Efficient Execution of Multi-Query Data Analysis Batches
Using Compiler Optimization Strategies'

Henrique Andrade, Suresh Aryangéat Tahsin Kuré, Joel Saltz, Alan Sussmain

! Dept. of Biomedical Informatics
The Ohio State University
Columbus, OH, 43210
{kurc. 1, saltz.3}@su. edu

 Dept. of Computer Science
University of Maryland
College Park, MD 20742
{hcma, suresha, al s}@s. und. edu

Abstract are employed. This model relies on aotive semantic
cache in which semantic information is attached to prior
This work investigates the leverage that can be obtainedcomputed aggregates that are cached by the system. This
from compiler optimization techniques for efficient execu- permits the query optimizer to retrieve the matching aggre-
tion of multi-query workloads in data analysis application gates based on the metadata description of a new query. The
Our approach is to address multi-query optimization at the cache is active in that it allows application-specific tfans
algorithmic level by transforming a declarative specifica- mations to be performed on the cached aggregates so that
tion of scientific data analysis queries into a high-level im they can be reused to speed up the evaluation of the query
perative program that can be made more efficient by ap- at hand. The reuse model and active semantic caching have
plying compiler optimization techniques. These techréique been shown to effectively decrease the average turnaround
—including loop fusion, common subexpression elimination time for a query, as well as to increase the database system
and dead code elimination — are employed to allow data and throughput [2, 3, 5].
computation reuse across queries. We describe a prelimi- As we have described, our original system relies on so-
nary experimental analysis on a real remote sensing appli- phisticated caching for optimizing multiple queries. Oa th
cation that is used to analyze very large quantities of satel other hand, a well-accepted definition of the multi-query
lite data. The results show our techniques achieve sizableoptimization problem is as follows: “to minimize the total
reduction in the amount of computation and I/O necessary cost of processing a series of queries by creating an opti-
for executing query batches and in average executing timesmized access plan for the entire query sequence” [29]. This
for the individual queries in a given batch. definition implies that a batch of queries is available to the
guery optimizer for evaluation at a given point in time. Our
earlier approach does not require tbysmchronizatiompoint,
because it leverages data and computation reuse for queries
submitted to the system over an extended period of time.
For a batch of queries, on the other hand, a global query
| plan that accommodates all the queries can be more prof-

1 Introduction

Multi-query optimization has been investigated by

several researchers, mostly in the realm of relationa
databases [8, 11, 20, 28, 29, 33]. We have devised
database architecture that allows efficiently handlingtimul
qguery workloads in data analysis applications where user-
defined operations are also part of the query plan [2, 5]. The
architecture builds on a data and computation reuse mode

that can be used to systematically expose reuse sites in the

qguery plan when application-specific aggregation methods

*This research was supported by the National Science Fdondat-
der Grants #EIA-0121161, #EIA-0121177, #ACI-9619020 (U®&n-
tract #10152408), #ACI-0130437, #ACI-0203846, and #AG82087,
and Lawrence Livermore National Laboratory under Grant#B®5 and
#B500288.

a

itable than creating individual query plans and scheduling
gueries based on those plans, especially if information at
the algorithmic level for each of the query plans is exposed.
A similar observation was the motivation for a study done
|oy Kang et al. [20] for relational operators.

The need to handle query batches arises in many sit-
Uations. In a data server concurrently accessed by many
clients, there can be multiple queries awaiting execution.
Sophisticated sense-and-respond systems [7] also require
handling query batches. In such systems, queries are fre-
qguently persistent, meaning that the set of queries sent for
processing does not vary much, i.e., at given points in time

(e.g., every 10 minutes, daily, or weekly) a set of queries R« Select(I, 0, M,)

are submitted for processing. Although the queries are per- foreach(r € R’) {’

sistent, the data is transient, changing over time. Atypica (s, (r)] = F(O[SL()], [L[Sr1(F)], - .., L[Skn(r)])
example is the daily execution of a set of queries for detect-

ing the probability of wildfire occurring in Southern Cali-

fornia. In this context, a sense-and-respond system could Figure 1. General Data Reduction Loop.

issue multiple queries in batch mode to analyze the current

(or close to current) set of remotely sensed data at regu-

lar intervals and trigger a response by a fire brigade, whicn2 ~Query Optimization Using Compiler Opti-
could, in turn, start preventive and controlled fires to dvoi mization Techniques

a catastrophic event. In such a scenario, a pre-optimized

batch of queries can result in better resource allocatioh an | this section, we describe the class of data analysis
scheduling decisions by employing a single comprehensiveqeries targeted in this work, and present an overview of

query plan. Indeed, this could yield significant decreases i the optimization phases for a batch of queries.
average query execution time.

Many researchers have worked on database support fo?'l Data Analysis Queries

scientific databases. SEQUOIA 2000 [31] is one of the pi-

oneering projects in that arena. Commercial projects [12] ~ Queries in many data analysis applications [1, 6, 10, 21]
have also identified requirements that are specific to sci-can be defined as range-aggregation queries (RAGs) [9].

entific applications. Optimizing query processing for sci- 1N€ datasets for range-aggregation queries can be classi-
entific applications using compiler optimization techréqu ~ 11€d @sinput, outpuf or temporary Input (1) datasets cor-
has also attracted attention of several researchers ingud €spond to the data to be process@tput (O) datasets
those in our own group. Ferreira et. al. [14, 15, 16, 17] &€ th_e final results from applying one or more operations
have done extensive studies on using compiler and runtimel© the input datasetdemporary (T) datasets (temporaries)
analysis to speed up processing for scientific queries. In&'€ created durlng.query processing tp store intermediate
particular, they have investigated compiler optimizati®n results. _A user-defined data structure is usually employed
sues related to single queries with spatio-temporal predi-t0 describe and store a temporary dataset. Temporary and
cates, which are similar to the ones we target [15]. output datasets are taggeq with the operations employed to
compute them and also with the query meta-data informa-
In this work, we investigate the application of compiler tion. Temporaries are also referred tceggregatesand we
optimization strategies to executebatch of queries for ~ Use the two terms interchangeably.
scientific data analysis applications as opposed to a single A RAG query typically has both spatial and temporal
query. Our approach is a multi-step process consisting ofpredicates, namely a multi-dimensional bounding box in the
the following tasks: 1) Converting a declarative data anal- underlying multi-dimensional attribute space of the detas
ysis query into an imperative description; 2) Assigning the Only data elements whose associated coordinates fallwithi
set of imperative descriptions for the queries in the batch t the multidimensional box must be retrieved and processed.
the query planner; 3) Employing traditional compiler opti- The selected data elements are mapped to the correspond-
mization strategies such as common subexpression eliminaing output dataset elements. The mapping operation is an
tion, dead code elimination, and loop fusion, so the plannerapplication-specific function that often involves finding a

generates a single, global and more efficient query plan. collection of data items using a specific spatial relatigmsh
(such as intersection), possibly after applying a geometri

The rest of this paper is organized as follows. Section 2 transformation. An input element can map to multiple out-
elaborates on our approach, describing abstractly the kindput elements. Similarly, multiple input elements can map to
of scientific applications we target, as well as the generalthe same output element. An application-specific aggrega-
processing format of their queries. It also describes a realtion operation (e.g., sum over selected elements) is applie
remote sensing application as a motivating scenario. Secto the input data elements that map to the same output ele-
tion 3 describes how our optimization strategy works and ment.
is integrated into our existing database framework. Sec- Borrowing from a formalism proposed by Ferreira [14],
tion 4 presents experimental evidence showing the benefitea range-aggregation query can be specified in the general
obtained from employing the optimizations. And, finally, loop format shown in Figure 1. /electfunction identi-
Section 5 presents a summary and concluding remarks, asies the subdomain that intersects the query metadijta
well as descriptions of a few extensions that we intend to for a queryq;. The subdomain can be defined in the in-
tackle in the near future. put attribute space or in the output space. For the sake of

