
ABSTRACT

Title of Dissertation: Existence and Stability of Vortex Solutions of

Certain Nonlinear Schrödinger Equations

Richard Kollár, Doctor of Philosophy, 2004

Dissertation directed by: Professor Robert L. Pego

Department of Mathematics

The nonlinear Schrödinger equation models a wide variety of different physical

phenomena ranging from nonlinear optics, water waves, magnetization of ferro-

magnets to Bose-Einstein condensates (BEC). The structure of the equation sup-

ports existence of topologically non-trivial solutions – vortices. Surprisingly, we

demonstrate that the Landau-Lifshitz magnetization equation which is formally

also a nonlinear Schrödinger equation does not admit such solutions unless they

are stationary. On the other hand, the contrary is true for the Gross-Pitaevskii

equation which describes the mean-field approximation of BEC. We investigate

stability of vortex solutions by means of a very reliable, sensitive and robust tech-

nique – the Evans function. This method, although limited to two dimensions,

allows us to study rotating axisymmetric BEC for large particle numbers which

can be unattainable by other means. We found a singly-quantized vortex linearly

stable. The linear stability of multi-quantized vortices depends on the diluteness

of a condensate, with alternating intervals of stability and instability.
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for fruitful discussions and advices; the whole Math department at

the University of Maryland, College Park, for a nice supportive envi-

ronment for work; Institute of Applied Mathematics, Comenius Uni-

versity, Bratislava, for hospitality during my stay; UMD Graduate

School for a generous financial support through the Dissertation Fel-

lowship; all members of my dissertation and oral exam committee for

their dedication and my soon-to-be-wife Katka for patience. I would

also like to acknowledge the financial support of the National Science

Foundation under grants nos. DMS 00-72609, DMS 03-05985.

iii



TABLE OF CONTENTS

List of Figures vi

1 Introduction 1

1.1 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Vortex solutions to nonlinear Schrödinger equations 7

2.1 Overview of existence and stability results . . . . . . . . . . . . . 10

3 Linear stability of vortices in Bose-Einstein condenstates 13

3.1 The Gross-Pitaevskii equation . . . . . . . . . . . . . . . . . . . . 19

3.2 Vortex solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Linear stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3.1 Reduction to non-rotating traps . . . . . . . . . . . . . . . 34

3.3.2 Bounds for eigenvalues . . . . . . . . . . . . . . . . . . . . 35

3.3.3 Special eigenvalues . . . . . . . . . . . . . . . . . . . . . . 37

3.4 The Evans function . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4.1 Symmetries of the Evans function . . . . . . . . . . . . . . 43

3.5 Numerical implementation . . . . . . . . . . . . . . . . . . . . . . 43

3.5.1 Evans function evaluation . . . . . . . . . . . . . . . . . . 44

3.5.2 Direct simulations . . . . . . . . . . . . . . . . . . . . . . . 47

iv



3.6 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.6.1 Singly-quantized vortices m = 1 . . . . . . . . . . . . . . . 51

3.6.2 Multi-quantized vortices m ≥ 2 . . . . . . . . . . . . . . . 55

4 The Landau-Lifshitz magnetization equation 64

4.1 Derivation of the Landau-Lifshitz equation . . . . . . . . . . . . . 64

4.1.1 Properties of the Landau-Lifshitz equation . . . . . . . . . 66

4.2 The Landau-Lifshitz equation in spherical coordinates . . . . . . . 67

4.3 The main result . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.4 Vortex solutions to the Landau-Lifshitz equation . . . . . . . . . . 70

4.5 Non-existence of vortex solutions . . . . . . . . . . . . . . . . . . 73

4.6 Energy of oscillating solutions . . . . . . . . . . . . . . . . . . . . 79

5 Discussion 91

Appendix A Bifurcation 95

Appendix B Analysis of vortex profiles 98

Appendix C Essential spectrum of the linearized operator 100

Appendix D Bounds on eigenvalues 105

Appendix E Asymptotic behavior 108

Appendix F Rescaling formulas 122

Appendix G Galerkin approximation 127

References 132

v



LIST OF FIGURES

3.1 Bifurcating branches of vortex solutions . . . . . . . . . . . . . . . 26

3.2 The integration contour . . . . . . . . . . . . . . . . . . . . . . . 45

3.3 The Strang-splitting scheme error comparison . . . . . . . . . . . 50

3.4 The radial vortex profile, m = 1, p ≈ 30 . . . . . . . . . . . . . . 52

3.5 The modulus of the vortex solution, m = 1, p ≈ 30 . . . . . . . . 52

3.6 Stable eigenvalues for m = 1, j = 0, 1, 2, 3, p ∈ (m+ 1, 30) . . . . 54

3.7 The radial vortex profile, m = 2, p ≈ 35 . . . . . . . . . . . . . . 56

3.8 The modulus of the vortex solution, m = 2, p ≈ 35 . . . . . . . . 57

3.9 Stable eigenvalues for m = 2, j = 0, 1 and 3, p ∈ (m+ 1, 35) . . . 58

3.10 Real parts of eigenvalues for m = 2, j = 2, p ∈ (m+ 1, 35) . . . . 59

3.11 Imaginary parts of eigenvalues for m = 2, j = 2, p ∈ (m+ 1, 35) . 60

3.12 Instability for m = 2, j = 2, p ≈ 8; the error comparison . . . . . 61

4.1 The radial profile of a (generic) non-stationary solution to the

Landau-Lifshtiz equation . . . . . . . . . . . . . . . . . . . . . . . 70

vi



Chapter 1

Introduction

One of the central problems in the field of nonlinear partial differential equations

and nonlinear waves particularly is the behavior of coherent structures supported

by an underlying system. There exist a large variety of such structures: solitary

waves, phase-interfaces and various types of singularities. Investigations in fluid

flows, superconductors, reaction-diffusion processes or material coarsening are

just a few examples of the practical significance of research in the field. Although

these patterns have often only a local character, they are frequently the dominant

features of evolution of a system. Because in some cases these objects persist

without any change for a long time, while in other cases they can evolve and

interact with similar objects or with a physical boundary it is not possible to

describe their nature in general.

The focus of this thesis is primarily on the problem of stability and instability

of vortices in Bose-Einstein condensates modeled by the Gross-Pitaevskii equation

i~ψt =

(

− ~
2

2M
4 + V (x) + i~Ω∂θ + g|ψ|2

)

ψ ,

an equation with the structure of a nonlinear Schrödinger equation. Non-exist-

ence of vortex and vortex-like solutions to another nonlinear Schrödinger equa-
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tion, the Landau-Lifshitz magnetization equation

mt = m×4m− λm×m×4m,

which written in the stereographic projection has the form

iwt = −4w − 2
∇w · ∇w
1 + |w|2 w̄ ,

is also proved.

In the case of the Gross-Pitaevskii equation which models in the Hartree-Fock

approximation Bose-Einstein condensates confined in rotating harmonic traps, we

study stability of localized (encapsulated) vortex solutions of the reduced two-

dimensional problem. First, we numerically obtain accurate vortex solutions by

tracing the bifurcation branch out of a trivial solution and then we improve its

precision by the multiple shooting method. Then we rigorously derive the proper

linearization of the Gross-Pitaevskii equation about these solutions. The lin-

earization procedure is analogous to one used in [1]. This justifies the Bogoliubov

equations well-known in the physics literature obtained by the linearization of the

associated Hamiltonian in the field operator formalism. The “classical” treatment

of linearization can be also found in [2] and [3] but without any reasoning be-

hind the choice of the form of the small perturbation used. The derivation here

shows how the necessary coupling naturally appears starting from an arbitrary

perturbation.

Next, we prove that if the relative trap rotational frequency Ω is smaller

than 1, the essential spectrum of the linearized operator is empty. This proof is

to our knowledge not known in the literature. Since we show that the eigenvalues

(the discrete spectrum) of the linearized problem suffer only a shift by a purely

imaginary number depending on rotation, stability of this part of the spectrum
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is unaffected by rotation of the trap. This reduces the number of free parameters

in the problem to a single one, denoted by p, nonlinearly depending upon the

number of the particles in the condensate N ,

N =

∫

R2

|ψ|2dx2 .

The linearized equations are then decomposed into an infinite system of cou-

pled pairs for the Fourier modes. We prove that the unstable eigenvalues may

exist only for finitely many of them with a bound dependent only on the vortex

charge (the proof is not new and its sketch can be found in [4]). Moreover, all

the possible unstable eigenvalues are located in a vertical strip symmetric with

respect to the imaginary axis. Also the number of possible unstable eigenvalues is

bounded by the number of negative eigenvalues of the corresponding self-adjoint

Hamiltonian. We also prove the precise asymptotic behavior of the solutions to

the linearized equations.

To determine the location of both stable and unstable eigenvalues we use the

Evans function technique. This robust method allows us to study the problem

for a wide range of the parameter p corresponding to the size of the condensate

ranging from an effectively linear regime far up to the fully nonlinear Thomas-

Fermi regime corresponding to a large number of particles N in a dilute state.

We find singly-quantized (m = 1) vortices linearly stable in agreement with

both experimental and theoretical results in literature. On the other hand, multi-

quantized vortices (m = 2) are found to be linearly stable and unstable as re-

ported by [5] using a less reliable method. For a fixed inter-particle interaction

strength the stability or instability depends on the size of the condensate, with

intervals of stability and instability alternating with increasing number of par-

ticles starting with unstable phase for a very small number of particles. The
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intervals of stability or instability show a repeating pattern eventually continuing

to any number of particles, although the proportion of length of intervals of in-

stability seems to grow. Experimental creation of a multi-quantized vortex may

therefore require some other means of stabilization than just a harmonic trap.

Nevertheless, we emphasize the instability we observe is weak, with the real part

of the unstable eigenvalues small and only slowly increasing with the growing

parameter p.

The presence of the instability is checked by direct numerical simulations

using the Strang time-splitting scheme designed in [6]. A rough approximation of

the eigenvectors for the detected eigenvalues is calculated by a simple Galerkin

approximation.

For the Landau-Lifshitz magnetization equation we prove that all the non-

stationary solutions with a vortex-like structure have their modulus oscillating

and approaching π as |x| → ∞ in such a way that their energy is infinite. On

the other hand, the stationary vortex solutions, the Belavin-Polyakov instan-

tons, have finite energy. We emphasize that this statement is true also for the

dissipation-less model λ = 0 and for any frequency ω 6= 0. This suggests a strong

energetic instability of any non-stationary vortex structures for ω 6= 0.

1.1 Thesis outline

This section gives an overview on how the material is organized in the chapters

and appendices of this thesis.

The two sections of Chapter 2 serve as an introduction and an historical sur-

vey into the concept of vortex solutions to nonlinear Schrödinger equations. Some

results on existence and stability for certain nonlinear Schrödinger equations (ex-
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cluding the Gross-Pitaevskii and the Landau-Lifshitz equation) are also briefly

discussed.

The whole of Chapter 3 contains analysis and results on stability of vortex

solutions in Bose-Einstein condensates. First, the motivation and a summary

of known results are presented. A mathematical justification of the numerical

approach used to generate vortex solutions follows. The next step is a rigorous

derivation of linearized equations (which turn out to be equivalent to the Bo-

goliubov equations well-known in the physics literature) and an introduction to

the Evans function method used to determine stability or instability of vortex

solutions. Finally, a description of the numerical procedure and its results are

discussed. Note that although the results of analysis required by this approach

are also mentioned, details of the necessary proofs and long calculations are omit-

ted and included only in the appendices. (The material in Chapter 3 is a joint

work with Dr. Robert L. Pego.)

On the other hand, Chapter 4 is self-contained and is devoted to the Landau-

Lifshitz magnetization equation. After an outline of a derivation from the general

torque equation and from a free energy functional, the Landau-Lifshitz equation

is transformed into spherical coordinates. Then results and their connection to

the general vortex concept mentioned in Chapter 2 are described. The remaining

sections contain full mathematical proofs of non-existence of non-stationary pure

vortex solutions and of an infinite-energy property of all the vortex-like solutions

in this model. The main techniques used in these arguments come from the theory

of ordinary differential equations, namely the Pohozaev identity and oscillation

theory. (The material in Chapter 4 was recently submitted by the author for

publication [7].)
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Chapter 5 discusses some of the important issues arising in this work and also

lists possibilities for further investigations.

All of the appendices are related to the Gross-Pitaevskii equation treated in

Chapter 3. Appendix A contains details of justification of use of the Crandall-

Rabinowitz theorem in Chapter 3. The theorem describing spatial properties of

a radial vortex profile is in Appendix B. The proof that the essential spectrum of

the linearized Gross-Pitaevskii equation is empty can be found in Appendix C.

Appendix D contains two proofs for bounds on unstable eigenvalues which

were for the sake of clarity of presentation omitted in Chapter 3. Asymptotic

analysis of solutions to the Gross-Pitaevskii equation and to its linearization is

located in Appendix E.

Appendix F serves as a source for all the formulas necessary for the proper

rescaling of systems of ordinary differential equations in the numerical implemen-

tation of the Evans function evaluation. Finally, Appendix G describes the nu-

merical procedure (a Galerkin method) for solving the linearized Gross-Pitaevskii

equation assuming the approximate eigenvalue is known.
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Chapter 2

Vortex solutions to nonlinear Schrödinger equations

There is a good reason for the fact that nonlinear Schrödinger equations (NLS)

are ubiquitous both in physics and mathematics. They model a wide variety

of different physical phenomena including water waves, nonlinear optics, optical

fibers or Bose-Einstein condensates. From the mathematical point of view they

play an important role as the lowest order perturbation approximation for weakly

nonlinear dispersive wave systems.

The nonlinear Schrödinger equations [8] that are considered here have the

general form

iψt = −4ψ + f(x, ψ,∇ψ) , (2.1)

where ψ : R
D → C (here D = 2 or D = 3). The nonlinearity f is assumed to

preserve the structure of NLS, namely the rotational invariance

f(x, eiαψ,∇eiαΨ) = eiαf(x, ψ,∇ψ)

and the invariance with respect to complex conjugacy

f(x, ψ,∇ψ) = f(x, ψ,∇ψ) .
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The simplest nonlinearities with these properties are the cubic nonlinear Schrö-

dinger equation

iψt = −4ψ + |ψ|2ψ (2.2)

and the cubic-quintic nonlinear Schrödinger equation

iψt = −4ψ − (|ψ|2 − |ψ|4)ψ . (2.3)

These equations model laser beams in defocusing and self-focusing-defocusing

media in nonlinear optics, respectively, and they also serve as simple models for

more complicated gauge theories of mathematical physics. The cubic-quintic NLS

can be also obtained by a truncation of the Taylor series for a so-called saturable

media nonlinearity of the form f(ψ) = |ψ|2ψ
1+|ψ|2 . The focus of this thesis is on

the different nonlinear Schrödinger equations — the Gross-Pitaevskii equation

(GP) and the Landau-Lifshitz equation (LL), which are discussed in details in

Chapters 3 and 4.

The structure of the nonlinear Schrödinger equation supports existence of

solitary wave solutions. Aside from the traditional solitary wave solutions (soli-

tons) one may also expect existence of solutions with a singular phase – vortex

solutions with localized topological defects [9]. At a center of a vortex, the as-

sociated wave function has a nontrivial winding number. Although vortices are

only local structures they dominate the geometry and topology of the flow. Their

name is derived from a well-known analogy to fluid vortices [10]. Contrary to the

fluid dynamics or superconductors setting, the experimental realization of such

solutions in the context of NLS was demonstrated only quite recently (for Bose-

Einstein condensates). The significance of vortices is underlined by the fact that

they appear to be a key to understanding the underlying physics, particularly in

the Ginzburg-Landau theory of superconductivity and in superfluidity.
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The vortex phenomena in NLS and related equations is known in physics at

least from the early 20th century. One of the first accounts related to the subject

in the mathematics literature is due to P.L. Lions [11] who studied stationary

solutions to a nonlinear wave equation

utt = 4u+ f(u) (2.4)

in two-dimensions of the form

u(r, θ) = eimθw(r) ,

where (r, θ) are the polar coordinates in R
2. The partial differential equation

(2.4) then reduces to an ordinary differential equation

w′′ +
1

r
w′ − m2

r2
w + f(w) = 0 (2.5)

for an unknown real function w(r). Such a solution has a topological singularity

at the origin – the winding number of the field u(x) around the origin equals m.

The systematic study of such solutions in the frame of NLS (and a corre-

sponding nonlinear heat equation (NLH)) began in 1990 with the work of J.C.

Neu [12]. He studied stationary solutions to NLS (and NLH) of the form

iψt = −4ψ − (1 − |ψ|2)ψ

in two dimensions. He observed that except for the trivial uniform states ψ = eiθ0

there are also solutions given by

ψ(x) = U(r)ei(nθ+θ0) .

The modulus U(r) then satisfies the ordinary differential equation

U ′′ +
1

r
U ′ − n2

r2
U + (1 − U 2)U = 0 , (2.6)

9



which is well-posed with the boundary conditions

U(0) = 0 and U(∞) = 1 . (2.7)

He formally obtained a description of the asymptotic behavior of the solution

U(r) as r → 0 and r → ∞:

U(r) ∼ ar|n| +O(r|n|+2) as r → 0,

∼ 1 − n2

2r2
+O

(

1
r4

)

as r → ∞.

Although it was not particularly stated, the form of NLS equation considered

implicitly implies that Ψ(x) generates a stationary state solution to (2.2) of the

form

ψ(x, t) = eiωteinθU(r) , (2.8)

for ω = −1.

Any solution of the form (2.8) to NLS for an arbitrary ω gives rise to a

traveling wave solution to the same equation by means of the Galilean boost

transformation. Setting un(x) = einθU(r) the traveling wave solution is given by

ψ(x, t) = exp
(

(i/2)(x · v) − (i/4)|v|2t+ itω + iθ0

)

un(x− vt− x0) , (2.9)

where v ∈ R
2 is an arbitrary velocity.

2.1 Overview of existence and stability results

The significance of the problem spurred a broad and extensive investigations in

the field of nonlinear Schrödinger equations. Here, only the mathematical results

closely related to existence and stability of vortex solutions (or solutions with a

similar structure) will be mentioned.
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The first paper on vortices for NLS [12] focused on stability and interaction of

vortex solutions. In the case of the nonlinear heat equation he gave a numerical

evidence that solutions with topological degrees n = 1 and n = −1 are topologi-

cally stable and solutions with |n| > 1 tend to dissolve into vortices of a smaller

degree. On the other hand, the dynamics of NLS due to the non-dissipative

character of the equation remains an open problem.

In the broader context of defects the vortex solutions for both the Gross-

Pitaevskii equation and the dissipative form of Landau-Lifshitz equation were

studied by Pismen and Rubinstein [9]. Their analysis reveals that vortex solutions

are only a special case of the more general defects. This connects the focus

problems of this thesis with problems of interface dynamics in reaction-diffusion

and Klein-Gordon equations.

A variational setting for a vortex in the scalar field was introduced by We-

instein [13]. The problem to overcome in the variational approach is that the

energy of a vortex is infinite. Weinstein also precisely formulates questions re-

garding linear and nonlinear stability of a single vortex.

Existence of pure and encapsulated (exponentially localized) vortex solutions

for various nonlinearities was proved by Iaia and Warchall [14, 15]. This particu-

larly covers the cubic and cubic-quintic NLS. The argument is based on various

ordinary differential equations techniques; many of them are similar to those used

here in Chapter 4.

Linear stability of singly-quantized vortex solutions for cubic NLS was proved

by Weinstein and Xin [16] using a simple argument based on a lemma of Pego

and Weinstein [17].
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The cubic-quintic problem was studied by Pego and Warchall [1] and Towers

et al. [18]. Vortices of all degrees |m| ≥ 1 (numerical evidence is given for

|m| = 1, . . . , 5) are found to be stable for a certain frequencies in the interval

(ωcr, ω∗) that shrinks with growing m, and unstable for frequencies outside of

this interval. The upper bound ω∗ is the same for all m’s and is determined

solely by the nonlinearity. The authors also pointed out that stability of m = 0

spinless ground states can be analyzed by the convenient criterion introduced by

Grillakis, Shatah and Strauss [19].

Among other related results, stability and existence of so-called stationary

bubble solutions was studied by A. De Bouard [20]. Bubble solutions have a

boundary condition ψ(x) → 1 as |x| → ∞ and contrary to vortices, these solu-

tions are real in the whole domain. De Bouard proved a sufficient condition for

existence of stationary bubbles for a wide class of nonlinearities.
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Chapter 3

Linear stability of vortices in Bose-Einstein condenstates

Since the experimental creation of Bose-Einstein Condensates (BEC) in alkali

vapors in 1995 independently by groups of Cornell, Wieman and Ketterle [21, 22],

BEC are one of the most active areas of modern condensed-matter physics, as it is

demonstrated in numerous experimental and numerical results. BEC is in many

ways an ideal system for scientific and technological exploration, since on the one

hand they are rather well-characterized by theoretical models (mean-field theory),

and on the other hand they are susceptible to optical and magnetic manipulation

by a variety of sensitive techniques. A general overview of the subject can be

found in Pethick [23] and Dafovo et al. [2].

In recent years, in numerous experiments at temperatures smaller than the

critical condensation temperature, condensates confined in magnetic or optical

traps and consisting of a large number of atoms in the same quantum state were

created with almost 100% of the atoms in the condensed state. Such a high pu-

rity allows them to be described in the Hartree-Fock approximation by a single

macroscopic wave function. This model leads to a nonlinear Schrödinger equation

(NLS) with a non-local nonlinearity. A traditional simplification, replacing the

non-local interaction potential with a localized short-range interaction propor-
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tional to the delta function, leads to the Gross-Pitaevskii equation

i~ψt =

(

− ~
2

2M
4 + V (x) + i~Ω∂θ + g|ψ|2

)

ψ ,

which is a nonlinear Schrödinger equation with a cubic (focusing or defocusing

depending on whether the interaction is repulsive or attractive, respectively)

nonlinearity and with a spatially dependent trap potential.

Mathematical results in this field are rare due to the strong nonlinearity and

complexity of the system. The major development is the derivation of the Gross-

Pitaevskii equation under various limits directly from many-body Schrödinger

equations, and thus the justification of the model, which was proved in a series

of papers of Lieb et al. [24, 25, 26]. On the other hand, the sketch of the

proof of well-posedness of the Gross-Pitaevskii equation can be found in Jackson

and Weinstein [27]. From the point of view of nonlinear waves, the interesting

phenomena is that the structure of the Gross-Pitaevskii equation, similarly to

some other nonlinear Schrödinger equations, supports existence of various types

of solitary solutions, and particularly of vortex solutions. In the recent years, their

presence and stability is extensively studied by both experimental and analytical

means.

In the beginning of the experimental explorations of BEC, the goal was to

create and detect vortices in the condensate. Nowadays, after large arrays of

singly-quantized vortices have been created, one of the goals is to create a (sta-

ble) multi-quantized vortex, which can be possibly used to store a quantum in-

formation in the future. Results on stability of these vortices are very pertinent

to experimentalists and in many cases they served as a guide for design of exper-

iments. In general, two different concepts of stability are considered in literature,

the energetic and linear stability. A solution is energetically stable if it mini-

14



mizes an associated energy functional within a class of functions satisfying some

constraint. Unfortunately, most work on energetic stability is based only on a

heuristic argument. Instead of minimizing the functional within a general class

of functions, many other restrictions are imposed. The simplest approach where

the minimization only goes through single vortex solutions with different charges

reveals that a high enough trap rotation frequency can eventually stabilize a vor-

tex of any degree [28]. On the other hand, the energy of a single multi-quantized

vortex of charge m is larger that the energy of m singly-quantized vortices and

thus multi-quantum vortices are believed to be unstable. The total energy in this

case also depends on the relative location of vortices as they tend to form regular

hexagonal arrays in harmonic traps.

