will mention the explanation of this failure after the 

discussion of the Asymptotic methods and Isaacson's results. It can be 

avoided by solving the wave and the background consistently as a first step, 

and then using this substitution method for higher terms. (Isaacson 1967). 

Further work on the equation of motion has been recently done by Dixon 

(1967). He has considered the !.!:!ll :solutions and has not separated them 

by any approximation ~ethods. He has given a multipole expansion which 

determines the motion of the body in terms of its moments in an asymptotic 

series-- asymptotic because it must be stopped before the m'th term, where -m is a number such that )~~~ varies appreciably over the size of the 

particle. Thus it is implicitly assumed as in classical motion of 11small" 

extended masses that the first few multipole moments give a sufficiently 

accurate description of the motion of the particle. Dixon's equations are 

exact, they give the motion of the particle once the total field is known. 

lrhe total field, however, includes the field of the particle under consider-

ation, as well as the external sources., There will be no infinite field 

problems b~cause Dixon always assumes his particles are extended bodies. 

However, the problem of motion has not yet been fully solved in this way 

since a scheme for satisfying the motion equations without knowing the fielas 
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a prior~ has not yet been given. The multipole approach is interesting 

because of its invariance and because of the ability to sidestep the questic 

of coordinate conditions. 

Although the EIH method is excellent for the type of problem found in 

planetary orbit calculations, for instance, it is not at all suited to 

calculations of intense radiation. This is because of its assumption of slo~ 

motion which implies weak fields, since strong fields accelerate bodies to 

high velocities. But the weak field assumption means the observer is always 

in the near field region, where it is extremely difficult to distinguish 

radiation from induction phenomena. Another type of approximation has been 

made, the 11 Fast 11 approximation. (See for instance, Goldberg, 1962) This 

method extends the weak field results by assuming only that the potential 

m/r is small, but that v/c is not necessarily small. This scheme is still 

unsuitable for calculating intense radiation from bound planetary orbits, 

but appajantly can give correct answers in the case of near miss hyperbolic 

orbits, where the radiation may be fairly intense even though the fields 

are not strong. 

Recently, Carmeli (1965) has given methods of finding the equations of 

motion by assuming that the metric can be split into a part associated with 

the particle and an external field. He obtains the solution to the motion 

as a sum of powers of the mass of the body under consideration. By making 

suitable assumptions, both the EIH and the tast approximation can be obtainec 

from Carmeli's results. Furthermore he has been able to show that some 

strange, apparantly antidamping, terms found by Havas and Goldberg (1962) 

are exactly cancelled by some more obscure terms which had previously been 

neglected. However, as Carmeli has pointed out, the physical interpretation 

of the terms that appear in these equations is still confused and more work 



remains to be done from this approach. (The problem of equations of motion 

is still lively even in classical electrodynamics. See Kaup, 1966, 1967) 

We have given this sketch to show how the problems of coordinate condi 

and equations of motion are interelated, and to show how the treatments of 

equations of motion make certain assumptions about gravitational radiation. 

Of course, assuming that there is an EIH solution which to first order is 

Newtonian motion postulates that there is no strong radiation likely to 

disrupt the system while it is being investigated. The separation into 

slow motion and waves so that the waves can be excluded in these approximat 

schemes is very similar to the separation we will discuss in Chapters III 

and VIIlbelow. First, however, we will give an account of the other 

viewpoints on gravitational radiation~ viewpoints which are far removed fro 

the questions of equations of motion. 



Chapter II.Review: Gravitational Radiation 

a) Exact Gravitational Radiation 

There is as yet no example of a vacuum solution to Einstein's equations 

which represents a spatially bounded source emmitting gravitational radiation. 

There are several reasons for this. The nonlinearity of the gravitational 

equations is the notorious complicating factor. Expansions of the Fourier 

type are excluded (plane waves of finite amplitude have infinite effective 

energy) and the apparatus of the classical electrodynamics approach, which 

has after all only yielded precise answers to this type of question recently 

(Bondi, 1960, Misner and Zapolsky, 1966) in the simpler electromagnetic case. 

cannot at all be applied to the nonlinear gravitational problem. The non-

linearity exhibits itself in a charad:teristic way, in infinite energy densitiel 

As pointed out previously, in trying to fin~ the corrections to a lineurized 

solution with waves if one attempts to apply a straight forward Fourier 

expansion in terms of the plane wave solution which can be obtained from 

the lineurized approximation, one discovers that the energy density in the 

wave causes a curving of the space near it so that a correction is needed 

which is large, in the sense that it has a term of order (~~)/f far from 

the source. These questions have been considered by Bondi, Van der Burg, 

and Metzner (1962) and also by Isaacson (1967). 

The situation is much simpler when the problem is highly symmetric. 

Cylindically symmetric waves have been known for a long while [see, e.g. 

Einstein and Rosen (1937) , Rosen (1937), and Wheeler and Weber (1957~. 

Recently there has been some sucess in finding other idealized exact 

solutions which contain waves (but not from a bounded source.) Brill (1959) 

has shown how to prescribe time symmetric axially symmetric waves, which 

describe an imploding- exploding (source-free) wave. He takes a metric 

form: 
(.1. I) 



in the instant of time symmetry t=O. If q1 is a fu:m:ction of bounded 

support then 'fJ is given by the initial value problem, (a> RH--:0)::. 0 

which is > ., LJJ 
tJ V .. T :: 

