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1. INTRODUCTION

Consider a production system composed of many processing stages (servers) through which the
parts (jobs) must pass in some prespecified order. In practice, the servers’ behavior is modulated
by several factors, such as fluctuations in the service times and interruptions of service due to server
breakdowns. Although this service variability greatly affects the performance of such a system, its
influence can be somewhat mitigated by using intermediate storage spaces (buffers) between the
servers. However, because of physical limitations on the buffer sizes, the flow of jobs through the
system may get blocked.

The blocking systems considered here are composed of a series configuration of service stations
with finite intermediate buffers between the stations. A typical tandem configuration is shown in
Figure 1. At each station some work is performed on a job which is then passed on to the next

station; upon completion of service at the last station, the job immediately leaves the system.

1 2 3 N—1
— ST~ o— - —(Fuz]® —[Fa 1o

Figure 1.

The literature considers two distinct blocking policies for transfer lines with finite buffers. In
order to describe them, let S be one of the servers in Figure 1. Under the first policy, called
immediate blocking, at a time of service completion, the server S is blocked if the downstream
buffer becomes full as a result of this service completion; the server S remains blocked until a space
becomes available in the downstream buffer, at which time the server resumes service and begins
processing its next job (if any). Under the second policy, called non-immediate blocking, the server
S is blocked at a service completion time if the job that has just completed service finds the next
buffer to be full. As soon as a space becomes available in the next buffer this job moves downstream
without receiving any further service at server S, which then begins processing its next job (if any).
As noted by Altiok and Stidham [2], these two blocking policies are in general not equivalent in
that the solution of the system under one policy cannot be obtained from the solution of the system
(with possibly different parameter values) under the other policy; such an equivalence does however
hold for two station systems.

Queueing networks with blocking have been studied by researchers from different research
communities, as evidenced by the annotated bibliography on blocking systems compiled in {7]. A
basic assumption made in all the models studied in the surveyed literature is that the last stage is
never blocked, i. e., there is always space available for a job whose service has been completed at
the last server.

Queueing networks with blocking are typically very difficult to analyze, and closed form results
at steady state (or otherwise) are usually not available. Although a rigorous Markovian analysis was
performed early on by Hunt [9], to date strikingly few results have been obtained, with the bulk of

the work focusing on continuous-time models. This state of affairs points to the need of developing
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efficient approximation techniques to evaluate performance measures of interest. In this paper, an
iterative approximation scheme is presented for finding the steady-state marginal probabilities of
the queue sizes in tandem queueing systems with finite capacity buffers and phase-type (PH-type)
servers. The algorithm is based on the analytical results obtained in [8] for two node tandem
systems, and is presented under the immediate blocking policy. The same approximation scheme
also applies to tandem systems under the non-immediate blocking policy in view of the above-
mentioned equivalence for two node systems, and is only briefly outlined in the interest of brevity.
In light of the results derived in [8], the proposed approximation scheme is also applicable to systems
with failure type servers with PH-type service and repair distributions, and to systems where jobs
serviced at the (i 4-1)*! server can be fed back to the i'# buffer. Since the approximation scheme is
based on the effective solution of two node systems, the relevant results of [8] are summarized in the
Appendix. The reader is also referred to the work of Buzacott and Kostelski-[4] for an algorithmic
solution of two node production systems with two-stage Coxian service distributions.

Most approximation algorithms use the flow conservation principle to decompose the tandem
model into simple two node models. The approximation reported here uses this viewpoint in the
form taken by Altiok in [1], and represents the effective service distribution of a server by considering
all the servers upstream of this server in order to capture the effect of blocking. However, the
algorithm presented here differs from Altiok’s in that instead of approximating the arrivals to the
it" buffer by a Poisson process, another similar effective representation is introduced to capture
the effect of idling. Once this decomposition step is taken, approximations are made to express the
effective representations iteratively in terms of quantities that can be obtained by solving two node
models.

Although the discussion is given for the discrete-time formulation, the ideas presented here
apply mutatis mutandis to the continuous-time formulation. The modeling of time as a discrete
parameter could be motivated by the fact that service times in manufacturing systems are often
constant, the main source of randomness being introduced by the possibility of server failures.
The accuracy of the algorithm is validated through rumerical examples, both for continuous and
discrete-time systems. Comparison of the results against simulations indicates reasonable accuracy
under both blocking policies even in the presence of significant blocking. The algorithm is also
compared to another approximation algorithm proposed by Jun and Perros [10] for open tandem
queueing systems with two-stage Coxian service distributions.

Phase Type Distributions

To fix the notation and terminology, it is convenient at this point to briefly describe the class
of discrete-time PH-type distributions. The reader is invited to consult the monograph by Neuts
[11] for additional information on this topic and for a similar development on continuous-time PH-
distributions. The following notation is used hereafter: For any positive integer r, the r X r identity
matrix is denoted by I and the 7 x 1 column vector of ones is denoted by e, while the 1 x r
dimensional row vector with all zero entries is denoted by 0,.

Loosely speaking, a discrete-time PH-type distribution is any probability distribution on the
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non-negative integers which can be realized as the distribution of the time until absorption in a
discrete-time finite state space Markov chain with a single absorbing state. The class of PH-type
distributions includes well-known distributions such as the Generalized Negative Binomial and
Hypergeometric distributions, as well as any distribution with finite support on the non-negative
integers.

