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Technigues are given which can lead to invariant approximation tech-
niques. The basis of these techniques is a definition for "almost" Killing
fields, which are the analogue of the Killing vector fields present when the
space has a symmetry. The integral unad of these fields can be teken as
coordinate lines, and then the variation of the metric tensor along these
lines is the slowest possible, in a global sense.

While this method can be applied to practically any situation, parti-
cularly when the deviation from symmetry is small, and might be suited

especially to problems of slow motion and equations of motion, this work
concentrates on applications to gravitational radiation.

Some examples are given, After initial computations for simple situationsg
an exact calculation on a perturbed flat 2-dimensional torus, and a calcu-
lation for a linearized wegk gravitational wave pulse, we turn to the type
of space considered by Isaacson.

Associated with every "almost" Killing field is a real scalar functional

ME] | For positive definite spaces A% O and A=0 only when kK
is Killinge. In application to spaces of the Isaacson type, we show that ‘%
contains an (additive) term which measures the average value of the quantity
T(z‘g ?n‘ge over the whole space. Here T(:;) j:s the average effective
stress tensor defined by Isaacson, If § is Killing in the background,
then X\ consists only of this 'l'(:‘;)g"fsgv term. We give applications of
this fact to the Robertson-Walker metric constant time slices.,

The cosmological solution due to Taub is also investigated by these
methods (quendix D). This solution has homogeneous but not isotropic
spacelike sections. The complete spectrum of the - operator
—,C?, of which the "almost" Killing field is the ground state, is found

in the spacelike sections of this solﬁtion.



An averaging scheme is given to separate the background from the waves
in a situation with gravitational radiation in a slowly curving background,
by means of averaging along the "almost" Killing fields and the few lowest
eigen solutions of ;a&f_‘l’ /\f = O . The Taub solution is used as an
example for this also. We shga an iterative averaging scheme which finds
a background 3%-sphere to the Taub closed 3-space slices. This averaging
scheme yields an intuitively reasonable background. However, it can be
compared with another intuitively appealing averging scheme: defining the
average as the 3-sphere with the same volume, The two methods give different
3-spheres as the background; hence different energy density in the remainder,
the gravitational radiation., Criteria have not yet been found to specify
which background may be the optimum one for the Taub space; din particular
neither of these backgrounds evolve like a radiation dominated Robertson-
Walker solution, However, reasons are given which make the uniqueness
plausible for situations with high frequency radiation, .

Some applications and examples are given in the Appendices, and some of

the remaining problems are outlined in the concluding chapter.



FOREWORD

Many of the principal results in this thesis will be found in the
Appendices. This arrangement was chosen so that these topics could be
written in a form directly suitable for journal publication. Thus Appendices
C and D are each self contained units in the form of journal papers, while
the main body of the thesis discusses the general setting and motivation for
the problems treated in these Appendices, and states further, as yet unsolved,
problems to which they lead, indicating some possible approaches to these
further problems. Appendix C is a reproduction of a paper which has already
been published, which was co-authored with C.W. Misner,

When making a reference to an equation which occurs in another part of
the thesis we shall refer to it by the notation of the table of contents,

For example eq. (2.5) means eq. (5) of Chapter II, eq. (A~7) means eq. (7)

of appendix A. References of the form (Synge,w19—-) are to be found in-the
Bibliography at the end of the thesis. Footnotes for the main body of the
thesis are found at the end of the main section (before the Appendices), while
within some of the Appendices (conforming to the requirements of Jjournals for
which they are intended) references are given as footnotes to be found at the
end of that same Appendix.
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Introduction and Qutline

The theory of Relativity is based on an explicitly covariant set of
equations: Kc«s= 8W(To(g"l5_3“§—r) . However, exact solutions to this set
of equations are available only for very special situations, such as those
with a high degree of symmetry. The solution to a physical problem with
source and asymptotically flat space which is not symmetric in any sense
involves a complexity that makes it impossible to obtain at the current
stage in the Mathematical theory of nonlinear differential equations.

The approach has thus often been to use approximation methods to
obtain solutions when they cannot be obtained from symmetry, say. The
approximation methods usually destroy explicit covariance of the problem.
The result is derived in omne particular coordinate frame and extreme care
must be taken to ensure that the coordinate conditions are all explicitly
stated and understood. Invariant methods have so far been used only when
the space under consideration was symmetric, and so contained a Killing field,
But whén there is no symmetry, there has heretofore not even been a way of
specifying the quantitative lack of symmetry in the space. This paper presents
such a quantitative measure, and gives a definition of M"almost" Killing
fields which generalize the Killing fields of symmetric manifolds.,

Although these ideas should be very helpful in the study of slow motion --
both of the type considered by Einstein, Infeld, and Hoffmann, and of the
type exemplified by a slowly contracting non-spherical collection of matter
with pressure -- we have found it easier to apply them to some instancesof
gravitational radiation. The outline of this thesis is as follows.

Chapters I and II are reviews of slow motion and of gravitational
radiation, In Chapter II we include a discussion of the results of Isaacson

(1967) for:high frequency gravitational radigtion., We will use Isaacson’s
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results frequently in the discussion of applications, Chapter III is a brief
discussion of the equivalence principle and its relation to the problem of
separating waves from background in situations with gravitational radiation.

Chapter IV is a short account of Killing vectors. and their utiligy in
practically every calculation that one might consider doing, and for defining
conserved energy and momentum guehtities.

Chapter V is the central chapter of this work. It contains the definitions
and a discussion of some of the properties of the fields we call almost
Killing. These fields generalize the ides of Killing fields to spaces
which are not symmetric. The field so defined specifies coordinate limes
along which the variation of the metrit- . tensor is the slowest possible
in a global sense. Thus it generalizes the Killing fields in spaces with a
symmetry where the metric tensor does not change along Killing trajectories.
For closed spaces with positive definite metrics, existence and differen-
tiablity of solutions to the defining equations (5.1), (5.2) can be proved,
and we quote the relevant theorem. The method postulated here has strong
analogies to elasticity theory, and:we show that in fact for 2-dimensional
surfaces which can be imagined embedded in flat 3-space, there is an operational
method of determining the symmetry parameter ()\). It is just the square
of the lowest vibrational frequency-- assuming a certain type of stress
strain relation--when the surface is a physical shell constrained by rigid
sliding contact surfaces (no normal motion and no transverse stress at the
surfaces). This analogy to elasticity permits a simple heuristic proof of the
existence theorem for solutions to (5.2).

In Chapter V we also give a generalization of a theorem by Yano and
Bochner (1952), and a brief discussion of some spaces of Minkowski

&
signature, where the quantity § 8 E‘*i@) may egual zero emen though



Chapter VI presents applications of these ideas to two examples.
In the first, we find exactly the vector field which is our almost Killing
field under certain restrictions, for a wavelike perturbation on a flat
2-dimensional torus, The second is an application of these ideas to a
Minkowski 4-space containing a linearized plane gravitational wave pulse.

Chapter VII contains the application of the techniques of almost Killing
fields to high frequency gravitational radiation, of the type considered
by Isaacson. It is shown that the real functional )Il{] associated with
every vector field E} measures some parameters of the radiation. In the
simplest case this parameter is the "energy density" of the radiation,
but if a sufficient number of vector fields can be invariantly defined in the
background the average gravitational "stress“associated with the wave may
also be measured.

Chapter VIII is a discussion of the problem taken up in Chapter III,
but with a slightly more precise objective in mind, We postulate that
the background for an Isaacson type space can be found by the method of
averaging along the invariantly defined vector fields which are solutions
of (5.1) and (5.2). This may be essential if Isaacson’s scheme is to have
any computational advantages, since his program always requires such a
splitting. For radiation of short enough wavelength, one would expect
any averaging to be effective. We attempt to give a method which is
powerful enough to work even when the radiation is definitely not short
wavelength. For instance, Appendix D discusses this scheme for the Taub
cosmological solution which is apparantly a R.W. type of space but with
the longest wavelength gravitational radiation that will fit into it giving
the energy density to curve up the space. These étudies of averaging proce-
dures to define the background-wave decomposition of a metric are so far

only exploratory and give no definitive results.



Chapter IX discusses further questions that these i1deas may be applied
to, and directions for further research,

The appendices A,B,C are examples of methods mentioned in the text.
Appendix D, as we mentioned above, is a calculation applying the ideas here

to the Taub comological solution,



Chapter I. Review:Weak Fields,Slow Motion and Eguations of Motion,

Linearized Gravitational Radiation

The term '"slow motion" immediately brings to mind the Einstein-~Infeld-
Hoffmann (EIH) method, ome way of treating the equations of motion in General
Relativity. Because of thiis historical fact and because the guestion of
gravitational radiation has often been considered via the equations of motion.
we devote this introductory chapter to a review of this and similar methods
(including the "Fast" approximation which does not suppose slow motion)sy

The first approximation level to be considered in Relativity is the line:
approximation. This means that one assumes a small deviation from flat space
and writes %“u=)1“u*€lqﬁu where ‘quy =diag(+---) is the Minkowski
metric and EL\Pv is the difference between the actual metric and the
assumed flat background. The procedure is to then linearize the Einstein
equations G§ = 8¢ Tgih\eh ; by a suitable choice of coordinate conditions

these equations may be put in the form

” BT
Ji.ﬁ DL\’MS'—‘ 31TT ¢ where q,d('-”: L\“G”%Y\ b \" T . (1.1)

(Landau and Lifshitz, 1962, Ch, 11).
These equations contain Newtonian gravitation as is well known.
For now assume slow motions as well as weak fields.rThey can then be re-~

duced to the form

-6 VPF T = smp

L

[« X -
which gives € ‘7" = 4 qS with qﬁ =the Newtonian potential
&) -m/r. The equations of motion (which are the geodesic equations in the

space described by this metric) then become:

drYY\éE-‘:: ¢J"'

dt de ) (1.2)



the Newtonian equations of motion, These are the originalslow moti:
which several centuries of extremely precise astronomical observat:
verified, since their formulation by Newton. The Newtonian equatiol
motion are necessarily the starting point for all slow motion appr(
since Relativistic results must reproduce Newton , where the Newt
theory applies. The accuracy of the Newtonian predictions and the
of the Relativistic corrections in(say) planetary motion problems ¢
appreciated by noting that the Newtdnian potential of the sun at til

8

orbit is about 10~ (the Earth’s potential at its surface is abou
(8ynge,1960). Thus the second order correction to the motion will t
one part in 10§. [If one thinks in an invariant manner, and calcul
~curvature tensor, the familiar result from the Schwarzschild soluti
R....fvm/r5 shows that it is given by the density. The deneity of
is ~ 6 gm/cc; the average density of the sun is ~ 1 gm/cc, Thus th
tensor of the sun at the Earth’s orbit is ~(E<:/PE)3'~ 1077 gn/cc.
invariantly described gravitational quantity for the sun is about 1
weaker at the surface of the Earth than is the Earth’s. To reconcil
fact with the usual methods, and especially with Newtonian results,
must realize, as Dixon (1967) has emphasized, that the relevant fea
is the linearity of the equations for small fields., The orbit of th
is very similar to that of an infinitesimal test particle with the
initial conditions, because of this additive linearity.]
O0f course, one can also consider gravitational radiation as we:
motions like planetary motions which are so slow that radiation is 1
The theory of General Relativity permits energy transport by gravit:

means, and this can be seen even in the weak field approximation. I

time dependent form of eq (1.,l) contains the D”Alembertian operator



has wave-like solutions. There are problems with making such a straight-
forward statement, the problems of coordinate conditions. The specificati
of the coordinate gage used 1s a matter of some tastej it can, however,
affect the results in naive applications of pseudotensor calculations.
Briefly bypassing these problems—- although they are really the principhl
questions we intend to come to grips with in this work~- calculations can
carried out which are analogous to the calculation of radiation in classi
electrodynamics. They give the familiar result (Landau and Lifshitz, 1962
showing that there is no dipole radiation, but that the first nonvanishin

radiation terms are the quadrupole terms. In fact, one finds

[+ 1

.- ¥ &Ly
t = dsct L JE MW
¢l
to this order for the enefgy loss from the system by gravitational radiat:
as calculated by "common-sense'" applications of pseudotensor methods. Hert
[)ins the quadrupole moment tensor of the source, (An example of the
utility of this expression is given in Appendix A, where'ishe linearized
theory radiation is calculated for several cases of collépsing objects
undergoing Newtonian motion.) The calculation of gravitational radiation
by linearized theory obviously requires weak fields, and thus Newtonian
situations such as collapse from non-Relativistic initial conditions,
Planrtary motions are well suited to this method. Although strong fields
are excluded, high velocities are apparantly not excluded. Thus the radiat
from near-miss hyperbolic orbits can be calculated by this methed, althoug
high velocity bound orbits cahnot be so treated., We shall encounter this
distinction again below,

Several methods have been invented to carry the possibilities inheren



in the weak field approximation to higher orders., They divide-- very roughly--
into the methods associated with the names Einstein, Infeld, and Hoffmann,
and the methods like the "Fast" approximation.

The most famous treatment of the problem of motion in General Relativity
is that initiated by Einstein, and carried on by Einstein, Infeld, and
Hoffmann, The first paper on this topic was published by Einstein and
Grommer (1927). They showed that the geodesic motion of a test particle
follows from the field equations. The paper of Einstein ,Infeld, and Hoffmann
(1938) finally went beyond the simple motion of test particles on geodesics
in an external field, and formulated an approximation method which would
permit the simultaneous calculation of the gravitational field and the
motion of its sources. A parallel, independent development along these lines
was carried out by Fock and his collaborators, beginning with the papers
by Fock on the equations of motion, published in 1939.

The methods of Fock differ from those of EIH in that Fock fixes the
coordinate conditions to be harmonic conditions: (-g)-%{(-g)%g“p},g = Q
at the outset and remains in this gage throughout his derivation, and makes
very extensive use of the gage in simplification of the expressions which
appear. (See, e.g., Fock, 1964) Also, Fock (and Papapetrou, 1951) makes
specific assumptions abput the matter tensor; in particular that it is
nonsingular.,

The EIH approach, on the other hand, assumes particles will be given
by singularities in the fields, and s0 looks for solutiong to either G‘m3 =0,
or to G?‘ = 8h'T% s, Where TQ% has some (modified) delta function singulariti
The difference we are most interested in, however, is the coordinate condition

applied in the EIH method. One possible coordinate condition is ‘K°ff==C3 ’
- Mo py v
Kmm,m =0 , where Y = S-S% - Y\” (Goldberg, 1962).



Mmv -
These are not harmonic conditions, since they are not the full set X vV C}.
v
They differ very little from harmonic coordinates when is small, however,

and the EIH method adjusts them at each step of the approximation, and iteration

schemes allow the method to be carried out step by step, with the correct
coordinate condition applied at each order.

The recent work of Chandrasekhar (1965) is similar to the programs of
EIH and Fock. Chandrasekhar has expanded the coupled Einstein and hydrody-
namics equations in powers of v/c, keeping terms to the first post-Newtonian
order. As in all such work, a coordinate condition is necessary; the condition
used by Chandrasekhar is )lﬁi _‘bhﬁ o

'% 9 X® IxE

(where @y = Yo t € \\,\u )s
a condition whiich he is careful to check at the end of his calculations,

The Chandrasekhar development presents the quantities that appear in physically

intuitive terms; for instance

€ hoo = =2U + (ZU2 +4§2) + O(ve)

where U is the Newtonian gravitational potential (in this coordinate

frame) and VZE - - ‘-ﬂTﬁ ¢ where

?S = v + U + ¥(internal energy) 4%%

showing the effect of the energy density of the gravitational field acting
itself to produce more gravitational field, giving the post-Newtonian
correction to the mefric.

It might scem that similar methods could be used to give the next
approximation after linear theory for waves. However, this is not so.

Trautman (1965) has shown that if one starts with a linearized solution with
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outgoing radiation and imposes a gage which is the harmonic gage condition
")
to first order, one finds that the potentials '1“9 satisfy
(|) - ')V ) -
Dk“?'-n L‘“@JP”-O ' @
If one then assumes the same coordinate condition for \ﬁ o@ and writes the

source due to the effective stress tensor of the radiation which generates

l";la)“ : DL,(::B': Q(L‘“’) , one finds that "\‘u behaves as (logV')/Y" .
Thus it does not vanish fast enough at infinity, contradicts the Sommerfeld
condition, and gives infinite energy. Thus the approximation scheme has
broken down., We will mention the explanation of this failure after the
discussion of the Asymptotic methods and Isaacson’s results. It can be
avoided by solving the wave and the background consistently as a first step,
and then using this substitution method for higher terms. (Isaacson 1967).
Further work on the equation of motion has been recently done by Dixon
(1967). He has considered the full solutions and has not separated them
by any appfoximation methods., He has given a multipole expansion which
determines the motion of the body in terms of its moments in an asymptoiic
series~- asymptotic because it must be stopped before the m“th term, where
m is a number such that Qiﬁ%n varies appreciably over the size of the
particle. Thus it is implicitly assumed as in classical motion of "“small"
extended masses that the first few multipole moments give a sufficiently
accurate description of the motion of the particle, Dixon’s equations are
exact, they give the motion of the particle once the total field is known.
1he total field, however, includes the field of the particle under consider-
ation, as well as the external sources, There will be no infinite field
problems because Dixon always assumes his particles are extended bodies.

However, the problem of motion has not yet been fully solved in this way

since a scheme for satisfying the motion equations without knowing the fields
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a _priori has not yet been given. The multipole approach is interesting
because of its invariance and because 0of the ability to sidestep the questic
of coordinate conditions.

Although the EIH method is excellent for the type of problem found in
planetary orbit calculations, for instance, it is not at all suited to
calculations of intense radiation. This is because of its assumption of slow
motion which implies weak fields, since strong fields accelerate bodies to
high velocities. But the weak field assumption means the observer is always
in the near field region, where it is extremely difficult to distinguish
radiation from induction phenomena. Another type of approximation has been
made, the "Fast" approximation. (See for instance, Goldberg, 1962) This
method extends the weak field results by assuming only that the potential
m/r is small, but that v/c is not necessarily small. This scheme is stili
unsuitable for calculating intense radiation from bound planetafy orbits,
but apparantly can give correct answers in the case of near miss hyperbolic
orbits, where the radiation may be fairly intense even though the fields
are not strong.

Recently, Carmeli (1965) has given methods of finding the equations of
motion by assuming that the metric can be split into a part associated with
the particle aﬁd an external field. He obtains the solution to the motion
as é sum of powers of the mass of the body under consideration. By making
suitable assumptions, both the EIH and the ¥ast approximation can be obtainet
from Carmeli’s results. Furthermore he has been able to show that some
strange, apparantly antidamping, terms found by Havas and Goldberg (1962)
are exactly cancelled by some more obscure terms which had previously been
neglected. However, as Carmeli has pointed out, the physical interpretation

of the terms that appear in these equations is still canfused and more work



remains to be done from this approach. (The problem of equations of motion
is still lively even in classical electrodynamics. See Kaup, 1966, 1967)
We have given this sketch to show how the problems of coordinate condi
and eqguations of motion are interelated, and to show how the treatments of
equations of motion make certain assumptions about gravitational radiation,
Of course, assuming that there is an EIH solution which to first order is
Newtonian motion postulates that there is no strong radiation likely to
disrupt the system while it is being investigated. The separation into
slow motion and waves sO that the waves can be excluded in these approximat
schemes is very similar to the separation we will discuss in Chapters III
and VIIYbelow. First, however, we will give an account of the other
viewpoints on gravitational radiation; viewpoints which are far removed fro

the questions of equations of motion.



Chapter II.Review: Gravitational Radiation

a) Exact Gravitational Radiation

There is as yet no example of a vacuum solution to Einstein’s equations
which represents a spatially bounded source emmitting gravitational radiation,
There are several reasons for this. The nonlinearity of the gravitational
equations is the notorious complicating factor. Expansions of the Fourier
type are excluded (plane waves of finite amplitude have infinite effective
energy) and the apparatus of the classical electrodynamics approach, which
has after all only yielded precise answers to this type of question recently
(Bondi, 1960, Misner and Zapolsky, 1966) in the simpler electromagnetic case
cannot at all be applied to the nonlinear gravitational problem, The non~
linearity exhibits itself in a charatteristic way, in infinite energy densitie:
As pointéd out previously, in trying to find the corrections to a linearized
solution with waves if one attempts to apply a straight forward Fourier
expansion in terms of the plane wave solution which can be obtained from
the iinearized approximation, one discovers that the energy density in the
wave causes a curving of the space near it so that a correction is needed
which is large, in the sense that it has a term of order (Qo%f)/f far from
the source., These questions have been considered by Bondi, Van der Burg,
and Metzner (1962) and also by Isaacson (1967).

The situation is much simpler when the problem is highly symmetric.
Cylindically symmetric waves have been known for a long while [see, €8
Einstein and Rosen (1937) , Rosen (1937), and Wheeler and Weber (19571.
Recently there has been some sucess in finding other idealized exact
solutions which contain waves (but not from a bounded source.) Brill (1959)
has shown how tq prescribe time symmetric axially symmetrie waves, which

describe an imploding=- exploding (source-free) wave, He takes a metric

form:

AN ()

ds:”= L\th,ﬂ[ ¢ (dg+ 4z?) + fﬂ-d‘f’t] (a.1)
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in the instant of time symmetry t=0, If Q is a fumction of bounded

)
support then \F is given by the initial wvalue problem, @ R(ho).—- o

which 18 vy s - %—' (‘z‘Vz.)t + (XM b & pasoamater ae), (22
Brill shows that there are everywhere regular solutions (in the t=0
3-space) only wHith an asymptotic form ‘P,~ A()«)[ | +~§‘.(;-Z") , M20
and only when )%.$ ),everywhere for a definite limiting A, . For every
positive value of ) less than this limit there is one and only one regular
solytion which is asymptotically flat; this solution describes a localized
gravitational wave whose energy (measured at infinity) is m. Araki (1959)
has discussed this problem further.
Work has been done also by Robinson and Trautman (1960) who have
which o

investigated all vacuum fieldsAhypersurface orthoganal non-shearing

geodesic ray congruence. These contain (all) pure radiation fields with

rotation free rays. These do however contain also the Schwarzschild solution
so0 it is not safe to tharacterize them as entirely wavelike solution§.

