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Local Molecular Field (LMF) theory is a framework for modeling the long

range forces of a statistical system using a mimic system with a modified Hamilto-

nian that includes a self consistent molecular potential. This theory was formulated

in the equilibrium context, being an extension of the Weeks Chandler Andersen

(WCA) theory to inhomogeneous systems. This thesis extends the framework fur-

ther into the nonequilibrium regime. It is first shown that the equilibrium derivation

can be generalized readily by using a nonequilibrium ensemble average and its rele-

vant equations of motion. Specifically, the equations of interest are fluid dynamics

equations which can be generated as moments of the BBGKY hierarchy. Although

this approach works well, for the application to simulations it is desirable to ap-

proximate the LMF potential dynamically during a single simulation, instead of a

nonequilibrium ensemble. This goal was pursued with a variety of techniques, the

most promising of which is a nonequilibrium force balance approach to dynami-

cally approximate the relevant ensemble averages. This method views a quantity



such as the particle density as a field, and uses the statistical equations of motion

to propagate the field, with the forces in the equations computed from simulation.

These results should help LMF theory become more useful in practice, in addition

to furthering the theoretical understanding of near equilibrium molecular fluids.
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Chapter 1: Introduction

Molecular dynamics simulations are an essential part of modern statistical me-

chanics research, providing the ability to computationally probe important physical

systems, in addition to investigating toy models to further improve and test theo-

retical techniques. In order to successfully use these simulations, it is important to

develop theoretical tools to fully understand computational results, leading the way

for new understanding of the underlying systems of study. One challenging aspect of

molecular dynamics simulations has been modeling the long range components of the

forces involved, particularly for the Coulomb force, which is slowly decaying. This

problem is challenging both computationally and theoretically [1, 2, 3]. From the

standpoint of computation, Ewald summation and its variants have become stan-

dard methods to compute these long range forces. The more efficient algorithms

that have been developed rely on Fourier transformations of the long range poten-

tial, and therefore can be computationally expensive, and do not scale well with

larger simulation boxes [4, 5, 6]. From a theoretical point of view, larger wavelength

components can show a more coarse grained picture of what is happening in a simu-

lation, and therefore a more advanced understanding of these components can lead

to greater insight into the underlying physics of the simulation [7, 8]. Also, finite
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size effects can lead to artifacts in the resulting dynamics [9]. For these reasons and

more, it is interesting to investigate the long range interactions in a simulation.

Local Molecular Field (LMF) theory is a framework that has been developed

to formalize this separation of the complicated, microscopic degrees of freedom in

a simulation from the slowly varying, long range components [10, 11, 12, 13]. To

deal with the long range part, LMF theory uses a rigorous statistical mechanics

approach to the problem, and therefore yields an abstracted level of description that

avoids some of the complications inherent in all atom simulations. Furthermore, in

some cases LMF theory can provide computational savings in these simulations,

by avoiding the use of Ewald summations and related algorithms, which can be

bottlenecks in simulation. This could allow for pushing the boundaries of the time

scales and length scales that simulations are able to probe.

Many of the results that have been found for LMF theory were derived in

the equilibrium context. A classic example is that of a solute fixed at the origin in

the presence of a molecular solvent, such as water. In this example, one introduces

an LMF mimic system with a renormalized LMF potential. The mimic system

has truncated short pair interactions, and the renormalized potential is chosen to

reproduce the molecular structure of the full system by incorporating the average

long range components of the forces in a self consistent fashion. In this example,

the renormalized potential must be constant in time, and therefore this theory is

fundamentally formulated in the context of equilibrium statistical mechanics. The

theory has been shown to work extremely well in this context, and many other

interesting systems have been studied in the context of LMF theory.
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Despite the successes of this theory, there are many systems for which one

might be interested in questions regarding dynamics. Furthermore, even in equi-

librium systems, if there is a large bio-molecular solute that is not fixed, then the

LMF potential would have to be computed self consistently for each configuration

of the solute. This is computationally difficult, and also does not seem to be the

best approach for dealing with this situation. Furthermore, for applications of the

theory, it would be optimal to have techniques that could approximate the LMF

potential dynamically as a simulation progress, so that people could use this as a

“black box” algorithm. It is the goal of this thesis to investigate the extension of

the formalism of LMF theory to non-equilibrium systems, and to develop some pos-

sible paths toward the dynamic approximation of the LMF potential in a black box

algorithm.

It turns out that the extension of the underlying formalism of LMF theory to

non-equilibrium contexts can be carried out effectively using a similar argument as in

the original derivation. In order to achieve this, it is necessary to use the more gen-

eral equations of non-equilibrium statistical mechanics, to change the interpretation

of the ensembles under consideration, and to adjust the arguments underpinning the

proof. This can be carried out relatively quickly, and works very well, just like in

the equilibrium context. A more difficult goal is to obtain an effective method of dy-

namically approximating the LMF potential for a single simulation as it progresses,

which would arguably be the best way to implement LMF theory in practice. In

the pursuit of this goal, a number of different techniques have been attempted, with

varying levels of success.
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In attempting to approximate the LMF potential dynamically, one of the most

difficult issues one faces is to generate an adequate statistical sampling of the parti-

cle densities, while simultaneously updating the potential quickly enough to reflect

the current state of the system. The general approach taken in this thesis is to

achieve these dynamical updates through evolution equations of the LMF potential,

so that each timestep only changes the potential slightly. This allows the potential

to reach self-consistency dynamically, as opposed to the iterative procedures [13]

and linear response methods [14] that have been used previously. Intuitively, one

can understand this as being a very large number of very small iterations, and so

the two approaches are related. This approach can lead to more stable relaxation

of the potential, and therefore is arguably superior to the iterative procedures used

before.

There are some drawbacks to this approach to the problem, however. With

any of these methods, there is an inherent time scale of averaging that must appear

in the evolution equations, in one form or another. This means that the method

must be used for systems where the time scales under study are much longer than

the effective time scales of averaging, and therefore can not be used as a generic

approximation for all systems. This also leads generally to a lag in the dynamics

of the mimic system relative to the full system, which is on the order of the time

scale of averaging. As this time scale gets shorter, the approximation of the LMF

potential generally degrades due to poor statistics.

Furthermore, it would be desirable for the evolution equation of the LMF

potential to be obtained from some physically motivated approximation, because
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this would reflect the underlying physics and ideally lead to more accuracy. A few

different approaches were taken along these lines, with varying degrees of success.

In some cases, it is also useful to include ad hoc terms in the equations, to help

with convergence. The ad hoc terms can also be physically motivated, such as the

viscous term in the Navier Stokes equation, to be discussed in chapter 4. In this

way, many variants of non-equilibrium LMF theory can arise, and lead to different

results and conclusions.

We begin in chapter 2 with a review of equilibrium LMF theory, and its mo-

tivation coming from the force cancellation arguments of Widom and the theory of

Weeks Chandler and Andersen. We then review further background material, in-

cluding a detailed derivation of the YBG and BBGKY hierarchies, and their use in

the derivation of fluid dynamics equations, to be developed more in chapter 3. We

then review some formalism used to describe constrained systems, which is relevant

for the material in chapter 4.

In chapter 3, we introduce the ensemble averaged approach to non-equilibrium

LMF theory. In this approach, one defines a non-equilibrium ensemble as a phase

space distribution function which evolves according to the Liouville equation. We

then use these equations to arrive at the Cauchy momentum equation, and make a

near equilibrium approximation to bring this to a form that is similar to the YBG

hierarchy. It is then possible to use the techniques from equilibrium LMF theory to

derive a non-equilibrium LMF equation, and show that the resulting mimic system

will evolve similarly to the full system, even though the arguments are not exactly

the same as in equilibrium. We then show that this theory works well for a collection
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of non-trivial toy models.

In chapter 4 we present the most promising practical implementation of non-

equilibrium LMF theory. This method is inspired by a series of papers written on

an alternate method of approximating observables in simulation, such as the single

particle density, which will be called the force balance approach. This approach uses

the YBG hierarchy equation to probe the density of the system indirectly, by instead

sampling the force density. This leads naturally to a way of approximating the

LMF potential using the force balance method. The theory behind this approach is

developed out of equilibrium and for constrained systems, and then some preliminary

simulations are presented.

In chapter 5 yet another approach to non-equilibrium LMF theory is intro-

duced, this time more computationally inspired. This approach could be used by

itself, or in conjunction with the methods of chapter 4, because it deals with a

separate set of difficulties. The main idea is to sample the smooth charge density

stochastically, and then use this stochastic sampling to source an iterative Poisson

solver. Because sampling the charge density and interpolating to a grid is one of

the more computationally expensive steps in the Ewald algorithm, this alternative

could provide significant computational savings in cases where a separation of time

scales allows for statistically meaningful averaging of the field. This idea of separa-

tion of time scales is investigated using the theory of dielectric response, and some

preliminary results are presented.

In chapter 6, a line of research not directly related to LMF theory is presented,

but having to do with molecular simulations. Here an alternative approach to finite
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temperature quantum simulations is presented, which is called approximate ther-

mofield dynamics. With the simplest approximation of a thermal coherent state, this

method reduces to the Hartree-Fock-Bogoliubov method for temperature dependent

evolution of a system. As an example this method is applied to the homogeneous

electron gas.

In the appendices, some alternate approaches to non-equilibrium LMF theory

are also presented, which did not yield interesting enough results to be pursued

seriously by the author.
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Chapter 2: Background

In this chapter we provide a review of topics that are relevant for the research

contained in this thesis. We begin with a review of the theory of Weeks Chandler

and Andersen (WCA) and the force cancellation argument which underlies the de-

velopment of LMF theory. We will then proceed to the formalism of LMF theory,

deriving the LMF equation and arguing that the mimic system introduced will ap-

proximate the full system very well for a general class of systems. We will then

proceed to review the derivation of the BBGKY hierarchy, and the YBG hierarchy,

on which LMF theory depends. These hierarchies play an important role in the

developments of this thesis, and therefore we will present a pedagogical derivation.

After this introductory material, the focus will be on techniques that are useful

for the development of non-equilibrium LMF theory and related applications. First

we will show how the moments of the BBGKY hierarchy equations lead directly to

the Navier-Stokes and energy conservation equations in a liquid. This formalism is

important for the ensemble averaged approach to non-equilibrium LMF theory.
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2.1 Review of LMF and WCA Theory

Local Molecular Field theory is a framework for understanding the long range

interactions in a statistical system, while abstracting out the complicated short range

dynamics of the interacting particles. The key insight underlying the development

of LMF theory was originally made by Widom [15], and regards the concept of force

cancellation for a bulk fluid. This idea was further developed by Weeks, Chandler

and Andersen to create the WCA theory for Lennard-Jones fluids [16, 17].

Force cancellation is a property satisfied for many uniform, dense fluids. The

first and most well known example is that of a uniform fluid of particles interacting

under the Lennard-Jones pair potential

uLJ(r) = 4εLJ

[(σLJ
r

)12

−
(σLJ
r

)6
]
. (2.1)

In this example, the force is strongly repulsive at short range, but is weakly attractive

as the distance increases. For the weak attractive forces, the force cancellation

argument states that although these forces are not negligible for any individual

interaction, the vector sum of the forces from all of the different particles vanishes

on average, and also makes only a small contribution to the structural properties

of the fluid. In particular, if one considers the radial distribution function g(r) for

this fluid, the structure should be almost identical if one ignores the long range

attractions.

This intuition was formalized in WCA theory, where the Lennard-Jones po-

9



Figure 2.1: (a) The WCA potential defined by equation (2.2), showing the natural
splitting between the short range and long range parts. (b) Illustration of the
concept of force cancellation, coming from overall cancellation in the vector sum
of forces involved. (c) g(r) for a Lennard-Jones fluid and its short range reference
system for T ∗ = .65 and ρ∗ = .85. (figure credit to Richard Remsing in his thesis
[18])

tential is split into two distinct parts

u0(r) =


uLJ(R) + εLJ r < r0

0 r > r0

(2.2)

u1(r) =


−εLJ r < r0

uLJ(r) r > r0,

(2.3)

where r0 is the position of the minimum of the LJ potential, and u0(r) is known as

the WCA potential. This splitting is illustrated in figure 2.1a. The force cancella-

tion argument suggests that the long range forces from the u1 potential will cancel

on average, and therefore will not contribute significantly to the pair correlation

function g(r). This is rigorously true on average for a uniform fluid, but it turns

out to be a very good approximation for individual equilibrated configurations, and

therefore the structure of the fluid does remain almost the same if one completely
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neglects the long range component. The dominant contribution from these long

range forces is a uniform background energy, which can be approximated with a

mean field theory. This approximation led to a number of developments, including

the use of a perturbation theory for uniform fluids, in addition to the ability to use

the truncated reference system to infer thermodynamic properties of the full system.

These developments are collectively known as WCA theory.

Local Molecular Field theory is a formalism for extending the intuition of

the force cancellation arguments of WCA theory to inhomogeneous systems, where

the force cancellation argument generally fails. To see why the argument fails,

consider introducing a large spherical solute into a Lennard-Jones fluid, as depicted

in figure 2.2a. The force cancellation argument relied on the uniformity of the

fluid to argue that the vector sum of the long range forces on a fixed particle must

vanish. However, due to the solute, there is an excluded volume in the system, and

therefore the contribution from that region will create unbalanced forces. For this

reason, in an inhomogeneous system, it is necessary to include corrections to the

WCA approximation. LMF theory is the best way to include such corrections.

The idea behind LMF theory is to introduce a mimic system, in which the pair

interactions are truncated, but a complementary field is introduced to approximately

account for the neglected long range interactions. This is schematically illustrated
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Figure 2.2: (a) Illustration of the failure of the force cancellation argument for
an inhomogeneous Lennard-Jones liquid. (b) Particle density for the fluid and its
reference system at T ∗ = .85 and ρ∗ = .70. (figure credit to Richard Remsing in his
thesis [18])

as follows

Full Mimic
w(r)

φ(r)

→


u0(r)

φR(r)

 . (2.4)

Here w(r) is the pair potential in the full system, and u0(r) is the truncated pair po-

tential. To account for the unbalanced forces that are neglected in the mimic system,

the renormalized potential φR(r) is chosen to reproduce the structural properties of

the full system. This idea will be developed more rigorously, leading to the LMF

equation for the renormalized potential.

The derivation of LMF theory begins with the assumption that there exists a

renormalized potential φR(r) that will reproduce the structure of the full system, so
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that the single particle distribution function is the same for both systems, or

ρ(1)(r; [φ]) = ρ
(1)
R (r; [φR]). (2.5)

This is a very reasonable assumption, because the potential φR(r) is arbitrary, and

is chosen precisely to make this condition true. This is particularly true given

that the short range interactions play such a dominant role in the system, and

therefore the renormalized potential should only add a slowly varying component

to the interaction. For a more rigorous derivation showing that this hypothesis is

indeed accurate, one could consider a density functional theory approach, where it

can be shown that any single particle density can be reproduced by a given external

field [19].

Given the previous assumption, it is now the goal of LMF theory to obtain an

equation for the renormalized field φR(r). In order to do this, one introduces the

YBG hierarchy equation

β−1∇ ln ρ(r; t) = −∇φ(r; t)−
∫

dr′ρ(r′|r)∇w(|r− r′|). (2.6)

Here ρ(r′|r) is the conditional singlet density, or the probability to find a particle

at r′ given that there is a particle located at r. Two different derivations of the

YBG hierarchy will be given in the next section, and the equation is valid for any

Hamiltonian system at equilibrium. In particular, the equation is valid for both the

full and mimic systems, and therefore one can subtract this equation for the two
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systems to find a formally exact relation between φR(r) and φ(r):

−∇φR(r) = −∇φ(r)−
∫

dr′ρR(r′; [φR])∇u1(|r− r′|) (2.7a)

−
∫

dr′
(
ρ(r′|r; [φ])− ρR(r′|r; [φR])

)
∇u0(|r− r′|) (2.7b)

−
∫

dr′
(
ρ(r′|r′; [φ])− ρ(r′; [φR])

)
∇u1(|r− r′|), (2.7c)

where we have also used equation (2.5).

We will argue that the terms (2.7b) and (2.7c) will be small, and therefore can

be safely neglected. The error term (2.7b) probes the difference in the full and mimic

systems of the conditional singlet density. In general, we do not necessarily expect

that these quantities are the same, due to the long range interactions neglected in

the mimic system. However, the force from the short range force F0(r) = −∇u0(r)

vanishes for large r by assumption, and therefore this term only probes the short

range difference of the conditional singlet densities for the two systems. Because

the short range interactions are the same for these two systems, we do expect the

conditional singlet densities to be close at short distances, and therefore we expect

the relevant convolution to be small. The term (2.7c) probes the difference between

the conditional singlet density in the full system, and the singlet density in the

mimic system. This is convolved with the force from the long range part of the

potential, F1(r) = −∇u1(r), and this force vanishes at short distances, again by

assumption. We do expect that at large distances the conditional singlet density is

approximately equal to the single particle density, because the correlations should
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be short ranged for systems that are not near a critical point. Therefore, we also

expect this term to be small.

After neglecting the terms above which involve higher order correlation func-

tions, we have effectively truncated the hierarchy and are left with the equilibrium

LMF equation

∇φR(r) = ∇φ(r) +

∫
dr′ρR(r′; [φR])∇u1(|r− r′|). (2.8)

This relates the renormalized potential φR(r) to the potential of the full system and

the singlet density in the mimic system. Although this equation takes the form of

a mean field type equation, it is important to understand the difference between

this and a mean field approach. This is a self consistent equation, which must be

iteratively solved in order to obtain a converged solution which satisfies the equation.

Furthermore, this equation came directly from a series of controlled approximations

to the exact YBG hierarchy, as opposed to the usual mean field approach.

In order to fully understand the difference in these two approaches, it is in-

teresting to consider in what cases these approximations could fail, and why. One

way in which this approach could fail is if the separation between the short range

and long range forces was too short. In other words, if the short range forces did

not adequately account for the forces at distances for which correlations still exist in

the liquid, then one would expect the approximation to break down. This becomes

particularly apparent in the context of electrostatics, where the splitting has an

explicit length scale of smoothing σ, to be discussed. Therefore, this derivation not
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only proves that the approximations are reasonable, but also give immediate insight

into when they might fail. This will lead to an appropriate choice of the parameter

σ.

Another interesting question is whether LMF theory is a good approximation

for the dynamics of the theory. Velocity autocorrelation functions were studied for an

LJ fluid by Rick Remsing in his thesis [18], where he showed that LMF theory repro-

duces the autocorrelation function accurately at short and intermediate timescales,

with small deviations for the longer timescales. In his thesis, Ang Gao considered

the velocity autocorrelation function and diffusion coefficient for fullerene solutes

in water [20], which also showed slight descrepancies, but overall good agreement.

This is an area that could be investigated more thoroughly in future work.

2.2 LMF theory for electrostatics

The previous derivation was valid for a system with only a single particle

species, and therefore is not as general as it could be. In particular, for a sys-

tem involving electrostatic interactions, one may be interested in site-site molecular

models, for which different particle species have different charges. LMF theory can

be extended to these situations, and have been studied extensively for single species

molecular models. In order to accomplish this, a site site YBG hierarchy equation

was derived, which encompasses effects from both intra-particle and inter-particle

interactions [21, 22]. Although the full derivation is not contained here, the dis-

cussion regarding constrained systems in chapter 4 will contain equations that are
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valid in this broader context. For the present discussion, we will derive the LMF

equation for electrostatics, and discuss the splitting of the Coulomb potential used

in this context.

To obtain the LMF equation for mixtures, one introduces the relevant LMF

equation for a species α in a mixture of species indexed by γ and including α

φR,α(r) = φα(r) +
∑
γ

∫
dr′ρR,γ(r

′)u1,αγ(|r− r′|). (2.9)

For a general set of interactions, this would be the furthest simplification possible.

However, due to the universal character of the electrostatic interaction, one can

further simplify the equation. To do so, we consider the following splitting of the

Coulomb potential

1

r
= v0(r) + v1(r) (2.10)

where

v0(r) =
erfc(r/σ)

r
, v1(r) =

erf(r/σ)

r
. (2.11)

In addition to LMF theory, this splitting is also used in standard Ewald summation

techniques. The long range potential v1(r) here is that due to a Gaussian smoothed

charge density of unit charge

ρG(r) =
1

π3/2σ3
exp

(
− r

2

σ2

)
. (2.12)

Because this potential arises from Gaussian smoothing, the Fourier transform of the
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resulting potential is also well behaved, which is one of the reasons this splitting is

chosen.

