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Domestic animal embryo technologies would benefit from a better understanding 

of the molecular mechanisms that direct early embryonic development. Failure to 

establish a normal transcriptional regulatory program in the early trophectoderm of 

nuclear transfer or in vitro derived bovine embryos has been implicated as an underlying 

cause of placental abnormalities and fetal death. Misexpression of trophoblast-specific 

genes in these embryos has been identified, but the functions and roles of these genes 

remain poorly understood. The main focus of this study was to study genes involved in 

bovine trophectoderm lineage development using the bovine trophectoderm derived CT-1 

cell line as a genetic model. Specifically, we investigated the roles of the regulatory 

transcription factors OCT4 and CDX2 in directing the developmental program of the 

early bovine trophectoderm via gene regulation of other trophectoderm-specific 

transcription factors. First, we overcame certain technical limitations of CT-1 cells by 

improving nucleic acid transfection, CT-1 cell dispersal, and culture protocols, 



  

demonstrating for the first time that overexpression assays using Lipitoid are feasible in 

the hard-to-transfect CT-1 cell line. We expanded the list of trophoblast genes known to 

be expressed in CT-1 cells and determined that the expression profile was similar to that 

of the ovoid stage of bovine pre-attachment embryogenesis. We measured relative levels 

of these genes in response to OCT4 and CDX2 overexpression and knockdown. Our 

results indicated that CDX2 may be a regulator of transcription of many bovine 

trophoblast genes and should be the focus of further study. We identified a novel OCT4 

retrocopy transcribed into both sense and natural antisense transcripts, which may have a 

role in post-transcriptionally regulating OCT4 expression within the early bovine 

trophoblast. Together, these studies validate the CT-1 cell line as an appropriate genetic 

model for studying gene regulation in the bovine trophectoderm. 
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Chapter 1: Literature Review 

During the twentieth century, advances in assisted reproductive technologies 

(ART) progressed rapidly from cryopreservation of gametes and artificial insemination to 

in vitro embryo production (IVP), transgenic animal production and cloning. Notable 

achievements in  cloning technologies of domestic animals include  the demonstration of 

somatic cell nuclear transfer (SCNT) in sheep (Wilmut et al., 1997), creation of 

transgenic goats for biopharming (Keefer 2004), and production of transgenic disease 

resistant cattle for agriculture (Wall et al, 2005). Yet today, these ART methods remain 

substantially cost inefficient for producing large populations of viable transgenic 

offspring. This dilemma stems from the suboptimal conditions of the current ART 

protocols themselves, especially within IVP and SCNT generation of ungulate embryos. 

Multiple studies have demonstrated that IVP embryos transferred back into surrogate 

recipients incur higher rates of embryonic death than artificial insemination or transferred 

in vivo-produced embryos (Farin et al., 2006). Another study found that 82% of SCNT-

derived embryo transfers resulted in fetal death between days 30-90 of gestation with 

many of the cloned fetuses exhibiting poor placental development (Hill et al., 2000). 

Placental abnormalities observed in SCNT-produced ruminant conceptuses include 

decreased number of placentomes, avascularization or hypovascularization, 

hydorallantois, enlarged placentomes, and overall increase in fetal membrane mass. 

When SCNT and IVP neonates do develop to term,  they can exhibit a wide variety of 

congenital defects commonly referred to as  „large offspring syndrome‟ or „abnormal 

offspring syndrome‟ (Farin et al., 2006).  
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The compromised embryonic developmental potential of SCNT-derived embryos 

has been suggested to result from incomplete reprogramming leading to changes in gene 

expression. This association has been verified in studies comparing gene expression 

profiles between IVP, SCNT or in vivo-produced bovine embryos (Aston et al., 2010; 

Daniels et al., 2001; de A Camargo et al., 2005; Hall et al., 2005; Jang et al., 2005, 

Rodríguez-Alvarez et al., 2010, Wrenzycki et al., 2004). SCNT embryos exhibited 

abnormal expression of trophectoderm (TE) or preplacental lineage-specific genes, 

including CDX2, ERR2, IFNT and EOMES (Rodríguez-Alvarez et al., 2010; Hall et al., 

2005). Abnormal expression levels of additional TE lineage-specific factors MASH2 and 

HAND1 were detected as early as 17 days post conception (17 dpc) and remained 

significantly elevated in developing cotyledons at 40 dpc. The elevated levels of MASH2 

expression did not result from failure to imprint MASH2, as MASH2 was expressed from 

both alleles at 17 dpc and expressed from a single allele at 40 dpc as observed in in vivo-

derived embryos. Therefore, imprinting of MASH2 in SCNT-derived embryos occurred, 

and the elevated MASH2 transcript levels were expressed from a single allele.  These 

findings were correlated with a reduced number of binucleate cells in cotyledons at 40 

dpc, suggesting that early misexpression of trophoblast regulators later contributes to 

detrimental alterations in placental formation (Arnold et al., 2006).  

 Even though aberrant gene expression during early embryonic development has 

been identified as a contributing causal link to the gestational losses following ART, the 

primary developmental mechanisms regulating gene expression during early gestation 

remain poorly understood. The challenge is to identify the key developmental regulators 

and their roles during preplacental tissue lineage differentiation. This would allow 
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accurate interpretation of the abnormal TE gene expression patterns that are associated 

with subsequent placental defects. 

 

Regulative cues in mammalian development 

The period of preimplantation encompasses a series of developmental stages that 

transform a single-cell zygote into a cavitated embryo called a blastocyst. Even though all 

placental mammals progress through these stages, there are many inherent species 

differences in the biological details comprising each stage. Much of what is known about 

this period of preimplantation stems from mouse model-based research, and this 

foundation of knowledge provides insight into development of other species. The stages 

of preimplantation will be reviewed here in the context of the mouse model and our 

primary focus, the bovine model.   

It is widely recognized that mammalian preimplantation development is 

predominantly regulative, in that an embryonic cell‟s fate is constantly influenced by 

external cues from neighboring cells and the environment. After fertilization the 

mammalian zygote undergoes a series of cleavages to produce an aggregation of cells or 

blastomeres called the morula (Fig. 1.1). Dividing mouse blastomeres have very short G2 

and M phases, resulting in static net embryonic growth and a serial decrease in the size of 

individual blastomeres. It is widely accepted by many laboratories that the first few 

cleavages are not synchronous within all blastomeres and occur in random planes so that 

daughter cells are identical with regard to developmental potential (Hiiragi T. et al., 

2006).  
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Figure 1.1. Schematic representation of placental embryogenesis from the zygote to the 

blastocyst stage (cartoon from Hemberger et al., 2009). The DIC images show that the 

blastocyst embryonic structure is conserved between mice and ruminants (images from 

Degrelle et al., 2005 and Strump et al., 2005).  

Mouse blastocyst Goat blastocyst Bovine blastocyst
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Other laboratories believe this solely regulative model may be too simplistic based on 

their findings showing nonrandom tendencies or biases occurring during the initial 

cleavage stages (Plusa et al., 2005a; Zernicka-Goetz, 2006). Their results provide 

evidence that asynchronous blastomere divisions tend to follow a pattern. At the two-cell 

stage, the “leading blastomere” is the first cell to divide. It tends to inherit less volume 

and undergoes a cascade of divisions to predominantly populate the embryonic pole of 

the blastocyst, which includes the inner cell mass (ICM). The remaining blastomere of 

the two-cell stage, called the lagging blastomere, has been observed to be larger and 

primarily gives rise to the mural TE lineage.  

While the presence of a bias during the first few cleavage stages remains under 

debate, another hypothesis is proposed. According to the "Inside-Outside hypothesis," the 

specification of the first two cell lineages (ICM and TE) is thought to be determined by 

cellular positioning within the morula. In context to position, “outer cells” will tend to 

allocate to the TE lineage, while “inner” blastomeres, having more intercellular contact, 

often allocate to the ICM line (Tarkowski et al, 1967; Betteridge and Flechon, 1988). The 

most recent test of this hypothesis involved disaggregation and then random re-

aggregation and intermingling of cells originally positioned in the inside or outside of 

morulae. While many blastomeres sorted and migrated back to their original position, a 

few cells were observed to „reprogram‟ based on their new position. (Suwińska et al., 

2008). Thus, lineage allocation and formation of the embryonic-abembryonic axis 

formation may be affected by intrinsic biases and be influenced by external cues. 
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Overview of preimplantation mammalian development 

Upon successful conversion to an independent functioning embryonic 

transcriptome, embryos continue through additional cleavage steps to the first 

morphogenetic transition called compaction (Johnson and McConnell, 2004). In the 

mouse, eight blastomeres compose the early morula. Each blastomere is roughly 

spherical, symmetrical, and equally covered with microvilli over their cortex. By the end 

of the eight-cell stage, blastomeres undergo apical polarization and flattening to achieve 

maximal cellular contact between cells axially from the morula center to the surface. 

Proteins that are involved in establishing cell polarity, such the mouse homologues of the 

C. elegans PAR (partitioning defective) genes and atypical protein kinase C, are 

asymmetrically localized during compaction (Plusa et al., 2005b; Vinot et al. 2005).  

Morphological polarization is also accompanied by cytocortical, cytoskeletal, and 

cytoplasmic polarizations that contribute to eventual epithelialization of the outer cells. 

E-cadherin and β-catenin become restricted to basolateral membranes within the polar 

cells. Zona occludens 1 (ZO-1) protein, a component of apicolateral tight junction 

complexes, is detected at the 8-cell embryo during compaction and plays a role in the 

morula-blastocyst transitional process (Wang H. et al., 2008). In bovine embryos, ZO-1 

was detected later at the morula stage, but in a similar manner to mice, it was fully 

localized to the apical membranes of TE cells by the blastocyst stage (Barcroft et al., 

1998). Microvilli shift from the basolateral membrane and become restricted to the apical 

surface membranes. Upon maximized basolateral cell contact, there is evidence of gap, 

tight and intracellular adherens junctions. In the bovine model, compaction occurs two 

cleavage stages later in the 32-blastomere morula and is thought to occur by similar 
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mechanisms as in the mouse (Betteridge and Flechon, 1988).  

Following compaction in mouse embryos, cell polarity influences allocation of 

cells into the ICM or TE tissues (Johnson and Ziomek, 1981). Apolar inner morula cells 

originate from asymmetric divisions during the fourth and fifth cleavage cycles and are 

destined to populate the ICM. These cells are devoid of microvilli, are covered in 

adherens junctions, and serve as an embryonic progenitor population for the epiblast 

(embryo proper) and hypoblast (primitive endoderm) lineages. Alternatively, the 

resulting surface-exposed, polarized blastomeres form an epithelial layer and are 

restricted to become the TE. Yet these cellular changes do not concretely dictate lineage 

allocation. Many studies have demonstrated that totipotency can still exist in polarized, 

post-compaction blastomeres from 8-cell embryos (Johnson and McConnell, 2004).  

To determine the stage at which blastomeres lose totipotency, 16 and 32-cell 

morulae and early blastocysts were disaggregated and reaggregated such that cells 

sharing the same previous position and polarity were used to form new embryos 

(Suwińska et al., 2008). All 16-cell aggregates composed of only „outside‟ blastomeres, 

„inside‟ blastomeres, or a mixture of both developed into fertile mice. This provides 

strong evidence that mouse 16-cell blastomeres still maintain totipotency. Furthermore, 

they found that expression of Cdx2, a required transcription factor for the TE lineage, 

downregulated within 20 hours in „outside‟ blastomeres converting to „inside‟ 

blastomeres, and upregulated within 20 hours within “inside” blastomeres transitioning to 

“outside” cells. However, it was noted that the implantation rate for aggregates 

containing “inside only‟ cells was less efficient, suggesting that these aggregates need to 

delay implantation in order to polarize their outer layer or shift lineage specification 
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programs. At the 32-cell aggregate stage, aggregates composed of “inside only” 

blastomeres formed blastocysts, but cavitation and blastocoel formation was 

compromised. None of these embryos developed to term. Aggregates composed of 

„outside only‟ 32-cell stage blastomeres could develop into blastocysts with discernable 

ICMs only if the outside cells were originally disaggregated immediately following the 

fifth cleavage stage but before the cells initiated production of blastocoel fluid (Suwińska 

et al., 2008). These results suggest that totipotency within outside mouse blastomeres is 

lost when Na
+
/K

+ 
ion pumps activate and blastocysts accumulate blastocoel fluid. In 

regard to bovine embryogenesis, it remains unclear if these blastomere aggregation-re-

aggregation experiments would produce similar results as compaction does not occur 

until the 32-cell stage. The TE tissue lineage is fully formed upon epithelialization of the 

outer cells and formation of the blastocoel, which are dependent on proper ZO-1 and ZO-

2 expression (Sheth et al., 2008; Wang H. et al, 2008) and zygotic expression of E-

cadherin (Larue et al., 1994; Ohsugi et al., 1997). The requirement for zygotic E-cadherin 

expression at this stage is quite specific, as E-cadherin 
-/-

 embryos expressing “knocked 

in” N-cadherin could not rescue the E-cadherin 
-/-

 phenotype. E-cadherin 
-/-

 embryos can 

only rely on maternal E-cadherin for adhesion and signaling up until the morula stage 

(Kan et al., 2007).      

 Beyond the blastocyst stage, mouse embryo morphology and progenitor tissue 

lineages become quite unique in comparison with primates and ruminants. While the 

mouse ICM develops into the “egg cylinder”, the ICMs of other species morph into 

germinal disks (Fig. 1.2 and 1.3).  
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Figure 1.2. The top image is a DIC image of mouse blastocyst at 4.5 dpc. The scale bar is 

20μm. The bottom image is a composite DIC confocal image of a post implantation 

mouse embryo at 5.5 dpc. The egg cylinder is the cup-like structure on the bottom that 

developed from the inner cell mass. The structures above the egg cylinder are the extra-

embryonic ectoderm and the ectoplacental cone. The scale bar is 30 μm. (Images from 

Strumpf et al., 2005). 
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Figure 1.3. Pre-implantation bovine embryo morphology at different stages: A. Spheroid 

hatched blastocyst at 7.5 dpc. B. Ovoid blastocyst (1-12 mm) at 12 dpc. C.  Tubular 

blastocyst (50-60 mm) at 15 dpc. D. Filamentous blastocyst (140-160 mm) at 17 dpc. 

Note the structure of the germinal disk (arrows) which develops into the embryo proper, 

as compared to the mouse egg cylinder in Fig. 1. (Degrelle et al., 2005). 
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The mouse TE progenitor population can be separated into polar and mural 

trophoblastic lineages. The polar trophoblast is restricted to the embryonic region that lies 

adjacent to the ICM. It contains the trophoblastic stem cell population which proliferates 

via FGF4/FGFR2-mediated paracrine signaling from the ICM (Chai, et al., 1998; Tanaka, 

et al., 1998; Haffner-Krausz et al., 1999; Nichols et al., 1998). Proliferation of these cells 

results in lateral expansion downward to populate the mural TE (Gardner, 2000). The 

polar TE also gives rise to the extra-embryonic ectoderm (EXE) lineage and formation of 

the ectoplacental cone (EPC).  Both the EXE and the EPC contribute to differentiated 

placental tissue lineages. The abembryonic mural trophoblast differentiates into primary 

giant cells, which are essential for implantation and formation of the yolk sac (Armant, 

2005).  

The mouse blastocyst hatches from the zona pellucida around 3.5 dpc and rapidly 

implants into the uterine lining around 4.5 dpc. In contrast, bovine embryos hatch around 

8.5 dpc and exhibit an extended pre-attachment period until about 21 dpc during which 

they undergo extensive elongation. Expanded bovine blastocysts initiate alterations in 

tissue morphology and expand into an ovoid structure by 12 dpc. Around this time, the 

bovine polar trophoblast, or “Rauber‟s layer,” slowly disappears while the underlying 

ICM surfaces as the germinal disk (Viebahn, 1999). Unlike the mouse polar TE, the 

Rauber‟s layer does not maintain a trophoblast stem cell population which is responsible 

for TE proliferation, nor does it differentiate into EXE or EPC lineages. In contrast, the 

mural trophoblast in ruminants is responsible for the considerable embryonic elongation 

(Betteridge and Flechon, 1988). Before the ovoid embryo has further elongated into a 

filamentous type structure by dpc 15, it is composed of non-differentiated, IFN-t-
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secreting mononucleate cells. After dpc 15, a subset of the mononucleate population 

differentiate into binucleated cells, until approximately 20% of placental cells are 

binucleated. These binucleated cells are homologous to mouse primary giant cells and 

undergo endoreduplication to become multinucleated. They can secrete a multitude of 

proteins and hormones such as placental lactogen. Around 21 dpc, the bovine embryo has 

grown to about 30 cm in length and is ready for uterine attachment. Binucleate ruminant 

cells cross the placentome interface and invade the maternal caruncular epithelia to fuse 

with maternal cells and form syncytia.   

The regulatory mechanisms responsible for directing elongation and attachment 

of the bovine TE are not well known (see review, Blomberg et al. 2008). In vivo studies 

in adult ewes lacking proper endometrial gland density show that survival and proper 

development at the tubular stage and beyond is dependent on endometrial secretions 

(Gray et al., 2001; Gray et al., 2002). Whether mononucleate cell proliferation and 

increasing protein synthesis are dependent on maternal factors during the initial period of 

elongation is not known. Unlike the mouse polar trophoblast, bovine trophoblast 

proliferation does not appear to be driven by FGF-mediated signaling, although it has 

been shown that uterine FGF-2-mediated signaling stimulates IFNT production (Michael 

et al., 2006) and a correlation between uterine IFNT concentration and embryo size was 

observed (Robinson et al., 2006). 
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Key transcription factors and their roles in lineage segregation 

Assessment of protein levels of a few key transcription factors is often regarded 

as sufficient for designating embryonic cells as committed to TE or ICM lineages. For 

example, mouse blastomeres are considered committed to an ICM fate if they highly 

express the transcription factors OCT4 (Rosner et al., 1990, Scholer et al., 1990) and 

NANOG (Chambers et al., 2003; Mitsui et al., 2003), but express low levels of CDX2 

(Strumpf et al., 2005). Designation to TE fate is appointed when the patterns of "lineage 

selector" expression of OCT4, NANOG and CDX2 are reversed. Expression of mouse 

OCT4, a POU domain transcription factor encoded by the Pou5f1 gene, is detected in the 

nuclei of oocytes and throughout all stages of early cleavage, indicating that early OCT4 

expression originates from maternal deposits but is later produced via zygotic gene 

expression. In early mouse development, OCT4 is expressed in both ICM and TE cells 

but is markedly downregulated in the TE lineage and restricted to the ICM during 

blastocyst formation (Dietrich and Hiiragi, 2007). In subsequent differentiation of the 

ICM, OCT4 expression was upregulated in the primitive endoderm while being 

maintained at constant levels in the epiblast (Palmieri et al, 1994).  Oct4 
-/-

 embryos fail 

to maintain a pluripotent ICM and loss of OCT4 induction of FGF4 in the ICM results in 

the loss of polar TE proliferation (Nichols et al., 1998). Discovery of OCT4 expression in 

undifferentiated embryonic stem cells (ESC), germ cells, and mouse and human 

embryonic carcinoma (EC) lines also distinguished OCT4 as a major regulator involved 

in the maintenance of pluripotency and self renewal (Okamoto et al 1990; Scholer et al., 

1989; Wang L. et al, 1996). As a result, OCT4 expression was considered a “molecular 

lock” against differentiation into trophoblast lineages. Later evidence indicated that 
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OCT4 expression acts more like a "gatekeeper" to many paths of lineage differentiation 

(Pesce and Scholer, 2001).  

Maintenance of pluripotency in the developing embryo also requires the activity 

of the transcription factor SOX2 (SRY-related HMG box) which contains a high mobility 

group (HMG) box DNA binding domain. SOX2 is thought to have multiple roles in 

regulating different embryonic lineages. In the ICM, SOX2 partners with OCT4 to form a 

heterodimer that induces FGF4 expression that is required for EXE lineage maintenance 

(Ambrosetti et al., 1997 and 2000). Mouse Sox2 transcripts are first detected at the 

morula stage and expression is maintained in the inner cell mass and well into the 

epiblast stage. Expression is later restricted to neuroectoderm cells and also becomes 

reactivated in the EXE. SOX2 protein expression overlaps with OCT4 in embryos and 

germ cells. However, Sox2 knockout 
-/- 

embryos survive longer than Oct4 
-/-

 embryos and 

manage to develop into the peri-implantation stage due to persisting maternally expressed 

SOX2 protein (Avilion et al., 2003). Sox2 
-/- 

embryos that implanted lacked a developed 

egg cylinder or epiblast but possessed extraembryonic endoderm and trophoblast giant 

cells (TGCs). Similarly, explanted Sox2 
-/- 

ICMs differentiated into TGCs and 

differentiation could not be inhibited by FGF4 stimulation as observed in trophoblast 

stem cells (Avilion et al., 2003; Tanaka et al., 1998). Doxycycline-inducible Sox2 
-/- 

mouse ESC also differentiate into trophectoderm-like cells (Misui et al., 2007). These 

findings demonstrate the requirement for SOX2 in restricting differentiation in the ICM. 

NANOG was also discovered to play a pivotal role in maintaining pluripotency in 

mouse ESC and ICM (Chambers et al. 2003, Mitsui et al. 2003). NANOG is a unique 

homeoprotein transcription factor that is only 50% similar in amino acid sequence to 
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homeodomains of members of the NK2 transcription factor family and shares no other 

conserved motifs. Mouse Nanog mRNA expression is first detected in the compact 

morula, maintained in the ICM, and rapidly down-regulated in the TE (Chambers et al., 

2003). In expanded mouse blastocysts, Nanog mRNA expression is restricted to the 

epiblast and expressed well into post implantation at day 7.5 dpc (Hatano et al., 2005). 

Mouse NANOG protein expression closely patterns mRNA expression and is localized to 

the nuclei. Nanog 
-/- 

knockout mice are indistinguishable from wildtype around the time 

of ICM/ TE formation 3.5 dpc, suggesting that NANOG is not absolutely essential for 

initial mouse blastocyst formation. Nanog 
-/- 

embryos observed at 5.5 dpc have abnormal 

development of extraembryonic tissues, and the epiblast is undetectable. Heterozygous 

mice, however, are viable and indistinguishable from wildtype (Mitsui et al 2003). Thus, 

NANOG plays a definitive role in the second "embryonic cell fate specification" when 

the ICM becomes epiblast and hypoblast (Cavaleri and Scholer, 2003). 

SALL4, a zinc finger transcription factor of the spalt-like family, is the most 

recently discovered key regulator of pluripotency. During mouse embryogenesis Sall4 

expression is similar to Oct4 expression, starting with abundant maternal transcripts 

within the single-cell zygote. Following successive cleavages zygotic expression of 

SALL4 soon becomes restricted to ICM blastomeres (Hamatani et al., 2004) and is later 

restricted to the primitive endoderm (Zhang et al., 2006). When functional Sall4 siRNA 

was injected into single-cell embryos, significant reductions not only in Sall4 levels but 

in Oct4 expression were observed. In addition, the downregulated SALL4 embryos 

mimicked Oct4 null 
-/-

 embryos which exhibit loss of OCT4 expression and ectopic 

CDX2 expression in the ICM (Zhang et al., 2006). These results prove that SALL4 is a 
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major regulator of Oct4 during early embryogenesis. Using ESC as a genetic model, the 

importance of SALL4‟s role in maintaining pluripotency has been further elucidated 

(Lim et al., 2008; Wu et al., 2006; Yang et al., 2008).  

It was originally thought that TE lineage formation occurred by default, primarily 

via down-regulation of OCT4, SOX2 and NANOG expression. Without this triumvirate 

of transcription factors, blastomeres become alternatively specified and eventually 

differentiate into the TE lineage. In 2005, however, it was discovered that TE formation 

is dependent on expression of CDX2, a homeodomain protein homologous to D. 

melanogaster caudal (Strumpf et al, 2005). During preimplantation, Cdx2 mRNA is 

zygotically expressed with protein readily detected by the eight-cell stage (Ralston and 

Rossant, 2008). A cross section pixel analysis of relative CDX2 antibody-labeled nuclear 

protein levels was performed in z stacks of confocal images spanning entire mouse 

morula. Relative to ubiquitous levels in compacted 8-cell blastomeres, a threefold 

difference was detected in the outer cells of the 16-cell morula, while a twofold amount 

was observed in the inner cell population. In 32-cell morulae, the difference was 4-fold 

greater in outer cells (Ralston and Rossant, 2008). Cdx2 
-/-

 knockout embryos developed 

immature collapsing blastocoels, and by the late blastocyst stage, epithelial integrity was 

compromised through mislocalization of E-cadherin and other tight junction proteins 

(Strumpf et al, 2005). Further compromise of TE lineage maintenance in Cdx2 
-/-

 embryos 

occurred as trophoblastic markers were downregulated and trophoblast giant cells never 

formed. Interestingly, OCT4 and NANOG were ectopically expressed in Cdx2 
-/-

 TE 

cells, indicating for the first time the presence of an in vivo inhibitory feedback 

interaction between OCT4, NANOG and CDX2 (Strumpf et al, 2005).  
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Similar to the role SALL4 in the induction of zygotically expressed OCT4, the 

TEA DNA binding domain containing transcription factor TEAD4 is responsible for 

Cdx2 induction at the 8-cell stage (Nishioka et al., 2008; Yagi et al., 2007). Tead4 
-/-

 

mutants displayed normal E-cadherin mediated cell polarity in the outside cells but these 

cells did not express any TE lineage regulators including CDX2 and EOMES. In 

addition, blastocoels failed to form and OCT4 and NANOG were expressed in the outer 

cells. Since TEAD4 expression is detected earlier in the 4-cell stage following zygotic 

genome activation at the 2-cell stage, this transcription factor is the earliest expressing 

key regulator of the TE lineage specification. The biochemical mechanism of TEAD4 

mediated Cdx2 induction remains unknown, as enhancer elements within the Cdx2 

promoter remain to be identified.  

 

Key regulators in transcriptional networks 

The transcriptional regulatory network that maintains pluripotency in ESC and 

ICM is managed by key regulators OCT4, SOX2, NANOG and SALL4. These 

transcription factors serve as the nucleus for multiple "network motifs" (Lee et al., 2002) 

that facilitate expression programs directing pluripotency and self-renewal. OCT4 and 

SOX2 commonly heterodimerize on adjacent cis elements to co-function as one master 

regulator (Remenyi et al., 2003) and together they regulate specific expression of FGF4 

(Ambrosetti et al., 1997 and 2000), Osteopontin (OPN1, Botquin et al., 1998) UTF1 

(Nishimoto et al., 1999) FBX15 (Tokuzawa Y et al., 2003) and NANOG (Kuroda et al., 

2005; Rodda et al., 2005). NANOG forms a heterodimer with SALL4 and functions in a 

similar manner (Wu et al., 2006).  The OCT4-SOX2 and SALL4-NANOG heterodimers 
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also autoregulate each of the individual monomers (Okumura-Nakanishi et al., 2005; 

Catena et al., 2004; Chew JL et al., 2005; Lim et al., 2008). Furthermore, SOX2 

positively regulates Oct4 by repressing the Oct4 negative regulator NR2F2 (nuclear 

receptor 2f2, or COUPTF II) and activating the Oct4 positive regulator NR5A2 (nuclear 

receptor 5a2, or LRH-1) (Masui et al., 2007).  

With OCT4 and SOX2 cis activating NANOG, a feedforward loop is assembled 

that has been shown to regulate over 353 protein encoding genes and at least 2 

microRNA genes in pluripotent human ESC. Chromatin-immunoprecipitation (ChIP) and 

DNA microarray analyses performed in human ESC not only confirmed the central role 

for OCT4 and SOX2, but also found that greater than 905 of bound OCT4 and SOX2 

promoters were also bound by NANOG (Boyer et al., 2005). A similar genome-wide 

exploration in mouse ESC found a comparable number of promoter binding sites, and 

identified 32 protein coding genes that were also regulated in the human ESC study (Loh 

et al., 2006). Further analyses in mouse ESC confirmed that SALL4 co-occupies 

hundreds of gene promoters with OCT4, SOX2, and NANOG (Lim et al., 2008; Yang et 

al., 2008).  

 Research into these autoregulatory, inhibitory and feedforward loops provide 

clarification into how pluripotency is maintained in ESC and blastomeres. This 

interacting network provides increased temporal stability of Oct4/Sox2/Nanog gene 

expression, particularly in response to pro-differentiating external stimuli. Yet the 

feedforward loops must be regulated. Guangjin Pan and colleagues explored the 

interaction of NANOG and OCT4 in greater detail and found that OCT4 activated Nanog 

when expressed at or below steady state levels. When OCT4 was overexpressed, Nanog 
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promoter reporter activity was repressed. OCT4 at high levels also exhibited a negative 

feedback loop on itself (Pan et al., 2006). Together these findings contend that levels of 

OCT4 protein determine whether OCT4 participates in feedforward loop to maintain 

levels of itself, SOX2, and NANOG, or acts as the instigator to shut down the 

feedforward loop and allow differentiation to occur.   

Reciprocal inhibition between NANOG and transcription factor GATA6 may be 

involved in the specification of ICM to either embryonic (epiblastic) or primitive 

endodermal (hypoblastic) fates. Evidence for this includes similarities in endodermal 

phenotypes shared by Nanog
 -/-

 mouse ESC (Mitsui et al. 2003) and  mouse ESC 

overexpressing GATA6 (Fujikura et al., 2002). Interaction between these lineage selector 

transcription factors is evident in vivo, as immunocytochemical analysis of the ICM 

exhibits a “salt and pepper” effect in expressing either NANOG or GATA6 (Chazoud et 

al., 2006). Unlike the TE and ICM lineage divergence stage, segregation of epiblastic and 

hypoblastic lineages is not due to any positional effect. Rather, the fate of a cell to 

primarily express NANOG and become specified to the epiblastic lineage or express 

GATA6 and become specified to the hypoblast is dependent on the GRB-2/MAPK 

signaling cascade, possibly via FGF4. Cells expressing GATA6 in turn express GATA6-

activated downstream adhesion molecules, thereby initiating physical sorting of 

blastomeres into two lineages with different adhesion properties. Cell sorting of GATA6 

expressing cells from deep within the ICM to the surface is also facilitated by WNT9A 

signaling (Meilhac et al., 2009).  NANOG is also involved in an indirect inhibitory 

feedback loop with T box transcription factor BRACHYURY in deciding mouse ESC 

fate to mesoderm (Susuki et al., 2006a). Transient imbalances between these regulators 
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results in a biphasic, reversible switch of identity between a pluripotent state and the 

specified state of a mesodermal progenitor cell (Susuki et al., 2006b).  

 The transcriptional regulatory mechanisms governing differentiation of the TE 

lineage involve a master regulatory inhibitory loop between CDX2 and OCT4. 

Interaction between these transcription factors was observed in mouse ESC, where 

knockdown of OCT4 and overexpression of CDX2 both induce mouse ESC 

differentiation into trophoblastic lineages (Niwa et al., 2005). Furthermore, knockdown 

of SALL4, the primary activator of Oct4 expression, indirectly results in the increase of 

CDX2 and permits differentiation towards the trophoblast fate (Zhang et al., 2006). 

Biochemically, CDX2 and OCT4 proteins physically interact to form a complex that 

reciprocally represses transcriptional activities of both regulators. This mutual inhibitory 

loop involves both repression of transcription and repression of function by physical 

interaction, therefore resulting in loss of target transcription and autoregulation. CDX2 

has been shown to noncompetitively bind to the Oct4 autoregulatory element of the distal 

enhancer of Oct4 and repress any Oct4 autoregulatory stimulus (Niwa et al., 2005). This 

study was first to describe a model for the segregation of TE and ICM that depends on a 

critical balance of OCT4 and CDX2 (Fig. 1.4).  
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Figure 1.4. CDX2 and OCT4 participate in an inhibitory feedback loop that is 

responsible for ICM and TE lineage segregation in the mouse blastocyst. TEAD4 

induction of Cdx2 as well as other unknown positional cues cause CDX2 levels to 

increase and suppress OCT4 levels in polar outside cells, eventually leading to Oct4 

repression in the TE lineage. Inner apolar cells reciprocally show an imbalance in the 

CDX2/OCT4 inhibitory feedback loop in favor of OCT4, and CDX2 expression is 

eventually silenced (figure adapted from Niwa et al., 2005).   
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Recently, the external cue that tips the OCT4-CDX2 equilibrium in favor of 

CDX2 and specifies the outer cells towards the TE lineage was determined (Fig. 1.5A). 

HIPPO signal transduction occurs within the cells inheriting the inner position of the 

morula. This leads to phosphorylation of an essential TEAD4 co-activator, Yes–

associated protein (YAP1), which is then consequentially shuttled to the cytoplasm where 

it remains nonfunctional. Without YAP1 present, TEAD4 is unable to induce high levels 

of CDX2 in the inner cells. Within outer cells, YAP1 is not phosphorylated and remains 

nuclear, which then permits TEAD4 induction of Cdx2. This mechanism allows CDX2 

levels to overcome and eventually suppress OCT4 levels in the outer cells. In addition, 

this study also explains how cell position and polarity influence Cdx2 expression, as 

Hippo signaling is a conserved pathway that regulates cell-cell contact during 

proliferation. It is thought that maximized cell membrane contact shared between inner 

apolar cells, possibly facilitated by polarization of outer cells, initiates Hippo signal 

transduction (Nishioka et al., 2009; Sasaki et al., 2010). 

Once CDX2 levels have reached a threshold whereby positive autoregulation 

occurs and OCT4 expression is suppressed and eventually silenced, TEAD4 and CDX2 

initiate a feedforward loop to induce and maintain expression of EOMES and ELF5 (Hg 

et al., 2008; Niwa et al,. 2005; Sasaki et al., 2010). CDX2, EOMES and ELF5 expression 

are required for trophoblast stem cell maintenance and are regarded as “gatekeepers” of 

the mouse trophoblast lineage (Fig. 1.5B).    
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A. 