Robinson has pointed out that the Schwarzschild solution is a (& advanced)+

(+ retarded) solution of a wave type. Other exact gravitational wave solutions
are given by H&ly (1958), Peres (1959), Bondi (1957), Takeno (1957), Kundt
(1958), and Jordan, Ehlers and Kundt (1960). These waves, though interesting,
are still far from the solution which shows a finite source emmitting a

finite amount of radiation, All of these solutions mentioned here have
algebraically special Petrov type Riemann tensors. (See Petrov, 1954; see

also the next section.)



b) Characterization of the Riemann Tensor

Chgzterization of gravitational fields in terms of distinguished (null)
rays has been given by Debever (1959) and Sachs (1961). They have shown that
the Riemann tensor can be classified by the number and kind of null vector
rays it admits;ﬁﬁ,the sense of eq. (2.3) belo@ at each point. The basis
of their classification is a theorem (Saéh$,196L) that in every empty space-
time there exists at least one and at most four directions ﬁlﬁ 0 such
that

kR Kk = 0 X kg = O. (2.3)

te "8)ealy*s) ’ 4
The classification then proceeds by telling how many such vectors there are
and whether any are coincident. This tensor method gives the same classifica
tion as the earlier matrix method of Petrov (1954).

We give the correspondence of types here since we shall later use the
Petrov notation:

Type I, complétely general, four distinct null vectors;
Type D, three null directions (one doubly degenerate);
fype II, two null directions (each doubly degenerate);
Type III, two null directions (one triply degenerate);

Type N, one quadruply degenerate null direction.
The interest in classification of the Riemann tensor is that the field at
large distances from a bounded source tends to a pype N Riemann tensor,

as we mention in the next section,on asymptotic methods,



¢) Asymptotic Methods

The most successful discussion of gravitational radiation from a
finite source is thal which utilizes the ideas first set out by Bondi,
Van der Burg and Metzner (1962). These workers (considering only the axi
symmetric case) developed the Einstein equations in a null coordinate sys
so that outgoing light rays had a constant retarded time, They fixed the
coordinate system in aniﬁariant way, and could then write the metric as

2 2 2% 2

Ydu~ + 2eEF du dr
2(62% 462

+ 2Ur2eZY du d6 ~ r + ZY sin 6 d¢ ). (

Here V, @ s U, and ¥  are functions of u, r, and 8, By assuming flatne
at null infinity, Bondl can choose coordinates u and 6 so that guu i
positive as r»00 . There is then a coordinate patch near infinity where
guu > 0, and this is assumed to be the region at infinity surrounding a
bounded source. As null rays are followed in to smaller values of r , a
point is found where the neighboring rays intersect. An envelope is then
drawn outside all the points at which such crossings occur, and the coor-
dinate patch described here is then the whole region outside that envelop
The seven non-trivial Einstein equations can be broken into two grou
The first set (the main equations) consists of Rrrere =R, = R¢¢ = 0,
0f the other equations, Rur = 0 follows from the Bianchi identities.
Under these circumstances, both Rue = 0 and Ruu = 0 are satisfied ever
where because of the Bianchi identities, if they hold at some r for all
values of u and ©. The envelope where these supplementary conditions
hold is taken to be the envelope surrounding the source, as described abo
The main equations can be split further into two groups. The equatio
R..=0, R =0, and ea(%“‘()Ree - r2R¢¢ 2® o contain only

differentiation in the hypersurface u = constant (hypersurface equation

The remaining equation R‘d¢ = 0 cBhtains one derivative with respect t¢
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u, of the form 3;;;(‘(‘\6)) . Thus these equations can be solved if for
some u, ‘K is given. The hypersurface equations then give @ , U, and
V. When these are known, the equation R¢¢ = 0 gives the value of X
for a later time step, and the entire solution is known.

Bondi proceeded by writing asymptotic expansions for the variables
U, V, G , and ¥ . The requirement of outgoing radiation limits the
asymptotic forms of these quantities. A solution c¢an be found by substi-
tuting the asymptotic expansions into the main equations,

The leading terms in the asymptotic expansion can be identified with

the ©physical properties of the source. For instance, Bondi, et, al, write

¥

Vv

c(u,e)r-l + ees ,

I‘—ZM(U.,G) + e . .

The entire solutior (for outgoing asymptotically flat solutions) depends
at infinity only on ¢(u,®).

* The leading term of one.of the supplementary conditions is

M

i

2
u 'C,u + J;(c’ea + 3c’6 cot 6 - 2c),u .

The quantity

m{u)

1]

m
%_[O M(u,8) sin © dé

is the mass in the static case, Furthermore (by the supplementary condition),

dm s 2 .
Tl -3 [o (c’u) sin © d8 .

Thus we find thni the mass of the system can only decrease and it depends
only on the news function; an arbitrary function of two variables, whcih

describes the modulation of the radiation sent out by the source. [;f the



situation wesre not axi-symmetric there would be two news functions, comple-
tely describing the two degrees of freedom in gravitational radiation.,
This has been discissed by Sachs (1962).)
The methods utilized in the Bondi analysis have been used by other

workers to investigate asymptotically flat solutions. The coordinate

r is (within allowed gage transformations) a luminosity (L) distance;
il.e, L=Lo(ro/r)2. The use of such a coordinate— which is invariantly
defined in most physically defined situations-leads to some close analogies
with electromagnetic radiation away from the source. One example is the
peeling~-off theorem, which shows that an asymptotically flat space wish
unmixed radiation must have a Riemann tensor that behaves asymptotically

like (indices suppressed).

R ~ oN/r + bIIIlr2 + 0II/I'3 + OI/r'+ + °I’/r5 + O(r-6) ,

where the N, II, III, etc. refer to Petrov types of the Riemann tensor

(Petrov 1954); the left subscript zero means that these terms are covariantly

constant aleng:; the outgoing rays.(Sachs 19613 Goldgerg and Sachs, 1962).
Other investigations of this type have been carried out by Newman and

Penrose (1962) and by Newman and Unti (1962) and by Janis and Newman (1965).

Here the emphasis is on the asymptotic description of the fields in terms

of the curvature tensor, instead of concentrating on the metric as Bondi did.

' The results are similar to those obtained by Bondi and his coworkers.,

Recent work from this viewpoint has been done by Couch, Torrence, Janis,

and Newman (1967). We will discuss this paper below in Chapter III when

~We consider the interaction of wave and "Newtonian!" fields.
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d) Canonical Formulations: ADM

To treat gravitational radiation correctly one apparantly needs to
specify coordinate conditions or to consider asymptotic situations (as was
done by Bondi et.al. ) where the coordinates were moire easily pinned down
by physical requirements, because one supposes the space is almost flat
near infinity.

A formulation of the problem of solutions to Einstein’s equations
which includes a discussion of radiation and which specifies the coordinate
conditions in an unusual way has been given by Arnowilt, Deser, and Misner
(ADM3 1962). Their interst was directed toward casting the Einstein equations
intd a form which makes the necessary field quantities explicit, and supresses
the redundant field variables which appear because of the covariance of the
theory. They consider a 3+1 separation of the 4-space and work in a 3-
dimensional spacelike surface. They separate the "Coulomb" terms which are due
to massive sources, from the transversew-traceless parts of the metric which
are the wave parts. The ‘“natural" coordinate conditions are non-local
ones, involving integrals over the whole 3-surface. The reason such con-
ditions are natural can be seen by considering the vector (electromagnetic)

R 2
case, There one writes

A= é? + AL » Where
T n L ‘A
Ay =0 , € ieds Ay =0
Thus AT, = ] j @nd one can find the longitudinal (Coulomb) part ALk by
’

k
noting that

k& Lk _ 4,k

L]

h

)ne had then to solve this elliptic equation, which in flat space has the
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solution

k 3
oo = ;’-,,[ Anw d v

| x - x'l .

The gradient of ¢ yields ﬁL and by subtraction one obtains ﬁT ,the
sourcefree part of é.:

The ADM coordinate conditions are very different from the local differential
coordinate conditions ususlly assumed 1n the theory. [:In the limit of
short wavelength, these ADM coordinate conditions become local (Misner, 1967,
private communication).]

The ADM approach has given useful expressions for energy and momentum
quantities when gravitational radiation is present. Asymptotically defiﬁed
quantities can be constructed when radiation is present, and by investigating
the behavior of the canonical variables, One finds that a Poynting vector
can be defined, for instance, which has the expected vectorial transfor-
mation properties under coordinate changes that are asymptotically Lorentsz
transformations.

The canonical formulation is of interest for the problem of quantization
of the gravitational field. To this end ADM ha::12;: canonical Poisson
brackets for the motion of the field. Other (earlier) work on this subject
was done by Dirac (1950,1958,1959). Pirani and Schild applied some of the
earliest of Dirac’s (1950) canonical quantization procedures to the gravi-

tational field. Some recent work comparing the Dirac and ADM approaches has

been done by Anderson (1966).
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e) High Frequency Gravitational Radiation

Brill (1964), Brill and Hartle (1964), and Isaacson (1967) have recently
done investigations which give a better understanding of the behavior of
short wavelength gravitational radiation, In particular, a stress-energy for
the radiation can be averaged in a sulitable way so that the resultant energy
density is a positive definite quantity. The radiation’s energy density arises
as discussed in Chapter III below because of the nonlinear nature of the
Einstein equations, When coordinate conditions are picked in which they
can be compared, the averaged stresstensor agrees with the pseudotensor
(for instance the pseudotensor given by Landau and Lifshitz, 1962, p34l).

The averaged energy tensor is, however, invariant over a much wider range
of gage transformations than the usual pseudotensor treatment allows.

Isaacson has considered the following situation. Suppose g"‘,‘s is
a vacuum metric which admits a coordinate system (Isaacson : Steady Coof—

dinates) such that the metric can be written

g& P = («6 + e~h-“g 3

where the metric x; is a slowly varying function of position and Ilag

8
\ !

satisfies a certain generalized wave equation E] th =0 in the space

given by fog . Further, we demand that the averaged stress tensor

(defined by Isaacson) from llxp should give the background K;F when

inserted as a source into the field equations for X;g . We symbolically write

@

R:; (¥) = -e‘( R,(\; (L‘,Y)> \ (2.5)

) * !
& Eq’@(l”)x) = e‘ D l’\dﬁ = O ] (2.6)
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where the numbers O0,1l,2,... refer to the powers of € appearing in the
expansion of the equation st(\o’ +€h ) =0 » Since we are interested
in high frequency radiation, we assume that he(g is a rapidly varying function
of position.

The equations (2.5) and (2.6) must be solved simultaneously in a con~

sistent manner, since the equation for h (2.6), involves \Ko(s .

«8 ’
But Y"(ﬁ is given by equation (2.5) which involves the averaged stress
tensor of h°(3 as a source. The radiation is causing a "Newtonian' field
because it has energy. The "Newtonian" field simultaneously affects the
motion of the radiation.

The self-consistent requirement imposed by equations (2.5) and (2.6)
means that a derivative of h must be of order €-| , i.e. )Mk = D(é-m) .
This can easily be seen by the following argument due to Isaacson. Deriv-
atives of the background are BX”“ XL.-' , the derivatives of.. h
are b"\ e hxq , Where L 1is a typical length in the background
and X is the wavelength of the high frequency radiationg L>7 ‘x .
The "energy density" in the wave is then P ~ C" CJ-‘E} XJ‘ and the

2

curvature of the background is A L°°, Then we have, by the Einstein

equations,

2 ¥ (e hictehes/x)2 = e % X/uL.

If there is matter present which is also curving up the space the inequality
holds; if the curvature is due totally to the waves, we have approximate
equality, €~ X (we take L =1). This means that ’X-a O and
€ > QO are the same limit for a fixed background, and in further discussion
of the Isaacson method we will write O(X ) instead of O(& ) to emphasise

this.
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Isaacson has also given a method of solving the equations which is similar
to the W.K.B. method (the solution is the first term in an asymptotic expan-
sion in j&l ). Isaacson has in par%icular shown that when the eguations
are solved in this self consistent manner, the problems of Rogarithmic
terms mentioned by Trautman (1965) and discussed in Chapter I,in radiative
solutions are avoided. Apparantly the logarithmic terms are caused because
in the linearized theory the waves move along flat-space null cones, which
are different by large amounts from the physical null cones in the space
which is curved by the energy density of the radiation. ['The null cones in
flat space are const=t-r; those in the Schwarzschild solution are
const=t-r-2m 1ln(r-2m). This is suggestive of the source of the logarithmic
terms that Trautman finds. Clearly a very large shift must take place to
move the null cones to the correct position (at least as big as the first
approximation itself) :)

(The asymptotic methods of Bondi, et.al. (1962) avoid the logarithmic
terms because they especially center their attehtion on the physical null

cones of the full solution.]



Chapter III., Wave-Newtonian Field Separation and Interaction

One of the outstanding problems remaining in the Isaacson approach to
high frequency gravitational radiation is the necessity of splitting the
metri¢ into a slowly varying background with an easily identifiable wave
in it., One must first find a '"steady" coordinate system Pefore Isaacson’s
results can be applied.

This difficulty and the related one of the equivalence principle;,
that the waves have mass and so curve up the space you wish to investigate
them in, are questions that have somehow to be answered in discussion of
gravitational radiation. Because of their central importance,‘we give a
brief survey and review of this topic.

The equivalence principle is actually the basic difficulty in finding
a background space~- i.e. in finding available coordinate conditions. We
are well aware that any gravitational field can be transformed away in an
infinitesimal volume, simply by going to a free fall system. Thus when one
of the pseudotensors is used to calculate the flux of gravitational momentum
or energy at infinity, one must be careful to take appropriate coordinate
conditions since the pseudotensor can always be annulled at a point by
coordinate transformations,

One should point out, however, that by considering observers at infinity
in thelr asymptotic characterization of gravitational radiation, Bondi, et.al.
(1962) have been able to discuss the mass and momentum carried out to infinity.
And the work of Newman and Penrose (1962) who discuss the Riemann tensor
in tetrad frames clearly avoids such difficulties since they deal directly
with invariant gquantities. Also, the canonical formalism of A.D.M. fix the
coordinate conditions so that energy and momentum can be defined in asymp-

totically flat space.

2l
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The equivalence principle .canbe stated in another way: that every
energy disturbance has a mass and thus generates a Newtonian gravitational
field, This has important consequences in the gquantized theory of gravit-
ation. Recall that the cross section for the deflection of light (massless
radiation) by a massive body, like the sun,is j—ga» (VV\; (for a dis-
cussion, see Matzner, 1967). Then one can immediately estimate the differ-
ential cross section for graviton-graviton scattering. In the c.m. frame
each graviton has energy (and momentum) E , One of them (a'massless particle)
sees a Newtonianm field due to the mass of the other, E. The differential
cross section is then %%i ~ E2. One can even correctly predict the
strong forward peak in the cross section due to the long range Newtonian
field. Note that the quantum of aciion, 1; , does not enter, The detailed

results for quantized gravity show that the term due to the equivalence

principle,

actually does dominate for graviton-graviton scatterin%I(DeWitf, 1967).

This creation of a "Newtonian" field is of course the self-consistency
aspect of radiation that Isaacson has pointed out, We have Jjust noted that
gravitational radiation will interact with a Newtonian field, no matter
what energy is the source of the field, It will interact just as well with
its own Newtonian field. This phenomenon is responsible for "tails", An
example of such a tail has been given by Couch, Torrence, Janis, and Newman
(1967) who considered an approximation scheme for the tetrad components of
the Riemann tensor, starting from flat space, They construct a field which
is to first order Schwarzschild with an outgoing wave pulse. To second

order they can construct a solution which has a spherical outward moving
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wavefront; ahead of the wavefront is guiet (but there is of course a long
range Newtonian field due to the central mass). However, behind the wave-
front is a combination of ingoing and outgoing radiation. A solution with
only outgoing radiation is not possible to this order., The explanation is
the backscatter of radiation off the static, Schwarzschild field, which can
be entirely due to.the energy in the radiation. The earlier work in this
type of approximation scheme has been given by Janis and Newman (1965),
and Torrence and Janis (1967).

Isaacson (1967) has also considered this problem, starting from the
Vaidya metric. (Vaidya, 1951, 1953; see also Lindqﬁist, Schwartz, and Misner,
1965)., This is a spherically symmetric solution which has a stress tensor

T’N: G_\<f‘kv’ where \LP‘ null vector in the outward radial direction.
Thus this metric describes the flow of disordered radiation in an outward,
spherically symmetric manner. Isaacson takes the Vaidya solution as his
background X'Au‘ ; he then postulates weak outgoing waves (h’w which
are transverse traceless. He shows that these waves give a stress tensor
with the correct form (after averaging and using the WKB approximation)
required by the Vaidya metric. Since the WKB approximation is a short wave-
length approach, Isaacson does find he can obtain this form for the Valdya
metric, which requires that all quantities depend on the retarded time,

u ., As Isaacson has pointed out, this means that there is no tail or
backscatter £o this order, However, a detailed investigation of the (linear)
equation (2.6) for the inp shows that for finite frequency waves, back-
scatter must occur:‘w[;nves£igation 0f the propogation of tensor waves in

the Schwarzschild metric via an equation of the type of (2.6) has been carried
out by Edelstein (1967) and by Vishveshiwara (1967). A simpler situation

which contains all the interesting features of gravitational radiation is
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the behavior of scalar waves in the Schwarzschild fieldj see Matzner ,
(1967). All of these investigations show that backscatter will occur for
finite frequency waves.] Because backscatter will occur for radiation of
finite frequency, one must conclude that the Vaidya metric is only a "geo-
metrical optics" approximation to a real situation. The detailed structure
of the solution for lower frequencies will of course depend on the detailed
structure of the radiation considered.

After this brief discussion of Isaacson’s methods and some of their
properties and the difficulty of a wave background separation, we suggest
a few problems which may lead to an extension of his type of treatment.
Since the "Steady" coordinate system is essential in his development? three
questions are suggested. Given a candidate space,is there a "Steady" coordinate
systemy 1if there is, how does one find it; and can one define a "best"
background against which the wave separation is optimal? We give some
tentative answers to these questions below. The verification that a back-
ground does exist is fairly straight forward, and in Appendix D we give a
caleulation which is an example of how to find a background metric when
there is a wave present. Also in that Appendix, we give some tentative
comments about the question of optimum background. The results ofi these
topics are as yet inconclusive,ihowever.

This section has hopefully given an impression of the importance of the
wave background separation,” The recurrent feature of these investigations
is that in the slow/fast or wave/background separation, both aspects must
be investigated. The problem must be treated as a coherent whole. The
waves mak@ .. a background which interacts with the waves, There is so much

interdependence that these two cannot be separated,




Chapter 1IV. Symmetry and Killing Fielids

In the discussion in the previous paragraphs, we have emphasized that
the problem of slow/fast separation must be treated as a coherent single
entity. DNevertheless, the initial steps of such an investigation usually
concentrate on one or the other aspect of the separation.

This work originally hegan with the consideration of collapsing axiw
symmetric systems, From a Newtonian viewpoint, Lin, Mestel, and Shu (1965)
have given solutions for the motion of pressureless nonspherical dust clouds
undergoing homologous collapse. Appendix A gives the calculation of the
gravitational radiation according to linearized theory for these Newtonian
motions (and also some linearized calculations done in strong field situations
to find order of magnitude radiation intensities). The results are much as
might have been expected; non-relativistic initial conditions give little
gravitational radiation. On the other hand, the radiation is precisely
what on gets by order of magnitude estimates. There are no selection rules
forbidding the radiation.

However Birkhoffs theorem guarantees that there are radiationless
collapses to strong field configurations, the spherically symmetric ones., We
may thus expect that by taking only slightly aspherical collapse, only
small amounts of radiation will be released.,

There has been some interest in a closely related problem lately. In
particular, a large amount of work on perturbations of spherically symmetric
static situations has been done by Compolattaro and Thorne (1967), and
suggestions for similar investigations have been made by Misner and Zaéolsky
(1966). The Compolattaro-Thorne method begins by assuming one is given a
spherical solutibn.representing.a star at rest, say. One then considers the

effect of small perturbations from the spherical state. Compolattaro and

28
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Thorne then sketch the derivation of the equations for both the perturbations
in the vacuum and in the matter part of the solution. Even though spherically
symmetric metrics are simple and even though one keeps only linear terms, the
calculational task for the Compolattaro-Thorne scheme is formidable. For this
reason, several investigators (Fletcher, Clemens, Matzner, Thorne, and Zimmerman,
1967) have turned to computer calculation to eliminate the drudgery of
calculation of the Riemann tensor and the equations of motion. The programs
developed at the University of Maryland by the present author and R, W, Clemens
are discussed in Appendix B. We also discuss the range of application and
include some samples of th: type of results that can be obtained.

The alternative way to obtain small radiation in strong field situations
is to suppose that there is a pressure field which keeps the situation only
slowly changing, even through the gravitational fields are strong. By
keeping the motion slow enough, the radiation can be made as small as desired.
The problem has been investigated by Levi (1965). He has found that one
can start with an axisymmetric metrié which is static and of the Weyl form
(see, e.g. Appendix C for a discussion of these Weyl types of metrics).

If one allows the situation to be time varying, then to first order in velocity,
the diagonal terms are the same instantaneous functions of the source as
they are in the static case, but the off diagonal terms are no longer Zero;

the equations

F<°¢ - STr—T-oL

give linear equations for them to this order. Thus, by taking this situation
slowly enough charging, the motion can be completely described. One thing
that Levy has found (following an idea of Bondi, 1964) is the expression

for a "Newtonian Poynting Vector", which gives the momentum and energy which

is transported even in this completely nonradiative situation.
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The difficulty with the Levy approach, or with the mebhods discussed in
Chapter I is that they become prohibitively complicated. Invariant methods,
if they were available, would certainly be more useful because One expects
they would remove the clutter of approximation steps and coordinate con-
ditions completely. They would probably either be completely inapplicable,
or would yield a result by straight forward calculation.

The best - and so far the only - invariant procedures are applicable
when the space under consideration has a symmetry. Riemannianspaces which
possess a symmetry are those in which a coordinate system may be found with
the metric tensor indepéndent of one of the coordinates. They are equivalently
characterized by the fact that they admit a solution 1% to Killing”s |

(1,¢0)
equation

[E gAg z 2 g(AnB) = 0. (4.1)
The preferred coordinate system mentioned above is obtained by picking
coordinates such that §A.=.(.§ ) A= g(?). The metric is they clearly independent‘fs)
of x°.