A mathematical framework for a rigorous variational approach was discussed

by Aftalion and Du [29]. Their method for effectively 2D condensates uses the

method parallel to the Ginzburg-Landau theory of superconductors. In [30] the

authors claim that a sufficiently fast rotation in combination with a strong pinning

potential is capable to make even multi-quantum vortices energetically stable.

Another heuristic energy argument suggests that for a trap rotation frequencies

Ω bigger or equal to a critical angular velocity Ωc (for which the centrifugal force

balances the trapping potential) the condensate becomes unstable and spins out

of a trap.

More rigorous analysis was conducted by Seiringer [31] where he studies when

a vortex solution can be a global energy minimizer. He proves that for any

0 < Ω < Ωc there exists NΩ (independent of an interaction potential) such that

all vortices with chargem > NΩ are energetically unstable, i.e. they are not global

minimizers (ground states) of the energy functional. Moreover, he proves that

15



all multi-quantized vortices, m ≥ 2, become energetically unstable for a value of

the chemical potential of the condensate large enough. Finally, he proves that

symmetry breaking of the axi-symmetrical vortex solution is inevitable for any m,

even for a singly-quantized vortex for a large enough interaction strength, since

no ground state is an eigenfunction of the angular momentum. The symmetry

breaking of the ground state is also demonstrated by a geometric analysis in [27]

in the case of a double-well trapping potential.

Energetic stability should describe approximately the behavior after dissi-

pation is introduced into the system. Such a concept may sometimes not be

the most relevant because of the superfluid nature of BEC; instead one should

rather study non-linear stability. On the other hand, ground states of the energy

functional are nonlinearly orbitally Lyapunov stable, i.e. if the initial data are

“close” to the ground state solution then the perturbed solution remains close to

the ground state solution (in the same sense) for all times (see [27] and references

therein).

On the other hand, nonlinear stability does not imply energetic stability.

Therefore no conclusions on nonlinear instability can be inferred directly from

considerations of the energy functional. Linear stability which properly describes

the system behavior for a very short time can detect possible nonlinear instabil-

ities by presence of eigenvalues in the right half-plane.

The linear stability of singly- and multi-quantized vortices was studied numer-

ically by Pu et al. [5]. Similarly as in this thesis they describe the eigenvalues of

the linearized Gross-Pitaevskii equation. They observe that the singly-quantized

vortex is linearly stable, while the stability of m = 2 and m = 3 vortex depends

on a parameter characterizing diluteness of the condensate. They also propose
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a quantum-mechanical mechanism of transition to instability. Nevertheless, the

numerical method used (finite elements) is completely different and a priori less

reliable than the approach used here.

In [4] Garcia-Ripoll and Perez-Garcia use the same setting to study linear

stability of a singly-quantized vortex but they restrict their search for instability

only to the so-called anomalous modes. As pointed later in [32], these modes are

not intrinsically unstable in that sense that some dissipation mechanism must be

introduced into the system for them to become relevant. The numerical technique

used in [4] relies on the Galerkin type approximation and Newton iteration. The

finite temperature model generalization is further studied in [33].

Among the other related results, the instability of a vortex solution under

a change of a shape of a trap for a weakly interacting condensate was studied

in [34]. Deconinck and Kutz [35] numerically observed that the Gross-Pitaevskii

equation (with a periodic trap potential) with a localized inter-particle interaction

potential is not asymptotically equivalent to the same equation with a non-local

interaction potential, i.e. stability of solutions is not preserved in the limit as

non-local potential approaches the local one. Stability of various other solitary

solutions (dark, bright, dark-in-bright, soliton vortices, etc.) other than vortices

is discussed in [36, 37, 38].

In this work a robust numerical algorithm for finding a stationary-state vor-

tex profile and its stability is designed and implemented. It makes use of the

Evans function method originally proposed in [39] and further developed in [17].

This method proved to be a proper tool for detecting eigenvalues even in cases

where other available methods failed and provides a justification of the finite ele-

ment [5], Galerkin approximation [4], or finite difference approaches used before.
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Particularly, the method here closely follows the approach of [1] for cubic–quintic

nonlinear Schrödinger equation. Due to the robustness and high reliability of the

method, this allows to describe in detail stability/instability parameter regimes

far into the important Thomas-Fermi regime, corresponding to large numbers of

particles and very dilute gas.

The Gross-Pitaevskii equations are rigorously “classically” linearized. The

linearization procedure demonstrates why the perturbation must have the par-

ticular structure widely used in the literature (see [3], where a field-operator lin-

earization is derived as well). The essential spectrum of the linearized operator

is empty, which reduces the problem of linear stability to discrete spectrum. The

linearized equation breaks into an infinite system of coupled pairs of equations for

Fourier modes. Fortunately, only finitely many of them are relevant for possible

instability. Moreover, the precise asymptotic description of the eigenfunctions is

proved, which is necessary for construction of the Evans function used to detect

presence and location of eigenvalues.

The numerical results presented here are consistent with all the previous re-

sults on energetic and linear stability; this is particularly true for [5]. The simply-

quantized (m = 1) vortex is found linearly stable for any particle number and any

trap rotation frequency. Stability of a multi-quantized m = 2 vortex depends on

the interaction strength g and the particle numberN . There is numerical evidence

that the regions of stability and instability alternate with the growing parameter

Ng. The presence of unstable eigenvalues for certain parameters is also justified

by a direct evolution calculation based on the Strang splitting scheme recently

proposed in [6].

18



3.1 The Gross-Pitaevskii equation

The behavior of low-temperature Bose-Einstein condensates (BEC) trapped in

the harmonic potential V (x) rotating with the angular velocity Ω about the z-

axis is well described by the time-dependent Gross-Pitaevskii equation. The wave

function ψ(x, t) satisfies (in three dimensions)

i~ψt =

(

− ~
2

2M
4 + V (x) + i~Ω∂θ + g|ψ|2

)

ψ (3.1)

with

V (x) = V3D(x) =
1

2
M
(

ω2
xx

2 + ω2
yy

2 + ω2
zz

2
)

,

g = g3D =
4π~

2a

M
,

where g is the interaction strength, M is the atomic mass of atoms in the con-

densate, a is the s-wave scattering length [26] and θ is an azimuthal angle in

cylindrical coordinates. The term Ω∂θ corresponds to the angular momentum

Ω · (r × ∇) of the condensate caused by a rotating frame of coordinates. The

total number of particles in the condensate N is given by the integral

∫

R3

|ψ|2dx3 = N , (3.2)

and is conserved during the evolution of the system. For disc-shaped (pancake)

traps (ω2
z >> ω2

x, ω
2
z >> ω2

y) it was recently justified [6] that the system is well

approximated by a planar two-dimensional reduced model. The equation (3.1)

formally does not change, one only needs to set

V (x) = V2D(x) =
1

2
Mω2

tr

(

x2 + λ2
try

2
)

,

g = g2D = g3D ·
(

Mωz
2π~

)1/2

,
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where ωx = ωtr and ωy = ωtrλtr. For purpose of numerical investigations in this

work the same values of parameters were used as in [5]: a condensate consisting

of atoms of 23Na is considered with a = 2.75 nm, ωz = 2π×200 Hz, ωtr = 2π×10

Hz (ωz >> ωtr), M = 10−26 kg and the Planck constant ~ = 6.6261 × 10−34Js.

A similar set of parameters used in the experiment (as cited in [30, 40]) with

a 87Rb condensate is: M = 3.81 × 10−26 kg, a = 5.77 nm, ω = ωz = ωtr =

2π × 200 Hz. In these experiments the number of particles was approximately

N = 2 × 105, horizontal and vertical condensate sizes were R = 20 µm, L = 10

µm and the temperature Tc = 1 µK. Both 23Na and 87Rb represent alkali gases

with a repulsive interaction potential. As an example of an attractive interaction

7Li with a = −1.45 nm can serve. Note that the parameter a can be tuned via

Feshbach resonance [41].

There appear to be two important scalings of time, length and magnitude of

the wave function. First, setting

t = (1/ωtr) t
′ , x =

√

~/Mωtr x
′ , ψ =

√

NMωtr/~ψ
′

(i.e. time is measured relatively to the frequency of rotation of the trap and

distance is measured relatively to the size of the trap) leads to (dropping the

primes)

iψt = −1

2
4ψ +

1

2
(x2 + λ2

try
2)ψ + iΩrelψθ + U |ψ|2ψ (3.3)

with
∫

R2

|ψ|2dx2 = 1 , (3.4)

where Ωrel = Ω/ωtr and U = gNM/~2. In this scaling the energy functional is

given by

E(ψ) =

∫

R2

1

2
|∇ψ|2 − iΩψ∂θψ +

(

1

2
(x2 + λ2

try
2) + U |ψ|2

)

|ψ|2dx2 . (3.5)
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This scaling is very suitable and was widely used for investigations of energetic

stability since a ground state of (3.3)–(3.4) can be obtained by solving the mini-

mization problem for the energy functional (3.5) with respect to a fixed constrain

(3.4).

On the other hand, setting

t = (1/ωtr) t
′ , x =

√

~/Mωtr x
′ , ψ =

√

~ωtr/|g|ψ′

yields (dropping the primes)

iψt = −1

2
4ψ +

1

2
(x2 + λ2

try
2)ψ + iΩrelψθ +

g

|g| |ψ|
2ψ (3.6)

with
∫

R2

|ψ|2dx2 = K , (3.7)

where Ωrel = Ω/ωtr and K = |g|NM/~2 ≥ 0. Note that the scaling of time and

space is the same as in the first scaling. The energy functional (3.5) is the same

as in the first scaling with U replaced by g/|g|.

In this work the following assumptions will be made. Only two-dimensional

radial wave functions of the form ψ = ψ(r, θ) will be considered. The relative trap

frequency Ωrel will be for simplicity denoted by Ω. One usually studies the case

0 < Ωrel < 1 since the physical intuition suggests that Ωrel ≥ 1 destabilizes the

condensate. For such frequencies the centrifugal force dominates the trapping

potential and all the particles eventually spiral out of the trap. Nevertheless,

such a restriction is not in agreement with current experiments [42] and does not

influence eigenvalues (discrete spectrum) of the linearized problem as it will be

proved later. Nevertheless, the assumption Ωrel < 1 will be needed to properly

define the linearized operator and to determine its essential spectrum. This

issue will be further discussed in the summary. On the other hand, the method
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used here only deals with a case of a disc trap, λtr = 1. However, it can be

conjectured that the qualitative behavior (stability/instability) should be to some

extent preserved also for elongated traps. Moreover, the model includes both

attractive and repulsive interaction inter-particle potential (sign of the nonlinear

term) but for simplicity only the case of repulsive potential will be considered

here (questions concerning stability in transition between repulsive and attractive

potential via Feshbach resonance will be a subject of future investigations; some

results can be found in [5]).

Under these assumptions (3.6) has the form

iψt(t, r, θ) = −1

2
4ψ(t, r, θ) +

1

2
r2ψ(t, r, θ) + iΩψθ(t, r, θ)

+|ψ(t, r, θ)|2ψ(t, r, θ) (3.8)

with
∫ ∞

0

∫ 2π

0

|ψ(r, θ)|2rdθdr = K (3.9)

and the energy functional (3.5) for a stationary solution ψ (minimizer of energy)

satisfies

E(ψ) = µK − 1

2

∫

R2

|ψ|4dx2 .

Note that the Thomas-Fermi regime [10, 26] Na/d0 >> 1 (here d0 is the mean

oscillator length, d0 =
√

~/Mω0 and ω0 is the mean trap frequency ω3
0 = ωxωyωz),

corresponds to K → ∞ since K = 2|a|N
√

2πMωz/~, i.e.

K =
N |a|
d0

2
√

2π

(

ωtr
ωz

)1/3

. (3.10)

This is the limit under which Lieb and Seiringer [26] justified the Gross-Pitaevskii

energy functional to be a good approximation for the N -body quantum system.

Note, that the only two free parameters which stay in (3.8)–(3.9) are K, the

L2-norm of the wave function ψ, and Ω, the relative angular velocity of the trap.
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Also note, that the Galilean boost (2.9) does not produce solutions to the

Gross-Pitaevskii equation since the equation is not translationally invariant. In-

stead, there is a different boost introduced in [43]. For any solution ψ(x), to

(3.8) this transformation gives rise to a family of solutions to the same equation.

For simplicity, only a non-rotating case is presented here, the generalization to

rotating traps can be found in [43]. The transformation has the form

ΨR(x, t) = Ψ(x−R(t), t)eiθ(x,t) , (3.11)

where R(t) solves the harmonic oscillator equation

Rtt(t) = −R(t) and θ(x, t) = x ·Rt + f(t) ,

where f(t) =
∫ t

0
(Rt ·Rt −R ·R) dt.

3.2 Vortex solutions

The Gross-Pitaevskii equation has the structure of the nonlinear Schrödinger

equation and therefore one may expect the presence of vortex solutions of the

general form

ψ(r, θ, t) = ei(−µt+mθ)w(r) , (3.12)

where m is a vortex degree (or charge) and µ is a non-dimensional parameter

corresponding to frequency or chemical potential (µ > 0). In BEC it is plausible

to search for localized vortices with

w(0) = 0 and w(∞) = 0 (3.13)

due to the influence of the trapping potential. The radial profile function w(r)

then satisfies

wrr +
1

r
wr −

m2

r2
w + 2(mΩ + µ)w − r2w − 2|w|2w = 0 . (3.14)
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Since the dependence of a solution on parameters Ω and µ is solely through

the profile parameter p = mΩ+µ, it is possible to restrict the search to stationary

traps:

wrr +
1

r
wr −

m2

r2
w + 2pw − r2w − 2|w|2w = 0 . (3.15)

Since the equation (3.8) is written in the rotating frame of coordinates, any

fixed parameter p represents a fixed parameter µ relative to a fixed observer (lab

frame). Therefore the profile shape can be considered independent of the trap

rotation frequency Ω. On the other hand, the stability of solutions for a fixed

parameter p may, in general, depend on Ω.

The asymptotic behavior of a vortex profile can be determined directly from

(3.15). It is not difficult to see that as r → 0+ the equation has the same character

as the linear Schrödinger equation and

w(r) ∼ rm for m ≥ 1.

As r → ∞, the nonlinear term for an exponentially localized solution be-

comes negligible and the linear Schrödinger equation with a potential is a good

approximation:

wrr +
1

r
wr −

m2

r2
w + 2pw − r2w = 0 . (3.16)

The proof of a statement that the positive solution w(r) to (3.15) approaching 0 as

r → ∞ satisfies w(t) = O(rpe−r
2/2) is given in Appendix E. Other properties of a

vortex profile satisfying (3.13), (3.15) are summarized and proved in Appendix B.

The goal of this chapter is to study linear stability of solutions to (3.15).

Naturally, it is crucial to obtain very precise numerical solutions of (3.15) first.

The approach used here is based on path-following of a bifurcating branch

out of the trivial solution w = 0 and is similar to the one used in [3]. It requires
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some information about the localized solutions to (3.16). This equation has two

independent general solutions — products of a polynomial, a decaying Gaussian

and a confluent hypergeometric function. The exact solutions are

w(1)(r) = rme−r
2/2M

(

m

2
+

1 − p

2
,m+ 1, r2

)

,

w(2)(r) = rme−r
2/2U

(

m

2
+

1 − p

2
,m+ 1, r2

)

.

The confluent hypergeometric functions M(a, b, x) and U(a, b, x) are, in general,

independent solutions to xf ′′ + (b − x)f ′ − af = 0 [44]. Their asymptotics as

r → ∞ yields

w(1)(r) ∼ rper
2/2 , w(2)(r) ∼ rpe−r

2/2 ,

and the Wronskian of w(1)(r) and w(2)(r) is given by

W (w(1), w(2)) = − Γ(m+ 1)

Γ(m
2

+ 1−p
2

)r2
. (3.17)

The only possibility for w(1)(r) (and similarly for w(2)(r)) to satisfy the boundary

conditions at both ends is when the Wronskian (3.17) vanishes. This happens if

|Γ(m/2 + (1 − p)/2)| = ∞, so m/2 + (1 − p)/2 = −n, n a nonnegative integer.

Therefore a non-trivial solution wn(r) to (3.16) approaching zero as r → 0+ and

as r → ∞ exists for p = pn, where

pn = m+ 1 + 2n . (3.18)

In that case both solutions w(1)(r) and w(2)(r) reduce to the single solution

wn(r) = rme−r
2/2L

(m)
n (r2), where L

(m)
n (r) is the generalized Laguerre polyno-

mial with n the number of zeros of L
(m)
n (r) for r > 0. The non-negative solution

(the ground state of the associated energy functional) corresponds to n = 0,

p0 = m+ 1 and w = w0.
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Figure 3.1: (a) (logN vs. p) plot of branches of vortex solutions for m = 1, 2, 3

(from left to right) emerging at p0 = m+1 for 23Na data. Dashed curve represents

the number of particles for wtf (r) =
√

p0 − r2/2 in the Thomas-Fermi regime.

(b) The difference between the number of particles of vortex solutions for m =

1, 2, 3 and number of particles of wtf . The number of particles increases with m.
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The numerical algorithm designed to find solutions to (3.15) is based on the

following observation. It is reasonable to expect that introduction of the nonlinear

term leads to the existence of a solution branch (p(s), wp(s)) bifurcating from the

trivial solution w = 0 for p = p0. To justify such a behavior one can use the

Crandall-Rabinowitz theorem [45] (details can be found in Appendix A).

Theorem 3.2.1. The solutions (wp, p), p = mΩ + µ, to (3.15) near (0, p0),

p0 = m+ 1, form a curve

(p(s), w(s)) = (τ(s), sw0 + sz(s)) ,

where s → (τ(s), z(s)) ∈ R × span{w0}⊥ is a continuously differentiable near

s = 0, τ(0) = τ ′(0) = 0, z(0) = 0 and

w(s) ∈ X = {w : w ∈ L2(R,R; r), eimθw(r) ∈ H} ,

H = {u : u ∈ H2(R2,R2), (x2 + y2)u ∈ L2(R2,R2)} .

Hence it is possible to numerically trace the solution curve (p, wp) from the

branching point (p0, 0), see Fig. 3.1 (a). The behavior of norms relatively to

the norm of the pure Thomas-Fermi regime is illustrated on Fig. 3.1 (b). The

first point on the approximate solution curve is set to be (p0, εw0) which is by

the Crandall-Rabinowitz theorem an O(ε2) approximation of the exact solution.

Then an implementation of a predictor-corrector algorithm [46] is used to get

solutions for large values of the parameter p. Since a further stability study will

require evaluations of the profile values at any given point within the computa-

tional domain, the precision of calculations is improved by optimizing the already

calculated profile for any given p by a multiple shooting procedure [47] with a very
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small tolerance. This allows to achieve high precision in evaluations of w(r) by

simple integration from a nearby mesh point. Note, that the calculation is almost

independent of the size of the parameter p since the size of the computational

domain, and so the number of necessary nodes, grows very slowly. Therefore it

is possible to reach large values of p. Also note, that with the growing parameter

p, L2-norm (3.10) of profiles grows (Fig. 3.1) and hence states far in the physi-

cally interesting Thomas-Fermi regime (Na/d >> 1) for a wide range of p’s are

obtained for a small computational cost. On the other hand, for a computation

for a single value of p this method has a significant overhead. A similar method

was also used in [3].

3.3 Linear stability

The goal of this section is to obtain a proper mathematical formulation of the

linearization of (3.15) around solutions constructed in the previous section – local-

ized vortex profiles. The derived equations have the same form as the Bogoliubov

equations [23, 3] commonly used in physics literature. Note that the analogy be-

tween the derivation here and the usual derivation of the Bogoliubov equations

is by no means straightforward (this issue will be addressed in more details later

in the section).

A small general perturbation of the vortex solution ψ(t, r, θ) = ei(−µt+mθ)w(r),

where w(r) = wp(r) for a fixed parameter p, has the form

u(t, r, θ) = e−iµt
(

eimθw(r) + εv(t, r, θ)
)

.

Neglecting the higher order nonlinear terms in (3.8) yields

ivt = −1

2
4v + iΩ∂θv − µv +

1

2
r2v + 2|w|2v + |w|2e2imθv . (3.19)
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The complex character of the equation (3.19) significantly complicates the anal-

ysis. Therefore, decompose the complex wave function v as

Φ =







Φ1

Φ2






=







Re v

Im v






.

The equation (3.19) is then equivalent to the real system

∂tΦ = AΦ = J

[

1

2
4− JΩ∂θ −

(

1

2
r2 − µ+ 2|w|2

)

− |w|2e2mθJR
]

Φ , (3.20)

where

J =







0 −1

1 0






and R =







1 0

0 −1






.

To determine the linear stability of the vortex solution φ one needs to study

the spectrum of the operator A as an unbounded operator D(A) → L2(R2,R2).

The precise definition of the operator A is somewhat involved and requires

the concept of a quadratic form [49]. Denote (for now only formally)

Lc = −1

2
4 +

1

2
r2I + JΩ∂θ , Lw = 2|w|2I + |w|2e2mθJR− µ ,

where I is the 2 × 2 identity matrix. Then

A = −J(Lc + Lw) .

Then define a quadratic map

qLc : D(q) =
(

H1(R2,R2) ∩ L2(R2,R2; r2dr)
)

→ C

by

qLc(Ψ,Ψ) =

∫ 2π

0

∫ ∞

0

[

1

2
|∇Ψ|2 +

r2

2
|Ψ|2 + JΩ(r ×∇Ψ) · Ψ

]

rdrdθ .
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Here L2(R2,R2; f(r)dr) represents the space of functions Ψ : R
2 → R

2 with the

bounded norm

||Ψ||2L2(R2,R2;f(r)dr) =

∫ 2π

0

∫ ∞

0

|Ψ|2(r)f(r)rdrdθ .

Then for 0 ≤ Ω < 1 the quadratic form qLc is semibounded (details can be found

in Appendix C):

qLc(Ψ,Ψ) ≥ 0 .

Note that the space D(q) = H1(R2,R2) ∩ L2(R2,R2; r2dr) is dense in L2(R2,R2)

since the Schwartz space is a subset of D(q) and is dense in L2(R2,R2). The

quadratic form qLc is closed if it has a closed graph, i.e. if D(q) is complete under

the graph norm ||Ψ||+1 =
√

qLc(Ψ,Ψ) + ||Ψ||2L2 . This is true since both H1 and

L2(r2dr) can be obtained from L2 by completing the space C∞
0 functions under

the H1 and L2(r2dr) norms respectively. Also it is necessary to observe that for

0 ≤ Ω < 1:

C
(

||Ψ||2H1 + ||Ψ||2L2(r2dr)

)

≥ qLc(Ψ,Ψ) + ||Ψ||2L2 ≥ c
(

||Ψ||2H1 + ||Ψ||2L2(r2dr)

)

for some C > c > 0 (the lower bound follows from the semiboudedness, the proof

of the upper bound is analogous). Then Theorem VIII.15, pp. 278 of [49] claims

that qLc is the quadratic form of a unique self-adjoint operator Lc. The domain

of the operator Lc denoted by D(Lc) is dense in L2, also clearly H2(R2,R2) ∩

L2(R2,R2; r2dr) ⊂ D(Lc) and

LcΨ =

(

−1

2
4 +

1

2
r2I + JΩ∂θ

)

Ψ ,

for Ψ ∈ D(Lc) in the sense of distributions.

