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Ĥ(t) quantum Hamiltonian
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Chapter 1: Introduction

1.1 Chapter summary

In this chapter, we give an introduction to the key topics discussed in this thesis, the main

results obtained, and the essential tools used to obtain them. We begin by providing some

motivation for the thesis in Section 1.2, where we explain our focus on energy absorption in

periodically driven systems. In Section 1.3, we present an overview of our analysis of energy

absorption and diffusion in classical systems. We introduce our primary systems of interest,

classical chaotic systems under rapid periodic driving, and outline how energy absorption in

these and other classical systems can be described with the energy diffusion model. Then, in

Section 1.4, we turn to quantum systems. We discuss the various tools that we use in the thesis to

understand energy absorption in quantum systems, including Floquet theory and random matrix

theory. Finally, in Section 1.5, we summarize the structure of the thesis, chapter by chapter.

1.2 Motivation

Periodic driving, defined as the time-periodic application of an external force or influence

on a system, is a ubiquitous phenomenon in the natural world. It can be observed across

physical scales, from the planetary scale, where bodies in the Solar system are periodically
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perturbed by the gravitational influence of orbiting planets, to the microscopic level, where

the oscillations of the electromagnetic field drive transitions between atomic energy levels.

Across these various systems, the consequences of periodic driving range from regulatory effects,

including synchronization, stabilization, and localization [1–10], to the potentially destabilizing

processes of energy absorption [11, 12] and the onset of chaos [1, 13]. These effects are

important to understand in a range of scientific disciplines, beyond just physics: Ecological and

meteorological systems are organized around the regular influence of the seasonal and day-night

cycles, biochemical processes in living systems are shaped by periodic processes like breathing,

hormone regulation, and sleep cycles, and long- and short-term business cycles influence the

decisions of individual economic actors and drive macroeconomic trends.

Of course, periodic driving is not only a natural process to be understood, but a tool to

be applied to meet technological and engineering challenges. There are examples everywhere.

The operation of many engines and motors is fundamentally cyclical, whether they are driven

by the periodic control of electromagnetic fields, gas combustion, or heat flow. All computer

processes are ultimately organized by a clock cycle, which ensures that computations occur

synchronously and in the proper order. The Paul trap or radio-frequency (RF) trap [14, 15],

which uses high-frequency oscillating electric fields to dynamically confine charged particles

(see Figure 1.1), earned its inventors a Nobel prize, and has found applications in spectroscopy

[16], metrology [17, 18], and quantum computing [19]. In solid state nuclear magnetic resonance

(NMR) spectroscopy, rapidly spinning a sample introduces a periodically oscillating magnetic

field in the reference frame of the sample, producing an averaging effect which ensures high-

resolution spectra (see Figure 1.2) [20, 21]. Finally, laser fields constitute an especially precise,

controllable means of periodic driving, which can be used for heating or cooling [22, 23], for

2



high-resolution microscopy [24], and for the excitation of atoms and molecules in spectroscopy

and photochemistry [25, 26].

Figure 1.1: Schematic of a quadrapole Paul trap, taken from [14]. (a) displays the equipotential
lines of the quadrupole electrode configuration illustrated in (b). The left and right electrodes
are set to the same voltage, and the upper and lower electrodes are set to the opposite voltage.
When these voltages are made to oscillate rapidly in time, an effective field is generated which
traps charged particles at the center of the configuration (along the y-axis). The mathematical
explanation for this dynamical stabilization effect is similar to the explanation for the stability of
the Kapitza pendulum, which we discuss in Chapter 6, Section 6.2.

Given this range of applications, it is not surprising that in today’s research on quantum

systems, periodic driving has emerged as an essential tool for the design and manipulation of

these systems. The profound developments of quantum technology in the late twentieth and

early twenty-first centuries are sometimes referred to as the “second quantum revolution” [27–

29]:1 This is the stage of technological advancement which has allowed us to observe, design,

and control systems at the level of individual atoms and molecules, while preserving quantum

properties like coherence and entanglement. During this time, great strides have been made

1The “first quantum revolution” is associated with the initial development of quantum mechanics, and with
technologies like lasers and transistors: Technologies which are built on irreducibly quantum mechanical principles,
but which do not necessarily require a fine-grained control over quantum phenomena for their operation.

3



Figure 1.2: NMR spectrum for Zn3P2, taken from [21]. Without spinning the sample, the
observed spectrum is very broad (curve labelled “static”), while with sample spinning, the two
peaks in the spectrum can be clearly resolved (curve labelled “5 kHz”). This technique is also
referred to as “magic angle spinnning,” since the sample must be rotated around an axis tilted at
a special angle relative to the applied magnetic field [20, 21].

in the fields of quantum optics, quantum computing, and quantum metrology, on experimental

platforms including ion traps, NMR systems, superconducting circuits, quantum dots, and

correlated electron systems like graphene. The use of periodic driving protocols in the context of

quantum technology has been termed “Floquet engineering,” after Floquet theory, the standard

formalism used to analyze periodically driven systems (see Chapter 5, Section 5.3) [12, 30, 31].

Such protocols have been exploited to design effective Floquet Hamiltonians [12, 30, 32, 33],

effective magnetic fields [34, 35], and tunable interactions between subsystems [36–38]. Using

these and other Floquet engineering tools, researchers have theorized and engineered novel

quantum states, including Floquet prethermal phases [33, 39–49], discrete time crystal states

[50–56], dynamically stabilized states [5, 57, 58], and Floquet topological insulator phases [59–

4



61]. The precise control of quantum systems has also allowed for the reproduction of classical

thermodynamic cycles at the microscale, even at the level of individual atoms [62–64]. Also, in

the context of quantum computation, Floquet engineering has been proposed as a technique for

realizing quantum gates [65–67].

In many Floquet quantum systems, controlling the absorption of energy from the periodic

drive is a task of prime importance. In some cases, energy absorption is the goal: For

example, in a system acting as a quantum refrigerator or heat pump, the energy absorbed from

a periodic drive in the form of work facilitates the cooling of another body. However, in

other settings, energy absorption appears as a potential obstacle to the stabilization of quantum

states. Generally speaking, a driven system in a nonequilibrium steady state attains a balance in

which energy absorbed from the drive is dissipated into an environment, such as a thermal bath.

Therefore, if a system is instead isolated, save its interaction with the drive, then maintaining a

stable state requires the suppression of energy absorption from the drive. For many quantum

technologies, careful isolation from uncontrolled thermal influence is necessary to preserve

delicate superpositions or entanglement relationships [68, 69]. It follows that to successfully

apply the techniques of Floquet engineering to quantum systems, an understanding of energy

absorption and the conditions under which it might be suppressed is essential. Indeed, this is a

research topic which has generated much theoretical interest and experimental work in the past

ten years [11, 33, 41, 44–47, 49, 70–81].

This question of energy absorption in periodically driven systems is the central motivation

for this thesis. We approach this problem from a primarily classical perspective, focusing on

the energy dynamics of chaotic, ergodic classical Hamiltonian systems under rapid periodic

driving. In short, we find that the periodic drive in such systems induces an effectively stochastic
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evolution of the system’s energy, describable as a process of diffusion in energy space. The

energy dynamics of these systems are interesting in their own right, but they also offer a potential

approximate description of quantum energy absorption, in terms of purely classical mechanisms.

We begin to probe this possible quantum-classical correspondence with the help of semiclassical

theory, Floquet theory, and ideas from quantum chaos. To get a better sense of how these various

threads tie together, we now provide an overview of the main contents of the thesis. We first

summarize our analysis of classical systems as found in Chapters 2, 3, and 4, and then outline the

discussion of quantum systems given in Chapter 5.

1.3 Classical energy diffusion

The starting point of our analysis is classical chaotic, ergodic Hamiltonian systems, subject

to a rapid periodic drive. As an example for visualization purposes, one may have in mind

a system of interacting charged particles, subject to an oscillating electric field. As described

in more detail in Chapter 2, Section 2.2, the dynamics of such systems are fully characterized

by a Hamiltonian phase space function H(z, t) = H(z, t + T ) which is periodic in time, with

period T . The state of a Hamiltonian system is specified by a set of evolving positions qt ≡ q

and momenta pt ≡ p, which trace out a phase space trajectory zt ≡ z ≡ (q,p) according to

Hamilton’s equations of motion

dq

dt
=
∂H

∂p
,

dp

dt
= −∂H

∂q
. (1.1)

Here, the periodic drive is modelled by the explicit periodic time-dependence of the system’s

Hamiltonian H(z, t). We identify the energy of the system as E(t) ≡ H0(zt), the time-averaged
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Hamiltonian H0(z) ≡ T−1
∫ T

0
dtH(z, t) evaluated along the trajectory zt. The central question

of Chapter 2 is, how does this energy evolve for a chaotic, ergodic system, in the limit of high-

frequency driving?

Our focus on systems with chaotic, ergodic dynamics stems from the central importance of

these concepts in the foundations of thermodynamics and statistical physics. Over the course of

its evolution, a chaotic, ergodic Hamiltonian system fully explores the phase space available to it

at a given energy, and does so in a complex, effectively random manner [82–84]. The statistical

properties of these pseudorandom dynamics coincide with the probabilistic description furnished

by equilibrium statistical mechanics, providing the basis of a first-principles justification for the

validity of statistical mechanics. Given the great success of statistical mechanics as a tool for

predicting equilibrium and near-equilibrium thermodynamic properties, studying systems with

chaotic and ergodic dynamics was a natural choice. Meanwhile, the reasoning behind studying

rapidly driven systems specifically is twofold. First, many phenomena which are useful for tuning

and controlling systems manifest at high driving frequencies, including prethermalization and

dynamical stabilization. Second, for sufficiently rapid driving, the drive can be treated as a weak

perturbation away from the undriven dynamics, making the energy dynamics more tractable to

describe.

Given these two assumptions on our system, (a) rapid periodic driving and (b) chaotic,

ergodic dynamics, we find that the system’s energy evolves diffusively. In other words, the

influence of the drive causes the system to perform an effectively random walk in energy space.

If we consider a statistical ensemble of such systems, the time-dependent distribution of energies

in the ensemble satisfies a Fokker-Planck equation
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∂η

∂t
= − ∂

∂E
(g1η) +

1

2

∂2

∂E2
(g2η) , (1.2)

where η(E, t) ≡ η is the energy distribution, and where the drift and diffusion coefficients

g1(E,ω) ≡ g1 and g2(E,ω) = g2 determine the rate at which this distribution shifts and spreads

in energy space. We develop this diffusive description in Chapter 2, starting with Section 2.3.

In particular, we obtain explicit expressions for the rates g1 and g2 in Section 2.4, and in Section

2.5, we show that evolution under the energy diffusion description may generally be divided into

three stages: Initial relaxation to a prethermal state, followed by slow evolution of the system’s

energy probability distribution in accordance with the Fokker-Planck equation, followed by either

unbounded energy absorption or relaxation to an infinite temperature state. Also, in Section 2.7,

we compare our model to other systems described by an energy diffusion description, including

slowly driven chaotic systems, and systems weakly coupled to a thermal bath.

After this general analysis, we turn to a discussion of specific systems which can be

treated within the energy diffusion framework. First, we apply this framework to rapidly driven

dynamical billiard systems. That is, we consider systems consisting of a single particle in a cavity,

subject to a rapidly oscillating force. Billiards are an ideal testing ground for the energy diffusion

model, since certain billiards have been rigorously proven to exhibit chaotic, ergodic dynamics

[85, 86]. In Chapter 3, we calculate the rates g1 and g2 for billiard systems in Section 3.4, and we

perform numerical simulations on a driven billiard particle to corroborate the energy diffusion

model in Section 3.5. Also, in Section 3.6, we generalize our results to systems of multiple

interacting particles in a billiard. This explicitly demonstrates the applicability of the energy

diffusion description to many-body interacting systems. Then, in Chapter 4, we consider energy
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diffusion in a slightly different setting: In one-dimensional oscillator systems driven by weak,

correlated noise. For these systems, the Fokker-Planck equation (1.2) may be solved exactly in

certain special cases.

1.4 Energy absorption and diffusion in quantum systems

The energy diffusion models just discussed are descriptions of classical systems. How are

these models connected to energy absorption in periodically driven quantum mechanical systems?

In Chapter 5, we probe this question, focusing primarily on quantum chaotic systems, or quantum

systems with a classical chaotic counterpart. We first approach this issue from the standpoint of

Floquet theory, and then from the perspective of the field of quantum chaos. Let us discuss each

of these ideas in turn.

First, Floquet theory is the general formalism for studying quantum systems subject to

periodic driving [12]. As reviewed in Chapter 5, Section 5.2, the state of a quantum system

is described by a time-dependent state vector |ψ(t)⟩ ≡ |ψ⟩, which evolves according to the

Schrodinger equation

iℏ
d|ψ⟩
dt

= Ĥ|ψ⟩, (1.3)

where ℏ is the reduced Planck’s constant. For a periodically driven quantum system, the system’s

Hamiltonian operator Ĥ ≡ Ĥ(t) = Ĥ(t+ T ) is time-periodic with period T . As in the classical

setup just discussed, our key concern is with the evolution of the system’s energy, which is

associated with the time-averaged Hamiltonian Ĥ0 ≡ T−1
∫ T

0
dt Ĥ(t).

A central object in Floquet theory is the Floquet operator ÛF , which evolves the state
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vector for the system over a single period, from t = NT to t = (N + 1)T : ÛF |ψ(NT )⟩ =

|ψ((N+1)T )⟩. However, in general, this operator is difficult to obtain exactly, and approximation

schemes are necessary. For rapid driving, one method to approximate the action of ÛF is with

the Floquet-Magnus (FM) expansion, a perturbative expansion in powers of the driving period T .

In Chapter 5, Section 5.3, we introduce Floquet theory and the FM expansion, and explore how

these tools have been used to understand the energy evolution of quantum systems. In particular,

we show how bounds on energy absorption in quantum systems, derived with the help of the

FM expansion and other techniques, are consistent with the predictions of the classical energy

diffusion description. This quantum-classical connection is closely tied to the phenomenon of

Floquet prethermalization, in which a periodically driven system initially comes to equilibrium

with an effective Hamiltonian, before ultimately gaining energy at long times.

Second, in Chapter 5, Section 5.4, we continue to explore the possibility of quantum-

classical correspondence by looking at quantum chaotic systems, or quantum systems with a

classical chaotic counterpart. In the semiclassical limit (the limit of small ℏ), the properties of a

quantum chaotic system can be related to the properties of the corresponding classical system. We

primarily focus on two tools commonly used to understand this correspondence: Random matrix

theory (RMT) and the Eigenstate Thermalization Hypothesis (ETH) [87, 88]. RMT is the study

of statistical ensembles of matrices with randomly sampled entries. This theory is applied to

quantum chaotic systems via the famous Bohigas-Giannoni-Schmit conjecture, which connects

the statistical properties of random matrices to the energy spectra of quantum chaotic systems

in the semiclassical limit [89]. Meanwhile, the ETH provides a description of the operators of

a quantum chaotic system in the system’s energy eigenbasis. Both RMT and the ETH reveal

how classical chaotic dynamics can leave “imprints” on the properties of quantum systems. This
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makes these ideas an ideal starting ground for thinking about the possible application of the

classical energy diffusion description to the quantum regime.

Based on this discussion, we conclude Chapter 5 with a discussion of several models

which may provide insight into the possibility of energy diffusion in periodically driven quantum

systems. First, in Section 5.4.4, we present a review of the literature on energy diffusion

in slowly driven quantum chaotic systems. This body of research includes studies of both

“real” quantum chaotic models, and systems where the Hamiltonian has been modelled by an

appropriate random matrix. Second, in Section 5.5.1, we construct a random matrix model of

a periodically driven quantum chaotic system, which could be used to test the energy diffusion

description in a quantum setting. Finally, in Section 5.5.2, we describe a heuristic model of energy

absorption in quantum chaotic systems, based on Fermi’s golden rule. Although this model has

significant limitations, it does reduce to the classical energy diffusion model in the semiclassical

limit, suggesting that the classical mechanisms leading to energy diffusion may be relevant to

understanding energy absorption in quantum systems as well.

1.5 Organization of thesis

In summary, the thesis is organized as follows. In Chapter 2, we develop the energy

diffusion description as it applies to chaotic, ergodic classical systems under rapid periodic

driving. We discuss the key assumptions in our analysis, derive expressions for the drift and

diffusion coefficients g1 and g2, and describe the three-stage energy evolution predicted by the

energy diffusion model. We also study entropy production in the context of the energy diffusion

framework, and we compare our energy diffusion description to other work on energy diffusion
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models. Then, in Chapter 3, we apply the energy diffusion model to periodically driven billiard

systems. We obtain expressions for g1 and g2 for billiards in the high-frequency driving limit,

present numerical simulations which validate the energy diffusion description for a particular

billiard shape, and generalize our results to billiards with many interacting particles. In Chapter

4, we use the energy diffusion description to study one-dimensional oscillator systems, subject to

weak, correlated noise. We find that the Fokker-Planck equation in these systems can be solved

exactly in some cases, and that energy diffusion in these models is closely related to energy

diffusion in systems weakly coupled to a stochastic thermal bath. In Chapter 5, we shift our focus

to energy absorption in periodically driven quantum systems. We explore connections between

the Floquet-Magnus expansion, bounds on quantum energy absorption, and the energy diffusion

description. We also discuss random matrix theory, along with related ideas from quantum chaos

and semiclassical physics, to probe the conditions under which the classical energy diffusion

model may approximately describe quantum systems. Finally, we conclude the main body of the

thesis in Chapter 6, where we provide some last thoughts about future directions for research.

After Chapter 6, there are five appendices which provide extra details concerning

calculations from Chapters 2 and 3. In Appendix A, we generalize the calculation of the drift

coefficient g2 in Chapter 2 to systems with non-monochromatic drives. In Appendix B, we

clarify a technical point in the derivation of the fluctuation-dissipation relation (Equation (2.22)

in Chapter 2). In Appendix C, we fill in details in the calculation of the diffusion coefficient for

billiards in Chapter 3. Then, in Appendix D, we present an alternative calculation of this same

diffusion coefficient, which confirms the correspondence between the general energy diffusion

description in Chapter 2, and the billiard-specific results in Chapter 3. Last, in Appendix E, we

describe the details of the numerical simulations given in Chapter 3, of a driven particle confined
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to a clover-shaped billiard.
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Chapter 2: Energy diffusion in chaotic Hamiltonian systems under rapid

periodic driving

2.1 Chapter summary

In this chapter, we describe the energy dynamics of classical chaotic, ergodic Hamiltonian

systems subject to a rapid periodic drive. In such systems, energy absorption proceeds via a

process of energy diffusion, wherein small energy changes induced by the drive cause the system

to perform an effectively random walk in energy space. This stochastic evolution is described by

a Fokker-Planck equation on energy space, which determines the evolution of the system’s energy

probability distribution η(E, t). Overall, we find that systems described by the diffusion model

absorb energy in a predictable series of stages. First, a prethermalization phase occurs, in which

the system reaches a statistical equilibrium state at nearly constant energy. This is followed

by slow energy absorption and diffusion according to the Fokker-Planck equation. Finally, if

the diffusive description remains valid at long times, then the system will either continue to

absorb energy indefinitely, or relax to an infinite temperature steady state. Alternatively, when

the system has reached sufficiently high energies, the diffusion model may begin to fail, leading

to the possibility of especially rapid energy absorption at these energies.

The chapter is organized as follows. In Section 2.2, we mathematically define the class of
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systems treated by our analysis, explain our assumptions, and introduce some key concepts. Next,

in Section 2.3 we argue that the energy of such systems evolves diffusively, and we introduce the

Fokker-Planck equation (given by (2.11)). In Section 2.4, we obtain explicit expressions for

the coefficients g1 and g2 in this equation ((2.22) and (2.20)), which specify the rates at which

η(E, t) shifts and spreads in energy space. Then, we develop the implications of the energy

diffusion description in Section 2.5. In particular, we describe the initial prethermalization stage,

we investigate the long-time dynamics of the energy distribution, and we discuss the scaling of the

energy absorption rate with respect to driving frequency. In Section 2.6, we derive a fluctuation

theorem for the diffusive energy dynamics, which relates the probabilities of different trajectories

in energy space. Finally, in Section 2.7, we place our results in the context of other systems which

exhibit energy diffusion, including adiabatically driven chaotic systems, and systems weakly

coupled to a thermal bath. The results presented in this chapter, excluding those in Section 2.6,

were previously published in [90].

2.2 Preliminaries and assumptions

2.2.1 Setup

We now define the class of systems studied in this chapter. We consider a classical

Hamiltonian system with N ≥ 2 degrees of freedom, subject to a rapid periodic driving force.

At any instant of time t, the state of the system is specified by a point zt ≡ z ≡ (q,p) in its 2N -

dimensional phase space, where the N -dimensional vectors q and p define a set of canonical

coordinates and momenta. We assume that the Hamiltonian for the system, which governs

the evolution of zt, is a periodic function of time at constant z: H(z, t) = H(z, t + T ), for
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some driving period T . We decompose this Hamiltonian into its time average H0(z) ≡ H0 ≡

T−1
∫ T

0
dtH(z, t), and a remainder V (z, t/T ) ≡ V with vanishing average:

H(z, t) = H0(z) + V (z, t/T ), V (z, s) = V (z, s+ 1). (2.1)

We will refer to H0 as the“undriven” or “bare” Hamiltonian and V as the “drive.” As an

example, the bare Hamiltonian may correspond to the kinetic and potential energy of a collection

of interacting point particles, and the drive may induce a oscillating force on these particles.

However, we will allow the form of H0 and V to be quite general, provided that two key

assumptions (given later in this section) are satisfied.

Given this Hamiltonian (and an initial phase space point z0), the system’s phase space

trajectory zt is obtained by time-integrating Hamilton’s equations of motion:

dq

dt
=
∂H

∂p
,

dp

dt
= −∂H

∂q
. (2.2)

We will also consider statistical ensembles of trajectories, wherein initial conditions are sampled

according to an initial phase space distribution ρ(z0, 0), and then evolved via Hamilton’s

equations. In this case, the phase space distribution that describes the evolving ensemble, denoted

by ρ(z, t) ≡ ρ at time t, satisfies the Liouville equation

∂ρ

∂t
= {H, ρ} =

∂H

∂q
· ∂ρ
∂p

− ∂H

∂p
· ∂ρ
∂q
, (2.3)

where {·, ·} denotes the Poisson bracket, and ∂/∂q (∂/∂p) is the gradient operator with respect

to the coordinate (momentum) variables [91].

16



Our main object of study is the time evolution of the system’s energy E, which we define

as the bare Hamiltonian of the system, evaluated along a trajectory: E ≡ E(t) ≡ H0(zt). In the

absence of a drive (V = 0), E is a constant of the motion. Meanwhile, for nonzero V , Hamilton’s

equations imply

dE

dt
≡ d

dt
H0(zt) = −{H0, V }(zt, t/T ), (2.4)

In particular, we will be concerned with the evolution ofE in the limit of large driving frequencies

ω ≡ 2π/T . In Section 2.3, we establish our main result: For sufficiently rapid driving, the

system’s energy evolution can be described as a random walk in energy space, leading to a process

of diffusion in energy space. To characterize this diffusion process, it will be useful to introduce

η(E, t) ≡ η, the time-dependent probability distribution for the system’s energy:

η(E, t) ≡
∫
dz δ(H0(z)− E)ρ(z, t), (2.5)

η is obtained by marginalizing the full phase space distribution ρ with respect to energy. The

integral defining η, and similar integrals elsewhere in this text, are over all of phase space.

2.2.2 Key assumptions

We will make two essential assumptions in our analysis. First, we assume that in the

absence of driving, the dynamics of the system are chaotic and ergodic on each energy shell

(surface of constant H0(z)) in phase space. By chaos, we mean that the dynamics of the system

are exponentially sensitive to initial conditions: Two trajectories with infinitesimally different

initial conditions will, in the long time limit, diverge from one another exponentially in time
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[13, 84]. The rate of this divergence is quantified by the system’s maximal Lyapunov exponent,

which will be positive for a chaotic system. By ergodicity, we mean that for almost all initial

conditions z0 with energy E, the corresponding trajectory zt eventually comes arbitrarily close

to any point in phase space with the same energy [83, 84]. Essentially, given enough time, each

trajectory fully explores the energy shell associated with E.

For an ergodic system, the exploration of each energy shell is necessarily “uniform,” in the

sense that each trajectory spends equal amounts of time in equal volumes of phase space. This

can be shown as a consequence of Liouville’s theorem, which expresses the incompressibility of

phase space volume under Hamiltonian dynamics [84]. The distribution on phase space which

captures this uniformity is the microcanonical distribution ρE(z) ≡ ρE:

ρE(z) ≡
1

Σ(E)
δ(H0(z)− E), (2.6)

where Σ(E) ≡ Σ is the classical density of states, given by

Σ(E) =
∂Ω

∂E
=

∫
dz δ(H0(z)− E), (2.7)

and where Ω(E) is the phase space volume enclosed by the energy shell E, expressible in terms

of the Heaviside step function Θ(x):

Ω(E) =

∫
dzΘ(E −H0(z)). (2.8)

That is, in the long-time limit, ρE specifies the relative frequency at which a trajectory visits

different regions of the energy shell [83, 84]. Going forward, the term “uniform” will be used to
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mean uniformity with respect to this distribution. As a side note, we assume that Ω(E) is finite

for all E.

Taken together, the properties of chaos and ergodicity imply that the system exhibits

chaotic mixing at each energy. That is, given any finite-measure set of initial conditions with

energy E, the resulting trajectories will spread or “mix” across the energy shell, repelled from

one another by the chaotic nature of the dynamics. In particular, because the evolution is

ergodic, this spreading must extend to every region of the energy shell, ultimately resulting

in a uniform distribution of trajectories across the shell (up to some coarse-graining of phase

space, see Figure 2.1) [83, 84]. In other words, chaotic mixing results in a process of “self-

thermalization”: Regardless of the system’s initial distribution in phase space, chaotic mixing

implies that the ensemble of trajectories will eventually attain an effectively microcanonical, or

thermal, distribution.

Figure 2.1: Schematic drawing of the evolution of a set of phase space points (blue) evolving on
an energy shell of H0 (shaded shape). As time moves forward from left to right, the set shifts and
stretches while maintaining a constant phase space volume, as required by Liouville’s theorem.
After enough time, the set is fibrillated across the entire energy shell, and is uniformly distributed
across the shell at a coarse-grained level.

One way to characterize this thermalization process is to study statistical correlations

between the state of the system at different times. Consider a function A(z) on phase space,

19



corresponding to some physical observable. For example, A(z) might give the momentum of

a particular particle in the system, when the system is in the state z. Given an ensemble of

trajectories with energy E at some initial time t = 0, the probability distribution ρ(z0, 0) gives

us some statistical information about A(z0), the value of the observable at this time. However,

regardless of this initial distribution, chaotic mixing leads to an effectively uniform distribution

on the energy shell after a certain time t = τ . Therefore, our statistical knowledge of A(z0) gives

us no information about A(zτ ), the value of the observable at this later time. That is, A(z0) and

A(zτ ) are uncorrelated or statistically independent random variables. This decay of correlations

is characteristic of chaotic systems, and is one way to quantify the (un)predictability of their

dynamics.

The second key assumption in our analysis is that the driving frequency ω is sufficiently

large. For large ω, the effect of the drive nearly averages to zero over a single period, since the

system cannot appreciably respond to the drive in such a short time. More precisely, consider an

initial condition z0, and two trajectories evolved from it: One generated by evolution under the

bare Hamiltonian H0, and another generated under the full Hamiltonian H = H0 + V . Denote

these trajectories as z0t and zt, respectively. For any fixed time t, the value of zt converges to

that of z0t in the limit ω → ∞ (see Figure 2.2). This limit can be established rigorously for

time-periodic Hamiltonians H(z, t) which are smooth functions of z and t, using mathematical

tools such as the method of averaging or multi-scale perturbation theory [32, 92]. However,

it is also a physically reasonable result. For example, suppose that the system of interest is a

collection of interacting point particles, and that the effect of the drive is to impose a force field

F(x) cos(ωt), where x denotes position. Over the course of a very short period, the particles

move within the force field by a negligible amount, owing to their finite speed. Therefore, F(x)
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is essentially constant for each particle, and the effect of the force F(x) cos(ωt) nearly integrates

to zero over the period. This averaging effect becomes better and better as ω → ∞. Note that is

conclusion is valid independent of the magnitude of the force F(x) cos(ωt) (or more generally,

of the magnitude of the drive V ).

Figure 2.2: Evolution of a driven trajectory zt (solid blue curve) and its undriven counterpart
z0t (dashed black curve), which both start from the same initial condition z0 = z00 . In the rapid
driving limit, a driven trajectory will generally perform small oscillations about the corresponding
undriven trajectory, while also slow drifting away from the undriven evolution over the course of
many driving periods. This figure is adapted from a similar image in [92].