If one chooses the same smoothing length σ for all electrostatic interactions in

a system, then the LMF equations written previously take the universal form

φR,α(r) = φα(r) +
qα
ε

∫
dr′ρqR(r′)v1(|r− r′|), (2.13)

where we have defined the charge density

ρq(r) =
∑
γ

qγργ(r). (2.14)

One can further define the renormalized potential φR,α(r) in terms of a renormalized

electrostatic potential VR(r) through the equation

φR,α(r) = φne,α(r) + qαVR(r), (2.15)

where φne,α(r) encompasses the potential due to interactions that are not electro-

static, and therefore are not relevant to the current discussion. With this definition,

the LMF equation further simplifies to

VR(r) = V(r) +
1

ε

∫
dr′ρqR(r′)v1(|r− r′|), (2.16)

which is the LMF equation for electrostatics.

It is now clear how the length scale σ appears naturally in the LMF equation
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for electrostatics. As discussed previously, the choice of σ is important for the LMF

approximation to be accurate, and the derivation illustrates in what way this is the

case. In particular, we want the short range part of the interaction to be enough to

properly account for the short range structure of the fluid, and long range enough

that the interparticle correlations become small at the relevant length scale. For

fluids near the triple point, this requirement implies that the smoothing length

should be long enough to encompass at least a few molecular shells. If the value of

σ is greater than this minimal distance, denoted σmin, then the LMF approximation

should be valid. For example, in water at room temperature, it has been found

empirically that a choice of σmin = 4.5Å is sufficient for LMF theory to be valid.

For most cases of interest, there are two relevant parts of an electrostatic

potential. One is due to the fixed external charges, and the other is due to the

induced structure in the liquid. If one applies the same smoothing to the fixed

external charges, then it is useful to define the total restructured LMF correction

VR1(r) =
1

ε

∫
dr′ρqR,tot(r

′)v1(|r− r′|), (2.17)

where ρqR,tot includes all charges in the system, including fixed charges. This equation

can also be written schematically as VR1 = ρqR,tot ? v1 = ρqR,tot ? ρG ?
1
r
. Using the

associativity of convolution, this is also equal to VR1 = ρqσR,tot ?
1
r
, where the smooth

charge density is defined by ρqσR,tot = ρqR,tot ? ρG. More explicitly, we have

VR1(r) =
1

ε

∫
dr′ρqσR,tot(r

′)
1

|r− r′|
, (2.18)
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where the smooth charge density is defined by

ρqσR (r′) =

∫
dr′ρqR,tot(r

′)ρG(|r− r′|). (2.19)

From these equations, we see that the potential VR1(r) is the electrostatic potential

given by the smoothed charge density ρqσR,tot(r). In particular, this potential satisfies

the Laplace equation

∇2VR1(r′) = −4π

ε
ρqσR,tot(r). (2.20)

This equation will be useful for motivating some of the approximations that will be

introduced in non-equilibrium LMF theory.

2.3 BBGKY and YBG hierarchies

In this section, we will derive the BBGKY and first of the YBG hierarchy

equations, which are of central importance to LMF theory and this thesis. We will

derive the first equation of the YBG hierarchy in two different ways, both of which

are useful and relevant to the later discussion. Part of the presentation here follows

Hansen and McDonald [23].

The first method to derive the first of the YBG hierarchy equations is the most

straightforward, and can be generalized most easily for more complicated situations.

To begin, we define the reduced particle density ρ(1)(r) for a single particle species
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in an equilibrium canonical ensemble by

ρ(1)(r) = Z−1N

∫
e−βHdN−1r. (2.21)

Here Z is the partition function, N is the total number of particles, β = (kT )−1

and H is the Hamiltonian. Here the integral is over all but one particle, which is

held fixed, and the particles are assumed to be identical. Taking a gradient of this

equation, we find

∇ρ(1)(r) = −βZ−1N

∫
∇He−βHdN−1rdNp. (2.22)

We will take the Hamiltonian to have the form of a kinetic term added to an external

potential and a pair interaction

H =
∑
i

p2
i

2m
+
∑
i

φ(ri) +
∑
i 6=j

w(ri, rj), (2.23)

which yields the equation

∇ρ(1)(r) = −βρ(r)∇φ(r)− β
∫

dr′ρ(2)(r′, r)∇w(r, r′). (2.24)

where ρ(2)(r, r′) = Z−1N(N − 1)
∫
e−βHdN−2rdNp is the two particle density. Di-

viding this equation by ρ(1)(r) we find the first of the YBG hierarchy equations

∇ ln ρ(1)(r) = −β∇φ(r)− β
∫

dr′ρ(r′; r)∇w(r, r′), (2.25)
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where we have defined the conditional singlet density

ρ(r′; r) =
ρ(2)(r′, r)

ρ(1)(r)
. (2.26)

The second derivation of the YBG hierarchy equations will be as the equi-

librium limit of the BBGKY hierarchy equations, which are the non-equilibrium

generalization of the hierarchy. The derivation of the BBGKY hierarchy starts with

the Liouville equation, which follows from the continuity equation in phase space

∂f (N)

∂t
+

N∑
i=1

(
∂f (N)

∂ri
· ṙi +

∂f (N)

∂pi
· ṗi
)

= 0. (2.27)

Using Hamilton’s equations for the Hamiltonian (2.23), this can be written

(
∂

∂t
+

N∑
i=1

pi
m
· ∂
∂ri
−

N∑
i=1

∂φ

∂ri
· ∂

∂pi

)
f (N) =

N∑
i,j=1

∂w(ri, rj)

∂ri
· ∂f

(N)

∂pi
. (2.28)

To derive the BBGKY hierarchy, we first define the reduced phase space distribution

functions

f (n)(rn,pn; t) =
N !

(N − n)!

∫ ∫
f (N)(rN ,pN ; t)drN−ndpN−n. (2.29)

With this definition, we integrate the Liouville equation over (N − n) coordinates
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to find

(
∂

∂t
+

n∑
i=1

pi
m
· ∂
∂ri
−

n∑
i=1

∂φ

∂ri
· ∂

∂pi

)
f (n) = (2.30)

n∑
i,j=1

∂w(ri, rj)

∂ri
· ∂f

(n)

∂pi
+

n∑
i=1

∫ ∫
∂w(ri, rn+1)

∂ri
· ∂f

(n+1)

∂pi
drn+1dpn+1,

which is the BBGKY hierarchy. The first equation of the hierarchy is

(
∂

∂t
+

p1

m
· ∂
∂r1

− ∂φ

∂r1

· ∂

∂p1

)
f (1) =

+

∫ ∫
∂w(r1, r2)

∂r1

·∂f
(2)

∂pi
dr2dp2. (2.31)

To find the equilibrium limit of equation (2.31), we first neglect the time

derivative, as the equilibrium phase space distribution is independent of time. Also,

at equilibrium the momentum dependence of the distribution functions takes the

form of a Maxwell distribution

fM(p) =
exp(−β|p|2/2m)

(2πmkBT )3/2
, (2.32)

so that f (1)(r1,p1) = ρ(1)(r1)fM(p1), and similarly for f (2). Upon substituting the

Maxwell distribution into equation (2.31) and simplifying, we find

p1 · (β−1∇1 −∇1φ)ρ(1)(r1) = p1 ·
∫
∇w(r1, r2)ρ(2)(r1, r2)dr2. (2.33)

Noting that this equation is true for all p1, one can neglect the dot product with
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p1. Then, dividing through by ρ(1) and simplifying yields equation (2.25).

2.4 Fluid dynamics equations

In this section we will show how the moments of the BBGKY hierarchy lead

to microscopic versions of fluid dynamics equations, including the Navier-Stokes

equation and the equation for conservation of energy. The presentation here will

follow that of Harris [24], with some modifications to agree with our conventions.

Many of these ideas are also expounded in more detail in Landau and Lifshitz

[25][26]. This procedure forms the basis of the formalism necessary to extend LMF

theory to the non-equilibrium situation in the ensemble averaged approach, to be

discussed in chapter 3.

To begin, we define the moments of the reduced phase space density f (1)(r,p; t)

with respect to momentum by

Mαβ... =

∫
dppαpβ . . . f(r,p; t), (2.34)

where the indices α, β, . . . are spatial indices. The first few moments have direct

physical significance in the context of fluid dynamics. The zeroth moment is the

particle density

ρ(r; t) =

∫
dp f(r,p; t), (2.35)
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and the first moment is related to the fluid flow velocity u(r; t) by

ρ(r; t)u(r; t) =

∫
dp

p

m
f(r,p; t). (2.36)

In order to study higher moments, it is useful to introduce the relative flow

velocity

v0 =
p

m
− u, (2.37)

which measures the speed of a particle in the reference frame of the fluid with average

velocity u. Using this quantity, the energy density E =
∫

dp p2/2mf of the system

can be written as a sum of a local internal energy ξ =
∫

dpmv2
0/2f and the kinetic

energy of the bulk fluid, or

E = ξ +
1

2
ρmu2. (2.38)

For a system of structureless particles, the equipartition theorem states that the

internal energy is given by

ξ =
3

2
kT. (2.39)

By considering an infinitesimal volume element around a point r, one can show that

the pressure tensor is related to the relative flow velocity through the equation

P =

∫
dpvT0 v0f(r,p; t). (2.40)
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Furthermore, defining the heat and energy flux densities as

E =

∫
dp

p2

2m2
pf(r,p; t), Q =

∫
dp

mv2
0

2
v0f(r,p; t), (2.41)

we have the relation

E = Q + u ·P + uρE, (2.42)

which is a local thermodynamic decomposition for fluids.

With these definitions, one sees how the local microscopic definitions of statis-

tical mechanics translate to macroscopic variables used in the study of fluid dynam-

ics. Furthermore, by taking moments of the BBGKY hierarchy equation (2.31), one

obtains the equations of fluid dynamics. The zeroth moment yields the continuity

equation

∂ρ

∂t
+∇ · (ρu) = 0. (2.43)

The first moment yields an equation for the fluid velocity

∂

∂t
(ρu) +∇ · (ρuTu + P) = 〈F〉 , (2.44)

where we have defined the force density

〈F(r)〉 = −ρ(r)∇φ(r)−
∫ ∫ ∫

∇w(r, r′)f (2)(r,p, r′,p′; t)dr′dp′dp. (2.45)

Equation (2.44) is the microscopic version of the Cauchy momentum equation writ-

ten in conservation form, which gives rise to the Navier-Stokes equation after further
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simplification. We have therefore derived macroscopic fluid dynamics equation di-

rectly from the microscopic equations of motion.

Finally, multiplying equation (2.31) by p2/2m and integrating yields an energy

conservation equation

∂

∂t
E +∇ · E = 〈p · F〉 . (2.46)

Together, these constitute the fundamental equations of macroscopic fluid dynamics.

However, because of the ensemble averages in these equations, they do not constitute

a closed system of equations, and cannot be solved explicitly. These equations are

useful theoretically, and can be used in molecular dynamics simulations.
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Chapter 3: Ensemble Averaged LMF Theory

3.1 Introduction

In this chapter we will take our first step towards generalizing LMF theory

to non-equilibrium systems. This approach relies on the use of non-equilibrium

ensemble averages, which correspond to averages over a number of realizations of

the same system subjected to the same external force, starting from equilibrium.

This idea is a powerful tool in non-equilibrium statistical mechanics [27], being the

natural generalization of the ensemble average in equilibrium. Understanding LMF

theory within this general formalism is an important first step in the development

of non-equilibrium LMF theory, serving as an important theoretical basis for the

investigation of further approximation methods.

Another difference between the equilibrium and non-equilibrium formalism

are the underlying equations that are used, and the character of these equations.

The equilibrium derivation of the LMF equation relied on the use of the first of

the equilibrium Yvon-Born-Green (YBG) hierarchy equations, which provides a

self-consistent LMF potential that can be found iteratively in simulation [28], or

through the use of linear response methods [14]. In this case we will use the time

dependent Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy, adapting
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a similar derivation in this more general framework. We begin by deriving a form

of the BBGKY equation which makes manifest the reduction to equilibrium, using

this equation as a key tool in the derivation of the non-equilibrium LMF equation.

With this form of the equation, it will become clear that the original self consistency

condition of equilibrium becomes a dynamic relaxation condition, and LMF theory

will imply that the full and mimic systems will satisfy the same differential equa-

tion. The solution to this differential equation is unique, and therefore we expect

the two systems to evolve in the same way. Through this mechanism, the origi-

nal self-consistency condition for the LMF equation becomes a dynamic relaxation

property of a non-equilibrium ensemble. This is a phenomenon that underscores

the fundamental difference between the equilibrium and non-equilibrium approach

to LMF theory.

After developing the non-equilibrium formalism, we apply the result to a model

system consisting of water molecules confined between two hydrophobic walls in the

presence of an external electric field. For a time independent external field, this sys-

tem has been an important test case for the development of LMF theory [28][29][30],

and therefore provides a useful model system with which to test this methodology.

We first demonstrate how a system far from equilibrium dynamically relaxes to the

correct equilibrium configuration in the presence of a time-independent field, and

then show that the resulting configuration agrees with previous published data on

equilibrium LMF theory. In this case neglecting the long range forces entirely fails

dramatically, and so this serves as a good test model for the theory. We then con-

sider the effect of an oscillating electric field and instantaneous perturbing electric
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field, illustrating the efficacy of the non-equilibrium approach for investigating the

dynamics of a dielectric medium.

3.2 The non-equilibrium formalism

LMF theory starts with a splitting of the Coulomb potential into a short and

long range component

1

r
= v0(r) + v1(r), (3.1)

where the long range component is the potential generated by a unit Gaussian charge

density of width σ, which is a smoothing length chosen appropriately for the system

under consideration. Here σ will be chosen to be 4.5 Å, which should be adequate for

SPC/E water[30]. If one neglects the long range forces completely for all charges in

the system, the answer can be correct in certain cases, specifically for bulk solvent.

This approximation is denoted strong coupling.

In LMF theory, the long range force is taken into account through a self

consistent potential satisfying the equilibrium LMF equation

VR1(r) =
1

ε

∫
dr′ρqσR,tot(r

′) · 1

|r− r′|
, (3.2)

where VR1(r) is the LMF potential excluding the external field, and ρqσR,tot(r
′) is the

average smooth charge density of the strong coupling system in the presence of the

LMF potential. This auxiliary system, which approximately takes account of the

long range forces, is known as the mimic system, which is indicated by the subscript
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R. The fundamental argument of LMF theory proves that the equilibrium single

particle density of the mimic system is very close to that of the full system, under

a set of mild physically motivated approximations. Equation (3.2) is a solution to

Poisson’s equation sourced by the smooth charge density

∇2VR1(r) = −4π

ε0
ρqσR,tot(r). (3.3)

The assumptions and validity of LMF theory is discussed in detail in previous pub-

lications, in addition to a detailed derivation using the first of the YBG hierarchy

[28][29][30].

In the non-equilibrium context, the most natural way to obtain a mean field

for the long range forces is to consider an ensemble of systems characterized by a

non-equilibrium phase-space density f (N)(r(N),p(N); t, φ(t)), and the corresponding

reduced phase space densities, defined by integrating out all but a subset of the

identical particles considered. For an ensemble close to equilibrium, the long ranged

forces from the reduced densities tend to smooth out statistical fluctuations occuring

for an individual realization, resulting in a mean field that accounts for the average

long range force of the ensemble. This averaging is illustrated in figure 3.1.

We will be most interested in the single particle reduced phase space density,
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Figure 3.1: Illustration of the statistical smoothing that occurs when considering
an ensemble of systems as opposed to a single realization, with the smooth charge
density (red) and LMF potential (blue) plotted next to each system. We show in
this paper that a system close to equilibrium evolving under this mean field will
have the same non-equilibrium single particle density as one that evolves under the
full dynamics.

which evolves according to the first of the BBGKY hierarchy equations [31]

( ∂
∂t
−∇φ(r; t) · ∂

∂p
+

p

m
· ∇
)
f (1)(r,p; t) =∫ ∫

∇w(|r− r′|) · ∂
∂p

f (2)(r,p, r′,p′; t)dr′dp′, (3.4)

where f (n)(r(n),p(n); t) are time dependent reduced phase space distributions, φ(r; t)

is a time dependent external potential, and w(r) is the interparticle potential. At

equilibrium, the phase space distribution functions have simple momentum depen-

dence which leads to the YBG hierarchy, used in the derivation of LMF theory [10].

To make use of the approximations in the original derivation, we will first derive a

form of this equation that manifests the reduction to equilibrium. This is related
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to the derivation of hydrodynamical equations from statistical mechanical origins,

which are explained in more detail by Harris [24] and Landau [25][26].

To begin, integrate equation (3.4) with respect to p to get the continuity

equation

∂

∂t
ρ+∇ · (ρu) = 0,

where we have defined the non-equilibrium singlet density and velocity field

ρ(r; t) =

∫
f (1)(r,p; t)dp, u(r; t) = ρ−1

∫
p

m
f (1)(r,p; t)dp.

In order to study higher moments, it is useful to introduce the relative flow velocity

v0 =
p

m
− u, (3.5)

which measures the speed of a particle in the reference frame of the fluid. The

pressure tensor is related to the relative flow velocity through the equation

P =

∫
dpvT0 v0f(r,p; t). (3.6)

As discussed in section 2.4, taking the first moment with respect to momentum

of equation (3.4) yields the Cauchy momentum equation written in conservation

form

∂

∂t
(ρu) +∇ · (ρuTu + P) = F, (3.7)
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where we have defined the average force density

F(r; t) = −ρ(r; t)∇φ(r; t)−
∫ ∫ ∫

∇w(r, r′)f (2)(r,p, r′,p′; t)dr′dp′dp. (3.8)

For systems that are in equilibrium, the momentum dependence of f (1)(r,p; t) takes

the form of a Maxwell distribution. For systems that are locally equilibrated around

the flow velocity u, the momentum distribution should be well approximated by

a Maxwell distribution centered at u. We are therefore motivated to define the

modified phase space density

f̃ (1)(r,p; t) =
f (1)(r,p; t)

fM(v0)
,

where fM(v) denotes the Maxwell distribution

fM(v) =
exp(−βm|v|2/2)

(2πmkBT )3/2
.

In terms of this function, the pressure tensor P(r; t) can be written

P(r; t) =
ρ(r; t)

βm
I + P̃(r; t),

where I is the identity matrix, and we have defined

P̃(r; t) =

∫
fM(v0)

m2β2

∂

∂v0

∂

∂vT0
f̃ (1)(r,p; t)dp.
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We expect the modified density f̃(r,p; t) to have weak momentum dependence for

systems that are close to equilibrium. For this reason we expect P̃ (r; t) to be sup-

pressed in magnitude by the two derivatives with respect to v0.

With these definitions, equation (3.7) becomes

mρ−1
( ∂
∂t

(ρu) +∇ · (ρuTu + P̃)
)

= −β−1∇ ln ρ+ ρ−1F, (3.9)

The right hand side of this equation is the first of the YBG hierarchy. Naturally, at

equilibrium the terms on the left hand side vanish, which manifests how this equation

reduces to the equilibrium situation, even though it is exact for the non-equilibrium

case as well.

The derivation leading to the non-equilibrium LMF equation now proceeds

just as in the equilibrium case. First we introduce the LMF mimic system, which

evolves under a truncated potential u0(r) and a renormalized field φR(r; t) chosen

to reproduce the exact non-equilibrium phase space density, or

ρ(r; t, [φ]) = ρR(r; t, [φR]).

The existence of such a potential is not a strong assumption, especially when the

potential u0(r) is chosen to reproduce the short ranged intermolecular forces. We
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then subtract equation (3.9) for the full and mimic systems, which gives

m

ρ(r; t)

( ∂
∂t
δ(ρu) +∇ · δ(ρuTu + P̃)

)
= (3.10a)

∇
(
φR(r; t)− φ(r; t)−

∫
ρR(r′; t, [φR])u1(|r− r′|)dr′

)
(3.10b)

−
∫ (

ρ(r′|r; t, [φ])− ρR(r′|r; t, [φR])
)
∇u0(|r− r′|)dr′ (3.10c)

−
∫ (

ρ(r′|r′; t, [φ])− ρ(r′; t, [φR])
)
∇u1(|r− r′|)dr′, (3.10d)

where δ denotes the difference between the full and mimic system. For example, we

define δ(ρu) = ρRuR − ρu.