It is easy to see that the operator Lw : L2(R2,R2) → L2(R2,R2) can be defined

as

LwΨ = 2|w|2Ψ + |w|2e2mθJRΨ − µΨ ,
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and is bounded. Therefore the operator A = −J(Lc + Lw) with the domain

D(A) = D(Lc) is densely defined in L2(R2,R2).

The essential spectrum of the operator A is empty, as stated in the next

theorem.

Theorem 3.3.1. For any m, µ and for 0 ≤ Ω < 1 the essential spectrum of the

operator A is empty, σess(A) = ∅, i.e. spectrum of A consists of its eigenvalues.

The proof of the Theorem 3.3.1 is in Appendix C. Unfortunately, it is not

clear whether the essential spectrum is empty also for Ω ≥ 1.

If λ is an eigenvalue of the operator A, it satisfies

AΦ = λΦ (3.21)

which can be rewritten as

[

λJ +
1

2
4− JΩ∂θ −

(

1

2
r2 − µ− 2|w|2

)]

Φ + |w|2e2mθJRΦ = 0 . (3.22)

Similarly as in [1] it is useful to represent (3.22) in the basis of the eigenvectors

of the matrix J :

Φ = Φ+







1/2

−i/2






+ Φ−







1/2

i/2






.

Since D(A) ⊂ L2(R2,R2), then Φ± ∈ L2(R2,C). Consequently, (3.22) has the

form

(

iλ+
1

2
4− iΩ∂θ −

1

2
r2 + µ− 2|w|2

)

Φ+ − |w|2e2imθΦ− = 0 , (3.23)

(

−iλ+
1

2
4 + iΩ∂θ −

1

2
r2 + µ− 2|w|2

)

Φ− − |w|2e−2imθΦ+ = 0 . (3.24)

One can deduce by a simple bootstrap argument that Φ± ∈ Hm
loc for each m > 0,

so Φ± ∈ C∞(R2,C) ∩ L2(R2,C) = C∞(R2,R2) ∩ L2(R2,R2).
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The system (3.23)–(3.24) has the same form as the Bogoliubov linearized sys-

tem [23]. Although the Bogoliubov equations are a widely accepted model in

the physics literature, a connection between the “classical” linearization treat-

ment used here and the process of “linearization” used in the derivation of the

Bogoliubov system is unclear.

The usual procedure starts with a Hamiltonian formulation using the formal-

ism of the second quantization, namely the so-called field operator. The first

approximation used in this process is considering ladder operators of the asso-

ciated operator algebra as N -dependent constant multipliers. In this formalism

the field operator is approximated by a “large” ground-state part and a “small”

reminder representing excited states. Such a decomposition is then inserted into

the Hamiltonian. The second approximation comes when in the expansion of the

Hamiltonian (in the small correction remainder) only terms up to quadratic or-

der are retained. A diagonalization procedure transforms the system into a form

equivalent with the linearization obtained here.

It is important to emphasize that the derivation in the physical literature is

on a formal level and its justification is unclear. Nevertheless, the result obtained

this way is in a perfect agreement with the rigorous approach here. It would

be particularly interesting to understand what assumptions in the mathematical

derivation correspond to the ladder-operator approximation. Although this “clas-

sical” approach is not new, it gives the reasoning behind the particular choice of

the perturbation used in [2] and [3].

To find the eigenvalues of (3.22), further decompose Φ±(r, θ) at each fixed r

into Fourier modes (with shifted indices for a notational ease)

Φ±(r, θ) =
∞
∑

j=−∞
ei(j±m)θy

(j±m)
± (r) . (3.25)
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After the introduction of the Fourier modes the equation (3.22) transforms to an

infinite-dimensional system of linear equations.

The system decouples to coupled pairs for unknown nodes y+ = y
(j+m)
+ , y− =

y
(j−m)
− (note that p = mΩ + µ):

[

iλ+
1

2
4r −

(j +m)2

2r2
− 1

2
r2 + (p+ jΩ) − 2|w|2

]

y+ = |w|2y− (3.26)

[

−iλ+
1

2
4r −

(j −m)2

2r2
− 1

2
r2 + (p− jΩ) − 2|w|2

]

y− = |w|2y+ (3.27)

with appropriate boundary conditions

lim
r→0+

y±(r) exists and lim
r→∞

y±(r) = 0 . (3.28)

By the symbol 4r we denote the radial Laplace operator 4r = ∂2

∂r2
+ 1

r
∂
∂r

.

Finally, the eigenproblem (3.21) is decomposed into countable many problems

Ljy − jΩRy = iλRy , y = (y+, y−)T , (3.29)

where

Lj =







L+
j − p 0

0 L−
j − p






+ |w|2







2 1

1 2






,

and

L+
j = −1

2
4r +

(j +m)2

2r2
+

1

2
r2 ,

L−
j = −1

2
4r +

(j −m)2

2r2
+

1

2
r2 .

Similarly as before the bootstrap argument gives y ∈ C∞ ∩L2(R+,C2; rdr). The

associated inner product is given by

〈y, z〉 =

∫ ∞

0

(

y+(r)z+(r) + y−(r)z−(r)
)

rdr .

The next theorem summarizes the results of this section.
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Theorem 3.3.2. A complex number λ is an eigenvalue of A if and only if for

some integer j the system of equations (3.29) have a nontrivial solution satisfying

(3.28). An eigenfunction associated with an eigenvalue λ has the form

vλ,j,m(x, t) = Ceλtei(j+m)θy
(j+m)
+ (r) + Ceλtei(j−m)θy

(j−m)
− (r) .

The “only if” part of the statement of the theorem was already proved in

this section. The reverse implication can be proved analogously as the parallel

theorem in [1].

3.3.1 Reduction to non-rotating traps

The structure of the system of equations (3.29) allows to determine the location of

eigenvalues for rotating traps (Ω 6= 0) directly from the eigenvalues for stationary

traps (Ω = 0).

Lemma 3.3.3. There is an one-to-one correspondence between the eigenvalues

λΩ of the operator A corresponding to the mode j and trap frequency Ω and the

eigenvalues of A corresponding to the mode j and zero frequency which is given

by

λΩ = λ0 + jΩi .

The claim immediately follows from (3.29) since if

iλ0 = iλΩ + jΩ (3.30)

then λ0 is an eigenvalue of the reduced problem

Ljy = iλ0Ry , (3.31)

34



which is independent of Ω. The relation (3.30) reveals that λΩ = λ0 + ijΩ,

i.e. λΩ and λ0 have the same real part. Therefore any linear instability of the

vortex solution in a rotating trap caused by the existence of an eigenvalue with

a nontrivial real part must be present also in a stationary trap.

3.3.2 Bounds for eigenvalues

At a first glance it may seem impossible to solve infinitely many systems of the

form (3.29). Fortunately, it is not necessary, as stated in the next proposition

(the proof is included in Appendix D and is the same as in [4]).

Proposition 3.3.4. The unstable eigenvalues of the problem (3.21) must be so-

lutions of (3.28)–(3.29) for j satisfying

|j| ≤ 2m. (3.32)

One can also prove the following estimate (the proof is also included in Ap-

pendix D).

Proposition 3.3.5. The real part of every eigenvalue of the the operator A (3.21)

is bounded with

|<λ| < 3 max
r>0

|w(r)|2 <∞ . (3.33)

Both propositions restrict the search for unstable eigenvalues to a finite num-

ber of equations and to a vertical strip. Unfortunately, it is not clear how to

obtain any bound for the imaginary part of the possible unstable eigenvalues.

Since one can expect infinitely many stable eigenvalues in both directions on the
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imaginary axis it is hopeless to prove that the imaginary part of an eigenvalue is

bounded.

Nevertheless, the possible number of unstable eigenvalues is limited. To ex-

plain in detail a way to obtain an upper bound for the number of unstable eigen-

values, set Ĵ = −iR. The equation (3.31) reduces to

ĴLjy = λ0y , (3.34)

where Ĵ is skew-symmetric (Ĵ2 = −I) and Lj is self-adjoint. The number of

unstable eigenvalues in the right-half plane (<λ > 0) is then limited by the

number of the negative eigenvalues of the self-adjoint operator Lj [17, 50]. This

explains the observation of Pu et al. [5] that the instability for m ≥ 2 appears

when Lj is an indefinite operator. On the other hand, the indefiniteness of Lj

does not guarantee the instability of ĴLj; the connection between the spectra of

Lj and ĴLj is more involved.

Moreover, there is also a way how to justify that there are no other unstable

eigenvalues and how to reduce the computational cost significantly. The key is

to take into account also the Krein signature of the eigenvalues [50].

For simplicity assume that all the eigenvalues of ĴLj are simple. The total

number of the negative eigenvalues (counting multiplicities) of Lj is equal to the

number of negative directions in the indefinite metric space with the indefinite

metric given by the Krein signature 〈LjΨ,Ψ〉 and the non-negative inner product

given by 〈|Lj|Ψ,Ψ〉. A simple observation reveals, that the unstable eigenvalues

of ĴLj have zero Krein signature, and so each pair of eigenvalues symmetric with

respect to the imaginary axis represents one negative direction in the indefinite

space. But there are also possible stable eigenvalues on the imaginary axis with

the negative Krein signature.
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Therefore, a possible numerical justification that there are no other unstable

eigenvalues could be the following. First, determine the number ntotal of negative

eigenvalues of Lj. If the number is zero, there are no unstable eigenvalues of ĴLj.

If ntotal > 0, the number gives the total number nu of pairs of unstable eigenvalues

of ĴLj plus the number ns of stable eigenvalues with the negative Krein signature.

If the present method (the Evans function technique) detects the presence of the

same number of pairs of eigenvalues off the imaginary axis nu = ntotal, there are

no other unstable eigenvalues. If nu < ntotal, perform a calculation of the Krein

signature for eigenvalues on the imaginary axis. If nu + ns = ntotal there are no

other unstable eigenvalues, otherwise, increase the area of search and repeat the

whole process.

Since the numerical results suggest patterns in the behavior of the eigenvalues,

this would also allow to reduce the computations even more. If ntotal is known, one

only needs to find stable eigenvalues of ĴLj on imaginary axis within a reasonable

interval and their Krein signatures. Only if their total number differs from ntotal,

i.e. ns < ntotal, a search off the imaginary axis is necessary. As pointed by

Sandstede et al. [50], a deeper breakthrough would be if one could detect the

Krein signature directly from the Evans function. These issues are subject to

further investigations by the author.

3.3.3 Special eigenvalues

The symmetries of the Gross-Pitaevskii equation and its linearization and boosts

of the solutions imply the presence of a special set of eigenvalues.

For any m

j = 0 and λ = 0
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is a constant double eigenvalue for all p ≥ p0. Its multiplicity comes from the

symmetry of the Gross-Pitaevskii equation under a phase change (this generates

an eigenvector) and under a change of standing-wave frequency (this generates a

generalized eigenvector). A detailed discussion on these two symmetries and its

implications on spectra is given in [1], Appendix B.

Due to the presence of potential the other usual invariants of the nonlinear

Schrödinger equation – spatial translations, do not apply. Also, the Galilean

boost (2.9) does not work. Instead, the Garćıa-Ripoll–Pérez-Garćıa–Vekslerchik

(GGV) boost [43] introduced in (3.11) applies.

As discussed in [1], any one parameter family uτ of solutions to (3.8) give rise

to a solution to the corresponding equation linearized about u0. This fact follows

from the simple differentiation of (3.8) for uτ with respect to τ . The solution is

then given by

ũ := ∂τuτ |τ=0 .

In the case of GGV boost, setting R(t) = τ(cos t, sin t)T (R(t) can chosen any

linear combination of cos t and sin t, it only must satisfy Rtt = −R) provides

θ(r, θ, t) = τr cos(θ − t). Then uτ is in polar coordinates given by

uτ = ψ
(

r(cos(θ) − τ cos(t), sin(θ) − τ sin(t))T
)

exp(iτr cos(θ − t)) .

where ψ is given by (3.12) and w(r) satisfies (3.15). Hence

ũ =

(

cos t

sin t

)

· ∇ψ(r, θ, t) + ir cos(θ − t)ψ(r, θ, t) ,

which can be also written as

ũ = e−iµteimθ
[

w′(r) cos(θ − t) + i
mw

r
sin(t− θ) + irw cos(t− θ)

]

.
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The vector Ψ̃ = (<ũ,=ũ)T then satisfies the linearized equations (3.20) and has

the form

eµtΨ̃ =

(

cosmθ

sinmθ

)(

cos θ

sin θ

)

·
(

cos t

sin t

)

w′(r)

+

(− sinmθ

cosmθ

)[

−
(

cos θ

sin θ

)

·
(− sin t

cos t

)

mw(r)

r
+

(

cos θ

sin θ

)

·
(

cos t

sin t

)

rw(r)

]

.

In the decoupling to Fourier modes this solution yields a solution to the system

(3.26)–(3.27) for j = 1, λ = i and

y+ =
1

2

[

w′(r) − mw(r)

r
+ rw(r)

]

, y− =
1

2

[

w′(r) +
mw(r)

r
− rw(r)

]

.

The similar solution can be also obtained for λ = −i. Therefore the GGV boost

implies the existence of the eigenvalues (for any m)

j = 1 and λ = ±i .

Note, that the numerical results discussed further in this chapter indicate that

for

j = 0 and λ = ±2i

is also a pair of constant eigenvalues. We conjecture that this pair of eigenvalues

corresponds to some other boost of the Gross-Pitaevskii equation.

3.4 The Evans function

While the finite element and the Galerkin approximation methods provide a fast

and simple way to find eigenvalues of the problem (3.29), the Evans function

technique method has proved to be the most reliable and robust in certain cases.

This approach will be implemented here. It is parallel to [1], where the reader

can find many details of the procedure.
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The main idea of this approach is to identify eigenvalues of the operator Lj

as zeros of an analytic function Ej(λ). First, write the system (3.31) as a 4 × 4

system of first order ordinary differential equations:

y′ = B(r, j, λ)y (3.35)

where

B = B∞ +Bw , y =
(

y
(j+m)
+ (r), ∂ry

(j+m)
− (r), y

(j−m)
+ (r), ∂ry

(j−m)
− (r)

)T

(3.36)

and

B∞ =



















0 1 0 0

k+ −1/r 0 0

0 0 0 1

0 0 k− −1/r



















, Bw = |w|2



















0 0 0 0

4 0 2 0

0 0 0 0

2 0 4 0



















.

The coefficients k+ and k− are given by

k+(r, λ) =
(j +m)2

r2
+ r2 − 2p− 2iλ ,

k−(r, λ) =
(j −m)2

r2
+ r2 − 2p+ 2iλ .

The asymptotic behavior of solutions to (3.35) is described in the next theorem.

Theorem 3.4.1. For fixed parameters λ ∈ C and m > 0, p real, j integer, there

exist solutions y
(0)
i (r) and y

(∞)
i (r), i = 1, 2, 3, 4, to the system (3.35) with the

following asymptotic behavior,

y
(0)
i (r) ∼ y0i(r) as r → 0+ ,

y
(∞)
i (r) ∼ y∞i(r) as r → ∞ .

Here y0i and y∞i, i = 1, 2, 3, 4, are independent solutions of the asymptotic sys-

tems

y0 = B0(r, j, λ)y0 , y∞ = B∞(r, j, λ)y∞ ,
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where

B0 =



















0 1 0 0

l+ −1
r

0 0

0 0 0 1

0 0 l− −1
r



















and

l+(r) =
(j +m)2

r2
, l−(r) =

(j −m)2

r2
.

The asymptotic behavior of these solutions as r → +∞ is given by

y∞1 ∼ er
2/2rα+ (1/r, 1, 0, 0)T , y∞2 ∼ er

2/2rα− (0, 0, 1/r, 1)T ,

y∞3 ∼ e−r
2/2r−α+ (1/r,−1, 0, 0)T , y∞4 ∼ e−r

2/2r−α− (0, 0, 1/r,−1)T ,

where α+ = p+ iλ, α− = p− iλ, and as r → 0+ by

y01 ∼ r|j+m| (1, |j +m|/r, 0, 0)T , y02 ∼ r|j−m| (0, 0, 1, |j −m|/r)T ,

y03 ∼ r−|j+m| (1,−|j +m|/r, 0, 0)T , y04 ∼ r−|j−m| (0, 0, 1,−|j −m|/r)T .

The proof of the theorem is included in Appendix E.

The asymptotic analysis reveals that (3.35) has two exponentially growing

solutions asymptotically equivalent to y
(0)
1 (r) and y

(0)
2 (r) for r << 1 and two ex-

ponentially decreasing solutions asymptotically equivalent to y
(∞)
3 (r) and y

(∞)
4 (r)

for r >> 1. Note that these solutions are not in any way unique. From now

on the notation y
(0)
1 , y

(0)
2 , y

(∞)
3 and y

(∞)
4 will always refer to solutions with the

given asymptotics. The two-dimensional growing and decaying subspaces non-

trivially intersect only if λ is an eigenvalue. Their intersection can be detected

by vanishing of the Wronskian W (r, λ) = det(y
(0)
1 , y

(0)
2 , y

(∞)
3 , y

(∞)
4 ). Although the

determinant seems to be a proper quantity at a first glance, it has many disad-

vantages. First, it can be a priori dependent on r. This problem can be resolved
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by setting

Ej(λ) = −r2 det(y
(0)
1 (r), y

(0)
2 (r), y

(∞)
3 (r), y

(∞)
4 (r)) . (3.37)

This function is by Abel’s formula independent of r. (The determinant satisfies

a differential equation W ′(r) = Tr (B)W (r).)

It is evident that Ej(λ) = 0 is a necessary and sufficient condition for the

existence of an eigenvalue. The disadvantage of the direct approach described is

that it does not guarantee that Ej(λ) is an analytic function. On the other hand,

analyticity of the Evans function would enable to study the presence and location

of eigenvalues by means of contour integrals via the argument and generalized-

argument principle.

An alternative way to construct and evaluate the Evans function is to intro-

duce the adjoint system

z′ = −zB(r, j, λ) . (3.38)

The fundamental matrices Y (z) (its columns are yi) and Z(z) (with rows zi) of

systems (3.35) and (3.38) are related by ZY = I. Therefore Theorem 3.4.1 (by a

simple direct calculation of the inverse matrix) also guarantees existence of four

independent solutions of (3.38) as z
(∞)
1 , z

(∞)
2 , z

(∞)
3 and z

(∞)
4 such that the matrices

Z(∞) with columns z
(∞)
i and Y (∞) with columns y

(∞)
i satisfy Z(∞)Y (∞) = I. One

can also easily deduce the asymptotic behavior of z
(∞)
i as r → ∞. Furthermore,

a simple calculation [1] shows that

Ej(λ) = det







z
(∞)
1 · y(0)

1 z
(∞)
1 · y(0)

2

z
(∞)
2 · y(0)

1 z
(∞)
2 · y(0)

2






. (3.39)

Unfortunately, Ej(λ) constructed in this way can still depend on a particular

choice of solutions y
(0)
i and z

(∞)
i . The idea how to overcome this difficulty is quite

simple [1]. Instead of considering the system (3.35) one can construct a larger
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6 × 6 system for pairs (exterior products) of solutions to (3.35). This exterior

system will than have the unique solution of maximum growth and the unique

solution of maximal decay ŷ
(0)
12 = y

(0)
1 ∧ y(0)

2 and ŷ
(∞)
34 = y

(∞)
3 ∧ y(∞)

4 . Properties

of the adjoint system are similar as for 4 × 4 systems. Evaluation of the Evans

function is then given by the simple formula

Ej(λ) = ẑ
(∞)
34 · ŷ(0)

12 . (3.40)

It is important to realize that the Evans function given by (3.40) is analytic in C

and it is solution- and spatially- independent. On the other hand, the values are

the same as given by (3.39) and (3.37).

3.4.1 Symmetries of the Evans function

Before a description of the numerical implementation it is useful to list the sym-

metries of the Evans function constructed. The proof of the Proposition is the

same as in [1].

Proposition 3.4.2. For all integers j and complex numbers λ ∈ C,

• Ej(λ) = Ej(−λ);

• Ej(λ) = E−j(−λ).

Particularly, Ej(λ) is real for λ purely imaginary and E0(λ) = E0(−λ) = E0(λ).

3.5 Numerical implementation

All the computations in this thesis were performed on a PC with 512 MB memory

and 2.2 GHz AMD processor. The codes were implemented in Fortran 77 except
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for time-splitting direct evolution simulations and all visualizations which were

done in Matlab. Moreover, all computations were performed in real arithmetic.

3.5.1 Evans function evaluation

To attain high precision and stability for all computations, exterior products

were used throughout the whole numerical implementation of the evaluation of

the Evans function. As one can easily see from the asymptotic description of

the solutions, the behavior of the system is significantly different for r << 1 and

r >> 1. Therefore it is necessary to subsequently rescale the solution during the

integration process over the interval [0,∞) (the actual implementation approxi-

mate this interval with [ε,R], where ε = 10−7 and R = R(p), R(p) is set in such

a way that the vortex solution is negligible at R = R(p); R(p) is an increasing

function, R(0) = 5, R(35) = 25). The aim is to rescale the system in a such a

way that the matrix B(r, λ, j) (and so the solution) will be bounded through the

whole integration. The details of the rescaling used are included in Appendix F.

The presence of the unstable eigenvalues is detected by a contour integra-

tion using the argument principle, similarly as in [1]. The algorithm adaptively

calculates the argument of the Evans function Ej(λ) for j’s restricted by Propo-

sition 3.3.4 along a contour Γ which encloses a bounded region in R
2. The region

is pictured on Fig. 3.2. Note that Proposition 3.4.2 allows to confine the integra-

tion into the right half plane (the total argument will be then twice as large) and

also reduces the set of j’s for which the calculation is necessary to non-negative

values. Moreover, Proposition 3.3.5 restricts the location of unstable eigenvalues

into a vertical strip. Naturally, it is not possible to perform numerical calcula-

tions without imposing also some vertical bound for the region enclosed by the
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Figure 3.2: Contour used for counting of eigenvalues. Due to the symmetry of

the Evans function, the computation was restricted to the thick contour in the

right-half plane.

contour. The vertical bound in the implementation is chosen is such a way that

the behavior of the stable eigenvalues becomes predictable. Although there is no

mathematical justification provided here that the contour encloses all the unsta-

ble eigenvalues, the number of possible unstable eigenvalues is limited and can

be eventually numerically determined as it was discussed in Subsection 3.3.2.

Stable eigenvalues on the imaginary axis are, thanks to the symmetry of the

Evans function, zeros of the real valued function E(λ). Hence one can plot that

real function and determine the location and multiplicity of its zeros within a

finite interval. In the actual implementation this is done automatically — one

first interpolates the real function by a cubic spline and then uses the Newton
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method for locating zeros. In a small neighborhood of a possible double zero, a

very fine mesh was used to resolve any ambiguity.