How large must ω be for our analysis to be approximately valid? We answer this question

in detail in Section 2.3, but we briefly state our conclusions here. Consider a time interval of

duration τC , the timescale over which chaotic mixing generates a decay of correlations in the

undriven system. We choose ω large enough so that over this interval, the trajectories z0t and zt

closely resemble one another, and so that even after many such intervals, the total change in the

system’s energy is small. As we will see, both of these conditions can generically be satisfied for

a large enough choice of ω.
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2.3 Argument for energy diffusion

We now argue that when a chaotic, ergodic Hamiltonian system is subject to a rapid periodic

drive, its energy E = H0(zt) evolves diffusively. We first sketch the broad strokes of our

reasoning, highlighting the key assumptions of rapid driving and chaotic dynamics discussed

in Section 2.2. We then go through the argument in detail, describing how the chaotic motion of

the system in phase space induces an effectively random, diffusive evolution in energy space. To

conclude this section, we discuss how large the driving frequency ω must be for our result to hold,

and we identify the coarse-grained timescale on which the diffusive description is approximately

valid.

The essence of our argument is as follows. Consider an ensemble of trajectories in phase

space, evolving according to Hamilton’s equations (2.2) with the Hamiltonian H = H0 + V

given by 2.1. Given our assumption of rapid driving, the drive term V exerts a weak influence

on the evolution of the system, and therefore only produces small changes in the energy (at least

over short times). Because the chaotic dynamics induce a decay of correlations on the timescale

τC , successive energy changes separated by times of order τC will be effectively statistically

independent. Therefore, on a coarse-grained timescale much longer than this correlation time,

the energy evolution of the system appears as a series of many small, statistically independent

steps in energy space. This random walk constitutes a process of diffusion in energy space, just

like how a colloidal particle undergoes diffusive motion in real space due to random, uncorrelated

collisions with molecules of the surrounding medium [93]. These dynamics are described by

a Fokker-Planck equation (see (2.11)), which governs the evolution of the energy distribution

η(E, t).
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To make the above argument more precise (though still not mathematically rigorous),

consider the evolution of our system of interest (as defined in Section 2.2) over the time interval

[0,∆t], as it evolves under the driven Hamiltonian H0+V . Specifically, we look at the dynamics

of a statistical ensemble of initial conditions z0 at t = 0, all with a common energy H0(z0) = E0.

For simplicity, we sample z0 from a microcanonical distribution, as defined previously in 2.6:

ρ(z0, 0) = ρE0(z0) ≡
1

Σ(E0)
δ(E0 −H0(z0)). (2.9)

For each trajectory zt in this ensemble, there is a net change ∆E ≡ H0(z∆t) − H0(z0) in the

system’s energy from t = 0 to t = ∆t. Since the trajectory is fully determined by the initial

condition z0, the value of ∆E is fixed by z0 as well. Thus, the quantity ∆E is a random variable,

whose value is set by the random initial condition z0. Understanding the statistics of ∆E in the

high-frequency driving regime, for an appropriate choice of ∆t (to be clarified below), will be

the key to establishing diffusion in energy space.

To investigate the properties of ∆E, let us divide the time interval [0,∆t] into M ≫ 1

subintervals of equal duration δt = ∆t/M , defining ti = (i − 1)δt as the beginning of the ith

subinterval. We then consider ∆E as a sum of energy changes

∆E =
M∑
i=1

δEi, (2.10)

where δEi denotes the change in the system’s energy between ti and ti+1. Each increment δEi

is itself a random variable, which may be determined by integrating the power (2.4) along the

trajectory zt over the subinterval. We can view δEi as a function of z(i) ≡ zti alone, since this

phase space point at the beginning of the subinterval determines the rest of the trajectory.
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Now, as discussed in Section 2.2, for sufficiently large ω the driven trajectories zt closely

resemble their undriven counterparts z0t . This means that we can choose ∆t and ω so that over

the interval [0,∆t], the driven trajectories in our ensemble remain close to the initial energy shell

E0. Moreover, the similarity of this evolution to the undriven motion tells us that the chaotic

mixing property of the dynamics is approximately preserved. As a result, continual mixing of

the trajectories ensures that an effectively uniform distribution is maintained throughout the time

interval. In particular, each z(i) will have the same microcanonical distribution. Since δEi is a

function of z(i), it follows that each δEi will have nearly identical statistics, provided that we

choose δt (and therefore also ∆t) to be an integer multiple of the driving period T : This ensures

that each subinterval begins at the same phase of the drive. For rapid driving, we generically

expect T ≪ δt(≪ ∆t).

Moreover, for an appropriate choice of δt, the energy increments δEi will also be

statistically independent of one another. Recall that chaotic mixing on the energy shell E0

produces a decay of correlations over a characteristic correlation time τC(E0) ≡ τC . Let us

choose δt to be longer than τC(E0), so that each δEi is approximately statistically uncorrelated

with the others. The energy change ∆E is then a sum of M ≫ 1 independent, identically

distributed increments δEi: The system effectively performs a random walk on the energy axis.

By the central limit theorem ∆E is a normally-distributed random variable, whose mean and

variance grow in proportion to the number of increments M , equivalently (for fixed δt) the time

elapsed ∆t.

The statistical behavior just described is characteristic of a diffusive process in energy

space,1 motivating us to model it by a Fokker-Planck equation [94]. That is, we postulate that the

1We will refer to this as “energy diffusion,” though to be precise, it is not energy that is diffusing, but rather
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energy distribution η(E, t) =
∫
dz δ(H0(z)− E)ρ(z, t) evolves according to:

∂η

∂t
= − ∂

∂E
(g1η) +

1

2

∂2

∂E2
(g2η) . (2.11)

The drift and diffusion coefficients g1(E,ω) and g2(E,ω) characterize, respectively, the rate at

which the distribution η shifts and spreads on the energy axis. These coefficients generally depend

on the system energy E and the driving frequency ω, and are obtained in Section 2.4 in the limit

of large ω. Energy diffusion and its description in terms of the Fokker-Planck equation have

been studied in a variety of physical and mathematical contexts, including in externally driven

Hamiltonian systems, in systems weakly coupled to a thermal bath, and in other models [72, 95–

123]. In Section 2.7 of this chapter, we discuss some of these other systems in more detail, and

compare them to our results.

To conclude this section, is worth emphasizing the central role that a separation of

timescales plays in our analysis. First, we have assumed that ∆t is much smaller than the

timescale τE(ω,E0) over which the energy of the system changes significantly, to ensure that

the energy increments δEi have approximately identical microcanonical statistics. We have also

assumed that the interval ∆t contains many subintervals of duration δt, and that δt > τC(E0),

guaranteeing approximate statistical independence among the increments δEi. Thus our analysis

requires the hierarchy of timescales:

T ≪ τC(E0) ≪ ∆t≪ τE(ω,E0). (2.12)

Since τE(ω,E0) → ∞ as ω → ∞, this hierarchy can be satisfied for any particular energy shell

probability which is diffusing across energy space.
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E0 by setting ω sufficiently large. We conclude that Eq. (2.11) is valid over an interval of the

energy axis whose extent is determined by, and increases with, the value of ω.

The above arguments suggest that the energy diffusion description is valid on a coarse-

grained timescale of order ∆t. On shorter timescales, computing the fine details of the system’s

energy evolution requires the full Hamiltonian equations of motion (2.2). These details vary

greatly from system to system. However, as we will see, the characteristics of the energy

diffusion process ultimately only depend on a few key details of these system-specific dynamics,

as captured in the coefficients g1 and g2.

In the same vein, we can now see that our assumption of an initial microcanonical

distribution at t = 0 is ultimately unnecessary. If the initial distribution is non-microcanonical

(but still confined to the energy shell with energy E0), then the short-time evolution of the energy

distribution η may be non-diffusive, and poorly described by the Fokker-Planck equation (2.11).

However, on timescales of order τC , chaotic mixing will establish an effectively microcanonical

distribution on the energy shell. After this time, our previous arguments ensure that diffusive

evolution will proceed on the longer timescale ∆t. Since ∆t≫ τC , energy changes accumulated

during this diffusive evolution will typically dominate over changes during the short pre-diffusive

regime. Thus, if we are only concerned with dynamics on the coarse-grained timescale set by ∆t,

then the energy changes accrued at short times only constitute a small correction to the diffusive

description.
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2.4 Calculation of g1 and g2

In this section, we calculate the drift and diffusion coefficients g1 and g2, in the limit of

large driving frequencies ω. Given these coefficients, the Fokker-Planck equation (2.11) fully

characterizes the evolution of the energy distribution η, at least on a coarse-grained timescale.

We begin by computing g2, by considering the variance in energy acquired by an ensemble of

trajectories evolving under the driven Hamiltonian. We then derive the fluctuation-dissipation

relation (2.22), which allows us to obtain g1 in terms of g2. Ultimately, we find that both

coefficients may be expressed in terms of a power spectrum S(ω;E) (given by (2.19)) associated

with the chaotic dynamics of the undriven system, and in terms of the classical density of states

Σ.

In what follows, we will restrict our attention to monochromatic driving protocols of the

form V (z, t/T ) = V (z) cos(ωt), where V (z) ≡ V is time-independent. Under this simplifying

assumption, the power (2.4) takes the form

dE

dt
= −V̇ (zt) cos(ωt), (2.13)

where V̇ (z) ≡ {V,H0}. While the generalization to arbitrary periodic drives is straightforward,

for simplicity of presentation we leave this generalization to Appendix A.

2.4.1 Calculation of the diffusion coefficient g2

To obtain the diffusion coefficient g2, consider an ensemble of initial conditions z0 with

energy H0(z0) = E0, sampled from a microcanonical distribution ρE0(z0) at time t = 0. If
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we allow this ensemble to evolve for a time ∆t under the driven Hamiltonian H0 + V cos(ωt),

the resulting ensemble of trajectories will generally acquire some variance in energy Var(E) ≡

⟨E2⟩ − ⟨E⟩2. For a particular choice of ∆t, this variance may be calculated in two independent

ways. We can then extract g2 by comparing the two resulting expressions.

First, if ∆t is much longer than the correlation time τC , then we can use the energy diffusion

description. The microcanonical distribution ρE0(z0) in phase space corresponds to an initial

distribution η(E, 0) = δ(E −E0) in energy space, which may then be evolved under the Fokker-

Planck equation (2.11) to a distribution η(E,∆t). In particular, if ∆t is also chosen to be much

less than τE , the timescale over which significant energy changes occur, then it is straightforward

to show that the final distribution η(E,∆t) is a normal distribution, with mean and variance [94]:

Mean(E) ≈ E0 + g1(E0, ω)∆t (2.14)

Var(E) ≈ g2(E0, ω)∆t. (2.15)

This result is consistent with the terminology “drift coefficient” and “diffusion coefficient”: g1

specifies the rate at which the mean of the energy distribution shifts in energy space, while g2

characterizes the rate of spreading or diffusion.

Second, we can compute Var(E) directly from knowledge of the phase space trajectories

zt. For each trajectory, the change in energy ∆E over the time interval is obtained by integrating

the power (2.13) from t = 0 to t = ∆t. Noting that Var(E) = ⟨(∆E)2⟩ − ⟨∆E⟩2 (since E0 is

the same for all trajectories), this allows us to write
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Var(E) =

∫ ∆t

0

dt

∫ ∆t

0

dt′ cos(ωt) cos(ωt′)Cneq(t, t
′;E0), (2.16)

where Cneq(t, t
′;E0) ≡ ⟨V̇ (zt)V̇ (zt′)⟩−⟨V̇ (zt)⟩⟨V̇ (zt′)⟩ is a nonequilibrium correlation function

and angular brackets ⟨...⟩ denote an ensemble average.

So far, no approximations have been made. Now, recall that in the high-frequency limit

ω → ∞, the driven trajectories zt approach their undriven counterparts z0t . In this regime, we

are justified in replacing Cneq(t, t
′;E0) by the corresponding equilibrium correlation function

C(t′ − t;E0), defined by

C(s;E0) ≡ ⟨V̇ (z00)V̇ (z0s)⟩ − ⟨V̇ (z00)⟩⟨V̇ (z0s)⟩, (2.17)

which depends only on the difference s ≡ t′ − t, due to the time-translation symmetry of the

microcanonical distribution under the undriven dynamics. Upon making this replacement, and

using standard manipulations to approximate the resulting double integral (see, e.g. [124]), we

arrive at

Var(E) ≈ 1

2
S(ω;E0)∆t, (2.18)

where

S(ω;E0) =

∫ ∞

−∞
dt e−iωtC(t;E0) (2.19)

is the power spectrum of V̇ (z0t ), which is equal to the Fourier transform of C(t;E0) by the

Wiener-Khinchin theorem [125]. The approximation in (2.18) contains correction terms that

are sublinear in ∆t. Comparing (2.18) with (2.15) and relabeling E0 as E, we obtain our final

expression for g2:
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g2(E,ω) ≈
1

2
S(ω;E) ≥ 0. (2.20)

Note that (2.20) gives g2 entirely in terms of properties of the undriven system, as C(t;E) and

thus S(ω;E) are defined in terms of the undriven trajectories z0t .

2.4.2 The fluctuation-dissipation relation and the drift coefficient g1

We now move to the calculation of the drift coefficient g1. We obtain g1 by deriving the

fluctuation-dissipation relation (2.22), which expresses g1 in terms of g2, and also the classical

density of states Σ. This result emerges as a consequence of Liouville’s theorem, which expresses

the incompressibility of phase space volume under Hamiltonian dynamics [84]. Some technical

details in the following calculation are omitted; these details are provided in Appendix B.

To begin, we return again to the phase space description of the system, where the

distribution ρ for an ensemble of trajectories evolves according to the Liouville equation (2.3).

The constant function ρ(z) = 1 is a stationary solution to this equation; this reflects the

incompressibility of phase space volume under Hamiltonian dynamics (Liouville’s theorem) [84].

Since ρ = 1 is stationary under the dynamics in phase space, the corresponding (unnormalized)

distribution in energy space should be stationary under the Fokker-Planck equation. This energy

distribution, obtained by marginalizing over the constant solution ρ = 1, is the density of states

Σ(E) – see (2.7). Setting η(E, t) = Σ(E) as a stationary solution of the Fokker-Planck equation

(2.11), we have

0 = − ∂

∂E

[
g1Σ− 1

2

∂

∂E
(g2Σ)

]
. (2.21)

30



Thus the quantity in square brackets is constant as a function of E. In Appendix B, we show that

this constant is in fact zero. Solving for g1 then yields:

g1(E,ω) =
1

2Σ

∂

∂E

(
g2Σ
)
. (2.22)

This result is a fluctuation-dissipation relation, which relates the average rate of energy change

(given by g1) to the fluctuations in energy characterized by g2. Similar relations have been

previously established for various driven Hamiltonian systems [103–105, 108, 110, 114, 119].

Using (2.20) and (2.22), the Fokker-Planck equation (2.11) takes the compact form

∂η

∂t
=

1

4

∂

∂E

[
SΣ

∂

∂E

( η
Σ

)]
. (2.23)

Eq. (2.23) is our main result in this chapter. It describes the stochastic evolution of the system’s

energy, under rapid driving, in terms of quantities S(ω;E) and Σ(E) that characterize the

undriven system.

As discussed in Section 2.3, we expect (2.23) to be valid over a region of the energy axis

R(ω), whose extent depends on ω. IfH0(z) has a finite range, then ω can be chosen so that (2.11)

is valid over all allowable energies. If the range of H0(z) is unbounded then the extent of validity

of (2.11) can be made arbitrarily large, though not necessarily infinite, by appropriate choice of

ω.
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2.5 Implications of the energy diffusion description

With the expressions for g1 and g2 obtained in the previous section ((2.20) and (2.22)),

the Fokker-Planck equation ((2.11) or (2.23)) now fully characterizes the diffusive evolution of

the system’s energy. In this section, we investigate the consequences of the energy diffusion

description. We find that energy absorption generally proceeds in a predictable series of stages.

First, we have an initial prethermalization phase at nearly constant energy, as the chaotic mixing

of trajectories establishes a microcanonical distribution at the initial energy. Then, energy

absorption and diffusion proceed as dictated by the Fokker-Planck equation. For systems

with many degrees of freedom, the diffusion model typically predicts one of two outcomes:

An indefinite increase in the system’s mean energy, or a relaxation to an infinite temperature

steady state. Alternatively, in either case, the energy diffusion description may potentially fail

at sufficiently high energies, leading to the possibility of especially rapid energy absorption

at long times. We will discuss each of these stages in turn, beginning with the process of

prethermalization.

2.5.1 Stage 1: Floquet prethermalization

For purposes of illustration, we consider an initial ensemble of trajectories in phase space

with a common energy E0, distributed on the E0 energy shell in a potentially nonuniform (non-

microcanonical) way. Let us recall how these trajectories evolve for short times. As argued in

Section 2.3, the diffusive description at energy E0 is only valid on a coarse-grained timescale

much longer than τC(E0), the intrinsic correlation time associated with the chaotic motion of

the system in phase space. For times of order τC(E0) or shorter, the trajectories will remain
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quite close to their undriven counterparts, and consequently their energy will remain nearly

constant. Moreover, the process of chaotic mixing will spread these trajectories uniformly across

the E0 energy shell and nearby shells, resulting in an effectively microcanonical distribution at

this energy. That is, the system thermalizes with respect to the undriven Hamiltonian H0, on a

timescale of order τC(E0).

This short-time behavior is an example of the phenomenon of Floquet prethermalization.

A driven system is said to prethermalize if it reaches thermal equilibrium with respect to an

effective Hamiltonian on short to intermediate timescales, before ultimately gaining energy at far

longer times [33, 39–49]. Here, the effective Hamiltonian is just the bare Hamiltonian H0. The

adjective “Floquet” specifies that the prethermalization process is governed by a time-periodic

Hamiltonian. As detailed in the references above, Floquet prethermalization has been observed

in a range of classical and quantum model systems.

When does the prethermalization stage come to an end? For times much longer than

τC(E0), the energy evolution becomes diffusive. Under the dynamics generated by the Fokker-

Planck equation, the ensemble begins to spread away from the E0 energy shell, while remaining

uniformly distributed at each energy. Eventually, a significant fraction of the ensemble will have

energies for which the associated microcanonical distribution is appreciably different from the

microcanonical distribution for E0. At this point, the statistics of the ensemble are no longer

well-described by the microcanonical distribution for E0, and we say that the prethermalization

phase is over. Clearly, the timescale over which this process occurs will scale inversely with

the rates of energy drift and diffusion, given by the coefficients g1 and g2 of the Fokker-Planck

equation. As given in equations (2.20) and (2.22), these coefficients are determined by the power

spectrum S(ω;E), which may be exceedingly small for large ω, leading to a very slow absorption
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of energy. In particular, if the autocorrelation function C(t;E) is a smooth function of time, then

its Fourier transform S(ω;E) will decay faster than any power of ω−1 for large ω [126]. C(t;E)

will be smooth whenever H0(z) is a smooth function on phase space, since this implies that the

trajectories z0t will be smooth as well (conversely, see the analysis of billiard systems in Chapter 3

for an example of a non-smooth system). This rapid decay of S(ω;E) is consistent with observed

exponential-in-frequency suppression of energy absorption in a range of classical and quantum

model systems [33, 39, 41, 44, 45, 48, 49, 71, 75, 76, 80]. Prethermalization thus occurs when ω

lies deep within the tail of the power spectrum.

2.5.2 Stage 2: Energy absorption under the Fokker-Planck equation

Once prethermalization is over, energy diffusion continues in accordance with the Fokker-

Planck equation. To get an idea of how this evolution proceeds, let us compute the average rate

of energy absorption predicted by the energy diffusion model. Multiplying the Fokker-Planck

equation (2.11) by E and integrating over energy, we obtain

d⟨E⟩
dt

= ⟨g1(E,ω)⟩, (2.24)

where ⟨f⟩ ≡
∫
dE ηf for any f(E). Defining a microcanonical temperature Tµ(E) ≡ Tµ via

1

Tµ
=

∂s

∂E
, (2.25)
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where s(E) ≡ kB log Σ(E) is the microcanonical entropy and kB is Boltzmann’s constant, (2.22)

becomes:

g1(E,ω) =
1

2kBTµ

[
g2(E,ω) + kBTµ

∂g2(E,ω)

∂E

]
. (2.26)

The expression in square brackets is an expansion of g2(E + kBTµ, ω) for small kBTµ, truncated

after first order. For a system withN degrees of freedom, the difference betweenE andE+kBTµ

corresponds to an energy change of kBTµ/N per degree of freedom. For a many-body system,

with N ≫ 1, this change is negligible, and we obtain the simplified fluctuation-dissipation

relation

g1(E,ω) =
g2(E,ω)

2kBTµ(E)
. (2.27)

Substituting this result into (2.24), and remembering that g2(E,ω) = 1
2
S(ω;E), we have

d⟨E⟩
dt

=
〈 S(ω;E)

4kBTµ(E)

〉
. (2.28)

Recall that the power spectrum S(ω;E) is necessarily nonnegative. Thus, the sign of the average

energy absorption rate is determined by the microcanonical temperature Tµ.

Given this expression for d⟨E⟩/dt, we can classify a range of many-body systems into one

of two broad categories. First, for a system of particles such as a gas or a liquid, the density of

states Σ(E) increases with energy, hence Tµ(E) > 0 for any E. Thus, the average energy of

the system continually increases with time, as expected intuitively. In fact, we can show that this

result is encouragingly consistent with the Second Law of Thermodynamics, if we can identify

the system’s periodic drive with the variation of some macroscopic thermodynamic parameter,
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like the position of a piston or the strength of an external magnetic field. From this perspective,

we might consider a protocol as follows: Begin the system in a state of equilibrium at a fixed

value of the thermodynamic parameter, then rapidly oscillate the parameter over an interval of

time, and finally allow the system to relax to a new equilibrium state, with the parameter fixed

back at its initial value. If the system is thermally isolated during this procedure, then the Second

Law states that the entropy of the system cannot decrease in this process [83]. But for a system

with positive thermodynamic temperature, this implies that the internal energy of the system

also cannot decrease, since the temperature is the derivative of internal energy with respect to

entropy (with other parameters held fixed). Thus, if we identify the average energy ⟨E⟩ with the

thermodynamic internal energy, and the microcanonical temperature Tµ with the thermodynamic

temperature, then (2.28) is just an expression of the Second Law.

Alternatively, there are some systems for which Tµ(E) is negative at some energies. This

is typical in systems with a bounded phase space, with finite total volume
∫
dz =

∫
dE Σ(E).

For example, for N classical spin degrees of freedom described by the Hamiltonian H0 = B ·∑
n Sn, Tµ(E) is positive for E > 0 and negative for E > 0. Thus d⟨E⟩/dt can be negative,

provided that the distribution η has sufficient weight on regions of energy space with Tµ(E) <

0. For this class of systems, energy diffusion comes to an end when the ensemble has spread

uniformly across the entire phase space, according to the following reasoning. The finite volume

of phase space allows us to define a normalized constant distribution ρ(z) ∝ 1; the corresponding

distribution in energy space is the normalized density of states as Σ(E) ≡ Σ(E)/
∫
dE ′ Σ(E ′).

This “infinite temperature” energy distribution, obtained by considering the canonical energy

distribution ηTc(E) ∝ Σ(E)e−E/kBTc in the limit Tc → ∞, is a stationary distribution under

the Fokker-Planck equation (2.23). Moreover, if g2(E,ω) is strictly positive for all E, ensuring
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that there are no insurmountable barriers along the energy axis, then the Fokker-Planck equation

describes an ergodic Markov process, and Σ(E) is the unique stationary distribution to which any

initial distribution evolves as t → ∞ [127, 128]. In this asymptoptic limit, although individual

trajectories in the ensemble may gain or lose energy, evolution of the distribution η ceases.

2.5.3 Stage 3: Breakdown of the energy diffusion description?

Up until now, the discussion in this section has assumed that the energy diffusion

description remains valid throughout the system’s evolution. But this need not be the case: In

general, the diffusion model is only accurate over a certain region R(ω) of energy space. Beyond

this range of energies, our rapid driving assumption is not valid, and the assumed separation of

timescales (2.12) breaks down. As the diffusion process proceeds, the distribution η will slowly

leak out of R(ω), and a significant fraction of trajectories in the ensemble will eventually reach

energies outside of this region. At this point, diffusive evolution is no longer guaranteed, and the

possibility of especially rapid energy absorption arises, for example via resonances between the

system and the drive.

For an illustrative example of this breakdown, we can look to particle systems, such as gases

or liquids. For such systems, particle speeds will typically increase as η spreads to higher and

higher energies. Larger speeds entail a shorter intrinsic correlation time τC(E), and a consequent

broadening of the power spectrum S(ω;E) as a function of ω. As a result, the rate of energy

absorption and diffusion may begin to speed up, since the driving frequency might no longer be

located in the far tail of the broadened power spectrum. Eventually, at sufficiently large E, τC(E)

may become comparable to the driving period T : The drive is no longer rapid relative to the
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motion of the system, and the hierarchy of timescales (2.12) is no longer satisfied. At this point,

while the diffusive description may no longer be applicable, the thermodynamic arguments earlier

in this section plausibly suggest that the mean energy will continue to increase. As the system’s

phase space and energy are unbounded, this energy absorption may continue indefinitely.

For systems with a bounded phase space, the diffusive description may similarly fail at

certain energies. However, such systems will typically have a finite range of possible energies.

This means that if we increase ω, the region R(ω) will eventually expand to include to the whole

range of allowed energies, and the energy diffusion model will be valid everywhere in energy

space. In this case, energy diffusion will simply continue unabated until the infinite temperature

distribution Σ(E) is reached.

In summary, the energy of a chaotic system under rapid periodic driving generally proceeds

as follows. First, chaotic mixing establishes a statistical prethermal state at the system’s initial

energy E0, on a timescale of order τC(E0). Then, slow energy evolution proceeds in accordance

with the diffusive description; for many macroscopic systems, this entails either indefinite energy

absorption or relaxation to the infinite temperature state. However, at long times, the energy

diffusion model may ultimately break down, if the system reaches energies where the rapid

driving assumption is no longer valid.

2.6 Entropy, detailed balance, and fluctuation theorems

In this section, we study the evolution of entropy in systems described by our energy

diffusion model. We define a coarse-grained Gibbs entropy for the system, which may be

expressed in terms of the system’s energy distribution η. This motivates us to define an entropy
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at the level of individual trajectories, which yields the coarse-grained Gibbs entropy when

averaged over an ensemble. We are then able to establish a detailed fluctuation theorem for

such trajectories, which relates the probability of transition from one energy to another to the

probability of the reverse transition. This fluctuation theorem implies that the system obeys the

Second Law for thermally isolated systems.

2.6.1 Entropy and the Second Law in the energy diffusion model

We begin by defining an appropriate entropy for statistical ensembles evolving according to

the energy diffusion description. In standard statistical mechanics, the fine-grained Gibbs entropy

SG(t) ≡ SG is given by an average with respect to the system’s phase space distribution ρ:

SG(t) ≡ −kB
∫
dz ρ(z, t) ln ρ(z, t). (2.29)

When a macroscopic system is in thermal equilibrium, this quantity can be identified with

the thermodynamic entropy. However, for nonequilibrium systems, this straightforward

identification is not always possible. In particular, for Hamiltonian systems, SG is conserved

under the dynamics, which tells us that it cannot capture the increase in thermodynamic entropy

suggested by the Second Law.

To see this, consider the quantity dz ρ(z, t), which gives the probability that the system

at time t will be found in the infinitesimal volume element dz surrounding the point z. For a

deterministic system, dz ρ(z, t) = dz0 ρ(z0, 0), where z0 is the initial condition that maps to z

under the evolution between times 0 and t, and dz0 is the volume element which maps to dz.

By Liouville’s theorem, which expresses conservation of phase space volume under Hamiltonian
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evolution, dz = dz0, and therefore ρ(z, t) = ρ(z0, 0). Upon substituting these relations into

(2.29), and treating z0 as the new variable of integration, we find that SG(t) = SG(0).

Instead, we can define a more suitable entropy by considering a coarse-grained version

of the Gibbs entropy. Recall that in the energy diffusion description, our information about the

system is characterized by the energy probability distribution η. Moreover, continual chaotic

mixing ensures that the ensemble is effectively microcanonically distributed on each energy

shell. Therefore, instead of needing the full distribution ρ, we can describe the ensemble (for all

practical purposes) with a coarse-grained density ρ̄(z, t) ≡ ρ̄, that (a) is uniform on each energy

shell, and (b) has an energy distribution which matches η. This motivates us to define the Gibbs

entropy associated with ρ̄ as a coarse-grained entropy S(t) ≡ S ≡ −kB
∫
dz ρ̄(z, t) ln ρ̄(z, t).

We can then express this coarse-grained entropy in terms of η. To do so, first note that by

condition (a) above, ρ̄ is a function of only H0(z) and t. Then, if we marginalize ρ̄ with respect

to energy, condition (b) requires that this function is ρ̄(z, t) = η(H0(z), t)/Σ(H0(z)). Finally, if

we substitute this expression for ρ̄ into the definition S ≡ −kB
∫
dz ρ̄ ln ρ̄, then introducing the

resolution of the identity 1 =
∫
dE δ(H0(z)− E) allows us to integrate over z and obtain:

S(t) = −kB
∫
dE η(E, t) ln

[
η(E, t)

Σ(E)

]
. (2.30)

That is, S/kB is just the Kullback-Leibler divergence [129, 130] of η with respect to the

(unnormalized) distribution Σ.