Brill shows that there are everywhere regular solutions (in the t:O 

3-space) only 

and only when 

w~ith an asymptotic form 

~~~~ )., everywhere for a 

t..., A(~)[ I+;~)] ) ~?0 ; 

definite limiting ~ •• For every 

14 

positive value of ~ less than this limit there is one and only one regular 

solytion which is asymptotically flat; this solution describes a localized 

gravitational wave whose energy (measured at infinity) is m. Araki (1959) 

has discussed this problem further. 

Work has been done also by Robinson and Trautman (1960) who have 
~~0. 

investigated all vacuum fieldsAhypersurface orthoganal non-shearing 

geodesic ray congruence. These contain (all) pure radiation fields with 

rotation free rays. These do however contain also the Schwarzschild solution 

so it is not safe to characterize them a~ entirely wavelike solution$. 

Robinson has pointed out that the Schwarzschild solution is a Ct advanced)+ 

(t retarded) solution of a wave type. Other exact gravitational wave solutions 

are given by Hely (1959), Peres (1959~ Bondi (1957), Takeno (1957), Kundt 

(1958), and Jordan, Ehlers and Kundt (1960). These waves, though interesting, 

are still iar from the solution which shows a finite source emmitting a 

finite amount of radiation. All of these solutions mentioned here have 

algebraically sp~cial Petrov type Riemann tensors. (See Petrov, 1954; see 

also the next section.) 
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b) Characterization of the Riemann Tensor 
.. ~ 

Ch~cterization of gravitotional fields in terms of distinguished (null) 

rays has been given by Debever (1959) and Sachs (1961). They have shown thai 

the Riemann tensor can be classified by the number and kind of null vector 

rays it admits ~n the sense of eq. (2.3) belo~ at each point. The basis 

of their classification is a theorem (Sach~ 1 196l) that in every empty space-

time there exists at least one and at most four directions kot. -F 0 such 

that 
~ 

k kO"' = o. 

The classification then proceeds by telling how many such vectors there are 

and whether any are coincident. This tensor method gives the same classifica 

tion as the earlier matrix method of Petrov (1954). 

We give the correspondence of types here since we shall later use the 

Petrov notation: 

Type I, completely general, four distinct null vectors; 

Type D, three null directions (one doubly degenerate); 

Type II, two null directions (each doubly degenerate); 

Type III, two null directions (one triply degenerate); 

Type N, one quadruply degenerate null direction. 

The interest in classification of the Riemann tensor is that the field at 

large distances f~om a bounded source tends to a type N Riemann tensor, 

as we mention in the next section,on asymptotic methods. 



c) Asymptotic Methods 

The most successful discussion of gravitational radiation from a 

finite source is thQ.t which utilizes the ideas first set out by Bondi, 

Van der Burg and Metzner (1962). These workers (considering only the axj 

symmetric case) developed the Einstein equations in a null coordinate syE 

so that outgo~ng light rays had a constant retarded.time, They fixed the 

t . C:.w~ . t d ld coordinate sys em ln an ~arlan way, an cou then write the metric as 

ds 2 = (Vr-1e 2$ - u2r2e 2 ~ )du2 + 2e2 ~ du dr 

+ 2Ur2 e2 "( du dg - r 2 Ce21 d92 + e-2 1 sin2e d¢'2 ). 

Here V, ~ , U, and--( are functions of u, r, and e. BY assuming flatne 

at null infinity, Bondi can choose coordinates u and e so that i 

positive as r+OO • There is then a coordinate patch near infinity where 

guu )' 0, and this is assumed to be the region at infinity surrounding a 

bounded source. As null rays are followed in to smaller values of r , a 

point is found where the neighboring rays intersect. An envelope is then 

drawn outside all the points at which such crossings occur, and the coor-

dinate patch described here is then the whole region outside that envelop 

The seven non-trivial Einstein equations can be broken into two grou 

The first set (the main equations) consists of Rrr=Rre = R
88 

= R¢'¢' = 0. 

Of the other equations, R = 0 follows from the Bianchi identities. ur 

Under these circumstances, both Rue = 0 and Ruu = 0 are satisfied ever 

where because of the Bianchi identities, if they hold at ~ r for all 

values of u and 8o The envelope where these supplementary conditions 

hold is taken to be the envelope surrounding the source, as described abo 

The main equations can be split further into two groupso The equatio: 

Rrr = 0, Rre =0, and e2 ( ~--{ )R
88 

- r 2R¢' ¢ e2~ = 0 contain only 

differentiation in the hypersurface u = constant (hypersurface equation1 

,_ 

The remaining equation contains ~ derivative with respect t( 
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'Z. 

u, of the form ~ ( ~ 't) . Thus these equations can be solved if for 

some u, ~ is given. The hypersurface equations then give ~ U, and 

v. When these are known, the equation R~ = 0 gives the value of 
sD 

for a later time step, and the entire solution is known. 

Bondi proceeded by writing asymptotic expansions for the variables 

u' v, ~ , and '( The requirement of outgoing radiation limits the 

asymptotic forms of these quantities. A solution can be found by substi-

tuting the asymptotic expansions into the main equationso 

The leading terms in the asymptotic expansion can be identified with 

the physical properties of the source. For instance, Bondi, et. al. write 

.J -1 
0 = c(u,e)r + ... 
v = r-2M(u,e) + ... 

The ent,ire solution (for outgoing asymptotically flat solutions) depends 

at infinity only on c(u,e). 

, The leading term of one.,of the supplementary conditions is 

M u = -c 2 
+ t(c + 3c cot e - 2c) , ,u ,e• ,e ,u • 

The quantity 

m(u) = tJ: M(u,e) sine de 

is the mass in the static case. Furthermore (by the supplementary condition), 

dm = -t J..,. ( c ) 2 sin e d9 du o ,u • 

Thus we find thai the mass of the system can only decrease and it depends 

only on the news function; an arbitrary function of two variables, whcih 

describes the modulation of the radiation sent out by the source. [rf the 
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situation w0re not axi~symmetric there would be two news functions, comple-

tely describing the two degrees of freedom in gravitational radiation. 

This has been dischlssed by Sachs (1962).) 

The methods utilized in the Bondi analysis have been used by other 

workers to investigate asymptotically flat solutions. The coordinate 

r is (within allowed gage transformations) a luminosity (L) distance; 

i.e. 2 L=L (r /r) • The use of such a coordinate- which is invariantly 
0 0 

defined in most physically defined situations-leads to some close analogies 

with electromagnetic radiation away from the source. One example is the 

peeling-off theorem, ~hich shows that an asymptotically flat space with 

unmixed radiation must have a Riemann tens6r that behaves asymptotically 

like (indices suppressed). 

where the N, II, III, etc. refer to Petrov types of the Riemann tensor 

(Petrov 1954); the left subscript zero means that these terms are covariantly 

constant aleng;the outgoing rays.(Sachs 1961; Goldgerg and Sach~, 1962). 

Other investigations of this type have been carried out by Newman and 

Penrose (1962) and by Newman and Unti (1962) and by Janis and Newman (1965). 

Here the emphasis is on the asymptotic description of the fields in terms 

Of the curvature tensor, instead of concentrating on the metric as Bondi did. 

The results are similar to those obtained by Bondi and his coworkers. 

Recent work from this viewpoint has been done by Couch, Torrence, Janis, 

and Newman (1967). We will discuss this paper below in Chapter III ~hen 

we consider the interaction of wave and "Newtonian" fields. 
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d) Canonical Formulations: ADM 

To treat gravitational radiation correctly one apparantly needs to 

specify coordinate conditions or to consider asymptotic situations (as was 

done by Bondi et.al. ) where the coordinates were mo1e easily pinned down 

by physical requirements, because one supposes the space is almost flat 

near infinity. 

A formulation of the problem of solutions to Einstein's equations 

which includes a discussion of radiation and which specifies the coordin2.te 

conditions in an unusual way has been given by Arnowilt, Deser, and Misner 

(ADMi 1962). Their interst was directed toward casting the Einstein equations 

into a form which makes the necessary field quantities explicit, and supresses 

the redundant field variables which appear because of the covariance of the 

theory. They consider a 3+1 separation of the 4-space and work in a 3-

dimensional spacelike surface. They separate the "Coulomb" terms which are due 

to massive sources, from the transverse~traceless parts of the metric which 

are the wave parts. The "natural" coordinate conditions are non-local 

ones, involving integrals over the whole 3-surface. The reason such con-

di tions are natural can be seen by considering the vector (electromagnetic) 
<tJ 

case. There one writes 

A = AT + AL - , where 

AT n 
0 

In = 

Thus A1 k = ¢,k and one can find the longitudinal (Coulomb) part A1k 

noting that 

~k AL k ~,k 
A lk : lk ; J0 lk 0 

)ne had then to solve this elliptic equation, which in flat space has the 

by 
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solution 

The gradient ot ¢ yields A1 - and by subtraction one obtains AT ,the ..... 
sourcefree part of A • .... 

The ADM coordinate conditions are very different from the local differential 

coordinate conditions ususlly assumed in the theory. [In the limit of 

short wavelength, these ADM coordinate conditions become local (Misner, 1967, 

private communication).] 

The ADM approach has given useful expressions for energy and momentum 

quantities when gravitational radiation is present. Asymptotically defined 

quantities can be constructed when radiation is present, and by investigating 

the behavior of the canonical variables, one finds that a Poynting vector 

can be defined, for instance, which has the expected vectorial transfor-

mation properties under coordinate changes that are asymptotically Lorentz 

transformations. 

The canonical formulation is of interest for the problem of quantization 
w~dt~" 

of the gravitational field. To this end ADM havejthe canonical Poisson 

brackets for the motion of the field. Other (earlier) work on this subject 

was done by Dirac (1950,1958,1959). Pirani and Schild applied some of the 

earliest of Dirac's (1950) canonical quantization procedures to the gravi-

tational field. Some recent work comparing the Dirac and ADM approaches has 

been done by Anderson (1966). 
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e) High Frequency Gravitational Radiation 

Brill (1964), Brill and Hartle (1964), and Isaacson (1967) have recently 

done investigations which give a better understanding of the behavior of 

short wavelength gravitational radiation. In particular, a stress-energy for 

the radiation can be averaged in a suitable way so that the resultant energy 

density is a positive definite quantity. The radiation's energy density arises 

as discussed in Chapter III below because of the nonlinear nature of the 

Einstein equations. When coordinate conditions are picked in which they 

can be compared, the averaged stresstensor agrees with the pseudotensor 

(for instance the pseudotensor given by Landau and Lifshitz, 1962, P34l). 

The averaged energy tensor is, however, invariant over a much wider range 

of gage transformations than the usual pseudotensor treatment allows. 

Isaacson has considered the following situation. Suppose g~~ is 

a vacuum metric which admits a coordinate system (Isaacson : Steady Coor-

dinates) such that the metric can be written 

= '(~ + E.hac~ 
where the metric is a slowly varying function of position and 

satisfies a certain generalized wave equation '0 1 
ho(~ ::: 0 in the space 

given by ~~~ • Further, we demand that the averaged stress tensor 

(defined by Isaacson) from h o<.~ should give the background Oaqt when 

inserted as a source into the field equations for ;( • We symbolically write 
OC'~ 

- €.1. < R~~ ( hlY)) (2.5) 

e.'o' h -= 0 
o(~ J (2.6) 
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where the numbers 0,1,2, •.• refer to the powers of E appearing in the 

expansion of the equation • Since we are interested 

in high frequency radiation, we assume that ho(~ is a rapidly varying function 

of position. 

The equations (2.5) and (2.6) must be solved simultaneously in a con-

sistent manner, since the equation for h~~ , (2.6), involves • 

But is given by equation (2.5) which involves the averaged stress 

tensor of hO(ti as a source. The radiation is causing a 11 Newtonian 11 field 

because it has energy. The "Newtonian" field simultaneously affects the 

motion of the radiation. 

The self-consistent requirement imposed by equations (2.5) and (2.6) 

means that a derivative of h must be of order E. -1 ' i.e. 'd"'h = 0( E _,.,) • 

This can easily be seen by the following argument due to Isaacsono Deriv-

atives of the background are , the derivatives oL h 

are , where L is a typical length in the background 

and ~ is the wavelength of the high frequency radiation; L ">"'7 ~ 

The "energy densi ty11 in the wave is then p ~ C.'"'(,_, E.' " 2 and the 

curvature of the background is -2 
~ L • Then we have, by the Einstein 

equations, 

E. ~ ~/1. 

If there is matter present which is also curving up the space the inequality 

holds; if the curvature is due totally to the waves, we have approximate 

equality, (we take L !!.l). This means that ~ ....=. 0 and 

~~ () are the same limit for a fixed background, and in further discussion 

of the Isaacson method we will write 0( ~ ) instead of 0( e. ) to emphasise 

this. 
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Isaacson has also given a method of solving the equations which is similar 

to the W.K.B. method (the solution is the first term in an asymptotic expan-

sion in ~ 
I 

). Isaacson has in particular shown that when the equations 

ar~ solved in this self consistent manner, the problems of logarithmic 

terms
1
mentioned by Trautman (1965) and discussed in Chapter I 1 in radiative 

solutions are avoided. Apparently the logarithmic terms are caused because 

in the linearized theory the waves move along flat-space null cones, which 

ar~ different by lar~e amounts from the physical null cones in the space 

which is curved by the energy density of the radiation. [The null cones in 

flat space are const=t-r; those in the Schwarzschild solution are 

const=t-r-2m ln(r-2m). This is suggestive of the source of the logarithmic 

terms that Trautman finds. Clearly a very large shift must take place to 

move the null cones to the correct position (at least as big as the first 

approximation itself) .1 
[The asymptotic methods of Bondi, et.al. (1962) avoid the logarithmic 

terms because they especially center their attention on the physical null 

cones of the full solution.] 



Chapter III. Wave-Newtonian Field Separation and Interaction 

One of the outstanding problems remaining in the Isaacson approach to 

high frequency gravitational radiation is the necessity of splitting the 

metrid into a slowly varying background with an easily identifiable wave 

in ft. One must first find a "steady" coordinate system lOefore Isaacson's 

results can be applied. 

This difficulty and the related one of the equivalence principle;: 

that the waves have mass and so curve up the space you wish to investigate 

them in, are questions that have somehow to be answered in discussion of 

gravitational radiation. Because of their central importance, we give a 

brief survey and review of this topic. 

The equivalence principle is actually the basic difficulty in finding 

a background space-- i.e. in finding available coordinate conditions. We 

are well aware that any gravitational field can be transformed away in an 

infinitesimal volume, simply by going to a free fall system. Thus when one 

of the pseudotensors is used to calculate the flux of gravitational momentum 

or energy' at infinity, one must be careful to take appropriate coordinate 

conditions since the pseudotensor can always be annulled at a point by 

coordinate transformations. 

One should point out, however, that by considering observers at infinity 

in their asymptotic characterization of gravitational radiation, Bondi, et.al. 

(1962) have been able to discuss the mass and momentum carried out to infinity. 

And the work of Newman and Penrose (1962) who discuss the Riemann tensor 

in tetrad frames clearly avoids such difficulties since they deal directly 

with invariant quantities. Also, the canonical formalism of A.D.M. fix the 

coordinate conditions so that energy and momentum can be ~efined in asymp­

totically flat space. 

24 
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The equivalence principle .cA~be stated in another way: that every 

energy disturbance has a mass and thus generates a Newtonian gravitational 

field. This has important consequences in the quantized theory of gravit-

ation. Recall that the cross section for the deflection of light (massless 

dG"' 'l. 
radiation) by a massive body, like the sun Jis JSi...... ('Y\"lG) (for a dis-

cussion, see Matzner, 1967). Then one can immediately estimate the differ-

ential cross section for graviton-graviton scattering. In the c.m. frame 

each gravi ton has energy (and momentum) E • One of them ;(a:· massless particle) 

sees a Newtonian field due to the mass of the other, E. The differential 

cross section is then One can even correctly predict the 

strong forward peak in the cross section due to the long range Newtonian 

field. Note that the quantum of action, t , does not enter. The detailed 

results for quantized gravity show that the term due to the equivalence 

principle, 

actually does dominate for graviton-graviton scattering:(DeWitt, 1967). 

This creation of a 11 Newtonian 11 field is of course the self-consistency 

aspect of radiation that Isaacson has pointed out. We have just noted that 

gravitational radiation will interact with a Newtonian field, no matter 

what energy is the source of the field. It will interact just as well with 

its own Newtonian field. This phenomenon is responsible for ntails". An 

example of such a tail has been given by Couch, Torrence, Janis, and Newman 

(1967) who considered an approximation scheme for the tetrad components of 

the Riemann tensor, starting from flat space. They construct a field which 

is to first order Schwarzschild with an outgoing wave pulse. To second 

order they can construct a solution which has a spherical outward moving 
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wavefront; ahead of the wavefront is quiet (but there is of course a long 

range Newtonian field due to the central mass). However, behind the wave-

front is a combination of ingoing and qutgoing radiation. A solution with 

only outgoing radiation is not possible to this order. The explanation is 

the backscatter of radiation off the static, Schwarzschild field, which can 

be entirely due to ,the energy in the radiation. The earlier work in this 

type of approximation scheme has been given by Janis and Newman (1965), 

and Torrence and Janis (1967). 

Isaacson (1967) has also considered this problem, starting from the 

Vaidya metric. (Vaidya, 1951, 1953; see also Lindquist, Schwartz, and Misner, 

1965). This is a spherically symmetric solution which has a stress tensor 

-r ~\~ '' where \iu. null vector in the outward radial direction. \ I"" ":: v c..1' J..y' r 

Thus this metric describes the flow of disordered radiation in an outward, 

spherically symmetric manner. Isaacson takes the Vaidya solution as his 

background ~ ~., he then postulates weak outgoimg waves ( hro which 

are transverse traceless. He shows that these waves give a stress tensor 

with the correct form (after averaging and using the WKB approximation) 

required by the Vaidya metric. Since the WKB approximation is a short wave-

length approach, Isaacson does find he can obtain this form for the Vaidya 

metric, which requires that all quantities depend on the retarded time, 

u ·• As Isaacson has pointed out, this means that there is no tail or 

' 

backscatter to this order. However, a detailed investigation of the (linear) 

equation (2.6) for the ~ll- shows that for finite frequency waves, back­

scatter must occur. &nvestigation of the propagation of tensor waves in 

the Schwarzschild metric via an equation of the type of (2.6) has been carried 

out by Edelstein (1967) and by Vishveshiwara (1967). A simpler situation 

Which contains all the interesting features of gravitational radiation is 



the behavior of scalar waves in the Schwarzschild field4 see Matzner , 

(1967). All of these investigations show that backscatter will occur for 

finite frequency waves.] Because backscatter will occur for radiation of 

finite frequency, one must conclude that the Vaidya metric is only a 11 geo-
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metrical optics" approximation to a real situation. The detailed structure 

of the solution for lower frequencies will of course depend on the detailed 

structure of the radiation considered. 

After this brief discussion of Isaacson's methods and some of their 