Specifically, consider a discrete-time Markov chain on the state space {1,2,...,m + 1}, where
the states {1,...,m} are transient and the state m + 1 is absorbing. The chain starts in state j

with probability o; and evolves according to the matrix P of one-step transition probabilities with

P:—.(OC2 ?) y (ayame1) and o= (og,02,...,00), (1.1)y

where
@ is a m X m substochastic matrix,
p is a m X 1 column vector of absorption probabilities into the absorbing state m + 1 from
the transient states {1,...,m},
a is a 1 X m row vector of initialization probabilities.
The PH-type probability distribution associated with the pair (¢, @) is the distribution function
F on the non-negative integers with probability mass function {¢x, £ = 0,1,...} given by

Um+t1 k=0,
Q= (1.2)
aQ*1p, k>1.

The pair (o, Q) is called the representation of the distribution F', which it uniquely determines.
The converse is not true in that a given PH-type distribution function F admits infinitely many
PH-representations.

The following probabilistic construction is given in Neuts {11, p. 48]. Upon absorption into
state m + 1, independent multinomial trials with probabilities -(a, Q1) are instantaneously and
repeatedly performed until one of the alternatives 1,2,...,m occurs, say j. The process is now
restarted in the state j and the same procedure is repeated at the next absorption. Upon indefinitely
continuing this procedure, a new Markov process is constructed on {1,2,..., m} with the state m+1

as an instantaneous state, and with matrix Q* of one-step transition probabilities given by

1
Q4 — pa. 1.3
wr=a 1 —oamyr (1.3)
The representation («a, Q) is said irreducible if the Markov chain on {1,...,m} with one-step tran-

sition matrix Q* is irreducible. Every PH-type distribution function F' admits an irreducible rep-

resentation [11, p. 49].



2. THE DISCRETE-TIME MODEL

Consider the tandem system shown in Figure 1, which consists of N nodes with N —1 interme-
diate finite capacity buffers of sizes K;, 1 < i < N, including the jobs being served by the servers.
Each node is attended by a single server which operates according to the FCFS (first-come-first-
served) queueing discipline. For 1 < i < N, the service times at the i** node are assumed to be
independent and identically distributed (i.i.d) with common discrete PH-distribution F; given by
the irreducible PH-representation (¢, @;) of order m;. The m; x 1 column vectors of absorption
(service completion at the it" node) probabilities is denoted by p;, and in order to avoid cases of
limited interest, the vector of initialization probabilities o; is assumed to satisfy a;e,, = 1. The
matrix (I, — Q) is assumed nonsingular, so that the service completion from any initial phase is
certain [11, p. 45]. The service times at different servers are also assumed mutually independent.
It is assumed that the last server is never blocked while the first server is always busy, i. e., there
is an infinite supply of exogenous jobs. The situation where the first server is generating arrivals to
the first buffer according to a PH-renewal process can also be approximated by a similar analysis.

Let the set S* of service phases for the ** server be defined by
Sti={si: 1<l<m}, 1<i<N,

and define the scalars

J
zgzzzmk, 1<i<j<N.
k=1

3. DECOMPOSITION AND APPROXIMATION METHOD

The steady-state marginal queue length distribution for the :** node could be calculated from
Theorem A.1 of the Appendix if the (i 4+ 1)%t servar were not subject to blocking and the 3** server
were always busy. However, at a service completign epoch for the (i + 1)*¢ server, this server may
be blocked and may remain blocked until there is a departure from the (i + 1) buffer. Similarly,
at a service completion at the it* server, this server may become idle. The decomposition method
proposed here amounts to finding equivalent PH-representations for the i*" and the (i+1)* servers
that incorporate the effects of idling and blocking, respectively.

For1<t¢,j<N,1<!<mjandt> 0, define the events

Bi(t) :  the i*" server is blocked at time ¢,

B;’j(t) : the servers k, ¢ < k < j, are all blocked at time t, and the j** server is not blocked and
in service phase s{ s

I'(t) the *" server is idle at time ¢,

If‘j(t) : the servers k, j < k < i, are all idle at time ¢, and the j'" server is not idle and in

service phase s].



Assuming that the limits exist, define the probabilities

Pj :=lim,, P[BY(T})], 1<i< N,
Pyl = lim, P[B}*(T})], 1<i<j<N, 1<i<m;,

Pj :=lim, P[I(T})], 1<i<N, (3.1)
Pyl i=lim, PIY(TH],  1<j<i<N, 1<i<m,

where {T, n = 1,2,...} is the sequence of service completion times at node ¢, and lim,, is taken

with n going to infinity.

Decomposition

Fix 1 < ¢ < N and consider the n'® service completion time T:*! in the (i 4+ 1)** server.
This server is either blocked with probability P[B*+1(Ti*!)] or with complementary probability
1— P[B*+1(Tit1)] it starts serving its next job (if any) according to the initialization vector a;;1. In
the case of blocking, the event Bf+1’j(T,’;+1) takes place for some j, i+1 < j < N,and !, 1 <! < mj,
in which case the effective service time of the blocked job at the (¢ + 1)®* server is equal to the
residual service time in the j* server plus the sum of the service times of all the blocked servers
7 —1,...,i 4+ 2 (time to unblock), plus the service time in the (i + 1)** server. Therefore, if the
(i 4 1)°® server is blocked at time T:*!, then the bervice phase of the (i + 1)°¢ server is effectively
reinitialized at phase s{ with probability P[B,H'l'j (Ti*1)] and the transitions occur within the set
$79 according to the matrix Q;. Upon service completion in the §t* server, service in the (j — 1)t
server is initialized according to a;_1, thus causing a transition from the set S7 to the set $971 in
the effective representation of the (i + 1)°¢ server. This argument can be repeated upon moving
upstream from station j to station (¢ 4+ 1) and finally, upon service completion in the (i + 2)™¢
server, the blocking period of the (i + 1)* server ends and this server resumes service according to
the initialization vector a;4.1.

