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This dissertation focuses on the study of spin-lattice and magnon-phonon coupling

in multiferroic materials based on their electrodynamic response. Based on a study of

the electrodynamic response in the far infrared region of the electromagnetic spectrum

of 2 families of multiferroic compounds, a new elementary excitation has been discov-
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materials due to to its electric dipole coupling to the electromagnetic field. This cou-

pling comes about due to the strong magnetoelectric interactions in these materials that

are responsible for their multiferroic behavior. Models that describe the experimental

features of these excitations are outlined for each of these families of multiferroics.
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Chapter 1

Introduction

1.1 Motivation

Multiferroic compounds are materials where ferroelectric and magnetic orders co-

exist in a single phase. In some cases strong coupling between the different orders exists

and has led to the observation of spectacular effects such as the rotation of the polariza-

tion vector P with the application of magnetic field H [1]. Multiferroicity is related to

the magnetoelectric effect [2]. The magnetoelectric effect is the induction of magnetiza-

tion (polarization) when an external electric (magnetic) field is applied. Multiferroicity,

on the other hand, refers to the coexistence and coupling between different types of

order in a crystal: magnetic, dielectric and elastic. The orders where there is a finite

spontaneous moment characterizing its symmetry are called ferroics [3] although multi-

ferroics usually also include the anti-ferroic orders. That is because this allows complex

magnetic, ferroelectric and elastic orders to coexist and interact. Nevertheless, the term

multiferroic has been focused mostly in materials where ferroelectricity and magnetism

coexist and interact, and this is the meaning it is given in this thesis.

In this regard, the definition used here is more general than the original one given

by H. Schmid [3]. This is mainly because materials that have anti-ferroic order are

1



Electrically polarizable

Magnetically polarizable

Magnetically ordered

Electrically ordered

Multiferroic

Magnetoelectric

Figure 1.1: Phase diagram of magnetic and dielectric materials. Multiferroics exist only

in the phase of joint magnetically and electrically ordered systems.

more common than purely ferroic multiferroics, and as such the more flexible defini-

tion allows for the study of a larger class of materials. The relation between magnetic

and electric properties is schematically shown in figure 1.1, where the intersection be-

tween magnetic and ferroelectric materials defines the multiferroic phase, and also the

materials where the magnetoelectric effect can be observed. As can be seen, magneto-

electric and multiferroic materials coexist in a small region of this phase space, but they

are mostly independent. It is common to find in the literature that the terms are used

indistinctly even though as shown figure 1.1 these phases are actually different.

A telling sign of the interest in these subjects is the rapid increase in publications

with the keywords multiferroic and magnetoelectric in the online database ISI Web of

2
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Science [4] as of September 11th 2008. As shown in figure 1.2, the term multiferroic

began being used in the year 2000, and the number of publications whose topic is multi-

ferroic behavior of materials shows a rapid, exponential increase. On the other hand the

field of magnetoelectrics is older and with a more steady output of publications through

the years, with only a slight increase in the last few years. As a sign of the confounding

of these fields the figure also shows the number of publications where both terms are

keywords, the time dependence of this is similar to the ”multiferroic” curve. It should

be cautioned that this, as any other database, is not complete and fully updated, and thus

many articles that are better classified in one of these categories, may not have been

included in the above numbers.

1.2 The Physics of Multiferroics

The first question to be answered is how the distinct order parameters are coupled

and how this coupling can be accessed in experiments. In one of the first modern pro-

posals for a mechanism of multiferroic coupling, Katsura, et al. [5] showed that by con-

sidering the spin orbit coupling in the superexchange interaction between non-collinear

nearest neighbor spins, ferroelectric polarization could be induced with the following

form

P ∝ êi j× (−→Si ×−→S j ) (1.1)

where êi j is the unit vector in the direction between the lattice sites of spins Si and S j.

It is clear also that non-collinearity between spins is necessary to obtain a non-zero P.

4



This form of coupling between spins and P resembles the form of the antisymmetric su-

perexchange interaction E = D · (S1×S2), the Dzyaloshinskii-Moriya (DM) interaction

[6, 7]. The DM interaction is also derived from the spin orbit coupling effects on the

exchange. It has the effect of canting spins out of their collinear configurations favored

by the symmetric Heisenberg exchange. The Katsura, et al. picture is sometimes called

the inverse Dzyaloshinskii-Moriya (IDM) effect because now the non-collinear spins act

back on the lattice to create the lattice distortion that induces ferroelectricity [8].

From a phenomenological point of view it was shown [9] that just by consider-

ing the fundamental symmetries that are broken in the multiferroic state, time reversal

and space inversion, it is possible to obtain ferroelectricity from a non-homogeneous

magnetic state. The general form of the ferroelectric polarization P in this case is

P ∝ (M ·∇)M−M(∇ ·M) (1.2)

where M is the local magnetization at a lattice site. It is clear from equation 1.2 that only

a non-homogeneous magnetic state is capable of producing a non-zero P. In particular,

in a spiral cycloidal state (see figure 1.3) such as M = M1cos(Q ·x + φ1)x̂ + M2cos(Q ·y

+ φ2)ŷ, the polarization is

P ∝ sin(φ1−φ2)[Q× (M1x̂×M2ŷ)] (1.3)

here Q is the propagation vector of the spiral. From the form of equation 1.3 we see a

striking similarity to equation 1.1, in both cases P is proportional to the cross product be-

tween spins in different lattice sites. This can be interpreted in the sense that the model
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Figure 1.3: Cycloidal Spiral Magnetic order and polarization direction.

of Katsura et al. [5] provides for a microscopic mechanism of the phenomenological

symmetry analysis of Mostovoy [9]. Therefore, the origin of the coupling between the

magnetic and ferroelectric orders in these theories is the spin orbit interaction. These

models have been extended and generalized for different cases of the spin orbit interac-

tion [10, 11]. The basic principle of non-collinear magnetic structures and, in particular,

of cycloidal spins has been used to discover new multiferroic compounds [12].

One might question whether the approaches outlined above are the more general

way of understanding the coupling between magnetism and ferroelectricity. In partic-

ular, is spin orbit coupling necessary to achieve magnetically induced ferroelectricity?

The answer is obviously no. In order to see this, consider the case of 2 magnetic ions

and the symmetric Heisenberg exchange interaction between them E = JS1 · S2. If we

assume that the exchange constant depends on the polarization (or, equivalently, on the
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distance between ions) P then we can make an expansion of J in powers of P

J(P) = J(0)+
∂J
∂P

(0) ·P+Pi
∂ 2J

∂Pi∂P j
(0)P j + . . . (1.4)

in this case the polarization points in the direction between the lattice sites, and has the

following form [13]

P ∝ ˆe12J′(0)−→S1 ·−→S2 (1.5)

This type of coupling has been used to explain the origin of ferroelectricity in

RMn2O5 [13], orthorhombic HoMnO3 [14] and Ca3CoMnO6 [15]. Since this type of

coupling does not depend on the spin orbit interaction, it is expected that the polarization

value for these multiferroics be larger than in the spin orbit induced ones.

These two microscopic mechanisms of magnetically-induced ferroelectricity give

rise to two different forms of phenomenological magnetoelectric coupling: electric po-

larization induced by a spiral cycloid equation 1.3 is described by the third-order cou-

pling term P(L1∂L2−L2∂L1), where P is electric polarization and L1,2 are magnetic

order parameters describing the sinusoidal and cosinusoidal components of the spiral

[9, 16], while the coupling working in collinear spin states has the form P
(
L2

1−L2
2
)
,

where L1 and L2 are components of a two-dimensional irreducible representation de-

scribing magnetic states with opposite electric polarizations [14, 17, 18, 19].
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1.3 Magnetic Orders and Ferroelectricity

Fundamental interest in multiferroicity also derives from the strong interplay be-

tween magnetic frustration, ferroelectric order, and fundamental symmetry issues in

phase transformations that characterize these materials [1, 9, 12, 19, 20, 21, 22]. It is

important to note that equations 1.3 and 1.5 are derived from a local ’molecular’ pic-

ture, it is still unclear whether a macroscopic polarization can be induced after adding

up these contributions within the unit cell of specific materials. It is therefore crucial

to consider the characteristics of materials that would allow a finite polarization. In the

next subsections the two families of multiferroics which are the focus of this disserta-

tion will be introduced in the context of these two different origins of ferroelectricity in

magnetic materials.

1.3.1 Multiferroics RMnO3

The compound TbMnO3 was discovered to be ferroelectric below T ∼ 28K in 2003

[1] as has spurred a flurry of activity in the field of multiferroics (see figure 1.2). It was

later shown that the ferroelectric transition occurred at the same time as the transition

from a spin density wave state to a cycloidal spiral state [23], this finding allows the

identification of the mechanism in equation 1.1 as a possible origin of polarization in

this material.
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1.3.1.1 Symmetry analysis of RMnO3

In this subsection a symmetry based analysis of the magnetic structure and the

magnetoelectric interaction is presented, this method clarifies the relation between this

family and other multiferroic materials. The positions of the Mn3+ in the paramagnetic

unit cell in the space group Pbnm are shown in table 1.1 (in this case only the Mn ion is

assumed to be magnetic, the rare earth ion magnetism is ignored because its role on the

multiferroic behavior is minimal).

Table 1.1: Coordinates of Mn ions and magnetic order parameters in RMnO3

Mn3+ Order Parameters for k = 0

(1) =
(
0, 1

2 ,0
)

F = S1 +S2 +S3 +S4

(2) =
(1

2 ,0,0
)

C = S1 +S2−S3−S4

(3) =
(
0, 1

2 , 1
2

)
G = S1−S2 +S3−S4

(4) =
(1

2 ,0, 1
2

)
A = S1−S2−S3 +S4

The magnetic order parameters in table 1.1 are the linear combinations of spins that

transform according to all the symmetries of the crystallographic space group Pbnm,

that is, these magnetic structure correspond to the wave vector k = 0. Because the ex-

perimentally obtained magnetic structure has a wave vector k = (0,0.28,0), these order

parameters do not fully reflect the symmetry of the ground state because this incommen-

surate wave vector breaks the translational symmetry of the lattice. In what follows the

method of representational analysis [19, 24, 25] is used to describe the order parameters

of the magnetic structure in RMnO3.
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In order to find the correct order parameters, the crystal must be invariant under the

symmetry operations that leave the wave vector unchanged, the irreducible representa-

tions that correspond to the group of operations that leave k invariant are shown in table

1.2.

Table 1.2: Irreducible representation of the group of k = (0,q,0) in Pbnm. Here Λ =

eıπq.

1 2y mxy myz

Γ1 1 Λ 1 Λ

Γ2 1 Λ -1 -Λ

Γ3 1 -Λ 1 -Λ

Γ4 1 -Λ -1 Λ

Now the basis functions can be constructed with respect to the k = 0 order parame-

ters if we write the magnetic structure in the following way

Sα(k,τ) =
1
N ∑

R,Γ
SΓ

α(R+ τ)eık·(R+τ) (1.6)

where N is the number of unit cells in the system, SΓ
α is the thermally averaged spin

value in the α direction within the irreducible representation Γ, τ is the position of the

τth spin in the unit cell, and R is a lattice vector.

The amplitudes of the basis functions in table 1.3 can be further constrained by

symmetry but this is not attempted here. Instead the second order invariant with respect

to spin variables is built out of the basis functions, this is to be used within a Landau

theory [26] to explore the basic magnetoelectric mechanism.
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Table 1.3: Basis functions of the space group of k = (0,q,0) in Pbnm

Γ1 Γ2 Γ3 Γ4

SΓ
x Cx −Gx −Ax Fx

SΓ
y −Ay Fy Cy −Gy

SΓ
z −Gz Cz Fz −Az

Kenzelmann, et al. [23] found that TbMnO3 first becomes magnetically order in an

incommensurate spin density wave (SDW) state with k = (0,0.28,0) that belongs to the

Γ3 irreducible representation. At 28K, there is a transition to the spiral cycloidal state

composed out of the Γ3 and Γ2 irreducible representations in table 1.3. The coefficients

were SΓ2
x = SΓ3

x = SΓ2
y = SΓ3

z = 0, SΓ2
z = 3µB, and SΓ3

y = 4.7µB. This structure corresponds

to a cycloidal spiral in the y− z plane that propagates along the y axis as shown in figure

1.4.

Because two different irreducible representations exist in the ground state, an in-

variant containing both symmetries will transform as the product of both Γ2⊗Γ3. From

table 1.2 it can be checked that this product is odd under 2y and mxy. This symmetry

property correspond to the transformation of a polar vector Pz. Therefore, the invariant

in the free energy expansion that contains these terms, identifying the polar vector with

the actual polarization, is azσ2(q)σ3(−q)Pz + c.c., where c.c. is the complex conjugate,

σΓ is the amplitude of the basis function (table 1.3) for the respective irreducible rep-

resentation Γ, and az is the coupling constant. After taking the complex conjugate and
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Figure 1.4: Spiral structure in TbMnO3.

taking all the phase factors from equation 1.6 the invariant has the form:

ΦME = azPz|σ2(q)||σ3(−q)|sin(φ2−φ3) (1.7)

where φΓ is the total phase of the irreducible representation Γ, which includes an overall

phase for each one. We can add this term in equation 1.7 in a Landau expansion of the

free energy to study the ferroelectric phase transition Φ = P2
z

2χE
+ΦME . After minimiza-

tion of Φ and solving for Pz it is obtained:

Pz =−χEaz|σ3||σ2|sin(φ2−φ3) (1.8)

which gives identical results to equation 1.3. Also note that in the high temperature

SDW state a quadratic invariant such as equation 1.7 cannot exist because the square of
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the Γ3 representation does not transform as a polar vector. Finally, it should be noted

that the term equation 1.7 is sometimes referred to as a third order invariant because it

contains two magnetic order parameters and one polar vector.

1.3.2 Multiferroics RMn2O5

This family of multiferroics is slightly more complicated in its magnetic structure

and phase transitions. The interest in this family surged after Hur, et al.[20] reported that

a magnetic field could change the polarization direction by 180◦, i.e. the polarization

vector can be flipped by magnetic field. These materials order antiferromagnetically

above 40 K with an incommensurate SDW structure and k = (q1,0,q2). Around 38 K

there is a transition to a commensurate and ferroelectric state with k = (1/2,0,1/4) and

P = (0,Pb,0). Finally around 25 K there is an additional transition to an incommensurate

state which is weakly ferroelectric. This transitions have been extensively studied from

a Landau theory perspective by A.B. Harris and his coauthors [19, 27, 28], therefore in

what follows only an outline of the symmetry analysis is given for the commensurate

and ferroelectric state.

1.3.2.1 Symmetry analysis of RMn2O5

In this subsection a phenomenological description of spin states and the magneto-

electric coupling mechanism that derives from the Heisenberg exchange is discussed,

which will clarify the similarities between RMn2O5 and other multiferroic materials.
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The positions of Mn3+ and Mn4+ in the paramagnetic unit cell are shown in table 1.4

and the eight vector order parameters can be found in table 1.5 (the notations of Bertaut

et al.[29] are used).

Table 1.4: The coordinates of Mn ions, where x ≈ 0.41, y ≈ 0.35 and z ≈ 0.26 (for

BiMn2O5).

Mn3+ Mn4+

r1 = (x,y,1/2) r5 = (1/2,0,z)

r2 = (−x,−y,1/2) r6 = (1/2,0,−z)

r3 = (1/2− x,1/2+ y,1/2) r7 = (0,1/2,z)

r4 = (1/2+ x,1/2− y,1/2) r8 = (0,1/2,−z)

Table 1.5: Magnetic order parameters.

Mn3+ Mn4+

F = S1 +S2 +S3 +S4 F ′ = S5 +S6 +S7 +S8

C = S1 +S2−S3−S4 C′ = S5 +S6−S7−S8

G = S1−S2 +S3−S4 G′ = S5−S6 +S7−S8

A = S1−S2−S3 +S4 A′ = S5−S6−S7 +S8

For discussion of phenomenological description of the magnetoelectric coupling,

the relatively simple case of BiMn2O5 is best suited, which shows the commensurate

spin ordering with Q = (1/2,0,1/2). In this case the components of the order param-
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Table 1.6: Irreducible representations of the space group Pbam for Q = (1/2,0,1/2).

2x 2y 2z mx my mz I

Γ1




0 1

−1 0







1 0

0 −1







0 −1

−1 0







1 0

0 −1







0 1

−1 0







1 0

0 1







0 −1

−1 0




Γ2




0 −1

1 0







1 0

0 −1







0 1

1 0






−1 0

0 1







0 1

−1 0






−1 0

0 −1







0 −1

−1 0




eters belong to one of the two two-dimensional representations, Γ1 or Γ2, of the Pbam

group [29, 30]. BiMn2O5 only shows the ‘collinear’ state with the a-components of the

Mn3+ and Mn4+ spins described, respectively, by the order parameters Fx =−3.1µB and

G′
x = 2.4µB with small b components Cy =−0.8µB and A′y = 0.6µB [30] corresponding

to a small rotation between spins in neighboring antiferromagnetic chains. A cartoon

of this structure is shown in figure 1.5 together with one of the Γ1 representations that

induce ferroelectricity.

