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Confirmatory statistics tests, performed and written with equations, are a 

standard in scientific publications, but may represent a barrier to entry for novice 

analysts who have less familiarity with purely calculative methods.  Data 

visualization, often touted as useful for sharing completed analyses with lay 

audiences, is often used for early-stage exploratory analysis.  Could visualization 

support hypothesis confirmation?  Do people have the visual intuitions to make use of 

such a tool?  What would a visual statistical test look like, and what features would it 

require for acceptance by the scientific community? 

This research begins with a crowd-sourced experiment which asked 

respondents to fit a normal curve to a series of data samples, displayed as bar 

histograms, dot histograms, box plots, or strip plots.  The results suggest people have 



  

visual intuitions – though biased toward overestimating spread – for linking idealized 

probability distributions with real sample data.  People performed differently 

depending upon graphic form, suggesting design choices for subsequent experiments.   

A second experiment tested whether novice users might be able to perform a 

statistical test (T-Test) using a visual analogue – two overlapping distributions 

(shown as overlapping normal curves, box plots, strip plots, bar histograms, or dot 

histograms).  Respondents had some capacity for this task, performing best with 

normal curves than with more detailed graphics like histograms.   

The final investigation of this research paired the design lessons garnered 

during experiments 1 & 2 with an interview study of experienced statisticians to 

explore the design requirements for creating acceptable visual tools for inferential 

statistics.  The interviews uncovered three design foci: that the tool must display 

multiple, contrasting facets of analysis; the tool should connect the test back to 

raw data; and include a visual representation of real effect sizes compared to the 

p-value of the test statistic.  

The final chapter of this dissertation uses the design principles determined by 

these three investigations to propose a prototype visual tool for conducting a two-

sample t-test, along with suggested variations for other inferential statistics.   
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Chapter 1: Introduction 

1.1  Motivation for this Research 

Data visualization provides a methodology for conducting quantitative 

analyses while eschewing mathematical notation, and, in so doing, could provide a 

potential inroad to data analysis for users who lack perfect fluency in equational 

math.  During the current era of data ubiquity, a visual, “statistics for all,” toolkit – 

aimed at the laymen who finds themselves with potentially informative data, but who 

lacks long training or experience as an analyst – might be especially powerful.  

Yet in fields which rely heavily upon quantitative analysis, traditional, purely 

calculative, equation-based methods (such as null hypothesis statistical testing, or 

“NHST”), remain the standard for achieving publication, despite some ongoing 

criticism (Cumming 2014, Sullivan 2012, Belia 2005).  Data visualization, if 

considered at all, is seen as a method only for early, exploratory analysis (Tukey 

1977), or as a tool for displaying findings derived through equation-based methods.  

Thus, entry into these quant-heavy fields requires at least some knowledge of 

traditional statistics.  Indeed, people may still favor traditional tools even where they 

have found a workable substitute.  Bartram et. al. found that people actively working 

in analytic occupations, but using only visual interactive models of iterative 

calculation (spreadsheets) as their analytic tool, shared a general sense that they 

weren’t doing ‘real’ analysis (Bartram 2021).  This hints at a cultural bias toward 

equation-based methods as legitimate forms of quantitative analysis, and other 

methods as lessor.   
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At the same time, statistics represents a hurdle for most people; novices often 

struggle with choosing methods, understanding assumptions, interpreting results, and 

implementing tests, even when in analyzing and understanding data they deal with in 

their everyday lives (Mustafa 1996).  Students who succeed at an introductory 

statistics course often achieve only the minimum competence required to pass, and 

many fail to retain even that modest understanding by the time they reach the next 

course in the series (author’s personal experience as an instructor).  This may 

contribute to the high rates of attrition among college students in science, technology, 

engineering, and mathematics (STEM) majors compared to non-STEM fields (Chen 

2018).   

This pattern persists after graduation; only about one quarter of adults who 

graduated with a bachelor’s degree from a STEM major are putting their lessons to 

use in STEM occupations (Census data - 

https://www.census.gov/library/visualizations/interactive/from-college-to-jobs-

stem.html).  And even among professionals publishing papers founded upon 

quantitative analyses, there is widespread misunderstanding of the assumptions made 

by the very methods they used (Belia 2005, Hoekstra 2014).   

Quantitative data analysis, like any field of endeavor, rests upon intellectual 

foundations which the practitioner should have in place prior to beginning work 

(Machlup 1983, Bowker 2000, Star 1989, Van House 2004, Bates 1999, Middendorf 

2004, Nelson 1982, Borgman 2015).  A student wishing to enter a given field must, at 

some point, integrate these foundations into their thinking, or face great difficulties in 

understanding the workings of the more technical aspects of their pursuit (English 
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2016, Bowker 2000, Middendorf 2004, Nelson 1982).  For example, in at least one 

empirical study of alternative curricula, Kuo (2019) found that physics students 

instructed in, “mathematical sensemaking”, that is, focusing explicitly on connecting 

standard physics equations to the conceptual models of reality they represent, 

performed better during end-of-semester assessments than similar students provided 

with more traditional exercise-focused instruction.   

A visual statistics-for-all system, that is, a visual analytics system which poses 

lower barriers to entry to lay-analysts, would need to: 

A)  Provide affordances that replace the need for total training in all 

the assumptions of quantitative analysis; 

B)  Present users with legitimate analytic techniques that cover the full 

range of a quantitative research process, from hypothesis formation to testing.  

This research will attempt to demonstrate whether it is possible to use 

visualization to provide such affordances in quantitative analyses, with particular 

regard for confirmatory visual statistics, which, heretofore, have had much less 

support in the literature than visual exploratory statistics.    

1.2  Definitions 

1.2.1  Gathering ‘data’ as instinctive process 

I use a definition of “Data” offered by Borgman (2015), “…data are 

representations of observations, objects, or other entities used as evidence of 

phenomena for the purposes of research or scholarship.”  They go on to add that, 

“Entities become data only when someone uses them as evidence of a phenomenon, 
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and the same entities can be evidence of multiple phenomena.”  I use the word 

“Analyses” to denote the processes by which scholars and researchers attempt to use 

entities as evidence to further understanding of their study subjects.  Thus, “Data 

analysis” in the following refers to a collection of highly varied processes which 

transform observations, objects, or entities into evidence.  “Quantitative data 

analysis” further specifies that those transformations entail quantitative abstractions, 

that is, abstractions which go beyond identity, to include ordination and (usually) 

measurement.   

The measurement aspect of quantitative analysis, paired with the above 

definition of data as a component of evidence, implies a specific epistemological 

foundation.  A person seeking to understand the world better through quantitative 

data analysis first assumes that the world is subject to study: it exists with or without 

us and will exhibit patterns which remain consistent before and after we recognize 

them.  This conception of the world as a place where tests can be replicated gives 

data, as defined here, traction (Gattei 2004); data become the raw materials for 

reasoning about the world. 

This definition of data also reflects a particular kind of physical environment – 

one in which patterns of events tied to specific physical conditions reliably repeat 

when those conditions themselves occur again.  Cosmides suggested that this kind of 

environment would lead a species already specializing in increasing cognition to 

evolve a statistical sense, that is, a sense of the world which factors in the probability 

of future events (Cosmides & Tooby 1996).  This evolutionary explanation for our 

statistical sensibilities makes the explicit claim: that at the base of quantitative 
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analyses are instinctive intuitions about how the world works, intuitions that formal 

training in statistics can sharpen (Nisbett et al 1983), but that are always present in at 

least their nascent forms. 

1.2.2  Quantitative Analysis as a tool for making us smarter 

Cosmides and Tooby explored whether the instinctive intuitions that 

undergird quantitative analysis can be at least partially engaged through visual data 

displays.  In their research, the choice of form in visual data presentation had a strong 

effect on how their subjects performed analytic tasks upon those data, as well as their 

success rates (Cosmides & Tooby 1996).  This suggests that some visualizations may 

take better advantage of our statistical intuitions than others, but the larger point here 

is that visual data displays trigger these intuitions at all.  A data display can 

apparently serve as a tool for thinking, triggering mental machinery evolved for 

dealing with physical problems in the world.  

This is “External Cognition,” wherein entities external to a single human brain 

form part of a larger cognitive system, essentially an extended mind (Scaife & Rogers 

1996, Hutchins 1995, Clark 2008, Norman 2013).  The external entities can be 

anything which: 

1. Performs some cognitive function, such as memory or calculation; 

2. Provides an interface for the easy exchange of resultant information 

among the components of the extended cognitive system, and, ultimately, with the 

human brain that makes decisions for the extended mind.  

Modern tools of formal statistics are replete with such external entities, from 

hand calculators to computers.  However, even statistical tools predating widely 
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available electronic computing engines constitute entities of external cognition, for 

example, tables of known probability distributions, logarithmic tables for simplifying 

hand calculations, or statistical notation to ease paper and pencil calculations.  All 

these examples have information embedded within them; it may free users from 

having to remember (or recompute afresh) commonly needed values, or might free 

users from having to perfectly recall every step of the statistical methods they aid.  

Tools also come with embedded meta-data which guides analysts through using them, 

for example, the regular location of footnotes, or the tabular format common to so 

many of these resources. 

External entities thus take on memory and calculative tasks.  They pass on 

know-how.  They allow us to perform long and difficult mental work more rapidly 

and more accurately.  

To paraphrase Don Norman, objects can make us smarter. 

1.2.3  Data Visualization as an External Analogue of Internal Cognition  

Scaife and Rogers theorize about how visualizations might operate, proposing 

that its function as part of an extended cognition system is central (Scaife & Rogers 

1996).   

They begin by describing that our brains make internal models of the external 

world, and assert it is these models we experience rather than direct, whole, 

unprocessed reality (Scaife 1996, Hollan 2000, and also Chong et. al. 2003).  We 

work with necessarily limited information – for example, we can only look in one 

direction at any given moment – to build a picture of our surroundings.  We map 

objects, classify them based on our prior experience with similar objects, assign 
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agency to those objects likely to be thinking entities, and perform many other 

cognitive functions (Ware 2019, Ware 2010, Kosslyn 2006, Few 2009).  We do all 

these simultaneously, in real time, and so automatically that usually we can remain 

incognizant of the degree to which the world we think we perceive is actually a 

construct of our internal mental processes (Scaife 1996).   

For example, we think we see the world in focus – sharp edges, clear 

distinctions from one object to the next – rather than blurred together.  Yet, the 

physics of our eyes are such that most of our field of view is blurry, everything but an 

in-focus central spot about the size of a silver dollar held at arm’s length (Ware 2019, 

Cairo 2012).  We use this spot – our eyes darting about constantly – to take samples, 

and from these in-focus pictures our brains stitch together composites of what the 

world would look like were we able to see it all clearly.  Thus, the in-focus world we 

ultimately perceive is an internal model of external reality.  

We build models using every sense, pairing them with our memories, prior 

knowledge, and expectations (Cosmides 1996, Few 2009, and implied by Van House 

2004 with their discussion of the intuitive nature of Bayesian priors).  We make 

errors, too: we suffer from change blindness, misperceptions in depth, see patterns 

where none exist, and miss other patterns actually present in the data (Shermer 2011, 

Cairo 2012, Ware 2010, Kosslyn 2006, Few 2009).  Acknowledging the degree to 

which our perceived reality is a limited, mind-forged model – that is, a useful 

simplification based upon our interpreting always-partial sense information – is 

prerequisite to any kind of analysis (Cosmides 1996, Windschitl 2008).  Recognizing 

that we work from a model allows us to improve that model, for example, by seeking 
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to add new, more informative data, or better interpreting data on hand (Borgman 

2015, Wilkerson 2017).   

Based upon their reading of the cognitive literature, Scaife and Rogers 

propose that we conduct formal analysis by selectively abstracting our perceptual 

models, until we can organize key data points into a cohesive whole which presents a 

simplified, yet still useful version of reality (Scaife & Rogers 1996).  They perceive 

data visualizations as an attempt to externalize these internal, analytic models.  By 

externalizing analytic models, we can manipulate them, interact with them, increase 

their complexity by adding data via computer memory; in other words, we can use 

them for external cognition.  

Equation-based statistical models can perform similar functions – simplifying 

reality to an externalizable model to join with external tools, such as computers, to 

add data that outstrips our memory and native calculative power.  The link to our 

internal models is perhaps less obvious, since data visualizations employ visual 

metaphors which suggest physical objects in a virtual space, while equation-based 

models present their results in more abstract forms (Scaife 1996, Few 2009).   

It appears that internal perceptual models, and formal analytic models derive 

from processes that are analogous to one another (Nisbett 1983).  In each, our 

cognitive faculties piece together a best-guess cohesive whole from partial data.  Both 

transform data into processed information to help us make decisions (Cosmides 

1996).  Both detailed, perceptual models and analytic models rely upon prior 

knowledge for their formation.  Yet perceptual models are automatic, while analytic 

models require conscious effort. 
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1.3  Four Kinds of Analytic Models 

Models created through deliberate, conscious processes, as compared to those 

built automatically, may be analogous, but the resulting models have different 

characteristics. We can classify models along two axes already discussed, Detail 

(detailed vs. summarized) and Location (Internal to our minds vs. external). 

Fig. 1.1:  The Detail Axis 

 

Analytic models are necessarily far simpler (figure 1.1).  We read and study 

analytic models, but we experience perceptual models, which requires a richness of 

detail analytic models can neither match nor profit from.  Indeed, analytic models 

make a virtue of their simplicity.  When an analytic model makes accurate predictions 

about the real world based upon only a few assumptions and minimal data, we 

presume the elements of the model have expressed some simple, hidden truth which 

lays beneath the apparent complexity we see around us; this intuition motivates 

scientific reductionism, and it makes analysis a powerful tool for gaining 

understanding (Sawyer 2002 lays out advantages and limits of reductionism in 
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contrasting it to “emergentism,” which holds some phenomena can only be studied 

holistically).   

Much of the model-creation behind both scholarship and scientific 

advancement during this information age takes place in the external world via tools of 

External Cognition (Hutchins 1995, Webster 2014, Chang 2009, Fekete 2008, Duguid 

2015, Jones 2002, Scaife 1996, Hollan 2000, Ainsworth 2011).  This defines the 

Location axis (Fig. 1.2).  Models may be Internal, that is wholly contained within our 

person, and External, that is, contained principally on some combination of external 

cognitive tools.  This is my interpretation of distinctions principally drawn by Scaife 

and Rogers in their “External Cognition”, along with Hutchins in his Cognition in the 

Wild.  I expand on my interpretation in the remainder of this section and the next, and 

propose a unified schema for considering model type, function, and their inter-

relationships.    

Fig. 1.2:  The Location Axis  

 

Internal models may be perceptual, dealing with what we experience, or they 

may be explanatory, that is, an internal model of the causes of what we experience.  

For the purposes of this research all external models are analytic, being used to 

inform our internal, explanatory models.  
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Data Visualization as a form of external cognition well illustrates the 

distinctions between different kinds of models, and how one kind of model informs 

the next in a cycle of generation (Ainsworth 2011, Fekete 2008, Scaife 1996, Friendly 

2005) (Figure 1.3).   

Fig. 1.3:  Four kinds of models, and the cycle that connects them 

Data visualizations, as 

well as traditional equation-based 

statistical methods, seek to create 

new explanatory models by 

pairing externalized versions of 

perceptual models (coded as 

data) with externalized versions of existing, insufficient explanatory models 

(reformed as hypotheses).  This results in a composite model suitable for analytic 

study, that being typically accomplished through various mathematical 

transformations (Friendly 2005, Wilkerson 2017; Moore 1998 also describes this 

while cautioning against mistaking data analytic processes for pure math).  Once the 

analytic model resolves into a final form that provides a satisfactory explanation for 

the phenomena at hand, the user can re-internalize the results.   

The process of externalizing and then re-internalizing models sets limits on 

the form models can take (Jones 2002, also Bing 2009 whose “Evidentiary warrants” 

and “Framings” are examples of attempts by students to externalize their explanatory 

models for physics problems).  
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Full perceptual models appear to defy expression into an externalized 

medium, as we presently lack any way to communicate the depth of detail perceptual 

models encompass.  We only externalize perceptual models after simplifying them, 

hopefully into a form that preserves enough salient features to still yield utility after 

transmission to others or to our own future selves (Jamrozik 2016, Hutchins 1995).  

For example, while pursuing statistical analyses, we typically abstract our perceptions 

into codable data points, that is, countable instances of well-defined events.  While 

potentially useful, these data points always sacrifice some degree of detail (Strasser 

2017, Borgman 2015).  For example, in studying our eating habits, we may code 

foods by calories, fat content, protein, or other features.  But we won’t, and indeed, 

can’t record the full experience of eating – taste, smell, the texture of ice cream as it 

melts on our tongue.  Transferring a model from internal to external, and then back, is 

necessarily a loss function.  But it also enforces a discipline on the analyst, who must 

balance the practical limits of perceptual data transmission against their analytic 

needs (Hutchins 1995).  

The situation is reversed for external analytic models, which relying upon 

external cognition tools can include thousands, millions, or even billions of data 

points.  Here, the detail is too great to take in without some kind of synthesis (Tukey 

1977).  We typically use such external models by creating statistical summaries, and 

it is these summaries we internalize – means, medians, standard deviations, 

correlations, regression coefficients, clusters, maps, and the like – whether in the form 

of equations or their visual analogues (Tukey 1977, Tufte 1997 and 2006).  Thus, 



 

 

13 

 

analytic models go through simplification/summarization as part of their resolution, 

and then transformation into an internal, explanatory model. 

1.4  Data Visualization and Statistics for All 

In this light, data visualization can be seen as an attempt to use visual 

metaphors of physical objects as a linking mechanism between internal and external 

models, to move simplified explanatory models closer to being perceptual models, 

and thus tap some of the cognitive mechanisms of perception in the brain to do 

analytic work.  It enfolds both conscious and automatic processes.  The main goal of 

this research thus becomes exploring whether it is possible to use visual metaphors to 

embed enough of the intellectual foundations of quantitative analysis into a data 

visualization tool to relieve users of some part of the substantial burden of training 

which performing good quantitative analysis traditionally imposes.    

1.4.1 Study 1 

Building a statistics for all system requires tapping visual intuitions about 

statistical processes, if they exist.  The first experiment in this research sought to test 

as directly as possible whether people have visual intuitions around the normal data 

distribution.  Understanding data distributions in general, and the normal distribution 

in particular, is a fundamental skill in statistical practice.  Many confirmatory 

statistical tests such as the Student t-test (Student1908), analysis of variance 

(ANOVA), and logistic regression are parametric: that is, they rely on a known and 

finitely parameterized data distribution (Lehmann2005, Schervish1995).  Being able 

to apply these methods thus requires the ability to characterize distributions from a 
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given sample; i.e., to assume the relationship between actual data distributions and 

the idealized curves parametric tests employ. 

However, there currently exists little work investigating the abilities of non-

experts to perceive how such curves fit real data, let alone how these curves can be 

used to make inferences about the underlying populations.  

In chapter 3, I present results from a preregistered and crowdsourced user 

study investigating how well members of the general population are able to fit normal 

curves to data distributions when represented in a variety of graphic forms.  For each 

trial, participants were shown a visualization of the data and were asked to move the 

center-point (mean) and width (spread or standard deviation) of a Gaussian curve 

overlaying the sample to create the best possible fit. Visualizations studied included 

bar histograms, Wilkinson dotplot histograms, strip plots, and boxplots (Fig. 1.4).  

Figure 1.4: Distribution visualization in Experiment 1 

 

The results show that participants in the aggregate were fairly reliable in 

fitting curves on data, with some variations among the four graphic representations.  



 

 

15 

 

Errors in locating the center-point were, with some exceptions, unbiased and small; 

absolute errors typically ranged from about 12% to 18% across visualization types. 

Errors in finding curve width were somewhat larger, and biased for some 

visualization types, with absolute error ranging from about 22% to 33% across 

visualization types.  

During the experiment, a survey of the prior statistics experience of each 

participant found no clear influence of this on participant performance. 

I interpret the lack of bias in errors of finding the curve center point, and 

moderate absolute magnitudes of average errors for both center point and spread 

fitting, as indicators that the human visual system provides intuitions that may make 

manually fitting bell curves, with appropriate assistance, a feasible approach for 

supporting graphical inference. 

This would either be as an adjunct to, or a replacement for, traditional 

equation-based inferential methods. 

1.4.2  Study 2 

Central to much confirmatory data analysis is the task of determining whether 

two data samples are drawn from the same or different populations.  For the simplest 

of such inferential statistical tests---the Z family of tests---this essentially amounts to 

fitting a normal distribution to each sample and then determining the overlap between 

them, adjusting expectations for the amount of overlap in light of the n-sizes of the 

two samples.  
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However, even Z-tests, or the more common T-test, are at best poorly 

understood by the general population, and this is doubly true for more sophisticated 

statistical tests. 

Yet, most of us routinely do this kind of task in our daily lives, such as when 

determining whether a specific credit card bill is out of the ordinary---potentially 

indicating credit card fraud---or when assessing and comparing a child's, employee's, 

or public figure's performance in school, at work, or in the public eye.  These tasks 

boil down to detecting whether a measure is so out of range with some expected 

distribution as to warrant further examination.  

This second experiment studies how graphical formulations of t-tests might 

support users who have no specialized statistical training in assessing the differences 

between two or more data samples.  Assuming normally distributed data, a 

straightforward way to achieve this is to fit normal distributions to each data sample, 

and then visualize the samples as overlapping bell curves.  A user can then manually 

determine whether they think the two curves represent samples drawn from the same 

or different underlying populations.  Such a graphical formulation corresponds to a 

classic Z-test, or a Student t-test (Student1908).   

However, normal curves fitted to samples erase potentially important details 

of those samples.  Other graphic forms afford some of that detail to the user, with the 

potential of better supporting both user performance as well as user understanding of 

these statistical tests.  Therefore, this investigation also include alternative visual 

representations: bar histograms (overlapped and stacked), Wilkinson dot plots, strip 

plots, and Tukey boxplots.  
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The experiment was crowdsourced, studying whether people with no 

statistical training can use graphical formulations to perform a T-test; i.e., to 

determine whether or not two samples are drawn from the same or different 

populations.  A total of N = 212 "participants" were given a sequence of trials where 

they were asked this question under varying conditions: different visualizations 

(overlapping bell curves, stacked bell curves, bar histograms, dot plots, strip plots, 

and boxplots) and data sizes (36, 44, or 1,000 items per dataset). Different data sizes 

in this experiment provided variations in both statistical noise and effect size.  A 

single trial typically lasted less than 10 seconds, allowing collection of a large number 

of trials per participant. 

