
Efficient Execution of Multi-Query Data Analysis Batches
Using Compiler Optimization Strategies�

Henrique Andradey;z, Suresh Aryangaty, Tahsin Kurcz, Joel Saltzz, Alan Sussmanyy Dept. of Computer Science
University of Maryland

College Park, MD 20742fhcma,suresha,alsg@cs.umd.edu z Dept. of Biomedical Informatics
The Ohio State University

Columbus, OH, 43210fkurc.1,saltz.3g@osu.edu
Abstract

This work investigates the leverage that can be obtained
from compiler optimization techniques for efficient execu-
tion of multi-query workloads in data analysis applications.
Our approach is to address multi-query optimization at the
algorithmic level by transforming a declarative specifica-
tion of scientific data analysis queries into a high-level im-
perative program that can be made more efficient by ap-
plying compiler optimization techniques. These techniques
– including loop fusion, common subexpression elimination
and dead code elimination – are employed to allow data and
computation reuse across queries. We describe a prelimi-
nary experimental analysis on a real remote sensing appli-
cation that is used to analyze very large quantities of satel-
lite data. The results show our techniques achieve sizable
reduction in the amount of computation and I/O necessary
for executing query batches and in average executing times
for the individual queries in a given batch.

1 Introduction

Multi-query optimization has been investigated by
several researchers, mostly in the realm of relational
databases [8, 11, 20, 28, 29, 33]. We have devised a
database architecture that allows efficiently handling multi-
query workloads in data analysis applications where user-
defined operations are also part of the query plan [2, 5]. The
architecture builds on a data and computation reuse model
that can be used to systematically expose reuse sites in the
query plan when application-specific aggregation methods�This research was supported by the National Science Foundation un-
der Grants #EIA-0121161, #EIA-0121177, #ACI-9619020 (UC Subcon-
tract #10152408), #ACI-0130437, #ACI-0203846, and #ACI-9982087,
and Lawrence Livermore National Laboratory under Grant #B517095 and
#B500288.

are employed. This model relies on anactive semantic
cache, in which semantic information is attached to prior
computed aggregates that are cached by the system. This
permits the query optimizer to retrieve the matching aggre-
gates based on the metadata description of a new query. The
cache is active in that it allows application-specific transfor-
mations to be performed on the cached aggregates so that
they can be reused to speed up the evaluation of the query
at hand. The reuse model and active semantic caching have
been shown to effectively decrease the average turnaround
time for a query, as well as to increase the database system
throughput [2, 3, 5].

As we have described, our original system relies on so-
phisticated caching for optimizing multiple queries. On the
other hand, a well-accepted definition of the multi-query
optimization problem is as follows: “to minimize the total
cost of processing a series of queries by creating an opti-
mized access plan for the entire query sequence” [29]. This
definition implies that a batch of queries is available to the
query optimizer for evaluation at a given point in time. Our
earlier approach does not require thissynchronizationpoint,
because it leverages data and computation reuse for queries
submitted to the system over an extended period of time.
For a batch of queries, on the other hand, a global query
plan that accommodates all the queries can be more prof-
itable than creating individual query plans and scheduling
queries based on those plans, especially if information at
the algorithmic level for each of the query plans is exposed.
A similar observation was the motivation for a study done
by Kang et al. [20] for relational operators.

The need to handle query batches arises in many sit-
uations. In a data server concurrently accessed by many
clients, there can be multiple queries awaiting execution.
Sophisticated sense-and-respond systems [7] also require
handling query batches. In such systems, queries are fre-
quently persistent, meaning that the set of queries sent for
processing does not vary much, i.e., at given points in time

1

(e.g., every 10 minutes, daily, or weekly) a set of queries
are submitted for processing. Although the queries are per-
sistent, the data is transient, changing over time. A typical
example is the daily execution of a set of queries for detect-
ing the probability of wildfire occurring in Southern Cali-
fornia. In this context, a sense-and-respond system could
issue multiple queries in batch mode to analyze the current
(or close to current) set of remotely sensed data at regu-
lar intervals and trigger a response by a fire brigade, which
could, in turn, start preventive and controlled fires to avoid
a catastrophic event. In such a scenario, a pre-optimized
batch of queries can result in better resource allocation and
scheduling decisions by employing a single comprehensive
query plan. Indeed, this could yield significant decreases in
average query execution time.

Many researchers have worked on database support for
scientific databases. SEQUOIA 2000 [31] is one of the pi-
oneering projects in that arena. Commercial projects [12]
have also identified requirements that are specific to sci-
entific applications. Optimizing query processing for sci-
entific applications using compiler optimization techniques
has also attracted attention of several researchers including
those in our own group. Ferreira et. al. [14, 15, 16, 17]
have done extensive studies on using compiler and runtime
analysis to speed up processing for scientific queries. In
particular, they have investigated compiler optimizationis-
sues related to single queries with spatio-temporal predi-
cates, which are similar to the ones we target [15].

In this work, we investigate the application of compiler
optimization strategies to execute abatch of queries for
scientific data analysis applications as opposed to a single
query. Our approach is a multi-step process consisting of
the following tasks: 1) Converting a declarative data anal-
ysis query into an imperative description; 2) Assigning the
set of imperative descriptions for the queries in the batch to
the query planner; 3) Employing traditional compiler opti-
mization strategies such as common subexpression elimina-
tion, dead code elimination, and loop fusion, so the planner
generates a single, global and more efficient query plan.

The rest of this paper is organized as follows. Section 2
elaborates on our approach, describing abstractly the kind
of scientific applications we target, as well as the general
processing format of their queries. It also describes a real
remote sensing application as a motivating scenario. Sec-
tion 3 describes how our optimization strategy works and
is integrated into our existing database framework. Sec-
tion 4 presents experimental evidence showing the benefits
obtained from employing the optimizations. And, finally,
Section 5 presents a summary and concluding remarks, as
well as descriptions of a few extensions that we intend to
tackle in the near future.

R Sele
t(I; O;Mi)
foreach(r2 R) fO[SL(r)℄ = F(O[SL(r)℄; I1[SR1(r)℄; : : : ; In[SRn(r)℄)g

Figure 1. General Data Reduction Loop.

2 Query Optimization Using Compiler Opti-
mization Techniques

In this section, we describe the class of data analysis
queries targeted in this work, and present an overview of
the optimization phases for a batch of queries.

2.1 Data Analysis Queries

Queries in many data analysis applications [1, 6, 10, 21]
can be defined as range-aggregation queries (RAGs) [9].
The datasets for range-aggregation queries can be classi-
fied asinput, output, or temporary. Input (I) datasets cor-
respond to the data to be processed.Output (O) datasets
are the final results from applying one or more operations
to the input datasets.Temporary (T) datasets (temporaries)
are created during query processing to store intermediate
results. A user-defined data structure is usually employed
to describe and store a temporary dataset. Temporary and
output datasets are tagged with the operations employed to
compute them and also with the query meta-data informa-
tion. Temporaries are also referred to asaggregates, and we
use the two terms interchangeably.

A RAG query typically has both spatial and temporal
predicates, namely a multi-dimensional bounding box in the
underlying multi-dimensional attribute space of the dataset.
Only data elements whose associated coordinates fall within
the multidimensional box must be retrieved and processed.
The selected data elements are mapped to the correspond-
ing output dataset elements. The mapping operation is an
application-specific function that often involves finding a
collection of data items using a specific spatial relationship
(such as intersection), possibly after applying a geometric
transformation. An input element can map to multiple out-
put elements. Similarly, multiple input elements can map to
the same output element. An application-specific aggrega-
tion operation (e.g., sum over selected elements) is applied
to the input data elements that map to the same output ele-
ment.