Table 1.7: Basis vectors of the space group Pbam for Q = (1/2,0,1/2).

Γ1




Fx

Cx







Cy

Fy







Gx

−Ax






−Ay

Gy







C′z

F ′z







G′
x

−A′x






−A′y

G′
y




Γ2




Fz

Cz







Gz

−Az







C′x

F ′x







F ′y

C′y







G′
z

−A′z
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Figure 1.5: Spin structure in the commensurate phase of RMn2O5.

Since Fx is the part two-dimensional representation




Fx

Cx


 ∈ Γ1, the state de-

scribed by the order parameter Cx is another ground state of the system. These two

states are related by inversion, which transforms Fx into−Cx and vice versa. It is easy to

check that the magnetoelectric coupling of the form −λxPy
(
F2

x −C2
x
)

is invariant upon

all symmetry transformations of the paramagnetic phase, so that the order parameters Fx

and Cx describe two ferroelectric states with opposite directions of electric polarization.

It also easy to check that the couplings −λyPy
(
F2

y −C2
y
)

and −λzPz
(
F2

z −C2
z
)

are also

allowed by symmetry, which is a strong indication that the mechanism inducing electric

polarization in the magnetically ordered state is invariant upon the global spin rotation

and the coupling can be written in the form λPy
(
F2−C2) [18].

Due to the exchange coupling between the Mn3+ and Mn4+ ions, the order param-
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eters G′
x and Fx are strongly coupled. Since




G′
x

−A′x


 also belongs to Γ1 representa-

tion, the coupling between the two spin subsystems is phenomenologically described by

−g(FxG′
x−CxA′x) [18]. Thus, more generally, the magnetoelectric coupling should be

written in the form

Φme =−λPy
(
η2

1 −η2
2
)

(1.9)

where




η1

η2


 belongs to Γ1 representation. Because this coupling term was built

from order parameters of a single irreducible representation, the coupling 1.9 derives

from the Heisenberg exchange interaction as proposed in 1.5. This form of the third-

order magnetoelectric coupling was discussed previously by A.B. Harris [19] and in the

context of the orthorhombic manganites with the E-type magnetic ordering [14] and is

typical for improper ferroelectrics [17].

1.4 Dynamic Magnetoelectric Coupling

Symmetry considerations are essential for unraveling the relevant interactions in

these complex systems [22, 19]. While the direction of the spontaneous electric polar-

ization P is controlled by symmetry it does not uniquely identify the coupling mech-

anism [22, 19]. On the other hand, the direction, or selection rules, for the dynamics

may be different for different exchange mechanisms, and therefore may help identify

the dominant exchange processes involved in multiferroicity.
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The role of the 3rd-order DM as well as 4th-order isotropic exchange (ΦME ∼

P2S2
1S2

2) coupling terms in dynamic coupling has been discussed [31, 32]. It is under-

stood that different coupling terms couple phonons to different magnon branches [31].

However, the DM exchange, due to its relativistic origin, is intrinsically weak so that

symmetric exchange may be expected to be more favorable for strong coupling.

The known microscopic mechanisms of magnetically-induced ferroelectricity in-

clude lattice distortion and redistribution of electron density in response to spin ordering.

Such processes occur locally in all magnetic materials. However, only when a spin or-

dering breaks inversion symmetry do these local electric dipoles add into a macroscopic

electric polarization. Therefore the study of the dynamical response, which provides ad-

ditional symmetry information through the optical selection rules and gives insight about

the low lying magnetic and lattice excitations, is the focus of this section. In particular

the electrodynamic consequences for the coupling term equation 1.7 are theoretically

explored.

1.4.1 Dynamics of Spiral Magnets

The theory of dynamical spin configurations was first summarized by Nagamiya

[33] in 1967. He also studied the spin wave spectrum of these types of system. Here

this model is applied to the symmetry of RMnO3.

The Hamiltonian that is capable of describing the spiral structure as the ground state
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is the following

H =−J ∑
i

Si ·
(

Si+ b+a
2

+Si+ b−a
2

)
+∑

iλ

[
Jλ Si ·Si+λ +Kλ

(
Sλ

i

)2
]

(1.10)

where λ = a,b,c. The first term corresponds to the nearest neighbor ferromagnetic inter-

action in the a−b layers, the second term is the next nearest neighbor interaction along

the three axes, and the last term is the single ion anisotropy, which in this case favors

the b−c easy plane. Jc is antiferromagnetic, and Ja > J
2 frustrates the ferromagnetic or-

dering in the a−b plane favoring a cycloidal spiral state with wave vector Q = (0,Q,0)

with cos(Q
2 ) = J

2Jb
. For Ka > 0 and Kb = Kc = 0 a circular spiral in the b−c plane is the

ground state.

The spin spiral configuration in the b− c plane, as in TbMnO3, is given by

Si =±S
(
ĉcos(Q · ri)− b̂sin(Q · ri)

)
, (1.11)

where the upper/lower sign corresponds to different a− b planes of the structure. In

order to facilitate the algebra later on, a transformation of coordinates to the rotating

spin frame

ẑ = ±(
ĉcos(Q · ri)− b̂sin(Q · ri)

)

x̂ = ∓(
ĉsin(Q · ri)+ b̂cos(Q · ri)

)
(1.12)

ŷ = â

in which the average spin vector is parallel to the ẑ axis. In this frame the spiral structure

is invariant under the simultaneous shift of the spins along Q and rotation around the a
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axis. Applying a Holstein-Primakoff [34] transformation to the spin variables

Sz
i = S− a†

i ai

S−i ≈
√

2Sa†
i (1.13)

S+
i ≈

√
2Sai

for one of the a− b planes, for the other the operator a is replaced by b. The spectrum

can be found by diagonalizing the quadratic boson Hamiltonian H (equation 1.10), and

it consists of two branches

ω±
k = S

√
U2

k − (Vk±Wk)
2 (1.14)

where

Uk = −4J
(

cos2 Q
4

cos
ka

2
cos

kb

2
− cos

Q
2

)
+2Jb

(
cos2 Q

2
coskb− cosQ

)

+2Ja(1− coska)+2Jc +K (1.15)

Vk = −4J sin2 Q
4

cos
ka

2
cos

kb

2
+2Jb sin2 Q

2
coskb +K

Wk = 2Jc cos
kc

2

The magnon modes from branch ω−
k correspond to spin oscillations normal to the

spiral plane, and from the branch ω+
k correspond to oscillations within the plane. A

typical dispersion of the spin waves is shown in figure 1.6. At k = 0 ω+
k = 0 and this

mode is called the phason (or Goldstone boson) of the spiral, and it corresponds to the

uniform in-phase oscillations of neighboring spins in the b− c plane.

The spin waves at the point Q in the dispersion are significant with respect to the

dynamic magnetoelectric effect, as will be seen below. The spins oscillate at ±Q, from
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Figure 1.6: Typical spin wave spectrum of a circular spiral. Blue dashed line corre-

sponds to ω+
k and red solid line to ω−

k .

the ω−
k branch, with relative phases Qb/2 along wave vector direction. Because of

the finite easy plane anisotropy K this oscillation is elliptical and there will be a small

uniform oscillating spin component in the plane perpendicular to the wave vector. This

small uniform component makes this mode active to an imposed oscillating magnetic

field hω ⊥ Q. A static magnetic field applied parallel to Q splits this mode into two

magnetically linearly polarized modes, and in the case of TbMnO3 the selection rules

are hω‖a,c. These two modes correspond to linear combinations of the magnon states at

±Q and are called antiferromagnetic resonance (AFMR). Note that if Kb 6= 0 or Kc 6= 0

these modes are always non-degenerate, even in zero static magnetic field.
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Figure 1.7: Schematic representation of the dynamical magnetoelectric coupling in-

duced by the excitation of the magnon from the ”-” branch with k = Q

1.4.2 Magnetoelectric dynamics in spiral magnets

The frequency of the magnons from the ”-” branch at±Q is ω−
Q ≈ 4

√
2JcK. One of

the linear combinations (SQ−S−Q) can be visualized as the rotation of the spiral plane

around the direction of the wave vector. This is because the static phase difference be-

tween spins cancels the phase difference introduced by the spin wave exactly. According

to equation 1.3, the direction of polarization is perpendicular to both Q and the spiral

plane, and if the spiral plane rotates around Q induced by the spin wave, the direction

of P must follow this rotation creating an oscillating δP in the direction perpendicular

to the spiral plane.

As indicated in figure 1.7, using again the symmetry of TbMnO3, this oscillation is

in fact active for eω‖a, making it an electromagnon, an electric-dipole active magnon, as
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opposed to the usual AFMR described above. The selection rule of this electromagnon

is tied to the spiral plane, meaning that if this plane changes then the selection rule

must follow it. This feature offers the advantage of direct experimental testing if two

multiferroics with different spiral planes can be found.

1.5 Ferroelectric Phase Transition

As it has been pointed out in the previous sections, ferroelectricity in multiferroics

only appears as a consequence of the breaking of inversion symmetry by special mag-

netic structures. It is natural then to question how this origin of ferroelectricity differs

from the standard ferroelectrics. In this section a phenomenological treatment of ferro-

electricity is outlined that serves as context in the understanding of the lattice dynamics

of multiferroic materials.

A ferroelectric material is identified with the existence of a macroscopic sponta-

neous electric polarization that is switchable by an externally applied electric field. In

this sense it is common to think that the polarization is just the macroscopic dipole

moment, obtained from the charge density, divided by the system volume. However

this definition runs into severe trouble when a microscopic model based on this idea is

formally developed. The solution to this problem is given by what is now known as

the Modern Theory of Polarization [35, 36, 37]. This theory says that the polarization

as defined above is ill-defined, that only polarization differences between 2 different

polarization states are real, i.e. measurable (for example between a paraelectric and
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ferroelectric phases, or between 2 distinct ferroelectric phases).

In this modern picture the measurable macroscopic polarization is given by the in-

tegrated current generated when the crystal adiabatically changes from one state to the

other. Because of this, the only requirements to calculate the value of the polarization

are the ground state wave functions of the crystal in the two states. This property of

the theory has allowed the ab initio calculation of the ferroelectric properties of many

oxides (see for example K. Rabe and P. Ghosez in [38] for a short review). It is outside

the scope of this introduction to delve any further into the details of this modern theory

of polarization, however it is necessary to point out the importance of the crystal sym-

metry in this discussion. As suggested in the above outline, the change in symmetry of

the crystal is the key ingredient in describing the change in current whose integral is the

spontaneous polarization. Therefore, a survey of the structural phase transition associ-

ated with the change in state is the next step in our introduction to the basic physics of

ferroelectrics.

From the structural point of view, ferroelectric polarization can only exist in crystals

whose symmetry contains a polar axis, that is, a crystal whose space group is polar.

Therefore the standard study of ferroelectric transitions considers as a reference state a

dielectric crystal that is non-polar, and as a final state the polar ferroelectric state. In

this case the structural change implies a macroscopically uniform deformation of the

lattice. This is usually described as the instability of the lattice to a phonon which tries

to restore the symmetry of the reference state, wherein at the transition temperature the
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frequency of this phonon vanishes, it is called a soft-phonon. Because the symmetry lost

at the ferroelectric transition is discrete, the frequency of this phonon is only zero at the

critical temperature, and increases as the temperature changes away from the transition.

Also, this requires that the phonon be polar, i.e. electric dipole or infrared active. This

type of description was developed by Cochran [39, 40] and led to the understanding of

the ferroelectric phase transitions as being soft-mode driven.

There is a fundamental relation between the static and dynamic dielectric response

in matter [41], represented in the Kramers-Kronig [42, 43] relation (see Chapter 2)

ε ′(0)− ε ′(∞) =
2
π

∞∫

0

ε ′′(ω ′)
ω ′ dω ′ (1.16)

which relates the static dielectric function to the frequency dependence of the absorptive

part of the dielectric function. Here ε ′(∞) is the value of the dielectric function at

frequencies much higher than the relevant energy scales of the problem. This relation

says that any absorption process that contributes to ε ′′, i.e. electric dipole active, gives a

finite contribution to the static dielectric function. This connection immediately implies

that in a ferroelectric phase transition the static ε ′ diverges because the frequency of the

infrared soft-phonon goes to zero. This is usually expressed in the Lyddane-Sachs-Teller

relation

ε ′(0)
ε ′(∞)

=
ω2

LO

ω2
TO

(1.17)

where ωLO (ωTO) corresponds to the zero (pole) of ε(ω), and also is the longitudinal

(transverse) optical phonon frequency.
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The above discussion has focused on the so called displacive ferroelectric transition,

in which it is assumed that polarization appears uniformly in the whole crystal as the

temperature is lowered below the critical temperature (TC) because the lattice distortion

only occurs below TC and is zero above it. In this case the symmetry-restoring soft-mode

is in fact a uniform polar phonon (k=0, Brillouin zone center). However, there is another

type of ferroelectric transition, in this other case it is assumed that the lattice is distorted

locally but without any coherence over the whole crystal, and long-range order of this

local distortions only occurs below TC. This transition is of the order-disorder type.

The symmetry-restoring mode is now a relaxation mode centered at zero frequency that

exists in addition to the symmetry allowed phonons. In real materials the transition is

always somewhere in between these two extremes.

Because of the Kramers-Kronig relation 1.16 the frequency dependence of ε(ω) is a

very important tool in studying the physics of ferroelectric phase transitions. Given that

polar phonons are infrared active, they contribute significantly to ε ′(0), specially if their

frequency is low. It is now clear why the lattice dynamics of multiferroics are important,

first one needs to identify the soft-phonon or relaxation process that plays the role of

the symmetry restoring mode at the transition, secondly, because the magnetoelectric

coupling is in fact responsible for the appearance of ferroelectricity, the effect on the

lattice dynamics of this coupling deserves investigation.
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1.6 Summary

In this chapter a short introduction to the topic of multiferroics was given. The ba-

sic mechanisms of magnetoelectric coupling were outlined in a molecule-like picture.

Then the magnetoelectric coupling was explored phenomenologically with a symmetry

analysis of the magnetic order parameters in two prominent families of multiferroic ma-

terials, that allowed the construction of the magnetoelectric interaction term, and then

the derivation of the form of the polarization is possible. One of these interactions was

used as an example of the dynamic magnetoelectric effects that are possible in multifer-

roics, this allowed the study of the interaction of the fundamental excitations in magnetic

and ferroelectric materials: spin-waves and polar phonons, respectively. This interaction

produces a hybrid new elementary excitation, which is called electromagnon, a magnon

that interacts with the electromagnetic field of light via an electric dipole coupling. Fi-

nally, the lattice dynamics of ferroelectric transitions were outlined, in particular the

concept of soft-phonon was emphasized as the most important dynamic effect in ferro-

electrics.

The rest of the dissertation is organized as follows. Chapter 2 deals with the ex-

perimental methods used in the study of the electrodynamic response of multiferroic

materials. Chapter 3 contains results of the polar lattice dynamics in RMn2O5, dealing

specifically with evidence of inversion symmetry loss at the ferroelectric phase transi-

tion. Chapter 4 focuses on the investigation of electromagnons in RMn2O5, as well as

with a theoretical picture that captures the main experimental results. Chapter 5 deals
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with electromagnons in Eu0.75Y0.25MnO3 and TbMnO3, results of the temperature and

magnetic field dependence are combined with another theoretical model that explains

the physics. Finally Chapter 6 gives a summary of the results in addition to avenues for

further experimental studies in these families of multiferroics.
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Chapter 2

Experimental Methods

The main experimental technique described in this chapter is Fourier Transform In-

frared spectroscopy (FTIR). This technique allows the extraction of the electrodynamic

response of materials as measured in their transmission and reflection spectra. By com-

bining these spectra it is possible to obtain the response function of the material to elec-

tromagnetic waves encoded in the complex index of refraction n(ω) =
√

ε(ω)µ(ω). In

the end the relevant response functions are the dielectric and magnetic susceptibilities

ε and µ , which describe the behavior of the material to electric and magnetic fields,

respectively.

The following sections describe briefly the principles of FTIR and their implemen-

tation in real experiments. Additionally, other apparatus used in the study of the tem-

perature and magnetic field dependencies of the electrodynamic response of materials

are described. Finally, the analysis methods used for the extraction of ε and µ from the

measured spectra are presented.

2.1 Principles of FTIR

The essential problem of any spectroscopic technique is the measurement of the

intensity of light as a function of frequency. FTIR has the advantage of measuring the
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intensity distribution in a broad frequency range simultaneously using a single detector.

The basic layout of an FTIR instrument is sketched in figure 2.1. The interferome-

ter consists of a half-silvered beamsplitter (BMS), one fixed and one moving mirror, a

source and a detector. The transmitted and reflected waves from the BMS travel to the

mirrors, the moving mirror travels a distance d from the ZPD point (zero path differ-

ence), the corresponding path length is then x = 2d. The reflected beams recombine at

the BMS and then are focused to the detector. The detector signal varies with the opti-

cal path length x and is maximal at ZPD and corresponds to constructive interference.

