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Abstract

In this paper, we analyze the discrete wavelet maxima representa-
tion from the reconstruction point of view. Assuming finite data length
and using the finite dimensional linear space approach we present
necessary and sufficient conditions for the given representation to be
unique. The algorithm which tests for uniqueness is shown. A general
form of a solution to the reconstruction problem is described. The
above results are valid for any bank of linear filters where the outputs
are sampled at extreme values. For illustration we show two wavelet
transform examples. The first is the common unique-representation
case. The second is an interesting example of family of sequences which
have the same maxima representation. That is, we show an example
of a non-unique discrete wavelet maxima representation.

temail:berman@phoenix.src.umd.edu
*Also with the Department of Electrical Engineering .



1 Introduction.

Traditionally, multiscale edges are determined either as extrema of Gaussian-
filtered signals [6] or as zero-crossings of signals convolved with the Laplacian
of a Gaussian (see e.g. [1] for a comprehensive review ). S. Mallat in series of
papers [4, 3, 2] introduced zero-crossings and extrema of wavelet transform
as multiscale edge representation. Although [2] points out some advantages
of maxima representation of signals, a comparison between approaches us-
ing extrema and those utilizing zero crossing has not been completed yet.
In both methods, there are still important open problems, e.g.: stability,
uniqueness, structure of a reconstruction set. Mallat and Zhong [2] show ac-
curate numerical reconstruction results from maxima representation which
seem to verify Marr’s conjecture [5] about possible completeness and stabil-
ity of multiscale edge representation. In 2], as in many others works in this
area, the basic approach was developed using continuous variables. In the
continuous framework, analytic tools to investigate reconstruction results
are not as yet available. In this paper, the problem of reconstruction
from a discrete extrema representation is addressed. Finite data
length is assumed. A model, used in this paper, generalizes that at [2].
Model assumptions are satisfied by any bank of linear filters, provided the
outputs are sampled at extreme values.

Section 2 defines discrete extrema representation, and describes nec-
essary and sufficient conditions for the uniqueness of this representation.
Morever, the general solution for the reconstruction from a given maxima
representation is shown. The general conditions for uniqueness are used in
Section 3 to develop an algorithm which tests for uniqueness. Section 4 de-
scribes two examples. For the first example, the uniqueness is showed, and
the reconstruction from the maxima representation is given. The second ex-
ample is even more interesting, since to the best of the author’s knowledge,
this is the first time different sequences with the same maxima representa-
tion are shown. For this particular example, the exact set of all sequences
satisfying the given maxima representation is described.



2 Definitions and the main results

Let us start with a precise definition of a discrete extrema representation,
which is a generalization of wavelet maxima representation used in [2]. Con-
sider £, a linear space of real, finite sequences of length N:

L={f:f={lalnery : fn € R}

where Iy = {——],_‘,1 + 1,—%’— + 2,...,—1,0,1,...,%’—}. N is assumed to be
even. Let Wy, W,,...,W;, 5, be linear operators on £. For the sequence
W;f (feL, j=1,2,...,J) we define X;f and N;f as sets of maxima
and minima points, respectively.

Xif = {k:W;f(k+1) < W;f(k) and W,f(k—1) < W,;f(k) k€ In}

Nif={k:W;f(k+1) > W;f(k) and W;f(k—-1)> W;f(k) k € In}

To avoid boundary problems, we assume an N-periodic extension of the
finite sequences.

M denotes the operator of extrema representation, and is defined as
follows:

Mf = {{X;f, Ni fAW; f(n)}nex,sun;s Y1, S3f} V€L

In the sequel, following [2], we shall call M f maxima representation as
well. Generally speaking, M is a nonlinear operator and its analysis is not
easy. Our approach is to separate the linear and the non-linear components.
The determination of the extrema points sets is highly non-linear. However,
for the given X f, N; f the remaining data are obtained by linear operation
of sampling linear operator outputs at fixed points. This simple observation
is the motivation to consider M f as consists of two parts: the sampling
information and the maxima information. The sampling information is the
sequence Sy f and the values of W f at the points X;f U N, f. The maxima
information is the fact that the elements of X; f and N;f are local maxima
and minima of W; f.