The total number of unstable eigenvalues of Ej(λ) enclosed in the region is

then determined by the difference nu = ns+u − ns of

ns+u =
1

2πi

∮

Γ

E ′
j(λ)

Ej(λ)
dλ =

1

2πi

∮

Γ

arg (Ej(λ))dλ

and the number of (stable) eigenvalues ns on the imaginary axis, including their

algebraic multiplicity. If nu is not equal to zero it must by Proposition 3.4.2 be

an even positive integer. The precise location of pairs of unstable eigenvalues can

be determined by the generalized argument principle. The quantity

s1 =
∑

λi =

∮

Γ

λ
E ′
j(λ)

Ej(λ)
dλ (3.41)

gives the sum of positions of all eigenvalues enclosed by Γ. Since the location of

all eigenvalues on imaginary axis (within Γ) was already approximated by zeros

of the spline interpolation of Ej(λ), the formula (3.41) allows to find a sum of

positions of pairs of eigenvalues symmetric with respect to an imaginary axis.

Hence, if nu = 2, it completely determines the imaginary part of those unstable

eigenvalues. Their respective real parts (with the same absolute value) can be

further calculated using the generalized argument principle (the second moment):

s2 =
∑

λ2
i =

∮

Γ

λ2
E ′
j(λ)

Ej(λ)
dλ .

Once again, one subtracts the sum of squares of the approximated purely imagi-

nary eigenvalues from s2. The calculation of the real part of unstable eigenvalues

is then straightforward.

In theory this procedure describes the location of unstable eigenvalues (in the

case nu = 2). Unfortunately, the numerical error involved can be significant with
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a major contribution coming from a finite difference approximation of E ′
j(λ).

Therefore the obtained values are considered only approximate. The calculated

location is further used to construct a smaller contour Γs which lies solely in the

right-half plane and encloses only a single eigenvalue. The presence of a zero of

Ej(λ) inside a smaller contour is again calculated by the argument principle. Its

location is then determined by (3.41). This process can be repeated a few times

until a desired precision is attained. In the implementation the threshold for

a precision was set up to be 10−3. If there are more than 2 unstable eigenvalue

present (nu ≥ 4) inside Γ, it is easier to guess their location first and then continue

as in this case nu = 2 than to use higher moments.

Note that this method does not allow to calculate the eigenfunction directly

and for that another method must be used. A simple Galerkin method which

was implemented is described in Appendix G.

3.5.2 Direct simulations

For direct simulations of the evolution of the Gross-Pitaevskii equation (3.8),

either starting with initial data to be exact solutions or its perturbation, a time-

splitting scheme [6] was used (see [51] for a different schemes comparison).

The goal is to solve

iε
∂Ψ(x, t)

∂t
= −ε

2

2
4Ψ(x, t) + V (x)Ψ(x, t) + |Ψ(x, t)|2Ψ(x, t) , (3.42)

on (t, x) ∈ [0, T ] × Ω = [0, T ] × [−a, a]2 with the initial condition

Ψ(x, t)|t=0 = Ψ0(x) , for all x ∈ Ω,

and periodic boundary conditions

Ψ(x, t)|xi=−a = Ψ(x, t)|xi=a, Ψxi
(x, t)|xi=−a = Ψxi

(x, t)|xi=a ,
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for i = 1, 2 and t > 0. Set 4x = 4y = 2a/M > 0 and 4t > 0 to be a spatial

and a temporal discretization step respectively, xj = −a+ j4x, yj = −a+ j4y,

tn = n4t. Denote by Ψn
ij the approximation of Ψ(xi, yj, tn).

The time-splitting spectral method uses the fact that the operator on the

right-hand side of (3.42) can be written as a sum of two operators, for which it

is possible to solve the evolution equation exactly.

First, one can solve (integrate in time) exactly

iεΨt(x, t) = −ε
2

2
4Ψ(x, t) (3.43)

by the Fourier spectral method. Although the second evolution equation is non-

linear

iεΨt(x, t) = V (x)Ψ(x, t) + |Ψ(x, t)|2Ψ(x, t) , (3.44)

and it seems impossible to solve it exactly, the contrary is true. The equation

(3.44) preserve the norm |Ψ| and therefore it is effectively linear and can be

integrated exactly. On an interval t ∈ [a, b] it becomes

iεΨt(x, t) = V (x)Ψ(x, t) + |Ψ(x, a)|2Ψ(x, t) . (3.45)

These two half-steps will be combined via the standard Strang splitting: when

integrating over [tn, tn+1] first integrate (3.45) over the first half of the interval,

then integrate (3.43) over the whole interval and finally integrate (3.45) again

over the remaining half of the interval.

Assume that the data at tn are given by Ψn
jl, j, l = 0, . . . ,M − 1. In two-

dimensional case, integration steps on [tn, tn+1] are represented by the following
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formulas:

Ψ∗
jl = Ψn

jl exp

[

−i
(

V (xj, yl) + |Ψn
jl|2
) 4t

2ε

]

, j, l = 0, 1, 2, . . . ,M − 1,

Ψ̂∗
uv =

M−1
∑

j=0

M−1
∑

l=0

Ψ∗
jl exp [−i (ωu(xj + a) + ωv(yl + a))] ,

u, v = −M
2
, . . . ,

M

2
− 1,

and

Ψ̂∗∗
uv = Ψ̂∗

uv exp

[

−iε4t
(

ω2
u + ω2

v

2

)]

, u, v = −M
2
, . . . ,

M

2
− 1,

Ψ∗∗
jl =

1

M2

M/2−1
∑

u=−M/2

M/2−1
∑

v=−M/2

Ψ̂∗∗
uv exp [i (ωu(xj + a) + ωv(yl + a))] ,

j, l = 0, 1, 2, . . . ,M − 1,

Ψn+1
jl = Ψ∗∗

jl exp

[

−i
(

V (xj, yl) + |Ψ∗∗
jl |2
) 4t

2ε

]

, j, l = 0, 1, 2, . . . ,M − 1,

where ωu = uπ/a is the Fourier frequency. Clearly, the second step represents a

two-dimensional discrete Fourier transform and the fourth step its inverse (both

steps are implemented using FFT). In the case considered here ε = 1 and a = 10.

As reported in [51] and [6], the scheme is infinite order of accuracy in spatial

discretization and second order in time, i.e. the error is O ((4t)2, (4x)p)) for all

p > 0. The performance of the scheme is shown on Fig. 3.3, where errors of the

numerical solutions Ψ
(4t)
num initialized as a singly-quantized vortex rotating with a

given frequency µ are compared with the analytically predicted solution (exact

rotation of the initial data). Here, the norm used is

|f |24x = (4x)2
∑

ij

f 2
ij . (3.46)
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Figure 3.3: The | · |4x norm of the error produced by the time-splitting scheme

is plotted vs. time. The four different curves correspond (from above) to 4t =

0.1, 0.05, 0.025 0.0125, 4x = 20/256.

By subsequently setting the time step to half its value the error decreases ap-

proximately by a factor of 4. This test was performed for 4x = 20/256 and

4t = 0.0125, 0.025, 0.05 and 0.1.

The Gross-Pitaevskii equation solved here is not periodic, particularly the

potential V (x) = |x|2/2 has singularity in its first derivative at the boundary of

the proposed periodic box. To avoid this problem, it is helpful to mollify the

quadratic potential by replacing it with

V (x) =























1
2
|x|2 for |x| < a− δV ,

1
2
|x|2 [1 − cV (a− δV − |x|)2] for a− δV < |x| < a,

1
2
a2(1 − εV ) for |x| > a,
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where εV is chosen small, ε = 0.05, and

δV =
aεV

1 − εV
, cV =

(1 − εV )2

a2εV

are chosen in such a way that V (x) and its derivative are periodic in both x and

y direction.

3.6 Numerical results

Numerical results will be discussed separately for singly- and multi-quantized

vortices since the stability diagrams (diagrams of stable and unstable eigenvalues)

reveal different patterns.

3.6.1 Singly-quantized vortices m = 1

The radial vortex profile obtained by the predictor-corrector algorithm and re-

fined by the multiple shooting method as described in Section 3.2 is drawn on

Fig. 3.4. For a better illustration the modulus of the corresponding vortex solu-

tion in the right-half plane is visualized on Fig. 3.5.

The singly-quantized vortex, m = 1 is found to be linearly stable for all values

of the parameter p investigated, p ∈ (0, 35), corresponding to number of particles

N ∈ (0, 106) for 23Na data given in Section 3.1. By Theorem 3.32 the unstable

eigenvalue can appear only for |j| ≤ 2. Location of the stable eigenvalues (p

vs. Imλ) for j = 0, 1, 2, 3 is plotted on Fig. 3.6. For the sake of clarity only

eigenvalues with |=λ| < 5 are presented here. The bound |=λ| < max(5, p/2)

was imposed in the numerical implementation.

For a small value of p, close to p0 = m + 1 the eigenvalues are close to the

eigenvalues of the reduced uncoupled linear problem neglecting the |w|2 depen-

51



0 2 4 6 8 10 12 14 16
0

1

2

3

4

5

6

0 0.02 0.04 0.06 0.08 0.1
0

0.5

1

1.5

2

2.5

Figure 3.4: The radial vortex profile of a singly-quantized vortex for the dimen-

sionless parameter p ≈ 30 corresponding to N ≈ 106 particles of 23Na
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Figure 3.5: The modulus of the singly-quantized vortex solution for the dimen-

sionless parameter p ≈ 30 corresponding to N ≈ 106 particles of 23Na.
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m = 1 j = 1 λ0 = −3 λ(s) = −2.64 − 1.24 s−1.02

λ0 = −1 λ(s) = 0.01 − 1.48 s−0.80

λ0 = 3 λ(s) = 2.73 − 0.17 s−0.14

j = 2 λ0 = −2 λ(s) = −1.41 − 1.82 s−1.04

λ0 = 0 λ(s) = 1.41 − 1.61 s−1.04

λ0 = 2 λ(s) = 3.16 − 2.43 s−1.02

Table 3.1: Approximate asymptotic behavior of eigenvalues for m = 1.

dence. This is not a surprise since for p close p0 the modulus of |w|2 is small

and the nonlinear problem “decouples” to a pair of linear equations with solu-

tions close to the corresponding eigenfunction for p = p0. As shown before these

solutions exist for p0 + 2n, n ≥ 0.

As p increases certain eigenvalues remain constant: a double eigenvalue λ = 0

and simple eigenvalues λ = ±2i for j = 0 and simple eigenvalues λ = ±1 for

j = 1. These eigenvalues originate in the symmetries and boosts of the Gross-

Pitaevskii equation and are present for every m (see Subsection 3.3.3).

The remaining non-constant eigenvalues after an initial steep decay or growth

approach a regime where they slowly monotonically grow. All eigenvalues (for

large p) are clearly separated preventing a collision of two eigenvalues on imagi-

nary axis. It would be plausible to describe the asymptotics of the eigenvalues as

p→ ∞ when the condensate approaches the Thomas-Fermi regime. We were only

able to study the asymptotic behavior of purely imaginary eigenvalues numeri-

cally by plotting a loglog plot of the first order differences of λ(s). We observed

a clear linear trend implying an algebraic decay of an exact power.
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Figure 3.6: Stable eigenvalues (p vs. Imλ) of the linearization about a singly-

quantized, m = 1, vortex solution, p ∈ (m + 1, 30): (a) the eigenvalues corre-

sponding to modes j = 0 (marked thin), j = 1 (marked thick); (b) the eigenvalues

corresponding to j = 2 (thin), j = 3 (thick).
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m = 2 j = 2 λ0 = −4 λ(s) = −1.41 − 2.69 s−0.96

λ0 = 0 λ(s) = 1.38 − 7.96 s−1.39

λ0 = 2 λ(s) = 3.11 − 27.66 s−1.59

j = 3 λ0 = −3 λ(s) = −1.74 − 5.14 s−1.06

λ0 = −1 λ(s) = 1.73 − 3.97 s−1.02

λ0 = 1 λ(s) = 3.61 − 5.30 s−0.97

Table 3.2: Approximate behavior of eigenvalues for m = 2.

The approximate behavior of eigenvalues with a small imaginary part for

m = 1, j = 1, 2 and m = 2, j = 2, 3 is presented in Tables 3.1–3.2. As can be

seen from the tables — most of the eigenvalues seem to approach a constant limit

value Lλ0
and their asymptotic behavior as s >> 1 is well approximated by

λ(s) = Lλ0
− cs−1

for a constant c. On the other hand, certain eigenvalues show different rate of

growth clearly distinct from (−s−1) but we do not have any explanation of this

phenomena.

3.6.2 Multi-quantized vortices m ≥ 2

The eigenvalue diagrams for multi-quantized vortices, m = 2, show higher com-

plexity of the behavior of the eigenvalues than those for m = 1. The radial vortex

profile for p ≈ 35 is illustrated on Fig. 3.7 and the modulus of the vortex solution

in the right half-plane on Fig. 3.8. For m = 2 the vortex solution is within its

core well approximated by a paraboloid.
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Figure 3.7: The radial vortex profile of a multi-quantized vortex, m = 2, for the

dimensionless parameter p ≈ 35 corresponding to N ≈ 106 particles of 23Na.

The modes j = 0 and j = 1 demonstrate the same features as in the case of the

singly-quantized vortex with the same constant eigenvalues: a double eigenvalue

λ = 0 and simple eigenvalues λ = ±2i for j = 0 and simple eigenvalues λ = ±i

for j = 1 (see Fig. 3.9 (a)).

A different behavior appears for modes j = 2 and j = 3, as shown on Fig. 3.9

(b) and Fig. 3.11. While for j = 3 there are no unstable eigenvalues present and

the stable eigenvalues do not collide but rather diverge from each other when they

approach each other, the collisions are inevitable for j = 2 and cause instability.

A collision of two stable purely imaginary eigenvalues produces a pair of unstable

eigenvalues symmetric with respect to the imaginary axis. After a further increase

of parameter p these two eigenvalues come back to the imaginary axis and split
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Figure 3.8: The modulus of the multi-quantized vortex solution, m = 2, for the

dimensionless parameter p ≈ 35 corresponding to N ≈ 106 particles of 23Na.

back to two stable eigenvalues as illustrated on Fig. 3.10. This “collision – split

– collision” process almost periodically repeats for the whole range of p studied.

We conjecture that this behavior is caused by the presence of an eigenvalue

with negative Krein signature. The imaginary part of this eigenvalue is decreasing

with increasing p and on its way it encounters eigenvalues with the opposite

signature. After each collision the eigenvalues split off the imaginary axis and

become eigenvalues with zero Krein signature symmetric relative to the imaginary

axis. Reversibility of this process suggests that the eigenvalues come back to the

imaginary axis and the process repeats itself (for a larger parameter p). This

suggest a surprising fact that the transition to instability for large p may happen

at a large frequency, i.e. for Imλ large, and therefore there is no hope to confine

the imaginary parts of unstable eigenvalues to a finite interval independently
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Figure 3.9: Stable eigenvalues (p vs. Imλ) of the linearization about a multi-

quantized vortex solution, m = 2, p ∈ (m+ 1, 35): (a) eigenvalues corresponding

to modes j = 0 (marked thin), j = 1 (marked thick); (b) eigenvalues correspond-

ing to j = 3.

of p. The behavior of the eigenvalues demonstrates a strong agreement with the

earlier work of Pu et al. [5] as can be seen also from comparison of Fig. 3.10 and

the figure in the paper. This is also in agreement with the results of Seiringer

[31] where he proved that for any m ≥ 1 for large enough p the vortex becomes

energetically unstable in that sense that it cannot be a global minimizer of the

energy and is subject to symmetry breaking.
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Figure 3.10: Stable and unstable (Reλ vs. p) eigenvalues of the linearization

about a multi-quantized vortex solution, m = 2, p ∈ (m + 1, 35), corresponding

to the mode j = 2.

In the case j = 3 we suspect that the eigenvalues have the same Krein signa-

ture and therefore they cannot split off the imaginary axis. Instead, they repel

each other when they are too close to each other and do not collide at all.

We also give numerical evidence of the presence of exponential instability.

Direct complex-time evolution simulations described in Section 3.5.2 were con-

ducted with with a time step 4t = 0.025 and spatial discretization 4x = 2a/256

for a = 10 (Fig. 3.12).

First, we consider the exact vortex solution initialized by Ψp0 = e2iθw(r). A

comparison of the numerically evolving solution Ψp(t) and the analytical pre-

diction e−ipte2iθw(r) (but in the case of the singly-quantized vortex) was already

performed and is illustrated on Fig. 3.3 with the error measured by the norm |·|4x
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Figure 3.11: Imaginary part of stable and unstable (Imλ vs. p) eigenvalues of

the linearization about a multi-quantized vortex solution, m = 2, p ∈ (m+1, 35),

corresponding to mode j = 2. Stable eigenvalues are plotted thick, unstable form

thin curves.

introduced in (3.46). Note that the norm |Ψ0p|24x ≈ (4x)2 · 160 is preserved for

the exact equation and varies only slowly in the time-splitting numerical scheme

used for direct evolution of the system.

Then, the initial data Ψ0p are perturbed by a random (not necessarily radial

modulus) function Ψ0rand, |Ψ0rand|24 = (4x)2 in the whole domain [−10, 10] ×
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Figure 3.12: A comparison of error growth rates for m = 2, j = 2, p ≈ 8. The

time evolution of the error functions Erand(t) (the thick solid curve), Einst(t) (the

thin solid curve) is plotted vs. time. A comparison with the error function Eexp

(the dashed curve) is shown and zoomed in the insert. The dash-dotted curve

represents an error Estab and corresponds to p ≈ 9.

[−10, 10]. As can be seen from Fig. 3.12, the norm of the difference of the evolving

solution

Erand(t) = |Ψrand(t) − Ψp(t)|4x

does not demonstrate any presence of the localized exponential instability (for

t ≤ 5). But the global character of the initial perturbation (in the whole domain)

interacts with the spatial boundary and produces a significant error in a relatively

short time t ≈ 5 and produces a significant error growth at that time.

Also, the exact solution Ψp0 is initially perturbed by data approximating

the unstable mode Ψ0unst obtained by the procedure described in Appendix G.
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Unfortunately, the Galerkin approximation approach does not produce a pure

eigenfunction and the solution is polluted by significant contributions from other

eigenstates. The exact eigenfunction has the precise form (by Theorem 3.3.2)

Ψexact
0unst = Ceλtei(j+m)θy+(r) + Ceλtei(j−m)θy−(r).

(Here y+, y− are solutions to (3.26)–(3.27) for the unstable eigenvalue λ, <λ > 0.)

Again, the evolution of the error

Eunst(t) = |Ψunst(t) − Ψp(t)|4x

is plotted. Although the behavior of Eunst(t) for small t does not correspond to

the rate of growth expected for Ψexact
0unst (which may be caused by the presence of

the other eigenstates), after a certain time it is well correlated with a multiple of

the expected growth Eexp = Ae<λt
√
B + C cos 2t=λ, for some constants A,B and

C, where the constants B and C are predicted by the theoretical analysis. Nev-

ertheless, the exponential growth with the predicted growth rate demonstrates

the presence of the unstable eigenvalue.

Finally, a comparison was performed with the expected stable solution for

p ≈ 9. The initial perturbations were taken to be a random perturbation and the

perturbation by some approximation of the eigenfunction for the stable eigenvalue

λ ≈ −4 (see also Fig. 3.12). The random perturbation causes almost the same

error as in the previous case and therefore is not plotted. The error Estab(t)

produced by a solution given by the initial perturbation by an approximate stable

eigenstate demonstrate first the same phenomena as the unstable solution. The

difference appears afterwards when the growth rates of the stable and unstable

solution clearly separate, with an exponential growth dominating the behavior of

the unstable case and oscillatoric behavior in the stable case.
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Certainly, we should endeavour to find the precise form of the eigenfunctions

since they are relevant not only to the direct simulations but also to numerical

calculation of the Krein signature. The proposed methods are finite element

method used in [5] or implementation of a multiple shooting method similar to

the one already used here for improvement of the exact numerical solutions of

the Gross-Pitaevskii equation.
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Chapter 4

The Landau-Lifshitz magnetization equation

The material in this Chapter documents that the Landau-Lifshitz equation

mt = m×4m− λm×m×4m, (4.1)

(λ ∈ R, m = (m1,m2,m3), m : R
2 → S

2) does not support existence of any non-

stationary vortices or localized vortex-like solutions (e.g. encapsulated vortices)

of finite energy. While this is clear if dissipation is present (λ > 0), surprisingly

it remains true in the absence of dissipation (when λ = 0). Note that although

the Landau-Lifshitz equation does not have a priori the structure of the nonlinear

Schrödinger equation, written using the stereographic projection, it transforms

to such a form [52].

4.1 Derivation of the Landau-Lifshitz equation

The Landau-Lifshitz equation, often called also the magnetization equation, de-

scribes the time evolution of the density of the magnetic moment (magnetization)

m in a ferromagnetic medium [53]. The magnetic moment is primarily created by

electron spins. Its magnitude is approximately constant for temperatures below

the Curie point. A detailed discussion of the Landau-Lifshitz equation can be
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found in Komineas and Papanicolaou [54], Visintin [55] and Kosevich, Ivanov and

Kovalev [56].

The dynamics of the Landau-Lifshitz equation is derived from the general

torque equation [57]

mt = γ0L = γ0m× h ,

where L is the magnetic torque, h is the effective intensity of the magnetic field

and γ0 = ge
2mec

is a constant (e is the electron charge, me is the unit electron mass,

c is the speed of light and g is the gyromagnetic ratio, g ≈ 2). To preserve the

magnitude |m| of the magnetic moment it is traditional to include the Ginzburg-

Landau phenomenological dissipative term [54]

mt = γ0m× h− λm× (m× h) , (4.2)

where λ is a dissipation constant — typically γ0 > λ (often γ0 >> λ). The

equation (4.2) is referred to as the Landau-Lifshitz equation [53] and is formally

equivalent to the Gilbert equation:

mt = γ(L− ηm×mt) .

The effective intensity h of the magnetic field is the negative variational derivative

of the free energy E(m)

h = − δE
δm

.

The free energy E(m) in two-dimensional models consists in general of four dif-

ferent terms [55]:

E(m) =

∫

Ω

(

1

2

3
∑

i,j=1

aij
∂m

∂xi
· ∂m
∂xj

+ Φ(m) −Happ ·m+
1

8π
|Hdem(m)|2

)

dx (4.3)

where the individual contributions in (4.3) represent the exchange, the anisotropy,

the applied magnetic field and the demagnetizing field energies. The symmetric
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tensor (aij) is assumed to be positive definite, the function Φ : S
2 → R depends

on the internal structure of the ferromagnet and is assumed to be smooth and

convex (as defined on R
3), Happ is a prescribed divergence-free applied magnetic

field and Hdem is the demagnetizing magnetic field given by the magnetostatic

equations (a simpler form of the Maxwell equations)

∇ · (Hdem + 4πm) = 0 and ∇×Hdem = 0 .

In what follows only the two-dimensional model (i.e. m : R
2 → S

2) in the

whole plane Ω = R
2 will be considered. Moreover, assume that the leading

term of the free energy — the exchange energy — is uniform and diagonal and

dominates all the other sources of the free energy, so

E(m) =

∫

R2

1

2
|∇m|2dx . (4.4)

Then (4.2) yields (4.1).

4.1.1 Properties of the Landau-Lifshitz equation

An easy calculation shows that the constraint |m| = 1 is preserved in time by

(4.1). A numerical scheme for (4.1) was recently proposed by E and Wang [58].

For λ = 0 the equation (4.1) reduces to

mt = m×4m (4.5)

and describes the Hamiltonian (symplectic) flow of harmonic mappings into S
2. If

λ = ∞ the equation (4.1) reduces tomt = 4m+|∇m|2m (since −m×(m×4m) =

4m+ |∇m|2m for |m| = 1) and describes heat flow of harmonic maps into S
2.