Practically every calculation is simplified when the space admits a
Killing field, and correspondingly, when there is no Killing field, the
sheer calculational difficulties multiply. For instance, calcudation of

the effects of small deviations from exact symmetry in cosmological sol~
utions must often be treated in an approximate manners

We have included as Appendix C a paper (@oauthored with C. W. Misner)
on the field equations for vacuum spaces with stationary axial symmetry.
(These spaces have two Killing vectors describing their axial symmetry and
time independence.) The simplifications because of the Killing fields are
tremendous, As an example of the simplification available when effective
use is made of the existence of Killing vectors, one should note the simpli-

city of the derivation of the field equations given in Appendix C. This
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can be compared with the very tedfous algebra of calculating the field
equations directly from the classical formulae, starting from the metric
form of equation (C.11l). The classical methods, although greatly simplified
because neither the coordinate ¢ nor t appears, cannot take full advantage
of the simplifications available when there is a Killing field. When there
is no Killing field, and the classical methods or equivalent techniques are
the only ones applicable, the difficulties are truly formidable. {This is
another place where the electronic computational methods described in
Appendix B can be useful).
Conserved quantities arise from Killing vectors and the vacuum field
equations in the way sketched in Appendix C. Komar in particular (1962)
has discussed methods of weaking the Killing equations to admit spaces which
are not symmetric, in order to take advantage of techniques anal&gous to
those available when there is a Killing field. Althouéﬁ there are clearly
some characteristics of Killing fields which depend on the Killing property,
some of the uses of Killing fields, in particular their use to define ''con-
served! quantities, depends only on the fact that they are invariantly defined
vector fields. (The '"conserved" quantities defined by plugging an arbitrary
vector field into Korman®s formulae may be formally conserved, but may yield
no useful conserved quantities.) Komar has suggested the following weakening
of the Killings equations (to "semi-Killing" fields)
1 Euj@) =0 ,
E“ . (4.2)
ju 2O (1.3)
He always demands that the field tend to Killing at infinity.
Another suggestion by Komar is that the vector field ?ﬁ’ is propor-

tional to f,« where f = constant is a spacelike surface and 1

stasfies the equation

R EL Gui” = B, kL0 (o)
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i.e., the constant t hypersurfaces are minimal, This has the advantage
that it may be possible to discuss the existence of global solutions to
eq. (4.4), since it is an elliptic equation. (Misner, 1967, private communi-
cation), However, in some situations, e. g. spherically symmetric collapse,
Misnegizgz)shown that the Komar object defined by using this minimal field
(as a substitute for the energy which is defined for stationary situations)
results in a quantity which is not conserved, and corfesponds to the
Schwarzschild mass only when the constituent matter of the collapsing object
is completely dispersed, (Note that the Schwarzschild mass is well defined
in the spherical case.)

While the other suggestion of Komar-- that the field be semi-Killing--
seems to be a fairly weak requirement, there is no geometrical justification

for the equations, in contradiction to the situation for the minimal fields,

and for the vector fields defined in this work in the next chapter.



Chapter V., Almost Symmetric Spaces

a) Definitions and Interpretation

Our discussion will initially be in terms of positive
definite manifolds, but we indicate the generalization to
spaces of Minkowski signature. The treatment will be general
in the sense that we will not have to assume the deviation from

symmetry is small, although we may do so at times to make

33
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interpretation easier.

Our definition for spaces which are not symmetric and hence have no non-
trivial solution to the equation E(AIIB) = O is the following. We
characterize the amount of symmetry in a (positive definate) Riemannian space m

by considering the minimum possible value of the expression

oe ME1- L E™ 8w dV L 4y (g d™ . ()
J§%8, dv

Here E is an arbitrary vector field, and the quantity A is the wratio

of integrals of scalar fields over the space. Since the metric is positive
gefinite, ALX] is zero iff 3 is Killing., We have imposed the
normalization condition in lS.l), dividing by the integral of the squared length
of the vector, to exclude zero fields which are always solutions of Killing's
equation, We shall take as our criterion for the "almost Killing" field
that it minimize >\ compared to all other choices of the vector field. Objects
like the right side of ‘f,l) may have more than one stationary point, so we
emphasize that the most iﬁteresting value of A and the correspondingly
most interesting vector field associated with it are %\ , the smallest
stationary value, and ;g' , the "ground state" vector field.

- By standard arguments, assuming the compactness of 77( s, or restricting

the class of vector fields to allow neglect of surface terms at infinity, the

variational problem defined in equation (§,|)is the same as the problem of

finding the eigenvalues z‘\ in the equation
(ANBD A _
E ng ¥+ Z‘\ E - O) (5- 2)
and >°\ corresponds to the smallest (for positive definite spaces) of these
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The ground state vector field E may be characterized in the
3
following way. In a coordinate system in which E - S(’:‘ , then

o

d9a = 9 c..=€(m\¢‘.) '
T g

Here A S is an element of proper length along i . It is apparant

-]
that(,fﬁ) is an integral "average square' of this quantity, but the "average"
of the ratio is given by the ratio of the averages of the numerator and
denominator. Even though we have a small eigenvalue >\° , 1t is difficult
to use %\ to put bounds on the quantity (5.3)9 gince "5‘ may vanish at
some points for global topological reasons (for instance nonsingular vector
fields on a sphere must vanish somewhe:ce)..4 The integral average (5.V) thus forces
us to accept behaviour which is locally rapid (e.g. schematically %AB a

smooth curve with a few kinks) as being smooth in a global sense. On the other

hand, the vector field defined by eguation (S,l) obviously chooses the coordinate
o

lines for )(0 which give the slowest dependence of 3A8 on X , in some

global sense.
For the moment assuming the existence of solutions, we can get an upper
bound for the quantity Z\ . By definition )‘o is the minimum value of
the integral (5_|) so any test function gives a bound. By considering a geodesic

patch of radius L__. at some point in M , and by taking a test field:

PR (RFARICALILILS R PR ST TN

Lk\ =0 lotherwise,
. . . -1
it is easy to estimate that O < )\[ LJ:] < Q,L (me){m+2) , where A

is the dimension of the space. [Thus, on the surface of a cube of edge length i
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for instance, the maximum possible L is ,Q/\rl and %\(cube)
< 1‘12'1.3-L} = 4% 9,_2' ] . The size of a geodesic coordinate patch is
roughly given by L:l.~ ;2,._, (the Riemann tensor), so we have a rough
bound for 2} in terms of the curvature.

It is important to note that estimates of this type hold for the eigen-
value %u in any space. The idea of "almost symmetric" enters when it

-2

turns out that %\<< LJ , Where LA is a typical curvature léngth of the
problem. We will present some examples of this type of behaviour in Chapters
VI and VII below, but a simple example is the unit 2-sphere, where ) =0,

]

while the only available length is the radius (=1),




b) ZExistence and Differentiability for Closed Positive Definite Metric Spaces

For the rest of this paper, except where noted otherwise we will assume
that we are working with a positive definite Riemannian C * manifold h? s
and we assume that m is compact or that boundary conditions are chosen so
that integration by parts is possible with neglect of surface .terms. We denote

the Hilbert space of all square integrable vector fields ﬁ on m by “_(,'Wn .

Rl

The norm is
“é"b‘l = (SJV;-Q)VZ & oo .

The demand that )\ [ E ] be stationary yields, as usual, a second order

STa (e av ]« STIE 6y JV]

2y Cevst dv - alem®ge,,, LV
= X g( [ E(A"B)Sgﬁlua - gcm‘s)"g Sgh ) 4V '

equation:

The compactness of M (or the boundary condition at infinity) mskes the first
term on the right wanish. Then, since S g’_ is an arbitrary variation, we
find

(AUB) A

3 -0,
T )‘E (5.2)
We will take the definitions (5.]) and (52) to be the defining equations for

the preferred vector fields in m . Equa,tion‘b’.l)is the generalization
(because of the term >\ ) of the second order equation equivalent to Killing's
equation given by Yano and Bochner (Ref. 2, p.57). It is clear that a solution

to (5,2) with /\ =0 is Killing and vice versa. In Minkowskian signature
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metrics, the stationarity of (%,l)still implies (5,2.) but the equivalence of (S.l)
for >\‘— O to Killing's equation no longer holds.

The derivation of equation(s,z) shows that the operator

F(B _ A
—%(E% g 3 'YD)—XF = _06’:: (5.4)

is positive, (The notation is %xsgc = gcug .) It is positive definite
if there are no Killing vectors or if we exclude them. Also, because of the
compactness of m , or the boundary conditions at infinity, 0& is self
adjoint on “—(M) .

It is clear that there are at least as many solutions to {5.2)as there are
Killing vectors. We are of course interested in the case where there are solutions
which are not Killing vectors. Consider only the subspace u_.(M) C H_CM) which
is orthogonal to the finite number.of Killing vectors in 77’( .  The operator "08
is then positive definite and in fact is strongly elliptic? We may then apply
the theorem quoted by Kodaira and Spencer (Ref. 6, Theorem I) for compact )7? to

find that = 98 has a complete countable set of differentiable eigenfunctions g.k

with real eigenvalues whose only accumulation point is 4 o0 (The completeness
means, if idifferentiable, % & U_’_ ( m) then iJ: iho: a, gh where
Ay = fdv ‘;}:@L. , and the series converges in M(M) .)
Thus we have all the expected "nice" properties of the operator -05 on the

compact manifold m « In particular, we know that a differentiable ground

state solution E exists. On compact manifolds, then, there will be uniform
e £ §(Au3)
bounds for the gquantities E_ . g and JAne 3 and for all the other
r-1 o

derivatives of E .

The guadratic form in(§,|) may be written

E(A“B) gmus) = CABHN gAnB gmw

CABMN AM BN

=2(q™g v 9™ ") (535

where
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The most general positive definite form with these symmetries which depends only

on the metric is

CABMN AB _ MN ) M- ym .

*red e

Although the /\A -addition is non-negative, even in spaces of Minkowski signaturel\

the equation analogous to (§.2)

gAnB"B *EB..gnA(\’fj"q + (R% + AS™) -0, (54

is not qualitatively different from (2). Dealing only with the /4. term gives

conditions only on the divergence of §_ s and allows too many solutions., If

CABMN

we have any contribution, then the equation is qualitatively like (8,1)

and the only criterion for the choice of /,4. seems to be aesthetics, which
suggests /A:O , as we take here.

C) An Analogue to Elasticity Theory.

C ABMN e
defined in(8,5)is formally similar to the elasticity

T

The tensor
strain coefficients given by Green and Zerna' for isotropic elasticity in a uniform
medium (with Poiéson ratio identically zero because we set ,A-'-O )o The similarity
of the equations to an elasticity theory is no accident. In elasticity, the strain
components M.u;“‘) measure the Ilie derivature of the metric along the displacement
field (\:‘; . This can be seen physically in a coordinate system such that there is
no relative coordinate velocity between particles, (This means that the field UL
must have constant components in these coordinates.) Then the metric gives the
distance between particles, and the strain tensor (§ 3“‘0_(*9-, which is £u g"J
in this coordinate system.

The minimization problem set here is in fact completely analogous to the

eigenvalue problem for vibrations of closed elastic shells, under the boundary

conditions of sliding rigid contact (the type of boundary condition at the interface
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between a turning shaft and an immobile bearing).

To see this, consider a thin shell of uniform density, and which is
described by a middle surface X:(@l,a'» , and at each point a thickness
2Lh (9‘,91) measured along the normal M (9‘, %) at each point. The surfaces
of the shell are at L "\ . We assume linear isotropic elasticity and define
an ordinary Cartesian frame Xa. (labelled by latin indices from the beginning
of the jalphabet), and an intrinsic coordinate system adjusted to fit the
shell, The intrinsic system will use as coordinates the €9 ) é) parameters
giving the middle surface and 93 , defined as the distance along the
normal to the middle surface, Every point on the same normal ﬂﬂ(eyygz)will
have the same coordinates 9“31 its coordinate‘ 93 will be the distance
along the normal to the middle surface. (We will have Greek indicies
running and summing over 1 and 2.)

The middle surface will have some metric form -%o( which gives the

m
formula for length AQ in terms of the coordinate differentials:

3. d67dO°

Let
Ko(@ = - (CK\)O(:@

(in the middle surface),

be the second fundamental form of the middle surface. (The covariant derivatives

denoted by a colon are in the 3-space endowed with the metric %u@ %0(5‘0 %33 = |

and connection rv.n L% (‘é,k;L*%..p.k %nk ..) 3 KK\;SO

defined is a 2~tensor defined on the middle surface.) The metric

()
throughout the entire finite thickness can now be written (exactly):

- 3@ - 3 312
Gug = Jup =28 Kug + (O KKy
%“3 - O ) 333 =\,
Here |<°2\= S)‘G' Ka‘a_ « We will denote the covariant derivatives with respect
to this flat space metric also :by a colon, since %‘33-' %;3 on the middle

surfaces.
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i) The Natural Freguencies

We now turn to the eigenvalue problem:
ab 2pb _
T2°, +w =0 | (5.7)
for a finite thickness shell, which is equivalent to finding the stationary

points of the quantity
SEKEadV ‘ (5.8)

ra,alo )
Here (§} is the three dimensional stress tensor, and the comma denotes

\LET =

partial derivative,

In intrinsic coordinates, the differential equation (5.7) is

‘Z‘_‘.“,J- +w*f" =0 (5.9)

Consider only the shell component of this : i =K. Qur assumption of
sliding contact makes the i = 3 component of (5.9) a constraint equation
which gives the normal forces in the motion. We will assume it is satisfied;
the existence of a solution is necessary for what follows, but its explicit
form is not,

Writing equation (5.9) out in full we find

’Z‘“f? " \'”;u- YA rau-é (el Fwt §°

o o - L (5.10)
PYCs R AT T R T T8« T, T =0,

(
The Christoffel symbols f— jk are defined as
¢ LQ.( . _
M= 58 (uie *dai ~Juipn)

R Y‘3
In the intrinsic coordinate systen, i_ 33 ~ k3 =0 . Of the
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remaining quantities in (5.10), ZuxS must tend to zero with I , since
otherwise our boundary condition that 'Z'Q(:\:O at 917— th would mean the
term th3)3 would become infinite as h'* O . The other guantities in
(5.10) are finite, and so we conclude that any finite frequency solution
will have TY0 as hso .

At this point we must explicitly consider the form of the stress tensor
for isotropic elasticity. It is zu‘:ﬂ‘(a"g“ fa“?,"" * 2)1 3”5 )§U 0, (5.11)
where M' is the shear modulus and ¥| is Poision’s ratio.

Consider the 3-3 component of equation (5.11):

e (38787 2 90 ) ¢ 1 97 L
Now §3s’=§;: ~“§3§u N Ea,s . So we see that
% :,EB must vanish in the limit as W= o , or else the eigenvalue, \
[ computed via the covariant form of (5.8), say], will become infinite, since
the term (233)2~ will occur, and we require that .%3?10 on the surfaces
of the shell.

The result on Ez ana T¥> was obtained by requiring -that the
corresponding frequency stay finite. We will give examples of vector fields
in subsection (V.c.,iii) below which do in fact have finite X and thus
bound finite frequency eigensolutions, Physically, we are excluding in this
way shear and longitudinal waves which reflect back A dnd forth between the
two bounding surfaces of the shell., These waves have velocity & o~ M
angd Q}a[affﬂ*nhahlhﬂﬁéspectively, Thus the frequencies corresponding to such

motions reflecting between the shell surfaces are of the order u%/vc/h.

So our shell theory equations and conclusions only hold for uolL<Loéz . é
This is a restriction on either the highest frequency or on the largest

thickness we can legitimately consider by shell methods. We shall see,

however, that there are a countably infinite number of eigensolutions with

frequencies independent of W for small. h , SO Wwe can always carry the
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discussion of the spectrum in terms of the shell quantities arbitrarily

far if L‘ is small enough.

ii) Reduction to Surface Tensors
To obtain surface equations we use the form (5.11) for ’Zde and integrate
(5..10) through the thickness of the shell, With the simplifications we have
found so far, we obtain, for h—o
o= h f_tﬁé (7% + r“@ﬂ“ + TE@ T W) de
{5.12)
Here ‘3 is det %()‘ , %'_’-: cle,{f %o((s ~ det %-‘J . The components of

e contain terms [see eqn. (5.11)]

Np! 23 .
\-ayl % ES 2 )

the integral of the term vanishes as | ->0 , for

§ 9o det= 05 98 ), der- (9, ae?

. —>0 sine §, 50,
\'The term S_\‘ﬁ(\ ’tuss d63 » Whith was ommitted in (5.12), vanishes by a

similar argument. _X We will denote the quantity which is T“Bwith the

(crplha)) ! ((«@)(AT))
?3 3 term deleted by ,Z'o(& s and deflneC P by /ZJ a8 = C g()‘:o.)‘,
and write Cdpn’ = Co((sN‘l " (the restriction of the middle
surface)., —
ot
Define a surface vector } :
- W
“ . -'g YA TS . TP 5ot
hg h _hgmde (wJ,L?anh? )

and a surface tensor "
— - [}
B [Tt @ dob .

Now (using the ‘continuity of 3”' and its derivatives)

:Ed(i = fa\/w\ rtdrs

wo

—y

" hiom W[ (Y, - FeE T35 ) d03

W0
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e W W (8, T b -TE)dE

ho

—

&
where we denote by Y‘ N the Christoffel symbol in the middle surface,
we have used the fact that %3"3 O as L\% =] s and we have assumed that

the derivatives of lﬂ become negligible as the thickness vanishes.

Thus

Fos - /u ('%o(r%'r& 355-%&) c} »xr)gu‘“ ,

T ARNT E
=™ Eauer, (5.13)

where the slash denotes the covariant derivative in the middle surface.,
The integrated equation (5.12) then becomes, as L\—»o R
© X — h
o , -1 o s 3 T -
6= LOzg -l—rtﬁ +,Qw b g\ (r @c',tp *“—0'(51 )ﬁ—/% deS
)@ o W )
= —xo
- orE + TP, (5.14)
e % ;
with a surface stress tensor given by (5.13). Clearly equation

(5.14) is equivalent to a two dimensional integral problem: the stationary

points of
S [ Emlp) {5 de'de? .
§3'E {3 de'de? | (5.15)

We note that if we substitute the 2-dimensional version of eq. (5.5)

intp‘eq (5.13) for T “p , we get precisely the 2-dimensional symmetry

problem eguations from (5.14) and (5.15).

iii) Finite Frequency Vector Fields

To complete this discussion we show that there are some vector fields

which have finite frequency i imi
| | quency in the limit W—>0 . TFor take Es =0 , and
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at each point of the middle surfdce define §°( arbitrarily, but define
%’* away from the middle surface by
o
%d’a = t r ad E g
Then §(3:3,= g(d:}) =0 » and the mimimizing integral [the covariant

form of equation (5..5)] is
o= S el g“;el £ ur d63de'de? E%_
" (%, £, 9°° d0'd0'd6r (5

which clearly has a finite limit independent of L\ (since only the metric

terms involve © ) as h—~o
Liww i, = fee g“‘_‘ﬂjnm 46*d0'd6" (3 -~
bee " 157§, e 467de'de* {5 (5.16)

This limit is the same as the quantity given by equation (5.15).

iv) Completeness as h—o

We have quoted in Section V.b, a theorem which proves the existence
and completeness of solutions to equation (5.2). We give here a heuristic
verification of the completeness of the shell soclutions eigensolutions of
(5.14) and a discussion of the approach to this completeness as the shell

thickness vanishes. Suppose :.4 is defined on the middle surface. We can

define an associated vector field ai defined in the finite thickness
o
shell by: K:FO ) C&lﬂ= Z:
o 4 '
andlﬁd’s = rsu ﬁ « This vector field then has K(3:3)= i(&l“) = 0.

We can expand 6__ in terms of the complete set of eigensolutions of the finite
thickness shell, We have shown [equation (5.16)] that the quantity }\h[ é]
associated with this vector field has a finite limit, "\| Zf] o h->o.
Conmequently, when é is expressed in terms of the normalized complete set

{E(M h for the finite thickness shelk,
]

5= 2 %niny Sty (5.17)
Fr M
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we have the energy

}hréj - 2 Q:(lm,h) >\(mh L O .

o (5.18)
We have seen above that vector fields E which have a non-zero third
3 "~ o
component g or a non-zero stress component T 3 have Corresponding

frequencies which diverge at least like W' oas ¥\'47‘3 . Thms, the
coefficients which multiply such fields in equation (5.18) must vanish at
Yo
least as k e Thus, as %sécnthe expansion 1is entirely in terms of eigen-
. , 3 3 s . - Sy .
solutions with ‘§ and vanishing. In this limit, we find,integrating
equation (5.17) through the shell thickness,
Z; = g Om €(m)

M o
the completeness relation in terms of the shell eigenfuncidon. The

physically interesting @oint is that finite frequency motions become motions
only in surfaces which‘are parrallel to the middle surface, and with no shear
between such surfaces, This means that in the limit of thin shells with
these boundary conditions, every point in the shell describes a motion given
by the surface equation (5.14) and in addition, all finite )\ motions are
described by expansions in the eigenfunctions of equation (5.14).

An example of the situation we visualize is a closed 2-surface whose
symmetry we wish to measure. We form a frictionless elastic shell over the
surface (with 2-dimensional Pgisson ratio 20 since M=9), with the shell initially
unstrained so‘that it resists both compressiﬁn and expansion. Then the
asymmetry of the object is measured by the square of the fundamental
oscillation frequency if we perturb the shell. If it has a neutral mode,
the surface has a Killing vector.

That shell completeness follows from 3-space completeness has Just been
shéwn and we should note that all these results on the solutions for 2-dim-

ensional shells can be generalized for any finite number of dimensions.

Furthermore any Riemannian manifold can be embedded in a Euclidean space of




sufficiently high dimension (Nash 1956). 4nd the existence and
differentiablity and completeness of solutions for elasticity has been
carried out for arbitrary number of dimensions, This is a sketch for an
alternate herristic proof of the theorem of Kodiqraand Spencer quoted in
Section (V.b), for the existence énd completeness of solutions to equations

(5.1) er (5.2).

47




d) A Theorem cof Yano

After the qualitative discussion of the preceeding section, we give a
precise result. In positive Qefinite metric spaces the eigenvalue .é is
clearly non-negative., But it is possible to obtain a better lower bound in
some cases by noting the following.

We have

CE™E oy dV s ~JE™ By e ((E™Ey gy .

The second term on the right vanishes by the compactness of the space or
by the boundary conditions at infinity. Further, the integrahd of the first

term on the right is

FA“BHB + EMAuB = EMBu& + ? Bms " " QAC s ¢ A

Thus, if the space is compact or if we impose stronger than usual conditions
on the vanishing of ?A“G at infinity (notle this is an unsymmetrized

derivative):

S ‘g(k“ﬁ) E@ls) dV = ggAl\B EM% dV + SEAMEBHB 4V - .(\QAcgcgﬁ dV.

Consequently, in positive definite metric spaces,
CeA
SOS* +RAE§*dV 2 O.

This holds for any vector E and the associated )[g] . In particular,

OB SrAcEkaay.