Borrowing from a formalism proposed by Ferreira [14],
a range-aggregation query can be specified in the general
loop format shown in Figure 1. ASelectfunction identi-
fies the subdomain that intersects the query metadataMi
for a queryqi. The subdomain can be defined in the in-
put attribute space or in the output space. For the sake of

2

Range
Selection

Atmospheric
Correction
Water Vapor

Subsampler
Composite
Generator

Max NDVI

Cartographic
Projection

Mercator

Figure 2. A typical Kronos query specified
as a sequence of low-level primitive func-
tions. This query produces a data product
transformed using a cartographic projection
method.

discussion, we can view the input and output datasets as be-
ing composed of collections of objects. An object can be
a single data element or a data chunk containing multiple
data elements. The objects whose elements are updated in
the loop are referred to asleft hand side, or LHS, objects.
The objects whose elements are only read in the loop are
consideredright hand side, or RHS, objects.

During query processing, the subdomain denoted byR in the foreach loop is traversed. Each pointr in R and the correspondingsubscript functionsSL(r);SR1(r); : : : ;SRn(r) are used to access the input and
output data elements for the loop. In the figure, we as-
sume that there aren RHS collections of objects, denoted
by I1; : : : ; In, contributing the values of aLHS object. It
is not required that alln RHS collections be different, since
different subscript functions can be used to access the same
collection.

In iterationr of the loop, the value of an output elementO[SL(r)℄ is updated using the application-specific func-
tion F . The functionF uses one or more of the valuesI1[SR1(r)℄; : : : ; In[SRn(r)℄, and may also use other scalar
values that are inputs to the function, to compute an aggre-
gate result value. The aggregation operations typically im-
plementgeneralized reductions[18], which must be com-
mutative and associative operations. A commutative and
associative aggregation operation produces the same output
value irrespective of the order in which the input elements
are processed. That is, the set of input data elements can
be divided into subsets. Temporary datasets can be com-
puted for each subset and a new intermediate result or the
final output can be generated by combining the temporary
datasets.

2.2 Case Study Application – Kronos

Before we present our approach and system support for
multi-query optimization for query batches, we will briefly
describe the Kronos application used as a case study in this
paper.

Remote sensing has become a very powerful tool for ge-
ographical, meteorological, and environmental studies [19].
Usually systems processing remotely sensed data provide

Figure 3. A Kronos data product. A 7-day
(January 1-7, 1992) composite using Max-
imum NDVI (normalized difference vegeta-
tion index) as the compositing criteria and
Rayleigh/Ozone as the atmospheric correc-
tion method.

on-demand access to raw data and user-specified data prod-
uct generation [10]. Kronos [19] is an example of such
a class of applications. It targets datasets composed of
remotely sensed AVHRR GAC level 1B (Advanced Very
High Resolution Radiometer – Global Area Coverage) orbit
data [24]. The raw data is continuously collected by multi-
ple satellites and the volume of data for a single day is about
1GB. An AVHRR GAC dataset consists of a set of Instanta-
neous Field of View (IFOV) records organized according to
the scan lines of each satellite orbit. Each IFOV record con-
tains the reflectance values for 5 spectral range channels.
Each sensor reading is associated with a position (longitude
and latitude) and the time the reading was recorded. Addi-
tionally, data quality indicators are stored with the raw data.

The processing structure of Kronos can be divided into
several basic primitives that form a processing chain on the
sensor data (see Figure 2 which can produce a data product
of the form shown in Figure 3):

1. Range Selection (Retrieval)retrieves the relevant
IFOVs from the raw AVHRR data.

2. Atmospheric Correction (Correction) applies an at-
mospheric correction algorithm and modifies the rele-
vant part of the selected input data tuples.

3. Composite Generator (Composite)aggregates many
IFOVs for the same spatial region and multiple tempo-
ral coordinates.

4. Subsamplerconverts the input data to a user-specified
spatial resolution. In our system, subsampler was not
actually implemented as a primitive. Rather, since its

3

behavior only alters the discretization level of the out-
put grid (e.g., one pixel per each 4Km2), the informa-
tion is included into the query bounding box.

5. Cartographic Projection (Projection) applies a map-
ping function that converts a uniform 2-dimensional
(spherical) grid into a particular cartographic projec-
tion.

All the primitives (with the exception of Range Se-
lection) may employ different algorithms (i.e., multi-
ple atmospheric correction methods) that are specified
as a parameter to the actual primitive (e.g., Correc-
tion(T0,Rayleigh/Ozone), where Rayleigh/Ozone is an ex-
isting algorithm and T0 is the aggregate used as input).
In fact, Kronos implements 3 algorithms for atmospheric
correction, 3 different composite generator algorithms, and
more than 60 different cartographic projections.

Several types of queries can be posed to a Kronos-like
system. Queries can be as simple as visualizing the re-
motely sensed data for a given region using a particular
cartographic projection [19], or as complex as statistically
comparing acompositedata product across two different
time periods [27]. As a result of that, queries can be as sim-
ple as executing a single primitive or as complex as using
all the available primitives, as shown in Figure 2.

2.3 An Approach to Solving the Multi-Query Op-
timization Problem

The objective of multi-query optimization is to take
a batch of queries, expressed by a set of declarative
query definitions (e.g., using the SQL extensions of Post-
greSQL [26]), and generate a set of optimized data paral-
lel reduction loops that represent the global query plan for
the queries in the batch. Optimization is a multi-phase pro-
cess, in which declarative query definitions are first con-
verted into imperative loops that conform to the canonical
data reduction loop of Figure 1, and then those loops are
optimized using various compiler techniques.

Consider Kronos queries as examples. For our study,
queries are defined as a 3-tuple:[spatio-temporal bound-
ing box and spatio-temporal resolution, correction method,
compositing method℄. The spatio-temporal bounding box
(in the WHERE clause) specifies the spatial and temporal
coordinates for the data of interest. The spatio-temporal res-
olution (or output discretization level) describes the amount
of data to be aggregated per output point (i.e., each output
pixel is composed fromx input points, so that an output
pixel corresponds to an area of, for example, 8Km2). The
correction method (in the FROM clause) specifies the atmo-
spheric correction algorithm to be applied to the raw data to
approximate the values for each IFOV to theidealcorrected
values (by trying to eliminate spurious effects caused by,

for example, water vapor in the atmosphere). And, finally,
the compositing method (in the FROM clause) defines the
aggregation level and function to be employed tocoalesce
multiple input grid points into a single output grid point.
Two sample Kronos queries specified in PostgreSQL are il-
lustrated in Figure 4. Query 1, for instance, selects the raw
AVHRR data from a data collection named AVHRRDC for
the spatio-temporal boundaries stated in the WHERE clause
(within the boundaries for latitude, longitude, and day). The
data is subsampled in such a way that each output pixel rep-
resents 4KM2 of data (with the discretization levels de-
fined by deltalat, deltalon and deltaday). Pixels are also
corrected for atmospheric distortions using theWaterVapor
method and composited to find the maximum value of Nor-
malized Difference Vegetation Index (MaxNDVI).

Figure 4 presents an overview of the optimization pro-
cess. The goal is to detect commonalities between Query
1 and 2 in terms of common spatio-temporal domains and
the primitives they require. In order to achieve this goal,
the first step in the optimization process is to parse and con-
vert these queries into imperative loops conforming with the
loop in Figure 1. That loop presents the high-level descrip-
tion of the same queries, with the spatio-temporal bound-
aries translated into input data points (via index lookup
operations). In data analysis applications, the raw data is
typically declustered across multiple disks as varying-size
chunks, to permit efficient I/O scheduling to fetch the data
necessary to process user queries. Therefore, loops can iter-
ate on points, blocks, or chunks depending on how the raw
data is stored, declustered, and indexed.