Another common form of (4.1) is the so-called easy-axis magnetization, for

which the one-direction anisotropy energy term dominates the total free energy

66



(4.3),

mt = m×4m+ λm× (m3ẑ) , (4.6)

where ẑ is the z-direction unit vector [59].

The effect of individual terms on dynamics of (4.1) can be inferred by the

following simplified considerations. First, since −m× (m×h) = h− (m ·h)m for

|m| = 1, the second term on the right-hand side of (4.1) act as a projection and

forces m to tend to the direction of h = 4m. It dissipates the energy because

d

dt
E(m) = −

∫

mt · hdx = −λ
∫

|m× h|2dx < 0 .

On the other hand, the term m × h is not dissipative and is perpendicular to

both m and h and forces m to rotate around h. The total effect of terms on the

right hand side of (4.1) results in a non-planar spiral revolution of a unit vector

m asymptotically tending to h/|h|.

4.2 The Landau-Lifshitz equation in spherical

coordinates

For further study it is convenient to transform the Landau-Lifshitz equation using

spherical coordinates:

m1 = cosψ sinφ, m2 = sinψ sinφ, m3 = cosφ .

The functions φ and ψ naturally map the plane R
2 into [0, π) and [0, 2π) respec-

tively, but they will be allowed to have as their values any real numbers and

the value will be always considered modulo the appropriate constant (π and 2π

respectively). In this setting (4.1) turns into

φt = −F + λG , ψt sinφ = G+ λF , (4.7)
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where

F = sinφ4ψ + 2 cosφ∇φ · ∇ψ and G = 4φ− sinφ cosφ(∇ψ)2 .

The goal is to search for standing wave solutions represented in polar coordi-

nates (r, θ) as

φ = φ(r), ψ = nθ + ωt+ ψ0 , (4.8)

where n is a vortex degree, ω is the angular velocity (frequency) and ψ0 is the

initial phase. Then F = 0 and φt = 0, so (4.7) becomes

λG = 0 , ψt sinφ = G .

Thus either G = 0 and then Ψt sin Φ = 0 or λ = 0. In the first case any nontrivial

solution Φ 6= 0 must have ω = 0 and hence stationary solutions. If λ = 0 the

equation (4.1) reduces to (4.5). Then (4.7) yields

φrr +
1

r
φr − sinφ cosφ

n2

r2
= ω sinφ . (4.9)

Note the similarity with the structure of the cubic nonlinear Schrödinger equa-

tion [15].

To avoid the singularity at r = 0 one can exploit with minor modifications

the technique of Iaia and Warchal [15]. The proper initial conditions are

lim
r→0+

1

rn
φ(r) = d and lim

r→0+

1

rn−1
φ′(r) = nd . (4.10)

From now on it will be assumed for simplicity that d > 0. The form of these

conditions implies that to specify a solution one only needs to prescribe one of

them. The energy E of a solution of the form (4.8) is given by

E = π

∫ ∞

0

(

φ2
r +

n2

r2
sin2 φ

)

rdr . (4.11)
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Similarly, following [15] it is possible to justify the global existence of the

solutions and uniqueness for the initial value problem (4.9)–(4.10). If Φ(r) is

approaching a constant value at infinity for ω 6= 0, (4.9) implies lim
r→∞

φ(r) = kπ

for an integer k. It will be shown further that k must be 0, 1 or 2. All such

solutions have locally finite energy over any finite interval (0, R). Any other

initial condition not in agreement with φ(0) = 0 (e.g. φ(0) = π
2
) clearly leads to

a locally infinite energy in some neighborhood of 0.

4.3 The main result

The main result of this Chapter is the following.

Theorem 4.3.1. For any ω 6= 0, any λ ∈ R and any d > 0 the only solution

φ(r) to (4.9)–(4.10) oscillates infinitely many times about the value π as r → ∞

and has an infinite energy (4.11).

The statement of Theorem 4.3.1 is particularly interesting if λ = 0 since

in the case of λ 6= 0 one can use either the above mentioned argument or the

Derrick-Pohozaev scaling to rule out any non-stationary solutions. Unfortunately

for λ = 0 the energy associated with (4.1) is invariant in such a scaling and this

simple argument cannot be used here. The behavior of a solution is illustrated

on Fig. 4.1.

One can use similar arguments to show that the natural energy associated

with the Bessel functions,

EB =

∫ ∞

0

ru2
r(r) +

1

r
u2(r)dr ,

is infinite for every Bessel function, a solution to the Bessel equation

r2u′′ + ru′ + (r2 − n2)u = 0 .
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Figure 4.1: The radial profile of a generic non-stationary solution to the Landau-

Lifshtiz equation

4.4 Vortex solutions to the Landau-Lifshitz

equation

The connection between solutions to (4.1) of the structure (4.8) and vortices

introduced in Chapter 2 is straightforward. One needs to transform the solution

(4.8) written in the spherical coordinates by the stereographic projection which

transforms (4.1) into nonlinear Schrödinger equation

iwt = −4w − 2
∇w · ∇w
1 + |w|2 w̄ . (4.12)
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The solution w to (4.12) is given by w = u+ iv, where u and v are defined by

m1 =
2u

1 + u2 + v2
, m2 =

2v

1 + u2 + v2
, m3 =

u2 + v2 − 1

1 + u2 + v2
.

Here m is a solution to (4.1), |m| = 1. Then

u =
cosψ ± | cosψ|| cosφ|

sinφ
, v = u tanψ . (4.13)

For simplicity ignore the absolute values in (4.13). The two choices of the sign ±

in (4.13) yield two different formulas for a solution w to (4.12)

w = eiψ cot
φ

2
, and w = eiψ tan

φ

2
.

Clearly, this is the exactly same setting for a vortex solution as it was introduced

in Chapter 2,

w(r, θ, t) = ei(nθ+ωt+θ0)U(r) . (4.14)

The appropriate choice of the form of the function U(r) in (4.14) is given by the

sign of ω as will be later clarified in Lemma 4.4.2.

The following simple facts about the symmetries and scaling properties of the

solutions to (4.9) will be stated without proof. Note that the proposition does

not take into account the initial condition (4.10).

Proposition 4.4.1.

• If φ(r) is a solution of (4.9) then φ∗(r) = −φ(r) is a solution too.

• If φ(r) is a solution of (4.9) then φ∗(r) = 2π + φ(r) is a solution too.

• If φ(r) is a solution of (4.9) for a parameter ω then φ∗(r) = π ± φ(r) is a

solution of the same equation for a parameter −ω.
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• If φ(r) is a solution of (4.9) for a parameter ω then φ∗(r) = φ(λr) is a

solution of the same equation for a parameter λ2ω. (Thus one can always

assume that ω = 1, ω = −1 or ω = 0.)

First, consider the case ω = 0. In two dimensions there exist stationary

solutions to (4.1), the Belavin-Polyakov instantons. These solutions are harmonic

maps from R
2 into S

2. The equation (4.9) becomes integrable and all the solutions

satisfying (4.10) are

φ(r) = 2 tan−1

(

d

2
rn
)

. (4.15)

Note that such a solution has a finite energy (4.11).

The next lemma shows that a solution of the problem (4.9)–(4.10) is bounded.

Lemma 4.4.2. Let φ(r) be a solution to (4.9)–(4.10) for ω = 1 or ω = −1

respectively. Then φ(r) is bounded, 0 < φ(r) < 2π for all r > 0 or −π < φ(r) < π

respectively.

Proof. First, let ω > 0. Multiply (4.9) by the term r2φr(r) to obtain

∂

∂r

(

r2φ2
r

2

)

+
∂

∂r

(

n2

4
cos 2φ

)

= −ωr2 ∂

∂r
(cosφ) .

By integrating the last identity on interval (R, r) and using integration by parts

it is possible to derive the Pohozaev identity:

1

2

(

r2φ2
r(r) −R2φ2

r(R)
)

+
n2

4
(cos 2φ(r) − cos 2φ(R))

= 2ω

∫ r

R

s(cosφ(s) − cosφ(r))ds+ ωR2(cosφ(R) − cosφ(r)) . (4.16)

Setting R = 0 in (4.16) and using limr→0 φ(r) = 0 the initial condition (4.10)

implies φ(s) > 0 on (0, r) for some r > 0. Then

1

2
r2φ2

r(r) −
n2

2
sin2 φ(r) = 2ω

∫ r

0

s(cosφ(s) − cosφ(r))ds . (4.17)
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If there exists r > 0 such that φ(r) = 0 (assume that φ(s) > 0 on (0, r)) then

by (4.17)

0 ≤ r2φ2(r) = 4ω

∫ r

0

s(cosφ(s) − 1)ds < 0 ,

which yields a contradiction. Hence φ(r) > 0 for all r > 0. The very same

argument can be used to prove that φ(r) < 2π for all r > 0. Similarly in the case

ω < 0 one can prove −π < φ(r) < π for all r > 0.

Lemma 4.4.3. Let φ(r) be a solution to (4.9)–(4.10) for ω > 0 and let r be a

point of local maximum (resp. a local minimum) of φ(r), r > n√
ω
. Then φ(r) > π

(resp. φ(r) < π). If ω < 0 then φ(r) > 0 (resp. φ(r) < 0).

Proof. Since r2ω > n2, it follows ω + cosφ(r)n
2

r2
> 0. Then by (4.9)

φrr = −1

r
φr + sinφ

(

ω + cosφ
n2

r2

)

= sinφ

(

ω + cosφ
n2

r2

)

.

Thus the sign of φrr is the same as the sign of sinφ. The statement immediately

follows by Lemma 4.4.2. Similar arguments prove the statement for ω < 0.

4.5 Non-existence of vortex solutions

In this section we demonstrate that the only possible type of a solution to (4.9)–

(4.10) is an infinitely oscillating solution by eliminating all the other types.

The list all the possible behaviors of radial profiles of vortex-like solutions to

(4.9)–(4.10) for ω > 0 using Lemma 4.4.2–4.4.3 (omitting the trivial solutions

φ(r) = kπ) is not so long (the similar classifications exists also for ω < 0):

• pure vortex solution – growing for all r > n√
ω
, and satisfying

lim
r→∞

φ(r) = π or 2π ,

73



• encapsulated vortex solution – any solution satisfying

lim
r→∞

φ(r) = 0 ,

• finitely oscillating solution – any solution satisfying

lim
r→∞

φ(r) = π ,

which is monotone on some interval (R,∞);

• infinitely oscillating solution (also called oscillating solution) – any solution

satisfying

lim
r→∞

φ(r) = π ,

which is not monotone on any interval (R,∞).

The main result of this section is stated in the next Theorem.

Theorem 4.5.1. There are no solutions to (4.9)–(4.10) for ω > 0 with the

property limr→∞ φ(r) = 0, i.e. there are no encapsulated vortex solutions.

Proof. Assume the contrary. Let φ(r) be a solution to (4.9)–(4.10) satisfying the

boundary condition lim
r→∞

φ(r) = 0. Since φ(r) > 0 for some small positive r, it

has at least one local maximum. Fix R to be any of them. Then (4.16) yields

1

2
r2φ2

r(r) +
n2

4
(cos 2φ(r) − cos 2φ(R))

= 2ω

∫ r

R

s(cosφ(s) − cosφ(r))ds+ ωR2(cosφ(R) − cosφ(r)) . (4.18)

Let us moreover assume that φ(R) 6= π (φ(R) 6= 0 by Lemma 4.4.2). So

cos 2φ(R) < 1. By Lemma 4.4.3 such a solution must be decreasing for r large

enough so we can choose r to satisfy both cosφ(s) < cosφ(r) for all s ∈ (R, r)
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and cos 2φ(R) < cos 2φ(r). Then the left hand side of (4.18) is positive while the

right hand side is negative yielding a contradiction.

In the case of φ(R) = π the equation (4.18) becomes

r2φ2
r(r)

2
= 2ω

∫ r

R

s(cosφ(s) − cosφ(r))ds

+ ωR2(−1 − cosφ(r)) − n2

4
(cos 2φ(r) − 1) . (4.19)

Again choose r large enough to satisfy cosφ(s) < cosφ(r) for all s ∈ (R, r) so the

integral in (4.19) becomes negative. Then

1

2
r2φ2

r(r) ≤ −ωR2(1 + cosφ(r)) +
n2

4
(1 − cos 2φ(r))

= 2 cos2 φ(r)

2

(

n2 sin2 φ(r)

2
− ωR2

)

. (4.20)

On the other hand, for r large enough φ(r) is positive and close to zero. Hence

cos2 φ(r)
2
> 0 and n2 sin2 φ(r)

2
< 2ωR2. This contradicts (4.20).

A similar statement is true for ω < 0 but first one needs to prove the following

lemma which estimates the possible rate of decay of such solutions.

Lemma 4.5.2. If there exists a positive solution φ(r) to (4.9)–(4.10) for ω < 0,

such that limr→∞ φ(r) = 0 then nφ(r) + rφr(r) ≥ 0, i.e. φ(r) ≥ 1
rnφ(r0)r

n
0 for

any r > r0 > 0.

Proof. For the sake of brevity set ω = −1. The equation (4.9) can be rewritten

as

φrr +
1

r
φr −

n2

r2
φ = − sinφ+

n2

r2

(

sin 2φ

2
− φ

)

. (4.21)

Since sin 2φ < 2φ for φ > 0 and φ(r) < π by Lemma 4.4.2, the right hand side of

(4.21) is always negative. Hence

φrr +
1

r
φr −

n2

r2
φ < 0 .
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Following the same calculation as in [15] set φ(r) = rnu(r). Then for any r >

r0 > 0

u(r) < u(r0) + ur(r0)
r0
2n

[

1 −
(r0
r

)2n
]

.

After substitution φ(r) = rnu(r) finally obtain

φ(r) <

(

r

r0

)n [

φ(r0) +

(

r0φr(r0)

2n
− φ(r0)

2

)(

1 −
(r0
r

)2n
)]

. (4.22)

The inequality (4.22) holds for any r > r0 > 0. If there exists a positive solution

to (4.9) then the term in the bracket must be positive for every such a pair (r, r0).

Therefore

φ(r0) +

(

r0φr(r0)

2n
− φ(r0)

2

)[

1 −
(r0
r

)2n
]

> 0 .

Because r can be arbitrarily large, the difference 1 −
(

r0
r

)2n
can be arbitrarily

close to one. Thus it is necessary that

φ(r0) +

(

r0φr(r0)

2n
− φ(r0)

2

)

≥ 0 .

Integration over (r0, r) then implies

φ(r) ≥ 1

rn
φ(r0)r

n
0 .

Proposition 4.5.3. There is no solution to the system (4.9)–(4.10) for ω < 0

with the property limr→∞ φ(r) = 0 which is monotone on some interval (R,∞),

i.e. there are no encapsulated vortex solutions.

Proof. First, a proof that there are no positive solutions to (4.9)–(4.10) for ω =

−1 such that limr→∞ φ(r) = 0 will be presented.

Using the Pohozaev identity (4.16) on interval (0, r) one arrives at

r2φ2
r(r) − n2 sin2 φ(r) = −4

∫ r

0

s (cosφ(s) − cosφ(r)) ds . (4.23)
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By Lemma 4.4.3 a solution φ(r) may not attain a local minimum for r large

enough. Hence, if there exists a positive solution to (4.9)–(4.10) such that

limr→∞ φ(r) = 0 it must decrease monotonically to zero on (r,∞) for some r

large enough. Then Lemma 4.5.2 implies 0 > rφr ≥ −nφ and r2φ2
r ≤ n2φ2.

Combining it with (4.23) yields

−4

∫ r

0

s (cosφ(s) − cosφ(r)) ds ≤ n2(φ2 − sin2 φ) . (4.24)

Pass to the limit r → ∞ on both sides of (4.24), then

lim
r→∞

n2(φ2 − sin2 φ) = 0

on the right hand side. On the other side

lim
r→∞

4

∫ r

0

s (cosφ(r) − cosφ(s)) ds = 4

∫ ∞

0

s (1 − cosφ(s)) ds > 0

(the integrand is a positive quantity which justifies the limit) yields a contradic-

tion for any nontrivial solution.

If φ(r) is not positive, it is by the assumption monotone on some interval

(R,∞). Assume φ(r) decreases to zero at infinity (if it increases, one needs to

perform the transformation φ̃(r) = −φ(r) first). If φ(r) is not positive for all

r ∈ (0,∞), then there exist R > 0, such that φ(R) = 0 and φ(r) > 0 for r > R.

Hence one can exploit Lemma 4.5.2 on the interval (R,∞) and repeat the above

arguments for positive solutions to prove the statement of the proposition just

by replacing zero by R in the proof.

Proposition 4.5.4. There is no solution to the system (4.9)–(4.10) for ω > 0

with the property limr→∞ φ(r) = π or limr→∞ φ(r) = 2π growing for all r > n√
ω
,

i.e. there are no pure vortex solutions.
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Proof. First, assume that limr→∞ φ(r) = π. Then φ̃ = π − φ solves (4.9) for

ω < 0 with the initial condition φ̃(0) = π. Clearly limr→∞ φ̃(r) = 0. The

monotonicity ensures that the solution is decreasing on the interval
(

n√
ω
,∞
)

.

The non-existence of such a solution was already proved in Theorem 4.5.3.

Therefore also assume that limr→∞ φ(r) = 2π. This is a slight modification

of an argument used in the proof of Theorem 4.5.3.

Apply the Pohozaev identity (4.16) on a interval (0, r) to obtain

r2φ2
r(r) = n2 sin2 φ(r) + 4ω

∫ r

0

s (cosφ(s) − cosφ(r)) ds . (4.25)

The left hand side of (4.25) is a positive quantity r2φ2
r(r) ≥ 0. The integral can

be rewritten as a sum of two integrals

4ω

∫ R

0

s (cosφ(s) − cosφ(r)) ds+ 4ω

∫ r

R

s (cosφ(s) − cosφ(r)) ds .

Let R be chosen such that φ(r) > 3
2
π for all r > R. Then for r > R the argument

of the second integral is a negative quantity and one can pass to the limit r → ∞:

4ω

∫ R

0

s (cosφ(s) − cosφ(r)) ds→ 4ω

∫ R

0

s (cosφ(s) − 1) ds < 0

and n2 sin2 φ(r) → 0, 4ω
∫ r

R
s (cosφ(s) − cosφ(r)) → L < 0. Hence the limit of

the right hand side of (4.25) is negative — a contradiction.

Proposition 4.5.5. There is no solution to the system (4.9)–(4.10) for ω < 0

with the property limr→∞ φ(r) = π or limr→∞ φ(r) = −π monotone for all r > n√
ω
,

i.e. there are no pure vortex solutions.

Proof. First, assume that limr→∞ φ(r) = π (for limr→∞ φ(r) = −π the proof is

analogical using the transformation φ̃ = −φ).

It is plausible to transform the solution to φ̃ = π − φ to obtain the solution

φ̃ to (4.9) for ω > 0 satisfying the initial condition φ̃(0) = π. For simplicity
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all tildes tildes in the rest of this proof will be omitted. One can use the same

arguments as in the proof of Theorem 4.5.4 to show the non-existence of such

solutions: apply the Pohozaev identity on (0, r) to get

r2φ2
r = n2 sin2 φ+ 4ω

∫ r

0

s (cosφ(s) − cosφ(r)) ds

and then send r → ∞. The left-hand side has a positive limit while the right-

hand side has a negative limit (justification of the existence of the limit can be

done exactly as in the proof of Proposition 4.5.4).

Proposition 4.5.6. There is no solution to the system (4.9)–(4.10) for ω > 0

with the property limr→∞ φ(r) = π monotone on some interval (R,∞), R > 0,

i.e. there are no finitely oscillating solutions.

Proof. One can again combine the same arguments as in the proofs of previous

theorems. First, by the transformation φ̃ = π+φ obtain a solution φ̃ to (4.9) for

ω < 0 satisfying the initial condition φ̃(0) = −π with the property

lim
r→∞

φ̃(r) = 0 .

The non-existence of such a solution is then guaranteed by Proposition 4.5.3.

The only difference is in the initial condition but the second part of the proof of

Proposition 4.5.3 is independent on initial data.

Notice that by Lemma 4.4.3 there are no finitely oscillating solutions for ω < 0

which were not covered by Proposition 4.5.3 or 4.5.5.

4.6 Energy of oscillating solutions

The aim of this final section is to prove Theorem 4.3.1. The first statement

of Theorem 4.3.1, the oscillating character of the solution, follows from Propo-
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sitions 4.5.1–4.5.6 of the previous section where all the other possible profile

behaviors of φ(r) for both ω > 0 and ω < 0 were ruled out. Thus one only need

to show that such a solution has an infinite energy (4.11). This fact is not a priori

clear (the stationary solutions (4.15) for ω = 0 all have finite energy) because

both terms in the energy formula (4.11) have the same scaling properties. This

suggests a strong energetic instability of any vortex structures for ω 6= 0.

The outline of the proof is following: First is a proof of the statement for

ω > 0 (the proof for ω < 0 is analogical). By the scaling properties of the energy

and the scaling invariance of the equation (4.9) (see Proposition 4.4.1) one can

also assume without loss of generality that ω = 1. Assume that the contrary is

true – the solution has finite energy. Using that fact it is not difficult to show

that the solution must “monotonically” decay to π (Lemma 4.6.1). Then the

solution will be shifted to oscillate around 0 instead of π by the transformation

φ→ φ− π. The transformed solution solves (4.9) with ω = −1. Finally, the key

ingredient is that for such a solution the energy (4.11) has the same character

as the energy E∗ =
∫

rφ2 + rφ2
rdr. Finally, using the polar coordinates in the

phase plane (similarly as in Sturm-Liuville theory), it will be demonstrated that

the energy E∗ (and so E) is infinite.

Let φ(r) be a solution to (4.9)–(4.10) for fixed parameter d in (4.10). It is

convenient to introduce (ai)
∞
1 , (bi)

∞
1 and (ci)

∞
1 , the increasing infinite sequences

of the intercepts of φ(r) with y = π and the sequences of local maxima and local

minima of φ(r) respectively. By neglecting first few terms and by Lemma 4.4.3 one

may assume a1 < b1 < a2 < c1 < a3 < b2 < . . . , i.e. a2i−1 < bi < a2i < ci < a2i+1

for i ≥ 1. For simplification define (ri)
∞
1 , r1 = a1, r2 = b1, r3 = a2, r4 = c1, etc.,
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i.e. the increasing sequence (ri) is the “ordered” union of the sequences (ai), (bi)

and (ci).

Lemma 4.6.1. Assume that the solution φ(r) to (4.9)–(4.10) has finite energy.

Then

lim
r→∞

φ(r) = π (4.26)

and the convergence is “monotone”

|φ(bi) − π| > |π − φ(ci)| > |φ(bi+1) − π| for i ≥ i0,

for some i0 ≥ 1, where (bi), (ci) are defined above.

Written in terms of the sequence (ri):

|φ(r2i) − π| > |π − φ(r2i+2)| for i ≥ i0.

Proof. The inequality |ab| ≤ a2+b2

2
implies

∣

∣

∣

∣

∫ b

a

φr(r) sinφ(r)dr

∣

∣

∣

∣

≤
∫ b

a

|φr(r) sinφ(r)| dr ≤ 1

2

∫ b

a

rφ2
r(r) +

sin2 φ(r)

r
dr .