properties and the difficulty of a wave background separation, we suggest 

a few problems which may lead to an extension of his type of treatment. 

Since the 11Steady11 coordinate system is essential in his development, three 

questions are suggested. Given a candidate space,is there a "Steady" coordinate 

system; if there is, how does one find it; and can one define a 11 best 11 

background against which the wave separation is optimal? We give some 

tentative answers to these questions below. The verification that a back-

ground does exist is fairly straight forward, and in Appendix D we give a 

calculation which is an example of how to find a background metric when 

there is a wave present. Also in that Appendix, we give some tentative 

comments about the question of optimum background. The results o~ these 

topics are as yet inconclusive, ,however. 

This section has hopefully given an impression of the importance of the 

wave background separation.· The recurrent feature of these investigations 

is that in the slow/fast or wave/background separation, both aspects must 

be investigated. The problem must be treated as a coherent whole. The 

waves make. a background which interacts with the waves. There is so much 

interdependence that these two cannot be separated. 



Chapter IV. Symmetry and Killing Fieilids 

In the discussion in the previous paragraphs, we have emphasized that 

the problem of slow/fast separation must be treated as a coherent single 

entity. Nevertheless, the initial steps of such an investigation usually 

concentrate on one or the other aspect of the separation. 

This work originally began with the consideration of collapsing axi~ 

symmetric systems. From a Newtonian viewpoint, Lin, Mestel, and Shu (1965) 

have given solutions for the motion of pressureless nonspherical dust clouds 

undergoing homologous collapse. Appendix A gives the calculation of the 

gravitational radiation according to linearized theory for these Newtonian 

motions (and also some linearized calculations done in strong field situations 

to find order of magnitude radiation int~nsities). The results are much as 

might have been expected; non-relativistic initial conditions give little 

gravitational radiation. On the other hand, the radiation is precisely 

what on gets by order of magnitude estimates. There are no selection rules 

forbidding the radiation. 

However Birkhof~s theorem guarantees that there are radiationless 

collapses to strong field configurations, the spherically symmetric ones. We 

may thus expect that by taking only slight'ly aspherical collapse, only 

small amounts of radiation will be released. 

There has been some interest in a closely related problem lately. In 

particular, a large amount of work on perturbations of spherically symmetric 

static situations has been done by Compolattaro and Thorne (1967), and 

suggestions for similar investigations have been made by Hisner and Zapolsky 

(1966). The Compolattaro-Thorne method begins by assuming one is given a 

spherical solution representing a star at rest, say. One then considers the 

effect of small perturbations from the spherical state. Compolattaro and 

28 
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Thorne then sketch the derivation of the equations for both the perturbations 

in the vacuum and in the matter part of the solution. Even though spherically 

symmetric metrics are simple and even though one keeps only linear terms, the 

calculational task for the Compolattaro-Thorne scheme is formidable. For this 

reason, several investigators (Fletcher, Clemens, Matzner, Thorne, and Zimmerman, 

1967) have turned to computer calculation to eliminate the drudgery of 

calculation of the Riemann tensor and the equations of motion. The programs 

developed at the University of Maryland by the present author and R. w. Clemens 

are discussed in Appendix B. We also discuss the range of application and 

include some samples of th• type of results that can be obtained. 

The alternative way to obtain small radiation in strong field situations 

is to suppose that there is a pressure field which keeps the situation only 

slowly changing, eve!\ through the gravitational fields are strong. By 

keeping the motion slow enough, the radiation can be made as small as desired. 

The problem has been investigated by Levi (1965). He has found that one 

can start with an axisymmetric metric which is static and of the Weyl form 

(see, e.g. Appendix C for a discussion of these Weyl types of metrics). 

If one allows the situation to be time varying, then to first order in velocity, 

the diagonal terms are the same instantaneous functions of the source as 

they are in the static case, but the off diagonal terms are no longer zero; 

the equations 

give linear equations for them to this order. Thus, by taking this situation 

slowly enough charging, the motion can be completely described. One thing 

that Levy has found (following an idea of Bondi, 1964) is the expression 

for a "Newtonian Poynting Vector", which gives the momentum and energy which 

is transported even in this completely nonradiative situation. 
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The difficulty with the Levy approach, or with the mehhods discussed in 

Chapter I is that they beco:rne prohibitively complicated. Invariant methods, 

if they were available, would certainly be more useful because one expects 

they would remove the cl~tter of approximation steps and coordinate con-

ditions completely. They would probably either be completely inapplicable, 

or would yield a result bJ straight forward calculation. 

The best - and so far the only - invariant procedures are applicable 

when the space under consideration has a symmetry. Riemannianspaces which 

possess a symmetry are those in which a coordinate system may be found with 

the metric tensor independent of one of the coordinates. They are equivalently 

characterized by the fact that they admit a solution 
(IJ,<t) 

equation 
-::. 0. 

to Killing's 

( 4 .]., ) 

The preferred coordinate system mentioned above is obtained by picking 

coordinates such that f ~ (~)A-: ~(~• -0 of x • 

f3) 
The metric is they clearly independent 

Practically every calculation is simplified when the space admits a 

Killing field, and correspondingly, when there is no Killing field, the 

sheer c~lculational difficulties multiply. For instance, calcuiliation of 

the effects of small deviations from exact symmetry in cosmological sol-

utions must often be treated in an approximate manner. 

We have included as Appendix C a paper (coauthored with c. W. Misner) 

on the field equations for vacuum spaces with stationary axial symmetry. 

(These spaces have two Killing vectors describing their axial symmetry and 

time independence.) The simplifications because of the Killing fields are 

tremendous. As an example of the simplification available when effective 

use is made of the existence of Killing vectors,.one should note the simpli-

city of the derivation of the field equations given in Appendix c. This 
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can be compared with the very ted.Lous algebra of calculating the field 

equations directly from the classical formulae, starting from the metric 

form of equation (C.ll). The classical methods, although greatly simplified 

because neither the coordinate ¢nor t appears, cannot take full advantage 

of the simplifications available when there is a Killing field. When there 

is no Killint~ field, and the classical methods or equivalent techniques are 

the only ones applicable, the difficulties are truly formidable. IThis is 

another place where the electronic computational methods described in 

Appendix B can be useful). 

Conserved quantities arise from Killing vectors and the vacuum field 

equations in the way sketched in Appendix C. Komar in particul~r (1962) 

has discussed methods of weaking the Killing equations to admit spaces which 

are not symmetric, in order to take advantage of techniques analogous to 

those available when there is a Killing field. Although there are clearly 

some characteristics of Killing fields which depend on the Killing property, 

some of the uses of Killing fields, in particular their use to define ''con-

served" quantities, depends only on the fact that they are invariantly defined 

vector fields. (The 11 conserved" quantities defined by plugging an arbitrary 

vector field into Korman's formulae may be formally conserved, but may yield 

no useful conserved quantities.) Komar has suggested the following weakening 

of the Killings equations (to 11 semi-Killing11 fields) 

~ OL ~ Co(j~) : 0 
} 

He always demands that the field tend to Killing at infinity. 

Another suggestion by Komar is that the vector field lot 
tional to I:. J 0( where t = constant is a spacelike surface 

stasfies the equation 

L ; "' r:.jr -
' 

(4.2) 

(4.3) 

is 

and 

(4.4) 

propor-

i 



i.e., the constant t hypersurfaces are minimal. This has the advantage 

that it may be possible to discuss the existence of global solutions to 

eq. (4.Lr), since it is an elliptic equation. (Misner, 1967, private communi-

cation). However, in some situations, e. g. spherically symmetric collapse, 
(1963) 

Misner~has shown that the Komar object defined by using this minimal field 

(as a substitute for the energy which is defined for stationary situations) 

results in a quantity which is not conserved, and corresponds to the 

Schwarzschild mass only when the constituent matter of the collapsing object 

is completely dispersed. (Note that the Schwarzschild mass is well defined 

in the spherical case.) 

While the other suggestion of Komar-- that the field be semi-Killing--

seems to be a fairly weak requirement, there is no geometrical justification 

for the equations, in contradiction to the situation for the minimal fields, 

and for the vector fields defined in this work in the next chapter. 
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Chapter Vo Almost Symmetric Spaces 

a) Definitions and Interpretation 

Our discussion will initially be in terms of positive 

definite manifolds, but we indicate the generalization to 

spaces of Jvlinkowski signature. The treatment will be general 

in the sense that we will not have to assume the deviation from 

symmetry is small, although we may do so at times to make 

33 



interpretation easier. 

Our definition for spaces which are not symmetric and hence have no non-

trivial solution to the equation ~tAIII3)-= 0 is the following. We 

characterize the amount of symmetry in a (positive definate) Riemannian space 7?1 
by considering the minimum possible value of the expression 

0~ • 
' d.V- (~.I) 

Here is an arbitrary vector field, and the quantity is the ratio 

of integrals of scalar fields over the space. Since the metric is positive 

definite, is zero if~ - 1 is Killing. We have imposed the 

normalization condition in (S".l)_, dividing by the integral of the squared length 

of the vector, to exclude zero fields which are always solutions of Killing's 

equation. We shall take as our criterion for the "almost Killing" field 

that it minimize ~ compared to all other choices of the vector field. Objects 

like the right side of (f.IJ may have more than one stationary point, so we 

emphasize that the most interesting value of and the correspondingly 

most interesting vector field associated with it are ).. 
0 

, the smallest 

stationary value, and I , the "grouhd state" vector field. 
0 

~ standard arguments, assuming the compactness of ~ , or restricting 

the class of vector fields to allow neglect of surface terms at infinity, the 

variational problem defined in equation(5,&)is the same as the problem of 

finding the eigenvalues in the equation 

-::: 0 J {5. 2) 

and corresponds to the smallest (for positive definite spaces) of these 
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The ground state vector field 1 may be characterized in the 
0 

follo\1ing way. In a coordinate system in which ~ - , then 
0 

, and 

:~ 
dS 

= ~(AIIC.) 
eJt·i (S.J) 

Here ds is an element of proper length along l It is apparant 
0 

that(,5.1) is an integral "average square" of this quantity, but the "average" 

of the ratio is given by the ratio of the averages of the numerator and 

denominator. Even though we have a small eigenvalue it is difficult 

to use .A 
0 

to put bounds on the quantity (5'.'~)') since -0 
may vanish at 

some points for global topological reasons (for instance nonsingular vector 

4 fields on a sphere must vanish somewhere). The integral average (5. \) thus forces 

us to accept behaviour which is locally rapid (e.g. schematically a 

smooth curve with a few kinks) as being smooth in a global sense. On the other 

hand, the vector field defined by equation (5,1) obviously chooses the coordinate 

lines for which give the slowest dependence of 
Cl 

on X , in SOW\e 

global sense. 

For the moment assuming the existence of solutions, we can get an upper 

bound for the quantity A 
0 

By- definition is the minimum value of 

the integral (5.1) so any test function gives a bound. l3y considering a geodesic 

patch of radius L at some point in ~ , and by taking a test field: 

t -::0 otherwise, 

it is easy to estimate that o ~ ~ [ t J ~ a L ·l. (MH H M ~ 'l. J , where IY'\ 

is the dimension of the space. [Thus, on the surface of a cube of edge length Jl 
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for instance, the maximum possible L is ,Q. /[i and A( cube) 
0 

~ .J..·l..Q.-2 . 3. LJ -:::. 4 '8 .Q. -2. ] The size of a geodesic coordinate patch is 

roughly given by L-l. N R ..•. (the Riemann tensor), so we have a rough 

bound for ~ in terms of the curvature. 

It is important to note that estimates of this type hold for the eigen-

value ~ in any space. 

turns out that ~ <<. 
0 

L-;t. 

The idea of "almost symmetric" enters when it 

, where ~ is a typical curvature length of the 

problem. We will present some examples of this type of behaviour in Chapters 

VI and VII below, but a simple example is the unit 2-sphere, where A= 0, 
0 

while the only available length is the radius (=1). 



b) Existence and Differentiability for Closed Positive ]efinite Metric SDaces. 

For the rest of this paper, except where noted otherwise we will assume 

that we are working with a positive definite Riemannian Coo ~ 
manifold ''{ 

and we assume that J11 is compact or that boundary conditions are chosen so 

that integration by parts is possible with neglect of surface .terms, We denote 

the Hilbeli't space of all square integrable vector fields C., on J'Y{ by \L ( fYl) 
The norm is 

( 5 d V l:_ · t; ) 'I "L - .... 
< 00. 

The demand that A [ ~ ) be stationary yields, as usual, a second order ..... 
equation: 

~ [ ~ ~ ~ArA Jv 1 ~ ~ r ~{'AilS) ~(All~) J vJ 
-a ~ ~ tA ~~A cl v • a ~ ~tAilS} ~ ~AUB ~ v 

r , ~ cAns> c ~ ) \ v : 'J..~( ( ~tAU8~§~11\S- ) liB <)~A d . 

The compactness of ~ (or the boundary condition at infinity) makes the first 

term on the right vanish. Then, since is an arbitrary variation, we 

find 

(5, ;t) 

We will take the definitions (S.I) and (5.2) to be the defining equations for 

the prefe~ed vector fields in ~ Equation~ S'.l)is the generalization 

(because of the term A ) of the second order equation equivalent to Killing's 

equation given by Yano and Bochner (Ref. 2, p.57). It is clear that a solution 

to (S.2.) with A e:: 0 is Killing and vice versa. In Minkowskian signature 



me tries, the stationarity of IS.l) still implies (5'. 2.) but the equivalence of (5.7.) 

for A~ 0 to Killing's equation no longer holds. 

The derivation of equation(5.~ shows that the operator 

_D_ Fl 8~A) .o_ = -£; A 
- Dx~ ~ c:. \JX. F c. (5. 4) 

is positive. (The notation is D. ic. = 
Dx 8 % c. 11\!, . ) It is positive definite 

if there are no Killing vectors or if we exclude them. Also, because of the 

compactness of J11 , or the boundary conditions at infinity, /:) is self 

adjoint Oil li( Jrt) 
It is clear that there are at least as many solutions to (S.l)as there are 

Killing vectors. We are of course interested in the case where there are solutions 

which are not Killing vectors. Consider only the suospace ll1
(')'Y}) c. lL.(1Y/) which 

is orthogonal to the finite number of Killing vectors in /rl_ The operator -cB 
is then positive definite and in fact is strongly elliptic~ We may then apply 

the theorem quoted by Kodaira and Spencer (Ref. 6, Theorem I) for compact fY(_ to 

find that -/9 has a complete countable set of differentiable eigenfunctions e" -
with real eigenvalues whose only accumulation point is + 0() (The completeness 

I !11 - OD 
means, if t differentiable, l/J €: /L ( 11?) then :r= Lk:l .,_ .,. where 

O..~t :. f cl v '1:. ~t._ ' and the series converges in ~em) . ) 
Thus we have all the expected "nice" properties of the operator - /3) on the 

compact manifold Y11 
f 

In particular, we know. that a differentiable ground 

state solution exists. On compact manifolds, then, there will be uniform -0 

bounds for the quantities and 
~ ~ (AII6) 
~Ana ~ and for all the other 

derivatives of r .. 
The quadratic form in (S,l) may be written 

}:'(Alll3) r c ABMN ~ 
~ StA\18) :. ~ Al\8 ~ M\1 N 

where (5~ 
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The most general positive definite form with these symmetries which depends only 

on the metric is 

) 

Although the 
~or fA.> o J r -addition is non-negative' even in spaces of Mink:owski signature~ 

the equation analogous to (S .2) 

~ A 1\8 nA 
~ 118 

"' t B 
\ liB < \ + r) .. ( R Ac. .j. 01 (5.t) 

is not qualitatively different from (2). Dealing only with the term gives 

~ -conditions only on the divergence of , and allows too many solutions. If 

we have any 
CABMIII 

contribution, then the equation is qualitatively like (S',l), 

and the only criterion for the choice of fA seems to be aesthetics, which 

suggests fA= 0 , as we take here. 

c ) An Analogue to Elas ti city Theory. 

The tensor defined in(S.S)is formally similar to the elasticity 

strain coefficients given by Green and Zerna7 for isotropic elastici~ in a uniform 

medium (with Poisson ratio identically zero because we set f":. 0 ) • The similarity 

of the equations to an elasticity theory is no accident. In elasticity, the strain 

components Ltc~Jk) measure the Lie derivature of the metric along the displacement 

field t.A - This can be seen physically in a coordinate system such that there is 

no relative coordinate velocity between particles. (This means that the field UL 

must have constant components in these coordinates.) Then the metric gives the 

distance between particles, and the strain tensor lS ~&:j ,cz.I.A Q., which is £"'- d C:j 

in this coordinate system. 

The minimization problem set here is in fact completely analogous to the 

eigenvalue problem for vibrations of closed elastic shells, under the boundary 

conditions of sliding rigid contact (the type of boundary condition at the interface 
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between a turning shaft and an immobile bearing). 

To see this, consider a thin shell of uniform density, and which is 

-
v- (I"\ I l fC,l) ' described by a middle surface ' o v ~nd at each point a thickness 

;;L h (8\ g:t) measured along the normal rYI (81
, 9') at each point. The surfaces 

........... 

of the shell are at~~ • We assume linear isotropic elasticity and define 
0.. 

an ordinary Cartesian frame X (labelled by latin indices from the beginning 

of the alphabet), and an intrinsic coordinate system adjusted to fit the 

shell. The intrinsic system will use as coordinates the 8 1
) Q 2. parameters 

e3 ' giving the middle surface and defined as the distance along the 

normal to the middle surface. Every point on the same normal nA(~1 ,9£)will 

have the same coordinates e ot. ,, its coordinate e.a will be the distance 

along the normal to the middle surface. (We will have Greek indicies 

running and summing over 1 and 2.) 

The middle surface will have some metric form ~«~ which gives the 
l1) 

formula for length d~ in terms of the coordinate differentials: 

Let 
ciQ 2

:: ~o(, d ec:t dB IS 
(in the middle surface). 

K o((3 -::: (~)at:~ 
be the second fundamental form of the middle surface. (The covariant derivatives 

denoted by a colon are in the 3-space endowed with 

and connection rj"-!1..:: t ~ i.j( ~i.k1 R. + ~l.1 1 k- ~.l\C. 1 L. ) 

the metric q oat.(', 

; t<. D(~ so 

defined is a 2-tensor defined on the middle surface.) The metric 
((!-,) 

throughout the entire finite thickness can now be written (exactly): 

~ 0(~ = ~ « ~ - ;t e3 k otf, + ( G3) l. K "' ~ I< >.13 

~0(~-=0, ~11~ :\, 

Here 1<:: 3 )<r I< o(cr • We will denote the covariant derivatives with respect 

to this filiat space metric also ~by a colon, since ~il~ ~ij on the middle 

surfaces. 



i) The Natural Frequencies 

We now turn to the eigenvalue problem: 

z~b,h +W2.fb=o 
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(5.7) 

for a finite thickness shell, which is equivalent to finding the stationary 

points of the quantity 

~l~J = 5 'to..lo(I) ~o.,b dV 
5~\~o.dV 

• (5.8) 

Here ~o.6(~) is the three dimensional stress tensor, and the comma denotes 

partial derivative. 

In intrinsic coordinates, the differential equation (5.7) is 

t ij: j + w2. ~ i. -= o · (5.9) 

Consider only the shell component of this : i = o<... Our assumption of 

sliding contact makes the i = 3 component of (5.9) a constraint equation 