B. 

Figure 1.5. A. HIPPO signal transduction in inner, apolar cells results in YAP1 protein 

phosphorylation by LATS kinase. Phosphorylated TAP1 is restricted from the nucleus 

and prevents TEAD4-mediated induction of Cdx2. In outer polarized cells, HIPPO signal 

transduction is reduced and YAP1/TEAD4 increases Cdx2 expression and subsequent 

negative feedback on Oct4 expression (diagrams from Sasaki et al., 2010). B. CDX2, 

EOMES and ELF5 make up the core of the mouse trophoblast stem cell transcriptional 

hierarchy. 

Outer Cell

Inner Cell

Inner Cell



 

 

24 

 

Transcriptional networks in bovine trophectoderm 

Do OCT4 and CDX2 play roles in the central transcriptional architecture that 

specify, differentiate and maintain TE lineages in ungulates? Based on mRNA and 

protein expression profiles at different stages of domestic animal embryonic 

development, it seems likely that the transcriptional regulatory loops are involved in 

directing TE identity (Fig. 1.6). However, there are discrepancies between mouse and 

ungulate data.  Pluripotency specific transcription factors OCT4 and NANOG are not 

entirely lineage restricted to the ICM at the expanded blastocyst stage. In contrast to 

mouse TE, OCT4 expression is not rapidly downregulated in the TE of bovine, porcine 

and caprine blastocysts (He et al., 2006; Keefer et al., 2007; Kirchhof et al., 2000; Pant et 

al., 2009; Van Eijk et al., 1999). Degrelle and colleagues demonstrated by in situ 

hybridization and RT-PCR that OCT4 transcripts were readily detectable in the TE up to 

the ovoid stage of bovine preimplantation at 12 days post insemination (dpi) (Degrelle et 

al., 2005). However, in other studies using immunocytochemistry, OCT4 protein 

appeared to be restricted to the epiblast in 12 days post conception (dpc) hatched 

blastocysts and was undetectable in the TE (Vejlsted et al., 2005).  Some of the 

discrepancies in timing of OCT4 downregulation observed in TE of ruminant species 

may be due to the different sources (in vitro vs. in vivo) and culture systems used.  



 

 

25 

 

 

Figure 1.6.  Schematic representation of early embryonic developmental regulators and 

markers in the bovine TE. (Images from Degrelle et al., 2005.) 
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While there are discrepancies as to the exact timing of OCT4 protein 

downregulation in the bovine TE, it is clear than OCT4 expression remains active much 

longer than that observed in the mouse.  Thus, it is hypothesized that OCT4 may play an 

alternate role in the development of the elongating trophoblast that is separate from its 

role in the ICM.  

To date, there are only a few published reports profiling NANOG protein 

expression in ruminants (He et al., 2006; Pant et al., 2009).  NANOG mRNA expression 

in the caprine TE was detectable, although 54 fold lower than ICM expression levels (He 

et al., 2006). It was also shown that NANOG protein expression in bovine and caprine 

pre-implantation embryos is considerably different from the protein pattern observed in 

mice. Immunostaining with a validated anti-human NANOG antibody revealed protein 

localization in the nucleus from the 8 to 16-cell morula to the compacted morula stage. 

NANOG was also intensely localized to the nucleoli of TE cells, which was confirmed by 

positive co-localization with NUCLEOLIN, a nucleolar restricted protein. As blastocysts 

developed and reached their viability threshold of expansion under standard embryo 

culture conditions, NANOG protein expression tended to decrease in both nuclei and 

nucleolar ultrastructures. The mechanism for localization of NANOG to the nucleolus is 

unknown, but it is hypothesized that nucleolar localization correlates with 

downregulation of NANOG in TE specified cells. Therefore, this shift in localization of 

NANOG from the nucleus to the nucleolus may signify a posttranslational regulatory 

mechanism to decrease or inactivate NANOG function within those cells. This specific 

sequestering mechanism was previously found to be used in regulating nucleostemin 
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protein in stem cells (Tsai and McKay, 2002) and the transcription factor HAND1 in the 

rat choriocarcinoma (Rcho-1) trophoblast cell line (Martindill et al., 2007). 

In the mouse, all three initial lineages of the preimplantation mouse blastocyst 

have been successfully derived into stem cell lines for use in studying regulatory 

networks (Ralston and Rossant, 2005). Pluripotent mouse embryonic stem cells (ESC), 

multipotent mouse trophoblast stem cells (TSCs) and endodermal stem cells (XEN) can 

be passaged indefinitely and be further manipulated to differentiate into cell types 

resembling those observed in vivo. There is no equivalent range of cell lines available for 

studying bovine development: validated bovine ESC lines have not been established for 

use as genetic models to investigate transcription factor regulatory networks (Keefer et 

al., 2007). However, endodermal and trophectodermal cell lines which are similar to 

XEN and TSC lines in mouse, have been successfully derived from bovine blastocysts. 

The Cow Trophectoderm-1 (CT-1) bovine TE cell line was derived by Neil Talbot and 

colleagues at the USDA from hatched day 10-11 bovine blastocyst explants, and then 

cultured continuously for over 2 years and 76 passages (Talbot et al., 2000). CT-1 cells 

grow as a monolayer on mitotically inactive mouse embryonic fibroblast feeder layers, 

polymerized collagen, Matrigel basement membrane matrix (Michael et al., 2006) and 

Corning Cellbind™ plastic (Schiffmacher and Keefer, 2008). Morphologically, they are 

epithelial and very similar in appearance to primary bovine TE outgrowths. At the EM 

level TE specific ultrastructures such as tight junctions, desmosomes, and microvilli were 

observed (Talbot et al., 2000). After reaching confluency, CT-1 cells mimic blastocoel 

expansion by budding off spheroid structures resulting from fluid influx underneath the 

monolayer. They are very robust in producing IFNT and have been previously used as an 
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in vitro model for understanding stimulatory signals of IFNT secretion (Michael et al, 

2006).  

Proteomic or transcriptional profiling of developmental regulators in CT-1 cells 

has been limited to mostly transcription factors that regulate IFNT expression including 

GATA2, GATA3, GATA6, DLX3, ETS2 and CDX2 (Ealy et al., 2009). A limited 

impression of the CT-1 mRNA transcriptome can be extrapolated from the gene 

expression profile of another bovine TE cell line called bovine trophectoderm-1 (BT-1) 

(Ushizawa et al, 2005.) This cell line was derived in a similar fashion to CT-1 cells 

(Shimada et al., 2001). The custom cDNA microarray used to characterize BT-1 cells was 

developed from utero-placental annotated genes and not bovine embryonic annotated 

genes, and thus fails to supply information on key transcriptional regulator expression. 

However, Ushizawa‟s data do indicate that BT-1 cells have similar gene expression 

patterns to the elongating pre-attachment bovine trophoblast. Furthermore, RT-PCR 

analysis verified positive expression of OCT4 transcripts in BT-1 cells, which is similar 

to our findings in CT-1 cells (Schiffmacher and Keefer, 2008).  

Expression of both OCT4 and CDX2 transcripts in CT-1 cells suggest this cell line 

is an appropriate model for elucidating their roles in directing bovine trophoblast 

maintenance and elongation in vivo. However, CT-1 cells are well known to be resistant 

to standard transfection techniques, unable to be passaged by single cell suspension and 

difficult to culture (Talbot et al., 2000; Ezashi et al., 2008). A popular experimental 

strategy for overcoming these limitations is to switch to human choriocarcinoma cell 

lines for experiments involving genetic manipulation. The human choriocarcinoma JEG-3 

and JAR cell lines are amenable to trypsin-based passaging, are not difficult to transfect, 
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and are suitable as a bovine trophoblast molecular model when the human orthologs of 

interest are expressed (Ezashi et al., 2008).  However, they would be unsuitable for RNAi 

studies or other experiments where manipulation of endogenous protein levels is 

required.       

The major focus of this dissertation was to determine to what degree the 

CDX2/OCT4 inhibitory feedback loop within the TE transcriptional regulatory network 

maintains the early bovine TE in a proliferative, differentiation-delayed state. This was to 

be accomplished by testing the hypothesis that disruption of the OCT4/CDX2 

equilibrium in CT-1 cells would significantly alter gene expression patterns of many TE 

lineage specific transcription factors, and alter the early bovine TE phenotype as well 

(Fig. 1.7). Specifically, we predicted a modest increase in OCT4 or decrease in CDX2 

would result in significant downregulation of TE specific genes implicated in directing 

trophoblast elongation such as ETS2, MASH2, or ELF5. Alternatively, a modest increase 

in CDX2 or knockdown of OCT4 would have a reverse effect on target gene expression 

and also induce differentiation into later TE cell phenotypes such as binucleate cells. 

Results from this study would provide insight into the roles of OCT4 and CDX2 in the 

TE during bovine post-blastocyst development.    

Human choriocarcinoma cell lines are an unsuitable model for addressing this 

aim. Therefore, our first objective was to establish a successful CT-1 transfection 

protocol as well as improve upon CT-1 cell passaging and culture techniques, as these 

prerequisites were paramount for utilizing CT-1 cells to address the main focus. These 

results are found in Chapter 1.  
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Figure 1.7. Model of how CDX2 and OCT4 regulate gene expression of common 

downstream trophoblast regulators in the early elongating bovine trophoblast. Unlike 

OCT4 restriction to the ICM in expanded mouse blastocysts, it is hypothesized that 

OCT4 negatively regulates expression of trophoblast regulators to prevent abnormal 

elevated expression and ensure proper proliferation and differentiation rates during this 

critical embryonic period.   
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Next, it was critical to further characterize the CT-1 cell line as a suitable model 

for bovine trophoblast development in which to study the roles of OCT4 and CDX2. The 

second objective was to expand on the expression patterns of candidate bovine 

trophoblast regulators. This assessment was done by testing the hypothesis that CT-1 

cells possess a similar transcriptome of developmental regulator genes to the early TE 

lineage between the spheroid stage and the ovoid stage. Our confirmations of candidate 

gene expression, as well as the studies involving manipulation of OCT4 and CDX2 gene 

expression are found in Chapter 2. In this chapter it was important to fully characterize 

OCT4 mRNA and protein expression as the recent discoveries of human OCT4 isoforms 

with different functions and confounding OCT4 pseudogene expression have stressed the 

need for more thorough analysis of OCT4 in cell lines and tissues (Wang et al., 2010). 

Our findings of a transcribed OCT4 retrocopy in CT-1 cells led to development of a third 

objective and chapter. We hypothesized that this transcribed OCT4 retrocopy may 

produce a functional protein or RNA that either possesses a unique function or regulates 

“parental” OCT4 gene expression in the early bovine TE. Our characterization of this 

OCT4 retrocopy is found in Chapter 3. 
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Chapter 2: Optimization of nucleic acid transfection methods for 

bovine trophectoderm CT-1 cells 
 

Abstract 

Studies investigating the molecular mechanisms of embryonic lineage segregation 

and maintenance rely heavily on the use of embryonic derived cell lines as models. While 

the bovine trophectoderm derived CT-1 cell line has been used mainly to study interferon 

tau (IFNT) gene regulation, it possesses potential as a model for mechanisms controlling 

trophoblast lineage differentiation and development. However, current use as a model is 

limited as CT-1 cells are recalcitrant to standard transfection methods. In addition, typical 

colony passaging methods are inefficient and involve physically shearing of colonies into 

large clumps. The focus of this study was to test several methods for nucleic acid delivery 

into CT-1 cells and improve upon current cell dispersal and culture techniques. 

Commercial cationic liposomal reagents, electroporation, biolistic bombardment, and 

lentiviral transduction all failed to successfully transfect plasmid DNA into CT-1 cells at 

an acceptable rate. However, optimization of Lipitoid-based transfection of plasmid DNA 

improved transfection efficiency to 9% across entire CT-1 colonies. It was also 

determined that successful siRNA-mediated gene knockdown can be achieved through 

optimization of Lipitoid-based oligonucleotide transfection. A successful enzymatic 

passaging protocol was also established using collagenase I and dispase that allowed for 

colony seeding with as little as 10 cells per seed aggregate. CT-1 cells were also 

successfully adapted to substrate-free culture for over 20 passages, eliminating the need 

to manually coat cultureware with substrate. Together these optimizations greatly 
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increase the utility of the CT-1 cell line as a bovine trophectoderm model amenable to 

genetic manipulation. 

Introduction 

While embryonic stem cell, trophoblastic stem cell and extraembryonic endoderm 

cell lines have proven to be valuable tools for studying developmental mechanisms in the 

mouse, the availability of similar cell lines in other species is much more limited. Two 

bovine cell lines, BT-1 (Shimada et al., 2002) and CT-1 (Talbot et al., 2000), have been 

utilized to study mechanisms that regulate gene expression of the bovine pregnancy 

recognition factor interferon tau (IFNT) (Michael et al, 2006a, 2006b; Ezashi et al., 2008; 

Bai et al., 2009; Sakurai et al., 2009), direct binucleate cell differentiation (Nakano et al., 

2002, 2005), and characterize bovine trophoblast specific proteins (Walker et al., 2009). 

The CT-1 bovine trophectoderm cell line was derived following 2 years of continuous 

culture of cells obtained from hatched day 10-11 bovine blastocyst explants (Talbot et al., 

2000). However, issues with CT-1 cell culture and standard transfection methods limit 

their functional capacity as a trophoblast model cell line. They are recalcitrant to standard 

transfection methods which are used in functional experiments including transcriptional 

reporter analysis, protein overexpression, and RNA interference assays. Only one study 

has reported successful knockdown of a gene in CT-1 cells. In that study the Lipitoid 

reagent (DMPE(NaeNmpeNmpe)3) which had been demonstrated to deliver short 

interfering RNAs into hard-to-transfect IMR-90 primary cells (Utku et al., 2006) was 

used to reduce DLX3 protein expression in CT-1 cells (Ezashi et al., 2008). While 

Lipitoid has also proven to be successful for the transfection of plasmid DNA into other 

cell types (Huang et al., 1998), this reagent has not been used in any published studies to 
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deliver plasmid DNA into CT-1 cells. To date, there have not been any reports 

demonstrating success in creating a stable transgenic ruminant trophoblastic cell line in 

vitro. While cell lines can be derived from transgenic embryos produced by somatic cell 

nuclear transfer, derivation of transgenic lines by this method is costly and labor intensive 

(Talbot et al., 2007).   

Another limitation of CT-1 cells is their inability to be dispersed into a single cell 

suspension. CT-1 cells do not survive enzymatic dispersal with trypsin (Talbot et al., 

2000). Therefore, typical dispersal methods involve the physical shearing of colonies into 

large clumps or the collection of floating multicellular vesicles that can only propagate 

into one new colony per newly adhered clump or vesicle. Dispersal into single cells, or at 

least smaller clumps, is needed for selection of transgenic lines following in vitro 

transfection. 

In this study, we attempted to resolve these challenges and improve upon 

transfection, cell dispersal, and culture methods. We were successful in adapting CT-1 

culture to substrate-free Cellbind cultureware, and optimized an enzymatic passaging 

method using dispase and collagenase that increased colony dissociation and reduced 

clump size for new colony seeding. Our optimization efforts focused on increasing 

transfection efficiency of both plasmid DNA and short interfering oligonucleotides into 

CT-1 cells adapted to our feeder-cell free and substrate-free culture. While many 

conventional transfection techniques failed to increase transfection efficiency to 

significant levels, we found Lipitoid-based transfection to be the most powerful 

transfection reagent. 
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Methods and Materials 

Cell Culture 

CT-1 cells were received as a gift from Dr. Neil Talbot (U.S. Department of 

Agriculture, Beltsville, MD). Cells were initially expanded on mitotically inactive, 

gamma-irradiated mouse STO mouse embryonic fibroblast (MEF) feeder layers (CRL-

1503, ATCC, Manassas, VA) plated into cell-culture-treated 60 mm plates or 25 ml cell-

culture-treated flasks at a density of 40,000 cells per cm
2
. CT-1 and STO MEF co-

cultures were grown in CT-1 medium consisting of DMEM, containing 4.5g per L 

glucose and 4 mM L-glutamine (11965-084, Invitrogen, Carlsbad, CA) supplemented 

with 10% fetal bovine serum (FBS) (SH 30070.03; Hyclone, Logan, UT), 1 mM sodium 

pyruvate (11360-070, Invitrogen) and 50 U per ml penicillin-streptomycin solution 

(15070-063, Invitrogen). Cultures were incubated at 37 °C in 5% CO2 for 4 to 5 days, in 

which CT-1 cells proliferated over feeder cells to form radial epithelial sheets. Colonies 

lying adjacent to each other grew until boundary edges touched, resulting in contact 

inhibition. Cultures were then passaged when either the majority of colonies were 4 to 5 

mm in diameter or reached 50% confluency. Routine passaging consisted of mechanical 

dissociation by gentle scraping with a cell scraper. Cell clumps in suspension were then 

transferred to a 50 ml conical tube and the suspension volume was adjusted to 10 ml. 

Clumps were further dissociated by being twice drawn and expelled through a 22-gauge 

needle attached to a 20-ml syringe. The suspension was then diluted 3- to 5-fold and 

plated onto new gamma-irradiated STO MEF feeder layers or cryopreserved in 

cryopreservation medium (80% CT-1 media, 10% FBS and 10% DMSO). A bovine fetal 

fibroblast (BFF) cell line cloned from primary fetal hip muscle fibroblasts was also 
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received as a gift from Dr. Neil Talbot (U.S. Department of Agriculture, Beltsville, MD). 

The creation of this cell line is described elsewhere (Powell et al., 2004). BFFs and HEK-

293 cells (CRL-1573, ATCC) were cultured in CT-1 medium at 37 °C in 5% CO2. Upon 

reaching near confluency, cells were passaged by removing cell culture medium and 

adding trypsin-EDTA (25200-056, Invitrogen). After a five min incubation at 37°C, 

dissociated cells in suspension were collected, centrifuged at 175 x g for 3 min at room 

temperature (RT) in a table-top centrifuge. Supernatant was removed, fresh medium was 

added to cell pellets to a desired dilution and cells were dispersed. 

Enzymatic passaging of CT-1 cells 

All enzyme stock solutions were made fresh in DPBS and sterile filtered through 

a 0.2 µm SFCA syringe filter before use. CT-1 cells grown in penicillin-streptomycin 

(PS) free CT-1 medium were first washed with DPBS and incubated in 37 °C prewarmed 

dispase-collagenase solution (2.4 U per ml dispase (17105, Invitrogen) and 200 U per ml 

collagenase type 1A (C2574, Sigma Aldrich, St. Louis, MO) for 15 min at 37°C to detach 

colonies. The colony suspension was transferred to a 50 ml tube and centrifuged in a 

table-top centrifuge at 175 x g for 3 min at RT. The supernatant was aspirated and the 

pellet was resuspended in collagenase type 1A solution (200 U per ml collagenase in PS 

free CT-1 media). The suspension was incubated at 37°C for 1.5 hours and then lightly 

pipetted up and down with a 10 ml transfer pipet to complete colony dissociation. The 

cell suspension was centrifuged once again in a table-top centrifuge at 175 x g for 3 min 

at RT. Supernatant was removed and replaced with fresh CT-1 media. 
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Adapting CT-1 cells to feeder-free and substrate-free culture 

CT-1 and STO MEF co-cultures were passaged at 1:2 and 1:3 into collagen 

coated cultureware prepared in the following manner: Collagen solution (pH 7.4; 40% 

PureCol collagen (5005, Advanced Biomatrix, San Diego, CA), 5% 10X DPBS (14200-

075, Invitrogen), and 5% 0.1 M NaOH, and 50% CT-1 medium) was added to 

cultureware to coat the entire bottom and then aspirated to leave a thin collagen film. 

Coated flasks or plates were then incubated at 37 °C for one hour before air drying 

overnight at RT. Just before use, dried collagen coated wells were rinsed with CT-1 

medium. CT-1 cells were considered successfully adapted and free of STO MEF 

contamination following a minimum of 8 passages. CT-1 cultures adapted to growing on 

a collagen matrix were then similarly passaged into untreated Cellbind cultureware 

(Corning, NY). CT-1 cultures growing on a collagen substrate or on Cellbind were 

maintained at 37°C and 8.5% CO2 and subsequently passaged every 7 to 10 days. 

Lipofectamine 2000 transfection of adhered CT-1 cells 

DNA plasmids phEFnGFP (Wells et al, 2000) and H2B-GFP (“Addgene plasmid 

11680”, www.Addgene.org) were used for all plasmid DNA transfection optimization 

experiments. Both plasmids were previously tested in bovine fetal fibroblasts. The 

plasmid phEFnGFP constitutively produces high levels of nuclear localized GFP via 

induction of the human elongation factor (EF) promoter. Plasmid H2B-GFP 

constitutively produced human histone subunit 2B/ GFP fusion protein. The Invitrogen 

Lipofectamine 2000 protocol for optimizing plasmid DNA transfection was utilized as a 

starting point to which all subsequent modifications in the protocol were made. All 

dilution and plating volumes remained unchanged. CT-1 cells were grown in PS-free CT-
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1 medium in collagen-coated 12-wells. HEK293 cells and BFFs, were also transfected 

with identical treatments to serve as high and moderate transfection level controls. Cells 

were washed twice with DPBS and once with OPTI-MEM prior to adding transfection 

cocktails. Cells were transfected with either phEFnGFP or H2B-GFP in ratios of 1:1, 

1:2.5, and 1:3.75 (µg DNA/ µl Lipofectamine 2000). At each ratio, 1.6, 2.4, 2.8, 3.2, 3.6 

and 4.8 µg plasmid were tested. Plasmid and Lipofectamine 2000 were diluted to final 

100 µl volumes in OPTI-MEM before being mixed together and incubated for 10 min at 

RT. 200 µl DNA/Lipofectamine 2000 cocktails were then added to 12-wells containing 1 

ml OPTI-MEM plating medium. Treated cells were then incubated overnight. 

Lipofectamine 2000 cocktails without DNA were also performed to assess Lipofectamine 

2000 toxicity. 

Lipofectamine 2000 transfection of suspended CT-1 cells 

A 2- to 9-fold increase in Lipofectamine 2000 mediated transfection efficiency in 

difficult-to-transfect cell lines was achieved by transfecting suspended cells in undiluted 

transfection cocktail as opposed to following the standard protocol of transfecting 

adhered cells (Zhang et al, 2007). This method was tested on CT-1 cells. A fixed plasmid 

DNA/ Lipofectamine 2000 ratio of 1:2.5 was used for all treatments. 100 µl transfection 

cocktails containing 0.8 µg, 1.2 µg, and 4.8 µg of phEFnGFP plasmid and Lipofectamine 

2000 were made according to the manufacturer‟s instructions. Each cocktail treatment 

was tested at different transfection incubation periods: 15 min, 60 min, 120 min, and 

overnight at 37°C. CT-1 cells grown on Cellbind in PS-free medium were dissociated 

using dispase-collagenase and centrifuged at 175 x g for 3 min in a table-top centrifuge at 

RT. Cells were then homogenously suspended and aliquoted into equal volumes per time 
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treatment. Aliquots were centrifuged once again to form individual pellets. 100 µl of 

transfection mixture was added to pellets and incubated at RT except for the overnight 

incubations, which were performed at 37°C. Following the incubation, 300 µl of PS free 

CT-1 medium was added and 400 µl cell suspensions were plated into Cellbind 6-well 

plates. Verification of transfection was determined 48 hours following passaging to 6-

well plates. 

Lipofectamine 2000 and Nupherin transfection 

CT-1 cells were enzymatically passaged using the dispase-collagenase procedure 

and plated into collagen coated 24-well plates. Colonies were permitted to grow until 

over 50% of the well surface area was covered. Initial transfections were performed at 

DNA Lipofectamine 2000 ratios of 1:2 and 1:3.75 (µg/µl) with 1.2 µg plasmid H2B-GFP 

and with increasing levels of Nupherin reagent at 9, 30, 45, and 60 µg Nupherin per µg 

DNA (BML-SE225-0075, Enzo Life Sciences, Plymouth Meeting, PA). Lipofectamine 

2000 transfection controls without Nupherin were also performed. Each transfection 

cocktail was assembled in the following manner: In tube A, plasmid DNA and Nupherin 

were added to OPTI-MEM to a total volume of 150 µl. In tube B, Lipofectamine 2000 

was added to OPTI-MEM to a total volume of 150 µl. Both tubes were incubated at RT 

for 15 min, mixed together, and incubated at RT for an additional 40 min. CT-1 cells 

were then washed twice with DPBS, washed once with OPTI-MEM, and overlayed with 

the 300 µl cocktail. Twelve-well plates were then centrifuged at RT at 100 x g for 5 min 

before being placed into an incubator for 4 hours or overnight. Control treatments 

containing Lipofectamine 2000 and Nupherin but no DNA were performed to assess any 

potential reagent cytotoxicity. This protocol was tested a second time on new cells with a 
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few modifications. All transfection incubations were reduced to 4 hours, and all 

transfections were performed with fixed Nupherin concentrations at 30 µg Nupherin per 

µg DNA.  

Biolistic delivery of plasmid DNA into CT-1 cells 

Biolistic transformations were performed with a Model PDS-1000/He Biolistic 

Particle Delivery System with Hepta Adapter (Bio-Rad, Hercules, CA). CT-1 cells were 

grown to 70% confluency in collagen-coated 10 cm plates, Cellbind plates, or on 10 cm 

plates previously plated with a gamma- irradiated STO MEF feeder layer at a density of 

50,000 cells per cm
2
. Bovine fetal fibroblasts and HEK 293 cells were also plated and 

grown to 90% confluency to serve as comparisons for transfection rates. Plates 

containing CT-1 colonies grown on a feeder layer were overlayed with a thin layer of 

0.5% agar. Sterile 0.5% agar was heated until completely liquid and allowed to cool to 

37°C. Three ml of 0.5% agar was then pipetted on top of CT-1 and STO co-culture plates 

and quickly aspirated to produce a thin overlay. CT-1 medium was then added back to the 

plates. Gold microcarriers (1.6 µm diameter, 165-2262, Bio-Rad) were prepared 

according to Bio-Rad instructions and suspended in 50% sterile glycerol at 60 mg per ml. 

In a siliconized 1.5 ml tube, 50 µl of Afe I linearized, purified phEFnGFP plasmid (20 

µg) was added to 100 µl (6 mg) of microcarriers and then vigorously vortexed for 1 min. 

Next, 150 µl 2.5 M CaCl2 was added, and the suspension was then vortexed again for 1 

min before adding 60 µl of 0.1 M spermidine. The suspension was then constantly 

vortexed for another 5 min before gently centrifuging the sample and removing the 

supernatant. The coated microcarrier pellet was then washed once with 300 µl 70% 

ethanol, vigorously vortexed, and centrifuged. The supernatant was removed once again, 
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and 170 µl of 100% ethanol was added. The suspension was then continuously vortexed 

for 10 min. During this step, the particle delivery system was sterilized and set up 

according to Bio-Rad instructions. An 1100 psi rupture disk (165-2329, Bio-Rad) was 

loaded into the rupture disk retaining cap. A mock „test fire‟ was performed to verify disk 

rupture at around 1100 psi. A new 1100 psi rupture disk was reloaded and 25 µl of DNA-

coated microcarriers were pipetted onto 7 separate sterile loaded macrocarriers (165-

2335, Bio-Rad) previously loaded into the Hepta Adaptor. Once the assembly was 

complete, an uncovered cell culture plate was positioned at the 6 cm stage level and 

bombardment was performed. Cell culture plates were then immediately covered with 

CT-1 medium and placed back into the incubator. 

Electroporation of adhered CT-1 cells 

CT-1 cells were grown on gamma-irradiated STO MEFs in 6-well plates until 

colonies covered 75% of the feeder layer. HEK 293 cells were grown to near confluency 

and served as a transfection control. Electroporation was performed using a Petri Pulser 

electrode (PP35-2P) and ECM 2001 Electroporator (BTX, San Diego, CA) according to 

the manufacturer‟s instructions. All electroporation treatments were performed in 

duplicate. EcoR V linearized, purified phEFnGFP plasmid (10 µg) was diluted in 0.5 ml 

OPTI-MEM or DPBS per electroporation treatment tested. Prior to adding DNA to wells, 

cells were washed twice in OPTI-MEM and then overlayed with the 0.5 ml DNA 

solution. Electroporation treatments consisted of a single pulse at 100V, 120 V, 140 V, 

160 V or 180V with each duration set at 10 ms and 35 ms. Between treatments, the Petri 

Pulser electrode was washed according to the manufacturer‟s protocol. Electroporated 
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cells were allowed to recover for 5 min at RT before adding additional CT-1 medium and 

incubating the plates. 

Lentiviral transduction of CT-1 cells 

Transduction optimization was performed using processed and purified LentiMax 

Lenti-RFP (LV-301RFP) and Lenti-GFP (LV-173GFP) lentiviral particles (Lentigen, 

Baltimore, MD). These stock vectors both utilize a simian CMV promoter to express high 

levels of fluorescent reporter. While the use of transduction enhancing reagent Polybrene 

is recommended, the cationic Lipofectamine 2000 was tested for transduction 

enhancement based on previous optimization efforts reported elsewhere (Syda et al., 

2006). CT-1 cells were passaged into collagen-coated 96-well plates and cultured up to 9 

days to achieve substantial surface area coverage by a few colonies. Cells treated with 

Lentivirus and Lipofectamine 2000 were first pre-incubated in OPTI-MEM containing 

Lipofectamine 2000 before LV particles were added to achieve the designated 

multiplicity of infection (MOI) ratios. MOI is defined as the ratio of transduction units 

per cell. BFFs and HEK-293 cells were also passaged into 96-well plates and cultured to 

over 90% confluency. As a positive transduction control, HEK 293 cells were transduced 

at 3 MOIs (5, 10, and 20). Each MOI treatment was additionally tested with or without 

Lipofectamine 2000 (1 µl/ ml) and with or without plate centrifugation (600 x g for 1 hr 

at 32 °C) prior to the overnight transduction incubation at 37°C and 8.5% CO2. BFF and 

CT-1 cells were treated with increasing MOI (10, 20, 50, 100, and 200), with each 

treatment performed with or without Lipofectamine 2000 (1 µl/ml and 2 µl/ml). Plates 

that were not subjected to the plate centrifugation step were rocked by hand for 15-20 
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seconds every 30 min during the first few hours of the overnight incubation. Cells were 

assessed for fluorescent reporter expression every 24 hours for 5 days. 

Lipitoid-based plasmid transfection optimization 

 The Lipitoid reagent was received as a gift from Dr. Ronald Zuckermann of the 

Molecular Foundry of the Lawrence Berkeley National Laboratory, Berkeley, CA. 

Efforts to optimize plasmid DNA transfection efficiency were adapted from the original 

report in which Lipitoid was used to transfect HT1080 cells (Huang et al., 1998). Based 

on the conversion factor that double stranded DNA has a mass of 660 grams per mol per 

base pair, 5 µg of the 6972 base pair phEFnGFP plasmid calculated to 15.2 nmol of 

negative charge equivalent. To determine which Lipitoid/ DNA charge (+/-) ratio (2/1, 

3/1, or 4/1) resulted in the highest transfection efficiency, 5 µg of phEFnGFP was used 

per 6-well treatment, which is comparable in mass to other transfection reagent protocols 

at the 6-well plate scale, including Xfect (Clontech, Mountain View, CA) and 

Lipofectamine 2000 (Invitrogen). Each transfection reagent-plasmid treatment was tested 

in both collagen-coated 6-well plates and Cellbind 6-well plates. Prior to adding Lipitoid 

transfection cocktails, CT-1 cells were washed twice with DPBS, once with OPTI-MEM 

and then 1.6 ml OPTI-MEM were added back to each well. Lipitoid and DNA were 

separately suspended in OPTI-MEM to a total volume of 250 µl before lightly mixing 

together. Following 10 min incubation at RT, the 500 µl cocktails were then added to 

wells drop-wise, resulting in a total treatment volume of 2.1 ml. Plates were incubated 

(37 °C, 8.5% CO2) for 4 hours or overnight followed by complete medium aspiration and 

replacement with CT-1 medium. Cells were assessed for nGFP reporter expression 40 

hours later. 



 

 

44 

 

CT-1 colony fixation and DNA staining 

Following set transfection incubations, cells were rinsed twice with DPBS and 

fixed with 4% formaldehyde for 30 min at RT. Fixed CT-1 colonies were then incubated 

in 10 µg/ ml Hoechst 33342 in DPBS for 10 min. Wells were rinsed twice in DPBS. 

Fixed colonies were then teased off of well bottoms using a fine paint brush (3/0, 9718, 

IMEX) and delicately applied to slides so that colonies did not have folded edges or tears. 

Following a brief drying period, slides were mounted with Fluoromount G (0100-01, 

Southern Biotech, Birmingham, AL) and cover slipped. Images of finished slides were 

captured using a Zeiss Axio Observer Z1 Inverted Microscope with Axiovision software 

(Carl Zeiss Inc., Thornwood, New York).  

Assessment of plasmid transfection efficiency 

Transfection efficiency for delivery of phEFnGFP was quantified by calculating 

the percentage of nGFP-positive, Hoechst 33342-stained nuclei to total Hoechst 33342-

stained nuclei. For each transfection treatment, 4 to 6 images (20X magnification) were 

taken across the diameter of a representative colony. Over 50% of the nuclei in each 

image were counted (the range was between 379 and 1072 nuclei per image). This range 

is indicative of differences within monolayer cell density, with lower dense cell density 

occurring at the periphery. The trajectory of captured images across the colony diameter 

was also designated at random, as some regions of the colony were observed to possess 

higher transfection rates than other areas comparable in cell density and compact 

epithelial monolayer morphology. To determine whether CT-1 cells expressing nuclear 

GFP were alive and without compromised membrane integrity, transfected CT-1 cells 

were incubated in propidium iodide diluted in DPBS (2 µg per ml) and incubated for 5-10 
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min. Live cell images were then captured using a Leica DM IL inverted microscope 

(Leica, Bannockburn, IL) fitted with a Sony Cybershot 5.0 megapixel digital camera with 

a Martin Microscope MM19 adapter (Martin Microscope Company, Easley, SC). 