Cartographic
Projection
Mercator

Range
Selection

=N

"Atmospheric Composite
Correction Generator [
Water Vapor Max NDVI

Figure 2. A typical Kronos query specified

as a sequence of low-level primitive func-
tions. This query produces a data product
transformed using a cartographic projection
method.

discussion, we can view the input and output datasets as be-
ing composed of collections of objects. An object can be

a single data element or a data chunk containing multiple Figure 3. A Kronos data product. A 7-day
data elements. The objects whose elements are updated in (January 1-7, 1992) composite using Max-

the loop are referred to dseft hand side or LHS, objects. imum NDVI (normalized difference vegeta-

The objects whose elements are only read in the loop are tion index) as the compositing criteria and

consideredight hand sidgor RHs, objects. Rayleigh/Ozone as the atmospheric correc-
During query processing, the subdomain denoted by tion method.

R in the foreach loop is traversed. Each point

r in R and the correspondingsubscript functions

Sr(r),Sr1(r),...,Sgrn(r) are used to access the input and

on-demand access to raw data and user-specified data prod-
uct generation [10]. Kronos [19] is an example of such
a class of applications. It targets datasets composed of
remotely sensed AVHRR GAC level 1B (Advanced Very
High Resolution Radiometer — Global Area Coverage) orbit
Gata [24]. The raw data is continuously collected by multi-
. . ple satellites and the volume of data for a single day is about
In |teraF|onr of the qup, the value .Of an output_e_lement 1GB. An AVHRR GAC dataset consists of a set of Instanta-
Q[SL(T)] 1S updatgd using the application-specific func- neous Field of View (IFOV) records organized according to
tion ¥. The function uses one or more of the values the scan lines of each satellite orbit. Each IFOV record con-
L[Sri(r)],. -, I_"[SR"(T)]’ and may also use other scalar tains the reflectance values for 5 spectral range channels.
values that are inputs to the funptlon, to cc_)mpute an aggré-g4cn sensor reading is associated with a position (longitud
gate result value. The aggregation operations typically im and latitude) and the time the reading was recorded. Addi-

plemgntgenerallzed_re_ductlon[él8_], which must be com- tionally, data quality indicators are stored with the ravieda
mutative and associative operations. A commutative and The processing structure of Kronos can be divided into

associative aggregation operation produces the Same'[oUtpuseveraI basic primitives that form a processing chain on the

value irrespective of the order in which the input elements sensor data (see Figure 2 which can produce a data product
are processed. That is, the set of input data elements Calls the form shown in Figure 3):

be divided into subsets. Temporary datasets can be com-
puted for each subset and a new intermediate result or the 1 Range Selection (Retrieval)retrieves the relevant
final output can be generated by combining the temporary IFOVs from the raw AVHRR data.

datasets.

output data elements for the loop. In the figure, we as-
sume that there are RHS collections of objects, denoted
by I,...,I,, contributing the values of aHS object. It

is not required that alk RHS collections be different, since
different subscript functions can be used to access the sam
collection.

2. Atmospheric Correction (Correction) applies an at-

2.2 Case Study Application — Kronos mospheric correction algorithm and modifies the rele-
vant part of the selected input data tuples.

Before we present our approach and system support for g Composite Generator (Compositepggregates many

multi-query optimization for query batches, we will briefly IFOVs for the same spatial region and multiple tempo-
describe the Kronos application used as a case study inthis o, cqordinates.
paper.

Remote sensing has become a very powerful tool for ge- 4. Subsamplerconverts the input data to a user-specified
ographical, meteorological, and environmental studiég [1 spatial resolution. In our system, subsampler was not

Usually systems processing remotely sensed data provide actually implemented as a primitive. Rather, since its

behavior only alters the discretization level of the out-
put grid (e.g., one pixel per eachf@m?), the informa-
tion is included into the query bounding box.

. Cartographic Projection (Projection) applies a map-
ping function that converts a uniform 2-dimensional
(spherical) grid into a particular cartographic projec-
tion.

All the primitives (with the exception of Range Se-
lection) may employ different algorithms (i.e., multi-
ple atmospheric correction methods) that are specified
as a parameter to the actual primitive (e.g., Correc-
tion(T0,Rayleigh/Ozone), where Rayleigh/Ozone is an ex-
isting algorithm and TO is the aggregate used as input).
In fact, Kronos implements 3 algorithms for atmospheric
correction, 3 different composite generator algorithnrmsl a
more than 60 different cartographic projections.

Several types of queries can be posed to a Kronos-like
system. Queries can be as simple as visualizing the re
motely sensed data for a given region using a particular
cartographic projection [19], or as complex as statidijcal
comparing acompositedata product across two different
time periods [27]. As a result of that, queries can be as sim-
ple as executing a single primitive or as complex as using
all the available primitives, as shown in Figure 2.

2.3 An Approach to Solving the Multi-Query Op-
timization Problem

The objective of multi-query optimization is to take
a batch of queries, expressed by a set of declarative
query definitions (e.g., using the SQL extensions of Post-
greSQL [26]), and generate a set of optimized data paral-
lel reduction loops that represent the global query plan for
the queries in the batch. Optimization is a multi-phase pro-
cess, in which declarative query definitions are first con-
verted into imperative loops that conform to the canonical
data reduction loop of Figure 1, and then those loops are
optimized using various compiler techniques.

Consider Kronos queries as examples. For our study,
queries are defined as a 3-tuplespatio-temporal bound-
ing box and spatio-temporal resolution, correction method
compositing method. The spatio-temporal bounding box
(in the WHERE clause) specifies the spatial and temporal
coordinates for the data of interest. The spatio-tempesal r
olution (or output discretization level) describes the amnto

for example, water vapor in the atmosphere). And, finally,
the compositing method (in the FROM clause) defines the
aggregation level and function to be employecttalesce
multiple input grid points into a single output grid point.
Two sample Kronos queries specified in PostgreSQL are il-
lustrated in Figure 4. Query 1, for instance, selects the raw
AVHRR data from a data collection named AVHRIXC for

the spatio-temporal boundaries stated in the WHERE clause
(within the boundaries for latitude, longitude, and day)eT
data is subsampled in such a way that each output pixel rep-
resents 4K M? of data (with the discretization levels de-
fined bydeltalat deltalonanddeltaday. Pixels are also
corrected for atmospheric distortions using YNaterVapor
method and composited to find the maximum value of Nor-
malized Difference Vegetation Indeki@xNDV)).

Figure 4 presents an overview of the optimization pro-
cess. The goal is to detect commonalities between Query
1 and 2 in terms of common spatio-temporal domains and
the primitives they require. In order to achieve this goal,

the first step in the optimization process is to parse and con-

vert these queries into imperative loops conforming with th

loop in Figure 1. That loop presents the high-level descrip-
tion of the same queries, with the spatio-temporal bound-
aries translated into input data points (via index lookup
operations). In data analysis applications, the raw data is
typically declustered across multiple disks as varyirmgsi
chunks, to permit efficient 1/0O scheduling to fetch the data
necessary to process user queries. Therefore, loops can ite
ate on points, blocks, or chunks depending on how the raw
data is stored, declustered, and indexed.