which gives the normal forces in the motion. We will assume it is satisfied; 

the existence of a solution is necessary for what follows, but its explicit 

form is not. 

Writing equation (5.9) out in full we find 

I).. ota r~ z tliT r ~ t O(IJ (.. )~ ... r-u- +- ~~ 

.... e:o<..s~3 ~a ro(~J '2:"3 
0. 

(5.10) 

The Christoffel symbols r l j~ are defined as 

~Q.. 

r~tc.""" ~ ~ ( ~ st.j," + ~ RICJ,i - d l<j J.ll.) 

In the intrinsic coordinate system, r~~ -; f 3\t.~-= a • Of the 
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remaining quantitiec in (5.10), must tend to zero with , since 

otherwise our boundary condition that 

term 't ~41 3 would become infinite as 

:. 
at e ::0 t h would mean the 

The other quantities in 

(5.10) are finite, and so we conclude that any finite frequency solution 

will have 't 01~0 as h~o. 

At this point we must explicitly consider the form of the stress tensor 

for isotropic elasticity. 

where fA' is the shear modulus and Y\ is Poision' s ratio. 

Consider the 3-3 component of equation (5.11): 

't33 = t-J' ( l~3)caJl ~ ~)1 ~33 d3?:.) ~3:"3 -t ~-~ ca33 do(~ f ()(!\) 
Now ~ <; r" ~ 'f • So we see that 

S3:)::: S3,l - .33 Sk. :: ~ 3. I 3 

must vanish in the limit as , or else the eigenvalue, A 

[computed via the 

the term (f 3 ,~) 2.. 

of the shell. 

The result on 

covariant form of (5.~), say], will become infinite, since 

will occur, and we require that ~ 
3

-=- 0 on the surfaces 

and 
~ o( 3 
L was obtained by requiring ~that the 

corresponding frequency stay finite. We will give examples of vector fields 

in subsection (V.c.iii) below which do in fact have finite X and thus 

bound finite fre,quency eigensolutions. Physically, we are excluding in this 

way shear and longitudinal waves which reflect back , and .forth between the 

two bounding surfaces of the shell. These waves have velocity c..~ tv Jt;:"• 
V&. 

and c ... ~~,~ (at'' (H·>1)/(1-2.>t))respec ti vely ~ Thus the frequencies corresponding to such 

motions reflecting between the shell surfaces are of the order ~ttv~/h. 

So our shell theory equations and conclusions only hold for u.)'-(< W/ . 
This is a restriction on either the highest frequency or on the largest 

thickness we can legitimately consider by shell methods. We shall see, 

however, that there are a countably infinite number of eigensolutions with 

frequencies independent of ~ for small. h , so we can always carry the 



discussion of the spectrum in terms of the shell quantities arbitrarily 

far if h is small enough. 

ii) Reduction to Surface Tensors 
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To obtain surface equations we use the form (5.11) for LCI((3 and integrate 

(5.10) through the thickness of the shell. With the simplifications we have 

found so far, we obtain, for h ~0 

h-• f ~ f"'f/_ (I)- at~ + rot 7: ~r +-o -::. j_" 'J y~ t.. )~ \3(f 

Here d-
ttot~ 

is det ~( j , ~ == det ~c(~ """" Je..t ~ c:j 

contain terms [see eqn. (5.11)] 
Q.~ 0(~ .33 t • 
\-~yt d 0 S3,~ ' 

the integral of the term vanishes as h 4 0 , for 

{5.12) 

• The components of 

5_hh ~ ~O(jl f,,l d81 ~ s_: ( q r~~ ~),> J93- ~ ( f~ ~~B),J t J Q3 

__, 0 'SLn<.€ } ~ ..:>J 0, 

~The term S~ fi '1:ot31 ~ d<93 , wh:ith was ommitted in (5.12), vanishes by a 

similar argument. 1 We will denote 

~ .3>.3 term deleted by "t ~(!::. , and 

c.- ol ~).a- -= c c((l )If'" I M and write 1 

surface). 

Define a surface vector 

~tt = ~-· ~ h ~ o( ~ del 
h) -k ~ 

and a surface tensor 

the quantity which is 'tCJI..B with the 
((OI~~<TJ) /").J,OI.\3>_ c((a(?>)(~cr-)) f 

define C by t. - S' (~~IT) j 

(the restriction of the middle 

(wLU 

h't ~{!~ = ~-· s_: 'L.'"'C3 [e;~ de3 . 
Now (using the continuity of d'j and its derivatives) 
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where we denote by 
-«. 
~ ~~ the Christoffel symbol in the middle surface, 

we have used the fact that ~'3..::, 0 as k ~ o , and we have assumed that 

the derivatives of k become negligible as the thickness vanishes: 

Thus 
£" o((3 ";;;. 

-- c..-"'~ )I C) s:: S()dcr), 

where the slash denotes the covariant derivative in the middle surface. 

The integr~ted equation (5.12) then becomes, as \., ~o , 

W~ io( .f- '1: t(~) (3 + ~ \..;I r_: (r '\!»~ t (3<3" t- r ('3<:f(!l l cliT) Ji1~ d e3 J 
\,..40 

(5.14) 

with a surface stress tensor given by (5.13). Clearly equation 

(5.14) is equivalent to a two dimensional integral problem: the stationary 

points of 

5 t«~ ft.o(\f>) J1 c!e' J~1. 
S lc( f.t ~ de'de~ • 

(5.15) 

We note that if we substitute the 2-dimensional version of eq. (5.5) 

into eq (5.13) for ~ ~~ , we get precisely the 2-dimensional symmetry 

problem equations from (5.14) and (5.15). 

iii) Finite Frequency Vector Fields 

To complete this discussion we show that there are some vector fields 

which have finite frequency in the limit ~ -7 0 • For take ~ 
S" ~ -::: 0 , and 
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at each point of the middle surface define ~ .x 

~ .._ away from the middle surface by 

~cJ,3 -: \:. rcr(l(~' () 
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arbitrarily, but ~ine 

Then , and the mimimizing integral [the covariant 

form of equation (5 •. B.)] is 

~h ~ ~ - CC(~)o.l3" ~ (oi;SJ t 0 :o-l d e~de I d 6 1 r~ 
s~~ t .. ~ot~ d83 c!G'deLfO;. 

which clearly has a finite limit independent of ~ 

terms involve e ) as ~ ....l? (.) : 

~ co(~).l3" ~(oC.\fl) ~(~1(1") Jfi;)Je'Jet.fi 
l ~ell tt!> ~~~ del c:~e' de'~ 

(since only the metric 

(5.16) 

This limit is the same as the quantity given by equation (5.15). 

iv) Completeness as 

We have quoted in Section V.b. a theorem which proves the existence 

and completeness of solutions to equation (5.2). We give here a heuristic 

verification of the completeness of the shell solutions eigensolutions of 

(5.14) and a discussion of the approach to this completeness as the shell 

thickness vanishes. Suppose 2:;. is defined on the middle surface. We can 

define an associated vector field C, i. defined in the finite thickness 

shell by! 

and~~Oi 3 =- r:~ t;o< 
J 

This vector field then has 

We can expand i; in terms of the complete set of eigensolutions of the finite --
thickness shell. We have shown [equation (5.16)) that the quantity A k [?; J 
associated with this vector field has a finite limit,('l.)~[ ~J (J.AJ h4o. 

""" 
Consequently, when ~ is expressed in terms of the normalized complete set -

for the finite thickness shexl, 

(5.17) 
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we have the energy 

<.. oO. 
(5.18) 

We have seen above that vector fields ~ which have a non-zero third 

component or a non-zero stress component have corresponding 

frequencies which diverge at least like as ""' -") 0 • Thlils, the 

coefficients which multiply such fields in equation (5.18) must vanish at 
I 'h.. I 

least as h • Thus, as ""- ~ 0 the expansion is entirely in terms of eigen-

solutions with ~J and '(t.l!) vanishing. In this limit, we find ,integrating 

equation (5.17) through the shell thickness, 

C, = G a"" E-cM, 
""'""" ""' the completeness relation in terws of the shell eigenfunctfuon. The 

physically interesting point is that finite frequency motions become motions 

only in surfaces which are pa~rallel to the middle surface, and with no shear 

between such surfaces. This means that in the limit of thin shells with 

these boundary conditions, every point in the shell describes a motion given 

by the surface equation (5.14) and in addition, all finite A motions are 

described by expansions in the eigenfunctions of equation (5.11~). 

An example of the situation we visualize is a closed 2-surface whose 

symmetry we wish to measure. We form a ~rtctionless elastic shell over the 

surface (with 2-dimensional Poisson ratio :0 H~~ f"=o), with the shell initially 

unstrained so that it resists both compression and expansion. Then the 

asymmetry of the object is measured by the square of the fundamental 

oscillation frequency if we perturb the shell. If it has a neutral mode, 

the surface has a Killing vector. 

That shell completeness follows from 3-space completeness has just been 

shown and we should note that all these results on the solutions for 2-dim-

ensional shells can be generalized for any finite number of dimensions. 

Furthermore any Ihemannian manifold can be embedded,in a Euclidean space of 
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sufficiently high dimension (Nash 1956). And the existence and 

differentiablity and completeness of solutions for elasticity has been 

carried out for arbitrary number of dimensions. This is a sketch for an 

alternate herristic proof of the theorem of Kod.itU"a.and ~pence:r quoted in 

Section (V.b), for the existence and completeness of solutions to equations 

(5.1) or (5.2). 
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d) A Theorem of Yano 

Afte1· the qualitative discussion of the preceeding section, we give a 

precise result. In positive ~efinite metric spaces the eigenvalue is 

clearly non-negative. But it is possible to obtain a better lower bound in 

some cases by noting the following. 

We have 
. 

r ~(AilB>~ dV 
j ~ 5 cAn!) 

:I= - s ~ (I' 11.8) 
S" 1113 

The second term on the right vanishes by the compactness of the space or 

by the boundary conditions at infinity. Further, the integra~of the first 

term on the right is 

'eAII6 ~~IIA 
r ''s + ~ ue. 

Thus, if the space is compact or if we impose stronger than usual conditions 

on the vanishing of at infinity (noie this is an unsymmetrized 

derivative): 

Consequently, in positive definite metric spaces, 

s ( ~ ~A'-- + RA, ) ~ c ~A d v )I 0 . 

This holds for any vector ! and the associated )[ €] • In particular, -

This is an improved bound in those cases where R A c. is a negative 

definite gradtatic form on the manifold;:~ 

~Af<Ac.fc. ~ ~ ~ttt.C: fAfA 
for some positive number ~ I(~(.(.C: and for all vectors ~ ...... and all points 

of the manifiililid. (With this sign convention a hyperboloid has constant 



negative definite 

Thus we have the lower bound for A 
0 
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(5.19) 

This derivation is a generalization of that of Yano (Ref 2, p.39) to 

prove that there are no Killing vectors on compact manifolds if RAe.. is a 

negative definite quadtatic form. The advantage of the present formulation 

is that it gives a criterion, ~ , of the deviation from symmetry. 



e) Null Killing Tensors 
~(olj\3) ~ 

In spaces of Minkowski signature, the quantity 1 ~~~~) may become 

negative, or may be zero even when 't-;~J is not zero This complicates the 

application of the methods described he1·e to simple exact solutions to Einstein§ 

equations, such as those solutions due to Schwarzschild, Kerr (1963), and 
I "2.J 13 

Vaidya,. In each of these solutions, there are vectors which are not null 

but whose symmetrized derivative is a null tensor. They are the Killing vectors 

in the flat space which is a base metric for each of these solutions, 

in the sense of equation (5.20) below. 

In fact, each of these solutions is a member of a general class of metrics 

which can be written 

(5.20) 

where b o((3 k(.( kf.t ~ 0 ' 

and hence is also null in the full metric. Suppose z; is Killing in the 
...-.. 

background. Then there is a coordinate frame such that l; has constant 
""" 

(contravariant) components and bll(~, f b, f: 0 • Then in this coordinate system, 

2. ~tel;~> = f '!; f<ar k~ = ( l<o( k(3 ) J/ ( p 
"""" 

) 

and, since 

and 

= 

' 

.. 
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the square of is 

It is easy to see that has vanishing trace also, so the 
pcu.~ 

possibility suggested in Section Va) that adding a Af'-term would lead to non-

negative results is seen to be inapplicable here. Metrics like (5,lO)but with bCI(~ = 

flat have been studied by Kerr and Schild!1 ~} 
t-(Q(j 3) 

In the case where ~ becomes a null tensor for some null vector 

, we may define a limiting process. Let (( r be a (so far arbitrary) 

timelike vector. Then define €>0 

The first term is zero by hypothesis, as is i" r « Thus 

~ )1 Y/ cot;~> d V ~ o I ( oe i el d V 
~ ~ (ol til> -- (olal • 

E..:.o ~ ytc< Ylct d '{ Scot~ll{dv 
Since a timelike vector is never orthogonal to a null vector, the denominator 

is always positive. 

v' 01,.. It is not in general clear whether the limit is unique. However, if 0 

tends to zero sufficiently fast at infinity, 

~ Yoe ~Co<;~)j\\'JV 
)'t~fatdV 

(S.'ll) 

If is a solution to , for some eigenvalue 

~ then even if l~ is null, we can define the characteristic integrals 

by ~ = L.H.S. of (5.~1)for arbitrary timelike vector '(( t-' which goes to zero 
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sufficiently fast at infinity. In this case the limit in the integral definition 

is independent of the timelike vector used in the limiting process, and the 

integral definition agrees with the eigenvalue given by the differential 

equation. 

On the other hand, if the limit is , independent of the timelike 

vector {)0( (so long as '(a< vanishes sufficiently fast at infinity), then ~ ....... 
is clearly a solution of the differential equation, by (~~U So, for even null 

vectors, we can define a modified integral which is equivalent to the differential 

equation" 



'Chapter VI. Examples 

a) Exact Calculation on Torus for ~ , .{. 

The metric for a flat torus is c::h' \':. d x 'Z. + J 11 , where the 

points (X+ I~ d) , (X'd) , and (X J '(I+ I) are identified. Differentiable 

functions on the torus must be doubly periodic with unit period. 

We consider a curved torus with metric 

Here points are again identified as above by their coordinates, and is 

periodic in ~ with unit period. 

This space still has a Killing vector giving translation in the x-direction. 

We will consider vectors which are orthogonal to the x-Killing ground state, and 

to simplify algebra we will in fact consider only vectors pointwise orthogonal. 

Then it is clear the ground state vector itself will not depend on x and we 

write: 

( i) i (~I() \1) :: (o> -¢' 

J - e lA (1!) 

The eigenvalue equation cf3~c..~v"~ ).~~ = 0 becomes 

~ -•Is ( ~~ + (~ -..L ,cr )l-41 ~o (' • I) Sf cl 'a 'L .I '-

We desire a "wavelike" perturbation which makes (b.l) explicitly manageable. 

We thus pick t so that (6.J)i is a Mathieu equation. 
()lf/5 

itself be a Mathieu function; since r is 

This requires that 

~ ~CIC. , we must take f 
to be the only nowhere zero periodic solution to Mathieu's equation, namely:1~ 

I - s' c.os ~ k ""' 4 0 
+"' 

Here k is tV\ 1T" , since the basic period is unity, and E. , which is 

assumed small for this expansion, is the amplitude of the small waves in the 

metric component. 

53 
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Now f is inserted into ( b.l) which itself becomes Matheiu eQuation. ~ 

a general theorem on the Sturm-Liouville eQuation
16 we know that if there is a 

solution with no zeros, it must be the ground state, which we seek to find 

We are again forced to take a solution C ec , and obtain 

and 

ceo ( k 'd ) E I 4 o ) , so that 

v-"~u ~ 

'l L'L 
~ ~·· 

2. 

\11\ k I + ' · - c.os 'l 1.4 .&. . • • So d 

are the solutions found from the metric perturbation 

From our arguments in Sectionl{~1 we expect ~ ~ to be some sort of 

average derivative of. the metric. We see that this is the case, since 

A 
0 

The factor in is to be expected, because the flat torus 

is a space which minimizes so any deviations would be like The 

term k2. 
suggests that it is the "energy content" of the waves which determines 

the size of · A This ties in with our estimates of made above in 

terms of the Riemann tensor. It is interesting to calculate the scalar ~ 

which completely characterizes the curvature; 

da.cr J '2. R = - 4 ( -;r;-,. • Q\ ( 5 ) ) 
Q cld 

For small amplitude waves, 

The ground state thus gives a much smaller value of (by a factor £ ) 
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than our previous crude estimates yielded. On the other hand, if we average ~ 

we have 

l<RI\= which is twice the eigenvalue 

A In this case, at least, the ground state eigenfunction is sampling 
0 

the average (over many wavelengths) of the disturbance in the space. We shall 

see this is a general phenomenon, and shall meet.it again in the application of 

these ideas to spaces containing gravitational radiation, which we take up in 

Chapter VII. 

b) Linearized Gravitational Waves. 

One example of a space with a null Killing vector is flat space with a 

plane weak (linearized) gravitational wave on it. We shall give a schematic 

derivation here which shows what happens to the Killing vector as we go from 

an idealized plane pulse to a situation where there is a spread of directions in 

a wave packet. 

The metric in this situation can be gaged17 so that 

Jsz~ ('?.,fA +~c~,a)dxo(dxli 

where 1 (' ~~·~-dklt Jj 
""(\ b -= j ho. b < ~) e d < 

We suppose this wave packet is fairly well localized at t ~ 0 , and that it 

has center moment1llil b = l kc \ l 
The coefficient of t in the exponent can be expanded about ko -

\ k l - ( 6.2.) 
• 

A. 
The coefficient of l in this expansion stops at the linear term 

' 
because 1 kol is linear in if is parallel to the 

wave packet will thus not spread front-to-back. 

Since and (because 
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) we find to the order written out in (6.'L): 

(6.a) 

Here h is a typical is the two-

dimensional Fourier transform of h (~' 0) The integration can be carried 

further to show that the lateral growth is via diffraction Green's functions. 

However, the form (,3) is more physically transparant. We find: 

~ ~ r Jk dk ~k,cX H~k'ad -C:(k~~l.+k:t)t.j\ko\ 
~1! j " ) e e. 

=: ~ k, h 
) 

(defining k, and A k. ). 
and /J. K.L are functions of position and time, 

we will assume they are some representative constant values, and we will take 

a test vector with constant components: ~i:::~ ~l = b 
I We then have 

• 

And 

We consider only the ratio 

II d A" :: 
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b 
It II 

without integrating. We take 0.. :=- 1 , = 1 + E:. The minimum of the ratio d ~ 

is then given (for ( 6k.L )~ ( \(
1 

ko) -I small] when 

€ = 
Thus the minimizing vector is timelike and tends to the null vector as (Ak~, )'Z. ~ 0 . 

The value of the ratio is, in this limit 

''d~" .., - • 

The eigenvalue tends to zero if the wave vanishes, or if it becomes more nearly 

plane fronted. The deviation from symmetry goes quadratic in both the amplitude 

of the wave and in the quantity 



Chapter VII. Applications to Short Wavelength Gravitational Radiation 

Let us consider the values of the functional in one of the 

Isaacson (1967) metrics which have the form (see Section II.e ) 

where 

J 

and 

Recall we write 8 ( ?; ) instead of • 

Write £! Yo(~ • 
: 'i(CI(~ and assume is only slowly varying, 

~ :: f) (1) 
..,.... 

so ) { :: 6 l i) . - Then we find 
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8C1) ::2 ~Cal.j~> :: i'o<\' + E. ~\c!',a- ~ r +- (9( ~) 
. O((j yo((!, 

And slnce d -::: 0 + e( ~ J we find 

To this order the denominator in(Sj) is just 

and upon integration the first term in (7.J) yields 

and '( o( ~ , which we denote by 4 A)( ( ~ 1 . 
"f;?o( 

a number depending only on ~ 

Since we have assumed ~ ~ (9 ( 1) , 
Cl((! -a i ~ e ( 1 ) ' ) '( = f) ( 1) ' the integral of the second term in .,. 

(1.1), although a priori of order unity, is actually much smaller, since it is the 

integral of a rapidly oscillating ~uantity times slowly varying factors. 

Thus this term is at lcu-.gest 8( A) and we need consider only the last term, 

which, (again noting the product of rapidly and slowly varying terms) we write: 

The average is over many wavelengths but over a region which is much smaller than 

the scale of the slowly changi~ background. Let the colon denote covariant 

derivative in the background, then noting that t9CA-') = ho<~,~ = ho(~~~ t 8(1) J 

we write this term as 

j e:~.< ~,..0/ h-<P' .. o''~ hu,...:f )}"'t ~ R J.\ + B( \) 
. ~ 31.'Tf S r~;> ~a- ~P ~ -0' J ~)C. 

Here 
(<M>') _ ~ 1. <-....~ r« ' v fhl h ~ 

T \'r .P - i1fr o ~ct 11 :a-- o I.Jf": .P / 
is the average stress tensor of gravitational waves as defined by Isaacson. It is 

this average stress tensor which determines the background ~ according to 

f<a((i ( '({) .=. 8TT ( TCI(';l - :i ((o<fi T l().A.)) ) This term is clearly also 

independent of ~ as ,X ~ 0 , and we find 

(for high frequency radiation), (7.1) 
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where 

r - (.IW") l:' 0( t ~ '\ 
~ ~tr ' o( (3 ~ ~ H cl 'f. 

~ {'( ~ ~ ~ 0( ~ r-'6' J '4 )( 

Both terms are independent of \ in the short wavelength limit. If is 

IQ 
timelike, then 

We note, moreover, that the additional term allows in some sense 

a distinction to be made betweend·~st and gravitational radiation filled universes; 

the eigenvalue is lower for dust universes with the same large scale "shape". 

Since A?$ can be bounded by a curvature (in the background "( o(~ ) ' and 

since 
1(c>.V) 

0(~ 
is clearly also a curvature in the background metric, we see 

that ~t\J is indeed sampling only the large scale curvature of the space, -
and "smoothing over" the ripples, as might be expected from an integral estimate. 19 

This derivation makes explicit the result suggested by the torus calculation in 

Section ¥ a) • 

To carry the discussion of the energy density in gravitational radiation a 