As x changes, the relative length between the 2 beams varies and this is recorded as a

time-varying signal in the detector. This time dependent detector signal is the Fourier

transform of the source power spectrum and is called an interferogram.

The electric field amplitude at the detector as a function of frequency ν and x can

be expressed as

Edet(x,ν) = E1(ν)+E2(ν)eı∆θ(x,ν) = rtE0(ν)(1+ eı2πνx) (2.1)

where r and t are the reflection and transmission coefficients, respectively, of the BMS,

which ideally equal 1
2 . Therefore, the intensity measured at the detector is

I(x,ν) =
c

4π
|Edet(x,ν)|2 = 2|rt|2S(ν)[1+ cos(2πνx)], (2.2)

here S(ν) = c
4π |E0(ν)|2 is the power spectrum of the source. By superposition, the

total signal at the detector for a broadband source results from an integration over the
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Figure 2.1: Schematic of the Twyman-Green version of the Michelson interferometer as

usually implemented in an FTIR instrument.

frequency range of the source

I(x) = 2|rt|2
[∫ ∞

0
S(ν)dν +

∫ ∞

0
S(ν)cos(2πνx)dν

]
=

1
2

I(0)+ Iint(x) (2.3)

where Iint(x) is the interferogram and it consists of the cosine-Fourier transform of the

incident light as a function of the mirror position x. In other words, the translation

of the moving mirror transforms the power spectrum of the source into a positional

(or temporal via t = x/v where v is the mirror speed) spectrum. The original power

spectrum S(ν) can be recovered using the inverse cosine Fourier transform of Iint(x),

and modern computers can perform this operation in real time using the fast Fourier

transform algorithm.

FTIR spectrometers have very important advantages over other types of spectrom-
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eters. In order to compare these the most important features of a generic spectrometer

are: (1) throughput or how much light passes through, (2) chromatic resolving power

(resolution) or how close two spectral features can be before they become indistinguish-

able in the interferogram, and (3) cost or how fast the interferogram can be obtained with

a fixed signal to noise (S/N) ratio. FTIR offers the advantage of multiplexing, because it

simultaneously detects all frequencies, and therefore its cost is small. In a grating spec-

trometer it takes a time T = mτ to measure m intervals in a frequency range if for each

frequency measured it takes a time τ to make the measurement. For a FTIR spectrome-

ter the same time T can be used to repeat m measurements of the entire frequency range,

this reduces the S/N by a factor of
√

m. In terms of throughput the FTIR spectrometer

is also superior to traditional grating spectrometers because the solid angle of the light

beam is very large for the FTIR whereas it is rather small for a grating spectrometer.

The resolution of an ideal FTIR is δ ∼ 1/2d, therefore, very high resolution will require

very long displacements of the moving mirror and this complicates the engineering of

the real instrument and it also undermines the speed at which the interferograms can be

obtained.

Other issues regarding the asymmetry of the interferograms, apodization and alias-

ing have to be carefully consider when utilizing a real FTIR instrument. The correct

power spectrum S(ν) can be obtained from the inverse cosine Fourier transform only

if the interferogram is symmetric. For an asymmetric interferogram a phase correction

has to be applied to the measured interferogram to yield a symmetric one. Because
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real spectrometers can only scan over a finite distance, the measured interferogram is

truncated. This truncation introduces spurious effects like side lobes near sharp spectral

features. This effects can be minimized when apodizing functions are applied to the

interferogram at the expense of spectral resolution. Aliasing refers to the discrete sam-

pling of the signal that is performed during the mirror displacement, this implies that

when the Fourier transform is performed, the spectrum is repeated multiple times, or

aliased. Thus any real intensity in the power spectrum above the maximum frequency

of the desired frequency range, is folded back into the transformed spectrum and intro-

duces errors in the signal. Electronic, numerical and optical filtering of these signals can

be used to minimize aliasing.

2.2 Apparatus

The FTIR spectrometer used in this research is the DA3.02 FTIR spectrometer by

ABB-Bomem (Québec, Canada). The main layout is as shown in figure 2.1. The sample

compartment of this spectrometer is divided into a transmission and a reflection part as

shown in figure 2.2. This device offers a range of spectral resolutions from 64-0.02

cm−1, and works in the frequency range of 5-50000 cm−1 using a variety of sources,

beamsplitters and detectors. The DA3 spectrometer system manual provides further

detail of its operation [44].

The DA3 offers three main broadband blackbody radiation sources. A mercury

vapor discharge (Hg) lamp for the far IR (ν < 250 cm−1), a globar for the mid-IR
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Figure 2.2: Schematic of the Transmission (left) and Reflection (right) geometries in the

FTIR instrument.

(100-8000 cm−1) and a quartz tungsten halogen lamp for the visible region of the spec-

trum (4000-25000 cm−1). Several beamsplitters are available that match the different

frequency regions of the sources, in particular for the far IR a Si beamsplitter (0-1000

cm−1) was used throughout the course of this research. Finally, as detectors resistive-

bolometers were used for the far-IR: a standard liquid-He cooled bolometer (4K bolome-

ter) was used in the range 100-700 cm−1, a pumped liquid-He bolometer (2K bolome-

ter) was used for the range 5-250 cm−1, and in addition a He-3 cooled bolometer (He-3

bolometer) working at 350 mK was used in the range 3-60 cm−1.

Sample temperature control in zero magnetic field is achieved with the use of an op-

tical cryostat (optistat) manufactured by Janis Research Corporation. Figure 2.3 shows
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Figure 2.3: Bomem DA3.02 Spectrometer and Janis optistat in reflection mode.
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Figure 2.4: Janis optistat.

the optistat in the reflection mode of the DA3 instrument. Details of the Janis optistat

construction are shown in figure 2.4. Cooling is achieved by continuous flow of liquid

He through a transfer line directly into the cryostat. The liquid He cools down the in-

terior all the way down to the sample mounted on a cold finger. The cooling is made

more effective by using the radiation shield, this part is in contact with the flowing He

and is cooled as well. By using cold windows as filters, a large amount of ambient room

temperature radiation can be prevented from reaching the sample. In this configuration

temperatures of 5 K can be reached when studying the far IR response of samples.

For the investigation of the magnetic field dependence of the electrodynamics of

multiferroics, a connection with an existing Oxford Magnet was developed. The Oxford
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Figure 2.5: FTIR to magnet connection.

Optical Cryostat, manufactured by Oxford Instruments Inc., allows the application of an

static magnetic field up to 8 Tesla in the direction of propagation of light. Its split-coil

geometry facilitates its use as a true optical cryostat where standard focusing and light

collecting optics can be used. Figure 2.5 shows the FTIR connection with the magnet

during one of the experimental runs. Light is extracted out of FTIR via a collimated

parallel output beam, which is then focused onto the sample with an off-axis parabolic

mirror. The focused beam then enters the magnet and reaches the sample in the middle

of the housing where the magnetic field is maximum and uniform. The transmitted beam

is then collected with a copper light pipe of half-inch diameter. This light pipe functions

as a waveguide with a cut-off wavelength of approximately one half of the diameter.
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Figure 2.6: Transmission signal after the start of Nitrogen gas flow.

The connection between the DA3 and the Oxford magnet is not fully in vacuum.

This means that water vapor absorption in the far IR will complicate the analysis of

the obtained spectra. In order to minimize this, all the volumes not in vacuum, are

purged with cold Nitrogen gas obtained from the boil-off of the liquid Nitrogen in the

magnet itself. This effectively eliminates any signal of water vapor absorption in the

resulting spectra. Figure 2.6 shows the time evolution of the transmission signal in this

configuration after the flow of Nitrogen gas started. After approximately 30 minutes,

there are no distinguishable traces of water vapor absorptions and then measurements

on the samples are performed.

Further details of the experimental apparatus can be found in the PhD thesis of the

previous students of the group, Jeffrey Simpson [45] and Gregory Jenkins [46].
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2.3 Optical Constants

2.3.1 Basic Definitions

As mentioned in the first paragraphs of this chapter, the electrodynamic response

of materials is encoded in the optical constants such as the complex index of refraction

n(ω) =
√

ε(ω)µ(ω). It is usually assumed that the magnetic effects in solids are small

[41], however consideration should be given to them in multiferroic materials because

they are partly magnetic. Nevertheless, the magnitude of the magnetic effects, even in

resonant conditions, is much smaller than the corresponding electric effect and therefore

it is assumed that ℜ[µ ] = µ1 ∼ 1 and ℑ[µ] = 0 in the following description (where ℜ

and ℑ take the real and imaginary parts of a complex function).

The response of matter to an electric field is given by the complex dielectric per-

mittivity ε because it relates the electric field E with the electric displacement D = εE.

ε = ε1 + ε2 = n2 (2.4)

= (n1 + ıκ)2 = n2
1−κ2 + ı2n1κ

where κ is the imaginary part of the index of refraction and is usually called the extinc-

tion coefficient. The complex electrical conductivity σ = σ1 + ıσ2 is related to ε in the

following way because it relates the electric field with the motion of charges J = σE

ε = 1+ ı
4π
ω

σ (2.5)

Based on this equation, the large majority of optical measurements are described using
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ε1 and σ1 given that they describe the absorptive (σ1) and screening (ε1) part of the

electrodynamic response in materials.

2.3.2 Kramers-Kronig Relations

As mentioned in Chapter 1 there exists a fundamental relation between the static

response functions and their frequency dependence (see equation 1.16). This is a conse-

quence of more fundamental characteristics of response functions, which are causality

and linearity. Causality means that a response of a system cannot occur before the stim-

ulus is applied, and linearity refers to the fact that the stimulus is weak enough that the

response itself does not depend on its intensity. In this case both ε and µ are called

linear response functions.

Let us assume that a stimulus field H is applied to a system, and its response is

measured in the field M. The linear response function relating them is χ

M = χH (2.6)

where χ = χ1 + ıχ2. Using causality and the properties of analytical complex functions

the dispersion relations can be derived, and are:

χ1(ω) =
1
π

P
∫ ∞

−∞

χ2(ω̃)
ω̃−ω

dω̃ (2.7)

χ2(ω) =− 1
π

P
∫ ∞

−∞

χ1(ω̃)
ω̃−ω

dω̃ (2.8)
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where P is the Cauchy principal value integral. In the realm of complex analysis χ1

and χ2 are said to be Hilbert transformed pairs of each other [47].

Equations 2.7 and 2.8 can be applied to ε(ω). Taking advantage of the symmetry

property ε(−ω) = ε?(ω) these can be simplified further, and these are the Kramers-

Kronig relations:

ε1(ω)−1 =
2
π

P
∫ ∞

0

ω̃ε2(ω̃)
ω̃2−ω2 dω̃ (2.9)

ε2(ω) =− 2
πω

P
∫ ∞

0

[ε1(ω̃)−1]ω̃2

ω̃2−ω2 dω̃ (2.10)

A natural consequence of the Kramers-Kronig relations are the so called sum-rules.

Equation 1.16 can therefore be obtained from equation 2.9 by taking the limit ω → 0.

If we cast these relations in terms of the electrical conductivity σ the sum-rule has the

form

ε1(0)−1 = 8
∫ ∞

0

σ1(ω)
ω2 dω (2.11)

which signifies that very low frequency absorptive excitations will greatly enhance the

zero frequency value of the dielectric function. This clearly indicates that the static

measurements of ε1 are incomplete until a detailed spectroscopic study is performed on

the absorption spectrum of a material.

2.3.3 Experimental Procedure

There are several experimental techniques that can be used to obtain the optical

constants n,ε and µ . The two most used ones are the reflection from and transmis-
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sion through the sample of electromagnetic waves. The Fresnel formulas for the bulk

transmission and reflection coefficients are widely used in the community

R(ω) =
∣∣∣∣
1−n(ω)
1+n(ω)

∣∣∣∣
2

=
(1−n1(ω))2 +κ(ω)2

(1+n1(ω))2 +κ(ω)2 (2.12)

T (ω) =
4n1(ω)

(n1(ω)+1)2 +κ(ω)2 (2.13)

in this case R+T = 1 because this case is only considering reflection and transmission

through a boundary between air and a material of index of refraction n(ω) = n1(ω)+

ıκ(ω). A more relevant case is when light is transmitted through a slab of material of

thickness d,

T (ω) =
T01T12 exp[−αd]

1−2R01 cos[2(θ1 +φ1)]exp[−αd]+R2
01 exp[−2αd]

(2.14)

α(ω) =
2κ(ω)ω

c
(2.15)

θ1(ω) = arctan
[

ℑ(r10)
ℜ(r10)

]
(2.16)

φ1(ω) =
n1(ω)ωd

c
(2.17)

where T01, T12 are the transmission coefficients of the boundaries air–slab and slab-air,

respectively, R01 = |r01|2 is the reflection coefficient between the slab and air.

With formulas 2.12 and 2.14 then we can start analyzing experimental data by using

as fit parameters the index of refraction n1 and the absorption coefficient α , thus this

allows the extraction of ε(ω) from the measurements.
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2.3.3.1 Electric Dipole and Magnetic Dipole Excitations

The discussion of the optical constants above was focused on the frequency depen-

dence of ε , meaning that only electric dipole transitions have been considered. However,

materials containing magnetic atoms and/or magnetically ordered, will give rise to mag-

netic dipole transitions that will contribute to the optical constants in the form of the

magnetic permeability µ = µ1 + ıµ2. Because the basic equations 2.12 and 2.14 are

written as functions of n(ω) as a complex quantity, the actual information obtained is

a combination of electric and magnetic transitions and it seems not possible to disen-

tangle all the desired knowledge from measurements of R and T . However, there is

a feature of the reflection coefficient that allows the distinction between magnetic and

electric dipole excitations, at least in simple models for the frequency dependence of ε

and µ .

Figure 2.7 shows the Reflectivity and Transmission spectra of a slab of isotropic

material characterized by a Lorentzian form of ε and µ with a single oscillator at fre-

quencies marked by black arrows in the figure,

ε(ω) = ε∞ +∑
j

S j

ω2
j −ω2− ıωγ j

(2.18)

µ(ω) = 1+∑
j

S j

ω2
j −ω2− ıωγ j

(2.19)

It is clear from the figure that only by measuring the Reflectivity spectrum one can

distinguish magnetic dipole from electric dipole excitations, this is because for electric

dipole excitations the reflectivity first increases as the frequency increases from zero,
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Figure 2.7: Reflectivity and Transmission spectra of an isotropic material with one of

each electric and magnetic dipole transitions.

and for magnetic dipole the reflectivity decreases first.

Additionally, magnetic and electric dipole excitations can be distinguished in the

Transmission spectra of anisotropic materials. For simplicity let’s assume that the crys-

tal symmetry is orthorhombic. In this case the principal axes of the tensors ε and µ

correspond to the orthogonal axis of the crystal structure. Figure 2.8 shows the different

experimental configurations needed to observe magnetic and electric dipole absorptions.

The top panel shows two orientations of the crystal, x−z and y−z planes, and the corre-

sponding direction of the polarized light electric (eω ) and magnetic (hω ) fields. Because

only hω‖z is absorbed, the excitation is magnetic dipole. The bottom panel shows the

case of an electric dipole absorption where only eω‖x is absorbed for the two orienta-

tions of the crystal, x− z and x− y planes.
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Figure 2.8: Absorption conditions for magnetic dipole and electric dipole excitations.

2.4 Summary

This chapter has outlined the basic experimental and analysis techniques to be used

in the rest of the dissertation. The experimental set up used for the spectroscopic studies

was described, including the addition of the magnetic field capabilities. Furthermore,

the optical properties of materials were outlined together with the basic notions of how

to experimentally obtain them. Armed with these tools, the next chapters describe the

results of the investigations of the electrodynamics of multiferroic materials.
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Chapter 3

Lattice Dynamics in the Multiferroic Family RMn2O5

3.1 Overview

In order to address the questions posed in Chapter 1 regarding the dynamic coupling

between ferroelectric and magnetic orders, a study of the lattice and magnetic excitations

is required. Here results are presented about the lattice dynamics of the multiferroic

family RMn2O5 where R is a rare earth element, Y or Bi.

Figure 3.1 shows the magnetic structure in RMn2O5, this is composed of oxygen

octahedra coordinating Mn4+ which connect at the edges to form ribbons that extend

along the c axis. Mn3+ is located at the base of a oxygen square pyramid, these pyramids

link at one edge of the square and at the other connect the octahedra. The rare earth ion

is located in a site without inversion which creates a special crystal field environment

that splits the 3 f orbitals, this will become important given that transitions between this

split levels are optically allowed and can appear in the infrared.