This i1s an improved bound in those cases where FE‘AC is a negative

definite grad¥atic form on the manifold#

EA EAQ Ec < - >‘rzac.¢c ?ASA

for some positive number )Ecai and for all vectors E and all points

VA~

of the manifddd., (With this sign convention a hyperboloid has constant
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la C
negative definite A )
Thus we have the lower bound for é :
A Mgeee (5.19)
This derivation is a generalization of that of Yano (Ref 2, p.39) to
prove that there are no Killing vectors on compact manifolds if RAg_ is a
negative definite quadtatic form. The advantage of the present formulation

is that it gives a criterion, %\ y 0f the deviation from symmetry.
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e) Null Killing Tensors

¢) §

In spaces of Minkowski signature, the quantity‘\g may become

@8
negative, Oor may ve zero even when gta;gz is not zero This complicates the
application of the methods described here to simple exact solutions to Einsteiné
equations, such as those solutions due to Schwarzschild, Kerr (1963), and
Vaié;gfl . In each of these solutions, there are vectors which are not null
but whose symmetrized derivative is a null tensor. They.are the Killing vectors
in the flat space E)qg which is a base metric for each of these solutions,
in the sense of equation (5.20) below.

In fact, each of these solutions is a aember of a general class of metrics
which can be written

ds* = U%us + ko l‘fsy‘!"d‘l"a = Yoo d x*dx® ) (5.20)

where bo(p is some background omd k(,( o mull sathe Buksvou.ml: b“s I‘d kg o,
and hence is also null in the full metric. Suppose é is Killing in the

background. Then there is a coordinate frame such that Zf has constant

(contravariant) components and b«@,p £F=0 o Then in this coordinate system,
(V4

< K(d;g) = fﬁ /<d L{g = (/(d k@),f{ﬁ )

%MX: b«f_ LQLX

x
R
>
~
2
3%
“o
!

(6 kep ke ) EF
= (kc—,f) kr)ﬁf
= %.(kd‘iu))ﬁip 9
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the square of 2 4(00@) is
% 8) P o
b b* (ko ke )y 2F (ky k) 5 = 0 .
It is easy to see that Zf( ol p) has vanishi‘ng trace also, so the

pcs

possibility suggested in Section Va) that adding a A ,A—term would lead to non-

negative results is seen to be inapplicable here, Metv¥ies like {5,2Qbut with b“$=

flat have been studied by Kerr and Sch_ild.(1ﬁ)

) 3)
In the case where %- ’ becomes a null tensor for some null vector

g , we may define a limiting process. Let \({» be a (so far arbitrary)

M opM »
timelike vector. Then define 7{ = E' ve U , €>0 ;

@;6) @;8) @;p 2 (8)
Wb(,'(s)/” = E’(d;;«p; T rae (u;(;)E + € de;p) §
. . °<
The first term is zero by hypothesis, as is ?K Xg « Thus

. g)lm;m)’l‘m)dv = gxu;ey?(“e)dv
€0 { NMNa 4V §x¥.§%dv

Since a timelike vector is never orthogonal to a null vector, the denominator

is always positive,
It is not in general clear whether the 1imit is unique. However, if K .
tends to zero sufficiently fast at infinity,
o («;8)
tot; 8 S E -
SK ; E dv - Yx i 4V
(0 § d¥

= - 1))
AR % E. dv (e

x : ta;
If § is a solution to E ‘@)JF + )\ ?o(: O , for some eigenvalue
. <
>\ , then even if \E is null, we can define the characteristic integrals

. . . ~
by >\ = L.H.S. of (&,’u)for arbitrary timelike vector X which goes to zero
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gufficiently fast at infinity. In this case the 1limit in the integral definition
is independent of the timelike vector used in the limiting process, and the
integral definition agrees with the eigenvalue given by the differential
equation.

On the other hand, if the 1limit is ); s independent of the timelike
vector XN (so long as \(dvanishes sufficiently fast at infinity), then §
is clearly a solution of the differential equation, by (&21) So, for even null

vectors, we can define a modified integral which is equivalent to the differential

equation.



‘Chapter VI. Examples

a) Exact Calculation on Torus for >°\ ’v§~ .

The metric for a flat torus is ds*= dx? 4\&1 , where the
points (X¥*1, 4 | (X,4) | ang (X, 4*)) are identified. Differentiable
functions on the torus must be doubly periodic with unit period.

We consider a curved torus with metric

(u)
dst = s‘z‘wb dx? + 832

Here points are again identified ag above by their coordinates, and & (L&) is
periodic in (6 with unit period.

This space still has a Killing vector giving translation in the x~direction.
We will consider vectors which are orthogonal to the x-~Killing ground state, and
to simplify algebra we will in fact consider only vectors pointwise orthogonal.

Then it is clear the ground state vector itself will not depend on x and we

write:
(E)'= (§,%%) - (o, e uy ]
The eigenvalue equation 08 ,‘ugu T EM = O pecomes
_)/ a?.u 2
"l g (M -4 daf; )ul=o, €.

with P H e .
We desire a "wavelike" perturbation which makes (b \) explicitly manageable,
We thus pick £ so tnat (6. I)¢ is a Mathieu equation. This requires that P

F"/S

itself be a Mathieu function; since is %xk s, We must take ‘F

to be the only nowhere zero periodic solution to Mathieu's equation, natnely:15

'F= Cgo(k‘as sefa) = |- %ﬁcos Sll(ka +.'” .

Here \( is e~ , since the basic period is unity, and € , which is
assumed small for this expansion, is the amplitude of the small waves in the

metric component.

55
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Now -F is inserted into ( b.l) which itself becomes Matheiu equation. By
a general theorem on the Sturm-Iiouville ec;matior{|6 we know that if there is a
solution with no zeros, it must be the ground state, which we seek to find %\

We are again forced to take a solution C@€, , and obtain

W= Ceo(\oa;e/‘qo) , so that

dJ_ -Ys VA
g- ? u = |+e--8-(->c.ossz|<té oo

and

11-
Aor etk
2

are the solutions found from the metric perturbation

i

3xx~ I-ECOS &kg*an ]

From our arguments in Section][q.,we expect S é to be some sort of

average derivative of. the metric. We see that this is the case, since

Grxy = * 2 ke cos 2ky , oo that <(%xxﬁa\z> = alkle?

The 63 factor in A is to be expected, because the flat torus

is a space which minimizes >\ , So any deviations would be like €7" . The
2 .

term l( suggests that it is the "energy content" of the waves which determines

the size of ° >\ . This ties in with our estimates of >\ made above in

terms of the Riemann tensor., It is interesting to calculate the scalar R s

which completely characterizes the curvature:

S, ATy
R- -4 (T3 +a(35))

For small amplitude waves,

o % -_e_‘_fc,os Q‘t*& and
Re -4(ek’wsaky + etk sintaky) .

The ground state thus gives a much smaller value of )\ (by a factor & )
[~}
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than our previous crude estimates yielded. On the other hand, if we average Fl s

we have

[<KRY|= etk

A . In this case, at least, the ground state eigenfunction is sampling
(-]

which is twice the eigenvalue

the average (over many wavelengths) of the disturbance in the space. We shall
see this is a general phenomenon, and shall meet 1t again in the application of
these ideas to spaces containing gravitational radiation, which we take up in

Chapter VII.

b) Linearized Gravitational Waves.

One example of a space with a null Killing vector is flat space with a
plane weak (linearized) gravitational wave on it., We shall give a schematic
derivation here which shows what happens to the Killing vector as we go from
an idealized plane pulse to a situation where there is a spread of directions in
a wave packet.

The metric in this situation can be gaged17 so that

457 (Mg + hyg) dxdx®?

where b&f-"l“’t
' L‘°':=° ) L‘ob= gkab(k)e

12k.
We suppose this wave packet is fairly well localiged at E s , and that it

A
has center momentum ‘&53 = H‘t:‘ Zz .

The coefficient of t in the exponent can be expanded about ko :

|}5|=lkol+ k.l‘.;_.\. &-(n_ )&,v\ia). k 4o (62)
Y kel

b ‘ ko‘ \\‘0\7- W~
A
The coefficient of Z in this expansion stops at the linear term A k!. ,
because ‘ kol is linear in l&k if Q;k is parallel to Ei° ;  the

wave packet will thus not spread front-to-back.

Since ALK = k, , Ak.a ® \<~3 and d A\Lz = é\tz_ (because
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ko = kol 2 ) we find to the order written out in (6.):
¢ x ““3‘3) (ke ) B/ Nl
h(x,£)= S‘Ak,é‘(;e L( ta,’Z t)
(63)
~N
Here l’j is a typical l’\ab and aL(k,‘, L’Q) 7_.) is the two-
dimensional Fourier transform of L\ (i, 0) . The integration can be carried

further to show that the lateral growth is via diffraction Green's functions.

However, the form (63) is more physically transparant. We find:

ek k (k2 2
"“=Sc“<,‘<:”<3€. X e .aje (k,+k§b)t/\k°\

=.¢,'I<,A

33 o\‘\(\ﬂ“’\(.}, i -t)

zh._-%%‘ —L‘f(khha‘)c\k,éh, Gaxaikou (k) E /1K

> Tl € e J(k K, 2t)
= Sh ¢ (Akyt h
LY 'ko, .

(defining ‘«. and A \<& ).
Although k‘ (ulkoh and Ak.\. are functions of position and time,
we will assume they are some representative constant values, and we will take

t z
a test vector with constant components: g ] Q, E = \3 . We then have

b= ail-kir okoYikl]b + cblh

And

(‘E W = kL e +Q"((Mﬂl)1 - 2a Cb- ao( kﬂ hh\z

We consider only the ratio

"\ (-£§ L\l
§° % «
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[ '
without integrating. We take Q =1 , b= 1 +€ ., The minimum of the ratio d) '

is then given (for (Akl)z(\(' ko)-' small] when

2
€ = - (ak.y L0 |
I(i I‘o

Thus the minimizing vector is timelike and tends to the null vector as (Ak;)z-) Q.

The value of the ratio is, in this limit

‘e 2 ((A‘u\"\ IH .

The eigenvalue tends to gzero if the wave vanishes, or if it becomes more nearly
plane fronted. The deviation from symmetry goes quadratic in both the amplitude

of the wave and in the quantity Akl_ (Akl_ / \<°) .



Chapter VII. Applications to Short Wavelength Gravitational Radiation

, Let us consider the values of the functional )\Y_E] in one of the

Isaacson (1967) metrics which have the form (see Section II.e )

Qus = \5«9 + ¢ hag

T N=8) W= 001 h=-6W),

and

E?\q = @ (1_)
Recall we write © (%) instead or (I (€) .

L[]
Write fg \G’qé = Xq@ and assume E is only slowly varying,

so E= 0@ }g: © (4) . Then we find
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1) = ng,p) = oqs T e [".,(Fu-g FOCY) .

And since 90(6: Ko{(g + @( *) we find

4—§m,‘3)§(°{;8) =Xa(ﬁb/ ub/wb/rFT% € t’\ Ef\& v X'“’l X”s

t e 2 (h o((sc' rw,j’),g EF XO(I“K@U + Q()) (7.1

To this order the denominator in{B) is just g 5 Eq gﬁ Xq‘g At x ,
and upon integration the first term in (7)) yields a number depending only on fd
and \(d@ , which we denote by 4 >\ ‘._ E] « ©oince we have assumed E = @(1) y
bg = 9(1) R X & @(1) s the integral of the second term in
(1)), although a priori of order unity, is actually much smaller, since it is the
integral of a rapidly oscillating quantity ho(s,f times slowly varying factors.
Thus this term is at largest 9(')\) and we need consider only the last term,

which, (again noting the product of rapidly and slowly varying terms) we write:

Je O e Y by YEEVT 4% 4 OG)

The average is over many wavelengths but over a region which is much smallexr than
the scale of the slowly cha.ngin’g background. Let the colon denote covariant
‘ -1
derivative in the background, then noting that S(X ) = lfwﬂjc. b ‘ﬂdﬁ‘r + (9(1)

J

‘we write this term as

S\ 2<\6'N o(p G.XFI’ byl P>§ §P\r_‘é* 1‘6()}\)
3zﬂSTcW) go‘gfﬁ M *@(X).

HQY‘E Tc. 3111' <\6r°‘ pd‘xpulﬁur\:f7

is the average stress tensor of gravitational waves as defined by Isaacson. It is

this average stress tensor which determines the background K according to

o)
R‘(B (%) = g‘]'[(-];:‘g - %—‘ pr T e ) . This term is clearly also

independent of %X  as x — © » and ve find

- (for high frequency radiation),(7.2)
[§1= 2080+ [[E] ,, v
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Ll ST G
S \Ew( %P \6“3 F\S Aqx

Both terms are independent of “\  in the short wavelength limit, If E is

. 18 () e =B
timelike, then T op g g S 0
We note, moreover, that the additional term )‘NA allows in some sense

a distinction to be made between dust and gravitational radiation filled universes;

the eigenvalue A is lower for dust universes with the same large scale 'shape'.
Since )“d can be bounded by a curvature (in the background ¥ <R ), and

Coav)
since T“@ ig clearly also a curvature in the background metric, we see

that )\ [ E] is indeed sampling only the large scale curvature of the space,
and "smoothing over" the ripples, as might be expected from an integral es’cimate.19
This derivation makes explicit the result suggested by the torus calculation in
Section “ﬁ a) .

To carry the discussion of the energy density in gravitational radiation a

bit further, let us consider the Robertson-Walker (R-W) metrics, These have a

metric form

t 2 b3
dsz'z -d72 +.S—?-(t)d¢ (73)

where clc'z is the line element of the homogeneous and isotropic space
sections; these sections are flat or have unit- (by choice of length scale)
positive or negative curvature., Because of the high symmetry, these sections each
have six Killing vectors; translation along and rotation around each of the axes
for the flat sections, two sets of "rotations" for the curved ones. (For a
discussion of the meifrics of this type, see, e.g. Hawkinggo).

Because the T constant sections in these metrics have Killing vectors,
if we form the ratio (for E;_ a vector in the 3-space, described by the 3-metric

Ja= % 33‘* 3c()~‘k= 5" )

3
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N8 5 E B0
gg; g; ’«a“ F%‘P"

(3)>‘o =D gince we can pick E Killing. In this case, because of the symmetry we
have (3)%\ =0 even though there is a length scale introduced by _Q( t) .
For an example of a space which is on the large scale identical to the R-W
types, and in spirit of recent observational discoveries, we suppose that the
universe is at the present time is given by a B-W form and that its behaviour is

dominated by the matter in it, but that it contains 30K black-body gravitational

radiation distributed in a uniform and isotropic way through the universe.21 In
the "now" constant time slice, we compute E} for g Killing in

the background, and by arguments like those leading to eguation (7.2), we find

(3)>\[§]4= 3)\.@6[3} ] gﬁchg?)EcgJJ’s?ésx
S'“‘c; §C§J\F§§ dx

where here \6,;_; is the background R-W metric. metric, Because of the

assumed isotropy and homogeneity of both the background and the radiation, T ‘::?
must be proportional to x.'_‘) where (since this is a massless radiation field)
the proportionality factor is f/3 . Since /O 3/0( t) is constant on space
slices, we have ‘3)>\[ E} = (QAN[E] = 8%'_7 f( 3 °K black body). [In this
simple situation it is clear that a minimum with respect to the background is a
minimum in the full metric since >\‘= >‘K +con5t « In fact, by an argument similar
to that for first order perturbation theory in quantum mechanics, it is easy to
see that to first order in ;L:) , the minimum is given by the same vector

field in the full metric as in the background. One can also calculate the

first order correction to-the yeé‘-tdr»--fields exactly aé is done in
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nonrelativistic quantum theory:

&>
E(mtz E‘,M, + 8"’2 »E-(k) SE(M\I'T:‘W! 'E(k) dV

s

k# m )‘(/\M) - A(k) /

th eigenvector of “0@ in the background and >\(‘;)

where E is the i
“”(L)
is the corresponding eigenvalue, and Z;(g)is the ith eigenvector of the
A o
perturbed "'08 e In this formula, the vectors E u‘,and éu‘j are

considered referred to the background space ?{d@ o :)

Since 5°K black body radiation has an energy density of 10—34 gm/cc, we



see that this yields a much longer characteristic length than that provided by
the large scale background. (The background scale is necessarily shorter than
that given by the amount of matter observed in the galaxies A2 10_50 gm/cmB,
and even shorter - maséc density ~ 10—29 gnvl/cm3 - 1if we assume that there is
sufficient deceleration to close the universe with the observed Hubble velocity).
Actually, the energy density of the radiation contributes to the curving
of the background. In the previous example the radiation was as symmetric in the
large as the background.22 However, if the background is determined by some other
factor, say a distribution of dust or electromagnetic radiation, then the
gravitational radiation, if weak enough, will not change the background significantly
and such an integral over the different Killing vectors in the background will give
six different numbers (for R-W background) characterizing the "stress" in the
gravitational radiation.
This result is perhaps the most interesting of this work, We have here
apparantly an invariant method for specifying some parameters of gravitational

radiation.




Chapter VIII. Specification of a "Best! Background

A metric which appears to contain gravitational radiation can always
be analysed by computing the Riemann tenso% components in an orthonormal
frame, If there is radiation present which is curving up the space, we have
seen that its characteristic Riemann tensor will be

R ~edh=0Oe) =00 |

and so will be overwhelming in the short wavelength limit. The integral

method given here, when applied to a space of the Isaacson type, gives a
finite result for the integrals involved, even when k-*(D , and in fact
the 1limit is of the order of the large scale background curvature, and
hence gives the average stress in the gravitational radiation., Thus we
already have a beginning of a specification program., The Isaacson metrics
can be singled out from among the (perhaps)‘wider class of metrics which
have Riemann tensor variations (in a tetrad frame) of order ):‘ an a
length scale & .

For applications to radiation, another very useful tool would be the
ability to find the optimum background for splitting the metric in "Steady"
coordinates, Here we have a less clear criterion, but we suggest that the
background could be found by averaging along the first few eigensolution
of the equation (081-»3:0. (If we imagined the space were continuously
distorted from a symmetric one, phe Killing fields would change into other
fields which would be the lowest eigenvalue fields, at least for small
distortions. It is these that we have in mind.) We present, in Appendix
D a calculation of the complete spectrum of —;é}fbr the constant time slices
in a cosmological solution due to Taub., We also give, and discuss, a way of
averaging this metric along non-Killing vector fields (fields which would
be Killing if the space were completely symmetric) to find a background
space, We briefly discussjthe question whether this is the "best" background
which can be found.

The last problem is still an open one, The calculations in Appendix D

6l
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rely very heavily on vector fields which can be defined in the Taub slices
with the aid of the group structure implied by the exact Killing vectors
which remain. Even here, we find that technical problems hinder the
completion of the discussion. In particular, we had to leave incomplete
the discussion of a smoothed averaging due to the algebraic complexity
involved, We hope to remedy this gap in the near future.

A more fundamental difficulty is that we have found that two reasonable
suggestions for averaging: a) the averaged metric obtained by Lie transport
along the eigenvector fields of ~a£9 , and b) the average defined as the
sphere with the same volume as the Taub space slice, lead to two different
backgrounds. Since these backgrounds have different time dependence, we
find two different numbers for the energy density of thé"radiation", the
anisotropy in the Taub slices.

One might hope that the wave-background separation found in Appendix D
would --~for one of the averagings-~lead to a R-W background whose motion
was determined by massless radiation, éince we like to think of the aniso-
tropy in the Taub slices as gravitational radiation,

We can.investigate this by writing the averaged R-W space found in
Appendix D in the full 4-dimensional form which makes its (3-sphere) x (time)

structure apparant, as

ds? = - e.%“)(a.n)zfdlz'+ sim® X (6% 4 sim® 94 ¥2) ]

a(mmt +2%) - 2
4.“' trea* ]dt ) (8.1)

Here 1)9) \P are angle coordinates on the 3-sphere. Mﬂ,,q. are constant

real lengths. This is not quite the standard R.W., form; we need only

make the transformation

mt + £2)]-v
dr= L-| *&(M—mtz‘:@ 1 zcht.,

to put in the R.W. form (see, e.g., Hawking, 1966). '
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To see that neither of the averaging schemes defined in Appendix D gives
rise to a traceless effective stress tensor, we need only note that the
" .
unigue solution with R‘;O is the radiation dominated model, which has a

time dependent radius given by

(no sum on i) ’(8.2)

where A Ro= Z(ts+) - T (L),
with i =2 it (m2el®)
We set () =0 Jand T = Y-Re K
Near the singular point, T=0© , this has the behavior
eacu z.
(8.3)

Near the singular point the relation between < and 2: in our

averaged background eq. (8.{) is

- V.
d¥~ dt(e -t )2 S T ~ (t-t.)™
For the equal volume averaging we have from Appen@ix D

) (B2R%) (t-€.) (t-t+) "3
LA (av? "ax u*] ~ (e-t.)%

50 -

(t) 2/
Q% ~ 2- 3 (equal volumes),(8.4)
This result has been noted in general for anistropic homogeneous universes

near the singularity. (Misner, 1967).

For the metric obtained by averaging along the invariant vector fields

we have 3“) (& ;2‘1)“ L £‘+Q} )
= +)

e t2+Q* *3 (t-¢t. Lttt ~ (E-tl)

S0

eg»(é) ~ fta- | ((él;)transport average),

Since neither of these have the required time behavior of the radiation

dominated R.W. solutions, thé effective stress tensor cannot be traceless in
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either case. [‘This result of non-vanishing trace does not contradict the
result of Brill (1964) that the effective averaged stress tensor for small
amplitude short wavelength gravitational waves is tracekess to the lowest
order in the deviation from the background. The waves in Taub space are
neither short wavelength nor weak. ]

It might be hoped that the situation would be somewhat better near the
largest expansion instant of the space where the radiation is less intense-
the space is more symmetric- but the trace can clearly vanish only at discrete
instants of time because of the analyticity of the Taub solution,

One must stress again that the unique background which is R.W. radiation
doﬁinated and has the correct singular instants tt is that given by eq.(8.2).
This space bears no obvious relation to the two previously defined averages,
but can be considered as a third possible candidate for a background
space.

Some of this ambiguity in defining a background is due to the fact that
Taub space contains only a few wavelengths of radiation., The Isaacson scheme,
on the other hand, assumes short wavelength radiation., We would expect
that in such cases ayeraging over only a few vector fields -instead of the
infinite number we needed fpr Téub space~ would lead to unique results.