bit further, let us consider the Robertson-Walker (R-W) metrics. These have a 

metric form 

(7.3) 

where is the line element of the homogeneous and isotropic space 

sections; these sections are flat or have unit;· (by choice of length scale) 

positive or negative curvature. Because of the high symmetry, these sections each 

have six Killing vectors; translation along and rotation around each of the axes 

for the flat sections, two sets of "rotations" for the curved ones. (For a 

discussion of the metrics of this type, see, e.g. Hawking20). 

Because the constant sections in these metrics have Killing vectors, 

if we form the ratio {for ~~ a vector in the 3-space, described by the 3-metric 

) 
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'=0 0 
since we can pick f Killing. In this case, because of the symmetry we 

have even though there is a length scale introduced by J1 (C.) 

For an example of a space which is on the large scale identical to the R-W 

types, and in spirit of recent observational discoveries, we suppose that the 

universe is at the present time is given by a R-W form and that its behaviour is 

dominated by the matter in it, but that it contains 3°K black-body gravitational 

radiation 

the "now" 

distributed in a uniform and isotropic way 

constant time slice, we compute ~~A t ~] 
through the universe.

21 
In 

for r Killing in -
the background, and by arguments like those leading to eQuation (1.~), we find 

(3l ~ ( { J ;: 3 
~~o.d [11 ':. gTT 5 T':;, ri ~j R d3

l( 
.,.. 

~~'t(~j ~~· fj M J~x 
) 

where here i·· lo,) 
is the background R-W metric, metric, Because of the 

assumed isotropy and homogeneity of both the background and the radiation, 

must be proportional to 

the proportionality factor is 

slices, we have l~)~ ( ~ ) :. -

where (since this is a massless radiation field) 

f/3 . Since f ::: f ( (;) is constant on space 

(ll~~ [! J = ~ f ( 3 °t( black body). [rn this 

simple situation it is clear that a minimum with respect to the background is a 

minimum in the full metric since A': >.IS'+ cons t . rn fact, by an argument similar 

to that for first order perturbation theory in QUantum mechanics, it is easy to 

T (Q.V) 

see that to first order in fA JJ , the minimum is given by the same vector 

field in the full metric as in the background •. One can also calculate the 

first' orde.r 'correction to' the vector -fields exact'iy as is done j_n' 
! 
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nonrelati vis tic quantum theory: 

s ~ 

• ~ 'I<) ~(WI) = 1 ('"1) + 8tr 2 lck> :t (IW\ , • --rc 0.\1) dV 
""" - kt ~ ~(1\11.\J - ~lk) ) 

where f<~l is the ith eigenvector of -of3in the background and Aci.J 

is the 7orresponding eigenvalue, and l; (i.) is the i th eigenvector of the 

perturbed -of) . In this formula, the....._ vectors ~ (i) and ~(t'J are 

considered referred to the background space ~~~ ~ o ~ 

Since 3°K black body radiation has an energy density of NlQ-34 gm/cc, we 
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see that this yields a much longer characteristic length than that provided by 

the large scale background. (The background scale is necessarily shorter than 

that given by the amount of matter observed in the galaxies ~ 10-3° gm/cm3, 

and even shorter - mcti'C:t density r-J 1 o- 29 gm/cm3 - if we assume that there is 

sufficient deceleration to close the universe with the observed Hubble velocity). 

Actually, the energy density of the radiation contribute~ to the curving 

of the background. In the previous example the radiation was as symmetric in the 

22 large as the background. However, if the background is determined by some other 

factor, say a distribution of dust or electromagnetic radiation, then the 

gravitational radiation, if weak enough, will not change the background significantly 

and such an integral over the different Killing vectors in the background will give 

six different numbers (for R-W background) characterizing the "stress" in the 

gravitational radiation. 

This result is perhaps the most interesting of this work. We have here 

apparantly an invariant method for specifying some parameters of gravitational 

radiation. 



Chapter VIII. Specification of a 11Best 11 Background 

A metric which appears to contain gravitational radiation can always 

be analysed by computing the Riemann tensor components in an orthonormal 

frame. If there is radiation present which is curving up the space, we have 

seen that its characteristic Riemann tensor will be 

l 

and so will be overwhelming in the short wavelength limit. The integral 

method given here, when applied to a space of the Isaacson type, gives a 

finite result for the integrals involved, even when X_,. 0 , and in fact 

the limit is of the order of the large scale background curvature, and 

hence gives the average stress in the gravitational radiation. Thus we 

already have a beginning of a specification program. Tpe Isaacson metrics 

can be singled out from among the (perhaps) wider class of metrics which 

have Riemann tensor variations (in a tetrad frame) of order 

length scale 1\ . 
~-' A On a 

For applications to radiation, another very useful tool would be the 

ability to find the optimumbackground for splitting the metric in 11Steady11 

coordinates. Here we have a less clear criterion, but we suggest that the 

background could be found by averaging a~ong the f~rst few eigensolution 

of the equation (o8+A)l:. 0. (If we imagined the space were continuously 

distorted from a symmetric one, the Killing fields would change into other 

fields which would be the lowest eigenvalue fields, at least for small 

distortions. It is these that we have in mind.) We present, in Appendix 

D a calculation of the complete spectrum of -,/}for the constant time slices 

in a cosmological solution due to Taub. We also give, and discuss, a way of 

averaging this metric along non-Killing vector fields (fields which would 

be Killing if the space were completely symmetric) to find a background 

space. We briefly discuss .the question whether this is the "best" background 

which can be found. 

The last problem is still an open one. The calculations in Appendix D 

61!-__ _ 
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rely very heavily on vector fields which can be defined in the Taub slices 

with the aid of the group structure implied by the exact Killing vectors 

which remain. Even here, we find that technical problems hinder the 

completion of the discussion. In particular, we had to leave incomplete 

the discussion of a smoothed averaging due to the algebraic complexity 

involved. We hope to remedy this gap in the near future. 

A more fundamental difficulty is that we have found that two reasonable 

suggestions for averaging: a) the averaged metric obtained by Lie transport 

along the eigenvector fields of -~ , and b) the average defined as the 

sphere with the same volume as the Taub space slice, lead to two different 

backgrounds. Since these backgrounds have different time dependence, we 

find two different numbers for the energy density of th~"radiation", the 

anisotropy in the Taub slices. 

One might hmpe that the wave-background separation found in Appendix D 

would --for one of the averagings--lead to a R-W backgrdund whose motion 

was determined by massless radiation, since we like to think of the aniso-

tropy in the Taub slices as gravitational radiation. 

We can investigate this by writing the averaged R-W space found in 

Appendix D in the full 4-dimensional form which makes its (3-sphere) x (time) 

structure apparant, as 

(8.1) 

Here X, e) ~ are angle coordinates on the 3-sphe re. NY\ I i are constant 

real lengths. This is not quite the standard R.W. form; we need only 

make the transformation 

[ ~~t +-11) 1-1/z. -1 4- · - d"t t z. .J-..,£ 'Z. I 

to put in the R.W. form (see, e.g., Hawking, 1966). 



66 

To see that neither of the averaging schemes defined in Appendix D gives 

rise to a traceless effective stress tensor, we need only note that th~ 

unique solution with 'f R-=- 0 is the radiation dominated model, which has a 

time dependent radius given by 

(no sum on i) ,(8.2) 

where ~ Ro ::. L Ct+ J -?: lf:_) .I 

~ t:. t. ::. !VVl :t ( M1 2. t .L z.) ''~ . 
A 

W'e set ~LL>~o ' 
and ~ ':. '?:- Ro 

Near the singular point, t-=o ' 
this has the behavior 

e 
sa.) 

N ?:. 

Near the singular point the relation between i and 't in our 

averaged background eq. (8.t) is 

( t- t_ ) •lz. 
For the equal volume averaging we have from Appenmix D 

~(t) [ <t1.-t.Jl'LJ(t .. t. .. )(t-t+J]'1J ( t -t_)''3. e ... c~J.)z. .;l.JL ~.t ~ 

so 

(8.3) 

~(t) e (equal volumes).(8.4) 

This result has been noted in general for anistropic homogeneous universes 

near the singularity. (Misner, 1967). 

For the metric obtained by averaging along the invariant vector fields 

we have 

so 

( t-t .. ) 
) 

(lie transport average)• 
( 8.5) 

Since neither of these have the required time behavior of the radiation 

dominated R.W. solutions, the effective stress tensor cannot be traceless in 
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either case. [This result of non-vanishing trace does not contradict the 

result of Brill (1964) that the effective averaged stress tensor for small 

amplitude short wavelength gravitational waves is traceiliess to the lowest 

order in the deviation from the background. The waves in Taub space ar~ 

neither short wavelength nor weak. ] 

It might be hoped that the situation would be somewhat better near the 

largest expansion instant of the space where the radiation is less intense-

the space is more symmetric- but the trace can clearly vanish only at discrete 

instants of time because of the analyticity of the Taub solution. 

One must stress again that the unique background which is R.W. radiation 

dominated and has the correct singular instants t 1 is that given by eq.(8.2). 

This space bears no obvious relation to the two previously defined averages, 

but can be considered as a third poss~ble candidate for a background 

space. 

Some of this ambiguity in defining a background is due to the fact that 

Taub space contains only a few wavelengths of radiation. The Isaacson scheme, 

on the other hand, assumes short wavelength radiation. We would expect 

that in such cases a~eraging over only a few vector fields -instead of the 

infinite number we needed for Taub space- would lead to unique results. 

In particular, for the high frequency radiation problem of Isaacson, one 

wou£d want to use only a few averagings with a smoothing function that averaged 

over many wavelengths, but did nothing to change a scale the size of the 

background. lAs mentioned previously, the problem in this respect with the 

Taub slices is that they are not much bigger than one wavelength of radiation.) 

The "few" vector fields are necessary because one wants to average over a 

volume, not just along a line; sufficient averagings are necessary to span 

such a small volume. The averaging Isaacson ~equires is some unspecified 

averaging proaemover such a volume. For the Taub sltces, as we showed above, 

two .averaging ideas leid to two different definitions of the energy density, 
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so we are unable to decide which is "best 11 • We hope that further investi­

gation of this question for short wavelength situations may lead to a 

justification of the averaging scheme given here. Certainly any scheme 

which requires averaging along invariantly defined vector fields will be 

best suited by the fields defined here since they are specified by the metric 

itself. Other schemes, like the constant volume one defined for the Taub 

space, do not seem to be applicable at all to local averaging. 



Chapter IX. Conclusion; Outlook 

Besides the problem of finding whether a background exists and what 

it is, several questions remain. The first is to better understand why 

the method here results in finding out anything about the gravitational radia­

tion. The answer lies in the Ricci identity. Let Llot. be a general vector 

u..' Cit::._ u~'R II~ field and define •t' lA Then the Ricci identity, contracted by 

1J. ~ , is 

l..l~ ( IAct;'biY- U.tl(;lf;S) :: 

Thus 

The symmetric trace free part of the equation gives the propagation of the 

trace free part of llc~;{?l) along the rays of 
C( 

Lt , in terms of quantities 

defined by the vector field (..A 0(. and the geometrical object co(~¥~ lA (3 (.A 'b 

LA-13().~ 
~he Weyl tensor contracted into 

The Weyl tensor ( = the Riemann tensor in vacuum) is a 11 square of deriva­

tives" of the metric. Hence the shear (traceless part of !A (r:(j~)) measures 

in some sense the energy density of the gravitational radiation. We note 

that due to the gage conditions which may be imposed on ~«~ (Isaacson, 

1967, p.35), the trace term h 01. 0( can be set equal to ~ero ~~ the wavelength 

goes to zero. Thus the divergence of the vector field "f does not contribute 

to ~ 'fQ.d in equation ( 7.1), and we see we are really measuring the trace 

free part of ~ (c:(; (!.> • The integral performed to obtain ~\'"(I.~ in (7 .1) 

measures the integral total of the shear in the test vector field, and so 

measures the accumulated "energy den13ity 11 in the wave. 

The discussion of the energy density of gravitational radiation has 

been carried out in terms of the shear of null (light) rays by Penrose (1~67) 

and in terms of the shear of timelike geodesics by Hawking (1966). 

Because the trace 
I ~~ \ 
VI .... does not enter -"ro.d, our choice of p ":: o in 

69 
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Section Vb. was not really relevant for gravitational radiation, since it 

does not affect the result for ~r~d . However, if the space under considera-

tion is invariant under conformal transformations, there would be non-Killing 

-· solutions if we took f'A :.-M , which subtracts all of the trace out of the 

C A~f"-\N• 
form See (Yano and Bochner, 1953, p. 72). We tentatively remain 

-· with our original choice' r- ':. 0 ' although the choice r:- (\'\ for a 

conformally convariant expression may prove useful in investigations which 

utilize the conformal invariance of the Weyl tensor in the study of gravitational 

radiation. 

Further remaining problems, include those emphasized in the previous 

section; to better specify the determination of a background by these methods, 

and a criterion for determining the 11 best background 11 • 

As we have seen, the ground state eigenvalue measures, for different 

spaces with the same large scale ~hape, the contributions of the gravitational 
\-1/1.. [ ~l 

energy density in the space. This gives an additional length scale A ~ ~ 
ri)..Q o 

in addition to the sizes obviously present in a situation with large scale 

size ~L and Riemann tensor variations on a length scale ~ With each 

invariantly defined vector in the background, there is an associated length 

scale which measures some comparent of the stress of the gravitational 

energy. 

The question remains: can a complete specification of the space be done 

in this way? Restricting consideration to just the ground state ~ , this 
0 

does not seem possible because the eigenvalue ~ contains parts due to the 
0 

background as well as due to the radiation and there seens to be no way to 

separate them. However, it is plausible that the entire spectum of the 

operator -~)such as we calculated in Appendix D for the Taub constant time 

slicesJmay give a sufficiently powerful specification of the space it is 

expressed in, that the complete solution, background plus radiation, can be 

"' 
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expressed in terms of an expansion in the eigenvectors and eigenvalues of 

-o8 . While this complete specification may be overambitious, it is hoped 

that a more clear-cut identification of spaces which satisfy Isaacson's 

requirement (that they admit a 11Steady11 coordinate system) will be possible 

by these methods. This is certainly an important application, if it can in 

facit be done. We have already mentioned (Chapter VIII) that the quantity 

~[~] gives a finite result even as ~~0 for spaces of the Isaacson -
type, and this may be the beginning of such a specification scheme. 

The method presented here in equations (5.1) and (5.2) is a straight-

forward generalization of the idea of a Killing field. The differential 

equation (5.2), in spaces of Minkowski signature, can be considered a coordinate 

condition for the time,say. Detailed investigation of this idea may yield 

very useful results in the future. 

We also have left for future investigation the question of using the 

vector fields defined by these recipes to give new candidates for conserved 

momentum or energy objects. This may also prove quite a fruitful field of 

investigation. 

Perhaps the most significant and unexpected results of the ideas in the 

work described here are the applications to spaces which contain short wave 

gravitational radiation, and their use to specify some numerical parameters 

for the_radiation. 

Clearly there are a great many topics for investigation which are suggested 

by the results of this work. If the specification of the manifold in terms 

of the spectrum of its operator -lf succeeds, it will probably provide, via 

an extremely circuitous route, the answer to the fundamental problem which 

prompted this investigation: to find an invariant way of doing problems of 

slow motion in Relativity. 
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I.Introduction 

The problem of radiation in General Relativity can be easily treated 

only in the weak field limit. The unfortunate feature of this linearized 

theory approach is that it becomes invalid just when the radiation becomes 

large enough to be interesting. It does, one presumes, provide useful 

qualitative estima'tes even in the strong field region, and this paper provides 

some such estimates. 

The paper deals principally with two problems: radiation from a uniform 

oblate spheroid of pressureless matter undergoing Newtonian collapse, (the 

prolate case is discussed qualitatively) and a calculation of the radiation 

from two equal mass objects coming straight on at each other. In tile second 

case the calculation is with Newtonian interaction and the weak field theory, 

but with the answer carried into a strong·field region. 

II.Collapsing Axi-Symmetric Systems 

The idea is the following. A massive system initially not at equilibrium, 

with an initially large quadrupole moment and with a radius only slightly 

larger than its Schwarzschild limit will, according to linear theory, radiate· 

an amount of energy equal to a good fraction of its rest mass in times less 

than or comparable to one period of its oscillation or rotation frequency. Thus 

a deformed neutron star, for instance, if it had a radius r~2mJwould not 

execute any sustained oscillations. It would just "deflate" to its equilibrium 

configuration, radiating away its excess deformation energy. Thus in the 

strong field regime a single collapse of an object might radiate as much energy 

as a binary system in circular orbits would. (More precisely, when the binary 

system got down into strong fields, its final few cycles would not resemble a 

spiral at all, but would look like a collapse~) (Misner 1965) 
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For this reason, and because rotating systems are more difficult to treat, 

we will deal only with collapsing systems. The motions will be calculated 

from Newtonian theory and the radiation from linearized gravity theory. 

III.Uniform Spheroids 

In a recent paper (Lin 1965), C.C. Lin et.al. calculate the collapse of 

uniform pressureless spheroids (uniform means p(r,t) = p(t)). He obtained 

results for both prolate and oblate ellipsoids, with the following general 

features: 

a) the spheroids stay uniform; 

b) the eccentricity increases with time: an oblate spheroid becomes 

a disc, a prolate spheroid becomes a line; 

c) collapse to a disc or line occurred in all cases for a time , 

tc"" /Sp~l/2 (p
0 

is the initial density). 

The Lin results are given both as a power series expansion and as 

computer obtained result. The agreement between the two methods is excellent 

for the oblate case and reasonable in the prolate case. 

We have taken Lin's oblate case power series solution and computed 

the radiation given by 

where Q
0
e is the quadropole moment of the radiating system and • means 

ajat. (Landau 1951) Some plots of the dimensionless number 



are found in figure (1) for various values of Z / ar • (We denote the initial 
0 0 
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1 
semi-minor and semi-maj o.r j\\xes by Z 

0
, 'Co~ and for ellipsoids Q "" Qxx = Qyy = -Qzz Cz-),) • 

We then see that there is astrong peaking toward the end of the collapse, and 

the radiation in the initial stage is insignificant. The FORTRAN IV program 

and the output from which the graph was plotted are given in Section v. 

The conclusion to be drawn from these calculations is that for non-

relativistic initial conditions the radiation is negligible. For instance, 

inserting the sun's density, mass and radius into the normalizing factor: 

5 1 1 
;fd2" 

0 

since we have (Synge 1960) 

so 

m ~ .5 x 10-6 sec 
® 

111' "" 2 • 3 sec 
0 

··-1/2 ~ 
p = 3.9 x 103 sec 

0 