We should note that we have omitted the calls to the sub-
script mapping functions in order to simplify the presenta-
tion. These functions enable both finding an input data ele-
ment in the input dataset and determining where it is placed
in the output dataset (or temporary dataset). In some cases,
mapping from an absolute set of multidimensional coordi-
nates (given in the WHERE clause of the query) into a rel-
ative set of coordinates (the locations of the data elements)
may take a considerable amount of time. Thus, minimiz-
ing the number of calls to the mapping operations can also
improve performance.

As seen in Figure 4, once the loops have been generated,
the following steps are carried out to transform them into a
global query plan:

1. The imperative descriptions are concatenated into a
singleworkload program.

2. The domains for each of theforeach loops are in-
spected for multidimensional overlaps (i.e., multidi-
mensional bounding box intersections are computed).
Loops with domains that overlap are fused by moving
the individual loop bodies into one or more combined
loops. Loops corresponding to the non-overlapping

4

QUERY1:
select *
from
Composite(Correction(Retrieval(AVHRR_DC), WaterVapor),MaxNDVI)
where
(lat>0 and lat<=20) and (lon>15.97 and lon<=65) and (day=1992/06) and
(deltalat=0.036 and deltalon=0.036 and deltaday=1);

QUERY2:
select *
from
Composite(Correction(Retrieval(AVHRR_DC), WaterVapor),MinCh1)
where
(lat>14.9 and lat<=20) and (lon>19.96 and lon<=55) and (day=1992/06) and
(deltalat=0.036 and deltalon=0.036 and deltaday=1);

for each point in bb: (14.964,19.964,199206) (20.000,55.000,199206) {
 T0 = Retrieval(I)
 T1 = Correction(T0, WaterVapor)
 O1 = Composite(T1, MaxNDVI)
 T2 = copy .Retrieval(T0)
 T3 = copy .Correction(T1, WaterVapor)
 O2 = Composite(T3, MinCh1)

}
for each point in bb: (0.000,15.972,199206) (14.928,65.000,199206) {

 T0 = Retrieval(I)
 T1 = Correction(T0, WaterVapor)
 O1 = Composite(T1, MaxNDVI)

}
for each point in bb: (14.964,55.038,199206) (20.000,65.000,199206) {

 T0 = Retrieval(I)
 T1 = Correction(T0, WaterVapor)
 O1 = Composite(T1, MaxNDVI)

}
for each point in bb: (14.964,15.972,199206) (20.000,19.929,199206) {

 T0 = Retrieval(I)
 T1 = Correction(T0, WaterVapor)
 O1 = Composite(T1, MaxNDVI)

}

for each point in bb: (14.964,19.964,199206) (20.000,55.000,199206) {
 T0 = Retrieval(I)
 T1 = Correction(T0, WaterVapor)
 O1 = Composite(T1, MaxNDVI)
 T2 = Retrieval(I)
 T3 = Correction(T2, WaterVapor)
 O2 = Composite(T3, MinCh1)

}
for each point in bb: (0.000,15.972,199206) (14.928,65.000,199206) {

 T0 = Retrieval(I)
 T1 = Correction(T0, WaterVapor)
 O1 = Composite(T1, MaxNDVI)

}
for each point in bb: (14.964,55.038,199206) (20.000,65.000,199206) {

 T0 = Retrieval(I)
 T1 = Correction(T0, WaterVapor)
 O1 = Composite(T1, MaxNDVI)

}
for each point in bb: (14.964,15.972,199206) (20.000,19.929,199206) {

 T0 = Retrieval(I)
 T1 = Correction(T0, WaterVapor)
 O1 = Composite(T1, MaxNDVI)

}

���������� ��	
�������
��

������� ��	
������� �����
��� ��	���

�����
����� 	�������		��� �
���������for each point in bb: (14.964,19.964,199206) (20.000,55.000,199206) {
 T0 = Retrieval(I)
 T1 = Correction(T0, WaterVapor)
 O1 = Composite(T1, MaxNDVI)
 O2 = Composite(T1, MinCh1)

}
for each point in bb: (0.000,15.972,199206) (14.928,65.000,199206) {

 T0 = Retrieval(I)
 T1 = Correction(T0, WaterVapor)
 O1 = Composite(T1, MaxNDVI)

}
for each point in bb: (14.964,55.038,199206) (20.000,65.000,199206) {

 T0 = Retrieval(I)
 T1 = Correction(T0, WaterVapor)
 O1 = Composite(T1, MaxNDVI)

}
for each point in bb: (14.964,15.972,199206) (20.000,19.929,199206) {

 T0 = Retrieval(I)
 T1 = Correction(T0, WaterVapor)
 O1 = Composite(T1, MaxNDVI)

}

����� ����
��� �
���������

for each point in bb: (0.000,15.972,199206) (20.000,65.000,199206) {
 T0 = Retrieval(I)
 T1 = Correction(T0, WaterVapor)
 O1 = Composite(T1, MaxNDVI)

}
for each point in bb: (14.964,19.964,199206) (20.000,55.000,199206) {

 T0 = Retrieval(I)
 T1 = Correction(T0,WaterVapor)
 O2 = Composite(T1, MinCh1)

}

Figure 4. An overview of the entire optimization process for two queries. MaxNDVI and MinCh1 are
different compositing methods and Water Vapordesignates an atmospheric correction algorithm. All
temporaries have local scope with respect to the loop. The di scretization values are not shown as
part of the loop iteration domains for a more clear presentat ion.

domain regions are also created. An intermediatepro-
gram is generated with two parts: combined loops for
the overlapping areas and individual loops for the non-
overlapping areas.

3. For each combined loop, common subexpression elim-
ination and dead code elimination techniques are em-
ployed. That is, redundantRHS function calls are elim-
inated, redundant subscript function calls are deleted,
and duplicated retrieval of input data elements is elim-
inated.

In Section 3.3 we will discuss in greater details how each
of these steps are performed and how the optimization pro-
cess is integrated into our database middleware.

3 System Support

In this section, we describe the runtime system that sup-
ports the multi-query optimization phases presented in Sec-
tion 2. The runtime system is built on a database engine we
have specifically developed for efficiently executing multi-
query loads from scientific data analysis applications in par-
allel and distributed environments [2, 3]. The compiler ap-
proach described in this work has been implemented as a
front-end to the Query Server component of the database
engine.

The Query Server is responsible for receiving queries
from the clients, generating a query plan, and dispatching
them for execution. It invokes the Query Planner every

5

time a new query is received for processing, and contin-
ually computes the best query plan for the queries in the
waiting queue which essentially form a query batch. When
resources (e.g., processors) become available, the optimized
set of loops for the query batch is dispatched for execution.
The system support and process for computing the best plan
is described in the next sections.

3.1 The Declarative Query Front-End

A declarative language is one that can express what
the desired result of a query should be, without explain-
ing exactly how the desired result is to be computed. Pre-
vious researchers have already postulated and verified the
strengths of using declarative languages from the perspec-
tive of end-users, essentially because the process of access-
ing the data and generating the data product does not need
to be specified, as is the case with procedural or impera-
tive languages [35]. SQL-86 (also called SQL-1) or SQL-
92 (also called SQL-2) are traditional declarative languages
for database applications. However, the very nature of sci-
entific data analysis applications requires handling datasets
and generating data products that are application-specific
and user-defined, which makes it cumbersome and, in many
cases, impossible to pose a query using these languages.