We should note that we have omitted the calls to the sub-

script mapping functions in order to simplify the presenta-
tion. These functions enable both finding an input data ele-

ment in the input dataset and determining where it is placed
in the output dataset (or temporary dataset). In some cases,
mapping from an absolute set of multidimensional coordi-
nates (given in the WHERE clause of the query) into a rel-
ative set of coordinates (the locations of the data elepents
may take a considerable amount of time. Thus, minimiz-
ing the number of calls to the mapping operations can also
improve performance.

As seen in Figure 4, once the loops have been generated,

the following steps are carried out to transform them into a
global query plan:

1. The imperative descriptions are concatenated into a
singleworkload program.

of data to be aggregated per output point (i.e., each output

pixel is composed fromx input points, so that an output
pixel corresponds to an area of, for exampléy 82). The
correction method (in the FROM clause) specifies the atmo-
spheric correction algorithm to be applied to the raw data to
approximate the values for each IFOV to theal corrected
values (by trying to eliminate spurious effects caused by,

2. The domains for each of thereachloops are in-
spected for multidimensional overlaps (i.e., multidi-
mensional bounding box intersections are computed).
Loops with domains that overlap are fused by moving
the individual loop bodies into one or more combined

loops. Loops corresponding to the non-overlapping

IMPERATIVE DESCRIPTION

for each point in bb: (0.000,15.972,199206) (20.000,65.000,199206) {

TO = Retrieval(l)
T1 = Correction(T0, WaterVapor)
01 = Composite(T1, MaxNDVI)

}
for each point in bb: (14.964,19.964,199206) (20.000,55.000,199206) {
TO = Retrieval(l)

T1 = Correction(T0,WaterVapor)
02 = Composite(T1, MinCh1)

DECLARATIVE DESCRIPTION

QUERY1:

select *

from

Composite(Correction(Retrieval(AVHRR_DC), WaterVapor),MaxNDVI)
where

(lat>0 and lat<=20) and (lon>15.97 and lon<=65) and (day=1992/06) and
(deltalat=0.036 and deltalon=0.036 and deltaday=1);

QUERY2:

select *

from

Composite(Correction(Retrieval(AVHRR_DC), WaterVapor),MinCh1)

where

(lat>14.9 and lat<=20) and (lon>19.96 and lon<=55) and (day=1992/06) and
(deltalat=0.036 and deltalon=0.036 and deltaday=1);

AFTER DEAD CODE ELIMINATION
for each point in bb: (14.964,19.964,199206) (20.000,55.000,199206) {
TO = Retrieval(l)
T1 = Correction(T0, WaterVapor)
01 = Composite(T1, MaxNDVI)
02 = Composite(T1, MinCh1)
}
for each point in bb: (0.000,15.972,199206) (14.928,65.000,199206) {
TO = Retrieval(l)
T1 = Correction(T0, WaterVapor)
01 = Composite(T1, MaxNDVI)

AFTER LOOP FUSION
for each point in bb: (14.964,19.964,199206) (20.000,55.000,199206) {
TO = Retrieval(l)
T1 = Correction(TO, WaterVapor)
01 = Composite(T1, MaxNDVI)
T2 = Retrieval(l)
T3 = Correction(T2, WaterVapor)
02 = Composite(T3, MinCh1)
}
for each point in bb: (0.000,15.972,199206) (14.928,65.000,199206) {
TO = Retrieval(l)
T1 = Correction(TO, WaterVapor)
01 = Composite(T1, MaxNDVI)

}

for each point in bb: (14.964,55.038,199206) (20.000,65.000,199206) {
TO = Retrieval(l)
T1 = Correction(TO, WaterVapor)
01 = Composite(T1, MaxNDVI)

}

for each point in bb: (14.964,15.972,199206) (20.000,19.929,199206) {
TO = Retrieval(l)
T1 = Correction(TO, WaterVapor)
01 = Composite(T1, MaxNDVI)

AFTER COMMON SUBEXPRESSION ELIMINATION

for each point in bb: (14.964,19.964,199206) (20.000,55.000,199206) {

TO = Retrieval(l)

T1 = Correction(T0, WaterVapor)

01 = Composite(T1, MaxNDVI)

T2 = copy .Retrieval(T0)

T3 = copy .Correction(T1, WaterVapor)

02 = Composite(T3, MinCh1)
}
for each point in bb: (0.000,15.972,199206) (14.928,65.000,199206) {
TO = Retrieval(l)
T1 = Correction(T0, WaterVapor)
01 = Composite(T1, MaxNDVI)

}

for each point in bb: (14.964,55.038,199206) (20.000,65.000,199206) {
TO = Retrieval(l)
T1 = Correction(T0, WaterVapor)
O1 = Composite(T1, MaxNDVI)

}

for each point in bb: (14.964,15.972,199206) (20.000,19.929,199206) {
TO = Retrieval(l)
T1 = Correction(T0, WaterVapor)
01 = Composite(T1, MaxNDVI)

}

for each point in bb: (14.964,55.038,199206) (20.000,65.000,199206) {
TO = Retrieval(l)
T1 = Correction(T0, WaterVapor)
01 = Composite(T1, MaxNDVI)

}

for each point in bb: (14.964,15.972,199206) (20.000,19.929,199206) {
TO = Retrieval(l)
T1 = Correction(T0, WaterVapor)
01 = Composite(T1, MaxNDVI)

}

Figure 4. An overview of the entire optimization process for two queries. MaxNDVIand MinChlare
different compositing methods and Water Vapordesignates an atmospheric correction algorithm. All
temporaries have local scope with respect to the loop. The di scretization values are not shown as
part of the loop iteration domains for a more clear presentat ion.

domain regions are also created. An intermediate
gramis generated with two parts: combined loops for
the overlapping areas and individual loops for the non-
overlapping areas.

3 System Support

In this section, we describe the runtime system that sup-
ports the multi-query optimization phases presented in Sec
3. Foreach combined |00p, common Subexpression e|im-ti0n 2. The runtime system is built on a database engine we
ination and dead code elimination techniques are em-have specifically developed for efficiently executing multi
ployed. That is, redundartisfunction calls are elim- query loads from scientific data analysis applications ir pa
inated, redundant subscript function calls are deleted,allel and distributed environments [2, 3]. The compiler ap-
and duplicated retrieval of input data elements is elim- proach described in this work has been implemented as a
inated. front-end to the Query Server component of the database
engine.
In Section 3.3 we will discuss in greater details how each The Query Server is responsible for receiving queries
of these steps are performed and how the optimization pro-from the clients, generating a query plan, and dispatching
cess is integrated into our database middleware. them for execution. It invokes the Query Planner every

time a new query is received for processing, and contin- and data loading operations (INSERT INTO).