The results indicate, perhaps unsurprisingly, that this is a difficult task, and 

that people regularly overestimate how much divergence is needed for two samples to 

be different. 

Furthermore, the task gets particularly difficult---approaching the random 

50% accuracy---when the difference is small, and easier for very different samples. 

What is more surprising, however, is that complex visualizations that include 

more detail and less aggregation yield less accuracy than the highly aggregated 

boxplot and idealized bell curve representations, particularly for higher data sample 

sizes.  It appears graphical inferences of T-tests can be effective in some 

circumstances, but that abstracting and aggregating the data generally yields better 

results.  In other words, humans have visual intuitions which align with this task, but 

may align imperfectly.  These findings contribute insights into the design 

requirements for the next experiment. 
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1.4.3  Study 3 

Having established that humans possess intuitions which can, with support, 

pair visualizations with statistically informative summaries of distributions, and make 

comparisons between summaries of distributions, this research turns to the work of 

assembling the specific visualizations that might form components of a statistics-for-

all visualization toolkit, focusing on inferential statistics. 

Central to inferential statistics are null hypothesis tests.  Yet despite their 

widespread use, some studies have suggested that few practitioners have a real 

understanding of the subtleties of the several statistical assumptions Null Hypothesis 

Statistical Testing (NHST) makes (Hoekstra 2014).  These same authors discuss the 

dangers of such misunderstanding, and tie them to the ‘replicability crisis.’ Yet at the 

same time, they document that NHST remains foundational to the modern scientific 

endeavor, with p-values and related statistical accoutrement ubiquitous across any 

research literature which relies upon quantitative analyses.   

If a statistics-for-all system is to gain credibility in the scientific community, it 

must provision its users with methods of inferential statistics.  Moreover, the resulting 

tool must include features which support how experienced statisticians actually 

approach NHST – including related analyses they perform or information resources 

they rely upon as they contend with the challenges of NHST.  And since the proposed 

statistics-for-all system would rely heavily upon visualization, acceptance of such a 

tool by the scientific community would also hinge upon whether experienced 

statisticians accept visualization as a legitimate analytic tool in general.     
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In sum, the visual tools hypothesized by this research program must include 

the real understanding of these methods – both explicit and tacit – which practitioners 

bring to their work.  They must also include features which match the expectations 

practitioners have for outputs from using NSHT methods, and must present these 

features credibly.    

Study 3 is an in-depth interview study with professional statisticians to 

understand their visualization practices for understanding and making decisions about 

data.  Recruiting a total of 18 statisticians with a combined 350 years of professional 

experience (average 19.7 years), the study focuses on three research questions: 

RQ1 How do statisticians use visualization in their daily analytic work?  

RQ2 What mental models of inferential statistics do statisticians have? 

RQ3 What designs for visually representing statistical inference might build 

on current practice while enabling novices to also benefit? 

This interview study was conducted as semi-structured interviews over Zoom 

videoconference. Each session involved three phases: (1) statistical practice; (2) 

graphical elicitation of their internal understanding of inferential statistics; and (3) 

design review of a design probe (Gaver 1999): prototype visual representations for 

statistical inference which incorporate the design lessons learned during Study 1 and 

Study 2. All sessions were professionally transcribed.  Transcripts were coded using 

an open-coding approach (Lazar 2017). Findings were derived using thematic 

analysis. 

At a high level, the study found that visualization tends to be a key activity in 

most statistician's daily workflow, and not just during presentation. Furthermore, 
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participants mostly reported mental models for inferential statistics that are 

themselves visual. Participants tend to abhor dichotomous thinking and distrust 

insights lacking multiple evidence.  Several design recommendations emerged from 

these overarching themes, along with more specific, low level recommendations.  

 



 

 

21 

 

Chapter 2: Prior work 
 

Inherent within the search for an alternative method of quantitative analysis is 

an assumption that such analyses are worth pursuing.  Indeed, this research assumes 

the value of quantitative analyses, and the epistemology they rely upon, as a given.  

This work thus becomes an investigation into the potential for finding a method of 

sharing that value with a broader audience.  In design terms, I am looking for a 

quantitative analysis method which provides affordances that will aid novice users 

over and above what equation-based methods provide.  Many authors have 

contributed work relevant to this search. 

2.1 Comparing Affordances: Equation-based Math vs. Visualization 

Arithmetic, that is, the mathematics of common, measurable experience, both 

reflects reality and is a template for understanding it, having at its core rules of 

continuity similar to the Law of Conservation of Energy and Matter (Lakoff 1997, 

and Erlwanger 1973 who offers an example of a student failing when they saw math 

only as arbitrary rules to follow, rather than as a model for analyzing real world 

problems).  Objects are what they are; groups of a certain size remain that way until 

we add or subtract objects; you can’t turn $1 into $20 just by wishing.   

Counting also affords benefits to our cognition; it is an abstraction that acts as 

data reduction, with all the potential benefits (and risks) to the analyst associated with 

that practice (Boyd 2012).  We reduce objects in the world, sometimes of extreme 

complexity and individual variation, to one dimensional numbers paired with nominal 

labels.  We reduce memory load, and eliminate distracting details, while hopefully 
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preserving information relevant to making a decision or a discovery (Hutchins 1995, 

Jamrozik 2016). For example, the statement, “5 tigers escaped from the zoo, and we 

recaptured 5 tigers,” has more power than, “Some tigers escaped, and we recaptured 

some.”   

Counting becomes even more powerful when paired with writing, at which 

point we begin to externalize our cognition, offloading memory and calculative tasks 

(Hutchins 1995, Ainsworth 2011).  Indeed, abstractions like counting are vital to the 

external cognition process, since we have only narrow channels (like words or 

geometries) for enunciating an internal model into the external world where it might 

be manipulated, shared, and, possibly, improved.  Afterward, we have only those 

same narrow channels for re-internalizing the new, improved model.  

Mathematical functions more complex than simple arithmetic operations can 

represent more complex real-world phenomena, with potentially even greater benefits 

in both data reduction and the capacity for external cognition.  Mathematical 

expressions following rules which correspond to real world phenomena can allow us 

to make inferences about underlying causes of those phenomena, and, critically, to 

make predictions about what would happen were values in the model to return to 

some prior measured level, or even, with additional uncertainty, some as yet 

unencountered level (Cosmides 1996, Windschitl 2008).     

For example, humans have a difficult time imagining the consequence of 

exponential growth – we find some of its results counterintuitive (Stango 2009).  Yet 

modeling such growth with calculations which predict population X at time Y 

provides an antidote.  Biologists, engineers, or economists making frequent use of 
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such equations (and graphics) can even develop intuitions around exponential 

phenomena (Stango 2009); in other words, they internalize the exponential model.     

We can conceive of performing calculations upon mathematical 

representations of phenomena as a form of thought experiment, one which pairs 

mathematical rigor with the cognitive benefits of data reduction. We sometimes 

discover new expectations for real world phenomena, even where our unaided 

intuitions might fail us (Friendly 2005, Wilkerson 2017).  For example, much of 

climate change science relies upon the exploration of mathematical models resolved 

by computers (United Nations 2020).  From the paper and pencil era, we have the 

example of Gregor Mendel conceiving his Laws of Genetics by assuming measured 

relationships (a series of consistent ratios) in traits of successive pea plant generations 

represented some then unknown physical feature of cells (now understood to be 

chromosomes composed of dual-stranded DNA) (Sandler 2000).   

The act of measurement (an activity closely allied with counting) appears to 

engage a mental discipline that produces benefits for explanatory model building 

(Serin 2001, Fekete 2008, Strasser 2017).  The process of choosing what to measure 

means creating a data model, a mathematical framework linking abstract math and 

concrete experiment, that is, between hypotheses and the reality.   

On the practical side, measurement tools – scales, rulers, and other 

instruments which increase the precision with which we perceive the world – provide 

additional touchpoints with reality to improve our perceptual models (Benjamin 2003, 

Hughes 1987, Borgman 2015, Van House 2004).  Moreover, shifting our senses to 

external tools also provides standard measurements we can share from person to 
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person, when otherwise we might have only our individual impressions, which can 

disagree (Hutchins 1995, Fekete 2008, Hollan 2000, Ainsworth 2011, Van House 

2004).  Measurement is thus a cornerstone of collaborative knowledge building 

(Strasser 2017, Argote 1999, Nelson 1982).  It is also foundational to external 

cognition aimed at knowledge building through quantitative analyses.  External 

cognition amplifies human intellect (Hutchins 1995, Clark 2008).   

Offloading memory and calculative tasks onto some external platform – 

whether a sheaf of papers or a computer mainframe – allows us to focus on thinking 

about what the data mean, rather than struggling to work out/recall what they are 

(Ainsworth 2011, Fekete 2008, Scaife 1996).  The researcher can focus on finding 

patterns in the data, some intricate or subtle, which point to behaviors of real-world 

phenomena.  Offloading memory also means the researcher can examine thousands or 

millions of data points instead of a few dozen.   

Data visualization, as an alternative form of mathematical expression, 

incorporates all the affordances of measurement, data models, and arithmetic 

processes, and also supports external cognition (Scaife 1996).  In Scaife and Rogers, 

“How data visualizations work”, the authors argue that data visualization suggests a 

limited set of comparisons between represented values (Saife 1996).  When users take 

in the graphic forms, they conceive of them as physical objects operating within a 

space, and like all physical things, obey rules of behavior.  For example, a bar chart 

might be conceived of as a stack of objects, where the taller stack contains more 

objects.  This seems natural to us – it reflects our experience of real-world stacks.  

This model fits well with the common rule in visualization practice that bar charts 
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must start at zero, or risk conveying a wrong impression to users, because, in the real 

world, stacks of objects start on the floor.  We have an intuitive physics, based upon 

gravity, which we automatically draw upon in considering the bar chart.   

By this model of operation, data visualization can be conceived of as math 

without formal notation, yet still usefully constrained by the intuitions of the user.  

These constraints will tend to limit comparisons of displayed values to a relatively 

narrow set, which, if they are the correct set, can become an affordance that directs 

lay users to making valid and informative choices in their analyses.   

2.2  Graphics for Data Analysis, Exploratory and Otherwise  

Much prior work has explored the particulars of using data visualization for 

select phases of quantitative analysis.  For example, visualization is often touted as a 

tool primarily for exploratory data analysis (Tukey 1977) due to its bottom-up and 

data-driven nature.  Recent work has explored this practice more closely, for 

example, by comparing the relative efficiency of different visual representations for 

exploratory tasks (Nguyen 2020, Correll 2019). These authors found that the choice 

of visualization can make a difference to both the ability of untrained users to notice 

important features in data, and even their confidence in their own findings. 

Notably, these studies have not directly addressed whether users can 

accurately estimate basic summary measures like means and standard deviations from 

the most common distribution visualization methods, nor whether different visual 

forms produce different estimates of these bedrock statistics.  

At the same time, mounting evidence suggests that visualization can also be 

used for confirmatory data analysis (Lehmann 2005, Schervish 1995). 
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2.2.1  Graphical Inference in Statistics 

Confirmatory analysis when framed as inferential statistics involves using 

statistical methods to make inferences about a population based on a sample of data 

(Casella 2001). The field can be traced back to the work of Ronald Fisher, who is 

considered one of the founding fathers of modern statistics, (Fisher 1922, Hald 1998). 

The growth of visualization as a discipline separate from statistics is a 

relatively new development.  Creating graphical representations of data remains a 

common and natural part of statistical workflows (Cleveland 1993), and even central 

to some, such as exploratory data analysis (Tukey 1977).  Accordingly, making 

inferences from these graphical representations – i.e. graphical inference – is as 

commonplace and unremarkable as making statistical inferences from algorithmic 

representations; for example, rather than invoking the full machinery of a formal test 

of normality, such as Shapiro-Wilkes, many practicing statisticians will instead 

eyeball the sample in a Q-Q plot (quantile-quantile plot) against the normal 

distribution to ensure that the resulting plot falls on the 1:1 line (indicating high 

positive correlation between the sample's data distribution and the standard normal 

distribution). 

Early examples of such practice date back to Scott et al.'s seminal work from 

1954 (Scott 1954) on validating astronomical models by generating artificial star 

charts using the model parameters and then asking people to compare them to real 

charts. 
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Similarly, bootstrapped (Efron 1992) confidence intervals, such as for user 

study results (Dragicevic 2016), are often reported using graphs (typically some form 

of error bar around a central dot).  

Work by Correll and Gleicher (Correll 2014) lends at least partial empirical 

support to this practice, with the caveat that user assessments of uncertainty 

distributions vary depending upon the specific visualization method used.  Hullman et 

al. (Hullman 2018) also suggest that visualization choice impacts user understanding 

of distributions, specifically differences between discrete and continuous 

visualization forms.   

2.2.2  Graphical Analysis in Modern Visualization 

With the increased availability of automatic computation and the 

crystallization of visualization as a discipline in its own right, graphical inference has 

become somehow less valued, at least outside the statistics community. 

For example, with the exception of the aforementioned bootstrapped results, 

few visualization research papers rely on pure graphical inference for its validation, 

such as when comparing completion times or accuracy measures for competing 

visualization techniques. This remains paradoxically true despite the fact that making 

inferences from data is a central tenet of data visualization (Card 1999). 

Much research has gone into designing visual representations that make 

effective use of visual channels (Cleveland 1984, Munzner 2014) so that important 

data features become pre-attentive and ``pop out'' (Ariely 2001, Healey 1998, Healey 

2012) with less mental effort than that required by tabular presentations.  
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Another strong appeal of a visual representation is that it can support more 

exploratory data analysis than dedicated statistical tests, which tend to be more tied to 

preconceived questions or prior knowledge about the dataset (Tukey1977).  

However, it is only recently that the statistics and visualization communities 

have begun to ask how graphical representations of data can support aggregate or 

higher-order tasks beyond merely reading values, trends, and outliers.  Buja et al. 

(Buja 2009) propose frameworks for visual statistics, where multiple visual 

representations form an analogue to a test statistic, and human judgement serves as 

the critical value for comparison.  They demonstrate this approach using a 

``Rohrschach'' test of random data, as well as a “lineup” of small multiples, only one 

of which uses the real data.  Note that these approaches put the impetus of decision 

making back on the individual judgement of the user, and as such, take a step away 

from the kind of (apparent) objectivity provided by purely calculative statistical tests 

(where the significant/not decision arises from essentially blind calculations). 

In follow-up work, Wickham et al. (Wickham 2010) adapt the idea to the 

visualization community, describing how these protocols can be used with common 

visualizations to uncover new findings while avoiding false positives. Beecham et. al. 

(Beecham 2017) applied this "lineup" protocol for graphical inference to geographic 

clustering visualizations. Correll et. al. (Correll2019) used the lineup protocol to 

investigate whether common distribution graphics (histograms, density plots, strip 

plots) were effective in displaying features of datasets, such as outliers or gaps.    

More centrally connected to this dissertation, the visualization community has 

also investigated how well people can estimate aggregate statistics from 
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visualizations. Correll et al. (Correll 2012) studied how line graphs can be designed to 

enable accurate comparisons of averages in time-series data. Albers et al. (Albers 

2014) generalized this idea to six aggregate tasks for eight different time-series 

visualizations. 

Other time-series examples include that of Aigner et al. (Aigner 2012), who 

enriched line graphs with color to better support visual statistics, and Fuchs et al. 

(Fuchs 2013), who derived line glyphs to support higher-level aggregate tasks. 

In 2015, Correll (Correll 2015) summarized a suite of techniques for 

improving visual statistics as it applies to visualization.  Two years later, Correll and 

Heer (Correll 2017) studied people's ability to fit trend lines to bivariate 

visualizations in a crowdsourced experiment, in essence testing the crowd’s ability to 

perform regression analysis.  In 2020, Nguyen et. al. (Nguyen 2020) used a 

crowdsourced experiment to explore how different visual aggregations might impact 

users' perception of summary statements about sample populations.  Gleicher et al. 

(Gleicher 2013) study our ability to judge means  in multi-class scatterplots, finding 

that performance is reliably high, independent of the number of points and conflicting 

encodings. 

Fouriezos et al. (Fouriezos 2008) asked participants to compare the average 

height of two groups of bar charts, finding generally high accuracy, which improved 

with the number of bars, but degraded with higher by variance datasets. 

Based on results from crowdsourced experiments, Correll and Gleicher 

(Correll 2014) propose redesigns of error bars in bar charts, showing how violin or 

gradient plots produce insights more aligned with statistical inference.   
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Several of these studies were inspirational for this work. 

2.2.3  Distributions and Uncertainty 

While descriptive statistics are often used to summarize a dataset, Anscombe's 

Quartet (Anscombe 1973) shows us that aggregate measures of central tendency or 

variability can often be insufficient for making deeper inferences about the data.    

Similar to how scatterplots can show detailed relationships between two 

variables, data visualizations used to show single-variable distributions allow viewers 

to inspect the data for flaws, missing values, or noise.  Such visualizations typically 

show more detail -- involve less aggregation – than descriptive statistics like means, 

medians, or standard deviations.   

One of the most common visualizations for univariate distributions is the 

histogram, which aggregates data occurrences into discrete ranges (“bins”) and 

visualizes the resulting counts using bars.  Histograms are subject to distortions, 

depending upon the aggregation scheme used (Correll2019).  Choosing the right 

number of bins, and thus bin size, is a primary concern to which the visualization 

community has responded with several rules of thumb.  This work will employ 

Sturges's rule (Scott 2009), which is based on the assumption that the distribution to 

be binned is Gaussian (this is appropriate, since all trial datasets for these experiments 

are drawn from essentially normal distributions). 

Distribution visualizations remain an active area of visualization research, 

producing such alternate representations as strip plots, density plots, violin plots, and 

gradient plots (Kay 2016}.  These newer forms offer variety in their level of 

abstraction vs. detail, but lack the easy familiarity of histograms. 
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Even disregarding binning aspects, the aggregating nature of histograms can 

both be a strength and a weakness: a strength, because the representation is robust in 

visualizing large datasets, but a weakness because the bars convey information about 

the relative, rather than the absolute, number of cases in each bin.  Interested users 

must look to the axis for absolute counts---a reading task rather than a mere seeing 

task.  A compromise may be found in Wilkinson dot-histograms (Moon 2016), where 

each discrete item in a bin is represented as a circle in a stack of circles.  This may 

provide users with a familiar overall design, while providing more detail about 

sample size (also suggested by the work of Kale et. al. (Kale 2021), Hullman et. al. 

(Hullman 2018, Correll et. al. (Correll2019). 

Another active area of research which offers potential design implications for 

distribution visualization is statistical uncertainty visualization, since we often 

calculate uncertainty as an idealized distribution of potential variance around a point 

estimate.  Significant progress has been made recently on designing visualization 

techniques where the uncertainty is intrinsic to the representation; in one example, 

this approach yielded a significant confidence improvement when estimating 

outcomes using a so-called quantile dotplot (Kay 2016). 

Hypothetical outcome plots (HOPs) (Hullman 2015) use animated draws to 

illustrate uncertainty, and have shown superior performance compared to violin plots 

and error bars. 

Of particular interest to experiment 1 is work by Hullman et al. (Hullman 

2018), where participants were asked to sketch their predictions of uncertainty 

distributions using both continuous and discrete representations prior to seeing the 
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actual distributions. In a similar fashion, this study asks participants to fit a 

continuous distribution to discrete distribution graphics. 

2.3  Visual Intuitions For Statistical Inference 

John Tukey’s Exploratory Data Analysis (Tukey 1977) helped launch the 

modern era of data visualization with its publication.  It argued that data visualization 

provided researchers powerful means for detecting outliers or errors, identifying a 

multitude of patterns, and recognizing structures within their data, all of which made 

it an ideal analytic tool for hypothesis formation.  Given the flexibility visualization 

affords researchers in finding the unexpected within data, he argued that visualization 

tools are particularly well suited for an exploratory---rather than confirmatory---role.  

Tukey went on to recommend the use of traditional, equation-based statistical 

methods for testing and confirming hypotheses.  He believed that different methods 

should be used for hypothesis formation and confirmation, to ensure the analyst 

avoids the trap of circular reasoning. 

Since Tukey endorsed this use of data visualization, it has gained growing 

acceptance, not just for communicating findings, but also as an analytic method in its 

own right, at least for early stage analysis.  However, while visualization may be seen 

as useful by the research community, traditional confirmatory statistics retain a status 

as essential.   

Tests of statistical significance are a cornerstone of statistical and scientific 

practice because, while still including elements of subjective, arbitrary assumptions, 

such as the choice of a significance level (alpha value), statistical tests nonetheless 

provide standards for decision making that push interpretations of experimental 
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results closer to objectivity. Ideally, they act as a check when our enthusiasm for a 

favored hypothesis might otherwise have motivated us to make claims based upon 

results that could just as easily have been explained by random noise in the data. This 

indispensable discipline comes in myriad forms, such as Z-tests and t-tests, where 

each is suited to different analytic methods but all are founded upon a five-step 

process: 

1. The researcher forms an expected value based upon their null 

hypothesis; 

2. The researcher selects a level of improbability that they consider 

statistically significant (for example, traditionally alpha = 5% in the social 

sciences); 

3. The researcher extracts an actual value from the data and compares 

it to the value expected under the null hypothesis, thus creating a test statistic; 

4. The researcher applies appropriate probability calculations (which 

account for a set of assumptions tailored to the particular data collection in 

question) to determine how unlikely it was that random noise would result in a 

test statistic as large as the one they found; 

5. If the result is so unlikely to have happened by chance that it 

breaches the pre-chosen significance limit, the researcher rejects the null 

hypothesis and declares that they have at least some support for their favored 

hypothesis. 
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This process affords the researcher a sense that their results are more than 

mere anecdote, but instead, form hard evidence.  Yet, applying statistical tests 

correctly can be a challenge. 

Equation-based statistics include subjective elements at nearly every stage, 

from the selection of an initial hypothesis and its mathematical expression, to the 

choice of a p-value limit, to the creation of experimental design, to the choice of the 

right probability assumptions to form a test statistic.  These elements make it possible 

for people to, for example, ``p-hack,'' either knowingly or by mistake (Cumming 

2014).   