In particular, for the high frequency radiation problem of Isaacson, one

would want to use only a few averagings with a smoothing function that averaged
over many wavelengths, but did nothing to change a scale the size of the
background. (As mentioned previously, the problem in this pespect with the

Taub slices is that they are not much bigger than one wavelength of radiation,)
The "few'" vector fields are necessary because one wants to average over a
volume, not just along a line; sufficient averagings are necessary to span

such a small volume. The averaging Isaacson requires is some unspecified
averaging progess over such a volume, For the Taub slices, as we showed aebove,

two averaging ideas lead to two different definitions of the energy density,
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S0 We are unable to decide which is "best!. We hope that further investi-
gation of this gquestion for short wavelength situations may lead to a
justification of the averaging scheme given here, Certainly any scheme

which requires averaging along invariantly defined vector fields will be

best suited by the fields defined here since they are specified by the metric
itself., Other schemes, like the constant volume one defined for the Taub

space, do not seem to be applicable at all to local averaging.



Chapter IX. Conclusion; OQutlook

Besides the problem of finding whether a background exists and what
it is, several questions remain. The first is to better understand why
the method here results in finding out anything about the gravitational radia-
tion. The answer lies in the Ricci identity. Let Ul“ be a general vector

=

‘& o B8
field and define W = U.’-ﬁu . Then the Ricci identity, contracted by

ULS y 18

U.S [ Wajg3% ~ u-o(;h'iS] = Ruags Tae

Thus
(Uor,x). - l:\an{ + U‘dgsusi‘( + R«Bxﬁ U\BU&% + O.

The symmetric trace free part of the equation gives the propogation of the
trace free part of u(d,‘@) along the.:'r'ays of U-d s in terms of gquantities
defined by the vector field WU and the geometrical object Coqsn nud |
the Weyl tensor contracted into U\Bu% .

The Weyl tensor ( = the Riemann temnsor in vacuum) is a "square of deriva-
tives!! of the metric. Hence the shear (traceless part of utc«,@)) measures
in some sense the energy density of the gravitational radiation. We note
that due to the gage conditions which may be imposed on \/\O(& (Isaacson,
1967, p.35), the trace term \f\uol. can be set equal to zero ias the wavelength
goes to zero. Thus the divergence of the vector field E does not contribute
to )\V.M\ in equation (7.1), and we‘ see we are really measuring the trace
free part of E(d;@) . The integral performed to obtain >\vfa.d in (7.1)
measures the integral total of the shear in the test vector'field, and so
measures the accumulated "energy denéity" in the wave,

The discussion of the energy density of gravitational radiation has
been carried out in terms of the shear of null (light) rays by Penrose (1867)
and in terms of the shear of timelike geodesics by Hawking (1966).

«
Because the trace L\ o does not enter >\‘_ 4’ our choice of }A:O in
'S
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Section Vb. was not really relevant for gravitational radiation, since it

does not affect the result for X,“A . However, if the space under considera-
tion is invariant under conformal transformations, there would be non-Killing
solutions 1f we took rA:-%“—‘, which subtracts all of the trace out of the

(:ABP““

form . ©See (Yano and Bochner, 1953, p. 72). We tentatively remain

with our original choice, rf=9 , although the choice ’Ai-f“-lfor a
conformally convariant expression may prove useful in investigations which
utilize the conformal invariance of the Weyl tensor in the study of gravitational
radiation.

Further remaining problems, include those emphasized in the previous
section; to better specify the determination of a background by these methods,
and a criterion for determining the "best background®,

As we have seen, the ground state eigenvalue measures, for different
spaces with the same large scale bhape, the contributions of the gravitational

-t
energy density in the space. This gives an additional length scale >\,,I:d [ %-]
in addition to the sizes obviously present in a situation with large scale
size Nla and Riemann tensor variations on a length scale X « With each
invariantly defined vector in the background, there is an associated length
scale which measures some comparent of the stress of the gravitational
energy.

The question remains: can a complete specification of the space be done
in this way? Restricting consideration to just the ground state Ei , this

(o]
does not seem possible because the eigenvalue ) contains parts due to the

-]
background as well as due to the radiation and there seens to be no way to
separate them. However, it is plausible that the entire spectum of the
operator -wé5,such as we calculated in Appendix D for the Taub constant time

slices,may give a sufficiently powerful specification of the space it is

expressed in, that the complete solution, background plus radiation, can be



expressed in terms of an expansion in the eigehvectors and eigenvalues of
"oéa . While this complete specification may be overambitious, it is hoped
that a more clear-cut identification of spaces which satisfy Isaacson’s
requirement (that they admit a "Steady" coordinate system) will be possible
by these methods. This is certainly an important application, if it can in
fadt be done. We have already mentioned (Chapter VIII) that the quantity

)[g] gives a finite result evem as )X-*O for spaces of the Isaacson

type, and this may be the beginning of such a specification scheme.

The method presented here in equations (5.1) and (5.2) is a straight-
forward generalization of the idea of a Killing field. The differential
equation (5.2), in spaces of Minkowski signature, can be considered a coordinate
condition for the time,say. Detailed investigation of this idea may yield
very useful results in the future.

We also have left for future investigation the question of using the
vector fields defined by these recipes to give new candidates for conserved
momentum or energy objects. This may also prove quite a fruitful field of
investigation.

Perhaps the most significant and unexpected results of the ideas in the
work described here are the applications to spaces which contain short wave
gravitational radiation, and their use to specifly some numerical parameters
for the radiation.

Clearly there are a great_many topics for investigation which are suggested
by the results of this work., If the_spécification of the manifold in terms
of the spectrum of its operator —l?'succeeds, it will probably provide, via
an extremely circuitous route, the answer to the fundamental problem which
prompted this investigation: to find an invariant way of doing problems of

slow motion in Relativity.
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Footnotes

Round brackets mean symmetric part, square brackets mean antisymetric
part. The double stroke () means covariant derivative in a general
Riemannian space, the semicolon (3;) means covariant derivative in a
L-dimensional Minkowski signature space, My , the slash (1) means
covariant derivative in a 3-dimensional positive definite subset of V, .
Ordinary derivative is indicated by a comma. b
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disjoint parts). See R, Courant and D. Hilbert, Methods of Theoretical
Physics, Vol. 1, Interscience, New York, page 452 (1953). If we as~
sumed that WM and 9,3 were analytic instead of merely C%®

then there could be no zerdbs which are (n-l)-dimensional subsets of
hypersurfaces. In any case, this theorem simplifies the construction
of coordinate systems which ufilize the ground state vector field as
one congruence of coordinate lines, Such a coordinate system will
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field vanishes, so "patching" over the nodes with geodesic coordinates
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T,J, Willmore, Differential Geometry, Oxford, (1958). The discussion
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reduction to shell theory surface equations given here is essentially

the same as Green and Zerna’s method,

See, e.g. Willmore, op. cit., ChapferIII and page 230;.also Green and
and Zerna, op. c¢it., pp 26-37. The two eigénvalues of the matrix KO(B
are the principle curvatures of the middle surface.

There are actually two different limiting ratios to be considered. The
first is the ratio of the wavelength of the waves which might reflect
between the two surfaces, ~h , to the wavelength J\ of the oscillations
in the shell(parallel to it) which can be of order L , a radius of
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The observations of 30K electromagnetic radiation show that it is
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The gravitational radiation can supply the entire energy density
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4
the deceleration parameter for the large scale evolutlon.



Appendix A

Approximate Calculation of Gravitational Radiation

from Collapsing Axi~Symmetric Systems
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I.Introduction

The problem of radiation in General Relativity can be easily treated
only in the weak field limit. The unfortunate feature of this linearized
theory approach is that it becomes invalid just when the radiation becomes
large enough to‘ge interesting. It does, one ﬁresumes, provide useful
qualitative estimates even in the strong field region, and this paper provides
some such estimates.

The paper deals principally with two problems: radiation from a uniform
oblate spheroid of pressureless matter undergoing Newtonian collapse, (the
prolate case is discussed qualitatively) and a calculation of the radiation
from two equal mass objects coming straight on at each other. In the second
case the calculation is with Newtonian interaction and the weak field theory,

but with the answer carried into a strong field regiom.

IT.Collapsing Axi-Svyvmmetric Systems

The idea is the following. A massive system initially not at equilibrium,
with an initially large quadrupole moment and with a radius only slightly
larger than its Schwarzschild limit will, according to linear theory, radiate
an amoﬁnt of energy equal to a good fraction of its rest mass in times less
than or comparable to one period of its oscillation or rotation frequency. Thus
a deformed neutron star, for instance, if it had a radius r~2 m would not
execute any sustained oscillations. It would just "deflate" to its equilibrium
configuration, radiating away its excess deformation eﬁergy. Thus in the
strong field regime a single collapse of an object might radiate as much energy
as a binary system in circular orbits would. (More precisely, when the binary
system got down into strong fields, its final few cycles would not resemble a

spiral at all, but would look like a collapses) (Misner 1965)
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For this reason, and because rotating systems are more difficult to treat,
we will deal only with collapsing systems. The motions will be calculated

from Newtonian theory and the radiation from linearized gravity theory.

I1I.Uniform Spheroids

In a recént paper (Lin i965), C.C. Lin et.al. calculate the collapse of
uniform pressureless spheroids (uniform means p{(r,t) = p(t)). He obtained
results for both prolate and oblate ellipsoids, with the following general
features:

a) the spheroids stay uniform;

b) the eccentricity increases with time: an oblate spheroid becomes
a disc, a prolate spheroid becomes a line;

c) collapse to a disc or line occurred in all cases for a time

tcfﬁ’.ﬁp;l/z (po isthe initial demnsity).

The Lin results are given both as a power series expamnsion and as
computer obtained result. The agreement between the two methods is excellent
for the oblate case and reasonable in the prolate case.

We have taken Lin's oblate case power series solution and computed
P P

the radiation given by

vods L)

o B

where QaB is the quadropole moment of the radiating system and ° means

3/ot. (Landau 1951) Some plots of the dimensionless number

2

.
-
.

?

=R O]
lo
W[
~.
N

o]
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(We denote the initial

- - 1.
- Q (2)’)'

semi-minor and semi-major axes by Z_, ® and for ellipsoids Q@ = Q = ny 22

are found in figure (1) for various values of Zo/(%'

We then see that there is a strong peaking toward the end of the collapse, and

the radiation in the initial stage is insignificant. The FORTRAN IV program

and the output from which the graph was plotted are given in Section V,

The conclusion to be drawn from these calculations is that for non-
relativistic initial conditions the radiation is negligible. For instance,

inserting the sun's density, mass and radius into the normalizing factor:

1 1
w 2 3/2
(o] po

g lun

i

since we have (Synge 1960)

My o 5 x 10~% sec .
w £ 2.3 sec
0

o 122 3.9 % 103 sec

50
, =
5 1 1 _ 5 6 _1
m w2  3/2 | .5sec * 10 5.3 2
e o o, “(sec)
2
(60) x 1019(sec)® | = 103"

For gravitational collapse with ZO/QS = .95, we have (Figure 1)
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80

[‘Q']Z }_:_1012"3'-! = 10'.‘22

15 put in all the factors, we note that

10 Q1% =60 Q17

s0
oL vrtaT 12 ~ 1023 o 1n-17
L =5 Y Q) 10 10-17M /sec.
Since the collapse time pol/2 iS‘pO 1/2 = 3.9 + 103 sec and we find )

that the last small fraction, say the last thousandth of the collapse is

the time of significant radiation,the total radiation in this collapse is
10717 ~ 10716 N .
e

This result justifies the statement above about small radiation from non-
relativistic initial conditioms.

The prolate spheroid radiation was not calculated because of inaccuracies
in the power series expansion given by Lin (as checked against his numerical

integration results), but it would not be qualitatively different.
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IV. Colliding Massive Particles

These computations show that to find a situation where the radiation will
be large, we must follow the collapse beyond the first stages—-we must follow
the collapse of a disc or of a line.

We make the mathematics even simpler by taking a very simple physical
situation. Two particles, each of mass m, are separated by a distance r and
interact via Newton's Law. (We take this as a simple idealization of the

case of a collapsing line.) Then the equation of motion is (fig. 2)

(v =

() =1
N’
o

2
uE o= - B
r

This has the solution given in parametric form:

r=r cos” 0
(]

7o 1
J o (6+—2— sinZ0).

(ro = separation where r = o)

= - - = 2 = .
Since sz ZQXX 2ny my Q we can compute the quantity of interest,
Q .
'We have (k =V %%‘)
0
de/dt = kA2 cos?8)
Q = -m k rg sin 26
~ _ kz 2 (l— sin29 )
Q=-mkrg cos20
"‘= 3 2 sind .
Q= m ks xg (g% )
1-r/r
P 2m o 1l ,2m
2 = m2 3 4 - (LS9
[ Q] m (;g) r, (—(—rT/_r—g_)—) ; o A-x/x)
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So (since the definition of Q in terms of m,r has changed from the

ellipsoid#l case) we get

-t 3 1%0%12 = (2WMy5.q T
L=75500] To0 (7@ ro)

We note that if the two masses were in circular oxbit around each other,

the radiation when their spperation is r is given by (Vishveshwara 1964)

.,,..2_ .2..“1.)5

Lo 3 ( T .

~ We see that although radiation in the two systems is comparable, it

is larger by a factor of fifty or go in the binary orbit case.

We can also compute the total energyfémigtéam by each of these systems.

lee.:

t
E= [ L(t) dt

o
x
dt
= [ L (x) i 9
x
o

x
1 5 1 dt
E=75% J ()" 5 (gp) dr

‘ . - -1 | '
now = -1 1/2 /3 /2
a& . [reet] 1o El-r/ro)' / —éﬂ)=[ -—E-l for v = e

dr o
9/2 T . ‘
o S2m) SR SR 2m 7/2 ‘ :
80 E="730 >£ 972 dr =755 ¢ m T (&)
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This is the amount of energy radiated for a fall from infinity. We -

note that thie equals the rest mass of the system (2m) only when

( )7/2 1. Note that this happens ' only for some value of r less than

420 .
Zm. The total kinetic energy of the system is equal to the potential energy

’

since they started at rest:

mZ
KE = —
r

. .

So the radiation begins to become appreciable when the eﬁergy‘radiated
approaches the K.E.;

m 2m, a1 m 2m7/2
2 P T 152 )

This happens only when

1 e _lTl)_S_(_Zm)S/Z
Agagn, tﬁis is for some r less than 2m.

We may compare the resuit (a) with ﬁhe.total radiation from a biﬁary
system as it decays from an infinitely large orbit to an ofbitiof radiué r.
It is just the binding eﬁergy'at that radius: |
mz‘ '
AE = or .

We see that the total energy radiéted from the binary system is mhch greater
than that from the '"colliding'" system, since the Sinary takes so mudh-longer
to collapse to any given radius, and.the luminosiﬁieS‘afe roughly comparable
at coméarable radii. ‘The same compafison_as above-shows that the total collapse
energy radiated does not approach.that_radiated from the binary until r'<2m;

Table 1 gives a comparxison between the two systems of luminosity and total
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energy radiated for several interesting radii.

We may take the comparison between binéry and collapsing systems as
an indication that even the linearized theory predicts a '"tailing-off"
in the radiation from a binary system. In particular, we expect that for
some small radius r, circular orbits will become unstable. (For a test particle
around a central mass M the full theory gives this radius as 6M. Not enough is
known about the two-body problem in gemeral to make any more accurate estimates
of r, in the equél mass case.) A binary then geté perturbed.so much it becomes a
colliding system—-with a loss of about two orders in luminosity. The full theory
would presumably reduce the luminosity even more since the system would be
retarded by its own radiation reaction and red-shifts Qould reduce luminosity
observed at infinity.

It is interesting that if we demand that r > 2m, then the binary system will

have radiated only 1/4  its emergy by the final instant (assuming the orbits

Im
i, I
210 ta

binary were perturbed into a head-on collapse at radius 6m, the total radiation

-

stayed circular). . A head-on collapse would have radiated omnly

vwhen it reached 2m would be

where the 1/12 comes from the binary part of the motion and a = 1/200., comes

from the collapse.

\

I thank Dr. C.W. Misner for suggesting this problem and for very helipful

.

advice.

Computer usage was through the Computer Science Center, U. of Md., and

NASA grant NsG-398. to the Computer Science Center, U. of Md.
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V. COMPUTER PROGRAM AND RESULTS

The following pages give a listing of the FORTRAN IV program and a partial
listing of the results. Input for the program is coefficients from C.C. Lin,
table Al, (Lin, 1965). The collapse times are also from Lain.

In the output, the quantities listed for various values of zo/ms are

2

5 q 1 1/2 ,
A [ m G)o 03/2 ] Y tpO . and ,Q,nlon .
o




201
202
101

100

MATZINER 205/66/071 aave O
AMA N - EFN SOURCE STATEMENT -  IFNU(S) -

FORMAT{O6F12.0)

FORMAT (4E24.8)

READ{5,201) ZPI,E2,E42,AZ4AZ2Z,01H

EPZSQ=1—-ZPI+#ZP]

TH=0.

E4=E2%E42

SINTH=SIN(TH)

COSTH=COGS(TH)

SINZTH=SIN{2.%TH)

COS2TH=COS(2.=»TH)

SIN4TH=SIN{4.%#TH)

COS4TH=COS(4.%TH)

DEN=1.=A2Z4+{1.+A2L)}#COS2TH

THT=AZ/DEN

THTT=2.,%AZ#SIN2TH#* {1 «+A2Z)#THT/ (DEN*DEN]}

THTTT=4. #AZ 2+ AL R ( Lo +A2Z)#THT# (( L +A2Z )3 «SIN2TH#22/DEN##4+CUS2TH
120EN=={~3))

SQT=~4,#EPZSQ# COSTH*#3#SINTH-(1.~EPZSQ)#{E2 *SXN#TH+4.*{2 #E4+E2 %
1E2 )V #CUSTH#SINTH #3412 ¢ 2% E4# (SINTH #S5) /COSTH+ (4. #E28C4+Basnitb4#EL ) s
2SINTH##T/COSTH## 344 . w4 ®*E4uS [INTH#*#9/CO0STHex5)

SQTV=-EPLSQu (3. #SIN2TH##2+44 («COSTH®#4 )= (la-EPZSG )% (4 wE2200S4TH+3
12 {2 nE4+E2RE2)4SINZ2TH# %2+ (60 #E2¥E4=4 2 (2.2 E4+E25E2)Y ) #SINTHe#4+ (4
20 . #E2#EA+50a#E4#EG ) SINTHo ¥ % COSTHe# (=2 ) +{12.%C2%E4+560e%E4%l4) =
ASINTH»#8#COSTH*# (~4 ) +20 #E4#E4# SINTH## 1 0#COSTIinw{=56) )

SQTTT=-EPZSQ#{ -0 *SINATH~16.#SINTH#COSTH#%3)—=(1.-EPZSQ)# {{~16.#%E2+
1] 6% {2 4E4+E2%E2) ) #SINATHH {60, #E2%E4—4 o n{ 2.2 4+E2#E2 ) )24  #SINTH=#3
2uCOSTHH{40.#E2#E4+56.#E4%E4) #6.#SINTH# #5205 THe# (=1 ) +(1T76a#E2#E4+
3592 %E4%E4 ) #SINTH## T#CUSTH## (-3 )+ {48 #E2#C4+v443.5E4#E4 ) #SINTH==G#
GCOSTH## (=5 )+120.#E4=E4«SINTH=*  1#COSTHe+(-7))

A=SQTTT*THT##34+3 s #SQTTHTHT T+ THT+SQT# THTTT

ASQ=A%A
ASLG=ALUGLO(ASQ) .
TIME=(1./AZ)#(TH+.55SIN2TH=A2Z# (TH=.58STN2TH )

WRITE(69202)AyASQ, TIME ,ASLG
TH=TH+DITH
IF(TIME=6)100,101,101

END



Oe

0«30817884E-01
0.12946945E 00
0.31623791E 00O
0.63118071E 00
0.11459794E 01
0.19867271E O1
0.33775930E 01
0.57261888E 01
0.97956091E Ol
UalT7063793E 02
0.30505379E 02
J.563T72162E 02
0.10846065E 03
0.21895215E 03
0.46783019E.03
U0«10690496E 04
0.26464912E 04
0.72162819E (04
0.221587T14E.05
(78994424E 05
0.34128829€E 06
0.19000831E O7
0.14879731E 08
0-18539134E 09
0D.43623360E 10
0.24881862E 12
D.52766826E 14

P L

1/2
tpo /

0.
0e34935624E=01
0-69695140E-01
0.104106420E 0O
0.13799195E GO
0.17119277E &G
0.20354787E (G
0.23490693E 00
0.26512957E 00
0.29408678E 00
04321662208 00
0.34775324E 00
0.3722T7218E 00
0.39514698E 00
0.41632205%E 00
0.43575876E 00
0.45343588E 00
0.46934973E 00
0.48351427E 00
0.49596092E 00
0.50673828E 00
0«51591162E 00
0.52356225E 00
0.52978667TE 00
0.53469566E 00
0.53841311E 00
0.54107484E 0O
0.54282723E 00

lnloA

-0.17014118E 39
-0.15111972E.01
-0.88783268E 00
~0.499986C7E €O
-0.19984628E 00

U.59176825E-01
0.29813823t 00
0.52860732E-00
0.75786567E 00
0.99103145E 00
0.12320756E 01
C.14843764E Q1
0.17510647E¢ 01
0420352722E-01
0423403493E 01
0.26700883E 01
0.30289979E 01
(1.34226705E 01
0.38583135E 01
0.43455446E 01
D.48975965E C1
0.55331214E 01
D.627T87727E 01
J.71725951E 01
U.82680895& 01
J0.96397T191E G1
0.11395883€E 02
D.13722361E 02

86
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Oa

Ua96045071E~

0.40429641E
U.99082108E -
+19869888E
()»36301542E
Ue63428862E
0.10887160E
0.18671295E
.32381443E
U.57331995E
0.10448353E
G.197530206C
J.39050224E
U.81436424E
C.18097385E
U.43384399E
U.11393253E
0.33434570E
0.11257274E
0.45064880E
0.22520185E
0.15021865F
U.146T0204E
0.23882802E
0.786T0103E

Ue

G.3T7306343E
0.15751752E
0.38802944E
0.78394156E
0.14464313E
0.25593499¢
0.44624295E
0.78018227E
0.13851590E
0.25231402E
0e4T591636E
0.93302528E
0.19506T24E
0.43267883E
0.10369012E
0.27272091E
0.80290688E
0.27134984E
0.10878084E
0.54015285E
0.35207638E
0.32642647TE

01
00
00
01
01
Ol
02
02
D2
02
03
03
03
03
04
04
05
05
06
06
07
08
09
10
11

0o
01
01
01
02
02
02
02
03
03
03
03
D4
04
U5
05
05
06
a7
0T
0):]
G9

0.