Short interfering RNA transfection optimization 

Optimization of Lipitoid based transfection in CT-1 cells is based on the original 

Lipitoid optimization methods with few modifications (Utku et al., 2006). CT-1 cells 

were grown in collagen-coated or Cellbind 6-well or 12-well plates for 7 to 10 days to 

allow CT-1 colonies to proliferate over 50% of the well surface area. Prior to the addition 

of Lipitoid/ double stranded RNA oligonucleotide mixtures, wells were washed twice 

with DPBS and once with OPTI-MEM. One ml OPTI-MEM was then added back to each 

well for 6-well plates (400 µl for 12-well). Lipitoid and RNA were both diluted in OPTI-

MEM to total volumes of 100 µl for each 6-well (40 µl for 12-well) and gently vortexed 

and centrifuged before combining. Lipitoid/RNA suspensions were gently mixed and 

then incubated for 10 min at RT before being added drop-wise to each well. Treated CT-1 

cells were then placed back into an incubator (37 °C, 8.5% CO2) for 4 hours. Following 

incubation, FBS was added to each well so that final serum concentrations were at 10%. 

Cells were then placed back into the incubator overnight until morning, when the 

transfection mixture was completely replaced by CT-1 media. For Lipitoid/ BLOCK-iT 

fluorescent oligomer transfections (2013, Invitrogen), live cell assessment of fluorescein 

conjugated double stranded oligomer delivery into CT-1 nuclei was performed 24 hours 

later using the Leica DM IL inverted microscope fitted with a Sony Cybershot 5.0 

megapixel digital camera. Lipitoid/ Stealth siRNA transfected cells were incubated for 48 

hours following medium replacement and then colonies were lysed for RNA extraction. 
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RNA interference and quantitative RT-PCR 

Short-interfering RNA oligonucleotide-mediated knockdown of both OCT4 and 

CDX2 transcript levels was performed using custom Stealth RNAi siRNA duplex 

oligonucleotides (Invitrogen). A bovine OCT4 (Pou5f1) 25-nucleotide duplex siRNA (3 

2) was designed using Invitrogen‟s BLOCK-IT RNAi designer. A bovine CDX2 25-

nucleotide duplex siRNA was modified from a previously reported functional 19-

nucleotide siRNA sequence (siRNA2; Sakurai et al., 2009) using Invitrogen‟s siRNA to 

Stealth RNAi siRNA converter. A nonspecific scrambled 25-nucleotide duplex siRNA 

was also designed to serve as a negative RNA interference control. Similar to BLOCK-iT 

fluorescent 21-mer oligonucleotides, Stealth siRNAs possess a net charge of -50 and 

were used at a 20 µM stock concentration. Therefore, any modifications to Lipitoid and 

Lipofectamine 2000 transfection protocols were unnecessary. CT-1 colonies were quickly 

washed twice with DPBS and lysed within the well with RNeasy lysis buffer (Qiagen, 

Valencia, CA) 48 hours after the end of the 4 hour transfection incubation. RNA was 

further extracted, DNase I treated, and purified using the RNeasy Miniprep kit (74124, 

Qiagen). Purified RNA was quantified using the Quant-iT RiboGreen RNA Assay Kit 

(R11490, Invitrogen) and each sample was diluted to a final concentration of 250 ng per 

µl. One µg of total cellular RNA (tcRNA) from each sample was then used to synthesize 

first strand cDNA using an AffinityScript Multiple Temperature cDNA Synthesis Kit 

(200436, Stratagene, La Jolla, CA). First strand cDNAs were synthesized using oligo(dT) 

primers according to the manufacturer‟s instructions with one modification: during 

synthesis, cDNA reactions were incubated at 55°C for 1 hour. Completed 20 µl cDNA 

reactions were then diluted 10-fold with nuclease-free water before using as template for 
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quantitative RT-PCR (qRT-PCR). To account for potential genomic DNA contamination 

amplification during RT-PCR, 1µg of pooled tcRNAs (3-4 combined equivalents per 

treatment) were also used as template for cDNA synthesis, but reverse transcriptase was 

omitted from these reactions.    

 Sense and antisense primers for qRT-PCR of OCT4 and CDX2 were developed 

using IDT Real Time PCR software (Integrated DNA Technologies, 

http://www.idtdna.com/Scitools/ Applications/RealTimePCR) and designed to span 

across exon-intron splice junctions (Table 2.1). OCT4 primers were based on published 

sequence (Accession NM_174580.1) and verified to specifically amplify OCT4 mRNA 

and not transcribed OCT4 pseudogene transcripts. CDX2 primers were also designed 

from published sequence (Accession XM_871005.3). Primers designed to gamma–actin 

(ACTG1, Accession NM_001033618.1) were utilized for qRT-PCR amplification 

normalization. CDX2 and ACTG1 qRT-PCR reactions consisted of 7.5 µl 2X iQ SYBR 

Green Super mix (170-8882, Bio-Rad), 0.6 µl of both sense and antisense 10 µM stock 

primers, 5.3 µl nuclease-free H2O, and 1 µl diluted cDNA or „RT-‟ pooled control. The 

2X iQ SYBR green mix contains fluorescein as an internal reference to normalize well-

to-well optical variation. qRT-PCR was performed using the MyiQ Single-Color Real-

Time PCR Detection System (Bio-Rad) programmed with the following steps: initial 

denaturation at 95°C for 3 min and 40 repeated steps consisting of 15 seconds at 95°C 

and extension at 60°C for 1 min. After 40 cycles, a dissociation (melt) curve was 

performed. Each PCR reaction was performed on 3 independently treated cDNA 

replicates, and each cDNA was amplified in duplicate. All cDNA amplifications 

produced single peaks in the melt curve analysis, and PCR products were further 
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analyzed by gel electrophoresis for correct size. Single amplicon bands were purified 

from agarose gels using a MinElute PCR Purification Kit (28004, Qiagen) and sequenced 

at the University of Maryland Biotechnology Institute: Center for Biosystems Research 

(College park, MD). The data output of OCT4 and CDX2 Ct (threshold cycle) values, 

representing fixed threshold crossing points where all samples are undergoing 

logarithmic amplification, were first normalized to ACTG1 Ct values using the formula: 

ΔCt = (Ct „no RT‟– Ct sample)target-(Ct„no RT‟–Ct)ACTG1. ΔCt values were then transformed 

(2
ΔCt

) and data were represented as relative abundance of target mRNA normalized to 

ACTG1 levels. 

Statistical Analysis 

Rates of DNA plasmid transfection were presented as percentages of nGFP 

positive cells to the total number of cells as determined by Hoechst 33342 staining. 

Transfection percentages were analyzed by ANOVA using the PROC MIXED model in 

SAS statistical software (SAS Institute, Cary, NC). Lipitoid/ DNA (+/-) charge ratio and 

incubation length were included as independent sources of variation. Data transformation 

for a binomial distribution was unnecessary as assumptions for variance heterogeneity 

and normality were met. As a significant difference in transfection paradigms was 

detected (P<0.05), the main effects of (+/-) charge ratio and incubation were compared. 

While a significant difference in incubation was detected (P< 0.05), no significant 

differences between (+/-) charge ratios or interactions between main effects were 

detected. Therefore, differences in individual transfection paradigms were analyzed using 

the PDIFF procedure with a Tukey‟s adjustment. Data are presented as treatment means ± 

pooled SE as calculated by the PROC MIXED procedure. Levels of gene expression were 
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calculated as a ratio of treatment ΔCt values (described in Methods and Materials) 

relative to untransfected control ΔCt values of at least 3 independent experimental 

replicates. Presented data are the means and SE of these ratios. Data were first log 

transformed to meet assumptions for variance heterogeneity and normality and analyzed 

by ANOVA using the PROC MIXED model in SAS. Lipitoid (+/-) charge ratio, siRNA 

concentration, and siRNA treatment (untransfected, target, control) were classified as 

independent variables. As a significant difference in transfection paradigms was detected 

(P<0.05), individual treatments were compared to the untransfected control using the 

PDIFF procedure with a Dunnett‟s adjustment. Independent contrasts were also made to 

compare targeted siRNA effects to control siRNA effects within individual transfection 

treatments. For all statistical analysis, differences are considered significant at P<0.05. 
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Table 2.1. siRNA Stealth Oligomer and Quantitative RT-PCR Primer information. 
Target  

Length Genbank   %GC  
siRNA  Sequence (5'-3') (nt) Accession # Location Content Design 

Bovine OCT4 GAGAGGUGUUGAGCAGUCUCUAGGA 25 NM_174580.1 5' UTR 52 Invitrogen 
CUCUCCACAACUCGUCAGAGAUCCU  BLOCK-IT 

RNAi designer 

Bovine CDX2 CUCUCAGAGAGGCAGGUUAAAAUUU 25 XM_871005.3 ORF 40 Adapted from siRNA#2 
GAGAGUCUCUCCGUCCAAUUUUAAA (Sakurai et al., 2009) 

Negative Control GAGGUGGUUCGAUGACUCAUAGGGA 25 No target 52 Invitrogen BLOCK-IT 
CUCCACCAAGCUACUGAGUAUCCCU RNAi designer 

Length Genbank Amplicon Annealing  
QPCR Primers Sequence (5'-3') (nt)  Accession # Location  Length (nt) Temp. (°C) 

Bovine OCT4 (FWD) CAAATTAGCCACATCGCC 18 NM_174580.1 Exon 4 126 60 
Bovine OCT4 (REV) AGCCTCAAAATCCTCACG 18 Exon 5 

Bovine CDX2 (FWD) AGTCGTTATATCACCATCC 19 XM_871005.3 Exon 2 104 60 
Bovine CDX2 (REV) CTTTCCTTTGCTCTGCG 17 Exon 3 

Bovine ACTG1 (FWD) TTGCTGACAGGATGCAGAAG 20 NM_001033618.1 Exon 4 145 60 
Bovine ACTG1 (REV) TGATCCACATCTGCTGGAAG 20 Exon 5 
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Results 

We were successful in adapting CT-1 cell culture to a substrate-free, 

nonbiological Corning Cellbind surface and have passaged CT-1 cells on Cellbind for 

over 20 passages. We observed no differences in colony seeding, expansion and growth 

rate between CT-1 cells grown on collagen or Cellbind. However, minor differences in 

colony morphology were noted. Colonies grown on Cellbind appear slightly flattened and 

cells located at the colony periphery are less compacted. Also, colonies grown on 

Cellbind are more prone to detachment following physical disturbance resulting from 

various transfection protocols (Table 2.2), indicating that culturing CT-1 cells grown on a 

substrate may be beneficial for some experimental procedures. No extra consideration is 

needed for passaging CT-1 cells between collagen and Cellbind surfaces, and vice versa.  

 We also developed an enzymatic cell dispersal protocol using dispase and 

collagenase that was comparable to mechanical passaging in cell-aggregate-colony 

seeding rates and colony recovery. However, this method allowed for cell aggregates as 

small as 10 cells to adhere and grow into typical colonies. 

 We tested 7 techniques to deliver DNA into CT-1 cells. As CT-1 cells exhibit 

autofluorescence that may confound confirmation of a cytoplasmically localized GFP, 

plasmids that constitutively produce high levels of nuclear localized GFP were used in 

these experiments. Lipitoid-mediated transfection resulted in the greatest numbers of 

transfected nGFP positive CT-1 cells (8.9%). Transfection efficiencies for the remaining 

6 techniques were never above 1%. Cationic liposomal reagents such as Lipofectamine 

2000 (Dalby et al., 2003), which have been used successfully on a multitude of cell lines, 

had almost no effect on CT-1 cells despite extensive optimization efforts. No obvious 



 

 

52 

 

increases in transfection were observed when amounts of DNA or Lipofectamine 2000 

were increased at elevating ratios of 1:1, 1:2.5, and 1:3.75. Nupherin was added to 

Lipofectamine 2000-based treatments to aid nuclear delivery of transfected plasmid 

DNA. Only treatments with high levels of Nupherin (45 and 60 µg Nupherin per µg 

DNA) resulted in slight but insignificant increases in nGFP positive cells: However, these 

levels were toxic and damaged colonies. A cell suspension method for hard-to–transfect 

cell lines (Zhang et al., 2007) was also tested. Basal and lateral membranes may be 

exposed during suspension and, therefore, available for DNA/ liposome uptake. All 

suspension transfection treatments (fixed 1:2.5 DNA/ Lipofectamine 2000 (µg/µl) ratio; 

0.8 µg, 1.2 µg, and 4.8µg plasmid) at all incubation periods (15 min, 60 min, 120 min, 

and overnight at 37°C) produced a high density of seeded colonies, yet very few nGFP 

positive cells were observed.  

Similar adherent colony transfection results were obtained using other cationic 

lipid reagents such as TransFectin (Bio-Rad) and Metafectene (Biontex, San Diego, CA), 

or the polymer Xfect (Clontech), which were all used according to manufacturer‟s 

instructions. Noncationic liposomal transfection methods including electroporation, 

biolistic delivery, and lentiviral transduction were also attempted. Colonies 

electroporated at all voltages (100-180 V) resulted in cell damage. At higher voltages 

(140-180 V) the damage was more extensive and whole colonies detached. Growing CT-

1 colonies on mitotically-inactive STO MEFs stabilized colonies from detaching and 

improved recovery. However, even the best set of parameters (100 V, 35 ms) produced 

less than 10 clusters of clonally expanding, nGFP positive cells per 6-well. Results for 

biolistic delivery were similar.  
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Table 2.2. Summary of attempted  transfection methods for delivery of DNA into CT-1 cells.

Method Description Rationale CT-1 Cell Line Results Cell Line Control Results

Lipofectamine 2000 

transfection of adhered 

colonies

Optimization of  the standard Lipofectamine 

2000 protocol. DNA and reagent 

concentrations were increased to determine 

if there is a resistance threshold to 

transfection.

No significant observable increase in transfection 

with increasing µg plasmid or DNA/ lipofectamine 

2000 (µg/ µl) ratio. (TE < 1%.)

HEK 293 cells transfected at high 

levels (TE >80%). BFFs transfected 

at moderate levels (TE= 50-70%).

Lipofectamine 2000 

transfection of 

suspended cell clumps

Determine if transfection complex delivery 

is blocked at apical membrane only. 

Clumped cells in suspension should have 

some exposed lateral and basal membranes.

No significant observable increase in transfection 

with increasing µg plasmid or DNA/ lipofectamine 

2000 (µg/ µl) ratio. (TE < 1%.)

No control cell lines were tested.

Lipofectamine 2000 

transfection with 

Nupherin 

supplementation 

Determine if transfection resistance is due to 

inability of transfection complex to be 

imported into nucleus. 

Overnight incubation in Nupherin transfection 

complex was toxic. High levels of nupherin (45 

and 60 μg/ μg DNA) slightly increased TE. 

No control cell lines were tested.

Biolistic delivery of 

plasmid DNA into 

adhered colonies

Bypass any  transfection complex issues 

occurring at the cell and nuclear membranes 

by physically delivering DNA into nucleus.

Successful optimization of bombardment velocity 

to decrease cell damage and colony detachment. 

TE rates are low and confined to bombardment 

radius (TE < 1%).  

BFFs transfected at low levels 

within bombardment radius (TE 

<10%) with and without the agar 

overlay.

Electroporation of 

adhered colonies

Determine if electroporation results in 

higher TE than other methods. The Petri 

Pulser electrode electroporates adhered 

colonies. 

A single pulse (100 V, 35 mS) produced the 

greatest number of transfected cell clumps near 

edges of colony/electrode contact.  TE is not 

acceptable for transient transfection.

Adhered, undamaged HEK 293 cells 

were transfected at high levels (TE 

>80%). 

Lentiviral transduction 

of adhered colonies

Determine if lentiviral transduction results 

in higher TE than other methods. 

Commercial lentiviral vectors were used for 

the optmization process.

No transduction was observed at any MOI level 

(10-200). Lipofectamine supplementation and brief 

centrifugation had no effect for any tested cell 

lines.

HEK 293 cells were transduced at 

moderate rates (TE = 50%) at 10X 

MOI level.  Very few transduced 

BFFs observed at 200X MOI level. 
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 Our optimization efforts increased transfection efficiency in BFFs but not CT-1 

cells. Lentiviral transduction was also performed using GFP and RFP lentiviral vectors. 

While HEK 293‟s showed moderate levels of transduction at a MOI of 10, success in 

bovine cell lines CT-1 and BFF was limited to a few transductions in BFFs at the highest 

MOI tested (200). 

Lipitoid/ DNA transfection treatment cocktails were assembled according to 

Lipitoid/DNA (+/-) charge ratios of 2/1, 3/1 and 4/1, and each ratio-based transfection 

cocktail was tested at 4 hour and overnight incubations (Fig. 2.1). Overnight incubations 

resulted in significantly higher transfection efficiencies than 4 hour incubations (p < .05). 

CT-1 cells incubated overnight in the 2/1 Lipitoid/DNA (+/-) charge ratio transfection 

cocktail produced the highest degree of transfection efficiency (8.9%). CT-1 cells 

incubated in the least effective transfection cocktail (4/1 Lipitoid/DNA (+/-) charge ratio 

for only 4 hours) were still transfected at higher rates (2.7%) than all non-Lipitoid 

transfection methods tested (Table 2.2). However, for all overnight incubations, including 

“Lipitoid only” controls, obvious signs of cell damage and toxicity were observed as the 

Lipitoid amount increased. Colonies incubated overnight in the 4/1 (+/-) charge ratio 

transfection were not included in Fig. 1 as colony damage was too extensive. Colonies 

incubated overnight in 2/1 and 3/1 (+/-) charge ratio transfections recovered from 

Lipitoid toxicity within 24-48 hours and were stained with propidium iodide to determine 

cell viability (Fig. 2.2). Propidium iodide stained nuclei, which indicated dead cells, did 

not co-localize with nuclear GFP+ nuclei, demonstrating that transfected cells were 

viable. 
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Figure 2.1. Optimization of plasmid DNA transfection. 5 µg phEFnGFP plasmid was 

transfected into CT-1 cells at three Lipitoid/ DNA (+/-) charge ratios (3/1, 4/1, 2/1). Each 

ratio-specific treatment was compared at two incubation periods (4 hr vs. overnight.) 

Cells were cultured for an additional 48 hours after transfection, fixed and stained with 

Hoechst 33342. Graphed values represent the mean and pooled SE of the total number of 

nuclear GFP expressing cells over total nuclei (n=2). Means that share letter superscripts 

are not significantly different (P< 0.05). 
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Figure 2.2. Visualization of dead cells within phEFnGFP transfected CT-1 colonies. 

Propidium Iodide (red), a nucleic acid stain that intercalates DNA of non-viable cells, 

does not stain nuclei of cells expressing nuclear localized GFP (green). Bar = 10 µm.   

 

 

  



 

 

57 

 

Based on our success with Lipitoid-based plasmid transfection, we next optimized 

Lipitoid-based oligonucleotide transfection. A visual reporter-based approach was first 

used to qualitatively optimize siRNA duplex transfection in CT-1 before proceeding with 

the testing of functional siRNA assays using qRT-PCR. BLOCK-iT is a fluorescein 

tagged RNA duplex oligonucleotide that possesses a similar net negative charge to short-

interfering double stranded nucleotides. Transfection cocktails containing either 50 nM or 

100 nM BLOCK-iT fluorescent oligomer were each tested at Lipitoid/DNA (+/-) charge 

ratios of 2/1, 3/1 and 4/1. At the 50 nM BLOCK-iT, only the transfection performed at 

4/1 (+/-) charge ratio resulted in faint but identifiable nuclear fluorescence (Fig. 2.3a). All 

transfections performed with 100 nM BLOCK-iT fluorescent oligomer resulted in a high 

degree of transfection, with CT-1 cells exhibiting high levels of nuclear fluorescence 

(Fig. 2.3b and c). The 100 nM treatment at the 4/1 (+/-) charge ratio had the most 

abundant uptake (Fig. 2.3c) while no obvious differences were observed between 100 nM 

treatments at 3/1 and 2/1 (+/-) charge ratios. Based on these results, 3/1 and 4/1 (+/-) 

charge ratios were chosen as treatment ratios in further optimization with functional 

siRNA. Although the 50 nM BLOCK-IT transfection at the 3/1 (+/-) charge ratio resulted 

in virtually undetectable levels of fluorescence in our tests, this treatment was included 

since it had been shown previously  to decrease levels of DLX3 protein in CT-1 cells 

(Ezashi et al., 2008).  

 Functional siRNAs were designed to suppress expression of transcription factors 

CDX2 and OCT, which are expressed in CT-1 cells (Schiffmacher and Keefer, 2008). 

Each siRNA was transfected into CT-1 cells at 50 nM and 100 nM concentrations and 

each concentration was mixed with Lipitoid to produce 3/1 and 4/1 (+/-) charge ratios.  
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Figure 2.3. Visualization of fluorescent tagged BLOCK-IT RNA duplexes in live CT-1 

cells according to transfection parameters: a) 50 nM oligomer transfected at 4/1 Lipitoid/ 

DNA (+/-) charge ratio, b) 100 nM oligomer transfected at 3/1 (+/-) charge ratio, and c) 

100 nM oligomer transfected at 4/1 (+/-) charge ratio. Images were taken 48 hours after 

the end of the transfection incubation. All images are at the same magnification. Bar =20 

µm.   
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Transfection efficiency was determined by evaluating the degree of mRNA 

knockdown as determined by qRT-PCR (Fig. 2.4). All transfection parameters tested 

exhibited the similar degree of CDX2 transcript downregulation (59-61%) and were 

significantly different from untransfected CT-1 levels and negative siRNA controls (Fig. 

2.4a, p < 0.05). In addition, none of the siRNA treatments, irrespective of concentration 

or charge ratio, resulted in nonspecific alterations to CDX2 expression levels. Therefore, 

significant CDX2 specific targeting and knockdown was achievable at both siRNA 

concentrations (50 nM vs. 100 nM) and Lipitoid/DNA (+/-) charge ratios (3/1 vs. 4/1). 

Specific siRNA targeting of OCT4 mRNA resulted in different rates of downregulation 

between transfection treatments (Fig. 2.4b). OCT4 expression was significantly down-

regulated by 58% using 50 nM OCT4 siRNA transfected at a 4/1 Lipitoid/DNA (+/-) 

charge ratio and was downregulated by 55% using 100 nM OCT4 siRNA transfected at a 

3/1 Lipitoid/DNA (+/-) charge ratio. However, the difference between OCT4 siRNA and 

negative control transfected at 100 nM was not significant. Unlike the results obtained 

from the CDX2 siRNA optimization, there was an indication that transfections of 100 nM 

siRNA may exhibit a nonspecific effect on OCT4 expression as quantified by qRT-PCR. 

Therefore, 50 nM OCT4 siRNA transfected at a 4/1 Lipitoid/DNA (+/-) charge ratio was 

the most effective treatment for suppression of OCT4 levels. 
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Figure 2.4. mRNA levels of transcription factors CDX2 (a) and OCT4 (b) following 

siRNA knockdown. Two siRNA concentrations (50 nM vs. 100 nM) were tested at two 

Lipitoid/ DNA (+/-) charge ratios (3/1 vs. 4/1). For each treatment, a nonspecific control 

siRNA was also transfected to serve as a negative control. Each transfection treatment is 

expressed as the mean and SE (n=3) of the siRNA target relative expression level 

normalized to treatment control levels. An asterisk (*) denotes a significant difference 

between treatment effect and untransfected control (p < .05). 
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Discussion 

For the CT-1 cell line to be useful as a model for studying gene regulation, it must 

be amenable to genetic manipulation through exogenous DNA or RNA uptake. A battery 

of well-characterized nucleic acid delivery methods did not even remotely achieve 

transfection levels in CT-1 cells comparable to those observed in the control cell lines 

(Table 2.2). In contrast, Lipitoid transfection resulted in a 9% rate for overall colony 

transfection with 5 µg phEFnGFP incubated overnight at a 2/1 Lipitoid/DNA (+/-) charge 

ratio. Transfection rates up to 15% were observed in peripheral regions of these colonies. 

Slight toxicity at the 2/1 ratio was also observed, although colonies quickly recovered and 

proliferation of transfected cells was observed 4 days following transfection. While a 9% 

transfection rate may not be sufficient for many experiments, it should prove acceptable 

for generating stable transfected CT-1 cell lines by clonal patching of transfected 

mononucleate cell clusters.  

In our hands cationic Lipofectamine 2000 was completely ineffective up to 3 

times the amount of DNA used for typical transfections in 24-well plates. Furthermore, 

Lipofectamine 2000 based transfection of small CT-1 aggregates in suspension or 

supplemented with Nupherin did not improve rates. 

Successful electroporation of DNA using a Petri Pulser electrode (BTX) can be 

accomplished in HEK 293 cells but not CT-1 cells. Biolistic delivery of DNA was found 

to be the most inconsistent technique and produced the lowest transfection rates in 

confluent BFF. Lentiviral transduction is a powerful technique and has been used 

successfully to reprogram porcine fetal fibroblasts into a pluripotent state (Ezashi et al, 

2009). However, attempts to transduce CT-1 cells with lentiviral fluorescent reporter 
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vectors were unsuccessful, including the testing of other previously optimized protocols 

using Lipofectamine 2000 supplementation (Syda et al., 2006).  

The Lipitoid reagent also proved effective in our optimization efforts to deliver 

oligonucleotides. Using two representative siRNAs to target transcription factors CDX2 

and OCT4, we demonstrated that 50 nM siRNA transfected at a 4.1 Lipitoid/DNA (+/-) 

charge ratio reduced both CDX2 and OCT4 transcripts by almost 60%. However, for 

CDX2 knockdown, 50 nM siRNA transfected at a 3/1 Lipitoid/DNA (+/-) charge ratio 

was just as effective. This confirms similar findings wherein 50 nM DLX3 siRNA was 

used at the 3/1 (+/-) charge ratio to efficiently reduce DLX3 expression (Ezashi et al., 

2008). With further optimization of siRNA sequences, Lipitoid-based siRNA transfection 

may be even more effective in CT-1 cells.          

The reasons why CT-1 cells are hard to transfect remain unknown, but the major 

block in nucleic acid delivery most likely occurs at the membrane. DNA complexed to 

cationic liposomes composed of Lipofectamine 2000 form heterogenous complex shapes 

and may not sufficiently mask the DNA negative charge to overcome electrostatic 

repulsion of the cell membrane and extracellular matrix. This repulsion issue may also 

explain the lack of success in electroporation. Another reason for the lack of transfection 

includes insufficient protection from possible DNases secreted from the CT-1 cells into 

the transfection medium. Lastly, the lipid chemistry of the CT-1 apical membrane may be 

quite unique and incompatible with the cationic lipids to promote membrane/ liposome 

fusion. The transfection success obtained with Lipitoid reagent may result from the 

unique interaction with Lipitoid and DNA.  Electron microscope images of complexes 

reveal uniform spherical structures that presumably consist of plasmid enveloped inside 
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Lipitoid spheres (Huang et al. 1998). These spheres provide adequate protection from 

DNases and their condensed structure may be more effective in overcoming electrostatic 

cell membrane repulsion or membrane fusion and nucleic acid release into the cytoplasm.    

In summary, our efforts demonstrate that the technical issues in CT-1 culture 

surfaces, passaging, and nucleic acid transfection can be successfully addressed and 

further optimization should increase the utility of CT-1 cells as model cell line for 

studying trophoblast development. 
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Chapter 3: The roles of OCT4 and CDX2 in directing early bovine 

trophoblast development. 
 

Abstract 

Misregulation of genes in the early trophectoderm (TE) has been implicated to 

play a causal role in abnormal placental formation and fetal loss of cloned and in vitro-

produced embryos. In mice, the transcription factor CDX2 is a key regulator that is 

required to repress the pluripotency specific transcription factor OCT4 during TE lineage 

segregation and direct trophoblast maintenance. However, during bovine embryogenesis 

CDX2 does not completely repress OCT4 and both genes are co-expressed during early 

trophoblast elongation. To elucidate the roles of CDX2 and OCT4 in the trophoblast 

transcriptional hierarchy, we utilized the bovine trophectoderm-derived CT-1 cell line as 

a genetic model. RT-PCR analysis showed that CT-1 cells expressed transcripts for TE 

lineage associated transcription factors CDX2, ETS2, ERRB, ID2, SOX15, ELF5, 

HAND1, MASH2 and GATA6. Expression of pluripotency-associated transcription factors 

NANOG and SOX2 were undetectable, while OCT4 expression was evident. CDX2 

knockdown reduced levels of IFNT, HAND1, MASH2, and SOX15. Overexpression of 

CDX2 in CT-1 cells had a reciprocal effect on these genes, in addition to increasing 

ELF5 transcript levels. CDX2 also reduced OCT4 levels. Both overexpression and 

knockdown of CDX2 increased ETS2 levels. Overexpression and knockdown of OCT4 

had no effect on any candidate gene levels with the exception of positive feedback on 

itself. These results implicate CDX2 as a regulator of OCT4 and multiple downstream 

bovine trophoblast genes and demonstrate that CT-1 cells are useful as a genetic model 

for studying the transcriptional networks governing the early bovine trophoblast.     
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Introduction 

During eutherian embryogenesis, the first tissue lineage segregation event forms 

the inner cell mass (ICM), which gives rise to the embryo proper, and the trophectoderm 

(TE), the precursor to placental trophoblast lineages. Embryonic stem cells (ESC)  have 

been successfully utilized as a genetic model for studying differentiation of these early 

embryonic lineages. Chromatin-immunoprecipitations coupled with DNA microarray 

analyses performed in both mouse and human ESC reveal that transcription factors OCT4 

and NANOG, in concert with transcription factors SOX2 and SALL4, co-regulate 

hundreds of genes to maintain pluripotency (Boyer et al., 2005; (Loh et al., 2006; Lim et 

al., 2008; Yang et al., 2008). Downregulation of OCT4 below a threshold level required 

for pluripotency maintenance permits induction of TE specific genes and consequential 

differentiation into trophoblast cells (Niwa et al., 2000; Niwa et al 2005). In the mouse, 

the caudal type transcription factor CDX2 is a primary regulator at the core of the TE 

lineage hierarchy based on its ability to suppress Oct4 and Nanog expression. While 

critical reduction of OCT4 by RNA interference only permitted differentiation into 

trophoblast cells, reduction of OCT4 by CDX2 overexpression not only forced 

differentiation but maintained trophoblast stem cell self renewal (Niwa et al., 2005). 

CDX2 is involved in inhibitory feedback loops with OCT4 and NANOG as CDX2 

represses Oct4 and Nanog transcription and vice versa (Chen et al., 2009; Niwa et al., 

2005). Mouse embryo knockout models have confirmed that this network functions in 

vivo as predicted by ESC studies. OCT4 and NANOG are inappropriately expressed in 

the TE of Cdx2 
-/- 

mutant blastocysts (Strumpf et al., 2005) and this expression is 

autonomous as demonstrated by OCT4 expression in Cdx2 
-/-

 cells positioned in the TE of 
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chimeric (Cdx2 
-/-

 /WT) embryos (Ralston and Rossant, 2008). Conversely, ectopic 

expression of CDX2 was detected in early Nanog 
-/- 

mutant ICMs (Chen et al., 2009) and 

later in the compromised ICMs of Oct4 
-/- 

mutant blastocysts (Ralston and Rossant, 

2010).  

Beyond the blastocyst stage, the mouse embryo is not an appropriate model for 

ungulate embryogenesis. While the mouse blastocyst implants shortly after hatching from 

the zona pellucida, hatched bovine embryos delay attachment and undergo a different 

developmental program (Betteridge and Flechon, 1988). Bovine embryos elongate into an 

ovoid structure around 12 days post conception (dpc), transition into a longer tubular 

structure, and become filamentous by 15 dpc. At the ovoid stage, the bovine polar TE, or 

Rauber‟s layer, slowly degenerates while the underlying ICM surfaces as the germinal 

disk. Unlike the polar TE in the mouse blastocyst, the Rauber‟s layer does not maintain a 

trophoblast stem cell population, nor does it differentiate into extraembryonic ectoderm 

or ectoplacental cone lineages. The mural TE in ruminants is responsible for the 

considerable embryonic elongation (Betteridge and Flechon, 1988). Very little is known 

about initial ungulate trophoblast lineage maintenance and the molecular mechanisms 

driving trophoblast expansion (Blomberg et al., 2008). Bovine trophoblast proliferation 

does not appear to be driven by FGF-mediated signaling. However, in vivo studies in 

adult ewes lacking proper endometrial gland density show that survival and proper 

development at the tubular stage and beyond is dependent on endometrial secretions 

(Gray et al., 2001; Gray et al., 2002).   

 Spatial and temporal expression of CDX2 protein is similar between mice and 

other species in that protein is restricted to the TE by the blastocyst stage (Douglas et al., 
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2009; Kuijk et al., 2008; Sritanaudomchai et al., 2009). However, patterning of OCT4 

beyond the blastocyst stage is dissimilar between mice and other species.  While OCT4 

protein is readily detected in all cells of the early blastocyst in all species, it is rapidly 

downregulated during blastocyst expansion in mice (Dietrich and Hiiragi, 2007) and 

primates (Mitalipov et al., 2003; Sritanaudomchai et al., 2009). Contrarily, OCT4 protein 

expression is not immediately downregulated but maintained in the TE into the ovoid 

stage of bovine, caprine, and porcine embryos (Nichols et al., 1998; Kirchhof et al., 2000; 

Roberts et al., 2004; van Eijk et al., 1999; He et al., 2006; Keefer et al., 2007). 

