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Solid oxide fuel cells (SOFCs) are promising electrochemical energy converting 

devices due to their ability to use not only hydrogen but also hydrocarbons as a fuel. 

Although conventional SOFCs with Ni/YSZ anodes and hydrocarbon fuels form 

carbon deposits that inhibit SOFC performance, an enhancement in performance is 

observed for the Cu/CeO2/YSZ anode with carbon deposits and H2 fuel. Structural 

and compositional analyses of these carbon deposits show that graphitic carbon forms 

on the Cu/CeO2/YSZ. The reason of the 2 to 3 fold enhancement in performance is 

due to increase in anode conductivity by graphitic carbon deposits. 

An important problem for fuel oxidation kinetics on SOFC anodes is determining 

the rate limiting step(s) for fuel oxidation. To assess the effects of YSZ surface 

chemistry on oxidation processes, porous and dense Au anodes on YSZ electrolytes 

were prepared to study H2 oxidation. Linear Sweep Voltammetry (LSV) and 

Electrochemical Impedance Spectroscopy (EIS) were used to identify critical 

processes in the Au/YSZ anodes as a function of Au geometry. The results show that 

the surface diffusion on the SOFC anodes and electrolytes is believed most likely to 

be the rate limiting step.  



  

To address the contribution of reduced YSZ on SOFC anode performance, porous 

Au anodes with different geometrical porous YSZ layers were fabricated. Studies of 

porous YSZ layers on Au anodes demonstrate that these layers block active sites on 

Au anodes for dissociative adsorption of hydrogen but help charge transfer reaction of 

adsorbed species on anode. Other than regular hydrogen as a fuel, isotopically-labeled 

D2 fuel were used to differentiate effects of both gas phase and surface diffusion on 

Au anode performance. An observed ~25 % decrease in current and power densities 

with D2 relative to H2 is attributed to lower surface diffusion of adsorbed D2 fuel 

species  relative to H2 fuel species. 

Finally, modeling studies for these systems are used to understand more fully the 

mechanisms of H2 oxidation on SOFC anodes. The interpretations of experimental 

results are confirmed by using the model that manipulates the effect of various fuel 

partial pressures on the diffusion parameters of anode surface species. The model 

developed is able to describe qualitatively the isotope effect on the gas and surface 

diffusion coefficients by the mass affect. The implementation of the surface diffusion 

parameters of the water species into this model is critical to manipulate the effect of 

the fuel partial pressure values on diffusion processes. 



  

 

 
 
 
 
 

ELECTROCHEMICAL OXIDATION KINETICS OF HYDROGEN AND 
HIGHER HYDROCARBON FUELS ON SOLID OXIDE FUEL CELLS. 

 
 
 
 
 
 

By 
 
 

Oktay Demircan 
 
 
 
 
 

Dissertation submitted to the Faculty of the Graduate School of the  
University of Maryland, College Park, in partial fulfillment  

of the requirements for the degree of 
Doctor of Philosophy 

2007 
 
 
 
 
 
 
 
 
 
 
 
Advisory Committee: 
Professor Bryan W. Eichhorn, Chair 
Professor Jeffery Davis 
Associate Professor Gregory S. Jackson 
Associate Professor Robert A. Walker 
Assistant Professor Andrei Vedernikov 



  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© Copyright by 
Oktay Demircan 

2007 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 ii 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Dedicated to my mother, Gülnaziye Cebeci, and to my family, 

(Annem, Gülnaziye Cebeci, ve aileme ithaf edilir,) 



 

 iii 
 

Acknowledgements 

This part of the thesis is one of the hardest to write, I have to admit. None of the 

words that I know can full express my gratitude to a number of people, who helped 

and supported me during my PhD period. 

The study was conducted under the excellent supervision of Professor Bryan W. 

Eichhorn whom I gratefully acknowledge for his enthusiasm and many hours of 

helpful discussion throughout the progress of my thesis. In particular, I wish to thank 

him for the opportunity to present my results on international conferences.  

Professor Greg S. Jackson and Professor Robert A. Walker are gratefully 

acknowledged for being co-advisors of the thesis. 

I would also like to thank Professor Jeffery Davis and Andrei Vedernikov for being 

the committee members of my PhD thesis. 

I wish to thank to Tim Maugel for his help on SEM images and Bindhu Varughese 

for her guidance and patience in XPS studies. 

I am deep in debt to my colleagues whom I had a chance to work with in the 

Eichhorn’s Group: Dr. Emren Nalbant-Esentürk, Dr. Chad Alan Stoltz, Dr. Melanie 

Moses, Dr. Shenghu Zhou, Selim Alayoğlu, Sanem F. Koçak, and Andre Dennis for 

their endless support in my PhD period. 

Very special thanks go to my colleagues in Solid Oxide Fuel Cell group at UMD: 

Dr. Mary Sukeshini, Dr. Michael Brandon Pomfret, Bahman Habibzadeh, Steven 

DeCaluwe, Ben Becker, Dr. Seyed Reihani, Anthony Dylla, Young Kyong Jo, Bryan 

Eigenbrodt, and Paul Jawlik for their valuable discussions on every aspect of SOFC. 



 

 iv 
 

I am very grateful to my friends: Dr. Albert Epshteyn, Dr. Okan Esentürk, and 

Süleyman Z. Can for their endless patience and very valuable discussions. 

I would also thank to people at the Department of Chemistry, whom I worked 

several years in enthusiasm, for their smile in every morning. 

Finally, my highest appreciation is addressed to my family: my mother, Gülnaziye 

Cebeci, my sister, Perihan Demircan, and my brother, Hasan Demircan, who believed 

in me, who shared my sorrow, and who motivated me in all circumstances. 

 



 

 v 
 

Table of Contents 
 
 
Acknowledgements...................................................................................................... iii 
Table of Contents.......................................................................................................... v 
List of Tables ............................................................................................................. viii 
List of Figures .............................................................................................................. ix 
Chapter 1:...................................................................................................................... 1 
General Introduction ..................................................................................................... 1 
1.1. Overview:............................................................................................................... 1 
1.2. Solid Oxide Fuel Cell (SOFC):.............................................................................. 4 

1.2.1. Principles of SOFC operation: ......................................................................... 5 
1.2.2. Electrolytes: ..................................................................................................... 6 
1.2.3. Cathodes:.......................................................................................................... 7 
1.2.4. Anodes: ............................................................................................................ 8 
1.2.5. Planar SOFC cell designs: ............................................................................... 9 
1.2.6. Performance limiting processes: .................................................................... 12 

1.3. Fields of Research:............................................................................................... 19 
1.4. Scope of the thesis: .............................................................................................. 26 
Chapter 2:.................................................................................................................... 28 
Formation of Carbon Deposits from Hydrocarbon Fuels in Solid Oxide Fuel Cells.. 28 
2.1. Introduction.......................................................................................................... 28 
2.2. Experimental Section ........................................................................................... 31 

2.2.1. Preparation of Cathode: ................................................................................. 32 
2.2.2. Preparation of Anodes: .................................................................................. 33 
2.2.3. Preparation of Cell Assembly: ....................................................................... 34 
2.2.4. SOFC Operation Conditions:......................................................................... 34 
2.2.5. Characterization Techniques:......................................................................... 34 

2.3. Results and Discussions....................................................................................... 36 
2.3.1. Performance of SOFC anodes:....................................................................... 36 
2.3.2 SEM images of SOFC anode surfaces:........................................................... 39 
2.3.3 XRD analysis of SOFC anode surfaces: ......................................................... 41 
2.3.4. Raman studies of SOFC anode surfaces: ....................................................... 43 
2.3.5. XPS studies of SOFC anode surfaces: ........................................................... 46 

2.4. Conclusions.......................................................................................................... 50 
Chapter 3:.................................................................................................................... 53 
Analysis of different Au anodes with different geometry and different Porous YSZ 
layers in SOFC assembly ............................................................................................ 53 
3.1. Introduction.......................................................................................................... 53 
3.2. Experimental Section ........................................................................................... 58 

3.2.1 Preparation of porous Au paste anodes:.......................................................... 58 
3.2.2 Preparation of Dense Au Film anodes: ........................................................... 59 
3.2.3 Preparation of Porous YSZ layer: ................................................................... 59 
3.2.4 Preparation of Porous Au anodes with α-Al2O3 Blocking:............................. 60 
3.2.5. Characterization Techniques:......................................................................... 60 



 

 vi 
 

3.3. Results.................................................................................................................. 61 
3.3.1 Porous Au anodes with different Au/YSZ interface area: .............................. 61 
3.3.2 Dense Au Film patterned Anodes:.................................................................. 65 
3.3.3 Porous Au Anodes with YSZ over layers:...................................................... 70 
3.3.4 Porous Au Anodes with an isolated porous YSZ patch:................................. 73 
3.3.5 Porous Au anodes with different α-Al2O3 sub-surface blocking between 

porous Au and YSZ: ............................................................................................. 76 
3.4. Discussions .......................................................................................................... 79 

3.4.1 Porous Au anodes with different Au/YSZ interface area: .............................. 79 
3.4.2 Dense Au Film patterned Anodes:.................................................................. 80 
3.4.3 Porous Au Anodes with YSZ over layers:...................................................... 81 
3.4.4 Porous Au Anodes with an isolated porous YSZ patch:................................. 82 
3.4.5 Porous Au anodes with different α-Al2O3 sub-surface blocking between 

porous Au and YSZ: ............................................................................................. 83 
3.5. Conclusions.......................................................................................................... 85 
Chapter 4:.................................................................................................................... 87 
Isotopically labeled D2 fuel comparison with H2 on Au anode SOFCs by experimental 
and computational methods ........................................................................................ 87 
4.1. Introduction.......................................................................................................... 87 
4.2. Experimental Section ........................................................................................... 91 

4.2.1 Preparation of porous Au anodes:................................................................... 92 
4.2.2 Arrangement of partial pressure of fuel and humidifying agent content: ....... 92 
4.2.3 Characterization Techniques:.......................................................................... 93 

4.3. Results.................................................................................................................. 94 
4.3.1 The effect of dry H2 partial pressures on porous Au anodes with different 

thicknesses in SOFC: ............................................................................................ 95 
4.3.2 The effect of water on Au anodes with varying partial pressures of H2: ...... 103 
4.3.3 The comparison of isotopically labeled D2 fuels with H2 fuel on porous Au 

anodes with different thicknesses: ...................................................................... 108 
4.3.4 Modeling studies of four different thicknesses porous Au anodes with various 

fuel partial pressures of H2:................................................................................. 112 
4.4. Discussions ........................................................................................................ 117 

4.4.1 The effect of dry H2 partial pressures on porous Au anodes with different 
thicknesses in SOFC: .......................................................................................... 117 

4.4.2 The effect of water on Au anodes with varying partial pressures of H2: ...... 121 
4.4.3 The comparison of isotopically labeled D2 fuels with H2 fuel on porous Au 

anodes with different thicknesses: ...................................................................... 124 
4.4.4 Modeling studies of four different thicknesses porous Au anodes with various 

fuel partial pressures of H2:................................................................................. 130 
4.5. Conclusions........................................................................................................ 131 
Chapter 5:.................................................................................................................. 135 
Conclusions............................................................................................................... 135 
5.1. Introduction........................................................................................................ 135 
5.2. Evaluation of the results: ................................................................................... 135 
5.2. Future works and recommendations: ................................................................. 138 
Appendix................................................................................................................... 139 



 

 vii 
 

References................................................................................................................. 142 
 
 
 
 
 
 
 
 
 
 



 

 viii 
 

List of Tables 
 

Table 1.1: Different types of fuel cells…………..……………………………........2 

Table 2.1: Raman Data of SOFC anode surfaces.………………………………...46 

Table 2.2: C and O atomic percentages from XPS Spectra.………………………49 

Table 3.1: EIS data for porous Au anodes with different interface areas..…..........65 

Table 3.2: EIS data for Au film anodes with different interface areas……..……..70 

Table 3.3: EIS data for porous Au anodes with porous YSZ over layers................72 

Table 3.4: EIS data for porous Au anodes, one with isolated porous YSZ patch ..75 

Table 3.5: EIS data for porous Au anodes, with α-Al2O3 blocking……...………..79 

Table 4.1: Maximum current densities of porous Au anodes with dry H2……......97 

Table 4.2: Summary of EIS spectra fitting parameters at high current region for 

various thickness porous Au anodes with different dry H2 fuel fractions....……….100 

Table 4.3: Maximum current densities of porous Au anodes with wet H2………105 

Table 4.4: Summary of EIS spectra fitting parameters at high current region for Au 

anodes with different wet H2 fuel fractions………………………………………...106 

Table 4.5: Maximum current densities of porous Au anodes with H2, HD, and 

D2…...………………………………………………………………………………110 

Table 4.6: Summary of the equivalent circuit fitting parameters of EIS spectra at 

1V overpotential for Au anodes with 70 sccm dry and wet H2 and D2 fuels…….....111 

Table 4.7 Summary of modeling parameters used in this study. .……………….115 



 

 ix 
 

 

List of Figures 
 

Figure 1.1 Schematic representation of SOFC assembly operation (the anode and 

cathode sides are physically separated from each other by a dense electrolyte and high 

temperature ceramic sealing)………………………………………………………….5  

Figure 1.2 Planar cell designs a) cathode supported cell, b) electrolyte supported 

cell, and c) porous anode supported cell, drawings not to scale. ……………………10 

Figure 1.3 Schematic graph of the voltage drop of SOFC as a function of 

withdrawn current density, a) low current regime, b) medium current regime, and c) 

high current regime…………………………………………………………………..12 

Figure 1.4 Schematic representation of EIS Nyquist plot………………………...17 

Figure 1.5 a) Oxygen reduction pathways on conventional LSM-YSZ cathodes, b) 

Experimental setup for alumina blocking experiments from Fleig et al. [92]…….…22 

Figure 1.6 Current collector experiments designs from Jiang on the SOFC 

cathodes, a) 0.032 mm2 current collector area, b) 0.012 mm2 current area of Pt and Ag 

from Jiang et al.[95].…………………………………………..………………………..23 

Figure 1.7 a) equivalent circuit for fitting EIS modeling studies, b) EIS simulations 

from modeling studies, from Zhu and Kee [105]……………………………………26 

Figure 2.1: Schematic representation of SOFC experimental set up……………..32 

Figure 2.2: The SOFC power density vs. time plots for H2-Butane-H2 cycle 

representing a) on Ni/YSZ b) 5 hours, and c) 100 hours of butane on Cu/CeO2/YSZ 

anode systems (▬CeO2/YSZ, and --- Cu/CeO2/YSZ anodes) Pictures of anode 



 

 x 
 

systems after SOFC operations are respectively shown next to the power density 

curves of anode systems…………………………………………………………….  37  

Figure 2.3: SEM images of a) Carbon deposits on Cu/CeO2/YSZ anode surface b) 

enlargement of sample (a), c) the carbon film on YSZ disk…………………………40 

Figure 2.4: SEM pictures of a) spherical carbon deposits b) the combination of 

spherical and filamentous carbon deposits on Ni/YSZ anode surfaces……………...41 

Figure 2.5: XRD Patterns of a) 325-mesh graphite, b) Ni/YSZ surface exposed to 

butane for 5 hours, c) carbon deposit isolated from CeO2/YSZ anode surface exposed 

to butane for 5 hours, d) CeO2/YSZ surface exposed to butane for 100 hours, e) 

CeO2/YSZ surface exposed to butane for 5 hours (●: SiO2 from ceramic paste, ■: 

YSZ, ♦: CeO2) Inset: Graphite crystal structure……………………………………..42 

Figure 2.6: Raman Spectra of a) 325-mesh graphite, b) Ni/YSZ anode (5 hours 

butane exposed), c) CeO2/YSZ (5 hours butane exposed), d) CeO2/YSZ (100 hours 

butane exposed), e) Cu/CeO2/YSZ (100 hours butane exposed). Inset: Atomic 

motions of carbons and their symmetries in graphitic structure……………………..44 

Figure 2.7: C1s region of X-ray photoelectron spectrum of a) 325-mesh graphite, 

b) typical SOFC anode surface………………………………………………………47 

Figure 3.1: Schematic representation of experimental setup of four different 

interface areas between Au and YSZ, a) Top view, b) Cross-section……………….61 

Figure 3.2: SEM images of porous Au anode, a) cross-section of electrode and 

electrolyte, b) top view of Porous Au anode…………………………………………61 

Figure 3.3: Polarization curves of porous Au anodes with different interface area 

experiments on YSZ, a) raw performance, b) normalized performance with respect to 



 

 xi 
 

Au-YSZ interface area.(Orange: 1x8 mm, Green: 2x8 mm, Blue: 3x8 mm, 

Magenta: 4x8 mm, and Black: four electrodes wired together)…………………….62 

Figure 3.4: Normalization curves of Porous Au anode experiments, maximum 

power densities with respect to a) interface area between Porous Au and YSZ, b) 

triple phase boundary (TPB) length, i.e. perimeter of Porous Au anodes…………...63 

Figure 3.5: EIS (at OCV) curves of four different interface area experiments on 

YSZ, a) raw impedances, b) normalized with respect to interface area (inset: high 

frequency intercept as Rb) (Orange: 1x8 mm, Green: 2x8 mm, Blue: 3x8 mm, 

Magenta: 4x8 mm, and Black: all four electrodes wired together)…………………64 

Figure 3.6: Schematic representation of experimental setup of four different 

interface areas between YSZ and Au film, a) Top view, b) Cross-section, c) Post 

Picture………………………………………………………………………………..66 

Figure 3.7: SEM images of Au film anode after 48 hours operation in SOFC, a) 

cross-section of delaminated Au film from YSZ surface b) top view of Au film on 

YSZ…………………………………………………………………………………..66 

Figure 3.8: Polarization curves of Au film anodes with different interface area 

experiments on YSZ, a) raw performance, b) normalized performance with respect to 

Au-YSZ interface area. (Orange: 1x8 mm, Green: 2x8 mm, Blue: 3x8 mm, and 

Black: all three electrodes wired together)…………………………………………. 67 

Figure 3.9: Normalization curves of Au film anode experiments, maximum power 

densities with respect to a) interface area between Au film and YSZ, b) triple phase 

boundary (TPB) length, i.e. perimeter of Au film anodes………………………….. 68 



 

 xii 
 

Figure 3.10: EIS curves (at OCV) of three Au film anodes with different interface 

areas (inset: high frequency intercept as Rb). (Orange: 1x8 mm, Green: 2x8 mm, 

Blue: 3x8 mm, and Black: all three electrodes wired together)……………………..69 

Figure 3.11: Schematic representation of experimental setup of two different 

interface areas between Au and YSZ and half covered with porous YSZ layer, a) Top 

view, b) Cross-section, c) Post Picture………………………………………………70 

Figure 3.12: Polarization curves of porous Au anodes with and without porous 

YSZ over layers (normalized with respect to Au-YSZ interface area) (Orange: 2x8 

mm, Green: 3x8 mm, Blue: 3x8 mm with porous YSZ layer, Magenta: 2x8 mm with 

porous YSZ layer)…………………………………………………………………...71 

Figure 3.13: EIS curves (at OCV) of four different porous Au anodes with and 

without porous YSZ over layers, normalized with respect to Au-YSZ interface area. 

(Orange: 2x8 mm, Green: 3x8 mm, Blue: 3x8 mm with porous YSZ over layer, 

Magenta: 2x8 mm with porous YSZ over layer)……………………………………72 

Figure 3.14: Experimental setup of two different interface areas between Au and 

YSZ and one with porous YSZ layer patch, a) Schematic representation from top, b) 

Cross-section, c) Post-experiment Picture………………………………………….. 73 

Figure 3.15: Performance curves of porous Au anodes with different interface area 

and one with porous YSZ island on top (Orange: 2x8 mm Porous Au, Green: 3x8 

mm Porous Au, Magenta: 3x8 mm Porous Au with 1x6 mm porous YSZ layer on 

top)………………………………………………………………………………….. 74 

Figure 3.16: EIS curves (at OCV) of porous Au anodes with different interface 

area and one with porous YSZ island on top, normalized with respect to the interface 



 

 xiii 
 

area between porous Au and YSZ electrolyte. (Orange: 2x8 mm Porous Au, Green: 

3x8 mm Porous Au, Magenta: 3x8 mm Porous Au with 1x6 mm porous YSZ layer 

on top)………………………………………………………………………………..75 

Figure 3.17: Experimental setup of four different interface areas between porous 

Au and YSZ by using α-Al2O3 blocking, a) Top view, b) Cross-section (right: 5x5mm 

Porous Au with 2x2mm α-Al2O3 blocking and left: 5x5mm Porous Au with 3x3mm 

α-Al2O3 blocking)……………………………………………………………………76 

Figure 3.18: Polarization curves of Porous Au anodes with α-Al2O3 blocking a) 

Raw performance data, b) performance data normalized with respect to Au area, c) 

performance data normalized with respect to Au-YSZ contact area (α-Al2O3 blocking 

area subtracted) (Orange: 5x5mm porous Au, Green: 5x5mm porous Au with 1 mm2 

α-Al2O3, Blue: 5x5mm porous Au with 4 mm2 α-Al2O3, Magenta: 5x5mm porous Au 

with 9 mm2 α-Al2O3)…………………………………………………………………77 

Figure 3.19: EIS curves (at OCV) of porous Au anodes with α-Al2O3 blocking, a) 

Raw data, b) normalized with respect to contact area between porous Au and YSZ 

electrolyte (inset: high frequency intercept as Rb) (Orange: 5x5mm Porous Au only, 

Green: 5x5mm Porous Au with 1x1mm α-Al2O3 blocking 3, Blue: 5x5mm Porous 

Au with 2x2mm α-Al2O3 blocking, Magenta: 5x5mm Porous Au with 3x3mm α-

Al2O3 blocking)………………………………………………………………………78 

Figure 4.1: Experimental setup of porous Au anodes with four different thicknesses 

a) Top view, b) Cross-section of the SOFC assembly…………………………….....94 

Figure 4.2 SEM images of porous Au anodes with various thicknesses after 72 

hours operation in SOFC………………………………………………………….....95 



 

 xiv 
 

Figure 4.3 Polarization curves (normalized with respect to Au-YSZ interface area, 

16 mm2 for all four electrodes) of four different thicknesses porous Au anodes with 

various fuel fractions of dry H2 Left: whole range of polarization curves, Right: 

details in maximum current density regions (Orange: 30 µm, Green: 60 µm, Blue: 90 

µm, and Magenta: 120 µm)……………………………………………………….....96 

Figure 4.4 Equivalent circuit used to fit the electrochemical impedances………..98 

Figure 4.5 Impedance curves at 1V overpotential (normalized with respect to Au-

YSZ interface area, 16 mm2 for all four electrodes) of four different thicknesses 

porous Au anodes with various fuel fractions of dry H2 (Orange: 30 µm, Green: 60 

µm, Blue: 90 µm, and Magenta: 120 µm) Symbols are experimental data and lines 

are data from equivalent circuit fits………………………………………………...100 

Figure 4.6 The plot of Au anode thicknesses vs. Ran, Diff values at 1V overpotential 

from equivalent circuit fits with various dry H2 fuel fractions……………………..102 

Figure 4.7 The plot of p(H2) vs. Ran, Diff, H2 partial pressure dependence of Ran, Diff 

at 1 V overpotential from equivalent circuit fits with various dry H2 fuel fractions 

(Orange: 30 µm, Green: 60 µm, Blue: 90 µm, and Magenta: 120 µm)………..…103 

Figure 4.8 Polarization curves (normalized with respect to Au-YSZ interface area, 

16 mm2 for all four electrodes) of four Au anodes with various fuel fractions of wet 

H2 Left: whole range of polarization curves, Right: details in maximum current 

density regions (Orange: 30 µm, Green: 60 µm, Blue: 90 µm, and Magenta: 120 

µm)………………………………………………………………………………….104 

Figure 4.9 Impedance curves at the 1V overpotential (normalized with respect to 

Au-YSZ interface area, 16 mm2 for all four electrodes) of four Au anodes with 



 

 xv 
 

various fuel fractions of wet H2 (Orange: 30 µm, Green: 60 µm, Blue: 90 µm, and 

Magenta: 120 µm) Symbols are experimental data and lines are data from equivalent 

circuit fits…………………………………………………………………………...106 

Figure 4.10 The plot of Au anode thicknesses vs. Ran, Diff at 1V overpotential from 

equivalent circuit fits with various wet H2 fuel fractions…………………………..107 

Figure 4.11 The plot of p(H2) vs. Ran, Diff, H2 partial pressure dependence of Ran, Diff  

at 1 V overpotential from equivalent circuit fits with various wet H2 fuel fractions 

(Orange: 30 µm, Green: 60 µm, Blue: 90 µm, and Magenta: 120 µm)…………..108 

Figure 4.12 Polarization curves (normalized with respect to Au-YSZ interface area, 

16 mm2 for each) of four different thicknesses porous Au anodes with dry and wet H2, 

isotopically labeled HD and D2 (Orange: 30 µm, Green: 60 µm, Blue: 90 µm, and 

Magenta: 120 µm)………………………………………………………………….109 

Figure 4.13 Impedance curves at 1V overpotential (normalized with respect to Au-

YSZ interface area, 16 mm2 for all four electrodes) of four different thicknesses 

porous Au anodes with dry/wet H2 and D2 at 70 sccm fuel fraction (Orange: 30 µm, 

Green: 60 µm, Blue: 90 µm, and Magenta: 120 µm) Symbols are experimental data 

and lines are data from equivalent circuit fits. (Note: the graph depicting the wet D2 

impedance is shown with different scales for aesthetic purposes)…………………110 

Figure 4.14 Porous Au anode thicknesses vs. Ran, Diff values from equivalent circuit 

fits with 70 sccm dry/wet H2-D2 flows……………………………………………..111 

Figure 4.15 Schematic representation of SOFC assembly employed in modeling 

studies………………………………………………………………………………114 



 

 xvi 
 

Figure 4.16 Comparison of experimental and simulated data from different 

thickness porous Au anodes with various dry H2 fuel fractions (Orange: 30 µm and 

Magenta: 120 µm)………………………………………………………………….116 

Figure 4.17 Comparison of experimental and simulated data from different 

thickness porous Au anodes at 70 sccm dry H2 and D2 fuel fractions (Orange: 30 µm 

and Magenta: 120 µm)……………………………………………………………..117 

 



 

 1 
 

Chapter 1:  

General Introduction 

1.1. Overview: 
 

Energy is as essential as food and water for humankind. Developing clean, 

economical, and sustainable energy sources is a major goal of much research. Fuel 

cells are clean and efficient energy conversion devices that convert chemical energy 

directly to electrical energy by electrochemical combination of a fuel and an oxidant. 

Conventional production of electrical energy is by combustion in combination with a 

generator or using a combustion engine, where the Carnot-cycle sets a limit to 35 % 

efficiency for an regular combustion engine [1, 2]. However, fuel cells are not limited 

by the Carnot efficiency because they rely on electrochemical processes. A fuel cell 

working as a type of continuously replenished battery offers an alternative. Products 

of the fuel cell are in principle only water, heat and CO2. Fuel cells offer the higher 

efficiency and the low pollution than other energy producing technologies. Fuel cells 

could be a part of power plants to enable the development of electricity generation 

with ~60 % efficiency [3, 4] and the energy production can be adjusted to meet the 

actual demand. This is a main research aspect for a power source in a scientific and 

industrial society. 

The idea of fuel cell was first elaborated by Sir William Grove [5], who 

demonstrated the reversibility of electrolytic water splitting in 1839. In 1899 Nernst 

[6] contributed by presenting that certain oxides achieved remarkably high electrical 
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conductivity by doping with other oxides. However, it was not until the 1950’s that 

fuel cells became a commercial product. They were developed in 1960’s when the 

American space program began using fuel cells in the Apollo Program. In the 

beginning of 1980s, due to the focus on environmental priorities and the demand for 

higher efficiency in energy conversion by realizing the scarcity of fossil resources, 

fuel cell research was initiated as a growing and an attractive research area. Several 

types of fuel cells were developed in last five decades. Currently, many types of fuel 

cells are approaching the market within a limited number of years. The primary 

challenges for fuel cells commercialization are the storing fuel, material cost and 

material stability to be solved by the researchers. There are also other issues to 

address for fuel cell materials such as catalytical activity of anodes and cathodes, 

compatibility to each other, and purity.  

There are five different fuel cells commonly known, and all are named after their 

electrolyte materials. Each type of fuel cell [7, 8] has different characteristics, such as 

operation temperature, efficiency, charge carrier ion, and demand for fuel 

composition, and these are listed in Table 1.1. 

Table 1.1: Different types of fuel cells 

650-1000 oC

600-650 oC

200-220 oC

50-100 oC

50-200 oC

Operation 
Temperature

60-75 %H2, and 
hydrocarbons

O2-ZrO2 + Y2O3
(YSZ)

SOFCSolid Oxide Fuel Cell

60-70 %H2, and 
hydrocarbons

CO3
2-Li2CO3 (62%) + 

K2CO3 (38%)
MCFCMolten Carbonate Fuel 

Cell

30-40 %CO free H2H+H3PO4PAFCPhosphoric Acid Fuel 
Cell

35-40 %Pure H2 and 
ethanol

H+Polymer (Nafion)PEMFCPolymer Electrolyte 
Membrane Fuel Cell

35-40 %Pure H2OH-KOHAFCAlkaline Fuel Cell

EfficiencyFuelCharge 
Carrier

ElectrolyteAbb.Name

650-1000 oC

600-650 oC

200-220 oC

50-100 oC

50-200 oC

Operation 
Temperature

60-75 %H2, and 
hydrocarbons

O2-ZrO2 + Y2O3
(YSZ)

SOFCSolid Oxide Fuel Cell

60-70 %H2, and 
hydrocarbons

CO3
2-Li2CO3 (62%) + 

K2CO3 (38%)
MCFCMolten Carbonate Fuel 

Cell

30-40 %CO free H2H+H3PO4PAFCPhosphoric Acid Fuel 
Cell

35-40 %Pure H2 and 
ethanol

H+Polymer (Nafion)PEMFCPolymer Electrolyte 
Membrane Fuel Cell

35-40 %Pure H2OH-KOHAFCAlkaline Fuel Cell

EfficiencyFuelCharge 
Carrier

ElectrolyteAbb.Name
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The first three types of cells in Table 1.1 require relatively pure hydrogen fuels. 