For macroscopic systems, it is reasonable to identify this entropy with the thermodynamic

entropy, for at least two reasons. First, when the system is in a thermal equilibrium state at

temperature T , the canonical distribution ρT (z) ∝ e−H0(z)/kBT is unchanged by coarse-graining,
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so the coarse-grained entropy and the Gibbs entropy coincide. Second, the coarse-grained

entropy S obeys a Second Law inequality appropriate for thermally isolated systems. In classical

thermodynamics, if a system moves between two equilibrium states without exchanging heat with

its environment (a thermodynamically adiabatic, but not necessarily quasistatic, process2), then

the Second Law implies that this process cannot decrease the thermodynamic entropy of the

system [83]. Correspondingly, we can show that under the dynamics generated by the Fokker-

Planck equation 2.23, the entropy production rate dS/dt is always nonnegative:

dS

dt
= −kB

d

dt

∫
dE η ln

( η
Σ

)
= −kB

∫
dE

∂η

∂t
ln
( η
Σ

)
= −kB

4

∫
dE

∂

∂E

[
SΣ

∂

∂E

( η
Σ

)]
ln
( η
Σ

)
=
kB
4

∫
dE SΣ

∂

∂E

( η
Σ

) ∂

∂E

[
ln
( η
Σ

)]
dS

dt
=
kB
4

∫
dE ηS

{
∂

∂E

[
ln
( η
Σ

)]}2

≥ 0

(2.31)

Here, in moving from the first line to the second line, we apply the product rule and invoke

conservation of probability (
∫
dE η = 1 = const.), and to obtain the third line, we use the

expression for ∂η/∂t furnished by the Fokker-Planck equation (2.23). Recall that S is the power

spectrum defined in (2.19). In moving from the third line to the fourth line, we perform an

integration by parts and assume that the boundary terms vanish.

Thus, we see that S indeed possesses properties consistent with the thermodynamic

2Note that the term “adiabatic” has more than one meaning. Here, “adiabatic” refers to an absence of heat flow.
Elsewhere, like in the quantum adiabatic theorem [131], “adiabatic” means slow.
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entropy. The inequality dS/dt ≥ 0 also gives us insight into the asymptotic evolution of the

system at long times. Assume for simplicity that η and the power spectrum are nonzero for

all energies E. Then, the final line of (2.31) tells us that the equality dS/dt = 0 is only

achieved when the quantity in curly brackets vanishes for all E. This is only possible for

η ∝ Σ. This means that S (and therefore η) will continue to evolve unless the distribution

η ∝ Σ is reached. For systems with an unbounded phase space, such a distribution does not

exist, since Σ is not a normalizable probability distribution, so we generally expect S to grow

without bound. Alternatively, for spin systems and other systems with a bounded phase space,

this final distribution is simply the infinite temperature distribution Σ(E) ≡ Σ(E)/
∫
dE ′ Σ(E ′),

defined in Section 2.5 (for an example of such a system, see Chapter 4, Section 4.3). Once

this distribution is attained, the entropy S stabilizes at the final value Smax = kB ln(
∫
dE Σ),

proportional to the logarithm of the total phase space volume
∫
dE Σ.

The coarse-grained entropy S is defined at the ensemble level. We can also define

an entropy s(Et, t) ≡ s for individual trajectories, which yields S upon averaging over the

ensemble. Consider a phase space trajectory zt, with energy Et ≡ H0(zt). We define the

corresponding trajectory entropy as

s(Et, t) ≡ −kB ln

[
η(Et, t)

Σ(Et)

]
. (2.32)

The physical interpretation of this entropy is somewhat unclear. While a trajectory-specific

quantity, the value of s is still a property of the entire ensemble, since it depends on the

distribution η. Nevertheless, it is worth investigating the properties of s, since entropies of this

type have been frequently studied in the field of stochastic thermodynamics (see for instance
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[132, 133]).

First, we immediately see that averaging s with respect to η at the time t yields S:

⟨s(Et, t)⟩ = −kB
∫
dEt η(Et, t) ln

[
η(Et, t)

Σ(Et)

]
= S(t), (2.33)

which tells us that the Second Law inequality dS/dt ≥ 0 is a statement about the on-average

increase of s. Later, we will see that d⟨s⟩/dt ≥ 0 is a corollary of a fluctuation theorem involving

s, which relates the probability of the system performing a given evolution in energy space to the

probability of the time-reversed evolution. In preparation for the proof of this result, we now turn

to a discussion of time-reversal symmetry in the energy diffusion model.

2.6.2 Time-reversal symmetry and detailed balance

Consider a phase space trajectory zt for a system described by the energy diffusion model,

for t ∈ R. We can define a corresponding “time-reversed” trajectory by zRt ≡ z−t: A system

following this reversed trajectory moves through the same sequence of phase space points as the

original trajectory, but in the opposite order (see Figure 2.3). Such an evolution can be understood

as being generated by the Hamiltonian −H0 − V (−t/T ). Let us refer to a system governed by

these dynamics as the reversed system, and the original system as the forward system. Note that

this time reversal with respect to phase space should be distinguished from the more common

notion of time reversal, in which the particles in a system reverse their motion in real space, while

the signs of particle velocities are flipped.

With a little thought, we can see that the reversed system satisfies the assumptions necessary

for energy diffusion. First, the evolution of the reversed system will be ergodic. Since a typical
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Figure 2.3: A pair of counterpart forward and reverse trajectories zt and zRt = z−t (the blue solid
curve and red dashed curve, respectively), with the common initial condition z0 = zR0 . Here, the
trajectories are slightly displaced relative to one another for visualization purposes, but in reality
they trace out the exact same curve in phase space, but in the opposite time order as denoted by
the arrows.

trajectory of the forward system ergodically explores the correspondingH0 energy shell, a typical

time-reversed trajectory will as well, since any pair of forward and reversed trajectories explore

the same region of phase space, just in the opposite order. Second, the reversed dynamics will

be chaotic. In the forward system, although a set of nearby evolving trajectories will stretch

out along some directions in phase space (in order to achieve the exponential divergence of

trajectories characteristic of chaos), the set must contract in other directions, since Liouville’s

theorem requires that the volume of the set remain constant. This means that a set of reversed

trajectories will also diverge exponentially, since it will stretch out along the same directions

that a counterpart forward set would contract along. Finally, for finite V , the same arguments

as Section 2.3 tell us that for large ω, the driven trajectories will be weakly perturbed from their

undriven counterparts. Thus, just like in the original system, the energyH0 will evolve via a series

of small, random changes, manifesting as a process of diffusion in energy space. The evolution

of the energy probability distribution will then be described by a Fokker-Planck equation akin to

(2.11).
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In fact, the energy diffusion process for the reversed system is governed by the same

Fokker-Planck equation as the original system, with identical expressions for the coefficients

g1 and g2. To see this, consider the diffusion coefficient g2 for the reversed system. We can

calculate g2 via the same steps that we followed to obtain g2 for the original system, as given

in Section 2.3. In this way, we find that g2 for the time-reversed system is one-half the Fourier

transform of an autocorrelation function CR(s;E0) ≡ ⟨V̇ (zR,0
0 )V̇ (zR,0

s )⟩ − ⟨V̇ (zR,0
0 )⟩⟨V̇ (zR,0

s )⟩,

defined in terms of the time-reversed undriven trajectories zR,0
t ≡ z0−t. However, as is easy to

show, this correlation function is identical to the correlation function for the original system,

defined in (2.17):

CR(s;E0) = ⟨V̇ (z00)V̇ (z0−s)⟩ − ⟨V̇ (z00)⟩⟨V̇ (z0−s)⟩

= ⟨V̇ (z0s)V̇ (z00)⟩ − ⟨V̇ (z0s)⟩⟨V̇ (z00)⟩

= C(s;E0).

(2.34)

Here, in moving from the first line to the second line, we have used the time-translation symmetry

of the microcanonical distribution under the undriven dynamics. Thus, we see that the diffusion

coefficient for the reversed system is given by g2(E,ω) = 1
2
S(ω;E), just as in the original

system.

Moreover, the energy diffusion process for the time-reversed system will satisfy the

fluctuation-dissipation relation (2.22), by the same arguments used to justify this relation for

the original system. This implies that the drift coefficient g1 for the two systems will also be the

same. Since the Fokker-Planck dynamics are fully characterized by the quantities g1 and g2, we
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see that the energy dynamics of the original system and the reversed system are governed by the

same Fokker-Planck equation. In this sense, we say that the energy diffusion model possesses

time-reversal symmetry. Notably, this symmetry obtains whether or not the system of interest

has any fundamental time-reversal symmetry at the level of the microscopic dynamics, e.g., in

systems of interacting particles in the absence of external magnetic fields.

The time-reversal symmetry property of the diffusive description allows us to derive a

relation of detailed balance, analogous to similar relations valid for systems in contact with a

thermal bath. In such systems, the condition of detailed balance relates the probability of a

transition A → B between some states A and B, to the probability of the reverse transition

B → A [93]. In the same vein, the detailed balance condition in the context of energy diffusion

connects the probability of an energy transitionE ′ → E to the probability of the reverseE → E ′.

More precisely, suppose that an ensemble of systems described by the energy diffusion model is

allowed to evolve from t = 0 to some time t = τ . We define the transition kernel T (E|E ′; τ) as

the probability distribution for the system’s energyE at t = τ , given that the system’s energy was

E ′ at t = 0. Our aim is to establish a relation between T (E|E ′; τ) and the transition probability

for the reverse transition, T (E ′|E; τ).

In terms of the Fokker-Planck equation, T (E|E ′; τ) may be obtained in principle by solving

the Fokker-Planck equation with the initial condition η(E, 0) = δ(E−E ′). However, to establish

the detailed balance condition, it is best to compute T (E|E ′; τ) in terms of the underlying

Hamiltonian description in phase space. To do so, consider an ensemble of initial conditions

z0 with energy E ′ at t = 0; for simplicity, we sample them according to a microcanonical

distribution ρE′(z0) (see (2.6)). Each initial condition evolves according to Hamilton’s equations

(2.2), and reaches the phase space point zτ at t = τ . Then, T (E|E ′; τ) is given by the resulting
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distribution of energies at t = τ , obtained by integrating ρE′(z0) over all initial conditions which

attain the energy E at t = τ :

T (E|E ′; τ) =

∫
dz0 ρE′(z0)δ (H0(zτ )− E)

=
1

Σ(E ′)

∫
dz0 δ (H0(z0)− E ′) δ (H0(zτ )− E) .

(2.35)

Note that our choice of the initial microcanonical distribution is for convenience; any distribution

confined to the E ′ energy shell would do. As long as τ is large enough that the energy diffusion

description is valid, any non-microcanonical distribution will become effectively microcanonical

on timescales ≪ τ , and the resulting kernel T (E|E ′; τ) will be approximately the same.

Moreover, the choice of initial time t = 0 is arbitrary. The periodic nature of the drive means

that that the transition kernel must have discrete time-translation symmetry: The conditional

probability of a transition E ′ → E between t = 0 and t = τ is the same as the probability of

that same transition between t = nT and t = nT + τ , where n is an integer. So as long as

we restrict our attention to times which are an integer multiple of the driving period, T (E|E ′; τ)

simply characterizes the probability of transitions from E ′ and E over any interval of duration τ ,

irrespective of the initial time.

On the other hand, we just established that the reversed system undergoes the same

energy diffusion process, with the same transition probabilities. Therefore, we can also compute

T (E|E ′; τ) in terms of the trajectories of the reversed system zRt = z−t:
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T (E|E ′; τ) =

∫
dzR0 ρE′(zR0 )δ

(
H0(z

R
τ )− E

)
=

1

Σ(E ′)

∫
dzR0 δ

(
H0(z

R
0 )− E ′) δ (H0(z

R
τ )− E

)
=

1

Σ(E ′)

∫
dz0 δ (H0(z0)− E ′) δ (H0(z−τ )− E)

=
Σ(E)

Σ(E ′)
T (E ′|E; τ).

(2.36)

In moving from the third line to the fourth line above, we have noted that the integral on the third

line is Σ(E) times the transition kernel for transitionsE → E ′ between t = −τ and t = 0. But by

the discrete time translation symmetry of the dynamics, this kernel is just T (E ′|E). Rearranging

the final equality, we arrive at the desired detailed balance condition:

Σ(E ′)T (E|E ′; τ) = Σ(E)T (E ′|E; τ). (2.37)

2.6.3 A detailed fluctuation theorem

We are now in a position to prove a fluctuation theorem for the energy diffusion model,

which emerges as a straightforward corollary of the detailed balance condition (2.37). We begin

by laying out a few preliminary definitions, which allow us to state the theorem, and then we

proceed to the proof.

To proceed, consider an ensemble of systems described by the energy diffusion model,

with associated energy distribution η(E, t). Let us observe the system at K + 1 discrete times

ti = iτ , where i = 0, 1, 2 ... K. As before, assume that the time τ is long enough that the

diffusive description is valid. For each trajectory in the ensemble, the energy of the system at
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these discrete times will be given by some definite sequence {Ei} ≡ E0 → E1 → ... → EK ,

where Ei is the energy of the system at t = ti. Therefore, given a particular ensemble, we can

then consider the corresponding probability distribution over possible energy sequences {Ei},

denoted by P ({Ei}).

The fluctuation theorem connects the distribution of sequences for two related ensembles,

a “forward” ensemble and a “backward” ensemble. The forward ensemble is described by an

arbitrary initial energy distribution ηF (E, t0), which evolves according to the Fokker-Planck

equation to some final distribution ηF (E, tK). Let PF ({Ei}) denote the probability distribution

over possible sequences {Ei} for this ensemble; speaking loosely, we say that PF ({Ei}) is the

probability of observing the sequence {Ei} in the forward ensemble. Conversely, the reverse

ensemble is defined as the ensemble with an initial distribution ηR(E, t0) ≡ ηF (E, tK) which

matches the final distribution of the forward ensemble, which is then allowed to evolve under

the Fokker-Planck dynamics from t = t0 to t = tK (see Figure 2.4). This ensemble has its own

distribution of sequences PR({Ei}). For a given sequence {Ei} ≡ E0 → E1 → ... → EK ,

the fluctuation theorem relates its probability in the forward ensemble, to the probability of

the corresponding time-reversed sequence {Ei}∗ ≡ EK → EK−1 → ... → E0 in the reverse

ensemble:

PF ({Ei})
PR({Ei}∗)

= exp

(
∆s({Ei})

kB

)
, (2.38)

Here, ∆s({Ei}) = s(EK , tK)− s(E0, t0) ≡ ∆s is the net change in the trajectory entropy (2.32)

when the system evolves through the sequence {Ei}.

To prove this result, we reason as follows. The forward sequence distribution PF ({Ei}) is
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Figure 2.4: Plot displaying the relationship between the forward and reverse distributions
ηF (E, t) and ηR(E, t). The initial forward distribution ηF (E, t0) (solid red curve) evolves
between t = t0 and t = tK to the final forward distribution ηF (E, tK) (dashed purple curve).
This evolved distribution is also equal to the initial reverse distribution ηR(E, t0), which evolves
from t = t0 to t = tK into the final reverse distribution ηR(E, tK) (dotted blue curve).

simply the joint distribution for the K + 1 random variables E0, E1 ... EK , given the ensemble

with distribution ηF (E, t). Now, note that energy diffusion (and diffusion more generally) is a

type of Markov process: Given the system’s energy E ′ at some time t, the probability for the

system to transition to a new energy at t + ∆t is independent of the past history of the system,

including the value of the energy at previous times [93]. As a result, the joint distribution may be

factorized into a product of transition probabilities T (Ei+1|Ei; τ)

PF ({Ei}) = ηF (E0, t0)T (E1|E0; τ)T (E2|E1; τ) ... T (EK |EK−1; τ). (2.39)

By identical reasoning, the sequence distribution for the reverse ensemble, evaluated for the

reverse sequence {Ei}∗, is given by
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PR({Ei}∗) = ηR(EK , t0)T (EK−1|EK ; τ)T (EK−2|EK−1; τ) ... T (E0|E1; τ). (2.40)

We can now take the ratio of these expressions for PF ({Ei}) and PR({Ei}∗). The

result depends on a series of ratios T (Ei+1|Ei; τ)/T (Ei|Ei+1; τ), which by the detailed balance

condition (2.37) are equal to Σ(Ei+1)/Σ(Ei). All the factors of Σ cancel except for two, and we

are left with

PF ({Ei})
PR({Ei}∗)

=
ηF (E0, t0)

ηR(EK , t0)

Σ(EK)

Σ(E0)
. (2.41)

Finally, if we recall the definition of the trajectory entropy (2.32), and that ηR(EK , t0) =

ηF (EK , tK) by definition, then we obtain the fluctuation theorem (2.38).

This relation is a so-called “detailed” fluctuation theorem, which concerns the probabilities

of individual sequences in energy space. As with fluctuation theorems for other systems,

an immediate corollary of this result is the corresponding integral fluctuation theorem. To

see this, multiply both sides of (2.41) by PR({Ei}∗) exp (−∆s/kB), and then integrate over

E0, E1 ... EK . Then, on the right-hand side, we have an average of exp (−∆s/kB) over all

possible sequences, and on the left-hand side, we have the integral of the normalized probability

distribution PR({Ei}∗), which must be 1:

〈
exp

(
−∆s({Ei})

kB

)〉
= 1. (2.42)

We can use this integral fluctuation theorem to corroborate the previously established
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Second Law inequality (2.31), which states that the coarse-grained entropy S cannot decrease.

To do so, we invoke Jensen’s inequality applied to the exponential function, which states that for

a random variable X , e⟨X⟩ ≤ ⟨eX⟩ [128]. Setting X = −∆s/kB, the integral fluctuation theorem

then implies that exp(−⟨∆s⟩/kB) ≤ 1, or ⟨∆s⟩ ≥ 0. Since S = ⟨s⟩, this is just the Second Law

for the coarse-grained entropy S.

The detailed and integral fluctuation theorems derived above are both closely related to

results previously obtained by other authors. The literature on fluctuation theorems is enormous

(for reviews of this topic see [134, 135]), so it is difficult to exhaustively catalogue all the possible

connections, but we highlight three important points of comparison here. First, the general

structure of the above proof is very similar to the original derivation of the Crooks fluctuation

theorem [136]. In both proofs, the probability of a discrete sequence of system states is expressed

as a chain of transition probabilities, and these transition probabilities are related to their reverse

counterparts via a detailed balance relation. Second, the integral fluctuation theorem (2.42)

is closely analogous to the result ⟨e−∆stot/kB⟩ = 1 derived by Seifert in [133] for a diffusing

colloidal particle. Beyond the obviously distinct physical settings, there are two key differences

between our result and Seifert’s: (a) the diffusion coefficient in Seifert’s model is a constant in

the Fokker-Planck equation, while in our model it varies with energy, and (b) while the entropy

change ∆stot in Seifert’s work corresponds mathematically to ∆s in our result, physically ∆stot

represents the total entropy change of the colloidal particle and the surround medium, while ∆s

corresponds to the entropy change of the system alone. Third and finally, if the Fokker-Planck

equation admits a normalized stationary distribution (the infinite temperature distribution Σ(E)),

then it is possible to obtain the fluctuation theorems (2.41) and (2.42) by applying the formalism

presented in [137], which establishes fluctuation theorems for a broad class of diffusive processes.
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2.7 Overview of other energy diffusion models

To conclude this chapter, we present a brief review of work by other authors on the topic

of energy diffusion. The diffusive evolution of energies have been studied in a diverse range

of physical and mathematical settings, from the escape of a Brownian particle over a potential

barrier [95, 96, 106], to atoms excited by an oscillating electromagnetic field [101, 102], to the

adiabatic driving of chaotic systems [98, 103–105, 108, 110, 111]. In this section, we provide an

overview of this body of work, describe the typical conditions under which an energy diffusion

description is appropriate, and point out which results from other authors are most closely related

to our own. Broadly speaking, the systems discussed here fall into one of two related categories:

Systems subject to a coherent external drive, modelled by a time-dependent Hamiltonian, and

systems which exchange energy with a weakly coupled thermal bath. Note that in this section,

we primarily consider classical systems; a review of energy diffusion models in quantum systems

is postponed to Chapter 5.

First, let us sketch out some qualitative conditions under which we expect an energy

diffusion description of a system to be potentially valid. We can use our chaotic system under

rapid periodic driving as a guiding example. Recall from our arguments in Section 2.3 that the

diffusion of energies emerged as a consequence of two key properties of the dynamics: The decay

of correlations characteristic of the chaotic evolution, with associated correlation timescale τC ,

and the effective weakness of the drive. This first property implies that on a coarse-grained

timescale much longer than τC , the system gains and loses energy from the drive in a series of

effectively random, uncorrelated energy changes (the quantities δEi in Section 2.3). Meanwhile,

the second property tells us that the system’s energy and statistical properties will change very
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slowly, implying that many successive energy changes in a row will have essentially identical

statistics. The result is a random walk or diffusion in energy space.

Extrapolating from this example, we can see that an energy diffusion model might

be more generally applicable to systems with two features: (a) a source of randomness or

effective randomness, resulting in a decay of correlations on a timescale τC , and (b) an external

perturbation which has a sufficiently small effect, at least on a timescale much longer than τC . The

property (a) could emerge from a variety of sources: In our work, effective stochasticity follows

from the chaotic nature of the system’s internal dynamics, but randomness might also appear in an

interaction with a thermal bath, or from chaotic motion induced by the external perturbation itself.

On the other hand, systems with property (b) could include certain adiabatically (slowly) driven

systems, rapidly driven systems, or systems where the magnitude of the perturbation is small.

Indeed, for the great majority of systems cited in this section, both of these general features are

present in the systems studied in one way or another.

Within this general characterization, many classical systems which have been analyzed

with an energy diffusion model fall into two loose, somewhat overlapping categories. The first

category, which is most directly connected to our work, consists of Hamiltonian systems which

are isolated except for a prescribed external drive, modelled by an explicit time dependence of the

system’s Hamiltonian. In the language of thermodynamics, these systems gain or lose energy via

work done by an external drive, whose dynamics are unaffected by any “back-action” from the

system. A range of classical systems under this heading have been studied. For example, driven

oscillator systems with a single degree of freedom may exhibit energy diffusion, provided that

the drive is strong enough to induce chaos [138]. This effect appears in models such as the kicked

rotor [13, 139], and in semiclassical models of hydrogen-like atoms driven by an electromagnetic
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field [101, 102]. Another class of relevant systems is adiabatically driven systems, in which

a time-dependent parameter in the system’s Hamiltonian is varied very slowly; a paradigmatic

example of this is a gas of particles in a cavity, where one of the walls (a “piston”) is moved

at a slow speed relative to the particle speeds. Specifically, beginning with studies by Ott and

coworkers [98, 103, 104], much work has been done with adiabatically driven systems which

are chaotic and ergodic in the absence of driving [105, 108, 110, 111]. In these systems, the

slow rate of driving implies that the system’s adiabatic invariant [91, 98] is nearly conserved, and

the energy diffusion description can be used to quantify the deviation from perfect conservation.

Last, a comparatively recent use of an energy diffusion model can be found in [119], in which

the fluctuations in energy of a periodically driven system are calculated in an energy diffusion

description, under the assumption that the energy change per driving cycle is small, and that

successive cycles are uncorrelated.

Our work on periodically driven chaotic systems is most closely related to energy diffusion

in adiabatically driven chaotic systems. In both types of systems, an effectively random energy

evolution emerges the chaotic mixing property of the underlying Hamiltonian dynamics. The

result is an energy diffusion process, with drift and diffusion rates that coincide with the

predictions of linear response theory. These rates are connected via the fluctuation-dissipation

relation (2.22) [108]. Of course, there are some key differences in the analysis of these two types

of systems. One distinction is that for adiabatically driven systems, the energy is often identified

with the full Hamiltonian of the system, whereas in our analysis the energy is given by the bare

Hamiltonian H0. Another difference is that energy diffusion in adiabatically driven systems can

be derived in terms of an expansion in a small “slowness” parameter that specifies the rate of

driving, via techniques such as multiscale perturbation theory. On the other hand, we are not
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aware of a way to obtain our results via an analogous expansion in the obvious small parameter

ω−1, except in the case of driven billiard systems (see Chapter 3, Section 3.4).

A second class of models which have been found to exhibit energy diffusion are systems

which exchange energy with a weakly coupled thermal bath (additional discussion of these

systems can also be found in Chapter 4). In these models, thermal noise provides the random

element necessary for diffusive evolution. Much analysis of these systems descends from early

work by Kramers, who considered a Brownian particle in a potential well as a model for

chemical and nuclear reactions [95]. In this model, the escape of the particle from the potential

well (facilitated by thermal fluctuations) corresponds to the surmounting of an energetic barrier

necessary for a reaction to take place. Kramers obtained a diffusive description of the particle’s

energy evolution by marginalizing over a Fokker-Planck equation for the particle’s motion in

phase space, and then used this description to calculate the rate of escape from the potential well.

This model has since been generalized mathematically, to include the effects of external driving

forces and and non-Markovian thermal noise [96, 99, 100, 106], and similar models have been

derived for classical spin degrees of freedom coupled to a thermal bath [97]. Moreover, versions

of this model have been used to analyze other systems and models which “switch” between

two or more states, including Josephson junctions [107, 109] and a semiclassical version of the

Duffing oscillator [118]. Now, in addition to these models following the work of Kramers, in

which the stochastic nature of thermal noise is mostly assumed a priori, energy diffusion and

related phenomena have also been studied starting from a purely deterministic description of the

system and bath. Systems analyzed in this way include systems of particles interacting with hard

or soft scatterers [120, 123], a pair of weakly interacting chaotic degrees of freedom in a classical

Bose-Hubbard model [122], and a model of a Brownian particle as a heavy particle coupled to a
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rapidly evolving chaotic system [112]. Such analyses have provided insights into how statistical

phenomena like thermalization can emerge from an underlying deterministic dynamics, even in

systems with relatively few degrees of freedom.

Although we have divided the systems mentioned in this section in two categories, these

categories are clearly not mutually exclusive. For one thing, in many energy diffusion models,

the effects of both coherent external driving and thermal noise have been included simultaneously

[106, 107, 109, 116, 118]. But more interestingly, for many physical scenarios, these two types

of external perturbation are simply two ways of viewing the same phenomenon. This point,

which has been emphasized in works such as [105] and [114], can be most easily illustrated

by considering a slow, heavy hard sphere, confined to a chaotic cavity and immersed in a gas

of small, fast-moving particles (see Figure 2.5). On one hand, before the sphere’s speed is

significantly altered due to collisions with the particles, the motion of the sphere appears as a

fixed external influence imposed on the system of particles, which is unresponsive to the particle

dynamics. In this approximation, we can think of the particles as an example of our first class of

systems, with the sphere playing the role of the external drive. However, on longer timescales,

the effect of many sphere-particle collisions will accumulate, and the particles emerge as a source

of friction and noise acting on the sphere. From this perspective, it is natural to instead focus on

the sphere as our system of interest, and to view the slow dissipation of the sphere’s energy as an

example of the energy diffusion processes in our second class of systems.
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Figure 2.5: A hard sphere of mass ms with velocity vs (blue circle), confined to a chaotic cavity.
The sphere is immersed in a bath of point particles (red dashed lines), each with some mass mp

and velocity vp. We assume that for all the particles, mp ≪ ms and |vp| ≫ |vs|.
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Chapter 3: Energy diffusion in billiard systems under rapid periodic driving

3.1 Chapter summary

Dynamical billiard systems, in which a particle confined to a cavity collides elastically with

the cavity walls, are a paradigmatic model in the study of Hamiltonian chaos. In this chapter,

we apply the energy diffusion framework established in Chapter 2 to billiard systems subject

to a rapid periodic driving force. As we will see, energy diffusion in billiards results in Fermi

acceleration, or a systematic increase in the average energy. The relative simplicity of billiard

dynamics allows us to study this process in detail, with both analytical methods and numerical

techniques.

We begin this chapter with Section 3.2, where we precisely define the billiard systems

under consideration. Then, in Section 3.3, we discuss the conditions under which the energy

diffusion description is valid for driven billiards. This is followed by a calculation of the energy

drift and diffusion coefficients g1 and g2 for billiard systems, given in Section 3.4 (see (3.19) and

(3.18)). In Section 3.5, we present simulations which corroborate our theoretical results. Then,

in Section 3.6, we extend our theoretical results to many-body systems, by considering systems

of interacting particles confined to a billiard cavity. Finally, we conclude with Section 3.7, where

we compare our results to existing work on driven billiards and Fermi acceleration. Except for

the results for many-particle billiards presented in Section 3.6, the results in this chapter were
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previously published in [140].

3.2 Setup

In this section, we introduce the class of driven billiard systems under consideration, and

establish some important definitions and notation. In these systems, a particle is subject to a rapid

time-periodic driving force as it moves chaotically within a cavity. These systems constitute a

special case of the Hamiltonian systems studied in Chapter 2.

We begin by defining our system of interest. We consider a point particle of mass m, with

position x ≡ xt and velocity v ≡ vt, confined to the inside of a cavity or “billiard” (see Figure

3.1). Precisely, the billiard is a bounded, connected subset of d-dimensional Euclidean space

(d ≥ 2), with a boundary or “wall” consisting of one or more (d−1)-dimensional surfaces. When

strictly inside the billiard, the particle evolves smoothly according to Newton’s laws. Whenever

the particle reaches the billiard boundary, it undergoes an instantaneous elastic collision with the

wall.