Localization of OCT4  protein within TE nuclei of ovoid stage embryos of many species 

may call into question the universal role of OCT4 as „gatekeeper‟ during the first lineage 

segregation (Pesce and Scholer, 2001). However, studies in mouse ESC demonstrate that 

this „gatekeeper‟ function may be protein level dependent (Niwa et al., 2000; Niwa et al 

2005) and cofactor dependent (Hemberger et al., 2009). Therefore, OCT4 

downregulation, but not repression, may be sufficient for TE lineage segregation. This 

evidence is corroborated with in vivo data demonstrating that OCT4 transcript levels in 

ICM cells are much greater than OCT4 mRNA levels in bovine and caprine TE cells 

(Degrelle et al., 2005; He et al., 2006). It has been hypothesized that OCT4 may play a 

role in maintaining proliferative TE cells in a “differentiation delayed state” (Degrelle et 

al. 2005; Kurosaka et al., 2004). 

To gain insight into how ungulate trophoblast lineage segregation and 

maintenance are regulated, many studies have evaluated expression profiles of lineage 

markers initially identified in the mouse. Degrelle and colleagues demonstrated that 

transcripts of transcription factors CDX2, EOMES, GATA6, HAND1 and ETS2 are 
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detected throughout all stages of bovine elongation, although it was noted that EOMES 

was not expressed in the filamentous TE (Degrelle et al., 2005). Relative expression 

levels bHLH transcription factor HAND1 and the pregnancy recognition factor IFNT 

appeared to be positively correlated with embryonic growth. ELF5 transcripts were 

readily detected at the ovoid stage, corroborating mouse data that Elf5 expression is 

downstream of Eomes and Cdx2 in mouse TE development (Donnison et al., 2005; Ng et 

al., 2008). 

Embryo-derived cell lines derived from bovine blastocysts can be used in the 

same manner mouse embryonic-derived cell lines are utilized for exploring the roles of 

OCT4 and CDX2 in directing lineage maintenance and differentiation (Ralston and 

Rossant, 2005),    Our studies were performed in the bovine trophoblast CT-1 cell line 

which was derived from hatched day 10-11 bovine blastocyst explants and has served as 

a genetic model for elucidating regulation of IFNT expression (Talbot et al., 2000; Ealy 

and Yang, 2009). However, the capacity of CT-1 cells to be used as a developmental 

model beyond IFNT regulation has not been explored. Therefore, the aims of this study 

were to further identify which trophoblast specific genes are expressed in CT-1 cells and 

to determine if they have a similar expression pattern to in vivo early elongating 

trophoblasts. Furthermore, the effect of OCT4 and CDX2 equilibrium disruption on 

expression of downstream genes was determined. Together these findings increase our 

understanding of the roles of OCT4 and CDX2 in maintaining developmental potential in 

the early bovine trophoblast. 
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Methods and Materials 

Cell culture and tissue collection 

CT-1 cells were received as a gift from Dr. Neil Talbot (U.S. Department of 

Agriculture, Beltsville, MD). Cells were initially expanded on mitotically inactive, 

gamma-irradiated mouse STO mouse embryonic fibroblast (MEF) feeder layers (CRL-

1503, ATCC, Manassas, VA) at a density of 40,000 cells per cm
2
.  CT-1 and STO MEF 

co-cultures were grown in CT-1 medium consisting of DMEM containing 4.5 g per L 

glucose and 4 mM L-glutamine (11965-084, Invitrogen, Carlsbad, CA) supplemented 

with 10% fetal bovine serum (FBS) (SH30070.03; Hyclone, Logan, UT), 1 mM sodium 

pyruvate (11360-070, Invitrogen) and 50 U per ml penicillin-streptomycin solution 

(15070-063, Invitrogen). Cultures were incubated at 37°C in 5% CO2 for 4 to 5 days and 

passaged when either the majority of colonies reached a threshold 4 to 5 mm in diameter 

or when CT-1 colonies reached 50% confluency. Routine passaging consisted of 

mechanical dissociation by gentle scraping with a cell scraper. Clumps were further 

dissociated by being drawn and expelled two times through a 22-gauge needle attached to 

a 20 ml syringe. CT-1 and STO MEF co-cultures were passaged at 1:2 to 1:3 (v/v) into 

collagen-coated cultureware prepared in the following manner: Collagen solution (pH 

7.4; 40% PureCol collagen (5005, Advanced Biomatrix, San Diego, CA), 5% 10X DPBS 

(14200-075, Invitrogen) 5% 0.1 M NaOH, and 50% CT-1 medium) was added to 

cultureware to coat the entire bottom and then aspirated to leave a thin collagen film. 

Coated flasks or plates were then incubated at 37 °C for one hour before air drying 

overnight at room temperature (RT). Right before use, dried collagen-coated wells were 

rinsed with CT-1 medium. CT-1 cells were considered successfully adapted and free of 
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STO MEF contamination following a minimum of 8 passages. CT-1 cultures adapted to 

growing on a collagen matrix were then similarly passaged into untreated Cellbind 

cultureware (Corning, NY). CT-1 cultures growing on a collagen substrate or on Cellbind 

were maintained at 37°C and 8.5% CO2 and subsequently passaged every 7 to 10 days. A 

bovine fetal fibroblast (BFF) cell line cloned from primary fetal hip muscle fibroblasts 

was also received as a gift from Dr. Neil Talbot (U.S. Department of Agriculture, 

Beltsville, MD). BFFs, HEK-293 cells (CRL-1573, ATCC), and NTERA2/D1 embryonal 

carcinoma cells (CRL-1973, ATCC) were cultured in CT-1 medium at 37 °C in 5% CO2. 

BFFs and HEK 293 cells were maintained in culture by enzymatically passaging with 

trypsin-EDTA (25200-056, Invitrogen). NTERA cells were mechanically passaged by 

cell scraping. In vitro produced (IVP) day 6 bovine morula were purchased from Bomed, 

Inc. (Madison, WI) and cultured in embryo culture medium (G2 version 3, Vitrolife, 

Englewood,CO). Blastocysts were pooled and lysed in RNeasy lysis buffer (Qiagen, 

Valencia, CA) and stored at -80 °C until used for RNA extraction. Mid-gestation bovine 

cotyledonary and caruncular tissues were collected at a local abattoir (Treuth and Sons, 

Baltimore, MD), snap frozen, and stored in liquid N2 until needed for RNA extraction.  

Transfections 

The Lipitoid reagent was received as a gift from Dr. Ronald Zuckermann of the 

Molecular Foundry of the Lawrence Berkeley National Laboratory, Berkeley, CA. 

Lipitoid-based plasmid and siRNA transfections were based on previously described 

methods (Schiffmacher and Keefer, 2010). All plasmid transfections were performed in 

12-well plates with 0.42 pmol plasmid at the 2/1 Lipitoid/DNA (+/-) charge ratio; the 

amount of Lipitoid used was adjusted based on net charge of each plasmid. CT-1 colonies 
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were passaged into Cellbind 12-well plates and grown for 7 to 10 days to achieve 50% 

confluency. Prior to adding Lipitoid transfection cocktails, CT-1 cells were washed twice 

with DPBS, once with OPTI-MEM, and then 600 µl of OPTI-MEM were added back to 

each well. Both treatment-specific volumes of Lipitoid and DNA were separately 

suspended in OPTI-MEM to a total volume of 100 µl before lightly mixing together. 

Following a 10 min incubation at RT, the 200 µl cocktails were then added to wells drop 

by drop, resulting in a total treatment volume of  800 µl. Plates were incubated (37 °C, 

8.5% CO2) overnight followed by complete medium aspiration and replacement with CT-

1 medium. Cells were incubated for an additional 48 hours before being utilized for 

experiments.  

Short-interfering RNA oligonucleotide-mediated knockdown was performed 

using custom Stealth RNAi siRNA duplex oligonucleotides (Invitrogen), which possess a 

net charge of -50. All siRNA transfections were performed at 50 nM final oligonucleotide 

concentration at a fixed 4/1 Lipitoid/DNA (+/-) charge ratio. CT-1 cells were grown until 

50% confluent in Cellbind 12-well plates. Prior to the addition of Lipitoid-double 

stranded RNA oligonucleotide mixtures, CT-1 colonies were washed twice with DPBS, 

once with OPTI-MEM and then 420 µl OPTI-MEM were added back to each 12-well.  

Lipitoid and siRNAs were both diluted in OPTI-MEM to total volumes of 40 µl, gently 

vortexed and centrifuged before combining together. Lipitoid/RNA suspensions were 

gently mixed and then incubated for 10 min at RT before being added drop-wise to each 

well. Treated CT-1 cells were then incubated (37 °C, 8.5% CO2) for 4 hours. Following 

incubation, FBS was added to each well to achieve 10% final serum concentration.  Cells 

were then incubated overnight, after which the transfection mixture was completely 
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replaced by CT-1 medium. Lipitoid/ Stealth siRNA transfections were incubated for 48 

hours after the addition of FBS to wells. Medium was replaced and colonies were lysed 

for RNA extraction. HEK 293 cells were transfected using Lipofectamine 2000 (11668-

027, Invitrogen) according to manufacturer‟s instructions and scale. Transfection of HEK 

293 cells used for western blotting was performed in 10 cm
2
 plates, while transfections 

for immunocytochemistry were performed in 4-well (1.8 cm
2
) Lab-Tek II CC2 chamber 

slides (12-565-2, Thermo Scientific Nunc) using the 24-well scale protocol. HEK 293 

cells were grown in antibiotic-free CT-1 medium to 90% confluency and transfected 

overnight at 37 °C and 5% CO2. The following day, medium was aspirated and replaced 

with CT-1 medium or antibiotic free CT-1 medium supplemented with 0.5-100 ng/ml 

doxycycline. Cells were incubated in doxycycline for 24 to 48 hours before being 

processed for experiments. 
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RNA extraction and RT-PCR 

Cells were quickly washed twice with DPBS and lysed within the well by directly 

adding RNeasy lysis buffer (Qiagen). Total cellular RNA (tcRNA) from cell lines and 

bovine blastocysts were extracted, DNase I treated, and purified using the RNeasy Micro 

kit (74004, Qiagen). RNA extractions from frozen cotyledonary and caruncular tissues 

were performed by Dounce homogenization in Trizol (15596-026, Invitrogen). Phases 

were separated using chloroform and nucleic acids were precipitated from the aqueous 

phase using isopropanol. Nucleic acids were DNase I treated (18068-015, Invitrogen) and 

further purified by phenol/ chloroform/ ethanol extraction. All purified RNAs were 

quantified using the Quant-iT RiboGreen RNA Assay Kit (R11490, Invitrogen) and each 

sample was diluted to a final concentration of 250 ng per µl in nuclease free H2O. Total 

cellular RNA (tcRNA) from each sample (1 µg) was reverse transcribed using 

Superscript III reverse transcriptase (18080-051, Invitrogen). First strand cDNAs were 

synthesized using oligo (dT20) primers according to the manufacturer‟s instructions. 

Completed 20 µl cDNA reactions were then diluted 8 fold with nuclease-free water 

before using as template for RT-PCR. To account for potential genomic DNA 

contamination amplification during RT-PCR, 1µg of tcRNA from each sample was also 

used as a template for cDNA synthesis, but reverse transcriptase was not added to these 

reactions. Sense (forward) and anti-sense (reverse) primers for RT-PCR in Table 3.1 were 

developed using IDT Real Time PCR software (Integrated DNA Technologies, 

http://www.idtdna.com/analyzer/ Applications/Oligo Analyzer). PCR reactions consisted 

of 200 µM dNTP, 1.5 mM MgCl2, 0.25 U recombinant TAQ polymerase (10342-053 

Invitrogen), 500 nM each primer, 1 µl diluted CT-1 cDNA, and nuclease free H2O. An 
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additional reaction for each primer set was performed without cDNA to account for any 

reagent contamination. Prior to amplification of candidate genes, GAPDH RT-PCR was 

performed on all cDNAs serially diluted two-fold to determine the dilution at which 

amplification was not saturated after 18 cycles. Saturation assessment was based on 

ethidium bromide staining following gel electrophoresis. Thermocycler conditions were 

as follows: initial denaturation at 95 °C for 3 min followed by 35 cycles (18 cycles for 

GAPDH, 25 cycles for PAG2) consisting of denaturation at 95 °C for 30 sec, annealing 

along a gradient of temperatures for 30 sec (Table 3.1), and extension at 72 °C for 1 min. 

Final extension was performed at 72 °C for 10 min. Equal volumes of all cDNAs and 

replicates were electrophoresed on 1.5% agarose gels to determine expression, band size, 

and band specificity. Gel images were captured using the Bio-Rad Chemidoc XRS 

Imaging System and software. Single DNA bands were gel extracted using a QIAquick 

Gel Extraction Kit (28704, Qiagen) and sequenced at the University of Maryland 

Biotechnology Institute: Center for Biosystems Research (College Park, MD).  
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Table 3.1. Primer information for RT-PCR. 

  

Amplicon Genbank Annealing 

QPCR Primers Sequence Length (nt)  Accession # Temp. (°C) Reference

Bovine OCT4 (FWD) 5'-AGGAGTCCCAGGACATCAA-3' 429 NM_174580.2 53

Bovine OCT4 (REV) 5'-ACACTCGGACCACGTCTTTC-3'  Ushizawa et al., 2005

Bovine NANOG (FWD) 5'-CAGTCCTGATTCTTCCACAA-3' 727 NM_001025344.1 56

Bovine NANOG (REV) 5'-TTACAAATCTTCAGGCTGTATGTT-3'

Bovine ERRβ (FWD) 5'-AGCTGGTGCGCAGGTACAAG-3' 306 BC111277.1 55

Bovine ERRβ (REV) 5'-TCTCCAGGAAGAGTTTGTGC-3'

Bovine SOX2 (FWD) 5'-CCGCATGTACAACATGATGG-3' 989 NM_001105463.1 58

Bovine SOX2 (REV) 5'-CCTCCAGTTCACCGTCCG-3'

Bovine CDX2 (FWD) 5'-AGTGAAAACCAGGACGAAAGA-3' 142 XM_871005.3 61

Bovine CDX2 (REV) 5'-CTCTGAGAGCCCCAGCGT-3'

Bovine ETS2 (FWD) 5'-CAGCAGTTACAGAGGGACAC-3' 958 NM_001080214.1 54

Bovine ETS2 (REV) 5'-GTAGTCCTTGAAGGACATGG-3'

Bovine ELF5 (FWD) 5'-TTGGACTCAGTGACACACAG-3' 717 NM_001024569.1 53

Bovine ELF5 (REV) 5'-CACTAATCTTCGGTCAACCC-3'

Bovine SOX15 (FWD) 5'-AACGCGTTCATGGTGTGGAG-3' 380 XM_582242.3 58

Bovine SOX15 (REV) 5'-GAAGAGCCATAACTGCCAGG-3'

Bovine ID2 (FWD) 5'-AGTCCAGTGAGGTCCGTTAG-3' 502 NM_001034231.1 54

Bovine ID2 (REV) 5'-TCCTCCTCCTTGTGAAATGG-3'

Bovine HAND1 (FWD) 5'-GCTCTCCAAGATCAAGACTCTGC-3' 221 NM_001075761.1 58

Bovine HAND1 (REV) 5'-CGGTGCGTCCTTTAATCCTCTTC-3'

Bovine GATA6 (FWD) 5'-CTCTACAGCAAGATGAACGG-3' 449 XM_001253596.2 53

Bovine GATA6 (REV) 5'-TGACCTGAGTACTTGAGCTC-3'

Bovine FGF2 (FWD) 5'-AGCGGCTGTACTGCAAGAAC-3' 379 NM_174056.3 55

Bovine FGF2 (REV) 5'-CAGCTCTTAGCAGACATTGG-3'

Bovine FGFR2 (FWD) 5'-GTCATCGTTGAATACGCCTC-3' 367 XM_001789706.1 54

Bovine FGFR2 (REV) 5'-TCTGATGGGTGTACACTCTG-3'

Bovine SSLP1 (FWD) 5'-TCGGTCCTGCCTTCTGTAAG-3' 1482 NM_001105478.1 56

Bovine SSLP1 (REV) 5'-ATGGCAACTCACATGTGCTC-3'

Bovine IFNT (FWD) 5'-TGTTACCTGTCTGAGAACCACATGCT-3' 519 NM_001168275.1 60  Ushizawa et al., 2005

Bovine IFNT (REV) 5'-TCAAAGTGAGTTCAGATCTCCACC-3'  Ushizawa et al., 2005

Bovine CSH1 (FWD) 5'-CCAAGGTCATCAACAGCTGC-3' 378 NM_181007.2 57

Bovine CSH1 (REV) 5'-CCCTGTGTAGGCAGTGGAAC-3'

Bovine PAG9 (FWD) 5'-TCCTTTTGTACCATGCCAGC-3' 355 NM_176620.2 56 Arnold et al., 2006

Bovine PAG9 (REV) 5'-TGCCCTCCTGCTTGTTTTTG-3' Arnold et al., 2006

Bovine PAG2 (FWD) 5'-AGGAAAGAAGCATGAAGTGGCT-3' 1253 NM_176614.1 54 Modified from 

Bovine PAG2 (REV) 5'-AGCACCAAACACAATTCACC-3' Xie et al., 1991, 1997

Bovine GAPDH (FWD) 5'-TGTTCCAGTATGATTCCACCC-3' 841 NM_001034034.1 55

Bovine GAPDH (REV) 5'-TCCACCACCCTGTTGCTGTA-3'

Bovine LEF1 (FWD) 5'-GACGAGATGATCCCCTTCAA-3' 133 XM_615475.4 58

Bovine LEF1 (REV) 5'-GGATGATTTCGGATTCGTTG-3'

Bovine EOMES (FWD) 5'-GCAGAGGCTCTTATCAGA-3' 265 XM_001251929.2 55 Hall et al., 2005

Bovine EOMES (REV) 5'-GCGTTAATGTCCTCACACTT-3' Hall et al., 2005
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Quantitative RT-PCR 

Purified RNA was quantified using the Quant-iT RiboGreen RNA Assay Kit 

(CR11490, Invitrogen) and each sample was diluted to a final concentration of 250 ng per 

µl. One µg of tcRNA from each sample was then used to synthesize first strand cDNA 

using the AffinityScript Multiple Temperature cDNA Synthesis Kit (200436, Stratagene, 

La Jolla, CA). First strand cDNAs were synthesized using oligo (dT) primers according 

to the manufacturer‟s instructions with one modification: for the synthesis step, cDNA 

reactions were incubated at 55°C for 1 hour. Completed 20 µl cDNA reactions were then 

diluted 10-fold with nuclease-free water before using as template for quantitative RT-

PCR (qRT-PCR). To account for potential genomic DNA contamination amplification 

during RT-PCR, 1µg of pooled tcRNAs (3 to 4 combined equivalents per treatment) were 

also used as template for cDNA synthesis, but reverse transcriptase was not added to 

these reactions.      

 Sense and antisense primers were developed using IDT Real Time PCR software 

(Integrated DNA Technologies, http://www.idtdna.com/Scitools/ Applications 

/RealTimePCR) and designed to span across exon/ intron splice junctions (Table 3.2). All 

primers were based on published sequence (http://www.ncbi.nlm.nih.gov/pubmed/). 

OCT4 primers were based on published sequence (Accession no. NM_174580.1) and 

verified to specifically amplify OCT4 mRNA and not transcribed OCT4 pseudogene 

transcripts. Primers designed to gamma–Actin (ACTG1, Accession no. 

NM_001033618.1) were utilized for qRT-PCR amplification normalization.           

All qRT-PCR reactions (except amplification of OCT4) consisted of 7.5 µl 2X iQ 

SYBR Green Super mix (170-8882,  Bio-Rad), 0.6 µl of both sense and antisense 10 µM 

stock primers, 5.3 µl nuclease-fee H2O, and 1 µl diluted cDNA or „no RT‟ pooled 
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control. OCT4 qRT-PCR reactions were adjusted to contain 5 µl of cDNA or „no RT‟ 

pooled control. 2X iQ SYBR green mix contains fluorescein as an internal reference to 

normalize well-to-well optical variation. qRT-PCR was performed using the MyiQ 

Single-Color Real-Time PCR Detection System (Bio-Rad) programmed with the 

following steps: initial denaturation at 95°C for 3 min and 40 repeated steps consisting of 

15 seconds at 95°C and extension at 60°C for 1 min. After 40 cycles, a dissociation 

(melt) curve was performed. Each PCR reaction was performed on 3 independently 

treated cDNA replicates and each cDNA was amplified in duplicate. All cDNA 

amplifications produced single peaks in the melt curve analysis, and PCR products were 

further analyzed by gel electrophoresis for correct size. Single amplicon bands were 

purified from agarose gels using a MinElute PCR Purification Kit (28004, Qiagen) and 

sequenced at the University of Maryland Biotechnology Institute: Center for Biosystems 

Research (College Park, MD). The data output of target gene reaction Ct (threshold 

cycle) values, representing fixed threshold crossing points where all samples are 

undergoing logarithmic amplification, were first normalized to ACTG1 Ct values using 

the formula: ΔCt  = (Ct „no RT‟– Ct sample) target–( Ct „no RT‟– Ct sample)ACTG1. ΔCt values were 

then transformed (2
ΔCt

) and data were represented as relative abundance of target mRNA 

normalized to ACTG1 levels. 
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Table 3.2. Primer information for quantitative RT-PCR (qRT-PCR). 

Amplicon Genbank

QPCR Primers Sequence (5' - 3') exon Length (nt)  Accession #

OCT4 (FWD) CAAATTAGCCACATCGCC 4 126 NM_174580.2

OCT4 (REV) AGCCTCAAAATCCTCACG 5

3' UTR OCT4 (FWD) CTTTCCCTCGGTGTCTG 5 142 NM_174580.2

3' UTR OCT4 (REV) ACTTAATCCCAAAGGCCTG 5

CDX2 (FWD) AGTCGCTATATCACCATCC 2 104 XM_871005.3

CDX2 (REV) CTTTCCTTTGCTCTGCG 3

CDX2 (FWD) TTAAACCCTACTGTCACCC 3 139 XM_871005.3

3' UTR CDX2 (REV) AGGTCAGCTGGTAAACATTAG 3

IFNT (FWD) * 
#

GATCCTTCTGGAGCTGGYTG 1 100 NM_001168275.1

IFNT (REV) * GCCCGAATGAACAGACTCYC 1

ELF5 (FWD) GCCTGTATCTCTGACTGTG 1 147 NM_001024569.1

ELF5 (REV) GGGTAATACTCTTCATTGCTG 2

MASH2 (FWD) GCTGCTCGACTTCTCCAG 1 126 NM_001040607.1

MASH2 (REV) CGGAACGAGGAACACGG 2

HAND1 (FWD) ACTGAAGAAGGCGGATG 1 150 NM_001075761.1

HAND1 (REV) TGGTTTAACTCCAGCGC 2

ID2 (FWD) CCCTTCTGAGTTAATGTCAAA 2 150 NM_001034231.1

ID2 (REV) CTCCTTGTGAAATGGTTGAA 3

SOX15 (FWD) TGGATATGCAGCCAACC 1 150 XM_582242.3

SOX15 (REV) GAGCCTTGGGTTACTCTG 2

GATA2 (FWD) ** GAGGACTGTAAGCGTAAAGG 6 140 XM_583307.3

GATA2 (REV)** AAGAACCAAGTCTCCCCAT 6

GATA3 (FWD)** ATGAAACCGAAACCCGATG 5 185 NM_001076804.1

GATA3 (REV)** TTCACAGCACTAGAGAGACC 5

GATA6 (FWD) AAGATGCTGACCAGACATCT 7 206 XM_001253596.2

GATA6 (REV) AGACCAGCTGCCTGGAAGT 7

ETS2 (FWD) CCGACCATGTCCTTCAAG 6 150 NM_001080214.1

ETS2 (REV) CTTGTCGGAGAGCAATTC 7+8

FGFR2 (FWD) CTCACACTCACAACCAATG 18 147 XM_001789706.1

FGFR2 (REV) AAGGCAGGGTTCGTAAG 19

ETF1 (FWD) GAGCTACGTTGGAAATTGTC 9 106 NM_001076254.1

ETF1(REV) CCCTGGAAATCTACTCGG 10

ACTG1 (FWD) TTGCTGACAGGATGCAGAAG 4 145 NM_001033618.1

ACTG1 (REV) TGATCCACATCTGCTGGAAG 5

* Primers from Cooke et al., 2009.   ** Primers from Bai et al., 2009 
#
 Y is either  a C or T nucleotide in IFNT (FWD)
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Short interfering RNA oligonucleotide and plasmid design 

 Custom Stealth bovine OCT4 (POU5F1) 25-nucleotide duplex siRNA was 

designed using Invitrogen‟s BLOCK-IT RNAi designer. A bovine CDX2 25-nucleotide 

duplex siRNA was modified from a previously reported functional 19-nucleotide siRNA 

sequence (siRNA #2; Sakurai et al., 2009) using Invitrogen‟s siRNA to Stealth RNAi 

siRNA converter. A nonspecific scrambled 25-nucleotide duplex siRNA was also 

designed to serve as a negative RNA interference control (Schiffmacher and Keefer, 

2010). Plasmids pTHE.HA:OCT4 and pTHE.MYC:CDX2 were created using the 

tetracycline induction system single vector pTHE (Sup. Fig. 2, Jiang et al., 2001). The 

pTHE (Addgene plasmid 12512) is a single vector containing a repressor cassette that 

expresses tetracycline repressor (Tetr) protein fused to the mSIN3-binding domain (SID) 

of MAD protein. This fusion protein not only represses transcription at the tetracycline 

responsive promoter but conveys extra repression control as the mSIN3-binding domain 

recruits mSIN3 and histone deacetylases. Primer sets designed bind the 5‟ and 3‟ UTRs 

of the full length bovine OCT4 open reading frame (ORF) and full length CDX2 ORF 

(Table 3.3) were used to amplify the coding sequences from CT-1 cDNA by RT-PCR. 

 The OCT4 PCR reaction consisted of 4 µl 5X HF iPROOF buffer (Bio-Rad), 0.2 µl 

iPROOF polymerase (172-5330, Bio-Rad, Hercules, CA), 1.6 µl 2.5 mM dNTP, 11.2 µl 

nuclease-free H2O, 1 µl each primer, and 1 µl diluted CT-1 cDNA. This reaction was 

amplified using the following parameters: initial denaturation at 98°C for 30 seconds 

(sec), 35 cycles at 98 °C for 10 sec, annealing at 60 °C for 30 sec, and extension at 72 °C 

for 45 sec, and lastly, a final extension step at 72 °C for 10 min. The CDX2 ORF PCR 

reaction consisted of 4 µl 5X GC iPROOF buffer (Bio-Rad), 0.2 µl iPROOF polymerase 
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(172-5330, Bio-Rad, Hercules, CA), 1.2 µl 2.5 mM dNTP, 11 µl nuclease-free H2O, 1 µl 

each primer, 0.6 µl DMSO, and 1 µl diluted CT-1 cDNA. This RT-PCR reaction was 

initially denatured for 30 sec at 98 °C. The next 10 cycles consisted of a denaturation step 

at 98 °C for 10 sec, annealing for 30 sec, and extension 45 sec. First round of annealing 

was performed at 73 °C, and at each subsequent cycle the annealing temperature was 

decreased by 1 °C. The remaining 25 cycles were performed as above at a fixed 

annealing temperature of 63 °C, before finishing with a final extension period at 72 °C 

for 10 min. Single bands for OCT4 and CDX2 amplicons were purified by agarose gel 

electrophoresis (NucleoSpin Extract II kit, 740609.50, Machery-Nagel, Bethlehem, PA). 

These RT-PCR products were then used as templates for amplifying an OCT4 ORF fused 

to a 5‟ hemagglutinin (HA) epitope sequence and a CDX2 ORF fused to a MYC epitope 

sequence. Both new amplicons were also 5‟ flanked by a Stu I site prior to the 

translational start sight and 3‟ flanked by a Not I site downstream of the ORF stop codon. 

The forward primer containing the HA epitope coded the amino acid sequence 

MYPYDVPDYAAG that is fused in frame to the OCT4 ORF lacking the start codon. A 

similar strategy was used for tagging the CDX2 sequence with a MYC tag that translates 

into the N terminal amino acid epitope EQKLISEEDL. Both reactions were amplified 

using the following parameters: initial denaturation at 98 °C for 30 seconds (sec), 35 

cycles at 98 °C for 10 sec, annealing at 61 °C for 30 sec, and extension at 72 °C for 45 

sec, and lastly, a final extension step at 72 °C for 10 min. Single bands for each amplicon 

were purified and double digested overnight at 37 °C with 20 U each Stu I and Not I and 

agarose gel purified. Ten µg of the pTHE vector was also double digested overnight at 37 

°C with 20 U each Stu I and Not I. Linearized vector was treated with 1 U calf intestinal 
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alkaline phosphatase (18009-027, Invitrogen) at 50 °C for 5 min before purification. Ten 

µl ligations were set up at 1:3 (vector/insert) molar ratios and incubated at 16 °C 

overnight with T4 DNA ligase (M0202S, New England Biolabs, Ipswich, MA). The 

ligation reaction was heat inactivated at 65 °C for 20 min and 2 µl were chemically 

transformed into DH5α E. coli (18258-012, Invitrogen) and plated onto LB plates 

containing 75 µg per ml carbenicillin (10177-012, Invitrogen). True positive transformed 

colonies were verified by colony PCR and restriction enzyme mapping before mini-

preparations of plasmid were produced (Nucleospin, 740588.10, Machery-Nagel). 

Plasmids were then sequenced at the University of Maryland Biotechnology Institute: 

Center for Biosystems Research (College Park, MD).   
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Table 3.3. Primer information for OCT4 ORF, CDX2 ORF and OCT4 retrocopy. 

 

Amplicon Genbank Primer

PCR Primers Sequence Length (nt)  Accession #  Length (nt)

Bovine OCT4 (FWD) 5'-GGTGTTGAGCAGTCTCTAGG-3' 1162 NM_174580.1 20

Bovine OCT4 (REV) 5'-GATCAGGCACCTCAGTTTGC-3' 20

Bovine POU5F1rs1 (FWD) 5'-GGGTGTGAAGTGGGTTTGTG-3' 1276 NW_001495368 20

Bovine POU5F1rs1 (REV)** 5'-CCATTCATCTGCTGATGGAC-3' (3804496-3803222) 20

Bovine CDX2 (FWD) 5'-TCGCCACCATGTACGTGAGC-3' 955 XM_871005.3 20

Bovine CDX2 (REV) 5'-GAATTGCTACTGCAGGCCGC-3' 20

** This primer hybridizes to  highly redundant sequence (bovine LINE L1).
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Protein extraction and Western blot 

Whole cell lysates (WCL) for western blotting were prepared in the following 

manner. CT-1 cells were cultured to 80% confluency in a T75 Cellbind flask. Transfected 

and untransfected HEK 293 cells grown to 80% confluency in 10 cm
2
 tissue culture 

plates were washed quickly twice with 10 ml ice cold DPBS (14190-136, Invitrogen) and 

scraped from the surface. Cell suspensions were transferred to 15 ml conical tubes on ice 

and centrifuged at 1,850 x g at 4 °C for 3 min. Supernatant was removed and packed cell 

volume (PCV) was estimated. Pellets were resuspended in 300-500 µl ice cold lysis 

buffer ( 20 mM HEPES, pH 7.4, 150 mM NaCl, 0.5% Triton X-100) supplemented 

immediately prior to use with  1 mM phenylmethane-sulfonylfluoride (PMSF) and 1X 

Protease Inhibitor cocktail Set 3 (539134, EMD chemicals, Darmstadt, Germany). PMSF 

was solubilized in 100% ethanol to 100 mM stock concentration just before adding to all 

lysis buffers. Cell suspensions were transferred to 1.5 ml tubes and then subjected to 3 

freeze-thaw cycles consisting of an incubation at -80 °C until suspensions were 

completely frozen (5-10 min), followed by incubation at RT until melted (but no longer). 

Lysed cells were then centrifuged at 4 °C at 20,000 x g for 15 min, and supernatants were 

transferred to new 1.5 ml tubes on ice. Nuclear-cytoplasmic fractionation was performed 

in the following manner. PCVs were obtained as previously noted in WCL preparation. 

PCV were resuspended in 5X PCV ice cold cytoplasmic lysis buffer (10 mM HEPES, pH 

7.4, 1.5 mM MgCl2, 10 mM KCl, 0.5 mM dithiothreitol (DTT), 0.1% NP-40, 300 mM 

sucrose) supplemented immediately prior to use with 1 mM PMSF, 1X Protease Inhibitor 

cocktail Set 3, 1 mM Na3VO4, 10 mM NaF, and 20 mM β-glycerophospate. Cell 

suspensions were centrifuged at 1,850 x g for 3 min at 4 °C. The supernatant was 
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removed and the PCV was resuspended in 1.5X PCV of complete cytoplasmic lysis 

buffer. Suspensions were incubated on ice for 10 min to allow cell swelling and then 

transferred to a chilled Dounce homogenizer. Cells were homogenized slowly but 

forcefully for 20-50 strokes with a „loose‟ pestle, taking care not to create bubbles. Cell 

lysis was assessed by evaluating a small aliquot mixed with Trypan blue on a 

hemocytometer. Homogenization was stopped when approximately 90% of cells were 

lysed. Suspensions were then transferred to a new chilled 1.5 ml tube and centrifuged at 

3,300 x g for 15 min at 4 °C. The cytoplasmic fraction was removed and transferred to a 

new 1.5 ml tube and stored on ice. The packed nuclear volume (PNV) was estimated and 

resuspended in 0.75X PNV nuclear lysis buffer (50 mM HEPES, pH 7.4, 250 mM KCl, 

0.1 mM EDTA, 0.5 mM dithiothreitol (DTT), 0.1% NP-40, 0.1% glycerol) supplemented 

immediately prior to use with  1mM PMSF, 1X Protease Inhibitor cocktail Set 3, 1 mM 

Na3VO4, and 10 mM NaF. Nuclear fraction suspensions were rocked for 30 min at 4 °C. 

Nuclear and cytoplasmic fractions were then centrifuged at 20,000 x g for 15‟ at 4 °C. 