[ 

5 1 
;- ;;;;;z 

8 0 

.(60) X 

1 
5.37( )2 " sec 

For gravitational collapse with Z /~' = .95, we have 
0 0 

(Figure 1) 



[
2.-of2 
m o 

so 

110.. 2 
[ Q ] 

fo put in all the factors, we note that 

so 

Since 
1/2 the collapse time p

0 

that the last small fraction, say the 

is p
0 

112 
= 3.9 • 10 3 sec and we find 

last thousandth,of the collapse is 

the time of significant radiation,the total radiation in this collapse is 

This result justifies the statement above about small radiation from non-
.;·· 

relativistic initial conditions. 
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The prolate spheroid radiation was not calculated because of inaccuracies 

in the power series expansion given by Lin (as checked against his numerical 

integration results), but it would not be qualitatively different. 
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IV. Colliding Massive Particles 

These computations show that to find a situation where the radiation will 

be large, we must follow the collapse beyond the first stages--we must follow 

the collapse of a disc or of a line. 

We make the mathematics even simpler by taking a very simple physical 

situation. Two particles, each of mass m, are separated by a distance r and 

interact via Newton's Law. (We take this as a simple idealization of the 

case of a collapsing line.) Then the equation of motion is (fig. 2) 

.. 
f.lr = 

2 
m 
r 

m 
(ll = - ) 

2 • 

This has the solution given in parametric form: 

r = r 
0 

t lrr- 1 
V 2~ (8+ 2 sin26). 

(r = separation where r = o) 
0 

Since Q zz -2Q -2Q 
XX yy 

Q we can compute the quantity of interest, 

Q 

We have (k Iii) 
? 

0 

d6/dt = k(2 cos 2 e) 

Q = 
.. 
Q 

Q = 

- m k r 2 
0 

- m k2r2 
0 

m k 3 r2 
0 

sin 28 

(1-
sin2e 
cos 2e 

(sinS 
cos 56 )'. 

) 

.. 
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So (since the definition of Q in terms of m,r has changed from the 

ellipsoidal case) we get 

We note that if the two masses were. in circular orbit around each other, 

the radiation when their S:!3peration is r is givenby (Yishveshwara 1964) 

We see that although radiation in the two systems is comparable, it 

is larger by a factor of fifty or 80 in the binary orbit case. 

We can also compute the total energy :emitted by each of these systems. 

For.the 
'•. ' 

now 

so 

i.e. : 

t 
E .. I L(t) dt 

t 
0 

r 
• J L (r) ~; dr 

r 
0 

colliding 

1 
E ---120 

particles, 

r 
(2m)

5 ~ 
J r 

-t-

taking r .., "", we have 
0 

edt> dr 
dr , 

. 'dt --dr 
[r e ]·-l ... ·~1-r/r ) 112~1: r~rl for 

a t ~ o. rj t r J 

~9/2 r 1 . 1 2 7/2 
E • 120 I 9/2 dr a 420 • 2m ( ;) 

.., r • 

r • IJ!C 
0 

(A) . 



82 

This is the amount of energy radiated for a fall from infinity. We 

note that this aquals the rest mass of the system (2m) only when 

~ (2m) 7l2 • 1. Note that this happens.· only for some value of r less than 
420 r 

2m. The total kinetic energy of the system is equal to the potential energy 

since they started at rest: 

2 
K E m .. -. . r 

So the radiation begins to become appreciable when the energy radiated 

approaches the K.E.; 

This 

1!! (2m) w 1 m (2m)7/2 
2 r .. · 105 2 r 

happens only when 

Again, this is for some r less than 2~. 

We may compare the result (A) with the .total radiation from a binary 

system as it decays from an infinitely large orbit to an orbit of radius r. 

It is just the binding energy at that radius: 

2 
liE = !!L 

2r 

We see that the total energy radiated from· the binary system is much greater 

than that from the "colliding" system, since the binary takes so muc!h longer 

to collapse to any given radius, and the luminosities are roughly comparable 

at comparable radii. The same comparison as above shows that the total colla·pse 

energy radiated does not approach that. radiata·d from the binary until r <2m. 

Table 1 gives a comparison between the two systems of luminosity and total 



energy radiated for several interesting radii. 

we may take the comparison between binary and collapsing systems as 

an indication that even the linearized theory predicts a "tailing-off" 

in the radiation from a binary system. In particular, we expect that for 

some small radius r circular orbits will become unstable. (For a test particle 
c 

around a central mass M the full theory.gives this radius as 6M. Not enough is 

known about the two-body problem in general to make any more accurate estimates 

of r in the equal mass case.) A binary then gets perturbed.so much it becomes a 
c 

colliding system--with a loss of about two orders in luminosity. The full theory 

would presumably reduce the luminosity even more since the system would be 

retarded by its own radiation reaction and red-shifts would reduce luminosity 

observed at infinity. 

It is interesting that if we demand that r > 2m, then the binary system will 

have radiated only 1/4 · its energy by the final instant (assuming the orbits 

stayed circular) •. A head-on collapse would have radiated only 2~0 • If a 

binary were perturbed into a head-on collapse at ·radius 6m, the total radiation 

when it reached 2m would be 

lim 
m 

1 •-+a 
12 

where the l/J2. comes from the binary part of the motion and a " 1/'200 .,·comes 

from the collapse. 

I thank Dr. c.w. Misner for suggesting this problem and for very helpful 

advice. 

~omputer usage was through the Computer Science Center, U. of Md., and 

NASA grant Ns.G-398 / to the Computer Science Center, U. of Md. 
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V, COMPUTER PROGRAM AND RESULTS 

The following pages give a listing of the FORTRAN IV program and a partial 

listing of the results. Input for the program is coefficients from C.C. Lin, 

table Al, (Lin, 1965). The collapse times are also from Lin. 

In the output, the quantities listed for various values of Z /~ are 
0 0 

. . . 2 
A=[SQ 1 J 

; ~ 3/2 , 
0 Po 



l"lA·r ZNER 
AMA li'< 

201 FOKMAT(6Fl2.6) 
2 0 2 F 0 R fv\ A I ( 1t E 2 4 • 8 l 

20.5/66/071 
EFN SUURCE STATEMENT 

101 REA0(5,201) ZPI,E2,E42,AZ,A2l?Dlh 
WRITE (6,20llZPI,E2,E42,AZ,A2L,DTH 
EPZSQ=1.-ZPI•ZPI 
TH=O. 

100 E4=E2•E42 
S INTH=S IN( HI) 
COSTH=COS(THJ 
SIN2TH=SIN(2.•fH) 
COS2TH=C0$(2.•THl 
SIN4TH~SIN(4.•TH) 
COS4TH=COS(4.•TH) 
OEN=l.-A2Z+(l~+A2LJ•COS2TH 
THT=AZ/DEN 
THTT=2.•AZ•SIN2TH•(l.+AZZl•THT/lDEN•DENJ 

IF.\l(S) 

HHTT=4. *AZ .. ·AZ* ( 1. +A 2Z) *HIT* ( ( l. +A2Zl * 3. *S I N2TH •a2/ DENH•·4+CUSZ TH 
l~<OEN••(-3) l 

SQT=-4.*EPZSQ* COSTII*•3•SI~TH-( l.-EPZSQ)*(E2 -a-S I.\4TH+4.* (2.•E4+E2• 
lE2l•COSTH•SINTH••3+12.•E2•E4•lSINTH*•Sl/CllSTH+(4.•E2•E4+8.*i4•E4l• 
2SINTH••7/COSTH••3+4.•E4•E4•SINTrl**9/COSlH•*j) 

SQTT=-EPlSQ•(-3.•SIN2TH••2+4.•CUSTH••4J-(l.-EPZSQJ•(4.•E2•COS4TH+3 
l.•(2.•E4+~2•E2l•SIN2TH••2+(60.•E2•E4-4.•(2.~E4+E2•E2ll•SINT1~••4+(4 

20 .. * E2 * E4+5 6. •E4a· E4 l * S 1 NH-lJH~ o *CO::> HI** ( -z) + ( 12. * t 2 * E4 + 60. * E4• E4) * 
35 I NTH**8•COSHI** ( -4 l +20. *E4*E4* SI NHI** lO•CO S Tl i* * { -6 l l 

SQTTT=-EPZSQ•(-6.•SIN4TH-l6.•SINTH•COSTH••3}-(l.-E?ZSQ)•((-16.*E2+ 
i 6.•(2.•E4+E2•E2})•SIN4TH+(60.•E2•E4-4.•<2.•E4+E2•E2))•4.•SINT~i••3 
2•COSTH+(40.•E2•t4+S6.•E4•t4l•o.•SINTH••5•COSTII••(-ll+(l76.•t2•E4+ 
3592.•E4•E4l•SINTH**7*CUSTH**(-3)+(48.•E2•~4T44C.•E4•E4/•SINTH••9• 
4COSTH••(-5)+120.•E4•E4*SI~Th**ll*COSTH••<-7l l 

A=SQTTT•THT••3+3.•SQTT*THfT*ThT+SQT•THTTT 
ASQ=A*A 
ASLG=ALUGlO(ASQ) 
TIME=(l./AZ)•(TH+.5•SIN2TH-A2Z*ITH-.5•SIN2Tf,~l 

WRITE(6,202)A,ASQ,TIME ,ASLG 
TH=fH+OlH 
IFITIME-.61100,101,101 
END 
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z /w .. • 95 
0 0 

tp 1/2 
~nlOA A 0 

l). o. -O.l7014ll8E 39 
o.30817884E-Ol 0.34935624E-Ol -O.l5111972E. 01 
0.12946945E 00 0.69695140E:-01 -0.88783268t 00 
0.316237911:: 00 O.l0410420E OD -0.49998607E 00 
0.63118071E 00 0.13"7991951:: GO -O.l9984628E 00 
o.ll459794E Ol. 0.1711')2771:: 0 (J 0.59176825E-Ol 
0.198672711: 01 0.20354787E 00 0.298l3823E 00 
o.33775930E 0 l 0.23490693E 00 0.52860732E-OO 
o.5726l888E 01 0.26':1l2957E 00 o.75786567E 00 
o.979560CJlE 01 0.29408678E 00 0.99103145E 00 
o.l7063793E u..., I... 0.32l66220E 00 O.l2320756E 01 
0.305053791:: 02 0.34775324E 00 O.l4843764E 01 
0.56372162E 02 0.3722721BE 00 O.l7510647E Ol 
o.l0846065E 03 0.39514698E OD <J.20J52722E-Ol 
o.21895215E 03 0.41632205E 00 o. 23 1t03493E 01 
0.46783019E 03 0.43575876E 00 0.26700883E 01 
o.l0690496E 04 0.4534351:lBE 00 o.30289979E 01 
o.2646't912E 0't 0.'t6934973E 00 ii • 3 4 2 2 6 7 0 5 E 01 
o.72162819E 04 0. 1d:I351427E 00 0.38583lj~E 01 
0 ~ 2 2 1.5 8 7 l't E . 0 5 0.'-t9596092E 00 0.4345:1446E: ul 
o. 78994lt24E 0? 0.:>06738281:: 00 0.48975965E Ol 
o.34128829E 06 D.Sl591162E 00 0.5533121'-tE Ol 
o .. l<J000831E 07 0.52356225E 00 ;i • 6 2 -r 8 7 7 2 7 E Ol 
O.l't879731E 08 0.52978667E 00 o.71725951E 01 
Q.l8539134E 09 0.53469566E 00 0.826808~5f 01 
o.43623360E 10 o.s3u41311E 00 J.9639H91E 01 
o.2488l862E 12 o.54l07484E QO 0.1139':>883E 0 2 +collapse 
0. 52.766826E 14 0 .·542 82 72 3E 00 O.l3722361E 02 . . . 

----· ·--- - -·-~---··-

· .. 
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z /w .. .9 
0 () 

o. o. -0. l 7 014118 E 39 
u.96045071E-Ol o. 353 05 69't E.-:~. l -D.l0175249E 01 
0.40-!2964lE 00 o.704317ti5E-Cl -0.39330012E 00 
u.99082108E·OO O.lO'.l20046E l) (i -0.40047630E-02 
:J .l9869888E 0 1 o.l3943749E li ;j u.29819543E OD 
(J .. 3630 1542E 0 l O.l7297395E G.) ,"J. 55992508E 00 
u.63428862E 0 l. 0. 205 61+ 789E CG 0.802286931:: 00 
O.l0887160E 02 o.23730604E G ~; O.l0369146L01 
o.l867l295E 0? 0.26780521E 0' ,, d.l2fll744E 01 
.j.32381443E 02 0.29701384E: or. o.l5102962E 01 
u.57331995E 02 0.32481325E oc D.17583970E 01 
O.lil4483.53E 03 li.3510988lE G ... ~).20l90478E 01 
0.19753020[ 0.3 0 .. 375731071::: <.J, () • 2 2 9 56 3 3 5 E 01 
.J. 3905022'tE 03 Cl.398786'J7E o._ ,) • 2 5916 2 3 6t: --01 
u.ol436424E 03 0.42005860E c;; 0.2910818-rf.: Ol. 
G .. 1809I385E Ol.t 0 .. 43955778E o;; (i.32576158E 01 
().433843991:. 04 0.45726242E 0 (i 0.36373336E 01 
O.ll393253E 05 l.47316881E OG CJ. 405661+ 77E 01 
u .. 33434570E 05 0.48-/29116E 00 0.4524l957E 01 
o.11257274E 06 0 • 't 9 Y 6 6 l 5 4 E 0'' ,j o.5o514332E 01 
0.45064880E 06 0.51032948E 00 ;).56538382E 01 
0.22520185E 07 o • .:11936158E 00 0.63525719!: 01 
O .. l5021865E 08 0.5268t~074E 00 0.71767239E 01 
u.l'~670Z04E 09 0.53286.538E 00 u.81664362E 01 
0.23882802E 10 0.531S4849E 00 D.93780854E 01 
J.7867.0103E ll . o.5ttlOl64lE 00 0.10895810E o2 .. collapse 

--.- - .. 

z /w = . 8 
0 0 

o. o. -o. 17 o 14118 E 39 

o.37306343E 00 0.36200477E-Ol -0.42821732E 00 

O.l5751752E 01 0.72212893E-01 O.l973288:>E 00 

0.3880Z944E 01 O.l0785l06E 00 o.5S886469E 00 

o.78394l56E 01 0.14293254£ 00 0.89428369[ 00 

o.14464313E 02 O.l7728046E or 0. 1160297 BE 01 ,; 

0.25593499E 02 0.2l072525E 00 O.l.4081297E 0 1 

0. 4't624295E 02 o.24310640E 00 .).16495714C: 0 l 

o.780l8227E 02 0.27427398E 00 D.l89219&1E 01 

o.13i::i5159DE 03 o.30409D26E 00 o.214l4996t 01 
0.252314021:: 03 0.33243094E 00 0.24019414E 01 
0.47:J91636f 03 0.35918649E 00 0.26775306[ 01 
0.93802528E 03 o.38426322E 0'' 0.29722l46E 01 d 

o.l9506724E 0 1t 0.40758422E 00 0.32901843E 01 

0.43267883E 04 0.429090llE 00 0.36361657[: 01 

O.l03690lZE U5 0.44!373966E 00 o.40l57374t: 01 
0 .. 27272091E 05 0.46651017E 00 0.44357184E Ol 
O.B0290688E 05 0.482397731::: OCt 0.49046652E Ol 
0.27134984E 06 o.49641723E 00 0.54335296E 01 
o.10B78084E 07 o.soe60225E 00 J.60365524t:.Ol 
o.54015285E 07 0.51900467E 00 o.67325i67E 01 
o.3520763BE 0& 0.52769419E 00 0.754663691: 01 
0.32642647E 09 o.53475763E 00 o.85137t.J?3E of+ collapse 

- ----



z I w ... 7 
0 0 

o. 
u.78124551E 
o.33096123E 
iJ.81989450E 
O.l6698763E 
o.31142733E 
o.ssa6Z295E 
0.99065219E 
o.l76B2373E 
o.32190746E 
0.60433385E 
O.ll819385E 
0.24329920E 
0.53301352E 
O.l2586291E 
0.3252l30UE 
o.93662303E 
U.30770272E 
O.l1U77043l:: 
0.55985297E 

Z I rii = .6 
0 0 

0-
o.l26216't4E 
0.53665859E 
O.l3377470E 
o.27489139E 
0.51874277E 
0.94452729E 
O.l7063219E 
o.31l51139E 
o.ssz72817E 
O.ll301688E 
0.22978464E 
o.49~39037E 
O.l1467182E 
0.2H914565E 
O.d0803579E 
o.255650l5E 
u.94072805E 
0. ;.., 169 7583E 

00 
01. 
01 
02 
02 
02 
02 
,JJ 
01 
OJ 
0'• 
0 /+ 

Ql, 

o:; 
0~ 

us 
()(. 

07 
o-r 

01 
01 
02 
02 
02 
02 
03 
03 
03 
04 
04 
04 
05 
05 
05 
06 
06 
07 

0;. 
o.37419950E-ul 
0.74640905[-0t 
O.lll46585E 00 
O.l4770175t: 00 
0.18316142[ D0 
0.21766546E 00 
;J.25l04402E 00 
0.283138461:: 00 
0.3138030lE oc 
o. 3429061 7f:. GO 
0.37033204E 00 
0.3959814tlt: 00 
0.'1-l'177312t: 00 
0.4'~164410E 00 
J.46l55081E 00 
0.479-46922E 00 
0.4953952lt 00 
0.50934453E 00 
0.52135269E 00 

,~, 

_.. 

0.3r>o7S066E-u: 
0.77537919E-O::. 
O.ll577847E 00 
o.l5339084f 00 
O.l9017544E OJ 
0.22594095E J(J 
0.26050622E OCJ 
o.29370210E 00 
0.32537313E 00 
0.35537907E 00 
0.38359633E 00 
0.4099l9l9E 00 
0.43426085E 00 
0.45655432E 00 
0.476 75305E 00 
o.49483144E 00 
u.5l07B509E 00 
o.524630SOE 00 
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-:.J.17014ll8E 39 
-O.l0721246E 00 

U.51977713E 00 
0.91375798E 00 
O.l2226843E 01 
U.l4Y33567E ul 
~) • l 7 4 7 118 BE. 0 l 
~).19959212E 01 
0.22475405E 01 
~1.25077311E 0 1 
.·,. 278127o9E l) i. 

u.30725949E Ol 
0.33861407E. 01 
.~;. 37267383£: 01 
J. '~J99897 BE Ol 
J.45121681E Ol 
C.49715649E 01 
v.':>4H81314E 01 
() • 6 0 7 4 7 0 8 3 [_ 0 1 +collapse 
0 .. 67480740E oi 

-;I • l 7 0 l '• 0 8 c 39 
:J.LJlll~90E 00 
0 • ·r 2 9 6 9 8 o 9 E OJ 
:J.ll263740E Gl 
~;.l't39l612E 01 
c:>.l1149521E 01 
~1 • l 9 7 52 1 4 5 E 01 
J.22320610E Ol 
.>.24934739E ·J l 
0 ~ 2 7 6 5 1t 6 6 0 E Ol 
0.3~J53.:..·+33E G: 
:.33613210E J ' 
,, • J69494 7 6E ;) ;_ 

~, • ''t 0 :, 9 Lt 5 6 7 E v-
i ~ • 1t 4 6 l 1 1 6 7 E Gl 
.) • 490 ~'4307E Gl 
d. 5t+076460E 01 -<- collapse 
.J. ~9734641E (J ~ 

j.6620ll09E 01 



z /w .... s 
0 0 

\). 

u.l6626293E 
o.7o9B0641E 
0.17815425E 
().36969B60E 
0.70677898E 
O.l30828lOE 
0.24120180E 
0.45135459E 
0.86974579E 
O.l7475993E 
0.37059044E 
0.83987142E 
0.20629158E 
o.55822I08E 
o.l6974750E 

z /w = .4 
0 0 

•) ... 
u.1823ol59E 
0.7U216524E 
u.l9782900E 
d.41506016E 
J.80510939E 
O.l5l79586E 
u.28627894E: 
0. 550611" 1t65E 
ij.l0966746E 
o.22919984E 
0.509299961: 
Li.l2201560E 
LJ.32018754E 

z /w = • 3 
0 0 

(). 
O.l631-/852E 
o.70344836E 
O.l7948492E 
u.38131619E 
o.75l99096E 
u.l4477867E 
0.280l7451E 
o.ss6ooozzr: 
O.ll496ll0E 
o.25124252t: 
- -- ---~-

01 
01 
02 
02 
02 
03 
03 
03 
03 
0'-t 
04 
04 
05 
05 
06 

(I 1 
01 
02 
02 
02 
03 
03 
03 
04 
O'~ 
04 
05 
0~ 

Ol 
01 
02 
02 
02 
03 
03 
03 
04 
04 
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o. -C.l7014ll8t: 3'1 
0.40945169E-Ol 0. 2207954~<: 00 
0.81660176[-01 .) • 8 5 1 1 3 9 9 2 ;: 00 
0.121917161::.: 00 -..;.125079621: 01 
O.l6149283E 00 :J.l5678478E Ol 
0.20017072E 00 .~.l8492837E 01 
0.2377433lf 00 ).21167010E 01 
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a) Binary (circular orbits) 
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b) Head-on Collapse 
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t.m Tab'le .1: ··Comparison of luminosity L and fractional ·charge in energy -- for 
m 

a twQ body system ·_(each component of mass m) in two configurations 

a) "Binary" circular orbits, and 

b) Head-on collapse (no angular momentum). ·units are relativistic: 
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Caption for Figure 1: 

Figure l, Logarithm of the dimensionless luminosity 

[i Qfw 2 1/p~/ 2 ] 2 for pressureless collapse of oblate dust ellipsoids. 
m o 

The time is given in dimensionless units T = tp l/ 2 , with p the 
0 0 

initial dust density. The different curves are for several values 

of the initial parameter Z /w (initial ratio of semi-minor to semi-major 
0 0 

radius). 
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Appendix B 

Electronic Computational Methods for General Relativity 

The computational difficulties in finding the Einstein field e~uations once 

given the metric form can be overwhelming. In simple cases, direct hand calculations 

using the classical formulae (e.g. Landau and Lifschitz, 1962) or using the more 

modern techni~ues of differentiar geometry (e.g. Misner, 1963) are not too difficult. 

However, in really complicated situations, where the problem has little symmetry, the 

calculation can be a monumental task. In response to this, several investigators, 

including the author and R. W. Clemens at Maryland (Fletcher, Clemens, Matzner, Thorne, 

and Zimmerman, 1967; see also Fletcher, 1965, _1966, Clemens and Matzner, 1967, Thorne 

and Zimmerman, 1967) have turnea to utilization of computer manipulation of algebraic 

structures. The computer techni~ues have in fact become ~uite sophisticated. Functiona] 

differentiation is a standard feature. 

The University of Maryland system has provisions for calculation of most of the 

important geometric ~uantities, given It calculates, for instance, 

and The main program has facilities for 

putting the calculated output on magnetic tape, to avoid the huge amounts of work which 

would be reQuired to key-punch the material for re-input for later manipulation. 

Auxiliary programs have been devised to maintain and update a library of such output, 

and "restart" programs have been written which allow later manipulation of the results, 

For instance, programs have been developed which allow the substitution of ~uantities 

for others, and which allow termination at any desired order in an expansion of a 

small parameter. 

The present state of computer technology limits the complexity of the jobs that 

can be run successfully. This is because of time limitations, and because of computer 

storage space limitations. Typical long runs on the 7094 run to (order of) one hour. 

(Although the exact Schwarzschild solution runs in a matter of seconds and a Bondi­

Metzner metric like (2.:~'1) takes about 4 5 1minutes.) The other limitation is storage 
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size. Expressions being manipulated must be small enough so that if, for instance, 

is desired, both Cl and b can be simultaneously written into the core 

(high speed) storage area of the computer to be manipulated. Since the routines for 

algebraic manipulation are long and complicated, there is only a small amount of 

"free" core for this. 

The complexity of the problem under consideration is the determining feature 

that separates the possible jobs from the impossible. The current generation of 

7094 type computers, with the IBM FORMAC language, are really suitable for calculations 

such as perturbations on Schwarzschild. (See Campollatoro and Thorne, 1967). More 

difficult problems often exceed the computer's capabilities. It is hoped that the 

next generation of computers (of the high speed large store type) will effectively 

remove this limitation. If has been the author's experience that since only about 

1/4 of the "core" of a 7094 is available for expression storage, even modest extra 

amounts of high speed storage area (:in terms of the amount built into a 7 094) would 

remove practically all limitations on the complexity of the intelligible problems 

that could be handled. (Intelligibility in this context can be quantitatively 

measured- although with only a rough cutoff - simply b,y placing the printed out put 

on a scale. More than 1 kg. ~ unintelligible, and this is a generaous upper limit.) 

We conclude with some sample calculations for the Schwarzschild spherically 

symmetric form: 

The results given on the following pages show the input metric, the determinant 

of the metric, and the Ricci tensor components. The quantity being computed is 

indicated by the heading at the top of the page; the relevant indices are printed 

just before the quantity corresponding to those indices. 

The results are in standard FORTRAN notation, but for readers unfamiliar with 

computer output, we give the following explanations. ~aising to a power is written 
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the functions ~x = FMCSIN (X) thus: x'l :. X **:l 
~;~MCcXP(LAMBDAJ Note that the Ricci tensor components are printed 

twice (for irrelevant technical reasons); the dollar sign (~) marks the end of an 

expression so that the two copies can be distinguished. We have translated the 

notation into more mathematical appearing formulae for the metric, the determinant 

and some of the Ricci tensor components. 
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Gravitational Field Equations for Sources with 

Axial ~etry and Angular Momentum 

(published as a joint paper with C. W. Misner, which appeared in 
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Abstract 

The investigation of stationary axially symmetric gravity fields 

leads to a reduced system involving two field variables which describe 

the 11 Newtonian" and the "rotation" part of the metric. This paper 

presents a parametrization of this reduced problem, which exhibits a 

previously unnoticed symmetry. Although the symmetry group (isomorphic 

to homogeneous Lorentz transformations on 2 + l dimensional space) 

has a trivial action corresponding to unimodular linear transformations 

of the cpt coordinate pair, its existence "explains" the existence of a 

very simple new Lagrangian for the reduced field equations, and the 

relatively simple form in which these equations ( and the corresponding 

surface independent flux integrals for mass and angular momentum) can 

now be written. 
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Introduction and Summary 

Previous studics 1) 2) 3 )4)S)of stationary vacuum solutions of 

Einstein's equations with axial symmetry have shown that the difficulties 