Specifically, we assume that between collisions, the particle is subject to two forces. First,

the particles experiences a conservative force −∇U(x), generated by a static potential U(x).

Second, we apply a time-periodic driving force F(x) cos(ωt) = −∇UF (x) cos(ωt), with period

T = 2π/ω, where UF (x) is some potential. Therefore, the equations of motion for x and v are

given by:

dx

dt
= v, m

dv

dt
= −∇U(x) + F(x) cos(ωt). (3.1)

When the particle reaches the billiard boundary, an instantaneous elastic collision occurs.
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Figure 3.1: A sample trajectory (x,vt) (red dashed line) in a d = 2 dimensional billiard cavity.
The particle collides with the wall at a point with unit normal n̂. The blue shading within the
billiard represents variations in the potential fields U(x) and UF (x) cos(ωt).

This collision leaves the position of the particle unchanged, but the component of the velocity

perpendicular to the wall is instantly reversed. That is, the velocity of the particle is updated from

v to v′ according to the reflection law

v′ = v − 2(v · n̂(x))n̂(x), (3.2)

where n̂(x) is the outward-facing unit vector normal to the billiard boundary at x, the point of

collision.

The equations (3.1) and (3.2) fully define the dynamics of the driven particle. We note here

that our use of the term “billiard” is more general than the typical usage: The word “billiard” often

simply refers to a free particle in a cavity, corresponding to the case of vanishing U(x) and F(x).

In light of this, we will use the term “standard billiard” to refer to the special case of U(x) = 0.
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For a driven standard billiard, the associated undriven billiard (obtained by additionally setting

F(x) = 0) corresponds to a billiard in the more common sense of the word.

In our analysis, we are most interested in the evolution of the particle’s energy, defined as

E ≡ E(x,v) ≡ 1
2
m|v|2 + U(x). In the absence of driving, E is a constant of the motion: E

is conserved under the equations of motion (3.1) for F(x) = 0, and is also unchanged under

the reflection law (3.2). For nonzero F(x), the collisions are still energy-conserving, but (3.1)

implies that the particle’s energy between collisions changes according to:

dE
dt

= F(x) · v cos(ωt). (3.3)

In particular, we will consider the energy dynamics for large ω, in the rapid driving regime.

We note here that the billiard systems we study are one example of a Hamiltonian system

like those described in Chapter 2. That is, x and p ≡ mv correspond to a set of canonical

coordinates and momenta, the energy E corresponds to an undriven Hamiltonian H0(x,p) =

|p|2/2m+ U(x), and the driving potential UF (x) cos(ωt) acts as the drive V (t). Thus, provided

that the two key assumptions of chaotic dynamics and rapid driving are satisfied, the energy of

the billiard particle will evolve diffusively, and all of the conclusions of Chapter 2 will apply. We

discuss the validity of these assumptions for billiard systems in Section 3.3.

As in Chapter 2, our analysis will concern statistical ensembles of particle trajectories, and

the energy distributions of such ensembles. Each trajectory in an ensemble is determined by an

initial condition (x0,v0) at t = 0, which is sampled according to some probability distribution

ρ0(x0,v0) on phase space (that is, the 2d-dimensional space of particle positions and velocities).

The ensemble is then evolved in time by evolving each initial condition according to (3.1) and
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(3.2), yielding xt and vt. The system’s time-dependent energy distribution η(E, t) is then given

by

η(E, t) =

∫
ddx0d

dv0 ρ0(x0,v0) δ
(
E(xt,vt)− E

)
. (3.4)

Here, ddx0d
dv0 is a 2d-dimensional infinitesimal “hyper-volume” element in phase space, and

(xt,vt) is the phase space location, at time t, of the trajectory with initial conditions (x0,v0). For

this integral, and for similar integrals in this chapter unless otherwise stated, the integration over

x0 is performed over the interior of the billiard, and the integration over v0 runs over all v0 ∈ Rd.

Finally, we note that if the driving force is generated by a more general time-periodic

potential UF (x, t), then it is straightforward to extend our analysis by decomposing this potential

as a Fourier series with fundamental frequency ω. However, in order to keep the calculations

in this chapter relatively simple, we restrict our attention to the monochromatic driving force

F(x) cos(ωt).

3.3 Conditions for energy diffusion in billiard systems

In this section, we describe the conditions under with the energy diffusion description

is a good model for the energy evolution of periodically driven billiards. As for the general

Hamiltonian systems described in Chapter 2, the validity of the energy diffusion model for

billiards depends on two key assumptions: The chaotic and ergodic nature of the undriven

dynamics, and the high speed of the periodic drive. On one hand, whether the dynamics are

chaotic and ergodic is contingent upon the shape of the billiard cavity, and the forces that the

particle is subjected to. On the other hand, we find that the rapid driving assumption can be
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encapsulated by the two conditions (3.5) and (3.6), which may be satisfied for sufficiently large

driving frequencies ω.

3.3.1 Chaos and ergodicity in billiard systems

We begin by discussing the assumptions of chaos and ergodicity. In Chapter 2, we

required that in the absence of driving, our system of interest explore phase space chaotically and

ergodically at each energyE. When do billiard systems exhibit such dynamics? This question has

been most frequently studied for standard billiards (U(x) = 0), where the billiard particle moves

inertially between collisions with the wall. Recall that chaotic dynamics are characterized by an

exponential divergence of similar trajectories over time. Speaking loosely, chaotic motion in a

standard billiard tends to arise when nearby parallel trajectories diverge or “defocus” from one

another after a collision, due to curvature of the billiard wall. Clearly, this will occur if a segment

of the wall is convex, in which case the trajectories begin to diverge immediately (see Figure

3.2). But it may also occur if the wall is concave, in which case the trajectories will initially

converge, but may begin to diverge if there is enough time before the next collision. Although

this is only an intuitive plausibility argument, the existence of chaotic and ergodic motion has

been rigorously demonstrated for certain classes of billiard shapes [85, 86]. Classic examples are

the Sinai billiard [141], defined by a square cavity with a circular scattering center inside, and the

Bunimovich stadium [142], which consists of two semicircular walls connected by parallel lines

(see Figure 3.3).

For the U(x) ̸= 0 case, less is known in general. In this case, the nature of the undriven

dynamics depends on both the shape of the billiard and the characteristics of the static potential
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Figure 3.2: Nearby parallel trajectories diverging after a collision with a convex wall.

U(x). However, some of the rigorous results for standard billiards may be extended, at least

approximately, to establish chaotic and ergodic motion for non-standard billiards. For example,

suppose we have a standard billiard for which chaos and ergodicity has been proven. Then, if we

introduce a sufficiently weak potential U(x), then it can be shown that this non-standard billiard

inherits the chaotic and ergodic properties of its standard counterpart [143]. Alternatively, we

note that motion in a potential is mathematically equivalent to free motion in some non-Euclidean

space. Therefore, if chaotic and ergodic dynamics can be established for such non-Euclidean

motion in a standard billiard, then the corresponding motion in a potential field will also be

chaotic and ergodic [144].

Regardless of the particular method of proof, we now assume that all billiards studied in

this chapter satisfy this assumption of chaos and ergodicity. We now move to a discussion of our

second key assumption, the assumption of rapid driving.
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Figure 3.3: The Sinai billiard (left) and the Bunimovich stadium billiard (right), each with a
sample trajectory given by the red dashed line.

3.3.2 Rapid periodic driving in billiard systems

As in the general case, described in Chapter 2, sufficiently rapid periodic driving of a

billiard system results in an averaging effect, in which the net impulse imparted by the driving

force F(x) cos(ωt) nearly integrates to zero over a period. Because of the weak effect of the

drive, there exists a separation of timescales (see (2.12)) between the typical correlation time of

the chaotic motion τC , and the typical timescale τE over which the system gains a significant

amount of energy. The result is a process of energy diffusion, described by the Fokker-Planck

equation (2.11), which occurs on timescales ≫ τC .

However, for the specific case of billiard systems, we can go further than this general

picture. How large must ω be for the energy diffusion description, and the associated Fokker-

Planck equation, to be approximately valid? The requirement that the drive act as a weak

perturbation on the undriven dynamics suggests two conditions. First, we assume that over the

course of a single period, the forces −∇U(x) and F(x) cos(ωt) produce a very small change in

the particle’s velocity. If the typical magnitude of these forces is denoted by F , then from (3.1)
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we can estimate that the velocity will change by an amount of order F/(mω) during a period

(provided a collision does not occur). We assume that this change is much smaller than v, the

typical speed of the particle:

F

mω
≪ v. (3.5)

This is our first condition. Importantly, this ensures that when a collision occurs, the

outgoing trajectory of the particle will only be slightly altered relative to the undriven motion. If

(3.5) is not satisfied, then the particle’s direction of motion will oscillate wildly back and forth

due to the force F(x) cos(ωt). As a result, the drive may cause the particle to collide with the

wall at a substantially different angle relative to a corresponding undriven particle. The associated

driven and undriven trajectories would then rapidly diverge, contrary to our requirement that the

drive act as a small perturbation.

Second, we assume that the distance travelled by the particle over a typical period is very

small, much smaller than any other relevant length scale associated with the system. Since (3.5)

ensures that the particle’s velocity changes little during a period, this distance travelled will be of

order vT ∼ v/ω. So we may write our second condition as

v

ω
≪ l, (3.6)

where l is the shortest length scale in the system. l may be the mean free path for the particle, or

a length scale characterizing the roughness of the billiard wall, or the typical distance over which

the forces −∇U(x) and F(x) vary by a significant amount.

With the condition (3.6) satisfied, a large number of periods will occur between successive
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collisions with the billiard wall. Moreover, over a single period, the quantity F(x) will be nearly

constant, since the particle will hardly move during this short time interval. As a result, during

any period without a collision (the great majority of periods), integrating (3.1) reveals that the

driving force perturbs the particle’s velocity by an amount ≈ F(x) sin(ωt)/(mω), and its position

by ≈ −F(x) [cos(ωt)− 1] /(mω2). Thus, the cumulative effect of the force essentially integrates

to zero as ω → ∞. Taken together, we see that if the conditions (3.5) and (3.6) are satisfied, the

drive acts as a weak perturbation during periods both with and without collisions. When subject

to such a drive, the particle will typically experience several collisions with the wall before its

trajectory is significantly altered relative to the undriven motion.

As a result, when the conditions (3.5) and (3.6) are both satisfied for a chaotic, ergodic

billiard, we expect that the billiard particle’s energy will evolve diffusively. As with the more

general class of systems discussed in Chapter 2, this evolution will proceed in accordance with the

Fokker-Planck equation (2.11). In Section 3.4, we derive expressions for the drift and diffusion

coefficients g1 and g2 for billiard systems, which are valid for large ω (see (3.19) and (3.18)).

3.3.3 Violation of the rapid driving assumption at high energies

Now, for any given energy E, which determines the typical particle speed v, the conditions

(3.5) and (3.6) may always be satisfied for sufficiently large ω. However, at fixed driving

frequency ω, there will generally be some energies for which at least one of these conditions

does not hold. This leads to the follow picture. Let R(ω) denote the range of energies for

which conditions (3.5) and (3.6) are satisfied. For a statistical ensemble with particle energies in

R(ω), the energy distribution η will evolve according to the Fokker-Planck equation (2.11). Of
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course, under the Fokker-Planck dynamics, this distribution will shift and spread in energy space,

ultimately spreading outside of the interval R(ω). At this point, the conditions (3.5) and (3.6) are

not satisfied for all particles in the ensemble. In particular, we expect condition (3.6) to generally

break down for sufficiently high energy particles, which are fast enough to travel a significant

distance over a single period.

What happens in this high energy regime, when particle speeds have increased so that

v/ω ∼ l? As before, condition (3.5) (which remains valid at high energies) tells us that the

forces −∇U(x) and F(x) cos(ωt) only weakly perturb the particle’s velocity over a given period.

However, the increased speed of the particle now means that the particle travels a distance of order

v/ω ∼ l during this period. Assuming for simplicity that l is comparable to the particle’s mean

free path, we see that the velocity is only slightly altered between successive collisions: Many

collisions with the wall must occur before the drive significantly perturbs the particle’s velocity

relative to the undriven motion. Similarly, the drive will only weakly affect the particle’s position:

We can estimate from (3.1) that the drive will perturb the particle’s position by an amount of order

F/(mω2) during a period, which by (3.5) and v/ω ∼ l is much smaller than l. Therefore, the

energy diffusion description may still be valid at high energies, even when (3.6) is not satisfied,

since we can potentially treat the drive as a small perturbation on the undriven dynamics. With

that said, our main focus in this chapter is rapidly driven particles, for which the conditions (3.5)

and (3.6) are both satisfied. In particular, the expressions for g1 and g2 obtained in Section 3.4

are only valid in this regime.
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3.4 g1 and g2 for billiard systems

We now derive expressions for the drift and diffusion coefficients g1 and g2 for billiard

systems, in the limit of large ω. We calculate these quantities in terms of powers of the small

parameter ω−1, and ultimately only retain terms of order O(ω−2), the lowest non-zero order.

The structure of this calculation is similar to the derivation of g2 in Chapter 2. First, we

compute g2 in terms of the variance in energy acquired by an ensemble of particles, initialized

in a microcanonical ensemble at t = 0 and then subject to the rapid drive. Then, we use the

fluctuation-dissipation relation (2.22), established in Chapter 2, Section 2.4, which allows us to

calculate g1 from our knowledge of g2.

3.4.1 Calculation of g1 and g2

We begin as in Chapter 2, Section 2.4, in which the general form of g2 was obtained.

Recall that for systems described by the energy diffusion model, the diffusion coefficient g2

may be related to the variance Var(E) of an ensemble of driven trajectories. Specifically, if a

microcanonical ensemble of trajectories with initial energy E0 is allowed to evolve for a time ∆t,

we have (see also (2.15)):

Var(E) ≈ g2(E0, ω)∆t. (3.7)

Here, ∆t should satisfy the hierarchy of timescales (2.12): It should be long enough that the

energy diffusion description is valid, yet short enough that the change in energy of the system is

small. The microcanonical distribution of initial conditions is defined in the usual way:
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ρE0(x0,v0) ≡
1

Σ(E0)
δ(E(x0,v0)− E), (3.8)

where the density of states Σ(E) is given by

Σ(E) =

∫
ddxddv δ(E(x0,v0)− E), (3.9)

To determine g2(E0, ω) for any particular E0, it is sufficient to calculate Var(E), with trajectories

sampled according to the appropriate microcanonical distribution ρE0(x0,v0).

This calculation may be summarized as follows, with details given below and in Appendix

C. First, for a given trajectory in the ensemble over the time ∆t, we evaluate the associated energy

change ∆E . From the fact that the drive acts as a small perturbation for large ω, it follows that the

dominant contribution to ∆E is associated with driving periods during which a collision occurs.

These O(ω−1) contributions are given by (3.12). We then average over the ensemble to obtain

Var(E). Since the energy changes associated with different collisions become uncorrelated in the

rapid driving limit, this average simplifies to (3.14), as shown in Appendix C. Finally, we express

this result in terms of an integral over the billiard boundary, leading to the expression (3.18) for

g2.

It may be surprising that we do not simply derive g2 for billiard systems from the previously

established general result g2(E,ω) = 1
2
S(ω;E), valid for general chaotic systems subject to a

rapid periodic drive (see (2.19) and (2.20)). Taking this approach is certainly possible, and we

pursue it in Appendix D, to ensure consistency between our analysis of billiards and the general

theory described in Chapter 2. However, while this alternative derivation is shorter, the present

approach provides more physical insight into the result. In particular, the derivation given below
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shows how the largest energy changes occur during periods with a collision, and shows how the

rapid oscillations of the drive destroy correlations between these energy changes.

To begin, let us consider ∆E for a particular particle in the ensemble. We may view this

energy change as a sum of the M = ∆t/T small energy changes that occur over each period

of the drive (assuming, for simplicity, that ∆t is an integer multiple of the period T ). For

sufficiently small T , at most one collision will occur over each driving period. This property

is guaranteed for a typical trajectory by condition (3.6). Therefore, in this regime, ∆E is a sum

of two contributions: Energy changes from periods with no collisions, and energy changes from

periods with a single collision. We will examine these two possibilities in turn.

First, suppose that no collision occurs during the ith period, from t = (i − 1)T to t =

iT , with associated energy change ∆Ei. If we integrate (2.4) over this period and perform an

integration by parts, we find that the boundary terms vanish, and the resulting expression for ∆Ei

is:

∆Ei = −ω−1

∫ iT

(i−1)T

dt
d

dt
[F(xt) · vt] sin(ωt)

= −ω−1

∫ iT

(i−1)T

dt

[
vt ·DF(xt)vt −

∇U(xt) · F(xt)

m
+

|F(xt)|2

m
cos(ωt)

]
sin(ωt).

(3.10)

In moving from the first line to the second line, we have used the equations of motion (3.1) to

evaluate the derivative d [F(xt) · vt] /dt. The symbol DF(x) denotes the Jacobian matrix for

the function F(x), with matrix elements [DF(x)]ij ≡ ∂Fi/∂xj , where xi and Fi are the ith

components of x and F(x).

So far, this is exact. Let us estimate the size of this quantity, in terms of orders of the small
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parameter ω−1. Since there is a factor of ω−1 outside the second integral in (3.10), and since we

are integrating over a single period of duration T = O(ω−1), ∆Ei is at most an O(ω−2) quantity.

To approximate ∆Ei, we may replace xt and vt in the integrand by their values at the beginning

of the period. Since xt and vt change over a period by an amount of order O(ω−1), the resulting

expression for ∆Ei is valid up to corrections of order O(ω−3). After this replacement, we are

simply integrating the functions sin(ωt) and cos(ωt) sin(ωt) over a single period, which both

vanish. Thus, ∆Ei is a O(ω−3) quantity. Of course, the number of periods in which no collision

occurs will scale like ω; thus, the total energy change associated with collisionless periods is of

order O(ω−2).

The periods during which a collision takes place are more interesting. Suppose that the

particle experiences N collisions between t = 0 and t = ∆t, at times t1, t2 ... tN . If the kth

collision occurs during the ith period, then integrating (2.4) over this period yields the associated

energy change ∆Ei:

∆Ei =
∫ tk

(i−1)T

dtF(xt) · vt cos(ωt) +

∫ iT

tk

dtF(xt) · vt cos(ωt). (3.11)

Each integral above is over a fraction of the period, and is therefore of order O(ω−1). By the

same logic that we used for the collisionless case, we may approximate F(xt) and vt in the first

integral by Fk and vk, their values instantaneously prior to the kth collision. Similarly, F(xt) and

vt in the second integral can be approximated by Fk and v+
k , where v+

k is the particle’s velocity

immediately after the collision. The reflection law (3.2) tells us that v+
k = vk − 2 (vk · n̂k) n̂k,

where n̂k is the normal to the wall at the point of collision.

Upon making these substitutions, the resulting approximation for ∆Ei is valid up to
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corrections of order O(ω−2). The integrals over cos(ωt) are easily evaluated, and we obtain:

∆Ei = 2ω−1 (Fk · n̂k) (vk · n̂k) sin(ωtk) +O(ω−2). (3.12)

Therefore, each collision that occurs is accompanied by a corresponding energy change of order

O(ω−1) over the associated period, given by the above expression. Moreover, since the total

energy change associated with collisionless periods is of order O(ω−2), the energy changes

corresponding to collisions are the dominant contribution to ∆E for large ω. After summing

over all N collisions to obtain ∆E , we can substitute this result into Var(E) = ⟨(∆E)2⟩−⟨∆E⟩2:

Var(E) = 4ω−2

〈[
N∑
k=1

(Fk · n̂k) (vk · n̂k) sin(ωtk)

]2〉

− 4ω−2

〈
N∑
k=1

(Fk · n̂k) (vk · n̂k) sin(ωtk)

〉2

+O(ω−3).

(3.13)

This expression is computed in Appendix C. In this calculation, we find that the oscillating

factors sin(ωtk) are uncorrelated with one another, and with the quantities (Fk · n̂k) (vk · n̂k), for

large ω. The phases ωtk mod 2π may be thought of as effectively independent random variables,

uniformly distributed on [0, 2π). Intuitively, this lack of correlation arises because otherwise

similar trajectories in the ensemble may have totally different values of sin(ωtk): Two nearby

trajectories with even a small difference between the associated collision times tk will have a

huge O(ω) difference in the value of ωtk, for large ω.

As a result, averages over the oscillating factors sin(ωtk) are found to vanish. The only

non-vanishing terms in (3.13) are the “diagonal” terms in ⟨(∆E)2⟩, which include a factor of
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sin2(ωtk) that averages to 1/2. We are left with:

Var(E) = 2ω−2

〈
N∑
k=1

(Fk · n̂k)
2 (vk · n̂k)

2

〉
0

+O(ω−3). (3.14)

Here, the subscript 0 denotes that the average is now taken over an ensemble of undriven

trajectories, evolved with F(x) = 0. The error accrued by replacing the true driven trajectories

with their undriven counterparts is of order O(ω−3), so we neglect it.

Then, using standard techniques for evaluating ensemble averages in billiard systems, we

may express this average as an integral over the billiard boundary. We simply present the results

here; the details of this calculation are also found in Appendix C. Let dS denote an infinitesimal

(d−1)-dimensional patch of “surface” or “hyper-area” of the billiard wall, surrounding a location

x on the wall. Such a patch has an associated outward-facing normal vector n̂ ≡ n̂(x), defined

as in (3.2), and an associated value of F ≡ F(x). We may express Var(E) as an integral over all

such patches:

Var(E) = 4ω−2∆t

d+ 1

∫
dS γE0v

2
E0

(F · n̂)2 +O(ω−3). (3.15)

Here, we define vE ≡ vE(x) as

vE(x) ≡


[2 (E − U(x)) /m]1/2 if U(x) ≤ E

0 otherwise

(3.16)

which forU(x) ≤ E is the speed of an undriven particle at position x with energyE. γE ≡ γE(x)

is the average collision rate per unit hyper-area of the billiard boundary for particles at position
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x, averaged over undriven particles in the microcanonical ensemble at energy E. As explained in

Appendix C, an explicit expression for γE(x) is given by

γE(x) =
Bd−1

m

vE(x)
d−1

Σ(E)
, (3.17)

where Bn = πn/2/Γ
(
n
2
+ 1
)

is the hyper-volume of the unit ball in n-dimensional space [145],

and where Σ(E) is the density of states defined in (3.9). Γ(s) is the gamma function, which

coincides with the factorial (s− 1)! for positive integers s.

Upon comparing (3.15) with (3.7), and relabelling E0 as E, we obtain our final expression

for g2:

g2(E,ω) =
4ω−2

d+ 1

∫
dS γEv

2
E (F · n̂)2 . (3.18)

In this equation and in the remainder of this section, we suppress the O(ω−3) corrections.

Notably, the above expression can be computed without any knowledge of the particle

trajectories, and depends on F(x) only via the value of this force at the boundary of the billiard.

This special dependence on F(x) is sensible, since we know that the dominant changes in the

particle’s energy are associated with collisions with the wall. Also, we emphasize that while the

potential U(x) does not appear explicitly in (3.18), g2 does depend on U(x) via the quantities

vE(x) and γE(x).

It is worth noting that the ω−2 scaling of the diffusion coefficient is somewhat peculiar to

billiard systems. As discussed in Chapter 2, Section 2.5, whenever time evolution under the bare

Hamiltonian H0 is smooth, the power spectrum S(ω;E) (and therefore g2(E,ω) = 1
2
S(ω;E))

goes to zero faster than any power of ω−1 for large ω. In contrast, the dynamics in a billiard are
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discontinuous whenever a collision with the wall occurs. In Appendix D, in which we provide an

alternative derivation of the above expression for g2, we show that these discontinuities manifest

as a cusp at t = 0 in the correlation function C(t;E). This cusp then implies that the Fourier

transform S(ω;E) will decay like ω−2 for large ω.

To calculate the drift coefficient g1, we use fluctuation-dissipation relation (2.22),

established in Chapter 2 for general chaotic systems under a rapid periodic drive. If we substitute

(3.9) and (3.16) - (3.18) into the fluctuation-dissipation relation, then after some differentiation

we arrive at our final expression for the drift coefficient:

g1(E,ω) =
2ω−2

m

∫
dS γE (F · n̂)2 . (3.19)

This result implies that g1 is always nonnegative (up to the O(ω−3) corrections), since γE(x) ≥ 0

for all x on the billiard boundary. From the Fokker-Planck equation (2.11), we know that

d⟨E⟩/dt = ⟨g1(E , ω)⟩ (see (2.24)), where the ensemble average ⟨...⟩ is given by ⟨f(E)⟩ =∫
dE η(E, t)f(E) for any function f(E). Therefore, (3.19) implies that the average energy of

particles in the ensemble never decreases; that is, the system exhibits Fermi acceleration on

average.

Combined with the expressions (3.19) and (3.18) for g1 and g2, the Fokker-Planck

equation (2.11) now fully characterizes the diffusive dynamics of the particle’s energy under

high frequency driving. Note that these expressions are only valid for energies in the range

R(ω), for which conditions (3.5) and (3.6) both hold. For energies above this range, the

condition (3.6) breaks down, and the O(ω−3) corrections can no longer be ignored. Also, as

mentioned previously, all of the above arguments and calculations may also be generalized to
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non-monochromatic driving forces.

3.4.2 Simplified expressions for g1 and g2 for U(x) = 0

We now set U(x) = 0, in order to evaluate g1 and g2 for a standard billiard. In this case,

the undriven particle maintains a constant speed vE =
√
2E/m, independent of position. This

greatly simplifies the calculation of both the density of states Σ(E) and the collision rate γE(x) –

note that (3.8) factorizes into two d-dimensional integrals, over position and velocity. We obtain

Σ(E) = dBd
V vd−2

E

m
, γE =

1

S

vE
λ
, (3.20)

where V is the d-dimensional hyper-volume of space enclosed by the billiard, S denotes the

(d− 1)-dimensional hyper-area of the billiard boundary, and λ ≡ d
Bd

Bd−1

V

S
is the mean free path

(the average distance between collisions) of the undriven billiard particle [145]. Our expressions

for the drift and diffusion coefficients now become

g1(E,ω) =
2ω−2vE
mλ

1

S

∫
dS (F · n̂)2 (U = 0) (3.21)

g2(E,ω) =
4ω−2v3E
(d+ 1)λ

1

S

∫
dS (F · n̂)2 (U = 0) (3.22)

In these expressions, the dependence of g1 and g2 on the particle energy E enters only

through the quantity vE =
√

2E/m. This means that g1 scales like E1/2, and g2 scales like E3/2.

As in discussed in Appendix E, for this simple dependence on energy, the Fokker-Planck equation

may be solved exactly. This facilitates the numerical calculations described later in Section 3.5.

It is also worth noting that both g1 and g2 are inversely proportional to the mean free path λ.
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At first glance, this suggests that as we decrease the size of the billiard, the rates of energy drift

and diffusion approach infinity. However, recall that our expressions for g1 and g2 are only valid

for v/ω ≪ l ≲ λ (this is condition (3.6)). As the billiard shrinks and λ approaches zero, this

condition is inevitably violated. In this limit, the O(ω−3) corrections to the expressions (3.21)

and (3.22) become relevant, and the diffusive description may even break down altogether.

We now focus specifically on average energy absorption. Using the relation d⟨E⟩/dt =

⟨g1(E , ω)⟩, we obtain

d⟨E⟩
dt

=
2v̄(t)

mλω2

1

S

∫
dS (F · n̂)2 (U = 0) (3.23)

where v̄(t) ≡
∫
dE η(E, t) vE(E) is the mean particle speed at time t. Thus the average rate

of energy absorption is proportional to the mean particle speed and inversely proportional to the

square of the driving frequency, with a constant of proportionality determined by the particle

mass, the shape and dimensionality of the billiard, and the driving field F(x). For a three-

dimensional billiard this result becomes

d⟨E⟩
dt

=
v̄(t)

2mω2V

∫
dS (F · n̂)2 (U = 0, d = 3) (3.24)

This expression resembles the wall formula, a semiclassical estimate of dissipation in low-

energy nuclear processes, which gives a dissipation rate proportional to mean particle speed, with

a constant of proportionality that includes a surface integral over the boundary of the nucleus; see

Eq. (1.2) of Ref. [146]. This resemblance is not surprising, since in both cases the system’s

energy evolves via an accumulation of small changes, sometimes positive, sometimes negative,
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occurring at collisions between the particle and the billiard boundary. In fact, the wall formula

can be derived within an energy diffusion approach analogous to the one developed above [110].

3.5 Numerical results

We now present numerical simulation results that corroborate our calculations. We consider

the special case of a particle in a two-dimensional “clover” billiard, (see Figure 3.4), subject only

to a time-periodic, spatially uniform force. Since a free particle in the clover billiard is known

[110] to exhibit chaotic and ergodic motion, this system satisfies all the assumptions of our paper,

as long as the drive is sufficiently rapid. Specifically, in the equations of motion (3.1), we set

U(x) = 0, and take F(x) = F to be independent of position. This special case is particularly

amenable to simulation, since the motion of the particle between collisions may be computed

exactly. Moreover, as described in Appendix E, the Fokker-Planck equation admits an explicit

analytical solution for this choice of U(x) and F(x).