3.2 Multiferroics RMn2O5

The antiferromagnet RMn2O5 (orthorhombic space group Pbam # 55, Z = 4) is a

multiferroic family of compounds with a complex magnetic order [48, 49, 50, 51, 52]
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Figure 3.1: Structure of multiferroic TbMn2O5.

that shows a strong magnetoelectric coupling effect. For example in TbMn2O5 [20] an

applied magnetic field along the a axis changes the sign of the electrical polarization

along the b axis. The complex magnetism is accompanied by a series of phase tran-

sitions between different magnetic states characterized by distinct commensurate and

incommensurate phases. The first hint to the magnetoelectric coupling is given by the

behavior of the dielectric constant ε . In particular ε in TbMn2O5 has anomalies along

the b axis associated with the distinct phase transitions at low temperatures as shown

in figure 3.2: at the Néel temperature TN ≈ 42 K no anomalies are present in ε . There

is a paraelectric to ferroelectric phase transition at TC ≈ 38 K evident by a peak in

the dielectric constant. The magnetic order then locks in to a commensurate structure

(CM) with wave vector (1/2,0,1/4). At T ≈ 24 K the magnetic order transforms into

an incommensurate structure (ICM) with a step-like feature in ε; this anomaly is also
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Figure 3.2: Temperature dependence of the dielectric constant along the b axis εb in

TbMn2O5.

accompanied by hysteresis [20]. Note that the dielectric constants along the a and c axis

show no significant effects at these phase transitions.

The existence of a macroscopic dipole moment is evidence of the lack of inversion

symmetry in the FE phase, and motivates the study of the dynamics of the lattice to look

for further information about the structural changes. In EuMn2O5 it was found [53] that

displacements of the Mn3+ ion along the a axis occur at the ferroelectric transition. They

suggested that this behavior leads to a change in symmetry from the space group Pbam

to the non-centrosymmetric group Pb21m (# 26). In a analogous work on the compound

YMn2O5 [54], Kagomiya, et al proposed similar displacements at the ferroelectric tran-

sition. These displacements are very small (≈ 0.007 Å), which hints to an exotic origin
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of ferroelectricity when compared to the typical ferroelectrics as described in Chapter

1, where a polar lattice distortion creates the macroscopic polarization. Other structural

investigations [48, 55, 49] have not reported any signature of atomic displacements at

the ferroelectric phase transition in this family of compounds. The lattice dynamics

have been investigated by Raman spectroscopy, Mihailova, et al [56] reported a study

in HoMn2O5 and TbMn2O5 and Garcı́a-Flores, et al [57] in BiMn2O5, EuMn2O5 and

DyMn2O5 as a function of temperature and found no evidence of anomalous behavior

of the Raman active phonons at the ferroelectric transition temperature, indicating that

the lattice may not play such an important role in the appearance of ferroelectricity on

these multiferroics.

This chapter presents a study of the temperature dependent infrared (IR) phonon

spectra of the multiferroic TbMn2O5. The most interesting result is the appearance

of an IR inactive phonon activated at the ferroelectric transition with light polarization

parallel to the static ferroelectric polarization P0 (e‖P0‖b). This indicates that one IR

forbidden mode (Raman or silent) in the paraelectric phase acquires an electric-dipole

moment due to the static displacement associated with the ferroelectricity. This phonon

is identified with a Raman Mn-O stretching mode, which accounts for its sensitivity to

the static polarization [9, 49].
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Figure 3.3: Experimental (solid line) and fit (dashed line) at T = 7 K phonon spectra in

TbMn2O5.

3.3 Experimental Results

The group theory analysis (see Appendix A) based on structural data by Alonso, et

al [58] of the paraelectric phase predicts the following IR active vibrational modes at the

Γ point: ΓIR = 8B1u(E||z) + 14B2u(E||y) + 14B3u(E||x) identical to a previous report

[56]. This analysis was complemented with a shell model calculation of the phonon

frequencies.
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Figure 3.3 shows the spectra at T = 7 K. Twelve of the 14 IR active phonons in

the a polarization were reliably observed, whereas all 14 phonons polarized along b are

present in the spectrum. The reflectivity spectra was fitted in a least squares procedure

using the sum of Lorentzian form of the model dielectric function ε , given by:

ε(ω) = ε∞ +
N

∑
i=1

Si

ω2
0i−ω2− ıγiω

(3.1)

where ε∞ is the dielectric constant at high frequency and the phonon parameters ω0, S

and γ are the phonon frequency, the spectral weight and the linewidth respectively, we

also define Si = ∆εiω2
0i where ∆ε is the contribution of the phonon to the static dielectric

function; these parameters are extracted as functions of temperature and are displayed in

table 3.1. The result of the fitting is also shown in figure 3.3 and it can be seen that it is

almost indistinguishable from the data indicating the weakness of higher order phonon

processes.

The optical conductivity was obtained from ε(ω) from eqn. 3.1 and using the

Kramers-Kronig transform of the reflectivity spectrum. Figure 3.4 shows the optical

conductivity around 700 cm−1 for several temperatures with e||P0||b. A feature not

present at 45 K appears in the low T phases. The temperature dependence of the spectral

weight and frequency of this feature are plotted in figure 3.5 where the spectral weight

starts to appear at 38 K. S for this phonon was obtained by directly integrating the optical

conductivity between 695 and 710 cm−1. The spectral weight of this phonon increases

and its frequency shifts, both continuously, as the temperature is lowered. Around 24

K both abruptly change and show hysteresis around this point evident by the difference
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Table 3.1: Oscillator parameters at T1 = 7 K and T2 = 45 K in TbMn2O5. a, b are the

crystal axes. εa,b
∞ = 5.31,6.82.

ωo(cm−1) ∆ε γ(cm−1)

a b a b a b

T1 T2 T1 T2 T1 T2 T1 T2 T1 T2 T1 T2

111.9 111.7 97.2 96.4 0.59 0.66 0.42 0.38 1.9 2 3.3 3.7

157.5 157.3 168.9 168.6 0.81 1.05 0.46 0.43 0.9 0.3 1 1.1

164.2 163.8 171.9 171.5 1.68 2.02 0.30 0.35 3.3 2.6 1.4 1.5

218.5 217.4 222.2 221.9 0.30 0.69 0.11 0.11 4.7 8.9 2.4 2.9

254.8 253.2 256.8 256.6 1.88 2.56 0.17 0.18 3.1 1.5 2.1 2

333.1 332.4 333.4 332.7 0.09 0.15 0.17 0.17 2.7 2.6 2.7 2.7

364.9 362.8 386 385.5 2.02 2.75 0.02 0.01 3.9 1 3.5 4

397.6 396.5 422.3 422.3 0.38 0.46 0.28 0.28 4.6 3.2 4 3.5

494.8 493.9 453.2 459.3 0.45 0.59 3.43 3.56 5.3 3.7 18.4 6.7

613.5 611.3 481.8 483 0.71 1.11 2.86 2.6 9 5.4 4.4 3.3

627.5 625.9 538.2 537.6 0.23 0.14 0.25 0.51 8.4 4.2 7.3 7.1

704.2 701.4 567.3 568.4 0.05 0.04 0.52 0.57 3.3 4.5 5.1 7.9

— — 636.6 637.2 — — 0.27 0.23 — — 10.7 9.3

— — 688.2 686.9 — — 0.003 0.003 — — 9.5 6

— — 703a — — — 0.0001 — — — 7 —

— — 120.4b 119.5 — — 0.12 0.10 — — 5.7 6.4

aPreviously IR inactive
bCrystal field excitation fitted as electric dipole active
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Figure 3.4: Optical conductivity of the newly activated phonon (shifted plots). Arrows

indicate the position of the resonance frequency.

in the cooling and warming curves. The behavior of this feature is correlated with the

second order FE transition at 38 K and the first order CM → ICM transition at 24

K in this compound. The static polarization P0 plotted in figure 3.5 was obtained by

measuring the temperature dependence of the pyroelectric current on a similar sample

to the one used in the optical measurements.

On very general grounds the appearance and behavior of this phonon can be related

to these underlying phase transitions. Since the lattice distortions δu associated with

these phase transitions are very small we can expand the spectral weight and frequency

shifts in powers of δu. The quadratic term is the first non-zero term in this expansion

that can describe the spectral weight change or frequency shift. Similarly, the order pa-
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rameters associated with the new phases are proportional to δu so that P0 ∝ δu. As a

result we expect that the spectral weight behavior and frequency shift should be S, ∆ω

∝ (δu)2 ∝ P0
2. This is the observed behavior as can be seen in figure 3.5 where it is

plotted P0
2 with the phonon data. At low temperatures (T < 10 K) where the Tb moment

orders, the phonon data deviates from P0
2 suggesting that it is the Mn and oxygen ion

displacements that dominate the dynamics of this high frequency phonon. The possible

scenarios for the appearance of a new phonon are: (1) zone folding of the phonon dis-

persion (since the magnetic order corresponds to a lock in ICM → CM transition with

k = (1/2,0,1/4)), and (2) activation of IR-inactive phonons at this transition due to the

loss of inversion symmetry. The shell model calculation shows that the dispersion of

the high frequency phonon is negative so that no zone-folded mode can give the high

frequency of this phonon. Therefore, this phonon is a previously IR inactive phonon

that acquires electric dipole moment at the FE transition.

In a ferroelectric phase transition, where inversion symmetry is lost, symmetry con-

siderations dictate that phonons that were not IR active in the paraelectric phase can be-

come IR active in the FE phase. This is the case in TbMn2O5, where the low T phase has

mixed IR and Raman phonons. In this low T phase the phonons of the high T symmetry

group split as shown in table 3.2 1. This splitting was obtained by considering what sym-

1The exact space group for the FE phase in TbMn2O5 is not known precisely. The assumption has been

made of space group # 26 following Polyakov, et al [53] and Kagomiya, et al [54], because this allows

to write the direct transformation of each phonon for both space groups. Nevertheless, even if the real

crystallographic structure is different, such as the modulated structure in DyMn2O5[59], the experimental
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metry operation is maintained in both phases and then assign spectral activity according

to the experimental observations. The assumption was made as well that the low T space

group is as proposed by Polyakov, et al [53] and Kagomiya, et al [54]. Consistency with

the laboratory frame (x → a, y → b, z → c) is applied as well. From the reports by Mi-

hailova, et al. [56] and Garcı́a-Flores, et al. [57] it is learned that a Ag mode at frequency

≈ 700 cm−1 exists in all the RMn2O5 materials whose Raman phonons have been re-

ported. Note as well that these reports do not resolve any IR phonons becoming Raman

active at the FE phase transition. Therefore this high frequency Ag Raman phonon is

the mode we observe that acquires IR activity in the FE phase. Further experimental

confirmation has been obtained [60] in the Raman spectrum of TbMn2O5 that clearly

identifies the high frequency Mn-O Raman phonon with this newly activated IR phonon

reported here.

Only a few other phonons show correlations with the low temperature phase transi-

tions. The phonons polarized along the a axis do not show any significant anomalies in

this temperature range. This is consistent with the featureless behavior of the dielectric

function along this axis. On the other hand, the behavior of some of the phonons with

dipole moment along b is non-trivial. The low frequency phonon with frequency ≈ 96

cm−1, identified primarily with movement of the Tb ions, has a temperature dependence

that correlates with the low temperature CM → ICM magnetic transition. In figure 3.6

the frequency of this phonon is plotted versus temperature and an increase in the fre-

observation and analysis would not change.
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Table 3.2: Irreducible representation splitting at the FE phase transition. S. A. = Spectral

Activity (R = Raman active, IR = Infrared Active).

# 55 S. A. Pbam irreps Pb21m irreps Pb21m S. A.a

R Ag A1 IR (y) & R

R B1g B2 IR (x) & R

R B2g A2 R

R B3g B1 IR (z) & R

Silent Au A2 R

IR(z) B1u B1 IR (z) & R

IR(y) B2u A1 IR (y) & R

IR(x) B3u B2 IR (x) & R

aNote that in this column x, y, z correspond to the high temperature system of coordinates a, b, c and

differ from what is found in the character table.
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quency around 24 K is observed. This effect is thought to be a manifestation of the

coupling of this phonon to a magnon as is discussed by Katsura, et al [32].
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Figure 3.6: Temperature dependence of the b axis Tb phonon frequency. Inset shows the

full temperature dependence. Typical dispersion of several measurements is indicated

as error bars.

Surprisingly several phonons show interesting temperature dependence for T above

TN . The inset in figure 3.6 shows the full temperature dependence of the frequency of

the b axis phonon. The anomalous softening in the temperature range of 150 K to 50

K demonstrates additional effects in the dynamics of the lattice. In figure 3.7 the be-

havior of the spectral weight of two oxygen phonons polarized in the a and b axes, with

frequencies of 704 and 689 cm−1 respectively, seems complementary: the a phonon

gains spectral weight while the b phonon looses it as the temperature is lowered. This
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effect is present in the full temperature range from 300 K to 7 K, while for the rest of

the phonons the spectral weight is only changed significantly around the various transi-

tion temperatures. The fact that these modes gain or lose so much spectral weight (10

and 6-fold respectively) in a large temperature interval also demonstrates some higher

energy scale in this system. These effects (the anomalous softening and the dramatic

changes in spectral weight) are not understood at present. However, one interesting pos-

sibility is that they are of magnetic character. Recent high temperature susceptibility

measurements [57] in BiMn2O5 have shown evidence for spin frustrated behavior from

deviations from Curie law with a Weiss temperature of ≈ 250 K. Dielectric anomalies

in BiMn2O5 around this temperature have been reported [61] as well.

Finally the inset of figure 3.7 shows the temperature dependence of the intensity

of a feature observed at 120 cm−1. This is identified as a crystal field level of the Tb

3+ ion [62]. This transition has electric dipole character as is seen from the form of

the reflectivity curve (see fig. 3.3) as well as the fact that the spectral weight (see table

3.1) is comparable to the IR active phonons (magnetic dipole transitions are usually

much weaker than electric dipole transitions). This conclusion is supported as well by

the shell model calculation that shows the 3 lowest phonon excitations being the Tb-

dominated phonon (at ≈ 100 cm−1) and then a doublet (at ≈ 170 cm−1). Furthermore,

the observed temperature dependence of the intensity is common for the f-level crystal

field transitions in the rare earth ions [63].
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Figure 3.7: Temperature dependence of the spectral weight of 2 oxygen dominated

phonons. Inset shows the temperature dependence of the spectral weight of one of the

Tb3+ crystal field transitions.

3.4 Conclusions

The IR phonon spectra in TbMn2O5 have been measured along the a and b axes

and most of the symmetry allowed modes were observed. The majority of the phonons

do not show significant correlations to the FE and AFM phase transitions of the system.

However several phonons exhibit interesting correlations to the ferroelectricity of this

material. A signature of the loss of inversion symmetry in the FE phase by the appear-

ance of a IR phonon below Tc that was only Raman active in the paraelectric phase was

found. The strength of this mode is proportional to the square of the FE order parameter
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and gives a sensitive measure of the symmetry lowering lattice distortions in the ferro-

electric phase. In addition, the lowest frequency phonon (along b) displays hardening

in the CM → ICM transition possibly due to the coupling with the spin system [32];

2 modes (along a and b) have dramatic changes in their spectral weight over a wide

temperature range possibly because of frustration effects in the spin system. It has also

been identified in the spectra an electric dipole active crystal field transition of the Tb3+

ion in the phonon frequency range.

In addition, it is clear from these data that there is no soft phonon at the ferroelectric

transition, even though the symmetry change of the lattice was found. This suggests that

the anomalies in ε (see figure 3.2) at the different magnetic transitions are not caused

by the infrared phonons, but additional electric dipole excitations must exist at lower

frequencies. This is the topic of the next chapter.
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Chapter 4

Electromagnons in the Multiferroic Family RMn2O5

The results of the investigation of the low energy electrodynamics below the IR

phonons in the family of multiferroics RMn2O5 are presented. In this chapter the focus

is on the discovery and properties of electromagnons.

4.1 Introduction

The magnetoelectric interactions that induce electric polarization in magnets can

also couple oscillations of magnetization to polar lattice vibrations. The oscillations

of polarization at magnon frequency and vice versa give rise to dynamic magnetoelec-

tric effects, such as electromagnon excitations. In usual magnets, an oscillating electric

field of photons can excite a three-particle continuum consisting of two magnons and

one phonon [64]. This process results from the fourth-order spin-lattice coupling. The

third-order couplings in multiferroics, discussed above, make possible photo-excitation

of two-magnon continuum without a phonon (‘charged magnons’ [65]). Replacing one

of the magnons by the static modulation of spin density appearing in the ordered spin

state, a process that converts a photon into a single magnon results, which is the elec-

tromagnon. This process is usually mediated by a polar phonon linearly coupled to both

magnons and light, which for low-frequency phonons can lead to a resonant enhance-
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ment of the photo-excitation of electromagnons.