The expressions on the right hand side of this equation are familiar from the

original derivation of LMF theory [28], where the terms (3.10c) and (3.10d) are the

two error terms neglected in that derivation. For a large class of systems we expect

that these two terms will be close to zero for the same reasons as originally. In par-

ticular, term (3.10c) is a convolution of the gradient of the short range force with

the difference in the conditional singlet densities. Because the mimic system has

the same short range interactions as the full system, we expect that the conditional

singlet densities for the two systems should be close together at short distances.

At farther distances, where this may not be the case, the integral is suppressed

by convolution with ∇u0(r), which quickly approaches zero at large r. For term

(3.10d), the integral contains the difference between the conditional singlet density

and singlet density for the full system. In general, these densities are substantially

different at short distances, but should become approximately equal at larger dis-
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tances [32]. Conversely, the gradient of the long range force is chosen to be small at

short distances, and large only at length scales larger than σ.

We will also neglect the term δP̃ij(r; t) for two reasons. First, as noted pre-

viously, this term is already suppressed by two derivatives of f̃(r,p; t), which we

expect to suppress this term for systems that are moderately close to equilibrium.

Secondly, this term is the difference between P̃ (r; t) for the full and mimic system.

The term is local in space, so the two systems should have the same characteris-

tics at that length scale because the short range interactions are the same for the

two systems. For this reason, we expect that this difference will also be suppressed

further.

Term (3.10b) is the non-equilibrium LMF equation

φR(r; t) = φ(r; t) +

∫
ρR(r′; t, [φR])u1(|r− r′|)dr′ + C, (3.11)

which defines the renormalized potential in the mimic system. After neglecting the

terms discussed above, demanding that the LMF equation holds, and then using the

continuity equation, we find

δ
D

Dt
u(r; t) = 0. (3.12)

Here we have defined the material derivative

D

Dt
=

∂

∂t
+ u · ∇ (3.13)

familiar from hydrodynamics. Clearly, a particular solution of this equation is given
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by u = uR. As these equations are slowly varying due to the Gaussian smoothing, we

do not expect any pathological behavior in the differential equations, and therefore

this particular solution should be unique for systems with the same initial conditions.

For this reason we expect the two systems to evolve similarly. Additionally, even if

the systems start to diverge slightly, they are both driven towards the equilibrium

solution, which is a fixed point of equation (3.9). The equilibrium derivation of the

LMF equation is true regardless of the dynamics of the system, so we always expect

the two systems to stay close together.

We therefore find that the LMF mimic system will yield an accurate approxi-

mation to the dynamics of the full system for a large class of models, assuming that

they are moderately close to equilibrium, in the sense that the momentum depen-

dence is close to Maxwellian. In the following we will apply this approximation to

a variety of cases, which are even farther from equilibrium then one might expect,

showing that the approximation is indeed valid in many interesting situations.

3.3 Implementation with slab geometry

We illustrate these modified LMF dynamics with an important model system -

water confined between hydrophobic walls in the slab geometry. This geometry is one

of the simplest non-trivial examples of a non-uniform system, illustrates subtleties in

methods for handling electrostatics, and shows non-trivial equilibrium and dynamic

properties. Water confined between hydrophobic walls in the slab geometry has

been well studied in the context of LMF theory[14][30]. In this case, the strong
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coupling approximation fails in a number of ways [33], and is corrected by the long

range LMF field. The LMF potential applies a torque near the walls, and goes to

zero in the center of the slab, where bulk water properties are recovered.

Computationally, the ensemble of realizations used in the derivation above is

obtained by simulating a number of independent copies of the system evolving under

the mean long range force averaged over the entire ensemble. As opposed to the

usual self-consistent method of solving the LMF equation, this ensemble dynamically

relaxes to the correct solution under the non-equilibrium LMF prescription. From

the self-consistent field point of view, we can understand this as the LMF field

correcting itself slightly at each time step, instead of a large correction being applied

at the end of each simulation. Both methods rely on updates to the field based on

new statistical data, but it is clear that if these corrections are small and made

frequently, then the convergence of these methods should be smoother, assuming

that the underlying equations are well behaved. This is a significant departure from

previous methods, and offers some advantages in terms of convergence for arbitrary

initial choices of field.

The approach to equilibrium under this formalism is illustrated in figure 3.2.

We note that in this figure the initial potential drop is very large, because the system

started in a very unphysical (ice-like) structure. The time scale of the equilibration

is rather impressive given the long time scales necessary for LMF equilibration with

previous methods. This is a first illustration of why dynamic relaxation is a promis-

ing approach to LMF theory.

According to equation (3.11), the mimic system evolves under the instanta-
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Figure 3.2: Simulations were performed for the slab geometry with hydrophobic
walls, with the dynamic approach to equilibrium illustrated in (a). The blue line
corresponds to the potential drop over the wall, with the corresponding LMF field
and smooth charge density shown for selected times. In (b) the charge density is
shown averged over time, with the inset again showing the average field and smooth
charge density.

neous average long range force of the entire ensemble, which in the slab geometry

also includes averaging over the x and y directions. For the spatial averaging, we are

taking advantage of the translational symmetry in two of the dimensions to further

improve the statistics necessary to create a reasonable ensemble. In this sense we

are viewing the translational symmetry similarly to an independent realization of

the dynamics, which was a simplification also used in the equilibrium context [30].

In practice, we also set the x and y components of the force to zero because of the

symmetry, and use the averaging to compute the z-component of the force, which

is the only non-zero component in the limit where the number of realizations goes

to infinity.

We performed simulations using the LAMMPS molecular modeling software.

SPC/E water was confined between two hydrophobic smoothed LJ walls, modeling

paraffin [34]. The box used varied in size (see appendix A), and for npt simula-
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tions the x and y directions were allowed to change size. For most simulations, 12

realizations of the system were modeled simultaneously, with averaging over the real-

izations and the x and y directions to obtain the average LMF field in the z direction,

assumed to be constant in the other directions. Each realization was equilibrated

for 200 ps at 298 C under a Nose-Hoover type thermostat, and a barostat of one atm

for constant pressure simulations. In studying this system for a time independent

potential, we show that the dynamic LMF equation derived above asymptotically

reproduces the equilibrium LMF dynamics, and in fact approaches the correct so-

lution rather quickly. We also demonstrate the effect of an electric field on the

structure of the water, using these dynamics as a sensitive test of properties such as

the field dependent dielectric constant.

In figure 3.2, we show the smoothed charge density and LMF field obtained in

the absence of an electric field. The agreement between this result and previously

published data [30] verifies that this dynamic method agrees with the self-consistent

equilibrium way of solving the LMF equation, which is non-trivial given the dramat-

ically different simulation techniques. In this case, the field dynamically relaxes to

the equilibrium configuration, as opposed to the sequential equilibrium simulations

followed by a linear response correction employed previously [14]. We therefore have

a new interpretation of the equilibrium LMF equation as the asymptotic solution of

the non-equilibrium solution for a time-independent external field.

In the presence of an electric field, the failure of the strong coupling approx-

imation is even more dramatic, and can be clearly seen in the density profiles of

the system. In this context, we applied the strong coupling approximation to the
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Figure 3.3: Simulations were performed for the slab geometry with an electric field
of 10 V/nm., and the charge density is shown in (a), with the smooth charge density
in the inset. The approximate dielectric constant is plotted as a function of external
applied field in (b), with the corresponding LMF potentials in the inset.

charges of the water, and the charge on the wall responsible for the applied field,

which is most natural because of the universality of the Coulomb force. Figure 3.3

shows the charge density for an applied field of 10 V/nm. In this case, the long

range forces of the full model diminish the total electric field by a factor of ε−1, as

predicted by elementary electrostatics.

Using LMF theory, it is possible to probe the dielectric behavior of the water

more carefully, and to test the validity of the theory. The dielectric properties of

water confined in a slab has been studied for large fields, and is known to be reduced

at very large fields due to saturation of the alignment of the water molecules [35].

Figure 3.3 illustrates this dielectric constant for smaller fields than usually studied,

also showing the agreement between the LMF and Ewald results for this calculation,

up to statistical fluctuations.
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Figure 3.4: An abrupt change in electric field was simulated after equilibration at
zero field. The approach to equilibrium is illustrated in (a), where the insets show
the instantaneous smooth charge density and potential of the different systems. In
(b.) the timescale of relaxation and frequency of oscillations as a function of electric
field are plotted.

3.4 Time dependent potentials

We will now consider the effect of a time varying external field on the charge

density of water evolving under the non-equilibrium LMF equation. To this end,

we have considered the slab geometry subject to both an abrupt change in the

applied electric field, and an electric field oscillating sinusoidally in time. All of

these simulations were performed with a Nosé-Hoover thermostat cooling the system

while the changing field increased the temperature, leading to a temperature slightly

above room temperature.

3.4.1 Nonequilibrium Relaxation to Changes in Electric Fields

We first considered the response of a system to a rapid change in the electric

field, by equilibrating the system at zero field, and then abruptly turning on a

finite field to visualize the dielectric relaxation of the medium. The response of
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a dielectric medium to an abrupt change in field is both conceptually simple and

physically interesting, because of its relation to the charge transfer problem and

ionic solvation [36][37]. Although an instantaneous change in the charge density of

the slab geometry is somewhat artificial, it does capture the essential physics of the

charge transfer problem for large solutes. Additionally, this problem represents a

simple and direct test of the non-equilibrium formalism developed previously.

Figure 3.4 illustrates the approach to equilibrium with the average bulk po-

larization field versus time, with some snapshots shown additionally. We used a

non-linear least squares fit to approximate this approach to equilibrium by a func-

tion of the form

E ≈ E∞ − A0e
−t/τ0 − A1e

−t/τ1 cos(νt), (3.14)

and the corresponding value for τ0 and ω are plotted. This functional form contains

an average decay superposed onto a decaying oscillatory function, which are physi-

cally interpreted as the relaxation of the mean bulk electric field to its equilibrium

value superposed onto the short range oscillatory fluctuations from the dielectric

response of the medium. The parameter τ0 is a timescale of this slow relaxation

of the system, while the frequency ν is a measure of the frequency of the damped

oscillations.

It is clear from this figure that dynamic LMF theory is again in very good

agreement with the full system, although it is not perfect. This is to be expected,

because when the field is changed the system is far from equilibrium, and therefore

the approximations of LMF theory are not expected to hold perfectly. Also, we see
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that the period of oscillation for the relaxation, ω, is approximately constant for

both sytems, although the full system has a slightly smaller amplitude of oscillation

than the LMF dynamics. This can be understood in terms of the characteristic

time scale of water fluctuations, related to the frequency dependent charge-charge

autocorrelation function of water [38][39], which is investigated more in chapter 5.

3.4.2 Sinusoidal field

We also considered the response of the medium to a spatially constant electric

field oscillating in time. This problem is natural to consider, being the paradigmatic

example for the linear response formalism, and defining the complex dielectric con-

stant [31][40]. Furthermore, this problem is directly related to the interaction of

light with a dielectric medium, which are amenable to experimental investigation

[41]. Because of the relation of this problem to the linear response of a dielectric

medium, testing the behavior of the complex permittivity also probes the accuracy

of the LMF approximation for systems evolving on the timescales of the order of

the period, such as systems of biological interest.

We first considered a field with a period of 400 fs. and a maximum amplitude of

10 V/nm, which are very rapid and large fields relative to most systems of biological

interest. We might expect that the approximations leading to equation (3.12) may

be invalid in this case, as the system is not very close to equilibrium, but this is

not the case. In figure 3.5, we have taken snapshots four times every period for

a simulation of one nanosecond when the instantaneous applied field is zero. This
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Figure 3.5: A simulation was performed with a spatially independent electric field
with sinusoidal time variation. The bulk electric field as a function of time is plotted
in (a), with snapshots of the smooth charge density for the LMF and Ewald systems
shown at snapshots. The complex dielectric constant as a function of period is
plotted in (b), with an inset showing the oscillating electric field that generates a
data point.

allows us to get enough statistics for an instantaneous snapshot of a non-equilibrium

system, due to the periodicity of the driving force. Due to the fast driving of the

system, the instantaneous charge density is far from its equilibrium values. Here

the LMF approximation is still very good, because the system is close enough to

equilibrium to still satisfy the general arguments required for the validity of LMF

theory.

For a sinusoidally varying field, the static dielectric response shows a time

lag due to the finite time it takes for the dielectric medium to respond to the

changing field. This can be expressed using a complex dielectric function, where

the magnitude determines the ratio of the amplitudes of the displacement field and

total electric field, and the phase determines the temporal offset of the two fields.
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This function is defined by the equation

D0e
iω(t−δt) = |ε(ω)|E0e

iωt, (3.15)

where we have split the complex dielectric constant into a phase, given by the time

offset, and a magnitude. These two quantities are plotted in figure 3.5, which also

illustrates the applied field and polarization density for a few periods. To some

degree, it is surprising how well the LMF and Ewald results agree for this broad

range of periods, given how far from equilibrium these systems are.

3.5 Conclusions and Outlook

We have generalized the formalism of LMF theory to the non-equilibrium con-

text, which required the use of the mean field of an ensemble of systems evolving

under the same time-dependent external field. We showed that the same approxima-

tions that are required in equilibrium can be used in the non-equilibrium derivation,

and that ensembles that are reasonably close to equilibrium still satisfy these ap-

proximations to a high degree of accuracy.

We first showed that the steady state configurations obtained for a time-

independent external field agree with those obtained in equilibrium LMF theory,

lending credence to the proposed formalism. We then showed that the dynamics

of the full and LMF systems are very close for two systems reasonably far from

equilibrium, at least relative to most biological simulations of interest, showing that

the necessary approximations are even true out of equilibrium.
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In practice, these methods could be used for a dynamical use of LMF theory

used in molecular dynamics simulations. In general, it is not always practical to

simulate multiple realizations of a system evolving according to LMF dynamics,

however it may be possible to obtain approximate statistics for the mean LMF field

by using the assumed ergodicity of a solvent interacting with particles that evolve on

a slower dynamic time-scale. These issues will be investigated further in alternate

versions on non-equilibrium LMF theory presented in the next few chapters.
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Chapter 4: Non-equilibrium densities from force balance equations

for single particle and constrained molecular systems

4.1 Introduction

Recently, a new method for sampling ensemble averages through force balance

equations was investigated by Borgis et. al. [42] and Heras et. al. [43]. This could

be a new type of enhanced sampling, and has parallels to the theory of adaptive

biasing force [44]. This approach relies on the YBG hierarchy equation written as a

force balance equation as shown below:

F(r)− β−1∇ρ(r) = 0. (4.1)

The idea is to sample the force density instead of the smooth charge density, which

leads to reduced statistical noise in the resulting distribution. Indeed, a reasonable

approximation to g(r) was obtained from a single equilibrated configuration of an

LJ fluid in the case studied by Borgis et al., which is an impressive achievement for

this methodology.

This could be a useful development in the context of LMF theory. Solving the

LMF equation relies on accurate approximation of smoothed particle densities, so
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the force sampling approach could provide a useful tool for approximating the LMF

potential at a snapshot in time. This is particularly important for non-equilibrium

systems, in which it is generally necessary to find a time dependent LMF potential

that changes as the simulation progresses. The more accurate this approximation

is, the more accurate the LMF procedure would be. Furthermore, it is desirable to

generalize this procedure to molecular solvents such as water, because single particle

systems such as Lennard-Jones fluids are usually not as interesting for applications.

In this chapter we will generalize the force balance approach to non-equilibrium

systems, and to constrained molecular systems. We start by reviewing the force sam-

pling approach, calling attention to some benefits and drawbacks of the method. We

then consider the generalization to nonequilibrium problems, starting with the equa-

tions derived in the previous chapter. We then consider constrained systems, first

deriving the constrained force balance equation in equilibrium, and then generaliz-

ing to non-equilibrium systems. We then test these results on a model system, and

discuss how the procedure could be extended for use with LMF theory.

4.2 Review of force sampling method

The force sampling approach is a method for approximating particle densities

in an equilibrium system using the force balance equation [23]

F(r)− β−1∇ρ(r) = 0, (4.2)
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This can be derived from the first of the YBG hierarchy equations

β−1∇ ln ρ(r) = −∇φ(r)−
∫
∇w(|r− r′|)ρ(r|r′)dr′ (4.3)

by defining the force density

F(r) =
〈∑

i

Fi(r
N)δ(r− ri)

〉
.

This is for a system evolving under the external field φ(r) and pair potential w(r−r′),

this can be written

F(r) = −ρ(r; t)
(
∇φ(r; t) +

∫
∇w(|r− r′|)ρ(r|r′; t)dr′

)
.

Inserting this equality into the YBG hierarchy equation yields the force balance

equation (4.2).

The force sampling method is a way of calculating the density ρ(r) in an

indirect fashion, which has certain desirable convergence properties. The standard

approach to finding the particle density is to make a direct histogram of this quantity

for a given amount of sampling, and use the average value obtained as the density.

The force sampling approach is to compute the force density in this way, and then

to solve equation (4.2) to find the particle density. For Lennard-Jones systems, this

leads to less statistical noise for small sample sizes, which is desirable in simulations

where computational cost is a concern.

An example of this increased convergence is illustrated in figure 4.1. In this
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Figure 4.1: Density profile for an LJ fluid in the slab geometry as calculated with
the density averaging and force sampling methods. The finite sample size curves
are calculated by averaging over 3000 independent particles, then compared to the
converged result. The grid spacing is chosen to be ∆r = .004σ. For the force
sampling method, multiple trials are shown to exhibit the scatter in the asymptotic
density.

simulation, 1000 atoms were confined in a box with a reduced density ρ∗ = .8 and

a reduced temperature of T ∗ = 1.35, as considered by Borgis et. al. [42]. However,

this figure also illustrates a generic issue with this method, which is systematic error

that can be introduced. To understand this, note that the force balance equation

relates the integral of the force to the density, and the integration smooths out the

statistical noise, leading to the smoothness of the curves. However, the error in

the forces leads to cumulative error in the average value of the density, whereas the

usual method is scattered around the correct value. This issue was also considered

by Heras et. al. [43], and will be investigated more closely in a different context.

4.3 Generalization to non-equilibrium systems

As of now, the force sampling method has been applied only to equilibrium

systems. As is the case with LMF theory, there are potential advantages to general-
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izing this method to non-equilibrium systems. This is for a similar reason, namely

that the method yields a dynamically converging quantity that leverages both time

and spatial averaging to reduce statistical noise. In fact, the two methods are com-

plementary when viewed from this perspective.

In ensemble averaged LMF theory, the YBG hierarchy was generalized to

equation (3.9), which can be rewritten

F− β−1∇ρ = m
(
ρ
Du

Dt
+∇ · P̃

)
. (4.4)

Here we have defined the material derivative D
Dt

= ∂
∂t

+u ·∇, and used the continuity

equation. The left hand side of this equation is the force balance equation, and the

right hand side is the non-equilibrium correction. This suggests a similar procedure

as in equilibrium, using this equation to solve for ρ as a dynamically evolving field.

However, this procedure is complicated by the introduction of new fields out of

equilibrium, and it should be clarified exactly how this system should be solved for

this method to work, which will be the topic of this section.

First, it is useful to recall that equation (4.4) is related to the Cauchy mo-

mentum equation, and therefore the Navier Stokes equation, where the pressure is

chosen to reproduce the equilibrium YBG hierarchy equations. This motivates us

to approximate the modified pressure tensor P̃ with a dissipative term

F− β−1∇ρ = mρ
Du

Dt
− µ

(
∇2u +

1

3
∇(∇ · u)

)
, (4.5)
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where µ is the viscosity of the fluid. For our purposes, µ will be treated as a

parameter that helps with the convergence of the approximation. However, the

clear physical interpretation might be useful for applications, and the interpretation

of results.

For the purposes of LMF theory, it is also important to solve for the smoothed

density, or the smooth charge density in the case of electrostatics. For molecular

fluids, this is complicated by the fact that these equations do not hold for constrained

systems, and therefore will require more theoretical development, which will be

pursued in the next subsection.

There is also difficulty with directly convolving equation (4.4) with a Gaussian

to find an evolution equation for the Gaussian smoothed density. This will also

lead to difficulty with finding the smooth charge density, but that also has other

challenges due to the presence of constraints in molecular fluids. The difficulty

with Gaussian smoothing arises because some of the terms are quadratic, and the

convolution can only be absorbed into one term. For this reason, it is interesting

to consider alternative algorithms for propagating the material derivative on a fixed

grid. This will also be discussed in later sections.