For this system, we calculate the evolution of the energy distribution η(E, t) in two ways:

By directly evolving an ensemble of particle trajectories according to (3.1) and (3.2), and by

solving the Fokker-Planck equation (2.11). If the energy diffusion description is accurate, then

the energy distributions obtained in both cases will coincide. We present the results of these

computations here, and leave the details of our calculations to Appendix E.

To test our model, we evolve an ensemble of driven particles with massm = 1 in the clover

billiard, withR1 = 1 andR2 = 2 (see Figure 3.4). The mean free path for particles in this billiard

is λ ≈ 2.610, as shown in Appendix E. The particles are initialized at t = 0 with speed v0 = 1, in

a microcanonical ensemble at energy E0 = mv20/2 = 1/2. We set F = F (x̂ + ŷ)/
√
2, where x̂
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Figure 3.4: Diagram of the clover billiard, constructed from six mutually tangent circles. The
billiard boundary is given by the solid line. The inner circles have radius R1 = 1, and the outer
circles have radius R2 = 2.

and ŷ are the unit vectors for the coordinate system in Figure 3.4, and choose F = |F| = 10. We

run simulations for a range of driving frequencies ω, with a focus on the high-frequency driving

regime.

First, we verify the validity of the Fokker-Planck equation. For various values of ω, we

evolve an ensemble of N = 105 driven particles, and then compare the energy distribution of

this ensemble with the energy distribution obtained by solving the Fokker-Planck equation. The

plots in Figures 3.5 and 3.6 illustrate this comparison at times t = 10, 100, and 1000, for driving

frequencies ω = 40π and ω = 320π (note that the conditions (3.5) and (3.6) are satisfied for these

parameter choices). We find close agreement between the true energy distribution (represented

by the histograms) and the Fokker-Planck energy distribution (the solid lines).
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Figure 3.5: Evolution of an ensemble starting with energy E0 = 1/2, with F = 10 and ω = 40π.
The three snapshots are captured at t = 10, t = 100, and t = 1000. The histograms are populated
from the numerical simulations, and the solid lines are the solution to the Fokker-Planck equation.

Figure 3.6: Same as Fig. 3.5, but with ω = 320π, and with a different scaling of the axes.

Second, we look specifically at the ensemble mean ⟨∆E⟩ and variance Var(∆E) of the

energy change ∆E . Recall that if a microcanonical ensemble of initial conditions at energy E0 is

evolved for a short time ∆t, then the Fokker-Planck equation predicts that ⟨∆E⟩ ≈ g1(E0, ω)∆t

and Var(∆E) ≈ g2(E0, ω)∆t (see (2.14) and (2.15)). Here, ∆t must satisfy the separation of

timescales (2.12): It should be longer than the correlation timescale associated with the particle’s

undriven motion, but short enough that the relative change in the energy of any particle in the

ensemble is still very small. To test this theoretical result, we evolve an ensemble of N = 106

driven particles for a time ∆t = 20, and then compute the resulting values of ⟨∆E⟩ and Var(∆E).
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We repeat this for a range of driving frequencies from ω = 10π to ω = 2560π, and then plot

⟨∆E⟩ and Var(∆E) versus ω in Figure 3.7. For sufficiently large ω, the true values of ⟨∆E⟩

and Var(∆E) are in good agreement with the theoretical predictions ⟨∆E⟩ ≈ g1(E0, ω)∆t and

Var(∆E) ≈ g2(E0, ω)∆t, where g1 and g2 are given by the formulas (3.21) and (3.22). Note

that for large ω, the error bars in Figure 3.7 associated with ⟨∆E⟩ become very large. This is

because the fluctuations in ∆E about its average are on the order of
√

Var(∆E) = O(ω−1),

while ⟨∆E⟩ = O(ω−2) itself is much smaller.

Figure 3.7: ⟨∆E⟩ and Var(∆E) versus ω, for an initial ensemble with energy E0 = 1/2, with
F = 10 and ∆t = 20. The points denote results of the numerical simulations, and the solid line
corresponds to the theoretical predictions given by (3.21) and (3.22).

We note that the value of F = 10 corresponds to a “strong” driving force, in the following

sense. Suppose that we set ω = 0, so that the driving force is time-independent, and then estimate

the change in a particle’s energy as it moves across the billiard. In the ω = 0 case, the particle

simply experiences free-fall within the billiard, with a uniform gravitational field pointing in the

direction of F = F (x̂ + ŷ)/
√
2. If we initialize the particle on one side of the billiard and let
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it “fall” to the other side, then the (kinetic) energy gained by the particle during its descent will

be given by ∆E = F∆x, where ∆x is the distance that the particle moves in the direction of

F. ∆x will be on the order of the mean free path λ ≈ 2.610, and so we find ∆E ∼ 26. This

energy change is an order of magnitude larger than the particle’s initial energyE0 = 1/2. Clearly,

when ω = 0 (or generally, if ω is small), the driving force has a very large effect on the particle

trajectories, and therefore we should not expect an energy diffusion description to apply. For

F = 10, we should only expect energy diffusion for sufficiently large values of ω. Testing our

model with this value of F thus insures that energy diffusion is really a consequence of rapid

driving, and not simply the result of a weak driving force.

3.6 Application to many-particle billiards

We now apply the results on billiard systems in this chapter to systems of many particles.

We consider N hard sphere particles confined to a billiard cavity, where the potentials U and

UF cos(ωt) may now generate both external forces and interactions between the particles. For

this system, the derivation of the energy drift and diffusion coefficients proceeds along the same

general lines as in the single-particle case. We therefore provide a relatively condensed version

of this calculation, and then present the results. We find that the expressions for g1 and g2

contain two sets of terms: contributions associated with sphere-wall collisions, and contributions

associated with sphere-sphere collisions. Although these expressions are generally difficult to

evaluate, significant simplifications occur in the thermodynamic limit, where we take N to

infinity at fixed particle density and energy density. Moreover, for large enough N , we find that

stochastic fluctuations in energy can be neglected, and that the process of energy diffusion limits
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to a deterministic evolution of the system’s energy. In this limit, the evolution of the system’s

energy is entirely determined by the drift coefficient g1, which gives the instantaneous rate of

energy absorption. To conclude this section, we further evaluate g1 for the special case of a low

density system, in which the particles interact only via elastic collisions.

3.6.1 Setup

Our system of interest is a collection of N particles confined to a d-dimensional cavity,

each labelled by a different value of the index i = 1, 2 ... N . The ith particle is a d-dimensional

sphere of radius Ri and mass mi. The instantaneous state of this particle is specified by the

position and velocity of its center, denoted by xi and vi respectively. For convenience, we collect

these positions and velocities into two (d × N)-dimensional vectors X ≡ (x1,x2 ...xN) and

V ≡ (v1,v2 ...vN). In between collisions with the wall or with each other, the particles are

subject to a static potential U(X) ≡ U and a periodic drive UF (X) cos(ωt) ≡ UF cos(ωt), which

generate forces which act on the centers of the particles. Each center evolves in accordance with

Newton’s equations of motion:

dxi

dt
= vi, m

dvi

dt
= −∇iU(X) + Fi(X) cos(ωt). (3.25)

Here, ∇i is the gradient with respect to the position variable xi, and Fi ≡ Fi(X) ≡ −∇iUF (X).

Note that for many physical systems of interest, the nature of the potentials U and UF may be

significantly restricted: U might be expressible as a sum of two-particle interaction potentials, or

the force Fi might be solely determined by the position of the ith particle. We will consider some

of these special cases later, but for the moment, we take the form of U and UF to be quite general.
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In this system, two types of collisions can occur, both of which are assumed to be elastic:

sphere-wall collisions, and sphere-sphere collisions. In a sphere-wall collision, the velocity of

the colliding particle is instantaneously updated via the same reflection law as in the single-

particle case (see (3.2)). In a sphere-sphere collision between particles i and j, the two particles

exchange energy and momentum, while the total energy 1
2
mi|vi|2+ 1

2
mj|vj|2 and total momentum

mivi +mjvj remain constant. Assuming that the contact force between the spheres acts radially

(i.e., parallel to the line connecting the centers of the two spheres), then a standard analysis of

elastic collisions tells us that the particle velocities vi and vj are updated to v′
i and v′

j according

to the rules:

v′
i = vi +

2µij

mi

(uij · r̂ij)r̂ij, v′
j = vj −

2µij

mj

(uij · r̂ij)r̂ij. (3.26)

In these expressions, µij ≡ mimj/(mi + mj) is the reduced mass of the two particles, uij =

vj − vi is their relative velocity, and r̂ij is the unit vector parallel to the line connecting the

centers of the two spheres (equivalently, it is the unit vector normal to the surfaces of the spheres

at their point of contact). See the diagram in Figure 3.8.

In both types of collisions, the energy of the system is E ≡ E(X,V) =
∑N

i=1
1
2
mi|vi|2 +

U(X) is conserved. Meanwhile, in between collisions, Newton’s Law (3.25) implies that the

instantaneous rate of change of E is

dE
dt

=
N∑
i=1

Fi(X) · vi cos(ωt). (3.27)
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Figure 3.8: Anatomy of a collision between two spheres with radii Ri and Rj , and velocities vi

and vj .

3.6.2 Calculation of g1 and g2 for many-particle billiards

Given the dynamics described above, we can now begin to calculate the energy drift and

diffusion coefficients for this many-particle system. Despite the complications introduced by

interactions between the particles, g1 and g2 may be evaluated by the same general procedure as

in the single-particle case, as given in Section 3.4. Let us take a moment to recall the single-

particle analysis. First, we evaluated the energy change ∆E for a single trajectory of the particle,

by integrating the power (3.3). We found that the dominant changes in the particle’s energy

are associated with periods during which a collision occurs: The energy change over each such

period is given by (3.12). Upon using this result to compute the variance in energy Var(E) of an

ensemble of trajectories, we found that energy changes during different periods are effectively

uncorrelated, due to the high driving frequency ω. Our expression for Var(E) then simplifies to

the average (3.14). In Appendix C, we evaluated this average in terms of an integral over the

billiard boundary, resulting in our final expression (2.20) for g2.
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We now summarize the many-particle generalization of this procedure. For our system of

N particles, consider the energy change of the system during a single period, which we denote

by ∆E . We obtain ∆E by integrating the power (3.27) over the period; ∆E is then a sum of

N terms ∆E (1),∆E (2) ...∆E (N), one for each term in (3.27). For each term, there are three

possibilities. First, if the ith particle does not experience a collision in this period, we may neglect

the corresponding term ∆E (i), by the same reasoning that we used to ignore periods without a

collision in the single-particle case (see (3.10) and the subsequent paragraph). Second, if the ith

particle collides with the wall during the period at the time t = tc, the corresponding term in ∆E

is

∆E (i) = 2ω−1 (Fi · n̂i) (vi · n̂i) sin(ωtc) +O(ω−2), (3.28)

where vi and Fi are evaluated at the instant prior to the collision, and n̂i is the unit normal vector

to the wall at the point of collision. This follows from the same calculation that leads to (3.12)

in the single-particle case, which uses the reflection law (3.2). Third and finally, by a similar

calculation with the two-particle reflection rule (3.26), if the ith and jth particles collide with

each other during the period at t = tc, the associated pair of terms ∆E (i) +∆E (j) is

∆E (i) +∆E (j) = 2ω−1 (fij · r̂ij) (uij · r̂ij) sin(ωtc) +O(ω−2), (3.29)

where fij ≡ µij (Fj/mj − Fi/mi) is proportional to the relative acceleration of the particles, and

where all quantities are again evaluated at the instant prior to the collision.

Thus, to obtain the energy change ∆E over a longer time t = 0 to t = ∆t, we can sum all

of these contributions together for each period, and then sum over all periods in the time interval.
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Equivalently, for the sphere-wall contributions (3.28), we must sum over all sphere-wall collisions

for each particle, and then sum over all particles, while for the sphere-sphere contributions (3.29),

we sum over all sphere-sphere collisions for each particle pair, and then sum over all pairs. The

result may be written as:

∆E = 2ω−1

N∑
i=1

Ni∑
k=1

(Fi · n̂i) (vi · n̂i) sin
(
ωt

(k)
i

)
+ 2ω−1

N∑
i=1

N∑
j=i+1

Nij∑
k=1

(fij · r̂ij) (uij · r̂ij) sin
(
ωt

(k)
ij

)
+O(ω−2).

(3.30)

Here, the first line gives the sphere-wall contributions. We use the index i to sum over all N

particles, and for each particle i, we use the index k to sum over all Ni collisions between this

particle and the wall during the time interval. t(k)i denotes the time of the kth such collision for

the ith particle; each quantity in the (i, k) term of the double sum is evaluated at this time. The

second line gives the sphere-sphere contributions. We use the indices i and j to sum over all pairs

of particles, and for each pair (i, j), we use the index k to sum over all Nij collisions between

this pair during the time interval. t(k)ij denotes the time of the kth such collision for the (i, j) pair;

each quantity in the (i, j, k) term of the triple sum is evaluated at this time. This expression is the

many-particle generalization of summing over the contributions (3.12) in the single-particle case.

If we now consider an ensemble of systems with initial energy E0, we can use the above

expression to calculate the variance in energies Var(E) = g2(E0, ω)∆t = ⟨(∆E)2⟩ − ⟨∆E⟩2

acquired by the ensemble over the time interval. Just as in the single-particle case, the resulting

expression for Var(E) then simplifies due to the high frequency of the drive, which causes each

term in (3.30) to become effectively uncorrelated with the others (see the argument in Appendix
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C). The result is the many-particle generalization of (3.14):

Var(E) = 2ω−2

N∑
i=1

〈
Ni∑
k=1

(Fi · n̂i)
2 (vi · n̂i)

2

〉
0

+ 2ω−2

N∑
i=1

N∑
j=i+1

〈
Nij∑
k=1

(fij · r̂ij)2 (uij · r̂ij)2
〉

0

+O(ω−3).

(3.31)

In this expression, the brackets ⟨...⟩0 denote an average over an ensemble of undriven systems,

initialized in a microcanonical ensemble at t = 0.

Finally, we can re-evaluate the above averages as integrals. For the sphere-wall

contributions, we follow the same procedure that we used to evaluate (3.14) in Appendix C in

the single-particle calculation. That is, for each particle and for each infinitesimal patch of the

wall, we sum over all collisions occurring on that patch, integrate over all wall patches, and then

integrate out the velocity variables in the resulting average. For the sphere-sphere contributions,

the method is similar, except that for a given particle pair, we sum over all collisions where the

spheres make contact on a given infinitesimal patch of their surfaces (see Figure 3.9). We then

integrate over all such patches, and integrate out the velocity variables.

The result of these calculations yields the desired expression for g2 (we now drop the

O(ω−3) corrections):

g2(E,ω) =
4CdN

dN + 1
ω−2

[
N∑
i=1

∫
dSi

∫
dX∗

i ρEv
3
i (Fi · n̂i)

2

+
N∑
i=1

N∑
j=i+1

Rd−1
ij

∫
dΩijdX

∗
ij ρEv

3
ij (fij · r̂ij)

2

]
.

(3.32)
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Figure 3.9: Diagram for integration over possible collisions between spheres i and j, in the d = 2
dimensional case. Holding sphere i fixed (the circle on the left), we can imagining sliding sphere
j (represented by the circles on the right) along a small patch of sphere i’s surface (thick purple
curve). This corresponds to integrating over a small range of orientations of the relative position
vector rij , or an associated range of solid angles dΩij . While sweeping through these orientations,
the spheres remain in constant contact, so the magnitude of rij is fixed at |rij| = Rij = Ri +Rj .

In this expression, we have introduced a number of new pieces of notation. In the first line, which

gives the sphere-wall contribution, we have defined the constantCdN ≡ BdN−1/(dNBdN), where

Bn = πn/2/Γ
(
n
2
+ 1
)
. For each particle i, we integrate over all allowed configurations X of the

N particles such that particle i is in contact with the wall (here, allowed means that there are

no overlaps between particles, or between any particle and the wall). This means an integral

over all patches of the wall that the ith particle touches, denoted by
∫
dSi ..., and an integral

over all X∗
i , the vector of all particle positions excluding xi. In the integrand, ρE(X) ≡ ρE is

the marginal distribution over particle configurations X, given that the system is described by

a microcanonical ensemble at energy E. This is obtained by integrating the full microcanonical

distribution ρE(X,V) ≡ δ(E(X,V)−E)/Σ(E) over the particle velocities V. Finally, we define

a speed vi by vi ≡ vi(X) ≡
√

2[E − U(X)]/mi for E > U(X), and vi = 0 otherwise.
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In the second line, which corresponds to the sphere-sphere contribution, we define the

sum of radii Rij ≡ Ri + Rj for each pair of spheres. For each pair i and j, we integrate

over all allowed configurations of the N particles such that these two particles are touching.

In such configurations, the relative position of these particles rij ≡ rj − ri is given by

rij = Rij r̂ij . To perform this integration, we first integrate over all orientations of r̂ij with

the solid angle integral
∫
dΩij ... (see Figure 3.9), and then integrate over all X∗

ij , a vector

encoding the configuration X modulo the value of rij . In the integrand, we define the speed

vij by vij ≡ vij(X) ≡
√
2[E − U(X)]/µij for E > U(X), and vij = 0 otherwise.

We can then invoke the fluctuation-dissipation relation (2.22) to compute the drift

coefficient g1. After some differentiation, we find

g1(E,ω) = 2CdNω
−2

[
N∑
i=1

1

mi

∫
dSi

∫
dX∗

i ρEvi (Fi · n̂i)
2

+
N∑
i=1

N∑
j=i+1

Rd−1
ij

µij

∫
dΩij

∫
dX∗

ij ρEvij (fij · r̂ij)
2

]
.

(3.33)

With this expression for g1 and the expression (3.32) for g2, we have now fully specified the

diffusive energy evolution of our many particle system.

3.6.3 The thermodynamic limit of many-particle billiard systems

For certain special choices of particle interaction, we may continue to develop the

expressions (3.33) and (3.32). For example, for weakly interacting particles or low-density

systems, the integrals may be evaluated by assuming that the positions of different particles are

approximately statistically independent. We will examine such a special case shortly, in Section
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3.6.4. However, before doing so, we now turn to a discussion of the thermodynamic limit. For

a large number of particles, we obtain simplified expressions for g1 and g2, by invoking the

equivalence between the canonical and microcanonical ensembles. Moreover, we will see for

large enough N , statistical fluctuations in the system’s energy will become negligible relative to

the mean rate of energy absorption, given by the drift coefficient g1.

To take the thermodynamic limit, we consider the limit in which the particle number N ,

the volume of the cavity V , and the energy E are all taken to infinity, while the number density

N/V and energy per particle E/N are held fixed. In this limiting process, we assume that the

relative shape of the billiard is held fixed as the volume is increased, and that the potentials U

and UF are varied in an appropriate way. For example, if U and UF only encode two-particle

interactions, then as N is increased, the strength and functional form of these interactions is

held fixed. Moreover, as more particles are added, the typical radius and mass of new particles

should not grow with N . Going forward, we assume that this limit is well-defined. One way

to ensure this is to require that the interactions between particles be sufficiently weak at long

distances, and sufficiently repulsive at short distances (precise conditions for the existence of the

thermodynamic limit can be found in [147–151]).

Let us consider our expression for g1 in this limit. A common property of systems with a

thermodynamic limit is the the equivalence of statistical ensembles [149–153]. That is, for large

enough N , the equivalence of ensembles allows us to replace a microcanonical average at energy

E with a canonical average at temperature T (E) ≡ T , where T is the microcanonical temperature

as defined in (2.25) in Chapter 2. The integrals in (3.33) are proportional to microcanonical

averages. Therefore, assuming the equivalence of ensembles, we may replace the microcanonical

distribution ρE with the canonical distribution ρT ≡ ρT (X) ∝ e−U(X)/kBT .
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Furthermore, in the thermodynamic limit, fluctuations of macroscopic quantities are

generally suppressed: For almost all samples from the canonical ensemble, the value of such

a quantity will be very close to its mean value [151]. We may thus treat these quantities as

essentially constant and equal to their canonical averages. One such quantity is the total kinetic

energy of the system, K ≡
∑N

i=1
1
2
mi|vi|2 = E − U(X). The suppression of fluctuations means

that over almost the entire range of integration in (3.33), K will be very close to its canonical

average d
2
NkBT . As a result, we incur little error by taking vi =

√
2K/mi and vij =

√
2K/µij

out of the integrals in (3.33), and setting these quantities equal to vi =
√
dNkBT/mi and

vij =
√
dNkBT/µij .

Finally, we note that for large N , CdN = BdN−1/(dNBdN) is approximately 1/
√
2πdN ,

which follows from the fact that Bn = πn/2/Γ
(
n
2
+ 1
)
, and that Γ(s+ t)/Γ(s) ≈ st for large s.1

Taking all of these approximations together, we see that (3.33) may be rewritten as

g1(E,ω) = 2ω−2

[
N∑
i=1

(
kBT

2πm3
i

)1/2 ∫
dSi

∫
dX∗

i ρT (Fi · n̂i)
2

+
N∑
i=1

N∑
j=i+1

Rd−1
ij

(
kBT

2πµ3
ij

)1/2 ∫
dΩij

∫
dX∗

ij ρT (fij · r̂ij)2
]
.

(3.34)

Let us now pause and ask how this expression for g1 scales with N . We can examine the

quantities in (3.34) one by one, recalling that in the thermodynamic limit, we keep N/V and

E/N fixed. We begin with the first line. The integrand will scale like 1/V N , since the force

Fi should remain bounded in the thermodynamic limit, and since ρT must integrate to 1 when

integrated over the N -particle configuration space. Therefore, the whole integral will scale like

1The asymptotic formula Γ(s+t)/Γ(s) ≈ st is a consequence of Stirling’s approximation formula for the gamma
function.
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the billiard surface area S divided by the volume V , since we are integrating over the billiard

surface and the configuration space of N − 1 particles. The prefactor in front of the integral

remains bounded with increasing N , since the temperature T is an intensive quantity. Finally, the

sum over particles introduces an additional factor of ∼ N , meaning that the first line will overall

scale like NS/V ∼ S. By an analogous argument, we can see that the second line will scale like

N ∼ V .

This result is intuitively reasonable: The first line of (3.34), which accounts for energy

changes associated with the billiard surface, scales like the surface area S, while the second

line, associated with sphere-sphere collisions which occur throughout the billiard, scales like the

billiard volume V . Both of these contributions diverge in the thermodynamic limit, though since

the volume of a billiard grows faster than its surface area, the sphere-sphere contribution will

dominate for large enough N . Moreover, if we repeat this whole analysis of the thermodynamic

limit for the diffusion coefficient g2, we find that the contributions to g2 scale in exactly the same

way.

This scaling behavior leads us to the following simplification. Suppose we initialize our

system with a definite energy E0 at t = 0, corresponding to a distribution η(E, 0) = δ(E −

E0). After a short time ∆t, the energy diffusion description tells us that the mean energy of the

ensemble is given by ⟨E⟩ ≈ E0 + g1(E0, ω)∆t, and that the ensemble acquires a width in energy

space of order
√

Var(E) ≈
√
g2(E0, ω)∆t. Since g1 and g2 both diverge in the same way in

the thermodynamic limit, for large enough N , the shift g1(E0, ω)∆t in the ensemble mean will

be far larger than the energy spread
√
g2(E0, ω)∆t. In other words, fluctuations in the system’s

energy become negligibly small relative to the systematic increase in the system’s mean energy.

For larger and larger N , these fluctuations will remain small for longer and longer times.
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While the spread in the energy distribution remains small, we may approximate ⟨g1(E , ω)⟩

by g1(⟨E⟩, ω). The expression (2.24) for the average rate of energy absorption then becomes a

closed equation for ⟨E⟩:

d⟨E⟩
dt

= g1 (⟨E⟩, ω) . (3.35)

This is a deterministic “equation of motion” for ⟨E⟩, which can in principle be solved given an

initial condition. Thus, in the thermodynamic limit, the full stochastic description furnished by

the energy diffusion model effectively reduces to a deterministic evolution of ⟨E⟩, which is fully

characterized by the energy absorption rate g1.

3.6.4 Energy absorption in a driven dilute gas of hard spheres

Assuming the validity of the deterministic equation (3.35), we now examine one special

case: A dilute gas of hard spheres, which interact solely via their hard-core interactions. We set

U(X) = 0, and we assume that each particle is subject to the same driving force field, which

addresses each particle independently (i.e., Fi = F(xi) for some conservative force field F(x) ≡

F). The undriven version of this system, with slight modifications, is the subject of the well-

known Boltzmann-Sinai hypothesis [154]. This conjecture concerns the evolution of a collection

of N ≥ 2 hard spheres on a d-dimensional torus, moving inertially and interacting only via

elastic collisions. The hypothesis states that for given values of the relevant conserved quantities

(total energy E and total momentum P), this system evolves chaotically and ergodically on the

corresponding surface in phase space of constant E and P. For a wide range of choices of

the particle masses m1,m2 ...mN , the Boltzmann-Sinai hypothesis has been rigorously proven
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[154, 155].

Under these assumptions, our expression for g1 simplifies significantly. Consider the

integral in the second line of (3.34), corresponding to the sphere-sphere contributions. Since

we are working in the dilute limit, interactions between the spheres will be relatively infrequent,

and the statistical properties of the system will be well-approximated by those of an ideal gas of

noninteracting point particles. Therefore, we incur only a small error if we replace the probability

distribution ρT = ρT (X) by the corresponding distribution for an ideal gas, which is simply

ρT (X) = 1/V N . Then, we may integrate over all N − 2 positions xk for k ̸= i, j, since

fij = µij(Fj/mj − Fi/mi) is independent of these xk (given our assumption that Fi = F(xi)).

This gives a factor of V N−2; the integral is now reduced to V −2
∫
dΩij

∫
dxi (fij · r̂ij)2. Finally,

if we assume that F(x) is essentially constant on length scales comparable to the particle radii

Ri, then Fj ≈ Fi = F(xi), and we have fij = F(xi)(mi − mj)/(mi + mj). Then, since

fij is solely a function of xi, we may exactly integrate (fij · r̂ij)2 over all solid angles Ωij

(technically, for xi very close to the wall, we can only integrate over angles where xj = xi + rij

remains within the billiard; this constitutes a small “surface” correction that we ignore). This

integration yields Bd|fij|2, our final expression for the integral in the second line of (3.34) is thus

BdV
−2
(

mi−mj

mi+mj

)2 ∫
dxi|F(xi)|2. Note that xi is now just a dummy variable here;

∫
dxi|F(xi)|2

is in fact independent of i.

Now, we could attempt to evaluate the first line of (3.34) in a similar way. However,

including the surface correction we already neglected in the second line would generally yield

extra terms which scale like the surface area of the billiard. Since we are ignoring these terms,

for consistency we should neglect the first line of (3.34) entirely, which also scales like S. Thus

in our final expression, the sphere-sphere contribution is all that remains:
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g1(E,ω) =
2ω−2Bd

V
|F|2

N∑
i=1

N∑
j=i+1

Rd−1
ij

(
kBT

2πµ3
ij

)1/2(
mi −mj

mi +mj

)2

. (3.36)

Here, we have defined the average |F|2 ≡ V −1
∫
dx|F(x)|2.

We note two interesting properties of this expression. First, if the ith and jth spheres have

equal masses, then the associated contribution to g1 vanishes. This can be understood as follows.

Note that when the spheres are at approximately the same position xi ≈ xj , they both experience

approximately the same force F(xi) cos(ωt). Since the spheres have equal masses, they will also

experience the same acceleration. Therefore, during a period when these two spheres collide, we

may move into an oscillating reference frame where this acceleration is approximately cancelled

out, so that the spheres appear to move inertially. Relative to the original frame, the velocities

of the spheres will be boosted by an amount ≈ −F(xi) sin(ωt)/(miω). Now, on one hand, in

this accelerated frame, the total kinetic energy of the two spheres will be unchanged during the

period, since the spheres appear to collide without the influence of any forces (other than contact

forces). On the other hand, at the beginning and end of the period, the velocity (and therefore

the kinetic energy) of each sphere in the accelerated frame will coincide with its velocity in the

original frame. It follows that the total kinetic energy of the spheres in the original frame is

the same at the beginning and end of the period. That is, no net energy change occurs for these

spheres during this period, and thus there are no energy changes associated with such collisions.

Second, the only dependence on the system’s energy in (3.36) enters through the

temperature T . Since U(X) = 0, the energy of this system is entirely kinetic, and thus

E = d
2
NkBT . Therefore, combining (3.35) and (3.36), we see that d⟨E⟩/dt = a⟨E⟩1/2, where a

is a constant independent of ⟨E⟩. If ⟨E⟩ = E0 at t = 0, then the solution to this equation is
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⟨E⟩(t) =
(
E

1/2
0 +

at

2

)2

, (3.37)

which grows proportional to t2 for large t. This quadratic-in-time Fermi acceleration has also

been observed in other billiard models [72, 156].

3.7 Comparison to existing results

We now briefly compare our work to previous results derived for driven billiard systems.