Accordingly, the use of hydrocarbon or alcohol fuels requires an external fuel 

reforming step to separate hydrogen from hydrocarbon sources. This not only 

increases the complexity and the costs of the system, but also decreases the overall 

efficiency [8]. The efficiency is calculated by current output of the device divided by 

theoretical current of fuel put into the device. For MCFCs and SOFCs, it is expected 

that hydrocarbon fuels can also be utilized directly, without reforming, since they 

operate at higher temperatures. These higher temperatures provide higher 

hydrocarbon fuel utilization efficiencies, and enhanced efficiency. For example, the 

thermodynamic efficiency of the SOFC for methane conversion is calculated as 100 

% at SOFC operating temperatures [9] and the chemical-to-electrical efficiency of 

methane exceeds to 45 % in SOFC systems. Therefore, the overall SOFC efficiency 

observed for methane fuels is 60-65 % [9]. However, the high operating temperatures 

can cause the shorter life times for fuel cell components. In addition, high 

temperature gas seals in these types of fuel cells impose another technical problem 

that has still not been overcome. 

The objectives of this thesis are classified into two categories: i) the structural and 

morphological characterization of carbon deposits accumulated on Ni/YSZ and 

Cu/CeO2/YSZ anode systems when butane is employed as the fuel (see in Chapter 2); 

ii) the addressing the questions about the role of YSZ in fuel oxidation catalysis and 

the role of Au, used as a current collector in conventional SOFC systems, on anodic 

H2 oxidation kinetics in SOFC (Chapters 3 and 4).  
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Since carbon deposition on SOFC anode surfaces reduces the integrity and the 

performance of SOFCs [10, 11], the understanding of the structure of carbon deposits 

formed on SOFC anodes systems provides a basis for understanding the mechanism 

of electrochemical oxidation of hydrocarbons in a SOFC so that improved SOFC 

anode materials and architectures can be explored.  

The simplest fuel for SOFCs is hydrogen and its unknown oxidation mechanism 

precludes the determination between current collection and electro-catalytic 

properties of SOFC anode and electrolyte materials. The understanding the YSZ and 

Au contribution on hydrogen oxidation mechanism provides the basis for 

understanding H2 oxidation on more complex systems (i.e. Ni, or Cu/CeO2). In 

addition, the Au-anode/ YSZ-electrolyte architecture is the simplest system to 

develop quantitative mechanism for surface diffusion, charge transfer, and chemical 

processes. 

1.2. Solid Oxide Fuel Cell (SOFC): 
 

The first SOFC was developed in 1937 by Baur and Preis [12]. Due to many 

improvements in material science and process engineering, much progress has been 

made after the first SOFC. The most significant advantage of the SOFC is its fuel 

flexibility and potential to be a clean and efficient energy conversion device. Since 

SOFCs can hopefully utilize conventional hydrocarbon fuels, it can be the transition 

energy conversion device from fossil fuels to hydrogen. However, due to high 

temperature needed for operation, the main components of SOFCs currently have 
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insufficient long-term stability [13]. Also, the high cost and handling difficulties of 

SOFC ceramic components have prevented commercialization.  

1.2.1. Principles of SOFC operation:  
 

The operating scheme of the SOFC is presented in Figure 1.1. SOFCs consist of 

three main components: (i) an electrolyte that conducts only O2- ions and is 

impermeable to gaseous species, (ii) a cathode that catalytically reduces oxygen, and 

(iii) an anode that catalytically oxidizes fuel. The driving force for O2- ion transport is 

the production of water and/or CO2 at the anode. This provides the difference in 

oxygen activity of two gases, namely oxygen and hydrogen. The primary reaction site 

on the anode is called the triple phase boundary (TPB), where the anode material, 

electrolyte, and fuel gas phase meet. The O2- ions are produced by catalytic 

dissociation of oxygen at the cathode under current load, and then transfer through the 

electrolyte to the anode TPB where they react with dissociatively adsorbed fuel 

species to form products. Adsorbed fuel species are formed by consecutive charge-

transfer reactions, and then, electrons are discharged to current collector on anodes. 

The released electrons on the anode pass through external current load, and then they 

are again used for oxygen reduction to complete the circuit. 

Fuel 
(H2, CH4 or C4H10)

Oxidant
(O2 or Air)

↑O2-

Anode

Cathode

Electrolyte

e-

e-

LOAD i

Products 
(CO2 + H2O)

Fuel 
(H2, CH4 or C4H10)

Oxidant
(O2 or Air)

↑O2-

Anode

Cathode

Electrolyte

e-

e-

LOAD i

Products 
(CO2 + H2O)

 
Figure 1.1 Schematic representation of SOFC assembly operation (the anode and cathode sides are 

physically separated from each other by a dense electrolyte and high temperature ceramic sealing).  
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1.2.2. Electrolytes:  
 

SOFC electrolytes are ionic conductors that transport O2- ions thorough vacant 

oxygen lattice sites available in the crystal structure [14-17]. This process is 

accomplished by doping of one oxide material into other one to create oxide lattice 

site defects. For conventional SOFCs, yttria (Y2O3) doped zirconia (ZrO2), which is 

called yttria stabilized zirconia (YSZ), exhibits not only high ionic conductivity but 

also extraordinary mechanical properties at SOFC operation temperatures. The 

monoclinic crystal structure of ZrO2 is favored at temperatures up to 1150 oC, and 

thermodynamically stable fluorite-type crystal structure of cubic ZrO2 exists only at 

temperatures above 2400 oC. However, when ZrO2 doped with Y2O3, the fluorite-type 

crystal structure becomes stable at room temperature [18] [19]. Doping ZrO2 with 

Y2O3 creates oxygen vacancies in the fluorite-type crystal lattice. These oxygen 

vacancies are responsible for O2- conductivity. The optimized doping percentage of 

yttria, 8 mol % (Zr0.92Y0.8O1.92), provides maximum oxide conductivity and is the 

electrolyte choice for SOFCs [19]. Other than YSZ, a number of alternative materials 

have been examined in the literature and applied by other companies. Recently, 

gadolinium doped ceria, Ce0.9Gd0.1O1.95 (GDC or CGO) electrolytes have been 

studied for SOFCs operating at intermediate temperatures (600-800 oC), due to their 

high ionic conductivity [20, 21]. However, GDC causes performance losses by short 

circuiting current from the anode to the cathode due to its mixed conducting (ionic 

and electronic) properties [22]. The highest ionic conductivity was found for 

La0.9Sr0.1Ga0.9Mg0.1O3 (LSGM) [23-25]. However, the cost of LSGM prohibits it from 

being exploited as a conventional electrolyte in SOFC. 



 

 7 
 

1.2.3. Cathodes:  
 

SOFC cathodes need to have high ionic-electronic conductivity, good O2 reduction 

catalytic activity, and stability at SOFC operation conditions. The traditional cathode 

material for SOFCs is a perovskite-type strontium doped lanthanum manganite, 

La0.8Sr0.2MnO3-δ (LSM). This material shows high electro-catalytic activity for 

oxygen reduction and mixed ionic-electronic conductivity [26]. However, LSM reacts 

with the YSZ electrolyte at higher temperatures to give a non-conducting lanthanum 

zirconate, La2Zr2O7 (LZO) interlayer is formed [27, 28]. LZO formation at the 

cathode is detrimental because it decreases the cathode electronic conductivity and 

prevents the charge-transfer reaction in oxygen reduction. Therefore, the sintering 

temperature of LSM materials must be optimized to maximize adhesion to YSZ, but 

avoid LZO formation. At intermediate temperatures, 600-800oC, strontium and cobalt 

doped lanthanum ferrate, La0.8Sr0.2Cr0.2Fe0.8O3-δ (LSCF), is an advantageous 

alternative for the SOFC cathodes due to its higher mixed electronic-ionic 

conductivity [24, 29, 30]. However, the long-term stability of LSCF under SOFC 

conditions is not good. Another choice as a cathode material for SOFC is samarium 

strontium cobaltate, Sm0.5Sr0.5CoO3-δ (SSC), which can be used at even lower 

temperatures (500oC), but SSC is not compatible with YSZ due to their different 

thermal expansion coefficients at this temperature range [31, 32]. Strontium doped 

lanthanum cobaltate, La0.8Sr0.2CoO3-δ (LSCo) has higher electronic conductivity. 

However, its thermal expansion coefficient also deviates from that of YSZ, and its 

reactivity toward YSZ also leads to the formation of non-conducting zirconates [33, 

34]. This difference in thermal expansion is mitigated by thin functional layers. 
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1.2.4. Anodes:  
 

SOFC anodes need to have high ionic-electronic conductivity, good fuel oxidation 

catalytic activity, and stability at SOFC operation conditions. The conventional anode 

material is a highly porous Ni/ceramic composite (50-50 % Ni/YSZ systems, particle 

size of Ni ~1 µm) [35-37]. Ni/YSZ systems is extensively used due to its excellent 

catalytic properties for hydrogen oxidation, its low reactivity toward other SOFC 

components and its low cost [36]. The Ni/YSZ composite anode is usually fabricated 

from a NiO/YSZ mixture, and then reduced to a Ni/YSZ cermet under a hydrogen 

atmosphere. The re-oxidation of the anode results in an expansion of about 30% in 

the Ni phase. This causes a separation from the anode composite and YSZ electrolyte 

[38]. Another drawback of Ni/YSZ cermet anodes is carbon deposit formation with 

hydrocarbon fuels. This causes clogging in gas channels, blocking of active Ni 

surface sites and physical disintegration of the porous anode structure [39]. Therefore, 

Ni-based anode systems are not suitable for direct operation with hydrocarbon fuels 

with current design architectures. 

For conventional hydrocarbons, ceria, CeO2, is an alternative SOFC anode material 

due to its mixed ionic/electronic conductivity [40-42]. However, the Ce3+/Ce4+ redox 

couple causes also volume changes in SOFC anodes and generates structural 

instabilities. By doping with gadolinium, the change in volume is reduced but not 

eliminated completely [42]. Gadolinium doped ceria, GDC, anode systems have 

attained almost the same performance as Ni/YSZ systems with hydrogen, and carbon 

formation is not observed with methane [43-47]. However, GDC has inadequate 

adhesion to the YSZ electrolyte [48] and relatively high cost. In recent reports, other 
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anode cermet compositions, such as Ni-ceria, or Cu-ceria were used with 

hydrocarbon fuels, but these materials were also reported to have considerable 

limitations [49-53]. Ni promotes coking [54-56] and Ni-ceria was only successfully 

used only with methane and at relatively low temperatures (~500°C). Copper-ceria is 

better suited for larger hydrocarbons as coking has not been observed in Cu-based 

systems [57-60]. However, Cu is a poor electrocatalyst in comparison to Ni, and has a 

relatively low melting point. As such, it is not compatible with many standard high 

temperature SOFC fabrication techniques [61]. Recently, GDC with the addition of a 

better ionic conductor (lanthanum strontium chromium manganite), and with a low Ni 

content (~4 %) have been used as SOFC anodes [62, 63]. This composition shows 

enhanced performances not only with hydrogen but also with methane, propane and 

butane. 

Titanium doped YSZ (Ti/YSZ) systems have also drawn increased interest as 

SOFC anode materials [64, 65]. These systems have a thermal expansion coefficient 

comparable to YSZ and a better electrical conductivity. Addition of Ni to Ti/YSZ 

systems reduces the agglomeration tendency of Ni particles so that these anode 

systems improve the SOFC performance and diminish the degradation rate around 

1000oC [66]. 

1.2.5. Planar SOFC cell designs:  
 

The two basic structural designs for SOFCs are tubular and planar cells [41, 67-69]. 

The planar SOFC design is important for the commercial SOFC systems, because 

single SOFC cell can only deliver around 1 V. Therefore, to obtain useful voltages 

many planar SOFC cells are generally stacked in series, called a SOFC stack. In 
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addition, the planar design is easier to fabricate and more convenient for experimental 

access. 

Cathode

Electrolyte
Anode

a b c

Cathode

Electrolyte
Anode

a b c
 

Figure 1.2 Planar cell designs a) cathode supported cell, b) electrolyte supported cell, and c) porous 
anode supported cell, drawings not to scale.  

 

As shown in Figure 1.2, the planar cell can be designed in several ways. Each 

design has advantages and disadvantages. Cathode supported design has an advantage 

of low ohmic losses in the electrolyte [41, 68]. However, the cathode supported cell 

design is not preferred because the thick cathode (0.5-1 mm) creates an excessive 

concentration loss (especially if air is used) causing the decrease in oxygen reduction 

reaction rate. The problem for this design is caused by poor electronic conductivity of 

current cathode materials [68]. Therefore, a thin SOFC cathode layer draws more 

interest in SOFC cell designs.  

Electrolyte-supported cell designs supply excellent physical strength to the SOFC 

with thin cathode and anode layers. Thick electrolyte (0.2-1.5 mm) support designs 

are employed for research purposes to address questions about the SOFC anode and 

cathode systems [26, 41]. The electrolyte supported design provides an experimental 

foundation for utilizing many different fabrication techniques and different anode and 

cathode materials [26]. The drawback of the electrolyte supported cell design is that 

the very large ohmic resistances are generated by thick electrolyte, which limits the 
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conventional SOFC performance. However, the electrolyte resistance can be reduced 

by co-doping scandia into YSZ [70, 71].  

Recent advances in physical and chemical vapor deposition techniques are being 

employed in the fabrication of thin electrolyte layers. Electrolyte and anode 

deposition techniques differ in deposition rates, substrate temperature during 

deposition, precursor materials, necessary equipment, cost, and quality of the 

resulting film [41, 68, 69]. These advances drive great interests in constructing porous 

anode (0.5-2 mm thickness) supported cell design to make a commercial SOFC on the 

market. The anode supported cell design advantages are high mechanical strength, 

adjustable cathode size, and high performance. However, the redox couples of some 

of the anode materials, for example Ni/Ni2+ and Ce3+/Ce4+, increases stresses in anode 

supported SOFC assembly during oxidizing-reducing cycles [40, 72]. The 

vulnerability of cracking and pinholes in the thin electrolyte (10-20 µm) increases the 

risk of hydrogen leaks to the cathode, which will decrease the SOFC performance 

[73]. The wet impregnation techniques, which is the consecutive addition of the 

solution of nitrates or sulfates of each components into porous anode matrix, are used 

to include other components of the anode supported SOFCs [74, 75]. Physically 

strong porous anode supports are prepared from one anode component (usually YSZ 

electrolyte phase) with subsequent addition of components and final sintering under 

hydrogen atmosphere.  
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1.2.6. Performance limiting processes:  
 

In practice, there are several sources of voltage loss in SOFCs from reversible cell 

voltage. The reversible cell voltage or Nernst potential is given by Vrev=-∆G/nF 

where ∆G is the free energy of global oxidation reaction in SOFC. The internal 

voltage losses (or overpotentials) of SOFCs can be separated into two categories: 

ohmic and non-ohmic [76]. The ohmic losses (IR drops) are caused by the resistances 

of the electrolyte, anode, and cathode, in which the two latter resistances are 

negligible in real SOFCs. Non-ohmic losses result from physical and chemical 

processes taking place on cathode and anode, and also called overpotential losses 

[13]. 

 

a b c

Current, j

V
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ta
ge

, V Ideal open circuit voltage (OCV)

a b c

Current, j

V
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ta
ge

, V Ideal open circuit voltage (OCV)

 
Figure 1.3 Schematic graph of the voltage drop of SOFC as a function of withdrawn current density, 

a) low current regime, b) medium current regime, and c) high current regime. 
 

Different chemical and physical processes dominate the loss in different current or 

voltage ranges. Figure 1.3 shows how the cell polarization of typical SOFC changes 
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with the current density withdrawn. Three regions can be identified: low (Figure 1.3 

part a), medium (Figure 1.3 part b) and high current (Figure 1.3 part c) output. In the 

low current regime it is the reactions at the electrodes that limit the electrochemical 

conversion in the SOFC. Charge-transfer reaction losses mostly dominate the power 

losses, which are referred as activation overpotential, and are shown in Figure 1.3 part 

a. Since the effect of the activation overpotential losses decays exponentially through 

medium current region, the ohmic drop (IR) begins to dominate the shape of the 

polarization curve. The pure ohmic drop is linear for the whole polarization curve and 

its effect is clearly seen in Figure 1.3 part b. The linear ohmic drop is caused by the 

low ionic conductivity of the electrolyte, which is constant at SOFC operation 

temperatures. A second loss is due to the need for concentration gradients in the 

porous electrode structures. This drop in concentration reduces the free-energy 

change in reaction 1.1 and thus causes a drop in voltage. This is modeled as 

overpotential due to transport. A third is due to the decrease in voltage drop at the so-

called three-phase boundary to drive the charge transfer reactions. This overpotential 

is referred to the activation overpotential. 

In every regime the types of reactions dominating current can be elucidated from 

polarization curves; to explain the limiting processes simplified hydrogen oxidation 

kinetics steps will be used as a model. The activation losses of hydrogen in an SOFC 

are displayed in the low current regime and believed to occur in two steps: 

dissociative adsorption of hydrogen (1.1 and 1.2), and charge-transfer reactions (1.3, 

1.4, 1.5, and 1.6). 
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Since these two reactions (1.1 and 1.2) are consecutive, these two steps are 

combined and called dissociative adsorption of hydrogen. Charge transfer reactions 

also affect the SOFC performance in the low current regime. Although there are many 

possibilities for transporting electrons from adsorbed species to the electrode, four 

different charge transfer reactions (1.3, 1.4, 1.5, and 1.6 have been proposed: 

 

The first two reactions (1.3 and 1.4) occur on the electrode. These reactions are not 

literally called charge transfer reactions, but are electrochemical processes on the 

electrode as a part of an electrochemical mechanism. These reactions are reported to 

be fast and not controlling the charge transfer processes reported in the literature. 

However, the last two reactions (1.5 and 1.6) in this group need O2- ions, which are 

only available at the TPB. Therefore, the shape of low current regime is dominated by 

dissociative adsorption of hydrogen and two consecutive charge transfer reactions. 

The activation losses can be lowered by increasing the reaction rates.  

Pure ohmic losses in the medium current regime are mostly caused by the 

electrolyte ionic resistance in the transport of O2- ions as seen in Figure 1.3 part b. To 

H2(g)    ↔ H2(ad) 
 
H2(ad)  ↔ 2H(ad) 
 

1.1 Adsorption 
 

1.2 Dissociation of H2 
 

H(ad) ↔ H+(ad) + e- 

 
H(TPB) ↔ H+(TPB) + e- 

 
H(TPB) + O2-(TPB)↔ OH-(TPB) + e- 
 
OH-(TPB) + H(TPB) ↔ H2O(TPB) + e- 

       1.3 Electrochemical process on anode surface
 

1.4 Electrochemical process at TPB 
 

1.5 Charge transfer at TPB 
 

1.6 Charge transfer at TPB 
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reduce the ohmic losses, different types of electrolyte, cathode and anode materials 

with higher ionic conductivities are needed.  

Lastly, the high current regime is dominated by mass transport processes of 

reactants and products. 

 

When the electrolyte supported design is used, the working electrode is a thin 

porous anode. The current density drawn from this anode is fairly low. The gas-phase 

diffusion of hydrogen in the anode is fast as compared to surface diffusion, and not a 

limiting factor in the SOFC performance. However, the surface diffusion (1.7, 1.8, 

and 1.9) of adsorbed fuel species and water on the SOFC anode surface can become 

very significant in the last regime.  

 

where -∆Go
reaction is Gibbs free energy; P is pressure; n is number electrons; F is 

Faraday constant; R is gas constant; T is temperature in Kelvin. The water desorption 

reaction (1.10) from the TPB affects both the activation loss (in the low current 

regime), and the mass transport loss (in the high current regime). In the low current 

regime, the open circuit voltage, OCV, (1.11 Nernst potential) of the SOFC is 

impacted by the amount of water at the anode. In the high current regime the water 

desorption reaction rate affects the number of reactive sites available for surface 

diffusion of adsorbed species and for the charge-transfer reaction. Therefore, the 

H(ad) ↔ H(TPB)  
 
H+(ad) ↔H+(TPB) 
 
H2O(TPB) ↔ H2O (ad) 
 
H2O(ad) ↔ H2O (g) 

1.7 Surface diffusion of H(ad) to TPB 
 

1.8 Surface diffusion of H+ (ad) to TPB 
 

1.9 Surface diffusion of H2O 
 

1.10 Desorption of H2O 

OCV = Ecell = -∆Go
reaction/nF + RT/nF ln(Pproducts/Preactants) 1.11 Nernst Potential 
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effect of water desorption would also be seen in the high current region in Figure 1.3 

part c. 

Electrochemical impedance spectroscopy, EIS, is employed extensively to 

investigate physical and chemical processes in SOFCs. All of these reactions above 

and their effects can be monitored by EIS. Impedance measurements as a function of 

overpotential are used at different points of polarization curve (Figure 1.3), in which 

the certain overpotential is applied between the anode and the cathode [77]. An 

alternating voltage, ∆V (ω), is imposed at constant overpotential of the cell and the 

response is measured in terms of an alternating current, ∆j (ω): 

 

where t is the time, Vm and Im are the magnitudes for voltage and current respectively, 

ω is the angular frequency, and φ is the phase difference between the voltage and the 

current. The impedance, Z, is defined as 

 

By using the Euler equation 

 

the impedance would be 

in which 

∆V (ω, t) = Vm . e – iωt        1.12 
∆ j (ω, t) = Im . e – i(ωt + φ)             1.13 

Z(ω) = ∆V(ω, t) / ∆j(ω, t) = (Vm / Im) . e iφ          1.14 

e iφ  = cos φ + i sin φ                1.15 

Z(ω) = Zre(ω) + Zim(ω)              1.16 
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The impedance data is typically plotted in the Nyquist representation (Figure 1.4) 

where the negative imaginary part of impedance, Zim, is plotted vs. the real part of the 

impedance, Zre. 

 

Rb Rp

Zim
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ω
I
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←

low ω
→
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Zim
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ω
I

high ω
←
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Figure 1.4 Schematic representation of EIS Nyquist plot. 
 

The real part, Zreal, on the x-axis represents resistive processes of impedance curve, 

and the imaginary part, Zim, on the y-axis represents capacitive processes of an 

impedance curve. The bulk resistance, Rb, is dominated by the electrolyte and 

interconnects. Rb can be measured from the high frequency part (left hand side on x-

axis) of the Nyquist plot. Low Rb values are interpreted as the reduction of the ohmic 

drop in the SOFC systems and the better performance of SOFC systems. The 

intercept at low frequency (right hand side on x-axis) is called the total resistance, RT, 

Zre(ω) = real (Z) = |Z| . cos φ         1.17 
 
Zim(ω) = imag (Z) = |Z| . sin φ        1.18 
 
|Z| = Vm / Im = (Zre

2 + Zim
2)1/2        1.19 

 
tan φ = Zim(ω) / Zre(ω)         1.20 
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which is the sum of the resistances of the entire SOFC system. The difference 

between RT and Rb gives the polarization resistance, Rp. All physical and chemical 

processes on both cathode and anode are integrated into Rp. Therefore, all reactions 

given above would be represented by this single arc in the EIS curve. However, 

multiple arcs can be observed in these systems if the processes are taking place in 

different frequencies (ω).  Rp values are directly related with the overpotential losses 

in the SOFC system. Hence, by monitoring and evaluating Rp values, overpotential 

losses from reaction steps can be modified for the SOFC systems. The relaxation 

frequency, ω, is defined as the frequency at the maximum imaginary impedance 

value. In the case of several relaxation processes (several arcs), there exist several 

relaxation frequencies which can be identified as local maxima in the Nyquist plot 

and attributed to different processes. The relaxation frequencies are related with the 

rate of reactions on each reaction, where the faster reactions take place at high 

frequency. 

EIS data [77] are generally analyzed either by fitting the data to an equivalent 

circuit consisting of resistances, capacitances, and inductances or by simulations 

written for special SOFC systems. The main difficulty with the fitting method is 

related to the physical and the chemical interpretation of the equivalent circuit 

elements. There are limited amounts of studies for simulating EIS data using detailed 

kinetic and transport models. 
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1.3. Fields of Research: 
 

The specific energy of hydrogen is the highest of all fuels, but the lowest in the 

volumetric energy density. The storage and transportation of H2 is a problem yet to be 

addressed for implementing the hydrogen economy. Although hydrogen is considered 

as an ideal fuel for many energy-conversion systems, its widespread use is dependent 

on technological advances in its cost and storage. Hence, it is best to assume that in 

the near future, SOFCs would have to utilize hydrocarbons as fuel. 

Essential consumption of hydrocarbons on SOFCs has forced researchers to explore 

catalysts directly converting the chemical energy of hydrocarbon fuels to electrical 

energy without additional external chemical reactors. The process to strip electrons 

from a fuel molecule for clean and efficient energy production is called direct 

electrochemical oxidation (DECO) of fuels. Conventional Ni/YSZ anodes for SOFCs 

have been examined and realized having problems on DECO of hydrocarbon fuels 

that carbon deposit is formed at Ni anodes at high temperature and this formation 

causes the degradation of the anode material [39, 78]. The challenges about the 

DECO of hydrocarbons and the degradation of Ni/YSZ anodes have been studied 

mostly by Gorte, Barnett, Virkar, and Mogensen.  

The performance and degradation of SOFCs under severe operation conditions have 

been examined by Mogensen [37, 72, 79-81]. The mixture of hydrogen-methane 

containing 5-50 % water on the Ni/YSZ supported SOFCs with the current densities 

of 0.25-1 A/cm2 have been tested for about 300 hours. The analysis of results has 

revealed that the degradation of Ni/YSZ anode supported cell was dependent on the 

fuel gas composition, operation temperature and the current density. The reason of the 
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anode degradation has been explained by the separation of Ni and YSZ phases [79-

81]. The rate of degradation of SOFC anode has been optimized to the conditions of 

running cell voltage at 0.7 V at 850 oC and 0.75 at 750 oC, the current density at 1 

A/cm2, and the steam to carbon ratio of 2:1 [80].  

Dean has described the carbon formation problem and has examined whether or not 

gas phase reactions of higher hydrocarbons at high temperature range can cause this 

coke formation without electrochemistry [82]. The analysis of products of internal 

reforming of butane at the temperature range of 550-800 oC and the pressure of 0.8 

atm, and residence time of 5 seconds has shown that the main products of butane 

reforming were 36.3 % methane, 39.8 % ethylene, 13.0 % propylene, less than a 

percent ethane and hydrogen, and the fraction of four and five carbon chains in the 

gas phase. These results have raised the question about the actual fuel speciation 

resulted from pyrolysis, but not butane itself, causing the coking at this high 

temperature range.  

Gorte and co-workers have developed Cu/CeO2/YSZ anodes in order to solve the 

coking problem because Cu has a lower activity for the cracking reaction [39, 78]. 

These anodes always performed worse with hydrocarbons than the conventional 

anodes operating with hydrogen, the reason being the low catalytic activity of Cu. 

However, the butane fuel supply on Cu/CeO2/YSZ anodes resulted in superior power 

densities of SOFCs running hydrogen after carbon deposit formed. The reason of 

superior performance was proposed by Gorte et.al. [58, 74] that the conductivity of 

Cu/CeO2/YSZ anode systems enhanced after carbon deposition. However, the 

chemical and physical nature of these carbon deposits remained unclear.  
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Recently, Hibino[83, 84] has operated SOFCs with dry methane at a fuel utilization 

of 50% and obtained a maximum power output of 500 mWatts/cm2. The anode in this 

study was based on gadolinium doped ceria (GDC) containing NiO. Also, RuO2 (3 wt 

%) had been added to the anode, which was proposed as the reason for the resistance 

of the anode to carbon deposition and the good performance [83, 85]. However, the 

employment of RuO2 on SOFC anodes increases the cost of the entire SOFC 

assembly. The challenges of GDC anodes are establishment adequate adhesion to the 

electrolyte without detrimental reactions and lowering fairly high materials cost.  

Octane has been used in the SOFC systems by Barnett [86-88] to explore the longer 

chain hydrocarbon fuels such as gasoline on Ni/YSZ anodes with RuO2. Although the 

author emphasized much work required having SOFC working with gasoline, the 

published results have shown significant power densities (0.3-0.6 Watts/cm2 from 5-9 

% iso-octane) without any carbon deposit on the anode.  

Virkar [89, 90] has shown the great interest to the mechanical properties of Ni/YSZ 

anodes at SOFC operation conditions. Recently, the reduction and re-oxidation 

kinetics of Ni-based SOFC anodes have been studied by this group. The effect of 

small amount of CaO, MgO, and TiO2 to Ni/YSZ anodes has been evaluated for the 

entire SOFC anode stability. The results have shown that doping of CaO, MgO, and 

TiO2 to Ni/YSZ systems suppressed both the reduction and re-oxidation kinetics of 

Ni-based anodes. The earlier work from Virkar has addressed the activation and 

concentration polarization effects for the LSM cathode in anode supported SOFCs. 

The principal losses in SOFCs were attributed to the activation polarization due to 

charge-transfer reactions and the concentration polarization due to gas phase transport 
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through the thick anode, when the electrolyte was a 10 µm film on a 1 mm thick 

anode.  

The reaction mechanism of oxygen reduction on the SOFC cathode has been 

addressed by Fleig and co-workers [26, 91-94]. These authors have studied the 

possible pathways (Figure 1.5a) of oxygen reduction on dense LSM by using 

different thickness of LSM and by using sub-surface alumina blocking (Figure 1.5b) 

in between the dense LSM and the YSZ electrolyte. The authors have proposed that 

oxygen is reduced in the bulk LSM not in the interface between cathode and 

electrolyte. The catalytic properties of the cathode were found to be more significant 

than the conductivity. 

a ba b  
Figure. 1.5 a) Oxygen reduction pathways on conventional LSM-YSZ cathodes, b) Experimental 

setup for alumina blocking experiments from Fleig et al. [92]. 

 

The nature of the electrolyte dictates the operating temperature and the chemistry of 

the reactions occurring at the electrodes. For conventional SOFCs, the most common 

electrolyte material is YSZ. The main problem of YSZ is the high temperature (800-

1000 oC) requirement to enable the transport of oxide and oxygen vacancies through 
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the electrolyte [14-17]. Therefore, the challenges for the SOFC electrolyte need to be 

resolved by breakthrough materials reducing the SOFC operation temperature, and 

having excellent mechanical strength. Recently, doped-ceria based electrolyte 

materials have been tested by many different groups due to the high interest in ceria 

based anodes and their compatibility to ceria based electrolytes. However, ceria based 

electrolyte materials have the mixed type conductivity of both electronic and ionic, 

causing the leak in SOFC performance. The doping of gadolinium and samarium to 

ceria based anodes has been thought to resolve the problems about the lowering the 

operation temperatures and mechanical integrity at these temperatures [20-22]. 

 
Figure 1.6 Current collector experiments designs from Jiang on the SOFC cathodes, a) 0.032 mm2 

current collector area, b) 0.012 mm2 current area of Pt and Ag from Jiang et al.[95]. 
 