As there are two possible contributions to the polarization — from ionic displace-

ments and from electronic density redistribution — one can think of two correspond-

ing electric contributions to electromagnon — from phonons and from electronic ex-

citations. This means a transfer of the electric dipole spectral weight from phonons

(h̄ω ∼ 10− 100 meV) and/or electronic excitations (h̄ω ∼ 2 eV) down to magnons

(h̄ω ∼ 1− 5 meV). Such a transfer, in turn, leads to a step-like anomaly in the tem-

perature dependence of the dielectric constant. Current research on electromagnons is

focused mainly on magnon-phonon coupling while the magnon-electron aspect is much

less explored as it is generally expected to be weak because of the large difference be-

tween the electronic and magnetic excitation frequencies

The outstanding fundamental questions for electromagnon are the microscopic ori-

gin of these novel excitations (Heisenberg or Dzyaloshinskii-Moriya type exchange)

in the different classes of compounds (RMnO3 and RMn2O5), the explanation of the

observed selection rules, and whether electromagnons may occur in a wider range of

materials. The practical issues are enhancing the magneto-capacitance effect and its

temperature range and possibly applying these new excitations to metamaterials and/or

achieving negative index of refraction in the magnon range of frequencies.
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4.2 Experimental Results

In this Chapter, the observations of electromagnons in the RMn2O5 (R = Y, Tb,

Eu) multiferroics are reported and compared with previously reported electromagnons

[66] as well as with ‘usual’ magnons in multiferroic LuMnO3. The measurements on

YMn2O5 eliminate any confusion, coming from the spin excitations in the rare earth

ions. The polarization of the electromagnons can be additional evidence in favor of the

symmetric exchange as the leading magnetoelectric coupling mechanism.

Single crystals of YMn2O5 and TbMn2O5 were grown as described before [67].

The samples were characterized by X-rays and dielectric measurements in kHz range.

Transmission measurements were performed using a Fourier-transform spectrometer in

the frequency range from 4 to 200 cm−1. The temperature dependence from 5 to 300 K

was measured using liquid helium in a continuous flow cryostat (sample in vacuum)

with optical access windows. A 3He-cooled bolometer was used for low frequency

measurements. To increase the accuracy of transmission measurements, thicker samples

were used for weak features and thin samples for strongest modes: 0.46 and 0.09 mm

for YMn2O5, and 0.725 and 0.16 mm for TbMn2O5.

The three phases in TbMn2O5 (YMn2O5) are addressed: LT1, incommensurate

magnetic and ferroelectric, below 24(20) K; LT2, commensurate magnetic and ferro-

electric, at 24(20) < T < 38(41) K; and the paramagnetic-paraelectric phase at T > 41(45) K.

The low frequency transmission spectra of TbMn2O5 in three phases are shown in Fig. 1.

The lowest phonon was found to be centered at 97 cm−1 and is seen as zero transmis-
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Figure 4.1: Transmission spectra of TbMn2O5: (a) thin sample, (b) thicker sample,

oscillations are averaged out in model curves. Oscillations of experimental data are due

to the etalon effect. e and h are electric and magnetic fields of light.

sion in figure 4.1b consistent with the phonon frequency in Table 3.1. All other features

below this frequency are of magnetic origin (but with electric dipole activity). Figure

4.1a shows results for the strongest absorption (low transmission) near 10 cm−1 in the

LT1 phase in comparison to the paramagnetic phase. Figure 4.1b emphasizes weak

absorption features.

Identifying these excitations as electromagnons requires addressing several ques-

tions. To avoid confusion with possible transitions between f-levels of rare earth ions,

YMn2O5 was selected as Y has empty f-shells. A second issue is electric or magnetic
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dipole activity. Figure 4.2 presents transmission spectra of YMn2O5 for the three phases

defined above. From fig 4.2a it follows that the absorption bands are either e||b or h||a

active. In the spectra in figure 4.2b, measured for h||a on a different cut of a crystal,

there is no comparable absorptions. Spectra, taken in (e||a, h||b) configuration, are sim-

ilar to those in figure 4.2b — without absorptions. It follows that strong absorptions

occur only in e||b||P orientation and are, therefore, electric dipole active. There is a

possibility of observation of the magnetic activity in this frequency range however, the

electric dipole part is of stronger interest. Based on the shell model calculations of the

phonon frequencies, the lowest phonon frequency is near 100 cm−1. Therefore, these

new modes cannot be new phonons activated in the low T phases.

To extract the parameters of the oscillators, the transmission spectra is fitted with a

Lorentzian model of the dielectric constant ε(ω) for electric dipole or magnetic perme-

ability µ(ω) for magnetic dipole transitions:

ε(ω) = ε∞ +∑
j

S j

ω2
j −ω2− ıωγ j

(4.1)

µ(ω) = 1+∑
j

S j

ω2
j −ω2− ıωγ j

(4.2)

where ε∞ is the high frequency dielectric constant, j enumerates the oscillators, S j is

the spectral weight, ω j is the resonance frequency, and γ j is the damping rate. The ex-

tinction coefficient is proportional to
√

ε(ω)µ(ω). Thus, electric and magnetic dipole

absorptions can be compared using same set of the oscillator parameters. These param-
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Figure 4.3: Transmission spectra of hexagonal multiferroic LuMnO3: Absorption is

observed only when h ⊥ c and is magnetic dipole active. (a) Transmission for a thin

sample, (b) for thick single crystal.

eters are collected in the Table 4.1. Here, spectra of Y- and TbMn2O5 were fitted with

formula 4.1 at fixed µ = 1; and for LuMnO3 equation 4.2 was used at fixed ε = 14.3 as

shown in figure 4.3.

It is interesting to compare the observed electromagnons to the uncoupled magnons

in multiferroic hexagonal LuMnO3. This compound is ferroelectric below ∼1000 K

and antiferromagnetic below 76 K with geometric frustration. Using different cuts of

the LuMnO3 crystal, one resonant absorption is observed only in the h(ω)⊥ c configu-

ration. It means that this mode is magnetic dipole active (parameters are in Table 4.1).
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Table 4.1: Comparison of spectral parameters of electromagnons/magnons in various

multiferroics.

ω0 S γ

Compound (cm−1) (cm−2) (cm−1)

YMn2O5 7.2 170 1.9

TbMn2O5 9.6 330 3.6

TbMnO3 [66] a 23 ≈1000 >25

LuMnO3 50 4 0.75

aSee Chapter 5

The dielectric constant shows a gradual ‘step-down’ anomaly below 76 K, caused by

phonon hardening [68]. Therefore, despite sharing with RMn2O5 the features of multi-

ferroicity, frustrated magnetism, and non-collinear spin order, hexagonal LuMnO3 does

not have detectable electromagnon excitations. Hexagonal HoMnO3 has several absorp-

tion bands below 100 cm−1 which confirms the possible effects of rare earth ions.

Figure 4.4 shows the optical conductivity of YMn2O5 and TbMn2O5 along the fer-

roelectric b-axis in three different phases as determined from the fits to the transmission

spectra. In the ground state, LT1, both compounds show strong electromagnons at low

frequencies and a several weaker peaks at higher frequencies. In the RMn2O5 structure

16 magnon branches are expected [13], and only the strongest electromagnons are seen

in Figure 4.4. In the LT2 phase only a broad mode, centered at 20 cm−1, is present. This

mode in Y has S=225 cm−2 and contributes 0.6 to the static ε . At 45 K, just above the
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Figure 4.4: Optical conductivity of YMn2O5 and TbMn2O5 for e||b in three phases.

Strong peaks at 113 and 97 cm−1 are the lowest phonons. Other peaks are electro-

magnons.
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Neel temperature, no well defined modes are observed. However, there is a broad back-

ground absorption which extends at least up to the lowest TO phonon frequency. This

absorption is present at all three temperatures and it is really gone only at room tem-

perature. This broad absorption can be understood as frustrated spin fluctuations with

electric dipole activity. The similar behavior of both compounds points to a leading role

of Mn spin system in the physics of all of these electromagnon excitations.

Transmission of a EuMn2O5 polycrystal was measured as well. Its absorption spec-

trum is similar to those shown in Figure 4.4: a strong peak at 14 cm−1 in the LT1 phase

and a broad peak at 20 cm−1 in the LT2 phase. Therefore EuMn2O5 is another RMn2O5

compound with nonmagnetic rare earth ion that supports electromagnon excitations.

The data of Table 4.1 allow to compare the electromagnons in RMnO3 and RMn2O5

compounds. The resonance frequencies of the strongest electromagnons in the RMn2O5

compounds are lower than those in TbMnO3 suggesting a possible stronger mode ‘repul-

sion’. However this is inconsistent with their weaker oscillator strength. Therefore, the

different frequencies may be due to the distinct magnetic anisotropies, which influence

the bare magnon frequencies. Electromagnon spectrum of the RMn2O5 compounds is

better resolved into distinct modes than the RMnO3 spectrum. However, the total spec-

tral weight of 510 cm−2 of all TbMn2O5 modes, seen below the lowest phonon in LT1

phase, is closer to ≈ 1000 cm−2 of the TbMnO3 electromagnon. It would be interest-

ing to compare infrared data to inelastic neutron scattering results to match electric and

magnetic dipole activity in this frequency range for these two types of multiferroics.
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The polarization of electromagnons gives additional information about leading spin-

lattice coupling mechanism. Katsura et al. [32] showed that for DM type coupling and

cycloidal spin chain the electromagnon is electrically active along the axis perpendicular

both to the Q-vector of spin structure and static polarization P. These imply that the DM

exchange is not the leading magnetoelectric coupling in the RMn2O5 compounds where

the electromagnon is active for e||P. On the other hand, the latter polarization can be

obtained from Heisenberg exchange and magnetostriction, as shown below [13]. There-

fore, the results presented here give additional evidence in favor of symmetric exchange

being dominant in RMn2O5 compounds suggested earlier [18, 49].

It is important to know where the electromagnons obtain their electric activity. Sim-

ple model calculations emphasize the role of the lowest phonon [32]. This prediction

was qualitatively confirmed for GdMnO3 by Pimenov et al. [69] but the change in the

phonon spectral weight (60 %) was too large. On examining the phonon spectra of

TbMn2O5 in Chapter 3 [67], clear correlations could not be found with activation of

electromagnons. The lowest phonon with S ≈ 5000 cm−2 is observed to strengthen

slightly in the LT1 phase in contradiction to expectation from mode mixing. However,

its frequency hardens in the LT phases (see figure 3.6 and [67]) in accord with the elec-

tromagnon models. Determining which phonons couple to the magnon and with what

strength remains an important experimental challenge.

Figure 4.5 shows the temperature dependence of the static dielectric constant from

kHz range measurements (top curve) compared with the dependence obtained from the
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fits of the far infrared spectra of TbMn2O5. Only the Tb compound data are shown

because of the larger sample size and higher frequency of the strongest electromagnon.

These data show that the whole step-like anomaly in ε(T ) results from electromagnons.

It follows that we observe practically all electromagnons. The largest contribution to ε

in the LT1 phase comes from the strong low frequency electromagnon. The difference

in absolute values of ε comes possibly from the zero-frequency relaxational mode that is

yet to be observed. The sharp peak at 38 K (top curve), at the onset of P, is also produced

by this mode, and it is not observed in the far infrared (lower curve). The magnetic

nature of electromagnons allows suppression/enhancement and/or Zeeman splitting of

original magnon branches by externally applied magnetic fields [66, 70] which leads to

the magneto-dielectric effects [71].

Finally, a definitive confirmation of these excitations as electromagnons can come

via their observation in magnetic neutron scattering. A set of measurements has been

performed by Prof. Seung-Hun Lee [72] on a single crystal of YMn2O5 and the results

are shown in figure 4.6. Comparing this spectrum with figure 4.4(a), we can see that the

magnetic scattering features match almost perfectly to the absorption peaks observed in

the far infrared, confirming that these are in fact magnons.

In conclusion, the observation of electromagnons was reported in the RMn2O5 com-

pounds including the non rare earth YMn2O5. The spectra of YMn2O5 and TbMn2O5

are very similar which proves the Mn origin of electromagnons in these compounds.

The overall spectral weight of RMn2O5 electromagnons is approximately 1/2 that in
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Figure 4.6: Inelastic neutron scattering intensity as a function of energy transfer at the

wave vector of the magnetic structure Qc =
(1

2 ,0, 1
4

)
). Figure courtesy of Prof. Seung-

Hun Lee.
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RMnO3 compounds [66]. The electromagnons polarization selection rules in RMn2O5

provides evidence in favor of symmetric exchange coupling mechanism in this system.

The match between the optical and neutron scattering experiments confirms again the

hybrid nature of these excitations.

4.3 Exchange Striction Model

The presence of two different types of magnetic ions and geometric frustration of

spin interactions give rise to rather complex magnetic structures RMn2O5 compounds.

Nonetheless, a number of salient properties of these materials, such as the magnetically-

induced electric polarization, photo-excitation of magnons as well as the spin re-orientation

transition, can be understood within a simplified microscopic model, which is discussed

in this section. The starting point is the assumption that multiferroic and optical prop-

erties of these materials are governed by the symmetric Heisenberg exchange, although

magnetic anisotropy is included to explain the spin re-orientation transition that has a

strong effect on the low-frequency absorption spectrum. This model predicts the ordered

spin states, the mechanism of magnetoelectric coupling and enables the calculation of

the optical absorption spectrum at magnon frequencies for different magnetic states.

First, consider a single magnetic ab-layer including Mn3+ and Mn4+ ions. The

model describes interactions between the spins and their coupling to a polar phonon
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mode:

H = 1
2 ∑i, j Ji j (P)

(
Si ·S j

)− 1
2 ∑iα Kiα

(
Si · k̂iα

)2−

−∑i µi (Si ·H)+V
(

P2

2χ(0)
1

−PE− χ2E2

2

)
.

(4.3)

Here the first term is the symmetric Heisenberg spin exchange, while the second term is

the single-ion anisotropy. The antisymmetric Dzyaloshinskii-Moriya exchange as well

as other types of anisotropic exchange interactions are not included, as in the scenario

discussed below they play no role. For simplicity it is assumed that in the ordered state

all spins lie in the ab plane [49] and neglect the small out-of-plane components found

in recent neutron diffraction experiments on single crystals [73, 74]. Thus, the easy and

intermediate magnetic axes on each Mn site (α = 1,2) lie in the ab plane, while the hard

axis k̂i3 ‖ ĉ. The third term in (4.3) is the interaction of spins with an applied magnetic

field and the last term describes the dielectric response of the system, where χ(0)
1 is

the ‘bare’ dielectric susceptibility related to the polar lattice mode (not including the

magnetic contribution calculated below) and χ2 is the remaining part of the dielectric

susceptibility of non-magnetic origin. Finally, V is the system volume.

The coupling between the spins and the polar phonon mode results from the de-

pendence of the exchange coupling on the electric polarization, which in RMn2O5 is

parallel to the b axis:

Ji j(Pb) = Ji j(0)+ J′i j(0)Pb +
1
2

J′′i j(0)P2
b + . . . (4.4)

The last two terms give rise to the cubic and the quartic magneto-electric couplings.
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4.3.1 Magnetic ordering and spin re-orientation transition

Here, the model of Chapon et al. [49] is used with 5 exchange constants between

pairs of nearest-neighbour Mn ions: J1 and J2 couple Mn4+ ions along the c direction,

J3 and J5 couple the spins of neighboring Mn3+ and Mn4+ ions and J4 is the coupling

between two neighboring Mn3+ ions (see figure 4.7).

Figure 4.7: Minimal energy spin configurations for J4 = J5 = 40 K and the anisotropy

parameter Ka(Mn3+) = 0.6 K for all Mn3+ ions (red) and Ka(Mn4+) = 0.1 K for all

Mn4+ ions (blue). The value of the interchain coupling J3 is −2 K for the structure in

panel (a) and −4 K for the one panel (b).

Figure 4.7 shows the minimal energy spin configurations obtained by the numerical

minimization of the spin energy (4.3) on the subspace of the commensurate magnetic
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states with the wave vector Q = (1/2,0,0) for two different sets of exchange constants.

The exchange constants J4 and J5 were chosen to be positive and large compared to

other exchange constants, which gives rise to antiferromagnetic zig-zag chains along

the a axis with nearly collinear spins (marked by dashed lines) observed in neutron

experiments [49, 74].

The angle between spins in neighboring chains sensitively depends on the ratio be-

tween the interchain coupling J3 and the magnetic anisotropy parameters Ki. The easy

magnetic axis is parallel to the a axis. The interplay between magnetic anisotropy and

interchain interaction determines the angle between spins in neighboring antiferromag-

netic chains.

First note that if spins in each antiferromagnetic chain would be perfectly collinear,

then the interchain interactions would cancel as a result of geometric frustration. Con-

versely, the interchain coupling J3 results in spin rotations, which destroy the collinearity

of spins in each chain. Consider, for example, the spin of the Mn4+ ion, marked in fig-

ure 4.7(a) by an arrow. Because of a nonzero angle between spins in the neighboring

a-chains, the interaction of the marked spin with the spin of the Mn3+ ion from the

neighboring chain will give rise to a rotation of the marked spin. These small spin ro-

tations lift the frustration and lead to some energy gain due to interchain interactions.

Thus, while the magnetic anisotropy favors an almost collinear spin configuration, in-

terchain interactions favor the 90◦ angle between spins of neighboring chains.