ually computes the best query plan for the queries in the

waiting queue which essentially form a query batch. When 3.2 The Imperative Query Back-End

resources (e.g., processors) become available, the aptimi

set of loops for the query batch is dispatchegl for execution. The appeal of employing a declarative language as the
The system support and process for computing the best plaryery interface for end-users has extensive implications i

is described in the next sections. the design of the database backend. Indeed, Ullman [35]
_ states that “the use of declarative languages implies exten
3.1 The Declarative Query Front-End sive optimization by the system if an efficient implemen-

tation of declaratively-expressed wishes is to be found”.
A declarative |anguage is one that can express WhatThere are two issues embedded in that statemerdans-
the desired result of a query should be, without explain- lation andoptimization The first issue requires the conver-
ing exactly how the desired result is to be computed. Pre-sion of the declarative query into an imperative descriptio
vious researchers have already postulated and verified thd he second issue lies in how to optimize the imperative de-
strengths of using declarative languages from the perspecscription, with the availability of potentially multiplegeliv-
tive of end-users, essentially because the process ofsaccesalent operators provided by the runtime system (e.g., mul-
ing the data and generating the data product does not neeéiple ways to compute the maximum value for an attribute
to be specified, as is the case with procedural or impera-for a set of tuples) given the data characteristics (e.g, the
tive languages [35]. SQL-86 (also called SQL-1) or SQL- dataset is sorted on that particular attribute).
92 (also called SQL-2) are traditional declarative langsag In this paper, the complexity of the translation phase
for database applications. However, the very nature of sci-IS somewhat constrained for two main reasons. First, the
entific data analysis applications requires handling @asas ~spatio-temporal nature of the applications we support siake
and generating data products that are application-specifiche canonicaor loop in Figure 1 a solution to virtually any
and user-defined, which makes it cumbersome and, in manyduery posed to the system, since one needs to visit all the
cases, impossible to pose a query using these languages. data points pertaining to the query bounding box. This fact
Stonebraker and Brown [32] describe a simple, four- implies that there is a one-to-one mapping between a declar-
category taxonomy for classifying DBMS (Database Man- ative query and an imperative query (note that this is not
agement System) applications. A key distinction made by true for traditional relational queries, in which there may
the taxonomy is concerned with the complexity of the data, 0& multiple instances of an operator ljken, for example).
meaning both the raw data and the processed data produceecond, the canonictir loop, despite being an imperative
that is generated as a result of a guery. Speciﬁca”y, theydescription, is at a hlgh enough level of abstraction that it
point out the intrinsic semantic shortcomings of declagati IS @ unique description of the computation to be performed,
languages traditionally associated with RDBMSs (Rela- but still lends itself to different execution strategies.
tional Database Management Systems). Fortuitously, how-
ever, SQL-3 and object-relational DBMSs (ORDBMSs) ad- 3.3 The Multi-Query Planner
dress the basic impediments to dealing with application-
specific data processing [13]. The multi-query planner is the system module that re-
Given the limitations of SQL-2, we have employed Post- ceives an imperative query description from the Query
greSQL as the declarative language of choice for our sys-Server and iteratively generates an optimized query plan fo
tem. PostgreSQL has language constructs for creatingthe queries received, until the system is ready to process th
new data types (CREATE TYPE) and new data processingnext query batch.
routines, called user-defined functions (CREATE FUNC- The loop body of a query may consist of multiglenc-
TION) [26]. tion primitivesregistered in the database catalog. In this
The only relevant part of PostgreSQL to our database iswork, a function primitive is an application-specific, user
its parser, since the other data processing services all arelefined, minimal, and indivisible part of the data process-
handled within our existing database engine. Therefore, fo ing [5]. A primitive consists of a function call that can take
the prototype used to gather the experimental results $n thi multiple parameters, with the restriction that one of them
paper, we extracted the PostgreSQL parsing code and inteis the input data to be processed and the return value is the
grated it into our system through an API that can handle the processed output value. An important assumption is that
language constructs that are used to describe a query (SBEhe function has no side effects. The function primitives in
LECT statements), catalog management operations (CREa query loop form a chain of operations transforming the in-
ATE TABLE and DROP TABLE), user-defined types and put data elements into the output data elements. A primitive
functions (CREATE FUNCTION, CREATE TYPE, etc), atlevell of a processing chain in the loop body has the dual

role of consuming théemporary datasegenerated by the loop body statements farcw! are appended to the existing
primitive immediately before (at levél- 1) and generating statements fobestl (themergemethod in Algorithm 3); 3)
the temporary dataset for the primitive immediately aféér (The iteration domain forew! is either subsumed by that
levell + 1). of bestl, or subsumes that dfestl, or yet there is a par-
Figure 4 shows two sample Kronos queries that con- tial overlap between the two iteration domains. This case
tain multiple function primitives. In the figure, the spatio requires computing several new loops to replace the origi-
temporal bounding box is described by a pair of 3- nalbestl. The first new loop iterates only on the common,
dimensional coordinates in the input dataset dométe- overlapping domain ofiewl! andbestl, which is computed
trieval, Correction and Compositeare the user-defined by thecommonAreafunction in Algorithm 3. Nextpewl
primitives. | designates the portion of the input domain (i.e., is merged withbestl (now with updated boundaries) and
the raw data) being processed in the current iteration of thethe resulting loop is added to the query plan (itesti is
foreachloop andTOandT1 designate the results of the com- replaced byupdatedl). Second, loops covering the rest of

putation performed by thRetrievaland Correction primi- the domain originally covered byestl are added to the cur-
tive calls. 01 andO2 designate the output for Query 1 and rent planL. The functioncomplementTilescomputes the
Query 2, respectively. appropriate bounding boxes for each of these loops. Finally

Optimization for a query in a query batch occurs in a the additional loops representing the rest of the domain for
two-phase process in which the query is first integrated into new! are computed using the functiadditionalTiles, and
the current plan and, then, redundancies are eliminatesl. Th the new loops beconeandidateso be added to the updated
integration of a query into the current plan is a recursive query plan. They are considered candidates because those
process, defined by the spatio-temporal boundaries of thdoops may also overlap to other loops alreadyLin The
query, describing the loop iteration domain. The details of addNewLoogfunction described by Algorithm 3 is recur-

this process are explained in the next sections. sively invoked for each of those loops. This last step guar-
antees that there will be no iteration space overlap across

the loops in the final query batch plan.
3.3.1 Loop Fusion

The first stage of the optimization mainly employs the 3-3-2 Redundancy Elimination

bounding boxes for the new query, as well as the boundingAfter the loops for all the queries in the batch are added to
boxes for the set of already optimized loops in the query the query plari, redundancies in the loop bodies can be re-
plan, as shown in Algorithm 3 in Appendix A. The op- moved employing straightforward peephole optimizations —
timization essentially consists ¢dop fusionoperations — common subexpression elimination and dead code elimina-
merging and fusing the bodies of loops representing queriesjon. In our case, common subexpression elimination con-
that iterate at least partially over the same donf@inThe sists of identifying computations and data retrieval opera
intuition behind this Optimization goes beyond the tradi- tions that are performed mu|t|p|e times in the |00p body'
tional reasons for performing loop fusion, namely reducing eliminating all but the first occurrence [23]. Our method
the cost of the loops by combining overheads and exposingis a variation of the traditional algorithm employed forsthi
more instructions for parallel execution. The main goal of type of optimization and consists of keeping track of the

this phase is to expose opportunities for subsequent comzayailable expressions.e., those that have been computed
mon subexpression elimination and dead code elimination,sg far in the loop body. In our case, each of the statements

substantially reducing the loop strength. are of the following form:
Algorithm 3 performs two distinct tasks when a new T,[SL(r)] =
loop newl is to be integrated into the current query batch oL
plan. First, the query domain for the new loop is compared 77 (L[S (] i[Sr ()], - - - Tkl[Sr, (N)] prs - -)
against the iteration domains for all the loops already @ th whereT; is either a temporary aggregate or a query out-
query plan. The loop with the largest amount of multidi- put aggregatel},. .., T}, are aggregates computed earlier in
mensional overlap is selected to incorporate the statementthe processing chain, and, ..., p; are other primitive-
from the body ofnewl. The second task is to modify the specific parameters. In such a scenario, each statement
current plan appropriately, based on three possible scenarcreates a new available expression (i.e., representedeby th
ios: 1) The new query representedrmtw! does not overlap right hand side of the assignment), which can be accessed
with any of the existing loops, seew! is added to the plan through a reference to the temporary aggregate on the left

as is; 2) The iteration domain for the new loapwl is ex- hand side of the assignment. Algorithm 2 in Appendix A
actly equal to that of a loop already in the query plan (loop performs detection of new available expressions and substi
bestl). In this case, the body of lodgestl is mergedwith tution of a call to a primitive by @opyfrom the temporary

newl, i.e., the two loop bodies are combined so that the aggregate containing the redundant expression.