0e35305654E-11
0.70431785E-01

0.105200406E
0.13943749€C
0.17297395E
0.2056478B9€
0423730604E
0.26780521E
0.29701384¢E
0.32481325¢E
(U«35109881E
0.37573107E
0.398786bH7E
0.420058560E
C.439557738%
0.45726242E
Ne4T316881E
0.48729116E
0.49966154E
0.51032948¢E
0.51936158E
0.52084074E
0.53286538E
0.53754849¢

.0«54101641E

Oe

UG
Gu
G
Ce
OJ
O(.J
ar.
0C
G
Ui

0.
Cu
ol
0G
00s
00
00
GO
00
00
00
00
00

036200477E~01
0.72212893E-01

0.10785106E
0.14293254E
0.17728046E
0.21072525E
024310640E
0.27427398E
0«30409026E
0.332430094¢E
0«35918649E
0.38426322E
0.40758422E
0.42909011E
0«44873966E
0e46651017E
0.48239773E
0.49641723E
0.50860225¢E
0.51900467E
0.52769419E
0.53475763E

00
0]9]
00
00
00
00
00
00
GO
0]9]
00
CQ
00
Q0
Qo0
00
00
0]¢]
00
o0

-0.17014118E 39
-0a10175249E 01
-0.39330012E 0O
-0.40047630E-02

V«29819543E 00
U«55992508E 00

~0.80228693E 00

0.10369146E.01
Ve l2711744E 01
5.15102962E 01
0.17583970EF 01
0.20190478E G}
0.22956335E 01
J.25916236E-01
G.29108187E 01
+325T6158E 01
0.36373336£€ 01
U.4056647T7E 01
0.45241957€ 01
0.50514332E 01
D.56538382E 01
Ge63525719E 01
0.71767239E 01
0.81664362E 01
0.93780854C 01
0.10895810E 02*

~0.17014118E 39
-0.42821732& 00

0.19732885E 00
0.58886469E 00
0.89425369% 00
0.11602978E 01
0.14081297E 01
J34106495714E 01
D.18921961E O1
De21414936E 01
0.24016414E 01
D.26775306C 01
0.29722146E 01
0.32901843E 01
0.36361657E 01
0.40157374E 01
0.44357184E 01
0.49046652E 01
0.54335296E 01
J«60365524E.01
D.67325167E 01
DT75466369E 01

D48%137853E 0O
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0.
0.78124551E
0.33096123€
0.81989450F
0.16698763E
0.31142733E
0+55862295E
0.99065219E
0.17682373E
0+32190746E
0.60433385E
0.11819385€
0.24329920E
0.53301352E
0.12586291E
0.22521308E
0.93662303€
0.30770272E
0.11877043E
0.55985297E

2/ = .6
(o] [a]

Ua

U.12621644E
0.53665859%
0.13377470E
U.27489139E
0.5187427T7TE

" 0.94452729E

0.17063219E
0.31151139¢E
0.58272817E
0.11301688E
0.22978464E
0.49539037E
0.1146T7182E
U.28914565E
0.80803579¢&
0.25565015E
U.94072805E
0.4-1697583E

00
0l
01
02
ue
02
02
o3
03
03
04
04
0%
05
05
05
O(.'
o7
o7

01
01
02
02
02
02
03
03
03
04
04
04
05
05
05
06
Q6
07

0],‘.

0.37419950E~
0e74640905C~

0.11146585¢&
0.14770175E
0.18316142E
0.21766546E
0.25104402¢E
0.28313846¢t
0.31380301¢E
0.34290617%
0+37033204E
0.39998148L
O.41977312¢
0.44164410E
S-46155081E
O0.47946922E
0.49539521¢
0.50934453E
0.52135269E

Y
e

gl
ol
00
00
00
00
()
Go
G6C
0o
00
00
GO
29
00
00
00
00a
00

0.32887T5066E-0.
0.7T7537919E-01

0.11577847E
0.15339084¢t
D.19017544K
0.22594095E
0.26050622E
0.29370210E
0.32537313E
0G.35537907E
C.38359633E
0.40991919E
D.43426085E
0.45655432E
0.4T7675305E
0.49483144E

0.51078509&

0.52463080E

CU
GO
00
o0
00
00

00
00
00
00
Go
00
00
00
00

-0.17014118¢
~0«10721246E

Va51977713E
0.91375798E
0.12226843E
0.14933567E

OD.17T471188E.

0e19959212E
0.22475405E
5.25077311E
1.27812769E
0+30725949E
0.33661407E.
5 e37267383E
J-40998978E
Je45121681E
(.49715649E
Ue54881314E

0.6074T7083C..

D0.67T480740E

~0«17014418E
J.10111590¢E
D.72969809E
J.11263740E
we14391612E
Je17149521E
7419752145E
J.22320610E
Va24934739E
J27654660E
D.3053.433E
7 +33613210E
Ue36949476E
Ue40594567E
H.4463116TE
J.6%074307E
U«54076460E
169973464 1E

J.66201109E

39
00
60
00
01
g1
o1
01
01
Ol
01
Ul
01
01l
01

h )
B S

01
01
01
01

39
go
03
Gl
0l
o1
01
01
J1
01
01
Je
%
Gi
Gl
0i
0L
01

88
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.

0.16626293E
0.70980641E
0.17815425E
0.36969B60E
0.70677898E
0.13082810€
0.24120180E
0+45135459E
0.86974579E
0.17475993E
0.37059044E
0.83987142E
0.20629158E
0.55822108E
0.16974750E

o

UelB2386159E
U.78216524¢E
U-19782900E
J=41506016E
J.80510939L
0.15179586E
U«2862T7894E
0.55064%65E
5.10966T46E
022919984
Ue50929996E
Uel2201560E
U.3201§754E

Ve

J.16317852E
0.70344836E
0.17948492E
G.38131619E
0.75199096E
0.144TT86TE
0.28017451E
0.55600022E
0.11496110E
0.25124252E

01
01l
02
02
02
03
03
03
03
04
04
04
05
05
06

0l
01
02
02
02
03
03
03
C4
04
04
05
05

ol
01
02
02
02
03
03
03
04
O4

O.

0e40945169E~0L
0.816601766~-0C1
0.12191716LE 0O
0.16149283E 0O
0.20017072E 00

023774331t 00

U.27401415¢ 00
0.30879977E 00
0.34193156E Q0
0«37325743E 00
0-40264332E 00
0a42997457E 00
0«45515705E QO
U.47811809E 00
0.43880722E 00

0.

0.44010153E-01
0.87764557E-01
0-13101002E 00
0.17349844E 00
0.21498927E 00
0.25525193E 00
0.29406814E 0C
0.33123401E 00
0.36656221E 00
0.39988373E 00
0.43104962E 00
0.45993246E 00
0.48642767E 0OC

Ce

0«48494805E-01
0.96696896E~01
Del4431648E 00
+19106960E 00
U« 23668093t 00
0.28088658E 00
(«32343668E 00
0.36409792E 00
De40265586E 00
0.43891707E 0O

~U.17014118E 39

0220795425 GO
1851139522 00
Jel2507962E 01
0.1567847T8E 01
5«18492837E 01
1.21167010E 01
1.23823805E 01
J.26545178E 01
529393924£.01
J«32424419E 01
J-35688942E 01
0.39242128E 01
J«43144815E 01

89

0.4T468063E Olfcollapse

0.52298034E .01

~-3.1/7/014118E 39

V.26098100L 0O
J«89329852E 0O
J«12962900E O1
D.16181110E 0O1
U.19058549E 01
J21812600E 01
Dal2d567894E 01
Ne27408715c 01
0.30400778E 01
Je33602143E 01
0e37069737E 01
Ge40864154E 01
Ce45054045E .01

-0.17014118E 39

1a21266300E 00U
0.B4723222E 00
3.12540280C G
0.15812852E 0L
D.18762120k 01
0.21607G HE 01
Ce244T7T4266E Ol
D.27450750L 01

0«30605509E 01 collap

0.34000932E 01

+ collapse

So




Z /

u
[o]

Ue

0.10219806E 01
0.44316662E 01
0.11420348E 02
0.24509578E 02
0.49451669E 02
0.97495201E 02
0.19427429E 03
0.39946351E 03
O«.86194712E 03

0.

0.27169368E 00
0.11862155E Ul
0.30922672E 01
0.6T7T40870E 01
G.13911738E 02
0. 28194206& 02

- -~ o am -~

Joe
0.5G2u4316E8-01
0.22506238E 00
9,577520288 00
.12773183E 01
u 465663)15 01

W e e ——

Oa
0e56437T788E-01
0.11251996E LU
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a) Binary (circular orbits)

2 ,2m.5 Am m

b) Head-on Collapse

1

o1

g eoe — o —— = e (o -éﬂ = 1 _2.."9. 7/2
Lo=73 ( r) m  2r L =135 ( T m 21in ( r>

3m 5.26 x 1072 2 1.09 x 10~ 1.15 x 1072

6m 1.65 x 1072 115 3.43 x 107 1.02 x 107
12m 5.15 x 107> L 1.07 x 10~ .9 x 107>

-6 - -6
20m 4.0 x 10 025 8.33 x 10 1.51 x 10
Table 1l: ~-Comparison of luminosity L and fractional ‘charge in energy-%? for

a two body system .(each component of mass m) in two configurations

a) "Binary" circular orbits and

b) Head-on collapse (no angular momentum).

Gmc=1 .

"Units are relativistic:
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Caption for Figure 1:

Figure 1. Logarithm of the dimensionless luminosity

s 2
[% Qlwo2 l/pgl 12 for pressureless collapse of oblate dust ellipsoids.
The time is given in dimensionless units T = tpol/z, with po the

initial dust density. The different curves are for several values
of the initial parameter ZO/EJ0 (initial ratio of semi-minor to semi-major

fadius).



FIG 2 TWO PARTICLES SEPERATED BY DISTANCE r IN
THE Z DIRECTION.
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Appendix B
FElectronic Computational Methods for General Relativity

The computational difficulties in finding the Einstein field equations once
given the metric form can be overwhelming. In simple cases, direct hand calculations
using the classical formulae (e.g. landau and Lifschitz, 1962) or usiﬁg the more
modern techniques of differential geometry (e.g. Misner, 1965) are not too difficult.
However, in really complicated situations, where the problem has little symmetry, the
calculation can be a monumental task. In response to this, several investigators,
including the author and R. W. Clemens at Maryland (Fletcher, Clemens, Matzner, Thorne,
and Zimmerman, 1967; see also Fletcher, 1965, 1966, Clemens and Matzner, 1967, Thorne
and Zimmerman, 1967) have turned to utilization of computer manipulation of algebraic
structures. The computer techniques have in fact become quite sophisticated. Functional
differentiation is a standard feature.

The University of Maryland system has provisions for calculation of most of the
important geometric quantities, given %up « It calculates, for instance,

RdQG‘S , ?oﬂ ) P - and G—u‘ + The main program has facilities for
putting the calculated output on magnetic tape, to avoid the huge amounts of work which
would be required to key-punch the material for re-input for later manipulation.
Augiliary programs have been devised to maintain and update a library of such output,
and "restart" programs have been written which allow later manipulation of the results.
For instance, programs have been developed which allpw the substitution of quantities
for others, and which aliow termination at any desiréd order in an expansion of a
small parameteT,

The present state of computer technology limits the complexity of the jobs that
can be run successfully. This is because of time limitations, and because of computer
storage space limitations. Typical long runs on the 7094 run to (order of) one hour,
(Although the exact Schwarzschild solution runs in a matter of seconds and a Bondi-

Metzner metric like {(24)takes about 4§ minutes.) The other limitation is storage

96
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size. Expressions being manipulated must be small enough so that if, for instance,
b is desired, both & and L: can be simultaneously written into the core
(high speed) storage area of the computer to be manipulated. Since the routines for
algebraic manipulation are long and complicated, there is only a small amount of

"free" core for this.

The complexity of the problem under consideration is the determining feature

that separates the possible jobs from the impossible. The current generation of

7094 type computers, with the IBM FORMAC language, are really suitable for calculations
such as perturbations on Schwarzschild. (See Campollatoro and Thorne, 1967). More
difficult problems often exceed the computer's capabilities. It is hoped that the
next generation of computers (of the high speed large store type) will effectively
remove this limitation. If has been the author's experience that since only about

1/4 of the "core" of a 7094 is available for expression storage, even modest extra
amounts of high speed storage area (in terms of the amount built into a 7094) would
remove practically all limitations on the complexity of the intelligible problems

that could be handled. (Intelligibility in this context can be quantitatively
measured - although with only a rough cutoff - simply by placing the printed out put
on a scale. More than 1 kg, 2 unintelligible, and this is a generaous upper limit.)

We conclude with some sample calculations for the Schwarzschild spherically

symmetric forms:
det : et Fridt & ristate dpt - e det

The results given on the following pages show the input metric, the determinent
of the metric, and the Ricci tensor components. The quantity being computed is
indicated by the heading at the top of the page; the relevant indices are printed
just before the quantity corresponding to those indices.

The results are in standard FCORTRAN notation, but for readers unfamilisr with

computer output, we give the following explanations. Raising to a power is written
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thus: X' = X %3 , the functions s = FMCSIN (xX) ,

e}._: EMCEXP( L.AMBDA) . Note that the Ricci tensor components are printed
twice (for irrelevant techmical reasons); the dollar sign (#) marks the end of an
expression so that the two copies can be distinguished. We have iranslated the
notation into more mathematical appearing formulae for the metric, the determinant

and some of the Ricci tensor components.
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Appendix C

Cravitational Field Equations for Sources with

Axial Symmetry and Angular Momentum

(published as a joint paper with C. W. Misner, which appeared in

Phys. Rev. 154, 1229, 1967)
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' Abstract

The investigation of stationary axially symmetric gravity fields
leads to a reduced system involving two field variables which describe
the "Newtonian'" and the '"rotation'" part of the metric. This paper
presents a parametrization of this reduced problem, which exhibits a
previously unnoticed symmetry. Although the symmetry group (isomorphic
to homogeneous Lorentz transformatioms on 2 + 1 dimensional space)
has a trivial action corresponding to unimodular linear transformations
of the ¢t coordinate pair, its existence "explains" the existence of a
very simple new Lagrangian for the reduced field equations, and the
relatively simple form in which these equations ( and the corresponding
surface independent flux integrals for mass and angular momentum) can

now be written.
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Introduction and Summary

1)2)3)4)5)

Previous studies of stationary vacuum solutions of
Einstein's equations with axial symmetry have shown that the difficulties
can be isolated‘in a reduced system involving only two independent
coupled second order equations in the two basic unknown functions
entering the metric. Imn this paper we point out a previously un-
noticed symmetry group (isomorphic to the homogenous Lorentz trans-
formations in 2 + 1 dimensional space) for this reduced problem. This
symmetry governs the various ways in which the metric components can

be expressed in terms of the two basic functions (field variables).

In terms of two field variables o and B which we define, the reduced

problem is summarized in a simple Lagrangian

i = (ZB)2 - cosh’g (}Z_oc)z
involving only vector operations in flat Euclidean 3-space. For the
corresponding field equations,

Z'M =0

where

M=e (U8 +-% i sinh 28 Va)

only those solutions with axial symmetry are accepted. For solutions
satisfying appropriate conditions which guarantee that thé corresponding
metric is asymptotically flat and non-singular outside some bounded
(source) region, the integral

[(M+vznp) -d2§ = 8n(m + i J)
z
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(where p2 = x2 + y2) has the same value on every closed Z-surface §
surrounding the source, and gives the mass m and total angular
momentum J of the system.

In the special case g = 0 studied by Weyl and Levi-Civitas),
the metric is static and the function =-%(B + 2np) satisfies
the linear Laplace equation as in Newtonian theory. Angular momentum
in the system will require a non-constant ¢ so the field equations are
no longer linear. The transformation group in B space which characterizes
the simplicity of the above Lagrangian does not act to produce usefully
different solutions from any given one, for we find that these group
transformations are equivalent to constant, unit determinant, linear
transformations among the ¢t coordinates in the metric. Thus we have
not been able to use the tantalizing simplicity of the Lagrangian to
yield new solutions. In fact the only known metric (due to Kerr)ls)

with both J # 0 and m # 0 in the class considered here gives prohibi-

tively complicated forms for the fields o and 8.
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I. Metric Form and Symmetries

Einstein's equations for time independent metrics with axial
symmetry have been discussed by several authorsl)z)s)é)s). This
paper will deal with vacuum solutions within a class in which the
sources have an angular momentum distribution. In particular,
stationary flow in the ¢ direction will be allowed in the source
(although flow in other directions is excluded). These statements reflect

6)

the symmetries embodied in the metric form ' which we assume:

2 2 2 X 3y Y
ds” = gzz(dp + dz") + gXde dx . @D)

X and Y range and sum over ¢ and t.

The axially symmetric and stationary properties of the problem
allow a metric form in which all the components of the metric

are independent of ¢ and t. We have assumed that there is also a

symmetry of the system:

( 6t )~ (-9-t) (2)

which leaves the metric invariant. It is this symmetry which eliminates
the cross terms between the P2 and ¢t parts of the metric, since for
instance dp dt would change sign under (2). If there were matter
flowing in the source in the p direction under (2), we would not

expect the exterior metric to be invariant . We see that flow
in the z direction is also excluded, but flow around the axis is allowed
since -%% does not change under (2). Since d¢ dt is invariant under (2)

2
we must in general write for the ¢t part ds2 of the metric:



107

ds dxx de =

_ 2 2
= g¢¢ dé +2g¢t d(J>dt+gtt at—, (3)

2
2 = 8y
The form (1) is invarilant under conformal transformations in the

pz plane. Since they do not involve ¢ or t, such transformations do
not disturb the stationary axially symmetric character of the metric.
The functional formsx{gzz and Byy will change, and the form of

the equation for the axis of rotation will be changed.7)

We shall demand that acceptable solutions be asymptotically flat.

In this paper, asymptotically flat means

1 :
By = Ny = 0 (r-) (4)
2 2 2 2, . .
where r~ =3x +y + =z in rectangular coordinates given by the
transformation
X = pcos ¢
y = psin¢
(5)
z = z
t = t,

Demanding that (4) be satisfied gives the following asymptotic

behavior for the components given by eguation (1):

1
gpy = ~1 + 0D
1
8z = 110G
(6)
g
2t _ 0(:_L.)
P T

zZ2

& 1
f = —f% -g,, =0
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It is a simple exercise in harmonic function theory to show
that any metric with the symmetries assumed here which satisfies
(4) can be put in the form (1) even with the further condition (12)
below while maintaining evident asymptotic flatness in the sense
that Eqs. (6) are satisfied. The condition that the metric be
differentiable at the axis--assumed to have the equation p = 0—-

gives for p = 0 that g¢t/p2 be finite and

- 3

f=0-= 50
og og

2z _ _ tt
5 - 07 o ()

g

Ll

p
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11 The Field Equations

It is well known1)2)3)4)5)that with the metric form (1) the

field equations

R,, =0 (8)

=R _=R =0 (9)

give'gzzby simple line integrals, once Bxy is known. Consequently,

we deal with (8).

One of the equations in (8) is:

2 2

_ /2,5 ¢, ty_8" . 3" 1/2
0 gzz(det gXY) (R¢ +Rt ) (8 2 + 2)(det gXY) : (10)
o 0z
Thus vdet Byry is a harmonic function of ¢ and z and we may write

det By Ef(g(p,z))z . By a conformal transformation
we may make p one of the coordinates; and then with z that harmonic
function of p and z conjugate to p(p,z) we findslafter dropping the

bars) in these new coordinates that
2 2.2 X, Y
ds” = [dp"+dz"] + dx dx
gzz P gXY (11)
with

det g, - L2 (12)
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To continue, we choose a parametrization of 8xy

Bre K¢t cos % sin % --peB 0 cos %- —sin'%
[gXY(a,B)]= - (13)
-sin & cos 2 0 e_B sin & cos %
Bot B 2 2 o 2 2 ).
The resulting metric components are
gtt = -p (cosa coshB + sinhRB)
g¢¢ p (cosa coshBf - sinhB) (14)

L]

psina coshf .

The field variables are B, the "Newtonian'" field, and &, the'rotation"
field. From (13) det Byy = —p2. The conditions (7) for regularity on

the axis p = 0 then require that ap—z and 2y = B + Inp be differen~
=0 at p = 0). Similarly,

conditions (6) for asymptotic flatness require that y, ap and ap—l

tiable there. (That is, be finite and have 'ﬁ%
1
all be 0.
r
We have satisfied Eq. (10) by the choice (14) for the metric, and
the remaining field equations are now most easily found in the following

way. Suppose Eu is a Killing vector: E(u;v) = 0. Then the quantityg)

it

B () =4 MY - 7

HAY)

becomes simply

-RH g\) . (15)

[

EM(E)
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In particular,

E%g) = -rtEY (1e)

) .

In the problem under consideration, the ¢ and t Killing vectors (with

components 6% and Gz respectively) give (using metric form (13))

—R: = EL(t) = V-[Eﬁ%np)+cosazp + %sinasinhZBzg ]=20
) 1 (17)
t¢ = Et(¢) = Vi [-cosh Bzg—sinazﬁ + —tosusinhZBZy 1=0 .

~R D)

The symbol ¢ gas its flat 3-space meaning:
- 2

Zuza = (a 7t 2 7t az)a in coordinates x, y, z given by
ox dy 9z

transformation (5).

We drop theZﬁlno) term since Vz(lno) vanishes away from the axis

p = 0, but we must then remember to check regularity at p = 0(10) in

1
any solution. These equations( D are then equivalent to
2
Ve(cosh™BVa) = 0
- -
(18)
V28+-l sinh 28 (Va)2 = 0
2 -~ )
or equivalently
M= 0
- -ia i . (19)
E, ZE e [Zﬁ + 2 sinh 2B Zg] .
: g v N ED)
Since the quantities E (E) are Komar's conserved quantities, we
have an integral conservation law:
z
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where m and J are the total mass and angular momentum, respectively, of

the source, and the 2-surface L is any 2-surface completely containing

the source.
Equations (18) may be derived from the variation of an action

integral

1 = (idc | (21)

where dr = dxdydz = 2wpdpdz is the flat 3-space volume

element and
;( = (Zﬁ)z—coshZB(Zg)z . (22)

The form

dlz = de —costhd(x2

(23)

suggested by the Lagrangian is the metric for a hyperboloid given by

5
(K) = £+ n2—T2 = 1.