Stonebraker and Brown [32] describe a simple, four-
category taxonomy for classifying DBMS (Database Man-
agement System) applications. A key distinction made by
the taxonomy is concerned with the complexity of the data,
meaning both the raw data and the processed data product
that is generated as a result of a query. Specifically, they
point out the intrinsic semantic shortcomings of declarative
languages traditionally associated with RDBMSs (Rela-
tional Database Management Systems). Fortuitously, how-
ever, SQL-3 and object-relational DBMSs (ORDBMSs) ad-
dress the basic impediments to dealing with application-
specific data processing [13].

Given the limitations of SQL-2, we have employed Post-
greSQL as the declarative language of choice for our sys-
tem. PostgreSQL has language constructs for creating
new data types (CREATE TYPE) and new data processing
routines, called user-defined functions (CREATE FUNC-
TION) [26].

The only relevant part of PostgreSQL to our database is
its parser, since the other data processing services all are
handled within our existing database engine. Therefore, for
the prototype used to gather the experimental results in this
paper, we extracted the PostgreSQL parsing code and inte-
grated it into our system through an API that can handle the
language constructs that are used to describe a query (SE-
LECT statements), catalog management operations (CRE-
ATE TABLE and DROP TABLE), user-defined types and
functions (CREATE FUNCTION, CREATE TYPE, etc),

and data loading operations (INSERT INTO).

3.2 The Imperative Query Back-End

The appeal of employing a declarative language as the
query interface for end-users has extensive implications in
the design of the database backend. Indeed, Ullman [35]
states that “the use of declarative languages implies exten-
sive optimization by the system if an efficient implemen-
tation of declaratively-expressed wishes is to be found”.
There are two issues embedded in that statement –trans-
lation andoptimization. The first issue requires the conver-
sion of the declarative query into an imperative description.
The second issue lies in how to optimize the imperative de-
scription, with the availability of potentially multiple equiv-
alent operators provided by the runtime system (e.g., mul-
tiple ways to compute the maximum value for an attribute
for a set of tuples) given the data characteristics (e.g, the
dataset is sorted on that particular attribute).

In this paper, the complexity of the translation phase
is somewhat constrained for two main reasons. First, the
spatio-temporal nature of the applications we support makes
the canonicalfor loop in Figure 1 a solution to virtually any
query posed to the system, since one needs to visit all the
data points pertaining to the query bounding box. This fact
implies that there is a one-to-one mapping between a declar-
ative query and an imperative query (note that this is not
true for traditional relational queries, in which there may
be multiple instances of an operator likejoin, for example).
Second, the canonicalfor loop, despite being an imperative
description, is at a high enough level of abstraction that it
is a unique description of the computation to be performed,
but still lends itself to different execution strategies.

3.3 The Multi-Query Planner

The multi-query planner is the system module that re-
ceives an imperative query description from the Query
Server and iteratively generates an optimized query plan for
the queries received, until the system is ready to process the
next query batch.

The loop body of a query may consist of multiplefunc-
tion primitives registered in the database catalog. In this
work, a function primitive is an application-specific, user-
defined, minimal, and indivisible part of the data process-
ing [5]. A primitive consists of a function call that can take
multiple parameters, with the restriction that one of them
is the input data to be processed and the return value is the
processed output value. An important assumption is that
the function has no side effects. The function primitives in
a query loop form a chain of operations transforming the in-
put data elements into the output data elements. A primitive
at levell of a processing chain in the loop body has the dual

6

role of consuming thetemporary datasetgenerated by the
primitive immediately before (at levell� 1) and generating
the temporary dataset for the primitive immediately after (at
level l + 1).

Figure 4 shows two sample Kronos queries that con-
tain multiple function primitives. In the figure, the spatio-
temporal bounding box is described by a pair of 3-
dimensional coordinates in the input dataset domain.Re-
trieval, Correction, and Compositeare the user-defined
primitives. I designates the portion of the input domain (i.e.,
the raw data) being processed in the current iteration of the
foreachloop andT0andT1designate the results of the com-
putation performed by theRetrievalandCorrectionprimi-
tive calls.O1 andO2 designate the output for Query 1 and
Query 2, respectively.

Optimization for a query in a query batch occurs in a
two-phase process in which the query is first integrated into
the current plan and, then, redundancies are eliminated. The
integration of a query into the current plan is a recursive
process, defined by the spatio-temporal boundaries of the
query, describing the loop iteration domain. The details of
this process are explained in the next sections.

3.3.1 Loop Fusion

The first stage of the optimization mainly employs the
bounding boxes for the new query, as well as the bounding
boxes for the set of already optimized loops in the query
plan, as shown in Algorithm 3 in Appendix A. The op-
timization essentially consists ofloop fusionoperations –
merging and fusing the bodies of loops representing queries
that iterate at least partially over the same domainR. The
intuition behind this optimization goes beyond the tradi-
tional reasons for performing loop fusion, namely reducing
the cost of the loops by combining overheads and exposing
more instructions for parallel execution. The main goal of
this phase is to expose opportunities for subsequent com-
mon subexpression elimination and dead code elimination,
substantially reducing the loop strength.

Algorithm 3 performs two distinct tasks when a new
loop newl is to be integrated into the current query batch
plan. First, the query domain for the new loop is compared
against the iteration domains for all the loops already in the
query plan. The loop with the largest amount of multidi-
mensional overlap is selected to incorporate the statements
from the body ofnewl. The second task is to modify the
current plan appropriately, based on three possible scenar-
ios: 1) The new query represented bynewl does not overlap
with any of the existing loops, sonewl is added to the plan
as is; 2) The iteration domain for the new loopnewl is ex-
actly equal to that of a loop already in the query plan (loopbestl). In this case, the body of loopbestl is mergedwithnewl, i.e., the two loop bodies are combined so that the

loop body statements fornewl are appended to the existing
statements forbestl (themergemethod in Algorithm 3); 3)
The iteration domain fornewl is either subsumed by that
of bestl, or subsumes that ofbestl, or yet there is a par-
tial overlap between the two iteration domains. This case
requires computing several new loops to replace the origi-
nal bestl. The first new loop iterates only on the common,
overlapping domain ofnewl andbestl, which is computed
by thecommonArea function in Algorithm 3. Next,newl
is merged withbestl (now with updated boundaries) and
the resulting loop is added to the query plan (i.e.,bestl is
replaced byupdatedl). Second, loops covering the rest of
the domain originally covered bybestl are added to the cur-
rent planL. The functioncomplementTilescomputes the
appropriate bounding boxes for each of these loops. Finally,
the additional loops representing the rest of the domain fornewl are computed using the functionadditionalTiles, and
the new loops becomecandidatesto be added to the updated
query plan. They are considered candidates because those
loops may also overlap to other loops already inL. The
addNewLoopfunction described by Algorithm 3 is recur-
sively invoked for each of those loops. This last step guar-
antees that there will be no iteration space overlap across
the loops in the final query batch plan.