Therefore in steady state, the effect of blocking on the (i + 1)** server can be captured by
considering a new PH-distribution for this server with set of service phases given by U;vm 419 g,
This effective service time distribution of order Eﬁ;l is obtained by considering all the servers
downstream from the (i + 1)** server, and is denoted by the pair (as(i + 1),Q2(¢ + 1)). If the
corresponding EffH X 1 column vector of absorption probabilities is denoted by pa(¢ + 1), then

Qip1 Pit1
pit2 dit1 Qito . (VN

Qi +1) = c , p(i+1) = s (3.2a)
pNan-1 @N Oy

and the 1 X Eﬁ\il initialization probability vector aa2(7 + 1) of this effective representation of the

(i + 1)%* server is given by
ap(i+1) = ((1 — P yogy,, PRV .,P;';LN) (3.2b)
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for1<i< N.Forl<i<j<N,thelXx m;row vector Pl';"l'j has entries P,i;l’l’j, 1 <1< m;.

With this effective PH-representation, the (i + 1)** server is never blocked, but a service
completion is allowed only from the phases that correspond to a service in the (i 4 1)*! server. The
subscript 2 indicates that the representation (a2(i+ 1), Q2(i + 1)) is the effective representation for
the second node server when considering the i** buffer.

A similar argument can now be developed to capture the effect of idling, in which case for
1 < i < N, the effective service of the i** server can be represented by a PH-distribution of
dimension %% with set of service phases U;=1 59. The effective representation of the i** server as
the first node server in the two node equivalent representation when considering the i** buffer is
denoted by (ai1(7), @1(¢)). It is given by

Q: Di
Pic10; Qi . ol ,
@1(2) = - y pi(?) = : , (3.3a)
o @ of

where p; () is the X% x 1 column vector of absorption probabilities, and
. i ii-1 i1
o1(i) = ((1 — Ppai, Py, Py ) (3.3b)

for 1 < ¢ < N. The 1 X m; row vector P}"j has entries P;;j, 1<l<mjand 1<j<2<N.
Therefore, by considering the effective representations (3.2) and (3.3) for each buffer 7, 1 <
1 < N, the tandem system in Figure 1 can be decomposed into N — 1 two node systems of the form

shown in Figure 2.
(ea (9, @)~ BLEL IO (ay(i 1), @u(i 4 1))

Figure 2.
Since the matrices I,,,, — Qi, 1 <2 < N, are all invertible, so are the matrices IE; — @1(7) and
Im:u ~@Q2(: 4+ 1), 1 £ i < N. Furthermore, since the first (resp. last) node server of Figure 1 is

never starved (resp. blocked), the first (resp. second) node server of Figure 2 is also never starved

(resp. blocked), and the solution technique given in [8] thus applies.

Approximations

Although the tandem line of Figure 1 has been decomposed into N — 1 two node systems
of the type displayed in Figure 2, these systems are coupled through the initialization vectors
ar(?), k=1,2and 1 <1 < N, and approximations are therefore needed in order to compute the
vectors a(1).

As in [8], a Markov chain is associated with each one of the two node models shown in Figure

2. For 1 < i < N, let the vector u(i) (resp. v(?)) be the steady-state probability vector of this
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Markov chain embedded at arrival (resp. departure) epochs at the first (resp. second) node. The
1 x ©% block component v (i) of v(i) (see Appendix) is the steady-state probability vector that the
second server becomes idle after a service completion. If k£ = E; +1,1<35<4 1< < mj,,

then the k** component of vp(i) is the joint probability that at a service completion epoch the

second server is idle and the phase of the first node server is s{ ~1. In view of (3.1) and of the

construction of Q1(i), the k** component of the vector vg(4) approximates the It
PI’H’j =1 i. e., the steady-state probability that at a service completion epoch of the

component of
the vector
(i 4+ 1) server, the buffers 4,7 —1,...,7 — 1 are all empty and the (j — 1)*" server is in sf_l service

phase.
Similarly, if k = 2{_“ +1 fori<j< Nand1l<1!< mjys, then the k** component of the

1x Eﬁ_l block ux,—~1(¢) of u(?) is the joint steady-state probability that at a service completion
epoch in the first server, it is blocked and the phase of the second node server is s{“. The kth

component of the vector ug,_1 (%) therefore approximates the {** component of the vector P}i3'j +
i. e., the steady-state probability that at a service completion epoch of the i** server, the servers
i,i+1,...,7 are all blocked and the (5 + 1)* server is in its s] 7" service phase.