This is the unit distance hyperboloid in a Lorentz 3-space with &,n
space-like and 71 time-like coordinates (Fig. l1). Realizing this,

the Lagrangian may be written

. A B
e NS A A ’
AB i o (24)
where glJ, xi, xj refer to thereal Euclideon 3-space and hAB’ yA, yB

are the metric tensor and coordinates on the hyperboloid in some

coordinate system . Eq. (24) allows immediate changes of the field
-

variables a,B to any other parameterization. If A refers to a point

on the hyperboloid, (24) can be written

i - @h? (25
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From this point of view the Lagrangian is just a kinetic term--the square
of the gradient of this field quantity. Fq. (25) makes it fairly clear
that no paramcterization will significantly alter the form of the equationms.
Their form could be changed one step further back by giving up the speciali-
zation (12) with 1its coordinate condition \/-detgxY = p.

Besides the substitutional transformations which amount to changing
coordinates on the hyperboloid, the Lagrangian is obviously invariant under
those transformations in the &,n,T space which leave the hyperboloid
invariant. These are just the Lorentz transformations in that space.

These transformations are discussed in part ITI.
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111 Transformations in the Field Variables Leaving
the Lagrangian Invariant - Lorentz Transformations
in Minkowskian 3-Space

Since a hyperboloid in Minkowski' space is a surface of constant

curvature, all of its points are equivalent. The transformations

which leave the hyperboloid invariant have generators (Fig. 1)(12)
= o
Lb = %

) 9
Lg = cosa tanhf ™ 4+ sina 38
(26)
3 . )
Ln = +4sina tanhR Y coso EE

Here the subscript on the generators Li names the invariant axis

under the rotation.

Direct calculation gives(l3)
LM = -iM
T -
_ 2
LEM = cosh BVa 27)
LM =<1 coshZBVa .
nlﬁ [

Using finite Lorentz rotations (or their infinitesimal counter-parts

(26)) and (27) , new solutions may be obtained from others by applying

the group operations. From (26) and (27) it might seem that we would

get a different solution with a different value of angular momentum just

by increasing o slightly- using LT or its finite form, GT. But this is not
the case. From (13) we see that the transformation a*ut+y(y constant)

is equivalent to the transformation

t+t cos y/2 - ¢ sin y/2

¢+t sin v/2 + ¢ cos y/2 . : (28)
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Consider now a finite transformation G  generated by L 16).
n n

Then we have:
' = ginh B' = sginhB cosh u -~ cosh B cosa sinh u
£' = coshf'cosa' =coshBf coshy cosg ~ sinhg sinh u 29)

n = n = cosh B sina .

Then the new metric components gky are given from (14):

gét = -p(cosa coshB (cosh u - sinh u) + sinhB (cosh u - sinh u)) = gtte_u
g! = p(cosa coshB (cosh u + sinh u) - sinhB (cosh u + sinh u)) = g el
oo %g
0)
g'¢t = pcoshf sina = Byt
The field equations Ryp = 0, AB = p,z, show that g,, is
unchanged under (29) 14). We thus have
2 2 .2 u, 2 -u. 2
' = . u
ds 8, [dp +dz ]+g¢¢e d¢~ + ng)t dedt + g . e at” .
Note that this form violates conditions (6) because of the factor
eug¢¢ . We can remove this undesirable behavior by a simpie coordinate
transformation:
- u/2 = -u/2
g ¢ = e / ¢, ¢t e / t . (31)
Then

ds'2= gzz[dpz+dzz] + g¢¢d$2 + 2g¢td$df + gttdf2

The transformation G is thus equivalent to a coordinate transformation
in ¢ and t. Note that both GT and Gﬂ give rise to linear coordinate
transformations of determinant unity, so the same will alsc be true of
G, =G_ GnG . Thus our investigation of tlie generators is

complete,




116

Footnotes for Appendix C,

1
2)
3
4)

5)

6)

7)

8)
9)

10)

A. Papapetrou, Preprint (1965), to be pub. Ann. Inst. H. Poincaré,Paris.
A. Papapetrou, Ann. der Physik 12 (1953) 209

T. Lewls, Proc. Roy. Soc. Al36 (1932) 176

W. J. Van Stockum, Proc. Roy. Soc. Edin. 57 (1937) 135

J. L. Synge "Relativity: The General Theory" (North-Holland,
Amsterdam, 1960) Ch. 8,; 1, and earlier references mentioned
there.

Papepetrou (footnote 1)) has given an algebraic proof (exhibiting
the coordinate transformations) to show that the form (1) may be
imposed on all stationary/ axi -symmetric fields satisfying the
vacuum equations outside a world tube of finite space-like section.

An example is flat space in parabolic coordinates where the metric

is dsz = (512+522)(d£12+d522) + 512512d¢2—dt2. The correspondence

to cylindrical coordinates is

¢ = ¢
_oLl 2,2
£t = ¢t.

z and p are conjugate harmonic funcEions of £, and £, (The real
and imaginary parts of 1/2 (£I+i€2) respectively). “But the axis

is given by £, = 0 for z>0 or &y = 0 for z<0 .
This is the usual choice for p and z; see 1)-5) above.
A. Komar, Phys. Rev. 127 (1962) 1411.

As stated following eqn. (14) above.
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12)

13)

14)

15)

16)

Papapetrou (footnote 1) has given a different form for the
metric and has obtained slightly more complicated second order
equations as well as the corresponding fourth order equations.

An excellent discussion of the unit distance hyperboloid and
possible coordinates and curves on it can be found in E.
Schroedinger, Expanding Universes (Cambridge Press, Cambridge,
1956) particularly Chapter 1.

We note that [Li’ 3] =0, 1 = Eyn,T

One of the equations RAB =0, A,B=p,z is R . = (0. It
reads P

e - -
(n 8,20 2= " 20 PBot,p Bpe,z ™ Ber,o Bo9,z Bre,z Boo,0) -

The RHS of this equation is invariant under (30) as are

the other equations RAB =0 .

R.P. Kerr, Phys. Rev. Lett. 11 522 (1963).

u is the hyperbolic angle of the 'rotation" due to G%.
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Fig. 1: The unit distance hyperboloid in the Minkowskian 3-space with
£,n spacelike variables and ¢ timelike. The relations of o,B to ¢ q
2 b1

¢ are £ = cos o cosh g, etc., as indicated.
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Taub Cosmological Solution
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Abstract
Calculations are given which are applications of the ideas of almost
symmetric spaces previously developed by the author. The particular example chosen
ig a coomolowrical solution due to Taub which is a generalization of the closed

Robertson-Walker metrics.
(elj)

The complete cigenvalue spectrum of the differential operator — ,8; = - ? )

is given when the vector E' lies in the 3-space 277(f) in the Taub solution
(which is characterized by bheing homogeneous for each é ), and the covariant
derivatives are taken in 744 {{) . The method is to utilize the symmetries of Z”(ﬁ)

(four Killing fields) and the topological equivalence of ’}77(f) to the 3-sphere

'SJ , lo express the eigen values in terms of easily calculated quantum numbers
and to express the eigen functions E as & "rigid rotator" eigen functiion
e

[whioh is specified by its quantum numbers under transformations by the rotation
group (= S* )], times an invariantly defined vector field.

The equivalence of ¥ (¢) to S 1is also utilized o construct iteratively
a background space which is completely symmetric, i.e. is metrically 533 « The
method of accomplishing this is to average the metric tensor along the vector fields
which can be invariantly defined on ')Y7l+) s, and which fields are also characterized
by being the nowhere zero non-Killing eigenvectors (corresponding to the few lowest
eigenvalues) of ’bé;' The purpose of these exercises is to characterize the
behaviour of the eigenvalue spectrum, in the hopes of being ablé=to reconstruct the
entire metric from a knowledge of the spectrum of —CZE) « The averaging process
given here is similarly a model of the idea of invariantly defining a background

space by averaging along the eigenvectors corresponding to some of the lowest eigen

values of ’oég . Both these ideas may be important in the consideration of

gravitational radiation,
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I Introduction

In the main body of this work we have given a criterion for the numerica
specification of the lack of symmetry in a Riemannian manifold. The method co

sists of minimizing (finding the stationary points for Minkowski signatures)

quantity «:8)
>
>‘ - S }‘ gcoms) AV (1)
S Sa dV )
where E is an arbitrary vector field (satisfying boundary conditions that Eﬂ

vanish sufficiently fast at infinity in open spaces) and the integrand in the
numerator is the square of the symmetrized covariant derivative.

It was also shown that the eigenvalues ‘X measure some parameters of sho
wave gravitational radiation. In particular, for spaces of the same large sca

shape (given by a suitable background metric \‘.(p) we have

_ § T §n B (¥ d'% (2)
A= )\X + 8w ‘S;u FQF?‘ dix - + S(X) : : 'j’

Vhere )\xis a function only of the background and the vector E , and T:qv)
is an average stress tensor (as defined for instance by Isaacson(l)) of the
short wave gravitational radiation (of wavelength X ).

In considering the problem of gravitational radiation from this viewpoin
several problems are suggested. One is to find a background if one exists in
space presumably containing a background plus wave., Isaacson assumes that if
separation is possible, it can be found by sufficiently intense inspection. B
it would be much more satisfactory to have an invariant method of finding the
background when one exists. We propose that the background can be found by av
aging along the eigenvectors corresponding to the few lowest eigenvalues of (.
We will consider this question for the Taub space slices in Section IV but we
shall need the lowest eigenvalues and eigenvectors, which we find in section

The eigenvalue spectrum is one of the requisites for still another probl

suggested by Isaacson’s investigation: to more completely specify the metric.
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That is, we wish to find the background and the derivations completely and
invariantly, without making any short wavelength assumptions as are done by Isaacson.
(This would clearly include the specification of the background done in Section IV.)
We expect that this project can be accomplished through use of the eigenvalue
spectrum of (1), or alternately the second order operator defined by (1):

_ (M)
- O E" = - F o (3

P

(The problem of specifying the metric is then analgous to finding a potential in
quantum mechanics from a kﬁowledge of only the eigenfunctions lend energy eigenvalues. )
For these rea.,sons we will consider the spectrum of = 08 in Section III,

The problems of Minkowski signature in considering equation (1) or (3) are
manifest, so in investigating the ideas suggested here, we will confine ourselves to
a positive definite manifold which has some intrinsic interest. We shall consider the
symmetry of closed spacelike 3-manifolds M(E) which are the time slices of the
Taub part of Taub-NUT space [given by the t-consteant part of equation (4) below] .
Since this manifold is compact and analytic, the eigenvalue spectrum, [the stationary
values of (’I)] will correspond to a countable set of analytic vector fields on the
manifold 777(!’) . The integrals in (1) are positive and bounded on these compact YU($)

For each f the madifold MW (t) is tdpologically a 3-sphere, 53 . The
spatial metric posseses four Killing fields; three of which describe the spatial
homogeneity of the spaces, and the fourth giving the one axis of isotropy at each point
(Section II below) m (f) can in fact be characterized by its homogeneity.

Two other invariant vector fields (the two other symmetries of Y 3 ) can be
defined on 777[\‘) , due to an especially simple topological equivalence of 77/({)

3
‘to’S

The eigenspectrum of equation (1) or (3) clearly starts at )o\ =0

, becsuse
there are Killing vectors. We shall be interested in the other eigenvalues and

eigenvectors. We shall in fact find the complete spectrum of eigenvalues and the
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complete set of corresponding eigenvectors.

II The Taub Solution

2 . . ;

Tau{‘) )obtalned a cosmological solution which is in & sense a generalization of
the Robertson—Walker(B) (R—W) metrics. 1t has Eo((sf- O and

homogeneous but not isotropic t = constant space sections m(é) . 1In one

(4)

particular coordinate system

dst = (£%122)( dB% ¢ sunt® dg?)

+ U(é)(’l,Q)"(dHL + Cos 6 cl?( )

—aa) (d Y+ cos © dé)dE . ()

Here ©e [O)TT]I dDe [O) ATy and q"é (93""'? are coordinates on 33 ;
L isa constant lengtn ( £2©) ana (%)  is

o Ame Y (e-d )(E-t,)
U= -1t 772 = W t

- \Y . . .

where 4= Mt (mZ+L2 Y s M  is another positive constant length. The
function LK (t) is positive only for t_<t« t; s for t in this
range, ()ﬂ (é) is spacelike, The surfaces t = ét are mull surfaces which
bound the solution from another region of 4—spa.ce described by the empty space

. . )
Newman, Unti, and Tamborino (NUT) space, which is given by the seme metric, (4), in

the region where U(f’.) L0 .« In NUT space, ‘t is a spacelike coordinate.
In the Collowing we use  AZa 54 LY and B*= 4*U.

The homogenelty of the space-slices is deomonstrated by the three Killing vectors

(which are Killing in 77?(6) for each ¢ (4)):
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E,: - sin b & ~cosp( ot 89 —cscO I, )

= cosdd, ~somd (ot 8 - cscOy)
-

w

Although these look like rotations they have no fixed points, since they have
nonvanishing length; see eqn. (- 8).
There is also one more Killing vector in 74’1(4) :

773 :'9‘\“

Wom

In addition we may define two more vectors which are invariantly distinguished

on the 3-sthere, but ave mot Killing in W (¢)

Ny - _sim P +wsq‘(csc93¢ —c.ol'sé‘,,)
Yy = —cost Y - sim ¥ (e O3 -cot6dy)

The topological equivalence mentibned in Section I is simply given by the coordinates
e ’ 4) R L)L s which would be the Euler angle coordinates on Sg if
s Q= 40°I.

The Taub solution is a generalization of the closed R.W. model in the sense that
W(H for each £ ¢ < t_, t.}) has only four Killing vectors., The corresponding
slice in the R.W. metric is topologically 53 also, but the metric there does not
distinguish any direction on the 3-sphere, and the R.W. metrics have six Killing
vectors in each time-slice; the full set of generators for the symmetries of the
%-sphere. |

IIT The Bigenvalues of "09 on MCE)

Because of the large number of symmetries still available in the Taub space slice
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ie are able to find the spectrum of the operator —-& explicitly.

We have the following commutation relations for the invariant vector fields

(where these are Lie brackets):

Ec,'\‘uu. :

and —,@ which plays a role like the Hamiltonian in
¥ith E—., and )?e . ( —46 commutes with each of these
Yectors and -:8 is comprised only of the metric and
commutation equations(5) for the E_.; show that the

momentum, and we may pick one, say ft, as well as

part of our set of commuting operators.

L

(5)

quantum mechanics, commutes
because they are Killing
covariant derivatives.) The

behave like an angular

"y@ and )72 and gz to be

-2
Also, the projection operator P—E"—‘-B ”g()lfcommutes with 0@ and with

the rest of the operators, because it consists only
the metric (o), and the constant [in m(f)]

Rz 1- R

iirection orthogonal to n;. . Because

P

of the Killing vector Ya,

2
8 « Thus the orthogonal projection
commutes with the rest of the operators. PL projects into the

g commutes, we see that if our eigen-

vector is para@llel to 7’1: , it will not be mixed into the n,“‘n\’_ directions, and

nce-versa. Since the only quantlty in the metric which picks out:a direction

in

the Tl n.a plane is n we may take as a basis in this plane the quantities which

N *

component

ire eigenvectors of -t )? s L1e€, n.,.

vVith the quantum number s , the " z

for Y)t , s=%| foryh

of internal spin";

« Each of our functions l:;

c)’l‘ . We will label all our functions

B=0

will then be

[: f‘ns where -P is a scalar function and )z )’[‘ yetc, Clearly an algebraic



127

projection operator can be defined to give 5 ¢
DR D =AM et ety - BNk M)+ §

Since ?jg distinguishes s=+1 from s=-1, we expect the eigenvalues of - 08
to depend on s ,

The vectors E “s are the generators of motions on 53 « Coordinates
on S are 9 (}5 ‘-I" ; Buler angles., We thus see that a specification
of the quantum numbers -t§; Jas "gz: J(j-l-l) , and "L")J}:k will completely
determine the functional form of scalar eigen functions on M (t) to be,
in fact, a "rigid rotator eigen function" (see Ref. 6). (Since E_, i-ig'..‘
commutes with ’05 R Jg will not actually enter the formula for the eigen-
value.) We have Jjust given the vector part of the eigenfunction specified
by S . Thus A , the eigenvalue of gBls ) )“s . (Even if )ﬁ}
were not a symmetry, we would expect to be able to express the eigenfunctions
as a sum over different k-values. Thus even the case of completely aniso-
tropic space slices YN{#) ):only E; Killing] should also be possible
by this method.)

The commutation relations allow both J‘ and k to be half integral,
but they are in fact integral, as we can see by the following argument,

Ez
Suppose Z“ is an eigen vector of :

e p] - D5, Dg I - e & (£ O]
Ns £ 5C3#H)

= —j( S*“)E . [We used eqns. (5) .)

But since Jlj+') was obtained by the differentiation of a single

L]

N

Ve

valued scalar function, it must be integral. Similarly, if 5 is an eigen

function of )72 ’

-i}:)f[_lg] o [ﬂt,fﬁs]
el-eX., Nsl+ 2\7&”]2}3

sz)g + (k-s)f]],: L§ )

1]
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But S is integer and (\4 -S) is obtained by differentiation of a single valued

scalar function, so k, is an integer,

In the following we will take advantage of the formula

b b o ch .
is(?)a = ?a'j‘éc_ g JL? ’ijg ?cq = _;Z’C(ab)

and also

J

g zf (scalar d&nsdﬁa) d%x = o (6)

AN
where this integration is over a compact orientable surface, and the d X is

coordinate volume; jD is any vector field.

v

We thus consider the eigenvalue ratio eqn (1):

ey JEg 1k 97 v o
§C2 5 d% ’

(X 4
where we indicate by Eé the contravariant metric in 777(6) (as distinect

from its components 8°b ).

The two dots between the terms in the numerator

indicate that we take the double contraction between the two second rank 3-tensors

LN J
‘ii: a . While we should a priori take the variation of this ratio, we know

L

that A is a function of only j ’ k y S , 80 we construct vectors Z; which

"

have these quantum numbers. These vectors are then automatically eigenvectors of

and the integral ratio gives the eigenvalue directly,

We use the following formula due to Misner(e);
g = A E of. + (8-A) a0 Vs (1)
where we have abbreviated

R: B4) = 401 U)ol A= ANE) = LReLT

Then,
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_15(- 5e) _ ofq g

Ar(Le, ek + Folg, &)
(B2~ A (LG, 1@ + N2 G, Ne]) .

sinoe [, P1 = B Y] ey vecwors Y p ve e
(£ g):(£, 970"
L& A (E®E +E®5) + £ (gaM(E el 1 &F)]
(£, Lok Lol ) + £ (es-aa(Eolst Ne@E)]

We write f".; £ and é = ,f,, . This should cause no confusion since
MG
we will never explicitly consider the operator tgg + We have written complex
conjugates here because we want to introduce the complex vectors w.: . We ne
W~

multiply out the square and use equation (16) to integrate by parts so that each

term becomes

L (5-T1F&.07)

e

We give the A-q term as an example:

(At £ (E@L+EOL Vi B (Gel t hol) m L
-1 (mds AL E £ (20 + § of ) (505 +LeB)
FEO5+L0E )L L (Lo +f 08)]

(We used oéd J-—% = O since ?L- is Killing.)
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. A -4 ﬁ CI Bx - .
The coefficient of 3 in the integrand may be written, because

of the symmetry, and because [5” g:]= o as
I1- Z:05,0lek) el 1 of )

Furthermore, [ gi !%j] ® §‘: - - eqn g:}a?c -0 and we can vwrite
out this expression, usir; -

G= fNs ¢
- L TN K-8
[H](?’ls §(E £ Ys)
*(Eb.ns GIRIIE §1-F0)  + cc

Aol

+ complex conjugate

{

Tn the following we need to know the dot products of the vectors §' g s )45
In fact we have (as can be verified from the definition of ﬁ- , ’)’IJ given in

the text; see also Ref, 4):

4 2_ At .
i‘: .EJ = A S':S +(B A )N\‘.MJ and ( 8)
Wz = - M¢ g; ) where (D
(My, My, M)z ($6-8 Cos, $-0 Su@, Cos) . (10)
Furthermore, ’V’.‘. = fW\&aEQ and ()

(Mg, Moy, Mz )= e t¥(-os0 cosd +isingh ) - o8O st fb-ceash, 34.6) (1

and -N_\:“OO. = Moa J

AM 30 My, = Ma Ma. = |

Using these relations we see that the top line in I is

(é-éf){—Az (jejen)) - (B*- A%) (k-$)3} + c.c.
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The last two lines in I may be combined into

Lows BT B DRAGTIN G s « BTRNCLE,E) M) v ee

= FONs BT £ (g g, ma)k + e

[Since g; commutes with ‘)?5 and with the metric () | .]

Se
L= S Bl w8 £ (E L) Gmid)

w LSV R AL, (B, 1T g )) e chc

n
]
oM
)

P
-~

In the second line of the last equality we used the general formula

L;Lt - Q(’lH) - ’Q&u&;,) plus the fact that in this case J@e is (k-S) and
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YI&' '?15 = g,; ’ gc and that the order of the operators depends on § .

.

Combining these quantities we get from TL+LL:

(E'é){”ﬁ\z’( Gy = (e-s)?)
SRE (k=) (e 5,) - Q-8 ) gen v \uu-s))“g

The other terms work out in similar but more straightforward fashion, and the

result is

Mje = BTS¢ k(g-2-a-2)]"
I A-'L['j(a' ) - (k‘_s)zl + (‘-SSD)A-Z[JLJ-H)- “(L#Sﬂ} )
(14)
Here S= 1,0 .\ and  k are integer, and J is required to satisfy
Jejrdz k-t and  JUje) 2 klk-$)
We finally note that a solution Q, + 7 zz,_ = ﬂx ,,_-!‘1—3 as e = s=1

and has J = O since [ )1,: , g..-l =0 . Its eigenvalue is
L il -2 -\ ¢
) on = Y B ( B "A ) .

C _ = '}j— - ﬂx - ¢ .)@‘3 has the same eigenvalue. The eigenvalue vanishes when
MAz:G?_ in wh;ch case the 3-space MU’) is instantaneously isotropic as well

as homogeneous. Thus at this instant 71! and 727 are Killing and we identify
them with the ™"missing" Killing vectors in general 777 H‘),

IV The Isotropic Background in ’}/n( ‘(')

10) ., . ’

It has been suggested(9’ ) that Taub Space is a R.W. type solution, similar to
Brill's radiation filled oneg9) but with the longest wavelength gravitational wave
that will fit into it giving the energy density to close it, in place of the matter or

radiation in the usual R.W. forms. We show here a way of finding the underlying space
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slices - the closed constant curvature spaces in the R.W. Metric - by a procedure
of iteratively averaging the metric for the Taub slice 777(&) along the few lowest-
eigenvalue eigensolutions of (3).