3.3.2 Redundancy Elimination

After the loops for all the queries in the batch are added to
the query planL, redundancies in the loop bodies can be re-
moved employing straightforward peephole optimizations –
common subexpression elimination and dead code elimina-
tion. In our case, common subexpression elimination con-
sists of identifying computations and data retrieval opera-
tions that are performed multiple times in the loop body,
eliminating all but the first occurrence [23]. Our method
is a variation of the traditional algorithm employed for this
type of optimization and consists of keeping track of the
available expressions, i.e., those that have been computed
so far in the loop body. In our case, each of the statements
are of the following form:Ti[SL(r)℄ =Fj(Ti[SL(r)℄; Tj [SR1(r)℄; : : : ; Tk[SRn(r)℄; p1; : : : ; pk)

whereTi is either a temporary aggregate or a query out-
put aggregate,Tj ,: : :,Tk are aggregates computed earlier in
the processing chain, andp1; : : : ; pk are other primitive-
specific parameters. In such a scenario, each statement
creates a new available expression (i.e., represented by the
right hand side of the assignment), which can be accessed
through a reference to the temporary aggregate on the left
hand side of the assignment. Algorithm 2 in Appendix A
performs detection of new available expressions and substi-
tution of a call to a primitive by acopyfrom the temporary
aggregate containing the redundant expression.

7

The equivalence of the results generated by two state-
ments is determined by thefind function, which inspects
thecall site for the primitive function invocations. This op-
eration essentially means establishing that in addition tous-
ing the same (or equivalent) input data, the parameters for
the primitive are also the same or equivalent. Because the
primitive invocation is replaced by a copy operation, primi-
tive functions are required to not have any side effects.

The removal of redundant expressions usually causes the
creation of useless code – assignments that generatedead
variables– that is no longer needed to compute the output
results of a loop. By definition, a variable is dead if it is
not usedby any of the statements from the location in the
loop body where it isdefineduntil the last statement in the
loop body being inspected [23]. We extended this defini-
tion to also accommodate situations in which a statement
conforms to the formTi copy(Tj), whereTi andTj are
both temporaries. In this case, all the uses ofTi can be sim-
ply replaced byTj .

We employ the standard dead code elimination algo-
rithm, which requires marking all instructions that compute
essential values. Indeed, our algorithm computes the def-
use chain (connections between adefinition of a variable
and all itsuses) for all the temporaries in the loop body, as
shown in Algorithm 1 in Appendix A.

Algorithm 1 makes two passes over the statements that
are part of a loop in the query plan. The first pass detects the
statements that define a temporary and the ones that use it,
updating thedu data structure. A second pass over the state-
ments looks for statements that define a temporary value,
checkingdu for whether they are utilized, and removes the
unneeded statements.

Both the common subexpression elimination and the
dead code elimination algorithms must be invoked multi-
ple times, until the query plan remains stable, meaning that
all redundancies and unneeded statements are eliminated.
At this point the Query Planner can submit the plan for se-
quential or parallel execution.

Although considerably similar to standard compiler op-
timization algorithms, all of the algorithms were imple-
mented in the Query Planner to handle an intermediate code
representation we devised to portray the query plan. It
should be clear that we are not compiling C or C++ code,
but rather the query plan representation. Indeed, the run-
time system implements a virtual machine that can take ei-
ther the unoptimized query plan or the final optimized plan
and execute it, leveraging any possibly parallel infrastruc-
ture available for that purpose.

4 Experimental Evaluation

The evaluation of the techniques presented in this pa-
per was carried out using the Kronos application (see Sec-

tion 2.2). It was necessary to re-implement the Kronos
primitives to conform to the interfaces of our database sys-
tem. However, employing a real application ensures a more
realistic scenario for obtaining experimental results. Onthe
other hand, we had to employ synthetic workloads to per-
form a parameter sweep of the optimization space. We uti-
lized a statistical workload model based on how real users
tend to interact with the Kronos system.

4.1 A Query Workload Model

We designed several experiments to illustrate the impact
of the compiler optimizations on the overall batch process-
ing performance, using AVHRR datasets and a mix of syn-
thetic workloads. All the experiments were run on a 24-
processor SunFire 6800 machine with 24GB of main mem-
ory running Solaris 2.8. We used a single processor of this
machine to execute queries, as our main goal in this paper is
to evaluate the impact of the various compiler optimization
techniques on the performance of query batches. The lever-
age from the multi-processor nature of the environment will
be investigated in a future work to further decrease query
batch execution time.

A dataset containing one month (January 1992) of
AVHRR data was used, totaling about 30GB. In order to
create the queries that are part of a batch, we employed a
variation of the Customer Behavior Model Graph (CBMG)
technique. CBMG is utilized, for example, by researchers
analyzing performance aspects of e-business applications
and website capacity planning [22]. A CBMG can be char-
acterized by a set ofn states, a set of transitions between
states, and by ann � n matrix, P = [pi;j ℄, of transition
probabilities between then states.

In our model, the first query in a batch specifies a geo-
graphical region, a set of temporal coordinates (a continu-
ous period of days), a resolution level (both vertical and hor-
izontal), a correction algorithm (from 3 possibilities), and
a compositing operator (also from 3 different algorithms).
The subsequent queries in the batch are generated based
on the following operations: anothernew point of interest,
spatial movement, temporal movement, resolution increase
or decrease, applying a differentcorrection algorithm, or
applying a differentcompositing operator. In our experi-
ments, we used the probabilities shown in Table 1 to gen-
erate multiple queries for a batch with different workload
profiles. For each workload profile, we created batches of
2, 4, 8, 16, 24, and 32 queries. A 2-query batch requires pro-
cessing around 50 MB of input data and a 32-query batch
requires around 800 MB, given that there is no redundancy
in the queries forming the batch and also that no optimiza-
tion is performed. There are 16 available points of inter-
est; for example, Southern California, the Chesapeake Bay,
the Amazon Forest, etc. This way, depending on the work-

8

Transition Workload 1 Workload 2 Workload 3 Workload 4
New Point-of-Interest 5% 5% 65% 65%

Spatial Movement 10% 50% 5% 35%

New Resolution 15% 15% 5% 0%

Temporal Movement 5% 5% 5% 0%

New Correction 25% 5% 5% 0%

New Compositing 25% 5% 5% 0%

New Compositing Level 15% 15% 10% 0%

Table 1. Transition probabilities. A sequence of queries in a query batch is generated as follows:
the first query always uses New Point-of-Interestand subsequent queries are generated based on
modifications to the query attributes based on the transitio n selected using the probabilities in the
table.

load profile, subsequent queries after the first one in the
batch may either linger around that point (moving around
its neighborhood and generating new data products with
other types of atmospheric correction and compositing al-
gorithms) or move on to a different point. These transitions
are controlled according to the transition probabilities in Ta-
ble 1. More details about the workload model can be found
in [4].

For the results shown in this paper each query returns
a data product for a256 � 256 pixel window. We have
also compiled results for larger queries –512 � 512 data
products. The results using those queries are completely
consistent with the ones we show here. In fact, in absolute
terms the improvements are even larger. However, we had
to restrict ourselves to smaller batches of up to 16 queries
due to the memory footprint exceeding 2 GB (the amount of
addressable memory using 32-bit addresses employed when
utilizing gcc 2.95.3 in Solaris).

4.2 Experimental Study

We studied the impact of the proposed optimizations
varying the following quantities:� The number of queries in a batch (from a 2-query batch

up to a 32-query batch).� The optimizations that are turned on (none, only com-
mon subexpression elimination and loop fusion –CSE-
LF; or common subexpression elimination, dead code
elimination, and loop fusion –CSE-DCE-LF).� The workload profile for a batch. Workload 1 repre-
sents a profile with high probability of reuse across
the queries. In this workload profile, the probability
that a query will choose a new point-of-interest and
the amount of spatial movement around the point-of-
interest are very low (5% and 10%, respectively). This
results in high overlap in regions of interest across
queries. Moreover, the probabilities of choosing new

correction, compositing, and resolution values are low.
Workload 4, on the other hand, denotes a profile with
the lowest probability of data and computation reuse.
All the queries from this workload choose the same
resolution, correction, and compositing values, but the
amount of spatial movement and the probability of
choosing a new point-of-interest for a query is quite
high. The other profiles – 2 and 3 – are in between
the two extremes as far as the likelihood of data and
computation reuse.