Current collection on anodes and cathodes of SOFCs has been discussed starting 

from the beginning of SOFC research, due the low electronic conductivity of the 

electrocatalyst cermets. It has been known that the increase in the current collection 

area on both Ni/YSZ anodes and LSM-YSZ cathodes causes the enhancement in the 
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SOFC performance [80, 90, 95-100]. The current collection experiments with 

different contact areas (Figure 1.6) on SOFC cathodes have been reported by Jiang 

[95]. Pt and Ag mesh with various waven mesh and crossover sizes have been 

employed as current collectors (Figure 1.6). The current collection area has been 

assumed to be the sum of areas of crossover points of waven mesh. By using the 

Ni/YSZ anode supported SOFC experimental design for the cathode current collector 

experiments, the authors have demonstrated that the increase in the contact area 

between cathodes and current collectors reduced both cell resistance (from 1.43 

Ω*cm2 to 0.26 Ω*cm2) and cell overpotential losses (from 225 mV to 119 mV at the 

current density of 250 mA/cm2). 

Basic research has had much intention to tackle with the question about the length 

scale of current collection on the SOFC electrodes. The amount of the inert and 

expensive metals such as Au, Pt, and Ag used as current collectors on the 

conventional SOFC electrodes could be reduced. The length scale of the current 

collection is defined as the distance from the current collector perimeters at which 

electrons are carried out to the SOFC load [95, 101-103]. The distance of current 

collection depends on conductivities of the SOFC electrode materials. and is believed 

to be in nanometer scale [95, 102]. The challenge to address the length scale of 

current collection is the requirement of the nanometer scale patterns of current 

collectors on conventional SOFC electrodes. 

The computational analysis of SOFC systems facilitates the better understanding of 

the experimental data in SOFC research and then, aids to have better choices of 
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designs. By employing a number of modeling approaches, the simplified SOFC 

systems and their behavior with different fuels have been simulated.  

The polarization curve simulation of SOFC systems is the method used extensively 

to elucidate the parameters of electrode processes. Recently, Bessler, Warnatz, and 

Goodwin [104] have reported the modeling studies to address the behavior of various 

charge-transfer reaction pathways as a mechanism on the hydrogen oxidation kinetics 

of Ni/YSZ anodes. They have studied three different charge-transfer reaction 

pathways (oxygen spillover, hydrogen spillover, and interstitial hydrogen transfer) 

based on types of charge-transfer reactions, mentioned in Section 1.2.6. Their 

modeling studies and their comparison with experimental data suggest that the rate 

limiting step is charge-transfer during hydrogen spillover from Ni to a hydroxyl group 

on the electrolyte surface. They have revealed the challenges that a complete model is 

required to include the set of the surface diffusion parameters and the chemical 

reaction kinetics of the intermediates.  

There have been few simulations of EIS data of SOFC systems. One example of 

modeling studies of impedance spectra on SOFC date has been reported by Zhu and 

Kee [105]. These authors have reviewed the modeling studies from Goodwin and 

Gauckler to adapt their results into EIS simulations. The authors have developed a 

model to analyze impedance spectra in anode supported SOFCs with internal 

reforming of methane. The parameters of gas phase diffusion, reforming chemistry of 

hydrocarbons, charge-transfer reaction, and ohmic ion transport have been included 

into their model. EIS simulations have been done on the circuit shown in Figure 1.7a 

by using kinetic and thermodynamic parameters for reforming chemistry of 
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hydrocarbons and porous-media transport i.e. gas phase diffusion. Their EIS 

simulations of various current densities on SOFC system are shown in Figure 1.7b. 

The EIS data have revealed that gas phase diffusion of fuels (H2 and CH4), reaction 

pathways, and individual reaction rates directly affected EIS spectra. Consequently, 

they have proposed that optimized EIS simulations were required for each individual 

SOFC systems. 

a ba b
 

Figure 1.7 a) equivalent circuit for fitting EIS modeling studies, b) EIS simulations from modeling 
studies, from Zhu and Kee [105]. 

 

1.4. Scope of the thesis: 
 

Analyses of the electrochemical oxidation kinetics of hydrogen and hydrocarbon 

fuels are presented in the following chapters. The performance of SOFC anodes with 

different materials and different experimental plan is examined by using 

electrochemical techniques, i.e. Linear Scan Voltammetry (LSV) and Electrochemical 

Impedance Spectroscopy (EIS). 
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The power and current densities of SOFC systems are 10-20 times lower than the 

contemporary SOFC systems due to thick electrolyte supported MEAs. The thickness 

of the YSZ electrolytes changes between 1.00 to 1.20 mm (0.020 to 0.030 mm in 

conventional SOFC systems). Thick electrolyte is preferred to eliminate anode 

transport and to minimize pre-electrochemical reactions in a support layer. The series 

of Ni/YSZ and Cu/CeO2/YSZ anode systems are evaluated for the characterization of 

carbon deposits from butane fuel. The Au/YSZ systems are employed to examine the 

rate limiting step of the H2 oxidation reaction on the SOFC anodes 

A comprehensive review of hydrogen and hydrocarbon fuels used on SOFC 

anodes, and characterization of carbon deposits accumulating on SOFC anodes with 

hydrocarbon fuels is given in Chapter 2. The contribution of Au anodes and YSZ 

electrolyte materials on SOFC anode performance and on hydrogen oxidation 

reactions is discussed in Chapter 3. Also, the reactions at the interface between SOFC 

anodes and electrolytes are evaluated via different anode geometrical areas on SOFC 

electrolyte in Chapter 3. Chapter 4 discusses the hydrogen oxidation kinetics steps on 

the SOFC anode interface and surfaces by using different Au electrode thicknesses 

and different fuel composition to explore the effect of fuel partial pressure on SOFC 

anode performance. By using isotopically labeled D2 fuel on SOFC anode the 

contribution of surface diffusion reaction on Au electrode performance is addressed 

by using experimental studies and computational modeling studies in Chapter 4. The 

summary and future remarks of thesis are given in Chapter 5 as a conclusion. 
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Chapter 2:  

Formation of Carbon Deposits from Hydrocarbon Fuels in 
Solid Oxide Fuel Cells 

 

2.1. Introduction 
 

Solid oxide fuel cells (SOFCs) are of interest due to their high potential as 

stationary and portable power sources, and also due to their ability to use of hydrogen 

or hydrocarbons as fuels with high theoretical conversion efficiencies [3, 4, 7, 8]. 

SOFCs employ solid oxide electrolytes, that conduct O2- ions but require high 

operation temperatures (>500oC) [106, 107]. These high temperatures allow for the 

internal reforming of hydrocarbon fuels at the anode so that SOFCs can use natural 

gas, petroleum distillates, as well as renewable sources such as hydrogen, methanol, 

and ethanol.  

SOFCs contain an electrocatalyst anode to oxidize the fuel, an electrocatalyst 

cathode to reduce oxygen, a conductive material to collect current, and an electrolyte 

(8 mole % yttria stabilized zirconia, YSZ, in this study). Many research groups have 

focused on Ni based SOFC anodes due to their low cost compared to other precious 

metals. Ni is a well-studied catalyst for the oxidation of hydrogen [89, 108-112]. 

However, Ni also catalyzes coke formation on the anode surface with hydrocarbon 

fuels, which inhibits cell performance and causes anode degradation [58, 113, 114]. 

Several research groups have considered different anode materials to avoid the coke 

formation, especially with higher hydrocarbons [86, 87, 115]. Cu/CeO2/YSZ anodes 

have been investigated for the electrochemical oxidation of longer chain 
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hydrocarbons [58, 74, 116, 117]. Ceria (CeO2) has been well established as a catalyst 

for methane oxidation and for hydrocarbon activation [118-121]. However, there is a 

distinction between Ni/YSZ and Cu/CeO2/YSZ anodes. Gorte and co-workers [10, 

11, 37, 39, 78, 113] have observed that Cu/CeO2/YSZ anode cell performance with 

hydrogen fuel was enhanced by a factor of 2-3 after the formation of carbon deposits, 

which is in sharp contrast to Ni/YSZ behavior. It has been claimed that the reason of 

this enhancement was due the formation of “tar” that promotes the electrical 

conductivity of poorly conducting anode [10, 11, 37, 39, 78, 113]. 

The chemical and structural properties of these carbonaceous deposits needs to be 

described to address some of the questions about the carbon formation and its effects 

on SOFC’s performance. There has been extensive research and many different 

approaches to this subject. Dean’s research group [82] has examined the gas-phase 

reactions of higher hydrocarbons at high temperature range to address the effect of 

pyrolysis on the carbon formation. The analysis of butane pyrolysis products at the 

SOFC operating conditions (temperature range of 500-850 oC with the pressure of 0.8 

atm and the residence time of butane 5 seconds without electrochemistry) has shown 

the gas phase composition (36.3 % methane, 39.8 % ethylene, 13.0 % propylene, less 

than a percent ethane and hydrogen, and the fraction of four and five carbon chains). 

Another approach from Gorte’s group [78] has been the examination of exhaust 

species of SOFCs running with butane. Condensed speciation on the exhaust tube has 

been mainly defined as polyaromatic hydrocarbons (PAH) such as naphthalene, 

acenaphthalene, phenanthrene, anthracene, and pyrene. Barnett and his colleagues 

have used iso-octane [87] and propane [88] as fuel for SOFCs and they have tried to 
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avoid the tar formation by adding air to the fuel mixture. The catalytic formation of 

carbon deposits has been also studied by using different hydrocarbons on Ni metal. 

Toebes et.al. [122] has recently shown the effect of Ni particle size on the catalytic 

growth of carbon fibers by using CH4, C2H4/H2 mixture, or CO/H2 mixture as a fuel 

system. Continuous carbon nanotubes could only be formed with small Ni particles (≤ 

50 nm) in hydrocarbon atmosphere at 550 oC. Continuous supply of hydrocarbon fuel 

allows growing layers on carbon nanotubes, and then carbon nanotubes were called 

carbon fibers. There have been a number studies about single and multi wall carbon 

nanotubes (reviewed in Dai et.al. [123]), which were catalytically formed on different 

metals such as Ni, Fe, Co, Mo, and Ru. 

Recently, Pomfret et.al [124] has reported that intermediates formed on Ni/YSZ 

anodes by using butane and CO as fuel had a graphitic nature. In situ Raman 

spectroscopy studies done in this work clearly showed that graphitic intermediates 

formed in first minute of hydrocarbon fuel exposure to Ni/YSZ anode systems. The 

chemical nature of these carbon deposits and/or tar on SOFC anodes operating with 

higher hydrocarbons was not fully defined, although these carbon intermediates were 

defined as graphitic. 

This study focuses on the understanding of the structural and compositional 

characteristics of carbon deposits, which are produced on Ni/YSZ and Cu/CeO2/YSZ 

anode surfaces of SOFCs using butane fuels. Polarization measurements of anodes 

were evaluated to observe the changes in power densities by using two different fuels 

such as hydrogen and butane consecutively on SOFC anodes. Power densities of the 

SOFC systems were correlated with carbon deposit formation with respect to time of 
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butane fuel flow to evaluate the effect of growth on SOFC performance. The effects 

of these carbon deposits on SOFC anode performance were explored to address the 

reason of the enhancement in SOFC power densities. The anode material dependence 

of these carbon deposits was investigated by employing Ni/YSZ and Cu/CeO2/YSZ 

anodes in SOFC systems using butane fuel. The characterization of the carbon 

deposits on anode surfaces were studied by using X-ray Diffraction (XRD), Raman 

Spectroscopy, Scanning Electron Microscopy (SEM), and X-ray Photoelectron 

Spectroscopy (XPS). The chemical nature of carbon deposits forming on SOFC 

anodes is mostly in graphitic structure. Moreover, the combinations of disorders in 

the graphitic structure, edge carbon effect in the graphitic structure and morphology 

differences, such as spherical and filamentous, are the reason for the varieties of 

graphitic carbon deposits on anode materials. Besides spherical morphology of 

graphitic carbons with the finite grain size observed for both anode systems, 

filamentous carbon morphology was observed only on Ni/YSZ anode systems.  

2.2. Experimental Section  
 

The experimental setup for the SOFC assembly is shown in Figure 2.1. The single 

SOFC was attached to a ceramic tube by using ceramic paste. The entire assembly 

was placed to a furnace after preparation of SOFC assembly was completed. The 

preparation and operation details of SOFC assembly are explained below. Fuel flow 

was supplied to the anode by inlet tube, and the cathode was exposed to air by using 

another. The Membrane electrode assembly (MEA) for the single SOFC was prepared 

on a polycrystalline YSZ disk (8 mole % yttria stabilized zirconia disk) with a 

25.4mm diameter and a 1.5mm thickness, which was fabricated from TOSOH Corp. 
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YSZ powders. YSZ powders were pressed with dye press and sintered at 1500oC for 

an hour.  

Cathode
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(Electrolyte)
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Figure 2.1: Schematic representation of SOFC experimental set up 

2.2.1. Preparation of Cathode:  
 

The porous LSM-YSZ cathode was prepared by using consecutive sintering of 

LSM-YSZ gel. First, 0.500 g LSM-YSZ powder (50% La0.85Sr0.15MnO3-50% YSZ, as 

purchased from NexTech Materials) and 0.0117 g KD-1 dispersant powder (Tape 

Casting warehouse, TCW) were ground in an amalgamator with a steel vial (2.54 cm 

length and 1cm diameter) with a steel cap and a rubber O-ring. The steel vial and its 

cap are tightly wrapped around and over the cap with Parafilm ® and then electrical 

tape to avoid leak. 0.2712 mL toluene solvent was added and the mixture was ground 

for 5 minutes. The mixture is cooled down on the bench for 15 minutes to decrease 

toluene evaporation. Lastly, 0.0325 mL Polyethylene Glycol plasticizer, PEG-600 

(Aldrich), 0.0432 mL Dioctyl Phthalate 99% releasing agent (Aldrich), and 0.0265 g 
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Polyvinyl Butyral binder, PVB, (TCW) were added to the mixture and then it was 

ground for another 5 minutes. The mixture is again cooled down on the bench for 15 

minutes to minimize the ingredient loss. The LSM-YSZ gel mixture was then coated 

onto the YSZ disk by using a masking tape (Kapton) to control the shape of cathode. 

The disk was heated at 0.3oC/min to 400oC, and fired for one hour. The sample was 

ramped to 1300oC at 1oC/min, sintered at 1300oC for an hour, and cooled to room 

temperature at 0.5oC/min. The resulting cathode was a smooth black layer on the YSZ 

disk. 

2.2.2. Preparation of Anodes: 
 

The Ni/YSZ anode: The NiO/YSZ paste (50% NiO-50% YSZ, Tech Materials) was 

applied to the cathode ready YSZ disk by using a masking tape (Kapton) to control 

the shape of anode, and then dried by using heat gun. The NiO was reduced in-situ in 

a 5 % H2-95 % Ar mixture for 10 hours at 785 oC.  

The YSZ anode: The porous YSZ layer (mixture of 60% YSZ powder from Aldrich-

40% glycerin from Fisher Chemicals) where needed for the anode was painted on the 

opposite side of the cathode and then sintered 1 hour at 400oC and then 1 hour at 

1300oC.  

The Cu/CeO2/YSZ anode: To prepare Cu/CeO2/YSZ anode, 10% ceria and 5% 

copper, where needed, were impregnated into the porous YSZ layer by aqueous 

solutions of Ce(NO3)3.6H2O and Cu(NO3)2.2.5H2O. MEAs were then sintered at 

800oC under reducing atmosphere.  
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2.2.3. Preparation of Cell Assembly: 
 

Pt and Au wires were attached to cathodes and anodes by using Pt and Au paste, 

respectively. The MEA was then attached to a 30 cm length, 1.6 cm inside diameter, 

and 2.2 cm outside diameter alumina ceramic tube (AC Technologies) by using 

zirconia-based ceramic paste (see in Figure 1). The fuel inlet tube was a 30 cm length, 

0.48cm inside diameter and 0.64cm outside diameter alumina ceramic tube (AC 

Technologies), which was sealed by a rubber stopper. 

 

2.2.4. SOFC Operation Conditions:  
 

The SOFC assembly was placed in a furnace and heated to 785oC at a rate of 

1oC/min under Ar/H2 flow. The diluent (Ar) / fuel (H2 or butane) ratio was 2:1 with 

flow of 140 sccm to 70 sccm, respectively. The fuel flow adjustment regarding to H2 

and butane fuels was accomplished by using the number of electrons produced by 

total oxidation of these two fuels. As a result of the flow rate adjustments, the number 

of electrons per unit from these fuel flows was the same. Flow rates of fuel mixtures 

were controlled by using electronic mass flow controllers. A National Instruments 

SCXI data acquisition system was employed to control and record the electronic mass 

flow controller data. After measurements were done, the SOFC assembly was cooled 

to room temperature by the rate of 1oC/min under Ar. 

 

2.2.5. Characterization Techniques: 
 



 

 35 
 

Either An Autolab PGSTAT30 or Gamry Reference 600 with four potential channel 

applications at once was used for electrochemical measurements. SEM analyses were 

performed on an AMRAY 1820K Scanning Electron Microscope with an acceleration 

potential of 25kV. XRD data were recorded by using a Bruker C2 Discover X-Ray 

Powder Diffractometer with a CuKα radiation and a HiStar area detector. In all 

samples, regions of the anode surfaces were selected randomly and three different 

spots for each anode system were analyzed and compared for reliability. Six frames 

were accumulated with an area detector and combined together to give 2-theta scan 

range from 4o to 90o. The MDI Jade software package was used to perform the unit 

cell indexing and refinements on the XRD results. Raman data were collected using a 

Renishaw In-Via Raman Microscope with 15mW power from an Ar+ ion laser source 

(488 nm). Renishaw WIRE 2.0 software was used to calculate the integrated 

intensities from Raman Spectra.  

XPS data were acquired by using a Kratos Axis 165 spectrometer at a base pressure 

of 4x10-10 Torr with a non-monochromatic MgKα radiation. The X-ray power used for 

the measurements is 150W. All the measurements were done in hybrid mode using 

both electrostatic and magnetic lenses, with a step size of 0.1 eV and sweep time of 

60 s. All individual region spectra were recorded in the FAT (Fixed Analyzer 

Transmission) mode with pass energy of 20 eV and an average of 10 scans. Data 

processing was done using Vision processing software. After subtraction of a linear 

background, all spectra were fitted using 60% Gaussian / 40% Lorentzian peaks, 

taking the minimum number of peaks consistent with the best fit. XPS measurements 

lead to calculate the relative atomic concentrations of the samples by utilizing peak 
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area and peak height sensitivity factors after inelastic background corrections were 

made. 

 

2.3. Results and Discussions 
 

2.3.1. Performance of SOFC anodes:  
 

Porous Ni/YSZ and Cu/CeO2/YSZ anode systems were employed to address the 

anode material effects on carbon deposits from butane fuel. As shown in Figure 2.2, a 

single circular anode was prepared for Ni/YSZ systems, whereas, two semi-circular 

anodes with and without Cu on an YSZ disk for Cu/CeO2/YSZ systems were 

prepared.  

These anode systems were evaluated to observe an enhancement in SOFC power 

densities by the consecutive fuel flow used in the order of H2-butane-H2 for a certain 

time for the butane fuel flows, which were 5 hours of butane fuel flow for Ni/YSZ 

anode systems and 5-100 hours for Cu/CeO2/YSZ. These two different butane fuel 

flow times were chosen to explore the effect of more carbon deposits on the 

performance of Cu/CeO2/YSZ anode systems. 

Changes in maximum power densities of these anode systems with respect to the 

operation time are shown in Figure 2.2. Abrupt decrease in maximum power densities 

is observed for all three anodes when butane fuel is first introduced after H2. This 

trend continues for an hour for each anode case, although current is being drawn on 

the anode systems. After four hours butane fuel flow was fed, maximum power 

densities are stable at certain values. This can be concluded that for the first hour of 
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butane exposure the maximum power densities of the anode decreases due to carbon 

deposit forming, and then the anode systems are saturated with carbon deposits after 

one hour, and enhance the performance by 30 %. 
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Figure 2.2: The SOFC power density vs. time plots for H2-Butane-H2 cycle representing a) on 
Ni/YSZ b) 5 hours, and c) 100 hours of butane on Cu/CeO2/YSZ anode systems (▬CeO2/YSZ, and --- 
Cu/CeO2/YSZ anodes) Pictures of anode systems after SOFC operations are respectively shown next 
to the power density curves of anode systems  

 

As shown Figure 2.2a-b, the conditioning time with butane fuel flow was the same 

for Ni/YSZ and Cu/CeO2/YSZ anode systems. Butane fuel flow was fed for 5 hours 

to both anode systems at 785oC, and then the fuel was switched to H2 to observe the 

change in maximum power densities with respect to previous H2 fuel. The maximum 

power density of Ni/YSZ anode with H2 fuel is not affected after butane fuel flow is 

introduced for 5 hours. On the other hand, for Cu/CeO2/YSZ anode systems there is 
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an increase in maximum power densities by a factor of approximately 3 with respect 

to initial H2 fuel power density values. Ni content in Ni/YSZ anodes is 50 % by 

weight, whereas Cu and CeO2 loadings are 5 and 10 % respectively. The 

enhancement in Cu/CeO2/YSZ anode systems hydrogen fuel is due to conductivity 

difference of anode systems before and after carbon deposition. Therefore, 5 % Cu 

loading by weight is insufficient for anode conductivity, which is supplied by carbon 

deposits after butane fuel flow.  

In Figure 2.2b, Cu/CeO2/YSZ anode has ~25 % more performance than CeO2/YSZ 

anode for first 5 hours of butane fuel flow. Because, addition of 5 % Cu increases the 

anode electronic conductivity and Cu/CeO2/YSZ anode provides higher power 

densities with butane fuel flow. However, CeO2/YSZ and Cu/CeO2/YSZ anodes 

follow the identical enhancement trend for H2 fuel. The addition of 5 % Cu to anode 

systems has no effect on H2 fuel performance. Since carbon deposits enhance the 

anode conductivity with H2 fuel, after carbon deposition shown in Figure 2.2b-c, the 

effect of Cu doping on Cu/CeO2/YSZ conductivity is surpassed.  

As shown Figure 2.2 b-c, the identical enhancement trend observed between 5 

hours and 100 hours of butane fuel flow times reveals that the longer butane fuel flow 

time has the same effect as the shorter time butane exposure on the power densities 

CeO2/YSZ and CeO2/Cu/YSZ anodes. However, the anode surface is completely 

covered with carbon deposits for 100 hours of butane fuel flow times in Figure 2.2c. 

The completion of carbon deposit from short or long time butane flow on the anode 

surfaces is proposed as the reason for the identical enhancement between 5 hours and 

100 hours of butane fuel flow times. 
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2.3.2 SEM images of SOFC anode surfaces: 
 

SEM images of carbon deposits on the anode surface and carbon deposits isolated 

from YSZ disk surface are shown in Figure 2.3. These carbon deposit spheres have 

diameters of approximately 5µm and the thickness of carbon deposit film isolated 

from YSZ disk surface is also 5µm. These carbon deposits have no fibrous character 

according to these SEM images.  

SEM images of identical carbon spheres have been reported in literature [125, 126]. 

The structural growth model for this kind of spherical carbon has been suggested by 

first Franklin [127] and later developed by Dresselhaus [128]. In their model, layered 

planes of small graphitic crystallites were joined together by cross links, and then the 

crystallite growth resulted from movement of layers rather than individual carbon 

atoms. After these graphitic crystallites formed, the spherical carbon deposits were 

self-organized by movement of graphitic crystallites. This model can also be applied 

in the growth of spherical carbons on SOFC anodes. Therefore, small crystallites of 

graphene layers produced on the SOFC anode surfaces organized to form carbon 

spheres with the size of 5µm, which fuse to form 5µm carbon films shown in Figure 

2.3. 
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Figure 2.3: SEM images of a) Carbon deposits on Cu/CeO2/YSZ anode surface b) enlargement of 

sample (a), c) the carbon film on YSZ disk. 

 

SEM images of carbon deposits on Ni/YSZ anode surfaces are shown in Figure 2.4. 

Both spherical and filamentous carbon deposits were observed on Ni/YSZ anode 

surfaces. Spherical carbon deposits, which are dominant morphology, have roughly 

1µm diameters in Figure 2.4a and are very similar to those described above. 

Filamentous carbon deposits, which were observed different places on Ni/YSZ 

surfaces, have 1-2µm diameter in Figure 2.4b. The filamentous carbon deposits are 

randomly spread on Ni/YSZ anode surfaces. The calculation of the ratio between 

spherical and filamentous carbon deposits is difficult to address by using SEM 

images. 

Ni metal itself is well known for catalyzing the formation of multi-wall carbon 

nanotubes from various hydrocarbons [123]. Multi-wall carbon nanotubes with 

number of walls ≥ 10 are called filamentous or fibrous carbon [123]. As explained 

previously, spherical carbon deposits are found both on Cu/CeO2/YSZ anode and on 

YSZ electrolyte surfaces. Therefore, the combination of spherical and filamentous 

carbon morphologies is anticipated for Ni/YSZ anode systems. SEM images of 
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carbon deposits in Figure 2.4 confirm both morphologies formed on Ni/YSZ anode 

systems. 

ba

10 µm 10 µm

ba

10 µm 10 µm

 

 Figure 2.4: SEM pictures of a) spherical carbon deposits b) the combination of spherical and 
filamentous carbon deposits on Ni/YSZ anode surfaces. 

 

2.3.3 XRD analysis of SOFC anode surfaces:  
 

X-Ray diffraction patterns in Figure 2.5 show that the carbon deposits formed on 

Ni/YSZ and Cu/CeO2/ YSZ anode surfaces have graphitic crystal structures with 

smaller domain grain sizes, La, and smaller thicknesses, Lc than those of the single 

crystal graphite structure. Graphite has the unique hexagonal crystal structure (Figure 

2.5 inset) composed of graphene (6-membered sp2 C rings) layers. The (002) 

reflection is the most intense XRD peak for graphite at 26.5o. XRD patterns of the 

carbon deposits isolated from the electrolyte and anode surfaces as well as 325-mesh 

graphite standard with an average particle size of 44µm are illustrated in Figure 2.5. 

The 325-mesh graphite XRD profile is shown as a standard to compare to the rest of 

the samples. The sharp graphite (002) reflection is observed 26.5o (d002=3.361 Å). 

The Ni/YSZ anode sample in Figure 5b has the most intense diffraction peak at 26.4o 
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(d002=3.376 Å) as compared to 325-mesh graphite sample, and all of the other carbon 

deposit samples on Cu/CeO2/YSZ anodes have one broad peak shifted to lower angle. 

This common broad peak suggests that both 5 hours and 100 hours of butane 

exposure to the SOFC anode produce graphitic carbon deposits. The peak positions of 

5 and 100 hours butane fuel flow samples are 25.3 o and 25.4o, respectively. The d-

spacing difference of carbon deposit crystals on Cu/CeO2/YSZ anode systems with 

different butane fuel flow times are approximately 0.015 Å. The isolated carbon film 

from YSZ electrolyte film between two semi-circle anodes has a peak at 25.8 o 

(d002=3.460 Å) 
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Figure 2.5: XRD Patterns of a) 325-mesh graphite, b) Ni/YSZ surface exposed to butane for 5 
hours, c) carbon deposit isolated from CeO2/YSZ anode surface exposed to butane for 5 hours, d) 
CeO2/YSZ surface exposed to butane for 100 hours, e) CeO2/YSZ surface exposed to butane for 5 
hours (●: SiO2 from ceramic paste, ■: YSZ, ♦: CeO2) Inset: Graphite crystal structure. 
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The shift to a lower angle and broadening of the (002) peak has been observed in 

many studies of graphite [129-131] and is attributed to the thickness (Lc) and the 

domain size (La) of the graphene layers (Figure 2.5 inset). As Lc decreases, the d-

spacing between graphene layers increases, which causes the shift of (002) peak to 

lower angle (2-Theta) with respect to the standard graphite (002) peak. The 

fluctuation in d-spacing causes the broadening and the shift [129, 130, 132, 133]. 

When the grain size, La, becomes smaller (in nanometer scale), the possibility of 

diffraction diminishes, thus the intensity of the peak also decreases. According to 

XRD analysis of carbon deposits from different anode surfaces show that the carbon 

deposits on Ni\YSZ anode have the closest structure to bulk graphite with respect to 

d-spacing values, Lc values. It is concluded that Lc values of carbon deposits on 

SOFC anode surfaces depend on materials used on SOFC anodes. Quantitative 

analysis of the grain size, La, will be extensively discussed in the Raman section. 

 

2.3.4. Raman studies of SOFC anode surfaces:  
 

The three different assemblies of SOFC mentioned above were evaluated by using 

Raman spectroscopy. Raman spectra of disordered graphite type materials [132-139] 

show two modes; the G (graphite) peak at 1570-1600 cm-1 and the D (disorder) peak 

at 1300-1350 cm-1. The G band, fully allowed, has E2g symmetry (Figure 2.6 inset) 

and is involved in the plane stretching motion of pairs of sp2 C atoms. The D band has 

A1g symmetry (Figure 2.6 inset) and is forbidden for infinite graphene layers but 

develops a strong Raman activity when the continuity of graphene layers is broken. 

This is caused by small grain sizes, structural disorders, and sp3 C atoms [135-138]. 
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The D band results from the 6-membered ring of sp2 C atoms, out of graphene layers. 

The network of sp3 C atoms, “diamond-like” [135], has an active Raman band with 

T2g symmetry centered at 1332 cm-1, which is in the same range of graphite G and D 

band. 
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Figure 2.6: Raman Spectra of a) 325-mesh graphite, b) Ni/YSZ anode (5 hours butane exposed), c) 
CeO2/YSZ (5 hours butane exposed), d) CeO2/YSZ (100 hours butane exposed), e) Cu/CeO2/YSZ (100 
hours butane exposed). Inset: Atomic motions of carbons and their symmetries in graphitic structure. 

 

The G and D Raman peaks of the carbon deposits from the SOFC anode surfaces 

are shown in Figure 2.6. The shift to higher energy in the G peak shows that graphite 

with a small average crystallite size (≤ 20 nm [135]) exists in our samples. The 
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decrease in crystallite size, La, causes the new sets of vibrational density of states in 

the graphene layers, therefore the G peak shifts to higher wave numbers in the Raman 

spectrum. The G and D peak broadening is also attributed to small La. When La 

decreases, carbons on edges [134-138] will increase in relative concentration and will 

be more disordered between crystallites. Therefore, the atomic environments of the 

crystallites will be different and the G and D peaks will be broader. These 

observations clearly show that nanocrystalline graphite is produced on the SOFC 

anode surfaces. 