The equivalence of the results generated by two state-tion 2.2). It was necessary to re-implement the Kronos
ments is determined by tHand function, which inspects primitives to conform to the interfaces of our database sys-
thecall sitefor the primitive function invocations. This op- tem. However, employing a real application ensures a more
eration essentially means establishing that in additiarsto realistic scenario for obtaining experimental results.tkn
ing the same (or equivalent) input data, the parameters forother hand, we had to employ synthetic workloads to per-
the primitive are also the same or equivalent. Because theform a parameter sweep of the optimization space. We uti-
primitive invocation is replaced by a copy operation, primi lized a statistical workload model based on how real users
tive functions are required to not have any side effects. tend to interact with the Kronos system.

The removal of redundant expressions usually causes the
creation of useless code — assignments that gendeai® 41 A Query Workload Model
variables— that is no longer needed to compute the output
results of a loop. By definition, a variable is dead if it is
not usedby any of the statements from the location in the
loop body where it islefineduntil the last statement in the
loop body being inspected [23]. We extended this defini-
tion to also accommodate situations in which a statement
conforms to the forn®; < copy(1}), wherel; andT; are
both temporaries. In this case, all the use%ofan be sim-

We designed several experiments to illustrate the impact
of the compiler optimizations on the overall batch process-
ing performance, using AVHRR datasets and a mix of syn-
thetic workloads. All the experiments were run on a 24-
processor SunFire 6800 machine with 24GB of main mem-
ory running Solaris 2.8. We used a single processor of this
machine to execute queries, as our main goal in this paper is
ply replaced byr’;. ; . . Lo

L to evaluate the impact of the various compiler optimization

We employ the standard dead code elimination algo- .

. : . : . . techniques on the performance of query batches. The lever-
rithm, which requires marking all instructions that cormgut . : .
age from the multi-processor nature of the environment will

essential values. Indeed, our algorithm computes the def- " .)
) . - : be investigated in a future work to further decrease query
use chain (connections betweerdefinition of a variable o
batch execution time.

and all itsuse$ for all the temporaries in the loop body, as A dataset containing one month (January 1992) of

shown in Algorithm 1 in Appendix A. AVHRR data was used, totaling about 30GB. In order to
Algorithm 1 makes two passes over the statements that
create the queries that are part of a batch, we employed a

are part of a loop in the query plan. The first pass detects the varlatlon of the Customer Behavior Model Graph (CBMG)
statements that define a temporary and the ones that use |¥ echnique. CBMG is utilized, for example, by researchers
updating thelu data structure. A second pass over the State_analyzmg performance aspects of e-business applications

ments_ looks for statements that dgflne a temporary Value’and website capacity planning [22]. A CBMG can be char-
checkingdu for whether they are utilized, and removes the . o
acterized by a set af states, a set of transitions between

unneeded statements. ; o
. Lo states, and by an x n matrix, P = [p; ;], of transition
Both the common subexpression elimination and the '
probabilities between the states.

dead code elimination algorithms must be invoked multi- . . .

ple times, until the query plan remains stable, meaning that In our moo_lel, the first query in a batCh. specifies a geo-
all redundancies and unneeded statements are eI|mmated;raph'cal region, a set of temporal coordinates (a continu-
At this point the Query Planner can submit the plan for se- ous period of days), a resolution level (both vertical and ho
quential or parallel execution. izontal), a correction algorithm (from 3 possibilities)ca

Although considerably similar to standard compiler op- $hcomp83|t|ng otperatqr (a_Isclr:‘rorg t3 gmerent algozlter;)s). d
timization algorithms, all of the algorithms were imple- € subsequent queries n the balch are generated base

mented in the Query Planner to handle an intermediate code on tthel following (iperatmnls anothaetw p?"t“ of interest
representation we devised to portray the query plan. It Spatial movementemporal movemeruesolution increase

should be clear that we are not compiling C or C++ code, or decreasg applying a differentcorrection algorithm or
but rather the query plan representation. Indeed, the run- applying a differentompositing operator In our experi-

time system implements a virtual machine that can take ei- ments, we used the probabilities shown in Table 1 to gen-

ther the unoptimized query plan or the final optimized plan eraﬁ muIIEpIe qure]nes Ii(I)r ‘Z bat(;_rll with dlfferter;lt l\)/w:rl;loadf
and execute it, leveraging any possibly parallel infrastru profiles. For each workioad profie, we created batches o
ture available for that purpose. 2,4,8,16, 24, and 32 queries. A 2-query batch requires pro-

cessing around 50 MB of input data and a 32-query batch

i . requires around 800 MB, given that there is no redundancy
4 Experimental Evaluation in the queries forming the batch and also that no optimiza-
tion is performed. There are 16 available points of inter-

The evaluation of the techniques presented in this pa-est; for example, Southern California, the Chesapeake Bay,
per was carried out using the Kronos application (see Sec-the Amazon Forest, etc. This way, depending on the work-

Transition Workload 1| Workload 2| Workload 3| Workload 4

New Point-of-Interest 5% 5% 65% 65%

Spatial Movement 10% 50% 5% 35%

New Resolution 15% 15% 5% 0%

Temporal Movement 5% 5% 5% 0%

New Correction 25% 5% 5% 0%

New Compositing 25% 5% 5% 0%

New Compositing Level 15% 15% 10% 0%
Table 1. Transition probabilities. A sequence of queries in a query batch is generated as follows:
the first query always uses New Point-of-Intereseind subsequent queries are generated based on
modifications to the query attributes based on the transitio n selected using the probabilities in the

table.

load profile, subsequent queries after the first one in the correction, compositing, and resolution values are low.

batch may either linger around that point (moving around Workload 4, on the other hand, denotes a profile with
its neighborhood and generating new data products with the lowest probability of data and computation reuse.
other types of atmospheric correction and compositing al- All the queries from this workload choose the same
gorithms) or move on to a different point. These transitions resolution, correction, and compositing values, but the
are controlled according to the transition probabilitie$a- amount of spatial movement and the probability of
ble 1. More details about the workload model can be found choosing a new point-of-interest for a query is quite
in [4]. high. The other profiles — 2 and 3 — are in between

For the results shown in this paper each query returns the two extremes as far as the likelihood of data and
a data product for 56 x 256 pixel window. We have computation reuse.

also compiled results for larger querie$¥2 x 512 data

products. The results using those queries are completely Our study measured five different performance metrics:
consistent with the ones we show here. In fact, in absolutebatch execution time, number of statements executed (loop
terms the improvements are even larger. However, we hadhody statements), average query turnaroundtjrmeerage

to restrict ourselves to smaller batches of up to 16 queriesquery response tirde and plan generation time (i.e., the
due to the memory footprint exceeding 2 GB (the amount of amount of time from when the parser calls the query planner
addressable memory using 32-bit addresses employed wheaqntil the time the plan is fully computed).

utilizing gcc 2.95.3 in Solaris).