Supernatants were removed and transferred to new tubes. Protein concentrations of 

lysates were calculated by bicinchoninic acid (BCA) protein assay according to the 

manufacturer‟s instructions (23225, Thermo Scientific Pierce, Waltham, MA). Protein 

samples were then prepared for separation by Sodium dodecyl sulfate-polyacrylamide gel 

electrophoresis (SDS-PAGE). All buffers and both SDS-PAGE and western blot 

protocols were performed according to Bio-Rad Mini-PROTEAN 3 Cell instructions 

(165-2954, Bio-Rad). Lysates (75 µg)  were mixed with Laemmli sample buffer and 

boiled at 100 °C for 3 min and centrifuged at 16,000 x g for 5 min to further remove any 

insoluble particulate. Supernatants were loaded into 4% stacking-10% resolving 
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polyacrylamide gels. Electrophoresis was performed at 150 V until the dye front 

completely ran off the gels (about 1 hr, 15 min). Protein transfer was performed onto 

nitrocellulose membranes (162-0115, Bio-Rad) in chilled transfer buffer (80% running 

buffer, 20% methanol, 0.1% SDS) at 75 V for 45 min. Blots were incubated at RT in 5% 

blotto (nonfat dry milk reconstituted in Tris-buffered saline with 0.05% Tween 20 

(TBST)) on a rocker for 1 hr. Blots were incubated in one of the following antibodies 

diluted in 5% blotto and incubated overnight at 4 °C on a rocker: polyclonal rabbit anti-

human OCT4 (1:250, sc-9081, Santa Cruz Biotechnology, Santa Cruz, CA), monoclonal 

anti-human OCT4 (1:250, sc-5279, Santa Cruz) monoclonal anti-HA tag (1:1250, 05-904, 

Millipore, Temecula, CA), rabbit anti-human Lamin A/C (1:250, sc-20861, Santa Cruz) 

or rabbit anti-human Actin (1:250, sc-1615, Santa Cruz). Blots were then thoroughly 

washed in TBST and incubated on a rocker for 1 hr at RT in peroxidase-conjugated 

donkey anti-rabbit IgG (711-035-152, Jackson ImmunoResearch, West Grove, PA) or 

donkey anti-mouse IgG (715-035-150, Jackson ImmunoResearch) diluted 20,000-fold in 

TBST. Blots were thoroughly washed again in TBST, developed using an Immun-Star 

WesternC Chemiluminescent Kit (170-5070, Bio-Rad), and Chemidoc XRS Imaging 

System. 

 

Immunocytochemistry 

CT-1 cells were grown in 6-well Cellbind plates until colonies reached over 2 mm 

in diameter. HEK 293 and NTERA cells used for immunocytochemistry were grown in 

4-well Lab-Tek II CC2 chamber slides (12-565-2, Thermo Scientific Nunc). Cells were 

washed twice in DPBS with divalent cations (14040-133, Invitrogen) and fixed in 4% 

formaldehyde for 30 min at RT. Fixed cells were washed 3 times for 5 min in TBST (pH 
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7.4, 20mM Tris-HCl, 0.15 M NaCl, 0.05% Tween 20). Cell membranes were then 

permeabilized in permeabilization buffer (TBST with an additional 0.05% Tween 20 and 

0.2% Triton X-100) for 10 min on a rocker at RT. Permeabilization buffer was removed 

by washing twice in TBST for 5 min. Cells were then blocked in 10% normal donkey 

serum (017-000-001, Jackson ImmunoResearch) in TBST while rocking at RT for 30 

min. Cells were incubated overnight at 4 °C on a rocker in any one of the following 

antibodies diluted in TBST:  rabbit anti-human OCT4 (1:250, sc-9081, Santa Cruz 

Biotechnology), monoclonal anti-HA tag (1:1250, 05-904, Millipore) and monoclonal 

anti-human CDX2 (1:200, MU392A-UC, Biogenex, San Ramon, CA). The following 

day, cells were washed three times in TBST and incubated for 30 min on a rocker at RT 

in one of the following secondary antibodies (2.5 µg/ ml in TBST): Dylight 549 

conjugated donkey anti-rabbit IgG (711-505-152, Jackson ImmunoResearch), Dylight 

549 conjugated donkey anti-mouse IgG (715-505-150, Jackson ImmunoResearch), or 

Alexa Fluor 488 donkey anti-rabbit IgG (A-21206, Invitrogen). Excess secondary 

antibody was removed by washing 3 times in TBST for 10 min on a rocker at RT. Cells 

were incubated in 10 µg per ml Hoechst 33342 in DPBS for 10 min. Wells were then 

rinsed twice in DPBS. Fixed colonies were then teased off of well bottoms using a fine 

paint brush (3/0, IMEX) and delicately applied to slides so that colonies did not have 

folded edges or tears. Following a brief drying period, slides were mounted with 

Fluoromount G (0100-01, Southern Biotech, Birmingham, AL) and cover slipped. Images 

of finished slides were captured using a Zeiss Axio Observer Z1 Inverted Microscope 

with Axiovision software (Carl Ziess Inc, Thornwood, New York). Secondary antibody 

only negative controls were also performed. Double label immunocytochemistry was 
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performed as above except that colonies were simultaneously incubated in two primary 

antibodies and then in two secondary antibodies. Negative controls were performed in a 

similar manner. 

 

Immunoprecipitation 

Lysates were prepared as previously described. Samples were adjusted to 500 µl 

of 750 µg total protein and mixed with 1 µl (60 µg) of normal rabbit serum (011-000-

001, Jackson ImmunoResearch) and 60 µl of 50% slurry protein A beads (20333, Thermo 

Scientific Pierce). Immune complexes were then rocked for 1 hr at 4 °C, and centrifuged 

at 8000 x g for 15 min at 4 °C. Supernatants were transferred to new 1.5 ml tubes, mixed 

with 1 µg of either antibody polyclonal rabbit anti-human OCT4 (sc-9081, Santa Cruz) or 

monoclonal anti HA tag (05-904, Millipore) and 40 µl of 50% slurry protein A beads and 

rocked overnight at 4 °C. The following day, immune complexes were centrifuged at 

16,000 x g for 2 min at 4 °C. The supernatant was removed and the immune complexes 

were washed 5X in the following manner: 500 µl of whole cell lysate buffer was added to 

the pellet, the bead suspension was lightly vortexed and then centrifuged at 16,000 x g for 

2 min at 4 °C. Following the wash steps, the supernatant was removed and 40 µl of 

Laemmli sample buffer was added. Bead suspensions were vortexed and boiled at 100 °C 

to dissociate the immune complexes. Suspensions were centrifuged a final time at 16,000 

x g for 2 min at 4 °C, and the eluates were transferred to new tubes to be run by SDS-

PAGE for western blotting. 



 

 

88 

 

Statistical Analysis 

Levels of gene expression were calculated as mean ratios of treatment ΔCt values 

(described in Methods and Materials) relative to untransfected control ΔCt values of at 

least 3 independent experimental replicates. Presented data are the means and SE of these 

ratios. All data were first log transformed to meet assumptions for variance heterogeneity 

and normality. qRT-PCR data with multiple treatments (untransfected, target, control) 

was analyzed by ANOVA using the PROC MIXED model in SAS statistical software 

(SAS Institute, Cary, NC). Plasmid type or siRNA type were classified as independent 

variables. If a significant difference in treatments was detected (P<0.05), individual 

treatments were compared to the untransfected control using the PDIFF procedure. 

Statistical analyses of overexpression-qRT-PCR experiments comparing transcript levels 

between treatment and control (empty vector transfection) were performed using T test 

procedure for tests of independent samples. When the probability for the test of equality 

of pooled variances was significant (p< 0.05), then the Satterthwaite approximate T test 

for unequal variances was used. For all statistical analysis, differences were considered 

significant at P<0.05. 
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Results 

CT-1 cells and ovoid stage embryos express common trophoblast regulators and markers. 

To determine if gene expression patterns in CT-1 cells and the elongating bovine 

trophoblast were similar, a profile of candidate genes was tested (Fig. 3.1). Mid-gestation 

cotyledonary tissue and pooled IVP bovine blastocysts served as positive controls when 

appropriate. There were no gross differences in relative expression between replicates of 

any amplified CT-1 cDNAs grown on collagen or Cellbind for any transcripts tested. 

Assessment of pluripotency-associated gene expression showed that OCT4 transcripts, 

but not NANOG and SOX2 transcripts, were detected in CT-1 cells while all 3 mRNAs 

were expressed in the blastocyst control. Chromatogram analysis of the OCT4 sequence 

revealed 3 single nucleotide polymorphisms (SNPs) that indicated that both OCT4 

(Genbank accession no. NM_174580) and transcribed OCT4 retrocopy cDNAs (Genbank 

accession no. XM_001789212.1) were co-amplified. RT-PCR performed with OCT4 

mRNA specific primers and primers unique to the retrocopy sequence located on 

chromosome 7 confirmed amplification of 2 separate cDNAs (Fig. 3.2). However, the 

amplified OCT4 retrocopy sequence obtained using primers flanking the chromosome 7 

OCT4 retrocopy was not identical to the predicted OCT4 retrocopy transcript sequence 

(XM_001789212.1), suggesting the prediction is incorrect. While the retrocopy transcript 

was expressed in CT-1 cells and placental tissues, full length OCT4 transcripts were only 

amplified from CT-1 cells (Fig. 3.2). TE lineage transcription factors CDX2 and 

Estrogen-Related Receptor Beta (ERRB) were both expressed as well. However, LEF1, 

which facilitates WNT3a-mediated differentiation of mouse embryonic stems cells into 

trophoblast lineages (He et al., 2008) and the TE lineage regulator EOMES could not be 
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detected (data not shown). Other trophoblast specific transcription factors that regulate 

trophoblast stem cell maintenance and differentiation in mice were also expressed in CT-

1 cells. This list includes ELF5, ETS2, HAND1, SOX15, and ID2.  FGF2 and FGFR2, 

components of FGF signal transduction pathways involved in TE development, were 

detected as well.  

Using previously established primers (Arnold et al., 2006) PAG-9 was amplified 

from mid-gestation cotyledon cDNA but not from CT-1 cDNA. Abridged primers 

designed to conserved sequences of the PAG II family were utilized to amplify any 

expressed PAG II family members (Garbayo et al., 2008).  PCR products were directly 

sequenced and PAG2 was identified in CT-1 cells. Similar to secreted seminal-vesicle 

Ly-6 protein 1 (SSLP1), initially identified as the novel transcript (c12) expressed in both 

mural and polar trophoblast at the ovoid stage, was also expressed in CT-1 cells (Degrelle 

et al., 2005). 
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Figure 3.1. Transcription profile of selected genes in the CT-1 cell line that are expressed 

during bovine or mouse trophoblast development. Three replicates of cDNAs from CT-1 

cells grown on a collagen substrate or substrate-free Cellbind were tested. cDNAs from a 

CT-1/MEF co-culture and a MEF culture served as controls for MEF cDNA 

contamination. cDNAs from mid gestation cotyledon and pooled IVP blastocysts served 

as positive controls where appropriate. 
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Figure 3.2. RT-PCR for bovine OCT4 open reading frame and transcribed OCT4 

retrocopy. Primers are unique to 5‟ and 3‟ regions of the bovine OCT4 retrocopy located 

on chromosome 7. COT is cotyledon cDNA, CAR is caruncle cDNA and BFF is bovine 

fetal fibroblast cDNA. OCT4 is only expressed in CT-1 cells whereas the retrocopy was 

amplified from all cDNAs tested. No genomic DNA contamination was detected.   
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OCT4 protein is localized to nuclei and cytoplasm in CT-1 cells. 

CT-1 cells express OCT4 mRNA that is 88% conserved to human OCT4A, the 

variant associated with pluripotency maintenance in human ESC (Cauffman et al., 2006). 

The predicted bovine OCT4 amino acid sequence is 94% similar to the human OCT4A 

isoform and 89% similar between the first 134 amino acids that contain the N-terminal 

transaction domain specific to human OCT4A and not found in human OCT4B. As the 

OCT4B isoform has been found to be cytoplasmic even though it has the conserved 

nuclear localization signal, it was necessary to determine if the bovine OCT4 is indeed 

translated and imported to the nucleus similarly to human OCT4A. Western blot analysis 

using polyclonal and monoclonal antibodies raised against the human N-terminal 134 

amino acid OCT4 epitope recognized a single band within whole CT-1 protein lysates 

that was the estimated size of bovine OCT4.  

Further fractionation of CT-1 protein lysates into nuclear and cytoplasmic 

fractions (Fig. 3.3) as well as immunocytochemistry analysis (Fig. 3.4a) demonstrated 

that OCT4 is localized in nuclei of CT-1 cells. Further analysis of OCT4 localization 

revealed that OCT4 was enriched but not entirely restricted to the nucleus. Many cells 

within the CT-1 colony exhibited increased OCT4 perinuclear or cytoplasmic localization 

(Fig. 3.4b). OCT4 restriction to the nucleus is also less defined in binucleate cells.  

However, recombinant bovine OCT4 expressed in transfected HEK 293 cells is nuclear 

and similar to human OCT4 expressed in the human embryonic carcinoma NTERA cell 

line (Fig. 3.4c and 3.4d).  
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Figure 3.3. OCT4 protein is expressed in CT-1 cells and is enriched in the nuclear 

fraction. A) Polyclonal and monoclonal anti human OCT4 antibodies both detect bovine 

OCT4 in CT-1 whole cell lysate (75 µg) and NTERA (NT2) whole cell lysate (18 µg).  

B) CT-1 protein lysates were fractionated into nuclear (Lane 1) and cytoplasmic (Lane 2) 

protein lysates. CT-1 whole cell lysate (Lane 3), NTERA whole cell lysate (Lane 4) and 

transfected HEK 293 cells expressing HA tagged bovine OCT4 (Lane 5) were run as 

positive controls. 75 µg of lysate was run for each sample. Polyclonal anti human OCT4 

detects enrichment of OCT4 in nuclear fraction. Immunoblots with anti Lamin A/C and 

Actin antibodies were performed as nuclear fraction enrichment and loading controls 

respectively. 
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Figure 3.4. OCT4 protein typically either exhibits well defined nuclear localization in 

some mononucleate CT-1 cells (A-C) or a less defined nuclear/cytoplasmic distribution 

(D-F). Binucleate cells (white arrows) also exhibit ambiguous OCT4 localization (G-I). 

NTERA (J-L) and transfected HEK 293 cells expressing HA tagged OCT4 (M-O) display 

strict nuclear localization. Mononucleate cells undergoing mitosis exhibit cellular 

distribution due to nuclear membrane breakdown. Bar = 15 µm.  
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Since OCT4 and CDX2 are involved in a reciprocal inhibitory feedback loop that 

contributes to TE and ICM lineage specification and segregation during mouse 

development, localization of OCT4 protein with CDX2 was assessed by double label 

immunocytochemistry of CT-1 cells (Fig. 3.5). CDX2 immunofluorescence varied cell to 

cell, but all mononucleate and binucleate cells exhibited CDX2 and OCT4 co-

localization. 
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Figure 3.5. Many mononucleate cells of the CT-1 monolayer exhibit nuclear and 

perinuclear OCT4 localization (A) and nuclear CDX2 localization (B). CDX2 and OCT4 

co-localize in CT-1 nuclei (C). Immunocytochemistry was also conducted on CT-1 cells 

with secondary antibodies only (D-E). Background immunofluorescence was observed to 

be higher than background fluorescence in single label immunocytochemistry with either 

conjugate (images not shown). OCT4 and CDX2 images were merged with Hoechst 

staining for nuclear reference (F).  Bar = 10 µm. 
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CDX2 regulates expression levels of other trophoblast lineage regulators. 

Manipulations of OCT4 or CDX2 levels in mouse ESC can disrupt the OCT4 and 

CDX2 equilibrium maintained by the reciprocal inhibitory feedback loop and permit 

induction of pro-differentiation gene networks (Niwa et al., 2005). To determine whether 

OCT4 and CDX2 function in a similar equilibrium in CT-1 cells, OCT4 and CDX2 levels 

were modulated and their effects on other trophoblast specific expression levels were 

assessed. Optimization of Lipitoid-based siRNA transfection in CT-1 cells and OCT4 and 

CDX2 siRNA oligonucleotide validations were described previously (Schiffmacher and 

Keefer, 2010). Relative expression levels of CDX2 were significantly downregulated by 

62% from untransfected and nonspecific siRNA transfected CT-1 levels (Fig. 3.6, 

p<0.05). IFNT transcript levels were also significantly diminished from untransfected 

controls (33 ± 13% of untransfected levels), which agrees with a similar study showing 

that CDX2 directly induces IFNT expression (Sakurai et al., 2009). Downregulation of 

CDX2 also significantly reduced expression of bHLH transcription factors HAND1 and 

MASH2, as well as SOX15 (p<0.05). Of the candidate genes tested, only the ETS family 

transcription factor ETS2 was significantly upregulated following CDX2 knockdown. 

While CDX2 is known to repress OCT4 transcription and induce ETS family 

transcription factor ELF5 expression in mice, a decrease in CDX2 message did not have 

an effect on either OCT4 or ELF5 levels in CT-1 cells. GATA transcription factors 

GATA2, GATA3, and GATA6, which are all expressed during mouse and bovine 

trophoblast development, were not affected by a decrease in CDX2, nor were ID2 or 

FGFR2 transcript levels.  
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Figure 3.6. Expression of bovine trophoblast lineage genes in response to siRNA 

mediated downregulation of CDX2 for 48 hours. Candidate gene mRNA levels were 

determined by qRT-PCR and Ct values were normalized to ACTG1 Ct values. Data are 

represented as means and standard errors of normalized Ct values relative to ACTG1 

normalized „untransfected‟ treatment Ct mean (set at 1) for each gene. Means are 

generated from 3 independent experimental cDNA replicates. Asterisks (*) located above 

values denote a significant difference between that treatment value and all others values 

of the corresponding gene (p<0.05).  
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Overexpression of CDX2 affected expression of many of the same candidate 

genes affected by CDX2 knockdown. Exogenous CDX2 expression was induced with 10 

ng per ml doxycycline, which causes a significant increase in tetracycline responsive 

gene induction (Sup. Fig. 1, Sup. Fig 4, Jiang et al., 2001) With Lipitoid-based plasmid 

transfection efficiency at about 9% (Schiffmacher and Keefer, 2010), exogenous CDX2 

expression was increased five-fold (5.1 ± 2.5) relative to endogenous CDX2 expression 

levels detected in untransfected CT-l cells or CT-1 cells transfected with empty pTHE 

vector (Fig. 3.7). This increase in overall CDX2 expression did not exert positive 

feedback on endogenous CDX2 expression, since qRT-PCR performed with primers 

amplifying within the native CDX2 3‟ UTR did not produce any significant change from 

pTHE transfection control levels. OCT4 transcript levels were significantly reduced, yet 

there was no reduction in OCT4 protein in response to CDX2 overexpression as 

determined by immunofluorescence (Supp. Fig. 4, G-I). Transcript levels of IFNT as well 

as transcription factors ELF5, SOX15, ETS2, and MASH2 were also increased (p<0.05).  

A 56% attenuation of OCT4 levels was achieved following Lipitoid-based OCT4 

siRNA transfection (Fig. 3.8). Doxycycline induction of HA tagged OCT4 in transfected 

cells resulted in a 5-fold increase in OCT4 transcript levels (Fig. 3.9). While similar 

degrees of siRNA mediated gene suppression and overexpression of OCT4 were achieved 

as those with CDX2, there were no significant changes in any candidate genes tested. In 

addition, there was no observable loss of endogenous CDX2 protein in CT-1 cells 

overexpressing recombinant HA-tagged OCT4 (Sup. Fig 4, D-F). Untransfected 

neighboring cells exhibited comparable levels of CDx2 immunofluorescence to 

transfected cells.   
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Figure 3.7.  Expression of bovine trophoblast lineage genes in response to CDX2 

overexpression.  CT-1 cells were transfected with pTHE.MYC:CDX2 and incubated for 

48 hrs in CT-1 medium with 10 ng per ml doxycycline before RNA extraction. Candidate 

gene mRNA levels were determined by qRT-PCR and Ct values were normalized to 

ACTG1. Data are represented as the treatment means and standard errors of normalized 

Ct values relative to the ACTG1 normalized, „vector only‟ treatment Ct means (set at 1) 

for each gene. Means were generated from 3 independent experimental cDNA replicates. 

Asterisks (*) located above values denote a significant difference between that treatment 

value and all other values of the corresponding gene (p< 0.05). 



 

 

102 

 

 

Figure 3.8.  Expression of bovine trophoblast lineage genes in response to siRNA 

mediated downregulation of OCT4 for 48 hours. Candidate gene mRNA levels were 

determined by qRT-PCR and Ct values were normalized to ACTG1. Data are represented 

as the „siRNA‟ treatment means and standard errors of normalized Ct values relative to 

the ACTG1 normalized, „untransfected‟ treatment Ct mean (set at 1) for each gene. 

Means are generated from 3 independent experimental cDNA replicates. Asterisks (*) 

located above values denote a significant difference between that treatment value and all 

other values of the corresponding gene (p< 0.05). 
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Figure 3.9. Expression of bovine trophoblast lineage genes in response to OCT4 

overexpression.  CT-1 cells were transfected with pTHE.HA:OCT4 and incubated for 48 

hrs in CT-1 medium with 10 ng per ml doxycycline before RNA extraction. Candidate 

gene mRNA levels were determined by qRT-PCR and Ct values were normalized to 

ACTG1. Data are represented as the treatment means and standard errors of normalized 

Ct values relative to the ACTG1 normalized, vector-only treatment Ct mean (set at 1) for 

each gene. Means were generated from 3 independent experimental cDNA replicates. 

Asterisks (*) located above values denote a significant difference between that treatment 

value and all other values of the corresponding gene (p< 0.05). 
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Discussion 

Previous studies demonstrated that transcriptional networks in mouse ESC and 

TSC were sensitive to forced changes in OCT4 and CDX2 levels (Ivanova et al., 2006; 

Niwa et al., 2000; Niwa et al., 2005). For example, a 50% increase in OCT4 expression in 

mESC can shift differentiation commitment towards endodermal lineages while a 50% 

siRNA mediated reduction induces a switch to an active trophoblast program (Niwa et 

al., 2000). Similarly, CDX2 overexpression has a similar effect in facilitating trophoblast 

differentiation, due in part to an OCT4/CDX2 reciprocal inhibitory feedback loop at the 

core of the transcriptional hierarchy in place at the time of ICM and TE lineage 

commitment. After the bovine TE is formed, we hypothesized that a similar feedback 

loop may be central for pre-filamentous stage trophoblast elongation. We first 

investigated whether the CT-1 cell line could serve as an in vitro model for bovine TE. 

The expression profile of candidate genes in CT-1 cells in comparison to gene expression 

profiles of bovine embryos at different periods of elongation is summarized in Table 3.4. 

During elongation, mononucleate cells differentiate into binucleate cells that secrete 

placental lactogen (CSH1) and Groups I and II bovine pregnancy-associated 

glycoproteins (PAGs). Bovine PAG-1 family protein PAG9 is expressed in embryos as 

early as 17 dpc (Arnold et al., 2006) and is abundantly expressed in post-attachment 

placentas by 45 dpc (Green et al, 2000). Group II PAGs including PAG-2 are not 

restricted to binucleate cells but also expressed in mononucleate cells as early as the 

blastocyst stage and well into post-attachment development. 
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Table 3.4. Comparison of selected gene expression profiles between the CT-1 cell line 

and in vivo bovine embryo stages.  

 
Pluripotency Transcription Factors CT-1 Cell Line Spherical TE* Ovoid TE* Cotyledonary Tissue 

OCT4 P P P NO

NANOG NO NO P NO

SOX2 NO P P NO

TE Lineage Transcription Factors

CDX2 P P P NO

Errβ P P Unconfirmed NO

EOMES NO P NO Unconfirmed

Trophoblast Related Factors

HAND1. P P P P

ETS2 P P P P

GATA6 P P P NO

FGF2 P P P NO

FGFR2 P P P NO

ELF5 P NO P NO

ID2 P Unconfirmed Unconfirmed NO

SOX15 P Unconfirmed Unconfirmed NO

MASH2 P P P P

Lef1 NO Unconfirmed Unconfirmed P

Bovine Specific TE Markers

IFNτ P P P P

PAG9 NO NO NO P

PAG2 P P P P

CSH1 NO NO NO P

SSLP1 (SOLD1) P Unconfirmed P NO  

* Spherical and ovoid stage data compiled from Arnold et al., 2006, Degrelle et al., 2005, 

and Green et al., 2000. 
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Secreted protein of Ly-6 domain 1 (SOLD1), previously identified as the early 

elongation marker c12 (Degrelle et al., 2005), is expressed in the mononucleate cells of 

the ruminant cotyledon and is also expressed in BT-1 cells, a bovine trophectoderm cell 

line similar to CT-1 (Ushizawa et al, 2009). Expression of trophoblast markers exhibiting 

enriched expression profiles during the ovoid early elongation stage (IFNT, PAG-2 and 

SSLP1) but not expression of filamentous stage markers  (CSH1 and PAG-9) suggest that 

CT-1 cells possess a similar transcriptional hierarchy directing mononucleate cell identity 

and differentiation as observed at the bovine ovoid stage (Table 3.4). Expression of 

OCT4 and ELF5 in CT-1 cells is also similar to the expression profile of these genes 

during the ovoid stage (Degrelle et al. 2005). Therefore, we investigated the interaction 

between CDX2 and OCT4 in directing the transcriptional circuitry. 

This study expands upon the current list of trophoblast regulators that are 

regulated by CDX2. Overexpression and knockdown experiments of this study add 

ELF5, MASH2, ETS2, SOX15, and HAND1 to the list of downstream effectors of CDX2 

in the bovine early trophoblast. The mouse orthologs of HAND1, MASH2, and SOX15 

are directly involved in terminal differentiation of trophoblast stem cells into giant cells 

(Yamada et al., 2006, Scott et al., 2000). Our results also confirm earlier findings that 

CDX2 is a key regulator of IFNT expression (Imakawa et al., 2006; Sakurai, et al., 2009) 

as IFNT was downregulated following knockdown of CDX2, and overexpression of 

CDX2 induced IFNT transcript levels. Both MASH2 and SOX15 levels changed in a 

similar fashion to IFNT levels, suggesting CDX2 is a potent activator of these genes as 

well. CDX2 induction of MASH2 may be independent of ID2, a transcriptional repressor 

of MASH2, as CDX2 overexpression or knockdown did not elicit any changes in ID2 
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transcript levels that could potentially affect MASH2 levels (Janatpour et al., 2000). In 

mouse trophoblast stem cells, MASH2 induces cell proliferation and inhibits HAND1 

directed giant cell differentiation (Scott et al., 2000). In bovine trophoblast cells, this 

function of MASH2 may be conserved to promote mononucleate cell proliferation.                  

Induction of ELF5 following CDX2 overexpression in CT-1 cells suggests that 

the CDX2-ELF5-EOMES circuit responsible for mouse trophoblast maintenance is 

conserved in bovine trophoblast. In conjunction with FGF4/FGFR2 signal transduction, 

CDX2, EOMES, and ELF5 form the core of the transcriptional network that maintains 

multipotency within the extra embryonic ectoderm. CDX2 and EOMES are required for 

early mouse TE maintenance (Strumpf et al., 2005; Russ et al., 2000) and are 

hypothesized to induce Elf5 later on (Ng et al., 2008). Elf5 can also be induced by 

FGF/FGFR signaling (Metzger et al., 2007). ELF5 in turn completes a positive feedback 

loop by directly activating Cdx2 and Eomes gene expression. The importance of ELF5 as 

a key TSC regulator is highlighted by the fact the Elf5 promoter, but not the promoters of 

Cdx2 and Eomes, is preferentially methylated and silenced in the mouse ICM lineage (Ng 

et al., 2008). Further investigation is needed to determine whether the CDX2-ELF5- 

EOMES circuit is conserved in bovine trophoblast. EOMES expression is restricted to the 

germinal disk at the filamentous stage and analysis of EOMES by RT-PCR revealed 

expression in ovoid stage extra-embryonic tissues (Degrelle et al., 2005). However, this 

result did not determine if the trophoblast or endoderm expresses EOMES. EOMES 

expression was not detected in either CT-1 cells in our study (Table 4) or in BT-1 cells 

(Ushizawa et al., 2005).   
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 In addition to ELF5, ETS2 is another ETS transcription factor that promotes 

trophoblast development. Transgenic mice expressing inactive ETS2 fail to develop a 

normal extra-embryonic ectoderm tissue lineage containing a functional trophoblast stem 

cell population, and loss of ETS2 in TSC compromises self renewal that cannot be 

rescued by CDX2 overexpression. (Wen et al., 2007). ETS2 may play a central, 

conserved role in trophoblast developmental potential as ETS2 induces CDX2. Our data 

demonstrate that ETS2 is induced following CDX2 suppression and CDX2 over-

expression. A small but significant induction in ETS2 expression suggests a possible 

positive feedback loop in place between CDX2 and ETS2. However, an average two-fold 

induction of ETS2 transcription following CDX2 knockdown indicates that ETS2 levels 

may be induced to stabilize the trophoblast gene network by sensing when CDX2 levels 

need to be increased.      

Our initial RT-PCR screen confirmed earlier findings of GATA6 expression in 

CT-1 cells (Bai et al, 2009). GATA6 expression is not restricted to the trophoblast but is 

also expressed in primitive endoderm and extra embryonic mesoderm at the ovoid stage 

(Degrelle et al., 2005). Trophoblast specific functions of GATA6 are unknown, but 

GATA6 was recently demonstrated to regulate the balance between lung 

bronchioalveolar stem cell proliferation and differentiation (Zhang et al., 2007). In 

addition to GATA6, GATA2 and GATA3 are also expressed in CT-1 cells (Bai et al., 

2009). Our data do not indicate any significant relationship between CDX2 or OCT4 and 

GATA proteins, although OCT4 overexpression indicated possible negative regulation of 

GATA6 (p<0.07). GATA transcription factors function in a parallel trophoblast circuit 

that regulates downstream genes in common with CDX2 (Ralston et al., 2010). Gata3 is 
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co-induced with Cdx2 by TEAD4 and participates in TE lineage commitment by 

positively regulating CDX2, IFNT and other trophoblast specific genes (Bai et al., 2009; 

Home et al., 2009; Ralston et al, 2010). GATA3 also restricts GATA2-mediated 

trophoblast giant cell (TGC) differentiation by occupying GATA regulatory elements 

(Ray et al., 2009).    

Our data from CDX2 and OCT4 overexpression and knockdown suggests that that 

the reciprocal inhibitory feedback loop between CDX2 and OCT4 is uncoupled in CT-1 

cells or cannot be experimentally confirmed with siRNA knockdown of only about 60% 

or overexpression in only 9% of cells. Assessment of the effects of overexpression of one 

gene on the other by immunofluorescence also showed no evidence of an OCT4/CDX2 

inhibitory feedback loop (Supp. Fig. 4). The fact that individual cells overexpressing 

recombinant OCT4 or CDX2 were no different in protein levels of the other gene from 

untransfected neighboring cells suggests that OCT4 and CDX2 are not potent repressors 

of each other in CT-1 cells. However, it should be noted that there are limitations in 

utilizing immunofluorescence to semi-quantify protein levels within cells. The nuclear 

localization of bovine OCT4 containing the N-terminal transactivation domain indicated 

that bovine OCT4 protein may function as a transcription factor regulating gene 

expression of the early bovine trophoblast (Cauffman et al., 2006). While many gene 

transcript levels were altered following forced changes in CDX2 levels, there were no 

gene candidates within our panel that significantly responded to overexpression or 

suppression of OCT4 except for an increase in endogenous OCT4 by positive feedback 

following overexpression. MASH2 and SOX15 levels slightly increased following OCT4 

overexpression. However, these findings were not statistically significant (p< 0.06, 
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p<0.17, respectively). It was hypothesized that IFNT would be upregulated following 

OCT4 knockdown or downregulated upon OCT4 overexpression, as OCT4 binds to ETS2 

in vitro and quenches ETS2-mediated IFNT induction (Ezashi et al., 2001). It is possible 

that OCT4 repression of IFNT is a temporal, protein level, and cell-specific mechanism. 

For example, morula and ICM cells expressing high levels of OCT4 may inhibit any 

expression of IFNT potentially activated by ETS2 (Ezashi et al., 2001). Within the bovine 

trophoblast derived cell lines, IFNT is induced by CDX2 and DLX3 as well (Ezashi et al., 

2008; Sakurai et al., 2009), and these additional signals may override any potential 

repression by OCT4 in vivo.  

OCT4 may interact with unidentified trophoblast specific proteins that may form 

heterodimers with OCT4 to regulate downstream gene expression similar to the OCT4-

SOX2 heterodimer in the ICM. A possible candidate is SOX15, which is expressed in 

CT-1 cells and has been demonstrated to interact with OCT4 at adjacent octamer and sox 

binding sites in mouse ESC (Maruyama et al., 2005). The primary role of OCT4 may also 

be as an epigenetic component in a manner similar to the OCT4 association with the 

histone H3 Lys 9 (H3K9) methyltransferase ESET that silences trophoblast genes in the 

ICM (Yuan et al., 2009). To address this, co-immunoprecipitation of OCT4 complexes 

from CT-1 lysates could be performed. However, the poor efficiency of 

immunoprecipitating recombinant OCT4 with the polyclonal anti-human OCT4 antibody 

as shown in Fig. 3.3 suggests that a polyclonal anti-bovine OCT4 antibody may be more 

suitable for the task (Sup. Fig. 3).   