Ironically, the wide availability of automated computation tools, such as 

spreadsheets and other statistical software packages, may compound the problem. 

Automated statistical software turns statistical procedures into magic black 

boxes, which consume data and spit out results without requiring users to understand 

all the assumptions which undergird those results. Moreover, it becomes simple to 

churn out multiple analytic variants on a dataset, until one pops out that looks 

promising.  When conducting 100 experiments, we should expect through random 

chance to find five results that are significant at the 5% level.  Reporting these hits 

without the misses gives a false impression of evidence supporting a finding when 

there is none. This kind of error---which can be entirely unintentional---may be at the 

root of the “replicability crisis”, which has plagued many scientific fields, including 

visualization (Kosara2018, Echtler 2018).  Researchers have attempted to address this 

crisis through pre-registration, registration reports, replications of past work, etc.  
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Despite these issues, the application of equation-based statistical methods to 

hypothesis confirmation has become a linchpin in advancing our understanding of the 

world. Tables of results with p-values are ubiquitous within published scientific work. 

This elevates equation-based statistics in the scientific community, while leaving 

visual analyses in a secondary role. 

For example, during their undergraduate studies, most science majors will 

take an equation-based statistics course by requirement, but outside of a few select 

fields (such as data science), they are unlikely to learn visualization in any formal 

way. 

This situation suggests two gaps in the literature which this research will 

attempt to fill. 

First, we can attempt to demonstrate that visual analyses can act in the 

hypothesis confirmation role. This would at least bring visualization on par with 

purely calculative methods, though it would in itself provide no reason for an analyst 

to switch.   

Second, we can document affordances provided to researchers through visual 

confirmation analyses which differ from those provided by equation-based methods.  

Different affordances would create the potential for visualization, in at least some 

circumstances, to provide a subset of users an advantage over purely calculative 

methods in pursuing evidence-based decision making when confronted with data that 

include inherent uncertainty.   

There is some research which suggests working with graphic forms of 

mathematical representation improves user understanding, including statistical 
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understanding, such as recent work in uncertainty visualization that uses graphic 

‘elicitation’ (Crilly 2006).  In elicitation, a researcher gathers information about what 

respondents are thinking by asking them to draw pictures of mathematical 

relationships, rather than forcing respondents to attempt to describe the same 

relationships with words or equations.  While this is often used as a data gathering 

technique, by asking participants to draw visual representations of data as part of the 

evaluation, respondents improve recall and comprehension (Crilly 2006).  Kim et al. 

(Kim 2017) found that graphically eliciting participant’s prior knowledge and data 

they had observed helped them to both reason about, and remember, findings.  In 

follow-up work, Hullman et al. (Hullman 2018) asked participants to sketch their 

predictions of uncertainty distributions using both continuous and discrete 

representations prior to seeing the actual distributions. Participant predictions of 

expected outcomes improved. These suggest that actively engaging users in creating 

or manipulating visualizations can serve to improve their analytic understanding.   

A visual approach to statistics can help novice users perform advanced 

statistical tests (Grammel 2010, Huron 2014, Pousman 2007). As a case in point, 

recent work has shown how even novice users can compare averages in time-series 

data (Albers 2014, Correll 2012), fit trend lines to point clouds (Correll 2017), and 

make mean value judgments in multi-class scatterplots (Gleicher 2013) without 

specialized training or knowledge.   
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2.3.1  Visual Confirmatory Analysis 

Tukey's reasoning on using one set of methods for hypothesis formation and a 

second set for hypothesis confirmation, comes with no requirement that visualization 

fill the first role.  Should we develop sufficiently flexible equation-based methods for 

hypothesis generation, we could conceivably pair them with visual analyses for 

hypothesis confirmation.  Or we might create two different kinds of visual analyses, 

one set for exploration, the other for hypothesis testing. 

But what would a data visualization designed for hypothesis confirmation 

look like?   

Just as we can describe statistical tests in five steps, we can describe what 

goes into those steps as four intellectual products: 

1. Precise measures of some phenomena (precise relative to the 

effect we want to explore), including an observed value of interest. These 

measures emerge from our experimental designs, and comprise the data; 

2. Distributions of idealized data populations from which the data 

could have been drawn given the observed data distributions and sample 

scheme. These reflect our assumptions about the true population, where, for 

example, in the case of data believed to come from a normally distributed 

population, we use our observed data to calculate a mean and standard 

deviation.  We treat these derived values as estimates of the unseen, true 

values for the total population, that is, we assume they describe the central 

tendency and spread of that larger population; 
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3. An expected value.  This derives from the null hypothesis, based 

usually upon an assumption of random behavior as opposed to behavior 

driven by some combination of underlying forces we hope to detect.  We 

typically calculate this by considering what would happen should we run our 

experiment in an environment in which the effect size for the forces we wish 

to explore were set at zero; 

4. A table of probabilities expressing how unlikely we are to measure 

results that deviate by this or that amount from the expected value, given the 

sample size. This table derives from a function built with the same 

assumptions that underlie the idealized data distributions, paired with a model 

to account for our sampling processes. 

All these products are fundamentally quantitative, and thus, could be 

expressed with appropriate geometries.  At a minimum, we might create 

visualizations of hypothesis tests by performing a one-to-one mapping of the math 

onto shapes and lines, just as we can, for example, represent regression equations 

with straight lines drawn through a data field on a scatterplot. 

But it still remains to be seen whether we, in fact, perform a regression with 

our eyes, or whether we are instead performing some visual proxy for the regression 

or other mathematical operations. Yuan et al. (Yuan 2019) found that when faced 

with a complex visual task, respondents may reduce their cognitive load by relying 

upon more primitive perceptual cues, or proxies.  These provide shortcuts but may 

reduce accuracy (Yuan 2019), (Ondov 2021). 



 

 

39 

 

If users rely on mere proxies when faced a visual form of a statistical test, then 

being able to perform a literal translation of quantities into geometries tells us little 

about whether we might usefully decode such images with our eyes, nor what 

affordances (if any) such an approach might provide to the prospective user.  

In light of these questions, this research will attempt to explore the potential 

for graphical formulations of a classic statistical test to: 

1) Allow users to perform tests accurately; 

2) Provide affordances which novice users will find helpful over and 

above those they would find in more traditional, purely calculative methods. 
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Chapter 3: Experiment 1: Fitting Bell Curves 

3.1  Study: Fitting Bell Curves 

The goal of this first study was to understand how well, or even if, lay users 

would be able to fit normal curves to a data sample drawn from a normal distribution.  

If so, this would suggest that people have visual intuitions that would support them in 

linking real data samples with the idealized distributions upon which inferential 

statistics ultimately depend.   

This was a crowdsourced user study, run via Amazon Mechanical Turk, where 

participants were asked to fit a normal curve on a data sample through an interactive 

interface which allowed them to control the position (mean, or ``center point'') and 

width (standard deviation, or ``spread'') of a Gaussian curve.  Sample distributions 

appeared on screen in one of four different visualizations: a bar histogram, dot 

histogram, strip plot, or boxplot.  The variety of representations made it less likely 

that the characteristics of any one distribution graph type would bias the experimental 

results, and also allowed for the possibility of deriving design recommendations for 

creating effective data distribution graphics in future experiments.  

Along with the visual representation of the data samples, the experimental 

design varied the size of the random sample (n = 50 or 200), and the noise in the data 

(coefficients of variation = 0.2 or 0.4). 

To minimize the possibility of a “left-to-right bias,” (Spalek2005) where 

respondents get into a habit of always moving the curve from left to right on the 

screen, the means of some data samples were adjusted to move their center points to 

the left on the screen (values below zero).  These moves did not affect the shape of 
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the data, and coefficient of variation (CV) calculations were based upon the original 

positions of datasets.  

An original version of this study included only Wilkinson dot histograms, and 

was pre-registered (anonymously) on 

OSF.{https://osf.io/behwz/?view_only=96de7ce0e71146c9abd8d1f79c46915e}. The 

current version of this study expanded to include the three additional graphic forms.  

The new anonymous pre-registration can be found on 

OSF.{https://osf.io/a9b48/?view_only=70bbe4653a7d41ed8649abf42400583a}. The 

discussion below only concerns the new experiment; the original data for 200 

participants are not included in this study and are thus not reported here. 

Figure 3.1 – Experimental task 

 

3.1.1  Participants 

This study focused on low-level perceptual tasks that require no specific 

training or prior data visualization expertise, and thus was a good candidate for 

crowd-sourcing via Amazon Mechanical Turk.  Prior work has shown that simple 

visual tasks like these are particularly amenable to this kind of study (Heer2010).  

The essential task here is ‘curve fitting’, that is, matching the curve to the 

    
Curve fitting task 
Typical sequence in our crowdsourced curve fitting experiment. Participants controlled a normal curve using a 
range slider. They fit this continuous curve on top of a data sample (here represented by a Wilkinson dotplot 
histogram). Our evaluation varied the visualizations as well as the number of data points and the coefficient of 
variation for samples. 
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distribution.  While this results in more than one distinct measure (mean and standard 

deviation), this experiment treats it as a single task, that is, fitting.  Should future 

work by other authors suggest this assumption is unwarranted, the results of this 

experiment might require revisiting.   

The use of Mechanical Turk (MTurk) affords little control over participant 

demographics and expertise, or their computer hardware.  This study used a 

demographic survey and exclusion rules for certain kinds of devices in an attempt to 

account for these factors.  

All experimental factors were within-participants. The experimental plan 

called for recruiting a total of 100 participants.  Participation was limited to people 

living in the United States due to tax and compensation restrictions imposed by the 

study IRB. 

Participants were screened to ensure at least a working knowledge of English; 

this was required to follow the instructions and task descriptions in the testing 

platform.  Participants were prevented from participating in the experiment more than 

once.  All participants were ethically compensated at a rate consistent with an hourly 

wage of at least $10/hour (the U.S. federal minimum wage in 2020 was $7.25).  The 

actual payout was $2.50 per session, and with a typical completion time of 14 minutes 

and 54 seconds, this yielded an hourly wage of approximately $10.00/hour. 

3.1.2  Apparatus 

A crowdsourced setting makes it difficult to ensure respondents will have 

consistent computer equipment, a concern since the study apparatus was distributed 

through the user's web browser.  Therefore, a screening question required that all 
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devices used by respondents were personal computers (laptop or desktop) or touch 

tablets; smartphones were disallowed due to the limited screen space available.  

Browser windows were required to be at least 1280 x 800 pixels. 

3.1.3  Task and Training 

The tasks consisted of fitting a normal (Gaussian) curve onto a data 

visualization using a range slider (Ahlberg1992) that controlled the spread (i.e., 

standard deviation) of the curve using the width of the interval and its center point 

(i.e., mean) by moving the position of the interval on the slider. 

Figure 3.2 Screenshot of a typical task. 
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Participants were instructed to find the ``best fit'' between the curve and the 

visualized data. 

In a training trial (Fig. 3.3) for each visualization block (which also served as 

attention trials; see below for details), participants were shown a perfect fit using a 

curve with a contrasting color and were asked to match their own curve with the 

correct answer.     

The testing platform was implemented in JavaScript using D3 (Bostock2011) 

and embedded into a Qualtrics survey accessed using the participant's web browser.  

‘NOUSlider’ (https://refreshless.com/nouislider/) served as the range slider 

implementation. 

Figure 3.3 Training and Attention Trial 

 

Participants achieved a fit by moving a slider, which adjusted the curve.  

Participants could either drag the end points of the slider, adjusting both spread and 

center point, or they could drag the whole slider from the middle, changing only the 
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center of the curve without effecting spread.  Participants were unable to drag the 

curve itself to move its position or spread, instead having to make all moves via the 

slider. 

 

3.2  Dataset Generation 

Data for all trials was controlled so that all participants saw the same datasets 

during a session.  All datasets were randomly drawn from a normal distribution with 

varying degrees of spread, and then iteratively jittered until the standard deviation fell 

within 1% of the intended values for the spread (see below).  Datasets were generated 

so that they fell within [-3, 7], with the horizontal axis fixed at [-10, 10].  However, 

no value labels were shown for the axis to minimize number bias. 

The histogram used 50 bins across the horizontal axis, but actual trials 

typically used only a fraction of these, based on spread. 

All trial datasets were drawn from a normal distribution, as the purpose with 

this experiment is to fit normal curves rather than having participants detect the 

optimal distribution to use.  Despite this, by varying the experimental factors (below), 

trial distributions arose with sufficient “noisiness” in appearance to present a 

challenge to respondents.  This does mean that our datasets were all more or less 

symmetric (Fig. 3.4). 

  



 

 

46 

 

Figure 3.4 Experimental stimulus datasets, as histograms 

 

3.2.1  Experimental Factors 

The experiment varies three factors: 

Data Size (D): The number of cases in the data sample to fit.  In general, 

larger samples, when drawn stochastically, tend toward greater regularity and 

adherence to the underlying distribution from which they derive.  This experiment 

employed two levels of data size: 50 and 200 cases.  At 50 cases, samples have 
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sufficient size to reliably subject them to statistical tests, for example the T-test, or 

Cohen’s D without correction for small sample size; this serves as a marker of the 

experimental condition having sufficient regularity to create a “fair” test of 

respondent ability.      

Spread (S): The standard deviation of the sample being fitted.  The 

experiment employs two levels for this factor, expressed as the coefficient of 

variation (CV) (or relative standard deviation), i.e., as a ratio between the standard 

deviation σ and the mean µ (σ/µ): 20% and 40%.  These values reflect our prior 

experience, and the results of the first version of this experiment (note that this was 

inaccurately described as a "pilot test" in our preregistration).  These values ensured 

test samples provided both relatively noisy distributions (for high values of S) and 

relatively regular distributions (for low values of S).  Data samples are within 1% of 

these target levels. 

Visualization (V ): The visualization type used to represent the data samples. 

Drawing from the literature, this experiment employs four distinct distribution 

graphics (Figure 3.5). 
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Figure 3.5 The Four Distribution Graphics 

 

Bar histogram: A “classic” histogram where the aggregated number 

of data items for each bin is represented using a bar of uniform width (Figure 

3.5a). 

Wilkinson dot histogram: A variant of histograms initially proposed 

by Wilkinson (Wilkenson 1999), dot histograms are unit visualizations (Park 

2018) that organize individual dots (circles) for each item into bars for each 

bin (Figure 3.5b). 

Boxplot: A box-and-whisker plot as pioneered by John W. Tukey 

(Wickham 2011), where a central rectangle contains the middle half of the 

data (from the 25th to the 75th percentile), the median (50th percentile) is 

marked with a line, and the “whiskers” mark borders of wider percentiles, in 

this case the upper 10% and lower 10% of the data (the 10th and 90th 

percentiles) (Figure 3.5c).  Boxplots in this study were not augmented with 

icons like dots or stars to indicate outliers.  This sacrificed some information 

while increasing the simplicity of the graphic. 
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Strip plot: A unit visualization (Park 2018) where each item is drawn 

as a short vertical line with opacity on the horizontal axes (i.e., with no 

vertical data encoding), yielding a representation similar to a barcode (Figure 

3.5d). 

This selection of graphic types provides variation in the level of abstraction 

vs. detail.  For example, the strip plot provides a view of each data point, while the 

box plot includes no individual data, but only statistical averages.  The two 

histograms represent a points between these two extremes.   

Forming histograms requires the creation of “bins”, that is, the uniform ranges 

within which data points are enumerated.  The choice of bin size is a key parameter in 

forming histograms (Correll 2019).  Narrower, more numerous bins create more 

detailed, ‘spikier’ displays; wider bins give a more aggregated, blockier appearance.  

This experiment did not directly model variations in histogram bin width, but instead 

used a consistent number of bins (50) across the horizontal axis.  The number of bins 

with data in them thus related to spread, with greater S values resulting in more bars 

per histogram. 

3.2.2.  Experimental Design 

This experiment employed a within-participant design, where each participant 

saw all data sizes, spreads, and visualizations. The relatively small total number of 

conditions kept typical sessions shorter than 20 minutes, minimizing fatigue and 

maximizing alert attention for crowd workers. The order of trials was randomized for 

each individual participant. This yielded the following design (Table 3.1): 
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Table 3.1 Experimental Design 

 

 

The pre-registered experimental plan called for 100 participants and a total of 

4,800 trials.  However, due to a miscommunication within the research team, 150 

respondents were recruited (discussed later in the section on deviations from 

preregistration). During each trial, the instrument captured accuracy of fit and 

completion time.  Accuracy was based on two metrics: 

Mean error: If µc is the mean of the normal curve fitted by the participant 

and µs is the actual mean of the sample, mean error is calculated |(µc - µs)|. Most 

analysis below take the absolute value of this metric. 

Standard deviation error (%): If σc is the standard deviation of the normal 

curve fitted by the participant and σs is the actual standard deviation of the sample, 

standard deviation error is calculated as |(σc - σs)/σs|, expressed as a percentage.  

Expressing this measure as a percent error provides a more comparable scale across 

trials with different S values.  Most analysis below take the absolute value of this 

metric. 

Completion time: was measured from when the trial was displayed to the 

participant until the participant submitted an answer.  This metric did not form part of 

measuring task accuracy, but rather, served as a rough control to eliminate crowd 

workers who may have become distracted during administration of the instrument.   

2 Data Size D (50, 200 samples)

2 Spread S (0.2, 0.4)

4 Visualization V (bar, dot, box, strip)

3 repetitions (labeled a,b,c)

48 trials per participant
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3.2.3  Procedure 

All recruitment was conducted via Amazon Mechanical Turk. Participants that 

fit the eligibility criteria opened the survey in a separate browser window. At the end 

of their participation, they copied a unique completion code back into the Mechanical 

Turk interface, and were later paid as their work was checked. 

Each session started with a consent form. Failing to give consent terminated 

the experiment. Participants were instructed that they could abandon their session at 

any point in time. Unfortunately, it was only possible to pay participants who 

completed a full session.  The consent form informed participants of this fact at the 

start of the session. 

After consenting, participants were asked their age, education level, and 

knowledge of statistical concepts. Participants had to reaffirm that they were using a 

tablet or computer to participate.  

Participants were shown practice trials for each visualization type, including 

instructions on how to read the visualization and complete the task. For each such 

practice trial, a correctly fitted curve was shown in a contrasting blue color (Fig 3.6).  
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Figure 3.6 Training and attention trial 

 

These practice trials also served as “attention trials.” The purpose of these 

attention trials was to eliminate responses from crowd workers who did not pay 

attention to the task. Any session where the participant responded with an error of 

more than 3 standard deviations from the actual mean for these attention trials were 

discarded from analysis. The consent form disclosed this fact.   

Each individual trial started with the display of the dataset and the curve and 

ended when participants clicked the “confirm” button (Fig 3.7).   
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Figure 3.7 – Experimental instrument 

 

Participants were unable to confirm a trial before interacting at least once with 

the range slider. Completion time was measured from the display of the trial, to this 

button- click. Participants were instructed to use the intermission between 

visualization blocks if they needed to rest between trials. A progress bar at the top of 

the screen showed the study progress. 

Typical sessions lasted between 14 and 15 minutes. A few participants used 

much more time to complete their sessions, but the Qualtrics logs indicate that these 

participants took long breaks between trials (presumably due to interruptions).  

3.3  Hypotheses 

Estimation of means will be more accurate than estimation of spread.  

Intuition, prior experience, and the literature all suggested that people are able to 
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visually determine averages with high accuracy (Gleicher 2013), but fitting the curve 

to the sample will be less accurate. 

Participants will be more accurate at estimating both mean and spread as 

the number of data cases increases. For larger datasets, the impact of sampling 

error will be lower and the overall shape of the distribution more well-defined. This 

should make it easier to perceptually estimate the mean. 

Performance will vary with visualization type. In particular: 

Participants will be more accurate at estimating means with 

boxplots. Boxplots directly encode the median of the distribution in its visual 

representation, which is close to or identical to the mean in normally 

distributed data samples. 

Participants will be less accurate at estimating means with strip 

plots. The use of opacity and the impact of overplotting to encode density 

makes precise estimation difficult. 

Participants will consistently underestimate the spread of 

distribution when using boxplots, due to their excluding the tail ends of the 

distributions.  

3.4  Results 

We collected data from 146 participants who completed 48 trials for a total of 

7,008 individual trials. After discarding the 19 participants who failed the four 

attention trials, we were left with 127 participants. Upon inspecting the data, we 

found that an additional 10 participants appeared to have misunderstood the curve 

fitting task for an entire block or more of the experiment. More specifically, these 
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participants had moved the position of the curve to fit the mean, but had not changed 

the width of the curve to fit the spread. We speculate that this problem arose because 

our training trials failed to require respondents to adjust the spread, only move the 

curve’s center point. We believe this was a mistake, leading some participants to 

believe moving the center point constituted the full task.  Since we are unable to 

assess the impact of this apparently misleading training, we opted to remove those 10 

participants from our analysis. Based on the preregistration, we eliminated outlier 

trials (not participants) with a completion time higher than 3σ ; this removed a total of 

79 trials (i.e., 1.3% of all trials). We assume these trials represent situations when the 

participant was interrupted mid-trial; most of these lasted for hundreds of seconds 

(the maximum was 698 seconds). We argue that eliminating such trials based on 

completion time is valid both because  

(a) data collection using online crowdsourcing is much less controlled 

than in laboratory settings, thus requiring accommodations due to participant 

inattention, latency, and external interruptions (Heer 2010), and  

(b) none of our hypotheses are based on completion times. 

The final dataset, after removing outliers, had 5,528 trials.  The overall 

absolute average mean error was 11.2% (s.d. 25.2%). The overall absolute average 

standard deviation error was 28.9% (s.d. 30.4%). 

Below we analyze participant performance and then go into detail on the 

characteristics of the different factors. 
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3.4.1  Averages and Individual Analysis 

Figure 3.8 summarizes all trials for means (blue dots) and Figure 3.9 does the 

same for standard deviations (red dots).  