4.4 Force sampling for constrained systems

As discussed previously, the force balance approach becomes more compli-

cated in the case of molecular fluids. Molecular solvents are generally modeled as

constrained systems, where the bond lengths are held fixed. However, the force
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Figure 4.2: Density profiles calculated with the näıve force density approach for
a system with constraints in the slab geometry. On the left is shown the oxygen
density computed without including the additional constraint forces. On the right
the result is shown for both the oxygen and hydrogen densities, including the SHAKE
correction. Neither of these approaches gives the correct result.

sampling method no longer works in this case. This is particularly apparent in the

slab geometry, the details of which are described in appendix A. The näıve approach

to force sampling with constraints would be to try to use (4.2) without any modi-

fication. However, even with this approach one encounters a problem, because the

forces generally include fictitious forces from the constraints, so there is a question

of whether to include this contribution in the force density. The results of these two

approaches is shown in the figure 4.2, both of which give incorrect results. It is also

notable the difference in scale that arises from including the fictitious forces, which

shows how large of a correction the constraints create.

To avoid issues with constraints, one can also consider a flexible model, which

results in an unconstrained simulation. For this purpose, we considered the water

model introduced by Voth et. al. [45]. In this case, the force sampling method con-

verges extremely slowly, as illustrated in figure 4.3. This is because the harmonic

potentials used to impose flexible constraints create very large forces in the simu-
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Figure 4.3: Density profile calculated using a flexible water model with 2000 inde-
pendent samples, averaged over the periodic coordinates in the slab geometry. It is
clear that the force sampling curves are very far from convergence, even though the
usual method has already converged very well. This illustrates why using a flexible
model is not a reasonable solution to the problem.

lation, so the force sampling method is inefficient due to the necessary statistical

cancellation of these large forces. It does eventually converge, but the surprisingly

slow convergence renders this method very undesirable for the computation of the

particle densities. Flexible water models are more computationally intensive as

well, so for this reason it is useful to derive a shake correction to the force sampling

method. A similar correction was derived recently and independently by Coles et.

al. [46].

The study of non-Hamiltonian systems have been investigated by a number

of researchers, including the original paper by Liouville [47]. More recently, these

theories have been formulated in a coordinate invariant way using the theory of

Lie groups [48][49][50]. The statistical mechanics of constrained systems, which can

be applied to the study of algorithms such as SHAKE and RATTLE, has been

investigated more recently [51][52]. Define the phase space of the system with a

vector x, which includes both the momenta pi and positions ri of the particles in
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the system. Consider a system with K holonomic constraints

σα(rN) = 0, α = 1, . . . , K. (4.6)

For integration over phase space, we also impose the constraints σ̇α(rN ,pN) = 0.

For notational simplicity, define δ(σ) =
∏

α δ(σα(rN)), and similarly for δ(σ̇). Cic-

cotti et. al. [52] derived a constrained generalization of the equilibrium canonical

ensemble .

P(rN ,pN) = Z−1Ne−βH(rN ,pN )|Z|δ(σ)δ(σ̇), (4.7)

where Z =
∫

dxP(x) is the partition function, and |Z| is the determinant of the

matrix

Zαβ =
N∑
i=1

1

mi

∂σα
∂ri
· ∂σβ
∂ri

. (4.8)

To generalize the YBG hierarchy, define the density of a given particle by

integrating equation (4.7) over (N − 1) particle positions and all momenta

ρ(r) = Z−1N

∫
dN−1rdNp e−βH|Z|δ(σ)δ(σ̇). (4.9)

Denoting the fixed particle by the index i = 1, we take gradient of this expression

to find

∇1ρ(r1) = Z−1N

∫
dN−1rdNp e−βH

(
− |Z|δ(σ)δ(σ̇)β∇1H +∇1

(
|Z|δ(σ)δ(σ̇)

))
.

(4.10)
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Figure 4.4: Density profile for SPC/E water in the slab geometry using the corrected
force sampling method. The right figure shows the charge density.

The first term in this expression will yield terms that are familiar from the YBG

hierarchy equation, but the second term is new, and yields a correction due to the

constraints in the system.

To simplify equation (4.10) further, we first note that the derivatives of the

delta functions are defined through integration by parts, and therefore we should

search for a way to integrate those terms by parts. It turns out that this is very

straightforward for constraints which are translationally invariant, which is a prop-

erty that we will assume. This is a natural assumption, because most constraints

we will consider depend on distances between particles instead of absolute posi-

tions, which are always translationally invariant. For a given particle, define the

constrained cluster ci as the set of particles that are connected to this atom by con-

straints. For a given constraint cluster c, any constraint σα will be invariant under

translations of a shake cluster, which mathematically can be written
∑

i∈c∇iσα = 0,

and readily implies
N∑
i∈c

∇i

(
|Z|δ(σ)δ(σ̇)

)
= 0. (4.11)
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Using this relationship and integrating by parts for the second term in equation

(4.10), we find

∇1ρ(r1) = −Z−1N

∫
dN−1rdNp |Z|δ(σ)δ(σ̇)e−βH

N∑
i∈c

β∇iH, (4.12)

where c contains the fixed particle located at r1. We note that in the absence of

constraints, all terms vanish besides that with i = 1, and so this equation reduces

to the usual YBG hierarchy. If we define the cluster force as the total force on a

cluster Fci =
∑

i∈ci Fi, then equation (4.12) can be rewritten

∇ρ(r) = β
〈∑

i

Fciδ(r− ri)
〉
, (4.13)

which generalizes the force balance equation (4.2). If one fixes a particle species,

then one can restrict this sum to that particular species.

Equation (4.13) is a straightforward generalization of the force balance equa-

tion, and is the relevant equation to use when using this method with constrained

systems. The results from this implementation are shown in figure 4.4, which show

that this method does indeed give the correct results. The fluctuations from us-

ing this method, and for other LJ type simulations, will be studied further in the

following sections.

In order to understand the convergence properties of the force sampling method

we will consider the previous simulations in more depth, in addition to introduc-

ing a new set of model systems based on the (n,6) potentials considered by Clarke
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Figure 4.5: Density profiles for (n,6) potentials for n=8, n=12, and n=24 from left
to right.

et. al. [53], related to those studied by Stillinger et. al. [54]. To start, we first

show the statistical fluctuations that occur in the simulation presented in figure 4.4.

Based on this figure, it is clear that the issue of systematic error from the force

sampling method is still a problem for molecular solvents, and is arguably worse in

this context. Specifically, the charge density varies strongly for small sample sizes,

and arguably shows more variation than the density averaging method, which seems

to undermine the very reason for considering these methods.

To understand these fluctuations in more detail, and analyze their origins, we

consider a series of (n,m) potentials of Lennard-Jones type, taking the form

E(r) =
E0

n−m

[
m
(r0

r

)n
− n

(r0

r

)m]
. (4.14)

The purpose of introducing this potential is to investigate how the hardness of the

particle core affects the convergence rate of the force sampling method, and for this

reason we will fix m = 6 while varying n, keeping the well depth and location of the

minimum fixed, which can be achieved by keeping E0 and r0 constant. We choose

E0 and r0 to reproduce the LJ parameters of figure 4.1 for n = 12, in particular so
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that ρ∗ = .8 and T ∗ = 1.35.

The results from this analysis are shown in figure 4.5. It is clear from this

figure that the softer potentials lead to less fluctuations in the asymptotic density,

which is somewhat intuitive.

4.5 Non-equilibrium constrained systems

We will now discuss how to generalize the previous force balance approach to

the non-equilibrium situation. We again define the phase space of the system by a

set of vectors xi, which includes the momenta pi and positions ri of the particles in

the system. The holonomic constraint equations are given by σα(rN) = 0, and the

particles satisfy a differential equation

ẋi = ξi, (4.15)

where ξi(x) can be read off from the Hamiltonian equations of motion for a con-

strained system

ṙi =
pi
mi

, (4.16)

ṗi = − ∂φ
∂ri
−
∑
α

λα
∂σα
∂ri

, (4.17)
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and λα are Lagrange multipliers for the Euler-Lagrange equations of type I. An

ensemble undergoing these dynamics satisfies the generalized Liouville equation

∂

∂t
(γf) +

∑
i

∂

∂xi
· (ξiγf) = 0, (4.18)

where f(Γ; t) is the phase space density, and γ(Γ) is a metric factor that appears in

the constrained dynamics, which is given by the determinant |Z| of the matrix

Zαβ =
N∑
i=1

1

mi

∂σα
∂ri
· ∂σβ
∂ri

. (4.19)

as shown by Ciccotti et. al. [52]. In the case of Hamiltonian dynamics, the metric

factor is constant and the divergence κ =
∑

i
∂
∂xi
· ξi vanishes, so this equation

reduces to the usual Liouville equation.

We will be interested in deriving a constrained generalization of equation (4.4),

which will be useful for the application of non-equilibrium LMF theory to con-

strained systems, in addition to general theoretical interest. However, there are

technical complications that arise due to the constraints, making the derivation

more complicated, with less useful results. It turns out that the procedure simplifies

if one considers the center of mass of a constrained cluster, which is a collection

of particles that is not connected to any other particles through constraints. An

important example of a constrained cluster will be a rigid water molecule.

Given the above consideration, we will begin by deriving a constrained gen-

eralization of the first of the BBGKY hierarchy equations for the center of mass of
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a constrained cluster. Denote the constrained cluster by c, which is a collection of

particle indices. The center of mass and momentum of this cluster are defined as

usual,

rc =
1

M

∑
i∈c

miri, pc =
∑
i∈c

pi, (4.20)

where M is the mass of the cluster. These variables will collectively be denoted

xc. To derive the BBGKY hierarchy equation, we integrate equation (4.18) over the

hypersurface in phase space which satisfies the constraints, and with the constrained

cluster fixed at coordinate xc = x. To do this, define the singular measure

dΓc(x) = δ(x− xc)
∏
α

δ(σα)δ(σ̇α)
∏
i

dxi. (4.21)

The first BBGKY equation can then be written

∫ (
∂

∂t
(γf) +

∑
i

∂

∂xi
· (ξiγf)

)
dΓc(x) = 0. (4.22)

To simplify this equation further, we note that because the constraints are conserved

by the dynamics, the delta functions preserving the constraints can be brought inside

the derivatives. Furthermore, we can perform an orthogonal transformation on the

coordinates so that the center of mass coordinates are phase space variables. With

these simplifications, the equation becomes

∂

∂t
fc(x; t) +

∂

∂x
·
∫

dΓc(x)ξcγf(xN ; t) = 0, (4.23)
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where we have defined fc(x; t) =
∫

dΓc(x)γf(xN ; t). To be more explicit, define the

force density Fc(x; t) =
∫

dΓc(x)ṗcγf(xN ; t), to find

( ∂
∂t

+
p

M
· ∇
)
fc(x; t) +

∂

∂p
· Fc(x; t) = 0. (4.24)

It is now clear how this reduces to the usual BBGKY hierarchy equation in the

unconstrained case.

We can now derive the near equilibrium approximation by a similar procedure

as before. First integrate equation (4.24) over pc to get the continuity equation

∂

∂t
ρc(r; t) = −∇ · jc(r; t), (4.25)

with the natural definitions of ρc and jc. Multiplying equation (4.24) by pc and

integrating yields the natural generalization of equation (3.9)

∂

∂t
jc +∇ · (ρuTc uc + Pc) = Fc, (4.26)

where all the quantities are the natural center of mass generalizations. This is

the point where considering the center of mass coordinates is most crucial. For

constrained systems, the equilibrium momentum distribution is no longer a Maxwell

distribution, but is instead given by the conditional probability density [52]

PC(pN |rN) = Ke
−

∑
i

β
2mi

p2i
∏
α

δ(σ̇α), (4.27)
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where K is a normalization constant. In this expression, the delta functions make

the momenta coupled, and therefore the usual Maxwell factor is quite complicated.

However, the center of mass coordinates are necessarily unconstrained, because of

the definition. Therefore, these variables do not suffer from the complications that

arise for the individual coordinates of the particles in each cluster. In particular,

the center of mass momentum will have a Maxwell distribution at equilibrum

fM(pc) =
exp(−βp2

c/2M)

(2πMkBT )3/2
.

Given this simplification, we can proceed as before. Define a near equilibrium

modified phase space density f̃c(x; t) by the equation

fc(x; t) = f̃c(x; t)fM(pc). (4.28)

With this definition, we find

Pc(r; t) =
ρc(r; t)

βM
I + P̃c(r; t).

Using this relationship, we get the natural generalization of equation (4.4)

Fc − β−1∇ρc = m
(
ρc
Duc
Dt

+∇ · P̃c

)
. (4.29)

A similar approximation will yield a generalization of the modified Navier-Stokes

equation (4.5).
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These generalizations are natural and convenient. However, one may not only

be interested in the center of mass coordinates for constrained clusters. For example,

in LMF theory for electrostatics one is generally interested in the expectation value

of the smooth charge density, which depends on the precise locations of the charges

within a constrained cluster, and not just the center of mass coordinates for that

cluster. As stated previously, the relatively simple equations derived above become

significantly more complicated for these coordinates, and indeed do not form a closed

system of equations, giving them limited value.

An alternative approach is to take expectation values of quantities of interest

given that a constrained cluster is fixed at position r. For LMF theory, the primary

example will be the polarization density of a charge neutral constrained cluster

〈µc〉r =

∫
µcγfdΓc(x), (4.30)

where we have defined the dipole moment µc =
∑

i∈c qiri. To obtain an equation

of motion for this quantity, we multiply the Liouville equation (4.18) by µc and

integrate over the measure dΓc to find

∫
µc

(
∂

∂t
(γf) +

∑
i

∂

∂xi
· (ξTi γf)

)
dΓc(x) = 0, (4.31)

here we have included a tranpose on µc for convenience of notation. It is again

possible to bring the constraints inside the derivatives, and to change variables with

an orthogonal transformation. We will also want to bring the dipole term inside of
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the derivatives, which gives

∂

∂t
〈µc〉x +M−1∇ ·

〈
pTc µc

〉
x

+
∂

∂p
·
〈
FT
c µc

〉
x
− 〈µ̇c〉x = 0. (4.32)

In order to simplify this equation further, it is possible to follow a similar approach

as before. Integrating over p yields a continuity type equation

∂

∂t
〈µc〉r = −∇ ·

〈
pTc
M

µc

〉
r

+ 〈µ̇c〉r . (4.33)

On the right hand side of this equation, the first term is akin to the usual gradient

of the flux density, which in this case can be thought of as a dipole flux density.

The second term reflects the contribution from the rotation of the molecule. It is

also possible to derive a second order equation of this type, but we will leave this

for future investigation.

These equations form the basis of an application of the force balance approach

to LMF theory. The difficulties with nonlinearities in the equations has made it

difficult to implement this in practice, and further research will be required to realize

the goal of using force balance approaches in LMF theory. One promising avenue of

investigation is to consider the equations of fluctuating hydrodynamics to linearize

the equations [55]. This will also be left for future work.
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Chapter 5: Stochastic sampling for nonequilibrium LMF theory

5.1 Introduction

The PPPM Ewald algorithm relies on fast Fourier transforms to solve the

Poisson equation rapidly [56]. Although this method is fast and robust, there has

been some interest in the use of real space solvers such as multi-grid methods to re-

place it, which could improve both the speed and parallelizability of the calculation.

Right now, however, these algorithms are less competetive for the accuracy and

system size required of many biological applications [57][58]. The potential advan-

tages, however, make this an interesting avenue for investigation. In this chapter,

we argue that a non-equilibrium generalization of LMF theory coupled with a real

space solver could lead to improvements in these real space solvers, making them

more competitive with PPPM Ewald.

For both real and Fourier space methods, the main bottleneck in computing

long range Coulomb forces is the interpolation of the smooth charge density to the

grid, and the inverse interpolation required to calculate the resulting force [57]. This

issue has an elegant solution within the context of LMF theory, which only requires

an average solution to Poisson’s equation to define a mimic system with accurate

structural behavior. Indeed, in this context it is natural to leverage a separation of
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time-scales in the system to interpolate this charge density stochastically, effectively

performing a local time average of the statistical fluctuations in the field. As in the

original LMF argument, these statistical fluctuations can be safely ignored, assuming

that no other degrees of freedom are fast on the time scale of averaging.

This method of interpolation is only possible when an iterative algorithm is

used for the solution of Poisson’s equation. For this purpose we introduce a variant

of the multigrid method, using a multiple length scale splitting of the Coulomb po-

tential that can be solved on grids with increasingly large spacing. This approach

embodies many of the advantages of standard multigrid methods with the added

advantage that it is physically meaningful, and leads to a natural set of tools for

analyzing the non-equilibrium statistical mechanics of the system. In particular,

we investigate the autocorrelation functions for the forces on the different length

scales, which gives some guidance on the choice of time scale over which the sta-

tistical averaging should occur. We then investigate this method with a series of

model systems. As in previous papers, we thoroughly investigate the slab geometry

configuration in both equilibrium and non-equilibrium settings.

5.2 Stochastic local molecular field theory

From a practical perspective, it is not always desirable to simulate an ensemble

of systems evolving under a time varying external field, especially in systems where

the “external field” comes from another slowly varying component of the system.

This problem naturally leads to the leveraging of a separation of time scales in a
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system to compute a “local time average” of the long range forces in the simula-

tion, which effectively averages over the local fluctuations in the fast components

(the solvent), while dynamically capturing the varying field produced by the slow

components in the system. This approach to the problem also lends itself to the con-

sideration of practical methods for implementation, and the potential computational

advantages that could be gained relative to the more standard PPPM algorithm.

These investigations are what led to the Stochastic Local Molecular Field (SLMF)

approach to the computation of the long range Coulomb forces.

The SLMF approach consists of two main ideas, which are complementary.

The first idea is the stochastic interpolation of the smooth charge density to the grid,

which is arguably the most important aspect in terms of computational saving. The

second aspect is a modification of the multigrid approach to the solution of Poisson’s

equation, which gives a more physical picture for the multigrid method, and is more

amenable to the techniques of statistical mechanics. Even without the added savings

proposed here, multigrid methods are some of the fastest methods for biomolecular

simulations, and have already attracted attention for computational savings versus

Ewald methods [59]. An iterative relaxation Poisson solver is necessary to make

the stochastic interpolation work, so these two ideas are well suited as a combined

whole.

Stochastic interpolation is a way to approximately compute the smoothed

charge density without calculating the contribution on every grid point. To illustrate
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Figure 5.1: Illustration of some of the important concepts behind the SLMF method.
In (a) the asymptotic solution to the inhomogeneous heat equation sourced by a
stochastic charge density is shown, with an example of Gaussian convolution shown
in the inset for two sample sizes. In (b) the splitting of the Coulomb force defined
in equation (5.3) is shown for σ0 = 4Å and each successive σ multiplied by two.

this idea, consider Poisson’s equation for the smooth charge density

~∇2V (r) = −4π

ε
ρqσtot(r), (5.1)

where ρqσtot(r) denotes the smooth charge density. By the associativity of convolu-

tion, this equation is the relevant equation for both Ewald summation and the LMF

equation. The smooth charge density is the convolution ρqtot ? ρG(r;σ), which is

interpolated to a mesh, representing one of the largest computational bottlenecks in

the Ewald algorithm. To compute this stochastically, one can sample from a Gaus-

sian distribution centered at each charge in the simulation, adding an appropriately

weighted charge for each sample. As the number of samples goes to infinity, this

will approach the desired Gaussian convolution, as illustrated in the inset of figure

5.1a.

This stochastic interpolation is not exact, and introduces significant error for
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small sample sizes. To effectively average over some of this noise in time, we will

consider Poisson’s equation as the asymptotic solution of the inhomogeneous heat

equation

∂

∂t
V (r, t) = α

(
~∇2V (r, t) +

4π

ε
ρqσtot(r)

)
, (5.2)

where here ρqσtot(r) is treated as fixed in time, and α is akin to the thermal diffusivity.

We can now compute the convolution ρqtot ? ρG(r;σ) stochastically in time, and the

heat equation will effectively average over the noise in time. For α relatively small,

even a small number of samples per unit time for the stochastic convolution will lead

to accurate asymptotic behavior for V (r, t). This behavior is shown for a simple one

dimensional example with two charges in the supplementary material, a snapshot

of which is shown in figure 5.1a. The heat equation is the simplest example of an

iterative Poisson solver, and in fact these ideas can be generalized to many other

iterative Poisson solvers, such as a multigrid method, or the multiscale approach

described below.