In vector form these approximations can be rewritten as

(P, SPIY) mu(i), 1<i<N (3.4a)

and

(P PEY) muge (D), 1<i< V. (3.40)

The scalars Po(7) and Pr(7) defined by the relations

Py(2) = vo(7) exi and Pr(i) = u([\'_._l)(i) esy 1<i< N,

thus provide approximations to P}+1 and P};, respectively. Consequently, the initialization vectors
ay(1) and az(i+ 1) in (3.3b) and (3.2b) can be approzimated by the quantities af(¢) and a§(i+1)
given by

af(i) = [(1 = Po(i — 1)) e, vo(i — 1)] (3-5a)
and

o§(i+1) = [(L= Pr(i+1)) aigs ,urpna (i +1)] . (3.50)

This approximation leads to an iterative approach based on the two node analysis summarized
in the Appendix. The marginal probability distribution of the queue sizes at buffer 7 can be obtained
once the vectors vo(i — 1) and w(g,,,-1)(¢ + 1) are known. These vectors are calculated from the
two node approximations of the (i — 1) and (¢ + 1)*" queues, respectively. More precisely, with
some abuse in the notation, denoting the iteration count by a superscript, the steps of the iterative

procedure can be described as follows:



Step 1. Select an initial value for the vectors ufg, _;)(?) for all 1 < ¢ < N and compute ad(1) from
(3.5b). Set ad(N) = an.

Step 2. At iteration n; »
Fori=1,2,...,N -1,
Starting from the first queue, solve the effective two node systems for each buffer:
a. Set (1) = a1 and o3 (N) = an.
b. Compute af (i) and af(¢) by using v5(i — 1) and u?,;il_l)(i), respectively.

c. Obtain the vectors v§(¢) and U?K;—l)(i) by using the results of the Appendix.

Step 3. Test for a convergence criterion, namely that all the marginal queue length probabilities
in successive iterations are required to be within € of each other. If this requirement is

not satisfied, set » to n + 1 and go to Step 2.

Although no proof of convergence is available, the algorithm has been tested on many examples
and has always converged with ¢ = 10~* in about only 5 iterations. Since at each node all the
servers are taken into account, the computational complexity of the algorithm grows quadratically
with N, the number of servers in tandem. In fact, the proposed algorithm can be computationally
prohibitive for very long tandem lines with high dimensional PH-type distributions. However, in
such cases, at the expense of introducing further approximations, the following modifications can
easily be incorporated. Firstly, the computational complexity of the algorithm can be made linearin
N by considering only a few immediate neighboring nodes in the effective representations. Secondly,
the effective representations Qx(i), ¥ = 1,2and 1 < ¢ < N, can be approzimated by lower order
PH-distributions. On the other hand, the algorithm is eminently suitable for parallel computations
and can be made much faster by implementing it on a parallel machine. With a different processor
assigned to the solution of each two node system, processor i needs information only from its
immediate neighbors, namely from processors ¢ + 1 and ¢ — 1, to update the initialization vectors

ay(i) and oy (i + 1).
4. DECOMPOSITION FOR THE NON-IMMEDIATE BLOCKING POLICY

The decomposition described in Section 3 for systems that operate under the immediate block-
ing strategy can also be made for systems operating under the non-immediate blocking strategy.
Since only the type of blocking is different, the representation (3.3) given for the pair (a;(4), @1(%))
remains unchanged.

However, by an argument similar to the one given in Section 3, the effective representation for

the pair (as(i +1),Q2(¢ + 1)) is now seen to be

Qiyr i (PR L, Pyt (1- P5 " piss
Qiy2 Pit2
Qi+ 1)= : , ;i 1)= .
Qn-1
QN PN
(4.1a)



and

a2(i+1) = (@it1,0mipss-- > 0my) (4.1b)

for 1 < i< N. An iterative approximation algorithm similar to the one developed in Section 4 is
also available for this case; details are omitted for the sake of brevity.

5. NUMERICAL EXAMPLES

The accuracy of the algorithm is tested against simulations, and both relative and absolute
errors in the approximations are listed. Although relative errors are usually a more important
measure of accuracy of an approximation scheme, absolute errors play a more important role
when determining the relative or absolute errors associated with the computation of some of the
performance measures of interest. To illustrate this point, average queue sizes at each buffer location
are calculated. Both the relative and the absolute errors for this performance measure are better
predicted by the absolute errors in the calculation of the probabilities. For instance, in Example
1, the approximation of the probability of having an empty buffer at the first queue yields 17.6%
relative error, while the absolute error is only about 1%. The relative error in the average queue
size for this buffer is 1.9%. Generally speaking, in all the examples the approximations are within
+0.02 of the simulations. Such an accuracy is considered reasonable since, due to blocking, the
system usually reaches steady state rather slowly. Therefore, the simulations are also believed to
be accurate only up to the second digit after the decimal point.

The first five examples are for the discrete-time model under the immediate blocking strategy
and involves only geometric servers. Examples 6-17 are for the continuous-time model operating
under the non-immediate blocking policy and involves more general service time distributions.
The accuracy of the approximations seems not to be affected by high blocking probabilities (e.g.,
Examples 1,6,7,9-12) or in the presence of bottleneck(s) (e.g., Examples 11 and 12). Also, the
approximations work equally well even when service time distributions have small or large squared
coeficient of variations (e.g., ¢ = 0.2, i = 2,3 in Example 10 and 2 < ¢ < 10 in’ Examples 13-17).