This competition gives rise to a very strong sensitivity of the angle between spins
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in neighboring chains to the interchain coupling J3. For weak interchain coupling

J3 = −2 K, this angle is relatively small and minimal-energy spin configuration shown

in figure 4.7(a) is similar to the one observed in the high-temperature ‘collinear’ phase

of YMn2O5 by Chapon et al.[49]. A small change in J3 from −2 K to −4 K transforms

the configuration shown in figure 4.7(a) into the one shown in figure 4.7(b), which may

explain the spin re-orientation observed in RMn2O5 with R =Tb, Ho, Dy and Y, pro-

vided that the interchain coupling is temperature-dependent. Although the rotations that

make spins in each chain non-collinear are barely visible, they are sufficient to produce

the large changes in the spin configuration, since the magnetic anisotropy is relatively

weak. In RMn2O5, the spin re-orientation transition is accompanied by the loss of com-

mensurability of the spin structure in the a and c directions (which is also a consequence

of magnetic frustration). This latter aspect of the transition is, however, less important

for the photo-excitation of magnons, discussed below, than the re-orientation of spins.

4.3.2 Magnetically-induced polarization

Minimizing (4.3) with respect to Pb, we obtain expression for the magnetically-

induced electric polarization,

Pb ≈−
χ(0)

1
2V ∑

i, j
J′i j (0)

(
SiS j

)
, (4.5)

which only involves scalar products of spins (compare to equation 1.5).

Figures 4.8 and 4.9 show why in the high-temperature ferroelectric phase the po-

larization vector is oriented along the b axis. Figure 4.8 gives a simplified view of the
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Figure 4.8: A cartoon of the magnetic ordering in the high-temperature collinear phase.

Mn layer in the ab plane, in which the spins inside squares depict the spins of Mn4+

ions located inside oxygen octahedra, while the spins inside triangles are the spins of

Mn3+ ions in oxygen pyramids. The nearly collinear magnetic ordering in the high-

temperature ferroelectric phase consists of antiferromagnetic chains with spins pointing

along the a direction.

The mechanism responsible for electric polarization in this magnetic state involves,

however, the ↑↑↓ and ↓↓↑ spin chains along the b axis, such as shown in figure 4.9.

These chains contain the polar Mn4+ – Mn3+ bonds, connecting parallel spins, and the

Mn3+ – Mn4+ bonds with opposite polarity, connecting antiparallel spins. Importantly,

the charge and spin modulations in the chains have the same period, in which case the

conventional exchange striction destroys the cancellation of electric dipoles of the polar
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Figure 4.9: Electric polarization induced by magnetostriction along the b-chains. The

two order parameters η1 and η2 describe degenerate ferroelectric states with opposite

directions of electric polarization.

bonds and induces electric polarization along the chains, as illustrated in figure 4.9.

This mechanism also works in the low-temperature (incommensurate) ferroelectric

phase, in which the spin and charge orders continue to have the same periodicity in the

b-direction. The amplitude of the exchange striction is, however, largest for collinear

spins [see (4.5)], which explains the drop of the polarization at the transition to the low-

temperature phase. For example, if the value of the magnetoelectric coupling ∝ J′3−

J′4− J′5, is chosen such that the electric polarization induced by the ‘high-temperature’

configuration shown in figure 4.7(a) is 1000 µC m−2, then for the ‘low-temperature’

configuration shown in figure 4.7(b) it equals 500 µC m−2.
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4.3.3 Static and dynamic dielectric susceptibility

The contribution of the coupled spin-lattice degrees of freedom to static dielectric

susceptibility is given by

χ−1
1 ≈

(
χ(0)

1

)−1
− 1

V ∑
i, j

IiA−1
i j I j +

1
2V ∑

i, j
J′′i j (0)

(
SiS j

)
, (4.6)

where

Ai j = Ji j
(
SiS j

)
+δi j

[
∑

α=1,2
Kiα

(
2
(
Sik̂iα

)2−S2
i

)
−∑

k
Jik (SiSk)

]
(4.7)

and

Ii = ∑
j

J′i j
[
Si×S j

]
c , (4.8)

The second term in (4.6) is the spin contribution to the dielectric constant due to virtual

excitations of magnons by electric field (this will become more apparent in the discus-

sion of the dynamic susceptibility).

The last term in (4.6) describes the shift of the phonon frequency due to a change of

the spring constants in magnetically ordered states. This effect is known in condensed

matter spectroscopy as spin-phonon coupling [75, 76]. Phenomenologically, this effect

is described by the fourth-order magnetoelectric coupling of the type P2L2, where L is a

magnetic order parameter. In most cases, magnon and phonon branches coupled through

this term experience ‘repulsion’ and phonon hardens. However, in the magnetically

frustrated compounds, this contribution to the dielectric constant can have either sign

and can result in either hardening or softening of phonons in the magnetic phase (see, e.

g., [77] on CdCr2S4 spinel).
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Equations of motion describing the coupled spin-lattice dynamics have the form,

P̈b = −χ0ω2
0

V
∂H
∂Pb

,

Ṡi =
[

∂H
∂Si
×Si

]
,

(4.9)

where χ0 = χ(0)
1 + χ2 and ω0 is the bare frequency of the polar phonon. Omitting the

fourth order coupling term and solving linearized equations of motion, the dynamic

dielectric susceptibility is:

χ−1 (ω)≈ χ0
−1

(
1− ω2

ω2
0

)
− 1

V ∑
i, j

Ii

[(
BA−ω2)−1

B
]

i j
I j, (4.10)

where

Bi j = Ji j +
δi j

S2
i

∑
α=1,2

(
Kiα

(
Sik̂iα

)2−Ki3S2
i

)
− δi j

S2
i
∑
k

Jik (SiSk) . (4.11)

The second term in (4.10) describes the transfer of a part of electric dipole spectral

weight from phonon to magnon frequencies, which turns magnons coupled to phonons

into electromagnons. If such an electromagnon has lower frequency than the phonon,

the static dielectric constant ε(0) = 1 + 4πχ(0) increases as a result of the coupling

showing a step-like anomaly. Furthermore, frequencies of the mixed spin-lattice excita-

tions (poles of the dielectric susceptibility (4.10)) are shifted down with respect to the

‘bare’ magnon frequencies, found from

det
(
BA−ω2) = 0. (4.12)

Note that the electromagnon term in (4.10) disappears for collinear spin states, as Ii,

defined by (4.8), is zero in this case. This can be understood as follows. Classically,
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Figure 4.10: The model calculation results: Frequency dependence of the real (ε1)

and imaginary (ε2) parts of the dielectric function (red and blue lines, respectively) for

the ‘high-temperature’ collinear state (panel a) and the ‘low-temperature’ non-collinear

state (panel b) shown, respectively, in panels (a) and (b) of figure 4.7. Red points are

selected magnon frequencies of spins decoupled from the lattice found as the roots of

(4.12). A magnon at 11.8 cm−1 couples to a polar phonon at 100 cm−1 and becomes an

electromagnon observable as the peak of the ε2.
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magnons correspond to spin oscillations that are orthogonal to ordered spin vectors.

The change of the scalar product of a pair of collinear spins is then proportional to the

second power of the amplitude of the oscillations. Since the magnetoelectric coupling in

the model originates solely from Heisenberg exchange and only involves scalar products

of spins, the linear coupling of electric field to magnons is absent for collinear spins and

the lowest-order process is the photo-excitation of a pair of magnons.

In figures 4.10(a) and (b), the real and imaginary parts of the dielectric function (red

and blue lines, respectively) are plotted for the ‘high-temperature’ and ‘low-temperature’

states shown in, respectively, figures 4.7(a) and (b) (the imaginary part was obtained by

the shift ω → ω + i γ
2 with γ = 1 K). As was explained above, the coupling of magnons

to the electric component of light and significant electric dipole absorption at magnon

frequencies is only present in the non-collinear ‘low-temperature’ phase, in agreement

with experiment. This result may seem somewhat counterintuitive: while the sponta-

neous electric polarization induced by the Heisenberg exchange striction is maximum

for the collinear state, the excitation of magnons by the electric component of light

(electromagnons) requires non-collinear spins and is only observed below the spin re-

orientation transition.

For comparison the transmission spectrum of BiMn2O5 is plotted in figure 4.11.

The temperature dependence shows that only two weak absorption peaks activate be-

low the ferroelectric transition temperature 40 K. Therefore, this clearly shows that

in the purely collinear phase of RMn2O5 only ferroelectric polarization is allowed but
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Figure 4.11: Transmission spectra in BiMn2O5. Only weak magnetic dipole magnons

are observed in the spectra below the ferroelectric ordering temperature.

electromagnons are not.

The red points in figure 4.10 mark the bare frequencies of the softest magnons with

zero wave vector, found from (4.12). Since the magnetic unit cell in this calculation

contains 16 mangetic ions, the total number of such magnons is also 16. However, only

one of them is strongly coupled to the electric component of light and significantly con-

tributes to the dielectric constant. This electromagnon corresponds to relative rotation

of spins of the neighboring antiferromagnetic chains, which gives rise to oscillations

of the induced electric polarization in the b direction. The frequency of this uncoupled

magnon for the non-collinear spin configuration shown in figure 4.7(b) is 11.8 cm−1. As

the position of the absorption peak in figure 4.10(b) is clearly lower that this magnon fre-

quency, these parameters correspond to the strong magnetoelectric coupling case. The

strong coupling is apparently necessary, if the large difference between dielectric con-
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stants of the ‘high’- and ‘low’-temperature phases ∆ε ′ (0) (= 3.25 in our calculation) is

associated solely with the absorption peak emerging in the non-collinear state.

The results of the model calculations presented in figure 4.10(b) show that the sym-

metry properties of one magnon and the lattice allow an electromagnon in this system. In

this model, the first derivatives of the exchange integrals Ji j are the coupling constants.

Both magnetically induced polarization and electromagnon were calculated using the

same set of J′ values. Characteristic value of J′ used in our calculation was dJ3/dy =

4 meV/Å which is much less than, for example, 40 meV/Å for ZnCr2O4 [78].

4.4 Conclusions

This chapter has presented data on multiferroic TbMn2O5 and YMn2O5 single

crystals that very clearly confirm the existence of electromagnons in this family. The

match between figures 4.4(a) and 4.6 unambiguously affirm these excitations as elec-

tromagnons. A model based on a magnetoelectric interaction of pure Heisenberg origin

is capable of explaining the appearance of electric polarization and electromagnons and

their selection rule.

This model makes two very fundamental predictions, which are that electromagnons

can appear even if the static polarization is zero, i.e. in magnetic materials that might

not necessarily are multiferroic, and that they can only exist if the magnetic structure is

non-collinear. These predictions will be useful for studies of other families of multifer-

roics.
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Chapter 5

Electromagnons in the Multiferroic Family RMnO3

5.1 Overview

In this chapter the electromagnon spectra of Eu0.75Y0.25MnO3 and TbMnO3 are

presented in the context of the theoretical proposal based on the symmetric Heisenberg

exchange coupling in spiral magnets RMnO3.

Eu0.75Y0.25MnO3 has a crystal structure belonging to the orthorhombic space group

Pbnm which is sometimes called the distorted-perovskite structure shown in figure 5.1.

In this structure, the Mn3+ ions are surrounded by a distorted octahedron of oxygens.

This distortion is the Jahn-Teller distortion [79] because it originates from a degeneracy

of the electronic orbitals in the Mn ion. In addition, the octahedra are rotated in a special

pattern that reduces the overall symmetry from cubic to orthorhombic, this distortion

is usually refereed as the GdFeO3 distortion [80], which makes the Mn-O-Mn angle

smaller than 180◦.

As introduced in Chapter 1, Eu0.75Y0.25MnO3 belongs to the family of multiferroics

that are spiral magnets. However, the spiral plane is not the same as in TbMnO3 where

the spins lie in the b−c plane. In Eu0.75Y0.25MnO3 the spiral is in the a−b plane [12]1,

1The magnetic structure of Eu0.75Y0.25MnO3 has not been found experimentally by neutron scattering

yet, but the behavior of the magnetic susceptibility is used in [12] to argue that spins lie in the a−b plane.
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Figure 5.1: Structure of multiferroic RMnO3.

making then the direction of the polarization along the a axis. This configuration is also

found in TbMnO3 when a magnetic field is applied in the a or b direction as well [1, 81].

5.2 Experimental Results Eu0.75Y0.25MnO3

Single crystals of Eu0.75Y0.25MnO3 were grown as described elsewhere [67]. The

samples were characterized by X-ray diffraction and dielectric measurements in kHz

range. These samples are ferroelectric below TFE=30 K with static polarization in the

a− c plane (Pa > Pc), and magnetically ordered with transition temperature TN=47 K,

the magnetic structure is still unknown. Optical measurements of reflectance and trans-

mission were made as a function of temperature as described in Chapter 2 [82]. The

transmission of a a− b plane crystal was measured at thicknesses of 1.93, 0.45, 0.080
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and 0.020 mm. A second crystal was measured in a− c plane geometry at 1.28 mm

thickness.

To extract the temperature dependence of the optical conductivity the transmission

spectra is fitted with a Lorentzian model of the dielectric constant ε(ω) for electric

dipole and/or magnetic permeability µ(ω) for magnetic dipole transitions as described

in Chapter 2 [67, 82]:

ε(ω) = ε∞ +∑
j

S j

ω2
j −ω2− ıωγ j

(5.1)

µ(ω) = 1+∑
k

Mk

ω2
k −ω2− ıωγk

(5.2)

where ε∞ is the high frequency dielectric constant, j,k enumerates the oscillators, S j and

Mk are spectral weights, ω j,k is the resonance frequency, and γ j,k is the damping rate.

The striking difference between figures 5.2a and 5.2b corresponds to the magnetic

dipole and electric dipole absorptions at low temperature for the same thickness. The

transmission spectra shows that a strong low frequency absorption in Eu0.75Y0.25MnO3

occurs only in e||a polarization — as was reported for TbMnO3 and GdMnO3 [66]. In

e||c, the IR active phonons are the only electric dipole features observed (not shown).

In the (e||b,h||a) polarization only one weak absorption mode below TN (fig. 5.2a) is

found. Fitting this mode as a h||a magnetic dipole active antiferromagnetic resonance

(AFMR) gives the values ω = 20 cm−1, γ = 2.3 cm−1, and M = 2.5 cm−2 at 8 K which

are typical for the AFMR [82]. In this fit ε = 17.5 was used which was obtained by

fitting e||b phonon reflectivity spectra. This AFMR was also observed in the e||c, h||a

configuration on a a− c plane sample shown in figure 5.3.
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Figure 5.2: (a),(b), and (c) — transmission spectra of Eu0.75Y0.25MnO3 in different

polarization configurations; (d)— optical conductivity from fits of spectra in panel (c).

e and h are electric and magnetic fields of light.
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The low temperature trace shows the AFMR absorption also present in figure 5.2(a).

93



A much thinner sample was used to quantify the e||a spectra as shown in figure

5.2(c). Below TFE , two relatively narrow features appear; a low energy peak at 25 cm−1

and a broader absorption at 80 cm−1. The gap in the fig. 5.2(c) data near 140 cm−1 is

due to absorption in the cold quartz window. An isosbestic point (frequency of constant

absorption) is found at 105 cm−1 which signifies spectral weight conservation between

the low frequency absorption and the phonons. Similar features at 25 and 65 cm−1 were

observed in a polycrystal of TbMnO3 and the data on single crystal will be shown later.

A broad background absorption is observed as a continuous decrease of the trans-

mission level in fig.5.2(b) in e||a (but not in the e||b or e||c polarizations) and persists to

temperatures as high as 150 K. Figure 5.4 shows that this background absorption grows

in strength as T decreases (filled upright triangles) and this growth accelerates below

T = TN . At T = 10 K the background accounts for approximately half of the total low

frequency oscillator strength below 140 cm−1.

The optical conductivity obtained by fitting the transmission spectra of fig. 5.2(c) is

shown in figure 5.2(d). Three Lorentzians were used to fit the spectra. Their parameters

are (ω ,γ ,S) at 5 K (25, 4, 467), (65, 70, 7708), (79, 17, 7506). The spectral weight of the

lowest frequency peak is comparable to the corresponding values for the electromagnons

in YMn2O5 and TbMn2O5 (see table 4.1 and [82]). The phonon parameters are (122,

15, 2662) at 5 K and (118, 12, 7456) at 80 K.

The frequencies of the 25 and 80 cm−1 peaks show very little temperature depen-

dence and the damping rate decreases, both below TFE (not shown). The temperature

94



0 20 40 60 80 100 120 140
0

5000

10000

0 50 100 150 200 250

1.36

1.37

1.38

TN
TFE4

3

2

1

Eu0.75Y0.25MnO3

 

S
 (c

m
-2
)

Temperature (K)

e || a

ΣS
i (

10
6  c

m
-2
)

 Temperature

Figure 5.4: Spectral weight of the features below 140 cm−1. Curves show data for:

1) 25 cm−1 peak, 2) 120 cm−1 phonon, 3) peak at ∼80 cm−1 and, 4) total spectral

weight below 140 cm−1 (excluding the phonon). Inset: Total spectral weight of the

eight phonons above 140 cm−1.

95



dependence of the spectral weight of the low frequency modes is shown in Figure 5.4.