The intensity ratio of the D and G peaks, I(D)/I(G) is inversely proportional to La 

and can be used to calculate the in-plane graphitic domain size, La. This relationship 

was first shown by Tuinstra and Koenig [140, 141]. Later, Knight and White [142] 

have shown that there is an empirical expression which explains the dependence of 

I(D)/I(G) ratio on La. Also, the excitation laser energy dependence of the I(D)/I(G) 

ratio has been extensively studied by many different groups. Lately, Cançado et al 

[143] derived an empirical formula revealing the excitation laser energy dependence 

on I(D)/I(G) (integrated peak areas) ratio, where La is defined by the following 

equation: 

 

La(nm) = (2.4x10-10)λl
4(nm)(I(D)/I(G))-1 ,      (2.1) 

 

in which λl is the excitation laser wavelength in nanometers (nm). They showed that 

at any given excitation laser energy, the crystallite size, La, can be calculated by using 

Raman integrated intensity ratio of D and G peaks. In our study, calculated La values 
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for different anode surfaces were confirmed by using Raman experiments with 

different types of the excitation laser energy, i.e. 488nm, 514.5nm, and 633nm. Since, 

the Ar+ ion laser (λ=488nm) is readily available, only the 488nm excitation laser 

energy Raman data were used in this report. 

Using equation 2.1, La of nanocrystalline graphite on SOFC anode surfaces was 

estimated to be from 4 to 12nm as listed in Table 2.1. La of nanocrystalline graphite is 

almost 12nm for Ni/YSZ systems and 4-6nm for Cu/CeO2/YSZ systems after either 5 

or 100 hours of butane is supplied to the anode. As mentioned on XRD section, 

Raman data and XRD studies clearly show the chemical nature, La, of carbon deposits 

varies with materials used in SOFC anodes. 

 

Table 2.1: Raman Data of SOFC anode surfaces  

SOFC anode materials 
 

D peak (cm-1) 
 

G peak (cm-1) 
 

I(D)/I(G) 
 

La (nm) 
 

Ni/YSZ(5 h butane) 
 

1355 1588 1.2 11.7 ± 0.4 

CeO2/YSZ(5 h butane) 
 

1372 1596 2.2 6.1 ± 0.2 

CeO2/YSZ(100 h butane) 
 

1386 1586 3.3 4.1 ± 0.1 

Cu/CeO2/YSZ(100 h butane) 
 

1384 1596 3.5 4.9 ± 0.1 

 

2.3.5. XPS studies of SOFC anode surfaces:  
 

Carbon deposits from SOFC anode surfaces and the 325-mesh graphite reference 

were analyzed by XPS in Figure 2.7. Spectra shown in Figure 2.7 show the detailed 

C1s binding energy region of the 325-mesh graphite and that of representative carbon 

deposits from anode surfaces. Similar fitting features and carbon atomic ratios from 

different anode surfaces and 325-mesh graphite standard suggest the same type of 
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carbon exists in all samples. A detailed examination of the C1s region of these carbon 

deposits on SOFC anode contains a number of overlapping features associated with 

different functionalities. The typical C1s region spectra (after linear inelastic 

scattering background subtraction) are shown in Figure 2.7 demonstrating how the 

C1s regions can be fitted to a number of component peaks. To remove the surface 

impurities, samples are etched by argon ion etching. Typically, this process cleans the 

surface uniformly with no implantation or compound decomposition, so that a depth 

profile can be obtained from the surface sample. 
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Figure 2.7: C1s region of X-ray photoelectron spectrum of a) 325-mesh graphite, b) typical SOFC 
anode surface. 
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XPS has been widely used for surface analysis of the carbon deposits [144-146]. 

The C1s binding energy of respective chemical states is employed to distinguish the 

carbon atoms with different hybridizations. Differences in the core region spectra 

provide substantial chemical information because the C1s region exhibits significant 

shifts with change in oxidation states [146] and hybridization [145]. These shifts can 

be accurately measured in the carbon deposits to differentiate carbon atoms with 

different environments [147, 148].  

The lowest binding energy peak at 284.3-284.6 eV is assigned to the sp2 hybridized 

(graphitic) carbon atoms and is in agreement with binding energies reported for single 

crystal graphite [144-150]. The second lowest binding energy peak at 285.1-285.6 eV 

is attributed to the sp3 hybridized carbon atoms, which has also been reported 

elsewhere [144-150]. Therefore, there are many edge carbons binding to graphene 

layers and graphite crystallites. These sp3 hybridized edge carbons can bind to carbon, 

hydrogen, and oxygen atoms. 

The higher binding energy peaks are consecutively assigned with respect to their 

chemical environments [145, 147, 148, 151, 152]. The C-OH carbon shows a peak at 

286.1 eV. The C-O-C carbon has a peak at 286.3 eV. The C=O carbon causes a peak 

at 287.4 eV. The O-C=O type carbon has a peak at 288.8 eV. Beyond this binding 

energy value, the π-π* interactions tend to give the carbon shake-up peaks that 

overlap with the binding energy of sp3 hybridized carbon atoms at higher oxidation 

states. The range of 288-289 eV and upper binding energy peaks become 

indistinguishable from each other. 
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As shown in Table 2.2, plasma etching removes oxygen from the surface of carbon 

deposits. After etching, the total oxygen % of each sample decreases to less than 5 %. 

This amount is a negligible amount for oxygen concentration in XPS studies and the 

total carbon content approaches 100 %. This analysis reveals that the carbon deposits 

consist of only carbon. The SOFC anode surface carbon and oxygen concentrations 

are similar to that of the 325-mesh graphite. These similarities in XPS analysis 

between 325-mesh graphite and the SOFC carbon deposits suggest that both have the 

same type of graphitic structure. The sp2/sp3 ratio of carbon materials gives 

information about the ordering level of graphene layers in the sample [145, 147-150]. 

Based on the sp2/sp3 ratio from XPS data, the SOFC carbon deposits have the same 

relative ordering level of graphene layers with respect to the 325-mesh graphite 

sample. 

 
Table 2.2: C and O atomic percentages from XPS Spectra 

  Total C % Total O % sp2 C % sp3 C % C-O % sp2/sp3 C 
Before 
Etching 

 
96.42 

 
3.57 

 
61.58 

 
12.77 

 
25.65 

 
4.8 

 
325-mesh  
Graphite After 

Etching 
 

97.07 
 

3.03 
 

65.95 
 

14.05 
 

20.00 
 

4.7 

Ni/YSZ 
(5 h Butane) 

No 
Etching 

 
98.38 

 
1.62 

 
69.30 

 
13.96 

 
16.74 

 
5.0 

Before 
Etching 

 
78.58 

 
21.41 

 
59.40 

 
16.19 

 
24.41 

 
3.6 

 
CeO2/YSZ 

(100 h Butane) 
After 

Etching 
 

95.62 
 

4.38 
 

67.93 
 

14.82 
 

17.26 
 

4.6 

Before 
Etching 

 
82.33 

 
17.66 

 
50.82 

 
25.24 

 
23.94 

 
2.0 

 
Cu/CeO2/YSZ 
(100 h Butane) 

After 
Etching 

 
98.20 

 
2.80 

 
66.98 

 
15.04 

 
17.98 

 
4.5 
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2.4. Conclusions 
 

The carbon deposits forming on Ni/YSZ and Cu/CeO2/YSZ anode systems in 

SOFC with butane fuel were investigated in this study. The structural characterization 

and chemical composition analysis of the carbon deposits on the SOFC anode 

surfaces show that graphitic carbon is formed from butane fuel with an average grain 

size of 4 to 12 nm. All analytical techniques employed in this study agree that the 

nano graphitic carbon deposits are formed on SOFC anode surfaces. 

The SOFC anode material dependence of carbon deposits is evaluated by using 

Ni/YSZ and Cu/CeO2/YSZ anode systems in SOFC feeding with butane fuel. These 

carbon deposits are likely to be generated by poor electrocatalysis of hydrocarbon 

fuels. In both anode systems, the nanocrystalline graphite with spherical morphology 

is observed, the formation mechanism of which has been well studied elsewhere [86, 

87, 122, 123]. However, the filamentous carbon morphology is only formed on 

Ni/YSZ anode surfaces. The calculated average crystallite size, La, of carbon deposits 

formed on anode surfaces is compared by using Raman data. The carbon deposits on 

Ni/YSZ anode surface have the largest La value, 11.7 nm, and the carbon deposits on 

Cu/CeO2/YSZ anodes have the La range in 4-6.1 nm. The disorder in the graphitic 

crystal structure, sp3 hybridized carbon atoms causes this close range of average 

crystallite size of graphitic carbon deposits. The reason of the difference in La range 

of carbon deposits from anode surfaces is caused by the morphology of filamentous 

carbon formed on Ni/YSZ anode surfaces. Consequently, the combinations of three 
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parameters, such as disorder in the crystal structure, sp3 carbon atoms, and 

morphology of carbon deposits, are three significant factors that affect the carbon 

deposit characteristic.  

XRD pattern (Figure 2.5) of anode surfaces coated with carbon deposits and 

isolated carbon deposit film show that the increase in the amount of carbon deposits 

results the superior order level, which is observed by the intensity and the shift of 

graphitic peak. The spherical and filamentous carbons on Ni/YSZ have higher La and 

Lc values and the diffraction peak of nanocrystalline graphite on Ni/YSZ anode is 

closer to that of graphite. The formation of filamentous carbon is observed only on 

the Ni/YSZ anodes due to Ni particles providing nucleation sites for the formation of 

filamentous morphology. However, spherical carbon morphology is observed not 

only on Ni/YSZ but also on Cu/CeO2/YSZ, CeO2/YSZ, and YSZ electrolyte surfaces 

because none of these components in Cu/CeO2/YSZ anode systems catalyzes the 

formation of filamentous carbon morphology. The role of each anode components is 

proposed as YSZ, source for O2- ions and catalyst for fuel oxidation when reduced; 

Cu, supplying conductivity on Cu/CeO2/YSZ anodes; CeO2, the catalyst for fuel 

oxidation; Ni, the catalyst for fuel oxidation and supplying conductivity Ni/YSZ. 

These results are consistent with other reports [10, 11, 37, 39, 78, 113]. 

Nanocrystalline graphite formation gives short term enhancement in conductivity and 

performance with poorly conductive anodes such as Cu/CeO2/YSZ anode systems but 

not with Ni/YSZ anode systems. The enhancement Cu/CeO2/YSZ anode performance 

is not dependent upon a longer feeding of butane fuel flow such as 100 hours of 

butane, because graphitic carbon deposits saturate the anode surface less than an hour. 
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These findings suggest that the nanocrystalline graphite formation likely contributes 

to anode conductivity, which was previously believed to be provided by “tar” 

formation [10]. It is proposed that these carbon deposits are likely to help the catalytic 

H2 fuel oxidation on Cu/CeO2/YSZ anodes. 

These results may help to address some of questions about the oxidation 

mechanism of longer hydrocarbons at SOFC operating conditions. Future studies on 

the nanocrystalline graphite formation on various SOFC anode surfaces may provide 

a basis for understanding the mechanism of direct electrochemical oxidation of 

hydrocarbons in a SOFC. 
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Chapter 3: 

Analysis of different Au anodes with different geometry and 
different Porous YSZ layers in SOFC assembly 

 

3.1. Introduction 
 

In Solid Oxide Fuel Cell (SOFC) systems, Ni is the anode electrocatalyst most 

studied due to its low cost and high catalytic activity [35-37]. Specifically a Ni/YSZ 

cermet is the standard electrochemical anode system in SOFCs. Metallic Ni anodes 

with different microstructures, such as porous Ni paste, Ni gauze anodes, and dense 

Ni patterns, are extensively studied as both anodes and current collectors [33, 110]. 

Experimental studies generally agree that two main processes limit Ni based anode 

performance: (i) the activation of H2, including charge transfer reactions and (ii) the 

desorption of H2O from the Triple Phase Boundary (TPB), where the fuel gas phase, 

the electrochemical catalyst, and the electrolyte meet [16, 33, 35, 36, 110]. 

Ni/YSZ anode can be chemically modified by the possible formation of NiO at the 

interface between electrolyte and Ni, which affects the long-term stability of these 

systems [35, 116]. In this respect, the stability and contribution of current collection 

on SOFC performance become more significant. Thus, determining the impact of 

current collection on SOFC performance is an understudied feature for the fuel 

oxidation kinetics in SOFC anodes. 

The distinction between the current collection and the electrochemical catalysis on 

SOFC electrodes is under discussion for a long time. This distinction is applicable to 

both anodes and the cathodes. Jiang et al. [95] has examined the relationship between 



 

 54 
 

current collection and cathode performance on SOFCs by varying contact areas on the 

cathode material. It is acclaimed that increases in cathode-current collector contact 

reduced the cell resistance and the polarization losses to give better SOFC 

performance [95].  

Au is commonly employed as a current collector on SOFC electrodes or as the 

interconnect between SOFC electrodes and measurement devices due to its low 

chemical activity [103, 154]. Molecular hydrogen, H2, is also of particular interest 

due its potential to be a fuel or an energy carrier gas for future energy conversion 

devices, such as fuel cells [8, 13, 68]. Therefore, understanding how H2 interacts and 

behaves with Au anodes on YSZ electrolytes is important for understanding SOFC 

systems. 

Traditionally, less reactive metals, such as Ag and Au, are chosen as the current 

collector or interconnect in SOFC systems. However, these materials, especially Au, 

are used also as the anode material [155]. Several experimental and computational 

studies are designed to address questions about H2 oxidation kinetics in the SOFC 

with different anodes. For example, Kek and colleagues [102, 103] have investigated 

the performance of Ni, Pt, Ag, and Au as contact anodes on SOFC assembly with H2 

fuel. It is reported in these studies that Ni is the best anode material over others. 

Although the performances of Pt, Ag, and Au were close, the order was Pt > Ag > 

Au. The reason of this order is explained to be the catalytic activity for the 

dissociative adsorption of H2 and the spillover of oxide and hydroxide ions on the 

metal surface. Hirabayashi et. al. [155] fabricated “anode free” SOFCs and showed 

that only Au as anode material on top of the SOFC electrolyte (120 µm thick) 
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material supplied a power density of 0.24 Watts/cm2 at 950 oC and 0.14 Watts/cm2 at 

800 oC. These power densities are comparable to Ni/YSZ anode systems supplying 

that of 0.5-0.9 Watts/cm2 with the same SOFC dimensions at this temperature range. 

The reason of this performance without an anode material is proposed due to the 

partial reduction of electrolyte surface. Pomfret et al. [156] has studied the effect of 

SOFC conditions on the reduction of YSZ surface. The depth profile studies of 

reduced YSZ layer propose that the thickness of reduced YSZ layer is 1-5 

nanometers. If there is a current collector such as Au, the reduced YSZ electrolyte 

layer could be considered as an electrocatalyst and affect the SOFC performance. 

Since Au is a current collector, and YSZ is a conventional electrolyte on SOFC 

anodes, it is imperative to understand the contribution of both Au and YSZ toward 

SOFC anode performance. The roles of both the possibly reduced YSZ surface and 

the Au electrode in H2 oxidation under SOFC conditions have not been completely 

clarified in the literature. 

Fleig and co-workers [91, 93] have addressed the relationship between cathode 

architecture and oxygen reduction reaction kinetics on SOFC cathodes. In particular, 

they studied the importance of cathode-electrolyte contact area and cathode thickness 

(channel depth) in SOFC performance. A dense layer of LSM-YSZ was used as a 

SOFC cathode material in these studies. Since α-Al2O3 is not ionically conductive for 

O2- ions [157], a dense sub-layer of α-Al2O3 blocking between LSM-YSZ cathode 

and YSZ electrolyte was employed to modulate the cathode-electrolyte contact area 

[91]. These experiments were designed to elucidate the oxygen reduction pathway for 

SOFC cathodes. The results revealed that O2 reduction proceeds via the bulk of the 
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LSM-YSZ, and dictates the SOFC performance. They have also shown that the rate-

limiting step for oxygen reduction on SOFC cathodes is the diffusion of oxide ions 

through the bulk of LSM-YSZ cathode.  

Computational studies of H2 oxidation on SOFC anodes have shown that O2- ions 

directly participated in charge-transfer reactions [104]. These results inspired the use 

of O2- ions occupying and blocking the interface area between porous Au and the 

YSZ electrode in this study. To address the effect of O2- ions in SOFC anode 

performance in this study, porous Au anodes with different α-Al2O3 blocking areas 

were designed in order to show where O2- ions react with adsorbed species within 

SOFC anodes. 

The determination of the rate limiting step in H2 oxidation is the key to 

improvement of SOFC performance for applications with H2. The fundamental steps 

in H2 oxidation, which were explained in Chapter 1, are the gas phase diffusion, the 

dissociative adsorption reaction of H2 on active metal sites, the surface diffusion of 

H2 or adsorbed species on anode surface, the charge-transfer reactions, and the 

desorption of H2O from the interface between active metal anode surfaces and 

electrolyte. The gas phase diffusion of H2 mainly depends on the porosity, tortuosity, 

and the thickness of anodes. In conventional porous anode architectures, the metallic 

electrocatalyst surface is presumed to catalyze the dissociative adsorption of H2. The 

surface diffusion of adsorbed species on the active metal catalyst is proposed to be the 

rate limiting process in transporting fuel to the interface, where the charge transfer 

reaction takes place [158, 159]. Desorption of H2O from the electrolyte interface may 



 

 57 
 

play a role because the concentration of H2O in the interface affects the charge 

transfer reaction [160-163]. 

In this study, SOFC assemblies using porous and dense Au electrodes with different 

geometrical electrode areas and porous YSZ layers were employed to address 

questions about the rate limiting steps in H2 oxidation reaction kinetics. Three or four 

different electrodes on an YSZ electrolyte disk are evaluated simultaneously for given 

experiments in this study due to the complexity of repeating the same set of material 

conditions due to high temperature sintering processes even between two consecutive 

SOFC experiments and the necessity of examining the effect of change in one 

parameter for each experiment. SOFC performances and SOFC resistance analysis 

were completed by using Linear Scan Voltammetry (LSV) and Electrochemical 

Impedance Spectroscopy (EIS) respectively. Scanning Electron Microscopy (SEM) 

pictures were used to structurally characterize the porosity of electrodes. Porous Au 

paste and dense Au film anodes were used as anode materials to identify the role of 

gas phase diffusion thorough Au electrodes. The different Au-YSZ interface area 

experiments were designed to address the questions about H2 oxidation reaction steps 

at the interface, such as surface diffusion, charge-transfer, and desorption of water. To 

specify the contribution of YSZ to overall SOFC anode performance, layers of porous 

YSZ were prepared and applied on top of Au electrodes. Lastly, to block the transport 

of O2- ions to the SOFC anode, dense α-Al2O3 squares with different sub-interface 

areas were placed under porous Au anodes with the corresponding geometric area. By 

blocking O2- ions it was aimed to evaluate the effect of O2- ion movement on SOFC 

anode performance. 
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3.2. Experimental Section 
 

The experimental setup and operating conditions of SOFC were explained in Figure 

2.1 of Chapter 2. Briefly, the membrane electrode assembly (MEA) for the SOFC was 

prepared on a polycrystalline YSZ disk (8 mole % yttria stabilized zirconia disk) with 

a 25.4 mm diameter and a 1.10-1.20 mm thickness. The YSZ disk itself was prepared 

in the laboratory by dye pressing and sintering at 1500oC for an hour. LSM-YSZ was 

the cathode material, was prepared as a viscous solution, and applied by using a 

mask. The cathode was sintered by heating to 400 oC with the rate of 0.3 oC/min, 

holding at 400 oC for an hour, heating to 1300 oC with the rate of 1 oC/min, and 

sintering at 1300 oC for an hour. The supported cathode was cooled down to room 

temperature with the rate of 1 oC/min). Measurements in this study were conducted at 

785± 10 oC.  

 

3.2.1 Preparation of porous Au paste anodes: 
 

Viscous Au paste (Engelhard) was applied to prepare porous Au anodes by using 

masking tapes. Four Au anodes with the specific Au-YSZ interface areas (i.e. 8, 16, 

24 and 32 mm2) with known thickness were fabricated by using Kapton tape as a 

masking tape. Kapton tape masks were carved by hand and applied to the surface of a 

“cathode ready” YSZ electrolyte disk (see Chapter 2). Au paste was applied to the 

masked YSZ disk and the mask was subsequently removed. The disk and Au patches 

were dried for 2 hours by using a heat gun. Au wires (0.25mm and 99.99% pure, 
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AlfaAesar) were attached to each pattern by using small amount of Au paste. 

Subsequently, the whole assembly was glued to a ceramic tube by using ceramic 

paste and further sintered overnight at SOFC working conditions, i.e. at 785oC and 

under Ar-H2 flow. 

 

3.2.2 Preparation of Dense Au Film anodes: 
 

To prepare dense Au film anodes, a similar Kapton tape mask with a pattern of four 

5x5 mm squares was prepared and applied to a cathode ready YSZ disk. Then, a 

dense 1 µm Au layer was deposited via thermal evaporation to the YSZ disk with the 

pattern mask. The mask was then removed and the 5x5 mm Au squares were wired by 

Au leads. 

 

3.2.3 Preparation of Porous YSZ layer: 
 

To prepare porous YSZ layer, the mixture of nano-powdered YSZ with a particle 

size of 80-90 nm (from Aldrich), and glycerol (from Fisher Scientific) were mixed 

with the ratio of 60% YSZ to 40% glycerol by weight to get a viscous mixture. 

Stoichiometric amounts of each were weighed in the same plastic vial with a plastic 

ball, and then the mixture was ground by using an amalgamator for 10 minutes to 

give a paste-like viscous solution. This paste was deposited on electrolyte disk in 

patterned arrays by using a Kapton tape masks. The paste was subsequently dried by 

using heat gun for two hours and the assembly was in-situ sintered overnight at 785 

oC under 5 % H2-95 % Ar atmosphere. 
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3.2.4 Preparation of Porous Au anodes with α-Al2O3 Blocking: 
 

Patterned α-Al2O3 blocking layers were deposited on the YSZ disks by way of e-

beam deposition and Kapton tape masks to give 100 nm thick features. Then, the 

masks were removed and Au anodes were applied on top of α-Al2O3 patches. 

 

3.2.5. Characterization Techniques: 
 

A Gamry Instruments four-channel Frequency Response Analyzer (FRA) was 

employed for the performance measurements and for electrochemical impedance 

spectroscopy in potentiostatic mode at open circuit over a frequency range from 100 

kHz down to 50 mHz. For the impedance measurements, the excitation voltage was 

reserved constant at 10mV. For the performance measurements, linear scan 

voltammetry was utilized with a step size of 5 mV and a scan rate of 5 mV/s. For all 

SOFC operations, electrochemical measurements were made at 785 ± 10 ºC. SEM 

analyses were performed with an AMRAY 1820K Scanning Electron Microscope 

with an acceleration potential of 25kV. 
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3.3. Results 
 

3.3.1 Porous Au anodes with different Au/YSZ interface area: 
 

Four different porous Au anodes with different interface areas were prepared to 

evaluate the effect of interface contact area between Au and YSZ on SOFC current 

and power densities. Four typical Au patches with 1x8, 2x8, 3x8 and 4x8 mm 

dimensions are shown Figure 3.1.  

(2x8, 16mm2) (4x8, 32mm2)

a b

(1x8, 8mm2) (3x8, 24mm2)

(2x8, 16mm2) (4x8, 32mm2)

a b

(1x8, 8mm2) (3x8, 24mm2)

 

Figure 3.1: Schematic representation of experimental setup of four different interface areas between 
Au and YSZ, a) Top view, b) Cross-section. 

~30 µm

a b

YSZ

Au ~30 µm~30 µm

a b

YSZ

Au

 

Figure 3.2: SEM images of porous Au anode, a) cross-section of electrode and electrolyte, b) top 
view of Porous Au anode. 
 



 

 62 
 

SEM images of the porous Au anodes after 10 hours of H2 fuel run under SOFC 

conditions are given in Figure 3.2. The images reveal that porous Au anode thickness 

is approximately 30µm with pore sizes of ~3-4µm.  

Au wires were attached to each Au pattern by using Au paste. The performance of 

each electrode was monitored simultaneously by using a four channel potentiostat. To 

check the validity of the experiment, the four Au electrodes were wired together and 

additional polarization data were collected.  
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Figure 3.3: Polarization curves of porous Au anodes with different interface area experiments on 

YSZ, a) raw performance, b) normalized performance with respect to Au-YSZ interface area. 
(Orange: 1x8 mm (8 mm2), Green: 2x8 mm (16 mm2), Blue: 3x8 mm (24 mm2), Magenta: 4x8 mm 
(32 mm2) and Black: all four electrodes wired together).  

 

Figure 3.3 shows the polarization curves of four separate Au electrodes with 

different interface areas in addition to the measurement in which all four electrodes 
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were wired together. Figure 3.3a demonstrates the raw polarization curves. However, 

when the current and power densities are normalized with respect to interface area 

between Au and YSZ, one can see from Figure 3.3b that all the electrode current and 

power densities are identical within experimental error. The maximum current and 

power densities of the four Au electrodes were ~0.072 Amps/cm2 and ~0.0240 

Watts/cm2, respectively.  
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Figure 3.4: Normalization curves of Porous Au anode experiments, maximum power densities with 
respect to a) interface area between Porous Au and YSZ, b) triple phase boundary (TPB) length, i.e. 
perimeter of Porous Au anodes.  
 

Porous Au anode power density normalization curves are given in Figure 3.4a (with 

respect to interface areas), and in Figure 3.4b (with respect to TPB lengths). The 

linear line in Figure 3.4a proves that SOFC power density values scale only with 
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interface area. The non-linearity in Figure 3.4b shows that the perimeter of the porous 

Au anode would not be accepted as a TPB length.  
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Figure 3.5: EIS (at OCV) curves of four different interface area experiments on YSZ, a) raw 

impedances, b) normalized with respect to interface area (inset: high frequency intercept as Rb) 
(Orange: 1x8 mm, Green: 2x8 mm, Blue: 3x8 mm, Magenta: 4x8 mm, and Black: all four electrodes 
wired together).  

 

Another way to compare performances of different electrodes is Electrochemical 

Impedance Spectroscopy (EIS). An overview of the EIS method and the relevant 

parameters are given on Chapter 1. The bulk resistance, Rb, high frequency intercept, 

the polarization resistance, Rp, difference between two intercepts on the x-axis, and 

relaxation frequency of each arc, ω, frequency of arc highest point on the y-axis are 

the parameters on EIS curves. Figure 3.5 shows the EIS curves of four electrodes 

shown in Figure 3.1. The raw impedance data range from 250 Ω to 2500 Ω. However, 

when normalized, the impedance curves are virtually superimposable with Rp 

intercepts of 200-240 Ω.cm2.  

Table 3.1 summarizes the quantitative analysis of impedance curves seen in Figure 

3.5a and 3.5b. The relaxation frequency, ω, of physical and chemical processes is at 

the maximum imaginary impedance value on the y-axis, and is related to the rate of 

physical or chemical process on SOFC systems [76, 77]. The measured relaxation 
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frequency, 318 Hz, is the same for every porous Au electrode. The Rb values are in 

the range 1.59-2.33 Ω*cm2 and the Rp values are in the range 188-207 Ω*cm2. These 

resistance values are two orders of magnitude higher than the state-of-art SOFC 

Ni/YSZ anode resistance values [36, 99], which confirms the same trend seen in the 

polarization curves. As explained previously, this is due to the poor catalytic 

properties of Au anode and the electrolyte thickness in these experiments. 

 
Table 3.1: EIS data for porous Au anodes with different interface area experiments 

2062.932573.66318 HzAll (80 mm2)
1931.626025.09318 Hz3x8 (32 mm2)
2032.338479.69318 Hz3x8 (24 mm2)
2071.75129910.93318 Hz2x8 (16 mm2)
1881.59234619.88318 Hz1x8 (8 mm2)

Rp (Ω*cm2) 
Normalized WRT 

interface area

Rb (Ω*cm2) 
Normalized WRT 

interface area

Raw Rp
(Ω)

Raw Rb
(Ω)

Frequency, 
ω

Porous Au 
Electrodes

2062.932573.66318 HzAll (80 mm2)
1931.626025.09318 Hz3x8 (32 mm2)
2032.338479.69318 Hz3x8 (24 mm2)
2071.75129910.93318 Hz2x8 (16 mm2)
1881.59234619.88318 Hz1x8 (8 mm2)

Rp (Ω*cm2) 
Normalized WRT 

interface area

Rb (Ω*cm2) 
Normalized WRT 

interface area

Raw Rp
(Ω)

Raw Rb
(Ω)

Frequency, 
ω

Porous Au 
Electrodes

 
 

3.3.2 Dense Au Film patterned Anodes: 
 

The comparison of performances of porous and non-porous Au anodes with H2 fuel 

provides a basis for evaluating the surface diffusion of adsorbed species, such as 

hydrogen and H+. The gas phase diffusion of H2 through dense Au film is 5.9x10-9 

cm2/s and through dense Pd film is 3.6x10-7 cm2/s [164, 165]. The gas diffusion of H2 

through dense Au film will be limited by the 2-D anode surface. This explains that 

only activation reactions take place on Au surface and H2 molecules does not 

penetrate through Au film. The gas phase diffusion of H2 will be eliminated from the 

list of limiting steps on H2 oxidation reactions of SOFC anodes. 
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(1x8)

(3x8)

(2x8)
a b c

(1x8)

(3x8)

(2x8)(1x8)

(3x8)

(2x8)
a b c  

Figure 3.6: Schematic representation of experimental setup of four different interface areas between 
YSZ and Au film, a) Top view, b) Cross-section, c) Post Picture. 

 

One micron thick Au film anodes with three different YSZ-Au interface areas were 

prepared by thermal evaporating of Au onto masked YSZ electrolytes and are shown 

in Figure 3.6. The picture in Figure 3.6c shows Au paste wire connections on Au 

films. Since the Au paste is porous after sintering, it is assumed that these Au paste 

connections would not effect the gas phase diffusion and thus Au film performance. 

~1 µm

a b

3 µm

~1 µm

a b

3 µm

 
Figure 3.7: SEM images of Au film anode after 48 hours operation in SOFC, a) cross-section of 

delaminated Au film from YSZ surface b) top view of Au film on YSZ. 
 