The space, NV, called zero information space , is very important for our
results. A is defined as:

N={pel:5p=0 and Wp(n)=0 Vj e {1,2,...,J} Vne€ X;fUN,f}

The following lemma states that uniqueness depends only on the sam-
pling information.



Lemma 1 Given a mazima representation, M f, there ezists a unique se-
quence f € L which has this mazima representation if and only if the zero
sequence is the only sequence belonging to .

See Appendix A for a proof.
From the above lemma one can make the following observations.

Conclusion 1 The uniqueness of discrete marima representation depends
on the sets X;f , N;f 7 =1,2,...,J and does not depend on the particular
extreme values of W; f.

Conclusion 2 If the mazima representation is unique then the sampling
information gives a unique characterization as well.

2.1 A general solution for the reconstruction problem

Consider the reconstruction problem, i.e. the question about the structure
of the reconstruction set, I' = {y € L : My = M f} for a given maxima
representation M f.

The reconstruction problem can be solved in two stages. First the sam-
pling information implies a set of linear equations on elements of a sequence
7. Then the maxima information yields a set of linear inequalities on el-
ements of a sequence y. By straightforward analysis one can obtain the
following result.

Theorem 1 Let v, be a sequence which fulfils the samples conditions:
S1vp = Sy f and Wiv,(n) = W; f(n) ¥n € X;fUN;f. The sequences {p},
are a basis for the zero information space, N.

Let DWjyp(n) = Wirp(n + 1) = Wj7p(n)

and DW;p;i(n) = W;pi(n + 1) — W;pi(n). Then a sequence v satisfies the
given mazima representation (i.e v € I') if and only if it can be written as:

L
T=7+ 2 ap 1
i=1
where the coefficients (ay, ay,. .., ay) satisfy the set of linear inequalities of
the form:
L
(=183 e DWipi(n) < —(=1)4 ) DW;y(n) (2)

i=1



Vn such that n € L\(X;fUN;f) or (n+1) € L\(X;fUN;f),

Vi € {1,2,...,J}, kj(n) = 2 if n+1 is on the right of a mazimum (the
largest point from X;f U N, f, which is smaller then n+1, is a mazimum.
Otherwise k;(n) = 1.

Now, one can continue to make the following observations:

Conclusion 3 The reconstruction set, as a solution to a combination of lin-
ear equations and strong linear inequalities, is open, convez and its boundary
is an intersection of hyperplanes.

The set I' can be empty, then either 7, does not exists or there is no
solution to the set of inequalities (2). The unique solution corresponds to
the case where A" = {0}, and the sequence ¥, is feasible in the sense that it
provides the required extrema.

Conclusion 4 If the mazima representation is not unique, the sampling
information defines an unbounded linear space. The mazima information
stabilizes the solution in the sense that it bounds this space and limits the
reconstruction error.



3 Test for uniqueness

This section is aimed to develop an algorithm which can test for uniqueness
of a given discrete wavelet maxima representation. We start with a short
introduction to discrete dyadic wavelet transforms.

For a given finite sequence f, its discrete dyadic wavelet transform (with
J levels) is defined as a set of sequences:

{{ij}j=l,2,...,.]7 SJf}

computed by the following recursion formula:
Winf=5;f*g;

Sivrf = Sif+h;
for j =0,1,2,...,J — 1, with Sof = f. The symbol * denotes discrete (N
periodic) convolution operator , and the sequences h; and g; are obtained as
impulse responses of filters whose transfer functions are H(2/w) and G(2/w),
respectively.
Two cases were described in [2]. One corresponds to a cubic spline

wavelet with: w
H(w) = (cos(5))’

and the second corresponds to a Haar wavelet with:
H(w) = exp(—ig)cos(g)—).
2 2
G(w) is chosen to satisfy:
| G(w) | + | H(w) = 1.