The multiscale method introduced here is inspired by the multigrid approach

to solving differential equations. The first step in defining this method is to split

the Coulomb potential into a series of potentials that are slowly varying on different

length scales. These splittings are a natural generalization of the splitting (2.10),

and can be written

1

r
=

n∑
i=0

vi(r), (5.3)

where vi is defined as

vi(r) =
erf(r/σi)− erf(r/σi+1)

r
, (5.4)
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for some increasing sequence of positive numbers σi, and where σ0 = 0 and σn+1 =

∞, so that v0(r) = 1−erf(r/σ1)
r

and vn(r) = erf(r/σn)
r

. These potentials come from the

difference of two Gaussian charge densities, and form a telescoping series. From a

mathematical perspective, it is interesting to take the continuum limit where σi and

σi+1 become infinitely close together, which leads to an integral transform

1

r
=

2√
π

∫ ∞
0

e−r
2/σ2

σ2
dσ. (5.5)

Equation (5.3) can then be recovered by splitting this integral into pieces defined

by the sequence of numbers σi.

An example of the potentials resulting from this procedure is shown in figure

5.1b. Here the splitting is defined by σ0 = 4 Å and σi = 2iσ0. This splitting leads

to a generalized multigrid method, by solving for each potential on a different grid,

with increasingly large grid spacing. In this case, the length scale is increased by

two on every successive potential, so naturally the grid spacing of each grid would

also increase by two. The goal is to then solve Poisson’s equation for the smooth

charge density on each grid

~∇2Vi(r) = −4π

ε

(
ρqσitot (r)− ρ

qσi+1

tot (r)
)
, (5.6)

where the total force from the Coulomb potential is then given by the sum Vtot =∑
i Vi. As in the case with multigrid, the motivation for the increased grid spacing is

that iterative Poisson solvers are only efficient for length scales that are comparable
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Figure 5.2: Illustration of the SLMF method for a one dimensional system. The
horizontal arrows correspond to charge spreading through Gaussian convolution,
the diagonal arrows correspond to subtracting the resulting spread density, and the
vertical arrows correspond to solving Poisson’s equation. In practice the solution of
Poisson’s equation is iterative, but for the purposes of illustration it is shown as a
single step. The grid spacing is shown at the bottom of each column.

to the grid spacing, and converge very slowly for longer length scales [60]. This

method ensures that each grid is in some sense suited for the potential it is solving

for. For the SLMF method, only the initial smooth charge density is computed

stochastically, and each successive one is computed through convolution on the grid,

which can be performed very quickly using either a diffusion equation approach [61],

or a series of one dimensional convolutions in each dimension [57]. Also, as done

in the Gauss split method [57], we will include an initial smoothing step as well, to

improve the inital Gaussian convolution.

With these ingredients, the overall SLMF method can be described as follows:

1. Stochastically interpolate the charges in the simulation to the first grid, using

an initial smoothing length σinit.
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2. Convolve with a Gaussian of width
√
σ2

0 − σ2
init to obtain an approximation

of the smooth charge density ρqσ0tot (r).

3. Interpolate this smooth charge density to the next (coarser) grid, and con-

volve with another Gaussian to approximately obtain ρqσ1tot (r), then subtract

this Gaussian from the original charge density on the first grid, requiring an

additional reverse interpolation.

4. Continue this procedure until all charge densities are computed according to

equation (5.6), and then iterate the Poisson solver on each grid.

This procedure is illustrated graphically in figure 5.2 for a one dimensional system.

We note that the potentials created for this system are very different from those

shown in figure 5.1b because the one dimensional Green’s function is −abs(r)/2

instead of (4πr)−1, where we use the Green’s function for Poisson’s equation. This

illustration only shows one timestep of the procedure, but this procedure would be

iterated at every time step.

Although this method seems complicated at first glance, each step in this

method corresponds to a fast computational algorithm, and these algorithms are

performed on increasingly coarse grids, which improves computational efficiency.

Furthermore, the initial use of stochastic convolution should lead to a relatively

large overall speadup in computation time.
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5.3 Dielectric response

To understand the ideas behind the SLMF method in more depth, we will

apply the theory of dielectric response, following Bopp et. al. [38] and Netz et. al.

[39]. For small perturbations, the response of a medium to an electric field takes a

linear form

Pα(r, t) =
1

4π

∫
V

∫ t

−∞
dr′dt′χαβ(r, r′, t− t′)Dβ(r′, t′), (5.7)

where P is the polarization of the medium, D is the electric displacement field, and

χαβ is the dielectric response tensor. In a homogeneous medium, χαβ(r, r′, t − t′)

depends only on the relative distance r−r′. In addition, for isotropic, nonmagnetic,

quasi-static fluids, only the longitudinal part of the response tensor need be con-

sidered, χ̃(k, ω) =
kαkβ
k2
χ̃αβ(k, ω), where we have taken a Fourier transform in space

and time. In this context, the fluctuation dissipation theorem relates the imaginary

part of the response function to the dynamic structure factor by

Im{χ(k, ω)} = 2πβωS(k, ω), (5.8)

where the dynamic structure factor can be written

S(k, ω) =
kαkβ
k2

∫
V

∫ ∞
−∞

drdt 〈Pα(r, t)Pβ(0, 0)〉 e−i(kr−ωt) (5.9)

=
2πβω

k2
〈ρb(k, ω)ρ∗b(k, ω)〉 ,
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Figure 5.3: Relevant autocorrelation functions for the study of the SLMF method,
shown for bulk water evolving under Ewald forces. In (a) the normalized charge-
charge autocorrelation function is shown as a function of wave vector, and (b) shows
the force-force autocorrelation function for the forces defined by the Vi in the pre-
vious section.

and ρb is the bound charge density. The charge-charge autocorrelation functions

have been studied for multiple water models in different contexts[39]. In addition

to the charge-charge autocorrelation function, we will also consider the force-force

autocorrelation function, which is related to the friction coefficient [62]. In our case,

we will consider the function

Di(t) = 〈Fi(r, t0) · Fi(r, t0 + t)〉 , (5.10)

where Fi(r, t) is the force from the potential Vi(r, t). We will study these functions

for bulk water, and so these averages should be independent of the initial time t0.

These charge-charge and force-force autocorrelation functions are shown in

figure 5.3. The oscillations at low frequencies, and for the long range forces, are

attributed to the librational modes of the water molecules [39]. These librational
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modes represent the fastest time scales of the solvent dynamics, and are responsible

for the rapid relaxation of the solvent to equilibrium. Much of these rapid move-

ments, however, happen on short length scales, and are not significantly affected

by the long range forces in the system. The basic idea behind LMF theory, and

by extension the SLMF method, is to average out these rapid fluctuations in the

long range forces while retaining the physically important short range interactions.

In the non-equilibrium enemble LMF theory investigated previously, this approx-

imation is rigorously valid in a large variety of systems. For SLMF theory, this

approximation becomes more complicated because of the need for local time averag-

ing, as opposed to ensemble averaging, requires a separation of time scales between

the solvent dynamics and any other degrees of freedom in the system. This will

be discussed in the context of bulk water autocorellation functions, in addition to

explicit nonequilibrium systems in the next section.

To get some intuition for how the SLMF method changes the dynamics, we will

study the autocorrelation functions defined above using the SLMF approximation.

There are many parameters that need to be chosen correctly in order for this method

to work, which are outlined below

• The smoothing length σ0 must be chosen to include the physically important

short range interactions in the system. For water, we have found that the

dynamics are qualitatively incorrect for σ0 < 4.5Å, which is consistent with

previous results on equilibrium LMF theory.

• The number of stochastically generated samples per charge, Ns, should be
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optimized relative to the initial smoothing length σinit and the relaxation rate

of the Poisson solver. The effect of changing this parameter at fixed relaxation

rate will be investigated.

• The rate of relaxation of the Poisson solver is determined by the number

of iterations performed on each grid for each time step, and the relaxation

rate of one iterative sweep. In the case of the SOR multiscale Poisson solver

considered in this paper, the relevant parameters are the relaxation factors ωi,

and the number of iterative sweeps ni. The choice of these parameters will be

optimized according to the separation of time scales present in the system.

• The grid spacing of the system is chosen to minimize computation time while

retaining the desired level of accuracy for the forces. This is analogous to the

choice of kmax for Ewald simulations, and is also a parameter present in any

real space Poisson solver.

In this section, we will focus on the effect of the parameters Ns and ωi on

the dynamics, because the other parameters have analogues in Ewald calculations,

and are thus well understood. In this section, σ0 is held at 4 Å, because for bulk

water this value still retains the structure, even though it fails for inhomogeneous

simulations. The value of σinit is chosen to be 2 Å, and the smallest grid spacing is

1 Å. The number of iterations per timestep ni is chosen to be one for each grid, so

that the rate of relaxation is determined solely by ωi. The ratio between succesive

grid spacings is again chosen to be two.

The parameters ωi and Ns are in some sense complementary to each other.
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Figure 5.4: Illustration of the effect of the parameters ω and Ns on the force-force
and charge-charge autocorrelation functions. In figure a, the parameter ω is varied
for Ns = 100, and in b the value of Ns is varied for ω = .4. In both figures, the
force-force autocorrelation function is shown for the total long range force, and the
inset shows the charge-charge autocorrelation function for k = 10nm−1.

Intuitively, this comes about because the longer it takes for the Poisson solver to

relax to the correct solution, the more statistical fluctuations it averages over as a

function of time. If a large separation of time scales exists in the system, then a

smaller value of ωi can be chosen, resulting in slower relaxation. In turn, this allows

for a lower value of Ns, because more statistics can be gathered in a larger amount

of time. This lower value of Ns is the main source of computational saving from

the algorithm, and is therefore how the algorithm takes advantage of a separation

of time scales to speed up the simulation.

To begin, we consider the effect of varying ωi while fixing the value of Ns at a

relatively high value of 100, in order to avoid any complications due to inadequate

statistics. These results are shown in figure 5.4a. For simplicity, the value of ωi is

held constant for each grid. The SOR method is known to converge for values of ω

between 0 and 2, with larger values generally leading to higher rates of convergence.
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From the figure, the effects of this slow convergence is clear. The slow dynamics

effectively averages over the librational modes in the system, leading to a slower

response to time dependent perturbations in the system. Surprisingly, the charge-

charge autocorrelation function shows larger oscillations for larger values of ω, which

requires more analysis to be understood. This is the parameter that determines how

quickly the field will respond to the slow dynamics in the system, and must thus

be chosen based on the separation of time scales present in the system, as will be

illustrated with some specific examples.

In figure 5.4b, the effect of Ns is considered at fixed ω = .4. It is clear from

the force-force autocorrelation function that the values get closer to a smoothed

version of the Ewald curve as Ns increases, eventually converging. We interpret this

to mean that for fixed ω, a certain mininum number of samples must be collected at

each time step in order to obtain enough statistics to get an accurate estimation of

the charge density. Once the correct amount of statistics has been achieved, there

is no large improvement from increasing the value of Ns, which is why the curve

eventually converges. As discussed previously, the minimum value of Ns should

increase with the rate of convergence, and therefore slow dynamics should require

a lower value of Ns, improving the computational speed. The effect of Ns on the

charge-charge autocorrelation funciton, however, does not seem to be very large.
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Figure 5.5: Comparison of SLMF results against Ewald summation for equilibrium
simulations in the slab geometry. Figure (a.) shows the charge density in the absence
of an applied field, and (b.) shows the charge density in the presence of a static field
of 10V/nm.. The insets show the smooth charge densities.

5.4 Slab geometry

We will now apply this method to the study of the slab geometry, which is

a model system that has been important for the study of LMF theory. To begin,

we will consider an equilibrium system subject to a static electric field, in order to

ensure that the method works in equilibrium. In this section, σ0 will be chosen to

be .45 nm., because lower values do not adequately capture the short range physics,

and lead to incorrect results. For the equilibrium simulations, ω will be .4 for four

grids, with one iteration per timestep.

The results of the equilibrium simulation are shown in figure 5.5. It is clear

that the equilibrium charge density does not agree completely with the charge den-

sity of the Ewald simulation, but is very close. Furthermore, the smooth charge

densities agree very well, which is likely because of the general theory behind the

LMF approximation. This suggests that the SLMF approximation is not quite as
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Figure 5.6: Comparison of SLMF results against Ewald summation for the slab
geometry in a sinusoidally oscillating field. Figure (a.) shows slope of the response
field as a function of time for an applied field with period 1600 fs., and (b.) shows
the complex dielectric constant as a function of period.

good as the equilibrium LMF approximation, but is more practical for implementa-

tion in many cases of interest.

In addition to the equilibrium case, we tested the SLMF method for a time

varying field. To this end, a simulation was performed in the presence of a spatially

uniform field varying sinusoidally in time. The applied field has a magnitude of

10 V/nm., and a varying period. In this case, in order for the response field to

respond more quickly to the applied field, the value of ω was increased for the larger

grid spacings. This is because the larger grids are sourced by a charge density that

is increasingly smoothed, and so are less sensitive to the noise introduced by the the

stochastic convolution. For this reason, the longer wavelengths will converge faster,

which is necessary in the nonequilibrium setting.

For a sinusoidally varying field, the static dielectric response shows a time

lag due to the finite time it takes for the dielectric medium to respond to the

changing field. This can be expressed using a complex dielectric function, where
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the magnitude determines the ratio of the amplitudes of the displacement field and

total electric field, and the phase determines the temporal offset of the two fields.

This function is defined by the equation

D0e
iω(t−δt) = |ε(ω)|E0e

iωt, (5.11)

where we have split the complex dielectric constant into a phase, given by the time

offset, and a magnitude.

These two quantities are plotted in figure 5.6. From this figure, it is clear that

SLMF does not reproduce the Ewald results exactly, but is very close. This is to

be expected due to the local time averaging. It is also clear that the approximation

breaks down at small periods, where there is a large divergence between the Ewald

and SLMF results. This corroborates the intuition that the local time averaging

relies on a separation of time scales in order to achieve accurate results, because if

the frequency is too high then the SLMF dynamics do not have time to respond

to the change in the field. Also, it is clear that the time offset shows a consistent

difference for all frequencies of approximately 20 fs., which we interpret as the

approximate response time of the local time averaging. For applications, it will be

imporant to tailor the values of ωi to the time scales relevant for the simulation

being performed.
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5.5 Conclusion

In this chapter we have developed a separate approach to non equilibrium LMF

theory that goes deeper into the algorithmic side of the long range Poisson solvers.

These practical considerations could be combined with the force sampling method

developed in the previous section to create a very competitive implementation of

LMF theory that would provide significant computational savings relative to the

PPPM Ewald algorithm.

To study this method, we considered the theory of dielectric response, and

used it to probe the response functions for the simulations evolving under different

variants of SLMF Ewald. This was used to probe the relevant ranges where the

parameters would be accurate enough to reproduce the results of Ewald summa-

tion. Also, these techniques help yield some insight into the underlying dynamics

of the method. In principle, this type of analysis could be applied to any statisti-

cal alternative to Ewald summation. Finally, the method was applied to the slab

geometry.
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Chapter 6: Approximate thermofield dynamics of interacting fermions

6.1 Introduction

This chapter is devoted to a new idea related to quantum chemistry and den-

sity functional theory. Although it is not directly related to LMF theory, it is

similar in spirit and deals with related problems. In particular, many body quan-

tum physics is in many ways complementary to the study of classical statistical

systems, and therefore forms a useful class of problems to investigate, in order to

lead to greater understanding of statistical physics as a whole. For large systems,

the intractable complexity of an exact solution to the many body problem is well

known[63], specifically for systems of interacting fermions, which suffer from the

so-called sign problem[64]. There are many approaches to finding approximate solu-

tions in different contexts, and for a variety of systems[65][66]. In condensed matter

theory, an important general strategy is to search for an effective description of the

interacting theory in terms of weakly interacting quasi-particles[67][68]. This ap-

proach has had success for a large variety of systems, including superconductors[69],

low temperature liquids[70], crystal lattices[71] and plasmas[72]. There are also

important examples of strongly correlated systems that are not as amenable to a

description in terms of quasi-particles, for which a variety of techniques are be-
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ing actively investigated, and have led to some exciting new approaches to the

problem[73][74][75].

In the field of quantum chemistry, there are a number of computational ap-

proaches with a long history[76][77], generally leading to a tradeoff between accu-

racy and scalability. Density functional theory (DFT) is perhaps the most scalable

method for large systems of interacting particles, and gives high accuracy in many

cases[78][79]. However, DFT must approximate the exchange-correlation energy of

the system, which is generally uncontrolled and difficult to quantify, and is known to

give inaccurate results for a number of systems[80]. Ab initio methods are generally

more accurate and complete descriptions of the system[81][82], but are usually too

computationally expensive for large numbers of particles. In particular, the coupled

cluster method is one of the most scalable ab initio techniques[83], and is similar in

form to the approach taken in this paper. A set of alternative approaches known

collectively as Quantum Monte Carlo methods are generally more scalable than ab

initio methods but less than DFT, thus allowing for more accurate calculations for

reasonably large systems [84][85][86].

Here we introduce a technique that is an almagamation of some of the ap-

proaches discussed above, but does not fit neatly into any individual category. Our

method will use the thermofield formalism, which is an equivalent alternative to

the usual density matrix description of quantum statistical ensembles[87][88]. We

first show that in a non-interacting theory, the equilibrium in a grand canonical

ensemble always takes the form of a thermal coherent state, which is closely related

to the usual definition of a Fermionic coherent state. We then introduce a general
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expansion whose first term is this coherent state, and formally solve this expan-

sion in terms of solutions of the many-body Schrodinger equation. The expansion

converges poorly for an interacting system, but the introduction of a transformed

basis allows for weak effective interactions, in addition to exponential suppression

of the excited states at low temperatures. This leads to the possibility of a rapidly

converging series if the basis is chosen well, and we develop a method for dynam-

ically optimizing the basis by cooling the system from infinite temperature, using

the imaginary time formalism[89].

Our approach is similar in spirit to the coupled cluster method, expanding the

wavefunction as an operator exponential which is formally equivalent to a cumulant

expansion[90]. However, the use of the thermofield formalism makes all of the op-

erators in the exponential commute, which is a useful simplification. Additionally,

this approach is inherently intended for thermal ensembles, incorporating some of

the advantages of quantum Monte Carlo techniques, in addition to providing a more

general class of calculations than usually possible for ground state methods.

The method is then applied by truncating the series at the first term, and

allowing unitary transformations that mix the two Hilbert spaces, bearing some

resemblance to the Hartree-Fock-Bogoliubov method[91]. It is shown that the sym-

metries of the problem allow for the choice of a linear combination of operators in

the thermofield double, for which the wavefunction is the vacuum of the system.

This leads to simplifications in the calculation, from which an explicit set of differ-

ential equations for the dynamics is derived. In the last section, we apply the results

to the homogeneous electron gas, deriving a generalization of a familiar result from
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the Hartree-Fock analysis of this problem. This technique can be generalized in a

number of ways, providing an interesting avenue for future investigation.

6.2 Thermal coherent states

We will begin by reviewing the thermofield formalism, which will be used to

define a thermal coherent state. We will then show that these states arise naturally

as the equilibrium configuration for a non-interacting system in the grand canonical

ensemble.

Thermofield theory is a way of describing mixed states that is different from

the density matrix formalism, but yields equivalent results. Consider a quantum

mechanical system defined on a Hilbert space H with a fixed number of particles

N , and Hamiltonian Ĥ at temperature T = kB/β. The density matrix for the

equilibrium configuration of this system is given by

ρ̂β =
1

Z
e−βĤ , (6.1)

where Z is the partition function for this system. Operator expectation values in

this ensemble are given by

〈O〉β = Tr(Oρ̂β). (6.2)

In the thermofield formalism, one introduces a fictitious system that includes two

copies of the initial Hilbert space Htf = H1 ⊗ H2, called the thermofield double.