The SEM images of Au film anodes after 48 hours operation in SOFC are displayed 

in Figure 3.7. When the SEM images of dense Au film are compared with porous Au 
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anode SEM images (Figure 3.2b), it can be concluded that unlike the porous Au 

anodes, the Au film anodes are dense and possess no micron level porosity. Only 

grain boundaries of the Au film can be seen in SEM images of the Au film top view 

(Figure 3.7b). 
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Figure 3.8: Polarization curves of Au film anodes with different interface area experiments on YSZ, 

a) raw performance, b) normalized performance with respect to Au-YSZ interface area. (Orange: 1x8 
mm, Green: 2x8 mm, Blue: 3x8 mm, and Black: all three electrodes wired together). 

 

The raw and the normalized polarization curves for these electrodes are shown in 

Figure 3.8a and in Figure 3.8b, respectively. Power density and current density values 

were calculated by using the Au-YSZ interface area between the Au film and the YSZ 

electrolyte. The Au film and paste anodes follow the same performance scaling with 

respect the Au-YSZ interface area. However, the Au film anodes have approximately 
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40 % less current and power density, i.e. 0.024 Watts/cm2 for the porous Au and 

0.014 Watts/cm2 for the Au film.  

Figure 3.9 shows two different normalization curves of maximum power densities 

for SOFC Au film anodes with respect to interface area and TPB length. Figure 3.9a 

has a linear correlation of the power density at 0.014 Watts/cm2 with respect to the 

interface area of the Au film anodes, whereas Figure 3.9b has no correlation with 

respect to the TPB length of the Au film anodes. 
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Figure 3.9: Normalization curves of Au film anode experiments, maximum power densities with 
respect to a) interface area between Au film and YSZ, b) triple phase boundary (TPB) length, i.e. 
perimeter of Au film anodes.  
 

Figure 3.10 shows the raw and the normalized EIS curves for the Au film anodes. 

In Figure 3.10b, the impedances of the Au film anodes are normalized with respect to 

the Au film-YSZ interface area. A single arc is observed for all measurements in 
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Figure 3.10b, which is similar to that observed for the Au porous anodes suggesting 

that the same types of physical and chemical processes take place on both the dense 

and porous Au anodes. However, the Au film anode has higher Rp values relative to 

the porous electrode. The comparison of polarization curves in Figures 3.3 and 3.8 

show that the porous Au anodes perform better than the Au film, which is supported 

by the comparison of the impedance curves in Figures 3.5 and 3.10. 
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Figure 3.10: EIS curves (at OCV) of three Au film anodes with different interface areas a) raw 

impedances, b) normalized with respect to interface area (inset: high frequency intercept as Rb). 
(Orange: 1x8 mm, Green: 2x8 mm, Blue: 3x8 mm, and Black: all three electrodes wired together). 

 

Table 3.2 is the quantitative analysis of impedance curves shown in Figure 3.10a 

and 3.10b. The relaxation frequency, 794 Hz, is the same for all Au film anodes. This 

relaxation frequency would be the average-combined frequency for both the physical 

and the chemical processes in the SOFC system. The average-combined relaxation 

frequency for Au film impedance arc is higher than that of porous Au anodes. This 

suggests a faster rate of the composite physical and chemical processes on Au film 

than on porous Au. The understanding of the process responsible for this is difficult 

to address with a single arc of the impedance curve. The normalized Rb and Rp values 

are in the range of 6.39-6.97 Ω*cm2 and 436-454 Ω*cm2, respectively. These 

resistance values are approximately doubled as compared to porous Au anode 
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resistance values, which support the trend observed in the polarization curves. As 

explained previously, this is because of the Au anode and the thick electrolyte used in 

these experiments. 

Table 3.2: EIS data for Au film anodes with different interface area experiments 

4546.3994513.32794 HzAll (48 mm2)
4366.97181528.43794 Hz3x8 (24 mm2)
4456.76278242.26794 Hz2x8 (16 mm2)
4476.88559486.06794 Hz1x8 (8 mm2)

Rp (Ω*cm2) 
Normalized WRT 

interface area

Rb (Ω*cm2) 
Normalized WRT 

interface area

Raw Rp
(Ω)

Raw Rb
(Ω)

Frequency, 
ω

Au film 
Electrodes

4546.3994513.32794 HzAll (48 mm2)
4366.97181528.43794 Hz3x8 (24 mm2)
4456.76278242.26794 Hz2x8 (16 mm2)
4476.88559486.06794 Hz1x8 (8 mm2)

Rp (Ω*cm2) 
Normalized WRT 

interface area

Rb (Ω*cm2) 
Normalized WRT 

interface area

Raw Rp
(Ω)

Raw Rb
(Ω)

Frequency, 
ω

Au film 
Electrodes

 

3.3.3 Porous Au Anodes with YSZ over layers: 
 

The catalytic effects of both Au and YSZ on SOFC performance were examined by 

using different geometries of porous Au electrodes selectively covered with porous 

YSZ. For this investigation, four (two 2x8 and two 3x8) symmetric electrodes were 

fabricated (shown in Figure 3.11) and one of each electrode was covered with a 

porous YSZ. 

a b c
(2x8)

(3x8)

(3x8 W-YSZ)

(2x8 W-YSZ)

a b c
(2x8)

(3x8)

(3x8 W-YSZ)

(2x8 W-YSZ)

(2x8)

(3x8)

(3x8 W-YSZ)

(2x8 W-YSZ)

 
Figure 3.11: Schematic representation of experimental setup of two different interface areas 

between Au and YSZ and half covered with porous YSZ layer, a) Top view, b) Cross-section, c) 
Assembly picture after operation. 
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Figure 3.12: Polarization curves of porous Au anodes with and without porous YSZ over layers 

(normalized with respect to Au-YSZ interface area) (Orange: 2x8 mm, Green: 3x8 mm, Blue: 3x8 
mm with porous YSZ layer, Magenta: 2x8 mm with porous YSZ layer). 

 

The polarization curves of the porous Au anodes with and without YSZ layers are 

shown in Figure 3.12. The power and current densities were again normalized with 

respect to interface area between Au and YSZ electrolyte. The performance values of 

the uncoated electrodes are virtually identical to those of described previously (see 

Figure 3.3). However, the power densities of the coated anodes are ~0.025 Watts/cm2, 

which is higher than the previous experimental configurations. 

The EIS curves of the coated and uncoated Au anodes are shown in Figure 3.13. 

Table 3.3 summarizes the impedance data extracted from the curves in Figure 3.13. 

After normalization with respect to Au-YSZ interface area, the EIS curves of the 

coated electrodes are the same within experimental error and have lower Rb and Rp 

values than the uncoated electrodes. The Rb values for all porous Au anodes are in the 

range of 3.15-3.26 Ω*cm2, and are the same within experimental error. However, the 
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Rp values are 197 Ω*cm2 and 146-151 Ω*cm2 for the coated and the uncoated 

electrodes, respectively.  
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Figure 3.13: EIS curves (at OCV) of four different porous Au anodes with and without porous YSZ 

over layers, normalized with respect to Au-YSZ interface area. (Orange: 2x8 mm, Green: 3x8 mm, 
Blue: 3x8 mm with porous YSZ over layer, Magenta: 2x8 mm with porous YSZ over layer). 

 

 

Table 3.3: EIS data for porous Au anodes with and without porous YSZ over layers. 

1513.18682 Hz2x8 w/ YSZ layer
(16 mm2)

1463.26682 Hz3x8 w/ YSZ layer
(24 mm2)

1973.15682 Hz3x8 (24 mm2)

1973.22682 Hz2x8 (16 mm2)

Rp (Ω*cm2) 
Normalized WRT 

interface area

Rb (Ω*cm2) 
Normalized WRT 

interface area

Frequency, ωPorous Au Electrodes
(Au-YSZ interface area)

1513.18682 Hz2x8 w/ YSZ layer
(16 mm2)

1463.26682 Hz3x8 w/ YSZ layer
(24 mm2)

1973.15682 Hz3x8 (24 mm2)

1973.22682 Hz2x8 (16 mm2)

Rp (Ω*cm2) 
Normalized WRT 

interface area

Rb (Ω*cm2) 
Normalized WRT 

interface area

Frequency, ωPorous Au Electrodes
(Au-YSZ interface area)

 
 

 

 



 

 73 
 

3.3.4 Porous Au Anodes with an isolated porous YSZ patch: 
 

To evaluate the role of YSZ as the O2- ion source (TPB generator) and to address 

the question about the catalytic role of YSZ on the H2 fuel oxidation, an additional set 

of porous Au anodes with and without isolated porous YSZ patches were designed 

and are shown in Figure 3.14. In contrast to the previous experiments, this porous 

YSZ patch was not in contact with the bulk YSZ electrolyte. As discussed in the 

previous section, the enhanced current and power density of the coated electrode is 

due to the YSZ over layer as O2- ion carrier to the anode surface. Three different 

porous Au anodes (2x8 mm, 3x8 mm, and 3x8 with 1x6 mm porous YSZ layer) were 

fabricated on a home-made YSZ disk.  

 

b ca
(3x8)

(2x8) (3x8 with 1x6 P-YSZ)

b ca
(3x8)

(2x8) (3x8 with 1x6 P-YSZ)

 

Figure 3.14: Experimental setup of two different interface areas between Au and YSZ and one with 
porous YSZ layer patch, a) Schematic representation from top, b) Cross-section, c) Post-experiment 
Picture. 

 
The polarization curves shown in Figure 3.15 are for these three different porous 

Au anodes represented in Figure 3.14. The power and current density values were 

normalized by the interface areas between the porous Au anodes and the YSZ bulk 

electrolyte. At low current densities all three electrodes display identical I-V 
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characteristics. However, at higher current densities (> 0.025 A/cm2), the 

performance of the anode with the YSZ patch diminishes and results a lower 

maximum power density (0.016 Watts/cm2) relative to the uncoated anodes (~0.018 

Watts/cm2).  

Current Density (Amps/cm2)

V
ol

ta
ge

 (V
)

Po
w

er
 D

en
si

ty
 (W

at
ts

/c
m

2 )

0.00

0.25

0.50

0.75

1.00

1.25

0.000 0.010 0.020 0.030 0.040 0.050 0.060 0.070
0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0.018

0.020

Current Density (Amps/cm2)

V
ol

ta
ge

 (V
)

Po
w

er
 D

en
si

ty
 (W

at
ts

/c
m

2 )

0.00

0.25

0.50

0.75

1.00

1.25

0.000 0.010 0.020 0.030 0.040 0.050 0.060 0.070
0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0.018

0.020

 
Figure 3.15: Polarization curves of porous Au anodes with different interface area and one with 

porous YSZ island on top (Orange: 2x8 mm Porous Au, Green: 3x8 mm Porous Au, Magenta: 3x8 
mm Porous Au with 1x6 mm porous YSZ layer on top). 

 

 

The EIS curves of these three different porous Au anodes are presented in Figure 

3.16. The trend shown in these curves is the same as in the performance curves, 

which explains that the coated Au anode with YSZ patch on electrode surface has 

larger polarization resistance than the two uncoated electrodes.  
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Figure 3.16: EIS curves (at OCV) of porous Au anodes with different interface area and one with 

porous YSZ island on top, normalized with respect to the interface area between porous Au and YSZ 
electrolyte. (Orange: 2x8 mm Porous Au, Green: 3x8 mm Porous Au, Magenta: 3x8 mm Porous Au 
with 1x6 mm porous YSZ layer on top). 
 

 

Table 3.4 contains a summary of EIS data in Figure 3.16. The relaxation 

frequencies of all three electrodes are 794 Hz, which is comparable to other interface 

area experiments. The Rb values of all three electrodes are in the range of 2.03-2.17 

Ω*cm2, which are identical within experimental error. However, the Rp values differ 

between two porous Au only electrodes (175-176 Ω*cm2) and one porous Au 

electrode with an isolated YSZ patch (204 Ω*cm2). 

 
Table 3.4 EIS data analysis for porous Au anodes, one with isolated porous YSZ patch. 

2042.17794 Hz3x8 w/ isolated 1x6 YSZ 
patch (24 mm2)

1752.12794 Hz3x8 w/ (24 mm2)

1762.03794 Hz2x8 (16 mm2)

Rp (Ω*cm2) 
Normalized WRT 

interface area

Rb (Ω*cm2) 
Normalized WRT 

interface area

Frequency, ωPorous Au Electrodes
(Au-YSZ interface area)

2042.17794 Hz3x8 w/ isolated 1x6 YSZ 
patch (24 mm2)

1752.12794 Hz3x8 w/ (24 mm2)

1762.03794 Hz2x8 (16 mm2)

Rp (Ω*cm2) 
Normalized WRT 

interface area

Rb (Ω*cm2) 
Normalized WRT 

interface area

Frequency, ωPorous Au Electrodes
(Au-YSZ interface area)
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3.3.5 Porous Au anodes with different α-Al2O3 sub-surface blocking 
between porous Au and YSZ: 
 

Fleig et. al. demonstrated that α-Al2O3 blocks O2- transport and can be used to 

regulate O2- flux to the TPB region [157]. The performance of SOFC anodes can be 

evaluated by using the four different Au anodes with same geometric areas and 

thicknesses but with different sub-surface α-Al2O3 blockings and different Au anode-

YSZ electrolyte contact areas. To evaluate the effect of O2- flux on the Au anode 

performance, porous Au anodes with different α-Al2O3 sub-surface blocking areas 

were fabricated and shown in Figure 3.17. The α-Al2O3 sub-surface blocking squares 

with the thickness of 0.1 µm were deposited on a YSZ disk by using e-beam 

deposition. Porous Au anodes were fabricated on top of the patterned α-Al2O3 regions 

as shown in Figure 3.17. 

a b

No 
blocking

1x1 α-Al2O3
blocking

3x3 α-Al2O3
blocking

2x2 α-Al2O3
blocking

a b

No 
blocking

1x1 α-Al2O3
blocking

3x3 α-Al2O3
blocking

2x2 α-Al2O3
blocking No 

blocking

1x1 α-Al2O3
blocking

3x3 α-Al2O3
blocking

2x2 α-Al2O3
blocking

 
Figure 3.17: Experimental setup of four different interface areas between porous Au and YSZ by 

using α-Al2O3 blocking, a) Top view, b) Cross-section (right: 5x5mm Porous Au with 2x2mm α-
Al2O3 blocking and left: 5x5mm Porous Au with 3x3mm α-Al2O3 blocking). 

 
The polarization curves of the four different α-Al2O3 blocked electrodes are shown 

in Figure 3.18. The data were processed three different ways: the raw data are shown 

in (a), the same data normalized to the Au surface area are shown in (b), and finally 
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the raw data normalized to the Au-YSZ interfacial area (i.e. Au area- α-Al2O3 area) 

are shown in (c). The contact areas between porous Au anodes and YSZ electrolyte 

are 0.25, 0.24, 0.21, and 0.16 cm2. Therefore, these polarization curves show the 

correlation of contact areas between the porous Au and YSZ electrolyte. 

0.00

0.25

0.50

0.75

1.00

1.25

0.000 0.010 0.020 0.030 0.040 0.050 0.060 0.070 0.080
0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0.018

0.020

0.00

0.25

0.50

0.75

1.00

1.25

0.000 0.005 0.010 0.015 0.020 0.025
0.000

0.001

0.001

0.002

0.002

0.003

0.003

0.004

0.004

0.005

0.005

Current Density (Amps/cm2)

V
ol

ta
ge

 (V
)

Po
w

er
 D

en
si

ty
 (W

at
ts

/c
m

2 )

0.00

0.25

0.50

0.75

1.00

1.25

0.000 0.010 0.020 0.030 0.040 0.050 0.060 0.070 0.080
0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0.018

0.020

Current Density (Amps/cm2)

V
ol

ta
ge

 (V
)

Po
w

er
 D

en
si

ty
 (W

at
ts

/c
m

2 )

Current (Amps)

V
ol

ta
ge

 (V
)

Po
w

er
 (W

at
ts

)

a

b

c

0.00

0.25

0.50

0.75

1.00

1.25

0.000 0.010 0.020 0.030 0.040 0.050 0.060 0.070 0.080
0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0.018

0.020

0.00

0.25

0.50

0.75

1.00

1.25

0.000 0.005 0.010 0.015 0.020 0.025
0.000

0.001

0.001

0.002

0.002

0.003

0.003

0.004

0.004

0.005

0.005

Current Density (Amps/cm2)

V
ol

ta
ge

 (V
)

Po
w

er
 D

en
si

ty
 (W

at
ts

/c
m

2 )

0.00

0.25

0.50

0.75

1.00

1.25

0.000 0.010 0.020 0.030 0.040 0.050 0.060 0.070 0.080
0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0.018

0.020

Current Density (Amps/cm2)

V
ol

ta
ge

 (V
)

Po
w

er
 D

en
si

ty
 (W

at
ts

/c
m

2 )

Current (Amps)

V
ol

ta
ge

 (V
)

Po
w

er
 (W

at
ts

)

a

b

c

 
Figure 3.18: Polarization curves of Porous Au anodes with α-Al2O3 blocking a) Raw performance 

data, b) performance data normalized with respect to Au area, c) performance data normalized with 
respect to Au-YSZ contact area (α-Al2O3 blocking area subtracted) (Orange: 5x5mm porous Au, 
Green: 5x5mm porous Au with 1 mm2 α-Al2O3, Blue: 5x5mm porous Au with 4 mm2 α-Al2O3, 
Magenta: 5x5mm porous Au with 9 mm2 α-Al2O3). 
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The EIS curves of the four different α-Al2O3 blocked electrodes are shown in 

Figure 3.19. Raw impedance data shown in Figure 3.19a varies in a large resistance 

range on the real part of the impedance curves. However, four porous Au anodes with 

and without α-Al2O3 blocks give identical EIS curves when normalized with respect 

to porous Au-YSZ electrolyte contact area. The similarities in the single composite 

arcs in the normalized EIS curves are consistent with the similarities in the 

normalized polarization curves.  

0

5

10

15

20

25

30

35

40

0.00 50.00 100.00 150.00 200.00
0

50

100

150

200

250

0.00 200.00 400.00 600.00 800.00 1000.00 1200.00

Zreal  (Ω*cm2)

Z i
m

  (
Ω

*c
m

2 ) 0

2

4

6

8

10

0.00 5.00 10.00

Zreal  (Ω)

Z i
m

  (
Ω

)

0

2

4

6

8

10

0.00 5.00 10.00 15.00 20.00

0

5

10

15

20

25

30

35

40

0.00 50.00 100.00 150.00 200.00
0

50

100

150

200

250

0.00 200.00 400.00 600.00 800.00 1000.00 1200.00

Zreal  (Ω*cm2)

Z i
m

  (
Ω

*c
m

2 ) 0

2

4

6

8

10

0.00 5.00 10.00

Zreal  (Ω)

Z i
m

  (
Ω

)

0

2

4

6

8

10

0.00 5.00 10.00 15.00 20.00

 
Figure 3.19: EIS curves (at OCV) of porous Au anodes with α-Al2O3 blocking, a) Raw data, b) 

normalized with respect to contact area between porous Au and YSZ electrolyte (inset: high frequency 
intercept as Rb) (Orange: 5x5mm Porous Au only, Green: 5x5mm Porous Au with 1x1mm α-Al2O3 
blocking 3, Blue: 5x5mm  Porous Au with 2x2mm α-Al2O3 blocking, Magenta: 5x5mm Porous Au 
with 3x3mm α-Al2O3 blocking). 

 

A summary of the EIS data for the α-Al2O3 blocking experiments is given in Table 

3.5. The relaxation frequency value of the composite single arc of Au anodes in these 

impedance experiments is equal to 794 Hz, which is close or the same relative to 

previous interface area experiments. The raw and normalized Rb values are shown in 

the inset of both Figures 3.19a and 3.19b. The raw Rb values of the porous Au anodes 

with and without α-Al2O3 blocking are in the range of 8.36-8.66 Ω*cm2.  
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Table 3.5: EIS data for porous Au anodes, with α-Al2O3 blocking. 

4541.3628388.48794 Hz5x5 w/ 9mm2 α-Al2O3
blocking (16 mm2)

4361.8220768.66794 Hz5x5 w/ 4mm2 α-Al2O3
blocking (21 mm2)

4452.0518548.53794 Hz5x5 w/ 1mm2 α-Al2O3
blocking (24 mm2)

4472.0917888.36794 Hz5x5 (25 mm2)

Rp (Ω*cm2) 
Normalized WRT 

Au-YSZ contact area

Rb (Ω*cm2) 
Normalized WRT 

Au-YSZ contact area

Raw Rp
(Ω)

Raw Rb
(Ω)

Frequency, 
ω

Porous Au Electrodes
(Au-YSZ contact area)

4541.3628388.48794 Hz5x5 w/ 9mm2 α-Al2O3
blocking (16 mm2)

4361.8220768.66794 Hz5x5 w/ 4mm2 α-Al2O3
blocking (21 mm2)

4452.0518548.53794 Hz5x5 w/ 1mm2 α-Al2O3
blocking (24 mm2)

4472.0917888.36794 Hz5x5 (25 mm2)

Rp (Ω*cm2) 
Normalized WRT 

Au-YSZ contact area

Rb (Ω*cm2) 
Normalized WRT 

Au-YSZ contact area

Raw Rp
(Ω)

Raw Rb
(Ω)

Frequency, 
ω

Porous Au Electrodes
(Au-YSZ contact area)

 

 

3.4. Discussions 
 

3.4.1 Porous Au anodes with different Au/YSZ interface area: 

Porous Au anodes power densities  (~0.0240 Watts/cm2 in Figure 3.3 and 3.4) are 

approximately 1 order of magnitude lower than 0.5-0.6 Watts/cm2 output from 

conventional SOFCs with Ni/YSZ anode supported systems and very thin YSZ 

electrolytes [36]. Since porous Au, which is considered as an inert metal for H2 

oxidation, and 1.18 mm thick YSZ electrolytes are used in this study, the low power 

density values are anticipated. 

The porous Au anode power densities correlate with respect to Au-YSZ interface 

areas. It is proposed that the sum of the micron size Au particle perimeters in the 

SEM images should be accepted as the TPB length, since the entire area of the Au 

anode is porous. The TPB length per interface area will be the same for porous Au 

anodes, because the same Au paste and sintering steps are employed to each anode. 

Although the four electrodes are on the same electrolyte disk, they are not 

electronically connected. When the four electrodes are wired together, their 
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performances are additive, as shown in the identical normalized performance curves 

and the linearity with respect to interface areas of porous Au anodes. 

Figure 3.5b shows a single arc for each electrode. This can be interpreted as the 

combination of all physical processes and chemical reactions (i. e. activation, 

diffusion, charge transfer, and desorption) are correlated with respect to the electrode 

interface area. The distinction between physical processes and chemical reactions is 

difficult to make. This can be done by using either a fitting circuit, with many 

possibilities to have different circuit elements for each process and chemical or 

physical computational modeling to analyze this composite resistive-capacitive single 

arc in EIS curves. The bulk resistance, Rb, the polarization resistance, Rp, and the 

relaxation frequencies of arcs, ω, are deduced from EIS curves.  

The gas phase diffusion of H2 through porous Au anode would not be the limiting 

for the SOFC performance due to the 30 µm thin porous Au anodes, high fuel 

concentration, low current and power densities. As a result of correlations in the 

polarization and impedance curves, the SOFC performance is limited to processes and 

chemical reactions occurring on the interface between Au and YSZ. These processes 

can be surface diffusion on Au or YSZ, charge-transfer reaction, and desorption of 

water.  

3.4.2 Dense Au Film patterned Anodes: 

The Au film power densities (Figure 3.8 and 3.9) show the correlation with respect 

to Au-YSZ interface areas. The thickness of the Au film is ~1 µm as compared to the 

porous Au anode thickness of ~30 µm. However, the 40 % less power densities 

compared to porous Au can be attributed to the porosity difference between these two 
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different Au anodes. The porosity of the anode material affects the number of reactive 

sites due to the grain size difference between the Au film and the porous Au. The gas 

phase diffusion of H2 through porous Au is 3-D diffusion. This process can be 

thought of as 2-D diffusion on the Au film surface, since it is not permeable to H2. 

The current and power density scaling of the Au film anode is explained by the 

surface diffusion of the fuel species through the Au film anode. It is known that the 

surface diffusion of adsorbed species on anode surface has higher resistance than gas 

phase diffusion. Hence, the surface diffusion is possibly the limiting step in H2 

oxidation reaction kinetics in Au film anodes. 

Unlike the porous Au anodes, the Au film anodes preclude gas phase diffusion as a 

rate limiting step for H2 fuel oxidation. These performance correlations of dense Au 

films suggest the existence of other rate limiting steps. Since H2 gas phase diffusion 

through the Au film is negligible, the dense Au film anode catalyzes the dissociative 

adsorption of H2 at a certain level and then the adsorbed species on the Au surface 

diffuse through the electrode-electrolyte interface via Au film grain boundaries shown 

in SEM images. Therefore, this performance and composite resistances (Figure 3.10 

and Table 3.2) correlations with respect to the interface area can be attributed to 

surface diffusion of adsorbed species, charge transfer reactions, and desorption of 

water, all of which are known to take place near the electrode-electrolyte interface.  

3.4.3 Porous Au Anodes with YSZ over layers: 

According to data in Figure 3.12 and 3.14, it is proposed that these YSZ over layers 

facilitate transporting O2- ions to the anode surface and provide extra interface area to 

surface of the porous Au anodes. The increase in interface area causes the higher 
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number of triple phase boundaries for charge transfer reaction. This explains the 

better performance for two coated Au electrodes. The two porous Au electrodes with 

a porous YSZ over layer generate approximately ~20 % higher current and power 

densities than the uncoated Au electrodes. Also, the ~20% drop in the polarization 

resistance for the coated Au electrodes is consistent with their higher power densities. 

3.4.4 Porous Au Anodes with an isolated porous YSZ patch: 

It is proposed that the YSZ patch on electrode surface precludes the fuel activation 

processes and surface diffusion of adsorbed species on porous Au anode surface 

(Figure 3.15 and 3.16). The 15 % less power density of porous Au with YSZ patch is 

explained by the fact that porous YSZ layer is blocking some of active sites on the 

porous Au anode with YSZ patch. Active sites on the porous Au electrodes are 

thought to be responsible for the dissociative adsorption of H2 fuel and surface 

diffusion of adsorbed species on Au anode surface. The limiting process in the case of 

porous Au anode with a porous YSZ patch is surface diffusion of adsorbed species on 

Au anode surface. The effect of surface diffusion is observed in the higher current 

regime of polarization curve due to the limitation in mass transport of adsorbed 

species. The YSZ patch does not have any contact to YSZ electrolyte, which reveals 

that O2- ions could not be transported to the top of the Au electrode. The enhanced 

performance in the previous experiments of porous Au anode entirely coated by the 

porous YSZ layer is not observed in the case of isolated YSZ patch on porous Au 

anodes, since there is not O2- ions transport to the electrode surface. 

EIS measurements also show that the Rp values between two porous Au only 

electrodes are the same; however, that of porous Au electrode with an isolated YSZ 
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patch is 15 % more relative to without YSZ. This can be explained by the porous 

YSZ patch blocking active sites on Au anode. Since some of the active sites for H2 

dissociative adsorption and surface diffusion of adsorbed species on Au anode surface 

are blocked, these would be seen on EIS curve as additional resistance on Rp. 

3.4.5 Porous Au anodes with different α-Al2O3 sub-surface blocking 
between porous Au and YSZ: 

 
The polarization curves of porous Au with blocking show the correlation of contact 

areas between the porous Au and YSZ electrolyte (Figure 3.18). The normalized 

power densities are ~0.0185 Watts/cm2. The power and current densities are well 

within 0.0180-0.0240 Watts/cm2 range of power densities observed for porous Au 

anodes in this study. The variation of power densities arises from slight differences in 

SOFC materials, such as electrolytes (thickness), cathodes (morphology), and porous 

Au anodes (Au wire on the top electrode). 

In contrast to other porous Au-YSZ interface experiments, the range of Rb values 

diverge when normalizing with respect to Au-YSZ contact area to the range of 1.36-

2.09 Ω*cm2 in Figure 3.19 and Table 3.5. The reason of this narrow range of the Rb 

values is explained by the property of α-Al2O3 that is dielectrically permeable at high 

frequencies of impedance measurements [157]. Thus, α-Al2O3 does not block O2- ion 

flux so that the entire Au electrode area participates in the physical and chemical 

processes at high frequencies[157]. The contact area normalized Rp values are in the 

range of 436-454 Ω*cm2 (Table 3.5). Rp values are already correlated with respect to 

the geometric area of the porous Au anodes due to dielectric permeability of α-Al2O3 

at high frequencies. The interface reactions are classified into three groups: surface 
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diffusion of adsorbed species through porous Au anodes, charge-transfer reactions, 

and H2O desorption. Consequently, the sum of these three reactions is proposed to be 

responsible for these composite single arc impedance curves of porous Au anodes. 

Three interface reactions play the key role as the rate limiting steps in the SOFC 

anode side. The losses due to gas phase diffusion of H2 fuel are believed to be 

negligible and not a limiting step for these systems. However, the surface diffusion of 

dissociatively adsorbed fuel species on the Au 2-D surface is thought to be a 

hindrance for the porous Au anode performance. Because, H2 sticking coefficient on 

Au is two orders of magnitude lower relative to that of Ni. It is also reported that O2- 

ions are involved in the charge-transfer reaction. By using the sub-surface α-Al2O3 

blocking it is concluded that the charge-transfer reactions take place only at the 

porous Au electrode-YSZ electrolyte interface. The gas phase diffusion and the 

transport of O2- ions on the 3-D Au bulk is negligible relative to other anode materials 

such as Ni/YSZ systems. The polarization and the EIS data of these series of partially 

blocked electrodes exclude the O2- ion transport through Au anode if the charge-

transfer reaction is assumed to be occurring only in the interface.  

H2O desorption from the interface is another factor that affects the charge-transfer 

reactions between adsorbed species and O2- ions. The production of H2O causes the 

surface diffusion competition between adsorbed fuel species and H2O on the active 

sites of 3-D Au bulk. In that respect, the surface diffusion of adsorbed species on both 

2-D and 3-D Au is able to influence the charge-transfer reaction rate. Consequently, 

possible rate limiting steps are surface diffusion of adsorbed species, charge transfer 

reactions in the interface, and desorption of H2O from electrode-electrolyte interface. 
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3.5. Conclusions 
 

Understanding of the H2 oxidation kinetics in SOFC materials is very complicated 

due to difficulties in observing possible intermediate species and in determining 

where the reaction steps take place at SOFC anode systems. Results presented in this 

work show that the possible rate limiting steps in anodic H2 oxidation are (i) the 

surface diffusion of dissociatively adsorbed species such as H2 and H on Au, (ii) the 

charge-transfer reactions of these adsorbed species, (iii) the desorption of H2O from 

anode-electrolyte interface.  