Examples 2-5 indicate that the reversibility property discussed in Chapter 3 of [6] (see also
[3]) also hold for a general tandem line under the immediate blocking strategy. In Examples 2 and
3, where the tandem line is totally symmetric, reversing the order of the servers yield the exact
same probabilities. Example 5 is the same as Example 4 except that the order of both the servers
and the intermediate buffers is now reversed. The approximation scheme yields totally symmetric
probabilities. In the simulation results for these examples, the corresponding probabilities change
in the third digit after the decimal point, thereby providing an indication of the margin of accuracy
of the simulations.

For the numerical values of the Examples 8-13, three independent simulation runs are per-
formed on the Performance Analysis Workstation (PAW) [12]. The results obtained from each
simulation were within £0.01 of each other. The results listed in the simulation column in Tables
5.8-5.12 are the arithmetic average of these three simulation runs. In these examples, 5; denotes

the service time distribution of server i, while Er(r;u) (resp. I'v(2; 1, pt2)) denotes the r-stage
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Erlang (resp. 2-stage Generalized Erlang) distribution with parameter(s) p (resp. p1 and ps), i.
e., 1s the average time spent at each stage.

Examples 14-17 are given in order to compare the proposed algorithm (indicated by the column
GM) against the one proposed by Jun and Perros (JP) [10]. In these examples, the first server
generates Poisson arrivals with rate A and jobs that arrive into the system when the first buffer
is full are assumed lost. The service times at each node are two-stage Coxian with mean 1/ and

squared coefficient of variation ¢?. The corresponding PH-representation is given by
Q="M n and «=(1,0),
0 -

where

_ K =L
71=2/'L7 72_'63 and 0-—2—6-2-.

The simulation data is taken from [10], where the average queue length and the probabilities of
having an empty buffer and a full buffer, denoted respectively by E(L), p(0) and p(&V), are also
available for each buffer. The comparison of the corresponding data shows that both approximation
algorithms perform well relatively to the simulation data and have comparable accuracy except in
Example 17 where all the servers have high variability. In this example the algorithm presented in
this paper provides a better approximation in all the entries of Table 5.17. However, the algorithm
of Jun and Perros was 2-3 times faster than the proposed algorithm. This is mainly because
the proposed algorithm is implemented for general PH-distributions and does not make use of the
special structure of the matrices in the effective representations. As mentioned at the end of Section
3, while several steps can be taken to reduce the CPU time, the emphasis in the present paper
is mainly on the structure of the approximation methodology rather than on the implementation

details.
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Example 1 : N =3, K; =2, K, = 1. Immediate blocking.

Geometric servers; p; = 0.5, i = 1,2, 3.

Buffer Queue Size Approx. Exact Sol’n. Rel. Error Abs. Error
1 0 0.0526 0.0638 0.1755 0.0112
1 0.4211 0.4256 0.0106 0.0045
2 0.5263 0.5106 -0.0307 -0.0157
Average queue length: 1.4737 1.4468 -0.0186 -0.0269
2 0 0.5263 0.5106 -0.0307 -0.0157
1 0.4737 0.4894 0.0321 0.0157
Average queue lJength: 0.4737 0.4894 0.0321 0.0157
Table 5.1.
Example 2 : N =4, K; =2, ¢ =1,2,3. Immediate blocking,.
Geometric servers; p; = 0.5, 1 = 1,2, 3,4.
Buffer Queue Size Approx. Exact Sol’'n. Rel. Error Abs. Error
1 0 0.1444 0.1652 0.1259 0.0208
1 0.4470 0.4596 0.0274 0.0126
2 0.4086 0.3754 -0.0884 -0.0332
Average queue length: 1.2643 1.2104 -0.0444 -0.0538
2 0 0.2643 0.2621 -0.0084 -0.0022
1 0.4715 0.4757 0.0088 0.0042
2 0.2643 0.2621 -0.0084 - -0.0022
Average queue length: 1.0001 0.9999 -0.0002 -0.0002
3 0 0.4086 0.3754 -0.0884 -0.0332
1 0.4470 0.4596 0.0274 0.0126
2 0.1444 0.1652 0.1259 0.0208
Average queue length: 0.7358 0.7900 0.0686 0.0542
Table 5.2.
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Example 3 : N =4, K; =4, i =1,2,3. Immediate blocking.
Geometric servers; p; = 0.5, 1 = 1,2,3,4.

Buffer Queue Size Approx. Simulation Rel. Error Abs. Error
1 0 0.074 0.079 0.063 0.005
1 0.174 0.186 0.065 0.012
2 0.234 0.235 0.004 0.001
3 0.313 0.305 -0.026 -0.008
4 0.205 0.195 -0.054 -0.010
Average queue length: 2.401 2.311 -0.039 -0.090
2 0 0.131 0.127 -0.031 -0.004
1 0.246 0.247 0.004 0.001
2 0.247 0.247 0.000 0.000
3 0.246 0.249 0.012 0.003
4 0.131 0.130 0.008 0.001
Average queue length: 2.002 2.008 0.003 0.006
3 0 0.205 0.195 -0.051 -0.010
1 0.313 0.308 -0.016 -0.005
2 0.234 0.238 0.017 0.004
3 0.174 0.182 0.044 0.008
4 0.074 0.076 0.026 0.002
Average queue length: 1.599 1.634 0.021 0.035
Table 5.3.
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Example 4: N =5, Ky = K3 =2, K; = K4 =3. Immediate blocking,.
Geometric servers; p; =0.7, p;=0.8, p3=0.9, p4=0.75, ps=0.6.