A common feature of many driven billiards is a statistical tendency towards increasing particle

speeds, known as Fermi acceleration. In this section, we provide some basic physical intuition

for why this acceleration process may occur, and we demonstrate a correspondence between the

billiards studied in our work and a different class of driven billiards, namely billiards with rapid,

low-amplitude wall oscillations.

Our results are situated in a extensive literature on driven billiards, which have been

proposed as models for phenomena ranging from electrical conduction [157, 158], to relativistic

charged particle dynamics [159], to nuclear dissipation [146]. Billiard systems may either be

driven via an external force applied between collisions, as in the present paper, or via time-

dependence of the billiard walls. In the latter scenario, the billiard boundary is deformed and

shifted as a function of time according to a pre-specified schedule, and changes in the particle’s

energy are induced by collisions with the moving wall. For a variety of models, it has been

demonstrated that such systems are susceptible to Fermi acceleration: The particle exhibits

a statistical bias towards energy-increasing collisions, leading to a systematic growth of the

(average) energy [156, 160–165]. In particular, diffusive energy spreading via this mechanism
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has been observed for certain models [72, 110, 121].

Let us briefly discuss the origins of Fermi acceleration. When and why does this statistical

tendency towards increasing energy occur? Although the details of Fermi acceleration will differ

from system to system, a toy model suffices to illustrate one way that this bias can emerge.

Consider an ensemble of particles in one dimension, which move inertially apart from collisions

with an oscillating wall. We specify the location of the wall by a function x = f(t), which is

periodic with period T , and define a corresponding wall velocity u(t) ≡ f ′(t). Without loss of

generality, suppose that at the beginning of each period (t = 0, T, 2T ...), the wall is at the origin

x = 0, so that f(0) = 0. Now, at t = 0, let us give the particles a common initial velocity v > 0,

and uniformly distribute them in space for x < 0, to the left of the origin (this ensemble does

not correspond to a normalized probability distribution, but this is unimportant for what follows).

Over the course of a single period, a certain contingent of particles in the ensemble will collide

with the wall, and each will gain or lose a certain amount of energy. We can then ask: On average,

will the energy of the particles which collide increase or decrease?

To answer this question, consider specifically the collisions which occur in an infinitesimal

interval of time from t to t + dt. The speed of a particle which collides during this time interval

will change by an amount ∆v = −2u(t), which follows from the fact that in the rest frame

of the wall, the velocity of the particle merely switches sign in an elastic collision. This speed

change is positive when the wall is approaching the particles (u(t) < 0), and negative when it is

receding from them (u(t) > 0). Now, as long as the speed of the wall is not too large, particles

which collide during the time interval (t, t+ dt) originate from a range of initial positions of size

dx = (v − u(t))dt (see Figure 3.10 as a guide). This can be seen by switching to a reference

frame co-moving with the particles, and asking how much distance the wall “sweeps out” during
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the interval. Then, since the contingent of the ensemble which reaches the wall anytime during

the period is all those particles initially between x = −vT and x = 0, the relative fraction

of colliding particles which collide specifically during the infinitesimal interval (t, t + dt) is

dx/vT = (dt/T )(1 − u(t)/v). Thus, by integrating ∆v = −2u(t) over all such infinitesimal

intervals from t = 0 to t = T , weighted by the factor (1/T )(1 − u(t)/v), we obtain the average

change in speed over all colliding particles:

⟨∆v⟩ = 1

T

∫ T

0

dt

(
1− u(t)

v

)
∆v =

2

v

1

T

∫ T

0

dt u(t)2 > 0. (3.38)

Here, we have used that fact that the displacement
∫ T

0
dt u(t) over a single period vanishes, since

the wall’s motion is periodic.

Thus, over a single period, the ensemble exhibits on-average Fermi acceleration, as

signalled by the increase in the particles’ mean speed (note that via an analogous calculation, it

is easy to show that the particles’ average energy 1
2
mv2 increases as well). Intuitively, this arises

because when the wall is moving towards the particles, causing speed-increasing collisions, it

can “sweep” over the particles at a faster rate than when it is receding. This bias is encoded

in the factor (1 − u(t)/v) in the average above, which gives more weight to times when speed-

increasing collisions occur (when u(t) < 0) than to times when speed-decreasing collisions occur

(u(t) > 0).

Naively extrapolating this model over many periods and to higher dimensions, we might

then guess that in a chaotic billiard with oscillating walls, the same logic will ensure that on-

average Fermi acceleration occurs. The reality is more complicated: Even in one dimension, after

particles in an ensemble begin to collide with the wall, correlations are invariably established
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Figure 3.10: Position versus time diagram of collisions with an oscillating wall. The changing
location of the wall over one period, given by x = f(t), is specified by the solid blue curve. The
purple diagonal lines trace the position versus time of two representative particles, which collide
with the wall at t and t+ dt. Particles which collide with the wall during this infinitesimal range
of times originate from a range of initial positions of size dx = (v − u(t))dt. This figure is
adapted from a similar diagram in [72].

between the positions and velocities of the particles, which influence the statistics associated

with subsequent collisions. These statistics will not be fully captured by in the model just

described, since we assumed an initial lack of correlations between particle positions and

velocities. However, at a first level of approximation, this simple one-dimensional analysis is

often a useful way to understand why a bias towards energy absorption arises in billiard systems.

Whether as a result of the mechanism described above or by other means, Fermi

acceleration is thus a common feature of many driven billiard systems. Of course, in this

section so far we have only discussed billiards with time-dependent boundaries. However, there

is a natural correspondence these systems and the billiards studied in our work, which allows

intuitions about Fermi acceleration to be applied to both types of billiards. In Section 3.3, we
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noted that over a single period, the driving force perturbs the velocity of a billiard particle by an

amount ≈ F(x) sin(ωt)/(mω), and its position by ≈ −F(x) [cos(ωt)− 1] /(mω2). Evidently,

the particle’s motion over a period is well-approximated as small, sinusoidal oscillations about

a corresponding undriven trajectory of the particle. Therefore, we can imagine moving to an

oscillating reference frame, wherein the particle exhibits approximately undriven motion, and the

walls perform small, rapid oscillations. Accordingly, we hypothesize that for any rapidly driven

billiard satisfying the assumptions of this paper, there is a particular billiard with oscillating

boundaries which exhibits energy diffusion with the same drift and diffusion coefficients. For the

special case of a standard billiard, U(x) = 0, we can confirm this correspondence by comparing

our results to those of [72], where energy diffusion is established for billiards in the “quivering

limit,” wherein the walls of a billiard undergo small, rapid periodic oscillations. Under this

framework, it is straightforward to verify that if each point on the boundary of a quivering

chaotic billiard oscillates about its mean position x with time-dependence x+F(x) cos(ωt)/mω2,

then the associated drift and diffusion coefficients are exactly those predicted in our model for

a standard billiard subject to the force F(x) cos(ωt). It would be interesting to see whether a

similar correspondence is valid in the general case, for U(x) ̸= 0.
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Chapter 4: Energy diffusion in oscillator systems driven by weak correlated

noise

4.1 Chapter summary

In this chapter, we discuss energy diffusion in two oscillator systems, each perturbed by

weak, correlated noise. The first, studied in Section 4.2, is a particle in a one-dimensional

potential well, subject to a small noisy force. The second, analyzed in Section 4.3, is a classical

spin precessing about a magnetic field, perturbed by small fluctuations about the mean field.

This work was done in conjunction with recent work by Antonis Kyprianidis and Chris Monroe,

regarding how trapped ions can absorb energy from external noise (see Chapter 5 of [166] for

more details). Both the particle system and the spin system can be described with an energy

diffusion model, each with an associated Fokker-Planck equation. We find that both models may

be understood as a formal infinite temperature limit of certain previously studied energy diffusion

models, which govern the evolution of systems subject to thermal noise. Although these thermal

noise models are well-studied in the literature, we nevertheless present these results as an example

of the general utility of the energy diffusion description. Moreover, as we show, these two models

are especially fruitful to analyze, since the Fokker-Planck equation for the particle may be solved

approximately, and the Fokker-Planck equation for the spin admits an exact solution.

104



4.2 Particle in a potential well subject to weak, correlated noise

Consider a classical point particle constrained to one dimension, with position x ≡ x(t)

and velocity v ≡ v(t). The particle is confined by a potential U(x), and is driven by a random,

time-dependent noise force f(t). We refer to this as the “normal” noise model, to distinguish it

from a model with thermal noise that we introduce shortly. The equations of motion are:

dx

dt
= v, m

dv

dt
= −U ′(x) + f(t). (4.1)

Due to the noise force f(t), the particle’s energyE ≡ 1
2
mv2+U(x) varies with time, according to

dE/dt = f(t)v(t). We take f(t) to be generated by a stationary stochastic process, characterized

by a vanishing mean ⟨f(t)⟩ = 0 and a correlation function Cf (t) ≡ ⟨f(0)f(t)⟩, which decays

to zero over some correlation timescale τC . We also assume that the typical magnitude of f(t)

is small, so that significant energy changes only occur on timescales much longer than τC . Note

that because of the finite correlation time of the noise, these dynamics are not equivalent to

the standard Langevin description of a particle driven by noise, which assumes uncorrelated or

“white” noise with Cf (t) ∝ δ(t).

4.2.1 Energy diffusion description

Under these conditions, we anticipate that the system will undergo a random walk in energy

space, which will manifest as a process of energy diffusion on timescales ≫ τC (see Chapter 2,

Section 2.7 for a discussion of the typical conditions under which energy diffusion occurs). Here,

note that the decay of correlations necessary for diffusive evolution is induced by the external
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noise. This is in contrast to the energy diffusion model developed in Chapter 2, wherein the

intrinsic chaotic motion of the system generates the requisite decay of correlations. In any case,

the process of energy diffusion is described by a Fokker-Planck equation

∂η

∂t
= − ∂

∂E
(g1η) +

1

2

∂2

∂E2
(g2η) (4.2)

for the energy distribution η(E, t). It just remains to obtain the energy drift and diffusion

coefficients g1 ≡ g1(E) and g2 ≡ g2(E).

To do so, note that for weak noise, we may approximate dE/dt = f(t)v(t) by dE/dt ≈

f(t)v(t;E0) for short times, where v(t;E0) is the unperturbed velocity the particle would have in

the absence of the noise. Because the particle is confined to a potential well, v(t;E0) will oscillate

around zero with some energy-dependent period T ≡ T (E0). Upon decomposing v(t;E0)

in a Fourier series v(t;E0) =
∑

k∈Z\{0} ake
ikωt with fundamental frequency ω ≡ ω(E0) =

2π/T (E0), we have:1

dE

dt
= f(t)v(t) ≈ f(t)

∑
k∈Z\{0}

ake
ikωt, (4.3)

where

ak ≡ ak(E0) =
1

T

∫ T

0

dt v(t;E0)e
−ikωt. (4.4)

We can then use this expression to compute Var(E) ≈ g2(E0)∆t, the energy variance acquired

by an ensemble of trajectories with initial energy E0, over a short time ∆t. This calculation

1The Fourier expansion for v(t;E0) has no k = 0 term because the average velocity over a period must be zero.
If this were not the case, then the particle would experience a nonzero displacement over the course of a period,
which is inconsistent with the motion being periodic.
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proceeds in the same way as the analogous calculation of Var(E) in Appendix A, starting from

(A.2). The result is, for ∆t≫ T, τC :

g2(E) ≈ 2
∞∑
k=1

|ak(E)|2Sf (kω), (4.5)

where

Sf (ν) ≡
∫ ∞

−∞
dt e−iνtCf (t) (4.6)

is the power spectrum for the noise.

To obtain g1(E), we note that the arguments used to obtain the fluctuation-dissipation

relation (2.22) in Chapter 2 apply equally well to the present system. So, since Σ(E) = T (E)

for a particle in a one-dimensional potential [167], we have:

g1(E) =
1

2T

∂

∂E

(
g2T
)
. (4.7)

Substituting this expression into the Fokker-Planck equation (4.2), we obtain the analogue of

(2.23) from Chapter 2:

∂η

∂t
=

1

2

∂

∂E

[
g2T

∂

∂E

( η
T

)]
. (4.8)

This equation, when combined with our expression (4.5) for g2, fully characterizes the diffusive

evolution of η.
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4.2.2 Comparison with models of particles driven by thermal noise

This result can be compared to models of a particle interacting with a thermal bath, where

the noise force associated with the bath has a finite correlation time [96, 99, 100, 106]. Such

models were discussed earlier in Chapter 2, Section 2.7, where we gave a review of energy

diffusion models studied by other researchers. These models begin with a generalized Langevin

equation, which includes a memory kernel that encodes the non-Markovian influence of the bath.

When written in the same notation as (4.1), this equation takes the form

dx

dt
= v, m

dv

dt
= −U ′(x)−m

∫ t

−∞
ds γ(t− s)v(s) + f(t). (4.9)

Here, the second-to-last term on the right corresponds to the average frictional force exerted by

the bath, and is characterized by a damping kernel γ(t) = γ(−t). f(t) then corresponds to

fluctuations about this average force. From this equation, an energy diffusion description can be

derived, given that the effect of the thermal bath is sufficiently weak.

Clearly, this equation coincides with (4.1) if γ(t) is arbitrarily set to zero. However, the

physical interpretation of this step is unclear, since the average effect of the forces exerted by the

bath cannot be turned on and off independently of the fluctuations: Both are ultimately generated

by the same physical mechanisms. In these thermal noise models, this connection is encoded by

assuming a fluctuation-dissipation relation [96, 99, 100, 106]:

Cf (t) = mkBTbγ(t), (4.10)

where Tb is the bath temperature. Substituting this into (4.9) yields
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dx

dt
= v, m

dv

dt
= −U ′(x)− 1

kBTb

∫ t

−∞
dsCf (t− s)v(s) + f(t). (4.11)

The Fokker-Planck equation corresponding to these equations of motion is (see, for example,

Equation 151 in [106])

∂η

∂t
=

1

2

∂

∂E

[
g2

η

kBTb
+ g2T

∂

∂E

( η
T

)]
, (4.12)

where g2 is again given by (4.5).

In the formal limit where Tb approaches infinity, with all other quantities like U(x) and

Cf (t) held fixed, the generalized Langevin equation (4.11) and the Fokker-Planck equation (4.12)

reduce to the corresponding equations (4.1) and (4.8) for the normal noise case. Of course, this

is an unphysical limit: It is not clear how to hold Cf (t) and other quantities constant while

taking the limit Tb → ∞, since the statistical properties of a heat bath will generally vary as

its temperature changes. Nevertheless, we still anticipate that the normal noise model can serve

as a good approximation of the thermal noise model, provided that the fluctuations in the bath

forces (given by f(t)) dominate over the average force exerted by the bath (given by the term

−(kBTb)
−1
∫ t

−∞ dsCf (t− s)v(s)).

4.2.3 The harmonic approximation

To conclude this section, we note that for the Fokker-Planck equation (4.8) for the normal

noise model, an exact solution is available when the particle executes small oscillations in the

potential well. This simplification has also been studied for the thermal noise Fokker-Planck

equation (4.12); an exact solution can be obtained in this case as well [168]. We now describe
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how the Fokker-Planck equation simplifies in this limit. We then present the solution, and discuss

how this solution behaves asymptotically at long times.

In the small oscillation limit, the potential U(x) may be approximated by a harmonic

potential U(x) ≈ 1
2
mω2

0(x − x0)
2 about some minimum point x0, and the particle will oscillate

sinusodially about this minimum at some energy-independent frequency ω0. In this case, the

unperturbed velocity v(t;E) is simply v(t;E) ≈
√

2E/m cos (ω0t) (up to an unimportant

phase), and so the Fourier coefficients ak(E) are approximately zero for k ̸= ±1. Therefore,

our expression for the energy diffusion coefficient (4.5) reduces to

g2(E) ≈
E

m
Sf (ω), (4.13)

and so the Fokker-Planck equation becomes (noting that the period T = 2π/ω0 is now

independent of energy):

∂η

∂t
=
Sf (ω0)

2m

∂

∂E

[
E
∂η

∂E

]
≡ Lη. (4.14)

Here, we have introduced the differential operator L ≡ (Sf (ω0)/2m) ∂
∂E

(
E ∂

∂E

)
. Since the

minimum energy of the harmonic oscillator is E = 0, solutions to this equation are distributions

η(E, t) defined for E ∈ [0,∞).

We note that this Fokker-Planck equation predicts a constant average energy absorption

rate of d⟨E⟩/dt = Sf (ω0)/2m, as can be seen by multiplying the equation by E and then

integrating over all energies. This same rate has been obtained elsewhere, for a quantum particle

in a harmonic potential subject to noise [169, 170].

This equation may be solved by the same method as the Schrodinger equation in quantum
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mechanics: By obtaining the eigenvalues −λ and eigenfunctions ϕλ(E) ≡ ϕλ of the operator L.

Because of the linearity of the Fokker-Planck equation, a general solution can then be expressed

as a linear combination of the solutions e−λtϕλ(E). To solve the eigenvalue equation Lϕλ =

−λϕλ, we note that upon making the change of variables x =
√

8mλE/Sf (ω0), this equation

reduces to Bessel’s equation for order α = 0 [171]:

x2
∂2ϕλ

∂x2
+ x

∂ϕλ

∂x
+ x2ϕλ = 0. (4.15)

The solutions are therefore given by

ϕλ(E) =

√
2m

Sf (ω0)
J0

(√
8mλ

Sf (ω0)
E

)
=

√
2m

Sf (ω0)

∞∑
k=0

1

(k!)2

(
− 2mλ

Sf (ω0)
E

)k

, (4.16)

where J0(z) is a Bessel function of the first kind of order zero.2 We have noted the

power series expansion for the Bessel function, which will become important shortly. The

prefactor
√
2m/Sf (ω0) ensures that these eigenfunctions are orthogonal, in the sense that∫∞

0
dE ϕλ(E)ϕλ′(E) = δ(λ − λ′).3 Note that we may restrict our attention to λ > 0

eigenfunctions, since e−λtϕλ(E) diverges at long times for negative λ. A general solution to

the Fokker-Planck equation may then be written as

η(E, t) =

∫ ∞

0

dλ a(λ)e−λtϕλ(E). (4.17)

2An independent set of solutions is given in terms of Bessel functions of the second kind. However, these
solutions diverge at E = 0, so we ignore them.

3This follows from the Bessel function closure equation
∫∞
0

dx Jα(ux)Jα(vx)x = δ(u− v)/u [171].
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The weighting function a(λ) is set by the initial condition η(E, 0). The orthogonality of the

eigenfunctions implies that

a(λ) =

∫ ∞

0

dE ϕλ(E)η(E, 0). (4.18)

To conclude this section, let us look at the behavior of such solutions at long times. For

simplicity, suppose that the system begins with a definite energyE0, so that η(E, 0) = δ(E−E0),

which implies that a(λ) = ϕλ(E0):

η(E, t) =

∫ ∞

0

dλϕλ(E0)e
−λtϕλ(E). (4.19)

At long times, the factor e−λt implies that the integrand here will only be nonzero for λ ≈ 0. We

are then justified in replacing ϕλ(E0) by its value at λ = 0, which is
√

2m/Sf (ω0) according to

the power series (4.16). Specifically, by looking at the size of the next term in the power series,

we can see that this should be a good approximation provided that Sf (ω0)t/mE0 ≫ 1. Upon

making this approximation, we can then substitute the power series expansion for ϕλ(E) into the

integral, and evaluate the result:
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η(E, t) =
2m

Sf (ω0)

∫ ∞

0

dλ e−λt

∞∑
k=0

1

(k!)2

(
− 2mλ

Sf (ω0)
E

)k

=
2m

Sf (ω0)

∞∑
k=0

1

(k!)2

(
− 2m

Sf (ω0)
E

)k ∫ ∞

0

dλ e−λtλk

=
2m

Sf (ω0)t

∞∑
k=0

1

(k!)2

(
− 2m

Sf (ω0)t
E

)k ∫ ∞

0

ds e−ssk

=
2m

Sf (ω0)t

∞∑
k=0

1

k!

(
− 2m

Sf (ω0)t
E

)k

η(E, t) =
1

kBTeff
exp

(
− E

kBTeff

)
.

(4.20)

In the final line, we have defined the effective temperature kBTeff = Sf (ω0)t/2m. So, at long

times such that Sf (ω0)t/mE0 ≫ 1 (as long as our initial harmonic approximation does not break

down), the system’s energy distribution approaches a Boltzmann distribution, with a temperature

which grows linearly with time. Note that for this Boltzmann distribution, ⟨E⟩ = kBTeff , so this

linear growth of kBTeff matches the result d⟨E⟩/dt = Sf (ω0)/2m noted previously.

4.3 Classical Heisenberg spin in a fluctuating magnetic field

Consider a classical magnetic moment or “spin,” described by an evolving unit vector

S(t) ≡ S. We assume that this spin precesses about a time-dependent magnetic field vector

B(t) ≡ B according to the equation

dS

dt
= −B× S. (4.21)

We work in units were magnetic fields have units of inverse time. This model is sometimes
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referred to as a “Heisenberg spin” model [172, 173]; it is also the zero-damping limit of the

Landau-Lifshitz or Landau–Lifshitz–Gilbert model [174, 175]. Note that the spin magnitude

|S| = 1 is preserved under these dynamics. With respect to some arbitrary (x, y, z) coordinate

system, the vector S is specified uniquely by two variables: ϕ, the azimuthal angle, and Sz, the z-

component of S (see Figure 4.1). Although it is not immediately apparent, the pair (ϕ, Sz) serves

as a set of canonical coordinates for the system: For the Hamiltonian H = −B · S (expressed as

a function of ϕ and Sz), it can be shown that the equation of motion (4.21) is entirely equivalent

to the set of Hamilton’s equations dϕ/dt = ∂H/∂Sz and dSz/dt = −∂H/∂ϕ [172].

Figure 4.1: Diagram defining the coordinates ϕ and Sz, which specify the spin vector S.

We assume that the magnetic field may be treated as a constant average field, plus some

small random fluctuations or noise. If we orient the z-axis in the direction of the average

field, we may write this as B(t) = B0 + b(t), where B0 = B0ẑ is a constant, and where

b(t) = (bx(t), by(t), bz(t)). We take b(t) to be generated by a stationary stochastic process, with

vanishing averages ⟨bi(t)⟩ = 0 and with an associated correlation function Cb(t) ≡ ⟨bi(0)bi(t)⟩,
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which decays over a timescale τC . The three components of b(t) are assumed to be statistically

identical and independent.

4.3.1 Energy diffusion description

We define the energy of the system E as the Hamiltonian in the absence of the noise:

E ≡ −B0 · S = −B0Sz. For b(t) = 0, this energy is conserved under (4.21). For small, finite

b(t), the noise causes the system to perform a random walk in energy space. Just as with the

noise-driven particle in Section 4.2, we expect this to result in a process of energy diffusion on

timescales ≫ τC . This process is described by a Fokker-Planck equation, with drift and diffusion

coefficients g1(E) and g2(E). As before, g1 and g2 are related via the same fluctuation-dissipation

relation as in Chapter 2, given by (2.22). Following (2.23), we may therefore express the Fokker-

Planck equation as

∂η

∂t
=

1

2

∂

∂E

[
g2Σ

∂

∂E

( η
Σ

)]
. (4.22)

where Σ ≡ Σ(E) is the density of states. Note that the process of energy diffusion is defined on

the interval [−B0, B0], between the maximum and minimum energies E = ±B0.

To obtain g2(E), we again use the relation Var(E) ≈ g2(E0)∆t. First, note that the

equation of motion (4.21) implies that dE/dt = B0 · (b × S) = B0ẑ · (b × S), so that the

change in E from t = 0 to t = ∆t is given by

∆E = B0

∫ ∆t

0

dt ẑ · (b(t)× S(t)). (4.23)

For weak noise, we may approximate the evolution of S(t) by its evolution in the absence of
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noise. Without noise, the equation of motion (4.21) implies that S(t) simply precesses around

the z-axis with angular frequency B0. Assuming for simplicity that S0(t) is in the (x, z)-plane

at t = 0, and recalling that |S| = 1, this means that we can approximate its evolution as S(t) ≈√
1− S2

z cos (B0t)x̂ −
√
1− S2

z sin (B0t)ŷ + Szẑ. Here, Sz is constant. Upon substituting this

into (4.23) above, we obtain

∆E ≈ −B0

√
1− S2

z

∫ ∆t

0

dt [bx(t) sin (B0t) + by(t) cos (B0t)] . (4.24)

This expression can then be substituted into Var(E) = ⟨(∆E)2⟩ − ⟨∆E⟩2. Since ⟨bi(t)⟩ =

0 and since the components bi(t) are statistically independent, the cross terms in the resulting

expression vanish, and we are left with

Var(E) = B2
0(1− S2

z )

∫ ∆t

0

dt

∫ ∆t

0

dt′Cb(t
′ − t) [sin (B0t) sin (B0t

′) + cos (B0t) cos (B0t
′)] .

(4.25)

This may be evaluated just like (2.16) in Chapter 2, Section 2.4, for ∆t≫ τC , 1/B0. Noting that

E = −B0Sz, the resulting expression for g2 is then

g2(E) = (B2
0 − E2)Sb(B0), (4.26)

where Sb(ω) is the power spectrum for the noise:

Sb(ω) =

∫ ∞

−∞
dt e−iωtCb(t). (4.27)
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To complete the characterization of the Fokker-Planck equation, we only need the density

of states Σ(E). Ω(E), the volume of phase space corresponding to energies ≤ E, is found

by integrating over all ϕ from 0 to 2π, and over Sz from −1 to E/B0. The result is Ω(E) =

2π(1 + E/B0); taking the derivative with respect to E yields Σ(E) = 2π/B0. This is a constant

density of states, so it cancels in the Fokker-Planck equation, which now becomes

∂η

∂t
=
Sb(B0)

2

∂

∂E

[(
B2

0 − E2
) ∂η
∂E

]
≡ Lη, (4.28)

where we have defined the differential operator L ≡ Sb(B0)
2

∂
∂E

[
(B2

0 − E2) ∂
∂E

]
.

We have found two closely related results in the literature. First, Kubo and Hashitsume

studied this same system, focusing on f(S, t), the probability distribution of S itself [176]. They

obtained a Fokker-Planck equation for this distribution. We find that if f(S, t) is assumed to

only depend on the spin energy E = −B0Sz, then the non-energy variables may be integrated

out of their Fokker-Planck equation, and the result is (4.28). Second, Brown derived a Fokker-

Planck equation in energy for a spin subject to uncorrelated, thermal noise [97]. This Fokker-

Planck equation simplifies in the high-temperature limit, when the thermal energy kBTb is much

larger than the maximum spin energy E = B0. This high temperature Fokker-Planck equation

then coincides with our result (4.28), in the special case where we assume uncorrelated noise

(Cb(t) ∝ δ(t)).

4.3.2 Exact solution to the Fokker-Planck equation

Just as for the noise-driven particle in Section 4.2.3, we may solve this equation by finding

the eigenvalues −λ and eigenfunctions ϕλ(E) of the differential operator L. The following
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solution is also given by Brown in [97], for the case of uncorrelated noise, but here we show that it

applies equally well for correlated noise. Note that the eigenvalue equation Lϕλ(E) = −λϕλ(E)

is simply the defining equation for the Legendre polynomials Pn(x) = P0(x), P1(x), P2(x) ..., up

to constant factors [171]:

∂

∂x

[(
1− x2

) ∂Pn

∂x

]
= −n(n+ 1)Pn. (4.29)

It follows that there is a discrete set of eigenvalues λ ≡ λn and eigenfunctions ϕλ(E) ≡ ϕn(E)

given by

ϕn(E) =

√
2n+ 1

2B0

Pn

(
E

B0

)
, λn =

n(n+ 1)Sb(B0)

2
, (4.30)

where the prefactor
√

(2n+ 1)/(2B0) guarantees the orthonormality of the eigenfunctions,

expressed by
∫ B0

−B0
dE ϕm(E)ϕn(E) = δmn.4

A general solution to the Fokker-Planck equation may then be expressed as a linear

combination of these eigenfunctions, each multiplied by a factor e−λnt:

η(E, t) =
∞∑
n=0

ane
−λntϕn(E), (4.31)

where an =
∫ B0

−B0
dE ϕn(E)η(E, 0) as a consequence of the orthogonality of the eigenfunctions.

Note that at long times, all of the terms in this sum decay to zero except for the n = 0 term, since

λ0 = 0. Since P0(x) = 1, we have ϕ0(E) =
√

1/(2B0) and a0 =
∫ B0

−B0
dE
√

1/(2B0)η(E, 0) =√
1/(2B0), and therefore:

4This follows from the orthogonality relation for Legendre polynomials,
∫ 1

−1
dxPm(x)Pn(x) = 2δmn/(2m+1).
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lim
t→∞

η(E, t) =
1

2B0

. (4.32)

That is, the system approaches a completely uniform distribution in energy space in the long-

time limit, independent of the initial distribution η(E, 0). This is the infinite temperature energy

distribution η∞(E) = Σ(E)/
∫
dE ′Σ(E ′) (discussed previously in Chapter 2, Section 2.5), since

the density of states Σ(E) is a constant.
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Chapter 5: Energy absorption and diffusion in quantum chaotic systems

5.1 Chapter summary

In this chapter, we investigate energy absorption and diffusion in driven quantum chaotic

systems. Unlike Chapters 2 and 3, this chapter does not include any substantial new results.