Estimates of the mean are more or less centered around the baseline, with 

errors equally distributed above and below zero. This suggests no systemic trend for 

over- or underestimating the mean. Boxplots appear to have the smallest magnitude 

errors. 
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Figure 3.8 Errors in estimating means 
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Figure 3.9 Errors in estimating standard deviations 

 

Individual estimates of standard deviations appear larger, with typically 

greater spread around the zero-line.  This, however, may only reflect the different 

scale of the two measures (absolute error vs. percent error).  More importantly, errors 

in standard deviation estimation are unbalanced, biased upward for both histogram 

types, and downward for box plots, despite participants being somewhat more 

consistent in their standard deviation estimates when using boxplots.  Strip plots at 

times yielded significant underestimation (potentially because of overplotting), 

whereas performance was more consistent for other trials.  
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Figure 3.10 considers whether respondent performance on one kind of graph 

is predictive of how they will perform on another. Each dot represents a respondent’s 

average percent error at the task across all trials for that graph type. As stated earlier, 

outliers larger than 3σ have been removed from this data. However, respondent 

performance in estimating standard deviations shows considerable variation.  

Figure 3.10 Comparing performance between visualization types 

 

Absolute values of Pearson r correlation on performance between pairs of 

visual representations also appear in the figure. For absolute mean error, boxplots and 

strip plots appear most closely correlated ( r = 0.31), closely followed by dotplots and 

bar histograms ( r = 0.29). However, performance on histograms does not appear to 

correlate well with performance on strip plots or boxplots ( r < 0.13). This 

inconsistency between graph types suggests that variations in performance on this 

task derive more from the design characteristics of specific distribution visualizations 
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respondents were presented with that from any variations in the native skill or prior 

experience of individual respondents. 

For standard deviation error, absolute values of the correlations are much 

higher—for example, bar histograms and dotplots are highly correlated (|r| = 0.82); 

dotplots vs. strip plots and bar histograms vs. strip plots also exhibit correlation (both 

|r| = 0.53). 

 

3.4.2  Analysis by Characteristics of Factors 

We analyzed the results from the study using bootstrapping (Efron 1992) (N = 

1, 000 repetitions) to compute 95% confidence intervals (CIs) (Dragicevic 2016). We 

also report effect sizes based on these intervals.  

 

Figure 3.11 Bootstrap results of analysis by experimental factor 
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The first three rows of Figure 3.11 summarize performance for all three 

measures based on Visualization V , Data Size D, and Spread S using 95% 

confidence intervals (calculated using bootstrapping as discussed above). Completion 

time is included for completeness only, and does not contribute to the main body of 

this analysis, or later discussion. 

The second row in Fig. 3.11 summarizes measures for the data size. Although 

larger data size was associated with better performance, these effects were small both 

for mean error (0.32 for D = 50, 0.30 for D = 200, Cohen’s d = 0.02) and standard 

deviation error (29.4% for D = 50, 28.4% for D = 200, Cohen’s d = 0.03). 

On the final row of Figure 3.11, we see the same data for spread. Here, while 

larger spread yields minimally higher mean error (0.307 for 20%, 0.317 for 40%, 

Cohen’s d = 0.0142), it was associated with a larger relative performance gain for 

standard deviation (34.1% for 20%, 23.7% for 40%, Cohen’s d = 0.341). 
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Table 3.2 summarizes the effect sizes for absolute mean error and standard 

deviation error (%). For Visualization (the first row), error in estimating the mean 

was 

lower for box plots (absolute mean error=0.24, Cohen’s d = 0.14) compared to 

the other chart types. Strip plots had slightly worse performance (absolute mean 

error=0.37, d = 0.11), but were comparable in performance to bar and dotplots. 

Participants were considerably more accurate in estimating standard deviation with 

strip plots compared to the other visualizations (absolute percentage s.d. 

error=0.21, Cohen’s d = 0.31). Bar histograms were the least accurate for estimating 

standard deviation (absolute percentage s.d. error=0.32, Cohen’s d = −0.15), but the 

difference was lower. 
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3.4.3  Interactions between experimental factors 

Figure 3.12 looks for potential interaction effects between experimental 

factors and respondent task performance.   

Figure 3.12 Interactions among experimental factors  

 

 

 

 

 

 

 

 

 

 

 

 

For interactions between data size and visualization, absolute mean error 

appears to decrease with larger data size for histograms. Strip plots and boxplots, 

however, show little to no effect of sample size; box plots might even show evidence 

of worse performance at larger sample sizes, though the effect is so small compared 

to the confidence intervals that it may be illusory. As for absolute standard deviation 

error, errors appear to decrease with higher data sizes for most visualization types we 

tested.  However, strip plots exhibit different behavior: respondent estimates of 
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standard deviation appear to worsen with increased sample size (perhaps due to data 

occlusion), yet at both sample size levels, exhibit consistently lower error than the 

other techniques. 

For interactions between spread and visualization, the absolute mean error 

appears to increase with higher spread for both histograms; however, this effect does 

not persist for boxplots or strip plots, and may even reverse.  Furthermore, for this 

same interaction, all visualizations yield lower standard deviation error for higher 

(40%) compared to lower (20%) spread, again except for boxplots; boxplots have 

largely unchanged standard deviation error for both conditions. 
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3.4.4  Demographics and Participant Feedback 

Figure 3.13 Demographic survey of participants

 
The demographic characteristics of our respondents (Figure 3.13) are more or 

less consistent with prior attempts at understanding the Amazon Mechanical Turk 

population (Ross 2010).  At 60.7%, the proportion of people with a Bachelor’s degree 

is nearly twice the national average (37.5% in 2020, Census Bureau -- 

https://www.census.gov/data/tables/2020/demo/educational-attainment/cps-detailed-

tables.html), which point to a more affluent, more educated population than the 

general public.  However, very few respondents (8) had professional statistics 
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experience, and only about 1 in 7 had moderate statistics experience. This suggests 

that our results should be at least somewhat generalizable to the broader population, 

assuming a general education may be less influential on task performance than 

specific statistical training. 

Thirty-seven of 117 participants provided free-form feedback. The feedback 

was generally positive, with several participants noting that the task was fun and 

engaging.  

Participant P21812 wrote, “It was almost gamified, like something you’d find 

on a tablet or phone.”  

Similarly, “This was fun! I kept wanting to fit everything in under the bell 

curve, though the instructions didn’t state that.” (P51429)  

Many other participants also noted that fitting curves was challenging: “Much 

of the data was not in a normal distribution!” (P15279),  

“Some of those were tough, just trying to eyeball them.” (P28558), and “Not 

sure exactly how these were supposed to fit, some were too weird.” (P49775) 

Finally, participant P21883 had a more general comment: “I took high school 

statistics but I don’t remember estimating the curves this way. I just remember doing 

tons of calculations.” P43443 went even deeper: “I think I would have had better 

luck at proving string theory than doing this exercise with any degree of accuracy.” 

Fortunately, our results disagree. 
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3.5  Deviations from the Preregistration 

In our preregistration, we stated that we would collect data from 100 

participants. For the actual study, we recruited a total of 150 participants (and ended 

up with 146 participants, and eventually 117 after filtering), which was an 

unintentional deviation from the preregistration. The cause for this deviation was 

miscommunication within the research team. Though not presented here, we did a 

separate analysis on the first 100 respondents which indicated the same effects as the 

full results we have reported. 

Because of the misleading training, where participants were not required to 

change the spread to fit the blue curve, we also removed data for 10 participants that 

we deemed to have possibly misunderstood the curve fitting task. We classified such 

misunderstanding when at least one full block of 12 trials (out of 48) for a participant 

had a spread of 1.0 (the starting spread). We provide our unfiltered data on OSF. 

 Additional deviations include the following: 

Our spread values were said to be “determined by pilot testing.” This 

is inaccurate—we had determined the values based on experiences from the 

prior version of this experiment. 

Our preregistration included a fifth hypothesis: “There will be non-

uniformity in performance across individual participants.” This hypothesis is 

underspecified and ambiguous, and we opted to discard it in our analysis. 

Several of our plots and analyses—including our analysis of Pearson 

correlations and Cohen’s effect sizes as well as the scatterplot matrix in Figure 
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7—were not included in our preregistration. We include them here in the 

interest of providing a richer analysis and reporting of our results. 

3.6  Discussion 

This study gave rise to several interesting findings while confirming some 

basic intuitions about this task.   

 

3.6.1  Reviewing Hypotheses 

We find strong evidence in our results that the estimation of means is more 

accurate than estimation of spread. Overall, estimates of means were less biased, 

and more consistent across visualization types, while estimates of standard deviations 

where typically biased. This supports our first hypothesis. 

Furthermore, we see no evidence that the errors in estimating means or 

standard deviation decrease as the data size increases. Thus the second hypothesis 

is rejected. 

We do find that performance varies with visualization type. Boxplots 

yielded the lowest error for estimating the mean, and strip plots the highest, while 

strip plots outperformed the other visualization types with regard to standard 

deviation estimation.  

Our fourth hypothesis – which emerged out of our early work – dealt with the 

assumption that participants would seek to fit as many of the visible data points in the 

sample as possible under the curve, resulting in a positive bias in standard deviation 

estimates. We call this an “umbrella effect,” as if people are protecting the data from 
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rain. If so, this would result in systematic overestimation of standard deviation for 

visualizations.  This pattern of positive bias (Figure 3.9) in the two histograms 

supports the “umbrella effect”, the fourth hypothesis.  An inverse version of this 

effect may also be at play for the boxplot, as the underestimation may indicate 

participants are fitting the whiskers, which would exclude some data points, or even 

the central rectangle of the boxplot, which only contains 50% of the data. 

3.6.2  Explaining the Results 

Our results indicate the effect of visualization type is larger than the impact of 

sample size or spread.  Indeed, there appear to be interactions between specific 

visualization types and these experimental factors, and, therefore, no consistent 

pattern of behavior change with either spread or sample size.  We would have 

expected that an increasing number of data points would build a fuller picture of a 

distribution, easing the perceptual task of finding the midpoint. We see some 

evidence of this, as discussed above, but it is not nearly as strong as expected. 

Our results on standard deviation error are also noteworthy. First of all, the 

impact of data size D on this error is small. This would usually be interesting as one 

would guess that increasing the number of items would yield better accuracy because 

the sample becomes more regular. However, we controlled the relative noise of the 

samples when we selected CV levels. On the other hand, we do see that standard 

deviation error decreases for 3 of 4 visualizations as the spread S increases. This is 

counterintuitive, but may possibly be explained by the aforementioned “umbrella 

effect.” This is supported by our results that indicate that most trials were 

overestimates, i.e., with standard deviations larger than necessary. Results for 
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boxplots were the reverse, showing a strong negative bias in errors of standard 

deviation estimation, a reverse umbrella. We speculate that this may reflect 

participants attempting to fit the curve directly onto the figure. The excellent results 

for estimating means with boxplots may simply reflect how on an individual basis we 

cannot compete with the precision offered by automated calculations, despite our 

innate ability to identify the mean of a distribution. In samples from normal 

distributions, the precalculated medians denoted by the center lines of boxplots are 

very close to the distribution mean. The other points making up a boxplot represent 

similar precomputed values. Boxplots thus present distributions with an appearance 

of having very little random noise. 

All techniques except strip plots aggregate data, whereas strip plots merely 

draw a line for each exact value in the sample. Our results suggest that aggregation is 

beneficial; for strip plots, multiple similar values in the data sample will yield 

overplotting, making it difficult to see high concentrations of data. This could explain 

the high variation in standard deviation in Figure 3.9. 

A normal curve goes even further, being a completely noiseless and idealized 

representation of a data sample. Hindsight being 20/20, it seems only reasonable that 

participants would have greater ease applying a normal curve to the most noise-free 

visualization among the four we tested. This may only be counterintuitive to us as 

data visualization researchers, since we tend to assume there is useful information in 

deviations of data from some idealized model; we look for meaning in the details. Yet 

that same information—outliers, unexpected correlations, gaps in the data—can 

apparently act as a distraction from ”eyeballing” traditional summary measures. It 
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may be that the idealized forms traditional statistics focus upon sometimes make an 

imperfect match with our intuitions for messier, real world data. A normal curve is a 

structure we impose on smaller samples whenever we calculate a mean and standard 

deviation, rather than an obvious fit. This may highlight the importance of getting a 

sense of the data by looking at it before it is abstracted or summarized. Yet it also 

argues for the importance of summary calculations which can precisely identify 

(often critical) measures of central tendency, since noise in the data may distract our 

visual capacity. 

Finally, we believe our “umbrella effect” observations may be explained by 

prior work on ensemble processing (Alvarez 2011), which tells us how the visual 

system will perceptually average all the points in a complex scene to yield a 

manageable abstraction. When estimating the spread, such averaging will essentially 

yield a convex hull of all of the points in the visualization. In contrast, when 

calculating a standard deviation of a dataset, several outlier points will fall outside of 

the envelope of the fitted bell curve. This means that the perceptually averaged 

representation will be more generous than the actual calculated spread. 

3.6.3  Generalizing the Results, Design implications, and Limitations 

Our participants included a high concentration of younger adults, with a 

higher ratio of university degrees than in the U.S. general population. However, the 

level of statistics knowledge participants report was relatively basic. This low level of 

statistics training gives us confidence that the findings may generalize more broadly. 

We believe that the sample sizes of our trial datasets (50 and 200 data items) 

represent typical sample sizes for people in many fields of study. The smaller size 
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does raise an issue for the applicability of these results to future research into visual 

inference, since below 100 cases, the Student’s t-distribution is not totally equivalent 

to the normal distribution (Student 1908). However, at n = 50, the two curves are 

similar, and we expect that the challenge-to-fit presented by the extra noise of the 

small sample would be the more important effect. 

The visualizations we tested varied in their degree of aggregation, spanning 

the full range from zero aggregation (strip plots), to low aggregation (dot histograms), 

moderate aggregation (bar histograms), to total aggregation (boxplots). We believe 

that other distribution visualizations, for example, violin plots or density plots, might 

be similarly scored along this dimension. By so doing, future researchers might use 

the results of this study to inform performance predictions for these or other graphics. 

However, in application, it may be that other graphics may exhibit entirely different 

behavior. Hypothetical outcome plots (HOPs) (Hullman 2015), for example, use 

animation to convey uncertainty, which may reduce the observed umbrella effect. 

The overarching vision motivating this work is to lower the threshold of using 

real statistical methods so that people with little mathematical or statistical 

background might, with a reduced training burden, use them. Literature in perception 

and visualization (e.g., Albers 2014, Gleicher 2013, Correll 2014) support this goal, at 

least indirectly, by showing how the appropriate visual representations can enable 

people to manually derive even sophisticated aggregated statistics. 

This experiment suggests that people with minimal training can gain 

statistically useful information from visual displays.  Moreover, this result points to 

the presence of visual intuitions that allow users to see the connection between real 



 

 

73 

 

data samples, and the idealized curves of inferential statistics.  Even if these intuitions 

are biased, they are still there and can be designed around using results from this 

experiment, along with others.    

 

Limitations 

Even though results presented here represent the second incarnation of this 

study, the experiment still has some weaknesses. We made several deviations from 

our preregistration, and a few of our analyses were also not explicitly detailed in the 

preregistration.  

Training trials primed participants to answer our questions by showing a 

prefitted idealized curve on top of a data distribution for each visualization type. It is 

conceivable that such training teaches people less about fitting curves to data than 

fitting curves to a specific visualization. If this proves to be the case, subsequent 

experiments which make the assumptions of this one might yield null results.  Still, 

we tried to avoid training people to mechanically fit curves using a prescribed pattern 

by only giving participants a single training trial per visualization type. 

Furthermore, our study only involved normally distributed data. This is a clear 

limitation to our experiment, and more work is needed to chart these waters in the 

future. In addition, we opted not to include the number and configuration of bin sizes, 

which have been shown to be important factors in histogram design (Correll 2019), in 

our experiment to keep the size of the experimental design manageable, and instead 

held the number of bins (50) and their size (20.0/50 = 0.40 per bin) constant. This is 

another limitation of our work, as two of our techniques—bar and dot histograms—
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clearly are affected by this choice, whereas the other two—strip plots and boxplots—

are not. While we think that the bin sizes were more or less appropriate given the 

dataset properties, this is nevertheless an important factor that we hope will be studied 

in the future. 
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Chapter 4: Testing visual analogues to a T-test 

Having demonstrated that people possess visual intuitions (however biased) 

for connecting idealized curves and real life data samples, testing a visual analogue to 

a traditional statistical test was the next step toward investigating the possibilities of 

visual confirmatory analysis.     

4.1  Study: Overlapping Bell Curves 

The fundamental research question tackled here is how well people can 

determine whether two data samples are drawn from the same or different 

populations, and whether their ability depends upon the visual representation used. To 

answer this question, we conducted a crowdsourced experiment where participants 

were asked to make a decision about whether two samples visualized using idealized 

bell curves, boxplots, overlapping bar histograms, stacked bar histograms, Wilkinson 

dotplots, or strip plots (Fig 4.1), represented a statistically significant difference (T-

test at the p = 0.05 level).  
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Figure 4.1 T-tests built with six different graphic forms 

 

Since statistical significance is heavily dependent on the size of each sample, 

we grouped trials by the sample size of test datasets, and included an instruction page 

about that specific sample size, followed by two examples, one significantly different 

and one not. Where possible, trials included visual representations to convey the scale 

of the underlying data, whether graphically, as in the case of strip plots or Wilkinson 

dotplots, or as a labels on the vertical axis for histograms and bell curves. Boxplots 

included no sample size indicators on specific trials.  

We preregistered this study on OSF (https://osf.io/r3jpn/). Below we review 

our methods, followed by our results in the next section. 
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4.1.1  Participants 

We designed this study to engage members of the general population in 

graphical inference tasks. For reasons similar to those described in the last chapter, 

we opted to conduct our study using Amazon Mechanical Turk (MTurk).  

We originally planned to recruit a total of 500 participants (Turkers), from 

each of whom we would solicit answers to a bare minimum of trials. However, our 

approach evolved as we chose Turk “Master Workers” to help ensure high quality 

responses; we reduced the number of respondents, increasing the number of trials 

assigned to each. In the end, we recruited a total of 212 responders, limiting 

participation of Turkers to those with a proven track record on the site, that is, 

workers with 50 or more prior tasks done for other employers on the site, and with a 

95 % acceptance rate for their work. We also limited participation to people from the 

United States due to tax and compensation restrictions imposed by our IRB. We 

screened participants for standard color vision (to not be color-blind, self- reported), 

as color perception might impact results given the experimental apparatus. 

Data collection for the six visualization types took place through six separate 

surveys, each identical in question order and instructions, varying only in the 

visualization type presented. Individuals were prevented from participating in the 

same survey multiple times, however, it was possible for an individual to complete 

surveys for more than one visualization type. For the purpose of these analyses, we 

treat such cases as separate responses. All participants were ethically compensated at 

a rate chosen to be consistent with an hourly wage of at least $15/hour (the U.S. 

federal minimum wage in 2020 was $7.25). More specifically, the payout was $2.50 
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per session, and with a typical completion time of 545 seconds, this yielded an hourly 

wage of approximately $16.50/hour. 

4.1.2  Experimental apparatus and task 

The study was distributed remotely through the user’s web browser. This also 

meant that we were not able to control the specific computer equipment that the 

participants used. We required all devices to be personal computers (laptop or 

desktop); mobile devices were disallowed due to the limited screen space available. 

Our study consisted of a sequence of trials involving a single task: 

determining whether two data samples visualized in a non-interactive chart in the 

user’s browser represented the same or different source populations. The participants 

were given detailed instructions prior to beginning these trials which put the task in 

terms of comparing different sets of dice, one known to be fair and another uncertain. 

In each trial, they were shown the chart as well as the following prompt (Figure 4.2): 

Consider the two overlapping data distributions above. Do they seem 

similar enough to derive from two sets of fair dice, or so dissimilar that one 

likely represents an unfairly balanced set? And how confident are you in your 

answer? 

They were provided with five potential answers, ranging from, “Very 

confident the samples are similar” to “Very confident the samples are dissimilar.” 

The testing platform was implemented in JavaScript using D3 (Morgan 1991) and 

embedded into a Qualtrics survey accessed using the participant’s web browser. 
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We generated a collection of 1,800 pairs of data samples, 600 pairs per each 

sample size (see below). All datasets were drawn from an essentially normal 

distribution, since our focus was on the type of normally distributed data that are 

typical for parametric statistical testing. Data were generated through a stochastic 

process. The different pairs had the same number of items; 36, 144, or 1,000. This 

also creates distributions with some variation in noise level and occasional irregular 
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features. To generate interesting pairs of samples, where the samples in each pair are 

referred to as A and B, we added a small constant to raise the mean for sample B such 

that approximately 50% of the pairs were significantly different at the p = 0.05 level 

using a t-test. We used the t-test because for samples of n = 36 there is small 

difference in the critical value compared to a Z statistic, which might impact scores 

for borderline cases. In addition to the actual data, we calculated the mean, standard 

deviation, and t-statistic for each of the pairs of samples. 

We opted not to manipulate the standard deviation for the samples in each 

pair; the standard deviation ranges from approximately 0.6 to 0.8 for both samples in 

a pair. Thus, we left investigation of the impact of standard deviation on user 

performance in assessing significant differences for future work. 

4.1.3  Experimental Factors and Design 

We modeled two factors in our experiment: 

Sample Size (S): The number of items in the two samples being 

visualized. As the number of items increases, the samples will begin to 

approach the idealized distribution. We chose three levels: 36, 144, and 1,000 

items. The first two levels represent typical dataset sizes that the general 

population may encounter in their daily life, whereas the third represents a 

large dataset where only small changes in the distribution will typically yield 

statistically significant differences. Also, since the ’statistical power’ of a data 

sample is approximately equal to the square root of sample size, samples of 36 

are about half the power of samples of 144, and 1/5th Samples of 1,000. 
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Visualization (V ): The visualization type used to represent the two 

data samples. Based on our review of the literature, we chose six distinctive 

visualization techniques (Figure 1): 

– Overlapping bell curves: Two superimposed continuous 

filled-area charts visualizing fitted normal distributions of the 

underlying data samples (Figure 1a). 

– Wilkinson dot plots (dot histograms): Dot histograms (Ariely 

1999) are unit visualization (Melcher 1999) versions of histograms 

where individual dots (circles) are stacked to represent each bin 

(Figure 1b). 

– Bar histogram: Two “classic” histogram where the aggregated 

number of data items for each bin is represented using a bar of uniform 

width, both drawn in the same visual space so that they overlapped 

(Figure 1c). 