Thus

| cosφ(b) − cosφ(a)| ≤ 1

2

∫ b

a

rφ2
r(r) +

sin2 φ(r)

r
dr . (4.27)

Since the problem (4.9)–(4.10) is well-posed the integrals on the right-hand side

of (4.27) are finite for 0 ≤ a < b <∞. Then by (4.27)

| cosφ(ri+1) − cosφ(ri)| ≤
1

2

∫ ri+1

ri

rφ2
r(r) +

sin2 φ(r)

r
dr

and
∞
∑

i=1

| cos(ri) − cos(ri+1)| ≤
1

2

∫ ∞

r1

rφ2
r(r) +

sin2 φ(r)

r
dr <∞ ,
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where the integral on the right-hand side converges by the assumption of the

lemma
∫ ∞

0

rφ2
r(r)dr <∞ and

∫ ∞

0

sin2 φ(r)

r
dr <∞ .

Since cosφ(r2i−1) = −1, for all i ≥ 1, we have

| cosφ(r2i−1) − cosφ(r2i)| + | cosφ(r2i) − cosφ(r2i+1)| = 2|1 + cosφ(r2i)| .

Thus
∞
∑

i=1

|1 + cos(r2i)| <∞ , lim
i→∞

cosφ(r2i) = −1

and (4.26) follows. The oscillating solution φ(r) converges to π, so it is possible

to assume that π/2 < φ(r) < 3/2π for r > R0 for some R0 > 0.

Next, consider two consecutive local extremes at R and r (i.e. (R, r) = (bi, ci)

or (R, r) = (ci, bi+1)), r > R > R0, of φ(r). First, assume that

|φ(R) − π| < |φ(r) − π| . (4.28)

The requirement r > R > R0 assures that

0 > cosφ(r) > cosφ(R) . (4.29)

By Pohozaev identity (4.16) applied on interval (R, r)

(cosφ(r) − cosφ(R))

[

n2

2
(cosφ(r) + cosφ(R)) +R2

]

=

2

∫ r

R

s (cosφ(s) − cosφ(r)) ds . (4.30)

For R large enough (R > |n|) it holds

R2 +
n2

2
(cosφ(r) + cosφ(R)) ≥ R2 − n2 > 0 .

The inequality (4.29) implies cosφ(r)− cosφ(R) > 0, so the left-hand side of the

equation (4.30) is positive. On the other hand, cosφ(r) is the maximum value of
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cosφ(s) on the interval (R, r) so the integral on the right-hand side of (4.30) is

negative. This yields a contradiction with the assumption (4.28). One can easily

derive by the same argument that |π− φ(r)| = |π− φ(R)| is not possible as well.

Simple considerations prove that for two consecutive local extremes located

at R and r, r > R > R1, R1 = max{R0, |n|}, of φ(r) the following inequality

holds.

|π − φ(r)| < |π − φ(R)| .

Let us mention two other consequences of a “monotone” convergence

0 > cosφ(R) > cosφ(r) and cosφ(r2i) ↘ −1 .

It is very convenient to consider a solution φ(r) oscillating around y = 0

instead of around y = π. Therefore, introduce

φ̃ = φ− π .

Then φ̃ solves (see also Proposition 4.4.1)

φ̃rr +
1

r
φ̃r − sin φ̃ cos φ̃

n2

r2
= − sin φ̃ ,

i.e. φ̃ solves (4.9) for ω = −1 with the initial condition φ̃(0) = −π. Since the

initial condition does not enter the arguments in this section (it was only used to

prove the oscillating character of φ(r)), we drop tildes and from now on assume

only

φrr +
1

r
φr − sinφ cosφ

n2

r2
= − sinφ (4.31)

and that φ(r) oscillates around 0. Clearly, the location of the points (ri), (ai),

(bi) and (ci) does not change in this transformation and Lemma 4.6.1 implies

φ(r) → 0 and |φ(r2i)| > |φ(r2i+2)| for i ≥ i0.
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Lemma 4.6.2. Let φ(r) be a non-trivial solution to (4.31) and (ai) and i0 be

defined as above. Then for every ε > 0 there exists i1 ≥ i0 such that for every

i ≥ i1,

5

6
(1 − ε)

∫ ai+1

ai

rφ2(r)dr ≤
∫ ai+1

ai

rφ2
r(r)dr ≤ (1 + ε)

∫ ai+1

ai

rφ2(r)dr . (4.32)

Proof. First, by the integration by parts

∫ ai+1

ai

rφ2
rdr = φrφr|ai+1

ai
−
∫ ai+1

ai

φ(φr + rφrr)dr .

Since φ(ai) = 0, (4.31) gives

φr + rφrr = r

(

n2

r2
sinφ cosφ− sinφ

)

.

Hence
∫ ai+1

ai

rφ2
r(r)dr =

∫ ai+1

ai

rφ sinφ

(

1 − n2

r2
cosφ

)

dr . (4.33)

For any fixed n there exists R1 > 0 such that for every r, r > R1 the inequality
∣

∣

∣

n2

r2
cosφ

∣

∣

∣
< ε is true independently of a behavior of φ(r). Thus by (4.33)

(1 − ε)

∫ ai+1

ai

rφ sinφdr ≤
∫ ai+1

ai

rφ2
r(r)dr ≤ (1 + ε)

∫ ai+1

ai

rφ sinφdr . (4.34)

The Taylor expansion of sin x implies the following simple calculus inequality

5

6
x2 < x sin x < x2 for every |x| ≤ 1, x 6= 0 .

Setting x = φ(r) and shifting R1 if necessary (condition |φ(r)| ≤ 1 is required)

yields by (4.34)

5

6
(1 − ε)

∫ ai+1

ai

rφ2dr ≤
∫ ai+1

ai

rφ2
r(r)dr ≤ (1 + ε)

∫ ai+1

ai

rφ2dr .
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Note that the fraction 5
6

can be removed from (4.32) by a small modification

of the proof.

Corollary 4.6.3. Let φ(r) be a solution to (4.31) with finite energy. Then the

integral
∫∞

0
rφ2(r)dr must be finite too.

Proof. Using Lemma 4.6.2 we only need to show that
∫ ε

0
rφ2dr and

∫ ε

0
rφ2

r(r)dr

are finite for some ε > 0. That fact follows immediately from well-posedness of

the problem.

Based on Corollary 4.6.3 one may introduce a new “energy” quantity

E∗ =

∫ ∞

0

rφ2(r) + rφ2
r(r)dr . (4.35)

For ψ(r) a solution to (4.9)–(4.10) the energy E∗ has then the same character

as the energy E, i.e. both quantities are both finite or both infinite (the term
∫∞

1
rφ2(r)dr clearly dominates the term

∫∞
1

φ2(r)
r
dr). Therefore it is enough to

show that E∗ is infinite for an (oscillating) solution φ(r) and in the rest of the

work when referring to energy we will always refer to E∗.

Introduce new “polar” coordinates in the phase plane of φ(r):

ρ2(r) = φ2(r) + φ2
r(r) and θ(r) = tan−1 φr(r)

φ(r)
for φ(r) 6= 0. (4.36)

For φ(r) = 0 define

θ(r) =
π

2
sgn |φr(r)| .

Furthermore, denote e(r) = rρ2 the energy density

E∗ =

∫ ∞

0

rρ2dr =

∫ ∞

0

e(r)dr .
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Lemma 4.6.4. Let φ(r) be a non-trivial solution to (4.31) and let (ai), (bi) and

(ci) and i0 be defined as above. Let (a, b) be either an interval (a2i−1, bi) or (a2i, ci)

for i ≥ i2 for some i2 ≥ i0. Then
∫ b

a

e(r)dr ≥ a2φ2
r(a) ln

(

b

a

)

. (4.37)

Proof. First note that by the choice of the interval (a, b): φφr > 0 on (a, b). Then

by (4.36)

∂

∂r
e(r) =

∂

∂r
rρ2 = φ2 + φ2

r + 2rφr(φ+ φrr) .

Using the equation (4.31) it is possible to obtain

∂

∂r
e(r) = φ2 − φ2

r + 2rφr

(

φ− sinφ+
n2

r2
sinφ cosφ

)

. (4.38)

Since φφr > 0 on (a, b), one also have

φr(φ− sinφ) > 0 .

The choice of i0 in Lemma 4.6.1 ensures that |φ(r)| < π/2 for all r > ai. Then

on (a, b)

φr sinφ cosφ > 0 .

The last inequality combined with (4.38) yields

∂

∂r
e(r) > −φ2 − φ2

r = −ρ2 = −e(r)
r

.

Integrating the last inequality on (a,R), R ≤ b get

e(R) ≥ e(a)
a

R
.

Finally, an integration over R ∈ (a, b) proves the statement of the lemma:
∫ b

a

e(r)dr ≥ ae(a) ln

(

b

a

)

.
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In Lemma 4.6.4 the energy E∗ on subintervals (a2i−1, bi) and (ci, a2i+1) where

the product φφr is positive is estimated. To get an estimate in terms of ai only

one needs to prove a uniformity of the “‘angular velocity” θ in the phase plane

(Lemma 4.6.5).

Lemma 4.6.5. Let φ(r) be a non-trivial solution to (4.31) and let θ and ρ be

defined by (4.36). Then for every ε > 0 there exists R(ε) > 0 such that for all

r > R(ε), (φ(r) 6= 0) it holds

−1 − ε < θr(r) < −1 + ε .

Proof. Since a short calculation gives

θr =
1

1 + φ2
r

φ2

· φrrφ− φ2
r

φ2
=
φrrφ− φ2

r

ρ2
= −1 +

φrrφ+ φ2

ρ2
,

it is enough to prove

|S(φ)| =

∣

∣

∣

∣

φ(φ+ φrr)

ρ2

∣

∣

∣

∣

< ε , (4.39)

for r > R for some R > 0 which will immediately prove the lemma. By (4.31)

the quantity S(φ) introduced in (4.39) is equivalent to

S(φ) =
φ
(

−1
r
φr + φ− sinφ+ n2

r2
sinφ cosφ

)

ρ2

= −1

r

φφr
φ2 + φ2

r

+
n2

r2

φ sinφ

φ2 + φ2
r

+
φ2 − φ sinφ

φ2 + φ2
r

,

which may be estimated by

|S(φ)| ≤ 1

2r
+
n2

r2

|φ|| sinφ|
φ2 + φ2

r

+
|φ||φ− sinφ|
φ2 + φ2

r

≤ 1

2r
+
n2

r2

φ2

φ2 + φ2
r

+
φ2

φ2 + φ2
r

φ2

6

≤ 1

2r
+
n2

r2
+
φ2

6
.
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By Lemma 4.6.1 there exists R = R(ε) > 0 such that

1

2r
+
n2

r2
+
φ2(r)

6
< ε ,

for all r > R. This proves (4.39) and hence the whole statement of Lemma 4.6.5.

Corollary 4.6.6. Let φ(r) be a non-trivial solution to (4.31) and let (ai), (bi)

and (ci) be defined as above. Then each bi is approximately in the middle of the

interval (a2i−1, a2i), i.e. there exists 1 > K > 1
2
> k > 0 such that for every i

large enough

K >
bi − a2i−1

a2i − a2i−1

> k > 0 .

(Similar statement holds for ci inside the interval (a2i, a2i+1)).

Proof. By the definition of θ(r), (ai) and (bi)

∫ bi

a2i−1

θrdr = θ(bi) − θ(a2i−1) = −π
2
.

Then by Lemma 4.6.5 for any ε > 0 for all i large enough

(1 − ε)(bi − a2i−1) <
π

2
< (1 + ε)(bi − a2i−1) . (4.40)

Similarly

(1 − ε)(a2i − bi) <
π

2
< (1 + ε)(a2i − bi) . (4.41)

Combining (4.40) with (4.41) one obtains

1

2

1 − ε

1 + ε
≤ bi − a2i−1

a2i − a2i−1

≤ 1

2

1 + ε

1 − ε
.

The statement of the corollary immediately follows.

Now combine Corollary 4.6.6 with the estimate (4.37) of Lemma 4.6.4 to get

the following corollary.
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Corollary 4.6.7. Let φ(r) be a non-trivial solution to (4.31), let (ai), (bi), (ci)

be defined as above, let k be defined as in Corollary 4.6.6 and let i0 be defined as

in Lemma 4.6.1. Then

∫ ai+1

ai

e(r)dr ≥ k ln

(

ai+1

ai

)

a2
iφ

2
r(ai) ,

for all i ≥ i2 for some i2 ≥ i0.

Proof. For simplicity, let the interval (ai, ai+1) contains bj, i.e. ai < bj < ai+1

(clearly i = 2j − 1), in the other case (ai < cj < ai+1) the proof is analogical.

Then by (4.37)
∫ bj

ai

e(r)dr ≥ a2
iφ

2
r(ai) ln

(

bj
ai

)

.

Since
bj−ai

ai+1−ai
≥ k by Corollary 4.6.6 for i large enough (i ≥ i2) one has

ln
bj
ai

≥ k ln
ai+1

ai

by a simple calculus inequality. Thus

∫ ai+1

ai

e(r)dr ≥
∫ bj

ai

e(r)dr ≥ a2
iφ

2
r(ai) ln

(

bj
ai

)

≥ ka2
iφ

2
r(ai) ln

(

ai+1

ai

)

.

Next we prove that the quantity a2
iφ

2
r(ai) is increasing with an increasing

index i.

Proposition 4.6.8. Let φ(r) be a non-trivial solution to (4.31) and let (ai) be

defined as above. Then

a2
iφ

2
r(ai) < a2

i+1φ
2
r(ai+1) .
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Proof. The Pohozaev identity applied to (4.31) on the interval (ai, ai+1) gives

1

2

(

a2
i+1φ

2
r(ai+1) − a2

iφ
2
r(ai)

)

= −2

∫ ai+1

ai

s(cosφ(s) − 1)ds > 0 ,

which proves the statement of Proposition 4.6.8.

Finally everything is prepared to prove Theorem 4.3.1.

Proof. The proof of the theorem will be by a contradiction. Assume that the

solution φ(r) has finite energy. Then also the modified solution φ̃(r) = φ(r) − π

has finite energy and solves (4.31). Drop the tildes and consider φ(r) to be a

solution of (4.31). By Lemma 4.6.3 it has also finite modified energy E∗ defined

by (4.35). Let (ai) be defined as above – the infinite sequence of the zero points

of φ(r). Then by Corollary 4.6.7

∫ ai+1

ai

e(r)dr ≥ k ln

(

ai+1

ai

)

a2
iφ

2
r(ai) ,

for i ≥ i2. Thus

E∗ ≥
∞
∑

j=i2

∫ aj+1

aj

e(r)dr ≥
∞
∑

j=i2

k ln

(

aj+1

aj

)

a2
jφ

2
r(aj) .

Also by Proposition 4.6.8

a2
jφ

2
r(aj) ≥ a2

1φ
2
r(a1) = C > 0 ,

so

E∗ ≥ Ck

∞
∑

j=i2

ln

(

aj+1

aj

)

= Ck lim
j→∞

(ln(aj) − ln(ai2)) = ∞ ,

which yields the contradiction.
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Chapter 5

Discussion

In this section we discuss some of the important issues arising in this work. We

also list some related problems which will be subject to our further investigations.

First, observe we used an assumption that the relative trap frequency Ω is

smaller than 1, to prove the essential spectrum of the linearized operator is empty.

The same assumption was also necessary to properly define the linearized opera-

tor. It is not clear how to define the operator for Ω ≥ 1 and whether its essential

spectrum stays empty in this parameter regime. Since we show that the eigen-

values (the discrete spectrum) of the linearized problem suffer only a shift by

a purely imaginary number depending on rotation, stability of this part of the

spectrum is unaffected by rotation of the trap. Hence, in the transition through

the bound Ω = 1 the essential spectrum may play an important role in the sta-

bility of a single vortex. We emphasize that this may correspond to a physical

intuition that for Ω > 1 the effect of the centrifugal force dominates the effect

of the trapping potential and that in this case a condensate may spin out of the

trap.

Also note that the graph of the evolution of location of stable and unstable

eigenvalues with a growing parameter p reveals an interesting phenomena. For
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a Fourier mode j = 2 there appears to be a single eigenvalue crossing the oth-

ers creating finite intervals of instability after each collision. We conjecture a

possible connection of this behavior with the Krein signature of the eigenvalue.

Particularly, when the fast-moving eigenvalue has the same Krein signature as

the others, they do not collide and thus the stability pertains. On the other hand,

the opposite Krein signature forces them to collide and split off the imaginary

axis.

The signature of eigenvalues could also justify that there are no other unstable

eigenvalues outside of the horizontal window we consider. It is so because the

bound for number of unstable eigenvalues is equal to the precise number of un-

stable eigenvalues plus the number of stable eigenvalues with negative signature

[50]. Another significant simplification would occur if one is able to determine

the Krein signature directly from the Evans function since the Evans function

should contain all the pertinent information (the same problem is mentioned in

[50]).

After modifications, the method used in this thesis may be also helpful in

solving a couple of related problems which may be subject to future investigations

by the author of this thesis.

An interesting problem arising from computed behavior of the eigenvalues is to

determine the behavior of the eigenvalues as p→ ∞ where the model approaches

the fully nonlinear Thomas-Fermi regime. Similarly the precise description of

the eigenvalues as p→ p0 and behind, up to an attractive inter-particle potential

(where the condensate is reported to be unstable), would be desirable to study,

since by means of the Feshbach resonance [41] it is possible to perform such a

transition in experiments.
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The other interesting recent advances in BEC are experiments with multi-

component condensates, either using a two-species 87Rb [60] or even two-element

87Rb–23Na mixtures [61, 62, 63]. A numerical study of stability of vortices in this

model was conducted in [64] but the limitation of the chosen method did not

allow authors to reach the number of particles used in experiments. The imple-

mentation of the Evans function method should also in this case give a reliable

answer to stability questions. Note, that this model has a much wider parameter

regime than a single component BEC. Therefore there is a wider opportunity to

realize a long term goal — stable multiquantum vortices.

Finally, in [65] Towers et al. discussed the stability of vortices in another

model governed by the nonlinear Schrödinger equation. They posed the ques-

tion whether truly stable ring solitons (vortices) can exists in a model with a

realistic nonlinearity. As a such nonlinearity they suggest a mixed quadratic χ(2)

(quadratic) – χ(3) (cubic) nonlinearity. Via direct simulations and a finite dif-

ference scheme for linear eigenvalue problem they found a parameter regime for

which there exist stable vortex solutions. The Evans function method can also in

this case provide a more reliable calculation even for higher degree multiquantum

vortices.

Let me also mention one related problem. The already described model of

BEC is only a simplification of Hartree-Fock approximation to nonlinear N -body

Schrödinger equation. To obtain Gross-Pitaevskii equation one must consider

instead of a non-local general interaction potential W (x− y) only a local short-

range interactions, i.e. W (x − y) = δ(x − y). Deconinck and Kutz [35] give

numerical evidence that, despite the fact that the local model can be obtained

by a correct asymptotic limit of a non-local one [26], stability of solutions is not
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“asymptotically equivalent”, i.e. stability is not preserved in this limit. Indeed in

the case of periodic trapping potential in a simple one dimensional case they found

a discrepancy in stability of explicitly calculated solutions. They perturbed inital

data randomly and compared the long-time behavior to discover discrepancy

in stability between local and non-local models. The source of this interesting

phenomena is unclear. It is conjectured to appear only due to the transition from

a non-local model to a local one. The question remains whether the same situation

occurs for a more complicated two dimensional model in the case of more typical

harmonic potential. To resolve this issue one must be able to detect instability

of vortices in non-local equations. Although the code already developed for this

thesis is able to construct vortex profiles even for non-local models, the design

of the Evans function method is unfortunately not appropriate to handle this

problem, since there is no analogue to the decoupling of modes as in the simple

local case. The problem may be attainable by an implementation of a non-local

Evans function introduced in [66].
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Appendix A

Bifurcation

Appendix A contains the proof of Theorem 3.2.1, i.e. details regarding the proper

use of the Crandall-Rabinowitz theorem [45] to justify initialization of the numer-

ical algorithm for generating vortex solutions to the Gross-Pitaevskii equation.

The notation L2(X,Y ;φ(x)dx) will denote a Hilbert space of functions f : X → Y

with a bounded norm
(∫

X
|f |2φ(x)dx

)1/2
<∞.

The Crandall-Rabinowitz theorem states the following:

Theorem A.1. Let X and Y be Banach spaces. Let (λ, 0) ∈ R × X and let F

be a C2 mapping of an open neighborhood of (λ, 0) into Y . Let the null space

N(Fx(λ, 0)) = span{x0} be one-dimensional and codimR(Fx(λ, 0)) = 1. More-

over, let Fxλ(λ, 0)x0 /∈ R(Fx(λ, 0)). If Z is a complement of span{x0} in X,

then the solutions of F (λ, x) = F (λ, 0) near (λ, 0) form a curve (λ(s), x(s)) =

(λ + τ(s), sx0 + sz(s)), where s → (τ(s), z(s)) ∈ R × Z is a continuously differ-

entiable near s = 0 and τ(0) = 0, z(0) = 0.

Here λ = p, x = w, λ = p0 = m+ 1 and

F (p, w) = wrr +
1

r
wr −

m2

r2
w + 2pw − r2w − 2|w|2w .
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Recall, that in Chapter 3, section 3.2 it was shown that the only C2 solution of

the linearized equation

Fw(p0, 0)w = wrr +
1

r
wr −

m2

r2
w + 2p0w − r2w = 0

satisfying the boundary conditions w(0) = w(∞) = 0 is a constant multiple of

w0 = rme−r
2/2M(−n,m+ 1, r2) = rme−r

2/2c(m)
n L(m)

n (r2) ,

where M(a, b, c) is a confluent hypergeometric function, which for these special

parameters degenerates to a generalized Laguerre polynomial L
(m)
n , and c

(m)
n is a

positive normalization coefficient.

Also note that the operator F (p, w) was obtained from the operator

F̃ (p, u) = 4u− (x2 + y2)u+ 2pu− 2|u|2u

by setting u = eimθw(r). This operator can be defined on R×H, where H is the

Hilbert space

H = {u : u ∈ H2(R2,R2), (x2 + y2)u ∈ L2(R2,R2)}

with the usual norm

||u||2H = ||u||2H2 + ||(x2 + y2)u||2L2 .

Note that by Sobolev embedding H ↪→ L6. Clearly F̃ is densely defined within

R × L2(R2,R2) since it contains the whole Schwartz space R × S(R2,R2) which

is dense in R × L2(R2,R2). Now, define

X = {w : w ∈ L2(R,R; r), eimθw(r) ∈ H}

with a norm

||w||X = ||eimθw(r)||H .
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The space X is again by a Schwartz space argument dense in L2(R,R; rdr). On

the other hand the choice of the domain R ×X of F implies

F : R ×X → Y := L2(R,R; rdr) .

Also note that each function w ∈ X, m 6= 0 satisfies w(0) = lim
r→∞

w(r) = 0, if

m = 0 then w(0) is finite and lim
r→∞

w(r) = 0. The first condition holds since

eimθw(r) ∈ H2(R2,R2) and so eimθw(r) is a continuous function at r = 0. Hence

w(0) = 0. The second condition follows from the property w(r) ∈ L2(R,R; rdr).

Operator F in a neighborhood of a point (p0, 0) satisfies all the assumptions

of the Crandall-Rabinowitz theorem. First, F is by the choice of its domain

continuous operator, one can also check directly from the definition that F is

a C2 mapping, particularly in an open neighborhood of (p0, 0). Furthermore,

F (p, 0) is identically equal to zero.