Buffer Queue Size Approx. Simulation Rel. Error Abs. Error
1 0 0.168 0.176 0.045 0.008
1 0.599 0.601 0.003 0.002
2 0.233 0.223 -0.045 -0.010
Average queue length: 1.065 1.047 -0.017 -0.018
2 0 0.109 0.118 0.076 0.009
1 0.340 0.334 -0.018 -0.006
2 0.389 0.377 0.032 0.012
3 0.162 0.171 0.053 0.009
Average queue length: 1.604 1.601 -0.002 -0.003
3 0 0.116 0.103 -0.126 -0.013
1 0.590 0.589 -0.002 -0.001
2 0.294 0.308 0.045 0.014
Average queue length: 1.178 1.205 0.022 0.027
4 0 0.106 0.091 -0.165 -0.015
1 0.331 0.305 -0.085 -0.026
2 0.395 0.416 0.050 0.021
3 0.168 0.188 0.106 0.020
Average queue length: 1.625 1.701 0.045 0.076
Table 5.4.
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Example 5: N= 5, .K] = 1(3 = 3, 1(2 = .K4 = 2.
Geometric servers; p; =0.6, p, =0.75, p3=0.9, py =0.8, p5=0.7.

Immediate blocking.

Buffer Queue Size Approx. Simulation Rel. Error Abs. Error
1 0 0.168 0.191 0.120 0.023
1 0.395 0.413 0.044 0.018
2 0.331 0.303 -0.092 -0.028
3 0.106 0.093 -0.140 -0.013
Average queue length: 1.375 1.298 -0.059 -0.077
2 0 0.294 0.308 0.045 0.014
1 0.590 0.589 -0.002 -0.001
2 0.116 0.103 -0.126 -0.013
Average queue length: 0.822 0.776 -0.059 -0.046
3 0 0.175 0.172 0.058 0.010
1 0.389 0.376 -0.035 -0.013
2 0.340 0.333 -0.021 -0.007
3 0.109 0.119 0.084 0.010
Average queue length: 1.396 1.337 -0.044 -0.059
4 0 0.230 0.224 -0.040 -0.009
1 0.559 0.604 0.008 0.005
2 0.168 0.172 0.023 0.004
Average queue length: 0.935 0.939 0.004 0.004
Table 5.5.
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Example 6 : N =3, K; =1, ¢ =1,2. Non-immediate blocking.
Exponential servers; p; =1, ¢ = 1,2,3.

Buffer Queue Size Approx. Exact Sol’n. Rel. Error Abs. Error
1 0 0.222 0.205 -0.083 -0.017
1 0.778 0.795 0.021 0.017
2 0 0.444 0.436 -0.018 -0.008
1 0.556 0.564 0.014 0.008
Table 5.6.

Example 7: N =3, K; =1, i =1,2. Non-immediate blocking.
Exponential servers; uy = 1, py = 1.75, p3 = 1.5.

Buffer Queue Size Approx. Exact Sol’n. Rel. Error Abs. Error
1 0 0.401 0.398 -0.008 -0.003
1 0.599 0.602 0.005 0.003
2 0 0.509 0.519 0.019 0.010
1 0.491 0.481 -0.021 -0.010
Table 5.7.

Example 8 : N =3, K; =2, K, =3. Non-immediate blocking,.
S1 = Er(2;2,1), S3 = Er(2;2.5,1),
S92 =Hyperexponential; @ = diag(—1,-0.5), o = (0.3,0.7).

Buffer Queue Size Approx. Simulation Rel. Error Abs. Error

1 0 0.158 0.155 -0.019 -0.003
1 0.242 0.248 0.024 0.006
2 0.601 0.597 -0.007 -0.004

Average queue length: 1.444 1.442 -0.001 -0.002

2 0 0.355 0.351 -0.011 -0.004
1 0.286 0.288 0.007 0.002
2 0.185 0.195 0.051 0.010
3 0.174 0.166 -0.048 -0.008

Average queue length: 1.178 1.176 -0.002 -0.002

Table 5.8.
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Example 9 : N =3, K; =3, K, = 2. Nonimmediate blocking.
S1 = Er(2;1), S2 = Er(2; leT , S3 = Er(2; 1,117).

Buffer Queue Size Approx. Simulation Rel. Error Abs. Error

1 0 0.035 0.027 -0.296 -0.008
1 0.104 0.091 -0.143 -0.013
2 0.205 0.207 0.010 0.002
3 0.656 0.675 0.028 0.019

Average queue length: 2.482 2.530 0.019 0.048

2 0 0.235 0.231 -0.017 -0.004
1 0.353 0.353 0.000 0.000
2 0.412 0.415 0.007 0.003

Average queue length: 1.177 1.183 0.005 0.006

Table 5.9.

Example 10 : N =3, K; = 2, K; = 3. Non-immediate.blocking.
S1 = Er(1;0.25), S; = Ev(5;1.5), S3 = Er(5;1).

Buffer Queue Size Approx. Simulation Rel. Error Abs. Error

1 0 0.171 0.170 -0.006 -0.001
1 0.269 0.251 -0.072 -0.018
2 0.560 0.579 0.033 0.019

Average queue length: 1.389 1.397 0.006 0.008

2 0 0.042 0.058 0.276 " 0.016
1 0.126 0.129 0.023 0.003
2 0.240 0.225 -0.067 -0.015
3 0.592 0.588 -0.007 -0.004

Average queue length: 2.382 2.343 -0.017 -0.039

Table 5.10.
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Example 11 : N =6, K; =3, 1 <i<5. Non-immediate blocking.
Si=Er(2;1), 1 <i#4<6, S4x= Er(2;0.5).