Our study measured five different performance metrics:
batch execution time, number of statements executed (loop
body statements), average query turnaround time1, average
query response time2, and plan generation time (i.e., the
amount of time from when the parser calls the query planner
until the time the plan is fully computed).

4.2.1 Batch Execution Time

The amount of time required for processing a batch of
queries is our most important metric, since that is the main
goal of the optimizations we employ. Figure 5 shows the
reduction in execution time for different batches and work-
load profiles, comparing against executing the batchwith-
out any optimizations. The results show that reduction in
the range of 20% to 70% in execution time is achieved.
Greater reductions are observed for larger batches using the
workload profile 1, which shows high locality of interest.
In this profile, there is a very low chance of selecting a new
point of interest or performing spatial movement (which im-
plies high spatial and temporal locality as seen in Table 1).
Therefore, once some data is retrieved and computed over,
most queries will reuse at least the input data, even if they
require different atmospheric correction and compositing

1Query turnaround time is the time from when a query is submitted
until when it is completed [30, 34].

2Query response time is the time between when a query is submitted
and the time the first results start being returned [30, 34].

9

Relative Batch Execution Time Improvements

Workload Profile # / # of queries in the batch

Workload Profile 1 Workload Profile 2 Workload Profile 3 Workload Profile 4

B
at

ch
 E

xe
cu

tio
n

T
im

e
R

ed
uc

tio
n

(%
)

−10

0

10

20

30

40

50

60

70

80

90

100

2 2 2 24 4 4 48 8 8 816 16 16 1624 24 24 2432 32 32 32

cse−lf

cse−dce−lf

Figure 5. The reduction in batch executing
time.

algorithms. Additionally, there are only 16 points of in-
terest as we previously stated, which means that across the
32 queries at least some of the queries will be near the same
point of interest, which again implies high locality. On the
other hand, when a batch has only 2 queries, the chance of
having spatio-temporal locality is small, so the optimiza-
tions have little effect. The 2-query batches for workload
profiles 1 and 3 show this behavior (note that the y-axis in
the chart starts at -10% improvement). In some experiments
we observe that the percent reduction in execution time de-
creases when the number of queries in a batch is increased
(e.g., going from a 4-query batch to an 8-query batch for
Workload 3). We attribute this to the fact that queries in dif-
ferent batches are generated randomly and independently.
Hence, although a workload is designed to have a certain
level of locality, it is possible that different batches in the
same workload may have different amounts of locality, due
to the distribution of queries. The important observation is
that the proposed approach takes advantage of locality when
it is present. As with any optimization in general, and com-
piler optimizations in particular, the benefits of optimiza-
tions are realized in proportion to the probability of finding
a chance to apply them! In our case, that presumes some
spatio-temporal locality occurs. This seems to be the case
for many data analysis applications, and for most remote
sensing applications in particular, because of higher interest
in some geographical areas during particular time periods
(e.g., wild fire season in Southern California).

4.2.2 Number of Statements and Loop Strength

Figure 6 shows how each combination of optimizations af-
fects the number of loop body statements executed. Loop
fusion (LF) alone has no impact whatsoever for this met-
ric. The same is true for common subexpression elimi-

Number of Statements Executed

Workload Profile # / # of queries in the batch

Workload Profile 1 Workload Profile 2 Workload Profile 3 Workload Profile 4

N
um

be
r

of
 E

xe
cu

te
d

S
ta

te
m

en
ts

 (
m

ill
io

ns
)

0

2

4

6

8

10

12

14

16

18

20

2 2 2 24 4 4 48 8 8 816 16 16 1624 24 24 2432 32 32 32

off

cse−lf

cse−dce−lf

Figure 6. Number of loop body statements ex-
ecuted.

nation (CSE), because neither optimization eliminates loop
body statements. Interestingly, we observe thatCSE alone
is responsible for substantially decreasing batch execution
time, as seen in Figure 5. The decrease is a function of loop
strength reduction, due to the fact that many statements are
changed from either an I/O intensive primitive (Retrieval)
or a processing intensive primitive (either one of the algo-
rithms used by the Correction and Composite primitives)
into a much less expensivecopy operation. On the other
hand, when dead code elimination (DCE) is turned on in
conjunction with the other optimizations, a sizable decrease
occurs in the number of loop body statements executed,
which accounts for a further decrease in the batch execu-
tion time as also seen in Figure 5. Indeed, one can see that
the results in the two figures correlate, and for some config-
urations the optimizations do not provide any performance
benefits (due to the lack of spatial or temporal locality).

4.2.3 Query Turnaround Time

Queries may be processed in a batch for two main reasons:
1) a client submits a batch, or 2) a batch is formed while
the system is busy processing other queries, and interac-
tive clients continue to send new queries that are stored in a
waiting queue. In the second scenario, it is also important
for a database system to decrease the average execution time
per query so that interactive clients experience less delaybe-
tween submitting a query and seeing its results. Although
the optimizations are targeted at improving batch execution
time, Figure 7 shows that they also have a positive impact
on average query turnaround time. In these experiments,
queries are added to the batch as long as the system is busy.
The query batch is executed as soon as the system becomes
available for processing it. As seen from the figure, for the
workload profiles with higher locality (1 and 2), execution

10

Average Query Turnaround Time

Workload Profile # / # of queries in the batch

Workload Profile 1 Workload Profile 2 Workload Profile 3 Workload Profile 4

T
im

e
(s

)

0
20
40
60
80

100
120
140
160
180
200
220
240
260
280
300

2 2 2 24 4 4 48 8 8 816 16 16 1624 24 24 2432 32 32 32

off

cse−lf

cse−dce−lf

Figure 7. Average query turnaround time.

Average Query Response Time

Workload Profile # / # of queries in the batch

Workload Profile 1 Workload Profile 2 Workload Profile 3 Workload Profile 4

T
im

e
(s

)

0
20
40
60
80

100
120
140
160
180
200
220
240
260
280
300

2 2 2 24 4 4 48 8 8 816 16 16 1624 24 24 2432 32 32 32

off

cse−lf

cse−dce−lf

Figure 8. Average time to generate a partial
result for a query.

time decreases by up to 55%. Conversely, for batches with
low locality there is no decrease in execution time, as ex-
pected.

4.2.4 First Response Time

Also related to the issue of satisfying interactive clientsis
the issue of showingpartial progress during the computa-
tion of a query. From the perspective of human-computer
interaction, it is usually preferable to have a system that
provides an indication of progress during an expensive
query [30]. The application of the loop fusion optimization
creates multiple loops that generate partial results (e.g., por-
tions of an output image dataset) for a single query. Once a
loop is completely computed, the partial result (e.g., a sub-
image) is ready for delivery to the client. Figure 8 shows
that an added benefit of employing all the compiler opti-
mizations is that the response time for generation of the first

Plan Generation Time

Workload Profile # / # of queries in the batch

Workload Profile 1 Workload Profile 2 Workload Profile 3 Workload Profile 4

T
im

e
(s

)

0.000
0.020
0.040
0.060
0.080
0.100
0.120
0.140
0.160
0.180
0.200
0.220
0.240
0.260

2 2 2 24 4 4 48 8 8 816 16 16 1624 24 24 2432 32 32 32

off

cse−lf

cse−dce−lf

Figure 9. Time to generate a batch executing
plan.

partial result also decreases considerably. The decrease can
be as much as 70%, but is usually between 20% and 50%.