The null space N(Fw(p0, 0)) is a kernel of the linearized operator which was

proved to be a one-dimensional subspace of Y spanned by w0. The eigen-

functions wn(r) of Fw(p), p = m + 1 + 2n, n = 0, 1, 2, . . . , are products of

a fixed weight function w∗(r) = rme−r
2/2 and generalized Laguerre polynomi-

als. These polynomials are orthonormal and complete in L2(R,R; rw2
∗(r)dr),

since a completeness theorem of [67], page 31, applies. Therefore also wn(r)

are orthonormal and complete in L2(R,R; rdr). Thus the operator Fw(p0, 0) is

a Fredholm operator and consequently codimR(Fw(p0, 0)) = 1. Furthermore,

∂
∂p

∂
∂w
F (p0, 0)w0 = 2w0 /∈ R(Fw(p0, 0)). The statement of Theorem 3.2.1 then

follows.

Finally, note that the symmetry of the problem (both w and −w are solutions)

implies τ ′(0) = 0.
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Appendix B

Analysis of vortex profiles

In this Appendix a result concerning the spatial shape of the radial vortex profile

satisfying

wrr +
1

r
wr −

m2

r2
w + 2p0w − r2w − 2|w|2w = 0 (B-1)

is presented.

Lemma B.1. Let w(r) be a positive solution on (0,∞) to

wrr +
1

r
wr −

m2

r2
w = 2(w(r)2 − p(r)2)w

where m, m 6= 0, is an integer and

2p(r)2 = 2p0 − r2, p0 > 0,

satisfying w(r) → 0 as r → 0+ and r → ∞. Then w(r) has a local maximum

for some R, R ∈ (m/
√

2p0,
√

2p0) and is increasing on (0, R) and decreasing on

(R,∞). Moreover,

|w(r)|2 < p0 −m (B-2)

for all r ∈ R
+.

Proof. Assume that contrary is true, i.e. there exists a local minimum of w(r).

Since w(0) = 0 = w(∞), there must exists three consecutive local extrema: R1 a
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local maximum, r a local minimum and R2 a local maximum, R1 < r < R2. Then

wr(R1) = wr(r) = wr(R2) = 0 and wrr(R1) < 0, wrr(r) > 0 and wrr(R2) < 0.

Then

0 > wrr(R1) =

(

m2

R2
1

+R2
1 + 2w2(R1) − 2p0

)

w(R1) ,

0 < wrr(r) =

(

m2

r2
+ r2 + 2w2(r) − 2p0

)

w(r) ,

0 > wrr(R2) =

(

m2

R2
2

+R2
2 + 2w2(R2) − 2p0

)

w(R2) .

Hence

2w2(R1) < 2p0 −
m2

R2
1

−R2
1 ,

2p0 −
m2

r2
− r2 < 2w2(r) ,

2w2(R2) < 2p0 −
m2

R2
2

−R2
2 .

Since r is a local minimum of w(r) and lies between local maxima R1 and R2,

w2(r) < w2(R1), w
2(r) < w2(R2). Then

2p0 −
m2

R2
1

−R2
1 > 2p0 −

m2

r2
− r2 ,

2p0 −
m2

R2
2

−R2
2 > 2p0 −

m2

r2
− r2 ,

implying G(r) > G(R1) and G(r) > G(R2), where G(x) = x2 + m2

x2 . Since G(x) is

a convex function, this is impossible. Hence w(r) can have only one local extreme

– a maximum w(R) at a point R. The location of R is restricted since by the

previous inequalities

m2

R2
1

+R2
1 < 2p0 − 2w2(R) < 2p0 .

This implies R ∈ (m/
√

2p0,
√

2p0). Moreover, since G(r) ≥ 2m, w2(R) < p0 −

m.
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Appendix C

Essential spectrum of the linearized operator

Appendix C contains the proof of Theorem 3.3.1 which claims that the essential

spectrum of the operator A = J(Lc+Lw) is empty. The proof has three steps, first

one shows that for 0 ≤ Ω < 1 the essential spectrum of Lc is empty, σess(Lc) = ∅.

Then σess(JLc) = ∅. Finally, the generalization of Weyl’s theorem (for non-self

adjoint operators) yields the same property for JL.

Proof of Theorem 3.3.1.

First, denote

Lc = −(−1

2
4 +

1

2
r2 + JΩ∂θ) ,

Lw = −µ− 2|w|2 − |w|2e2mθJR .

Then

A = J(Lc + Lw) . (C-1)

We show that the essential spectrum of A is determined solely by the essential

spectrum of Lc. Also, the angular momentum term ∂θ is for 0 ≤ Ω < 1 dominated
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by the remaining terms of Lc in the following sense:

〈∂θφ, φ〉 =

∫

(xφy − yφx)φdxdy

≤
∫

|x||φy||φ| + |y||φx||φ|dxdy

≤ 1

2

∫

|x|2|φ|2 + |φy|2 + |y|2|φ|2 + |φx|2dxdy

=
1

2

∫

r2|φ|2dxdy +
1

2

∫

|∇φ|2dxdy

=
1

2
〈r2φ, φ〉 +

1

2
〈−4φ, φ〉 ,

for φ = Φi, i = 1, 2. Similar argument implies for vectors Φ:

〈−JΩ∂θΦ,Φ〉 ≤ Ω〈1
2

(

−4 + r2
)

Φ,Φ〉 .

Therefore for 0 ≤ Ω < 1:

〈(−1

2
4 +

1

2
r2 + JΩ∂θΦ,Φ〉 ≥

1 − Ω

2
〈(−4 + r2)Φ,Φ〉 .

Hence

〈−LcΦ,Φ〉 ≥
1 − Ω

2
〈(−4 + r2)Φ,Φ〉 . (C-2)

Introducing a new Hamiltonian Hc = 1−Ω
2

(−4 + V ) with a potential V (r) = r2

the inequality (C-2) reduces to

〈−LcΦ,Φ〉 ≥ 〈HcΦ,Φ〉 . (C-3)

Now one may apply Theorem XIII.16 of Reed and Simon [68], pp. 120:

Theorem C.1 (Reed, Simon). Let V be a locally bounded positive function

with V (x) → ∞ as |x| → ∞. Define −4+V as a sum of quadratic forms. Then

−4 + V has purely discrete spectrum.
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The proof uses the minimax principle characterization of eigenvalues. The

important ingredient is the estimate (C-3) along with the growth V (r) → ∞ as

r → ∞. This proves that Lc and similarly −Lc has only a discrete spectrum.

Next, we prove that the essential spectrum of JLc is empty. Since Lc is a

positive operator, 0 is not its eigenvalue and therefore Lc is invertible. Moreover,

Lc does have only a discrete spectra and its eigenvalues are isolated with the only

possible accumulation point ∞. Then by Theorem XIII.64, pp.245, of [68] the

operator L−1
c is compact. Here, only the shortened version of Theorem XIII.64

is presented.

Theorem C.2 (Reed, Simon). Let A be a self-adjoint operator that is bounded

from below. Then the following are equivalent (ρ(B) denotes the resolvent set of

an operator B):

• (A− µ)−1 is compact for some µ ∈ ρ(A);

• (A− µ)−1 is compact for all µ ∈ ρ(A);

• µn(A) → ∞, where µn is given by the min-max principle.

Furthermore, consider the following identity:

λI − JLc = (λL−1
c J−1 − I)JLc . (C-4)

If λ /∈ σp(JLc), then 1
λ
/∈ σp(L

−1
c J−1) and the right-hand side of (C-4) is invertible:

(λI − JLc)
−1 = L−1

c J−1(λL−1
c J−1 − I)−1 .

Here L−1
c is compact, J−1 = −J is a bounded operator, λL−1

c J−1 − I is a

compact perturbation of identity, i.e. a Fredholm operator. Moreover, since
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λ /∈ σp(L
−1
c J−1), the operator λL−1

c J−1 − I has an empty kernel and is inverible

and boundned. Therefore (λI − JLc)
−1 is compact. This implies that λI − JLc

is invertible with a compact inverse if λ is not an eigenvalue of JLc. It remains

to prove that the eigenvalues of JLc are isolated and of finite multiplicity, which

prohibits discrete spectra to be embedded in the essential spectrum.

To show that, consider the resolvent equation

(Iλ− JLc)u = f .

which is equivalent to

(I − T (λ))u =
(

λL−1
c J−1 − I

)

u = L−1
c J−1f .

The operator λL−1
c J−1 − I is a (multiple of) compact perturbation of identity

and therefore it is also Fredholm. Also, it is analytic everywhere except for the

discrete spectra of L−1
c J−1. By a general result of Gohberg and Krein [69], p.21.

or Kato [70], p.370, the set of values for which I − T (λ) is not invertible is at

most countable with their only possible accumulation point infinity. Therefore the

eigenvalues of JLc are isolated. Also, the spectral projection on the eigenspace

associated with a particular eigenvalue of JLc has finite dimensional range, since

it is given by a integral

Pλ =
1

2πi

∫

Γ

(λI − JLc)
−1 dλ

of a compact operator. Hence the essential spectrum of JLc is empty and consist

of isolated eigenvalues of finite multiplicity with only accumulation point infinity,

i.e.

σess(JLc) = ∅ .
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Finally, one can use the generalization of the Weyl’s theorem to non self-

adjoint operators to prove the equivalence of essential spectra

σess(JLc) = σess(J(Lc + Lw)) .

It is enough to show that J(Lc+Lw) is a relatively compact perturbation of JLc,

i.e. that JLw(λI − JLc)
−1 is compact whenever λ /∈ σp(JLc). Operator JLw is

bounded and therefore it remains to prove that (λI − JLc)
−1 is compact. But

that fact was already proved in the previous paragraph. Hence if λ /∈ σp(JLc), λ

lies in the resolvent set ρ(JLc). What remains to prove is that the eigenvalues of

J(Lc + Lw) are isolated and of finite multiplicity. The proof of this statement is

also the same as in the previous paragraph, using that

(λ− (JLC + JLw))u = f

is for λ /∈ σp(JLc) equivalent to

(I − (λI − JLc)
−1)JLw)u = (λI − JLc)

−1f .

Hence the essential spectrum of JL is empty and consist of isolated eigenvalues

of finite multiplicity with only accumulation point infinity.
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Appendix D

Bounds on eigenvalues

Appendix D contains two omitted proofs from Chapter 3: a bound on the index

of possible unstable modes (Proposition 3.3.4) and a bound for the real part of

an eigenvalue (Proposition 3.3.5).

Proof of Proposition 3.3.4.

For any y ∈ D(Lj), y 6= 0:

〈Ljy, y〉 =

∫ ∞

0

[

1

2

(

j +m

r

)2

|y+|2 +
1

2

(

j −m

r

)2

|y−|2

+
1

2
r2
(

|y+|2 + |y−|2
)

+2|w|2
(

|y+|2 + |y−|2
)

+ |w|2
(

y+y− + y+y−
)

−1

2

(

4ry+y+ + 4ry−y−
)

− p
(

|y+|2 + |y−|2
)

]

rdr

>

∫ ∞

0

[

1

2

m2

r2

(

|y+|2 + |y−|2
)

+
1

2
r2
(

|y+|2 + |y−|2
)

+|w|2
(

|y+|2 + |y−|2
)

+
1

2

(

|∂ry+|2 + |∂ry−|2
)

−p
(

|y+|2 + |y−|2
)]

rdr ,

by integration by parts, by the assumption of the theorem

|j +m| > m , |j −m| > m ,
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and by the inequality

(y+y− + y+y−) ≤
(

|y+|2 + |y−|2
)

.

The operator Lj is, similarly as the operator A in Section 3.3, defined onD(Lj) by

the appropriate quadratic form and thus the integrals used here are well defined.

Then

〈Ljy, y〉 ≥ 1

2

∫ ∞

0

[

|∂ry+|2 +

(

m2

r2
+ r2 + 2|w|2 − 2p

)

|y+|2
]

rdr

+
1

2

∫ ∞

0

[

|∂ry−|2 +

(

m2

r2
+ r2 + 2|w|2 − 2p

)

|y−|2
]

rdr

= Ew(y+) + Ew(y−) ,

where

Ew(f) =
1

2

∫ ∞

0

[

|∂rf |2 +

(

m2

r2
+ r2 + 2|w|2 − 2p

)

|f |2
]

rdr . (D-1)

The function eimθw(r) is a non-negative, w ≥ 0, minimizer of the energy (3.5)

(with Ω = 0), with respect to the constraint (3.9), within the family φ(r, θ) =

eimθf(r) ∈ D(q). For this class of functions the energy (3.5) is reduced to Ew(f)

of (D-1). Since Ew(w) = 0, it follows that Ew(f) ≥ 0 for all eimθf ∈ D(q). Hence

〈Ljy, y〉 > 0 ,

and by (3.31) also

〈iλ0Ry, y〉 = iλ0〈Ry, y〉 > 0 . (D-2)

Therefore iλ0 (and by Lemma 3.3.3 also iλΩ) must be real.
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Proof of Proposition 3.3.5.

First, recall the simple bootstrap argument justifying that Φ± of (3.23)–(3.24) is

C∞(R2,R2)∩L2(R2,R2). Then, split the operator A to a vortex-profile-dependent

part Aw and independent part Ac: A = Ac + Aw, where

Ac = J

[

1

2
4− JΩ∂θ −

(

1

2
r2 − µ

)]

,

Aw = −J
[

2|w(r)|2 + |w(r)|2e2mθJR
]

.

Since J and R are constant matrices (bounded by 1 in the matrix norm) the

estimate (B-2) implies that the norm of the profile dependent part Aw is bounded

above:

||Aw||L2 =
∣

∣

∣

∣−J
(

2|w|2 + |w|2e2mθJR
)∣

∣

∣

∣

L2 ≤ 3M(w) <∞ , (D-3)

where | · |L2 denotes the operator norm in L2(R2,C2) and M(w) = max
r∈(0,∞)

|w(r)|2.

Multiply (3.22) by the smooth complex conjugate Φ and integrate over (0,∞)

with respect to r and over (0, 2π) with respect to θ to obtain

λ||Φ||2 =

∫ 2π

0

∫ ∞

0

AcΦ · Φ rdrdθ +

∫ 2π

0

∫ ∞

0

AwΦ · Φ rdrdθ . (D-4)

The second term on the right hand side of (D-4) can be estimated using (D-3)

∫ 2π

0

∫ ∞

0

AwΦ · Φ rdrdθ . ≤ 3M(w)||Φ||2 . (D-5)

Finally, the real part of
∫ 2π

0

∫∞
0
AcΦ · Φ rdrdθ vanishes what can be justified by

a simple but long integration by parts. The proof of this simple claim is omitted

here. The statement of the proposition then immediately follows.
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Appendix E

Asymptotic behavior

This appendix contains the asymptotic behavior results used in Chapter 3. The

proof of the Gaussian decay of the vortex profile satisfying (3.15) is proved first

and then the precise description of asymptotic behavior of solutions to the sys-

tem of ordinary differential equations used in construction of the Evans function

(Theorem 3.4.1) is presented.

Lemma E.1. The real positive solution w(r) to

wrr +
1

r
wr −

m2

r2
w − r2w + 2pw − 2|w|2w (E-1)

satisfying the homogeneous boundary conditions w(0) = w(∞) = 0 decays expo-

nentially as r → ∞, i.e.

w(r) = O(rpe−r
2/2) .

Proof. The proof is based on the same ODE technique as [15]. First, observe

that w(r) must decay to zero monotonically. Otherwise, there would exist a local

maximum R of w(r) for some R >> 1. Therefore if R is large enough then

wrr(R) =
m2

R2
w(R) +R2w(R) − 2pw(R) + 2w3(R) > 0 . (E-2)
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Notice that in Appendix B it is proved that w(r) is bounded and so the estimate

(E-2) (with a different p) is true also for the attractive potential for which the

term 2|w|2w has the opposite sign. Hence wrr(R) > 0 and R cannot be a local

maximum. This immediately implies w′(r) → 0 as r → ∞.

The rest of the proof will be done in two steps. In the first step it is proved

that w(r) = O(e−cr) for any c > 0 and in the second step that w(r) = O(e−r
2/2).

The term wrr can be estimated as

wrr = −1

r
wr +

m2

r2
w + r2w − 2pw + 2w3 > c2w (E-3)

for any c2 > 0 and r > r0 by assuming r0 is large enough. Multiply the inequality

(E-3) by wr < 0 to obtain

1

2
∂r(wr)

2 < c2
1

2
∂r(w

2)

and integrate over (r,∞)

−(wr)
2 < −c2w2

using the boundary condition w(∞) = w′(∞) = 0. Then

−wr > cw

and thus

w(r) = O(e−cr) .

On the other hand

wrr = −1

r
wr +

m2

r2
w + r2w − 2pw + 2w3 > (r2 − 2p)w , (E-4)

for every r > r0 for some fixed r0 = r0(m, p). Multiplying the inequality (E-4)

by the term wr < 0 gives

1

2
∂r(wr)

2 < (r2 − 2p)
1

2
∂r(w

2) .
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on the interval (r0,∞). Integrating the inequality over (r,∞) for any r > r0

using the property lim
r→∞

rw(r) = rO(e−cr) = 0 then yields

−(wr)
2 <

∫ ∞

r

(r2 − 2p)∂r(w
2) dr = (r2 − 2p)w2|∞r −

∫ ∞

r

2rw2 dr .

Using the fact w′(∞) = 0 gives

(wr)
2 > (r2 − 2p)w2 +

∫ ∞

r

2rw2 dr > (r2 − 2p)w2 .

For simplicity set p = 0. Then

(wr)
2 > r2w2

implies for wr < 0, w > 0:

wr < −rw ,

which in turn gives

w(r) < Ce−r
2/2 .

If p 6= 0 the argument is similar and yields

w(r) < Ce−r
2/2rp .

Note, that this proof does not justify the precise asymptotic behavior of w(r)

which should be rpe−r
2/2 by comparison with the linear part.

Proof of Theorem 3.4.1.

The goal is to prove a precise description of the asymptotic behavior of nontrivial

solutions of (3.31). The second order ODE system (3.31) can be rewritten as the

first order system

y′ = B(r, j, λ)y , (E-5)
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where

B = B∞ +Bw , y =
(

y
(j+m)
+ (r), ∂ry

(j+m)
− (r), y

(j−m)
+ (r), ∂ry

(j−m)
− (r)

)T

(E-6)

and

B∞ =



















0 1 0 0

k+ −1/r 0 0

0 0 0 1

0 0 k− −1/r



















, Bw = |w|2



















0 0 0 0

4 0 2 0

0 0 0 0

2 0 4 0



















,

and

k+(r) =
(j +m)2

r2
+ r2 − 2p− 2iλ ,

k−(r) =
(j −m)2

r2
+ r2 − 2p+ 2iλ .

The asymptotic analysis in Section 3.2 also applies to the linear system

y′∞ = B∞(r, j, λ)y∞ (E-7)

and reveals that it has four independent solutions — the columns of the funda-

mental matrix of the system (E-7)

Y∞ =



















M+ 0 U+ 0

M ′
+ 0 U ′

+ 0

0 M− 0 U−

0 M ′
− 0 U ′

−



















, (E-8)
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where

M+ = rj+me−r
2/2M

(

j +m+ 1 + α+

2
, j +m+ 1, r2

)

,

M− = rj−me−r
2/2M

(

j −m+ 1 + α−
2

, j −m+ 1, r2

)

,

U+ = rj+me−r
2/2U

(

j +m+ 1 + α+

2
, j +m+ 1, r2

)

,

U− = rj−me−r
2/2U

(

j −m+ 1 + α−
2

, j −m+ 1, r2

)

(E-9)

and

α+ = p+ iλ , α− = p− iλ .

Note that the asymptotic behavior of the columns of the fundamental matrix Y∞

as r → ∞ is given by

y∞1 ∼ er
2/2rα+ (1/r, 1, 0, 0)T , y∞2 ∼ er

2/2rα− (0, 0, 1/r, 1)T ,

y∞3 ∼ e−r
2/2r−α+ (1/r,−1, 0, 0)T , y∞4 ∼ e−r

2/2r−α− (0, 0, 1/r,−1)T .

Similarly as r → 0+, the solutions to (E-5) have the same asymptotics as the

solutions of the uncoupled asymptotic linear system

y′0 = B0(r, j, λ)y0 , (E-10)

where

B0 =



















0 1 0 0

l+ −1/r 0 0

0 0 0 1

0 0 l− −1/r



















and

l+(r) =
(j +m)2

r2
, l−(r) =

(j −m)2

r2
.

112



The asymptotic behavior of solutions which is relevant for our approach only in

a close neighborhood of origin r → 0+ is

y01 ∼ r|j+m| (1, |j +m|/r, 0, 0)T , y02 ∼ r|j−m| (0, 0, 1, |j −m|/r)T ,

y03 ∼ r−|j+m| (1,−|j +m|/r, 0, 0)T , y04 ∼ r−|j−m| (0, 0, 1,−|j −m|/r)T .

The Gaussian growth and decay of these vectors motivates the reparametriza-

tion of equation (E-5) by

x =
r2

2
, r =

√
2r . (E-11)

Then similarly as in [1] the system (E-5) transforms into

z(x)′ = C(x)z(x) , (E-12)

where

C(x) = rx
(

MBM−1 +M ′M−1
)

and M is the diagonal matrix 4 × 4 with the diagonal entries (1, rx, 1, rx). A

derivation of this formula and all the other details regarding the rescaling of the

original system and its adjoint are discussed in Appendix F.

Then

C(x) = C∞(x) + Cw(x) , (E-13)

where

C∞ =



















0 1 0 0

m+(x)/2x −1/x 0 0

0 0 0 1

0 0 m−(x)/2x −1/x
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and

Cw =
w2(x)

x



















0 0 0 0

2 0 1 0

0 0 0 0

1 0 2 0



















. (E-14)

The functions m+ and m− are given by

m+(x) = 2x+
(j +m)2

2x
− α+ and m−(x) = 2x+

(j −m)2

2x
− α− .

It seems reasonable to expect that the asymptotic behavior of the system

(E-12) as x→ ∞ is the same as of the system

z̃′(x) = C∞(x)z̃(x) ,

since w2 has a Gaussian-like decay (Lemma E.1). To justify it we will apply the

asymptotic theory of [71], particularly Theorem 11, Chapter IV.

Theorem E.2. [71] Let A(t) be continuously differentiable and let B(t) be con-

tinuous for t ≥ t0 with

∫ ∞

t0

|A′(t)|dt <∞,

∫ ∞

t0

|B(t)|dt <∞ .

Suppose that all characteristic roots λ1, . . . , λn of

A0 = lim
t→∞

A(t)

are simple, let ξi be a characteristic vector of A0 belonging to the characteristic

root λi, and let λi(t) denote the characteristic root of A(t) which converges to λi

as t→ ∞, (i = 1, . . . , n).

If for some integer i none of the differences <{λi(t) − λj(t)}, j 6= i change

the sign, then the equation

x′ = [A(t) +B(t)]x
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has a solution xi(t) such that for t→ ∞

xi(t) = exp{
∫ t

t0

λi(s)ds} [ξi + o(1)] .

First we note that the statement of the Theorem E.2 is true also if we assume

that the eigenvalues λ1, . . . , λn of A0 are semi-simple. One only needs to check

that the proof of Lemma 3 (continuous diagonalization of A(t)), page 112 of

[71] is valid for semi-simple eigenvalues. We use Theorem E.2 only through the

corollary.