The phonon spectral weight begins changing significantly around TN and shows an in-

flection point at TFE , signaling coupling to the magnetic system. It is seen that the total

spectral weight below 140 cm−1 is not conserved; there is a net gain of about 6,000

cm−2. To clarify this point, the total spectral weight of the high frequency phonons is

shown in the inset. The high frequency phonons are seen to suffer a net loss of 5,000

to 10,000 cm−2 below TN which compensates for the gain of spectral weight below

140 cm−1 within experimental error. The change in the phonon strength in 50–295 K

range is the usual behavior from thermal contraction. Thus, the new low frequency

modes in Eu0.75Y0.25MnO3 are coupled to, and acquire their optical activity from, all

the IR phonon modes.

Further evidence of coupling between the phonons and magnons is visible in the

temperature dependence of the phonon frequency in figure 5.5(a). In the temperature

range where phonon hardening usually saturates, an onset of additional hardening at

TFE and a smaller effect at TN are observed. Figure 5.5(b) shows the dielectric con-

stant of Eu0.75Y0.25MnO3. The peak at 30 K in the low frequency curves (e||a and e||c)

signals the onset of the static FE moment and is related to the dynamical response of fer-

roelectric domains or due to a relaxation mode. The IR dielectric constant at ∼10 cm−1

only reproduces a step up in εa which is the signature of electric dipole activity of the

new modes in e||a polarization. Signatures of these new modes were not found for e||c

in either transmission spectra or in the temperature dependence of εc(0).
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The coupling of the magnons to the lattice leads to mode mixing and therefore

spectral weight transfer between the electric dipole active phonons and the magnetic

dipole active magnons[32]. The electric dipole activated magnon can be thought of as

the Goldstone boson of multiferroicity [32]. In general the lowest order coupling can

be written as a trilinear term in the Hamiltonian [19], H ∼ uSS, where u is the lattice

displacement and S is the spin variable. The form of the interaction that can couple

the q = 0 phonon to one magnon, is H ∼ u0S−Q〈S+Q〉, where 〈S+Q〉 corresponds to the

static magnetic structure.

A quantitative comparison of experiments with theory is limited by the lack of a

theoretical treatment for realistic structures including both symmetric and antisymmetric

exchange. Katsura, et al. [32] have reported a theory of the electromagnon (em) for the

case of a spin chain with cycloidal order coupled to the lattice by Dzyaloshinskii-Moriya

(DM) antisymmetric superexchange. They predict that the em should be observed as a

e ⊥ P ⊥ q absorption as described in Chapter 1. However the observation is that em||a

for Eu0.75Y0.25MnO3 as well as for TbMnO3 and GdMnO3, where the static polarization

direction and value are different for the three compounds. Therefore the em in the

RMnO3 multiferroics has a selection rule (e||a) which is not borne out by the Katsura

model. The model also predicts that the frequency of the em should be lower than the

AFMR, but, as shown above in figure 5.2, we have observed the opposite. However,

the model does predict that the em and the AFMR are separate modes as our result also

implies.
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The 80 cm−1 feature is even more problematic within the Katsura picture. In this

case the magnon at q = Q is an internal mode in the unit cell and is nearly degenerate

with the lowest frequency phonon. However, since mode mixing has generic features,

it is interesting to examine the predictions of the Katsura model for this nearly degen-

erate case. The model can produce the large oscillator strength transfer for a very large

DM coupling constant λ but this is accompanied by a large shift, ∼ 20 cm−1, in the

optical phonon as shown in figure 5.6. The phonon is observed to shift to higher fre-

quencies, consistent with mode repulsion, but only by ∼ 2 cm−1, which in the Katsura

model means a very small coupling constant (vertical line in fig5.6) and therefore almost

no spectral weight transfer from the phonon to the em, in stark contradiction with the

experiments shown here.

Symmetric exchange coupling should produce similar mode mixing behavior and

in principle the coupling strength can be larger than is expected for DM exchange. It has

been shown in chapter 4 that symmetric exchange coupling would produce a response

of the form em||P for simple models [13]. While this is the observed selection rule

for YMn2O5 and TbMn2O5 where em||b||P, it is not correct for the RMnO3 systems.

Therefore, the experiments imply that the em selection rule is associated with the crystal

structure and the magnetic structure through the symmetry allowed phonon-magnon

coupling. Clearly extending the simple em models to include more accurate depictions

of the materials is an important task, and it will be presented later.

We note that inelastic neutron scattering can provide important additional informa-
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Figure 5.6: Prediction of the KBN model of electromagnons. Plotted are the phonon fre-

quency and intensity as a function of the magnetoelectric coupling constant λ for three

different cases of frequency separation ∆ between the phonon and the electromagnon.

100



tion. Data reported by Senff, et al. [83] shows good agreement with the low frequency IR

data of TbMnO3 [66]. Also S.H. Lee, et al. [84] have recently reported good agreement

between the sharp em features in YMn2O5 and the magnons observed in neutron scat-

tering at q = Q favoring the mode mixing scenario for that material as shown in Chapter

4. Mode mixing also implies the onset of magnetic dipole activity of the phonons at

TFE . This effect should be investigated experimentally.

The trilinear coupling also allows a two magnon decay of the phonons, by the terms

H ∼ u0SqS−q. The corresponding frequency dependent phonon self energy can produce

modifications of the phonon absorption line shape related to the two magnon (q1 =−q2)

density of states. As the two magnon density of states is broad with no narrow spec-

tral features this process is unlikely to produce the observed relatively narrow electro-

magnon absorption. However, the two magnon process is a good candidate for under-

standing the broad background absorption observed below as well as above TN in the

e||a polarization. The gradual decrease of this background signal with temperature (Fig.

5.4) above TN suggests that it originates from magnetic fluctuations. Since there are no

long lived magnons for T > TN this background arises from the coupling of the phonon

to the dynamic fluctuations of the magnetic system in the paramagnetic phase. Confirm-

ing evidence for this interpretation would be the observation of short range magnetic

order in these materials above TN by inelastic neutron scattering.

At this point it is interesting to ask what is the behavior of these electromagnons

under magnetic field. This is because the results above seem to indicate that electro-
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Eu0.75Y0.25MnO3
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magnons and polarization are independent, and because the behavior of polarization has

been already measured in magnetic field [81], a direct comparison is possible 2. In or-

der to test this, transmission measurements were done under magnetic field as described

in Chapter 2 in the e||a, h||b and H||c configuration. Results of the temperature de-

pendence of the transmission at fixed magnetic fields are shown in figure 5.7. These

measurements were done on warming, but the behavior on cooling is highly hysteretical

in the region between 6 and 7 T, and below 25 K.

After many cycles of measurements, a phase diagram is built in the H− T plane

shown in figure 5.8. The color coded plot gives the integrated intensity of electro-

magnon absorption between 3 and 100 cm−1. It is clear from the figure that at low

temperatures the magnetic field induces drastic changes until the material losses the

electromagnons completely. The points in the plot were obtained from measurements

of εa and P as functions of temperature and magnetic field [85]. This behavior of the

low frequency electromagnon under magnetic field H||c was observed in TbMnO3 be-

fore [66]. These results, coupled with the static phase diagram of TbMnO3 [81], sug-

gests that even though TbMnO3 and Eu0.75Y0.25MnO3 have different spiral planes, the

electromagnons behave in the same way. In addition, even though electromagnons are

independent from polarization, the phase diagram 5.8 suggests that they only exist in

the spiral phases, or at least, in the non-collinear ones.

2The results of experiments in magnetic field has not been published for Eu0.75Y0.25MnO3, however

measurements have been done by Prof. S-W. Cheong’s group [85], and he has made these results available

to me.
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Finally, it is also interesting that the transition from the low field phase to the high

field one, coincides with a transition from a cycloidal spiral to a canted antiferromag-

netic one [86]. This last structure cannot induce ferroelectricity and thus it is paraelec-

tric, as indicated in figure 5.8.

5.3 Origin of Electromagnons in RMnO3

In this section far IR experiments on TbMnO3 are presented together with a model

based on the symmetric Heisenberg exchange as the origin of the dynamic magnetoelec-

tric coupling in this family of materials. Two samples of TbMnO3 were used in these

measurements: (1) ab sample for zero field experiments of size 3× 3 mm2 and 50 µm

thick along a,b and c, respectively (Pbnm setting), and an (2) ac sample for magnetic
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field measurements (H||b) of size 2×2×1 mm3 for e||c and then polished to 75 µm for

e||a. Sample (2) allows access to the phase where ferroelectric polarization P is changed

from the c to the a axis with a field of 5 T at 7 K, and the spiral spin configuration rotates

from the bc to ab plane. The transmission spectra were then converted to the absorption

coefficient α(ν) using T (ν) = (1−R(ν))2e−α(ν)l, where l is the sample thickness.

5.3.1 Experimental Results

Figure 5.9(a) shows the spectra in the far infrared taken at zero external mag-

netic field in TbMnO3. All the features observed have been identified in the spectra

of Eu0.75Y0.25MnO3 as shown in section 5.2 and are described in the caption [87]. Mea-

surements of the far infrared transmission in a magnetic field (H‖b) were performed to

test the behavior of electromagnons on different spiral states. The spectra taken at 7 K

are shown in figure 5.9(b). Above approximately 5 T the system undergoes a spin flop

transition from a spiral in the bc plane to an ab plane spiral, yet the electromagnons

remain active in the configuration e||a with only a slight shift of their frequencies and an

increase of their spectral weight. The color coded phase diagram is shown in figure 5.10

resulting from integrating the absorption coefficient from 15 to 100 cm−1. The symbols

mark the boundaries between different phases, in particular Tf lop is the temperature at

which the spiral plane flops from the b− c to the a−b plane.

It is particularly striking that the absorptions activated in the cycloidal phase are

only active for light polarization e||a in all systems studied, regardless of the spin plane,
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Figure 5.9: (a) Zero field absorption spectra in TbMnO3. Main features of spectra

correspond to 2 electromagnon peaks at 25 and 60 cm−1 that activate below TFE , and

the lowest infrared active phonon just below 120 cm−1. Additionally, the temperature

dependence of the spectra shows that there is a broad absorption below the phonon that

persists well above TN . (b) Magnetic field dependence of the low temperature spectrum

with H ‖ b. The frequencies of the electromagnons shift in the high field phase, and

their intensities increase.
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or static polarization direction or value. This observation directly contradicts the pre-

diction of KBN [32] on the electrodynamics of spiral multiferroics. Indeed the inade-

quacy of this mechanism is also suggested by the large Born effective charge required

in the KBN model to account for the experimentally observed oscillator strength. The

observed selection rule clearly indicates that account must be taken of the specific char-

acteristics of these manganites, such as the crystal structure and anisotropic magnetic

interactions, in order to find an accurate description of the electromagnon excitations.

In order to test the possibility of observing electromagnons that follow the KBN

prediction, we have performed measurements in the H‖b, e‖c, h‖a configuration. The

absorption spectra are shown in figure 5.11. The spectrum in the high field phase shows

clearly an absorption feature around 21 cm−1. By fitting the transmission spectrum with
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Figure 5.11: Absorption spectrum for the expected polarization of the KBN electro-

magnon. The new absorption line around 21 cm−1 in the high field phase is magnetic

dipole active given that the expected contribution to ε (shown in the inset) is larger than

found in the static measurements.

a model electric dipole active excitation the putative contribution to the static dielectric

function ε is ∆ε ≈ 1.2 as shown in the inset. This change in ε is not observed in the static

data [81], showing that this feature is not an electric dipole excitation. Therefore this

excitation is a magnetic dipole (h‖a) antiferromagnetic resonance (AFMR) as expected

from the magnetic order [33]. For comparison, note that in the zero field spectra in the

e‖b, h‖c configuration an AFMR around 22 cm−1 is observed as shown in figure 5.12.

This means that the h‖c magnon rotates together with the spin plane thereby changing

its selection rule to h‖a, completely consistent with the change of polarization direction
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Figure 5.12: Transmission spectra of TbMnO3 in the (a) h||c,e||b at zero field, and (b)

h||a,e||c in H||b configurations.

[1] and recent neutron scattering measurements [88].

5.3.2 Theory

A mechanism specific to rare earth manganites that only involves the symmetric

Heisenberg exchange between non-collinear spins [13] and, therefore, is not sensitive

to the orientation of the spiral plane is presented. The polarization of electromagnon in

this case is always parallel to the a axis, in agreement with experiments.

The essential features of magnetic excitations in the spiral state can be understood
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within a model including only superexchange interactions between Mn spins,

Hex =
1
2 ∑

i, j
Ji j Si ·S j. (5.3)

When magnetic anisotropies are neglected, the 4 Mn ions in the unit cell of RMnO3,

located at R1 = (1
2 ,0,0), R2 = (0, 1

2 ,0), R3 = (1
2 ,0, 1

2), and R4 = (0, 1
2 , 1

2), become

magnetically equivalent (see Fig. 5.13). The competition between the nearest-neighbor

ferromagnetic exchange, J = Ji,i+(b±a)/2 < 0, and the antiferromagnetic next-nearest-

neighbor exchange along the b axis, Jb = Ji,i+b > 0, favors the circular spin spiral with

the wave vector Q‖b, where cos Q
2 = |J|

2Jb
, provided that Jb > |J|

2 and Ja = Ji,i+a < J2

4Jb
. The

antiferromagnetic exchange along the c axis, Jc = Ji,i+c/2 > 0, gives rise to the ‘double

spiral’ structure with antiparallel spins in neighboring ab layers:

〈Si〉=±S
(
ĉcosQ·ri− b̂sinQ·ri

)
, (5.4)

where the upper/lower sign corresponds the ab layers with integer/half-integer z/c. The

bc plane is favored e.g. by the single-ion anisotropy, K
2 ∑i (Sa

i )
2 with K > 0, which

does not spoil the equivalence of Mn sites (effects of other magnetic anisotropies are

discussed below).

The magnon spectrum in RMnO3 has acoustical and optical branches. Their disper-

sion for a circular spiral is plotted in Fig. 5.14(a) with, respectively, blue dashed and red

solid line, as a function of the wave vector k in the co-rotating spin frame, in which 〈S〉‖ẑ

on all sites. For acoustical magnons the order parameter L = S1 + S2−S3−S4 oscil-

lates in the spiral plane, while optical magnons correspond to out-of-plane oscillations
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of L. The KBN electromagnon is the symmetric superposition of the optical magnons

with the wave vectors +Q and −Q, while the interaction Eq.(5.5) couples electric field

through the alternation of the Heisenberg exchange along the b axis to the acoustical

magnon with k0 at the zone boundary. This excitation corresponds to relative rotations

of the spins S1 and S2 in the spiral plane, which occur in anti-phase with the rotations

of the spins S3 and S4 and result in alternation of the angle between neighboring spins

along the spiral propagation vector. This mechanism works only for noncollinear spins

because the first order variation of the exchange energy with respect to spin oscillations

is zero for collinear spins, similarly to the model applicable to the RMn2O5family in

Chapter 4.

Due to the GdFeO3 distortion of RMnO3 compounds, oxygen ions mediating the

superexchange between nearest-neighbor spins in the ab layers are displaced from the

straight lines connecting two neighboring Mn ions in ab layers as shown in Fig. 5.13.

When an applied electric field shifts all oxygen ions by an equal distance along the

a axis, the exchange constants J1,2 and J1,2+a will be changed by ∆J proportional to

the applied field, while the exchange constants J1+b,2 and J1+b,2+a will be changed by

−∆J. In other words, due to the alternating rotations of the MnO6 octahedra in RMnO3,

a uniform electric field in the a direction gives rise to an alternation of the nearest-

neighbor exchange along the spiral propagation vector Q‖b, J ∝ J0 +∆Jcos(k0 ·r) where

k0 = (0, 2π
b ,0). The corresponding coupling of spins to the electric field e‖a compatible
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with the Pbnm symmetry has the form:

Hme = − gEa ∑
j

[(
S1, j−S1, j+b

) · (S2, j +S2, j+a
)

+
(
S3, j−S3, j+b

) · (S4, j +S4, j+a
)]

, (5.5)

where the indices 1 – 4 label different Mn ions in a unit cell while j labels cells.

This mechanism of dynamic magnetoelectric coupling works only for non-collinear

spins because the first-order variation of the exchange energy ∝
(
Si ·S j

)
with respect to

spin oscillations δSi(t) = (Si(t)− 〈Si〉) ⊥ 〈Si〉 is zero for collinear spins. Although

interactions of spins with e‖b and e‖c, similar to Eq.(5.5), are allowed by symmetry,

they give rise to alternation of the nearest-neighbor exchange constants in the directions

orthogonal to the spiral wave vector Q and do not lead to single-magnon excitations by

electric field, as neighboring spins along the a and c axes are collinear. This explains

why the polarization of electromagnon in RMnO3 parallel to the a axis independently

of the orientation of the spiral plane.