– Stacked bar charts: Two “classic” bar histograms as above, 

juxtaposed one over another with no overlap (stacked), and with each 

chart receiving half of the available vertical display space (Figure 1d). 

– Boxplot: The box-and-whisker plot as pioneered by John W. 

Tukey (Alvarez 2011, Tukey 1977) (Figure 1e). The central rectangle 

contains the middle half of the data (from the 25th to the 75th 

percentile), the median (50th percentile) is marked with a line, and the 

“whiskers” mark borders of wider percentiles, in this case the upper 
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10% and lower 10% of the data (the 10th and 90th percentiles). We did 

not visualize outlier data in our representation. 

– Strip plot: A unit visualization (Melcher 1999 where each 

item is drawn as a short vertical line with opacity on the horizontal 

axes, i.e., with no vertical data encoding (Figure 1f). 

Since our task requires visualizing two samples (A and B) to allow 

comparisons, we opted to draw both overlapping bell curves, histograms, and dotplots 

in the same visual space using steelblue  and  sienna  colors at 50% transparency. 

This gives rise to a special overlapping color (brown in Figures 1 and 2) when visual 

marks for the samples overlap. For strip plots, we also used 50% transparency, but 

overlapped the two plots only halfway, preventing overplotting (Figure 1f). Finally, 

for boxplots, we separated the two plots entirely (Figure 1e). 

The number of bins is a significant parameter for histograms (Gleicher 2013). 

We opted not to model this factor directly, instead keeping the extents of the 

horizontal axis constant (at [10, 10]) and the number of bins constant (50). 

  

Experimental Design 

We used a mixed design, where each participant saw all data sizes but only 

one of the six available visualizations. This allowed us to minimize the amount of 

training which would otherwise be required to instruct participants in the use of each 

visualization type. The small total number of conditions enabled us to keep sessions 

shorter than 10 minutes in duration to minimize fatigue and maximize attention for 

crowd workers. Each trial pulled at random one of the pre-computed dataset pairs. 
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Trials for each dataset size were grouped to provide respondents the maximum 

opportunity to learn during the experiment. They were presented with 10 trials of 

sample size 36 first, then 10 of 144, then 10 of 1000. Within each group, there were 

presented with two training trials, one which showed an example of a significant 

difference, the other not. It yielded the following design: 

 

 

 

We ended up with 6,360 trials. For each trial, we captured the correctness. 

Correctness was defined as whether (1.0) or not (0.0) the participant correctly 

assessed a set of samples to be significantly different or not (based on a t-test at p = 

0.05). We also captured statistics of the actual datasets participants saw, such as the 

p-value of the corresponding t-statistic for the two samples. A short set of optional 

text questions followed the trials, as well as a few demographic questions about 

respondents. 

We recruited participants through Amazon Mechanical Turk. Participants that 

fit the eligibility criteria opened the survey in a separate browser window. At the end 

of their participation, they copied a unique completion code back into the Mechanical 

Turk interface, and were later paid as their work was checked. 

Each session started with a consent form with waived signed consent. Failure 

to give consent terminated the experiment. Participants were asked to confirm that 
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they had no color vision deficiency. Participants were allowed to abandon their 

session at any point in time. Unfortunately, we were unable to pay participants who 

only completed a partial session. We informed participants of this fact in the consent 

form before starting the session. 

After each trial, the participant was given the correct answer after deciding 

whether or not a specific pair of samples were drawn from different populations or 

not. After all trials, participants were asked demographic questions about their age, 

education level, and knowledge of statistical concepts. 

Each individual trial started with the display of the two samples and ended 

when participants clicked the one of the five answer buttons. A progress bar at the top 

of the screen showed the study progress. Amazon provides the option of rejecting 

specific respondents who failed to fully participate in a task, for example, by 

repeatedly clicking the same answer button to rush through the trials. However, 

variability checks after collection showed no such cases in the Master Turker 

population we drew from. 

Typical sessions lasted between 5 and 6 minutes in duration. A few 

participants used significantly longer to complete their sessions, but our logs indicate 

that these participants took significant breaks between trials (presumably due to real-

world interruptions). We believe that the effective time spent on the experiment was 

no more than 10 minutes. 

4.2  Hypotheses 

We preregistered the following hypotheses about our experiment: 
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High-fidelity vs. low-fidelity visualization. Participants will be more 

accurate at assessing significant differences (p = 0.05) between samples when 

using a high-fidelity visualization than when using a lower-fidelity 

visualization. 

Bars and dots. Bar histograms and Wilkinson dot plots have higher 

fidelity than all other representations tested, and will thus yield higher 

accuracy than all those other representations. 

Strip plots. Strip plots are high-fidelity visualizations that will yield 

better accuracy than boxplots and idealized bell curves, but occlusion will 

result in lower accuracy than for bar histograms and dotplots, especially for 

large sample sizes. 

Boxplots. Boxplots are an intermediate-fidelity visualization that will 

yield better accuracy than idealized bell curves. 

Individual differences. There will be non-uniformity in performance 

across individual participants, that is, we anticipate that there will exist 

cohorts of participants with qualitatively different patterns of performance. 

 

4.3  Results 

We analyzed the results primarily by computing correctness scores within 

analytic groups (based on Visualization Type, Sample Size of datasets, and P-value of 

the specific dataset pairs from each trial). We judged a trial correct if its associated p 

value was < .05 and the respondent selected one of the two “dissimilar” categorical 

answers, or if the p value was >=.05 and the respondent selected one of the two 
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“similar” answers. We then used bootstrapping [25] (N = 1, 000 repetitions) on 

aggregated trials to compute 95% confidence intervals. We plotted these confidence 

intervals and used graphical inference to compare the different conditions. 

4.3.1  Overall Correctness Analysis 

As any given trial produces a dichotomous result, the 50% cutoff is a useful 

comparison in the following to assess a visualization technique. The nearer to 50% 

correctness a technique produces in respondents, the nearer the results for that 

technique come to those we could expect through random guessing (and so the utility 

of that technique for statistical testing is diminished). 

 

Beginning with 

visualization type 

(Figure 4.3), we find 

that respondents did 

appreciably better with the idealized bell Curve plots and Boxplots than with any 

other. Respondents were correct about 70% of the time with boxplots, and a bit more 

with idealized bell Curves. This not only fails to support our first hypothesis, it 

appears to directly contradict it. These low-fidelity visualizations appear to allow 

respondents the best performance on this task, with the highest performance 

appearing in the lowest-fidelity visualization (the idealized bell Curves). Dot plots, 

Bar histograms, and Stacked bar histograms showed the worst performance, with 

Stacked being essentially indistinguishable from chance. Strip plots performed worse 
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than Normal curve and Box plots, but at least as well as Dot plots & Bar histograms, 

and better than Stacked bar histograms. 

 

We find that the size of datasets being compared had only a small impact on 

average correctness when considered as a stand-alone factor (Figure 4.4), certainly 

much smaller than the differences across visualization type. 

 

There may be some degree of interaction between the size of compared 

datasets and specific visualization type (Figure 4.5). Normal bell curves may have a 

tendency to perform better at higher sample sizes. In comparison, Strip plots and 

Dotplots did worse with higher dataset sizes; Strip plots in particular appear to 

decline in effectiveness for this kind of comparison once the smallest sample size is 

exceeded. This supports one part of our hypothesis regarding Strip plots, namely, that 

at higher dataset sizes occlusion might become a problem. However, Dotplots may 

also suffer from occlusion. The Stacked bar histograms also appear to decline in 

effectiveness as sample sizes increase. 
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We also examined the impact of the degree of difference between particular 

datasets respondents had to compare, expressed as p-values (Figure 4.6). This should 

serve as a sort of measure of difficulty of the individual trial, where extremely low p-

values will indicate dataset pairs with large mean differences, while p-values closer to 

1 should indicate datasets with nearly total overlap. 

Indeed, there are large differences in correctness by p-value. Respondents 

were far more likely to correctly identify datasets as dissimilar when the p-values 

were lowest (less than 0.001). At the high end (p-values between .500 and 1), 

respondents were even more likely to make a correct choice (that datasets were 

“similar”). Trials with more intermediate p-values, those between p = .250 and p = 

.500, gave respondents the most trouble; they did slightly worse than random chance, 

misidentifying dataset pairs in this p-value range as “similar.” Dataset pairs with p-
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values that approached significance (0.050 < p < .010) also presented a challenge, 

with respondents doing little better than chance on these. 

 

The interaction between visualization type and p-value confirms the general 

pattern of both individual factors, while also providing details that might be 

informative (Figures 4.7a–4.7f). The high average correctness respondents achieve 

with normal Curve and Boxplots comes from the very high percentage correctness at 

high and low p-values; respondents judged Curves with p-values greater than 

.500 correctly more than 90% of the time (Figure 7f). Yet with intermediate 

values using these visualizations, respondents did essentially no better than chance 

guessing. This in part reflects the nature of classic statistical tests, which in their 

simplest interpretation require a dichotomous response (significant or not), yet it also 

suggests a shortcoming of this approach, where even the most effective visualizations 
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become ineffective when faced with difficult cases. Strip plots (Figure 7d), with 

which respondents performed at least as well or better than the different kinds of 

histograms, appear to get a boost from higher scores on the high p-value trials, but on 

other trials show quite modest scores. 

 

4.3.2  Individual Analysis 

In our final hypothesis, we proposed that some group of individuals would 

show a propensity for higher performance on this task, that is, some people would 

have an “eye” for this kind of comparison. However, our results do not support this 

contention (Figure 4.8).  

 

The scores across participants appears to be normally distributed, with no 

clusters or modal humps that might suggest any structure other than that which 

random noise can explain. 

It is possible that this normal distribution also represents a gradient in innate 

ability, which, like height or birth weight, has variation around some norm. However, 
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we would require repeated tests over time on the same respondents to confirm this 

interpretation. 

4.3.3  Demographics and Participant Feedback 

Clusters in performance associated with demographic characteristics would 

also point to the possibility of consistent differences in performance among some 

group of individuals. However, there is little evidence for such differences in these 

data (Table 4.1). 

 

Average percent correct achieved by respondents varied little by either 

education or prior experience with statistics (self reported). 
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4.4  Deviations from the Preregistration 

This experiment was preregistered in September 2020, but data collection 

only commenced in Summer 2021 due to what can only be expressed as pandemic 

fatigue. We made the following deviations from the original study plans: 

Added a visualization technique: After feedback from colleagues, we 

added stacked bar histograms to the lineup of visualizations tested, bringing it 

up from 5 (as named in the preregistration) to 6. The benefit of this change 

was to add a familiar and commonly encountered visual representation to the 

study, one which addressed the perhaps unfamiliar overlapping of bar 

histograms we also employ. We do not anticipate that this had any ill effect on 

the validity or results of the experiment. 

Fewer participants: We had originally aimed for 500 participants, 

with approximately 100 per visualization type. We ended up with only 

approximately 35 participants per visualization type because we raised our 

recruitment qualification to Turk Master Workers, which were both more 

expensive and more difficult to recruit. However, we believe that the 

increased quality arising from these highly rated workers made this deviation 

worthwhile. 

Increased compensation: Recruiting Turk Master Workers meant a 

necessary increase in compensation from the $1 listed in the preregistration. 

Again, we believe this should have no detrimental effects on the collected 

data. 
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4.5  Discussion 

We address our hypotheses as follows: 

– Overall, we find that what we call “high-fidelity” visualizations—bar 

histograms, dotplots, and strip plots— yielded lower accuracy for this task 

than “lower-fidelity” visualizations—idealized bell curves and boxplots. This 

is contrary to our hypothesis, where we postulated that the increased fidelity 

would yield better accuracy. (Rejected) 

– Bars (overlapping and stacked) as well as dotplots did not yield the 

highest accuracy; in fact, they arguably performed the worst. (Rejected) 

– Strip plots performed better than expected—certainly better than 

bar histograms and Wilkinsonian dotplots—but still yielded lower accuracy 

than bell curves and boxplots. (Rejected) 

– Boxplots, which we name “intermediate-fidelity” visualizations, did 

not yield better accuracy than idealized bell curves; there is little 

evidence for any difference in accuracy between the two techniques. 

(Rejected) 

– We find non-uniformity in performance across individual participants; 

as our individual analysis showed, there are some participants who were 

able to complete this task much more accurately than others. However, 

without additional rounds of data collection, we are unable to confirm 

that this variation reflects the innate or learned ability of particular 

individuals rather than some other source of random variation. 

(Inconclusive) 
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With so many of our original hypotheses rejected, these results constitute a set 

of (to us) new observations which we find worthy of further investigation.  

4.5.1  Explaining the Results 

Our results contradict or fail to support our major hypotheses, and so surprised 

us. Rather than confirming the utility of detailed visualizations like dot histograms 

and strip plots, they suggest that aggregate visualizations are more appropriate for 

looking for differences between sample datasets. This goes against our instincts as 

visualization researchers and practitioners; our bias is toward more detailed views 

rather than less. But should we have been so surprised? 

Calculating Z or T statistics for comparing two samples requires only the 

mean and standard deviation of each sample, and the sample sizes. All the 

information going into the calculation of either statistic is aggregate—just like the 

normal curves from our trials. The curves are drawn by inputting a mean and standard 

deviation, and assuming a normal distribution. T and z tests also assume normal 

distributions in sampled populations. Thus, in a very real sense, the normal curves 

presented respondents with the most direct visual analog to the t-test we used to judge 

their answers. Boxplots are the next most aggregate visualization, and respondents 

using them performed nearly as well as those using normal curves. Boxplots provided 

respondents with no visual reference for estimating sample size, a vital consideration 

in statistical testing. We attribute our respondents’ success with this form at least in 

part to our clustering trials by sample size, and preceding each group of trials with 

worked examples to give them a “feel” for the critical degree of overlap. Respondents 

did worse with all the less aggregated/more detailed visualization forms we tested. 
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We speculate that this additional detail may distract respondents from correctly 

identifying the critical degree of overlap, particularly when faced with borderline 

cases. 

The poor performance of our respondents when facing border- line cases, 

regardless of visualization type, may suggest another possibility. We speculate that 

statistical significance, measured as a p-value of .05, may not align well with our 

intuitions for what constitutes a difference between two distributions. This would 

potentially present a stumbling block to using visual methods for statistical testing 

where borderline cases are a possibility. At the very least, it suggests that for 

borderline cases, some kind of visual cue should be provided which establishes the 

scale required difference for users.  

 

4.5.2  Generalizing the Results 

As in any crowdsourced study conducted via online tools, the participant pool 

sets limits on the applicability of results to the broader population. All our 

participants had internet access, a computer, and access to some form of electronic 

banking. All participants were U.S. residents, and all but one spoke English as their 

native language. However, participants in our study came from a broad range of age 

groups, education levels, and prior experience with statistics. We believe these results 

may have modest general application. 

We tested only some of the visual methods for displaying distributions. 

However, the methods we tested vary in both degree of aggregation, detail, and visual 

complexity. Due to this variability, we believe it is possible to use our results to 
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gauge the likely performance of other visualization types. For example, density plots 

are somewhere between bar histograms and normal curves in their degree of detail 

and visual complexity. We speculate that their performance in tasks like those in this 

paper would reflect this intermediate position. 

Finally, we believe the three dataset sizes we tested are representative of 

dataset sizes in a diversity of fields, from education, to opinion polls, to product 

acceptance testing. However, these results may be unhelpful to those studying “big 

data” visualization problems, or other fields where data sizes are typically several 

orders of magnitude larger. Similarly, while normally distributed data are common, 

many other distributions (e.g. bimodal or highly skewed), find uses in a multitude of 

fields. Few of the results presented here may generalize to these. Indeed, it may be 

that creating visual aids for inferential statistics that hinge upon more complex 

distributions requires the kinds of detailed representations that performed poorly in 

our experiment. 

4.5.3  Implications for Design 

Our study has direct implications for people tasked with displaying multiple 

overlapping data distributions, but also those seeking better distribution graphics in 

general. Our central finding suggests that some tasks suffer from additional detail, 

and this observation alone is worth investigating in light of future design efforts.  

In this example, where the center and degree of spread around that center 

formed the primary basis for a decision, more detail impeded a good decision. 

However, the responsible designer will have to weigh carefully whether they are 
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working on such a problem, as the loss of detail prevents a user from making any 

other discoveries in the “extraneous” information.  

Our findings also suggest that comparing distributions visually may be most 

reliable where differences are either large or very small. Where differences are only 

moderate, judging the degree of difference by eye may be a challenge. The visual 

designer might be able to meet that challenge with forms which magnify visual 

differences—a design calculation which would require further testing. However, the 

fact that humans may have a low ability to judge the degree of separation where p 

values are intermediate may itself have important implications for communicating 

statistical information to a general audience. Our findings about stacked bar 

histograms suggest that overlapping bar histograms, despite the interference the 

overlap can cause, are a better choice when considering two distributions. It appears 

that strip plots may be a good choice for displaying very small datasets, but other 

forms may be better when dataset size increases. It also appears that boxplots remain 

a powerful tool for comparing distributions. Tukey invention remains relevant. 

 

4.6  Conclusion and Future Work 

This chapter presents results from a crowdsourced evaluation investigating 

how well people can perform graphical inference of what essentially amounts to a Z 

or T-test: comparing visual representations of two data samples to determine whether 

they are drawn from the same or different populations. Contrary to our expectations 

and professional biases, we found that the more abstracted visual representations 

yielded more accurate user performance this task than visualizations which showed 
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an unaggregated version of the data: idealized bell curves and boxplots yielded better 

accuracy than histograms, dot histograms, and strip plots. Furthermore, we found that 

these abstracted representations were unaffected (or even improved) by increasing 

sample sizes, something which was not true for the other representations.  

However, upon further reflection, we note that this is perhaps not so surprising 

since the t-test we use as ground truth is based on idealized representations in the first 

place. In other words, this study’s main finding may be that graphical formulations of 

statistical tests can be powerful where differences in sample means are large 

(corresponding to P values less than .01), even to the point where they can stand in 

for traditional statistical tests for user populations that are not trained in inferential 

statistics. Overall, we view these observations as a victory for data visualization, but 

also a caution about the biases we hold that led to our original speculations that more 

detailed visualization techniques would prove superior. 

We think that our study suggests a host of visual statistics work in the future: 

work that explores borderline cases, work that seeks to identify situations where 

detail helps and where it hurts, and work that explores which equation-based 

statistical methods may be effectively transformed into intuitive visual analogues, and 

which require more complex analogues that support greater degrees of embedded 

calculation.  

The next chapter attempts to leverage these ideas with professional 

statisticians to uncover design principles for visual tools of statistical inference 

acceptable to the scientific community. 
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Chapter 5:  Features of a Visual Inferential Statistics Tool for 

Novices Emerging from the Experience of Professional 

Statisticians  
 

5.1 Overview 

I conducted semi-structured interviews with experienced statisticians, 

focusing on aspects of their relationship with visualization, and how they understand 

statistical inference, with an emphasis on frequentist, parametric statistical tests.  

However, within the open-ended questions which formed part of the interview, many 

participants expressed their understandings of non-parametric and/or Bayesian 

approaches as well.  Data were captured and coded according to a composite scheme 

which mixed a priori and emergent codes.   

 

5.1.1 Data  

How Data were Captured 

All interviews were conducted via Zoom.  Sixteen of 18 Interviews were 

recorded, both video and audio, with the remaining two captured via researcher notes 

only. Video allowed for screen-captures of sketches drawn by participants.  Audio 

recordings were submitted to a transcription service (rev.com) to provide accurate 

text for coding.  The researcher took notes during the sessions, including sketches of 

participant-described visualizations which the researcher then showed to the 

participants via the video feed for their approval of the sketches.  The researcher also 
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took notes immediately after each session to record general impressions, and recall 

details not captured in the moment.  

 

Exceptions During Data Collection 

The first participant used their cell phone to enter the Zoom room, which 

resulted in lower fidelity transmission of graphics for the third section of the 

interview.  All subsequent interviewees were required to use a laptop or other full-

size screen device. 

Two of the 18 valid interviews failed to record, and, therefore, only the 

researcher’s notes captured the outcomes of these two sessions. 

One interview skipped the graphic elicitation section of the interview, while 

completing the other two sections in full.  

All other interviews followed the outlined collection procedure.  

 

Participants 

Criteria for Participation 

Participation was limited to adults 18+ with a combination of education and 

work experience that would qualify them as an “experienced statistician”.   
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Table 5.1 – Participant Characteristics 

 

All participants had to have at least one degree in an applicable field.  This 

could be an undergraduate degree, however, all recruited participants had a masters 

degree or more in a field focused on quantitative analysis.  More than half had one or 

more PhDs.     

All participants had to be statistical professionals with 5 or more years of 

experience after the completion of their education.  The minimum work experience 

among recruited participants was 7 years post-graduation, the maximum 35, with an 

average of 19.7 years.  Several volunteers were excluded due to this criteria.  

All participants had to regularly work with methods of statistical inference, 

such as statistical tests or confidence intervals.  One volunteer was excluded due to 

this criterion.  

Publication counts serve as another indicator of the depth of professional 

experience possessed by the participants.  While not required for entry into the study, 

Industry

#years 

work Publications

Highest 

degree Field of Degree

Significant 

teaching 

experience? Age Gender Self-Described Race

1 Academia 10 to 14 75 to 99 PhD Statistics yes 40 to 44 male White

2 Academia 15 to 19 150+ PhD Biostatistics yes 40 to 44 female Black

3 Academia 15 to 19 10 to 24 Masters Data Science yes 35 to 39 female Asian

4 Academia 15 to 19 50 to 74 PhD Statistics yes 45 to 49 female Asian

5 Academia 20 to 24 150+ PhD Public health yes 55 to 59 female Asian

6 Academia 20 to 24 50 to 74 PhD Statistics yes 50 to 54 female Hispanic/Latin American

7 Academia 25 to 29 100 to 149 PhD Statistics yes 50 to 54 female White

8 Government 10 to 14 10 to 24 Masters Statistics yes 35 to 39 male White

9 Government 15 to 19 25 to 49 PhD Statistics no 40 to 44 female Hispanic/Latin American

10 Government 20 to 24 10 to 24 Masters Sociology no 50 to 54 female White

11notes Government 25 to 29 0* Masters Data Science yes 60 to 64 male White

12 Government 25 to 29 10 to 24 Masters Statistics yes 50 to 54 male White

13notes Government 25 to 29 26 to 49 PhD Statistics yes 55 to 59 male Middle Eastern/North African

14 Government 25 to 29 10 to 24 Masters Survey methodology no 60 to 64 female White

15 Private industry 5 to 9 10 to 24 Masters Data Science no 30 to 34 male White

16 Private industry 5 to 9 5 to 9 Masters Survey methodology no 25 to 29 female Asian

17 Private industry 25 to 29 25 to 49 PhD Statistics yes 55 to 59 female White

18 Private industry 35 to 39 25 to 49 PhD Statistics yes 60 to 64 male White

Participant numbering is unrelated to the order interviews were taken in.