In this present study, we demonstrate the utility of the CT-1 cell line as a genetic 

model for studying the transcriptional networks governing developmental potential in the 
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early bovine trophoblast. The CT-1 cell line appropriately displays a profile of proteins 

that are temporally expressed in the pre-attachment trophoblast. Our overexpression and 

siRNA mediated knockdown experiments indicate a conserved central role for CDX2 in 

governing the trophoblast specific transcription factor hierarchy. These studies confirm 

previous findings of CDX2 regulation of IFNT in CT-1 cells and Oct4 in mice ESC, and 

provide new evidence for regulation of MASH2, HAND1 and SOX15 by CDX2.  Our 

inability to detect significant changes in candidate gene expression by altering OCT4 

expression suggests that OCT4 may play a peripheral role in early ungulate trophoblast 

development, although it is possible the limitations in CT-1 transfection efficiency could 

not provide the resolution necessary to observe any effects. Future studies will determine 

the roles of CDX2 and other trophoblast transcription factors in this study in 

mononucleate cell proliferation and binucleate cell differentiation rates. For these studies, 

we predict that CT-1 cells stably transfected with our doxycycline inducible plasmids 

would prove an excellent model for such long term experiments.  
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Chapter 4: Sense and antisense RNAs containing an OCT4 

retrocopy are expressed in CT-1 cells.  

 

Abstract 

Recent studies have demonstrated that sense and antisense RNA transcripts from 

gene retrocopies within mammalian genomes may act as endogenous siRNAs to regulate 

their parental protein-coding genes. OCT4 (also known as POU5F1), a regulator of 

pluripotency, is known to have 6 retrocopies in the human genome. Our analysis of OCT4 

expression in the bovine trophectoderm CT-1 model cell line identified transcripts 

corresponding to an OCT4 retrocopy located in the first intron of ETF1 on bovine 

chromosome 7. The 3‟ truncated OCT4 retrocopy contains OCT4 exons 1-4 and 27 bp of 

exon 5 with 10 substitutions and no other mutations. It is fused at the 3‟ end with a 5‟ 

truncated bovine LINE (L1 BT). Any presumptive protein expressed from this retrocopy 

could not be detected by Western blot using an antibody binding to the OCT4 N-

terminus. Strand specific RT-PCR revealed both strands of this locus are transcribed. 

While nested 5‟ and 3‟ RACE did not identify discrete ends for either transcript, nested 

PCRs from 5‟ and 3‟ RACE cDNAs indicate that OCT4 retrocopy-containing RNAs 

transcribed from both strands may be over 5 Kb in length. Alternatively, multiple 

overlapping RNAs across the locus could be simultaneously transcribed. Our results 

suggest that double stranded RNAs could be created from this locus.  
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Introduction 

Transposable elements are a unique group of mobile DNA sequences that possess 

the ability to “cut and paste” themselves into and out of genomes. About 90% of 

transposable elements are Class I retroelements (REs) and are the most abundant in 

human DNA (Bannert and Kurth, 2004). REs spread throughout the genome by reverse 

transcribing expressed element RNA intermediates into cDNA and then integrating the 

cDNA into a new genomic location. REs are further subdivided into those which contain 

long terminal repeat (LTR) and those which do not contain LTRs. The most abundant 

types of non-LTR retroelements are long interspersed nuclear elements (LINES), short 

interspersed nuclear elements (SINES), and mRNA derived retrocopies of parental genes 

(Gogvadze and Buzdin, 2009; Vinckenbosch et al., 2006). Retrotransposition of mRNA 

requires enzymatic activity of LINE machinery transcribed and translated from two open 

reading frames (ORFs) located within the LINE sequence (Esnault et al., 2000). 

Retrotransposition of intact mRNA results in full length retrocopies that are intronless 

and possess a polyadenylated tail. However, many retrocopies lack the necessary 

regulatory elements of the original parental gene promoter that were not transcribed as 

part of the mRNA 5‟ untranslated region (5‟ UTR). Therefore, transcription is 

presumably not induced, and these nonfunctional sequences acquire mutations over time. 

Degenerate retrocopies were once all thought to be nonfunctional and collectively termed 

retropseudogenes or processed pseudogenes. However, transcriptome-wide analyses in 

multiple species indicate that as many as 20% of retrocopies or processed pseudogenes 

are transcribed (Gerstein et al., 2007), often by acquiring new regulatory elements at the 
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site of retrotransposition (Bai et al., 2008; Marques et al., 2005; Vinckenbosch et al., 

2006).  

Retrocopies that express known functional gene products are regarded as 

retrogenes, and are common in mammals (Marques et al., 2005; Pan et al., 2009).  

Genome-wide explorations of 6 mammalian species as well as chicken and pufferfish 

(Tetraodon) inferred that about 3% of protein-coding genes have a putative retrogene 

copy (Yu et al., 2007). Detailed characterization of putative retrogenes reveals that their 

creation is unique and may contribute to new gene formation. For example, the mouse 

Pmse2 transcript that encodes a proteasome activator subunit was retrotransposed into a 

transcriptionally active LINE1 (L1) retroelement. L1 promoter driven expression of the 

intronless Pmse2 ORF resulted in the formation of a constitutively active retrogene 

producing protein identical to the parental gene expressed protein (Zaiss et al., 1999). 

When a retrocopy is retrotransposed into a site downstream of another gene promoter, 

chimeric genes can be formed. During the evolution of the owl monkey, a new world 

primate, retrotransposition of full length CYPA cDNA into the TRIM5 open reading 

frame created a new exon and TRIMCYP fusion protein. For the owl monkey, this new 

chimeric protein conveyed HIV-1 resistance. (Saya et al., 2004). Retrogenes not only 

contribute to new gene formation and speciation, but can also contribute to phenotypic 

variation, as evidenced by a strong association of FGF4 retrogene expression and 

chondrodysplaysia in short legged dog breeds (Parker et al., 2009). Retrocopies can also 

form new genes when fused in frame with LINE intermediates (Iwashita et al., 2001).  

 Transcription factors expressed in human embryonic stem cells (ESC) that 

regulate pluripotency were found to have an enriched number of daughter retrogenes and 
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processed pseudogenes over transcription factors that are not part of the ESC 

transcriptome. Pluripotency regulators OCT4, NANOG, and STELLA were found to 

have 6, 10, and 16 retrocopies respectively (Pain et al., 2005; Boothe et al., 2004). The 

higher incidence of retrotransposition of these genes over others may be due to their 

higher probability of germ line transmission as OCT4, NANOG and STELLA mRNA are 

all expressed in germ cells. The most recent human retrocopy, NANOGP8, was estimated 

to have retrotransposed 5.2 million years ago and contains the full ORF without 

insertions or deletions and only 9 substitutions within 913 bases (Boothe et al., 2004). It 

was demonstrated that NANOGP8 is a retrogene in many human cancer cell lines as they 

express NANOGP8 protein but do not express NANOG protein from the original 

NANOG gene. OCT4 retrocopies are also transcribed in many cancer cell lines and cancer 

tissues and are often co-expressed with OCT4 (Suo et al., 2005). OCT4 retrocopies are 

expressed in many adult tissue types and cell lines and were often incorrectly identified 

as OCT4 transcripts, resulting in a call for more thorough sequence analysis and OCT4 

primer design (Liedtke et al., 2008).   

 Our own detailed analysis of OCT4 expression in the bovine blastocyst derived 

trophectoderm CT-1 cell line (Talbot et al., 2000) found that an OCT4 retrocopy is co-

expressed (Fig. 2.2). Sequence data indicated that it was transcribed from a processed 

OCT4 retrocopy located in the first intron of eukaryotic translation termination factor 1 

(ETF1) and matches what was previously described as the bovine pseudogene 

POU5F1rs1 (van Eijk et al., 1999). As it is becoming increasingly evident that 

transcribed processed pseudogenes can encode functional gene products (Gerstein et al., 
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2007), the focus of this study was to characterize the bovine chromosome 7 OCT4 

retrocopy locus and gain insight into a potential function.    

Methods and Materials 

Reverse transcription and touchdown PCR 

Cell culture, RNA extraction, RNA quantification and Superscript III based CT-1 

first strand cDNA synthesis (Invitrogen, Carlsbad, CA) have been described previously 

(Schiffmacher and Keefer, 2010a). All primers listed in Table 4.1 were developed using 

IDT Real Time PCR software (Integrated DNA Technologies, 

http://www.idtdna.com/analyzer/ Applications/Oligo Analyzer). PCR reactions for 

products shown in Fig. 2 consisted of 4 µl 5X HF iPROOF buffer,  0.2 µl iPROOF 

polymerase (172-5330, Bio-Rad, Hercules, CA), 1.6 µl 2.5 mM dNTP, 11.2 µl nuclease 

free H2O, 1 µl each primer, and 1 µl diluted CT-1 cDNA. PCR reactions using primer 

sets 73-74, 73-141, and 146-74 were subjected to touchdown PCR in the following 

manner. Samples were initially denatured for 30 sec at 98 °C. The next 10 cycles 

consisted of a denaturation step at 98 °C for 10 sec, annealing for 30 sec, and extension at 

72 °C for 45 sec. First round of annealing was performed at 69 °C, and at each 

subsequent step the annealing temperature was decreased by 1 °C. The remaining 25 

cycles were performed as above at a fixed annealing temperature of 59 °C, before 

finishing with a final extension period at 72 °C for 10 min. PCR reactions using primer 

sets 73-198, 195-74 and 115-74 were also subjected to touchdown PCR using the same 

protocol but with the extension times modified to 30 sec. to maintain extension at ~30 

sec/ Kb. To account for potential genomic DNA contamination amplification during RT-

PCR, 1µg of CT-1 RNA was also used as RNA template for cDNA synthesis, however 
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reverse transcriptase was omitted from these reactions (RT-). Therefore, RT- samples did 

not contain cDNA. All PCR reactions performed using RT- templates failed to amplify 

product. An additional reaction for each primer set was also performed without cDNA to 

account for any reagent DNA contamination. Single amplicon bands were purified from 

agarose gels using a MinElute PCR Purification Kit (28004, Qiagen, Valencia, CA) and 

sequenced at the University of Maryland Biotechnology Institute: Center for Biosystems 

Research (College park, MD).   
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Table 4.1. Primers used for RT-PCR and RACE.

NW_001495368.2 

QPCR Primer Negative Strand Position Negative Strand

Primers Sequence (5' - 3')  Length (nt) Location (-3,80X,XXX) Orientation

146 TCAGGGCACATCTGGGACTTG 21 5' to OCT4 retrocopy 6044-6024 Sense

163 TCCACCCTGGCTCCTGTCTCTGGATTGCC 29 LINE L1 5586-5614 Sense

73 GGGTGTGAAGTGGGTTTGTG 20 5' to OCT4 retrocopy 4496-4477 Sense

115* GACACCTCGCTTCTGACTTC 20 Within OCT4 retrocopy 4375-4356 Sense

160** ACTCGCAGGCGCCGCGAAGCTGGACAAGG 29 Within OCT4 retrocopy 4032-4004 Sense

195* AGGAGTCCCAGGACATCAA 19 Within OCT4 retrocopy 3982-3964 Sense

157 GTCCGAGTGTGGTTTTGCAACCGTGTACC 29 Spans OCT4 retrocopy/ L1 junction 3563-3535 Sense

159 AGAGGGGTTGGTAGCTGTTCAAAAGGGAGC 30 3' to OCT4/ L1-BT sequence 2551-2522 Sense

155 GGCAATCCAGAGACAGGAGCCAGGGTGGA 29 LINE L1 5614-5586 Antisense

156 CCGCCATGGGGAAGGAAGGCACCCCCAAA 29 Spans OCT4 retrcopy 5' end 4376-4404 Antisense

198* GCAGCTTACACATGTTCTTGAA 22 Within OCT4 retrocopy 3782-3803 Antisense

158 CCTGACTGGTGTGAAGTGGTACACGGTTGC 30 Spans OCT4 retrocopy/ L1 junction 3518-3547 Antisense

74 CCATTCATCTGCTGATGGAC 20 L1_BT 3' fused to OCT4 retrocopy 3221-3240 Antisense

141 ATGTGTTCCCCATCCTGAAC 20 L1_BT 3' fused to OCT4 retrocopy 2787-2806 Antisense

161 TGGAGAGAAGCCAGTCTCTTCAGCAAGTGG 30 LINE L1 551-580 Antisense

* This primer also matches OCT4 (NM_174580)

** 27/29 match with OCT4 (NM_174580)
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5’ and 3’ RACE ready cDNA synthesis and rapid amplification of cDNA ends 

(RACE) 
 

5‟ and 3‟ RACE ready cDNAs were generated using the SMARTer RACE cDNA 

Amplification Kit (634924, Clontech, Mountain View, CA) according to kit instructions. 

One µg of purified CT-1 RNA was used per reaction. All kit recommendations for testing 

RNA purity, reagent quality control, and cDNA synthesis efficiency were successfully 

performed. RACE cDNAs were diluted in 100 µl Tricine-EDTA buffer for use as PCR 

template. First round RACE was performed using one specific primer and SMARTer 

RACE Universal Primer Mix (UPM) and run using the SMARTer RACE Program 1 

modified for use with iPROOF DNA polymerase (Bio-Rad).  Samples were initially 

denatured for 2 min at 98 °C. The first 5 cycles consisted of one denaturation step at 98 

°C for 10 sec, followed by a combined annealing/extension step at 72 °C for 2 min. The 

next 5 cycles consisted of one denaturation step at 98 °C for 10 sec, an annealing step at 

70 °C for 20 sec, and an extension step at 72 °C for 2 min. The remaining 27 cycles were 

performed as in the previous 5 cycles but at a fixed annealing temperature of 68 °C, 

before finishing with a final extension period at 72 °C for 10 min. A 5 µl aliquot of each 

RACE reaction was separated by agarose gel electrophoresis. RACE samples typically 

exhibited multiple bands of varying intensity of ethidium bromide staining. RACE 

products were purified and diluted 100-fold to be used as template for a second round of 

nested RACE using one specific primer downstream of the primer used in first round 

RACE and the abridged Nested Universal Primer (NUP). Templates were also used for 

nested PCR using two specific primers and no NUP. Second round PCRs were performed 

according to SMARTer RACE Program 2 modified for use with iPROOF DNA 

polymerase (Bio-Rad). Samples were initially denatured for 2 min at 98 °C, followed by 
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35 cycles of the following three steps: denaturation at 98 °C for 10 sec, annealing at 68 

°C for 30 sec, and extension at 72 °C for 45 sec. A final extension period was done at 72 

°C for 10 min. PCR products were separated by agarose gel electrophoresis, and 

prominent DNA bands were excised and purified as previously described. PCR 

amplification of DNA using IPROOF DNA polymerase produces blunt ended amplicons. 

Therefore, purified PCR fragments were A-tailed. Briefly, 20 µl of purified PCR product 

was combined with 3 µl 10X PCR buffer, 3 µl 25 mM MgCl2, 0.6 µl 10 mM dNTP, and 

0.3 µl TAQ polymerase (10342-035, Invitrogen), and 2.1 µl nuclease-free H2O. 

Reactions were incubated at 72 °C for 25 min, and purified again as previously described. 

A-tailed PCR fragments were cloned into pGEM-T Easy linearized plasmid according to 

the manufacturer‟s instructions (A1380, Promega, Madison, WI). Ligations were 

transformed into JM109 competent E. coli and screened using X-gal and IPTG selection. 

Individual colonies containing recombinant clones were selected and cultured before 

plasmid was purified using NucleoSpin Miniprep kit, (740588.10, Machery-Nagel, 

Bethlehem, PA). All clones were sequenced with T7 and SP6 primers. 
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Sequence Analysis 

All bovine genome sequence references are based on the Bos taurus Genome 

assembly version Btau_4.0. All sequence analyses of the OCT4 retrocopy were based on 

the genomic loci of eukaryotic translation termination factor 1 (ETF1, Genbank 

Accession NM_001076254) intron 1, located on the chromosome 7 contiguous reference 

assembly (NW_001495368.2). For the ETF1 gene and the intronic OCT4 retrocopy (if 

OCT4 transcriptional orientation is maintained), the sense strand is the negative strand. 

Retroelement analysis of the bovine ETF1 intron was performed using the online 

software Repeatmasker, current version: open-3.2.8 (A.F.A. Smit, R. Hubley & P. Green, 

unpublished data).  All sequence alignments were performed using the National Center 

for Biotechnology Information (NCBI) Basic Local Alignment Search Tool (BLAST) or 

European Molecular Biology Laboratories-European Bioinformatics Institute‟s (EMBL-

EBI) ClustalW2 program. 
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Results 

Nucleotide polymorphisms of sequenced OCT4 products amplified from bovine 

CT-1 cDNA indicated either allelic differences or a separate OCT4-like RNA transcript. 

BLAST analysis of the sequence containing the alternative nucleotide configuration 

resulted in a 100 % match with a predicted OCT4-like gene and mRNA (Genbank 

LOC100138938 and XM_001789212.1) that is located within the 20,198 bp first intron 

of ETF1 on chromosome 7. The nucleotide differences also matched a putative OCT4 

pseudogene named POU5F1rs1 previously detected in bovine genomic DNA (van Eijk et 

al., 1999).  Further characterization of the computationally derived OCT4-like gene 

showed that the predicted first exon aligns with OCT4 exons 1-4 and the first 27 bases of 

exon 5, indicating that this 861 bp sequence is an intronless 3‟ truncated OCT4 retrocopy. 

This fragment contains no insertions or deletions but has 10 substitutions, making it 

98.9% identical to matching OCT4 sequence (Genbank NM_174580.2). It is also the 

most conserved OCT4 retrocopy obtained by bovine genome BLAST analysis (E = 0.0, 

Sup. Fig. 5). Predicted exons 2 and 3 of the LOC100138938 gene, however, were not 

well conserved with the remaining exon 5 sequence of OCT4, and were considered to be 

incorrectly predicted (Sup. Fig. 6). Sequence 3‟ to the OCT4 retrocopy was BLASTed 

and matched a retroelement endonuclease-reverse transcriptase (ERT) coding sequence. 

Therefore, a detailed transposable element analysis was performed in this region using 

Repeatmasker software. Results showed that the OCT4 retrocopy is fused at the truncated 

3‟ end to a 5‟ truncated bovine L1 LINE (L1 BT), and is flanked by other LINE and 

SINE elements (Fig. 4.1). 
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Figure 4.1.A. NCBI Sequence viewer map of Bos Taurus chromosome 7 genomic 

reference assembly (based on Btau_4.0 whole genome shotgun sequence ref 

NW_001495368.2| Bt7_WGA801_4) that contains the ETF1 gene (NM_001076254) and 

the POU5F1 retrocopy (LOC100138938). Bases -3,827,652 : -3,782,998 (44,655 total) of 

the  negative strand are shown. B. Magnification of ETF1 intron 1 sequence flanking the 

OCT4 retrocopy or “exon 1” of Genbank predicted OCT4-like gene (XM_001789212.1), 

in light gray. Exons 2 and 3 of the Genbank predicted OCT4-like gene are also in light 

gray. Exon 3 lies within a fragment of an L1-2_BT LINE. Other LINE fragments are in 

medium gray. SINE fragments are shaded dark gray. The ETF1 exon 2 is added for 

reference (white). Representations are approximate in scale. C.  Repeatmasker software 

analysis of retroelements in 1B. Elements either directly match (+) or compliment (C) the 

database consensus orientation. „Begin‟ and „End‟ indicate the position alignment of the 

match within the consensus, and „Left‟ indicates the number of base pairs remaining in 

the consensus but missing from the end of the fragment.   
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The bovine specific L1 BT LINE is the most abundant LINE in the bovine 

genome and considered to still be active (Adelson et al., 2009). Flanking sequence 

immediately 5‟ to the retrocopy did not contain L1 BT sequence, suggesting that the 

retrocopy was not retrotransposed into a pre-existing L1 BT fragment. Alternatively, it is 

likely L1 enzymatic retrotransposition involved an RNA intermediate template switch 

between OCT4 mRNA and L1 BT, resulting in a chimeric retrocopy that was singularly 

integrated into the locus. (Gogvadze and Buzdin, 2009). 

This chimeric retrocopy contains the 5‟ region of OCT4, the 3‟ region of L1 BT 

including the poly (A) tail, and both parts are in the same transcriptional orientation. 

Based on these criteria, it was conceivable that the fused intronless ORFs could produce a 

chimeric fusion protein and reclassify the OCT4 retrocopy as a retrogene. An amino acid 

(AA) prediction analysis and alignment was performed on the chimeric sequence (Sup. 

Fig. 7). Assuming the putative protein shares the conserved translational start site of 

bovine OCT4 and human OCT4A, it would contain an intact OCT4 N-terminal 

transactivation domain and a relatively intact Pit-Oct-Unc specific (POUs) DNA binding 

domain. The POU homeodomain would also be relatively conserved except for the loss 

of the C terminal end that is normally translated from exon 5. Continuation of the fused 

ERT domain does not occur, however, as a frame shift at the OCT4/L1 BT junction 

results in a nonsense mutation 16 AA from the template switch. It is still possible that an 

OCT4-like protein containing a short novel C-terminus may be expressed. However, this 

appears unlikely as immunoblotting of CT-1 whole cell lysates using OCT4 antibodies 

recognizing the first 134 AA detected only the native OCT4 protein and no bands for the 

predicted proteins 297 AA in length (Fig. 3.2). 
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    Next, the transcribed RNA containing the OCT4 retrocopy was characterized. 

Initial RT-PCR experiments using locus specific primers (Table 4.1) identified an oligo 

(dT) synthesized CT-1 cDNA containing the OCT4 retrocopy and adjacent L1 BT 

sequence (Fig. 4.2, Sup. Fig. 6). In addition, a 2823 bp product was successfully 

amplified that contained additional L1 fragments and an ART2A SINE located 5‟ to the 

OCT4 retrocopy. These PCR fragments also suggested that the predicted OCT4-like gene 

(LOC100138938) is incorrectly annotated in Genbank. To determine whether these 

transcripts were sense or antisense, cDNAs were reversed transcribed from CT-1 RNA 

using non-retroelement binding, strand specific primers that would prime reverse 

transcription across the OCT4 retrocopy (Fig. 4.3). While our results indicated that both 

sense and antisense transcripts containing the OCT4 retrocopy are expressed in CT-1 

cells, further verification of transcript lengths would help distinguish these transcripts 

apart from each other. 5‟ and 3‟ RACE were performed to expand on transcript length 

and determine RNA ends. Nested RACE and additional nested PCR using locus specific 

primers resulted in amplification of distinct cDNA sequences. Sequence obtained from 5‟ 

RACE of the sense transcripts show the 5‟ end aligns over a one kilobase upstream of the 

OCT4 retrocopy (Fig. 4.4). Attempts to extract the 3‟ end by 3‟ RACE were unsuccessful. 

Nested PCRs performed on first round RACE products also amplified fragments that 

spanned kilobases downstream. Assuming all PCR products were amplified from the 

same sense transcript, the resulting RNA would be over 5527 bp in length.  
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Figure 4.2. RT-PCR products containing the OCT4 retrocopy were successfully 

amplified from CT-1 cDNA using different primer sets. All products were sequenced and 

found to contain the OCT4 retrocopy/ LI BT fusion junction unique to chromosome 7 

(NW_001495368.2).  Primer sets A (73/198) and B (115/74) amplified prominent bands 

from CT-1 cDNA but not from bovine fetal fibroblast (BFF) cDNA or negative control 

(RT-) cDNA. Primer sets C (73/74), D (73/141) and E (146/74) produced similar results 

(gels not shown). PCR fragment lengths and approximate primer locations are also 

displayed in the schematic representation. 
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Figure 4.3. Transcripts containing the OCT4 retrocopy are transcribed from both the 

positive and negative DNA strands in CT-1 cells. Primers specific to regions flanking the 

OCT4 retrocopy/L1_BT fusion sequence were used as locus specific primers for reverse 

transcription of first strand cDNAs. Both primers do not bind to any retroelements. 

Primer 141 was used to synthesize cDNA from sense RNA and primer 73 was used to 

synthesize cDNA from antisense RNA. Primers 195 and 74 were then used to amplify the 

OCT4 retrocopy/L1_BT sequence. No genomic DNA contamination was amplified from 

RT- negative controls for each cDNA. cDNA reverse transcribed using oligo(dT) primers 

served as a positive template control. All bands were sequenced. The negative DNA 

strand and approximate primer positions are represented in the schematic.       
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Figure 4.4. Schematic representation of RT-PCR products amplified from 5‟ and 

3‟ RACE CT-1 cDNAs synthesized from sense RNA of ETF1 intron 1 region. 3‟ RACE 

first strand synthesis was primed with modified oligo(dT) 3'-RACE CDS Primer A, and 

5‟ RACE first strand synthesis was primed with modified oligo(dT)5'-RACE CDS Primer 

A and SMARTer II A oligonucleotide. These cDNAs were used in first round PCR 

reactions using Universal Primer Mix (UPM) and a locus specific primer. Single PCR 

products were never obtained but purified PCR reactions were used as template (black 

rectangle) for secondary nested PCR using either 2 locus specific primers or a locus 

specific primer and an abridged Nested Universal primer (NUP) to obtain sequence ends. 

Specific amplicons (light gray rectangles) are indicated by primers used, length, and 

approximate position within OCT4 retrocopy region of ETF1 intron 1. Overlapping PCR 

fragments were then used to construct a contiguous RNA sequence over 5527 bp long 

(dark gray rectangle). While a 5‟ end was successfully sequenced, the 3‟ end remained 

unidentified. No genomic DNA contamination was detected in any control RT- reactions. 

A minimum of two PCR fragments cloned into pGEM-T Easy were sequenced per PCR 

reaction.      
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Similar results were obtained in RACE of antisense transcripts (Fig. 4.5). 

Fragments amplified by 5‟ RACE overlapped with the second exon of ETF1. However, 

these sequences exhibited some type of RNA splicing as fragments aligned with genomic 

sequence lacked internal sequence. Similar results were obtained whenever PCR was 

performed using locus primers 160 and 161, which would presumably amplify a 

continuous fragment 3.5 Kb in length. The splicing phenomenon may be an in vitro 

artifact, as this region of the RNA is enriched in repetitive retroelements and may possess 

high levels of secondary structure. Interestingly, each splicing event involved 

recombining at short repeats (Sup. Fig. 8). Fragments corresponding to the 3‟ end of the 

antisense transcript were amplified.  However it was found that the Universal Primer Mix 

RACE primer containing the d (T) stretch was hybridizing to a stretch of adenosine 

monophosphates within the sequence and not to a true poly (A) tail of mRNA. If all 

successfully amplified fragments were transcribed from the same cDNA, then the 

antisense RNA would be over 5239 bp in length.  
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Figure 4.5. Schematic representation of RT-PCR products amplified from 5‟ and 3‟ 

RACE CT-1 cDNAs synthesized from antisense RNA of ETF1 intron 1 region. 5„and 3‟ 

RACE first strand synthesis were primed as described in Fig. 4. Single PCR products 

were never obtained but purified PCR reactions were used as template (black rectangle) 

for secondary nested PCR using either 2 locus specific primers or a locus specific primer 

and an abridged Nested Universal primer (NUP) to obtain  sequence ends. Specific 

amplicons (light gray rectangles) are indicated by primers used, length, and approximate 

alignment with the OCT4 retrocopy region of ETF1 intron 1. A contiguous RNA 

sequence over 5239 bp long (dark gray rectangle) was constructed that is complementary 

to the 5527 bp sequence in Fig. 4. The 5‟ end was successfully sequenced. However, a 

cDNA break/ligation splicing phenomenon was observed in the PCR fragment that 

omitted a few thousand base pairs.  The 3‟ RACE fragment was a result of the oligo (dT) 

primer hybridizing to a stretch of A‟s within sequence rather than to a post 

transcriptionally modified poly A tail.  No genomic DNA contamination was detected in 

any RT- reactions. A minimum of two PCR fragments cloned into pGEM-T Easy were 

sequenced per PCR reaction.  
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Discussion 

In this study we demonstrate that long sense transcripts and natural antisense 

transcripts (NATs) are expressed from the bovine ETF1 intron 1 that contain a conserved 

yet truncated OCT4 and only lacking in a complete fifth exon. At the 3‟ end, the OCT4 

retrocopy is fused with a 5‟ truncated L1 BT suggesting that a chimeric retrocopy was 

formed during retrotransposition. Compared to other known bovine OCT4 retrocopies, 

the chromosome 7 retrocopy is the least mutated with only 10 substitutions and no 

insertions or deletions (Sup. Fig. 5). RT-PCR performed using primers universal to all 

OCT4 retrocopies produced only OCT4 and chromosome 7 OCT4 retrocopy sequences. 

Therefore, OCT4 retrocopies on chromosomes 3, 4, and 21 are most likely processed 

pseudogenes or at least not expressed in CT-1 cells. While the low degree of mutation in 

the chromosome 7 OCT4 retrocopy may suggest that the OCT4/ L1 BT retrotransposition 

into chromosome 7 is a relatively recent event, it also suggests that the conservation of 

this sequence may be critical for its gene product function.  

Advances in transcriptome analysis have shown that noncoding RNA transcripts 

are often expressed and interspersed or even overlapped with other transcribed RNAs, 

and can be transcribed from intergenic and intragenic regions including introns (Mercer 

et al., 2009). Our results demonstrate that many kilobases of DNA flanking the OCT4 

retrocopy are transcribed from both strands. Our 5‟ and 3‟ RACE experiments did not 

consistently identify 5‟ and 3‟ RNA ends, which may be due to RNA secondary structure 

resulting from hybridization of cis retroelements that are part of the same long noncoding 

RNA. We were successful in consistently obtaining 5‟ and 3‟ ends of our control genes, 

ETF1 and OCT4. It is also possible that multiple overlapping transcripts are expressed in 
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this region resulting in the creation of many cDNAs instead of one long noncoding RNA 

as represented by our contiguous sequences in Fig 4.4. and Fig. 4.5.  

The mechanism for transcription of the sense and NAT RNAs requires further 

study. Transcription of NATs can be driven by acquiring regulatory elements from 

nearby retroelements (Conley et al., 2007). Transcription may also result from a “ripple 

effect” caused by rapid and strong induction of neighboring genes. Miki Ebisuya and 

colleagues found that rapid FGF mediated induction of “immediate early gene” Erg1 

caused upregulation of noncoding RNAs in neighboring intergenic regions as well as 

intragenic regions including intron 1 of Etf1 (Ebisuya et al., 2008).  There is shared 

synteny at this chromosomal locus between bovine and human genomes.   

Possible functions of the sense and antisense OCT4 retrocopy containing RNAs 

can be drawn from examples of other identified long noncoding RNAs and transcribed 

retrocopies (Mercer et al., 2009). Recently, it has been demonstrated that sense transcripts 

and NATs corresponding to gene exon regions are processed into smaller RNAs that act 

as endogenous siRNAs or endo-siRNAs (Werner et al., 2009). These siRNAs were once 

thought to induce silencing of transcribed pseudogenes and reduce transcriptional noise. 

Conversely, transcribed retrocopies have also been demonstrated to act as a source of 

NATs that hybridize with sense mRNAs and form double stranded RNAs (dsRNAs) that 

undergo DICER/ AGO2 mediated processing (Tam et al,. 2008; Watanabe et al., 2008). 

These endo-siRNAs are used for RNA interference of the parental gene transcripts. 

Furthermore, dsRNAs can also originate from transcription of both DNA strands at the 

same loci to produce endo-siRNAs. These findings suggest a possible mechanism for our 

OCT4 retrocopy expression results.  
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OCT4 is a key regulator of pluripotency in early mouse embryonic development 

and is downregulated as cells commit to the trophectoderm lineage at the blastocyst stage 

(Nichols et al., 1998). Studies in mouse ESC show that OCT4 must be downregulated for 

differentiation of ESC into trophoblast cells to occur (Niwa et al., 2000). OCT4 is not 

rapidly downregulated in the trophectoderm in bovine blastocysts, but expressed into the 

early stages of trophoblast elongation (Degrelle at al, 2005; Roberts et al., 2004). OCT4 

protein is also detected in the bovine trophectoderm derived CT-1 cell line (Schiffmacher 

and Keefer, 2010b). While the function of OCT4 in the early bovine trophoblast is 

unknown, OCT4 expression may be tightly regulated to ensure aberrant OCT4 levels do 

not interfere with the trophoblast transcriptional network. This study demonstrated that 

OCT4 retrocopy-containing RNAs are transcribed from both DNA strands at the 

retrocopy locus within the first intron of ETF1 in CT-1 cells. OCT4 retrocopy-containing 

dsRNAs originating from these sense transcripts and NATs, or dsRNAs originating from 

NATs (acting in trans) and OCT4 mRNA, could be further processed into endo-siRNAs 

to regulate OCT4 expression. It is unknown whether these RNAs are expressed in vivo or 

if they are restricted to the bovine trophoblast. Expression analyses in bovine embryos 

similar to this study in CT-1 cells, as well as analyses of small RNA libraries derived 

from CT-1 cells and bovine embryos, could provide insight into this putative bovine 

specific, post-transcriptional mechanism of OCT4 regulation. 
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Chapter 5:  Future directions 
 

The results of this research demonstrate for the first time that the embryonic 

bovine trophectoderm derived CT-1 cell line can be used as a genetic model to study key 

regulators at the core of the trophectoderm transcriptional hierarchy. Our success in 

obtaining acceptable transfection efficiencies for both plasmid and oligonucleotide 

delivery in CT-1 cells allowed us to perform CDX2 and OCT4 overexpression and 

knockdown experiments to determine their roles in regulating other trophoblast specific 

regulators. Using qRT-PCR, we were able to identify potential target genes of CDX2. We 

detected changes in several gene levels in response to manipulation of CDX2 including 

IFNT, ETS2, ELF5, HAND1, SOX15, OCT4, and MASH2 (Fig. 5.1). However, no 

significant changes in candidate gene expression in response to OCT4 overexpression or 

knockdown were detected, other than OCT4 autoregulation.  

During our analysis of OCT4 expression we unexpectedly identified a transcribed 

OCT4 retrocopy expressed in CT-1 cells. Further experiments in the characterization of 

this transcribed retrocopy should include an expression profile analysis in bovine 

embryos. Also, Northern blot analysis would help elucidate discrete transcript sizes for 

both sense and antisense transcripts. Antisense transcript specific targeting by siRNA 

followed by qRT-PCR for OCT4 levels would possible identify an OCT4 endo-siRNA 

mechanism in place.     