4.2.5 Plan Generation Time

The application of compiler optimization strategies intro-
duces costs for computing the optimized query plan for the
query batch. Figure 9 illustrates how much time is needed
to obtain the execution plan for a query batch. There are
two key observations here. The first observation is that the
planning time depends on the number of exploitable opti-
mization opportunities that exists in the batch (i.e., locality
across queries). Hence, if there is no locality in the query
batch, the time to generate the optimized plan (which is sup-
posed to be the same as the unoptimized plan) is roughly
equivalent to the time to compute the non-optimized plan.
The second observation is that the time to compute a plan
for batches that have heavily correlated queries increases
exponentially (due to the fact that each spatio-temporal
overlap detected produces several new loops which must
be recursively inserted into the optimized plan). However,
even though much more time is spent in computing the plan,
executing the query batch is several orders of magnitude
more expensive than computing the plan. As seen from Fig-
ures 5 and 9, query batch planning takes milliseconds, while
query batch execution time can be hundreds of seconds de-
pending on the complexity and size of the data products
being computed. Finally, a somewhat surprising observa-
tion is the fact that adding dead code elimination to the mix
of optimizations actually slightly decreases the time needed
to compute the plan. The reason for this is that the loop
merging operation and also subsequent common subexpres-
sion elimination operations become simpler, if useless state-
ments are removed from the loop body. This extra improve-
ment is doubly beneficial because the time to execute the

11

batch decreases even further as seen in Figures 5, 7, and 8.

5 Conclusions

In this paper, we have described a framework for op-
timizing the execution of scientific data analysis query
batches that employ well-understood compiler optimization
strategies. The queries are described using a declarative rep-
resentation – PostgreSQL – which in itself represents an im-
provement in how easily queries can be formulated by end
users. This representation is transformed into an imperative
representation using loops that iterate over a multidimen-
sional spatio-temporal bounding box. That representation
lends itself to various compiler optimizations techniques,
such as loop fusion, common subexpression elimination,
and dead code elimination. Our experimental results us-
ing a real application show that the optimization process is
inexpensive and that when there is some locality across the
queries in a batch, the benefits of the optimizations greatly
outweigh the costs. The optimizations can provide siz-
able decreases in the amount of computation and I/O that
are required for executing data and computation intensive
queries, as our experimental evidence showed. Even more
important is that this approach can very elegantly handle
the issue of dealing with user-defined primitives that arise
in scientific applications.

We have shown that the compiler optimization strategies
can account for sizable decreases in the execution time of
queries. Nevertheless, there are many aspects that have not
yet been thoroughly investigated in the context of scientific
databases. Two important issues we plan to address in the
near future are batch scheduling for parallel execution and
resource management. Use of loop fusion techniques not
only reduces loop overheads, but also exposes more opera-
tions for parallel execution and local optimization. In fact,
because of the nature of our target queries (i.e., queries in-
volving primitives with no side effects and generalized re-
duction operations), each statement of the loop body can
be carried out in parallel. This means that scheduling the
loop iterations in a multithreaded environment or across a
cluster of workstations can improve performance, assuming
that synchronization and communication issues are appro-
priately handled. With respect to resource utilization, there
are complex issues to be addressed, in particular with regard
to memory utilization. When two or more queries are fused
into the same loop, all the output buffers for the queries need
to be allocated (at least partially) to hold the results pro-
duced by the loop iteration. Moreover, those buffers may
need to be maintained in memory for a long time, since all
the iterations required to complete a query may be spread
across a large collection of loops that may be executed over
a long time period (i.e., the first and last loop for a query
may be widely separated in the batch plan). Indeed, the is-

sue of when and how to schedule the execution of the mul-
tiple loops produced by the query planner, along with other
resource management issues, are key aspects of the opti-
mization process. Another approach worth exploring is par-
titioning query batches into sub-batches and then schedul-
ing within a batch to minimize memory footprint, in a way
similar to partitioning activities for web agents [25].

In our previous work [5], we have shown that employ-
ing an active semantic cache, in which requests for ag-
gregates can be satisfied not only when there is an exact
match, but also when a transformation primitive can auto-
matically modify an aggregate to comply with the request,
is an important mechanism for improving the performance
of a database system dealing with multi-query batches. A
natural extension of that is to allow common subexpression
elimination to be active in those situations. In that case, a
transformableequivalent expression is detected and the run-
time system invokes the appropriate method to transparently
perform the operation. If computing the transformation is
cheaper than computing the aggregate from scratch, this ap-
proach will clearly outperform simpler common expression
elimination operations. This is an extension we want to ex-
plore in a future prototype. Along the same lines, the ac-
tive caching system and the batch optimizer can be inte-
grated. For this scenario, the batch optimizer can also lever-
age the cache contents when performing common subex-
pression eliminations.

References

[1] A. Afework, M. D. Beynon, F. Bustamante, A. Demarzo,
R. Ferreira, R. Miller, M. Silberman, J. Saltz, A. Sussman,
and H. Tsang. Digital dynamic telepathology - the Virtual
Microscope. InAMIA98. American Medical Informatics As-
sociation, November 1998.

[2] H. Andrade, T. Kurc, A. Sussman, and J. Saltz. Efficient exe-
cution of multiple workloads in data analysis applications. In
Proceedings of the 2001 ACM/IEEE Supercomputing Con-
ference, Denver, CO, November 2001.

[3] H. Andrade, T. Kurc, A. Sussman, and J. Saltz. Active Proxy-
G: Optimizing the query execution process in the Grid. In
Proceedings of the 2002 ACM/IEEE Supercomputing Con-
ference, Baltimore, MD, November 2002.

[4] H. Andrade, T. Kurc, A. Sussman, and J. Saltz. Exploiting
functional decomposition for efficient parallel processing of
multiple data analysis queries. Technical Report CS-TR-
4404 and UMIACS-TR-2002-84, University of Maryland,
October 2002. A shorter version appears in the Proceedings
of IPDPS 2003.

[5] H. Andrade, T. Kurc, A. Sussman, and J. Saltz. Exploit-
ing functional decomposition for efficient parallel process-
ing of multiple data analysis queries. InProceedings of the
2003 IEEE International Parallel and Distributed Process-
ing Symposium, Nice, France, April 2003.

[6] E. Borovikov, A. Sussman, and L. Davis. A high perfor-
mance multi-perspective vision studio. InProceedings of

12

the 2003 International Conference on Supercomputing, San
Francisco, CA, June 2003. ACM Press.

[7] Caltech. Sensing and responding – Mani Chandy’s biologi-
cally inspired approach to crisis management.ENGenious –
Caltech Division of Engineering and Applied Sciences, Win-
ter 2003.

[8] U. S. Chakravarthy and J. Minker. Multiple query processing
in deductive databases using query graphs. InProceedings
of the 12th VLDB Conference, pages 384–391, 1986.

[9] C. Chang. Parallel Aggregation on Multi-Dimensional Sci-
entific Datasets. PhD thesis, Department of Computer Sci-
ence, University of Maryland, April 2001.

[10] C. Chang, B. Moon, A. Acharya, C. Shock, A. Sussman,
and J. Saltz. Titan: a High-Performance Remote-Sensing
Database. InProceedings of the 13th International Confer-
ence on Data Engineering, 1997.