Average Queue Lengths

Buffer Approx. Simulation Rel. Error
1 2.66 2.85 0.067
2 2.79 2.84 0.018
3 2.82 2.83 0.004
4 0.68 0.67 -0.015
5 0.68 0.69 -0.014

Table 5.11.

Example 12 : N = 10, Non-immediate blocking.

Exponential, 4 = 0.5, 7=1,3,6,8

3, 1=1,2,5,6,8 Exponential, p =1, 1 =10
K; = { 2, 1=4,7,9 , S; = { Exponential, p = 0.2, ¢=4*
4, 1=3 Er(2;1), 1=2,5,7
Er(2;0.5), 1= 9%
Average Queue Lengths
Buffer Approx. Simulation Rel. Error
1 2.69 2.84 0.053
2 2.80 2.87 0.024
3 3.77 3.77 0.000
4 0.52 0.52 0.000
5 0.58 0.63 0.063
6 0.66 0.77 0.143
7 0.72 0.77 0.065
8 1.59 1.58 -0.006
9 0.21 0.21 0.000
Table 5.12.

*  Bottleneck
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Example 13 : N =3, K1 = Ky = 3.
Q; = diag(-0.1, -10), a; = (0.5,0.5),

Non-immediate blocking,.
=293, i=1,23.

(Hyperexponential)
Buffer Queue Size Approx. Simulation Rel. Error Abs. Error
1 0 0.214 0.205 -0.044 -0.009
1 0.104 0.114 0.088 0.010
2 0.118 0.122 0.033 0.004
3 0.563 0.559 -0.007 -0.004
Average queue length: 2.029 2.019 -0.005 -0.010
2 0 0.428 0.427 -0.002 -0.001
1 0.135 0.133 -0.015 -0.002
2 0.118 0.118 0.000 0.000
3 0.319 0.322 0.009 0.003
Average queue length: 1.328 1.335 0.005 0.007
Table 5.13.
Example 14 : N =3, Ky = K2 = K3 =3. Non-immediate blocking.
A=3.0, ui=4,i=1,2,3, 2=2,ct=4,cl=38.
Buffer Simulation GM Rel. Error Jp Rel. Error
1 p(0) 0.253 0.264 -0.043 0.244 0.036
p(K) 0.353 0.343 0.028 0.361 -0.023
E(L) 1.646 1.609 0.022 1.668 -0.013
2 ' p(0) 0.336 0.345 -0.027 0.337 -0.003
p(K) 0.374 0.364 0.027 0.386 -0.032
E(L) 1.537 1.507 0.020 1.559 -0.014
3 p(0) 0.516 0.518 -0.004 0.521 -0.010
p(K) 0.239 0.236 0.013 0.250 -0.046
E(L) 1.053 1.045 0.008 1.069 -0.015
Table 5.14.
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Example 15 : N =3, K; = K2 = K3 = 5. Non-immediate blocking.
A=4.0, u; =4, ¢¢2=2,i=1,2,3.

Buffer Simulation GM Rel. Error JP Rel. Error

1 p(O) 0.110 0.118 -0.073 0.116 -0.055
p(K) 0.310 0.303 0.023 0.310 0.000
E(L) 3.125 3.004 0.010 3.088 0.012

2 »(0) 0.193 0.199 -0.031 0.197 -0.021
p(K) 0.325 0.323 0.006 0.319 0.018
E(L) 2.822 2.796 0.009 - 2.798 0.009

3 p(0) 0.314 0.316 -0.006 0.310 0.013
p(K) 0.201 0.201 0.000 0.198 0.015
E(L) 2.108 2.101 0.003 2.115 -0.003

Table 5.15.
Example 16 : N =3, K; = K3 =5, K, =3. Non-immediate blocking.
A=4.0, py=p3=3, p3 =5, ¢¢=4,1=1,2,3.

Buffer Simulation GM Rel. Error JP Rel. Error

1 p(O) 0.059 0.070 -0.186 0.066 -0.119
p(K) 0.495 0.478 0.034 0.495 0.000
E(L) 3.763 3.333 0.114 3.711 0.014

2 p(O) 0.378 0.383 -0.013 0.386 -0.021
plK) 0.375 0.363 0.032 0.367 0.021
E(L) 1.486 1.455 0.021 1.464 0.015

3 p(O) 0.327 0.326 0.003 0.326 0.003
p(K) 0.298 0.295 0.010 0.296 0.007
E(L) 2.373 2.369 0.002 2.388 0.006

Table 5.186.
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Example 17 : N =3, K; = K, = K3 = 3.
A=4.0, p; =14,

¢ =8,i=1,2,3.

Non-immediate blocking.