SOFC performance correlates with Au anode-YSZ electrolyte interface area, 

regardless of the different porosities of Au anodes and the geometries of porous YSZ 

coatings on the porous Au anodes. These trends are observed on the polarization 

curves and on the EIS curves. This correlation is ascribed to the limitations in the 

reaction steps taking place in this interface. The comparison of performance data of 

the two different types of Au anodes, such as porous Au and dense Au film anodes, 

confirms that the gas phase diffusion of H2 is not a limiting step for H2 oxidation, 

since the performance correlation is observed in both porous and dense film anodes. 

This correlation also reveals that the TPB length is the sum of the perimeters of Au 

particles in contact with YSZ electrolyte. 

Two geometrically different porous YSZ experiments on porous Au anodes were 

evaluated to understand the contribution of YSZ on H2 oxidation kinetics. A YSZ 

layer in contact with the electrolyte and coating the entire porous Au anodes helps to 

transport O2- ions via contact between the YSZ electrolyte and the perimeters of 

porous Au anodes. This results approximately 20 % superior performance relative to 
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the uncoated Au anodes. However, when the effect of porous YSZ layer that is not in 

contact with the electrolyte (isolated porous YSZ patch) was examined, the uncoated 

Au anodes performed 15 % higher than porous Au anode with YSZ patch on top. 

Hence, an isolated porous YSZ patch on the top of porous Au anode has a 

diminishing effect on H2 dissociative adsorption reaction, and this patch is not 

helping to transport O2- ions to the top of porous Au anode. Although the YSZ layer 

reduces the dissociative adsorption of H2 on 2-D Au surface, these two geometrically 

different porous YSZ experiments show that there are two affects of YSZ, the 

blocking of activation of H2 and the helping of charge-transfer reactions on porous 

Au surface via O2- ions. When there are O2- ions on 2-D Au surface, charge-transfer 

reaction takes place and O2- ions enhance the SOFC performance.  

The α-Al2O3 blocking experiments were designed to address the effect of the O2- 

ion flux on H2 oxidation kinetics on porous Au anodes. These experiments would 

explain that the electrochemical oxidation path of H2 and dissociatively adsorbed 

species is through Au bulk. Since porous Au anodes are permeable to H2 gas phase, 

charge-transfer reaction sites (triple phase boundaries) are distributed across the entire 

interface between Au electrode and YSZ electrolyte. Therefore, the surface diffusion 

of dissociatively adsorbed species on 3-D Au bulk is the possible rate limiting step. 

Water desorption from reactive interface sites would affect the SOFC anode 

performance. These three rate limiting steps will be discussed and analyzed in further 

detail in the next chapter. 
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Chapter 4:  

Isotopically labeled D2 fuel comparison with H2 on Au anode 
SOFCs by experimental and computational methods 

 

4.1. Introduction 
 

The H2 oxidation reaction mechanism appears simple at first glance. However, 

investigating the H2 oxidation kinetics under SOFC conditions is complicated due to 

difficulties in designing an experiment to distinguish the reaction steps as well as 

technical difficulties to observe possible intermediates on SOFC anodes. The studies 

presented in Chapters 1 and 3 show three possible limiting steps in the H2 oxidation 

reaction mechanism on SOFC anodes. These are the surface diffusion of 

dissociatively adsorbed H2 species on Au anodes, the charge transfer reaction of these 

adsorbed species at the anode-electrolyte interface, and the desorption of H2O from 

the anode-electrolyte interface.  

Many researchers have studied H2 oxidation mechanisms on conventional Ni/YSZ 

anodes [35, 36, 38, 40, 100, 110, 162, 163, 166]. Ni has been recognized as one of the 

most active metals for the dissociation of H2. These studies have mainly proposed and 

agreed with each other about the gas phase diffusion of H2 as well as to the formation 

of a hydroxyl species and the contribution of these two phenomena on Ni/YSZ anode 

systems. A major distinction has been found concerning where the physical and 

chemical processes take place, either only on the Ni surface or both on the Ni and on 

the YSZ surface. Mizusaki et al. [167] has proposed that only the Ni surface was 

electrochemically active and Jiang et al. [166, 168-170] has included the surface 
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processes on the YSZ surface into the mechanism. The surface diffusion of adsorbed 

H2 fuel and hydroxyl species on the anode surface has been considered for the 

mechanism elsewhere [37, 104, 163, 170]. The effect of partial pressures of H2 and 

H2O for the H2 oxidation mechanism has been the subject of numerous experimental 

and computational studies [37, 72, 104, 108, 116, 163, 166, 169, 170]. However, after 

all these studies, there has not yet been a clear mechanism established for H2 

oxidation on Ni/YSZ anode systems under SOFC conditions. The Ni/Ni2+ redox 

couple in Ni/YSZ anode systems near the triple phase boundaries has suggested that 

the fuel and steam compositions should be optimized to distinguish the different steps 

in the mechanism for the 600-1000 oC temperature range [104, 163, 166, 169]. Horita 

et al. [171] has reviewed the optimized fuel and steam partial pressures for the 

different Ni/YSZ anode geometries. The authors proposed that the surface properties 

of Ni/YSZ anode materials could affect the mechanism. The evidences for the 

intermediates were observed by using secondary ion mass spectrometry (SIMS) 

[171]. 

There has been a limited amount of published results about the surface diffusion of 

adsorbed H2 or H2O species on Ni/YSZ anode systems. Their characteristics are 

restricted to computational analysis [104, 158, 162, 172]. Surface characteristics of Ni 

and Au are compared with respect to their inertness against reducing and oxidizing 

environment [103]. The surface diffusion of adsorbed H2 or H2O species on Au 

anodes would be expected to be lower than that on Ni/YSZ anodes at SOFC operating 

temperatures [103]. The effect of partial pressure of H2O, a degrading agent on 
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Ni/YSZ systems, would not be expected on Au/YSZ systems due to the stability of 

Au in an oxidizing environment relative to Ni. 

When D2 is substituted for H2 under identical SOFC operating conditions, the 

classical isotope effect would be proportional to the factor of 1.41 (the square root of 

ratio of the masses of D2/H2 or D+/H+). The activation energy difference between D2 

and H2 is related to the bond enthalpies of these two fuels. These values are very 

similar in the SOFC temperature range. Norby et al. [173] has observed the factor of 

1.25 as the isotope effect in Ni/YSZ electrode impedance at OCV in the temperature 

range of 600-800 oC, whereas no effect has been observed at 1000 oC or above. The 

authors have proposed that this shift in the isotope effect indicates a change in the 

nature of the rate limiting process at different temperatures. For example, at lower 

this is attributed to the surface diffusion involving hydrogen or protons [173]. 

Modeling studies offer significant benefits to interpret the experimental data of 

SOFC systems. The modeling studies from Bessler et al. [104] have explained the 

charge-transfer processes by examining patterned Ni anodes on a single crystal YSZ 

electrolyte. Their model has predicted that the rate limiting step is in the charge-

transfer reactions during the two step H2 species spillover mechanism from Ni surface 

to O2- or OH- group on the YSZ surface. Williford et al. [158, 174] have modeled 

Ni/YSZ anode supported single SOFC cell. The authors have proposed that in the 

high current density region, surface diffusion to reactive sites at the triple phase 

boundaries was responsible for the diffusion resistance observed in their system. They 

have also claimed that the competitive adsorption of fuel gases at the less reactive 

sites near triple phase boundaries would be another possible explanation for the 
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diffusion resistance. Zhu and Kee [105, 172] have explored and described the gas 

phase diffusion model for the species through porous SOFC electrodes to the reactive 

site near the triple phase boundaries. A distinguishing feature of the authors’ studies 

has been their use of the dusty gas model, which provided the basic model for our 

system used to interpret the experimental data of porous Au anodes. 

This study mainly focuses on distinguishing the effect of the three chemical and 

physical processes: (i) the charge-transfer, (ii) the surface diffusion of adsorbed 

species, and (iii) the water desorption. Each of these processes was identified as a 

possible limiting step in H2 oxidation mechanism on porous Au anodes in Chapter 3. 

The results presented in this work clearly show that the diffusion of adsorbed H2 and 

H2O species on porous Au anodes would be two possible reactions that possibly 

dominate the H2 oxidation mechanism. By utilizing four porous Au anodes with 

varying thicknesses from 30 µm to 120 µm, but with the identical porous Au-YSZ 

interface area, the effect of charge-transfer reactions is mainly eliminated from all 

four porous Au anodes. The interface area between the porous Au anode and the YSZ 

electrolyte defines the place where the charge-transfer reactions take place via H2 

spillover mechanism. The effect of porous Au anode thicknesses on diffusion 

processes is correlated with the H2 partial pressures by using various H2 fuel 

fractions. The various H2 partial pressure experiments on the porous Au anodes with 

different thicknesses provide the basic trend for the thickness dependence of the 

diffusion processes by using polarization and electrochemical impedance 

measurements. The effect of water desorption on porous Au anodes is isolated by 

evaluating the performances of the same SOFC assembly using various H2 partial 
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pressures humidified at room temperature. Isotopic labeling experiments with D2 

substituted for H2 under the identical SOFC operating conditions reveal the fact that 

the trends in polarization and impedance measurements of porous Au anodes could be 

explained by the kinetic isotope effect. Lastly, the modeling studies of the same 

porous Au anodes corroborate the experimental data. The surface diffusion of the 

adsorbed fuel species is suggested as the primary phenomenon responsible for the 

experimental observations. 

 

4.2. Experimental Section 
 

The experimental setup and operating conditions of the SOFC were explained in 

Figure 2.1 of Chapter 2. Briefly, the membrane electrode assembly (MEA) for the 

SOFC was prepared on a polycrystalline YSZ disk (8 mole % yttria stabilized 

zirconia disk) with a 25.4 mm diameter and a 1.10-1.20 mm thickness, which was 

prepared in the laboratory by dye pressing and sintering at 1500oC for an hour. The 

LSM-YSZ was the cathode material, which was prepared as a viscous solution, 

applied by using a mask and then sintered by the consecutive heating processes 

(heated to 400 oC with the rate of 0.3 oC/min, sintered at 400 oC for an hour, then 

heated to 1300 oC with the rate of 1 oC/min, sintered at 1300 oC for an hour, and 

lastly, cooled to room temperature with the rate of 1 oC/min). Porous Au anodes with 

various thicknesses from 30 µm to 120 µm explained below were the only anodes 

employed in this study. The entire assembly was placed into a furnace after 

preparation of the SOFC assembly was completed. The measurements in this study 
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were performed at 785± 10 oC. The fuel flow was supplied to the anode by an inlet 

tube, and the cathode was exposed to air via another tube.  

 

4.2.1 Preparation of porous Au anodes: 
 

Viscous Au paste (Engelhard) was used as purchased to prepare porous Au anodes 

with different thicknesses. Four Au anodes with the specific porous Au thicknesses 

(i.e. 30, 60, 90 and 120 µm) and identical electrode-electrolyte interface areas were 

obtained by using a Kapton tape mask with a thickness of 100 µm. One layer of 

Kapton tape provides a thickness of ~ 30 µm to porous Au anodes after sintering and 

operating in the SOFC. The Kapton tape masks were layered to give the desired 

thickness. Then, these layered masks were put on a YSZ electrolyte disk. After 

applying different thicknesses of Au paste, the masks were removed and then the disk 

was dried for two hours at 230oC using a heat gun. Then, Au leads (AlfaAesar) were 

attached to each porous Au anode to provide electrical contacts by using small 

amount of Au paste. Subsequently, the whole assembly was glued to a ceramic tube 

by using ceramic paste and further sintered over night at 785oC under a flow of Ar-H2 

gas mixture (10 % H2). A detailed experimental setup for the SOFC assembly was 

given in Chapter 2. 

4.2.2 Arrangement of partial pressure of fuel and humidifying agent 
content: 
 

The total gas flow consisted of fuel and diluent (Ar) gas with the purity of > 99.9 

%. The total flow was adjusted with two computer controlled mass flow controllers. 

The total gas flow (total gas pressure = 1 atm) of 210 sccm of fuel and Ar gas mixture 
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on the anode side was used. The different partial pressure values of fuels, such as H2 

and D2, were adjusted by changing the fraction of fuel in the total flow. The fuel 

partial pressure values with respect to the fraction of fuel flow were 14 sccm H2: 

0.067 atm; 70 sccm H2: 0.333 atm; 140 sccm H2: 0.667 atm in total fuel flow of 210 

sccm balanced with Ar diluent gas. When necessary, the fuel flow was humidified by 

bubbling through water at room temperature. 

 

4.2.3 Characterization Techniques: 
 

A Gamry Instruments four-channel Frequency Response Analyzer (FRA) was 

employed for the polarization and electrochemical impedance spectroscopic 

measurements in the potentiostatic mode at open circuit over a frequency range from 

100 kHz to 50 mHz. For the impedance measurements, the excitation voltage was 

constant at 10 mV. Gamry Echem Analyst software version 1.35 is used for fitting 

experimental EIS data. For the polarization measurements, linear scan voltammetry 

was utilized with a step size of 5 mV and with a scan rate of 5 mV/s. For all SOFC 

operations in this study, electrochemical measurements were performed at 785 ± 10 

ºC. SEM analyses were performed with an AMRAY 1820K Scanning Electron 

Microscope with an acceleration potential of 25kV. 
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4.3. Results 
 

Four Au anodes with the thicknesses of 30, 60, 90, and 120 µm were fabricated on 

a YSZ disk as shown in Figure 4.1. The experiment of various thicknesses on porous 

Au anodes was designed to distinguish the effect of surface diffusion of H2 adsorbed 

species on 3-D Au anode bulk, charge-transfer reactions and water desorption. 

1- 30 µm

2- 60 µm 3- 90 µm

4- 120 µm

a b

1- 30 µm

2- 60 µm 3- 90 µm

4- 120 µm

a b  

Figure 4.1: Experimental setup of porous Au anodes with four different thicknesses a) Top view, b) 
Cross-section of the SOFC assembly. 
 

The sintering and operating processes are unlikely to create porosity and thickness 

divergence in porous Au anodes. Figure 4.2 shows the comparison of the scanning 

electron microscopy (SEM) images of Au anodes, which were obtained after ca. 72 

hours operation in SOFC. Scanning electron microscopy was employed to evaluate 

thicknesses and porosities of porous Au anodes. Since the porous Au anodes were 

characterized by mounting the porous Au anodes after their removal from the 

electrolyte surface, the YSZ electrolyte does not appear in the SEM images. The SEM 

images of the top portion of the anode and the bottom portion of the anode that was 

attached to the YSZ electrolyte were used to illustrate the porosity differences for Au 
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anodes. The SEM images of the Au anode cross-sections are illustrated in the first 

column of Figure 4.2. The comparison of the top and bottom views of the entire set of 

Au anodes shows that the porosity of Au anodes with different thicknesses is 

identical. The pore sizes of Au anodes are in the range of 3-5 µm for top and bottom.  

 

120 µm

90 µm

60 µm

30 µm
Bottom viewTop viewCross-sectionElectrode

120 µm

90 µm

60 µm

30 µm
Bottom viewTop viewCross-sectionElectrode

27.4 µm

61.2  µm

94.7 µm94.7 µm

121.0 µm121.0 µm

40 µm 40 µm

40 µm

40 µm

40 µm

40 µm

40 µm

40 µm
 

Figure 4.2 SEM images of porous Au anodes with various thicknesses after 72 hours operation in 
SOFC. 

4.3.1 The effect of dry H2 partial pressures on porous Au anodes with 
different thicknesses in SOFC: 
 

The experiments on porous Au anodes in Figure 4.1 with different H2 partial 

pressures were designed to evaluate the effect of mass transport processes, such as 

gas phase, surface diffusion, and water desorption. Since the total gas pressure is 1 

atm, the H2 partial pressure was calculated from the ratio of the H2 fuel flow to the 

total gas flow (210 sccm). Three different dry H2 fuel fractions, which were at lower, 

14 sccm, (0.067 atm), medium, 70 sccm, (0.333 atm), and higher, 140 sccm, (0.667 
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atm) fuel fractions of the total gas flow of 210 sccm (1 atm) balanced with Ar gas, 

were employed to examine the effect of the H2 partial pressure on the polarization and 

impedance performances of porous Au anodes in operation of SOFC assembly. The 

polarization and impedance measurements were simultaneously recorded to avoid the 

potential and current gradients across the electrolyte and the cathode for four porous 

Au electrodes shown in Figure 4.1. 
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Figure 4.3 Polarization curves (normalized with respect to Au-YSZ interface area, 16 mm2 for all 

four electrodes) of four different thicknesses porous Au anodes with various fuel fractions of dry H2 
Left: whole range of polarization curves, Right: details in maximum current density regions (Orange: 
30 µm, Green: 60 µm, Blue: 90 µm, and Magenta: 120 µm). 

 

The polarization curves of porous Au anodes with different dry H2 fuel partial 

pressures are illustrated in Figure 4.3. The fuel conversion efficiencies are in the 
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range of 0.15-0.21 %. These are calculated by using the number of electrons from the 

experimental current values divided by the number of electrons from the H2 input. 

These conversion values are extremely low as compared to the conventional SOFC 

anodes [36]. Since Au is known as a poor catalyst for H2 oxidation under SOFC 

operating conditions, low fuel conversion is anticipated. Au anodes are preferred to 

differentiate the contribution of each H2 oxidation step by changing one parameter on 

different Au anode geometries in the same SOFC assembly.  

At low to medium fuel partial pressures, power densities are proportional to the Au 

anode and YSZ electrolytes interface areas, whereas this is not observed for the high 

fuel partial pressure. For low to medium fuel partial pressures (<0.333 atm), the 

change in thicknesses of porous Au anodes has virtually no effect on power densities, 

which are approximately 0.005 and 0.020 Watts/cm2, respectively. At 0.667 atm high 

fuel partial pressure, power density values decrease with respect to increasing Au 

anode thickness, such as 0.034 Watts/cm2 for the thinnest electrode and 0.027 

Watts/cm2 for the thickest electrode.  

Table 4.1: Maximum current densities of porous Au anodes with dry H2 

112 mA/cm2

72.0 mA/cm2

13.5 mA/cm2

60 µm

124 mA/cm2

75.0 mA/cm2

13.0 mA/cm2

30 µm

95.0 mA/cm2107 mA/cm20.667 atm Dry H2

66.5 mA/cm269.0 mA/cm20.333 atm Dry H2

14.5 mA/cm214.0 mA/cm20.067 atm Dry H2

120 µm90 µmFuel Partial 
Pressure

112 mA/cm2

72.0 mA/cm2

13.5 mA/cm2

60 µm

124 mA/cm2

75.0 mA/cm2

13.0 mA/cm2

30 µm

95.0 mA/cm2107 mA/cm20.667 atm Dry H2

66.5 mA/cm269.0 mA/cm20.333 atm Dry H2

14.5 mA/cm214.0 mA/cm20.067 atm Dry H2

120 µm90 µmFuel Partial 
Pressure

 
 
For the medium and high fuel partial pressures, the thinnest electrode has the 

highest, and the thickest has the lowest maximum current densities given in Table 4.1. 

However, for the low fuel partial pressures the thickest has 14.5 mA/cm2 and the 

thinnest has 13.0 mA/cm2 current densities.  
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The overpotential applied between the anode and the cathode is the electrical 

driving force for the anodic processes. It is used to adjust the fuel cell to a specific 

operating condition on the polarization curve as explained in Chapter 1, Fig. 1.3. At 

certain overpotential values, different types of chemical and physical processes are 

dominant and described by changing parameters in the SOFC assembly. The 

electrochemical impedance curves at the range of high current regime overpotential 

of Au anodes with various H2 partial pressures are shown in Figure 4.5. With respect 

to the polarization curves in Figure 4.3, the 1 V overpotential (at 0.2-0.25 V cell 

voltage), according to the open circuit voltage (OCV) range of 1.20 V for 0.067 atm 

to 1.25 V for 0.667 atm, is chosen to address the effect of mass transport processes on 

SOFC impedance curves. 

The equivalent circuit in Figure 4.4 is employed to fit the EIS data of Au anodes. 

This circuit is a modified version of a common circuit model employed by Sukeshini 

et al. [175] and Bieberle et al. [110]. Two RQ elements for the anode processes are 

adopted to fit the experimental impedances and to evaluate the charge-transfer and 

mass transport processes, such as surface diffusion.  

 

Figure 4.4 Equivalent circuit used to fit the electrochemical impedances. 
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The inductance, Lb, and the bulk resistance, Rb, are in series and related to 

processes on the connecting leads and electrolyte. The cathode associated circuit 

elements are the cathode double layer capacitance, Ccat, DL, the cathode charge-

transfer resistance, Rcat, CT, which are connected in parallel; the cathode diffusion 

resistance, Rcat, Diff, and the constant phase element (CPE), Qcat Diff, which are 

connected in parallel and in series to Rcat, CT. The impedance of CPE is given by 

ZCPE= 1/Q(iω)n ,where i the imaginary unit, ω is the angular frequency, and n is the 

deviation of impedance of CPE from the ideal capacitive behavior (n=1 for the 

impedance of a capacitor, n=0 for the impedance of a resistor, and n≈0.5 for the 

impedance of a surface diffusion).  

There are two parallel RQ elements for anode processes, which are connected in 

series. The first RQ is added to distinguish the charge-transfer and consists of the 

anode charge transfer resistance, Ran, CT, and the constant phase element, Qan CT. The 

second parallel RQ is associated with diffusion processes on the anode surface, which 

are Ran, Diff, and the constant phase element, Qan Diff. The bulk and cathode portion of 

EIS data are assumed to be constant for the entire polarization range. EIS parameters 

of the bulk and the cathode from Sukeshini et al. [175] are employed for fitting the 

EIS data to distinguish the anode related processes and these values and details of fits 

are given in the Appendix.  
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Figure 4.5 Impedance curves at 1V overpotential (normalized with respect to Au-YSZ interface 

area, 16 mm2 for all four electrodes) of four different thicknesses porous Au anodes with various fuel 
fractions of dry H2 (Orange: 30 µm, Green: 60 µm, Blue: 90 µm, and Magenta: 120 µm) Symbols 
are experimental data and lines are data from equivalent circuit fits. 

 

The electrochemical impedance spectra of Au anodes at 1V overpotential and the 

equivalent circuit fits of Au anodes are illustrated in Figure 4.5. At 0.067 atm fuel 

partial pressure, the thinnest electrode has a larger total resistance, RT, than other 

electrodes. Between the medium and high fuel partial pressures, the trends, values, 
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and shapes of electrochemical impedances of porous Au anodes are similar. The 

thinnest electrode has smaller total resistance, RT, values at 0.333 and 0.667 atm than 

other electrodes. All anodes for medium and high fuel partial pressures have two arcs 

in EIS curves. These trend changes between low and medium dry fuel partial 

pressures are observed also in polarization curves in Figure 4.3. 

Table 4.2: Summary of EIS spectra fitting parameters at high current region for various thickness 
porous Au anodes with different dry H2 fuel partial pressures. 

45.352.867.379.1Ran, Diff (Ω*cm2)

6.16.46.56.8Ran, CT (Ω*cm2)
0.067 atm Dry H2

7.57.56.65.1Ran, Diff (Ω*cm2)

2.32.22.22.1Ran, CT (Ω*cm2)
0.333 atm Dry H2

7.06.46.56.5Ran, Diff (Ω*cm2)
0.667 atm Dry H2

Fuel Partial 
Pressure 120 µm90 µm60 µm30 µmParameters

2.22.42.32.1Ran, CT (Ω*cm2)

45.352.867.379.1Ran, Diff (Ω*cm2)

6.16.46.56.8Ran, CT (Ω*cm2)
0.067 atm Dry H2

7.57.56.65.1Ran, Diff (Ω*cm2)

2.32.22.22.1Ran, CT (Ω*cm2)
0.333 atm Dry H2

7.06.46.56.5Ran, Diff (Ω*cm2)
0.667 atm Dry H2

Fuel Partial 
Pressure 120 µm90 µm60 µm30 µmParameters

2.22.42.32.1Ran, CT (Ω*cm2)

 

Table 4.2 gives the EIS fitting parameters for the charge-transfer and diffusion 

resistances of Au anodes under dry fuel partial pressures. For each fuel partial 

pressure, the charge-transfer resistances, Ran, CT, of Au anodes are in the same range 

within experimental error. The Ran, CT values decrease with increasing H2 partial 

pressures due to the enhancement in the amount of surface H2 species at the interface. 

The range of Ran, CT values are 6.8-6.1 Ω*cm2 at dry 0.067 atm, 2.1-2.3 Ω*cm2 at dry 

0.333 atm, and 2.1-2.4 Ω*cm2 at dry 0.667 atm. The Ran, CT values are in the deviation 

ranges of 10 % between different thicknesses for each fuel partial pressure. 

The diffusion resistances, Ran, Diff, follow the trends observed in the polarization 

curves in Figure 4.3. Ran, Diff are composite resistances of surface diffusion of various 

adsorbed species on bulk Au and YSZ, such as hydrogen and water. For the low fuel 

partial pressure, Ran, Diff values decrease with increasing electrode thickness, from 



 

 102 
 

79.1 Ω*cm2 to 45.3 Ω*cm2. This trend in Ran, Diff values dictates the trends in the 

maximum current densities for the low dry fuel partial pressure as observed in Figure 

4.3. Ran, Diff is the combined resistances of surface diffusion processes.  

The dependence of Ran, Diff on the thickness of Au anodes with various dry fuel 

partial pressures is illustrated in Figure 4.6. Ran, Diff values from equivalent circuit fits 

are linear with respect to the thickness of porous Au anodes at each dry fuel partial 

pressure. For the medium to high dry fuel partial pressures, the changes in Ran, Diff 

values with respect to the thickness of porous Au anodes are ~zero according to the 

slopes of the curves in Figure 4.6. For the 0.333 and 0.667 atm dry fuel partial 

pressures.  
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Figure 4.6 The plot of Au anode thicknesses vs. Ran, Diff values at 1V overpotential from equivalent 

circuit fits with various dry H2 fuel partial pressures. 
 

Figure 4.7 shows an Ran, Diff dependence on partial pressure of dry H2 fuel, p(H2), 

for the four Au anodes. The fuel partial pressures are calculated by the ratio of H2 

flow (14-70-140 sccm) to the total gas flow (210 sccm). Since the total pressure is 1 
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atm, this ratio directly provides the H2 partial pressures, p(H2), which are 0.067, 

0.333, and 0.667 atm, respectively.  
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Figure 4.7 The plot of p(H2) vs. Ran, Diff, H2 partial pressure dependence of Ran, Diff at 1 V 

overpotential from equivalent circuit fits with various dry H2 fuel fractions (Orange: 30 µm, Green: 
60 µm, Blue: 90 µm, and Magenta: 120 µm). 

 

4.3.2 The effect of water on Au anodes with varying partial pressures of 
H2: 
 

The same SOFC assembly used for the dry fuel experiments was examined in order 

to distinguish the surface diffusion and desorption effects of water on the polarization 

and impedance of the four Au anodes by adding 3 % water to the total fuel flow. The 

fuel content was humidified by passing it through a water bubbler at room 

temperature. The amount of water is preferred due to its conventional use in SOFC 

operations with H2 and hydrocarbon fuels. 

The polarization curves of Au anodes with constant 3 % water are shown in Figure 

4.8. For the low to medium wet H2 fuel partial pressures, the power density values are 

not affected by water content as compared to dry H2 experiments. For the low to 

medium fuel partial pressures (<0.333 atm) with 3 % water the power densities for 
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the low and medium fuel partial pressures are 0.005 Watts/cm2 and 0.020 Watts/cm2, 

respectively. These power density values are identical with dry H2 experiments. For 

the high fuel partial pressure, the power density values are lower than for dry H2 

experiments for the high fuel partial pressure, 0.029 Watts/cm2 for the thinnest and 

0.020 Watts/cm2 for the thickest. The maximum current density region for the low to 

medium fuel partial pressures is also shown in Figure 4.8, respectively.  
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Figure 4.8 Polarization curves (normalized with respect to Au-YSZ interface area, 16 mm2 for all 
four electrodes) of four Au anodes with various fuel fractions of wet H2 Left: whole range of 
polarization curves, Right: details in maximum current density regions (Orange: 30 µm, Green: 60 
µm, Blue: 90 µm, and Magenta: 120 µm). 

 

For the low and medium fuel partial pressures with 3% water the thickest electrode 

has a higher maximum current density than the thin electrodes as was observed in the 

low flow dry H2 case. However, for the high fuel partial pressure with 3% water this 
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trend is reversed and the thinnest electrode has a higher current density than the 

thickest electrode. 

 
Table 4.3: Maximum current densities of porous Au anodes with wet H2. 

79.2 mA/cm2

75.0 mA/cm2

15.4 mA/cm2

60 µm

95.1 mA/cm2

72.4 mA/cm2

15.2 mA/cm2

30 µm

64.0 mA/cm272.2 mA/cm20.667 atm Wet H2

76.2 mA/cm276.0 mA/cm20.333 atm Wet H2

17.2mA/cm215.8 mA/cm20.067 atm Wet H2

120 µm90 µmFuel Partial 
Pressure

79.2 mA/cm2

75.0 mA/cm2

15.4 mA/cm2

60 µm

95.1 mA/cm2

72.4 mA/cm2

15.2 mA/cm2

30 µm

64.0 mA/cm272.2 mA/cm20.667 atm Wet H2

76.2 mA/cm276.0 mA/cm20.333 atm Wet H2

17.2mA/cm215.8 mA/cm20.067 atm Wet H2

120 µm90 µmFuel Partial 
Pressure

 
 

The maximum current densities for the four Au anodes and wet H2 fuel are given in 

Table 4.3. When the maximum current densities for the wet H2 cases are compared 

with that of the dry H2 cases, at 0.067 atm, the identical trend with respect to the dry 

case is observed. The maximum current density of the thickest electrode is higher 

than that of the thinnest electrode, 15.2 and 17.2 mA/cm2, respectively. Interestingly, 

the maximum current densities of the 90 and 120 µm electrodes for the medium to 

high fuel partial pressures of wet H2 decrease from 76.0 to 72.2 mA/cm2 for 90 µm 

electrode and 76.2 to 64.0 mA/cm2 for 120 µm electrode.  

Figure 4.9 shows the electrochemical impedance spectra at 1 V overpotential and 

equivalent circuit fits of four Au anodes with various wet fuel partial pressures. For 

the low to medium wet fuel partial pressures, the thinnest Au anode has the highest 

RT values, whereas for the high wet fuel partial pressure has the lowest RT values. 