The overall results and achievements of this study have provided a rationale for 

an even more thorough analysis of the bovine trophoblast transcriptome. We have 

recently performed whole transcriptome-wide analyses of cDNAs of CT-1 cells,  in vitro 
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bovine embryos and TE from in vitro derived embryos (8 dpc) and in vivo derived bovine 

embryos and TE from in vivo derived embryos (14 dpc) using Illumina digital gene 

expression (DGE): tag profiling. This unbiased approach will be used to identify and 

quantify genome-wide expression of transcripts, and will provide a more powerful and 

accurate assessment of the CT-1 transcriptome in comparison to in vivo and in vitro 

produced embryos. This study may also accurately identify the noncoding RNAs 

containing the OCT4 retrocopy. 

While experiments in this study were all based on transient transfections, stable 

CT-1 lines containing integrated doxycycline inducible OCT4 or CDX2 cassettes would 

prove an invaluable tool for future experiments. In the present study, single vector 

doxycycline inducible systems were constructed to overexpress hemagglutinin (HA) 

tagged OCT4 or MYC tagged CDX2 with the intent to create stably integrated CT-1 cell 

lines that can overexpress these recombinant proteins at different levels. The single 

vector doxycycline inducible system was initially tested and proved very sensitive to 

increasing doxycycline concentrations in transiently transfected HEK 293 cells (Sup. Fig. 

2). The desire to tightly control recombinant protein levels was based on previous 

findings that lineage maintenance and differentiation is gene dosage dependent (Niwa et 

al., 2000).  The recombinant proteins expressed from these vectors were tagged with the 

intent to use the tags for antibody pulldown in co-immunoprecipitations.  

While our current transfection efficiency in CT-1 cells was acceptable for gene 

expression analysis by qRT-PCR, a higher efficiency or stably transfected cell lines 

would be necessary for adequate pull down of protein complexes to study binding of co-

factors. Stable CT-1 cell lines expressing doxycycline inducible OCT4 or CDX2 would 
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also be needed for determining the effects of overexpression on CT-1 proliferation and 

differentiation. A disadvantage of the CT-1 cell line is their slow proliferation rate. 

Nevertheless, the creation of stably transfected CT-1 cell lines is feasible. With a 9% 

transfection rate and adequate amounts of Lipitoid, stable transfected CT-1 cells could be 

identified using a fluorescent reporter and clonally expanded by patching cells similar to 

methods used in embryo explant culture (Pant et al., 2008). Alternatively, our 

collagenase-dispase protocol could be used to dissociate transfected CT-1 colonies and 

seed new plates with aggregates as small as 10 cells. If enough CT-1 colonies are 

transfected, this passaging method could be used with antibiotic selection, although CT-1 

cells are slow to respond to antibiotic selection.  Then other approaches such as promoter 

reporter analyses of HAND1, MASH2, and SOX15 to determine CDX2 DNA binding 

and activation in their promoters as well as co-immunoprecipitations to identify potential 

protein interactions could be taken. While our results did not indicate a specific role for 

OCT4 in the bovine trophectoderm, identification of potential OCT4 cofactors, such as 

SOX15 which we have shown to be expressed in CT-1 cells, may provide clues to the 

function, if any, of OCT4 in bovine TE.  
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Figure 5.1. Model incorporating the results of this study to form a transcriptional 

regulatory network in CT-1 cells. Black arrows indicate results of this study that have not 

been previously elucidated in bovine or mouse models. Dashed arrows indicate 

speculative regulatory interactions that are based on our findings. Red arrows indicate 

regulatory mechanisms previously determined to be in conserved in mouse trophoblast 

stem cell maintenence. The green arrow indicates a similar finding from a parallel study 

(Sakurai et al., 2009).  
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Appendix 
 

Sup. Figure 1. The doxycycline responsive promoter of pTHE.HA:OCT4 is sensitive at 

increasing doxycycline concentrations (ng per ml). HEK 293 cells were transiently 

transfected and treated for 48 hr with increasing concentrations of doxycycline in the 

medium (Lanes 2-6). 75 µg of whole cell lysate was loaded per well. Untransfected HEK 

293 lysate serves as negative control (Lane 1) while NTERA lysate serves as an OCT4 

positive control for OCT4 only (Lane 7). Both HA and OCT4 antibodies successfully 

detect HA tagged recombinant OCT4. L = ladder, DOX = doxycycline.    
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Sup. Figure 2.  Plasmid schematics of pTHE.HA:OCT4 and pTHE.MYC:CDX2. Both 

plasmids utilize the pTHE plasmid (Jiang et al., 2001) to express doxycycline inducible, 

epitope tagged proteins. The pTHE plasmid (Addgene plasmid 12512) constitutively 

expresses a chimeric msin3 domain/ tetracycline repressor fusion protein that inhibits 

transcription at the tetracycline responsive promoter located on the same plasmid in the 

absence of tetracycline. HA epitope tagged OCT4 and MYC tagged CDX2 were cloned 

in the multiple cloning site located 3‟ to the tet responsive promoter. Many variations of 

these two plasmids have been constructed including plasmids containing C terminal HA 

epitope tagged OCT4. The neomycin ORF has also been substituted with visual selection 

marker ORFs including histone B2-GFP fusion protein, nuclear GFP, and nuclear 

dsRED2-1. However, IRES mediated translation of these coding sequences did not 

sufficiently express observable levels of protein fluorescence, even with high copy 

transfection rates in HEK 293 cells.  
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Sup. Figure 3. Comparison of recombinant bovine HA tagged OCT4 binding affinities 

between anti human OCT4 and anti HA antibodies. Efforts to pull down bovine OCT4 

from CT-1 cells were unsuccessful even though a range of buffers varying in stringency 

were tried. To determine whether the issue is due to insufficient OCT4 protein or 

antibody specificity, immunoprecipitations were conducted on HEK 293 cells transiently 

transfected with doxycycline inducible vector expressing HA epitope tagged OCT4. HEK 

293 cells were transfected with pTHE.HA:OCT4 and induced for 48 hours with 10 ng per 

ml (lane 2) and 100 ng per ml doxycycline (lanes 1 and 6). Untransfected HEK 293 cells 

(lane 4) and HEK 293 cells transfected with empty pTHE vector and induced with 100 ng 

per ml doxycycline (lane 3 and 6) served as negative controls. Immunoprecipitations (IP) 

were performed with 750 µg protein and 1 µg of anti-OCT4 antibody (lanes 1-4) or anti-

HA antibody (lanes 5-6). Eluted samples were immunoblotted (IB) with anti-OCT4 

antibody. An OCT4 immunoblot with 75 µg (10%) of original protein lysates served as a 

loading control. 
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Supp. Figure 4. Double label immunocytochemistry to detect both doxycycline-induced 

proteins and endogenous proteins. Because our antibodies for the HA epitope and 

endogenous CDX2 were unsuitable together for double label immunocytochemistry, the 

polyclonal anti-human OCT4 antibody was utilized to detect recombinant HA:OCT4 

protein for the following experiments. The anti-human OCT4 antibody detected both low 

levels of endogenous OCT4 and overexpressed recombinant OCT4 (A, white arrow).  

The overexpression of OCT4 was localized to the same cells that were immunolabeled 

with anti-HA antibody (B). CT-1 cells overexpressing HA:OCT4 (D) did not show any 

reduction of endogenous CDX2 protein (E, white arrows) when compared to levels in 

untransfected neighboring cells expressing CDX2. Similarly, CT-1 cells overexpressing 

MYC:CDX2 protein (H, white arrows), did not show any observable reduction in anti-

human OCT4 labeling (G, white arrows) when compared to levels in untransfected 

neighboring cells. Images J and K are controls for nonspecific immunofluorescence of 

secondary antibodies in experiments performed without primary antibodies. Images C, F, 

I, and L are merged images of the 2 preceding images with Hoёchst DNA staining. 
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Supp. Figure 5. Alignment of bovine OCT4 retrocopies with full length OCT4 mRNA 

(NM 174580). The translational start site is boxed. Single nucleotide polymorphisms 

between the chromosome 7 retrocopy and OCT4 mRNA are highlighted in yellow. 

 
OCT4 mRNA  GGAGCTGGAAGTGAAGGCCCGCATGGGGGACCTGCACCGAGAGTCTAGGAGTCTGGGGG 

                                                                                  

OCT4 mRNA  TGGAGAGGGGCCTGGGTGGAGATCCCTGGCTTTCCCCTTCCAGACACCACCGCCACCAGC 

                                                                                                                                                              

OCT4 mRNA  AGGCAAACACCCTCCGCCTCAGTTTCTCCCACCCCCACGGTCCCTTCCCCCCACCCATCC 

 

OCT4 mRNA  AGGGGGCGGGGCCAGAGGTCAAGGCTAGTGGGTGGGATTGGGGAGGGAGAGAGGTGTTGA 

 

OCT4 mRNA  GCAGTCTCTAGGAGATCCCTCGTTTTCCTAGGCCCCCGGCTCGGGGTGCCTTCCTTCCCC 

Chrom. 7   ------------------------------------------GGGGTGCCTTCCTTCCCC 

Chrom. 3   ------------------------------------------------------------ 

Chrom. 21  --AGTCCCTTGAAGAGCTCTCATTTTCCTAGGCCCTGGGCTTGGGGCACATTCCTCCCCC                                                          

             **** ** * *** * *** *************  **** ****  * ***** **** 

 

OCT4 mRNA  ATGGCGGGACACCTCGCTTCTGACTTCGCCTTCTCGCCCCCGCCGGGCGGTGG-AGGCGA 

Chrom. 7   ATGGCGGGACACCTCGCTTCTGACTTCGCCTTCTCGCCCCCGCCGGGCGGTGG-AGGCGA 

Chrom. 3   ---------------------------GCCTTCTCGCCCCTGCTGGGCAGTGG-AGGCCA 

Chrom. 21  ACAGCGGGACACCTGGCTTCTGACTTTGCCTTCTCACCCCGGC-ACATGGTGGCAGGCGA 

           *  *********** *********** ******** **** **      **** **** *     

                 

OCT4 mRNA  TGGGCCGGGAGGGCCAGAGCCGGGCTGGGTTGATCCTCGGACCTGGATGAGCTTCCAAGG 

Chrom. 7   TGGGCCGGGAGGGCCAGAGCCGGGCTGGGTTGATCCTCGGACCTGGATGAGCTTCCAAGG 

Chrom. 3   TCGGCAGGGAGGGCCACAGCCAGGCTGGGTTGATCCTCGGACCTGGATGAGCTTCCAAGG 

Chrom. 21  CAGGCTGAGAAGGCTGAAGCCAGGCTAGG----------AACCTGGATGAGCTTCCAGGG 

             *** * ** ***   **** **** ************ ***************** ** 

                

OCT4 mRNA  GCCTCCCGGTGGGTCGGGGATCGGGCCGGGGGTTGTGCCTGGCGCCGAGGTGTGGGGGCT 

Chrom. 7   GCCTCCCGGTGGGTCGGGGATCGGGCCGGGGGTTGTGCCTGGAGCCGAGGTGTGGGGGCT 

Chrom. 3   GCCTCCGGGTGGGTCAGGAATCTGGCTGGAGCTTGTGCCCAGCAC-GAGGTGTGGGGGCT                     

Chrom. 21  GCTTCCT--TGGGTGGGAGATGGGGCTGGGGGTTGGGCCTGGTGCTCAGGTGTTGGGGCT 

           ** *** *******  *  **  *** ** * *** ***  *     ****** ******  

 

OCT4 mRNA  TCCCCCGTGCCCCCCGCCCTATGACTTGTGTGGAGGGATGGCCTACTGTGCGCCGCAGGT 

Chrom. 7   TCCCCCGTGCCCCCCGCCCTATGACTTGTGTGGAGGGATGGCCTACTGTGCGCCGCAGGT 

Chrom. 3   TCCCCTGTGCCCCC-ACCCTATGACTTGTGCAGAGGGATGGCCTGCTGTGCACCGCAGGT 

Chrom. 21  GACCCTGTGCTCTT-GCCCTATGACCTCTGTGGAGGAACCGCC---TGTGCCCCTCAGGT 

             *** **** *    ********* * **  **** *  ****  ***** ** ***** 

     

OCT4 mRNA  TGGAGTGGGGCCGGTGCCCCCAGGCGGCCTGGAG-ACCCCTCAGCCCGAGGGCGAGGCGG 

Chrom. 7   TGGAGTGGGGCCGGTGCCCCCAGGCGGCCTGGAG-ACCCCTCAGCCCGAGGGCCAGGCGG 

Chrom. 3   TAGAGTGGGGCTGGTGCCCCAAGGTGTCCTGGAGGGTGCCTCAGCCCGAGGGCGAGGCGG 

Chrom. 21  T-GAGTGGAGCGGGTGCCCCAAGGTAGCCCAGAG-ACCCCTCAGCCTGAGGGCGAGACAG 

           * ****** ** ******** ***   **  ***    ******** ********* * *  

 

OCT4 mRNA  GAGCCGGGGTGGAGAGCAACTCC------GAGGGGGCCTCCCCGGACCCCTGCGCCGCAC 

Chrom. 7   GAGCCGGGGTGGAGAACAACTCC------GAGGGGGCCTCCCCGGACCCCTGCGCCGCAC 

Chrom. 3   GAGCCAGGGTGGAAAGCAACTCC------GAGGGGGCCTCCCTGGACC------------  

Chrom. 21  AAGCTGAGATGGAGAGCAACCCCAGCTCTGAGGGAGCCTCTCCGGAACCCTGCGCC—-AC 

            ***   * **** * **** **      ***** ***** * *** *********  **  

 

OCT4 mRNA  CCGCAGGCGCCCCGAAGCTGGACAAGGAGAAGCTGGAGCCGAACCCTGAGGAGTCCCAGG 

Chrom. 7   TCGCAGGCGCCGCGAAGCTGGACAAGGAGAAGCTGGAACCGAACCCTGAGGAGTCCCAGG 
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Chrom. 3   ----AGGTGCCATGAAGCTGGACAAGGAGAAACTGGAGC-GGATCCTGAGGAGTCCCAGA  

Chrom. 21  -CGCTGGCGCTGTGAAGCTGCACAA---GAAGCTGGAGCTGAACCCCAAGGAGTCCCAGG                

            *** ** **   ******* ********** ***** * * * **  ***********  

  

OCT4 mRNA  ACATCAAAGCTCTTCAGAAAGACCTTGAACAATTTGCCAAGCTCCTAAAGCAGAAGAGGA 

Chrom. 7   ACATCAAAGCTCTTCAGAAAGACCTTGAACAATTTGCCAAGCTCCTAAAGCAGAAGAGGA 

Chrom. 3   ACATCAAAGCTCTTCAGAAAGACCTGGAACAATTTGCCAAACTCCTAAAGCAGAAGAGGG 

Chrom. 21  ACATCAAAGCTCTTCAGAAAAACCCCGAACAATCTGCCAAGCTCGTAAAGCAGAAGAGGA 

           ******************** ***   ****** ****** *** **************  

 

OCT4 mRNA  TCACACTAGGATATACCCAGGCCGATGTGGGGCTCACCCTGGGGGTTCTCTTTGGAAAGG 

Chrom. 7   TCACACTAGGATATACCCAGGCTGATGTGGGGCTCACCCTGGGGGTTCTCTTTGGAAAGG 

Chrom. 3   TCACCCTGGGATATACCCAGACCAATGTGGGGCTCACC-TGGGCTCACTTTTTGGAAAGG  

Chrom. 21  TCACCCTGGAATCTACTCAGGCTGCTGTGGGGCTCACCCTAGGGGTTCTCTTTGGGAAGG 

           ***** ** * ** *** *** *   *************** **    ** **** **** 

 

OCT4 mRNA  TGTTCAGCCAAACGACTATCTGCCGTTTTGAGGCTTTGCAGCTCAGTTTCAA-GAACATG 

Chrom. 7   TGTTCAGCCAAACGACTATCTGCCATTTTGAGGCTTTGCAGCTCAGTTTCAA-GAACATG 

Chrom. 3   TGTTCAGCCAAAGGTCTACCTGTCAATTTGAGGCTTTGCAACTCAGTTTCAAAGAACACG 

Chrom. 21  TGTTCAGCTAAAATACAATCTGCTGTTTTGAGGTTTTGAGGCTCA-TTTCAA-GGACA-- 

           ******** ****    * ***    ************   ************* *** 

 

OCT4 mRNA  TGTA--AGCTGCGGCCCCTGCTGCAGAAGTGGGTGGAGGAA-GCTGACAACAACGAGAAT 

Chrom. 7   TGTA--AGCTGCGGCCCCTGCTGCAGAAGTGGGTGGAGGAA-GCTGACAACAACGAGAAT 

Chrom. 3   TGTA--AGCTGTGGCCTCTGCTGCAGAAGTGGGTGGAGGAAAACTGACAACAA-GGAAAT  

Chrom. 21  TGTATAAGCTGTGGCCCCTGCTGCAGAGGTGGGTAGAGGAAA-CTGACAAGAATGAGAAG 

           ****  ***** **** ********** ****** ******  ******* **    **  

             

OCT4 mRNA  CTGCAGGAGATATGCAAGGCAGAGACCCTTGTGCAGGCCCGAAAGAGAAAGCGGACGAGT 

Chrom. 7   CTGCAGGAGATATGCAAGGCAGAGACCCTTGTGCAGGCCCGAAAGAGAAAGCGGACGAGT 

Chrom. 3   CTGCAGGAGATATGCAAGGCAGAGGCCCTAGTGCACGCCCAGAAGAGAAAGTGGACTAGT 

Chrom. 21  CTGCAGGAGATACGCAAGGCAAAACCCCCCATGCAGGCCTGGAAGAGAAAGCAAGAGAGT 

           ************ ******** *  ***   **** ***   *********      *** 

    

OCT4 mRNA  ATCGAGAACCGAGTGAGAGGCAACCTGGAGAGCATG---------------TTCCTGCAG 

Chrom. 7   ATCGAGAACCAAGTGAGAGGCAACCTGGAGAGCATG---------------TTCCTGCAG 

Chrom. 3   ATGGAGAATCGAGTGAGAGGCAACCTGGAGAGCATG---------------TTCCTGCAG    

Chrom. 21  ATGGAGAGCTGAGTGAGAGGCAACCTGGACAGCAACAGGCAGAACAGAGGCTTCCTGCAC 

           ** ****    ***********************                 ********      

 

OCT4 mRNA  TGCCCGAAGCCCACCCTGCAGCAAATTAGCCACATCGCCCAGCAGCTCGGGCTGGAGAAA 

Chrom. 7   TGCCCGAAGCCCACCCTGCAGCAAATTAGCCACATCGCCCAGCAGCTCGGGCTGGAGAAG 

Chrom. 3   TGCCCGAAGCCCACTCTGCAGCACATCAGCCACTTCGCTCAGCAGCTTGGGCTAGAGAAG  

Chrom. 21  TGCCCAAAGCCCACCCTGCAGCAGCCTAG-----TGGCCCAGCATTTGGGGCTTGAGAAG 

           ***** ******** ********    **     * ** *****  * *****  ****  

 

OCT4 mRNA  GACGTGGTCCGAGTGTGGTTTTGCAACCGTCGCCAGAAGGGCAAACGATCAAGCAGTGAC 

Chrom. 7   GACGTGGTCCGAGTGTGGTTTTGCAACCGT------------------------------ 

Chrom. 3   GACGTGGTTCCGGTGTCGTTCTGCAACCATTGCCAGAAGGGCAAACCATCAAGCAGCAAC 

Chrom. 21  GATGTGGTTC-----------TGCAACCATCGCCAGAAGGGC----TATCAAGCAATGGC 

           ** ***** *  **** *** ******* * ***********     ********    *      
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OCT4 mRNA  TAC---TCCC-AACGTGAGGATTTTGAGGCTGCTG------------GGTCTCCTTTCAC 

Chrom. 3   TAT---TTCC-AACCAGAGGATTTTGAGGCTGCTG------------GGTCTGCCTTCTC                                                                                 

Chrom. 21  TGCTCATTCCCAAGGAGAGGATTTTGAGGTTGCTGCAAAATCCTTGAGGTCTCTTTTCTC 

Chrom. 4   ------------------------------------------------------------ 

                 **** **   ************* *****            *****   *** *  

 

OCT4 mRNA  AGGGGGACCCGTATCCTCTCCTCTGGCGCCAGGGCCCCATTTTGGTACCCCAGGCTACGG 

Chrom. 3   AGGGGTATCCGCATCCGTTCCTCTGACGCCAGGGCCCCATTTTGGTACCCCAGGCAATTG 

Chrom. 21  AGGGAGACCAATA-CCTTTTCCTGTGGTGCGGGGCCCCATTTTGGTACCCCAGGCTATGG 

Chrom. 4   -----------------------------CAGGGCCCCATTTTGGTACCCCAGGCTACGG 

           ****  * *   * **  * *        * ************************ *  * 

 

OCT4 mRNA  GGGGCCTCACTTCACTACTCTGTACTCTTCGGTCCCATTCCCTGAGGGTGAGGTCTTTCC 

Chrom. 3   GAGCCCTCATGTCAGTATGCTGTACCCCTACATCCCAGTCCCTGAGGGTGAGGCCTTTCC 

Chrom. 21  GGGCCCTCACTTCACTAGTCTGTACTCCTTGGTCCCATTCCCTGAAGGTGAGGCCTTTCC  

Chrom. 4   GGGCCCTCACTTCACTACGCGGTACTCTTTGGTCCCATTCCCTGAGGGTGAGGCCTTTCC 

           * *******  *** **    ***  * *   ***** ******* ******* ******  

 

OCT4 mRNA  C-TCGGTGTCTGTCACCGCTCTGGGCTCCCCTATGCATGCAAACTGAGGTGCCTGATCAC 

Chrom. 3   C-TCGGTGTCTGTCACCACCCTGAGCTCTCCTGTGCATTCAAACCGAGGTGCCCACTCTC  

Chrom. 21  CCCAGGAGTCTGCCACTGCTCTGGGCTCTCCTGTGCATTCAAACTGCAAAGCCTGCCCTT  

Chrom. 4   C-TTGGTGTCTGTCACCGCTCTGGGCTCTCCCATGCATTCAAACTGAGGTGCCTGCTCAC 

           *   ** ***** ***  * *** **** **  ***** ***** *    ***    *   

 

OCT4 mRNA  CCCAGGAATAGGGGGCAGAGGAAG-----GGGAGAGCTAGGGAGAGAACCCTG-GGGTTT 

Chrom. 3   CCCGGGAATGGGGTGTGGGGGGAGAGGAAGGGAGAGCTACGGAGAGAACCCTG-GGGTTT 

Chrom. 21  CCTAGGAATGGGGGGCAGAGGAACA-----GGAGAGCTAGGGAGAGAACCCTGTGGGTTT 

Chrom. 4   CCCAGGAATGGGGGGCAGAGGAAGG----GGGAGAGCTAGGGAGAGAAC-TCTGGGGTTT 

           **  ***** *** *  * ** *      ********** **********    ******      

 

OCT4 mRNA  GTACCAGGCCTTTGGG-ATTAAGTTTTTCATTCACTAAGAAAGGAATTGGGAACACAATG 

Chrom. 3   GTACCAGGGCTTTAGG-ATTAAGTTCTTCATTCACTAAGAAAGGAATTGGGAACACAAAG 

Chrom. 21  GTACTGGGGGGTGGGGGATTAAGTTCTTCATTCACTAAGAGAGGAACTGGGAACACAAAG 

Chrom. 4   GTACCAGGGCTTCGGG-ATTAAGTTTTTCATTCACTAAGAAAGGAATTGGGAACACAATG 

           ****  **   *  ** ******** ************** ***** *********** * 

 

OCT4 mRNA  GGTGTTGGGGCAGGGAGTTTGGGGAAACTGGTTGGAGGGAAGGTGAAGTTCAATGATGCT 

Chrom. 3   GGTGTGGGGGCAGGGAGTTTGGAGAAACTGGTTGGAGGGAAGGTGAAGTAGGATGATGTT 

Chrom. 21  GGCTTGGGGGCAGGGAGTTTGGGGGAACTGGTTGAAGGGAAGGTGAAGTTCAGTGATGCT 

Chrom. 4   GCTGTGGGGGCAGGGAGTTTGGGGAAACTGGTTGGAGGGAAGGTGAAGTTCAGTGATGCT 

           *   * **************** * ********* **************    ******* 

 

OCT4 mRNA  CTTGACTTTAATCCCCACATCACTCATCACTTTGTTCTTAAATAAA 

Chrom. 3   CTTAACTTTAATCCCCACATCACTCCTCACTTTGTTCTTA------ 

Chrom. 21  CTTGATTTTAATCCCCACATCAGTCATCACTACGTTCTTCCATAAA 

Chrom. 4   CTTGACTTTAATTCCCACATCACTCATCACTTTGTTCTTAAACAAA 

           *** * ****** ********* ** *****  ******  * *** 



 

 

146 

 

 

Supp. Figure 6. CLUSTAL 2.0.10 multiple sequence alignment of contiguous OCT4 

retrocopy sequenced from RT-PCR (fig 2.), predicted OCT4 retrogene ORF 

(XM_001789212.1) located on chromosome 7 (locus LOC100138938), and bovine OCT4 

mRNA (Genbank Accession NM_174580). OCT4 exons are also aligned for reference. 

The shared translational start sites for OCT4 and the predicted OCT4 retrogene are 

labeled green. Ten single nucleotide polymorphisms between aligned sequences are 

highlighted in yellow. Exons 2 and 3 of the predicted OCT4 retrogene are boxed and 

shaded green. 
   

OCT4            GGAGCTGGAAGTGAAGGCCCGCATGGGGGACCTGCACCGAGAGTCTAGGAGTCTGGGGGC 60 

exon1           GGAGCTGGAAGTGAAGGCCCGCATGGGGGACCTGCACCGAGAGTCTAGGAGTCTGGGGCC  

                ************************************************************                                                             

 

OCT4            TGGAGAGGGGCCTGGGTGGAGATCCCTGGCTTTCCCCTTCCAGACACCACCGCCACCAGC 120 

exon1           TGGAGAGGGGCCTGGGTGGAGATCCCTGGCTTTCCCCTTCCAGACACCACCGCCACCAGC       

                ************************************************************ 

 

OCT4            AGGCAAACACCCTCCGCCTCAGTTTCTCCCACCCCCACGGTCCCTTCCCCCCACCCATCC 180 

exon1           AGGCAAACACCCTCCGCCTCAGTTTCTCCCACCCCCACCGTCCCTTCCCCCCACCCATCC  

                ************************************************************  

                                                         

OCT4            AGGGGGCGGGGCCAGAGGTCAAGGCTAGTGGGTGGGATTGGGGAGGGAGAGAGGTGTTGA 240 

exon1           AGGGGGCGGGGCCAGAGGTCAAGGCTAGTGGGTGGGATTGGGGAGGGAGAGAGGTGTTGA  

                ************************************************************ 

                                                                             

Contig          ------------------------------------------GGGGTGCCTTCCTTCCCC 18 

XM_001789212      ----------------------------------------------CCTTCCTTCCCC 12 

OCT4            GCAGTCTCTAGGAGATCCCTCGTTTTCCTAGGCCCCCGGCTCGGGGTGCCTTCCTTCCCC 300 

exon1           GCAGTCTCTAGGAGATCCCTCGTTTTCCTAGGCCCCCGGCTCGGGGTGCCTTCCTTCCCC 

                ************************************************************ 

 

Contig          ATGGCGGGACACCTCGCTTCTGACTTNGCCTTCTCGCCCCCGACCGCCGGCGGAGACCAA 78 

XM_001789212    ATGGCGGGACACCTCGCTTCTGACTTCGCCTTCTCGCCCCCGCCGGGCGGTGGAGGCGAT 72 

OCT4            ATGGCGGGACACCTCGCTTCTGACTTCGCCTTCTCGCCCCCGCCGGGCGGTGGAGGCGAT 360 

exon1           ATGGCGGGACACCTCGCTTCTGACTTCGCCTTCTCGCCCCCGCCGGGCGGTGGAGGCGAT  

                ************************************************************            

 

Contig          GGGCCGGGAGGGCCAGAGCCGGGCTGGGTTGATCCTCGGACCTGGATGAGCTACCAAGGG 138         

XM_001789212    GGGCCGGGAGGGCCAGAGCCGGGCTGGGTTGATCCTCGGACCTGGATGAGCTTCCAAGGG 132 

OCT4            GGGCCGGGAGGGCCAGAGCCGGGCTGGGTTGATCCTCGGACCTGGATGAGCTTCCAAGGG 420 

exon1           GGGCCGGGAGGGCCAGAGCCGGGCTGGGTTGATCCTCGGACCTGGATGAGCTTCCAAGGG  

                ************************************************************ 

  

Contig          CCTCCCGGTGGGTCGGGGATCGGGCCGGGGGTTGTGCCTGGAGCCGAGGTGTGGGGGCTT 198 

XM_001789212    CCTCCCGGTGGGTCGGGGATCGGGCCGGGGGTTGTGCCTGGAGCCGAGGTGTGGGGGCTT 192 

OCT4            CCTCCCGGTGGGTCGGGGATCGGGCCGGGGGTTGTGCCTGGCGCCGAGGTGTGGGGGCTT 480 

exon1           CCTCCCGGTGGGTCGGGGATCGGGCCGGGGGTTGTGCCTGGCGCCGAGGTGTGGGGGCTT  

                ***************************************** ****************** 

   

Contig          CCCCCGTGCCCCCCGCCCTATGACTTGTGTGGAGGGATGGCCTACTGTGCGCCGCAGGTT 258 

XM_001789212    CCCCCGTGCCCCCCGCCCTATGACTTGTGTGGAGGGATGGCCTACTGTGCGCCGCAGGTT 252 

OCT4            CCCCCGTGCCCCCCGCCCTATGACTTGTGTGGAGGGATGGCCTACTGTGCGCCGCAGGTT 540 

exon1           CCCCCGTGCCCCCCGCCCTATGACTTGTGTGGAGGGATGGCCTACTGTGCGCCGCAGGTT  

                ************************************************************ 

  

Contig          GGAGTGGGGCCGGTGCCCCCAGGCGGCCTGGAGACCCCTCAGCCCGAGGGCCAGGCGGGA 318 

XM_001789212    GGAGTGGGGCCGGTGCCCCCAGGCGGCCTGGAGACCCCTCAGCCCGAGGGCCAGGCGGGA 312 

OCT4            GGAGTGGGGCCGGTGCCCCCAGGCGGCCTGGAGACCCCTCAGCCCGAGGGCGAGGCGGGA 600 

exon1           GGAGTGGGGCCGGTGCCCCCAGGCGGCCTGGAGACCCCTCAGCCCGAGGGCGAGGCGGGA  

                ************************************************************ 

 

Contig          GCCGGGGTGGAGAACAACTCCGAGGGGGCCTCCCCGGACCCCTGCGCCGCACTCGCAGGC 378 

XM_001789212    GCCGGGGTGGAGAACAACTCCGAGGGGGCCTCCCCGGACCCCTGCGCCGCACTCGCAGGC 372                 

OCT4            GCCGGGGTGGAGAGCAACTCCGAGGGGGCCTCCCCGGACCCCTGCGCCGCACCCGCAGGC 660 

exon1           GCCGGGGTGGAGAGCAACTCCGAGGGGGCCTCCCCGGACCCCTGCGCCGCACCCGCAGGC  

                ************* ************************************** ******* 
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Contig          GCCGCGAAGCTGGACAAGGAGAAGCTGGAACCGAACCCTGAGGAGTCCCAGGACATCAAA 438 

XM_001789212    GCCGCGAAGCTGGACAAGGAGAAGCTGGAACCGAACCCTGAGGAGTCCCAGGACATCAAA 432 

OCT4            GCCCCGAAGCTGGACAAGGAGAAGCTGGAGCCGAACCCTGAGGAGTCCCAGGACATCAAA 720 

exon1           GCCCCGAAGCTGGACAAGGAGAAGCTGGAGCCGAACCCTGAGGAG---------------  

exon2           ---------------------------------------------TCCCAGGACATCAAA  

                *** ************************* ****************************** 

 

Contig          GCTCTTCAAAAAGACCTTGAACAATTTGCCAAGCTCCTAAAGCAGAAGAGGATCACACTA 498 

XM_001789212    GCTCTTCAGAAAGACCTTGAACAATTTGCCAAGCTCCTAAAGCAGAAGAGGATCACACTA 492 

OCT4            GCTCTTCAGAAAGACCTTGAACAATTTGCCAAGCTCCTAAAGCAGAAGAGGATCACACTA 780 

exon2           GCTCTTCAGAAAGACCTTGAACAATTTGCCAAGCTCCTAAAGCAGAAGAGGATCACACTA  

                ************************************************************             

 

Contig          GGATATACCCAGGCTGATGTGGGGCTCACCCTGGGGGTTCTCTTTGGAAAGGTGTTCAGC 558 

XM_001789212    GGATATACCCAGGCTGATGTGGGGCTCACCCTGGGGGTTCTCTTTGGAAAGGTGTTCAGC 552 

OCT4            GGATATACCCAGGCCGATGTGGGGCTCACCCTGGGGGTTCTCTTTGGAAAGGTGTTCAGC 840 

exon2           GGATATACCCAGGCCGATGTGGGGCTCACCCTGGGGGTTCTCTTTG--------------  

exon3           ----------------------------------------------GAAAGGTGTTCAGC  

                ************** ********************************************* 

 