4.2 Experimental Study 4.2.1 Batch Execution Time

The amount of time required for processing a batch of
We studied the impact of the proposed optimizations gueries is our most important metric, since that is the main
varying the following quantities: goal of the optimizations we employ. Figure 5 shows the
o reduction in execution time for different batches and work-
e The number of queries in a batch (from a 2-query batch | 4 profiles, comparing against executing the batith-
up to a 32-query batch). out any optimizations The results show that reduction in
the range of 20% to 70% in execution time is achieved.
Greater reductions are observed for larger batches using th
workload profile 1, which shows high locality of interest.
In this profile, there is a very low chance of selecting a new
point of interest or performing spatial movement (which im-
e The workload profile for a batch. Workload 1 repre- plies high spatial and temporal locality as seen in Table 1).
sents a profile with high probability of reuse across Therefore, once some data is retrieved and computed over,
the queries. In this workload profile, the probability most queries will reuse at least the input data, even if they
that a query will choose a new point-of-interest and require different atmospheric correction and compositing
-the amount of spatial movement around the point-qf- 1Query turnaround time is the time from when a query is suleaitt
interest are very low (5% and 10%, respectively). This until when it is completed [30, 34].

resu!ts in high overlap in regigp; of intereSt. across 2Query response time is the time between when a query is sigoimit
queries. Moreover, the probabilities of choosing new and the time the first results start being returned [30, 34].

e The optimizations that are turned on (none, only com-
mon subexpression elimination and loop fusioDs&
LF; or common subexpression elimination, dead code
elimination, and loop fusion €SE-DCE-LF).

Relative Batch Execution Time Improvements Number of Statements Executed

O cse-If O off
B cse—dce-If W cse-If
cse—dce-If

©
=]
1
=N
® O
L

80 —

il

2 4 8 16 24 32 2 4 8 16 24 32 2 4 8 16 24 32 2 4 8 16 24 32 2 4 8 16 24 32 2 4 8 16 24 32 2 4 8 16 24 32 2 4 8 16 24 32
Workload Profile 1~ Workload Profile 2 Workload Profile 3 Workload Profile 4 Workload Profile 1~ Workload Profile 2~ Workload Profile 3 Workload Profile 4

PR e
N s O
| | |

Batch Execution
Time Reduction (%)

Number of Executed
Statements (millions)
5
I

Workload Profile # / # of queries in the batch Workload Profile # / # of queries in the batch

Figure 5. The reduction in batch executing Figure 6. Number of loop body statements ex-
time. ecuted.

algorithms. Additionally, there are only 16 points of in- nation CSE), because neither optimization eliminates loop
terest as we previously stated, which means that across thbody statements. Interestingly, we observe thsit alone

32 queries at least some of the queries will be near the samés responsible for substantially decreasing batch executi
point of interest, which again implies high locality. On the time, as seen in Figure 5. The decrease is a function of loop
other hand, when a batch has only 2 queries, the chance o$trength reduction, due to the fact that many statements are
having spatio-temporal locality is small, so the optimiza- changed from either an 1/O intensive primitive (Retrieval)
tions have little effect. The 2-query batches for workload or a processing intensive primitive (either one of the algo-
profiles 1 and 3 show this behavior (note that the y-axis in rithms used by the Correction and Composite primitives)
the chart starts at -10% improvement). In some experimentsinto a much less expensivapy operation. On the other
we observe that the percent reduction in execution time de-hand, when dead code eliminationdg) is turned on in
creases when the number of queries in a batch is increasedonjunction with the other optimizations, a sizable deseea
(e.g., going from a 4-query batch to an 8-query batch for occurs in the number of loop body statements executed,
Workload 3). We attribute this to the fact that queries in dif which accounts for a further decrease in the batch execu-
ferent batches are generated randomly and independentlytion time as also seen in Figure 5. Indeed, one can see that
Hence, although a workload is designed to have a certainthe results in the two figures correlate, and for some config-
level of locality, it is possible that different batches het urations the optimizations do not provide any performance
same workload may have different amounts of locality, due benefits (due to the lack of spatial or temporal locality).

to the distribution of queries. The important observat®n i

that the proposed approach takes advantage of locality whery 5 3 Query Turnaround Time

it is present. As with any optimization in general, and com-

piler optimizations in particular, the benefits of optimiza Queries may be processed in a batch for two main reasons:
tions are realized in proportion to the probability of finglin 1) @ client submits a batch, or 2) a batch is formed while
a chance to apply them! In our case, that presumes somdhe system is busy processing other queries, and interac-
spatio-temporal locality occurs. This seems to be the casdive clients continue to send new queries that are stored in a
for many data analysis applications, and for most remoteWwaiting queue. In the second scenario, it is also important
sensing applications in particular, because of higheréste for a database system to decrease the average execution time
in some geographical areas during particular time periodsper query so that interactive clients experience less deday

(e.g., wild fire season in Southern California). tween submitting a query and seeing its results. Although
the optimizations are targeted at improving batch exenutio

time, Figure 7 shows that they also have a positive impact
on average query turnaround time. In these experiments,
Figure 6 shows how each combination of optimizations af- queries are added to the batch as long as the system is busy.
fects the number of loop body statements executed. LoopThe query batch is executed as soon as the system becomes
fusion (LF) alone has no impact whatsoever for this met- available for processing it. As seen from the figure, for the
ric. The same is true for common subexpression elimi- workload profiles with higher locality (1 and 2), execution

4.2.2 Number of Statements and Loop Strength

10

Average Query Turnaround Time Plan Generation Time

300 L off 0.260 L off
280 — B cse-If 0.240 1 B cse-If
260 — cse-dce-If 0.220 cse—dce—If
ggg] o 0.200 h
200 0.180 —
@ 180 4 @ 0160 -
Py 160 — Py 0.140 —
£ 140 £ 0120 4
= 120 4 = 0100 o
100 0.080 |
Zg B 0.060 |
- 0.040 —
‘218 — mm 0.020 —
o -] 0.000 re fl - f
2 4 8 16 24 32 2 4 8 16 24 32 2 4 8 16 24 32 2 4 8 16 24 32 2 4 8 16 24 32 2 4 8 16 24 32 2 4 8 16 24 32 2 4 8 16 24 32
Workload Profile 1 ~ Workload Profile 2~ Workload Profile 3~ Workload Profile 4 Workload Profile 1 ~ Workload Profile 2~ Workload Profile 3~ Workload Profile 4
Workload Profile # / # of queries in the batch Workload Profile # / # of queries in the batch
Figure 7. Average query turnaround time. Figure 9. Time to generate a batch executing
plan.
Average Query Response Time
300 E off
260 1 .y Ppartial result also decreases considerably. The decrease c
Ford T be as much as 70%, but is usually between 20% and 50%.
200 —
@ 180 —
g 127 4.2.5 Plan Generation Time
120 o
gl The application of compiler optimization strategies intro
o] m duces costs for computing the optimized query plan for the
2] H.q% query batch. Figure 9 illustrates how much time is needed
2 4 8 16 24 32 2 4 8 16 24 32 2 4 8 16 24 32 2 4 8 16 24 32 . .
Workload Profile 1~ Workioad Profile 2 Workload Profile 3 Workload Profile 4 to obtain the execution plan for a query batch. There are
Workload Profile # / # of queries in the batch two key observations here. The first observation is that the
planning time depends on the number of exploitable opti-
mization opportunities that exists in the batch (i.e., libga
Figure 8. Average time to generate a partial across queries). Hence, if there is no locality in the query
result for a query. batch, the time to generate the optimized plan (which is sup-