can be isolated in a reduced system involving only two independent 

coupled second order equations in the two basic unknown functions 

entering the metric. In this paper we point out a previously un-

noticed symmetry group (isomorphic to the homogenous Lorentz trans-

formations in 2 + 1 dimensional space) for this reduced problem. This 

symmetry governs the various ways in which the metric components can 

be expressed in terms of the two basic functions (field variables). 

In terms of two field variables a and ~which we define, the reduced 

problem is summarized in a simple Lagrangian 

2 2 2 = (~S) - cosh S (Za) 

involving only vector operations in flat Euclidean 3-space. For the 

corresponding field equations, 

V•M = 0 --
where 

only those solutions with axial symmetry are accepted. For solutions 

satisfying appropriate conditions which guarantee that the corresponding 

metric is asymptotically flat and non-singular outside some bounded 

(source) region, the integral 

J (~ + ! ~np) 
E 

= 8n(m + i J) 



2 
(where p 

2 2 
x + y ) has the same value on every closed 2-surface ~ 

surrounding the source, and gives the mass m and total angular 

momentum J of the system. 

In the special case a= 0 studied by Weyland Levi-Civita5), 

1 the metric is static and the function w = z<S + tnp) satisfies 
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the linear Laplace equation as in Newtonian theory. Angular momentum 

in the system will require a non-constant a so the field equations are 

no longer linear. The transformation group in aS space which characterizes 

the simplicity of the above Lagrangian does not act to produce usefully 

different solutions from any given one, for we find that these group 

transformations are equivalent to constant, unit determinant, linear 

transformations among the ¢t coordinates in the metric. Thus we have 

not been able to use the tantalizing simplicity of the Lagrangian to 

yield new solutions. In fact the only known metric (due to Kerr) 15) 

with both J =/: 0 and m .f 0 in the class considered here gives prohibi-

tively complicated forms for the fields a and s. 
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I. Metric Form and Symmetries 

Einstein's equations for time independent metrics with axial 

symmetry have been discussed by several authors 1) 2 ) 3) 4)S). This 

paper will delll with vacuum solutions within a class in which the 

sources have an angular momentum distribution. In particular, 

stationary flow in the </>direction will be allowed in the source 

(although flow in other directions is excluded). These statements reflect 

the symmetries embodied in the metric form
6

) which we assume: 

(1) 

X and Y range and sum over </> and t. 

The axially symmetric and stationary properties of the problem 

allow a metric form in which all the components of the metric 

are independent of </>and t. We have assumed that there is also a 

symmetry of the system: 

( </>, t ) -+ ( - </>,- t ) (2) 

which leaves the metric invariant. It is this symmetry which eliminates 

the cross terms between the pz and </>t parts of the metric, since for 

instance dp dt would change sign under (2). If there were matter 

flowing in the source in the p direction under (2), we would not 

expect the exterior metric to be invariant We see that flow 

in the z direction is also excluded, but flow around the axis is allowed 

since lP does not change under (2). 
Clt 

we must in general write for the </>t 

Since d</> dt is invariant under (2) 

2 
part ds2 of the metric: 



lOT 

2 X Y 2 2 
ds 2 - gXY dx dx "" gcf>cf> dcf> + 2gcf>t dcf> dt + gtt dt , (3) 

The form (1) is invariant under conformal transformations in the 

pz plane. Since they do not involve ¢ or t, such transformations do 

not disturb the stationary axially symmetric character of the metric. 

The functional formsc{g and gXY will change, and the form of zz 

the equation for the axis of rotation will be changed. 7) 

We shall demand that acceptable solutions be asymptotically flat. 

In this paper, asymptotically flat means 

(r4<X>) (4) 

where 2 
r in rectangular coordinates given by the 

transformation 

X p COS cf> 

y = p sin cf> 
(5) 

z z 

t = t • 

Demanding that (4) be satisfied gives the following asymptotic 

behavior for the components given by equation (1); 

g = -1 + tt 
o(l) 

r 

gzz = 1 + ocl) 
r 

(6) 

~= ocl) 
p r 

f ~ - gzz = 0(1.) - 2 r 
p 
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It is a simple exercise in harmonic function theory to show 

that any metric with the symmetries assumed here which satisfies 

(4) can be put in the form (1) even with the further condition (12) 

below while maintaining evident asymptotic flatness in the sense 

that Eqs. (6) are satisfied. The condition that the metric be 

differentiable at the axis--assumed to have the equation p = 0--

gives for p "" 0 that 
2 

g~t/p be finite and 

f = 0 

(7) 

g 
a (::tt) = o 

Clp 2 
p 
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II The Field Equations 

It is well known 1) 2 ) 3 )4 )S)that with the metric form (1) the 

field equations 

RXY 0 

involve only gXY and that the equations 

R 
pp 

R = R = 0 
zz pz 

give -g by simple line integrals, once gXY is known. Consequently, 
zz 

we deal with (8). 

One of the equations in (8) is: 
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(8) 

(9) 

0 (10) 

Thus ldet gXY is a harmonic function of p and ~ and we may write 

By a conformal transformation 

we may make p one of the coordinates; and then with z that harmonic 

function of p and z conjugate to p(p,z) we find8 ~after dropping the 

bars) in these new coordinates that 

with 

2 2 2 X Y 
ds = g [dp +dz ] + gXY dx dx zz 

2 
-p 

(11) 

(12) 



To con tl nue, we choose a parametrization of gXY 

( "tt "'I'' 
a sin Ct cos 
2 2 

[gXY(a,P,)]= 
:. 

g(l)t gi!HI' 
S!:. cos S!:. 
2 2 

The resulting metric components are 

g • -p (cosa coshS + sinhS) 
tt 

p (cosa coshB - sinhS) 

psina coshS 

0 a . a 
2 -sln 2 

cos S!:. 
2 

(14) 
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(13) 

The field variables are B, the "Newtonian" field, and a, the "rotation" 

field. 
2 

From (13) det gXY = -p • The conditions (7) for regularity on 

the axis p = 0 then require that 
-2 

ap and 2~ = B + lnp be differen-

tiable there. 
a 

(That is, be finite and have -- = 0 at p = 0). Similarly, 
dp 

conditions (6) for asymptotic flatness require that ~, 

allbe 0(1). 
r 

ap and -1 
ap 

We have satisfied Eq. (10) by the choice (14) for the metric, and 

the remaining field equations are now most easily found in the following 

way. S c-}.1 uppose s is a Killing vector: s - 0 ()l;v) - . Then the quantity9) 

becomes simply 

(15) 
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In particular, 

(16) 

In the problem under consideration, the ~ and t Killing vectors (with 

components ~ ~ and t) lJ 
t 

respectively) give (using metric form (13)) 

-Rt = Et(t) = 'i/• ['i/(.2inp)+cosa'V8 + -h2 inasinh2SVa ] = 0 
t - - - ... (17) 

= 0 • 

The symbol v has its flat 3-space meaning: 
2 - 2 2 

(~+~+~)a in coordinates x, 
ax ay az -... y, z given by 

transformation (5). 

We drop the 'i/(lnll) tenn since y2(lnP) vanishes away from the axis -
p = 0, but we must then remember to check regularity at p = O(lO) in 

h . (ll) h l any solution. T ese equat~ons are t en equiva ent to 

2 
0 'V•(cosh B'Va) = ., .. 

(18) 

v2s+ 1. sinh 28 ('Va.)2 = 0 
2 ,. 

or equivalently 

'V•M = 0 -
M - e-ia['VB + t sinh 2(3 'V Cl.] - ,. - (19) 

Since the quantities Ev(~) are Komar 1 s(
9

) conserved quantities, we 

have an integral conservation law: 

f (~ + r(.\l,np)) •d! = 8II[m + iJ] 

1: 

(20) 
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where m and J arc the total mass and angular momentum, respectively, of 

the source, and the 2-surface ~is any 2-surface completely containing 

the source. 

Equations (18) may be derived from the variation of an action 

integral 

I (21) 

where ds = dxdydz = 2npdpdz is the flat 3-space volume 

element and 

1 2 2 2 
('VB) -cosh S(lla) .... ,_ (22) 

The form 

2 2 2 dS -cosh Sda 
(23) 

suggested by the Lagrangian is the metric for a hyperboloid given by 

? 2 2 /;- + T) -T 1 • 

This is the unit distance hyperboloid in a Lorentz 3-space with s,n 

space-like and T time-like coordinates (Fig. 1). Realizing this, 

the Lagrangian may be written 

= j_ 
(24) 

ij 
where g , A B refer to thereal Euclidean 3-space and hAB' y , y 

are the metric tensor and coordinates on the hyperboloid in some 

coordinate system . Eq. (24) allows immediate changes of the field 
-+ 

variables ~.~to any other parameterization. If A refers to a point 

on the hyperboloid, (24) can be written 

('V 1) 2 - (25 
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From this point of view the Lagrangian is just a kinetic term--the square 

of the grndient of this field quantity. Eq. (25) makes it fairly clear 

that no parameterization will significantly alter the form of the equations. 

Their form could be changed one step further back by giving up the speciali­

zaUon (12) with its coordinate condition 1-detgXY = P. 

Besides l:he substitutional transformations which amount to changing 

coordinates on the hyperboloid, the Lagrangian is obviously invariant under 

those transformations in the ~,n,T space which leave the hyperboloid 

invariant. These are just the Lorentz transformations in that space. 

These transformations are M.:=;cussed in p~rt III. 



... -

114 

III Transformations in the Field Variabl$Leaving 
the Lagrangian Invariant - Lorentz Transformations 

in Minkowskian 3-Space 

Since a hyperboloid in Minkowski space is a surface of constant 

curvature, all of its points are equivalent. The transformations 

which leave the hyperboloid invariant have generators (Fig. l)(l2 ) 

L = 
T 

a 

a a 
cosa tanhS ~ + sina aB 

(26) 

L +sina tanh(3 2 ...... cos a _a_ 
n aa as 

Here the subscript on the generators L1 names the invariant axis 

under the rotation. 

Direct calculation gives(l3) 

L M -iM 
T- -

Lt,;ti = 
2 

cosh B'Va - (27) 

L M = - i cosh
2

BVa 
n"'" ,.. 

Using finite Lorentz rotations (or their infinitesimal counter-parts 

(26)} and (27) , new solutions may be obtained from others by applying 

the group operations. From (26) and (27) it might seem that we would 

get a different solution with a different value of angular momentum just 

by increasing a slightly- using L or its finite form, G . 
T T 

But this is not 

the case. From (13) we see that the transformation a~a+y(y constant) 

is equivalent to the transformation 

t~t cos y/2 - ~ sin y/2 

cp+t sin y/2 + ~ cos y/2 • (28) 
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Consider now a finite transformation G generated by L 16). 
n n 

Then we have: 

t' = sinh B' = sinhB cosh u- cosh 8 cosa sinh u 

E,;' .. coshf','cosa!. =cosh(3 coshu cosa- sinh13 sinh u 
(29) 

n' • n • cosh B sina 

Then the new metric components g~ are given from (14): 

-p(cosa coshS (cosh u- sinh u) + sinhS (cosh u- sinh u)) = g e-u 
tt 

p(cosa cbehB (cosh u +sinh u) - sinhS (cosh u +sinh u)) = g~~eu 
. ~30) 

I 
g cpt p cosh 13 sinet 

The field equations RAB = 0, ~ = p,z, show that gzz is 

unchanged under {29) 
14

). We thus have 

2 2 2 u 2 2 ds' = a [dp +dz ]+g e d~ + 2g~t dcf>dt + g -ud '"'zz · 4><1> '~' '~' tte t 

Note that this form violates conditions (6) because of the factor 

u 
e gci><P We can remove this undesirable behavior by a simple coordinate 

transformation: 

-u/2 
e t 

The transformation G is thus equivalent to a coordinate transformation 
'll 

in cf> and t. Note that both GT and G'll give rise to linear coordinate 

transformations of determinant unity, so the same will also be true of 

= G -lG G 
T n T 

Thus our investigation of the generators is 

complete, 

(31) 
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Fig. 1: The unit distance hyperboloid in the Minkowskian 3-space with 

~.n spacelike variables and 1 timelike. The relations of a,~ to ~.n, 

1 are ; = cos a cosh 8• etc., as indicated. 
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Abstract 

Ca.lcuJ 11.L:i on:: ll:r'<' t::i.vcm which are applications of the ideas of almost 

symmetr:i.c: Dpli<:(;tJ p:n;v.Lou:JJ..v developed by the author. The particular example chosen 

is a comuo1oi-•:.i.r:nJ noltll.:i.on due to ~raub which is a generalization of the closed 

Ro bertson-WoJJ:r}l' !IH' t:r.·:i. cr~. 

The cornpletl! c•:i_g·onvalue spectrum of the differential operator -E ~ =- - r(i.lj~ - \.) 
is given whc~n i.lw vector lies in the 3-space frl (f) in the Taub solution 

(which ia charactor:i zecl by being homogeneous for each C ) , and the covariant 

derivativen are taken in It] (t) The method is to utilize the symmetries of /'Jttt) 
(four Killing· Holds) and the topological eq,uivalence of 'Yr/ {-f:) to the 3-sphere 

SJ , to expresa the eigen values in terms of easily calculated quantum numbers 

and to express the cigen functions as a "rigid rotator" eigen function 

[which is specified by its quantum numbers under transformations by the rotation 

group )], times an invariantly defined vector field. 

The equivalence of {Y1l f) to S :1 is also utilized to construct iteratively 

a background space which is completely symmetric, i.e. is metrically SJ The 

method of accomplishing this is to average the metric tensor along the vector fields 

which can be invariantly defined on /?1{-f:) , and which fields are also characterized 

by being the nowhere zero non-Killing eigenvectors (corresponding to the few lowest 

eigenvalues) of -~. The purpose of these exercises is to characterize the 

behaviour of the eie-envalue spectrum, in the hopes of being able-.-to reconstruct the 

entire metric from a knowledge of the spectrum of - oEJ . The averaging process 

given here is similarly a model of the idea of invariantly defining a background 

space by averagine- along the eigenvectors corresponding to some of the lowest eigen 

values of -of9 . Both these ideas may be important in the consideration of 

gravitational radiation. 
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I Introduction 

In the main body of this work we have given a criterion for the numerica 

specification of the lack of symmetry in a Riemannian manifold. The method co 

sists of mini~izing (finding the stationary points for Minkowski signatures) 

quantity 

) 
(1) 

where ~ is an field (satisfying boundary conditions that r -vanish sufficiently fast at infinity in open spaces) and the integrand in the 

numerator is the square of the symmetrized covariant derivative. 

It was also shown that the eigenvalues A measure some parameters of sho 

wave gravitational radiation. In particular, for spaces of the same large sea 

shape (given by a suitable background metric 't~,) we have 

X= )q + 81t s ~::, .. {14 '( .. R d:}( + {9( ~) 
s ·ioc. r4( M" " x. 

Atis a function only of the background and the where vector 'f , and -
is an average stress tensor (as defined for instance by Isaacson(l)) of 

short wave gravitational radiation (of wavelength ~ ). 

(2) 

,.~ 

~~") 
the 

In considering the problem of gravitational radiation from this viewpoin 

several problems are suggested. One is to find a background if one exists in 

space presumably containing a background plus wave. Isaacson assumes that if 

separation is possible, it can be found by sufficiently intense inspection. B 

it would be much more satisfactory to have an invariant method of finding the 

background when one exists. We propose that the background can be found by av, 

aging along the eigenvectors corresponding to the few lowest eigenvalues of (: 

We will consider this question for the Taub space slices in Section IV but we 

shall need the lowest eigenvalues and eigenvectors, which we find in section 

The eigenvalue spectrum is one of the requisites for still another probl1 

suggested by Isaacson's investigation: to more completely specify the metric. 
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That is, we wish to find the background and the derivations completely and 

invariantly, without making any short wavelength assumptions as aTe done Qy Isaacson. 

(This would clearly include the specification of the background done in Section IV.) 

We expect that this project can be accomplished through use of the eigenvalue 

spectrum of (1), or alternately the second order operator defined qy (1): 

-- (3) 

(The problem of specifying the metric is then analgous to finding a potential in 

~uantum mechanics from a knowledge of only the eigenfunctions~d energy eigenvalues.) 

For these reasons we will consider the spectrum of - u£J in Section III. 

The problems of Minkowski signature in considering e~uation (1) or (3) are 

manifest, so in investigating the ideas suggested here, we will confine ourselves to 

a positive definite manifold which has some intrinsic interest. We shall consider the 

symmetry of closed spacelike 3-manifolds YVJ { t) which are the time slices of the 

Taub part of Taub-NUT space [given by the t-constant part of equation (4) below] • 

Since this manifold is compact and analytic, the eigenvalue spectrum, l the stationary 

values of ( 1)] will correspond to a countable set of analytic vector fields on the 

manifold /17lt). The integrals in (1) are positive and bounded on these compact ~(f) 

L 'VIII { L) ct l . For each ~ the ma~fold ''I r is topologically a 3-sphere, v The 

spatial metric posseses four Killing fields; three of which describe the spatial 

homogeneity of the spaces, and the fourth giving the one axis of isotropy at each point 

(Section II below) /11 ( t) can in fact be characterized Qy its homogeneity. 

Two other invariant vector fields (the two other symmetries of S l ) can be 

defined on ~{f), due to an especially simple topological equivalence of ~(1) 

to • 

The eigenspectrum of e~uation (1) or (3) clearly starts at , because 

there are Killing vectors. We shall be interested in the other eigenvalues and 

eigenvectors. We shall in fact find the complete spectrum of eigenvalues and the 
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complete set of corresponding eigenvectors. 

II The Taub Solution 

Taub2)obtained a cosmological solution which is in a sense a generalization of 

the Robertson-Walker(3) (R-W) metrics. It has ~o(($.-= 0 and 

homogeneous but not isotropic t = constant space sections 

particular coordinate system( 4) 

Y}'l( t ) . In one 

ds1 -= (t. 1 ~J!."l.)( dez4- SiMa& J.¢>1..) 

+ uaJ(?.R.Jt.(drf tc..ose d1 )z. 

- ~ c~1u ( d ~ .. c..os e d.{> ) dt. . 

Here 8 t [ O)TT] 
1 

cP E. (o J ~1T) and ~ ~ [o.l ~llf are coordinates on $ l 

J. is a constant length ( J2,. O) and (I ( t) is 

(~-t._J(t-t+J 
1:. t. ~ ~ 'l. 

) 

where t±-= fW\± (M\Z.+ .Q..l )Y'- ; /1M is another positive constant length. The 

function U ( t) is positive only for C_ < l < t,. for 1: in this 

range, ?rll f) is spacelike. The surfaces t ~ t't are null surfaces which 

bound the solution from another region of ~-space described b.y the empty space 

. (NUT) (S) h' . ( Newman, Unti, and Tamborlno space, w lch ls given b,y the same metric, 4), in 

the region where lA U:) <.. 0 ·. In NUT space, t is a spacelike coordinate. 

\n th t. ~o\ \OW\~~ we. '-'Se. A1., l tt .l '1. o,y, ~ 81. '5. ~ l1. U . 
The homogene!ty.of the space-slices is deomonstrated by the three Killing vectors 

(which are Killing in 7rl { t) for each /; ( 4)) : 



l 

~,1( : 

~ 
f! -

':. 

~ 

- s~ tb J
6 

- ecs ¢> ( c.ot e J~ -esc e J~ ) 

c.os <P as -~ 4 ( t..et e d~ - esc e Jf-) 
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Although these look like rotations they have no fixed points, since they have 

nonvanishing length; see eq_n. (-8·). 

There is also one more Killing vector in '7tYl (.{) 

In addition we may define two more vectors which are invariantly distinguished 

on the 3-sphere' but are not Killing in m { t) 
'fll( ';. _Si-t} de + c..o.s 4-- C c.sc. ~ )~ - c.of e d'~--) -

The topological eQuivalence mentioned in Section I is simply given Qy the coordinates 

e ' ~ y,- which would be the Euler angle coordinates on S 3 
if 

t.'+~'Z. = 4.Q'ttA. 

The Taub solution is a generalization of the closed R.W. model in the sense that 

rw/ U) for each l: ~ < f.~~ t -t) has only four Killing vectors. The corresponding 
3 

slice in the R.W. metric is topologically ~ also, but the metric there does not 

distinguish any direction on the 3-sphere, and the R.W. metrics have six Killing 

vectors in each time-slice; the full set of generators for the symmetries of the 

3-sphere. 

III The Eigenvalues of -£; on Jn(f:J 

Because of the large number of symmetries still available in the Taub space slice 
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;,e are able to find the spectrum of the operator - .fJ explicitly. 

We have the following commutation relations for the invariant vector fields4 

(where these are Lie brackets): 

[ ~~ ) ~ '1 : -E:.:.i~\\1. - - -
L ~L ) Y\i1 ~ 0 (5) 

~ -
[yt,,YLl: - - - E; ~j~ '1k. 

~d -J9 which plays a role like the Hamiltonian in quantum mechanics, commutes 

nth ·~and ~t. ( -,8 commutes with each of these because they are Killing - -~ctors and -J9 is comprised only of the metric and covariant derivatives.) The 

commutation equations(5) for the l;. show that the behave like an angular -tomentum, and we may pick one, say f't , as well as -,€) and }1 and §' l to be 
~2 

Part of our set of commuting operators. 