For the cubic spline wavelet, following [2], the transfer function G(w) was
chosen as:

G(w) = (1 - (cos(3))bezp(~25 - 7).

Sampling at w = -2—]’{7’3 for n € Iy gives the Discrete Fourier Transforms
(DFT’s) h and § :

h(n) = (cos(%—?))" Vn e, (3)
§n) = (1= (cosGr)Pbeap(- T - 5y nel, ()
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Eventually sequences h and g are obtained by the inverse DFT.

irkn

h(n) = Z h(k)e zp(—~) (5)

kGIN

irkn

g(n) =+ Z g(k)ep(—

kEIN

) (6)
For N=256, the following numerical results were obtained:

h(0) =0.375 g(1) = —g(0) = 0.5907
h(1) = h(-1) =0.250 g9(2) = —g(-1) =0.1107
h(2) = h(-2) = 0.0625 9(3) = —g(-2) =0.0145
There are small differences with the coefficients which appears in [2], for
larger N (e.g N=4096) one can exactly get the numbers given in [2].

Let us rewrite the definition of discrete dyadic wavelet transform, in the
Discrete Fourier Transform terms. First define:

hj(n) = h(2°k | modN)

g;(n) = §(2°k | modN)
Remark: The above modulo function is nonstandard in the sense that it
should take values in Ip.
__ The symbol ™ will indicate the DFT of the appropriate sequence, e.g.
W, f denotes the DFT of the sequence W; f.
Since the periodic convolution corresponds to the multiplication of DFT’s,
from the definition of dyadic wavelet transform one can get:

W;f(n) = §j—1(n)hj—2(n), ..., hi(n)h(n)f(n) Vn € Iy (7)

;i f(n) = hj_1(n)hj—z(n), ..., hi(n)h(n) f(n) Vn € Iy. (8)

Following lemma 1, section 2, uniqueness is related to the size of the
space N, the zero information space. The space N is an intersection of the
null space of the operator S; and the space of p € £ such that:

W;p(n)=0 j=1,2,...,,J Vn€ X;fUN;f. 9)

Therefore, first we will find a basis for a null space of Sj, and then we
will consider linear equations induced by (9).



From the equation (8), it seems that the easiest way to find the basis for
the null space of S is to consider the exponential family, whose elements &,
are defined by their Discrete Fourier Transform as:

i)}(n):{ 1 ifl=n

0 otherwise

The sequences b; are eigenfunctions of Sy (they are such for any linear, time
invariant transformation) with eigenvalues:

As(l) = hy_1(Dhy—o(1), ..., ha(1)R(D).
Therefore the basis for the null space of S is:
{by :As(l)=0}
In the cubic spline wavelet case, the equation:
R(n)=0 nely
has only one solution n = % (this is true also for the Haar basis case).

Therefore, it can easily be shown that:

kN
As()=0 for 1= <5 where k==%1,£2,...,+277%,2771,
Thus the dimension of this null space is 2/ — 1. The above basis consists
of complex sequences (the linear space is over a complex field). In order to
have a real field one can define the following equivalent real basis :

2wl
pa-i(n) = cos(7m)  1=1,2,...,27!

!
pu(n) = sm(Q—;’J—”) 1=1,2,...,2771 _1,

A function p, which belongs to the null space of §; can be written as:

27-1

p(n) =) aipi(n).

=1
By the linearity properties we can write:

271

Wip(n) = 3 eaWjpi(n).

=1

7



Let us define the following vectors:
a=(m,az,...,a3-1)".

W,(n) = (W;p1(n), Wipa(n),.. ., W;pgs-1_1)(n).