"notes" = interview recorded only through interviewer notes.

  *  = All interviewee's publications were strictly for internal agency use, and, therefore, not subject to peer-review processes.

Field of Degree summarized in some instances to protect the identity of interview subjects.
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participants were asked to provide the number of professional publications they have 

authored or co-authored.  These could be papers peer reviewed through a traditional 

academic process, or official government reports which must undergo a rigorous 

agency edit and review process.  Only two had fewer than 10 publications to their 

names: one, the youngest participant, reported 5-9 publications, while a second 

participant (who had 25+ years professional experience) had only created research 

products for internal use within their organization.  Three participants reported more 

than 100 research publications each; with 51 being the overall average for all 

participants.     

 

Recruitment 

Volunteer participants were recruited via direct email request from the 

researchers.  Participants were offered $25 compensation in the form of a gift card. 

Two thirds of participants were selected from among members of the 

American Statistical Association, with guidance from the organization’s leadership.  

The selection process helped to ensure participants had the requisite professional 

background, and came from a variety of industries.  With one exception, these 

participants had no prior professional contact with the study authors.   

The remaining one third of participants were reached through the authors’ 

professional networks.   
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5.1.2 Diversity of Participants 

Having a diverse panel of participants is vital to ensuring a study of this sort 

generates a diversity of ideas, broadening the applicability of any findings (Lazar 

2017).  In the case of this study, diversity of statistical training and experience were 

the goals. Our recruitment efforts explicitly targeted statisticians working in three 

broad industries – government statistical agencies, academia, and private industry.  

Table 5.2 demonstrates that these efforts bore fruit.  

 

Seven of the participants worked in government, 7 in academia, and 4 in 

private industry.  Ten participants had a PhD, while 8 had founded their careers upon 

a masters degree.  Degrees were in a variety of fields – statistics, of course, but also 

Biostatistics, Sociology, Public Health, and others.  Similarly, the job titles of 
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participants varied (see table).  Years of work experience varied somewhat, as 

discussed above. Five of the participants had no significant teaching experience, 

while 13 had taught at least one statistics course of a semester in length (or an 

equivalent outside an academic setting).  

Participants varied demographically as well.  While they tended to be older (a 

natural consequence of targeting people with a lengthy professional experience) they 

varied in age, with two as young as 25-34, and the remainder nearly evenly 

distributed across the next three 10-year age groups, up to 55 to 64.  Seven 

participants identified as male, eleven as female.  Ten participants identified as white, 

2 as Hispanic or Latin American, 4 as Asian, 1 as Black, 1 as North African/Middle 

Eastern. 

 

5.1.3 Positionality Statement: 

With more than three decades of professional statistical experience across 

government, academia, and private industry, I am aware of my positionality as an 

insider to the community being studied.  I believe this insider status may provide me 

with an informative perspective, as well as unique access to the community.  But at 

the same time, it may bias the data I collect, and influence my interpretation of 

results.  As the lead researcher, I have done my best to keep this awareness in the 

forefront during all research phases, and have implemented strategies to mitigate the 

impact of these potential biases.   

During participant recruitment, I worked to draw from a mix of analytic 

communities to ensure the best possible diversity of analytic viewpoints, but also to 
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reach statisticians with experiences separate from my own.  For example, while 

several participants were former colleagues of mine at the Census Bureau, most have 

moved on to other Federal agencies with which I have at most a consulting 

relationship.  Among the academic statisticians in this study, all have far more depth 

of experience in that world than I can claim.  Some of the participants from private 

industry have experience with high tech manufacturing, which is very different from 

the work I have done during my years in private industry.   

While creating the collection instrument, I mixed three different collection 

modes (open ended questions, graphic elicitation, observations on strawmen designs).  

This diversity of data-types hopefully gives the collection some resilience against 

potential biases.  For example, open ended questions expanded the data collection on 

the front end, giving respondents space to offer potentially surprising answers which 

might exceed limits otherwise imposed by possibly biased or leading shorter-answer 

questions.  More structured parts of the collection may be less subject to bias in 

coding, the back end of the data collection process.     

Similarly, I used a combination of open and closed codes.  Closed coding 

required me to take a disciplined approach to some of the results, with the potential to 

directly falsify my initial hypotheses.  While open coding encouraged me to think 

beyond these initial hypotheses.   

In conducting interviews, I endeavored to create an environment which would 

provide participants the comfort of feeling they were having a conversation with an 

interested and supportive colleague: a colleague, to create a space in which they could 

openly discuss the most technical aspects of their work without fear of alienating their 
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listener; and a supportive one to create a safe space to discuss their private thoughts 

about their work.  There is evidence this environment succeeded, as more than one 

participant expressed their relief that the study’s anonymity precautions would ensure 

none of their employers would know what they had been saying.  

Throughout this study, I have actively sought alternative interpretations to my 

own, as well as seeking disconfirming evidence to challenge my findings.  My goal 

has been to foment a genuine discussion with each of the research subjects, and to do 

my best to hear what they have said, rather than merely what I was listening for.   

One additional goal may be relevant, namely, my intention to find a position 

as a professional track lecturer upon completion of my degree.  This makes me 

especially interested in the areas of overlap between this research effort and statistical 

pedagogy.  Creating visual aids for teaching statistics to novice analysts and making 

visual tools for use by novice analysts both require the embedding of an experienced 

statistician’s understanding within the visualization.  However, a tool designed for 

teaching and one designed for use in the field may have important differences in 

features.  Thus, the results from this design study should be verified through practical 

field tests.  

 

 

5.2 Development of Interview Procedure 

Prior to data collection, the researchers conducted two practice interviews 

using early versions of the script, and a sketch-version of the first strawman graphic.  

Scripts and strawman #1 were refined based upon feedback during these practice 

runs, and a second strawman graphic was added.   
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5.2.1 Interview Script 

Interviews followed a script (Table 5.3 pt. 1&2).  Questions in bold were 

asked word for word of all participants, optional follow-up questions are indented.    
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5.2.2 Data Collection Procedures 

Pre-interview 

Participants were asked to fill out a consent form before their interview.  This 

included a small number of demographic and qualifying questions.  Participants were 

told to expect an hour-long interview, at a time convenient to their schedule.   

Before recording began, participants were given the opportunity to ask any 

questions they had.  Some had questions about the purpose of the research, and these 

were answered with the long term goal of the primary author’s research program, that 

is, the creation of statistical tools for novice analysts.  With these preliminaries 

cleared, recording began.   

 

Recorded Interview 

Re-affirming Consent 

Participants were asked on-camera for their verbal consent, and taken through 

a demographic and qualifying survey similar to what they had already filled out 

online, though with some additional details (Introduction and Consent, Intake 

Questions). These early questions provided time to establish a rapport, while also 

making doubly sure of participant consent. 

 

Analytic Process 

The first substantive questions asked participants to describe the steps of their 

analytic process.  This framed subsequent discussion as focused on their day-today 

work process.  Probes into these processes sought to capture how visualization played 
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a part (or didn’t) in the various work phases.  Additional probes sought to uncover the 

statisticians’ tacit understanding of their research processes.  

 

Graphic Elicitation 

The next section used any references to inferential statistics from the prior 

interview section as a bridge to turn the conversation toward participants’ 

understanding of inferential statistics in general, and t-tests in particular.  Participants 

were asked whether they had a picture in their heads of what a two-mean t-test looked 

like.  They were then asked to draw a picture of that image using paper and pencil on 

hand, and walk the interviewer through their sketch.   

 

Strawmen Graphics 

During next section, the interviewer presented participants with graphic 

versions of a t-test constructed by the researchers as “design probes” (Gaver 1999, 

Wallace 2013) to elicit feedback from participants. Participants were walked through 

each version (2 versions for the first three interviews, with strawman #3 added to the 

rest based upon the early results).   

All strawmen were based upon a single pair of samples, denoted “orange” and 

“blue”.  Samples were generated through processes which would tend to create 

approximately normal distributions (the summing of multiple random variables in 

excel).  The samples each had an n of 36, a standard deviation of approximately 

.2821, and means which differed by just enough to meet statistical significance 

according to a two tailed t-test (p=.0498).  Choosing a borderline case was meant to 
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stimulate conversation.  For this same reason, the researchers selected one sample 

(orange) which appears to deviate from normality (it is somewhat bi-modal).     

 

Observing Participant Performance Using Strawmen Graphics   

Within this section of the interview, participants were asked to use a series of 

graphic t-tests  

Participants were first asked to use the graphics to answer whether the 

displayed example met a selected significance level (p = [0.1, 0.05, 0.01, 0.001] for 

strawman #1 and #2, only p=.05 for strawman #3.).  The same underlying data were 

displayed with all three graphics, so that differences in response would reflect the 

graphic rather than a difference in data samples.  The three graphics were always 

presented in the same order, and this may have also had an impact.  After capturing 

participant performance in using each graphic, ‘correct’ answers were provided 

before moving onto the next strawman. Afterward, participants answered a series of 

questions designed to probe for the basis of their understanding or initial 

misunderstanding, what was missing or wrong about the graphics, or other design 

recommendations.    

 

Asking for Other Feedback 

The interviews ended in two phases.  Participants were first thanked, and 

asked on camera whether they had additional questions or reactions to share.  They 

were also told that they would have an opportunity to share unrecorded feedback 

should they wish.  
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5.2.3 Sources of Strawmen Graphics 

The three strawmen graphics used as objects of discussion during this research 

each reflected a different source. 
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Strawman #1   

Strawman #1 illustrates the overlap of two sample distributions – the blue and 

orange samples – represented both as a pair of histograms, and as a pair of normal 

curves which had been fit to the samples.  The goal for users was to determine 

whether the two samples were similar enough in their means that they were likely 

drawn from a common population, or whether they were so unlikely to have been 

drawn from a single population that they probably represented sub-populations.  The 

graphic included an aid for users to make this determination in the form of a 

‘difference ruler’, that is, a pair of grey lines connected by a double headed arrow 

meant to signify the amount of separation two sample means needed to show to 

represent a statistically significant difference for a given confidence level (alphas 

corresponding to a p-value of .1, .05, .01. or .001). 

Studies 1 & 2 inspired the use of overlapping histograms with fitted bell 

curves to represent a statistical test of two samples (Newburger 2023).  The use of the 

difference ruler was a novel design element added for this study.   

 

Strawman #2 

Strawman #2 was suggested by the subject during the one of the pre-

interviews.  It attempts to represent the distribution of the test statistic for the two 

sample means, with arrows to indicate how far out on the distribution a test statistic 

needed to fall to indicate statistical significance at a given alpha level.  The graphic 

was created using a simulation process, in which pairs of samples were drawn from a 
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hypothetical single population which complied with assumptions similar to those 

required of a t-test:   

1. Using R (appendix), samples were drawn from a normally distributed 

population; 

2. The population had a mean that was the mean of the two original 

samples (orange and blue);  

3. The population had a variability (standard deviation) that was the joint 

variability of the two original samples (orange and blue); 

4. 10,000 pairs of samples were drawn from this hypothetical population;    

5. For each pair of samples, a difference of means was calculated; 

6. These mean differences were plotted in a histogram with sufficient 

bins (50) to the appearance of a fairly smooth distribution, while still 

showing minor deviations from a perfect curve to indicate the data 

were discrete, rather than a mathematical representation of an actual 

normal distribution; 

7. Arrows were then added to indicate the bar in which the mean-

difference resided representing the minimum difference required for 

statistical significance at a given confidence level.  
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Strawman #3 

Strawman #3 is a pair of overlapping 95% confidence intervals, and was 

inspired by the first group of interviews.  Three of the first four participants indicated 

that some version of overlapping confidence intervals was their internal model of a t-

test.  Therefore, the researcher included strawman #3 in all subsequent interviews.  
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5.3 Coding Interview Recordings 

The three parts of the interview process were coded by separate processes, 

with some overlap, using a combination of closed and open codes (Lazar 2017). 

5.3.1 Analytic Process Coding 

The main body of the interview received the most coding attention of any 

section, and the most complex coding process.   

1. Researchers reviewed their notes, looking for themes; 

2. Based upon the themes, researchers created coding schema (Table 5.4) 

combining a priori codes with open spaces for capturing emergent 

themes;  

3. Researchers coded transcripts; 

a. Texts with sufficient content to be coded were summarized; 

b. A priori codes were captured; 

i. Counts of the number of participants who mentioned a priori 

codes at least once were enumerated;  

4. Open spaces for themes were given a Primary Code; 

5. Primary codes were reviewed, and grouped by Detailed theme; 

6. Detailed Thematic Codes were then grouped into Broad Themes.  

i. Counts of the number of participants who mentioned 

Detailed Thematic Codes, and Broad Themes, at least once, 

were enumerated. 
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7. A random sample of codes were verified through parallel coding by a 

second researcher.  

Table 5.4 - Coding Schema 

 

Coding Schema 

Researchers applied three parallel coding schema to the main body of the 

interviews based upon three theoretical frameworks – two selected prior to work, and 

one selected after an initial review of researcher interview notes.  Each framework 

answers a different fundamental question about the participants’ expectations from 

inferential statistical methods, potential visualizations of inferential statistics, 

visualizations in general.  As such, the three frameworks constitute what amount to 

Dimension of analysis Code group Summary codes

Understanding of visual tool

Understanding of inferential 

statistics

Use of visual statistics

Building validity -- (list)

Violations to validity -- (list)

Tacit understanding of statistics Tacit understanding -- (list)

Understand the question - clarify 

or reform 

Understand available data - 

sources and collection methods

Data collection/cleaning Ordering data for use Structuring data

Estimation

Projection

Distribution

Outliers/Gaps Data discontinuities

Comparison Correlations

Hypothesis generation Predict pattern/model

Confirmatory stat testing

Outlier/gap analysis

Consistency over time/space

Make findings interpretable (list)

Overcoming misunderstanding (list)

Multi-use viz analytic tools (list)

Single purpose viz analytic tools (list)

Eye-brain system limitations (list)

Expertise

Novice

Expert
Epistemic warrants

Gather Background

NA

Pre-collection

Analytic Process

Mindset

What are they thinking?

Tasks

What are they doing?

Tools

With what are they doing it?

Theoretical Framework

Quantitative analysis 

as external cognition

Interface between human 

and machine

Calculative, language or symbol 

based metaphor

Visual metaphors

Using numbers (list)

Exploratory analysis

Confirmatory analysis

Communicate findings

Hypothesis testing

Reports

Quantification
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three different dimensions of analysis, orthogonal to one another, any or all of which 

might be indicated by a single participant statement.  

For example, participant #7 described part of their analytic process as: 

So then I fully understand then I receive the data. And then 

once we got the data, then I think half of our research time, I 

mean, the data half the time is understanding the data. So 

using descriptive statistics, a graphical illustration, and then 

also some missing data pattern, or some unusual outliers.  

 

This response generated the following Summary: 

From the Mindset framework – “Tacit: Half the job is prepping and 

understanding the data” 

From the Tasks framework – “Structure, Background, Distribution, Estimates, 

Discontinuities”  

From the Tools framework – “Multitool: descriptive graphics”    

The parts of the Summary were then reviewed to produce Primary Codes: 

Mindset – “Data prep is much of stat work”  

Tasks – task names are the a priori codes, thus “Structure, Background, 

Distribution, Estimates, Discontinuities” are enumerated. 

Tools – no specific tool is mentioned, however, “descriptive graphics” refer to 

a broad-use class of visualizations.  This is enumerated.  Had a specific tool (such as 

Histogram or Scatterplot) been mentioned, these would also have been enumerated.   

Primary codes from the Mindset framework are further grouped into a detailed  
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Thematic Code: 

Mindset – “Reality is the authority”.  This code is enumerated.   

Detailed Thematic codes are further grouped into Broad Themes:   

Mindset – “Warrant”. This theme is enumerated. 

 

Figure 5.4 – Coding Process for Mindset Codes 
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5.3.2 Theoretical Frameworks 

The Expertise Framework (Mindset) 

The first theoretical framework – that of “Expertise” – is fundamental to the 

conception of this study, which assumes that experts working in an occupation have 

tacit knowledge of their field.  Such tacit knowledge is typically acquired only after 

significant work experience (Wood 2009), and, therefore, is not explicitly taught as 

part of formal training prior to entering the occupation.  This study assumes that 

experienced statisticians have tacit knowledge about inferential statistics, and, 

furthermore, that analytic tools which have that tacit knowledge intuitively embedded 

within them might raise novice analysts’ level of performance to something closer to 

that of experts.     

The Expertise framework contrasts the mindset of experts with that of 

novices.  Using this framework helped us to form requirements for study 

participation.  During interviews, the framework was still active, summarized by the 

question, “What are participants thinking during their interactions with inferential 

statistics?”  The study-relevant answers to this question come under two broad code 

grouping.   

The first group of codes captured the Epistemic Warrants experts attribute to 

different inferential methods, that is, the degree to which a particular analytic method 

provides support for or against some claim.  Two emergent codes made up this group.  

‘Build validity’ captures those elements of analysis which shore up a reasoned 

line of evidence.   
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‘Violations to Validity’ captures those elements of analysis which tend to 

undercut evidence.   

The second code group includes only a single emergent code. 

‘Tacit’ captures what experienced statisticians have, through work experience, 

come to believe about their methods.  

 

The Tasks Framework 

The “Tasks” framework is composed primarily of a priori codes.  It emerged 

out of initial reviews of the interview results, and presumes that there are common 

steps in the analytic process all statisticians pursue, regardless of the sub-field in 

which they work.   

Identifying the core tasks of analysis as perceived by experienced statisticians 

provides a context in which to place the kinds of inferential statistics tools this 

research effort hopes to design, and may suggest features the design should 

incorporate.  More broadly, Task sets the context for understanding the other two 

dimensions of analysis.  

Initial review of interviews indicated five analytic phases within Task (see 

table), each associated with a number of code groups, and resultant summary codes.  

As the focus of this research is inferential statistics, a later stage part of the analytic 

process, some detail was sacrificed during coding for the earliest work phase (the 

code groups of understanding the research questions, and understanding data sources, 

were consolidated into a single code, “Background”).    
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While the researchers initially expected this framework to consist of a priori 

codes, it was found during early review that the Communicate Findings codes 

(labeled “Myth” and “Comm”) often included details of what needed to be 

communicated that gave further insight into the mindset of participants.  Thus, these 

were recoded as Emergent codes, with details captured and summarized for thematic 

coding using the Mindset Thematic Codes list.  Thematic codes were applied directly 

to the Summaries, without the need for an intermediary Primary coding step, due to 

the narrow focus of these texts (i.e. an explanation of findings or processes offered to 

a client, or a correction to a client’s misunderstanding).       

Figure 5.5 – Coding Process for Mindset Codes 

 

The Tools Framework (a.k.a. External Cognition) 

Data visualization serves as a form of external cognition, with the visuals 

acting as an interface between human and computer, to create a composite mind with 

advantages from both (Scaife 1996).  The computer provides a place to offload 

memory and calculative tasks, leaving the human mind freer to recognize patterns, 

form and test hypotheses, and creatively explore venues for further discover.   

Modern statistical analysis relies heavily upon the calculative power and 

memory of computers, making it an ideal candidate for tools of external cognition.  

However, visualization is only one form external cognition can take.  For example, 
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SQL accessible databases represent a powerful memory aid based upon symbolic 

logic (programming), or a statistician might employ the vast calculation power of a 

mainframe through a short SAS script.   

The Tools Framework captures the specific interfacing-tools statisticians 

choose to employ during their work.  Broadly speaking, these tools can either be 

visual metaphors (data visualization) or symbolic (such as code or written equations).   

The Visual Metaphor code group includes three summary codes – Broad 

focus visualizations that may have many uses (such as histograms, from which an 

analyst might discern the mean, median, variance, skewness, range, location and 

number of modes, gaps in the distribution, outliers, and shape), Narrow-focus 

visualizations (such as QQnorm plots, which are used almost exclusively to test the 

normality of a distribution), and observations on Limits to the eye brain system 

offered by participants.  Broad focus and Narrow focus are emergent codes, however, 

they require minimal additional coding – the capture of the tool by name is 

informative on its own.  However, the Limits codes are similar to Myth and Comm 

codes, in that they provide insight into the mindset of participants, specifically, what 

they think about the use of visualization.  Thus, several Limits codes have been 

thematically coded.  

The Symbolic Tools code group was captured with only one summary code, 

since visualization is the focus of this research.  Similar to the Broad and Narrow 

focus summary codes from the Visual Metaphor code group, Symbolic Tools were 

merely captured by name.   
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5.3.3 Graphic Elicitation Coding 

Participant graphics were screen-captured, along with participant descriptions 

of the images.  These were labeled by type, then grouped according to their analytic 

focus.   

5.3.4 Strawman Graphics 

Coding of the strawman graphics section was a combination of a priori and 

emergent codes.   

Table 5.5 Strawman Graphics Reaction Coding 

 

For all graphics presented to participants, codes captured:   

1. Participant Understanding – Whether the participant correctly assessed the 

statistical significance at the given alpha value using the graphic – this was an 

a priori code; 

a. Correct assessment of statistical significance was taken as an indicator 

of understanding; 

b. Incorrect assessment was taken as an indicator of a lack of 

understanding; 

c. Delayed understanding was noted, along with what additional 

information supplied by the researcher had brought the participant to 

understanding;  

Understood

Misunderstood

Liked (list)

Disliked (list)

Recommendations positive (list)

Recommendation negative (list)

Reactions to Strawman Graphics

Testing strawman graphics

Understanding

Affinity

Recommendations 
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2. Participant Affinity for the Strawman Graphic – Whether participants 

found the strawman graphic useful, informative, or otherwise saw it is a 

positive/negative light. – These were emergent codes;  

a. Positive comments were noted and summarized; 

b. Negative comments were noted and summarized; 

3. Participant Design Recommendations – Any directly stated or implied 

design recommendations to improve the strawman graphic.  – These were 

emergent codes; 

a. Affirmative suggestions were noted and summarized; 

b. Negative suggestions were noted and summarized. 