Operators acting in the first system are of the form A1 ⊗ I2 and will be referred

89



to as A1, and on the second Hilbert space are defined by the Hermitian conjugate,

A2 ≡ I1 ⊗A†2. In the energy eigenbasis, we can define the entangled state

|ψβ〉 =
1

Z
1
2

∑
i

e−
1
2
βEi |Ei, Ei〉 , (6.3)

where the state |Ei, Ej〉 is an energy eigenvector with eigenvalue Ei and Ej in the

seperate Hilbert spaces. A short calculation shows that the operator expectation

value in equation (6.2) is given by

〈O〉β = 〈ψβ| O1 |ψβ〉 , (6.4)

which shows the equivalence of this formalism with the usual density matrix approach[87].

We now restrict ourselves to a system of fermions in the grand canonical en-

semble, with chemical potential µ. In this case, the Hilbert space H includes states

with an arbitrary number of particles, and the relevant density matrix is given by

ρ̂µ,β =
1

Z
e−β(Ĥ−µN̂), (6.5)

where Z is the grand partition function. The expectation value of an operator in this

ensemble is again given by Tr(Oρ̂µ,β). Let us introduce a complete set of creation

operators â†α acting on H1 that satisfy canonical anti-commutation relations

{âα, â†β} = δαβ, {âα, âβ} = 0, {â†α, â
†
β} = 0. (6.6)
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We also introduce a set of corresponding creation operators b̂α acting on H2, where

Hermitian conjugation is included, switching the notation for creation and annihi-

lation operators. Define the state

|ψµ,β〉 =
1

Z 1
2

e−
1
2
β(Ĥ1−µN̂1)e

∑
α â

†
αb̂α |0〉 , (6.7)

where |0〉 is the vacuum of the full Hilbert space, and N̂ is the number operator.

For an observable O1 that commutes with all operators b̂α, we find the relation

〈O〉µ,β = 〈ψµ,β| O1 |ψµ,β〉 , (6.8)

which shows that the state (6.7) is the equivalent of (6.3) for the grand canonical

ensemble.

There is a close analogy between equation (6.8) and the Grassmann resolution

of the identity used in Fermionic path integrals[68][92]

I =

∫ ∏
α

dξ∗αdξα e
∑
α ξαξ

?
α |ξ〉 〈ξ| , (6.9)

where |ξ〉 is a Fermionic coherent state

|ξ〉 = e
∑
α â

†
αξα |0〉 . (6.10)
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First we note that equation (6.5) can be written in the form

ρ̂µ,β =
1

Z
e−

1
2
β(Ĥ−µN̂)I e−

1
2
β(Ĥ−µN̂). (6.11)

Inserting the resolution of the identity (6.9) into this expression, and taking an op-

erator expectation value yields an inner product with the Grassmann valued wave-

function

|ψ̃µ,β〉 =
1

Z 1
2

e−
1
2
β(Ĥ−µN̂)e

∑
α â

†
αξα |0〉 , (6.12)

where the inner product includes the Grassmann integrals. This state is manifestly

similar to equation (6.7), with the Grassmann numbers ξα replacing the operators

b̂α. In this case, the Grassmann integrals in equation (6.9) impose similar delta

functions to the canonical anti-commutation relations of the operators b̂α, and one

can readily verify that they yield the same results.

This analogy motivates us to define a thermal coherent state

|b〉 = e
∑
α â

†
αb̂α |0〉 , (6.13)

which satisfies the formal eigenvalue equation

âα |b〉 = b̂α |b〉 . (6.14)

Let us consider how the state (6.7) evolves in imaginary time τ = 1
2
β for a non-
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interacting Hamiltonian

Ĥ(0) =
∑
αβ

H
(0)
αβ â

†
αâβ, (6.15)

where we will set ~ = 1. Assume that the state is of the form (6.13) at time τ , and

consider an infinitesimal evolution of the system to time τ +δτ , where the operators

b̂α(τ) are now taken to be time dependent. Acting with an annihilation operator,

we find

âα |b(τ + δτ)〉 =
(
b̂α(τ)− δτ

[
âα, (Ĥ

(0) − µN̂)
])
|b(τ + δτ)〉+O(δτ 2). (6.16)

Because the Hamiltonian is non-interacting, the commutator gives only annihilation

operators, which also yield eigenvalues up to order (δτ)2. So we see that the state

remains in a coherent state whose eigenvalues satisfy the differential equation

∂τ b̂α(τ) = µb̂α(τ)−
∑
β

H
(0)
αβ b̂β(τ). (6.17)

This shows that in a non-interacting system, the thermal wave function in the grand

canonical ensemble (6.7) is given by a thermal coherent state whose eigenvalues

satisfy the above differential equation.

Let us choose the operators â†α to be eigenfunctions of the non-interacting

Hamiltonian

[Ĥ(0), â†α] = E0
αâ
†
α, (6.18)
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In this case, the eigenvalues b̂α(τ) are given by

b̂α(τ) = e−τ(E0
α−µ)b̂α(0). (6.19)

The occupation number of the state α is then given by

nα ≡ 〈â†αâα〉µ,β =
1

1 + eβ(E0
α−µ)

, (6.20)

which is the Fermi-Dirac distribution, as would be expected. The average number

of particles and variance are given by

〈N̂〉µ,β =
∑
α

nα,

〈(∆N̂)2〉µ,β =
∑
α

nα

(
1− nα

)
, (6.21)

which are also as expected.

6.3 Interacting dynamics

We will now consider how a two-body interaction changes the results derived

above. We introduce a Hamiltonian of the form

Ĥ = Ĥ(0) + Ĥ(1), (6.22)
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where Ĥ(1) is a two-body potential

Ĥ(1) =
∑
αβγδ

wαβγδâ
†
αâ
†
βâγ âδ, (6.23)

and Ĥ(0) is given by equation (6.15). In this case, the commutator [âα, Ĥ] does

not consist of terms that only contain annihilation operators. Based on equation

(6.16) we can no longer conclude that coherent states are preserved by the dynamics.

This is similar to the situation for Slater determinants, stemming from the intrinsic

complexity of interacting systems.

To proceed, we will introduce an operator expansion to include the effects of

correlation in a systematic way. First, we introduce some terminology. We say that

an operator is thermofield (tf) normal of order n, if it is of the form

ψ̂(n) =
1

(n!)2

∑
α,β

tαβ

n∏
i=1

â†αi b̂βi . (6.24)

where α and β are multi-indices of order n, and tαβ is a complex valued function of

these indices. These are similar in form to excitation operators in the coupled cluster

or configuration interaction expansions, with n-excitation operators corresponding

to tf normal operators of order n. In this case, however, the creation and annihilation

operators act in different Hilbert spaces. We say that a wavefunction is tf normal if

it can be written

|ψ〉 =

(
1 +

∞∑
n=1

ψ̂(n)

)
|Ω〉 , (6.25)

where ψ̂(n) are tf normal of order n, and |Ω〉 is a reference wavefunction in the full
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Hilbert space.

We now rewrite equation (6.25) as an exponential

|ψ〉 = exp

(
∞∑
n=1

T̂ (n)

)
|Ω〉 , (6.26)

where the operators T̂ (n) are also tf normal of order n, and the notation is the same

as the coupled cluster method. This will be called a thermal cumulant expansion.

Assuming everything converges properly, we can relate the operators in equation

(6.26) to those in (6.25) through the relation

T̂ (n) = ψ̂(n) −
∑
p∈Pn

n−1∏
m=1

1

pm!

(
T̂ (m)

)pm
, (6.27)

where Pn is the set of multi-indices {(p1, . . . , pn−1) : pm ≥ 0,
∑n−1

m=1 pmm = n}, and

n > 0.

As discussed in the introduction, this expansion is closely related to the ex-

pansion used in the coupled cluster method, and the interpretation is similar. In

particular, the expansion has the property of size extensivity, which is a desirable

property for a many body ansatz[90]. The mathematics of this construction is also

formally the same as the cumulant expansion, with the corresponding statistical

interpretation[93].

To get some intuition for the expansion in this context, consider expanding

the wavefunction |ψµ,β〉 of equation (6.7) in this way, for the Hamiltonian (6.22).

We will again use the imaginary time formalism, setting τ = 1
2
β, and see how the
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function |ψµ(τ)〉 evolves in imaginary time. The initial conditions are given by

T̂ (1)(0) =
∑
α

â†αb̂α (6.28)

T̂ (n)(0) = 0, ∀n > 1.

Inserting this into equation (6.27) implies the initial conditions

ψ̂(n)(0) =
1

n!
(ψ(1)(0))n, ∀n > 1, (6.29)

in addition to ψ̂(1)(0) = T̂ (1)(0). The inverse factors of n! generally account for

symmetrization in products of the form
∏n

i=1 b̂αi â
†
αi

. Similarly, the inverse factor

of pm! in equation (6.27) is a combinatorial factor that accounts for permutations

among groups of the same size. In this case, the operators ψ̂(n) will satisfy the

modified Schrodinger equation

∂τ ψ̂
(n)(τ) =

[
(µN̂ − Ĥ), ψ̂(n)(τ)

]
. (6.30)

We therefore interpret the operators T̂ (n) as probing the n-particle correlation of

a group of particles, after subtracting off all possible lower order correlations. For

example, the function T̂ (2) compares the interacting evolution of two particles ψ̂(2)

with the uncorrelated evolution of the product state (ψ̂(1))2/2. In a similar way,

equation (6.27) subtracts off all possible lower order correlations from the coherent

evolution of n particles, isolating the n-particle correlation, which is similar to the
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statistical interpretation of cumulants.

This expansion will only converge rapidly if the theory is weakly interacting,

because a strongly interacting theory will make the coherent evolution very different

from the independent evolution, so the corrections will be large. To see this more

explicitly, we again choose the eigenbasis of the non-interacting Hamiltonian Ĥ(0),

where the functions T̂ (1)(τ) are given by

T̂ (1)(τ) =
∑
α

e−τ(E0
α−µ)â†αb̂α, (6.31)

as they were in the non-interacting theory. Clearly this term will only be a good

approximation for the interacting system if the interactions are weak. This also illus-

trates why the non-interacting theory only contains the first term in the expansion,

because the higher order corrections are identically zero.

6.4 Optimized basis set

In the discussion so far, the basis of operators has been kept general. The

only restriction on the basis has been the form of the Hamiltonian (6.22), and

the use of the number operator for the grand canonical partition function. If one

considers a more general basis, the Hamiltonian and number operator no longer

retain their usual form, but the rest of the results remain unchanged as long as

the operators form a complete set that satisfy the anti-commutation relations (6.6),

and the Hamiltonian acts in H1. Even more generally, one might consider a basis

of operators that have a mixture of Fermionic and Bosonic statistics, similar to the
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situation for Cooper pairs, or even anyonic commutation relations. It is also possible

to consider basis sets that are not orthonormal in any sense, as in quantum chemistry

algorithms that use nonorthogonal basis sets[94]. Finally, in the approach taken

here, it will be possible to consider transformations that mix the two Hilbert spaces,

which will be further explored. As special cases of transformed basis sets, one could

consider Bogoliubov transformations[67][68], local canonical transformations[95][96],

or more general nonlinear canonical transformations[97]. Some general results on

canonical transformations are reviewed in appendix C.1.

We will develop a method to incrementally optimize the basis set so that the

cumulant expansion (6.13) converges as rapidly as possible. Ideally, the full wave-

function could be accurately approximated by the first term in the infinite sum,

giving it the general form of a thermal coherent state. To achieve this goal, we must

introduce a truncation scheme, and then maximize the overlap of the truncated

wavefunction with the “full” wavefunction, over the set of allowed basis transfor-

mations. The truncation scheme is a choice of terms to keep in the exponential, as

considered in the coupled cluster method. For example, one could keep only oper-

ators of first order, conventionally called singles, or also include doubles, or higher

order terms.

The following analysis will apply to real or thermal time evolution, so for
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convenience we define the modified Hamiltonian

Ĥ =


Ĥ real,

−i(Ĥ − µN̂) thermal,

(6.32)

where we note that the number operator must be defined in the physical basis of

particle excitations, and then transformed to whatever basis is being used. Let us

assume that the basis has been optimized at time t, and try to optimize it at time

t+ δt. At time t, the truncated wavefunction has the form

|ψ(t)s〉 = eT̂s(t) |Ω〉 , (6.33)

where the subscript s denotes a truncated (or short) cumulant expansion. At time

t+ δt, the evolved wavefunction will become

|ψ(t+ δt)〉 = e−iδtĤeT̂s(t) |Ω〉 . (6.34)

After using the Baker-Campbell-Hausdorff formula, it is clear that the state will no

longer be truncated, and will in general have terms of all orders in the exponential.

We would like to find a truncated wavefunction |υ〉 that maximizes the overlap

|〈υ|ψ(t+ δt)〉|2, within a set Υ of wavefunctions that have a constant magnitude, so

that

|ψ(t+ δt)s〉 = argmax
υ∈Υn

|〈υ|ψ(t+ δt)〉|2. (6.35)

100



We do not demand the wavefunction to be normalized because we will take advantage

of the freedom to simplify the equations.

It is desirable to turn equation (6.35) into a differential equation using the

calculus of variations. To do this, one can use Lagrange multipliers, and vary the

state 〈υ| indepenently of |υ〉 to obtain

〈δυ|ψ〉 〈ψ|υ〉 = λ 〈δυ|υ〉 , (6.36)

where we suppress the time dependence, and the subscript s, for convenience. To

obtain a dynamic equation, we take a derivative of this equation, set |υ〉 = |ψ〉, and

divide by 〈ψ|ψ〉 to get

〈δψ|P⊥i∂t |ψ〉 = 〈δψ|
(
Ĥ − 〈Ĥ†〉 −R

)
|ψ〉 , (6.37)

where P⊥ = (1 − |ψ〉 〈ψ|ψ〉−1 〈ψ|) is a projector onto the subspace orthogonal to

|ψ〉, and 〈Ĥ†〉 is the normalized expectation value. The variable R is related to the

Lagrange multiplier λ, but will not appear in the final equations. A more detailed

derivation of this equation is presented in appendix C.2, which gives more insight

into this parameter.

Because of the presence of the projector in equation (6.37), only the perpen-

dicular part of the derivative is constrained by this equation. The parallel part

determines the normalization of the wavefunction, which we set by imposing the
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condition

〈ψ| i∂t |ψ〉
〈ψ|ψ〉

= 〈Ĥ†〉+R, (6.38)

which simplifies equation (6.37) to

〈δψ| i∂t |ψ〉 = 〈δψ| Ĥ |ψ〉 . (6.39)

This equation is similar to a time-dependent Hartree Fock equation[98], but adapted

to the thermofield formalism for a more general ansatz. In order to use this equation,

we must demand that the variation |δψ〉 maintains the form of the ansatz for the

wavefunction, and so does the derivative. In the next two sections, we illustrate how

this works for a specific choice of truncation and optimization scheme.

6.5 Thermal coherent state evolution

In this section we will develop a specific implementation of the general ap-

proach developed previously that might be suitable for quantum chemistry applica-

tions. We will make the following choices:

• The cumulant expansion is truncated at the first term, imposing the form of

a thermal coherent state.

• The wavefunction will be chosen to be thermofield normal.

• The basis of excitations will be a set of single particle molecular orbitals sat-

isfying canonical anti-commutation relations.
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• We will allow arbitrary unitary transformations on the vector space spanned

by the operators âα and b̂α, mixing the two Hilbert spaces.

The reason we choose to retain the thermofield normal form is that it simplifies

calculations, which will be demonstrated, in addition to the fact that it is exact in the

non-interacting case. We will want to find the differential equations that result from

using these choices in the variational equation (6.39). There are two parameters that

will be optimized in the variation, changes in the operator T̂ and changes in the basis

of excitations. In general, changes in the basis of excitations will affect the vacuum

|Ω〉 in addition to the operator T̂ . In order to maintain the thermofield normal

form, we demand that when the basis is changed, there is a corresponding change

to the wavefunction that leaves the operator T̂ form invariant. More explicitly, the

combined effect of this transformation on the wavefunction will be

e
∑
αβ tαβ â

†
αb̂β |Ω〉 → e

∑
αβ tαβ â

′†
α b̂

′
β |Ω′〉 , (6.40)

where the prime indicates the changed basis. Changes in the operator T̂ will take

the form tαβ → t′αβ, so the two types of transformations are effectively decoupled.

We note that the state remains invariant under the following set of simultane-

ous transformations

â† → â†U †, b̂→ V b̂, t→ UtV †, (6.41)

where matrix multiplication is implied, and the matrices are unitary. In the Hartree-
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Fock approach this type of freedom is used to diagonalize the matrix of Lagrange

multipliers, imposing orthonormality on the basis of excitations[99]. In this case,

however, the transformations are infinitesimal so it is possible to directly constrain

them to satisfy canonical anti-commutation relations. For this reason, we will use

this freedom to perform a singular value decomposition on the matrix tαβ, which

means that this matrix can be chosen to be diagonal, with diagonal elements tα.

The unitary transformations that mix the Hilbert spaces are included to allow

for some correlation in the wavefunction. The generators of these transformations

take the form

â
b̂

→
â
b̂

+ iε

A B

B† C†


â
b̂

 (6.42)

where A and C are Hermitian. This is a one parameter group of transformations,

whose derivative at ε = 0 gives the Lie derivative, which in this case will be denoted

LA,B,C . The vacuum transforms as

iLA,B,C |Ω〉 = â†Bb̂ |Ω〉 . (6.43)

which can be checked by acting with any annihilation operator. Additionally we

find

iLA,B,C |ψ〉 =
(
â†
(
A†t− tC† +B − tB†t

)
b̂+ Tr(B†t)

)
|ψ〉 . (6.44)

The second term in this equation changes the normalization of |ψ〉, which will not
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be important. Consider the matrix in the first term

M = A†t− tC† +B − tB†t. (6.45)

We note that the diagonal can be chosen to be anything, which implies that we can

absorb a change in the singular values tα into a change in the matrix M , allowing

us to always choose the singular values to be constant. For simplicity, we choose

tα = 1, so the wavefunction takes the form of the thermal coherent state

|ψ〉 = e
∑
α â

†
αb̂α |Ω〉 . (6.46)

The matrix M then becomes

M = A† − C† +B −B†. (6.47)

With this form, it is clear that the state is invariant under transformations with

A = C and B = B†. If we choose A = −C and B = −B†, then this makes the

first term Hermitian and the second term anti-Hermitian, which decouples the two

transformations. This is interpreted naturally by defining the operators â± b̂, which

is developed below.
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6.6 Simplified basis

To make better sense of the above results, we define the operators

v̂α =
1√
2

(âα − b̂α), ŵα =
1√
2

(âα + b̂α), (6.48)

which will eventually be considered an initial condition. These operators satisfy

canonical anti-commutation relations, and anti-commute with each other. Also, the

state

|Ω〉 ∝ e
∑
α â

†
αb̂α |0〉 , (6.49)

is annihilated by the operators v̂α and ŵ†α, so is proportional to the vacuum of

this basis. One can readily check that for the choices A = C and B = B†, the

transformation (6.42) can be written succinctly as

v̂ →
(

1 + iεX
)
v̂, ŵ →

(
1 + iεX̃

)
ŵ, (6.50)

where we have defined X = A−B and X̃ = A+B, which are both Hermitian.

With this result, it is clear why the vacuum is invariant under these transfor-

mations, because they rotate the creation and annihilation operators independently.

For the transformations with A = −C and B = −B†, we find

v̂ → v̂ + iεY ŵ, ŵ → ŵ + iεY †v̂, (6.51)
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where Y = A + B, but this matrix is not Hermitian unless B = 0. Under this

change, the vacuum transforms as

iLY |Ω〉 = v̂†Y ŵ |Ω〉 , (6.52)

which can be checked by acting with annihilation operators at small ε.

These equations are simplified by defining a Hermitian operator

Ĥc = v̂†Y ŵ + ŵ†Y †v̂ + v̂†Xv̂ + ŵ†X̃ŵ. (6.53)

The transformations described so far can then be written succinctly as

iLHc |Ω〉 = Ĥc |Ω〉 , iLHcÂ = [Ĥc, Â], (6.54)

where Â refers to v̂ or ŵ. These equations are naturally interpreted as generating

Hamiltonian dynamics in the Schrodinger picture, where the operator Ĥc can be

found from equation (6.39). Before developing these dynamics further, we will use

the unitary freedom to relate the defined basis to the original basis of operators âα.

The Hamiltonian Ĥ is only a function of the operators in the first copy of

the original Hilbert space, denoted H0
1, so we would like to find a relation between

the transformed basis and the original operators. To simplify notation, we will now

consider the operators â to always lie in H0
1, taking the operators v̂ and ŵ to rotate

independently of this basis, meaning that relation (6.48) no longer holds for t > 0.