Using conditions from the previous section, every n € X; f U N; f introduces
the following equation:
Wj(n)-a=0. (10)

The symbol - denotes a scalar multiplication between the row W;(n) and
the column a. In order to collect together equations (10) for different n’s,
we define the matrix W to consist of rows:

ﬁj(n) i=1L2,...,J nEXjfUNjf.

According to lemma 1, section 2, f has a unique maxima representation if
and only if the only solution for:

W.a=0 (11)
is the vector o = 0. This condition is equivalent to:
rank(W) = 27 — 1.

Theorem 2 The mazima representation Mf is unique if and only if the rank
of the matriz Wis 27 — 1.

Conclusion 5 If the number of the extrema points is less than 27 — 1, one
can not get a unique representation. On the other hand, if the number
of extrema points is greater than 27 — 1, there may be situations in which
analysis of the rank(W) can allow elimination of some eztrema from the
representation.



4 Examples

During this work, we decomposed many signals and usually the number of
the maxima points and their configuration were much above the require-
ments for the uniqueness. One of the reasons is that many maxima were
obtained in the regions where the decomposed signal was close to zero. This
phenomenon needs further treatment, nevertheless in examples we use sig-
nals with very clear maxima points.

Our first example illustrates the common case of a unique maxima rep-
resentation. In addition to showing the uniqueness, we calculate the recon-
structed sequence. The second example is for a non-unique representation.
For this particular maxima representation we show, using Theorem 2, the
exact family of all signals satisfying this representation.

4.1 Example 1

Let us assume N=256 and J=3 and consider the following sequence:

o2rk

() = sin(rea(Lely + )

This sequence was chosen in order to exhibit different frequency components
without evoking too many extreme points. Figure 1 shows its wavelet de-
composition.

The maxima sets are as follows:
X1fUN,f ={-127,-120,-109,-91,0,92,110,121}
Xof UNof = {-127,-119,-109,-90,1,92,111,121}
X3fUN3f ={-126,-118,-107,—-88,2,92,111, 122}

All together we have 24 extrema points, while the dimension of the null
space of S3 is 7. We can pick up 7 rows of the matrix W and check for
regularity (non-singularity). We have chosen:

W, = (W;(0), W (92), Wy(110), Wy (121), Wy(1), Wy(92), Wy(2))



which is equal to:

-0.2621
0.2621
—0.6328
0.2621
—0.0000
0.4988
0.0000

—0.6328
0.6328
0.2621

—-0.6328

-0.7054
0.4988

-0.1821

—0.6847
—0.6847
0.6847
0.6847
—0.0000
—0.2500
0.0000

—0.6847
—-0.6847
0.6847
-0.6847
—0.2500
0.0000
0.0000

This matrix is regular with an inverse:

-1.3151
-0.0512
~2.5894
0.2889
0.5874
—-1.7392
1.0750

-0.3815
0.0000
—-0.7229
—0.0000
0.6496
0.0000
—-0.0050

0.5082
0.0000
1.0055
-0.0000
—0.1442
0.0000
-0.6884

-1.1883
-0.0512
-2.3068
0.2889
1.0927
-1.7392
1.3816
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—0.9237
0.9237
0.3826
0.9237
0.0000
0.0147
0.0000

9.2922
0.2804
18.1422
-5.5825
-6.7751
9.5260
~8.5990

—0.3826

0.3826
—0.9237
-0.3826
-0.0208
—0.0147

0.0054

2.7834
-0.0000
1.5071
—0.0000
-0.7899
0.0000
-1.0318

Figure 1: The signal f and its wavelet decomposition.