[11] F.-C. F. Chen and M. H. Dunham. Common subexpression
processing in multiple-query processing.IEEE Transactions
on Knowledge and Data Engineering, 10(3):493–499, 1998.

[12] J. M. Cheng, N. M. Mattos, D. D. Chamberlin, and L. G.
DeMichiel. Extending relational database technology for
new applications. IBM Systems Journal, 33(2):264–279,
1994.

[13] R. Elmasri and S. B. Navathe.Fundamentals of Database
Systems. Addison-Wesley, 2000.

[14] R. Ferreira. Compiler Techniques for Data Parallel Ap-
plications Using Very Large Multi-Dimensional Datasets.
PhD thesis, Department of Computer Science, University of
Maryland, September 2001.

[15] R. Ferreira, G. Agrawal, R. Jin, and J. Saltz. Compilingdata
intensive applications with spatial coordinates. InProceed-
ings of the 13th International Workshop on Languages and
Compilers for Parallel Computing, pages 339–354, York-
town Heights, NY, August 2000.

[16] R. Ferreira, G. Agrawal, and J. Saltz. Compiling object-
oriented data intensive applications. InProceedings of the
2000 International Conference on Supercomputing, pages
11–21, Santa Fe, NM, May 2000.

[17] R. Ferreira, J. Saltz, and G. Agrawal. Compiler and run-
time analysis for efficient communication in data intensive
applications. InProceedings of the 2001 IEEE International
Conference on Parallel Architectures and Compilation Tech-
niques, pages 231–242, Barcelona, Spain, 2001.

[18] High Performance Fortran Forum. High Performance
Fortran – language specification – version 2.0. Techni-
cal report, Rice University, January 1997. Available at
http://www.netlib.org/hpf.

[19] S. Kalluri, Z. Zhang, J. JáJá, D. Bader, N. E. Saleous,E. Ver-
mote, and J. R. G. Townshend. A hierarchical data archiving
and processing system to generate custom tailored products
from AVHRR data. In1999 IEEE International Geoscience
and Remote Sensing Symposium, pages 2374–2376, 1999.

[20] M. H. Kang, H. G. Dietz, and B. K. Bhargava. Multiple-
query optimization at algorithm-level.Data and Knowledge
Engineering, 14(1):57–75, 1994.

[21] T. Kurc, U. Catalyurek, C. Chang, A. Sussman, and J. Saltz.
Visualization of very large datasets with the Active Data
Repository. IEEE Computer Graphics and Applications,
21(4):22–33, July/August 2001.

[22] D. A. Menasće and V. A. F. Almeida.Scaling for E-Business.
Prentice Hall PTR, 2000.

[23] S. S. Muchnick.Advanced Compiler Design and Implemen-
tation. Morgan Kaufmann, San Francisco, CA, 1997.

[24] National Oceanic and Atmospheric Administration.NOAA
Polar Orbiter User’s Guide – November 1998 Revision.
compiled and edited by Katherine B. Kidwell. Available at
http://www2.ncdc.noaa.gov/docs/podug/cover.htm.

[25] F. Özcan and V. Subrahmanian. Partitioning activities for
agents. InProceedings of the 2001 International Joint Con-
ferences on Artificial Intelligence, Seattle, WA, 2001.

[26] PostgreSQL 7.3.2 Developer’s Guide.
http://www.postgresql.org.

[27] D. P. Roy, L. Giglio, J. D. Kendall, and C. Justice. Multi-
temporal active-fire based burn scar detection algorithm.In-
ternational Journal of Remote Sensing, 20(5):1031–1038,
1999.

[28] P. Roy, S. Seshadri, S. Sudarshan, and S. Bhobe. Efficient
and extensible algorithms for multi query optimization. In
Proceedings of the 2000 ACM-SIGMOD Conference, pages
249–260, 2000.

[29] T. K. Sellis. Multiple-query optimization.ACM Transactions
on Database Systems, 13(1):23–52, 1988.

[30] B. Shneiderman.Designing the User Interface – Strategies
for Effective Human-Computer Interaction. Addison Wesley,
Reading, MA, 1998.

[31] M. Stonebraker. The SEQUOIA 2000 project.Data Engi-
neering, 16(1):24–28, 1993.

[32] M. Stonebraker and P. Brown.Object-Relational DBMSs –
Tracking the Next Great Wave. Morgan Kaufmann Publish-
ers, San Francisco, CA, 1999.

[33] K. L. Tan and H. Lu. Workload scheduling for multiple query
processing.Information Processing Letters, 55(5):251–257,
1995.

[34] A. S. Tanembaum.Modern Operating Systems. Prentice
Hall, Upper Saddle River, NJ, 2001.

[35] J. D. Ullman.Database and Knowledge-Base Systems. Com-
puter Science Press, 1988.

13

A Optimization Algorithms

This appendix presents the algorithms employed for de-
tecting dead code elimination (Algorithm 1) and common
subexpression elimination (Algorithm 2) opportunities and
also shows how loop fusion is accomplished (Algorithm 3).
These are high-level descriptions and some details are omit-
ted for the sake of providing a better presentation.

function deadCodeElimination()
INPUT: loop (l)
OUTPUT: updated loop (l0)

for eachstatementstmt in l do
if stmt defines a temporary valuet thentemp du.find(t)

if temp 6= NULL thendu.add(t)
else

if temp.isUsedBy() thentemp.setIsDefinedBy(stmt)
elsedeadstmt l.whereDefined(temp)l.removeStatement(deadstmt)

if stmt uses a temporary valuet thentemp du.find(t)temp.setIsUsedBy(stmt)
for eachstatementstmt in l do

if stmt is an assignment of temporaries of the formtj = ti thentemp du.find(tj)sstmt stmt:getSour
eStmtForTemp(ti)
for eachstatementtstmt usingtj dotstmt l.replaceWithResultOf(sstmt)l.removeStatement(stmt)

else ifstmt defines a temporary valuet thentemp du.find(t)
if !temp.isUsedBy() thendeadstmt l.whereDefined(temp)l.removeStatement(deadstmt)

end function

Algorithm 1: Removes all unneeded statements from a
loop in the query plan.

function commonSubExpressionElimination()
INPUT: query plan (L)
OUTPUT: updated query plan (L0)

for each loopl in L do
for eachstatementstmt in l doexpr stmt:getExpression()tstmt stmt:getSour
eStmtForTemp(expr)avEx availableExpressions.find(expr)

if avExthenstmt.replaceWithResultOf(tstmt)
elseavailableExpressions.add(expr)

end function

Algorithm 2: Replaces every redundant primitive call with
a copy statement for all the loops in the query plan.

function addNewLoop(Loopnewl)
INPUT: new query loop (newl)
OUTPUT: L – set offusedquery loops

for each loopl in L doo computeOverlap(l:bb; newl:bb)
if o < maxoverlap thenbestl lmaxoverlap o

if maxoverlap = 0 thenL.add(newl)
else ifmaxoverlap = 1 thenL.remove(bestl);updatedl newl.merge(bestl)L.add(updatedl);
else
ommonbb commonArea(l; bestl)bestl.updateBoundaries(
ommonbb)updatedl newl.merge(bestl)L.remove(bestl)L.add(updatedl)C complementTiles(l; bestl)

for each tile bounding boxt in C dol new Loop(t; bestl)L.add(l)A additionalTiles(l; bestl)
for each tile bounding boxt in A dol new Loop(t; newl)

addNewLoop(l)
end function

Algorithm 3: Generates the set of optimized loops for a
query batch by recursively integrating a new loop (newl)
into the existing collection of loopsL.

14