posed to be the same as the unoptimized plan) is roughly
equivalent to the time to compute the non-optimized plan.
i . The second observation is that the time to compute a plan
time decreases by up to 55%. Conversely, for batches withto paiches that have heavily correlated queries increases
low locality there is no decrease in execution time, as ex- exponentially (due to the fact that each spatio-temporal
pected. overlap detected produces several new loops which must
be recursively inserted into the optimized plan). However,
4.2.4 First Response Time even though much more time is spent in computing the plan,
executing the query batch is several orders of magnitude
Also related to the issue of satisfying interactive clieists more expensive than computing the plan. As seen from Fig-
the issue of showingartial progress during the computa- ures 5 and 9, query batch planning takes milliseconds, while
tion of a query. From the perspective of human-computer query batch execution time can be hundreds of seconds de-
interaction, it is usually preferable to have a system that pending on the complexity and size of the data products
provides an indication of progress during an expensive being computed. Finally, a somewhat surprising observa-
query [30]. The application of the loop fusion optimization tion is the fact that adding dead code elimination to the mix
creates multiple loops that generate partial results, (eog- of optimizations actually slightly decreases the time reked
tions of an output image dataset) for a single query. Once ato compute the plan. The reason for this is that the loop
loop is completely computed, the partial result (e.g., & sub merging operation and also subsequent common subexpres-
image) is ready for delivery to the client. Figure 8 shows sion elimination operations become simpler, if useledssta
that an added benefit of employing all the compiler opti- ments are removed from the loop body. This extra improve-
mizations is that the response time for generation of thee firs ment is doubly beneficial because the time to execute the

11

batch decreases even further as seen in Figures 5, 7, and 8sue of when and how to schedule the execution of the mul-
tiple loops produced by the query planner, along with other
resource management issues, are key aspects of the opti-
mization process. Another approach worth exploring is par-
titioning query batches into sub-batches and then schedul-

. I.n.thls paper, we have de;cnpgd a framewor!< for op- ing within a batch to minimize memory footprint, in a way
timizing the execution of scientific data analysis query similar to partitioning activities for web agents [25].

batches that employ well-understood compiler optimizatio In our previous work [5], we have shown that employ-
strategies. The queries are described using a declarafive r ing an active semantic cache, in which requests for ag-

resentaﬂoP.— I;ostgreS_IQ L_W.h'Ch in |tts)eh; reprels?n(;sban 'md'gregates can be satisfied not only when there is an exact
provement in how €asily queries can be formuiated by €nd,aicy put also when a transformation primitive can auto-

users. This representation is transformed into an imperati matically modify an aggregate to comply with the request
representation using loops that iterate over a muItidimen-iS an important mechanism for improving the performance’
sional spatio-temporal bounding box. That representationOf a database system dealing with multi-query batches. A
lends itself to var_ious compiler optimizatio_ns tec_hn_iqugs natural extension of that is to allow common subexpression
such as loop fusn.)n,- common subexprgssmn ellmln""t'on’elimination to be active in those situations. In that case, a
f"‘”d dead codg e!|m|nat|on. Our expgrlmenFaI results u.s'transformableequivalent expression is detected and the run-
ing a real application show that the optimization process is time system invokes the appropriate method to transpgrentl
inexpensive and that when there is some locality across theperform the operation. If computing the transformation is
queries in a batch, the benefits of the optimizations greatlycheaper than computing the aggregate from scratch, this ap-

Oglth'gh the CO.StSt'h The optlmflzatlonstc?n pro‘é'?/eostﬁ' roach will clearly outperform simpler common expression
able decreases In the amount of computation an Aalimination operations. This is an extension we want to ex-

are required for executing data and computation intensive lore in a future prototype. Along the same lines, the ac-
queries, as our experimental evidence showed. Even mor«% ' ’

) ant is that thi h | v handl ve caching system and the batch optimizer can be inte-
Important 15 that this approach can very elegantly han egrated. For this scenario, the batch optimizer can alsgleve
the issue of dealing with user-defined primitives that arise

) R .2 age the cache contents when performing common subex-
in scientific applications.

i o . pression eliminations.

We have shown that the compiler optimization strategies
can account for sizable decreases in the execution time of
queries. Nevertheless, there are many aspects that have n&teferences
yet been thoroughly investigated in the context of scientifi
databases. Two important issues we plan to address in the[l] A. Afework, M. D. Beynon, F. Bustamante, A. Demarzo,
near future are batch scheduling for parallel execution and ~ R. Ferreira, R. Miller, M. Silberman, J. Saltz, A. Sussman,
resource management. Use of loop fusion techniques not ~ @nd H. Tsang. Digital dynamic telepathology - the Virtual

only reduces loop overheads, but also exposes more opera- Mlcrot';,cop'c\el. IrAMtl)Ag%fgggerlcan Medical Informatics As-
tions for parallel execution and local optimization. Intfac 2] a?iﬁé?gae Qlife}g]rng. Sussman. and J. Saltz. Efficierst-ex

because of the nature of our target queries (i.e., queries in cution of multiple workloads in data analysis applicatioims
volving primitives with no side effects and generalized re- Proceedings of the 2001 ACM/IEEE Supercomputing Con-
duction operations), each statement of the loop body can ference Denver, CO, November 2001.

be carried out in parallel. This means that scheduling the [3] H.Andrade, T. Kurc, A. Sussman, and J. Saltz. Active jrox
loop iterations in a multithreaded environment or across a G: Optimizing the query execution process in the Grid. In

cluster of workstations can improve performance, assuming froceedé”?? of theMzgol\zl ACMSEEZ%OSz”percompum‘g Con-
that synchronization and communication issues are appro- [4] ﬁrep‘nncdﬁagemf)%rc A Sc’&'se%:r: and J. Saltz. Exploiting

5 Conclusions

priately handled. With respect to resource utilizatiomrén functional decomposition for efficient parallel processof

are complex issues to be addressed, in particular withdegar multiple data analysis queries. Technical Report CS-TR-
to memory utilization. When two or more queries are fused 4404 and UMIACS-TR-2002-84, University of Maryland,
into the same loop, all the output buffers for the queriesinee October 2002. A shorter version appears in the Proceedings
to be allocated (at least partially) to hold the results pro- of IPDPS 2003.

H. Andrade, T. Kurc, A. Sussman, and J. Saltz. Exploit-

duced by the loop iteration. Moreover, those buffers may 5] ' _ > <
ing functional decomposition for efficient parallel proses

need to be maintained in memory for a long time, since all . . _ _ :
the iterations required to complete a query may be spread ing of multiple data analysis queries. Broceedings of the

. 2003 IEEE International Parallel and Distributed Process-
across a large collection of loops that may be executed over ing SymposiugNice, France, April 2003.
a long time period (i.e., the first and last loop for a query [6] E. Borovikov, A. Sussman, and L. Davis. A high perfor-
may be widely separated in the batch plan). Indeed, the is- mance multi-perspective vision studio. Rroceedings of

12

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

the 2003 International Conference on SupercomputBan

Francisco, CA, June 2003. ACM Press.
Caltech. Sensing and responding — Mani Chandy’s bielogi

cally inspired approach to crisis managemdgfGenious —
Caltech Division of Engineering and Applied Sciend&mm-

ter 2003.
U. S. Chakravarthy and J. Minker. Multiple query prodegs

in deductive databases using query graphsProceedings

of the 12th VLDB Conferencpages 384—391, 1986.
C. Chang. Parallel Aggregation on Multi-Dimensional Sci-

entific Datasets PhD thesis, Department of Computer Sci-

ence, University of Maryland, April 2001.
C. Chang, B. Moon, A. Acharya, C. Shock, A. Sussman,

and J. Saltz. Titan: a High-Performance Remote-Sensing
Database. IfProceedings of the 13th International Confer-

ence on Data Engineering997.
F.-C. F. Chen and M. H. Dunham. Common subexpression

processing in multiple-query processingEE Transactions

on Knowledge and Data Engineerint0(3):493—-499, 1998.
J. M. Cheng, N. M. Mattos, D. D. Chamberlin, and L. G.