Contig          CAAACGACTATCTGCCATTTTGAGGCTTTGCAGCTCAGTTTCAAGAACATGTGTAAGCT 617 

XM_001789212    CAAACGACTATCTGCCATTTTGAGGCTTTGCAGCTCAGTTTCAAGAACATGTGTAAGCT 612 

OCT4            CAAACGACTATCTGCCGTTTTGAGGCTTTGCAGCTCAGTTTCAAGAACATGTGTAAGCT 899 

exon3           CAAACGACTATCTGCCGTTTTGAGGCTTTGCAGCTCAGTTTCAAGAACATGTGTAAGCT  

                **************** ****************************************** 

 

Contig          GCGGCCCCTGCTGCAGAAGTGGGTGGAGGAAGCTGACAACAACGAGAATCTGCAGGAGAT 677 

XM_001789212    GCGGCCCCTGCTGCAGAAGTGGGTGGAGGAAGCTGACAACAACGAGAATCTGCAGGAGAT 672 

OCT4            GCGGCCCCTGCTGCAGAAGTGGGTGGAGGAAGCTGACAACAACGAGAATCTGCAGGAGAT 959 

exon3           GCGGCCCCTGCTGCAGAAGTGGGTGGAGGAAGCTGACAACAACGAGAATCTGCAGGAG--  

exon4           ----------------------------------------------------------AT  

                ************************************************************ 

 

Contig          ATGCAAGGCAGAGACCCTTGTGCAGGCCCGAAAGAGAAAGCGGACGAGTATCGAGAACCA 737 

XM_001789212    ATGCAAGGCAGAGACCCTTGTGCAGGCCCGAAAGAGAAAGCGGACGAGTATCGAGAACCA 732 

OCT4            ATGCAAGGCAGAGACCCTTGTGCAGGCCCGAAAGAGAAAGCGGACGAGTATCGAGAACCG 1019 

exon4           ATGCAAGGCAGAGACCCTTGTGCAGGCCCGAAAGAGAAAGCGGACGAGTATCGAGAACCG  

                ***********************************************************  

 

Contig          AGTGAGAGGCAACCTGGAGAGCATGTTCCTGCAGTGCCCGAAGCCCACCCTGCAGCAAAT 797 

XM_001789212    AGTGAGAGGCAACCTGGAGAGCATGTTCCTGCAGTGCCCGAAGCCCACCCTGCAGCAAAT 792 

OCT4            AGTGAGAGGCAACCTGGAGAGCATGTTCCTGCAGTGCCCGAAGCCCACCCTGCAGCAAAT 1079 

exon4           AGTGAGAGGCAACCTGGAGAGCATGTTCCTGCAGTGCCCGAAGCCCACCCTGCAGCAAAT  

                ************************************************************ 

 

Contig          TAGCCACATCGCCCAGCAGCTCGGGCTGGAGAAGGACGTGGTCCGAGTGTGGTTTTGCAA 857 

XM_001789212    TAGCCACATCGCCCAGCAGCTCGGGCTGGAGAAGGACGTGGTCCGAGTGTGGTTTTGCAA 852 

OCT4            TAGCCACATCGCCCAGCAGCTCGGGCTGGAGAAAGACGTGGTCCGAGTGTGGTTTTGCAA 1139 

exon4           TAGCCACATCGCCCAGCAGCTCGGGCTGGAGAAAGAC-----------------------  

exon5           -------------------------------------GTGGTCCGAGTGTGGTTTTGCAA  

                ********************************* ************************** 

 

Contig          CCGT-------------------------------------------------------- 861 

XM_001789212    CCGTCAGCAGC--GGCAGCAGCATATACATTCACTGATAGTTATATGTGAGTTTTATGG- 909 

OCT4            CCGTCGCCAGAAGGGCAAACGATCAAGCAGTGACTACTCCCAACGTGAGGATTTTGAGGC 1199 

exon5           CCGTCGCCAGAAGGGCAAACGATCAAGCAGTGACTACTCCCAACGTGAGGATTTTGAGGC  

                *****  ***   ****   **  *  ** * ***  *    *  ** *  ****  ** 

                 

XM_001789212    TATCGTGTCTTAA------------------------------------------------ 921 

OCT4            TGCTGGGTCTCCTTTCACAGGGGGACCCGTATCCTCTCCTCTGGCGCCAGGGCCCCATTTT 1260 

exon5           TGCTGGGTCTCCTTTCACAGGGGGACCCGTATCCTCTCCTCTGGCGCCAGGGCCCCATTTT  

                *   * ****   ************************************************ 

 

OCT4            GGTACCCCAGGCTACGGGGGGCCTCACTTCACTACTCTGTACTCTTCGGTCCCATTCCCT 1320 

exon5           GGTACCCCAGGCTACGGGGGGCCTCACTTCACTACTCTGTACTCTTCGGTCCCATTCCCT  

                ************************************************************ 

 

OCT4            GAGGGTGAGGCCTTTCCCTCGGTGTCTGTCACCGCTCTGGGCTCCCCTATGCATGCAAAC 1380 

exon5           GAGGGTGAGGCCTTTCCCTCGGTGTCTGTCACCGCTCTGGGCTCCCCTATGCATGCAAAC  

                ************************************************************ 
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OCT4            TGAGGTGCCTGATCACCCCAGGAATGGGGGGCAGAGGAAGGGGAGAGCTAGGGAGAGAAC 1440 

exon5           TGAGGTGCCTGATCACCCCAGGAATGGGGGGCAGAGGAAGGGGAGAGCTAGGGAGAGAAC  

                ************************************************************ 

 

OCT4            CCTGGGGTTTGTACCAGGCCTTTGGGATTAAGTTTTTCATTCACTAAGAAAGGAATTGGG 1500 

exon5           CCTGGGGTTTGTACCAGGCCTTTGGGATTAAGTTTTTCATTCACTAAGAAAGGAATTGGG  

                ************************************************************ 

 

OCT4            AACACAATGGGTGTTGGGGCAGGGAGTTTGGGGAAACTGGTTGGAGGGAAGGTGAAGTTC 1560 

exon5           AACACAATGGGTGTTGGGGCAGGGAGTTTGGGGAAACTGGTTGGAGGGAAGGTGAAGTTC 444 

                ************************************************************ 

 

OCT4            AATGATGCTCTTGACTTTAATCCCCACATCACTCATCACTTTGTTCTTAAATAAA 1615 

exon5           AATGATGCTCTTGACTTTAATCCCCACATCACTCATCACTTTGTTCTTAAATAAA 499 

                ******************************************************* 
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Supp. Figure 7. A. Sequence of putative OCT4 paralog protein translated from 

contiguous OCT4 retrocopy mRNA sequence from RT-PCR (Fig 2.) if the OCT4 

translational start site is conserved and the coding sequence contains no introns. The stop 

codon lies within the fused L1_BT sequence 3‟ to the OCT4 retrocopy. B. Alignment of 

putative OCT4 paralog with bovine OCT4 and human OCT4A proteins. Dashes in 

sequence (-) and * indicate identical amino acid in the same position. Two dots (:) 

indicate a highly conserved amino acid substitution and a single dot (.) is a less conserved 

amino acid substitution. The first 133 amino acids are the N terminal transactivation 

domain. The lightly shaded box highlights 75 amino acids of the POUs DNA binding 

domain. Sequence in bold indicate the linker region. The dark gray shaded box is the 

POU homeodomain. Retrocopy amino acid sequence in bold italics is putative sequence 

translated from the 3‟ L1-BT LINE fragment fused 3‟ to the OCT4 retrocopy. C. Percent 

sequence similarity between the OCT4 retrocopy lacking the L1 LINE contribution (bold 

italics), bovine OCT4 and human OCT4A proteins.    
 

A. 

MAGHLASDFAFSPPPGGGGDGPGGPEPGWVDPRTWMSFQGPPGGSGIGPGVVPGAEVWG

LPPCPPPYDLCGGMAYCAPQVGVGPVPPGGLETPQPEGQAGAGVENNSEGASPDPCAAL

AGAAKLDKEKLEPNPEESQDIKALQKDLEQFAKLLKQKRITLGYTQADVGLTLGVLFGK

VFSQTTICHFEALQLSFKNMCKLRPLLQKWVEEADNNENLQEICKAETLVQARKRKRTS

IENQVRGNLESMFLQCPKPTLQQISHIAQQLGLEKDVVRVWFCNRVPLHTSQDGCDPKV

YK* 

 
B. 

Bovine.OCT4    MAGHLASDFAFSPPPGGGGDGPGGPEPGWVDPRTWMSFQGPPGGSGIGPGVVPGAEVWGL 60 

Retrocopy      ------------------------------------------------------------ 60 

Human.OCT4     -----------------------------------L--------P------G—S-----I 60 

               ***********************************:********.****** **:****: 

 

Bovine.OCT4    PPCPPPYDLCGGMAYCAPQVGVGPVPPGGLETPQPEGEAGAGVESNSEGASPDPCAAPAG 120 

Retrocopy      -------------------------------------Q------N------------L-- 120 

Human.OCT4A    -------EF-------G------L—-Q-----S-------V------D----E—-TVTP- 120 

               *******::*******.****** ** *****.****:**.***.**:****:**:. .* 

 

Bovine.OCT4    APKLDKEKLEPNPEESQDIKALQKDLEQFAKLLKQKRITLGYTQADVGLTLGVLFGKVFS 180 

Retrocopy      -A---------------------------------------------------------- 180 

Human.OCT4A    -V—-E-----Q-------------E----------------------------------- 180 

               * **:***** *************:*********************************** 

 

Bovine.OCT4    QTTICRFEALQLSFKNMCKLRPLLQKWVEEADNNENLQEICKAETLVQARKRKRTSIENR 240 

Retrocopy      -----H-----------------------------------------------------Q 240 

Human.OCT4A    ------------------------------------------------------------ 240 

               *****:*****************************************************: 

 

Bovine.OCT4    VRGNLESMFLQCPKPTLQQISHIAQQLGLEKDVVRVWFCNRRQKGKRSSSDYSQREDFEA 300 

Retrocopy      -----------------------------------------VPLHTSQDGCDPKVYK 

Human.OCT4A    ------NL--------------------------------------------A------- 300 

               ******.:*********************************    . ...  .:  .***               

 

Bovine.OCT4    AGSPFTGGPVSSPLAPGPHFGTPGYGGPHFTTLYSSVPFPEGEVFPSVSVTALGSPMHAN 360 

Human.OCT4A    -----S-----F--------------S----A-----------A—-P----T------S- 360 

               *****:***** **************.****:***********.**.****:******:* 
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C. 

   Name          Len(aa)  SeqB    Name        Len(aa)  Score 

============================================================= 

1    Human.OCT4A   360      2    Bovine.OCT4   360      90    

1    Human.OCT4A   360      3    Retrocopy     281      90    

2    Bovine.OCT4   360      3    Retrocopy     281      97    
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Supp. Figure 8. Alignments of nested RT-PCR sequences (using primers 160/161) 

amplified from pooled 5‟ and 3‟ RACE cDNAs using primers 160 (highlighted in violet) 

and 161 (highlighted in green). The nested RT-PCR sequence (primers 157 and Universal 

nested primer) from 5‟ RACE cDNA (primers 157 and Universal primer mix) is also 

aligned.  Clones were sequenced with SP6 and T7 sequencing primers. Underlined 

sequence in genome reference (-3800086 to -3804032 of NW_001495368.2) indicates 

chromosome 7 OCT4 retrocopy.  Clones were aligned to genome reference to display 

where sequence break/ligation events occurred. Sequences in colored boxes indicate the 

regions of discontinuity between clone sequences and the genome reference, and all lie 

within L1 LINE or SINE fragments. These short repeats may act as cohesive ends or 

redundant repeats for possible recombination. Sequences in colored boxes are present in 

clone sequences only once but are duplicated in the alignment to demonstrate 

conservation at two places within genome reference. Three of six clones exhibit the same 

discontinuity point/ repeated sequence. Continuous clone sequences match the original 

RT-PCR product sizes. Therefore, the deletions are not caused by transformed JM109 E. 

coli.  The shortest deletion is about 1733 bp (clone D7) and about 2443 bp in the three 

identical clones (D1, C4 and D4.2).  
 
 

CLUSTAL 2.0.11 multiple sequence alignment 

 

genome        ACTCGCAGGCGCCGCGAAGCTGGACAAGGAGAAGCTGGAACCGAACCCTGAGGAGTCCCA 60 

plasmid.D1    ACTCGCAGGCGCCGCGAAGCTGGACAAGGAGAAGCTGGAACCGAACCCTGAGGAGTCCCA 60 

plasmid.D4    ACTCGCAGGCGCCGCGAAGCTGGACAAGGAGAAGCTGGAACCGAACCCTGAGGAGTCCCA 

plasmid.D7    ACTCGCAGGCGCCGCGAAGCTGGACAAGGAGAAGCTGGAACCGAACCCTGAGGAGTCCCA 60 

Plasmid.C4    ACTCGCAGGCGCCGCGAAGCTGGACAAGGAGAAGCTGGAACCGAACCCTGAGGAGTCCCA 60                 

 

genome        GGACATCAAAGCTCTTCAGAAAGACCTTGAACAATTTGCCAAGCTCCTAAAGCAGAAGAG 120 

plasmid.D1    GGACATCAAAGCTCTTCAGAAAGACCTTGAACAATTTGCCAAGCTCCTAAAGCAGAAGAG 120 

plasmid.D4    GGACATCAAAGCTCTTCAGAAAGACCTTGAACAATTTGCCAAGCTCCTAAAGCAGAAGAG 

plasmid.D7    GGACATCAAAGCTCTTCAGAAAGACCTTGAACAATTTGCCAAGCTCCTAAAGCAGAAGAG 120                   

Plasmid.C4    GGACATCAAAGCTCTTCAGAAAGACCTTGAACAATTTGCCAAGCTCCTAAAGCAGAAGAG 120 

Plasmid.D4.2  ----------------------NCCCTGGANCAATTTGCCCAGCTCCTAAAGCAGAAGAG 38 

 

genome        GATCACACTAGGATATACCCAGGCTGATGTGGGGCTCACCCTGGGGGTTCTCTTTGGAAA 180 

plasmid.D1    GATCACACTAGGATATACCCAGGCTGATGTGGGGCTCACCCTGGGGGTTCTCTTTGGAAA 180 

plasmid.D4    GATCACACTAGGATATACCCAGGCTGATGTGGGGCTCACCCTGGGGGTTCTCTTNGGAAA 41 

plasmid.D7    GATCACACTAGGATATACCCAGGCTGATGTGGGGCTCACCCTGGGGGTTCTCTTTGGAAA 180                   

Plasmid.C4    GATCACACTAGGATATACCCAGGCTGATGTGGGGCTCACCCTGGGGGTTCTTTTTGGAAA 180 

Plasmid.D4.2  GATCNCNCTAGGATATACCCNGGCTGATGTGGGGCTCACCCTGGGGGTTCTCTTNGNAAA 98 

 

genome        GGTGTTCAGCCAAACGACTATCTGCCATTTTGAGGCTTTGCAGCTCAGTTTCAAGAACAT 240 

plasmid.D1    GGTGTTCAGCCAAACGACTATCTGCCATTTTGAGGCTTTGCAGCTCAGTTTCAAGAACAT 240 

plasmid.D4    GGTGTTCAGCCAAACGACTATCTGCCATTTTGAGGCTTTGCAGCTCAGTTTCAAGAACAT 240           

plasmid.D7    GGTGTTCAGCCAAACGACTATCTGCCATTTTGAGGCTTTGCAGCTCAGTTTCAAGAACAT 240 

Plasmid.C4    GGTGTTCAGCCAAACGACTATCTGCCATTTTGAGGCTTTGCAGCTCAGTTTCAAGAACAT 240                 

Plasmid.D4.2  GG-GTTCAGCCNAACGACTATCTGCCATTTNGAGGCTTTGCAGCTCAGTTTCAAGAACAT 

  

genome        GTGTAAGCTGCGGCCCCTGCTGCAGAAGTGGGTGGAGGAAGCTGACAACAACGAGAATCT 300 

plasmid.D1    GTGTAAGCTGCGGCCCCTGCTGCAGAAGTGGGTGGAGGAAGCTGACAACAACGAGAATCT 300 

plasmid.D4    GTGTAAGCTGCGGCCCCTGCTGCAGAAGTGGGTGGAGGAAGCTGACAACAACGAGAATCT 300 

plasmid.D7    GTGTAAGCTGCGGCCCCTGCTGCAGAAGTGGGTGGAGGAAGCTGACAACAACGAGAATCT 300 

Plasmid.C4    GTGTAAGCTGCGGCCCCTGCTGCAGAAGTGGGTGGAGGAAGCTGACAACAACGAGAATCT 300 

Plasmid.D4.2  GTGTAAGCTGCGGCCCCTGCTGCAGAAGTGGGTGGAGGAAGCTGACAACAACGAGAATCT 217                                
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genome        GCAGGAGATATGCAAGGCAGAGACCCTTGTGCAGGCCCGAAAGAGAAAGCGGACGAGTAT 360 

plasmid.D1    GCAGGAGATATGCAAGGCAGAGACCCTTGTGCAGGCCCGAAAGAGAAAGCGGACGAGTAT 360 

plasmid.D4    GCAGGAGATATGCAAGGCAGAGACCCTTGTGCAGGCCCGAAAGAGAAAGCGGACGAGTAT 360 

plasmid.D7    GCAGGAGATATGCAAGGCAGAGACCCTTGTGCAGGCCCGAAAGAGAAAGCGGACGAGTAT 360 

Plasmid.C4    GCAGGAGATATGCAAGGCAGAGACCCTTGTGCAGGCCCGAAAGAGAAAGCGGACGAGTAT 360    

Plasmid.D4.2  GCAGGAGATATGCAAGGCAGAGACCCTTGTGCAGGCCCGAAAGAGAAAGCGGACGAGTAT 277 

 

genome        CGAGAACCAAGTGAGAGGCAACCTGGAGAGCATGTTCCTGCAGTGCCCGAAGCCCACCCT 420 

plasmid.D1    CGAGAACCAAGTGAGAGGCAACCTGGAGAGCATGTTCCTGCAGTGCCCGAAGCCCACCCT 420 

plasmid.D4    CGAGAACCAAGTGAGAGGCAACCTGGAGAGCATGTTCCTGCAGTGCCCGAAGCCCACCCT 420 

plasmid.D7    CGAGAACCAAGTGAGAGGCAACCTGGAGAGCATGTTCCTGCAGTGCCCGAAGCCCACCCT 420 

Plasmid.C4    CGAGAACCAAGTGAGAGGCAACCTGGAGAGCATGTTCCTGCAGTGCCCGAAGCCCACCCT 420 

Plasmid.D4.2  CGAGAACCAAGTGAGAGGCAACCTGGAGAGCATGTTCCTGCAGTGCCCGAAGCCCACCCT 337                 

 

genome        GCAGCAAATTAGCCACATCGCCCAGCAGCTCGGGCTGGAGAAGGACGTGGTCCGAGTGTG 480 

plasmid.D1    GCAGCAAATTAGCCACATCGCCCAGCAGCTCGGGCTGGAGAAGGACGTGGTCCGAGTGTG 480 

plasmid.D4    GCAGCAAATTAGCCACATCGCCCAGCAGCTCGGGCTGGAGAAGGACGTGGTCCGAGTGTG 480 

plasmid.D7    GCAGCAAATTAGCCACATCGCCCAGCAGCTCGGGCTGGAGAAGGACGTGGTCCGAGTGTG 480 

Plasmid.C4    GCAGCAAATTAGCCACATCGCCCAGCAGCTCGGGCTGGAGAAGGACGTGGTCCGAGTGTG 480 

Plasmid.D4.2  GCAGCAAATTAGCCACATCGCCCAGCAGCTCGGGCTGGAGAAGGACGTGGTCCGAGTGTG 397 

5.RACE.157    -------------------------------------------------GTCCGAGTGTG 11 

 

genome        GTTTTGCAACCGTGTACCACTTCACACCAGTCAGGATGGCTGCGATCCAAAAGTCTACAA 540 

plasmid.D1    GTTTTGCAACCGTGTACCACTTCACACCAGTCAGGATGGCTGCGATCCAAAAGTCCACAA 539 

plasmid.D4    GTTTTGCAACCGTGTACCACTTCACACCAGTCAGGATGGCTGCGATCCAAAAGTCCACAA 539 

plasmid.D7    GTTTTGCAACCGTGTACCACTTCACACCAGTCAGGATGGCTGCGATCCAAAAGTCCACAA 540 

Plasmid.C4    GTTTTGCAACCGTGTACCACTTCACACCAGTCAGGATGGCTGCGATCCAAAAGTCTACAA 540 

Plasmid.D4.2  GTTTTGCAACCGTGTACCACTTCACACCAGTCAGGATGGCTGCGATCCAAAAGTCTACAA 450 

5.RACE.157    GTTTTGCAACCGTGTACCACTTCACACCAGTCAGGATGGCTGCGATCCAAAAGTCTACAA 540 

                 

genome        ATAATAAATGCTGGAGAGGGTGTGGAGAAAAGGGAACCCTCCTACACTGTTGGTGGGAAT 600 

plasmid.D4    ATAATAAATGCTGGAGAGGGTGTGGAGAAA------------------------------ 430 

plasmid.D7    ATAATAAATGCTGGAGA------------------------------------------- 557 

5.RACE.157    ATAATAAATGCTGGAGAGGGTGTG------------------------------------- 87 

                

Break from genomic reference 

                                                                             

genome        GATTGTAAATCAATATATATACATTCTGGAGAAAGAAATGGCAACCCACTCCAGTATTCT 2340 

plasmid.D7    ----------CAA-ATA-ATAAATGCTGGAGAAAGAAATGGCAACCCACTCCAGTATTCT 48 

                       

genome        TGCCTGGGGAGTCCTATGGACGGAGGAGCCTGGTGGGCTGCTGTCTGTGGGGTCACACAG 2400 

plasmid.D7    TGCCTGGGGAGTCCTATGGACGGAGGAGCCTGGTGGGCTGCTGTCTGTGGGGTCACACAG 108 

                 

genome        AGTCATACATGACTGAAGCAAGTTAGCAGCAGCGGCAGCAGCATATACATTCACTGATAG 2460 

plasmid.D7    AGTCATACATGACTGAAGCAAGTTAGCAGCAGCGGCAGCAGCATATACATTCACTGATAG 168 

 

genome        TTATATGTGTATATATACATTCTTTTTCATATTATTTTGCATTATGGTTTATTACTGGAT 2520 

plasmid.D7    TTATATGTGTATATATACATTCTTTTTCATATTATTTTGCATTATGGTTTATTACTGGAT 228 

               

genome        ATTGAATATAGTTGCCTGTACTGTACAGTAGGACCTTGTTGTTTATCTGTTGATACTTTA 2580 

plasmid.D7    ATTGAATATAGTTGCCTGTACTGTACAGTAGGACCTTGTTGTTTATCTGTTGATACTTTA 288 

                

genome        TATATAGTAGTATGTGTCTGTTAATCTCTGATTCCTAATTTATGCCTTCCCCCAACGCCT 2640 

plasmid.D7    TATATAGTAGTATGTGTCTGTTAATCTCTGATTCCTAATTTATGCCTTCCCCCAACGCCT 348 

 

genome        TTCTCCTTTGGTAACCATAAGTTTTTTTTCCTGTCTGTCTGTTTTGTAAATAAATTTATG 2700 

plasmid.D7    TTCTCCTTTGGTAACCATAAGTTTTTTTTCCTGTCTGTCTGTTTTGTAAATAAATTTATG 408 

 

genome        TCATATTTTAGATTCCACATTAAGTGATAGGATATGTCTTTTCTCTTCCTCAAATGGGAT 2760 

plasmid.D7    TCATATTTTAGATTCCACATTAAGTGATAGGATATGTCTTTTCTCTTCCTCAAATGGGAT 468 

 

genome        TATTTCATTCTTTTTTATGGCTGTGCATGTGTGTGTATTTAGTTTTTTAAGCAGCCTTCA 2820 

plasmid.D7    TATTTCATTCTTTTTTATGGCTGTGCATGTGTGTGTATTTAGTTTTTTAAGCAGCCTTCA 528  
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genome        TACTGTAACACAGTGGCTACACCAGTTTACCAACACCCTCCCACCTACAGTGTAGAAGGG 2880 

plasmid.D7    TACTGTAACACAGTGGCTACACCAGTTTACCAACACCCTCCCACCTACAGTGTAGAAGGG 588 

 

genome        TTCCCTTTTCTCCACAACCTCTCCAACATCTGTTATTTGTAGACTTTTTGATGATGACCA 2940 

plasmid.D1    ----------TCCACAACCTCTCCAACATCTGTTATTTGTAGACTTTTTGATGATGACCA 50 

plasmid.D7    TTCCCTTTTCTCCACAACCTCTCCAACATCTGTTATTTGTAGACTTTTTGATGATGACCA 648                                              

Plasmid.C4    ----------TCCACAACCTCTCCAACATCTGTTATTTGTAGACTTTTTGATGATGACCA 43 

Plasmid.D4.2  ----------TCCACAACCTCTCCAACATCTGTTATTTGTAGACTTTTTGATGATGACCA 50 

 

genome        TCCTGGCTGATAGGAAATTTTTATGTGCATTTCTATGTGATAGGAAATTGTAATTTTTAT 3000 

plasmid.D1    TCCTGGCTGATAGGAAATTTTTATGTGCATTTCTATGTGATAGGAAATTGTAATTTTTAT 110 

plasmid.D4    -------------GAAATTTTTATGTGCATTTCTATGTGATAGGAAATTGTAATTTTTAT 43 

plasmid.D7    TCCTGGCTGATAGGAAATTTTTATGTGCATTTCTATGTGATAGGAAATTGTAATTTTTAT 708 

Plasmid.C4    TCCTGGCTGATAGGAAATTTTTATGTGCATTTCTATGTGATAGGAAATTGTAATTTTTAT 103 

Plasmid.D4.2  TCCTGGCTGATAGGAAATTTTTATGTGCATTTCTATGTGATAGGAAATTGTAATTTTTAT 110 

 

genome        GTGCATTTTTGTGATAATTAGCAGTGTTGAGCGTCCTTTGATGAAATGTCTTCTGCCCAT 3060 

plasmid.D1    GTGCATTTTTGTGATAATTAGCAGTGTTGAGCGTCCTTTGATGAAATGTCTTCTGCCCAT 169 

plasmid.D4    GTGCATTTTTGTGATAATTAGCAGTGTTGAGCGTCCTTTGATGAAATGTCTTCTGCCCAT 103 

plasmid.D7    GTGCATTTTTGTGATAATTAGCAGTGTTGAGCGTCCTTTGATGAAATGTCTTCTGCCCAT 768                 

Plasmid.C4    GTGCATTTTTGTGATAATTAGCAGTGTTGAGCGTCCTTTGATGAAATGTCTTCTGCCCAT 163 

Plasmid.D4.2  GTGCATTTTTGTGATAATTAGCAGTGTTGAGCGTCCTTTGATGAAATGTCTTCTGCCCAT 170 

 

genome        TTTTTGATAGTGTTTGTTTTTTGTTCTTGAGTTAGTTGTATGAACTGTTTGTATGTTTTG 3120 

plasmid.D1    TTTTTGATAGTGTTTGTTTTTTGTTCTTGAGTTAGTTGTATGAACTGTTTGTATGTTTTG 61 

plasmid.D4    TTTTTGATAGTGTTTGTTTTTTGTTCTTGAGTTTGTTGTATGAACTGTTTGTATGTTTTG 16 

plasmid.D7    TTTTTGATAGTGTTTGTTTTTTGTTCTTGAGTTTGTTGTATGAACTGTTTGTATGTTTTG 828                

Plasmid.C4    TTTTTGATAGTGTTTGTTTTTTGTTCTTGAGTTTGTTGTATGAACTGTTTGTATGTTTTG 223 

Plasmid.D4.2  TTTTTGATAGTGTTTGTTTTTTGTTCTTGAGTTAGTTGTATGAACTGTTTGTATGTTTTG 230 

 

genome        GAAATTAACCACTGTTGGTCGCATCATTTGCAGGTATTTTCTCCCATTCAGTATGTTGTC 3180 

plasmid.D1    GAAATTAACCACTGTTGGTCGCATCATTTGCAGGTATTTTCTCCCATTCAGTATGTTGTC 60 

plasmid.D4    GAAATTAACCACTGTTGGTCGCATCATTTGCAGGTATTTTCTCCCATTCAGTATGTTGTC 60 

plasmid.D7    GAAATTAACCACTGTTGGTCGCATCATTTGCAGGTATTTTCTCCCATTCAGTATGTTGTC 888                 

Plasmid.C4    GAAATTAACCACTGTTGGTCGCATCATTTGCAGGTATTTTCTCCCATTCAGTATGTTGTC 283 

Plasmid.D4.2  GAAATTAACCACTGTTGGTCGCATCATTTGCAGGTATTTTCTCCCATTCAGTATGTTGTC 290 

 

genome        TTTTTGTTTTGTTTATGGTTTCTTTGCTGTGTGAAAGTTTATAAATTTGATTAGGTCCCA 3240 

plasmid.D1    TTTTGTTTTGGTTTATGGTTTCTTTGCTGTGTGAAAGTTTATAAATTTGATTAGGTCCCA 120 

plasmid.D4    TTTTTGTTTTGTTTATGGTTTCTTTGCTGTGTGAAAGTTTATAAATTTGATTAGGTCCCA 120 

plasmid.D7    TTTTTGTTTTGTTTATGGTTTCTTTGCTGTGTGAAAGTTTATAAATTTGATTAGGTCCCA 948                         

Plasmid.C4    TTTTTGTTTTGTTTATGGTTTCTTTGCTGTGTGAAAGTTTATAAATTTGATTAGGTCCCA 343 

Plasmid.D4    TTTTTGTTTTGTTTATGGTTTCTTTGCTGTGTGAAAGTTTATAAATTTGATTAGGTCCCA 350 

 

genome        TTTGTTTATTGTTGCTTTTATTTCTGTTGCTTTGGAAGACAGACCTAAGAAAACATTGGT 3300 

plasmid.D1    TTTGTTTATTGTTGCTTTTATTTCTGTTGCTTTGGAAGACAGACCTAAGAAAACATTGGT 180 

plasmid.D4    TTTGTTTATTGTTGCTTTTATTTCTGTTGCTTTGGAAGACAGACCTAAGAAAACATTGGT 180 

plasmid.D7    TTTGTTTATTGTTGCTTTTATTTCTGTTGCTTTGGAAGACAGACCTAAGAAAACATTGGT 1008                 

Plasmid.C4    TTTGTTTATTGTTGCTTTTATTTCTGTTGCTTTGGAAGACAGACCTAAGAAAACATTGGT 403 

Plasmid.D4    TTTGTTTATTGTTGCTTTTATTTCTGTTGCTTTGGAAGACAGACCTAAGAAAACATTGGT 410 

 

genome        ACGAGTTATCTGAAAAGGTTTTACGTGTGTTCTCTTCTAGGAGTTTTATGGTATCGTGTC 3360 

plasmid.D1    ACGAGTTATCTGAAAAGGTTTTACGTGTGTTCTCTTCTAGGAGTTTTATGGTATCGTGTC 189 

plasmid.D4    ACGAGTTATCTGAAAAGGTTTTACGTGTGTTCTCTTCTAGGAGTTTTATGGTATCGTGTC 240 

plasmid.D7    ACGAGTTATCTGAAAAGGTTTTACGTGTGTTCTCTTCTAGGAGTTTTATGGTATCGTGTC 1068               

Plasmid.C4    ACGAGTTATCTGAAAAGGTTT-ACGTGTGTTCTCNTCTAGGAGTTTTATGGTATCGTGTC 462 

Plasmid.D4    ACGAGTTATCTGAAAAGGTTTTACGTGTGTTCTCTTCTAGGAGTTTTATGGTATCGTGTC 470 
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genome        TTAAAGTCTTTAAAGCATTTTGAGTTTACTTTTGGGTATGGTGTAAGGGTGTGTCTTCAT 3420 

plasmid.D1    TTAAAGTCTTTAAAGCATTTTGAGTTTACTTTTGGGTATGGTGTAAGGGTGTGTCTTCAT 

plasmid.D4    TTAAAGTCTTTAAAGCATTTTGAGTTTACTTTTGGGTATGGTGTAAGGGTGTGTCTTCAT 300 

plasmid.D7    TTAAAGTCTTTAAAGCATTTTGAGTTTACTTTTGGGTATGGTGTAAGGGTGTGTCTTCAT 1128 

Plasmid.C4    TTAA-------------------------------------------------------- 466 

Plasmid.D4    TTAAAGTCTTTAAAGCATTTTGAGTTTACTTTTGGGTATGGTGTAAGGGTGTGTCTTCAT 530 

5.RACE.157    ---------------------------------------------AGGGTGTGTCTTCAT 15 

 

genome        TGATTTACATGCGCTGTCCAACTTTCCCAATACCACTTGCTGAAGAGACTGGCTTCTCTC 3480 

plasmid.D1    TGATTTACATGCGCTGTCCAACTTTCCCAATACCACTTGCTGAAATC 

plasmid.D4    TGATTTACATGCGCTGTCCAACTTTCCCAATACCACTTGCTGAAGAGACTGGCTTCTCTC 360 

plasmid.D7    TGATTTACATGCGCTGTCCAACTTTCCCAATACCACTTGCTGAAGAGACTGGCTTCTCTC 1188 

Plasmid.D4    TGATTTACATGCGCTGTCCAACTTTCCCAATACCACTTGCTGAAGAGACTGGCTTCTCTC 590 

5.RACE.157    TGATTTACATGCGCTGTCCAACTTTCCCAATACCACTTGCTGAAGAGACTGGCTTCTCTC 75 

 

genome        CATTGTATAATCTTGCCTCTTTGTTGAAGATTGATATACCTACCATATTCTGAACACTGT 3540 

plasmid.D4    C----------------------------------------------------------- 361 

plasmid.D7    CA                                                           1190 

Plasmid.D4    CA---------------------------------------------------------- 592 

5.RACE.157    CATTGTATAATCTTGCCTCTTTGTTGAAGATTGATATACCTACCATATTCTGAACACTGT 3540 
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