Only for the medium wet fuel partial pressure, two arcs in impedance are clearly 

observed, which can be assigned as the charge-transfer resistance for the high 

frequency side and the diffusion resistance for the low frequency side. 
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Figure 4.9 Impedance curves at the 1V overpotential (normalized with respect to Au-YSZ interface 

area, 16 mm2 for all four electrodes) of four Au anodes with various fuel fractions of wet H2 (Orange: 
30 µm, Green: 60 µm, Blue: 90 µm, and Magenta: 120 µm) Symbols are experimental data and lines 
are data from equivalent circuit fits. 

 
 
Table 4.4: Summary of EIS spectra fitting parameters at high current region for Au anodes with 

different wet H2 fuel fractions. 

55.163.873.983.3Ran, Diff (Ω*cm2)

0.91.11.41.4Ran, CT (Ω*cm2)
0.067 atm Wet H2

14.114.515.115.5Ran, Diff (Ω*cm2)

3.73.93.83.6Ran, CT (Ω*cm2)
0.333 atm Wet H2

14.813.112.19.0Ran, Diff (Ω*cm2)
0.667 atm Wet H2

Fuel Partial 
Pressure 120 µm90 µm60 µm30 µmParameters

0.80.70.80.7Ran, CT (Ω*cm2)

55.163.873.983.3Ran, Diff (Ω*cm2)

0.91.11.41.4Ran, CT (Ω*cm2)
0.067 atm Wet H2

14.114.515.115.5Ran, Diff (Ω*cm2)

3.73.93.83.6Ran, CT (Ω*cm2)
0.333 atm Wet H2

14.813.112.19.0Ran, Diff (Ω*cm2)
0.667 atm Wet H2

Fuel Partial 
Pressure 120 µm90 µm60 µm30 µmParameters

0.80.70.80.7Ran, CT (Ω*cm2)
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Equivalent circuit fitting parameters of Ran, CT and Ran, Diff in electrochemical 

impedance measurements of the four Au anodes with various wet fuel partial 

pressures are summarized in Table 4.4.  
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Figure 4.10 The plot of Au anode thicknesses vs. Ran, Diff at 1V overpotential from equivalent circuit 
fits with various wet H2 fuel fractions. 

 

Figure 4.10 shows the dependence of Ran, Diff on the thickness of porous Au anodes 

with various wet fuel partial pressures. The Ran, Diff values from equivalent circuit fits 

are again linear with respect to the thickness of Au anodes for each wet fuel partial 

pressure. For the medium to high wet fuel partial pressures, the changes in Ran, Diff 

values with respect to the thickness of porous Au anodes are relatively slight as 

observed from the slopes of the curves in Figure 4.10. For the high wet fuel partial 

pressures, Ran, Diff values increase slightly with increasing the porous Au anode 

thicknesses. However, the Ran, Diff values decrease with respect to anode thicknesses 

for the 0.067 and 0.333 atm wet H2 partial pressures.  
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Figure 4.11 The plot of p(H2) vs. Ran, Diff, H2 partial pressure dependence of Ran, Diff  at 1 V 

overpotential from equivalent circuit fits with various wet H2 fuel fractions (Orange: 30 µm, Green: 
60 µm, Blue: 90 µm, and Magenta: 120 µm). 

 

The dependence of Ran, Diff on partial pressure of dry H2 fuel, p(H2), for four Au 

anodes is presented in Figure 4.11, which is discussed in Section 4.4.2. 

4.3.3 The comparison of isotopically labeled D2 fuels with H2 fuel on 
porous Au anodes with different thicknesses: 
 

The SOFC assembly as shown in Figure 4.1 was fabricated to differentiate the 

effect of the surface diffusion of adsorbed species of the isotopically labeled D2 fuel 

on Au anodes with four different thicknesses.  
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Figure 4.12 Polarization curves (normalized with respect to Au-YSZ interface area, 16 mm2 for 

each) of four different thicknesses porous Au anodes with dry and wet H2, isotopically labeled D2 
(Orange: 30 µm, Green: 60 µm, Blue: 90 µm, and Magenta: 120 µm). 

 

Figure 4.12 illustrates the polarization curves of the four porous Au anodes with H2, 

isotopically labeled D2 fuel for the 70 sccm (0.333 atm) fuel partial pressures for each 

fuel.  

 
 
Table 4.5: Maximum current densities of porous Au anodes with H2 and D2. 

43.4 mA/cm244.8 mA/cm246.6 mA/cm251.1 mA/cm20.333 atm Dry D2

76.2 mA/cm276.0 mA/cm275.0 mA/cm272.4 mA/cm20.333 atm Wet H2

43.2 mA/cm2

72.0 mA/cm2

60 µm

42.9 mA/cm2

75.0 mA/cm2

30 µm

44.7 mA/cm244.5 mA/cm20.333 atm Wet D2

66.5 mA/cm269.0 mA/cm20.333 atm Dry H2

120 µm90 µmFuel Partial 
Pressures

43.4 mA/cm244.8 mA/cm246.6 mA/cm251.1 mA/cm20.333 atm Dry D2

76.2 mA/cm276.0 mA/cm275.0 mA/cm272.4 mA/cm20.333 atm Wet H2

43.2 mA/cm2

72.0 mA/cm2

60 µm

42.9 mA/cm2

75.0 mA/cm2

30 µm

44.7 mA/cm244.5 mA/cm20.333 atm Wet D2

66.5 mA/cm269.0 mA/cm20.333 atm Dry H2

120 µm90 µmFuel Partial 
Pressures

 

 

The maximum current densities of porous Au anodes with various thicknesses 

under dry and wet H2 and D2 fuel are presented in Table 4.5 to distinguish the isotope 

effect in the oxidation reaction of fuel on porous Au anodes. The range of maximum 
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current densities is 75.0-66.5 mA/cm2 for 0.333 atm (70 sccm) dry H2 fuel and 51.1-

43.4 mA/cm2 for dry D2 fuel.  
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Figure 4.13 Impedance curves at 1V overpotential (normalized with respect to Au-YSZ interface 
area, 16 mm2 for all four electrodes) of four different thicknesses porous Au anodes with dry/wet H2 
and D2 at 70 sccm fuel fraction (Orange: 30 µm, Green: 60 µm, Blue: 90 µm, and Magenta: 120 µm) 
Symbols are experimental data and lines are data from equivalent circuit fits. (Note: the graph 
depicting the wet D2 impedance is shown with different scales for aesthetic purposes) 

 

The EIS data at the high current region and equivalent circuit fits of four different 

thickness porous Au anodes with dry/wet H2 and D2 fuels are displayed in Figure 

4.13. Two separate arcs, which are the charge-transfer resistance at high frequency 

side and the diffusion resistance on the low frequency side in the electrochemical 

impedance curves, are clearly observed for every case of dry and wet H2 and D2 fuels 

on porous Au anodes with various thicknesses. The thickest anode has the lowest RT 

values for the wet cases of H2 and D2 fuels, and the highest RT values for the cases of 

dry H2 and D2 fuels. 
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Table 4.6 gives a quantitative summary of equivalent circuit fitting parameters of 

Ran, CT, and Ran, Diff, for the porous Au anodes with various thicknesses under both dry 

and wet H2 and D2 fuels in Figure 4.12.  

 
Table 4.6: Summary of the equivalent circuit fitting parameters of EIS spectra at 1 V overpotential 

for Au anodes with dry and wet H2 and D2 fuels. 

7.47.27.37.4Ran, CT (Ω*cm2)0.333 atm
Wet D2

25.529.833.737.6Ran, Diff (Ω*cm2)

3.73.83.73.6Ran, CT (Ω*cm2)0.333 atm
Wet H2

16.115.815.114.4Ran, Diff (Ω*cm2)

15.514.212.29.7Ran, Diff (Ω*cm2)

2.22.62.32.5Ran, CT (Ω*cm2)0.333 atm
Dry D2

7.67.56.65.1Ran, Diff (Ω*cm2)

2.32.22.22.1Ran, CT (Ω*cm2)0.333 atm
Dry H2

Fuel Partial 
Pressure 120 µm90 µm60 µm30 µmParameters

7.47.27.37.4Ran, CT (Ω*cm2)0.333 atm
Wet D2

25.529.833.737.6Ran, Diff (Ω*cm2)

3.73.83.73.6Ran, CT (Ω*cm2)0.333 atm
Wet H2

16.115.815.114.4Ran, Diff (Ω*cm2)

15.514.212.29.7Ran, Diff (Ω*cm2)

2.22.62.32.5Ran, CT (Ω*cm2)0.333 atm
Dry D2

7.67.56.65.1Ran, Diff (Ω*cm2)

2.32.22.22.1Ran, CT (Ω*cm2)0.333 atm
Dry H2

Fuel Partial 
Pressure 120 µm90 µm60 µm30 µmParameters
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Figure 4.14 Porous Au anode thicknesses vs. Ran, Diff values from equivalent circuit fits with 70 
sccm dry/wet H2-D2 flows. 

 

The dependence of Ran, Diff on the thickness of Au anodes is presented in Figure 

4.14. The linearity of each set of Ran, Diff values with respect to the thickness of porous 

Au anodes arises from each fuel flow composition. At 0.333 atm dry H2 and D2 fuel 
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partial pressures, the Ran, Diff values with respect to the thickness of porous Au anodes 

increase slightly as can be observed from the slopes of the curves in Figure 4.14.  

4.3.4 Modeling studies of four different thicknesses porous Au anodes 
with various fuel partial pressures of H2: 
 

To glean a better understanding of the electrochemical behavior of porous Au 

anodes in SOFC, a new approach developed by Bessler et al. [104] was employed 

with the aim to correlate directly the experimental polarization data with the chemical 

and the electrochemical equations characterizing the system. Due to the geometrical 

complexity of the porous Au electrodes, simplified model electrode systems, such as 

Au metal, H2 gas, and YSZ systems were studied at first. The simulations were based 

on the dependence of thermodynamic and kinetic properties of electrochemical 

reactions in porous Au anode systems. The details concerning the application to 

SOFC systems are addressed by comparing the experimental and simulated data.  

The model employed in this study was a 1-D isothermal SOFC model developed in 

University of Maryland SOFC group. This model incorporates the effects of gas 

phase diffusion, surface diffusion, adsorption-desorption reactions, charge-transfer 

reactions, and ohmic processes. The gas phase diffusion rates are calculated using the 

dusty gas model, which was described elsewhere [105, 172]. The equation for this 

model is: 

[ ]( ) [ ]
P

B
lD

lXlkD
lXlkDkN g

l
e
Kn

DGM
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DGMg ∇⎟⎟
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⎝

⎛
−∇−= ∑∑ µ)(

)(),(
)(),()(

  4.1 

where Ng(k) is the molar flux per unit area of species k; DDGM(k, l) is the dusty gas 

model diffusion coefficient for species k and l; [X(l)] is the molar concentration of 
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species l; De
Kn(l) is the effective Knudsen diffusion coefficient of species l; Bg is the 

permeability of the porous electrode; µ is the viscosity; P is the pressure. The surface 

diffusion rates of adsorbed species on anode surfaces are calculated according to the 

following equation: 

x
kkDkN surfsurf ∆

∆
Γ=

)()()( θ

        4.2 

where Nsurf(k) is the surface diffusion rate for species k; Γ is the total surface site 

concentration of available surface sites on anode; Dsurf(k) is the surface diffusion 

coefficient of species k; θ(k)  is the surface site fraction of species k; x is the surface 

diffusion distance to triple phase boundary (TPB). Adsorption and desorption reaction 

rates are calculated according to law of mass-action kinetics: 

 
Reaction Rate = kf Π[Xr] - kb Π[Xp]       4.3 

where kf is the rate constant for forward reaction; [Xr] is the molar concentration of 

reactants; kb is the rate constant for the reverse reaction; [Xp] is the molar 

concentration of products. The charge-transfer reaction rates with respect to Faradaic 

current density, iFar, are calculated according to the Butler-Volmer equation [76]: 
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where i0 is the exchange current density; n is the number of electrons transferred per 

mole of fuel; βf and βb are the forward and backward symmetry factors, respectively; 

and F is the Faraday constant. The ohmic processes are governed according to Ohm’s 

law: 

∆V = iR          4.5 
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where ∆V is the potential; i is the current; R is the resistance. The model employed in 

this study is the transient model that integrates over a long time period to find the 

steady-state. 

Figure 4.15 illustrates the model SOFC assembly used in this study. Since, the 

surface diffusion length scale is smaller than the anode thicknesses, the model in this 

study assumes that all the non-equilibrium chemistry occurs at the 2-D interface 

between porous Au and YSZ electrolyte, which is indicated by the red rectangular 

area in Figure 4.15.  

 
Figure 4.15 Schematic representation of SOFC assembly employed in modeling studies. 

The set of parameters for anode modeling studies is given in Table 4.7. All the 

cathode parameters are taken from the modeling studies for the LSM-YSZ cathodes 

previously performed in the University of Maryland SOFC group.  

SEM images in Figure 4.2 provide information about the porosity, Φg, the average 

pore radius, rp, and the average particle diameter, dp, of the porous Au anodes, which 

are directly extrapolated by measuring the sizes on SEM images. The tortuosity, τg, 

value is employed as a reasonable value taken from literature. The active catalyst area 

per unit geometric area, Acat, and the active electrolyte area per unit geometric area, 

Aelec, values are fitted manually. The triple phase boundary length per unit geometric 

area, Ltpb, value is calculated from Acat divided by rp. Finally, both triple phase 
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boundary widths such as on the catalyst surface, wtpb,cat, and on the electrolyte 

surface, wtpb,elec, as well as all the surface diffusion coefficients are adjusted to give 

the best correspondence between the experimental data from the four Au anodes with 

various dry H2 and D2 fuels and model results. 

 

Table 4.7: Summary of modeling parameters used in this study.  

H on Au—3.61e-7, 
D on Au—2.56e-7

H on Au—1.87e-7

70 and 140 sccm

2020wtpb,elec the width of the three phase 
boundary on the electrolyte surface [nm]

2020wtpb,cat the width of the three phase 
boundary on the catalyst surface [nm]

O2- on YSZ—1e-8O2- on YSZ—1e-8
OH- on YSZ—8e-9

Dsurf,elec surface diffusion coefficients on the 
electrolyte surface [m2/s]

O on LSM—6.02e-814 sccmDsurf,cat surface diffusion coefficients on the 
catalyst surface [m2/s]

10.06Aelec Active electrolyte area per unit 
geometric area

10.06Acat Active catalyst area per unit geometric 
area 

2.54dp Average particle diameter [µm]

0.52rp Average pore radius [µm]

45τg Tortuosity

0.350.25Фg Porosity

30As per experimentTotal electrode thickness [µm]

3e63e4Ltpb per unit geometric area [1/m]

CathodeAnode

H on Au—3.61e-7, 
D on Au—2.56e-7

H on Au—1.87e-7

70 and 140 sccm

2020wtpb,elec the width of the three phase 
boundary on the electrolyte surface [nm]

2020wtpb,cat the width of the three phase 
boundary on the catalyst surface [nm]

O2- on YSZ—1e-8O2- on YSZ—1e-8
OH- on YSZ—8e-9

Dsurf,elec surface diffusion coefficients on the 
electrolyte surface [m2/s]

O on LSM—6.02e-814 sccmDsurf,cat surface diffusion coefficients on the 
catalyst surface [m2/s]

10.06Aelec Active electrolyte area per unit 
geometric area

10.06Acat Active catalyst area per unit geometric 
area 

2.54dp Average particle diameter [µm]

0.52rp Average pore radius [µm]

45τg Tortuosity

0.350.25Фg Porosity

30As per experimentTotal electrode thickness [µm]

3e63e4Ltpb per unit geometric area [1/m]

CathodeAnode

 

 

Using the parameters given in Table 4.7, Figure 4.16 shows a comparison between 

the model simulations and the empirical polarization data from the porous Au anodes 

with various dry H2 fuel partial pressures. To avoid confusion between the four 

different thicknesses, only the thinnest, 30 µm and the thickest, 120 µm, anodes are 

presented. 
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Figure 4.16 Comparison of experimental and simulated data from different thickness porous Au 

anodes with various dry H2 fuel fractions (Orange: 30 µm and Magenta: 120 µm). 
 

 

Figure 4.17 shows the comparison of experimental and simulated polarization data 

with dry 70 sccm (0.333 atm) H2 and D2 fuel flows. The simulated polarization curves 

in Figure 4.17 are obtained with dry D2 fuel partial pressure by addition of the isotope 

effect to Dsurf, cat values in Table 4.7.  
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Figure 4.17 Comparison of experimental and simulated data from different thickness porous Au 

anodes at 70 sccm dry H2 and D2 fuel fractions (Orange: 30 µm and Magenta: 120 µm). 
 

4.4. Discussions 

4.4.1 The effect of dry H2 partial pressures on porous Au anodes with 
different thicknesses in SOFC: 
 

The power and current densities (Figure 4.3 and Table 4.1) are normalized with 

respect to the porous Au-YSZ interface area, which is 16 mm2 for all four electrodes. 

The difference with respect to the thicknesses of Au anodes for the low to medium 

fuel partial pressures is observed in the higher current density region, which is 

explained in Chapter 1 as the mass transport limiting region. Thus, the detailed 

polarization curves showing maximum current densities of Au anodes are given next 

to the polarization curves of each fuel partial pressure case in Figure 4.3. For the 

medium to high fuel partial pressures, the thin electrodes have higher maximum 
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current densities than the thick electrodes, and this trend is more pronounced for the 

high fuel partial pressure. However, for the low fuel partial pressure, this observation 

is reversed and the thickest electrode has a higher maximum current density than the 

thinnest electrode. 

The reason for the trend change by increasing H2 partial pressure is the amount of 

water produced at the interface (Table 4.1).  The water at the interface precludes the 

surface diffusion of adsorbed species and charge-transfer reactions. The fractions of 

water produced at the interface are in the range of 0.0140- 0.0152 % for 0.067 atm, 

0.0706-0.0710 % for 0.333 atm, and, 0.101-0.134 % for 0.667 atm. These fractions 

are calculated by using the fuel conversion values times the fuel partial pressure 

divided by total gas flow. The water percentage rises with increasing fuel partial 

pressure due to the enhancement in the current and current densities.  

For the low fuel partial pressure, the surface coverage of adsorbed H2 species at the 

interface is low as compared to the amount of water produced at the interface. The 

higher current density of the thickest electrode is anticipated for the low fuel partial 

pressure. This is stemming from the higher active surface area of the thickest 

electrode available for the competition between adsorbed species and water at the 

interface.  

For the medium to high H2 partial pressures, the amount of water at the interface is 

much less than the adsorbed H2 transporting to the interface. The surface diffusion of 

adsorbed species controls the current densities of the electrodes with respect to the 

thicknesses of electrodes at medium to high H2 partial pressures. This is explained by 

the longer path on Au anode for adsorbed species of the thickest electrode surface 
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than that of the thinnest electrode. Consequently, the higher maximum current 

densities are expected for the thinnest electrode at medium to high H2 partial 

pressures. 

The water produced at the interface impedes the surface diffusion of H2 species for 

the 0.067 atm H2 fuel partial pressure (Figure 4.5 and Table 4.2). The amount of 

adsorbed H2 species at the Au and YSZ interface is comparable with the amount of 

water produced; therefore, for the low fuel partial pressure, the water produced at the 

interface impacts the surface diffusion processes. The use of medium to high dry fuel 

partial pressures supplies a larger amount of surface H2 species to the interface than 

the amount of water produced at the interface. For the medium to high fuel partial 

pressures, higher maximum current densities are observed for the thinnest electrodes. 

The Ran, Diff values of porous Au anodes with various thicknesses for the medium to 

high dry fuel partial pressures reflect the trends in maximum current densities. The 

lower Ran, Diff values of the thinnest electrodes (5.1 Ω*cm2 for the medium fuel partial 

pressure and 6.5 Ω*cm2 for the high fuel partial pressure), as compared to those of the 

thickest electrodes (7.6 Ω*cm2 for the medium fuel partial pressure and 7.0 Ω*cm2 at 

high fuel partial pressure) correlates with the higher maximum current densities of the 

thinnest electrodes.  

The EIS results of Au anodes with various dry H2 fuel partial pressures show that 

the surface diffusion of adsorbed species controls the maximum current densities for 

the medium to high fuel partial pressures. Moreover, for the low fuel partial 

pressures, the surface diffusion of adsorbed water species impedes the surface 

diffusion of H2 species. The surface diffusion dominates the trends in the maximum 
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current densities of Au anodes. The effect of humidified H2 fuel partial pressures on 

the polarization and impedance of Au anodes is further discussed in the following 

section. 

There is a slight increase in the Ran, Diff values with increasing thicknesses of the Au 

anodes (Figure 4.6), the trends of which are anticipated due to the decrease in the 

surface coverage of fuel species with the increase of the porous Au anode thickness. 

The Ran,Diff values decrease significantly with respect to anode thicknesses at 0.067 

atm dry H2 flow. The possible explanation for this trend would be the effect of the 

water concentration gradient on Ran, Diff values of Au anodes and the higher number of 

active surface sites of the thicker anodes. The increase in the Au anode thickness 

results in the low water concentration gradient through the Au anode, and then, Ran, 

Diff values would be less in the thicker anodes than in the thinner anodes, and the 

number of active surface sites increases with increasing the Au anode thickness. The 

competition between water and the adsorbed species of H2 fuel should be smaller in 

the thicker anodes than in the thinner anodes. 

The fuel partial pressure dependence (Figure 4.7) of Ran, Diff values may be 

explained by the trend between the low and medium fuel partial pressures in 

polarization curves in Figure 4.3. The thinnest porous Au anode has the highest Ran, 

Diff value for the low dry H2 partial pressure, whereas the lowest Ran, Diff value is 

observed for the medium to high dry H2 partial pressure, which explains the lowest 

current densities of the thinnest anodes for the low dry fuel partial pressures but the 

highest current densities for the medium to high dry fuel partial pressures. These 

trend changes between the low and medium dry fuel partial pressures for 
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performances of the four Au anodes is elucidated by the change in rate limiting 

diffusion steps between water and adsorbed fuel species. 

4.4.2 The effect of water on Au anodes with varying partial pressures of 
H2: 

 

The current and power densities (Figure 4.8 and Table 4.3) are normalized with 

respect to the porous Au-YSZ interface area. These values are higher as compared to 

dry H2 cases. For the medium fuel partial pressures, again the thickest electrode has a 

higher maximum current density than the other thin electrodes. This trend for the 

medium fuel partial pressure case for wet H2 is reversed as compared to dry H2. The 

reason of the reverse trend for the medium fuel partial pressure and wet H2 is caused 

by the 3 % water in the fuel flow. Because, the humidified H2 fuel has the higher 

water concentration than the amount of water produced (calculated as 0.0710 %) for 

each fuel partial pressure. Therefore, the maximum current densities for the low to 

medium fuel partial pressure are expected to be superior for the thickest electrode, 

due to the thickest electrode having a higher number of available active sites for H2 

and water species as compared to the thinnest electrode. However, for the high fuel 

partial pressure with 3 % water, the thinnest electrode has the highest maximum 

current density. This observed trend for the wet high fuel partial pressure is identical 

with the dry H2 case. However, the maximum current densities for the high fuel 

partial pressure with 3% water are lower than the values for the high fuel partial 

pressure with dry H2 case. The decrease in the maximum current density for wet H2 

for the high fuel partial pressure is due to the competition of water and adsorbed H2 

species for available active sites on porous Au anodes. The amount of H2 species on 
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anodes increases with increasing the H2 fuel partial pressure; hence, the water 

interference on surface diffusion of H2 species decreases. 

The amount of water calculated from current values is in the range of 0.0140-0.134 

%. The combination of 3 % water added to the fuel flow and produced at the interface 

for 0.667 atm would be higher than for the 0.333 atm and 0.067 atm H2 fuel partial 

pressures. Therefore, these reductions in the maximum current densities for the 

thicker electrodes are caused by the greater amount of water accumulated due to the 

greater anode surface area of the two thicker porous Au electrodes, because the longer 

the path for the water to diffuse through the Au anode, the more competition there is 

between water and H2 adsorbed on porous Au anodes.  

For each fuel partial pressure (Figure 4.9 and Table 4.4), Ran, CT values of Au 

anodes are in the same range within experimental error. These trends in Ran, CT values 

(increasing from low to medium and decreasing from medium to high wet fuel partial 

pressures) can be explained by the effect of H2 surface coverage and diffusion of fuel 

species on Ran, CT values. For the low wet fuel partial pressures the fuel surface 

coverage is low and the Ran, Diff is high. Therefore, the Ran, CT values are not affected 

by Ran, Diff, because of the fast charge-transfer reaction and low maximum current 

densities. However, for the medium wet fuel partial pressures the fuel surface 

coverage and the value of Ran, Diff for the H2 species are comparable; thus, these have 

the greatest affect on the Ran, CT values. When the wet fuel partial pressure is 

increased to 0.667 atm, the surface coverage of fuel species is high enough to 

compensate for the surface diffusion. Therefore, the Ran, CT values are expected to 

decrease from medium to high wet fuel partial pressures. 
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The Ran, Diff values (Table 4.4) for the each wet fuel partial pressure vary with the 

thickness of the porous Au anode. The thickest anode for the low to medium wet fuel 

partial pressures has the lowest Ran, Diff values of 55.1 Ω*cm2 and 14.1 Ω*cm2, 

respectively and for the high wet fuel partial pressure the highest Ran, Diff value is 14.8 

Ω*cm2. Since water content added to the fuel flow is constant (3 ± 0.134 % as 

calculated) for every wet fuel partial pressure the percentage of water in the 

humidified fuel flow for every fuel partial pressure is assumed to be 3 %. Therefore, 

both the water desorption and diffusion effects are assumed to be identical for every 

wet fuel partial pressure. As a result of these data and assumptions, the trends in the 

Ran, Diff values dominate the trends in the maximum current densities for the low dry 

fuel partial pressure as observed in Figure 4.8. For the low to medium wet fuel partial 

pressures, higher maximum current densities are observed for the thickest electrodes. 

The Ran, Diff values of the Au anodes for the low to medium wet fuel partial pressures 

also exhibit the same trends observed for the maximum current densities. The lower 

Ran, Diff values of the thickest electrodes (55.1 Ω*cm2 for the low wet fuel partial 

pressure and 14.1 Ω*cm2 for the medium wet fuel partial pressure) when compared to 

those of the thinnest electrodes (83.3 Ω*cm2 for the low wet fuel partial pressure and 

15.5 Ω*cm2 for the medium wet fuel partial pressure) correlate with the higher 

maximum current densities of the thickest anodes. Therefore, the electrochemical 

impedance measurements of the four Au anodes with various wet H2 fuel partial 

pressures illustrate that at 3 % water the water species on the Au anodes decrease the 

maximum current densities of porous Au anodes for the low to medium wet fuel 

partial pressures. Moreover, for the high fuel partial pressures, the surface diffusion 
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of adsorbed fuel species produces the same trends as observed for the maximum 

current densities of the four Au anodes. 

The changes in the Ran, Diff values (Figure 4.10) for the low to medium wet fuel 

partial pressures can be explained by the constant water concentration in the wet fuel 

flows. At 3 % humidity, the water produced at the interface has a competition with 

the surface diffusion of adsorbed fuel species for the low to medium wet fuel partial 

pressures. Since, the thickest anode has the highest number of active sites for water, 

the competition between water and adsorbed species of H2 fuel for the active sites 

would be smaller for the thickest anodes than for the thinner anodes. 

The fuel partial pressure dependence of Ran, Diff (Figure 4.11) clarifies the trend 

shifts between medium and high wet fuel partial pressures in polarization curves in 

Figure 4.8. The thickest Au anode has the highest Ran, Diff for the high wet H2 partial 

pressure, whereas the lowest Ran, Diff is observed for the low to medium wet H2 partial 

pressures, which corresponds to the lowest current densities of the thickest anodes for 

the high wet fuel partial pressures but the highest current densities for the low to 

medium wet fuel partial pressures. The change in the rate limiting diffusion steps 

between water and the adsorbed fuel species may explain the trend changes for the 

maximum current densities of the Au anodes between the medium and high wet fuel 

partial pressures. 

4.4.3 The comparison of isotopically labeled D2 fuels with H2 fuel on 
porous Au anodes with different thicknesses: 

 

Primdahl [176] and Matsumoto [177] have proposed that the increase in D2 surface 

diffusion resistance relative to H2 can be attributed to the classical isotope effect. In 
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this study, dry H2 and D2 fuels perform the isotope effect (~1.5) within the 

experimental error. However, in wet fuel cases the isotope effect is amplified to ~1.7. 

The reason of this enhancement in the isotope effect is not fully understood and the 

classical isotope effect from harmonic oscillation model would not be efficient to 

explain this phenomenon. Further study is needed to address the question about the 

effect of water on the isotope effect and the surface diffusion. 

The classical isotope effect [1] predicts the surface diffusion resistance difference 

between H2 and D2 species on the Au surface. The isotope effect is considered based 

on the classical harmonic oscillator, 
µπ

υ k
2
1

= , where υ  is the vibrational 

frequency on the surface, k is the force constant, and µ  is the reduced mass. There is 

slight difference in the bond activation energies of H2 and D2, 432.0 and 439.6 kJ/mol 

respectively [1]. In changing from H2 to D2, k remains unchanged, but the reduced 

mass µ  is different. A good approximation for changing from H to D is an increase 

in the reduced mass by a factor of 2  or 1.414. The frequency for D should be 1/ 2  

times that of H. The surface diffusion coefficients of D would be 2 , or 1.414 times 

that of H. Consequently, an isotope effect is expected between H2 and D2 in the 

surface diffusion resistance. The mass difference between H2 and D2 affects the 

surface diffusion limited region of polarization curves of SOFC anodes; the higher the 

mass, the slower the surface diffusion, and thus the higher surface diffusion 

resistance. 