The intention of this section was to generate informative conversation about, 

and observations on, potential elements for graphic inference tools.  The hope was 

that confronting participants with the experience of using a graphic tool to perform a 

statistical inference would generate deeper insights than a simple presentation of the 

graphics with a request for comments.  This worked to such an extent that, in addition 

to revealing several design recommendations, this section of the interviews generated 

responses that were informative of expert statisticians understanding of inferential 

statistics in general.  These more general comments were mixed with texts from the 

Analytic Process section of the interview, and coded by that three-part schema.    

5.3.5 Code Reliability 

The above processes resulted in four sets of codes, two simple, and two more 

complex.  We tested the later for inter-coder reliability, reasoning as follows: 
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1. Word and short-phrase captures required minimal subjective judgement to 

assign, and thus did not require a reliability test.  These included: 

a. lists of tools named by analysts, for example, “scatterplots”, “Bar 

charts”, or “regression”, which were simple word captures; 

b. tasks named through short phrases, for example, “missing-data 

pattern” and “unusual outliers” directly describe tasks represented by 

the code discontinuities - the identification of gaps and outliers 

(discontinuities) in a data distribution.  Similarly, the phrase, 

“descriptive statistics” denotes tasks represented by the codes, 

Distribution, and Estimates.;  

2. Categorization of the participant-drawn graphics: these also require little 

subjective judgement, as the participants themselves provided detailed 

descriptions of their understanding of their drawings.  In addition, it is 

possible to publish the actual graphics without risking a breach of anonymity; 

3. Participants’ descriptions of factors which either add to, or detract from, 

analytic validity were expressed as longer phrases more subject to 

interpretation.  These called for inter-coder reliability measures.    

4. Inter-coder reliability measures were also required for all participant 

expressions which the researchers coded using the thematic codes developed 

for parsing participant tacit understanding.  

 

Independent Coding 

The technical nature of the interviews meant that an outside coder would have 

to be a statistician of similar experience to the researchers and participants.  After 
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finding a qualified volunteer, they were provided with a 10% random sample of texts 

(with codes stripped), along with the full list of Primary Codes applied the researchers 

had devised to parse statements of ‘analytic validity’. Their choices were compared to 

the researchers’.  The volunteer was next provided with a 10% random sample of 

texts expressing ‘tacit understanding’ (with codes stripped), along with the full list of 

‘Thematic’ codes researchers had devised to parse statements of ‘tacit understanding.’ 

Their choices were compared to the researchers’.  Measures of intercoder reliability 

were calculated using Cohen’s Kappa.   

 

5.4 Results 

In all, 313 texts were assigned codes associated with the ‘mindset’ theoretical 

framework (Table 5.6).  The majority of texts were captured during participants’ 

descriptions of their analytic process, however, applicable texts could come from any 

phase of the interview.   
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Two hundred sixty texts received ‘Tacit’ understanding codes, resulting in 107 

primary codes, 44 thematic codes, organized into 6 broad themes.  Sixty one texts 

were deemed informative about sources of analytic validity (building or reducing 

validity), which were given 15 primary codes.  These 15 codes were considered 

sufficiently detailed that further refinement was unnecessary (Table 5.7) 

Coded 

texts

Summary 

of texts

Primary 

codes

Thematic 

codes

Broad 

Themes

All Mindset texts 313

Tacit 260 107 44 6

Validity 61 15

All Tool texts 149

Multi-focus 115

Narrow-focus 38

Numbers 33

Limits 7 4 3

All Task texts 383

Myths 16 13 6

Comm 14 5 4

Note: Texts may generate multiple codes

Table 5.6 – Coded Texts by Code Type 
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One hundred forty nine texts were parsed for mentions of specific tools, 

including 115 listing multi-focus tools, 38 narrow-focus, and 33 purely numeric or 

equation-based.  Some mentions of specific tools were also collected from researcher 

notes.  
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Seven texts included mentions by participants of perceived limits on visual 

tools.  These were assigned thematic codes (4), which came from 3 of the six broad 

themes.   

Texts which mentioned analytic tasks were the most common (383), which 

likely reflects the structure of the interviews.  These texts were parsed for short 

phrases which identified some specific instance of a step in the analytic process.  For 

example, the phrase, “…have to calculate confidence intervals and then …I have to 

see if things overlap,” resulted in the task code, “Test”, signifying confirmatory 

analysis, in this case, overlapping confidence intervals as an approximation of a t-test.   

Some mentions of specific analytic tasks were also captured from researcher 

notes.  

A subset of these texts (14) included descriptions of communications 

participants felt were critical to deliver along with their analyses, to aid their clients’ 

understanding.  Another subset of 16 texts included misunderstandings held by clients 

the participants often had to correct.  Both of these subsets were coded as insights into 

participants’ tacit understanding of statistics.  They were assigned thematic codes 

from among the 44 codes specified during “Tacit” coding, fitting into the 6 broad 

themes.       

 

5.4.1 Intercoder reliability 

Coding was tested for intercoder reliability via a 10% sample of texts.  Since 

coding was done on individual texts, the context of the full interview – such as 
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participant comments just prior to and following each text in sample – are missing.  

This may have reduced intercoder reliability measures.  

“Validity” code agreement between coders was 71%.  Cohen’s Kappa was 

found to be .588, near the top of the “Moderate agreement” range.    

“Tacit” coding was also tested for intercoder reliability via a 10% sample at 

the Broad Themes and Thematic code levels.  Codes were tested independently, that 

is, as two separate code lists rather than as a unified coding schema in which one set 

was series of subsets of the other.  In reality, a missed Broad code necessarily meant a 

missed Thematic code, naturally resulting in lower scores for the latter (percent 

agreement for Thematic codes within the subset of cases where Broad code matched 

was 75%, considerably higher than the independent estimate reported below).  

Among Broad codes, there was 67.7% agreement, with a Cohen’s Kappa of 

.611, just at the bottom of the “Substantial Agreement” range.  Agreement between 

coders for Thematic Codes was 51.7%, with Cohen’s Kappa at .495, the middle of the 

“Moderate Agreement” range.    

 

5.4.2 Six Broad Themes 

 

The six Broad Themes have wide support from participant interviews.  A 

majority of participants made comments coded into all 6, and no participant made 

comments coded into fewer than 3 (Table 5.8).   
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Caution 

The “Caution” grouping expressed the multifaceted concerns statisticians have 

in pursuing their work, and their approaches to addressing those concerns.  It included 

thematic codes such as, “People act upon our results,” an admonition to remember 

that people trust statistical work, take action based upon it, and, therefore, it is a 

statistical professional’s responsibility to put in whatever time and effort is required 

to always provide the best possible advice.  The group also includes, “Distrust 

findings,” which captured the many ways participants remind themselves to always 

check and recheck their work, since statistical analysis is a fundamentally complex 
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endeavor which allows for many points of failure.   The Caution theme also touched 

upon statisticians’ relationship to inferential statistical methods, with, “P-values 

encourage bad thinking,” referring to concerns in the statistical community about the 

tendency for statistical testing to foment dichotomous thinking about complex 

realities, and, “Stat tests required for publication,” expressing participants’ belief that 

whatever risks parametric statistical tests entail, they are nonetheless required for 

acceptance within many scientific communities, and thus must be used as best they 

can.      

 

Expertise 

The “Expertise” group applies to the several aspects of acquired analytic 

understanding which, as a body, represent a divide between statistical professionals 

and people outside the field.  It includes codes such as, “Analysis takes a statistician,” 

capturing participants’ expressions of their belief that people outside the statistical 

field typically misunderstand at least some aspects of quantitative work.  It also 

included, “Stat testing is hard for statisticians, too,” which captured participants’ 

expressions that statistical inference is a subject so complex that they don’t trust their 

own knowledge without the use of references.    

 

  



 

 

135 

 

Limits 

The “Limits” group captured several observations from participants describing 

ways that details of a data collection can limit the range of statistical tools available to 

apply, but also the ways in which the choice of statistical methods can limit the scope 

of analytic research.  These codes are not specifics about the various limitations 

discussed, but, rather, the awareness among participants that quantitative work does 

entail limitations.   Example codes include, “Sample size important,” expressing the 

multiple dependencies between sample size and the validity of inferences made about 

populations from which those samples were drawn, and, “Stat methods define scope,” 

capturing expressions of the ways in which the tools of statistics define the kinds of 

questions statistical research can address.   

 

Planning 

“Planning” codes capture the importance of planning in quantitative work: its 

utility, costs, and pitfalls.  For example, the code, “Predict to escape rationalization,” 

captures the participants’ understanding that post hoc rationalization (sometimes 

called the, “Texas Sharpshooter” fallacy in statistics) is a constant temptation during 

analytic work which threatens results validity, and that the way to avoid this through 

planning ahead; they plan the analyses they will run, the test statistics they will 

accept, etc.  “Plan defines scope,” captures the participants’ awareness of how the 

planning process, while vital to the work, once entered, limits possible discoveries the 

work may yield.   
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Viz 

“Viz” captures participants’ understanding of data visualization as a tool in 

their analytic work.   

 

Warrant 

“Warrant” captures participants’ sometimes contradictory understandings of 

what elements within, or conditions are required by, their quantitative work to give 

the power to make statements about the world.  These codes can be broad, such as, 

“Reality is the authority”, expressing participants’ focus on always connecting their 

computations as directly as possible to the subject of their study, or checking results 

against expected values extracted from ‘facts on the ground’ sources, such as news 

reports.  Some are more specific, such as, “Effect size >= p value,” which expressed 

the common feeling among participants that statistical significance was less 

important, or at least no more important, than the practical significance in their 

results.  For example, a trial on a cholesterol drug with a large enough sample size 

might show a statistically significant reduction in blood cholesterol levels, but that 

reduction could still be so small as to have no expected effect on clinical outcomes 

for patients.     

5.4.3 Analytic Process  

The Framework of Analytic Tasks derived from the initial review of 

researcher notes proved to be well supported by subsequent formal coding processes.  

Thirteen of 18 participants reported performing work steps which fell within all 5 of 

the proposed tasks, and no participant reported fewer than 3 (Table 5.9).   
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Pre-collection activities, such as meeting with clients to determine their needs, 

gathering background information on available datasets, or proposing analytic 

methods, were universally reported among participants, with other steps nearly so.  

Confirmatory analysis was the least reported step, with 15/18 participants calling it 

out during descriptions of their analytic work.   

Note that to qualify for the study, all participants began by confirming that 

they performed statistical testing as part of their regular work process, or had at some 

point.  Similarly, 17 of 18 participants reported publishing their work publicly, and 

the 18th reported sharing their work internally within their organization, all of which 

constitutes communicating results.  Therefore, it is likely that while these steps were 

not universally captured during the coding exercise, all participants did, in fact, 
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perform these steps during their work.  This may further substantiate the Tasks 

framework.    

5.4.4 Tools of External Cognition  

Parsing texts for mentions of specific analytic tools (named methods, 

procedures, or statistical routines encapsulated within software packages) resulted in 

three lists, following the External Cognition theoretical framework: Broad use 

visualization tools, Narrow use tools, and Purely numeric or equation-based 

approaches.  Unsurprisingly given the visual-analytic focus of these conversations, 

mentions of visual tools outnumbered purely numeric ones.  However, the diversity of 

Narrow use tools did surprise the authors (Table 5.10).    

Table 5.10 Tools of External Cognition  

 

 

Broad-use Visualization tools Narrow-use Visualization tools Purely Numeric tools
Animation Bland-Altman plot/Means difference plot ANOVA

Bar chart Classification trees Bayesian modeling

Box plots Confidence intervals Confidence intervals

Business intelligence plots (bar chart etc.) convergence checks on Bayesian models hazard ratio

Butterfly chart Decision matrix Key Performance Indicators/Indexes

Choropleth Dendrograms Machine learning (in general)

decision trees Genome graphics Machine learning (random forests)

density plots Kaplan-Meier plots natural language processing

Dot plots Model parameter plots odds ratios

Heat map Multiple-model plot to show cone of uncertainty parameters

Histograms Qqplots of normality Probit

Icon map Residual plot P-values

Line diagrams Spatial Model plot Regression (linear)

Maps Survival curve (non-parametric) Regression (logistic)

number line Variogram sample size

pie charts Venn diagram Standard error

Pre-packaged descriptive viz collections volcano graph statistical testing

Process model Summary statistics

ranked lists

scatterplot with trend line

Scatterplots

Sorted lists

spaghetti plots

Stem and Leaf plot

Tables of descriptive statistics for exploration

Tabular interactive (Spreadsheet)

Tree maps

Violin plot
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Standard Graphic Tools 

Some broad-use statistical graphics have a long history, wide availability in 

software packages, and ubiquitous appearances in literature with statistical content 

(Shneiderman 1996, Grammel 2010, Huron 2014, Pousman 2007). We can interpret 

use of such tools by participants as an indicator of the degree to which they fold 

visualization into their work.   

Table 5.11 focuses on seven graphic forms: Scatter plot, Histogram, Boxplot, 

Line Diagram, Bar Chart, Table, Pie chart.  Note that tables, while numeric in 

content, make use of a visual organizational schema (Bartram 2021).  
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All 18 participants used some visualization from this list, likely with analytic 

intent.  Scatterplots were the most widely named graphic form, mentioned by 13/18 

participants.  Histograms followed closely, with 12/18.  Both of these forms are 

explicitly analytic in function compared with other forms (pie charts) which are less 

useful for analysis but are sometimes favored in communicating findings.  Among 

participants reporting only 1 tool used, it was either a Scatterplot or Histogram.  All 

graphic forms on this list were widely used with the exception of the Pie Chart (2/18).  

On average, participants reported use 3.8 out of these 7 tools.   

5.4.5 Graphic Elicitation 

Twelve of 18 participants provided sketches representing what a statistical test 

looks like to them, which were grabbed through screen captures (Figure 5.6).  Of the 

remaining 6, two participants’ sketches (Participants A and B) were captured via 

researcher notes, and confirmed by the participant (the researcher displayed their 

notes though the video conference screen for approval).  These are described below.  

Two participants expressed that their mental image of a statistical test was that of an 

equation and provided no sketch (a third drew an equation).  One participant named a 

Forrest plot as their internal image of a statistical test, and provided an example from 

the literature.  One participant didn’t participate in the graphic elicitation portion of 

the interview.  
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All participants who provided a sketch were asked to walk the researcher 

through their work. In summary, 9 participants communicated that their vision of a 

statistical test was a pair of sample center (mean or median) displayed side by side, 

with some indicator of sample variability around those centers (such as overlapping 

confidence intervals or side-by-side boxplots). Five participants indicated they 

envisioned the distribution of the relevant test statistic, with the location of the 

realized test statistic noted, and with an indicator of the likelihood of being at that 

location on the distribution.  Three more participants indicated their internal model of 

a statistical test is purely equation-based.   
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5.4.5 Participant Reactions to Strawmen Graphics 

Participant reactions to strawmen graphics provided a basis for several design 

recommendations.  Liking/disliking spoke to whether participants’ would accept 

graphic features of the strawmen as legitimate analytic tools.  

Understanding/misunderstanding spoke to intuitiveness of graphic features.  Table 

5.12 summarizes these reactions. 
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5.4.6  Participant Design Suggestions  

Some participants contributed observations on the strawmen graphics which 

constituted design recommendations.  These were parsed by researchers during 

coding.   

Table 5.13- 

 

 

 

 

 

 

 

 

 

5.5  Findings 

5.5.1 Statisticians’ Relationship to Visualization  

Statisticians make extensive use of visualization in their analytic work.  Every 

participant in this study employed visualization as a regular part of their analytic 

process.  All 18 made use of one or more of the common broad-use visualizations.  

Most used several.  Most also used narrow-use visualizations; 14 of 18 participants 

reported making use of at least one specialized visualization with a narrow analytic 

focus.  Indeed, participants reporting using the fewest of the ‘common broad-use’ 



 

 

145 

 

visualizations all reported making use of a specialized narrow-use visualization.  A 

third of participants (6/18) shared observations on the limits of data visualizations 

while still making use of them. This suggests they use these tools enough to weigh 

their plusses and minuses.   

 

Beyond mere use, it appears that statisticians conceptualize at least some parts 

of their work in visual terms.  Fourteen of 17 participants indicated that their internal 

conception of at least one inferential statistical method is visual (Table 5.12).  
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Eleven of 16 participants expressed the idea that visualization IS analysis, 

describing how it is fully integrated into their quantitative work (Figure 5.7).  For 

example: 

P6 - No, not exactly. Maybe I just take that for granted, the 

image thing. I think once we have data and the first thing 

probably is to plot the data and see what the data looks like. I 

think understanding data, to understand the data, visualization 

is a very important tool. I once advised a student and who is 

quite mathematical, and he's very [inaudible 00:25:26] 

resistant to plot the data, because he thinks can give you a Y 

and X dataset, and he can just fit linear regression using R and 

output the coefficient and the confidence interval for all the 

coefficients. And he can do hypothesis test for the parameter, 

get P value. That's it. I have to talk with him for a very long 

time to tell him you first need at least to plot X and a Y data 

and see what's their relationship. 

Or… 

P11 - I know people have different approaches to this, but I 

tend to just dive in and start working on, if it's something about 

[data] relationships, then I start examining the relationships, 

whether that's with correlations or just plots. I think that was 

something that I learned. I think teachers throughout my career 

have emphasized the value of plotting things. I probably don't 

do it as much as they would like me to… 

 

Yet despite their frequent use of visualization and their understanding of their 

analyses in visual terms, it is not necessarily the visualization work they share with 

others.   

P13 - Oh yes. I use line graphs. I use bar graphs. I use scatter 

plots. Absolutely. For me, to visualize sort of how the data 

hang together, and then, are there aspects of a model that don't 

fit? Where are the outliers? I use, to see how the variance, is it 

consistent or is it a trumpet? How are the errors distributed? I 

use that myself. That's not something I would share typically… 
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Indeed, some participants described using visualization, but didn’t think that 

counted as visualization. Two (P4 and P13) felt that artifacts which rose to the level 

of deserving the label, “visualization,” had to exceeded mere utilitarian analysis and 

achieve aesthetic value, something they had little confidence they could themselves 

create:  

P13 - I am really bad at visualizing things. The latent variable 

modeling version of visualizing helps me to share what would 

otherwise be numeric or otherwise would be sort of abstract 

relationships among variables for people, but I'm really bad at 

visualizing things. Another thing, I use Venn diagrams for 

relations, but it almost always ends up being a function of 

arrows, circles, and squares. I have used workflows. In fact, 

now I created a workflow diagram to reflect a procedure, 

which was, so you can see the logic, how it flows? That's for 

the [client], but that's based on a qualitative analysis of how 

[characteristics] do and do not group together, so it's all 

qualitative data that we're analyzing in those figures. 

 

Statisticians find visualization is an indispensable tool for analysis, but also a 

tool for the essential last stage of their work process, communicating results. Ten 

analysts talked about visualization’s ability to communicate stories:   

P12 - Let me put it this way, I'm not going to put, well, I have 

and I will in the future, I'm sure. But you have your analysis, 

your P-value, your confidence intervals, your hypothesis test, 

what decision did you make, all of that. That's not what I'm 

going to put in a presentation typically. It's going to be the 

graph, and that would be either supporting it on the same page 

or in the backup. It [numeric representation of results] is 

important, I'm not trying to minimize the importance of it, but 

it's not what people understand when you're trying to 

communicate a result, typically -- it’s -- unless you're in a 

room with statisticians.  

 



 

 

149 

 

For some, visualization may be preferable to purely calculative methods.  Five 

participants reported that visualization provides a more powerful evidentiary warrant 

for claiming findings than purely numeric methods:  

P12 - Yeah. Okay, so I'll tell you what I tell every class I teach 

when we go through inference is, do the graphs first. And if the 

inference that you do doesn't support what you saw in the 

graph, something's terribly wrong. I see statistical inferences 

as kind of like it's absolutely important and it makes decisions 

consistent if we all are using the same inference. But it's a 

formalizing of the graph what you're seeing in the graph. I see 

two-sample tests, yes, we do them all the time. It's a way to 

make things consistent, make consistent decisions, but in the 

end it's supporting the graph really more than anything… 

 

Yet nearly as many (4) reported the opposite, that math is a greater evidentiary 

warrant, and gave a reason, namely, that visualization relies too much upon the 

judgement of the analyst.  As participant 5 said, “Yeah, you don't want to rely on your 

eyes. Having a number is better.” 

Other strikes against visualization include the primacy of calculative methods 

in achieving publication.  Two participants reported some version of being wary of 

aspects of p-value based statistical tests, but using them because publication required 

it: 

P13 - That tradeoff is in my mind all the time. … A lot of the 

work that I do that's funded requires a T-test. A lot of the work 

that I do that is unfunded is geared towards coming up with 

something that reflects the outcome of interest for the scientist 

or science, but is compatible with a T-test, so it needs to be 

usable but also compatible with a T-test. For me, that's a 

frontloading of the design… 

 

Visualization can also result in a lot of work for the statistician, without 

necessarily earning them concomitant rewards.  Intuitive design is critical for 

visualizations meant to communicate findings, but intuitive design tends to disappear 
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from view (Norman 2013).  Thus, a statistician who works hours creating a display 

which their client can understand with a glance is, in effect, hiding their work.  

Labeled the “Designer’s dilemma” in this research, it describes a situation where the 

more successful the work, the less it might be noticed (or appreciated) by its 

consumers: 

P12 - Oh, nice, nice. So, you get where I'm going with that, 

right? I try to make it no chart junk, how about that? Or very 

little, minimal chart junk. But it's never just I sit down and I 

proceed down a linear path and get an analysis. I shouldn't say 

never. There are some that are very straightforward I can do 

that. But more complicated problems, it's not a linear process, 

it's a scattered process. And then you come back onto the line 

and you communicate. So, [clients] think maybe you hand them 

a graph and the analysis results and, "Oh, that probably took 

them 20 minutes to do that." Because if you just did that, it 

would take you 20 minutes. But they miss all the hours and 

hours of work that go into that final result. 