Rather, the goal here is to outline the conceptual frameworks and mathematical tools necessary

for understanding energy absorption in quantum chaotic systems under rapid periodic driving.

After an introduction in Section 5.2, we begin Section 5.3 with a review of Floquet theory,

the standard formalism used to study periodically driven quantum systems. This leads to a

discussion of the Floquet-Magnus expansion, a perturbative expansion in the driving period

T , which furnishes an approximate description of the quantum evolution in the rapid driving

regime. We describe the various connections between the Floquet-Magnus expansion, bounds on

energy absorption, Floquet prethermalization, and the classical energy diffusion model developed

in Chapter 2. In Section 5.4, we narrow our focus to quantum chaotic systems specifically,

i.e., quantum systems with a classical chaotic counterpart. We provide a review of some key

ideas in the study of quantum chaos, concentrating on random matrix theory and the Eigenstate

Thermalization Hypothesis. Then, in Section 5.5, we demonstrate how such tools can be used to

construct a random matrix model for a periodically driven quantum chaotic system. We conclude

this chapter with a heuristic model of energy absorption in quantum chaotic systems under
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periodic driving. This model, which is based on Fermi’s golden rule, reduces to the classical

energy diffusion description in the semiclassical limit.

5.2 Setup and introduction

The main subject of this chapter is quantum systems subject to a rapid periodic drive, with

a focus on quantum chaotic systems (i.e., quantum systems with a classical chaotic counterpart).

In this section, we define these systems and their dynamics. We then provide a brief discussion of

the correspondence principle, to motivate our belief that these systems may be partially described

by the classical energy diffusion model developed in Chapter 2.

5.2.1 Definition of the system(s) of interest

Our system of interest is a non-relativistic quantum system, isolated except for the influence

of a time-periodic external drive. The time-dependent state of such a system is defined by the

system’s state vector |ψ(t)⟩ ≡ |ψ⟩, an element in the system’s Hilbert space H. This Hilbert space

is equipped with an inner product ⟨ψ1|ψ2⟩ = ⟨ψ2|ψ1⟩∗ defined between any two vectors |ψ1⟩ and

|ψ2⟩. The dynamics of |ψ(t)⟩ are dictated by the system’s Hamiltonian Ĥ(t) ≡ Ĥ , where the

“hat” over Ĥ(t) denotes that Ĥ(t) is a linear operator which acts on vectors in the system’s Hilbert

space. As time elapses, |ψ⟩ evolves within H in accordance with the Schrodinger equation

iℏ
d|ψ⟩
dt

= Ĥ|ψ⟩, (5.1)

where ℏ is the reduced Planck constant. We assume that |ψ⟩ is normalized at t = 0 (i.e.,

⟨ψ(0)|ψ(0)⟩ = 1); evolution under the Schrodinger equation then preserves this normalization
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for all time.

We assume that the quantum Hamiltonian Ĥ(t) may be obtained from the classical

Hamiltonian H(z, t) = H0(z) + V (z, t/T ) in Chapter (2) (see equation (2.1)) via an appropriate

quantization procedure. The standard way to do this is to choose a particular set of canonical

coordinates and momenta q and p for the classical system, define a corresponding set of operators

q̂ and p̂ which satisfy canonical commutation relations, and replace q and p inH(z, t) with q̂ and

p̂ [177].1 When constructed in such a procedure, Ĥ(t) inherits the time-periodicity of H(z, t),

and may be decomposed as

Ĥ(t) = Ĥ0 + V̂ (t/T ), V̂ (s) = V̂ (s+ 1), (5.2)

where T is the driving period, and where Ĥ0 and V̂ (t/T ) are the quantized versions of the

classical observables H0(z) and V (z, t/T ). As in the classical case, we identify Ĥ0 as the “bare”

or “undriven” Hamiltonian, and V̂ (z, t/T ) as the “drive.”

Observable properties of this system are identified with Hermitian operators on H, like Ĥ0

and V̂ (t/T ). In direct correspondence with the classical case, we identify the operator Ĥ0 (which

is guaranteed to be Hermitian if constructed from an appropriate quantization procedure) with the

energy of the system. The equation Ĥ0|n⟩ = En|n⟩ defines the eigenvalues En and orthonormal

eigenvectors |n⟩ of Ĥ0, which are labelled by the integer index n. We have assumed that Ĥ0

has a discrete spectrum for notational convenience, but the discussion in this chapter does not

hinge on this assumption. The Hermiticity of Ĥ0 implies that the state vector |ψ(t)⟩ at any time

1If H(z, t) is a sum of terms which each depend on q or p alone, as in a standard kinetic plus potential
Hamiltonian, then the replacement of q and p in H(z, t) with q̂ and p̂ is uniquely defined. Otherwise, this method
is ambiguous due to the non-commutation of q̂ and p̂, and one must use operator-ordering conventions such as Weyl
ordering [177, 178] to fully specify the replacement procedure.
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may be expressed as a linear combination of the eigenvectors |n⟩: |ψ(t)⟩ =
∑

n cn(t)|n⟩, where

cn(t) = ⟨n|ψ(t)⟩. In quantum mechanics, when the system is in the state |ψ(t)⟩, pn(t) = |cn(t)|2

gives the probability that if an energy measurement is made at time t, then the value En will be

obtained. Therefore, the expectation value or average value of the system’s energy at t is given

by

⟨H0⟩t =
∑
n

|cn(t)|2En = ⟨ψ(t)|Ĥ0|ψ(t)⟩. (5.3)

More generally, the expectation value associated with an arbitrary operator Â is given by ⟨A⟩t =

⟨ψ(t)|Â|ψ(t)⟩.

Additionally, the relation pn(t) = |cn(t)|2 tells us that the energy distribution for the system

over a continuous range of energies E is given by:

ηQ(E, t) =
∑
n

|cn(t)|2δ(E − En). (5.4)

This is the quantum analogue of the classical energy distribution η(E, t), defined by (2.5) in

Chapter 2, Section 2.2. For V̂ (t/T ) = 0̂, the Schrodinger equation (5.1) implies that ηQ(E, t)

is a constant, consistent with energy conservation. The main focus of this chapter is the time

evolution of ηQ(E, t) for nonzero V̂ (t/T ), in the rapid driving regime defined by sufficiently

large ω = 2π/T .

Later in this chapter, it will also be convenient to invoke the density operator formalism

of quantum mechanics [179]. This framework is valid even if the state of the system of interest

cannot be specified by a state vector |ψ(t)⟩. This can occur if the system is described by a

statistical ensemble of possible state vectors, or if the system is entangled with another system. In
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these cases, the system’s state is fully characterized by a density operator ρ̂(t) ≡ ρ̂, a nonnegative

Hermitian operator with unit trace. ρ̂ evolves in accordance with the von Neumann equation

iℏ
dρ̂

dt
= [Ĥ, ρ̂], (5.5)

where [Â, B̂] is the commutator between two operators Â and B̂. In the special case where the

system can also be described by a state vector |ψ(t)⟩, then the ρ̂(t) and |ψ(t)⟩ representations

are related via ρ̂(t) = |ψ(t)⟩⟨ψ(t)|, which denotes the outer product of |ψ(t)⟩ with itself. In this

case, the system is said to be in a pure state, and the von Neumann equation is fully equivalent to

the Schrodinger equation (5.1).

In the density matrix description, the probability of measuring the energy value En is

given by pn(t) = ρnn(t) ≡ ⟨n|ρ̂(t)|n⟩. The energy distribution in this case is then given

by ηQ(E, t) =
∑

n ρnn(t)δ(E − En). In the pure state case, this reduces to (5.4), since

ρnn(t) = ⟨n|ψ(t)⟩⟨ψ(t)|n⟩ = |cn(t)|2.

5.2.2 Energy diffusion and the correspondence principle

The systems studied with the energy diffusion model in Chapters 2 and 3 are all purely

classical. However, recall from Chapter 1 that one of the original motivations for developing the

energy diffusion description was to understand energy absorption in periodically driven quantum

systems, such as Floquet prethermal systems and time crystal systems. The idea is that some

of the quantum mechanical mechanisms which control energy evolution in such systems may

alternatively be understood in terms of classical effects. This is in line with the correspondence

principle, the notion that under appropriate conditions, the behavior of quantum systems may be
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approximated in terms of classical physics [180, 181].

Since it was first formulated by Niels Bohr at the advent of quantum theory [182], the

correspondence principle has served as a powerful guide for understanding quantum systems,

motivated by the basic desideratum that our quantum mechanical theories of the world be

consistent with the classical reality that appears in everyday life.2 Although a reasonable

consistency requirement, establishing the existence of this correspondence is nontrivial: At

the microscopic quantum level, phenomena like superpositions and entanglement appear as

fundamentally non-classical, and it is not a priori clear how such effects “wash out” to yield

effectively classical evolution at the macroscopic or mesoscopic level. For an isolated quantum

system, this emergence of classicality is usually understood to occur in the regime of high

energies and large quantum numbers, while for quantum systems interacting with an environment,

the phenomenon of decoherence also plays a key role in establishing classical-like properties.

Mathematically, quantum-classical correspondence commonly appears as the result of some sort

of limit: The semiclassical limit (taking Planck’s constant ℏ to zero) [180, 184, 185], the limit

of large spin numbers for quantum spin systems [41, 186], or the limit of many environmental

degrees of freedom in the context of decoherence [68, 187].

Motivated by the correspondence principle, we emphasize connections between quantum

systems and their classical counterparts throughout this chapter. In the discussion of Floquet

theory in Section 5.3, we see a tight parallel between Floquet theory as applied to classical

and quantum systems, and we note how certain quantum bounds on energy absorption can

be relevant in a classical context. Then, in Section 5.4, we describe how the dynamics of

2Technically, Bohr’s original correspondence principle is more narrow than this general consistency requirement.
For a discussion of the differences between Bohr’s correspondence principle and its modern reinterpretation
described here, see [183].
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classical chaotic systems leave an “imprint” on the features of their quantum counterparts, and

how quantum-classical correspondence manifests in models of slowly driven quantum chaotic

systems. Finally, in Section 5.5, we show how the classical energy diffusion description can

arise from a simplified model of a periodically driven quantum chaotic system, in the limit as

ℏ approaches zero. Ultimately, our hope is that these various connections can be placed in the

context of a comprehensive account of energy absorption in periodically driven quantum chaotic

systems, an account which the classical energy diffusion model may be one piece of.

5.3 Floquet theory, the Floquet-Magnus expansion, and energy diffusion

In the context of quantum mechanics, the tools of Floquet theory describe the evolution of

quantum systems subject to a time-periodic Hamiltonian Ĥ(t) = Ĥ(t + T ). In this section, we

provide an overview of Floquet analysis, and discuss the relationship between this theory and the

energy diffusion framework established in Chapter 2. We first summarize the basic mathematics

of Floquet theory, and introduce the idea of an effective Floquet Hamiltonian ĤF , which allows

us to view the evolution under Ĥ(t) at the “stroboscopic” times t = 0, T, 2T ... as evolution

under the time-independent Hamiltonian ĤF . We then narrow our focus to the high-frequency

driving regime specifically. In this limit, a useful approximation of a periodically driven system’s

dynamics is furnished by the Floquet-Magnus expansion. The Floquet-Magnus expansion is a

perturbative expansion for the Floquet Hamiltonian ĤF , in powers of the driving period T . We

describe this expansion, and then explain how the convergence of the Floquet-Magnus expansion

places a limit on the amount of energy that can be absorbed by a system. We conclude this section

by discussing some additional bounds on energy absorption in periodically driven quantum
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systems, and by connecting these bounds to the classical energy diffusion description and to

the phenomenon of Floquet prethermalization.

5.3.1 Introduction to Floquet theory

Floquet theory or Floquet analysis is the theory of linear differential equations (either finite

or infinite dimensional) with coefficients which are periodic in the independent variable [188].

The essential components of this theory, including the central Floquet’s theorem, were developed

by researchers such as Floquet [189], Hill [190], and Lyapunov [191]. Since then, the tools

they discovered have been used in a huge range of physical and mathematical settings, such as

NMR systems [192–194], driven optical lattices [48, 49, 166, 195], ecological population models

[196, 197], control theory [198, 199], correlated electron systems and optically-driven quantum

materials [30, 31, 200], topological insulators [60], and laser-excited atoms and molecules

[201, 202]. In quantum mechanics in particular, Floquet theory has proven especially useful

in the study of two classes of systems: Systems with time-periodic Hamiltonians, and systems

subject to potentials which are periodic in space (in this second class, Floquet’s theorem is

referred to as Bloch’s theorem). We now introduce Floquet theory in the context of the first

class of systems, systems with time-periodic Hamiltonians. In these systems, Floquet’s theorem

establishes a close analogy between periodically driven quantum systems on the one hand, and

quantum systems with a time-independent Hamiltonian on the other. In particular, the theorem

leads to the definition of the effective Floquet Hamiltonian ĤF , which may be used to obtain the

evolution of the system at the stroboscopic times t = 0, T, 2T .... In the following discussion, we

give a proof of Floquet’s theorem, flesh out the analogy between time-periodic and static quantum
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systems, and finally describe how Floquet theory is equally applicable to classical Hamiltonian

systems. The presentation of Floquet theory here closely follows treatments such as [195] and

[12].

We begin by establishing some background needed to prove Floquet’s theorem. We

consider the systems described in Section 5.2: Quantum systems evolving under the Schrodinger

equation (5.1), subject to the time-periodic Hamiltonian Ĥ(t) = Ĥ(t + T ), given by (5.2).3 As

with any system with a time-dependent Hamiltonian, periodic or otherwise, the evolution of such

system is fully characterized by the associated unitary evolution operator Û(t, t0). By definition,

Û(t, t0) maps the system from its state at a time t0 to its new state at a later time t: If the state

vector of the system at t0 is given by |ψ(t0)⟩, then after evolution under the Schrodinger equation

from t0 to t, the new state vector is given by |ψ(t)⟩ = Û(t, t0)|ψ(t0)⟩. An expression for Û(t, t0)

can be obtained by formally solving the Schrodinger equation [179]:

Û(t, t0) = T
[
exp

{
− i

ℏ

∫ t

t0

dt′ Ĥ(t′)

}]
. (5.6)

Here, T [...] denotes that the exponential is appropriately time-ordered. However, this formal

matrix exponential should be treated with care, since it is ultimately defined via an infinite series

which may or may not converge.4

The evolution operator Û(t, t0) has two important properties which are especially relevant

to our discussion. First, for any system with a time-dependent Hamiltonian, the following

composition property [180] holds for any three times t1 ≤ t2 ≤ t3:

3Note that Floquet analysis is equally applicable to a broader class of periodically driven quantum systems,
including relativistic quantum systems [203, 204], quantum systems with no direct classical analogue, and open
quantum systems described by a Lindblad equation [205–207].

4The same caveat holds for other exponentiated operators invoked in the following discussion, such as e−iĤ0T/ℏ.
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Û(t3, t1) = Û(t3, t2)Û(t2, t1). (5.7)

In words, this simply states that the evolution of the system from t = t1 to t = t3 can be divided

into an evolution from t = t1 to t = t2, followed by an evolution from t = t2 to t = t3. Second,

for periodically driven systems specifically, the evolution operator for the interval from t0 to t

is identical to the evolution operator for the interval exactly N periods before or after, for any

N ∈ Z:

Û(t+NT, t0 +NT ) = Û(t, t0). (5.8)

That is, because the Hamiltonian is time-periodic, the state obtained by evolving a given initial

state vector |ψ0⟩ from t0 to t must be identical to the state obtained by evolving |ψ0⟩ over a

corresponding time interval N periods later, from t0+NT to t+NT . This intuitively reasonable

property can be easily established from (5.6), the time-ordered exponential form for Û(t, t0).

Now, consider the evolution of the system over M periods, from t = 0 to t = MT . By

the composition property (5.7), the corresponding evolution operator Û(MT, 0) is the ordered

product of the evolution operators for each period, and by the time translation property (5.8),

each of these one-period evolution operators is just equal to the evolution operator for the first

period, Û(T, 0). So to obtain the evolution of a state vector over M periods, it suffices to simply

apply the so-called Floquet operator ÛF ≡ Û(T, 0) M times. Defining the time-independent

Floquet Hamiltonian ĤF via ÛF ≡ e−iĤFT/ℏ, we therefore have:

Û(MT, 0) = ÛM
F = e−iĤFMT/ℏ. (5.9)
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Thus, provided we only view the evolution of the system at the discrete times t = 0, T, 2T ... (at

“strobosopic” times), the system appears as if it is evolving under the static Floquet Hamiltonian

ĤF . In this sense, ĤF is an effective Hamiltonian for the system. Note that although the relation

ÛF = e−iĤFT/ℏ does not uniquely define ĤF (since the logarithm of a complex number or

operator is multi-valued), the unitarity of ÛF guarantees that at least some Hermitian operator

ĤF does satisfy ÛF = e−iĤFT/ℏ [208].

As a unitary operator, ÛF admits a complete set of orthonormal eigenvectors, which we

index with a label α (these are also the eigenvectors of ĤF ). Each Floquet eigenvector |α⟩ has

a corresponding complex eigenvalue with unit modulus, which we write as e−iεαT/ℏ. Consistent

with the non-uniqueness of ĤF , the “quasi-energies” εα are only defined modulo 2πℏ/T = ℏω,

so we may take them to lie within the interval [0, ℏω) if we like. The quasi-energies are the

Floquet analogue of energy eigenvalues in a time-independent quantum system.

We now move to a proof of Floquet’s theorem, which implies the result just obtained, but

which also provides information about the system’s evolution at other times t ̸= MT . Suppose

we now allow the system to evolve from t = 0 up to some arbitrary time t. This evolution

will consist of an evolution over some M full periods, plus an extra evolution over a time τ ≡

t −MT = tmodT which is some fraction of a period (see Figure 5.1). The evolution over the

M full periods has an associated evolution operator Û(MT, 0) = e−iĤFMT/ℏ, and the evolution

operator for the final fraction of a period is Û(t, t−τ) = Û(MT +τ,MT ) = Û(τ, 0). Therefore,

the evolution operator for the full time interval [0, t] may be expressed as
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Û(t, 0) = Û(τ, 0)e−iĤFMT/ℏ = Û(τ, 0)eiĤF τ/ℏe−iĤF τ/ℏe−iĤFMT/ℏ

= Û(τ, 0)eiĤF τ/ℏe−iĤF t/ℏ ≡ P̂ (t)e−iĤF t/ℏ.

(5.10)

In the final expression here, we have introduced the operator P̂ (t) ≡ Û(τ, 0)eiĤF τ/ℏ =

Û(t, 0)eiĤF t/ℏ,5 which has been referred to as the fast-motion operator. As the product of two

unitary operators, P̂ (t) is itself unitary, and as a function of τ = tmodT , P̂ (t) is time-periodic

with period T . Note also that P̂ (t) reduces to the identity operator Î at t = 0, T, 2T ..., since

Û(0, 0) = Î and eiĤF ·0/ℏ = Î . At these times, the above result reduces to (5.11).

Figure 5.1: Evolution of Ĥ(t), represented by the solid red line, over M periods, plus a fraction
of a period of duration τ .

This decomposition of Û(t, 0), into the periodic fast-motion operator P̂ (t) and an evolution

generated by the Floquet Hamiltonian ĤF , is known as Floquet’s theorem [11, 12, 188, 209].

To see the consequences of this result, note that for an initial state vector |ψ(0)⟩ at t = 0,

the corresponding solution to the Schrodinger equation is given by |ψ(t)⟩ = Û(t, 0)|ψ(0)⟩ =

5The second equality comes from Û(τ, 0)eiĤF τ/ℏ = Û(τ, 0)Û(MT, 0)Û(0,MT )eiĤF τ/ℏ = Û(τ +

MT,MT )Û(MT, 0)eiĤFMT/ℏeiĤF τ/ℏ = Û(t, 0)eiĤF t/ℏ.
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P̂ (t)e−iĤF t/ℏ|ψ(0)⟩, by the definition of the evolution operator. In particular, if we select an

eigenstate |α⟩ of ÛF as our initial state, then the corresponding solution |ψα(t)⟩ takes the simple

form

|ψα(t)⟩ = e−iεαt/ℏP̂ (t)|α⟩ ≡ e−iεαt/ℏ|α, t⟩, (5.11)

where we have defined the time-periodic Floquet modes |α, t⟩ ≡ P̂ (t)|α⟩. The special solutions

|ψα(t)⟩ are commonly referred to as Floquet states.

We can now see a clear analogy between time-independent systems and systems described

by Floquet theory. On one hand, in a system with a time-independent Hamiltonian Ĥ0, the

simplest solutions to the Schrodinger equation are given by multiplying an eigenstate |n⟩ of Ĥ0

by the oscillating phase factor e−iEnt/ℏ, where En is the corresponding eigenenergy. Since the

eigenstates |n⟩ form a complete basis, a solution to the Schrodinger equation for a general initial

condition may be constructed from a linear combination of these special solutions e−iEnt/ℏ|n⟩.

On the other hand, for a system governed by a time-periodic Hamiltonian Ĥ(t), we can obtain

solutions to the Schrodinger equation (the Floquet states |ψα(t)⟩) by multiplying the Floquet

modes |α, t⟩ = P̂ (t)|α⟩ by the phase factor e−iEnt/ℏ. Because the Floquet modes are related

to the complete set of Floquet eigenstates |α⟩ via the unitary transformation produced by P̂ (t),

the set of Floquet modes is complete as well (at each time t). Therefore a general solution may

be constructed as a linear combination of the Floquet states |ψα(t)⟩ = e−iεαt/ℏ|α, t⟩. In short,

in moving from time-independent systems to time-periodic systems, time-independent energy

eigenstates are replaced by time-periodic Floquet modes, and energy eigenvalues are replaced by

quasi-energies. This analogy is compactly summarized in Table 5.2.
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Time-independent Hamiltonian Ĥ0 Time-periodic Hamiltonian Ĥ(t)

Eigenstates |n⟩ Floquet modes |α, t⟩ ≡ P̂ (t)|α⟩

Energy levels En Quasi-energies εα

Particular solutions e−iEnt/ℏ|n⟩ Floquet states |ψα(t)⟩ ≡ e−iεαt/ℏ|α, t⟩

General solution
∑

n ane
−iEnt/ℏ|n⟩ General solution

∑
α bαe

−iεαt/ℏ|α, t⟩

Table 5.2: Comparison between evolution under a time-independent Hamiltonian and evolution
under a time-periodic Hamiltonian.

Finally, although we have developed Floquet theory in the context of quantum systems, it

is worth noting the same type of formalism may be constructed for periodically driven classical

systems, both deterministic and stochastic [41, 210–212]. This may be surprising at first, since

the development of Floquet theory given above is built on the linear structure of Schrodinger

equation, whereas classical systems are generally governed by nonlinear evolution equations.

However, this is not a problem, as long as we restrict our attention to the evolution of probability

distributions over the states of such systems, instead of looking at individual trajectories. Because

of the additive nature of probability, the evolution of these distributions is necessarily governed

by linear equations: Rate equations for continuous-time discrete state Markov processes, Fokker-

Planck equations for diffusive processes, the Liouville equation for Hamiltonian systems, and so

on. Thus, Floquet theory can be applied to these types of systems just as in the quantum case.

Let us look at how this works for periodically driven Hamiltonian systems.

The evolution of the phase space distribution ρ ≡ ρ(z, t) for a periodically driven

Hamiltonian system, like those discussed in Chapter 2, is governed by the Liouville equation

∂ρ/∂t = {H, ρ}, where H ≡ H(z, t) is the system’s time-periodic Hamiltonian. As just
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mentioned, this equation is linear, due to the linearity of the Poisson bracket {·, ·}. If we define

the Liouvillian operator L̂(t) ≡ L̂ ≡ i{H, ·} (a linear operator which acts on phase space

distributions), we can rewrite the Liouville equation as

i
∂ρ

∂t
= L̂ρ, (5.12)

in direct correspondence with the Schrodinger equation (5.1). Note that since H(z, t) is time-

periodic, L̂(t) is as well. Moreover, if the inner product between two space distributions ρ and

σ is defined as (ρ, σ) ≡
∫
dz ρ∗σ, then it is straightforward to show that L̂(t) is a Hermitian

operator.

Comparing with the quantum case, we see that ρ and L̂(t) have replaced |ψ⟩ and Ĥ(t),

respectively. We can now proceed exactly as before, beginning with the analogue of the evolution

operator Û(t, t0). The classical version of Û(t, t0) evolves a distribution ρ from time t0 to time t,

and is formally given by a time-ordered exponential of −i
∫ t

t0
dt′ L̂(t′) (just as in (5.6)). Again, we

define ÛF as the evolution operator over one period, and we define a time-independent Floquet

Liouvillian L̂F via ÛF ≡ e−iL̂FT . The Floquet Liouvillian, which is analogous to ĤF , is the non-

unique Hermitian operator such that if ρ is evolved under the equation i∂ρ/∂t = L̂Fρ from t = 0

to t = T , then the result will be the same as if ρ was propagated under the original time-periodic

Liouville equation (5.12). Moreover, if L̂F can be expressed in the form L̂F ≡ i{HF , ·}, then this

defines the classical Floquet Hamiltonian HF ≡ HF (z). In this case, the evolution of a ensemble

under the time-independent HF is equivalent to evolution under the time-periodic Hamiltonian

H(z, t), provided that the system is observed at stroboscopic times. However, we have found no

reason to believe that this classic HF must exist in general.
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5.3.2 The Floquet-Magnus expansion

The general framework of Floquet theory, while offering valuable conceptual insight,

avoids the problem of any concrete calculations. Indeed, for most systems, quantities of

interest like the Floquet operator ÛF and the Floquet Hamiltonian ĤF are difficult to evaluate

exactly, and we have to make use of approximation schemes. In line with our interest in

rapid periodic driving, we now turn to one such scheme: The Floquet-Magnus (FM) expansion.

This is a perturbative expansion for ĤF in powers of the driving period T , aimed at providing

an approximate description of a system’s dynamics in the limit of small T , or large driving

frequencies ω = 2π/T . In what follows, we provide an introduction to the FM expansion, in

which we intuitively motivate why it can be a useful approximation, and present the first few

terms in the expansion. We then discuss the convergence of the FM expansion, and how this

relates to energy absorption and the energy diffusion description.

To motivate the FM expansion, recall that in the classical systems described in Chapter

2, the evolution of the system under a rapidly time-periodic Hamiltonian H(z, t) = H0(z) +

V (z, t/T ) is closely approximated by evolution under the time-averaged Hamiltonian H0(z), at

least for short times. This can be demonstrated rigorously for systems with smooth H(z, t), but

it is also intuitively plausible that the effect of a time-periodic drive will nearly “average out” in

the rapid driving regime. For a quantum system, these intuitions are equally reasonable, and the

same mathematical theorems imply that over any finite time interval t = 0 to t = τ , the evolution

of |ψ(t)⟩ under the time-periodic Hamiltonian Ĥ(t) = Ĥ0 + V̂ (t/T ) approaches evolution under

the time-averaged Hamiltonian Ĥ0 [32, 92]. In particular, this tells us that the evolution of the

quantum system over a single period, as specified by the Floquet operator ÛF = e−iĤFT/ℏ, will
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be very close to evolution under Ĥ0, given by e−iĤ0T/ℏ. This motivates us to expand the Floquet

Hamiltonian ĤF as a power series about T = 0, with the zeroth order term given by Ĥ(0)
F = Ĥ0,

and the higher order terms providing successive corrections to Ĥ0 for finite T :

ĤF
?
=

∞∑
n=0

Ĥ
(n)
F T n. (5.13)

This series is referred to as the Floquet-Magnus expansion.6 Here, the operators Ĥ(n)
F are

independent of T , and the question mark over the equal sign denotes that such a series is not

guaranteed to converge. The FM expansion can be understood as a special case of the Magnus

expansion, which applies to systems with general time-dependent Hamiltonians, time-periodic or

otherwise [209].

Many derivations of the terms in the FM expansion exist in the literature [12, 209]. The

first three terms are given by [12]:

Ĥ
(0)
F =

1

T

∫ T

0

dt1 Ĥ(t1) = Ĥ0 (5.14)

Ĥ
(1)
F =

1

2iℏT 2

∫ T

0

dt1

∫ t1

0

dt2 [Ĥ(t1), Ĥ(t2)] (5.15)

Ĥ
(2)
F =

1

6(iℏ)2T 3

∫ T

0

dt1

∫ t1

0

dt2

∫ t2

0

dt3

([
Ĥ(t1), [Ĥ(t2), Ĥ(t3)]

]
+
[
Ĥ(t3), [Ĥ(t2), Ĥ(t1)]

])
. (5.16)

Despite appearances, these expressions are independent of T , as can be seen by noting that Ĥ(t)

6Note that some authors define the FM expansion in a slightly different way, as ĤF =
∑∞

n=0 Ĥ
(n)
F . In this case,

the term Ĥ(n)
F is proportional to Tn, and is related to the corresponding term in our expansion via Ĥ(n)

F = Ĥ
(n)
F Tn.