Denote the initial basis of operators by â0, and relate the complex basis to the initial
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basis by the relation

â0 = Mv̂ +Nŵ, (6.55)

for some matrices M and N . In appendix C.3 we prove that these matrices have the

same left singular vectors, and there is a unitary change of basis that brings this to

the form

â = Λ̃v̂ + Λŵ, (6.56)

where Λ and Λ̃ are real diagonal matrices with eigenvalues in the range [0, 1], related

by

Λ̃2 + Λ2 = 1. (6.57)

The operators â are now a time dependent basis for the first Hilbert space, unitarily

related to the initial basis â0. These relations simplify the calculation of physical

correlators, which depend only on operators in H0
1. As an example, we see that the

eigenvalues λα are closely related to the occupation number of the state α, as seen

by the relation

nα = 〈â†αâα〉 = λ2
α. (6.58)

In light of equation (6.57), one could also define a mixing angle θα for which λα =

cos(θα) and λ̃α = sin(θα), but we will continue to use the defined notation.
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6.7 Approximate dynamics

To find the equations of motion, we will demand that |Ωc〉 retains the form of

the ansatz, implying that it changes according to (6.52)

i∂t |Ω〉 = v̂†Y ŵ |Ω〉 . (6.59)

Using this form for the derivative in equation (6.39), and setting the variation to

zero gives

Yαβ = 〈ŵ†β v̂αĤ〉 . (6.60)

We define the matrix Yαβ for real time evolution, using (6.32) to find the corre-

sponding imaginary time evolution. Consider now a Hamiltonian of the form (6.22).

Define time dependent coefficients H
(0)
αβ (t) and wαβγδ(t) to expand the Hamiltonian

in the basis â = Uâ0,

H
(0)
αβ (t) =

∑
γδ

UαγH
(0)
γδ (0)U †δβ, wαβγδ(t) =

∑
εζηθ

UαεUβζwεζηθ(0)U †ηγU
†
θδ, (6.61)

where the time dependence will be supressed for notational convenience. Equation

(6.60) then becomes

Yαβ

λ̃αλβ
= H

(0)
αβ +

∑
γ

nγ

(
wαγγβ − wαγβγ − wγαγβ + wγαβγ

)
, (6.62)
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This calculation motivates us to define the matrix

Hc
αβ =

Yαβ

λ̃αλβ
, (6.63)

which is Hermitian. For imaginary time evolution, the operator Ĥ becomes anti-

Hermitian, but in the following we will use this definition and equation (6.32) to

find the dynamics explicitly.

We can also define the effective Hamiltonian to induce the unitary transfor-

mation on the bases â, v̂, and ŵ resulting in equation (6.56). The generators of

these unitary transformations are derived in appendix C.3, which can then be used

in equation (6.53). The resulting operator is only simplified for real time evolution,

given by

Ĥc = â†Hcâ, real. (6.64)

In imaginary time the resulting operator is complicated, and not particularly en-

lightening, instead the explicit equations are derived below. For real time evolution,

the equations of motion for the vacuum and bases are the same as in equation (6.54),

and the occupation numbers are invariant, reflecting the fact that normalization is

preserved by unitary time evolution.

In imaginary time, we will again use the parameter τ = β/2. Using the
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definition (6.32), and changing variables to nα = λ2
α we find1

∂τnα
nα(1− nα)

= −2Hc
αα, ∂τ âα =

∑
β 6=α

nα + nβ − 2nαnβ
nα − nβ

Hc
αβâβ, (6.65)

where the latter equation is only true if the occupancies nα are non-degenerate. The

degenerate case is explained in appendix C.3. These equations can be simplified

further by imposing the form of a Fermi-Dirac distribution

nα =
1

1 + eβ(Eα−µ)
, (6.66)

which defines an energy Eα. With this definition, equations (6.65) become

τ
dEα
dτ

= Hc
αα − Eα (6.67)

∂τ âα =
∑
β 6=α

coth
(
τ(Eβ − Eα)

)
Hc
αβâβ, (6.68)

where we have used a total derivative in the first equation to emphasize the depen-

dence on nα.

These equations give some physical insight into the dynamics. Equation (6.67)

shows that the energies are driven towards a self consistent field in which the defined

energies Eα are close to the energies Hαα, which can be considered a mean-field

energy for the state. Equation (6.68) imposes a unitary transformation which tends

to diagonalize the effective Hamiltonian. In the limit of low-temperature, or large

1For this derivation we have assumed that the number operator is given by N̂ =
∑

α â†αâα, so
that these operators are unitarily related to the original creation and annihilation operators.
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τ , the system is driven towards an equilibrium configuration which approximately

diagonalizes the Hamiltonian and in which the occupation numbers approach those

of the self consistent field, as is the case for the Hartree Fock solution. Indeed,

as β → ∞, the occupation numbers (6.66) are driven to zero or one, so the state

approaches a Slater determinant. In this case, the effective Hamiltonian reduces to

the Fock operator, and the dynamics approaches the Hartree-Fock solution.

6.8 Homogeneous electron gas

We now apply these approximate dynamics to the homogeneous electron gas.

In this case, the Hamiltonian (6.22) consists of the terms

Ĥ(0) =
∑
kσ

k2

2m
â†kσâkσ, Ĥ(1) =

2πe2

V

∑
kk′σσ′

∑
q 6=0

1

q2
â†k−qσâ

†
k′+qσ′ âk′σ′ âkσ, (6.69)

where we use units such that 4πε0 = 1, and k label the wavevectors of a periodic

box. For this Hamiltonian, equation (6.62) gives

Hc
kσ,k′σ′ = δkk′δσσ′

(
k2

2m
− 4πe2

V

∑
q 6=0

1

q2
nk+qσ

)
, (6.70)

which shows that the effective Hamiltonian is always diagonal in the Fourier basis,

and that the interaction energy is negative due to the exchange energy, as correlation

effects are not included well in this approximation. In the limit of low density

this should become an unstable fixed point, because of the tendency towards spin-

polarization and Wigner crystallization, making equation (6.68) relevant. We define
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the occupation energy of interaction by Eint
kσ = Ekσ − k2

2m
, which evolves according

to

− τ dE
int
kσ

dτ
= Eint

kσ +
4πe2

V

∑
q 6=0

1

q2
nk+qσ. (6.71)

We now take the infinite volume limit, where k becomes a continuous variable.

We assume that the density only depends on the magnitude |k|, and omit the

dependence on σ. The sum in equation (6.71) then approaches an integral, defined

by

Iβµ(k) =
e2

2π2

∫
d3q

q2
nβµ(|k + q|), (6.72)

In this integral, there are three relevant distances: |k|, |q|, and |k+q|. This situation

lends itself to the two-center bipolar coordinate system, related to the upper half-

plane by

x =
r2

1 − r2
2

4a
, y =

1

4a

√
(4ar2)2 − (r2

2 − r2
1 + 4a2)2. (6.73)

In this case, we rotate this coordinate system around the axis connecting the points

defining the coordinate system, which introduces an extra angle φ. The volume

element is given by

dV =
r1r2

2a
dr1dr2dφ. (6.74)

Choosing k = 2a, r1 = q and r2 = |k + q|, we find

Iβµ(k) =
e2

π

∫ ∞
0

dx log

(
k + x

|k − x|

)
xnβµ(x). (6.75)

In the low temperature limit, when the occupation numbers are filled until the
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Fermi level, this reduces to a standard result in the Hartree-Fock analysis of the

homogeneous electron gas[100].

6.9 Conclusion

We have found a natural way of using thermofield dynamics for imaginary

time evolution in the grand canonical ensemble, showing that the approach works

for a non-interacting system. We then applied this analysis to interacting systems,

giving rise to a general strategy for approximating the time-dependent Schrodinger

equation in a grand canonical ensemble, by introducing an ansatz and optimizing

it variationally at every time step to yield approximate equations of motion. We

implemented this strategy for a thermal coherent state, which turns out to be a gen-

eralization of time dependent Hartree-Fock theory to fractional occupation numbers.

It will be useful to consider how to include correlation into this ansatz in future work.
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Appendix A: Detailed simulation methods

Most of the simulations in this paper were performed for an ensemble of boxes

periodic in the x and y directions with 1024 SPC/E water molecules, with box size

approximately 2.8x2.8x4.5 nm, where the width was modified to the bulk density of

water in the presence of an electric field. The dynamic simulations were modeled

with a z length of 4.3 nm. The number of realization in the ensembles varied from

8 to 16, depending on the context and how much smoothing was required, but the

results are not extremely sensitive to this parameter, as long as it is large enough.

The LMF procedure developed was implemented with a modified version of the

LAMMPS molecular dynamics package, where an algorithm was developed to com-

pute the average long range field from an ensemble of parralel simulations running

simultaneously, and replace the long range Ewald potential with this dynamic LMF

field. The applied electric field was implemented by including a sheet of closely

spaced discretized charges on the wall. If the electric field is imposed externally,

there are problems with the Yeh-Berkowitz slab correction [35].
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Appendix B: Alternative approaches to non-equilibrium LMF theory

B.1 Introduction

In this appendix we will discuss two alternate approaches to nonequilibrium

LMF theory that showed some promise, but which ultimately do not work well. The

first approach attempts to give the LMF potential its own Hamiltonian dynamics,

which might lead to an effective field averaging due to slowed dynamics. This

is an interesting approach, but ultimately would be unlikely to be that useful or

computationally efficient. It is worth considering however, because it is hard to

know in what context this type of idea could find applications.

The second section describes an attempt to use linear response theory at every

time step of a simulation in order to correct the LMF potential for the next time

step. Ultimately this approach does not seem to work due to the nature of the linear

response technique, but it is still worth presenting in order to show alternate ways

of thinking about the problem. Together these are presented in order to illustrate

the various ways of thinking about this problem, and possibly to assist others who

intend to pursue this problem further.
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B.2 Non equilibrium LMF with Hamiltonian LMF dynamics

In this section we will consider a very formal approach to nonequilibrium

LMF theory which attempts to give the LMF potential its own dynamics. The

LMF potential is denoted VR1(r; t), and the procedure will use the techniques of

Hamiltonian field theory, which are used for systems that have fields as dynamical

degrees of freedom in the theory. These techniques are used extensively in quantum

field theory, and can be reviewed for example in Giochetto et. al. [101].

We will want to consider a configuration dependent field VR1(r; t) that evolves

according to a Hamiltonian H(Γ), where Γ is the configuration space consisting of

particle positions and momenta (ri,pi), in addition to the value of the field VR1(r)

and its conjugate momentum ΠR1(r), which will also be considered as part of the

configuration space of the field. In many cases we will suppress the time dependence

of the fields, but include it where appropriate. We will first write down the version

of Liouville’s equation with this field, which follows from the continuity equation

∂f

∂t
+

N∑
i=1

(
∂f

∂ri
· ṙi +

∂f

∂pi
· ṗi
)

+

∫
dr

(
δf

δVR1(r)
V̇R1(r) +

δf

δΠR1(r)
Π̇R1(r)

)
= 0.

(B.1)

Using Hamilton’s equations of motion, this becomes

∂f

∂t
= −{f,H}V , (B.2)
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where we have defined the generalized Poisson bracket

{f, g}V =
N∑
i=1

(
∂f

∂ri
· ∂g
∂pi
− ∂f

∂pi
· ∂g
∂ri

)
+

∫
dr

(
δf

δVR1(r)

δg

δΠR1(r)
− δf

δΠR1(r)

δg

δVR1(r)

)
.

(B.3)

We will be interested in systems interacting under the long range Coulomb

potential, which is split accoring to

1

r
= v0(r) + v1(r), (B.4)

where the long range component v1(r) is defined through convolution of the Coulomb

potential with a unit Gaussin of width σ, denoted ρG(r). For the long range field,

we introduce the potential V1, so that the Hamiltonian takes the form

H1 =

∫
dr

(
ε0E1(r)2

2
+ 4πρqσ(r)V1(r)

)
. (B.5)

Here ρqσ(r, t) is the smooth charge density, and E1(r, t) = −∇V1(r, t) is the long

range electric field in the mimic system. In fact, this is a Hamiltonian for an LMF

potential that is smoothed by a Gaussian of width
√

2σ. To see this, we note that

the Euler-Lagrange equation for the field V1(r) is

∇2V1(r) = −4π

ε0
ρqσ(r), (B.6)

which gives the long range force with a smoothing length σ. Using the definition of
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the smooth charge density, however, the interaction Hamiltonian can be rewritten

H1 = 4π

∫
dr

∫
dr′ρq(r′)ρG(|r− r′|)V1(r) =

∑
i

qiVσ1 (ri), (B.7)

where Vσ1 (r) =
∫

dr′ρG(|r−r′|)V1(r′). So we have an additional convolution of width

σ, yielding a total smoothing length of
√

2σ.

In the spirit of LMF theory, we will want to consider dynamics for a mimic

system evolving under a potential VR1(r) that effectively averages over statistical

fluctuations. One natural way of achieving this with a Hamiltonian system is by

adding a “kinetic” term to the field VR1(r),

HR1 =

∫
dr

(
ΠR1(r)2

2ν
+
ε0ER1(r)2

2
+ 4πρqσ(r, t)VR1(r)

)
. (B.8)

Here ν is a parameter that acts analogously to a mass term, which can be seen from

Hamilton’s equations

ΠR1(r) = νV̇R1(r),

Π̇R1(r) = ε0∇2VR1(r) + 4πρqσ(r, t), (B.9)

which is an inhomogeneous wave equation with speed c2
l = ε0/ν.

If the smooth charge density is linear in time, these equations can be solved

by introducing a modified potential

ṼR1(r, t) = VR1(r, t)− Ve(r, t), (B.10)
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where Ve(r, t) is the solution of Poisson’s equation

∇2Ve(r, t) = −4π

ε0
ρqσ(r, t). (B.11)

In this case, because the second derivative of Ve(r, t) vanishes, ṼR1(r, t) satisfies a

homogeneous wave equation with speed cl

∂2ṼR1(r, t)

∂t2
= c2

l∇2ṼR1(r, t), (B.12)

which is the solution of Poisson’s equation superposed with homogeneous wave so-

lutions. If the charge density is not linear this solution is still approximately correct

if the field is slowly varying. This is an important feature of these differential equa-

tions.

For the full LMF Hamiltonian we include an index α for the different particle

species, and a pair potential uαβ0 (|ri − rj|) between species α and β, which includes

the short range Coulomb interaction and the Lennard-Jones interaction, and an

external field φ(r, t). Using this full Hamiltonian in equation (B.2) then yields a

generalized Liouville equation

∂fα
∂t

+
∑
i

[
pi
mα

· ∂fα
∂ri
− ∂fα
∂pi
· ∂
∂ri

(
φ(r, t) + qαVσR1(r, t) +

∑
β,j

uαβ0 (|ri − rj|)

)]

+

∫
dr

(
ΠR1(r)

ν

δfα
δVR1(r)

+ (ε0∇2VR1(r) + 4πρqσ(r, t))
δfα

δΠR1(r)

)
= 0, (B.13)

where i sums over all particles of type α, and j over particles of type β. The terms

120



in the first line of this equation are recognizable as the usual Liouville equation,

whereas the terms in the second equation arise due to the introduction of extra

phase space degrees of freedom.

The extra terms in equation (B.13) may seem to complicate the equation, but

they can be integrated out in order to derive a generalized BBGKY hierarchy. In

particular, we can perform a functional integration of this equation over all of the

field configuration degrees of freedom, and all of the extra terms vanish, because the

integral of a total functional derivative vanishes, where we assume that the phase

space density vanishes at infinite field strength. We note the importance of using

a Hamiltonian system to achieve this cancellation, in addition to the fact that δH
δVR1

must not depend on VR1, and similarly for ΠR1. After the integration, equation

(B.13) becomes

∂fr,α
∂t

+
∑
i

(
pi
mα

· ∂fr,α
∂ri

− ∂fr,α
∂pi

· ∂
∂ri

(
φ(r, t) +

∑
β,j

uαβ0 (|ri − rj|)
))

=
∑
i

qα

〈∂fα
∂pi
· ∂
∂ri
VσR1(r, t)

〉
V
. (B.14)

where we have defined the total phase space average,

〈A(Γ)〉 =

∫ ∫
[DVR1][DΠR1]A(Γ), (B.15)

and we have defined a reduced phase space density fr,α(rN ,pN) = 〈fα(Γ)〉V . The

notation
∫

[DF ] for a field F denotes the functional integration, which we will assume

is well defined.
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Equation (B.14) is very similar to the Liouville equation, differing only in

the average over the field phase space. The same manipulations that lead to the

BBGKY hierarchy can be used to simplify this equation, and the first equation in

the hierarchy is

(
∂

∂t
+

p

mα

· ∇ −∇φ(r, t) · ∂
∂p

)
f (1)
r,α(r,p; t)− qα

〈∂f (1)
α (r,p; t,ΓV)

∂p
· ∂
∂r
VσR1(r, t)

〉
V

=
∑
β

∫ ∫
∇uαβ0 (|r− r′|) · ∂

∂p
f

(2)
r,αβ(r,p, r′,p′; t)dr′dp′. (B.16)

Again, this equation is exactly analogous to the usual BBGKY hierarchy, with an

additional phase space average. We can use the same manipulations as in chapter

3 to find

mα

( ∂
∂t

jr,α(r; t) +∇ · Q̃r,α(r; t)
)

= ρr,α(r, t)∇φ(r, t) +
1

β
∇ρr,α(r; t) (B.17)

+ 〈ρα(r; t,ΓV)∇VσR1(r; t)〉V + ρr,α(r; t)
∑
β

∫
∇uαβ0 (|r− r′|)ρr,αβ(r|r′; t)dr′,

where the definitions are the same as before. Here again, the only difference from

the equation derived previously is the presence of the phase space average.

Given that all the terms in equation (B.17) are the same as they were in the

chapter 3, besides the field average of the term 〈ρα(r; t)∇VR(r; t)〉V , the arguments

leading to LMF theory go through exactly the same way as in the previous paper,

and the generalized LMF equation takes the form

〈ρq(r; t,ΓV)∇VσR1(r; t)〉V = ρqr(r; t)∇
(
φ(r; t) +

∫
ρqr(r

′; t)vσ1 (|r− r′|)dr′
)
. (B.18)
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Here the gradient cannot be taken out of the average, because then it would also

act on ρ(r; t), which is why it is included here in the LMF equation. This modified

LMF equation is different in character than the original LMF equation, because the

average over field configurations cannot be chosen, and instead it takes a value that

is determined by the dynamics. In other words, the equation must be proved. In

the following, we will argue that in certain circumstances the Hamiltonian (B.8) will

give rise to dynamics that approximately satisfy this equation.

The argument that equation (B.18) holds approximately requires a separation

of time scales. We have in mind a solvent, like water, with a timescale τf of inter-

action that is much faster than other time scales in the system, denoted τs. The

parameter ν is then chosen to effectively average over time scales longer than the

time scale of the solvent, but shorter than all other relevant time scales. This will

allow us to assume that the fluctuations in the charge density are approximately

uncorrelated with the fluctuations in the long range forces, or

〈δρq(r; t,ΓV)δ∇VσR1(r; t)〉V ≈ 0, (B.19)

where here we use the notation

δA(Γ) = A(Γ)− 〈A(Γ)〉V . (B.20)

This will be approximately true when the time scale of averaging is longer than

the time scale of fluctuations, because the instantaneous fluctuations in the charge
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density will not dramatically affect the long range forces, which reflect the dynamics

on a longer time scale.