The same exact polarization data of dry H2 for the medium fuel partial pressure are 

used to compare with isotopic labeling studies of D2 for the medium fuel partial 
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pressures (Figure 4.12). The current and power densities of D2 are also normalized 

with respect to the porous Au interface with YSZ. In general, the maximum power 

densities of SOFC anodes are reached at approximately 0.55 V (0.65 V overpotential 

according to OCV) in polarization curves. Since the surface diffusion in porous Au is 

affected by the mass of adsorbed species from isotopically labeled fuels, the 

separation in the mass transport limited region starts at lower overpotentials range of 

0.60-0.70 V in the polarization curves. Consequently, the maximum power densities 

of D2 are varied with respect to the thicknesses of porous Au anodes. As discussed in 

Section 4.4.1, in the case of dry H2 for the medium fuel partial pressure, the thinnest 

electrode has higher maximum current densities than thicker electrodes. In the 

isotopic labeling studies the same trend is observed for the maximum power densities, 

because the surface diffusion of fuel species becomes the rate limiting step at lower 

overpotentials. Isotopic labeling studies also show that maximum current and power 

densities on Au anodes decrease by approximately 30 % for each thickness when D2 

is substituted for H2 at identical SOFC operation conditions. When 3 % water is 

added to the D2 fuel flow for the 70 sccm fraction, the maximum current densities of 

porous Au anodes decrease. The Au anode with the highest maximum current density 

changes from the thinnest (the highest in dry fuel flow) to the thickest (the higher in 

wet fuel flow) anodes. As observed for H2 fuel from dry to wet 70 sccm H2 flow, the 

trend shift from the thin to thick anode is also observed for 70 sccm dry to wet D2 

cases. The effect of the addition of 3 % water to the H2 fuel flow for the medium fuel 

partial pressure is discussed in Section 4.4.2. 
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The differences in maximum power and current densities (Figure 4.12 and Table 

4.5) with respect to isotopically labeled fuel used are attributed to the isotope effect 

on surface diffusion difference between H2 and D2 fuels due to their harmonic 

oscillation frequency difference based on reduced mass as explained previously in 

this section. Therefore, the classical isotope effect predicts that the shift in surface 

diffusion resistance should be proportional to the change in the square root of the 

mass, which is a factor of 1.414 for D2/H2 or D/H. The ratio of maximum current 

densities of dry H2 to D2 is in the range of 1.46-1.53, which is close to the range of 

the kinetic isotope effect of 1.41. The addition of 3 % water to fuel flow of both H2 

and D2 gives the closer range of maximum current densities between the thinnest and 

the thickest porous Au electrodes. In the wet cases of H2 and D2 fuel flows, the ranges 

of maximum current densities are 72.4-76.2 mA/cm2 (best for the thickest electrode) 

for wet H2 fuel and 42.9-44.7 mA/cm2 (best for the thickest electrode) for wet D2 fuel. 

The mass transport or diffusion limited processes, such as surface diffusion, are 

increased by substituting H2 to isotopically labeled D2 fuel. This results in the high 

current or mass transport limited region on the polarization curves. The ratio of 

maximum current densities of wet H2 and D2 fuels is in the range of 1.69-1.74 for Au 

anodes. The reason for the increase in the isotope effect is explained by the fact that 

the water content reduces the surface diffusion rates of adsorbed species of H2 and 

D2. The addition of 3 % water to H2 and D2 fuel flows improves the maximum current 

and power densities of H2 fuel with respect to dry case, while reducing the maximum 

current and power densities of D2 fuel with respect to the dry case. As a result of 

these data, the isotope effect on the surface diffusion clarifies that the maximum 
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current density decreases when dry D2 is substituted for dry H2 under identical 

conditions. However, the addition of 3 % water to the H2 and D2 fuel flows affect the 

surface diffusion rates of adsorbed species due to the competition between water and 

the adsorbed species at the active sites of porous Au. 

The Ran, CT values are in the range of 2.1-2.6 Ω*cm2 for the dry fuel cases of both 

H2 and D2 fuels (Table 4.6). The range for the Ran, CT values of wet H2 fuel, 3.6-3.8 

Ω*cm2, is approximately half that of wet D2 fuel, 7.2-7.4 Ω*cm2, the trend for which 

can be explained by the effects of water on both wet H2 and D2 fuel performances. 

Since the water content in the fuel flow affects the surface coverage of the fuel 

species on the anode surface, the Ran, CT values of wet D2 fuel would be influenced 

more by the water content due to the isotope effect. The ratio in Ran, CT values 

between wet H2 and D2 fuels is in the range of 1.8-2.1, the range of which is very 

similar observed in polarization curves in Figure 4.11. 

In Figure 4.13 and Table 4.6, the surface diffusion resistances, Ran, Diff, for dry H2 

and D2 fuel flows increase with respect to the thickness of porous Au anodes. The 

increase in Ran, Diff, from 5.1 to 7.6 Ω*cm2 with dry H2 fuel is slight when compared 

to the increase in Ran, Diff, from 9.7 to 15.5 Ω*cm2 with dry D2 fuel. When 3 % water 

is added to 70 sccm H2 and D2 fuel flows, Ran, Diff values increase to the ranges of 

14.4-16.1 Ω*cm2 and 25.5-37.6 Ω*cm2, respectively. In both wet fuel cases, the 

thickest anodes have the lowest Ran, Diff values. The trend in Ran, Diff values with 

respect to the thickness of porous Au anodes for wet H2 fuel is an increase as 

explained in Section 4.3.3. Unlike for the wet H2 fuel case, the Ran, Diff values of wet 

D2 fuel case decrease with respect to the thickness of porous Au anodes. This trend in 
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Ran, Diff values explains the changes in maximum current densities from dry to wet 

case of D2 fuel. 

The Ran, Diff dependence of dry D2 fuel on the porous Au anode thicknesses is 

approximately 2.5 times higher that that of dry H2 fuel with respect to the ratio of dry 

case slopes (Figure 4.14). Since the Ran, Diff reflects both surface diffusion processes 

of both water and fuel species, then not only the isotope effect between H2 and D2 but 

also the water content affects this dependence. The water produced (in the range of 

0.0437-0.0452 %) at the interface would influence the Ran, Diff dependences of 

isotopically labeled D2 fuel on the porous Au anode thicknesses. 

In wet cases of H2 and D2 fuels, the Ran, Diff values of H2 and D2 fuels decrease with 

respect to the porous Au anode thicknesses. These trends of the dependence Ran, Diff 

on the thickness of the anodes for the wet H2 cases at lower to medium fuel partial 

pressures are also observed and explained in Section 4.4.2. The decrease in Ran, Diff 

values dependence on the thickness for the wet D2 case is more pronounced than that 

of wet H2 case. The ratio of the slopes of the dependence curves of the wet H2 and D2 

fuels in Figure 4.14 is approximately 9. A possible explanation for this high ratio of 

dependences of wet H2 and D2 fuels would be the effect of 3 % water on the Ran, Diff 

values of H2 and D2 fuel flows. The Ran, Diff values of wet D2 fuel case would possibly 

influenced more than that of wet H2 fuel case because the surface diffusion of 

adsorbed species of D2 fuel is slower than that of H2 fuel due to the isotope effect as 

explained earlier. Therefore, the higher Ran, Diff dependence on the thickness of porous 

Au anodes for the wet D2 fuel case would be anticipated. 
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4.4.4 Modeling studies of four different thicknesses porous Au anodes 
with various fuel partial pressures of H2: 

 

Addition of surface diffusion effects to the model provides a good agreement 

between experimental and simulated data. Since the effect of the water concentration 

on surface diffusion on porous Au anodes is not considered in these simulated data, 

the shapes of the simulated polarization curves deviate from the experimental 

polarization curves. As the model used in this study employs the processes happening 

at 30 µm above the interface, the separation between the thinnest and thickest anode 

in the high current density region of the polarization curve disappears in the simulated 

data. As a result of the comparison of experimental and simulated polarization data in 

Figure 4.16, the model would clearly explain the partial pressure effect in surface 

diffusion on a qualitative level, whereas, it could not explain the anode thickness 

effect and the water concentration effect on surface diffusion, Dsurf, cat. 

Two different surface diffusion coefficients, Dsurf, cat, with respect to dry H2 fuel 

partial pressures on the porous Au anodes are employed to fit the experimental data 

(Table 4.7 and Figure 4.16). The values of Dsurf, cat are 1.87x10-7 m2/s for 0.067 atm 

and 3.61x10-7 m2/s for 0.333 atm and 0.667 atm dry H2 flows. These Dsurf, cat values 

are consistent with the range of Dsurf, cat values between 1x10-4 and 1x10-7 m2/s 

reported in the literature for Ni and Ni/YSZ systems [105, 158, 172, 174]. These two 

different Dsurf, cat values in this model used to generate the experimental data confirm 

the trend changes in maximum current densities with respect to the anode thicknesses 

from 0.067 to 0.333 atm dry H2 fuel partial pressures.  
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The isotope effect (Figure 4.17) on maximum current densities of Au anodes with 

dry H2 and D2 fuels is predicted by using this model. The model is based on the 

chemical and physical nature of the surface species on porous Au anodes by using 

different Dsurf, cat values. The mass difference between H2 and D2 suggests that the 

factor of 1.41 should be applied to add the isotope effect to Dsurf, cat values between H2 

and D2. The value of Dsurf, cat of 2.56x10-7 m2/s is employed in this model. Good 

agreement between experimental and simulated polarization data confirms that Dsurf, 

cat dominates the maximum current densities of dry H2 and D2 fuels. Addition of 

water concentration effect on Dsurf, cat may provide better fit with respect to 

experimental data. Since the model is not capable of manipulating the Dsurf, cat with 

respect to all ranges of anode thickness, the separation between the thinnest and the 

thickest anodes in the high current region is not clearly observed. 

4.5. Conclusions 

The present work illustrates that the mass transport related processes of the H2 

oxidation reactions on SOFC anodes are of critical importance. The effect of surface 

diffusion of adsorbed H2 and H2O species on porous Au anode performances is 

examined by using various anode thicknesses and different H2 partial pressures with 

and without 3 % water in this study. Further investigations of surface diffusion are 

conducted by utilizing isotopically labeled D2 fuel instead of H2 fuel under identical 

SOFC conditions. Modeling studies of porous Au anodes aim to integrate the effect of 

the parameters mentioned above by manipulating the coefficients of processes based 

on the chemical and physical characteristics of porous Au anodes. 
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The effect of various thicknesses of porous Au anodes emerges in the high current 

region of the polarization curves. The electrochemical impedance results, at the 

overpotential in the high current region, and their equivalent circuit fits of various 

thickness porous Au anodes corroborate the polarization measurements. The 

separation in the high current region of the polarization curves of the Au anodes is 

attributed to two different sources of surface speciation; namely, the dissociatively 

adsorbed H2 fuel species diffusing toward the Au-YSZ interface and water species 

diffusing out of the Au-YSZ interface. These two different sources, which 

competitively affect the surface diffusion processes, are evaluated using 

electrochemical impedance in the high current region overpotentials.  

The polarization and electrochemical impedance measurements of four different 

thickness porous Au anodes under various H2 partial pressures from 0.0333 to 0.667 

atm with and without humidification reveal two different trend changes in the 

maximum current densities as well as the diffusion resistances, Ran, Diff, depending on 

dry or wet fuel conditions. These two trend changes mainly point the critical partial 

pressures of H2, for dry approximately 0.2 atm (~42 sccm fuel fraction) and for wet, 

approximately 0.4 atm (~84 sccm fuel fraction) conditions. At these H2 partial 

pressures, it is proposed that the diffusion of H2 fuel species and water species would 

have a comparable effect on both polarization and impedance curves (performance on 

porous Au anodes). At H2 partial pressure lower than the critical partial pressure, the 

water species become the dominant factor controlling the anode performances. At H2 

partial pressure higher than the critical partial pressure, the surface diffusion of H2 

fuel species controls the anode performance.  
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The diffusion resistances, Ran, Diff, are linear with respect to the anode thicknesses 

for every dry/wet fuel partial pressure. Moreover, the slope of linearity defines the 

increase or decrease in Ran, Diff with respect to the anode thickness. Below the critical 

partial pressure, Ran, Diff values increase with respect to anode thickness, while they 

decrease above the critical partial pressure. As expected, the charge-transfer 

resistances, Ran, CT, distinguished by equivalent circuit fits are in the same range for 

the four Au anodes under a certain fuel composition. This is because the charge-

transfer reactions depend on the Au-YSZ interface area and every porous Au anode 

used in this study has an identical interface area. The Ran, CT values decrease with 

respect to H2 partial pressures, but also increase with water concentrations. 

Isotopic labeling studies show that maximum current and power densities on 

various thickness porous Au anodes decreases by approximately 30 % upon 

substitution of D2 for H2 under identical conditions. As expected, the mass of H2 vs. 

D2 fuel species, most probably related to surface diffusion on porous Au anodes, is 

recognized as the source of this decrease in SOFC performances.  

Preliminary modeling studies on porous Au anodes corroborate the interpretation of 

polarization and impedance records. The polarization curves simulated by the model 

for various fuels and various partial pressures correlate well with the experimentally 

observed dependence of porous Au anode performances on surface diffusion of fuel 

species under different H2 partial pressures. Also, the model used in this study 

confirms that the isotope effect is able to be described qualitatively by the mass effect 

on the gas and surface diffusion coefficients. However, the addition of the effects of 

the water species to this model is necessary to manipulate the critical fuel partial 
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pressure values. Since in the present study only the polarization curves are simulated, 

in the future, a model with the ability to predict the electrochemical impedance 

spectra is needed for a more complete understanding the chemical and physical 

processes on SOFC assembly. 
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Chapter 5: 

Conclusions 
 

5.1. Introduction 

The body of the thesis is organized in three chapters dealing with experiments on 

different types of SOFC anodes to characterize the carbon deposits from hydrocarbon 

fuels (Chapter 2), experiments on different types of Au/YSZ anodes with different 

geometries and combinations to distinguish their contribution on SOFC performance 

(Chapter 3), and on isotope dependence and modeling of the Au/YSZ systems 

(Chapter 4). The last two chapters aim to evaluate the H2 oxidation kinetics on SOFC 

anodes and to determine the rate limiting steps for these processes. In this chapter, the 

results and the derived scientific analyses are briefly summarized. Recommendations 

for future work are given based on the findings and literature review. 

5.2. Evaluation of the results: 

In this study, the power and current densities of SOFC systems are 10-20 times 

lower than the contemporary SOFC systems, because the electrolyte support design of 

SOFC is utilized to examine the fuel oxidation mechanisms. The thickness of the 

YSZ electrolytes employed in this study varies between 1.00 to 1.20 mm, as 

compared to 0.020 to 0.030 mm in conventional SOFC systems in which mostly 

Ni/YSZ cermet anode systems are used as the anode materials. The series of anode 

systems, such as Ni/YSZ and Cu/CeO2/YSZ, are evaluated for the characterization of 
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carbon deposits from hydrocarbons. The Au/YSZ systems are chosen to examine the 

rate limiting step of the H2 oxidation reaction on the SOFC anodes 

Combining a number of the structural characterization techniques of the carbon 

deposits on the Ni/YSZ and Cu/CeO2/YSZ anode systems in the SOFC feeding with 

butane fuel show that graphitic carbon with an average grain size of 4 to 12 nm is 

formed, which is defined as nanocrystalline graphite in Chapter 2. The spherical 

morphology is observed in both anode systems. However, the filamentous carbon 

morphology is only formed on Ni/YSZ anode surfaces due to Ni particles providing 

nucleation sites for the formation of filamentous morphology. The combinations of 

three parameters, namely the disorder in the crystal structure, sp3 carbon atoms, and 

morphology of carbon deposits, are three significant factors that affect the carbon 

deposit characteristic. The nanocrystalline graphite formation gives short term 

enhancement in poorly conductive anodes such as the Cu/CeO2/YSZ anode systems 

but not in the Ni/YSZ anode systems. These findings suggest that the nanocrystalline 

graphite formation likely increases the anode conductivity, thus, the performance of 

SOFC anodes enhances. 

From the experimental results presented in Chapter 3, it is concluded that the 

possible rate limiting steps in anodic H2 oxidation are the surface diffusion of 

dissociatively adsorbed  H2 species, the charge-transfer reactions of these adsorbed 

species at the interface, and the desorption of H2O from anode-electrolyte interface. 

The correlations, observed on the polarization and EIS curves of the Au anodes with 

respect to Au anode-electrolyte interface area, clarify the charge-transfer reactions 

taking place only at the interface, despite of the different porosities of the Au anodes 
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and the geometries of the porous YSZ coatings on the porous Au anodes. These 

correlations reveal that the TPB of the Au anodes are distributed across the entire 

interface between Au electrode and YSZ electrolyte. The porous YSZ experiments on 

Au anodes illustrate that YSZ prohibits the dissociative adsorption of H2 on the Au 

surface. However, YSZ layer carrying O2- ions enhances the charge-transfer reactions 

on the Au surface. The α-Al2O3 blocking experiments confirm that the 

electrochemical oxidation of H2 is directly dependent upon the interface area between 

the Au anode and YSZ electrolyte. 

The studies presented in Chapter 4 combine the experimental and computational 

data and illustrate that the mass transport related processes of the H2 oxidation 

reactions on SOFC anodes are of the critical importance to Au anode polarization and 

impedance. The surface diffusions of adsorbed H2 and H2O species on Au anodes are 

the two competitive phenomena, which directly affect the Au anode performance.  

The investigations of the isotope effect by utilizing isotopically labeled D2 fuel, 

instead of H2 fuel under identical SOFC conditions, suggest that the surface diffusion 

of adsorbed fuel species is of vital significance for Au anode current and power 

densities. It is shown that the surface diffusion resistance of D2 is higher than that of 

H2, which explains the higher current and power densities for H2. 

Preliminary modeling studies of Au anodes support the polarization and impedance 

data analysis. The polarization curves simulated by the model suggest that the surface 

diffusion of fuel species on Au anode surfaces varies with different H2 partial 

pressures. The isotope effect on Au anode performance is corroborated by the model 
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used in this study. The surface diffusions of both H2 and D2 species are qualitatively 

described by the mass effect on the surface diffusion coefficients.  

5.2. Future works and recommendations: 

The direct electrochemical oxidation of hydrocarbons on a SOFC anode is not well-

understood. The results from structural analysis of carbon deposits may help to 

address the questions about the oxidation mechanism of longer hydrocarbons under 

SOFC operating conditions. Future studies on carbon deposit formation from 

hydrocarbons in a SOFC anode require the examination of humidified hydrocarbon 

fuels on these anode systems. These findings about carbon deposit formation on 

various SOFC anode surfaces give a basis for understanding the mechanism of direct 

electrochemical oxidation of hydrocarbons in a SOFC anode. 

The series of the systematic experiments on other anode systems such as Ni/YSZ 

and CeO2/YSZ anode systems by using Au as a current collector would address the 

questions regarding to anode material effect on the fuel oxidation mechanism because 

the experimental and computational data from the Au/YSZ anode systems provides 

the basis for SOFC anodes before beginning to evaluate the more complicated anode 

systems with different fuels. 

The addition of the effects of water species to the computational model is necessary 

to evaluate the performance dependence on the fuel partial pressure and the 

concentration of the water at the interface. Simulations of electrochemical impedance 

would help the understanding of the chemical and physical processes on the SOFC 

assembly. The combination of polarization and impedance simulations of anode 

systems with different fuels would provide the complete analysis. 
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Appendix 
 

Gamry EIS Fitting Data (taken directly from Echem Analyst software) 

 

14 sccm Dry H2 
 30 µm 60 µm 90 µm 120 µm 

Rb 4.866 Ω 3.390 Ω 4.238 Ω 2.325 Ω 
Rcat, CT 145.0 mΩ 145.0 mΩ 145.0 mΩ 145.0 mΩ 
Rcat, Diff 2.210 Ω 2.210 Ω 2.210 Ω 2.210 Ω 
Ccat, CL 72.65 mF 72.65 mF 72.65 mF 72.65 mF 
Ran, CT 79.11 Ω 67.33 Ω 52.78 Ω 45.29 Ω 
Qan, CT 88.38e-6 S*s^a 114.3e-6 S*s^a 53.14e-6 S*s^a 59.34e-6 S*s^a 
nan, CT 673.3 m 668.3 m 755.0 m 800.2 m 

Lb 1.120 µH 1.120 µH 1.120 µH 1.120 µH 
Qcat, diff 18.50e-3 S*s^a 18.50e-3 S*s^a 18.50e-3 S*s^a 18.50e-3 S*s^a 
nan, CT 715.0 m 715.0 m 715.0 m 715.0 m 

Ran, Diff 6.763 Ω 6.477 Ω 6.416 Ω 6.135 Ω 
Qan, Diff 40.34e-6 S*s^a 45.11e-6 S*s^a 191.9e-6 S*s^a 228.5e-6 S*s^a 
nan, Diff 469.0 m 481.0 m 492.0 m 487.0 m 

Goodness of Fit 0.0003706 0.0004202 0.0001702 0.0003634 
 
70 sccm Dry H2 

 30 µm 60 µm 90 µm 120 µm 
Rb 1.022 Ω 552.0 mΩ 599.9 mΩ 1.047 Ω 

Rcat, CT 145.0 mΩ 145.0 mΩ 145.0 mΩ 145.0 mΩ 
Rcat, Diff 2.210 Ω 2.210 Ω 2.210 Ω 2.210 Ω 
Ccat, CL 72.65 mF 72.65 mF 72.65 mF 72.65 mF 
Ran, CT 5.112 Ω 6.612 Ω 7.450 Ω 7.551 Ω 
Qan, CT 150.0e-6 S*s^a 404.3e-6 S*s^a 295.6e-6 S*s^a 207.6e-6 S*s^a 
nan, CT 876.1 m 752.6 m 771.3 m 818.2 m 

Lb 1.120 µH 1.120 µH 1.120 µH 1.120 µH 
Qcat, diff 18.50e-3 S*s^a 18.50e-3 S*s^a 18.50e-3 S*s^a 18.50e-3 S*s^a 
nan, CT 715.0 m 715.0 m 715.0 m 715.0 m 

Ran, Diff 2.120 Ω 2.204 Ω 2.215 Ω 2.256 Ω 
Qan, Diff 314.1e-9 S*s^a 27.77e-9 S*s^a 56.81e-9 S*s^a 83.86e-9 S*s^a 
nan, Diff 935.7 m 1.15E+00 1.084 1.025 

Goodness of Fit 2.90E-03 1.17E-03 0.001383 0.001232 
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140 sccm Dry H2 
 30 µm 60 µm 90 µm 120 µm 

Rb 906.3 mΩ 879.1 mΩ 831.02 mΩ 837.1 mΩ 
Rcat, CT 145.0 mΩ 145.0 mΩ 145.0 mΩ 145.0 mΩ 
Rcat, Diff 2.210 Ω 2.210 Ω 2.560 Ω 2.560 Ω 
Ccat, CL 72.65 mF 72.65 mF 72.65 mF 72.65 mF 
Ran, CT 6.461 Ω 6.493 Ω 6.443 Ω 7.031 Ω 
Qan, CT 121.7e-6 S*s^a 161.4e-6 S*s^a 33.97e-6 S*s^a 73.13e-6 S*s^a 
nan, CT 743.6 m 679.7 m 815.5 m 767.3 m 

Lb 1.120 µH 1.120 µH 1.120 µH 1.120 µH 
Qcat, diff 18.50e-3 S*s^a 18.50e-3 S*s^a 18.50e-3 S*s^a 18.50e-3 S*s^a 
nan, CT 715.0 m 715.0 m 715.0 m 715.0 m 

Ran, Diff 2.097 Ω 2.262 Ω 2.351 Ω 2.224 Ω 
Qan, Diff 2.731e-9 S*s^a 837.8e-12 S*s^a 23.17e-9 S*s^a 9.385e-9 S*s^a 
nan, Diff 1.277 1.381 1.176 1.236 

Goodness of Fit 1.64E-03 0.002491 0.004084 0.003732 
 
14 sccm Wet H2 

 30 µm 60 µm 90 µm 120 µm 
Rb 2.980 Ω 2.930 Ω 2.720 Ω 2.830 Ω 

Rcat, CT 145.0 mΩ 145.0 mΩ 145.0 mΩ 145.0 mΩ 
Rcat, Diff 2.560 Ω 2.560 Ω 2.560 Ω 2.560 Ω 
Ccat, CL 72.65 mF 72.65 mF 72.65 mF 72.65 mF 
Ran, CT 83.26 Ω 73.93 Ω 63.75 Ω 55.11 Ω 
Qan, CT 60.82e-6 S*s^a 127.7e-6 S*s^a 84.85e-6 S*s^a 97.92e-6 S*s^a 
nan, CT 839.7 m 798.6 m 850.2 m 847.6 m 

Lb 1.120 µH 1.120 µH 1.120 µH 1.120 µH 
Qcat, diff 18.50e-3 S*s^a 18.50e-3 S*s^a 18.50e-3 S*s^a 18.50e-3 S*s^a 
nan, CT 715.0 m 715.0 m 715.0 m 715.0 m 

Ran, Diff 1.401 Ω 1.442 Ω 1.091 Ω 0.810 Ω 
Qan, Diff 51.8e-6 S*s^a 8.040e-6 S*s^a 25.84e-6 S*s^a 5.918e-6 S*s^a 
nan, Diff 974.8 m 1.008 915.5 m 1.031 

Goodness of Fit 0.001755 0.003467 0.003532 0.003352 
 
70 sccm Wet H2 

 30 µm 60 µm 90 µm 120 µm 
Rb 1.323 Ω 1.123 Ω 787.1 mΩ 1.347 Ω 

Rcat, CT 145.0 mΩ 145.0 mΩ 145.0 mΩ 145.0 mΩ 
Rcat, Diff 2.560 Ω 2.560 Ω 2.560 Ω 2.560 Ω 
Ccat, CL 17.27 mF 17.27 mF 17.27 mF 72.65 mF 
Ran, CT 15.46 Ω 15.05 Ω 14.51 Ω 14.08 Ω 
Qan, CT 3.416e-3 S*s^a 4.196e-3 S*s^a 9.976e-3 S*s^a 24.10e-3 S*s^a 
nan, CT 442.4 m 391.3 m 322.4 m 222.1 m 

Lb 1.120 µH 1.120 µH 1.120 µH 1.120 µH 
Qcat, diff 18.50e-3 S*s^a 18.50e-3 S*s^a 18.50e-3 S*s^a 18.50e-3 S*s^a 
nan, CT 715.0 m 715.0 m 715.0 m 715.0 m 

Ran, Diff 3.573 Ω 3.709 Ω 3.969 Ω 3.678 Ω 
Qan, Diff 46.97e-6 S*s^a 19.46e-6 S*s^a 48.79e-6 S*s^a 44.98e-6 S*s^a 
nan, Diff 0.976 1.067 952.7 m 982.4 m 

Goodness of Fit 0.007909 0.007807 0.001136 0.001453 
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140 sccm Wet H2 
 30 µm 60 µm 90 µm 120 µm 

Rb 1.840 Ω 1.940 Ω 2.320 Ω 2.180 Ω 
Rcat, CT 145.0 mΩ 145.0 mΩ 145.0 mΩ 145.0 mΩ 
Rcat, Diff 2.560 Ω 2.560 Ω 2.560 Ω 2.560 Ω 
Ccat, CL 72.65 mF 72.65 mF 72.65 mF 72.65 mF 
Ran, CT 721.1 mΩ 792.4 mΩ 702.0 mΩ 779.4 mΩ 
Qan, CT 2.374e-6 S*s^a 68.75e-9 S*s^a 5.792e-6 S*s^a 6.908e-6 S*s^a 
nan, CT 1.107 1.395 1.044 1.021 

Lb 1.120 µH 1.120 µH 1.120 µH 1.120 µH 
Qcat, diff 18.50e-3 S*s^a 18.50e-3 S*s^a 18.50e-3 S*s^a 18.50e-3 S*s^a 
nan, CT 715.0 m 715.0 m 715.0 m 715.0 m 

Ran, Diff 8.955 Ω 12.09 Ω 13.02 Ω 14.77 Ω 
Qan, Diff 47.19e-6 S*s^a 117.1e-6 S*s^a 47.44e-6 S*s^a 46.26e-6 S*s^a 
nan, Diff 951.5 m 822.7 m 919.2 m 911.5 m 

Goodness of Fit 0.009535 0.007242 0.006019 0.005766 
 
70 sccm Dry D2 

 30 µm 60 µm 90 µm 120 µm 
Rb 650.5 mΩ 611.1 mΩ -1.104 Ω -329.8 mΩ 

Rcat, CT 145.0 mΩ 145.0 mΩ 145.0 mΩ 145.0 mΩ 
Rcat, Diff 2.560 Ω 2.560 Ω 2.560 Ω 2.560 Ω 
Ccat, CL 72.65 mF 72.65 mF 72.65 mF 72.65 mF 
Ran, CT 2.540 Ω 2.308 Ω 2.606 Ω 2.180 Ω 
Qan, CT 249.1e-6 S*s^a 42.78e-9 S*s^a 5.789e-9 S*s^a 329.0e-9 S*s^a 
nan, CT 558.1 m 1.107 1.239 961.3 m 

Lb 1.120 µH 1.120 µH 1.120 µH 1.120 µH 
Qcat, diff 18.50e-3 S*s^a 18.50e-3 S*s^a 18.50e-3 S*s^a 18.50e-3 S*s^a 
nan, CT 715.0 m 715.0 m 715.0 m 715.0 m 

Ran, Diff 9.689 Ω 12.24 Ω 14.22 Ω 15.53 Ω 
Qan, Diff 120.0e-6 S*s^a 362.9e-6 S*s^a 322.0e-6 S*s^a 198.0e-6 S*s^a 
nan, Diff 905.0 m 764.3 m 766.2 m 832.7 m 

Goodness of Fit 0.002299 0.003144 0.001827 0.001735 
 
70 sccm Wet D2 

 30 µm 60 µm 90 µm 120 µm 
Rb 1.132 Ω 1.035 Ω 778.0 mΩ 895.8 mΩ 

Rcat, CT 145.0 mΩ 145.0 mΩ 145.0 mΩ 145.0 mΩ 
Rcat, Diff 2.560 Ω 2.560 Ω 2.560 Ω 2.560 Ω 
Ccat, CL 72.65 mF 72.65 mF 72.65 mF 72.65 mF 
Ran, CT 37.62 Ω 33.68 Ω 29.78 Ω 25.48 Ω 
Qan, CT 5.511e-3 S*s^a 9.205e-3 S*s^a 9.034e-3 S*s^a 11.43e-3 S*s^a 
nan, CT 389.9 m 325.4 m 309.9 m 299.9 m 

Lb 1.120 µH 1.120 µH 1.120 µH 1.120 µH 
Qcat, diff 18.50e-3 S*s^a 18.50e-3 S*s^a 18.50e-3 S*s^a 18.50e-3 S*s^a 
nan, CT 715.0 m 715.0 m 715.0 m 715.0 m 

Ran, Diff 7.356 Ω 7.335 Ω 7.179 Ω 7.421 Ω 
Qan, Diff 44.84e-6 S*s^a 48.26e-6 S*s^a 49.81e-6 S*s^a 35.75e-6 S*s^a 
nan, Diff 1.03E+00 995.4 m 978.7 m 1.052 

Goodness of Fit 1.63E-03 0.001162 0.002547 0.001049 
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