In the 3-space, six averaging vector fields are necessary to obtain a completely
homogeneous and isotropic background space. For one can, by averaging over three
fields which describe homogeneity in a 3-space, obtair?i\gn:isotropic but completely
homogeneous space. Further averaging along these vector fields, which are then
Killing, will have no effect. More averaging fields are needed.

In this section we shall make extensive use of the invariant definition of the

vectors nt' and g{ . We shall average along these fields, and we note that
Land L

7‘\' and g; are well suited to this averaging since of all the eigenvectors of —,9

in W( (¢) , only n«‘ and E.j are everywhere non-zero. This is easily
seen because eigenvectors are of the form c(e,c}, ‘H ﬂg and of the

VA~
eigenfunctions '9 of the rotation group, none except the constant is everywhere

nonzero.(é) [Formulae (8) and. (9) show that g,; 'é:#o and, 21,‘ .Zzl.ig for each
L' .] Our criterion for an invariantly defined field along which we will average

will then be that they are the nowhere zero eigensolutions of equation (3). It
clearly will be pointless to average along a Killing vector by a method of Lie
transport as we will do here, so in this case we have initially only two vectors to
consider averaging along, ’Z?x and 227 « 1t seems plausible that in at least
some completely non-gymmetric situations - such as those obtained by small general
perturbations from a R.W. form - we can have up to six such candidates for the vector
fields in the three space. It is, of course possible that by averaging along one vector
field we destroy the Killing nature of another, We shall see that after averaging along

Yl x » say, in the space m ((_/ ’ Ei‘ is no longer Killing. (If, as we do
he:e: we average along a complete trajectory of ?1.& , then afterward 2.7& is

clearly Killing.,) Because of the commutation relatimns eq. (5), the E‘- stay

brn

Killing under Y(i averaging.
AN
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Now consider averaging the contravariant metric tensor g of )’VU{-) .

We do this by a process of Lie transport. Pick one of the averaging vector fields,
.

say ”X o We then average % (P) along yl X by carrying the space

VA~ Ll
back to the point P along the trajectories of '}/]x and averaging the values
of a" there for the whole trajectory of ﬂx . We use the form eq.(7) for

o~

the cortco.variant metric. After the averaging 7], will clearly be a Killing
vector of the resultant space. We denote the back translated metric (a parameter

(X ]
length ¥ along the curves) as ‘6 (FSW) . Formulae in Schouten(7> then give

for this finite translation:
L X4 £x [ X 4
g Cpired = €777 g7 (p)
.o o0 I S < e e
= 4" (p) a—r(f&% )(p) + LA 3T Ie) 4
The symbol i, denotes Lie differentiation along 'Yl,l . Since En. g 1:0

i
and by eqns.(5) we see that

LN ©a)z Ny@Ne #7200
£l (@) = "2V @2 +2ANs ©Ny | 0y C15)

£l o) — 9 L Qe ®2a)

we obtain [remember the analyticity of M ('(')]

Fpym =37 - (8§ dp siear 4 LIS ) f 1o ces 1.
(6

The range of the path parameter Y- is O to 4Tr » 8s can be seen by

considering the equivalent quaternian translation on the 3-space. (See Ref, 8
. ’
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appendix B; this whole discussion of translations could be done in terms of

3
suaternianson S .) We will average over the whole range of '8 and

use(8) 2‘/‘1-'. @225 = ;& © g; to obtain
Q" (pyrd = AT (E@F) + 1 (BT-AN T 0F -V ©) ()

This can be put again into the form of a Taub slice, )?7 (f ) , but now with
a smaller asymmetry, and now Kx is Killing, but He is
not,

If we now average with a nowhere zero non-Killing vector in this space, say

w; , we will get by cyclic symmetry:

—

(937, 5) = AT (k) e (67 A Lok -41Lek noN))
(1%

We see that if this cyclic averaging is continued, the anisotropic terms 71@ ”
N\ ~

have a coefficient which vanishes as & in the nth term. The coefficient of

E‘: @E.‘. approaches A~ + L (R"2-A"%) 20: (-23™ = %A“"' + é gL,
This metric 8“ = const. X ‘5‘@{: is metrically S 3 , and we have
succeeded in finding a symmetric background.

We pointed out above that the E ¢ vector fields are completely invariant
under this averaging, since the '215 fields all commute with the ; < . At
each step in this iterative process, there are thus only two fields along which the
averaging hOSfﬂEY effect; the two ZZ fields which do not appear in the metric
at that step. (This is because we have averaged along the entire trajectory - all
around the space - at each step.) A calculation for %"( F; ‘[\9 ) (iec. for
the metric dragged back along the veelore field ZZ‘ instead of along the f{ield yﬂﬂ )

analogous to that leading equation (16) gives

(1 N T e _ :lV‘)
g Cpsrg) = g (P TetE G u (4
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This is the same as (16) but with Z; in place of .Z[,, ( Z? means o{,l ).
29

Similarly, the equation analagous to (17) becomes

ATE 0F) +a(RTEADE@f ey, | @

P —

T (p3ve) ”
The only difference is the appearance of le instead of ﬂ X .+ Recalling again
that the }'] fields can only act among themselves, we see that if we carry out

-

the next step, i.e. obtain the equation analogous to (18), for one of the choices
of non-Killing field, we obtain an equation exactly like (18), except possibly with
a different subscript on the Zz field, It is easy tc see that this is so at
each step of the iteration., The point of this is that the limit for the metric
is independent of the order of averaging in this averaging scheme, where we average
along the whole trajectory of the vector field.

We need not, however average the metric all around the space. Suppose we

oo r
have a C  weighting function wirl) with the property that '[uv witrt) dr: '.
c <-amie, am-e'Y 5 ¢, el 0,

and that there is an open interval Iw such
. . . (ri
that the support of W  1is contained in Iw « We also assume that JJ\TUVT’“)-‘

Then, since the weight function is symmetric, if we average equation (16), the
term proportional to sin 2¥  vanishes and contributeSnothing in the average.
However, in averaging the term (1= ¢@$ av¥)  ywe will obtain not 1, but V- S ,
where § (159 o) depends on the width of the weight function.

To investigate the effect of a finite width for the averaging function, let us
write the contravariant metric as

q - (A7 v § A EOk:)
: (G-Z_A-’L)[ L (Eg@;’l& - Nx ®© N )+ JE(M,E@ Nz - )Zi?@l??”

where we used g}@g‘ - Z?b, @):Ik
Suppos@ : we consider averaging this quantity with the weight function W ,

along the vectors ZLL' , taken in any order, but each taken an infinite number of

times. Note that the first term in 3" is invariant under this averaging; if
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the second term tends to zero under this averaging, we have shown that the
averaging process is independent of the order of averaging along the vector fields,
and of the (non-zero) width of the smoothing function w .

In fact, for averaging over the whole trajectories of the vector fields, we
have just seen that this term does vanish. Straightforward brute force calculations
indicate that this is tPtke when there is a weighting function W (so long as w
is not a delta function). However, a straightforward intuitively clear proof has not
vet been found, and we leave this as a true but Umproven statement.

V Remaining Problems

We have been able to perform this averaging because of the invariant description
of the vectors 21[ o ﬂff « One invariant charactenigugdnof these vectors
is that they are the nowhere zero eigensolutions to ( o& ¢ ) J f = ¢ , They are
also the fields that would be obtained from the Killing fields on a spherical space
which is continuously deformed into the Taub shape, (These fieldg,if the deformation
from symmetry is big enough, need not be the lowest eigenvalue vector fields; see
section D,III.,) We suspect that this latter characterization is the relevant one;
in particular, we expect that averaging on a 2-sphere can be carried out by averaging
along continuous vector fields in the way we did in Section D.T¥, even though each
such fields has at least two zeros. Further investigation of this question remains
to be done, and the specification of just what fields averaging can effectively be
done along. In particular, since the spectrum of -,49 specifies a countable number
of vector fields on the space, we apparantly have all these as candidates for
averaging fields.

Another question remaining to be settled is that of the smoothing function,

We have not given a completely satisfactory discussion of the "damping" method of
averaging., However, this is only a formal problem, we have given the qualitative

features. The result we obtain under averaging along these fields is unique, with orx
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without the smoothing., This essentially is because an infinite number of
averagings will bring adjacent values of a function into equality, even if there
is a smoothing function. Note that there are only four wavelengths of "radiation"
in the space W[H ; since oS aAY | Y ¢ to,un> ° appears in
Bq. (16). Presumably, when the averaging can be done over many wavelengths, in the
situation Isaacson(1) discusses, the smoothing functions will not be critical.

However, these problems are still to be considered in a general framework.
Thus, in general we need to define the suitable averaging vector fields, and to
investigate the uniqueness and dependence on smoothing functions of such averaged
results,

One might wonder what the meaning of the averaged space is. A completely
symmetric space which is a background for a space which is topologically 5'3
is 53 itself. The only unkown quantity remaining is the radius of the sphere.
It might be expected that a sphere of the same volume as W] (€) would be the
simplest such average., However, the average defined here does not lead to the
sphere of this radius.

Since the )7; are orthogonal, we can write the covariant Taub metric in

v

terms of o-": , the 1-forms dual to the 77(‘ as

15t AU Eror e oY) ¢ BEiet

To obtain this form we used (again) a('@ KU - ﬂ@& « The integral defining
- w~
the volume of the space is g\ré G n Oy a Ty .
u .
The covariant form of the averaged metric which has the same volume as y)’f H)

is thus given by

ds? . (Aq,gi)ﬁ(cr"d"' bd¢? & réo.z-],

where we used the fact that the metric coefficients are constant in W (¢) . g
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The averaged metric we obtained Section D.IV, by - averaging along vector fields
is
- -1y 1 2, \»
(%Az’«éﬁ“) (*0c* +0%c? y0%0% )3

the Tatio of the Wolume of this space to the volume of Y (§) is thus
~2 -1)- 3 4
(2 A+ 487) 7 A®B

The ratio is equal to unity only when A = B ; +then the space is spherical.

It would be encouraging if the averaged sphere we obtain by the invariant vector
fields were to have some desirable property as a background metric; for instance
in a dynamical sense. Thus the question is how much the time dependence of AL ana & 2
differentiates the equal-volume sphere from the invariantly averaged one, Does the
motion of this sphere have more desirable characteristics as regards to the
effective energy density needed to cause the motion ? We here have two candidates
for averaged backgrounds, each of which defines a (different) energy density in
the gravitational radiation (the anisotropy). We hope that later investigations will
show whether there is any reasonable tfiterion for picking one or the other. We do
feel that the consideration of shorter wavelength radiation situation will lead to
an unambiguous background of the Isaaoson(1) type.

Finally, we point out that entirely naive considerations can lead to the averaging

result we have found here. For

Lof - pel el N6k

One would expect that in a § um of squares, where nothing picks out a direction

(and nothing does, on the sphere we average over), we would have

é'vf\_i@gy = < VIk@Mk)?
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where we sum on & but not on k , and the brackets indicate the average, This
is the result we obtained in the previous section, and in fact is so simple that
one is inclined to demand it of all candidates for averaging schemes. The constant

volume scheme clearly does not have this property.



141

‘Footnotes for Appendix D.
(1) R. A, Isaacson, Ph.D, dissertation, University of Maryland, Department of
Physics and Astronomy, (1967).
(2) A. H. Taub, Amn. Math. 53, 472, (1951).
(3) For a modern exposition of these metrics see S. W. Hawking, Ap.J. 145, 544, (1966).
(4) €. W. Misner and A. H. Taub, paper submitted to J.E.T.P. (1967).

(5) E. Newman, L. Tamburino and T. Unti, J. Math. Phys. 4, 915, (1963).

(6) E. P. Wigner, Group Theory and its Applications to the Quantum Mechanics of
Atomic Spectra, Academic Press, New York, (1957) (Chapter 15).

(7) J. A. Schouten, Ricci Calculus, Springer-Verlag, Berlin, (1954) paragraph 10.
(8) C. W. Misner, J. Math. Phys. 4, 924, (1963).
(9) D. R. Brill, Nuovo Cimento Suppl.aNo.1, (1964).

(10) J. A. VWheeler, "Geometrodynamics and the Issue of Final State" in Relativity
Groups and Topology, Gordon and Breach, London, (1964) (paragraph 9 and
problem 55).




Works Cited

J.L. Anderson, in Proceedings of the Royamount Conference on General
Relativity

J.L. Anderson, "On the Consistency of Dirac’s Canonical Formulation
of General Relativity" in USAF ARL 66-0075 (Technical
Report on Research.Program in Relativity Physics,
Kings College, London, 1966)

H, Araki, Ann, Phys. Princeton 7, 456, (1959)

R, Arnowitt, S, Deser, and C,W. Misner, in Gravitation, an Introduction
to Current Research , ed L, Witten, J.Wiley and Sons,
New York, (1962)

H. Bondi, Nature 179, 1072, (1957)

H. Bondi, M.G.J. van der Burg, and:A.W.K. Metzner, Proc, Roy. Soc.
A269, 21, (1962) ’

H. Bondi, Proc. Roy. Soc. £§§}, 39, (1964)

D.R. Brill, Ann, Phys, Pfinceton 7 466, (1959)

D.R., Brill, Nuovo Cimento Suppl. 2, no.l, (1964)

D.R., Brill and J.B. Hartle, Phys. Rev. 135, B271, (1964)
S. Chandrasehkar, Ap.J. 142, 1513, (1965)

R. Clemens and R, Matzner, Tech. Report ‘*635 s University of Maryland
Dept. of Physics and Astronomy, (1967)

E.A. Coddington.and N. Levenson, Theory of Ordinary Differential Equations,
McGraw Hill, New York, (1955)

A. Compolattaro and K.S. Thorne, UCRL "Orange Aid" Preprint, (1967)
W.E. Couch, R.J. Torrence, A.I. Janis, and E.T. Newman, preprint, (1967)

R. Courant and D. Hilbert, Metlods of Mathematical Physics, vol I,
Interscience, New York, (1953)

R. Debever, Compt. rend. 249, 1324, (1959)

B.S. DeWitt, preprint, (1966)

P.A.M., Dirac, Proc. Roy. Soe. A246 , 326, (1958)

iy2




143

P,A.M. Dirac, Proc. Roy. Soc. A246, 333, (1958)
P.A.M. Dirac, Proc. Roy. Soc. 114 , 924, (1959)
P.A.M. Dirac, Can, Jour, Math, 2, 129, (1950)
G, Dixon, prepriﬁt, (1967)

L. Edelstein, Ph, D. thesis, Univ. of Maryland Dept of Physics and
Astronomy, (1967)

A. Einstein and J. Grommer, Sitzb. Berl. Akad., p.2, (1927)

A. Einstein and N, Rosen, J. Franklin Inst. 223, 43, (1937)

A. Einstein , L. Infeld, and B. Hoffmann, Ann.Math., 39, 65, (1938)

J. Fletcher, Lawrence Radiation Lab. Tech Report UCRL Rept. 14624=t, (1965)
J. Fletcher, Comm. A. C. M. 9, 552, (1966)

J. Fletcher, R. Clemens, R. Matzner, K.S. Thorne, B. Zimmerman, Ap. J.
148, L91, (1967)

V.A. Fock, Zh, Eksp. Teor., Fiz.(J.E.T.P.), 9, 375, (1939) and
J. Phys. U.S.S.R. 1, 81, (1939)

V. A. Fock, Theory of Spacetime and Gravitation,Pergammon Press, London,
(seecond revised edition, 1964)

J. N. Goldberg and R, K, Sachs, "A Theorem on Petrov Types", in USAF
ARL 66~0075, (Technical Report on Research Program
in Relativity Physics, Kings College, London, 1962,
1966)

J. N. Goldberg, "The Equations of Motion" in Gravitation, an Intréeduction
: to Current Research, ed. L. Witten, J. Wiley and Sons,
New York, (1962)

A.E, Green and W, Zerna, Theoretical Elasticity, Oxford, (195%4)

A.E. Green and J. E. Adkins, Large Elastic Deformations, Oxford, (1960)
S. W. Hawking, Ap. J. 140, 1, (1964)
So wo HaWking’ Ap' J' _&51 ] 5"’"4’ (1966)

J. Hély, Compt. rend 249, 1967, (1959)

R.A. Isaacson, Ph., D. Thesis, Univer§ity of Maryland Dept. ofAPhysics
and. Astronomy Technical Report #586, (1966)

A. Janis owd E. Newman, J. Math. Phys. 6, 902, (1965)




144

P. Jordan, J. Ehlers, and W, Kundt, Akad. Wiss. Mainz, Abh. Math-
Nat. Kl., Jahrgang 1960, Nr.Z2.

D.J. Kaup, University of Maryland Dept. of Physics and Astronomy
Technical Report 86, (1968Y.

D.J. Kaup, University of Maryland Dept. of Physics and Astrononmy
Technical Report®665, (1967).

R.P. Kerr, Phys.Rev, Lett. IX¥ 522, (1963).

R.P. Kerr and A. Schild in Convegno Sulla Relativita Generale:
Problemi Dell’Energia e Onde Gravilazionali (Proceedings
of Conference in honor of the fourth centenary of the birth
of Galileo) published by €omitato Nationale per le
Manifestzioni Celebrative, Rome, (1964).

K. Kodiara and D.C. Spencer, Ann. Math., 71, 43, (1960).

W.T., Koiter, "A Consistent First Approximation in the General Theory
of Elastic Shells", in The Theory of Thin Elastic Shells,
North-Holland, Amsterdam, (1960).

A. Komar, P.R. 127 1411, (1962).
A. Komar, P.R. 129 1873, (1963).
W. Kundt, Ph.D. dissertation, Hamburg, (1958).

L. Landau and E.M. Lifshitz, Classical Theory of Fields (second edition)
Pergammon Press, Oxford, (1962)

H. Levy, Ph.D. thesis, King’s College, London, (1965).
T. Lewis, Proc. Roy. Soc. Al36, (1932) 176.
C.C. Lin, L. Mestel, and F.H., Shu, Ap.d. 142, 1431, (1965).

R.W. Lindquist, C.W. Misner and R.A. Schwartz, Phys. Rev. 137, B 1364,
(1965). ,

D. Lynden-Bell, On the Origins of Spacetime and Inertia, (in press,
M;’NOR.A.SQ) (1967)0 ’

R.A. Matzner and C.W. Misner, Phys. Rev. 154, 1229, (1967).
R.A. Matzner,-J. Math. Phys., in press, (1967).

N.W. McLachlan, Theory and Applications of Mathiew Functions, Dover
Paperback, New York, (1964).

S.G. Milhlin, The Problem of the Minimum of a Quadratic Functional,
' Holden Day, San Francisco, (1965),




145

€.W. Misner, Phys. Rev. 130, 1590, (1963),

C.W. Misner, J. Math. Phys. 4, 924, (1963).

C.W. Misner and H.S. Gapolsky, preprint (1966).

C.W. Misner and A.H. Taub, paper submitted to J.E.T.P., (1967).
C.W. Misner, preprint (1967)

J.F. Nash, Annals of Math 63, 20, (1956).

E.Newman and R. Penrose, J. Math Phys. 3, 566, (1962).

E. Newman and T, Unti, J. Math Phys. 3, 891, (1962).

E. Newman, L, Tamburino, and T. Unti, J, Math. Phys. 4, 915, (1963).

J.R. Oppenheimer and H. Snyder, P.R. 56, 455, (1939).
A, Papapetrou, Ann, der Physik 12, (1953) 209.

A, Papapetrou, Preprint (1965), to be pub., Ann, Inst. H. Poincaré,
Paris.

A. Papapetrou, Proc. Roy. Soc. A694, 57, (1951).

R. Penrose, in Perspectives in Geometry and Relativity, ed B. Hoffmann,
Indiana University Press, London {(1967).

R.B. Partridge and D.T. Wilkenson, Phys. Rev. Lett. 18, 557, (1967).
A. Peres, Phys. Rev, Lett. 3, 571, (1959).

A. Petrov, Sci. Not. Kazan. State Univ. 114, 55, (1954).

F.A.E. Pirani and A. Schild, Phys. Rev. 79, 986, (1950).

C.B. Raynar, Proc. Roy. Soc. A272, 44, (1963).

I. Robinson and A. Trautman, Phys. Rev. Lett. 4, 431, (1960).

I. Robinson and A. Trautman, preprint, (1965).

N, Rosen, Physik Z, Sovyet Union 12, 366, (1937).

R.K. Sachs, Proc. Roy. Soc. A264, 309, (1961).

R.K. Sachs, Proc. Roy. Soc. A270, 103, (1962).

J.A. Schouten, Ricci Calculus, Springer-Verlag, Berlin, (1954),
{?aragraph 107.

E. Schroedinger, Expanding Universes, Cambridge Press, Cambridge,

(1956).
J.L. Synge, Math. Z. 72, 82, (1959).




146

J.Le. Synge, Relativity, the General Theory, Amsterdam, North-Holland
Publishing Company, (1960).

H, Takeno, J. Math. Soc., Japan 3, No., 2, (1951).
A.H. Taub, Ann. Math 53, 472, (1951).

K+Se. Thorne and B.A. Zimmerman, "Albert- A Computer Program for Cal-
’ culating General Relavistic Curvature Tensors and Equations
of Motion," Orange Aid technical report, California Institute
of Technology, (1967).

R. Torrence and A. Janis, J. Math. Phys., (to be published, 1967),

A, Trautman, "Foundations and Current Problems in General Relativity"
in Lectures in General Relativity (Brandeis Summer Institute
in Theoretical Physics) Prentice-Hall, Englewood Cliffs,

New Jersey), (1964).

W.J. Van Stockum, Proc. Roy. Soc. Edin. 57, (1937) 135.
¢.V. Vishveshwara, Technical Report on Grant NSG-436 (U. of Maryland

Dept. Physics and Astronomy ), Gravitational Radiation from
Binary Systems, (1964).

C.V. Vishveshwara, Ph.D. thesis, University of Maryland Dept.of Physics
and Astronomy, (1967).

J. Weber and J. A. Wheeler, Revs. Mod. Phys. 29, 3, 509, (1957).
JaA. Wheeler, “"Geometrodynamics angothe Issue of Final State" in

Relativity Groups and To s Gordon and Breach, London,

E.P. Wigner, Group Theory and its Applications to the Quantium
Mechanics of Atomic Spectra,Academic Press, New York, (1959),

[CThapter 13] .

T.J. Willmore, Differential Geometry, Oxford, (1958).

K. Yano and S, Bochner, Curvature and Betti Numbers, Princeton, (1953),