If we can make the approximation (B.19), then equation (B.18) can be rewrit-

ten

〈VσR1(r; t)〉 = φ(r; t) +

∫
〈ρq(r′; t)〉 vσ1 (|r− r′|)dr′ + C, (B.21)

where the average is now independent of ρq(r; t,ΓV), and so can be taken over the

entire phase space. This is closer to the familiar form of the LMF equation. To show

that this equation holds approximately, we multiply equation (B.13) seperately by

VR1(r) and ΠR1(r), then integrate over all phase space to obtain

〈Π(r)〉 = ν 〈V̇(r)〉 ,

〈Π̇(r)〉 = ε0 〈∇2VR1(r)〉+ 4π 〈ρqσ(r, t)〉 , (B.22)

which is the ensemble averged version of Hamilton’s equations. As argued previ-

ously, in the presence of a separation of time scales, characterized by the inequality

ν ∂2

∂t2
Ve(r, t) << 4πρqσ(r, t), the solution to these equations are the solution to Pois-

son’s equation superposed with wave solutions. This separation of time scales is

exactly the opposite as that used previously, because it requires that the field dy-

namics are faster than the slow dynamics of the system. The field effectively aver-

ages over the fast degrees of freedom, but is faster than the slow degrees of freedom,

which is the situtation we wish to describe with LMF theory. If this approximation

is accurate, then equation (B.21) approximately holds.
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In the case of a time independent charge density ρqσ(r) we can again subtract

the time independent solution of Poisson’s equation and define

ṼR1(r, t) = VR1(r, t)− Ve(r, t), (B.23)

so that ṼR1 satisfies the equation

∂2

∂t2
ṼR1(r, t) +

1

τ0

∂

∂t
ṼR1(r, t) = c2

l∇2ṼR1(r, t). (B.24)

After a Fourier transform, we find

∂2

∂t2
ṼR1(k, t) +

1

τ0

∂

∂t
ṼR1(k, t) + c2

l k
2ṼR1(k, t) = 0, (B.25)

where no extra tilde is included for the Fourier transform. This is the equation

of a damped harmonic oscillator with frequency ω2
0 = c2

l k
2 and damping ratio ζ =

(2kclτ0)−1. We therefore find that the system becomes overdamped for fourier modes

for which 2kcl < τ−1
0 .

Although this approach to the problem is theoretically and practically com-

plicated, it could in principle lead to an interesting alternative approach to non-

equilibrium LMF theory. In the next section, we consider another alternative ap-

proach.
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B.3 Generalized linear response approach to non-equilibrium LMF

theory

The non-equilibrium form of the linear response equation is usually stated in

frequency space, for a uniform fluid in the presence of an oscillating field

〈∆ρk(t)〉 ≈ χρρ(k, ω)φk exp(−iωt). (B.26)

The derivation of this equation uses the Liouville equation, which is split into an

equilibrium component L0 and a perturbation, and then solved for the perturba-

tion. We will proceed with a similar derivation, modifying some of the details. For

the non-equilibrium linear response derivation, we will loosely follow Hansen and

McDonald [23].

To begin, as in the derivation of Hu and Weeks, let us assume that we have

a “trial” solution for the LMF potential as a function of time, which we denote

φ̃0(r; t). The correction to this potential, which we will treat as a perturbation,

will be denoted φ̃R1(r; t). Consider the full phase space distribution f [N ](rN ,pN , t),

which will be denoted f [N ](Γ, t) for the configuration dependence. This function

satisfies the Liouville equation

∂f [N ](Γ, t)

∂t
= −iL(Γ, t)f [N ](Γ, t), (B.27)

where L(Γ, t) = i{H(Γ, t), ·} represents the Liouville operator, {·, ·} is the Poisson
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bracket, and we explicitly include the time dependence to contrast this from the

case where the reference system is stationary. In this case, the Hamiltonian is given

by

H(Γ, t) = H0(Γ, t) +H1(Γ, t), (B.28)

where we defined the trial Hamiltonian H0 = U0 + Φ0. The Liouville equation then

becomes

∂f [N ](Γ, t)

∂t
= −iL0(Γ, t)f [N ](Γ, t) + {H1(Γ, t), f [N ](Γ, t)}. (B.29)

We will be interested in the response of the density to the change in the potential

relative to the trial system. For this reason, we write

f [N ](Γ, t) = f
[N ]
0 (Γ, t) + ∆f [N ](Γ, t), (B.30)

where f
[N ]
0 (Γ, t) is the phase space density of an ensemble evolving under the refer-

ence Hamiltonian. To first order in the perturbation, we find

∂∆f [N ](Γ, t)

∂t
= −iL0(Γ, t)f [N ](Γ, t) + {H1(Γ, t), f

[N ]
0 (Γ, t)}. (B.31)

The solution to this equation is

∆f [N ](Γ, t) =

∫ t

−∞
dsT

(
e−i

∫ t
s L0(Γ,τ)dτ

)
{H1(Γ, s), f

[N ]
0 (Γ, s)}, (B.32)

where we have introduced the time ordering operator T , which is necessary when

the reference system depends on time.
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In order to simplify the Poisson bracket appearing in the above equation, we

will introduce the assumption of local equilibrium, which asserts that the function

f
[N ]
0 (Γ, t) takes the form

f [N ](rN ,pN ; t) =
N∏
i=1

e−
1
2
β(pi−mv(ri,t))

2

g[N ](r[N ], t). (B.33)

In this equation, the function v(r; t) is the average velocity of the system 〈p(r; t)/m〉.

This hypothesis should be valid for systems that have a separation of time scales.

We have in mind the case of a relatively slowly varying external field with quickly

equilibrating particles responding to the changes in this field. An important example

of such a system would be a large protein in the presence of water, where the time

scale of relaxation for the water molecules is much faster than that of the protein.

In this case, the water should satisfy the local equilibrium hypothesis to a good

approximation, and the following analysis will approximate the dynamics accurately.

Given the local equilibrium hypothesis, the Poisson bracket can be simplified

as follows

{H1(Γ, s), f
[N ]
0 (Γ, s)} =

N∑
i=1

∇Φ̃(ri, s) ·
∂f

[N ]
0 (Γ, s)

∂pi

= β
N∑
i=1

FR1(ri, s) · (vi − v(ri, t))f
[N ]
0 (Γ, s), (B.34)

where FR1(ri, s) = −∇Φ̃R1(ri, s) is the force from the modified potential. To simplify
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this equation, we define the total power of the system at time s

P (Γ, s) =
N∑
i=1

FR1(ri, s) · v(ri, s), (B.35)

so that equation (B.34) becomes

{H1(Γ, s), f
[N ]
0 (Γ, s)} = βδP (Γ, s)f

[N ]
0 (Γ, s),

where δP (Γ, s) = P (Γ, s)− 〈P (s)〉. Using this formula, equation (B.32) becomes

∆f [N ](Γ, t) = β

∫ t

−∞
ds

∫
dΓ′K0(Γ, t|Γ′, s)P (Γ′, s)f

[N ]
0 (Γ′, s),

where K0(Γ, t|Γ′, s) = T
(
e−i

∫ t
s L0(Γ,τ)dτ

)
δ(Γ−Γ′) is the propagator of the reference

system.

We now consider the expectation value of an observable A(Γ, t)

〈A(t)〉 =

∫
dΓA(Γ, t)f [N ](Γ, t)∫

dΓf [N ](Γ, t)
.

Linearizing this equation to first order in 〈∆A(t)〉 and ∆f [N ](Γ, t), we find

〈A(t)〉 ≈ 〈A(t)〉ref + β

∫ t

−∞
ds 〈δA(t)δP (s)〉ref , (B.36)

where δA(Γ, s) = A(Γ, s)− 〈A(s)〉ref .

We will be interested in deriving a differential equation for the expectation
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value 〈A(t)〉. For this purpose, we will consider an unusual reference system. We

will assume that our reference system is correct at times s < t, and consider this

equation at times t and t + δt. The perturbation of the Hamiltonian will only be

turned on at times s = t+ δt for small δt, so that equation (B.28) becomes

H(Γ, s) =


H0(Γ, s), s < t

H0(Γ, t) + δt ∂
∂t
φ(Γ, t), s = t+ δt.

(B.37)

For this particular choice of reference system, the perturbation vanishes for times

s < t, so P (s) also vanishes for times s < t. Subtracting equation (B.36) at times t

and t+ δt, and using the vanishing of P (s) for s < t, we find

〈A(t+ δt)− A(t)〉 ≈ 〈A(t+ δt)− A(t)〉ref + β

∫ t+δt

t

ds 〈δA(t+ δt)δP (s)〉ref .

Dividing by δt and taking the limit as δt→ 0, we find

∂ 〈A(t)〉
∂t

=
∂ 〈A(t)〉ref

∂t
+ β 〈δA(t)δP (t)〉ref . (B.38)

In the context of LMF theory, this will give a self consistent for the change in the

LMF potential.

It was shown previously that the non-equilibrium generalization of the LMF

equation is given by

φR(r; t) = φ(r, t) +

∫
ρR(r′, t)u1(|r− r′|)dr′ + C, (B.39)
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where here ρR(r′, t) refers to the ensemble averaged singlet density, φ(r, t) is the

external field, and u1(|r− r′|) is the long range component of the interaction under

consideration. In the case of the Coulomb interaction, the LMF equation can be

written in differential form as

~∇2VR1(r, t) = −4π

ε
〈ρqσR,tot(r, t)〉 ,

where we have defined the instantaneous smooth charge density, which is the convo-

lution of the charge density with a unit Gaussian charge distribution of width σ. We

include the ensemble average here because we will also consider the smooth charge

density of individual realizations of the ensemble.

The idea behind the linear response approach is to use equation (B.38), in

conjunction with the differential form of the LMF equation, to correct the LMF

potential at every timestep. This approach was not implemented, but the theoretical

work does show some promise, and therefore could be worth pursuing in future work.
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Appendix C: Thermofield dynamics background and calculations

C.1 Canonical transformations

The most general canonical transformation that retains the type of statis-

tics can formally written as a unitary transformation on the many-particle Hilbert

space[95][96]. For a system of N particle excitations, the many particle Hilbert space

is spanned by 2N basis functions, which are labeled χi, where we take χ0 to be the

vaccum. The group SU(2N) acts on this basis, whose action can be written as a

polynomial of Fermi operators. To do this, define Wenger’s matrix, which satisfies

mijχk = χiδjk. This can be generated by eplicitly constructing m0j, then using the

relations mi,0 = m†0,i and mi,j = mi,0m0,j. Given a matrix x ∈ SU(2N), define the

polynomial

P (x) = Tr(xm). (C.1)

When acting on the Hilbert space in the usual way, this polynomial induces the

unitary transformation x. Also, these polynomials satisfy P (x)P (y) = P (xy) and

P (x†) = P (x)†. The most general canonical transformation of operators can then

be written

âα → P (x)†âαP (x). (C.2)
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These transformations are probably too general for practical calculation, but this

construction shows how large the space of canonical transformations is for a given

Hilbert space.

We can also consider canonical transformations from an infinitesimal point of

view

âα → âα + δâα, (C.3)

For this transformation to be canonical, the variation must satisfy

[âα, δâβ]ζ = −[δâα, âβ]ζ , [âα, δâ
†
β]ζ = −[δâα, â

†
β]ζ , (C.4)

where we include excitations with Fermionic or Bosonic statistics, defined by [âα, âβ]ζ =

âαâβ − ζâβâα. By inserting the resolution of the identity, we find the variation of

the vacuum

|Ω〉 →

(
1−

∑
α

â†α
1

N̂a + 1
δâα

)
|Ω〉 , (C.5)

where N̂a =
∑

α â
†
αâα is the number operator in this basis. This can also be checked

by acting with the transformed annihilation operators.

C.2 Incremental optimization

Here we derive equation (6.37) in a more rigorous way. First, we define |ψ0〉 =

|ψ(t)〉 and |ψ〉 = |ψ(t+ δt)〉 = (1− iδtĤ) |ψ0〉. Assume that 〈ψ0|ψ0〉 = 1, which can

always be chosen. Define |υ〉 = |ψ0〉+ |ε〉, where |ε〉 is small, and similarly λ = 1+ ε.

With these definitions, and keeping only terms of at most second order in small
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quantities, equation (6.36) becomes

〈δψ0|
(

1− |ψ0〉 〈ψ0|
)
i |ε〉 = δt 〈δψ0|

(
Ĥ − 〈Ĥ†〉 − ε

δt

)
|ψ0〉 . (C.6)

If we define ∂t |ψ〉 = limδt→0
|ε〉
δt

and R = limδt→0
ε
δt

, this gives equation (6.37).

C.3 Relations between unitary transformations

To prove equation (6.56), we first note that

â0 =
1√
2

(
v̂0 + ŵ0

)
. (C.7)

The basis at time t is related to the original basis by a unitary transformation of

the form  v̂0

ŵ0

 =

A B

C D


 v̂
ŵ

 . (C.8)

Using this in equation (C.7) yields

â0 =
1√
2

(
(A+ C)v̂ + (B +D)ŵ

)
. (C.9)

from which one can read off M = 1√
2
(A + C) and N = 1√

2
(B + D). Because the

matrix is unitary, the blocks satisfy the constraints

AA† +BB† = I, CC† +DD† = I, AC† +BD† = 0. (C.10)
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The left singular vectors of a matrix M are the eigenvectors of MM †. Using

equations (C.10) we find the relation

MM † = I −NN †, (C.11)

which shows that the matrices M and N have the same left singular vectors. There-

fore, there exist unitary matrices U , V , and W and diagonal matrices Λ and Λ̃ that

satisfy

Uâ0 = Λ̃V v̂ + ΛWŵ, (C.12)

where U † is the matrix of left singular vectors for M and N . Diagonalizing equation

(C.11) with this matrix, we find the relation

Λ̃2 = 1− Λ2. (C.13)

Because the singular values can always be chosen to be real, this also implies that

they lie in the interval [0, 1].

It is useful to obtain differential equations relating the various matrices defined

above. The change in the operators v and w are given by

∂tv̂ = iY ŵ + iXv̂, ∂tŵ = iY †v̂ + iX̃ŵ. (C.14)

The unitary transformations implemented above are obtained infinitesimally from

equation (6.50). Define the generator of the unitary transformation on the basis â
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by J so that

∂tâ = iJâ. (C.15)

where J , X, and X̃ are Hermitian. Taking a derivative of equation (6.56) we find

(Λ̃X − JΛ̃ + ΛY † − i∂tΛ̃)v̂ + (ΛX̃ − JΛ + Λ̃Y − i∂tΛ)ŵ = 0. (C.16)

If the eigenvalues of Λ are non-degenerate, this equation can be solved by choosing

Jαβ =

[
ΛY †Λ̃− Λ̃Y Λ

]
αβ

λ2
α − λ2

β

, Xαβ =

[
Λ̃ΛY † − Y ΛΛ̃

]
αβ

λ2
α − λ2

β

, X̃αβ =

[
Y †ΛΛ̃− ΛΛ̃Y

]
αβ

λ2
α − λ2

β

(C.17)

for α 6= β. For the diagonal elements, the real part can also be canceled by the

unitary transformations, and the imaginary part gives

∂tλ̃α = −Im(Yαα)λα, ∂tλα = Im(Yαα)λ̃α. (C.18)

These equations can also be derived from first order perturbation theory on

the matrix MM † under a small transformation (6.51) to find J , and similarly for

X and X̃. Under a small transformation, MM † = (Λ̃ + iεΛY †)(Λ̃− iεY Λ). In the

case of degeneracies one must use degenerate perturbation theory, first diagonalize

the perturbing matrix in the degenerate subspace. In the case of J , for example,
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this means first solving the eigenvalue problem

iε(ΛY †Λ̃− Λ̃Y Λ)αβuβ = (δλ̃2
α)uα (C.19)

in this subspace.

137



Bibliography

[1] X. Wu, B. R. Brooks, The Journal of Chemical Physics 129, 154115 (2008).

[2] C. J. Fennell, J. D. Gezelter, The Journal of Chemical Physics 124, 234104
(2006).

[3] S. Izvekov, J. M. J. Swanson, G. A. Voth, The Journal of Physical Chemistry
B 112, 4711 (2008). PMID: 18366209.

[4] M. Deserno, C. Holm, The Journal of Chemical Physics 109, 7694 (1998).

[5] J. de Joannis, A. Arnold, C. Holm, The Journal of Chemical Physics 117,
2503 (2002).

[6] P. Hunenberger, J. McCammon, Biophysical Chemistry 78, 69 (1999).

[7] I. Nezbeda, Molecular Physics 103, 59 (2005).

[8] R. C. Remsing, J. M. Rodgers, J. D. Weeks, Journal of Statistical Physics
145, 313 (2011).

[9] F. Figueirido, G. S. Del Buono, R. M. Levy, The Journal of Chemical Physics
103, 6133 (1995).

[10] J. M. Rodgers, J. D. Weeks, Journal of Physics: Condensed Matter 20, 494206
(2008).

[11] Y.-g. Chen, C. Kaur, J. D. Weeks, The Journal of Physical Chemistry B 108,
19874 (2004).

[12] Y.-G. Chen, J. D. Weeks, Proceedings of the National Academy of Sciences
103, 7560 (2006).

[13] J. M. Rodgers, J. D. Weeks, Proceedings of the National Academy of Sciences
105, 19136 (2008).

138



[14] Z. Hu, J. D. Weeks, Phys. Rev. Lett. 105, 140602 (2010).

[15] B. Widom, Science 157, 375 (1967).

[16] J. D. Weeks, D. Chandler, H. C. Andersen, The Journal of Chemical Physics
54, 5237 (1971).

[17] H. C. Andersen, J. D. Weeks, D. Chandler, Phys. Rev. A 4, 1597 (1971).

[18] R. C. Remsing III, From structure to thermodynamics with local molecu-
lar field theory, Ph.D. thesis, Institute for Physical Science and Technology,
UMCP (2013).

[19] R. Evans, Density Functionals in the Theory of Non-Uniform Fluids (Marcel
Dekker, 1992), pp. 85 – 175.

[20] A. Gao, Manipulating and simplifying the intermolecular interactions in liquid
mixtures, Ph.D. thesis, Institute for Physical Science and Technology, UMCP
(2017).

[21] J. Rodgers, Z. Hu, J. Weeks, Molecular Physics 109 (2010).

[22] J. M. Rodgers, J. D. Weeks, The Journal of Chemical Physics 131, 244108
(2009).

[23] J. Hansen, I. McDonald, Theory of Simple Liquids (Elsevier Science, 1990).

[24] S. Harris, An Introduction to the Theory of the Boltzmann Equation, Dover
books on physics (Dover Publications, 2004).

[25] L. Landau, E. Lifshitz, Statistical Physics , no. v. 5 (Elsevier Science, 2013).

[26] L. Landau, E. Lifshitz, Fluid Mechanics , no. v. 6 (Elsevier Science, 2013).

[27] C. Jarzynski, Phys. Rev. Lett. 78, 2690 (1997).

[28] J. M. Rodgers, J. D. Weeks, Journal of Physics: Condensed Matter 20, 494206
(2008).

[29] Y.-g. Chen, C. Kaur, J. D. Weeks, The Journal of Physical Chemistry B 108,
19874 (2004).

[30] J. M. Rodgers, J. D. Weeks, Proceedings of the National Academy of Sciences
105, 19136 (2008).

[31] J. Hansen, I. McDonald, Theory of Simple Liquids (Elsevier Science, 2006).

[32] S. Wang, J. A. Krumhansl, The Journal of Chemical Physics 56, 4287 (1972).

[33] S. E. Feller, et al., The Journal of Physical Chemistry 100, 17011 (1996).

139



[34] C. Lee, J. A. McCammon, P. J. Rossky, The Journal of Chemical Physics 80,
4448 (1984).

[35] I.-C. Yeh, M. L. Berkowitz, The Journal of Chemical Physics 110, 7935 (1999).

[36] Z. Zhao, D. M. Rogers, T. L. Beck, The Journal of Chemical Physics 132
(2010).

[37] A. J. Lee, S. W. Rick, The Journal of Chemical Physics 134 (2011).

[38] P. A. Bopp, A. A. Kornyshev, G. Sutmann, The Journal of Chemical Physics
109, 1939 (1998).

[39] F. Sedlmeier, S. Shadkhoo, R. Bruinsma, R. R. Netz, The Journal of Chemical
Physics 140 (2014).

[40] P. W. Rosenkranz, IEEE Transactions on Geoscience and Remote Sensing 53,
1387 (2015).

[41] J. T. Kindt, , C. A. Schmuttenmaer, The Journal of Physical Chemistry 100,
10373 (1996).

[42] D. Borgis, R. Assaraf, B. Rotenberg, R. Vuilleumier, Molecular Physics 111,
3486 (2013).

[43] D. de las Heras, M. Schmidt, Phys. Rev. Lett. 120, 218001 (2018).

[44] J. Comer, et al., The Journal of Physical Chemistry B 119, 1129 (2015).
PMID: 25247823.

[45] Y. wu, H. L Tepper, G. A Voth 124, 024503 (2006).

[46] S. W. Coles, D. Borgis, R. Vuilleumier, B. Rotenberg, The Journal of Chemical
Physics 151, 064124 (2019).
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