—1.0000
—1.0000
-1.0000

1.0000

-20.2619
-6.2206
—-50.1899
19.6132
20.2882
—-24.8083
20.9344




Conclusion: The maxima representation Mf of the sequence f(k),
defined in this subsection is unique. Furthermore, essentially, one
can give up 17 extrema points out of 24, and still have a unique maxima
representation.
In this case, the reconstruction can be calculated as follows. Let us
denote: R ~ _ R
hi(n) = hj_1(n)hi_a(n),...,hi(n)h(n)

N §jf n i
fa(n) = { ;ﬁ%)l he(n) # 0 (12)

otherwise

and define:

The sequence f, is calculated from fs by the inverse DFT.
Let us denote W,, the sampling operator at the chosen extreme points ,
ie.:

Wef = (Wlf(0)> Wlf(92)7 Wlf(llo)’ Wlf(lzl)’ W2f(1)’ W2f(94)’ WSf(Q)),

Then the reconstructed signal is given by:

7
fr = fs+ ZA(I)I)I

=1

where the vector A is calculated by:
A= WY W f = W fo).

Figure 2 describes f — f;, the error from the deconvolution from Sjf
which is not large in this case. This error is harmonic, since it has to belong
to the null space of §;. The bottom part of the figure describes the error
from the complete reconstruction, f — f, which is less then 10~7.

One important remark is in order. The weak point in this reconstruction
is the division by h¢(n) in the definition (12). Small values of Et(n) introduce
large sensitivity to numerical or approximation errors in Sy f. Our precise
reconstruction results are due to floating point high numerical accuracy and
due to a small number of levels, Other possible way to overcome this prob-
lem, is to reconstruct a signal using more maxima points than required by
the uniqueness test.

11
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Figure 2: The reconstruction errors.

4.2 Example 2

In this subsection we try to find a sequence which gives no unique maxima
representation. Consider:

27k 0w
k)= — + =).
po(k) = cos( o2+ 3)
This sequence is from the null space of S3. Figure 3 describes its wavelet
decomposition( Sp, = 0 is omitted). Here at every level we have 64 extrema
points, they appear in regular distances. The set of the extrema is given
below:

Xof ={2+4+8xk:k integer}
Nif={6+8%k:k integer}
Xof = {2+ 8%k :k integer}
Nof = {6+8+k:k

k

Xaf={3+8xk:k

integer}

integer}

12

150



Figure 3: The signal p,(k) and its wavelet decomposition.
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N3f ={7+8xk:k integer}.

The basis for the null space of 3 is:

p(n)
ps(n)
ps(n)
pr(n)

= cos(¥2) p(n) = 3’:”('2'7‘8@)
= cos(*Z2)  pa(n) = sin(%2)
= cos%i—%—ﬂ; pe(n) = sin(%2)
= cos(*g*

All the functions p; are 8-periodic. Linear operator preserves this periodicity.
Therefore the rows W;(n) are also 8-periodic in the sense:

Wi(n)=W;(n+8) nely j=1,2,3.

Thus every level contributes only 2 different rows to the matrix W, and
there are only 6 different rows in W! The ultimate conclusion is that in this
case the maxima representation is not unique.

The different rows of W are as follows:

0.6328
~0.6328
0.4988
—0.4988
0.1288
—0.1288

—0.2621
0.2621
—0.4988
0.4988
—0.1288
0.1288

0.6847
0.6847
0.2500
0.2500
0.0000
—0.0000

0.6847
0.6847
0.0000
—0.0000
0.0000
0.0000

—-0.3826
0.3826
0.0147

—0.0147

-0.0038
0.0038

0.9237
—0.9237
0.0147
-0.0147
—0.0038
0.0038

—1.0000
-1.0000
0

0
0
0

The rank of this matrix is only 5. One can observe that the last two rows
are dependent. Consider:

Ws = W(1:5,[2,3,5,6,7)),

the submatrix of the elements from the rows 1,2,3,4,5 and the columns
2,3,5,6,7. It is a regular matrix, with an inverse matrix not having large
elements. Therefore we will use it for the representation of the general se-
quence satisfying S3f = 0 and giving zero samples at extreme points (i.e.
from the space V). Let us assume ay, a; to be free coefficients corresponding
to the sequences p; and py. Let, o] and of be defined as:

of = -w;t . we

of = -w;t.we

14



where W< and W are the first and the fourth columns of the first five
rows of W. The space N is spanned by the two following functions:

pw1 = p1 + of(1)p2 + o1(2)ps + 2} (3)ps + af (4)ps + o{(5)p7

pwz = pg + o (1)p2 + of(2)ps + a5(3)ps + o5(4)pe + 25 (5)pr-
Therefore, the general form of the solution is :
P = Pp + a1pw1 + G2pwa.

Conditions for W;p to be monotonic between its extrema introduce 24
linear inequalities in @; and a;. Elementary analysis of this system leads to
the following seven dominant inequalities:

1.0000a; + 1.3059a, > -0.4330
1.0000a; - 1.3059a; > -0.4330
0.0000a; + 1.0000a; > -—0.1849
0.0000a; + 1.0000a; <  0.1849
1.0000a; + 0.3574a; <  0.1007
1.0000a; - 0.3574a; <  0.1007
1.0000a; + 0.0000a; <  0.0991

Figure 4 shows the boundary of the set A . All the points inside the boundary
satisfy the above set of inequalities.

In order to visualize this result, let us define three sequences. The first
is the original p, and the next two are defined as:

Ppa = pp — 0.4pw,

Ppb = Pp — 0.2pwy + 0.16pw,.

Figure 5 and Figure 6 show these sequences and their wavelet transforms.
From the graphs one can indeed see that all have the same discrete wavelet
maxima representation.

These examples consist of the functions from the null space of S3. From
the definition of wavelet transform one can easily see that, for every function
p from this space W;p = 0 Vj > 3. Therefore these functions have the same
wavelet maxima representation for any J > 3. Conclusion: the discrete
wavelet maxima representation for the cubic spline wavelet with
J 2 3 and N = 256 is not always unique. It is interesting to check how
this example behave with different N’s, but has not yet been investigated.

15
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Figure 4: The boundary of the set A on the plane (a,a3)
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Figure 5: The signals and their first level wavelet transforms.
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Figure 6: The second and the third level wavelet transforms.
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5 Discussion

We have proposed a tool to analyze the problem of the reconstruction from
the discrete maxima wavelet representation. The test for uniqueness and
the general solution for the reconstruction problem are the major results.
These results are not limited to the wavelet transform, but are also valid for
any bank of linear filters where the outputs are sampled at extreme values.
We believe that these tools can help to understand, develop, and evaluate
better this kind of adaptive sampling technique.

The second part of the work dealt with particular cases of implemen-
tations. The test for uniqueness for N=256 and J=3 can easily be imple-
mented. The complexity is linear in N, but exponential in J. Since in most
practical application, the number of levels J is small (x 5), usually this algo-
rithm can be implemented without sizable effort. In addition to answering
"yes” or "no” to the uniqueness question, the algorithm can also give the
number of redundant sampling points. This number may be a qualitative
measure for reconstruction stability.

What is the importance of our counter-example to the uniqueness ?
Certainly, it indicates that some carefulness is required. “Blind” use of this
representation may lead to large reconstruction errors. In our opinion, the
excellent stability properties of the representation justify making some effort
to overcome this problem. When a non-unique representation is founded
while using the uniqueness test, the size of the solution set can be checked
and a few more sampling points can be added.

Although we hope that a new point of view was added to the analysis
of the maxima representation problem, we do not claim that this ”direct”
approach provides stable and practical reconstruction method. The weakest
part is the deconvolution of S;f. Due to the very small magnitude of the
eigenvalues of the operator Sy, this deconvolution is very sensitive to numer-
ical errors. The situation is even worst if N or J increases. In the first place,
one can replace very small eigenvalues by zeros, and enlarge the null space.
Another possible approach is to deal directly with the space A (the inter-
section of the null space of S; and the null space of the sampling operator
at extreme points W, ). In both cases, further investigation is required.