Note that the coupling Eq.(5.5) induces a static electric polarization P‖a in RMnO3

with the collinear antiferromagnetic ordering of the E-type [14], for which the scalar

product of neighboring spins alternates along the b axis. This fact allows the estimation

of polarization in the E-phase using the optical absorption data for the spiral phase (the

direct measurement of PE is difficult due to absence of single crystal samples). The total

spectral weight of the 60 cm−1 peak, S≈ 7000 cm−2, corresponds to PE ∼ 1µC/cm2, in

perfect agreement with ab initio calculations [89]. For comparison, the spectral weight

of the KBN electromagnon, calculated from the polarization P∼ 600µC/m2 in the spi-
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Figure 5.13: One ab layer of the Pbnm unit cell of RMnO3 consisting of 4 manganese

ions (blue circles) and 4 oxygen ions (pink circles). The displacements of the oxygen

ions from the midpoints of the straight lines (dashed lines) connecting neighboring Mn

ions are δ r1+b,2+a = (δx; δy; δz), δ r1,2 = (−δx; −δy; −δz), δ r1,2+a = (−δx; δy;

δz), and δ r1+b,2 = (δx; −δy; −δz). The labels of the manganese ions in the next layer

are given in parentheses. The displacements of the oxygen ions in the next layer have

opposite δz.
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ral phase of TbMnO3, is only ≈ 10 cm−2. The photoexcitation of magnons through the

magnetoelectric coupling Eq.(5.5) of exchange origin, which is about 2 orders of magni-

tude stronger than the relativistic coupling in spiral manganites, is much more effective

than the KBN mechanism.

As Eq.(5.5) only involves scalar products of spins, the resulting electromagnon peak

is insensitive to the orientation of the spiral plane. Instead, it is tied to the crystal struc-

ture of RMnO3 and only depends on the direction of the spiral propagation vector Q,

which stays constant in an applied magnetic field. Similar interactions of spins with

e‖b and e‖c, give rise to alternation of nearest-neighbor exchange constants in the di-

rections orthogonal to the spiral wave vector Q, which do not allow for single-magnon

excitations by electric field, as neighboring spins along the b and c axes are collinear.

The coupling Eq.(5.5), as well as another invariant, Ea[(S1−S1+c)·S3 – (S2−S2+c)·

S4], also gives rise to the photo-excitation of a pair of magnons with the total wave vec-

tor k0 (the so-called ‘charged magnons’ [65]). Charged magnons are also excited by e‖c

and e‖b through couplings similar to Eq.(5.5). The calculated shape of the bi-magnon

continuum is shown in Fig. 5.14(b). Its maximum is located around the electromagnon

frequency and its total spectral weight is only∼ 10% of the spectral weight of the single-

magnon peak. This, together with the fact that bi-magnons can also be excited by e‖c

and e‖b through couplings similar to Eq.(5.5), indicates that the experimental peak at 60

cm−1 results from the photoexcitation of a single zone-boundary magnon. This magnon

can be identified in the recent neutron scattering results of Senff, et al.[90].
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Figure 5.14: (a) The typical magnon spectrum for a circular bc-spiral along k =

(0,kb,0), where kb is measured in units of 2π
b . The empty and filled circles mark the po-

sition of, respectively, the KBN electromagnon and the electromagnon excited through

the rotationally invariant coupling Eq.(5.5). (b) The histogram shows the corresponding

bi-magnon spectrum. For comparison also the (arbitrarily broadened) single-magnon

peak is plotted (solid line).
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Concerning the nature of the weaker 25 cm−1 peak, we note that beyond the sim-

ple circular-spiral model the magnon wave vector k is not conserved and a number of

different mechanisms couple high- and low-frequency magnons. For example, the spi-

ral ellipticity that results from the anisotropy in the spiral plane, gives rise to satellite

peaks at k0± 2Q, k0± 4Q . . .. Furthermore, the alternation of the b-component of the

Dzyaloshinskii vectors for pairs of neighboring spins along the b axis,

[(S1 +S1+b)× (S2 +S2+a)]b− [(S3 +S3+b)× (S4 +S4+a)]b (5.6)

resulting from the GdFeO3 distortion, couples the zone boundary electromagnon with

k = k0 to the antisymmetric superposition of acoustic magnons with k = ±Q. This

magnon-magnon coupling (different from the magnetoelectric coupling inducing the

static polarization in the spiral state) remains unchanged at the flop of the spiral plane,

as it only involves the a and c components of spins. There are, furthermore, anisotropic

spin-spin interactions insensitive to the flop transition (e.g. involving products Sa
i Sc

j)

which couple the electromagnon with k = k0 to magnons with k = ±Q. Conversely,

similar relativistic couplings that do change at the flop transition, do not couple the

zone-boundary electromagnon to low-frequency magnons, suggesting that this low fre-

quency electromagnon also originates from Heisenberg interactions. Which of these

mechanisms gives the dominant contribution to low-frequency absorption is not clear,

but all of them are different from the coupling inducing electric polarization in the spiral

state.
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5.4 Conclusion

Summarizing the results: 1) the well defined absorption peaks at 25 and 80 cm−1

in Eu0.75Y0.25MnO3 and 25 and 60 cm−1 in TbMnO3 arise from mode mixed phonon-

magnon excitations — electromagnons with a selection rule eω ||a tied to the crystal

structure and independent of the spin plane, and 2) there exists colossal coupling be-

tween magnon and phonons that leads to the spectacular loss of spectral weight of the

low frequency 120 cm−1 polar phonon. In conclusion, we have presented data and a the-

oretical model that strongly support the Heisenberg exchange interaction as the origin

of the magnetoelectric dynamics in the family of multiferroics RMnO3. Additionally,

the fact that these excitations are observed both in the neutron measurements and the IR

experiments reflects their origin as single-particle excitations of a hybrid electromagnon

nature. The surprising outcome of this study is that optical data can be used to explore

properties of competing ferroelectric states: from the measured spectral weight of the

electromagnon peak in the spectrum of spiral manganites the value of the spontaneous

polarization in manganites with the E-type collinear ordering was estimated. These re-

sults imply that the dynamic magnetoelectric coupling is in general different from the

static one and that electromagnons can be observed in non-multiferroic materials with

non-collinear spin orders, which opens a new avenue of investigation of the dynamic

properties of frustrated magnets.
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Chapter 6

Summary and Outlook

6.1 Summary

The main result of this dissertation is the discovery of a new kind of elementary

excitation in multiferroic materials. This new excitation, the electromagnon, is a result

of the fundamental coupling between magnons and phonons in magnetic materials. In

the families investigated here, RMn2O5 and RMnO3, electromagnons are present only

in phases where the magnetic structure is non-collinear. Based on models that use only

the symmetric Heisenberg interaction between spins, the main experimental findings are

reproduced, namely, the selection rule and identification with magnons found in neutron

scattering experiments.

6.1.1 RMn2O5

A clear signature of inversion symmetry loss was found in the infrared phonon spec-

trum in the form of the appearance of a new phonon in the ferroelectric phase, that in

the paraelectric phase is only Raman active. This suggests that the lattice is involved in

this transition, but also that, by the absence of a soft phonon, the transition to the ferro-

electric phase is non-conventional. In addition, the contribution from the polar phonons
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to the static dielectric constants ε is not enough to account for the anomalies observed

in its temperature dependence. This prompted the study of even lower frequency (far

infrared) dynamics in this system and resulted in the discovery of electromagnons.

Electromagnons in RMn2O5 are only active for eω ||b which is parallel to the static

polarization. This selection rule results because electromagnons and static ferroelec-

tric polarization share the same origin. This magnetoelectric coupling originates from

the dependence of the exchange interaction on the distance between Mn3+ and Mn4+

spins. This sensitivity comes about because of the magnetic frustration inherent in this

material. With so many competing interactions to be satisfied, spins find that energy

can be lowered by relaxing into complex magnetic structures that, by symmetry, allow

ferroelectricity and electromagnons.

Very clear confirmation of this is given by the observation of electromagnons in

neutron scattering experiments. This type of experiments can, in principle and with

enough time, map out the complete dispersion of the magnons. By looking at the wave

vector that corresponds to the magnetic structure, the magnons are observed at the same

exact energies of the absorption in the far infrared. This means that electromagnons are

truly a hybrid mode made out of magnon and phonon character.

6.1.2 RMnO3

Following the results for RMn2O5, the focus shifted to the family of multiferroics

RMnO3. This family of multiferroics is structurally simpler and the origin of its fer-
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roelectric state seems to be incontrovertible. However the observations ruled out that

electromagnons have the same origin as the static polarization because the selection rule

of electromagnons is eω ||a independent of the spin plane of polarization direction. This

selection rule results from the dependence of the exchange integral on the angle formed

between two Mn and one O ion (the Mn–O–Mn angle). This angle is effectively mod-

ulated along the b axis by the application of an electric field, as in the case of polarized

light, directed along the a axis. This modulation results in the effective coupling between

the phonon that modulates the angle, and the magnon at the wave vector Q = (0,π/b,0)

with anti-phase oscillations within the spin plane.

Because this coupling originates from the crystal structure of this family of mul-

tiferroic, it is insensitive to the spin plane. In fact this coupling, when applied to a

collinear structure where spins point in the a direction with wave vector Q = (0,1/2,0)

(the so-called E phase), produces a static ferroelectric polarization. This result allows the

estimation of the polarization value in the E-phase multiferroics from the measurement

of the spectral weight of electromagnons in the incommensurate spiral multiferroics.

This gives a very strong support that this coupling term is active in the whole family of

distorted perovskites RMnO3.

Further confirmation was found in the neutron scattering spectrum of TbMnO3.

This results confirms that the strong electromagnon in the far infrared is indeed the zone

boundary magnon observed in the neutron experiments. Again this reaffirm that the

electromagnons in RMnO3 are hybrid excitations of magnon and phonon character.
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6.2 Outlook

The results found in this dissertation point very clearly for future studies in multifer-

roics, and magnetic materials in general. First, electromagnons might be found in other

non-collinear multiferroics. This origin might be the same as the polarization’s origin

as in RMn2O5, or perhaps a different one can be found when analyzing the specifics of

the magnetic interactions and crystal structure, as was done in RMnO3.

Second, electromagnons might be found in magnetic materials that are not neces-

sarily multiferroic but that are non-collinear. This would be very important, because

it would generate more interest in the electrodynamics of magnetic materials, and the

nature of magnetic frustration and complex magnetic structures could be studied from a

very different perspective from the ones used so far.

Thirdly, it is important to note that even though electromagnons are responsible for

some of the anomalies in ε found at magnetic transitions, the most noticeable anomaly

not explained by electromagnons is the peak that occurs at the ferroelectric transition

in ε , as observed in figures 4.5 and 5.5(b). This peak might be due to the relaxation

mode discussed in Chapter 1 in the context of order-disorder ferroelectric transitions.

This mode is usually associated with motions of ferroelectric domains and its relaxation

frequency lies in the microwave ( Ghz) part of the spectrum. Therefore, the study of the

dielectric response at these frequencies might answer the question of the nature of the

excitation responsible for this peak anomaly.
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Appendix A

Selection Rules for Phonons

The determination of the selection rules for the observation of the optical phonons

at the Brillouin zone center (k = 0) is the topic of this appendix. A method called

nuclear site group analysis developed in [91] is summarized here and applied to the

multiferroics RMn2O5.

A.1 Symmetry properties of crystals

The symmetry of a crystal of infinite size is described fully by its space group. The

space group is a set of mathematical operations that, when applied to the crystal, leave

all the positions of the atoms either unchanged or translated to a symmetry equivalent

place. The space group is composed of translational and rotational operations. The

rotational operations also form a group called the point group. The point group contains

operations that are not purely rotational, in addition to these, it contains screw axis and

glide plane operations. The screw axis operation consists of a rotation followed by

a translation along the axis by a fractional amount of the full translational symmetry.

Glide plane operations consist of a reflection across the plane followed by a translation

in the plane, again by a fractional amount. Finally, the concept of the factor group is

also important, this is the set of operations of the space group without any translations,
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including those who are part of screw axis or glide planes. The usefulness of the factor

group, is that it allows the symmetry description of an infinite crystal to be reduced

to the description of a single unit cell. Within a unit cell, there are sets of points that

share the same environment, that is, they have the same site symmetry. The members

belonging to the same site symmetry can be transformed into one another by applying

the operations of the factor group.

The number of lattice modes which arise from each equivalent set of sites, their

symmetries and selection rules can be found with the following procedure. Assume that

the ith set of atoms is located in a site of symmetry gi within a unit cell of a crystal of

point group G, gi is a subgroup of G. In gi, there will be irreducible representations that

transform in the same way as the vector components of a displacement, or polar vector.

These irreducible representations of gi are said to be infrared active. The irreducible

representations of G to which the infrared active irreducible representations of gi map,

give the infrared active irreducible representations of G that arise from the ith set of

atoms, and correspond to the lattice modes of this set.

When two or three of the vector components transform in the same way under the

operations of gi, these modes contributions to the total number of modes needs to be

multiplied by two and three, respectively. A way to check the mapping operation, is

that for each site symmetry gi, the total number of lattice modes (the number of non-

degenerate plus two times the number of doubly degenerate plus three times the number

of triply degenerate modes) is three times the number of atoms occupying the ith site.
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Table A.1: Site symmetry decompositions of normal modes for RMn2O5.

Atom Site Symmetry Site Representations

R Cxy
s 2Ag +Au +2B1g +B1u +B2g +2B2u +B3g +2B3u

Mn1 Cz
2 Ag +Au +B1g +B1u +2B2g +2B2u +2B3g +2B3u

Mn2 Cxy
s 2Ag +Au +2B1g +B1u +B2g +2B2u +B3g +2B3u

O1 Cz
2 Ag +Au +B1g +B1u +2B2g +2B2u +2B3g +2B3u

O2 Cxy
s 2Ag +Au +2B1g +B1u +B2g +2B2u +B3g +2B3u

O3 Cxy
s 2Ag +Au +2B1g +B1u +B2g +2B2u +B3g +2B3u

O4 C1 3Ag +3Au +3B1g +3B1u +3B2g +3B2u +3B3g +3B3u

Raman 13Ag +13B1g +11B2g +11B3g

Infrared 8B1u +14B2u +14B3u
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This immediately means that the total number of modes in the unit cell is 3N, where N

is the number of atoms in the unit cell, where 3 of these modes correspond to uniform

displacements of the unit cell called acoustic modes. This makes the total number of

optical modes 3(N− 1). In order to apply this technique the following information is

needed: the space and point groups of the crystal, as well as the site symmetry and posi-

tions of the atoms in the unit cell. Then one must map out the irreducible representations

of each site into the irreducible representations of the point group.

A.2 Examples

The example of the application of this method to find the selection rule of the lattice

modes is the multiferroic family RMn2O5. These compounds belong to the Pbam space

group, with point group symmetry mmm and has four chemical formula units in the unit

cell (Z = 4). The first 2 columns in table A.1 give the site symmetry of each atom in the

compound. In order to map the site symmetry representations into the irreducible repre-

sentations of the unit cell point group, we need character tables for each (character tables

can be accessed on-line at [92]). Below, the character tables of the point group mmm

(D2h) and the point group Cs are reproduced. The left column lists the irreducible rep-

resentations of the point group, the first row lists the symmetry operations of the group

and the middle columns list how each irreducible representation transforms under the

operation, these numbers are called the characters. The last column lists the component

of the polar vector which transforms as each of the irreducible representations.
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Table A.2: Character table for Point Group Cs.

Cs 1 σ xy Selection Rule

A’ 1 1 x,y

A” 1 -1 z

Table A.3: Character table for Point Group D2h.

D2h 1 Cz
2 Cy

2 Cx
2 I σ xy σ xz σ yz Selection Rule

Ag 1 1 1 1 1 1 1 1

Au 1 1 1 1 -1 -1 -1 -1

B1g 1 1 -1 -1 1 1 -1 -1

B1u 1 1 -1 -1 -1 -1 1 1 z

B2g 1 -1 1 -1 1 -1 1 -1

B2u 1 -1 1 -1 -1 1 -1 1 y

B3g 1 -1 -1 1 1 -1 -1 1

B3u 1 -1 -1 1 -1 1 1 -1 x
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Now, the representations of Cs that transform as components of polar vectors are

mapped to the point group by picking the columns of the common operations, in this

case 1 and σ xy, and making the correspondence between the representations. Therefore

the correspondence is Ag, B1g, B2u and B3u ⇒ A’, and Au, B1u, B2g and B3g ⇒ A”.

Because A’ is doubly degenerate, its contribution is multiplied by 2, making then the

total contribution of normal modes from each atom at site Cxy
s equal to 2Ag + Au +

2B1g + B1u + B2g + 2B2u + B3g + 2B3u. This procedure is then repeated for each site

symmetry which then gives the last column in table A.1.

Finally the total number of lattice modes is decomposed as 13Ag + 9Au + 13B1g +

9B1u + 11B2g + 15B2u + 11B3g + 15B3u. Of these, B1u + B2u + B3u correspond to the 3

acoustic modes, 9Au are silent, 13Ag + 13B1g + 11B2g + 11B3g are Raman active and

8B1u + 14B2u + 14B3u are infrared active with the selection rule given in the character

table A.3.
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