Corollary E.3. Let A(t) be continuously differentiable and let B(t) be continuous

for t ≥ t0 with

∫ ∞

t0

|A′(t)|dt <∞,

∫ ∞

t0

|B(t)|dt <∞ .

Suppose that all characteristic roots λ1, . . . , λn of

A0 = lim
t→∞

A(t)

are simple or semi-simple, let ξi be a characteristic vector of A0 belonging to the

characteristic root λi, and let λi(t) denote the characteristic root of A(t) which

converges to λi as t → ∞, (i = 1, . . . , n). Furthermore, let x0
i (t), i = 1, . . . , 4 be

four independent solutions of the equation

x′ = A(t)x .

If none of the differences <{λi(t)− λj(t)}, (0 < i < j ≤ n) change sign, then the

equation

x′ = [A(t) +B(t)]x
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has four independent solutions xi(t) such that for t→ ∞

xi(t) ∼ x0
i (t) .

Proof. Let us apply Theorem E.2 for i = 1, 2, 3, 4. We obtain the existence of

four (clearly independent) solutions xi(t) which satisfy

xi(t) = exp

(∫ t

t0

λi(s)ds

)

[ξi + o(1)] .

On the other hand, solutions x0
i (t) of the system

x′ = A(t)x

by the definition of eigenvalue satisfy

x0
i (t) = exp

(∫ t

t0

λi(s)ds

)

ξi .

which proves the corollary.

Now we are prepared to prove the asymptotic behavior as stated in Theo-

rem 3.4.1 which is analogous to Lemma 4.1. of [1].

Proof. The asymptotic behavior as r → 0+ is the same as of the Bessel function.

The proof based on a proper rescaling is omitted here. Unfortunately it is not

possible to rescale (E-5) similarly as in [1] to establish the asymptotics, as r → ∞.

Instead, we use the scaling introduced in (E-11) and transform the system (3.35)

into (E-12).

First, we show that the matrix Cw(r) is integrable. Lemma E.1 reveals that

w(r) decays as r → ∞ at least like e−r
2/2. Since x = r2/2, the function w2/x is

L1 integrable on every interval [x0,∞), x0 > 0. Therefore
∫ ∞

x0

|Cw(x)| dx ≤ k

∫ ∞

x0

w2(x)

x
dx <∞ . (E-15)
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Next, we prove that C ′
∞(x) is integrable. We have

C ′
∞(x) =

1

x2



















0 0 0 0

β+(x) 1 0 0

0 0 0 0

0 0 β−(x) 1



















,

where

β+(x) =
1

2

(

α+ − (j +m)2

x

)

and β−(x) =
1

2

(

α− − (j −m)2

x

)

.

Clearly,
∫ ∞

x0

|C ′
∞(x)|dx ≤ K

∫ ∞

x0

1

x2
dx <∞ .

The matrix C∞(x) tends to C0 as x→ ∞ with

C0 =



















0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0



















.

The eigenvalues {−1, 1,−1, 1} of A0 are semi-simple. To make use of Corol-

lary E.3 with independent variable x corresponding to t, C∞(x) corresponding

to A(t), Cw(x) corresponding to B(t) and z(x) corresponding to x(t) we need to

check just one remaining assumption:

none of the differences <{λi(t) − λj(t)}, 0 < i < j ≤ n change sign. (E-16)

We calculate the eigenvalues of C∞(x)

λ+
1 =

1

2x

[

−1 +
√

4x2 − 2α+x+ (j +m)2 + 1
]

→ 1 ,

λ+
2 =

1

2x

[

−1 −
√

4x2 − 2α+x+ (j +m)2 + 1
]

→ −1 ,

λ−1 =
1

2x

[

−1 +
√

4x2 − 2α−x+ (j −m)2 + 1
]

→ 1 ,

λ−2 =
1

2x

[

−1 −
√

4x2 − 2α−x+ (j −m)2 + 1
]

→ −1 .
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To prove (E-16) we only need to show that <{λ+
1 (x) − λ+

2 (x)} and <{λ−
1 (x) −

λ−2 (x)} do not change sign as x→ ∞.

Let us first prove a simple auxiliary lemma.

Lemma E.4. a) Let a > 0 and b are two real numbers. Then <(
√
a+ bi) =

<(
√
a− bi), where by square root we consider only its first sheet (i.e. positive

real part).

b) Let z is a complex number and c a positive real number <z > c. Then

<(
√
z + c) > <(

√
z − c).

Proof. The statement a) is obvious. To prove b) first note that |z + c| > |z − c|

and 0 < arg(z + c) < arg(z − c) < π
2
. Therefore

<(
√
z + c) = |z+c| cos

(

1

2
arg(z + c)

)

> |z−c| cos
(

1

2
arg(z − c)

)

= <(
√
z − c) .

Clearly it is enough to prove that <{λ+
1 −λ−1 } and <{λ+

2 −λ−2 } do not change

sign as x→ ∞. We prove the first statement, the proof of the other is analogous.

We have

<{λ+
1 − λ−1 } = <

{

1

2

[

√

4x2 + 1 + (j +m)2 − 2α+x

−
√

4x2 + 1 + (j −m)2 − 2α−x
]}

= <
{√

A+ b− ci−
√
A− b+ ci

}

,

where

A = 4x2 + 1 + j2 +m2 − 2px ,

b = 2jm+ 2λix ,

c = 2λrx .
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Then A > 0 and A > b as x→ ∞.

We apply Lemma E.4, part a) to obtain

<{λ+
1 − λ−1 } = <

{√
A+ b− ci−

√
A− b− ci

}

= <
{√

z + b−
√
z − b

}

with z = A− ci.

For λi > 0, b > 0 for x large enough and then

<{λ+
1 − λ−1 } = <

{√
z + b−

√
z − b

}

> 0

by Lemma E.4, part b).

Similarly for λi < 0 we get b < 0 for x large enough and

<{λ+
1 − λ−1 } = <

{√
z + b−

√
z − b

}

< 0 .

Finally, for λi = 0, the parameter b = 2jm is constant for all x. Since m 6= 0

if j 6= 0 then b = 2jm 6= 0. This implies that <{λ+
1 −λ−1 } does not change sign as

x → ∞. This is caused by the presence of two different (independent) solutions

with the same decay rate as r → ∞. Although the statement of the theorem is

still true, the argument in the case λi = 0 and j = 0 must be different.

First, observe that the system (3.35) reduces in that case to
[

4r −
m2

r2
− r2 + 2(p+ iλ)

]

y+ + 4|w|2y+ + 2|w|2y− = 0 , (E-17)

[

4r −
m2

r2
− r2 + 2(p− iλ)

]

y− + 4|w|2y− + 2|w|2y+ = 0 . (E-18)

Let (y+, y−) be any fixed solution to (E-17)–(E-18). Set u = y+ − y− and v =

y+ + y−. Then (E-17)–(E-18) transforms into a decoupled system (the special

property p+ iλ = p− iλ is used here)
[

4r −
m2

r2
− r2 + 2(p+ iλ)

]

u+ 4|w|2u− 2|w|2u = 0 , (E-19)

[

4r −
m2

r2
− r2 + 2(p+ iλ)

]

v + 4|w|2v + 2|w|2v = 0 . (E-20)
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The asymptotic behavior of solutions to both (E-19) and (E-20) can be treated

similarly as in the case j 6= 0, although the proof is slightly complicated by the

presence of the complex conjugate. Nevertheless, after the same rescaling as in

the previous case x = r2/2 the equation (E-19) can be rewritten as a 2×2 system

of ordinary differential equations

ν ′ = A(x)ν +B(x)ν + C(x)ν ,

where ν = (u, u′)T and

A(x) =







0 1

m(x)
2x

− 1
x






, B(x) = |w|2







0 0

4 0






, C(x) = −|w|2







0 0

2 0






.

Let us denote the small terms as g(x, ν) = B(x)ν + C(x)ν.

The statement of Theorem 11, Chapter IV [71] does not directly apply in this

case since the system is not linear, but the proof relies on a more general Theorem

11, Chapter III [71], which states that there exists a one-to-one bicontinuous cor-

respondence (preserving the asymptotic behavior) between solutions of the linear

equation z′ = A(t)z and solutions of the perturbed equation z ′ = A(t)z+ f(t, z).

The assumptions on A(t) are identical to the previously required conditions for

the asymptotic 4 × 4 system and it is easy to check that they are satisfied. The

assumptions on f(t, x) are

∫ ∞

t0

|f(t, 0)|dt <∞

and

|f(t, z1) − (t, z2)| ≤ γ(t)|z1 − z2| .

Both conditions are met when f(t, z) = C(t)z + D(t)z, if C(t) and D(t) are L1

integrable matrices. Hence even after g(x, ν) is properly rescaled as in the case

of j 6= 0 the statement applies to (E-19). The argument for (E-20) is the same.
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This proves the asymptotic behavior of solutions to (E-19)–(E-20). To find

find out the behavior of (E-17)–(E-18) observe that if (u, v) satisfy (E-19)–(E-

20), then (u + v, v − u) solves (E-17)–(E-18). Therefore there is an equivalence

between this two systems and the asymptotics of solutions to (E-17)–(E-18) can

be deduced. The results are same as in the case j 6= 0.
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Appendix F

Rescaling formulas

This Appendix contains all the necessary formulas for rescaling of the system of

ordinary differential equations used in the numerical implementation of the Evans

function. Rescaling of the eigensystem described in Appendix E is inevitable

since the Gaussian growth of the solutions on the stable manifold produces a

significant numerical error. On the the hand, the rescaled system has bounded

matrix elements, and numerically does not pose any significant complication. In

the actual implementation of the code the logarithmic rescaling close to the origin

appeared to crucial.

For simplicity only 2 × 2 linear first order ordinary differential equation sys-

tems obtained by reduction of linear second order ordinary equations will be

considered. The generalization to 4 × 4 system obtained by reduction of two

coupled second order ODE’s is straightforward.

Recall a rescaling lemma from [1]:

Proposition F.1. Let −→y (r) = (y(r), y′(r))T and let B be a 2 × 2 r-dependent

matrix. Rescaling

ξ(x) = h(r)y(r),

where r = r(x) transforms system

−→y ′(r) = B(r)−→y (r)
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into

−→
ξ ′(x) = rxC(x)

−→
ξ (x) ,

where
−→
ξ (x) = (ξ(x), ξ′(x))T ,

−→
ξ = M−→y ,

M =







h 0

h′rx hrx






(F-1)

and

C(x) = MBM−1 +M ′M−1 .

The system considered in the proposition will be referred to as “the origi-

nal system” with its counterpoint the adjoint system for which the analogous

statement reads:

Proposition F.2. Let −→z (r) = (z(r), z′(r)) and let B be a 2 × 2 r-dependent

matrix. Rescaling

ζ(x) = h̃(r)z(r),

where r = r̃(x) transforms system

−→z ′(r) = −−→z (r)B(r)

into

−→
ζ ′(x) = −−→

ζ (x)r̃xD̃(x) ,

where
−→
ζ (x) = (ζ(x), ζ ′(x)),

−→
ζ = −→z Ñ ,

Ñ =







h̃ h̃′r̃x

0 h̃r̃x






(F-2)

and

D̃(x) = Ñ−1BÑ − Ñ−1Ñ ′ .
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It is desired to conserve the property −→z (r) · −→y (r) = const for the pair of

vectors
−→
ξ (x) and

−→
ζ (x). Assume that the rescaling

−→
ξ (x) = M(r)−→y (r) is given

and search for such N(r),
−→
ζ (x) = −→z (r)N(r), that will guarantee

−→
ζ (x) · −→ξ (x) =

const. Clearly, it is necessary to set N(r) = M−1(r) (up to a constant multiple).

Given (F-1) the inverse must be

N(r) = M−1 =







1/h 0

−h′/h2 1/(hrx)






.

The structure of (F-2) yields that this is possible only for h′ = h̃′ = 0. Therefore

for simplicity set h(r) = (̃h)(r) = 1 and then Ñ(r) = N(r) implies

Ñ(r) =







1 0

0 1/rx






.

Hence r̃(x) = 1/rx. The adjoint system then must according to Proposition F.2

have the form

−→
ζ ′(x) = −−→

ζ (x) =
1

rx
D̃(x)

for

D̃(x) =
(

Ñ−1BÑ − Ñ−1Ñ ′
)

=
(

MBM−1 −M(M−1)′
)

(

MBM−1 +M ′M−1
)

,

i.e. the rescaled adjoint system has almost the same form as the rescaled original

system except of a different factors rx and 1/rx.

In the systems considered in Chapter 3 two different rescaling were introduced:

x = ln r as r → 0+ and x =
r2

2
as r → ∞.

Since rx = r and rx = 1/r respectively in these cases, the scaling of the adjoint

system (preserving the constant inner product of solutions) must be the exact
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opposite

x =
r2

2
as r → 0+ and x = ln r as r → ∞

which may seem unexpected at the first glance. Note that as pointed above the

generalization to 4 × 4 systems is straightforward.

The exterior systems associated with the original system and the adjoint sys-

tem were also discussed in [1]. The original system y′(r) = B(r)y(r) trans-

forms into ŷ′(r) = B̂(r)ŷ(r) and the adjoint system z ′(r) = −z(r)B(r) into

ẑ′(r) = −ẑ(r)B̂(r). The definition of B̂ is B̂ = B ∧ E, where E is the 4 × 4

identity matrix and the wedge (exterior) product of two matrices is introduced

in the next definition.

Definition F.3. Let A and B be square matrices of the same dimension. We

denote by A ∧B the exterior product:

(A ∧B)j∧k,i∧i′ = aijbi′k − aikbi′j .

Note that the j ∧ k column of A ∧ A is the wedge product of the j-th and k-th

columns of A.

The next lemma describes the relation between and the vector wedge product

and a linear mapping represented by A. This handy formula is used a couple of

times in the numerical code.

Lemma F.4. Let A be a n× n matrix and let v and w be vectors n× 1. Then

(Av) ∧ (Aw) = (AT ∧ AT )(v ∧ w) .

Moreover

(vTA) ∧ (wTA) = (vT ∧ wT )(A ∧ A) .
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Proof. Let A = (aij), v = (vi), and w = (wi). Then for j, k, 1 ≤ j < k ≤ n:

[(Av) ∧ (Aw)]j∧k = (Av)j(Aw)k − (Av)k(Aw)j

= (ajivi)(aki′wi′) − (akivi)(aji′wi′)

=
∑

i,i′

(ajiaki′ − akiaji′)viwi′

=
∑

i<i′

(ajiaki′ − akiaji′)(viwi′ − vi′wi)

=
∑

i<i′

(aTj ∧ aTk )(v ∧ w)i∧i′

= (AT ∧ AT )j∧k(v ∧ w) .

Hence

(Av) ∧ (Aw) = (AT ∧ AT )(v ∧ w) .

The proof of the second statement is analogous.

Finally, it is necessary to resolve the question how the rescaling of both original

and adjoint system will influence the exterior products. Assume y ′(r) = B(r)y(r)

is rescaled into ξ′(x) = rxC(x)ξ(x). Then the system for exterior products cor-

responding to the rescaled problem is

ξ̂′(x) = rx(C ∧ E)(x)ξ̂(x) . (F-3)

Similarly the system for exterior products associated with the rescaled adjoint

system ζ ′(x) = −ζ(x)(1/rx)C(x) is given by

ζ̂ ′(x) = −ζ̂(x) 1

rx
(C ∧ E)(x) . (F-4)

It is easy to prove that the product of the fundamental matrices of (F-3) and

(F-4) is identity and thus it is in in agreement with the definition of the Evans

function in Chapter 3.
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Appendix G

Galerkin approximation

Appendix G contains the analytical background for finding the eigenfunction for

an already calculated eigenvalue of the system (3.31). This procedure makes use

of a Galerkin approximation and is similar to one used in [4].

Consider an eigenvalue problem

Ly = iλRy (G-1)

where y = (y+, y−)T ,

R =







1 0

0 −1






and L =







Hj+m − p 0

0 Hj−m − p






+ |w|2







2 1

1 2







and Hk = −1
2
4r + k2

2r2
+ 1

2
r2, λ is an given eigenvalue (or its numerical approx-

imation). The asymptotic analysis reveals the expected asymptotic behavior of

y:

y ∼







rj+m

rj−m






as r → 0+ and y ∼ e−

r2

2







rp+iλ−1

r−p−iλ−1






as r → ∞

Therefore we set

y = rj+me−
r2

2

∞
∑

n=0

an







Ln(r
2)

0






+ rj−me−

r2

2

∞
∑

n=0

bn







0

Ln(r
2)






. (G-2)
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Here Ln(r
2) is a Laguerre polynomial satisfying

xL′′
n(x) + (1 − x)L′

n(x) + nLn(x) = 0 , n = 0, 1, 2, . . . (G-3)

Also, we will need an recurrence formula for derivatives of Laguerre polynomials

xL′
n(x) = n (Ln(x) − Ln−1(x)) , n = 1, 2, . . . (G-4)

Finally, Laguerre polynomials form an orthonormal basis with respect to a par-

ticular scalar product:

∫ ∞

0

e−xLn(x)Lm(x)dx = δmn . (G-5)

These relations imply

rL′′
n(r

2) + (1 − 2r2)L′
n(r

2) + 4rnLn(r
2) = 0 , n = 0, 1, 2, . . . (G-6)

and

rL′
n(r

2) = 2n
(

Ln(r
2) − Ln−1(r

2)
)

, n = 1, 2, . . . (G-7)

and also
∫ ∞

0

e−r
2

Ln(r
2)Lm(r2)2rdr = δmn . (G-8)

Let F
(k)
n = Ln(r

2)rke−r
2/2. Then a short calculation gives

HkF
(k)
n =

[

−2r2L′′
n − 2(k + 1 − r2)L′

n + (k + 1)Ln
]

rke−r
2/2 .

Inserting (G-6) into this expression yields

HkF
(k)
n =

[

2(−2r3 + r2 + r − k − 1)L′
n(r

2) + (k + 1 + 8r2n)Ln(r
2)
]

rke−r
2/2 .

To avoid use of derivatives we replace L′
n in the expression using (G-7):

HkF
(k)
n =

[

4n

(

−2r2 + r + 1 − k + 1

r

)

(

Ln(r
2) − Ln−1(r

2)
)

+(k + 1 + 8r2n)Ln(r
2)
]

rke−r
2/2
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Consequently, the system (G-1) transforms into a system

iλrj+me−r
2/2
∑

n

anLn =
∑

n

(j +m+ 1 − p− 8r2n)rj+me−r
2/2Lnan

+ 4
∑

n

(

−2r2 + r + 1
)

(Ln − Ln−1)anr
j+me−r

2/2

− 4
∑

n

j +m+ 1

r
(Ln − Ln−1)anr

j+me−r
2/2

+ 2|w|2rj+me−r2/2
∑

n

anLn

+ |w|2rj−me−r2/2
∑

n

bnLn , (G-9)

iλrj−me−r
2/2
∑

n

bnLn =
∑

n

(j −m+ 1 − p− 8r2n)rj−me−r
2/2Lnbn

+ 4
∑

n

(

−2r2 + r + 1
)

(Ln − Ln−1)bnr
j−me−r

2/2

− 4
∑

n

j −m+ 1

r
(Ln − Ln−1)bnr

j−me−r
2/2

+ 2|w|2rj−me−r2/2
∑

n

bnLn

+ |w|2rj+me−r2/2
∑

n

anLn , (G-10)

Finally, by multiplying (G-9) by a factor er
2/2r−(j+m) and integrating over (0,∞)

with respect to e−r
2

Lk(r
2)2rdr (to assure orthonormality of Ln) one gets

iλak = (j +m+ 1 − p)ak + 8
∑

n

an

∫ ∞

0

r2LnLke
−r22rdr

− 4(j +m+ 1)
∑

n

2nan

∫ ∞

0

Lk(Ln − Ln−1)e
−r2dr

+ 4
∑

n

nan

∫ ∞

0

(−2r2 + r + 1)Lk(Ln − Ln−1)e
−r22rdr

+ 2
∑

n

an

∫ ∞

0

|w|2LkLne−r
2

2rdr

+
∑

n

bn

∫ ∞

0

|w|2
r2m

LkLne
−r22rdr . (G-11)
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Similarly (G-10) transforms into

−iλbk = (j −m+ 1 − p)bk + 8
∑

n

bn

∫ ∞

0

r2LnLke
−r22rdr

− 4(j −m+ 1)
∑

n

2nbn

∫ ∞

0

Lk(Ln − Ln−1)e
−r2dr

+ 4
∑

n

nbn

∫ ∞

0

(−2r2 + r + 1)Lk(Ln − Ln−1)e
−r22rdr

+ 2
∑

n

bn

∫ ∞

0

|w|2LkLne−r
2

2rdr

+
∑

n

an

∫ ∞

0

|w|2r2mLkLne
−r22rdr . (G-12)

This motivates the introduction of matrices B,C,E and F consisting of the fol-

lowing integrals:

Bij =

∫ ∞

0

|w|2
r2m

Li(r
2)Lj(r

2)e−r
2

2rdr ,

Cij =

∫ ∞

0

|w|2r2mLi(r
2)Lj(r

2)e−r
2

2rdr ,

Fij =

∫ ∞

0

|w|2Li(r2)Lj(r
2)e−r

2

2rdr ,

E
(1)
ij = 2

∫ ∞

0

Li(r
2)
(

Lj(r
2) − Lj−1(r

2)
)

e−r
2

dr ,

E
(2)
ij = 2

∫ ∞

0

(−2r2 + r + 1)Li(r
2)
(

Lj(r
2) − Lj−1(r

2)
)

e−r
2

dr ,

Gij =

∫ ∞

0

r2Li(r
2)Lj(r

2)e−r
2

2rdr .

Then the system (G-11)–(G-12) reads

iλak = (j +m+ 1 − p)ak + 8
∑

n

nanGkn − 4(j +m+ 1)
∑

n

annE
(1)
kn

+ 4
∑

n

anE
(2)
kn + 2

∑

n

anFkn +
∑

n

bnBkn , (G-13)

−iλbk = (j −m+ 1 − p)bk + 8
∑

n

nbnGkn − 4(j −m+ 1)
∑

n

bnnE
(1)
kn

+ 4
∑

n

bnE
(2)
kn + 2

∑

n

bnFkn +
∑

n

anCkn , (G-14)
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This infinitely-dimensional system will is in the numerical approximation trun-

cated to a finite 2n× 2n system for a solution vector v = (a, b)T

Mv = 0

where M is a block matrix

M =







A B

C D







with

A = (j +m+ 1 − p− iλ)I + 8GT − 4(j +m+ 1)E(1)T + 4E(2)T + 2F ,

D = (j −m+ 1 − p+ iλ)I + 8GT − 4(j −m+ 1)E(1)T + 4E(2)T + 2F ,

where I is the n × n identity matrix and T is a matrix with diagonal entries

(0, 1, 2, . . . , n− 1) and all other elements zero.

In the actual implementation n = 20 was used and the complex system was

decomposed to a real and imaginary part. This procedure then yields 4n × 4n

real system. The eigenfunction then corresponds to a non-zero solution vector. In

practice the matrix M is not singular since λ is only a numerical approximation

of the eigenvalue, elements of matrices B,C,E, F are only numerically evaluated

(they also depend on numerically obtained function w on a finite interval) and

finally, only a finite number of basis elements corresponding to an and bn is

used. It motivates a search for solution with fixed norm with a smallest possible

remainder Mv, or equivalently a search for an eigenvector corresponding to the

smallest singular value of MTM .
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