Another obatacle toward a practical appﬁcations is the model for sam-
pling. A practical maxima representation would consider local maxima of
the absolute value of a wavelet transform above some threshold [2]. Our
model does not deal (yet) with this situation.

Some remarks on S. Mallat’s conjecture, which deals with maxima rep-
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resentation in a continuous context are in order. One of the most powerful
properties of the dyadic wavelet transform is that the discrete sequences W f
and S;f can be interpreted as samples at integers of continuous, well de-
fined transformations of a continuous function f.. S. Mallat defines extrema
set points as the extreme points of continuous functions. In our approach,
the maxima are calculated on the discrete sequence, after the function is
sampled. Although every discrete extremum corresponds to a continuous
one, there may be continuous maxima which are not detected from sampled
data. Therefore a discrete maxima representation may contain less infor-
mation than a continuous maxima representation. On the other hand, in
many applications where the calculation complexity must be considered, the
difference between these two representations might be hidden because only
the sampled data is under consideration. Having many continuous maxima
which are not detectable by a particular discrete sampling may exhibit a lack
of stability with regard to sampling translation. It is clear that the corre-
spondence between discrete and continuous maxima representation deserves
further investigation. Besides the fact that discrete maxima representation
is easier to analyze, it allows us to keep track on the performance of practical,
discrete algorithms.

20



A The proof of lemma 1

First assume that the representation is not unique, i.e. 3g # f such that
Mg=Mf. Then p= f — g # 0 belongs to N.

Now assume that there exists p, a non zero sequence such that p € A'. We
will show slightly more than required, we claim that there exists a positive
ag such that:

M(f+ap)=Mf Va 0<a<ap

From the hypothesis, by the linearity, it is clear that for every a:
Wi(f +ap)(n) = W;f(n) VneX;fUN;f

and:
Si(f+ep)=58:f

The only problem is to find a such that the maxima and the minima
points sets are preserved, i.e.:

Xi(f+ap)=X;f

Ni(f + ap) = N;f.

The extrema are preserved if and only if the sequence W;(f + ap) is
monotonic between two consecutive extrema of W f (increasing on the left
of the maximum and the right of the minimum, and decreasing on the right
of the maximum and the left of the minimum).

Let n, n; be two consecutive points from X;fUN;f. If

| np—n |>1

than W;f(n) is strongly monotonic between n; and nj. Without loss of
generality, we can assume that it is decreasing (for increasing, the treatment
is symmetric). We are given:

Wif(n+1)<W;f(n) m<n<mn (13)

and want to find a such that W;(f + ap) is strongly decreasing between n;
and nj. The condition:

Wi(f + ap)(n + 1) < Wi(f + ap)(n)

is equivalent, by linearity, with:
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a[W;p(n +1) - Wip(n)] < W;f(n) - Wf(n+1) m<n<n  (14)
For a > 0, the above condition is satisfied Vn such that:
Wip(n +1) — Wip(n) < 0.

In order to deal with remaining n’s, the following boundary is defined:

Wif(n) = W,f(n+1)
W;p(n + 1) - VVjp(n)

a;; = min{ :n; < n < njand W,p(n+1)~-W;p(n) > 0}.

If the set under the minimum is empty, we define a;; = oo. Using
inequality (13) we see that aji > 0.

Now it is very easy to show that condition (14) holds Vo 0 < a < a;.

If | nj — n; |= 1 there are no points between n; and nj, so there is no
problem in preserving the extrema sets in this interval.

The final step is to pass similarly through all scales j and through all
points n; from X; fUN; f. The crucial point is that the set of all admissible
J’s and I’s is finite, therefore there exists ag > 0 defined as:

ap = min{aj,}.
gl

and then we obtain:

M(f+ap)=M(f) VaO0<La<ag O
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