DeMichiel. Extending relational database technology for
new applications. IBM Systems Journal33(2):264—-279,

1994.
R. Elmasri and S. B. Navathé-undamentals of Database

SystemsAddison-Wesley, 2000.
R. Ferreira. Compiler Techniques for Data Parallel Ap-

plications Using Very Large Multi-Dimensional Datasets
PhD thesis, Department of Computer Science, University of

Maryland, September 2001.
R. Ferreira, G. Agrawal, R. Jin, and J. Saltz. Compilifaga

intensive applications with spatial coordinates.Pioceed-

ings of the 13th International Workshop on Languages and 34]

Compilers for Parallel Computingpages 339-354, York-

town Heights, NY, August 2000.
R. Ferreira, G. Agrawal, and J. Saltz. Compiling object

oriented data intensive applications. Bnoceedings of the
2000 International Conference on Supercomputipgges

11-21, Santa Fe, NM, May 2000.
R. Ferreira, J. Saltz, and G. Agrawal. Compiler and run-

time analysis for efficient communication in data intensive
applications. IrProceedings of the 2001 IEEE International
Conference on Parallel Architectures and Compilation Fech

niques pages 231-242, Barcelona, Spain, 2001.
High Performance Fortran Forum. High Performance

Fortran — language specification — version 2.0. Techni-
cal report, Rice University, January 1997. Available at

http://lwww.netlib.org/hpf.
S. Kalluri, Z. Zhang, J. JaJa, D. Bader, N. E. Sale&uy/er-

mote, and J. R. G. Townshend. A hierarchical data archiving
and processing system to generate custom tailored products
from AVHRR data. In1999 IEEE International Geoscience

and Remote Sensing Symposipages 2374-2376, 1999.
M. H. Kang, H. G. Dietz, and B. K. Bhargava. Multiple-

query optimization at algorithm-leveData and Knowledge
Engineering 14(1):57-75, 1994.

T. Kurc, U. Catalyurek, C. Chang, A. Sussman, and JzSalt
Visualization of very large datasets with the Active Data
Repository. IEEE Computer Graphics and Applicatigns

21(4):22-33, July/August 2001.
D. A. Menasé and V. A. F. AimeidaScaling for E-Business

Prentice Hall PTR, 2000.

13

[24]

[25]

[26]

[27]

[29]

[32]

[33]

[35]

[23] S. S. Muchnick. Advanced Compiler Design and Implemen-

tation. Morgan Kaufmann, San Francisco, CA, 1997.
National Oceanic and Atmospheric AdministratioNOAA

Polar Orbiter User's Guide — November 1998 Revision
compiled and edited by Katherine B. Kidwell. Available at

http://www2.ncdc.noaa.gov/docs/podug/cover.htm.
F. Ozcan and V. Subrahmanian. Partitioning activities for

agents. InProceedings of the 2001 International Joint Con-

ferences on Artificial Intelligenc&eattle, WA, 2001.
PostgreSQL Developer’s

http://www.postgresgl.org
D. P. Roy, L. Giglio, J. D. Kendall, and C. Justice. Mullti

temporal active-fire based burn scar detection algoritimm.
ternational Journal of Remote Sensjn20(5):1031-1038,

1999.
P. Roy, S. Seshadri, S. Sudarshan, and S. Bhobe. Efficien

and extensible algorithms for multi query optimization. In
Proceedings of the 2000 ACM-SIGMOD Conferenzges
249-260, 2000.

T. K. Sellis. Multiple-query optimizationACM Transactions
on Database Systenis3(1):23-52, 1988.

B. ShneidermanDesigning the User Interface — Strategies
for Effective Human-Computer InteractioAddison Wesley,
Reading, MA, 1998.

M. Stonebraker. The SEQUOIA 2000 projedbata Engi-
neering 16(1):24-28, 1993.

M. Stonebraker and P. BrowrDbject-Relational DBMSs —
Tracking the Next Great Wavéviorgan Kaufmann Publish-
ers, San Francisco, CA, 1999.

K. L. Tan and H. Lu. Workload scheduling for multiple que
processinglInformation Processing Letters5(5):251-257,
1995.

A. S. Tanembaum.Modern Operating SystemsPrentice
Hall, Upper Saddle River, NJ, 2001.

J. D. Uliman.Database and Knowledge-Base Systebmn-
puter Science Press, 1988.

Guide.

A Optimization Algorithms

This appendix presents the algorithms employed for de
tecting dead code elimination (Algorithm 1) and common
subexpression elimination (Algorithm 2) opportunitieslan

also shows how loop fusion is accomplished (Algorithm

3).

These are high-level descriptions and some details are omi

ted for the sake of providing a better presentation.

function deadCodeElimination()
INPUT: loop ()
OuTPUT: updated loopi()
for each statementtmt in [do
if stmt defines a temporary valughen
temp < du.find(t)
if temp # NULL then
du.add(t)
else
if temp.isUsedBY) then
temp.setlsDefinedBystmit)
else
deadstmt <+ l.whereDefinedtemp)
l.removeStatemenfdeadstmt)
if stmt uses a temporary valughen
temp < du.find(t)
temp.setlsUsedBystmit)
for each statementtmt in [do
if stmt is an assignment of temporaries of the fqg
tj =1t then
temp < du.find(t;)
sstmt « stmt.getSourceStmtForTemp(¢;)
for each statementstmt usingt; do
tstmt < l.replaceWithResultOf(sstmit)
l.removeStatemen{stmt)
else if stmt defines a temporary valughen
temp < du.find(t)
if 1temp.isUsedBY() then
deadstmt < l.whereDefinedtemp)
l.removeStatemenfdeadstmt)
end function

Algorithm 1: Removes all unneeded statements from a Algorithm 3: Generates the set of optimized loops for a

loop in the query plan.

14

t

function commonSubExpressionElimination()
INPUT: query plan ()
OuTPUT: updated query plani()
for each loog in L do
for each statementtmt in [do
expr « stmt.getExpression()
tstmt <+ stmt.getSourceStmtForTemp (ezpr)
avEx < availableExpressions.find(expr)
if avExthen
stmt.replaceWithResultOf(tstmit)
else
available Expressions.add(expr)
end function

Algorithm 2: Replaces every redundant primitive call with

a copy statement for all the loops in the query plan.

function addNewLoop(Looprew!)
INPUT: new query loopifewl)
OuTPUT: L — set offusedquery loops
for each loog in L do
o < computeOverlap(l.bb, newl.bb)
if o < maxoverlap then
bestl < [
maxoverlap < o
if maxoverlap = 0then
L.add(newl)
else ifmaxoverlap = 1then
L.remove(bestl);
updatedl < newl.merggbestl)
L.add(updatedl);
else
commonbb < commonAred(, bestl)
bestl.updateBoundariegcommonbbd)
updatedl < newl.mergebestl)
L.remove(bestl)
L.add(updatedl)
C « complementTileg!, bestl)
for each tile bounding bokin C do
[<+ newLoop(t, bestl)
L.add(])
A + additionalTiles(l, bestl)
for each tile bounding bokin A do
I < newLoop(t, newl)
addNewLoop(()
end function

query batch by recursively integrating a new loag!)
into the existing collection of loopk.