Also, the projection operator ~ :.Tr2. ~r:{'YJJ•commutes with £J and with 

the rest of the operators, because it consists only of the Killing vector !la, 
the metric ( •), and the constant [in ")17C~)] Ba. Thus the orthogonal projection 

[: I- Pi: commutes with the rest of the operators. R, projects into the 

di~eeti.oli orthogonal to '!1~ . Because p! commutes, we see that if our eigen­

lector is parctllel to It 'f ' it will not be mixed into the n~ .. YJ .. directions' and 
- ""' .... r 

~ee-versa. Since the only quantity in the metric which picks out~a direction in 

the '!'IC· ~l plane is ~.,we may take as a basis in this plane the quanti ties which 

are eigenvectors of -i. 1IJ, i.e. 'VI+ ::. 11at '!: i. n~ . We will label all our functions 
!_.(~ !..>- - -· 

lith the quantum number s , the 11 z component of internal spin"; s= 0 

for 'Vl s= ± \ for /1 ± • Each of our functions C, will then be 
'It --(: r ns where .,P is a scalar function and !1. : )1,. ,etc. Clearly an algebraic 

"" .,.., ..v S-1 -
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projection operator can be defined to give s : 

~op ~ l)f.L ) D : i A-
1 f (~I( +i .tt~)(!1.-i~»)• 

Since '!}t distinguishes s=+l from s=.-1, we expect the eigenvalues of - £J 
to depend on s • 

The vectors iL ,Yl~ are the generators of motions on s3 • Coordinates - -
on S~ e.re. e , cp , ~ ; Euler angles. We thus see that a specification 

. ~ • 'J='z. )1 I_ 
of the quantum numbers -t s,:= Ji-, -5 =- j(j.f.l) , and -i :Ji-:. I( will completely 

determine the functional form of scalar eigen functions on /r7£ t) to be, 

(Since !" +- i I"l - -in :fact, a 11 rigid rotator eigen function" (see Ref. 6). 

commutes with -cfJ , j ~ will not actually enter the formula for the eigen-

value.) We have just given the vector part of the eigenfunction specified 

by S Thus A , the eigenvalue of -,/J,is }-:. )..iks • (Even if 1j1; 
were not a symmetry, we would expect to be able to express the eigenfunctions 

as a ~ over different k-values. Thus even the case of completely aniso­

tropic space slices }rlH) [only ~ ~ Killing l should also be possible -
by this method.) 

The commutation relations allow both J and k to be half integral, 

but they are in fact integral, as we can see by the following argument. 

~ 2 ·. Suppose C is an eigen vector of ~ -
~1.[t:J ~ [ i~ J[ I~ ,t~h.Jl ~ ~r t (f~ [CJ1 -

[we used eqns. (5) .J 
But since ~ll~') was obtained by the differentiation of a single 

valued scalar function, it must be integral. Similarly, if C is an eigen -
function of '"Y/2 , -

-i Y1t[~] - - = -i. r ?Ji-J r {JJJ 
} [ -i !1~ J {1s J ~ tJ~ [f J ~s 

= s f YJ $ ... ( k -s) + ns :: .... ) -
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But S is integer and ( \<. • S) is obtained by differentiation of a single valued 

scalar function, so k is an integer. 

In the following we will take advantage of the formula 

..; ~ Clb - cth Y' c -
~t;q - d ;c.V, - z; ~ c.b ;-:' b C.C{ 

jC.'J -£..., j(.' = 

and also( 7) 

0 
J 

where this integration is over a compact orientable surface, and the 

coordinate volume; P is any vector field. -
We thus consider the eigenvalue ratio eqn (1): 

) 

(b) 

is 

where we indicate by 
Q •• O the contravariant metric in (as distinct 

from its components ~6.b ) . The two dots between the terms in the numerator 

indicate that we take the double contraction between the two second rank 3-tensors 

it: ~ 
•• While we should a priori take the variation of this ratio, we know - ..\ is 

. k that a function of only J ' ' .s ' $0 we construct vectors ~ which -
have these quantum numbers. These vectors are then automatically eigenvectors of 

and the integral ratio gives the eigenvalue directly. 

We use the following formula due to Misner(B): 

(1) 

where we have abbreviated 

• 

Then, 
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-=- A -2. ( c ~ J t· ]® ~ ~ + r .. ® [ ~ , f.J ) 
+ (g-t- A-L) ( c c;, Y1~J®Yl~ f- Y1t g;[l;) ne-l) . 

~-""'"' ~ ........... 

Since [ '£' F 1 = -w' r 1 for any vectors "'( {) , we write ,_ 'r ......, 

( t~ (t•) : ( tt; ~ .. J : - -
tLj A-2 (~®[j +ij(g)~) ,_ £i!(g-t_,q-t)(;~ll~~1~®ff)]: 

L t i A-t. ( r., ® rL· 4- r L. ~ ~ ) t tl t rs -z.- A -,) ( ; ® ?J i ,.. ~ t ®; ) J 
.,..., ""'"'"' ...,.. ..,.. • 

We write l.::. ~g, - and £;. ;. £ H 

:.!.• 
• This should cause no confusion since 

we will never explicitly consider the operator • We have written complex 

conjugates here because we want to introduce the complex vectors • We ne 

multiply out the square and use equation (k;,) to integrate by parts so that each 

term becomes 

We give the A -Lf term as an example: 

I A-'i i.j (g®fj f £ ®~) ~ £c;(~®ii f L·®~) Jli J~l( 

= - 1 r rs-d d 3l< A - 'f r r., t j ( ~ ® 1 j .. L ~ ~ ) ! ( ~ (!) r ~ .. 1 ® ~ ) 

+ ' e, ® { j + r i ~ ~; ) : 1. J 1., ( c ® r.: ~- f· ® ~ ) J .,.. ~ ..... .,.,.. ....... ~ -

(We used since r c.: is Killing.) 
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The coefficient of ;r '\!3~ d ~x in the integrand may be written, because 

of the symmetry, and because [§.:J~.-)=0 as 

I ='" i ,· ( [ ~j , ~ J ® tj ) ~ ( G ~ ~ 4- k cv; ) + complex conjugate 

Furthermore, [ iL 1 ~;] • I.: : -E L'jJI. \_St.-{.~ - 0 
and we can write 

out this expression, using 

; -= f }js ! 

1. ~ ~ ~ ( ~ j c r JJ ( 1i s · f Yl s )( ~., • ~t: J 
VOW'\ """ ""' ""'- .,.... ""' 

t lt L t l ~ 1] ( ~ s · [i )C [~ • ~ l1s ) 
c. c. + (f~. ns) fj[f] (t.~i ~f·] ·fns) 

~ f'\Ao; ~ """" , ....,. 

In the following we need to know the dot products of the vectors r,. {; ')1a - .- ........ 
/1 j given in 
....... In fact we have (as can be verified from the definition of -

the text; see also Ref. 4): 

~~ ·~,j -= Az. ~~~ + (gz. A7.)~tnj and ( 8) - .... 

where 

c.os 6)) . { 10) 

Furthermore, 'VI+= tw'\,._o."ca.. and (II) -
and 

. NV\ +o. IWI +~ -::. IVV'I+C\ N1 ~ '= a 

i\M" +o. Mll+e.. :. Ma. Mo. -c. t 

Using these relations we see that the top line in I is 

( 13) 

~ (..c. 
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The last two lines in I may be combined into 

L Since ~.: commutes with n s - and with the metric ( . ) .] 

So 

L.L. ~ ~ ~ ( - IV\ i. g-t) t i. ( { · ( f J (- M j ) ) 
So -" 

= ~so B ~ ( t; · ; ) f -' )j_! L ':h ( f J] 

+ A 'l. ( \- ~so J ( t; · ~) f - 1 Y/ s [ !J.s t ~] J ~ e. ~. -
- ~ Bl. ( ~· ~ )(k-s)~ s 0 ...... ,.... 

(I- ~so) (~ 'C, ) A 2.. ( J. (J ~· l - k ( k- i) ) - .... 

In the second line of the last equality we used the general formula 

l + L t ";. ~(t ~ d _ 1.~ l.t~ -~o, ) plus the fact that in this case ,1_~ is ck- s) and 
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and that the order of the operators depends on S 

Combining these quanti ties we get from TJ..+ LL: 

; ) { - A ,_ ( J ( j " I ) - lk -s ) 'Z. ) 

- B ':L ( k - S) 'Z. ( I l- ~So) - ( \- S s 0 ) ( S l j + \) \- \c: l k - S)) 1. 

The other terms work out in similar but more straightforward fashion, and the 

result is 

Here 

l f IS t (I + ~So) [ "~ ~ "" " u~- 2 - A- 1 ) 1 'Z 

+ ~-1. [ J'l~ +I)- tk-sl'l] + (l-~~o)A-~L jtjoft)- klk~s>1J,.. 
( \4) 

J and k are integer, and J is required to satisfy s:.±l,o; 
~ q H , ~ ck- s) t. and J l j t-t J ~ k Uc. - S) 

We finally note that a solution G + '; rJ..~o .,. ?:b +t.. tk has 

and has since t Yl~ , \ ~ l = 0 Its eigenvalue is 
..... .,.. 

(,_ has the same eigenvalue. The eigenvalue vanishes when 

in which case the 3-space l;?tf) 

f1x 
is instantaneously isotropic as well 

Thus at this instant ....... as homogeneous. and are Killing and we identify 

them with the "missing" Killing vectors in general 

IV The Isotropic Background in /11l f) 
It has been suggested( 9 ,10) that Taub Space is a R.W. type solution, similar to 

Brill's radiation filled one~9) but with the longest wavelength gravitational wave 

that will fit into it giving the energy density to close it, in place of the matter or 

radiation in the usual R.W. forms. We show here a way of finding the underlying space 
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slices - the closed constant curvature spaces in the R.W. Metric - by a procedure 

of iteratively averaging the metric for the Taub slice /11 ( t) along the few lowest­

eigenvalue eigensolutions of (3). 

In the 3-space, six averaging vector fields are necessary to obtain a completely 

homogeneous and isotropic background space. For one can, by averaging over three 
O..h 

fields which describe homogeneity in a 3-space, obtain~an:isotropic but completely 

homogeneous space. Further averaging along these vector fields, which are then 

Killing, will have no effect. M~e averaging fields are needed. 

In this section we shall make extensive use of the invariant definition of the 

vectors and f..: We shall average along these fields, and we note that 
.......... 

n , and f ,· are well sui ted to this averaging since of all the eigenvectors of - E - -
in , only ~~· and f.: are everywhere non-zero. This is easily 

seen because eigenvectors are of the form and of the 

eigenfunctions 1r of the rotation group, none except the constant is everywhere 

nonzero.( 6) [Formulae (8) and (9) show that fc..· ·~~o and /l.,· .J1,·i-o for each 
...,.... ,. ~ -"""' 

• 
(... .) Our criterion for an invariantly defined field along which we will average 

will then be that they are the nowhere zero eigensolutions of e~uation (3). It 

clearly will be pointless to average along a Killing vector by a method of Lie 

transport as we will do here, so in this case we have initially only two vectors to 

consider averaging along, and )} 7 -- It seems plausible that in at least 

some completely non-symmetric situations- such as those obtained by small general 

perturbations from a R.W. form- we can have up to six such candidates for the vector 

fields in the three space. It is, of course possible that by averaging along one vector 

field we destroy the Killing nature of anothero We shall see that after averaging along 

, say, in the space m tt-J is no longer Killing. (If, as we do 
......... 

here, we average along a complete trajectory of , then afterward )1.\ - is 

clearly Killing.) 

Killing under /1.. i 

Because of the commutation relations eq. (5), the ~ .. stay 

averagingo 
..,.,.,..., 

) 
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Now consider averaging the contravariant metric tensor ~ 
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of m {f-) 

We do this by a process of Lie transport. Pick one of the averaging vector fields, ... 
'Ylx. say /Jx We then average ~ (p) along by carrying the space 

""'"" 
back to the point r along the trajectories of Y/1( and averaging the values -
of ~ .. there for the whole trajectory of J1~ . We use the form eq.(7) for 

v-

the co~~variant metric. After the averaging ~ will clearly be a Killing 

vector of the resultant space. We denote the back translated metric (a parameter 

length y-- along the curves) as •• 
~ Cp; 'OC) • Formulae in Schouten(7) then give 

for this finite translation: 

... ::. e '(' i.~ 
~ ( p j f"Jl) ~··(p) 

- ~··cp) t- "(£-. ~··) (p) ~ fl.li.!Lz d··)cp) • ' ' I 

The symbol denotes Lie differentiation along Since [ f1.; ~ .1: o 
""""""' , .... ' 

and by eqns.(5) we see that 

) 

iJC'( f1c®'Yh) - - : - ~ '1?: ® !12- ~ ;t !1~ ® !1 'f. ) ~ (IS) 

f_)(
3

CrJ~~1J..t:) - 4 L1( {J1l ~n~J 
....._ --

) 

we obtain [remember the analyticity of YJ1 ( .(.) ] 

The range of the path parameter 'f is 0 to 4 11 , as can be seen by 

considering the equivalent quaternian translation on the 3-space. (See Ref. s, 
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appendix B; this whole discussion of translations could be done in terms of 

1uaternianr,on .) We will average over the whole range of and 

f.: @.f.: to obtain 
,.... 

= A -l. (f.:~ i ~) +-~·. ( p; '(')(. ) 3" ( 8 -?.-A- 2.) ( f c ® ~ ~ - "'()_)( ~ !Zx ) .. (I 1) - ""'" 

This can be put again into the form of a Taub slice, /11{1:) but now with 

a smaller asymmetry, and now is Killing, but is 

If we now average with a nowhere zero non-Killing vector in this space, say 

, we will get by cyclic symmetry: 

fi p.;N ,sd) ~ t1-'([,<10LJ • ~(15-'- A-')( £c69~ -t[V<lt -11,oon~V. 

We see that if this cyclic averaging is continued, the anisotropic terms /1QO }1 
-"-

have a coefficient which vanishes as 

approaches A-Z. 

= canst. l( £.: ~~ This metric is metrically 
3 S , and we have 

succeeded in finding a symmetric background. 

We pointed out above that the 

under this averaging, since the 11 j 
vector fields are completely invariant 

fields all commute with the At 

each step in this iterative process, there are thus only two fields along which tlw 

averaging ho~~ effect; the two Yl ...... fields which do not appear in the metric 

at that step. (This is because we have averaged along the entire trajectory - alJ 

(L c. for 

(I~) 

around the space- at each step.) A calculation for 

the metric dragged back along the v~ field n~ ,.,. instead of along t.he f.ield Y1 Jt ) -
analogous to that leading equation (16) gives 

• • ( ) .... .l.Z. ( t"' Q •• ) (D) s.i- ~ '( 
~ •• ( p ) r~) -r:. ~ 'P a q ,-

1 1-P?. ••) +- ( l- c.,o.) l v-). 
t l.Y=~~ 2. 
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This is the same as (16) but with ~~ in place of jx means /Jl ) . 
--~ 

Similarly, the equation analagous to (17) becomes 

~A-~ ( ~ t. @f~) f- i ( g-t. -A-t)( fc:®fc: 
......., 

The only difference is the appearance of instead of {1 X' Recalling again 

that the ?1 fields can only act among themselves, we see that if we carry out 
..._..... 

the next step, i.e. obtain the equation analogous to (18), for one of the choices 

of non-Killing field, we obtain an equation exactly like (18), except possibly with 

a different subscript on the ;? field. It is easy to see that this is so at 

each step of the iteration. The point of this is that the limit for the metric 

is independent of the order of averaging in this averaging scheme, where we average 

along the whole trajectory of the vector field. 

We need not, however average the metric all around the space. Suppose we 
oO 

have a C weighting function 
"LT 

with the property that [ur ~(1..-l)dv• 1• 

and that there is an open interval Iw C 
(-ltr+E ?.IT- E:') • t eho 1 J ) J such 

that the support of vV is contained in • We also assume that 

Then, since the weight function is symmetric, if we average equation (16), the 

term proportional to sin2~ vanishes and contributefnothing in the average. 

However, in averaging the term ( 1- c..c~ .l.r) we will obtain not 1, but \- ~ , 

where depends on the width of the weight function. 

To investigate the effect of a finite width for the averaging function, let us 

write the contravariant metric as 

ra··:: t A-~ t- f (B~z-A~t;~ ( Iie29Ic) 
4-(B-z-A.-z_)[ ~('~2-®?l.t -[lx ®~) ._~(~@~r ·)_?__'1®1!~)] 

where we used 

Suppose we consider averaging this quantity with the weight function VV 

along the vectors taken in any order, but each taken an infinite number of 

times. Note that the first term in q .. a is invariant under this averaging; if 
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the second term tends to zero under this averaging, we have shown that the 

averaging process is independent of the order of averaging along the vector fields, 

and of the (non-zero) width of the smoothing function ~ 

In fact, for averaging over the whole trajectories of the vector fields, we 

have just seen that this term does vanish. Straightforward brute force calculations 

indicate that this is troe.when there is a weighting function W (so long as w 

is not a delta function). However, a straightforward intuitively clear proof has not 

yet been found, and we leave this as a true buttimproven statement. 

V Remaining Problems 

We have been able to perform this averaging because of the invariant description 

of the vectors "n_ ~· o--cS2 f.: One invariant character;i ~«~~of these vectors 
""'-

is that they are the nowhere zero eigensolutions to • They are 

also the fields that would be obtained from the Killing fields on a spherical space 

which is continuously deformed into the Taub shape. (These field~ if the deformation 

from symmetry is big enough, need not be the lowest eigenvalue vector fields: see 

section D.III.) We suspect that this latter characterization is the relevant one; 

in particular, we expect that averaging on a 2-sphere can be carried out by averaging 

along continuous vector fields in the way we did in Section D.'Cf, even though each 

such fields has at least two zeros. FUrther investigation of this question remains 

to be done, and the specification of just what fields averaging can effectively be 

done along. In particular, since the spectrum of -,tj specifies a countable number 

of vector fields on the space, we apparantly have all these as candidates for 

averaging fields. 

Another question remaining to be settled is that of the smoothing function. 

We have not given a completely satisfactory discussion of the "damping" method of 

averaging. However, this is only a formal problem, we have given the qualitative 

features. The result we obtain under averaging along these fields is unique, with or 



without the smoothingo This essentially is because an infinite number of 

averagings will bring adjacent values of a function into equality, even if there 

is a smoothing function. Note that there are only four wavelengths of "radiation" 

in the space )'Y/ {f) 

' 
appears in 

Eq. (16). Presumably, when the averaging can be done over many wavelengths, in the 

situation Isaacson( 1 ) discusses, the smoothing functions will not be critical. 

However, these problems are still to be considered in a general frameworko 

Thus, in general we need to define the suitable averaging vector fields, and to 

investigate the uniqueness and dependence on smoothing functions of such averaged 

results. 

One might wonder what the meaning of the averaged space is. A completely 

symmetric space which is a background for a space which is topologically S J 

is S.3 
itself. The only unkown quantity remaining is the radius of the sphere. 

It might be expected that a sphere of the same volume as Wl ( t-J would be the 

simplest such average. However, the average defined here does not lead to the 

sphere of this radius. 

Since the )1; are orthogonal, we can write the covariant Taub metric in 

terms of () i. the "1:-fo:rrns dual to the Y!c.· ......... as 

To obtain this form we used (again) The integral defining 

the volume of the space is 

The covariant form of the averaged metric which has the same volume as m {+) 

is thus given by 

where we used the fact that the metric coefficients are constant in ~(~ • 
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The averaged metric we obtained Section n.IV, ~ averaging along vector fields 

is 

the ratio of the ~olume of this space to the volume of }11lt) is thus 

The ratio is equal to unity only when A= B then the space is spherical. 

It would be encouraging if the averaged sphere we obtain by the invariant vector 

f'ields were to have some desirable property as a background metric; for instance 

in a dynamical sense. Thus the question is how much the time dependence of A l. and B .t 

dif'ferentiates the equal-volume sphere from the invariantly averaged one. noes the 

motion of this sphere have more desirable characteristics as regards to the 

eff'ective energy density needed to cause the motion? We here have two candidates 

f'or averaged backgrounds, each of which defines a (different) energy density in 

the gravitational radiation (the anisotropy). We hope that later investigations will 

show whether there is any reasonablect1Lterion for picking one or the other. We do 

f'eel that the consideration of shorter wavelength radiation situation will lead to 

an unambiguous background of the Isaacson(
1

) type. 

Finally, we point out that entirely naive considerations can lead to the averaging 

result we have found here. For 

One would expect that in a ,,S Ll ,.,pf squares, where nothing picks out a direction 

(and nothing does, on the sphere we average over), we would have 

l 
3 

< Y/,<. @ )1" ) 

' 
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I I k 
where we sum on ' but not on , and the brackets indicate the average. This 

is the result we obtained in the previous section, and in fact is so simple that 

one is inclined to demand it of all candidates for averaging schemes. The constant 

volume scheme clearly does not have this property. 
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Footnotes for Appendix D. 

( 1 ) R. A. Isaacson, Ph.D. dissertation, University of Ma~land, Department of 
Physics and Astronomy, (1967). 

A. H. Taub, Ann. Math. 53, 472, (1951). -

~. l 

( 2) 

(3) For a modern exposition of these metrics see S. Wo Hawking, ApoJ. 11d' 544, (1966). 

(4) C. W. Misner and A. Ho Taub, paper submitted to J.E.T.P. (1967). 

(5) E. Newman, Lo Tamburino and T. Unti, Jo Math. Pbys. J., 915, (1963). 
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Atomic Spectra, Academic 
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(8) 
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J. A. Schouten, Ricci Calculus, Springer-Verlag, Berlin, (1954) paragraph 10. 

C. W. Misner, J. Math. Phys. i' 924, (1963). 

Do Ro Brill, Nuovo Cimento Supplo~No.1, (1964). 

J. A. Wheeler, "Geometrodynamics and the Issue of Final State" in Relativity 
Groups and Topology, Gordon and Breach, London, (1964) (paragraph 9 and 
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