Buffer Simulation GM Rel. Error JP Rel. Error

1 »(0) 0.187 0.196 -0.048 0.172 0.080
p(K) 0.524 0.514 0.019 0.540 -0.031
E(L) 2.004 1.969 0.017 2.051 -0.023

2 p(O) 0.333 0.338 -0.015 0.340 -0.021
p(K) 0.438 0.431 0.016 0.469 -0.071
E(L) 1.647 1.626 0.013 1.692 -0.027

3 p(O) 0.532 0.528 0.008 0.540 -0.015
p(K) 0.254 0.256 -0.008 0.272 -0.071
E(L) 1.060 1.071 -0.010 1.088 -0.026

Table 5.17.
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APPENDIX
THE TWO NODE TANDEM SYSTEM

The discrete-time model
Consider the tandem system described in Section 2 when N = 2 and Ky = K. A natural state
space E for this system is the one that contains r := (K — 1)mymgy + my + my states with

(i,0)7 1<i<my, k=0,
E={(ikj), 1<i<m,0<k<Kandl<j<ms,
(K,7), 1L<j<my, k=K,

where k indicates the buffer size, and ¢ and j represent the service phase in the first and the second
node server, respectively.

A discrete-time Markov chain is naturally associated with F; its one-step transition matrix T°
is described in [6]. Any invariant probability vector for T is denoted by the 1 X r row vector 7, which
is partitioned into K + 1 blocks of components, say = = (79, T1,...,7x), With 7, ¢, 0 < k < K,
and 7x being row vectors of dimension 1 X my, 1 X my my and 1 X ms, respectively.

First, several matrices are defined in terms of the system parameters.

M=Un, —€m, 01)® Im, + (em, 01 — Q1) ® Q2 my my X my my,
N =1I,, QUm; — €m; @2) + Q1 ® (€m, a2 — Q2) my mg X My ma,
R=MN™ my mg X my my,
S =[In, —Q1)®ay] N1 my X my mg,
U=(Q:®p1)Im, — Q2)7" my mg X My,

W = In, + [S15 S BE7Y (Iny ® €my) my X my,
Z:W—}-SRK‘temza: my X my,

where the 1 x my row vector = 01(Im, — @1)™'/e1(Im, — Q1) e, is the invariant probability
vector of Q1 + proy.

When K > 1, if either the matrix M or N is invertible, then a closed-form solution can be
obtained for the vector 7. The main result of [6] is summarized in the following theorem when N

is invertible.

Theorem A.l. If the matriz N is invertible, then any invariant probability vector = =(mq,...,7Tx)

has the following matrix geometric form
Te=m S RF', 1<k< K (A.la)
and

T =79 S RE-2 [y s (A.lb)
where the veclor ng satisfies the equation
o L =2 . (A.2)
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When K = 1, i. e., there is no intermediate buffer, a simpler expression is available in [4, 6].

‘ The following necessary and sufficient conditions for the invertibility of the matrices M and N
“are given in [6]. To state them, let C be the open disc centered at (1,0) in the complex plane with

radius § and let $p(X) denote the spectrum of the matrix X.
Lemma A.l. If Sp(A) CC (resp. Sp(B) C C) then the matriz N (resp. M) is nonsingular.

Lemma A.2. The matriz N (resp. M) is singular if the matriz A (resp. B) is singular.

Let u (resp. v) be the steady state probability vector of the Markov chain associated with £
embedded at points of arrival (resp. departure). These vectors are partitioned into K blocks of
components, say u = (ug,%1,.--,%x—1) and v = (vo,v1,-..,Vx-1), with ux and vx, 0 < k < K,
being 1 X mg and 1 X mq row vectors, respectively. The it" component of uy (resp. v) is the joint
steady-state probability that at a service completion epoch at the first (resp. second) server, there
are k jobs in the buffer, excluding the job that has just been serviced, and that the phase of the
second (resp. first) server is ¢. The following theorem establishes simple relations between u, v and

7; the proofs are similar to the ones given in [3] and are therefore omitted.

Theorem A.2. Define the scalars ¢ and d by

K-1
¢=mop1 + Z Tr(P1 ® €m,) (A.3a)
1
and
K-1
d=1mkp2+ Y Te(em, ®P2). (A.3b)
1
For K > 1 the relations
cug = (mop1)az + 71(p1 ® p2az), (A4a)
cup = mx(p1 @ Q2) + Trp1(P1 @ p2e2), 1<k<K -1, (A.4b)
cug—1 = 1x-1(p1 ® Q2) (A.4c)
and
dvo = m1(Q1 @ p2), (A.5a)
dvp = mp(pran @ p2) + 1 (@1 ®p2) 1<k < K~ 1, (A.5b)
dvg -1 = T -1(prey ® p2) + (Trp2)or (A.5¢)

hold true, while for K = 1, up = g and vg = oy.
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The continuous-time model
Equations (A.1) and (A.2) of Theorem A.1 also holds for the continuous-time formulation of

the two node model. However, the matrices M, N, S and U are now given by

M= (In, —em; 1)@ Q2+ Q1 @ I, my my X my ma,
N=Q1®(In, — m, @)+ Ln, @ Q2 my mg X my ma,
§$=[Q1®ay] NI my X my my,
U=—(p1®In,) Q5" my mg X ™y

and ithe matrices M and N are always both invertible.
For the continuous-time model, the equations (A.4) and (A.5) of Theorem A.2 become

ClUg = (7!'0])1 )a2 ) (AGG)
cup = TE(P1 ® Imy), 1<k<K, (A.6b)
and
dvg = Tpp1(Im, ® p2) 0<k< K -1, (A.7a)
dvg -1 = (Trp2)ea , (A.7b)

where the scalars ¢ and d are again given by (A.3).
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