 

Thus, the relationship between statisticians and visualization is complex, 

despite data visualization apparently having been integrated into every phase of a 

statistician’s workflow.  Different practitioners give more or less emphasis to its use 

depending upon their inclinations, though all the participants in this study report 

using visualization for at least some phases of their work.  They variously reported 

using process diagrams for planning analyses, visual exploratory data analysis for 

both data cleaning and hypothesis formation, specialized narrow-use visualizations 

during confirmatory analysis either as a reasonableness check or a source of primary 

findings, and, finally, communication of results.  Further, most think about their 

analyses in visual terms, and find in visualization a powerful tool for supporting 

evidence-based results.   
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Participant 3 may provide the clearest example of the conflicted relationship 

statisticians appear to have with visualization.  This person reported both a preference 

for calculative math over visualization, and for visualization over calculative math.  

On the one hand, in referring to one of the strawmen graphics: 

P3 - …So it seems like it's more subjective in a way. And I 

don't think that a new statistician or anyone who's been 

through the school that I went through, and maybe it's different 

now, has seen this often enough to make the best decisions with 

it. 

 

But on the other hand, when describing the process of understanding a 

hypothetical regression output during their workflow: 

P3 - But then I see where's the plot? How does it look here? 

What's the shape? So all those things go on in my head. And I 

guess knowing all this stuff through school and then through 

work, I probably don't go in the right order when I do this stuff, 

but I just do it- 
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5.5.2 Evidentiary Warrants 

 

If visualization acts as interface between human mind and computer brain in 

the model of extended cognition (Scaife 1996), then the resulting compound system 

hinges upon human judgement – human visual intuitions, human visual acuity, human 

subject matter pre-knowledge, and human imagination.  It is thus subject to human 

biases, mental blind spots, and the various shortcomings of our eyes, as pointed out 

by 5/16 participants (4 describing viz as too subjective, and a fifth making much the 

same point when suggesting reliance upon visual systems can reduce analytic 

validity).   

By contrast, traditional, equation-based statistical tests fully externalize the 

critical decision point, ostensibly removing the human element.  Provided results 

criteria are selected in advance (as pointed out by 6/16 participants), and all test 

assumptions are met (3/16 participants), results from statistical tests FEEL more 
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objective.  Five of 16 participants described relying upon statistical tests to provide 

evidentiary warrants for their findings, despite nearly as many warning that p values 

encourage bad thinking (4/16).   

For example, participant 15 expressed both ideas.  On the one hand, statistical 

tests encourage dichotomous thinking about situations which can be more textured: 

P15 - …aspects of understanding uncertainty. And there's 

nothing wrong with frequentist methods [such as parametric 

statistical tests], but it's kind of black and white.  

 

Yet at the same time: 

 

P15 - …[valid statistical testing] tells me whether my results 

should be something that are actionable, meaningful to 

someone…the actual [sample] estimates themselves being 

different does not necessarily mean that things truly are 

different out in the population. 

 

This reliance upon calculative statistical tests, and distrust of visualization, 

appears to conflict with visualization’s wide use as an analytic method by 

participants; it is in direct conflict with participants expressions that visualization is 

an important check on the statistical tests themselves. 

   

5.5.3 A Resolution of Apparent Conflicts 

A central thread may explain this seeming conflict: experienced statisticians 

argue against their own judgements wherever they can, constantly seeking to verify 

their findings with multiple independent methods.  In short, it is not that statisticians 

trust this or that method and distrust another – they distrust them all, or more 

precisely, never trust any one method by itself.   
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10 of 16 participants expressed the idea that they should always distrust their 

own findings.  For example: 

 

P6 - So, you want to use simulation to test that and also 

compare to the previous methods and say if your new method 

indeed works better for this case. And then you apply your 

methods to the data and try to answer the question, an original 

question you had. And at this time you also need to talk with 

your collaborators and say, because they are the people who 

understand science, understand the problem. And then they will 

help you to evaluate whether the results make sense or not, and 

how to interpret that and what kind of new discoveries. Maybe 

sometime there are some surprising results for them. And then 

you want to analyze whether it is because something that there 

is a bug in your method, there's a bug in your code or 

something like that. If not, and then that's more interesting...So, 

that's the usual process. 

 

Or: 

 

P12 - There's always a reason. There's always, …It sometimes 

will come down to sample size or the overall variation if it's a 

two-sample test of maybe one group has larger variation than 

the other. But mathematically you can go dig into that. There's 

always a reason. That's in my head, maybe I'm wrong, but in 

my head there's always a reason for that.  

 

When numbers would seem to support their favored hypotheses, statisticians 

look to visualization to see whether unknown outliers, gaps, or the like, explain away 

their findings.  But if they see a pattern in a visualization, they look to calculative 

methods to act as a check on their eyes.  Presented with an apparent difference 

between sample means, they test whether there is any likelihood that random chance 

can explain that away.  They check their assumptions (7/16 participants) and conduct 

parallel analyses (4/16).  With already checked and tested findings in hand, they ask 

subject matter experts whether the results make sense to them (3/16 participants).  
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In each of these cases, the statisticians are seeking any way they can to 

undercut apparent findings.  They pit one analytic method against another, and all 

must line up for the experienced analyst to accept a finding as probably, or even 

possibly, true.     

This mindset has strong implications for the design of new statistical tools.  

 

5.5.4 Connecting to Reality: A Preference for Effect Sizes over Math 

Among the most frequently expressed understanding captured during this 

study is the constant effort by experienced statisticians to link their results back to the 

reality they are meant to describe.  Fourteen of 16 participants discussed this during 

their interviews.  For example: 

P9 - … if necessary, go back and revise the statistical analysis 

plan in light of the reality of the situation as we've discovered 

it.  

 

P11 - … I think part of statistics is, in more a meta general 

sense, is you should trust the data and not come in with 

those...strong priors can be a problem.  

 

P17 - And I find generally data will tell the truth.  

 

Five participants talked about the validity of their results hinging upon the 

quality of their data model, that is, a clear and well understood link between their 

measures and their phenomena of interest (Figure 5.8).  Every statistical model is a 

simplification of reality built upon abstractions of phenomena, so maintaining a 

strong link between data and study subject can be non-trivial.  Indeed, seven 
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participants described how thinking through facts-on-the-ground was key to their 

being able to understand the math they had to use for their analyses.  For example: 

P1 - Well, that's the thing, is I don't understand statistics. I will 

freely admit I don't understand it, purely mathematically. I 

understand it if I'm looking at something tangible that has 

meaning to me… 

 

It appears that a key outgrowth of this reality-focus is a preference among 

many statisticians for privileging effect sizes over p-values.  Nine of 16 participants 

expressed this idea.   

Effect sizes are about the practical significance of a finding, rather than 

statistical (or probabilistic) significance.  In the current climate of concern over p-

value statistical testing, focusing on effect sizes is one potential answer.  But apart 

from these statistical concerns, focusing on effect sizes necessarily means focusing on 

the reality of the study subject.  

5.5.5 A preference for Confidence Intervals – Uncertainty Representation 

as an Analog to Physical Measurement Error 

Nine of the participants expressed their understanding of a t-test as some 

version of a comparison of overlapping confidence intervals, i.e. sample means with 

some indicator of variability.  This approach emphasizes the samples themselves, 

rather than the unseen population they are meant to measure.  The metaphor of the 

confidence interval is that of a measurement tool with an allowance for error – a very 

physical conception, different in kind from the mathematical abstraction of a 

probability distribution.   
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The t-test and p-value do focus on the population, by posing the likelihood 

that the population looks a certain way given the samples.  Yet the majority of 

participants in this study keep their focus on the samples, while asking whether their 

results achieve statistical significance, and thus provide an evidentiary warrant to 

make statements about the population.  The practical result is logically equivalent, but 

speaks to the difficulty of statistical inference.  In many cases, even the experts don’t 

fully embrace the meaning of the mathematics they rely upon, instead mentally 

falling back on simpler heuristics.   

If the experts face challenges with statistical inference (as 8 of 16 participants 

reported), novices must face greater challenges.   

5.5.6 Design Recommendations 

Design recommendations from the work in this chapter emerge both from its 

findings on statisticians’ tacit understandings of visualization & inferential statistics, 

and from participant reactions to the strawman graphics.  These recommendations, 

along with those from prior chapters, form a unified set of recommendations for 

potential visual tools of statistical inference, and form the bulk of chapter 6.   
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Chapter 6:  Conclusion – A Prototype Inferential Statistics 

Visualization 

6.1The Key Affordance of Purely Calculative Statistics Tests – 

Blindness 

Traditional statistics tests provide users with the appearance of objectivity 

because the calculations show no details of the data.  This pairs with reliance upon 

probability distributions (such as the Student’s T, the Chi-Square family of 

distributions, the F-family, and others) of such complexity that memorizing them 

presents a challenge to the most experienced data analyst.  In a very real sense, this 

lack of detail and complexity make a traditional statistical test blind, that is, 

something outside the user’s ability to monitor or control.  This blindness pushes 

analysis toward the objective; answers come out of the presumably impartial and 

objective machinery of the test itself.  

This is an affordance visualization-based methods can’t match.  Visualizations 

are the opposite of blind.  Even aggregate visualizations, such as box plots or normal 

distribution curves, rely ultimately upon the judgement of the user to interpret (derive 

meaning from) the analytic display. 

Yet blindness also comes with a cost.  A blind test can become a black box, 

inviting users to accept resulting answers without fully understanding them.  This 

may be related to the wide misunderstanding among published authors of the 

assumptions of statistical tests they themselves have used (Hoekstra 2014), and, 

perhaps, has contributed to the current, “Replication Crisis” (Cumming 2014).   
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Such black box thinking may contribute to the “cliff effect” described by 

Helske et. al. (Helske et. al. 2021): the tendency for researchers to interpret small 

differences near the p=.05 line as large differences in the confidence they should have 

in their experimental results.  Researchers following this kind of thinking look at the 

output of a statistical test as a declaration of experimental success or failure, with 

essentially nothing uncertain on either side of the line.  Helske and co-authors found 

that switching to more detailed visual forms helped to a alleviate this effect.  Though 

the particular forms they chose for their tests (violin plots) resulted in some confusion 

among their test participants, overall, the authors found that the negative effects were 

offset by improved statistical understanding.   

Helske’s work suggests that visual presentations of inferential statistics can 

make a difference in user understanding.  This research has attempted to identify 

design features for visualizations of inferential statistics which would produce the 

right understanding in users, particularly novice users. 

       

6.2  Designing Recommendations for Inferential Visualization 

Table 6.1 summarizes the most relevant findings from studies 1 & 2.  These 

combine with the findings from Chapter 5 to produce the following list of design 

recommendations.  
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6.2.1  Validity of visual analysis – in parallel with calculative methods 

Given statisticians’ use of visualization in every aspect of their analytic 

process, it appears that, as a general approach, visualizing inferential statistics may be 

acceptable to the statistical community. However, it also appears that no single 

approach to analysis will have the confidence of that community.  Rather, 

visualization should be paired with the equivalent numeric output.  This will 

provide the analyst both an intuitive understanding of the data (visual), and the more 

‘objective’ numbers (where the decision point is determined by the calculation rather 

than the user’s eye).   
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6.2.2  A Multi-facet Display 

Nine of 17 participants began the graphic elicitation portion of the interview 

thinking of statistical tests as some version of overlapping confidence intervals 

(equivalent to strawman #3 or #1).  However, once shown the Strawman graphics, 10 

of 18 participants preferred strawman #2, which considers the distribution of some 

test statistic.  The latter more directly represents what a statistical test actually does, 

while the former is a mere heuristic.  This mixed result supports use of both graphic 

types.  In combination with the participants’ multi-faceted approach to analysis, it 

may suggest that a tool for novice analysts should present multiple facets of the 

statistical testing process in a compound display.  This recommendation echoes 

findings by Shneiderman, et. al. in their work on data exploration, in which they 

found that several simple graphics, each presenting a different facet of a dataset, and 

linked by interaction, could work better than a single, complex visualization.  

A multi-display provides space for including graphic representations along 

with numeric results, and for providing background information, such as raw 

distributions of samples with curve fits, to check testing assumptions.  Figure 6.1 A-C 

provides mock-ups of such a display (“Inferential Quartet”).   
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6.2.3  Keep an Eye on Reality – Include Effect Sizes 

Following participants frequent preference for effect sizes over p values, and 

their emphasis on keeping the reality of the study situation in focus, visual 

inferential tools for novices should include an indicator of analytically 

meaningful effect size.  It should be declared in advance of seeing the data, just like 

Alpha (minimum acceptable p-value) to avoid post-hoc rationalization.  Selecting 

effect sizes requires users to understand their data, usually through contact with 

subject matter experts.  It automatically combats dichotomous thinking, as having two 

measures to choose (alpha and effect size) turns the significance decision multi-

dimensional.   

A simple version of an effect-size visualization has been included in Fig 6.1A-

C.  
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The effect size measure provides different information in each side of the 

quartet.  In the confidence interval displays, it provides information similar to 

Cohen’s D.  In the test statistic distribution, it provides a rough guide to the statistical 

power represented by the samples in hand.   

6.2.4  Re-size confidence intervals for readability 

Most people (including many participants in this study) read common CIs 

(95%) as indicating statistical significance if they don’t overlap, but in fact, they can 

overlap considerably and still show significance at the traditional p=.05 level.  

Therefore, we recommend resizing the confidence intervals such that a pair which 

don’t overlap can be directly read as representing a statistically significant 

difference at the chosen p-value.  

Confidence intervals have traditional been built upon arbitrary confidence 

limits, such as 95%.  This is convenient for the analyst as they calculate CIs, as it 

obviates the need for them to explicitly consider degrees of freedom (which p-values 

for t-tests are linked to).  Creating a 95% confidence interval is as simple as 

multiplying the standard error by 1.645, and adding and subtracting the resulting 

margin of error from the relevant statistic (such as the mean) (Table 6.2).  
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Confidence intervals linked to a p-value from a particular statistical test must 

be individually calculated, however, the calculations can be automated based upon 

degrees of freedom.   

The confidence interval display in Fig. 6.1A-C has been so modified.  

 

 

6.2.5  Favoring Familiar Formula?  Bootstrapping in the Inferential 

Quartet 

 Strawman #2, while favored by many participants in the third study, did raise 

concerns in a few of them due to its resembling an established method of inference – 

“Bootstrapping” – while departing from that method in execution. Strawman #2 is a 

repeated sampling from a simulate population, rather than a resampling method in the 

strict sense.  The simulation approach more closely resembles the assumptions of the 

null hypothesis from a t-test. It produces results very similar to bootstrapping, but the 

variance from established procedure bothered some participants.  
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Referring back to coding results, many participants expressed distrust for their 

recollections for the details of some of their analyses, leaning on published resources 

and their peer collaborators.  It may not be surprising, therefore, that a variance from 

established procedure would cause concern.  The suggestion is that professional 

statisticians prefer to follow established analytic procedures where possible.  This is 

only a suggestion, as this was not a dimension explicitly tracked during thematic 

coding.   

 The probability distribution panel in the quartet in Fig. 6.1 A-C reflects formal 

bootstrapping, rather than the simulated approach taking in the strawmen graphics.  

Given the similarity in the final graphic forms of the two approaches, it seems 

unlikely this will make an important difference for novices. However, building tools 

for visual inference using familiar analytic components wherever possible may 

increase the likelihood experienced statisticians will trust the results a novice analyst 

shares with them having used such a tool.     

 Note that while the difference between formal bootstrapping and the 

simulation method from strawman #2 resulted in only minor differences given the 

symmetrical probability distribution under study, future work, particularly on 

asymmetrical probability distributions, should consider explore this difference more 

thoroughly.  
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6.2.5  Extending Designs to Other Statistical Tests 

The inferential quartet prototype developed in this chapter presents a two-tailed, two 

sample t-test.  However, the design principles used to create likely apply to other 

tests.  Table 6.3 lists out suggestions for design changes which would make this 

quartet approach applicable to other common statistics tests.   

 

 As illustrated by this table, some design features of the quartet are specific to 

t-tests, while others are more generalizable.  A call for parallel analyses, the use of 

both numeric and visual displays in tandem, and the inclusion of effect sizes, all have 

broad application to inferential statistics.  Including confidence intervals as a visual 

metaphor for physical measurement, and sizing those intervals to represent the test in 
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question rather than an arbitrary confidence level, is broadly applicable.  Providing 

raw sample distributions in the same display as summary statistics, the test, and the 

probability distribution the test is based upon, is also broadly applicable.  

 I believe the inferential quartet represents a model of a visual tool for 

inferential statistics, one based upon several principles that are generalizable beyond 

the t-test prototype of Fig. 6A-C.  

 

6.3 Limitations and Future Research 

6.3.1 Limitations of Study 3 

Study 3 involved a total of 18 professional statisticians, but while we took 

care to choose participants from many different fields, educational backgrounds, and 

demographics, there are certainly several threats to generalizing these results too 

widely. Given the qualitative and highly personal nature of these practices, it can be 

hard to draw conclusive findings from this work. Furthermore, as discussed in my 

positionality statement (5.1.3), as a researcher working with collaborators, we 

represent only a small fraction of the worldwide statistician population. While design 

probes have been proven effective because they provide a common ground for 

discussion (Wallace 2013), which can be helpful, they may also constrain ideation. 

Furthermore, the strawman graphics were not radical or even particularly novel, and 

perhaps a more radical set of design ideas could have sparked more innovation. 

However, the interview protocol took care to ask for graphic elicitation (Phase II) 

prior to showing the strawmen (Phase III) to avoid biasing participants. The purpose 
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of this study, and thus the strawmen, was mostly to understand the mindsets and 

practices of professional statisticians, and more effort will be needed to develop 

prototype graphics in the future. 

 

6.3.2 Limitations of this Research – Parametric Statistics 

This work has been largely focused on parametric inferential statistics. 

Statistical inference is obviously a much larger field, and includes topics such as non-

parametric and Bayesian methods. This may limit the generality of design 

recommendations and suggests avenues for future research. 

For example, the graphics developed during Study 2 and Study 3 apply to a 

two-sample t-test – a parametric statistical method.  Even the bootstrapping of Panel 

C in the quartet – a hypothetically non-parametric method – nonetheless employs 

parametric assumptions of normality.   

It may be that the design recommendations resulting from this research apply 

best to parametric methods.  This would be especially true if non-parametric methods, 

even those like Bootstrapping which include some parametric assumptions, include 

cognitive or calculative aspects which prove less amenable to visual representation.   

This limitation suggests at least one direction for further research, namely, 

that of identifying and testing visualizations for non-parametric methods.  

6.3.3 Limitations of this Research – Symmetry 

In addition to being parametric, the visualizations used as prompts during all 

three studies also reflect symmetrical distribution curves, either normal curves or 
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those of the t-distribution.  Thus, these results can not be directly generalized to tests 

which rely upon non-symmetrical distributions, such as the Chi-Square or F-

distributions.  As argued above, some design principles may carry over, such as the 

use of multi-faceted displays showing parallel analyses and raw data distributions, the 

pairing of visualization with numeric output, and the recommendation to size 

confidence intervals to match statistical significance rather than arbitrary confidence 

levels.  However, further experimentation should be undertaken to establish whether 

the human eye-brain system comes equipped with visual intuitions for linking 

asymmetric distributions with the data they reflect.   

 

6.4 Suggestions for Further Research  

The limitations of these studies suggest future research already mentioned 

above.  

Further studies should test whether people have the visual intuitions to 

connect asymmetric probability distributions with underlying raw data.  

More generally, further work should test whether the design recommendations 

put forward in this dissertation can be adapted to non-parametric statistical tests.   

The strawmen graphics used during study 3 generated highly informative 

reactions from participants.  However, they also represent a limitation on creating 

ideation.  The next logical step would be to revisit a group of similarly experienced 

statisticians with more radical prototypes, especially those based upon non-parametric 

methods.  
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  But perhaps the most immediate recommendation is for testing versions of the 

inferential quartet with novice users.  The quartet embodies the tacit understanding of 

inferential statistic held by experienced statisticians, and studies 1 and 2 suggest that 

novices have the visual intuitions to take advantage of the elements within the quartet.  

However, in practice, there may be interactions with those elements sharing the same 

screen which strike novice users differently than expected.  The next study would test 

this open question.   

 

6.5 Developing the Quartet Design for Field Use by Novice Analysts 

As described in this chapter, the present design of the quartet reflects the 

limitations of the research that went into its creation. It is best thought of as a 

prototype at this stage, a model for creating a variety of inferential statistics 

visualizations that might gain acceptance in the broader statistical community while 

also providing an on-ramp to inferential methods for novice analysts. Developing the 

prototype into something with maximum practical utility for novice users will require 

further design research, particularly focused on adding features that allow for 

contextualizing the analysis in a specific domain.  

  Many (7/16) of the experienced statisticians in this study rely upon context 

clues to understand the mathematics of their analyses. They find they best understand 

particular analytic methods by considering those methods in the more concrete terms 

offered by specific examples of phenomena under study, rather than as abstract 

variables in a mathematical procedure. It is reasonable to expect that many novices 

would benefit from similar context focus (it is also common wisdom that concrete 
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examples are useful in learning). Additionally, many novices first approaching data 

analysis may only do so because of an interest in a specific subject matter amenable 

to data-focused research, rather than seeking to understand statistical methods for 

their own sake.  

 Thus, future design work on the quartet will benefit from, and likely requires, 

partnerships between researchers who possess a knowledge of data visualization 

methods, and those with specific subject matter expertise in a variety of fields which 

may be of interest to groups of novice analysts. Experts and researchers from several 

disciplines working in concert should be able to create, and test, fully contextualized 

versions of the quartet in a variety of settings.  

 For example, a potential application for a fully contextualized quartet might 

be its use in high school science classrooms, providing students the ability to make 

discoveries with sample data prior to their acquiring extensive statistical training. 

However, designing for this population would require the collaboration of science 

educators, curriculum authors, data visualization and design specialists, school 

administrators, and even the students themselves. Conducting the research would 

require the buy-in of parents and local school officials.  

 Should several such efforts prove successful, a review of the contextualized 

quartets thus produced might provide additional insights, as it may uncover 

generalizable principles of how design features of such statistical graphics can be 

adjusted to maximize the connection for users between the math and the reality under 

study.  
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