136



is a function of s = t/T alone, and then changing the variables of integration to s1 = t1/T ,

s2 = t2/T , and so on. Higher order terms have a similar structure. The nth-order term Ĥ
(n)
F

consists of a prefactor 1/[n!(iℏ)nT n+1], multiplied by an integral over times t1, t2 ... tn of a sum

of nested commutators of Ĥ(t).

An important consequence of this structure is that each Ĥ(n)
F is guaranteed to be a Hermitian

operator, given the Hermiticity of Ĥ(t). This means that if the FM expansion truncated at any

order M , denoted by ĤF,M ≡
∑M

n=0 Ĥ
(n)
F T n, will be Hermitian as well. As a result, if we choose

to approximate the exact Floquet Hamiltonian by ĤF,M , then the corresponding approximate

Floquet operator ÛF,M ≡ e−iĤF,MT/ℏ is unitary. Therefore, approximately evolving a state vector

by repeated applications of ÛF,M will exactly preserve the normalization of the state vector, and

consequently conserve probability. This useful feature of the FM expansion is not present in

certain other approximation schemes, such as standard time-dependent perturbation theory [209].

A similar expansion in powers of T applies to classical systems, governed by the time-

periodic Hamiltonian H(z, t) = H0(z) + V (z, t/T ). In this case, it is the Floquet Liouvillian

which is being expanded as L̂F
?
=
∑∞

n=0 L̂
(n)
F T n. The terms in this expansion are identical in form

to (5.14)–(5.16) above, but with ℏ set to one, and with all Ĥ symbols replaced with L̂. Moreover,

as described in [41] and [212], each term in this sum may be expressed as L̂(n)
F = {H(n)

F , ·}, for

some phase space function H(n)
F ≡ H

(n)
F (z). Thus, we may equivalently think in terms of an

expansion for the classical Floquet Hamiltonian, given by HF (z)
?
=
∑∞

n=0H
(n)
F (z)T n, provided

that such a Hamiltonian exists.

Our interest in the FM expansion lies in its relation to energy absorption in periodically

driven quantum systems. To understand this connection, we need to consider the convergence

properties of the expansion. First, suppose that for some range of possible periods T , from
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T = 0 to T = T ∗, the FM expansion converges to the exact Floquet Hamiltonian ĤF : That is,

the sequence of partial sums ĤF,M =
∑M

n=0 Ĥ
(n)
F T n approaches the limit ĤF as M is taken to

infinity.7 In this case, the FM expansion is just the Taylor series expansion for ĤF about T = 0,

by the uniqueness property of power series representations [171]. The generalization of Taylor’s

theorem for operator-valued functions then places a bound on the difference between ĤF and the

truncated expansion ĤF,M , for any choice of M [213]. In particular, for M = 0, this theorem tell

us that ĤF differs from ĤF,0 = Ĥ0 by an operator of size o(T ), which we denote ĥ ≡ ĤF − Ĥ0.

Here, the size of an operator can be quantified by the operator norm || · || induced by the vector

norm |||ψ⟩|| ≡
√

⟨ψ|ψ⟩. For an operator Â, ||Â|| is defined as the maximum of ||Â|ψ⟩|| over all

possible normalized |ψ⟩ [214].

By an appropriate choice of T , we can make ĥ as small as we like. Then, ĤF and Ĥ0

will be very close, and we expect that evolution under ĤF should nearly conserve Ĥ0, since this

evolution exactly conserves ĤF . We can make this intuition precise by deriving a simple bound

on energy absorption. Suppose that we initialize our system in a state |ψ(0)⟩ at t = 0, and then

allow it to evolve forN periods under the time-periodic Hamiltonian Ĥ(t). Over this time period,

what is the change in the expectation value of the energy, ∆⟨H0⟩ ≡ ⟨H0⟩NT − ⟨H0⟩0? Since

the final state |ψ(NT )⟩ can be alternatively obtained by evolving |ψ(0)⟩ for a time NT under

the time-independent ĤF , it follows that the expectation value of ĤF = Ĥ0 + ĥ is conserved:

⟨H0⟩NT + ⟨h⟩NT = ⟨H0⟩0 + ⟨h⟩0, or ∆⟨H0⟩ = −⟨h⟩NT + ⟨h⟩0. This last expression may then

be bounded as follows:
7Technically, the statement limM→∞ ĤF,M = ĤF is meaningless until we fix ĤF , which we mentioned

previously is not uniquely defined. Really, what we mean by this limit is that there exists some operator ĤF satisfying
ÛF = e−iĤFT/ℏ such that limM→∞ ĤF,M = ĤF .
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|∆⟨H0⟩| = | − ⟨h⟩NT + ⟨h⟩0|

≤ |⟨h⟩NT |+ |⟨h⟩0| = |⟨ψ(NT )|ĥ|ψ(NT )⟩|+ |⟨ψ(0)|ĥ|ψ(0)⟩|

≤ |||ψ(NT )⟩|| · ||ĥ|ψ(NT )⟩||+ |||ψ(0)⟩|| · ||ĥ|ψ(0)⟩||

|∆⟨H0⟩| ≤ 2||ĥ|| = o(T ).

(5.17)

Here, in moving from the second to the third line, we note that ⟨ψ(t)|ĥ|ψ(t)⟩ is the inner product

of |ψ(t)⟩ and ĥ|ψ(t)⟩, which allows us to invoke the Cauchy-Schwarz inequality |⟨ψ1|ψ2⟩| ≤

|||ψ1⟩|| · |||ψ2⟩||. Then, to obtain the final inequality, we recall that |ψ(t)⟩ is normalized for all

time (|||ψ(t)⟩|| = 1), and that by the definition of the operator norm || · ||, ||ĥ|ψ⟩|| is less than or

equal to ||ĥ|| for any possible choice of normalized |ψ⟩.

This bound tells us that the expectation value of the energy never strays away from its

initial value by an amount greater than 2||ĥ||, a quantity which can be made arbitrarily small for

sufficiently small T . Thus, the convergence of the FM expansion to ĤF implies that the energy

absorbed by the system is bounded for all time, at least at the level of expectation values. In

fact, analogous inequalities can easily be derived for the change in any moment ⟨Hk
0 ⟩, which

tells us that change in the energy distribution overall is bounded as well. Moreover, since the

Floquet formalism and the FM expansion are valid for classical Hamiltonian systems, all of these

arguments apply equally well in the classical context.

When does the FM expansion converge to ĤF ? One sufficient condition for the

convergence of the FM expansion to ĤF is given by

139



1

ℏ

∫ T

0

dt ||Ĥ(t)|| < π; (5.18)

see [209]. Although a very general condition, the applicability of this criterion is limited for at

least two reasons. First, it does not apply if Ĥ(t) is an unbounded operator (||Ĥ(t)|| = ∞). This

occurs generally in quantum particle systems with a kinetic energy term in the Hamiltonian, due

to the unboundedness of the corresponding derivative operator ∂2/∂x2. Similarly, for classical

systems, where Ĥ(t) is replaced by the Liouvillian L̂(t) = i{H, ·}, the derivative operators

which define the Poisson bracket mean that the spectrum of L̂(t) generally has no upper bound.

Second, even for systems like quantum spin systems, which have a finite dimensional Hilbert

space that ensures that all operators are bounded, the above condition is generally difficult to

satisfy for large systems. For a lattice of N spins with a physically reasonable Hamiltonian, the

norm ||Ĥ(t)|| will generally scale with N . Thus, for a fixed period T , the inequality (5.18) will

generally be violated for large enough N .

We have shown that the convergence of the FM expansion to ĤF implies a bound on

changes in a periodically driven system’s energy. Conversely, if such a system is observed

to absorb energy without bound for a given driving period T , this implies that the system’s

FM expansion cannot converge to ĤF for that choice of T . This fact, which has been widely

acknowledged in the literature on periodically driven quantum systems [12, 33, 42, 73], allows

us to understand how the FM expansion is relevant to the energy diffusion framework developed

in Chapter 2. For a classical system described by the energy diffusion model, energy absorption

is slow, but ultimately builds up over long times. For systems with an unbounded phase space,

diffusive growth of the system’s (average) energy will generally continue without limit, while
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for systems with a bounded phase space, changes in the system’s energy are only bounded by the

maximum and minimum values of the system’s Hamiltonian. This is true regardless of how small

T is, although the rate of energy absorption is greatly suppressed at high driving frequencies.

Therefore, we are lead to the following conclusion: If the classical energy diffusion model offers a

good approximate description of the energy dynamics of a quantum system for some choice of T ,

then the FM expansion does not converge to ĤF for this T . Thus, investigating the convergence

properties of the FM expansion for quantum chaotic systems is an essential prerequisite for

understanding the potential extension of the energy diffusion model to the quantum regime.

5.3.3 Rigorous energy absorption bounds, Floquet prethermalization, and

energy diffusion

Even if the FM expansion is does not converge to ĤF , the expansion can still be extremely

useful for studying the dynamics of quantum and classical systems. As mentioned previously,

one can attempt to approximately evolve the state vector of a periodically driven quantum system

by repeated applications of the M th-order approximate Floquet operator ÛF,M ≡ e−iĤF,MT/ℏ.

A priori, it is not guaranteed that this will yield a good approximation of the evolving state

vector, and even if it does, it is not clear how many driving periods such an approximation will

remain good for. Fortunately, a large number of researchers have probed these questions, on

the theoretical, numerical, and experimental fronts, especially in the past five to ten years. To

conclude this section, we now review some of these developments. We first highlight some

important rigorous bounds that have been established, which quantify the degree to which

the evolution of a periodically driven system deviates from evolution under an approximate
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effective Hamiltonian. We then explain how these bounds provide a generic explanation for the

phenomenon of Floquet prethermalization, and briefly discuss some numerical and experimental

studies of Floquet prethermal systems. Finally, we connect the results back to the energy diffusion

description.

We begin with the rigorous bounds just mentioned. Suppose that the initial state vector

|ψ(0)⟩ of a quantum system is evolved under two different Hamiltonians: The exact time-periodic

Hamiltonian Ĥ(t), and some effective time-independent Hamiltonian Ĥ∗, which is meant to

approximately capture the evolution under Ĥ(t). For quantum systems defined on a lattice,

where each lattice site is associated with a Hilbert space of finite dimension, the error in such

approximations may be precisely quantified. This includes spin systems, such as the quantum

Ising model and its generalizations, fermionic systems (which may be mapped to spin systems

[215]), and systems of hard-core bosons. Highly general results of this type were established

around the same time by Kuwahara et al. and Abanin et al.: The results of Kuwahara et al.

are obtained by bounding the terms of the FM expansion and invoking a special decomposition

of the evolution operator [75, 76], and Abanin et al. derive their result by constructing a basis

in which the system appears to be governed by a time-independent Hamiltonian plus a small

correction [33, 216]. Despite these differing approaches, the bounds obtained by both groups

are similar in essence. In both cases, an optimal effective Hamiltonian Ĥ∗ is determined, which

is approximately conserved under the exact dynamics, and which is close to the time-averaged

Hamiltonian Ĥ0 (in Kuwahara et al., Ĥ∗ is simply the FM expansion truncated at some optimal

order). More specifically, if Ĥ∗(t) is the Hamiltonian Ĥ∗ in the Heisenberg picture for the exact

evolution, then the time-averaged rate of change of Ĥ∗(t) over a time interval of duration t

satisfies a bound of the form
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||Ĥ∗(t)− Ĥ∗(0)||
t

≲ e−O(ω), (5.19)

for sufficiently large driving frequencies ω. In other words, Ĥ∗ is approximately conserved up

to a time which is exponentially8 large in ω. Since Ĥ∗ and Ĥ0 are close (precisely, they differ

by an O(T ) quantity), this means that the energy of the system defined by Ĥ0 is approximately

conserved as well. Moreover, Ĥ∗ is not merely a quasi-conserved quantity: The actual dynamics

generated under Ĥ∗ are close to the exact dynamics generated by Ĥ(t), when considering the

evolution of local quantities. For example, Abanin et al. show that for a local operator (an

operator which only acts on a few lattice sites, or is a sum of such locally-acting operators), the

difference between the operator’s exact evolution and its evolution under Ĥ∗ remains small up to

a time which is exponentially large in ω.

As noted by their authors, these bounds (and generalizations thereof [39, 41, 47, 80]) offer

a general picture of the process of Floquet prethermalization, which we previously discussed in

Chapter 2, Section 2.5. Recall that in a prethermal system, the system reaches a quasi-steady

state of thermal equilibrium with respect to an effective Hamiltonian. Now, in a system which

obeys the bound (5.19), the evolution of the system is well-described by evolution under Ĥ∗

up to some time τ ∗ ∼ eO(ω). So, if the dynamics under Ĥ∗ cause a relaxation to thermal

equilibrium on some timescale τth (for example, if Ĥ∗ satisfies the Eigenstate Thermalization

Hypothesis [87, 88], see Section 5.4), then this relaxation will occur under periodic driving

for large enough ω, when τth ≪ τ ∗. That is, sufficiently rapid driving leads to a separation

of timescales between the timescale on which (pre)-thermalization occurs, and the timescale
8The word “exponentially” and the notation e−O(ω) are both used slightly loosely in this discussion. More

precisely, some bounds in the literature of the form (5.19) are only “quasi-exponential” in ω. For example, the
bound of Abadal et al. scales like exp [−c ω/(logω)3], for some constant c.
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over which the system begins to deviate significantly from the effective evolution generated by

Ĥ∗. Hence the name Floquet prethermalization: The periodic drive facilitates the approximate

stability of the prethermal steady state.

Floquet prethermalization has been observed in a range of models for periodically driving

systems. In the quantum context, Floquet prethermal states with long lifetimes have been

theoretically and numerically analyzed in models including spin chains with short- and long-

range interactions [33, 39, 45, 47, 52, 71, 75, 76, 216–218], various versions of the Hubbard

model [40, 43, 81, 219], and the quantum O(N) model for interacting scalar fields [77].

Classically, Floquet prethermalization has been investigated in coupled kicked rotor systems

[46, 78], as well as classical Heisenberg spin chains [44, 53, 55, 220]. In fact, the quantum

energy absorption bound (5.19) has been extended to classical spin systems, by exploiting

the classical limit of quantum spin systems (this limit consists of taking the spin number S

to infinity) [41]. For quantum and classical models alike, researchers have probed both the

simple prethermalization scenario described in the previous paragraph, but also more complicated

dynamics. This includes prethermal time crystal systems [39, 45, 47, 53, 55, 220], in which the

system oscillates between two or more thermal states (often related via a discrete symmetry), and

systems which do not prethermalize to the standard canonical thermal state, but rather to a state

described by a generalized Gibbs ensemble [46, 218]. Moreover, the studies listed in the present

paragraph cover not just a range of systems, but also a range of driving protocols: This includes

monochromatic driving, piecewise driving protocols which toggle instantaneously between one

or more Hamiltonians, delta function kicks, and protocols which drive the system either locally

or globally.

Within the past two years, these model systems have been complemented by experimental
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realizations of Floquet prethermal states, on two types of physical platforms: Optical traps, and

nuclear spin systems. In work by Rubio-Abadal et al., a prethermal state was established in

a cloud of ultracold atoms in an optical lattice, driven via periodic modulation of the lattice’s

potential depth [48]. This state, judged to be thermal based on measurements of the hole density

in the lattice, was found to persist for up to 104 drive cycles, with this prethermal lifetime

increasing with increasing drive frequency. Kyprianidis et al. also used an optical trap platform,

but towards a slightly different end: The realization of a prethermal discrete time crystal [166].

They engineered a system of trapped ions to simulate a periodically driven chain of spin-1/2

degrees of freedom. In this system, a long-lived prethermal state was established wherein

the system oscillated between two states of opposite magnetization, at half the frequency of

the drive. This subharmonic response is a defining feature of discrete time crystal systems.

Meanwhile, Peng et al. engineered a Floquet prethermal state in a system of driven nuclear

spins in a fluorapatite crystal, modelled by a spin-1/2 chain subject to a dipolar Hamiltonian

and periodic kicks [49]. The prethermal state of this system, the lifetime of which was found

to increase with drive frequency, was characterized by quasi-conservation of the time-averaged

Hamiltonian and quick relaxation of the system’s magnetization to the appropriate thermal value.

Finally, a prethermal discrete time crystal was realized by Beatrez et al. in a system of carbon-

13 nuclear spins, evolving according to dipolar interactions and electron-mediated site-specific

fields [56]. Uniquely, in order to establish a prethermal state, these researchers drove the system

simultaneously with two drives of different frequencies. Like in the trapped ion system of

Kyprianidis et al., subharmonic oscillations of the system’s magnetization were the key signature

of time crystal behavior.

Hopefully, the present discussion has made it clear that Floquet prethermalization, and
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related bounds on energy absorption, are presently a topic of much theoretical and experimental

interest. How are these developments connected to the classical energy diffusion description, as

outlined in Chapter 2? As discussed in Section 2.5 of that chapter, Floquet prethermalization

also occurs in systems described by the energy diffusion model, when the chaotic mixing

of trajectories in an ensemble establishes an effectively microcanonical distribution at some

initial energy. Moreover, the rate of energy evolution in such systems is characterized by the

power spectrum S(ω;E), which decays faster than any power of ω−1 for large ω (for smooth

Hamiltonian systems). Thus the lifetime of the initial prethermal state grows rapidly with

increasing ω. All of this is consistent with energy absorption bounds of the form (5.19). As

mentioned previously, bounds of this type have been established for classical spin chains, which

have been numerically observed to exhibit chaos [173, 221, 222]. Meanwhile, for systems of

chaotic coupled rotors subject to periodic kicks, Floquet prethermalization and/or diffusion of

energies has been observed in certain parameter regimes [78, 79, 223–226]. These potential

points of agreement between previous studies and the energy diffusion description deserve further

investigation. On the other hand, for quantum systems under rapid periodic driving, it is not clear

if or when the classical energy diffusion description is able to serve as a good approximate model

for energy absorption. However, at the very least, the prospects for such a quantum-classical

correspondence are encouraged by the fact that the energy diffusion model and the bounds (5.19)

do not conflict. In Section 5.5, we will continue to explore the possibility of quantum-classical

correspondence, via an analysis of energy absorption in quantum systems based on Fermi’s

golden rule.
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5.4 Quantum chaos and energy diffusion

Our analysis of energy diffusion in Chapter 2 relied crucially on the assumption of chaos

and ergodicity of the undriven system’s motion. These properties, and the phase space mixing

implied by them, imbued the dynamics of the system with the effectively random character

necessary to establish diffusive energy evolution. Consequently, in thinking about the potential

relevance of the energy diffusion model to quantum mechanical systems, it is reasonable to first

look to quantum systems with a classical chaotic counterpart, or “quantum chaotic” systems. In

this section, we provide some relevant background necessary to investigate energy diffusion in

such systems. First, we summarize how the tools of random matrix theory (RMT) have been

used to understand the properties of quantum chaotic systems. Then, to get a sense of how

the energy diffusion description may be applied to in a quantum setting, we present a literature

review of energy diffusion models used to describe slowly driven quantum chaotic systems. Last,

we describe two models of energy absorption in periodically driven quantum chaotic systems: A

random matrix model, and a quasiclassical model of energy transitions based on Fermi’s golden

rule. As we will show, this second model reproduces the classical energy diffusion description in

the semiclassical (ℏ → 0) limit.

5.4.1 Quantum chaos and random matrix theory

We now give a brief introduction to quantum chaotic systems, with a focus on the role of

random matrix theory in the modelling of these systems. Let us begin with a definition. Here,

we take a “quantum chaotic” system to be a quantum mechanical system with a classical chaotic

counterpart. Thus, for example, a quantum chaotic system can be obtained via the classical
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HamiltonianH0(z) from Chapter 2, by a quantization procedure like the one discussed in Section

5.2 in the present chapter. While this is a standard definition, other characterizations of quantum

chaos have also been proposed, including definitions which attempt to avoid direct reference to

classical analogues altogether (for example, definitions in terms of random matrix theory, a topic

we will discuss shortly) [88, 227]. However, for our purposes, the standard definition is adequate.

The study of quantum chaos is thus the study of the imprint of classical chaos on the properties

and dynamics of quantum systems [13, 228, 229].

How can this imprint of classical chaos be described? Let us consider a quantum

system with the Hamiltonian Ĥ0, obtained by quantizing H0(z), as discussed in Section

5.2 of this chapter. For such a time-independent Hamiltonian, the corresponding dynamics

are fully characterized by the eigenvalues En and eigenvectors |n⟩ of Ĥ0: Evolution of an

initial state vector |ψ(0)⟩ =
∑

n an|n⟩ under the Schrodinger equation yields the solution

|ψ(t)⟩ =
∑

n ane
−iEnt/ℏ|n⟩. Therefore, we expect that any signatures of classical motion

in the quantum dynamics should manifest in these eigenvalues and eigenvectors. Generally,

such quantum-classical connections appear most prominently in the semiclassical limit, when

the value of ℏ is taken to zero.9 For classically integrable systems, where the classical

evolution is entirely non-chaotic, this limit can be comprehensively described by tools such

as WKB (Wentzel–Kramers–Brillouin) theory. For example, time-independent WKB theory

provides approximate semiclassical expressions for energy eigenstates and eigenvalues in terms

of classical quantities [180]. However, for classically chaotic and ergodic systems, this method

and other comparably simple approximations break down [230], and a different perspective is

9Of course, ℏ is a fixed constant, and so such a limiting procedure is something of a mathematical abstraction. In
reality, we should think of a semiclassical description as being valid at sufficiently high energies, much larger than
any quantum energy scale associated with ℏ, or for sufficiently high quantum numbers.
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needed. This perspective is provided by random matrix theory (RMT).

The central idea of RMT, as applied to quantum chaotic systems, is that although the

individual eigenstates and eigenvalues of a quantum chaotic Hamiltonian may be difficult to

characterize, large groups of eigenstates and eigenvalues have some surprisingly regular on-

average or “statistical” properties [88]. Moreover, in the semiclassical limit, these statistical

properties can be predicted in terms of properties of the system’s classical counterpart. These

regularities suggest an alternative approach to modelling quantum chaotic systems: Instead of

attempting to exactly describe the system’s Hamiltonian or other operators, simply replace the

matrix corresponding to such an operator with a matrix which has the same statistics. This

replacement matrix can be generated as a sample from a random matrix ensemble, tuned so that

a typical matrix from the ensemble has the desired features. Then, assuming that these statistical

properties are enough to capture the salient attributes of the system and its dynamics, the resulting

model offers a valid coarse-grained description of the system.

To elucidate this modelling philosophy, we now discuss two different statistical features

of quantum chaotic systems which can be reproduced with suitable random matrix models: The

distribution of nearest-neighbor eigenvalue spacings, and the distribution of matrix elements of

an operator in the eigenbasis of the Hamiltonian. These distributions are each related to an

important conjecture in quantum chaos: The Bohigas-Giannoni-Schmit (BGS) conjecture, and

the Eigenstate Thermalization Hypothesis (ETH), respectively. In both cases, we explain how

these statistical properties are connected to the properties of the corresponding classical system.

We begin by discussing the eigenvalue spacing distribution.
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5.4.2 Level spacing distributions and the Bohigas-Giannoni-Schmit conjecture

Consider a quantum chaotic system with Hamiltonian Ĥ0, with associated energy levels

En. Select a narrow interval of the energy axis from E to E + ∆E, with ∆E chosen so that

classical trajectories with energies in [E,E+∆E] look similar to one another. Within this range,

there will be a series of energy levels En, and a corresponding series of (normalized) nearest-

neighbor level spacings εn ≡ ρ(E)(En+1 − En). Here, we have divided the level spacings

by the mean level spacing 1/ρ(E), where ρ(E) is the average density of states for the system;

we now simply refer to these normalized spacings as level spacings. Even though the interval

[E,E + ∆E] is classically small, the spectrum of Ĥ0 becomes very dense for small ℏ, and a

large number of energy eigenvalues En will lie within it. Specifically, Weyl’s law tells us that

ρ(E) ≈ Σ(E)/hd in the semiclassical regime [185]. So, in this limit, it becomes sensible to

talk about an effectively continuous distribution f(ε) of level spacings within this interval, where

f(ε) dε gives the fraction of level spacings in the interval with sizes between ε and ε + dε. As

it turns out, the tools of RMT can provide an accurate characterization of this distribution, as we

now describe.

To begin, we note two basic properties of the distribution f(ε). First, this distribution is

normalized by definition:
∫∞
0
dεf(ε) = 1. Second, the first moment of f(ε) is also equal to

unity: ⟨ε⟩ =
∫∞
0
dεf(ε)ε = 1. This is because we have already normalized the level spacings by

their mean size, so the average ⟨ε⟩ must be 1.

To characterize the remaining features of this distribution, we need to introduce the

Gaussian Orthogonal Ensemble (GOE), an ensemble of real symmetric matrices which is one

of the standard ensembles in RMT [231, 232]. Random matrix ensembles such as the GOE were
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originally studied by Eugene Wigner, who used them to model the Hamiltonians of heavy atomic

nuclei [88, 229, 233]. ForN×N matrices, a sample matrix M̂ from the GOE may be constructed

in a simple way. First, sample each of the N diagonal matrix elements Mii independently, from

a Gaussian distribution with mean zero and a variance of 2. Then, sample the off-diagonal

elements above the diagonal (Mij with j > i) independently from a Gaussian with mean zero

and unit variance (the remaining off-diagonal elements are then fixed by the symmetry condition

Mij =Mij). Symbolically, we have:

Mij =



N (0, 2) if j = i

N (0, 1) if j > i

Mji if j < i,

(5.20)

where N (µ, σ2) denotes a sample from a Gaussian distribution with mean µ and variance σ2.

Defined in this way, the GOE has the property of invariance under orthogonal transformations

M̂ → ÔTM̂Ô, where Ô is an arbitrary orthogonal matrix [231, 232]. That is, if the random

matrix M̂ (considered as a random variable, not an individual sample) has GOE statistics, then

ÔTM̂Ô does as well.

For any matrix sampled from the GOE, one may construct an eigenvalue spacing

distribution over some small interval of eigenvalues [x, x+∆x], just as we did for the Hamiltonian

Ĥ0. The average of this distribution over all possible samples from the GOE is known as the

Wigner-Dyson distribution fWD(ε). Although an analytical expression for this distribution is not

available, for large N it can be closely approximated by the “Wigner surmise” [88, 232]
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fWD(ε) ≈
πε

2
exp

(
−πε2

4

)
. (5.21)

Among other things, one notable prediction of this distribution is the presence of level repulsion:

The factor ε suppresses the probability of a near-overlap between eigenvalues. This feature is

also present in many other random matrix ensembles.

Now, in general, the spacing distribution will vary from sample to sample, fluctuating

around the mean distribution fWD(ε). However, for large N , these fluctuations are suppressed,

and nearly all samples from the GOE will have spacing distributions which are quite close to

fWD(ε). In other words, a single “typical” sample from the GOE is sufficient to reproduce

the average spacing distribution for the ensemble. This property, somewhat analogous to the

Law of Large Numbers, arises from the concentration of measure properties of random matrix

ensembles [234]. Thus, if one does not want to invoke the Wigner surmise (5.21), fWD(ε) may

also be approximated by sampling a single matrix from the GOE, assuming it is typical, and then

computing its distribution.

What does this random matrix ensemble have to do with f(ε), the distribution of spacings

within [E,E + ∆E]? Suppose that for some very large N , we sample a typical matrix from the

GOE, and compute its spectrum within some narrow interval [x, x + ∆x]. In a seminal paper

[89], Bohigas, Giannoni, and Schmit proposed a conjecture: For a quantum chaotic system in

the semiclassical limit with time-reversal symmetry, the energy levels in [E,E + ∆E] and the

eigenvalues in [x, x+∆x] have the same statistical properties (in particular, they share the same

level spacing distribution fWD(ε)).10 These authors presented numerical evidence (see Figure

10For non-time reversal invariant systems, the random matrix should be selected from the Gaussian Unitary
Ensemble, an ensemble of Hermitian matrices.
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5.3) supporting their hypothesis for a desymmetrized version of the Sinai billiard, which has

been proven to be classically chaotic. Since then, the BGS conjecture has been numerically

corroborated for a range of systems, including models of the hydrogen atom in a magnetic

field [235, 236], various billiards [237, 238], and a variety of lattice models [239–245]. For a

discussion of this evidence, see [88]. For systems without a classical chaotic counterpart, the

validity of the BGS conjecture for a given system is now frequently taken to define quantum

chaos [88].

Figure 5.3: Plot from [89], displaying numerical evidence which corroborates the BGS
conjecture. For the quantum desymmetrized Sinai billiard, the distribution of energy level
spacings (blocky curve) is found to agree with the corresponding distribution for the GOE
(smooth solid curve). As can be seen in the inset on the upper right, this billiard is defined
as one eighth of the standard Sinai billiard (see Figure 3.3). The dashed curve corresponds
to a Poissonian spacing distribution, the semiclassical level spacing distribution for classically
integrable quantum systems [246].

Therefore, the success of the BGS conjecture suggests that, for modelling purposes, it may

not be necessary to compute the exact spectrum of a quantum chaotic Hamiltonian. Instead, one
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can artificially “mock up” a spectrum which (a) possesses the spacing distribution fWD(ε), and

(b) reproduces certain properties of the original “true” Hamiltonian, like the average density of

states ρ(E). An example of this type of construction is given in Section 5.5. Alternatively, one

may simply take a sample matrix from the GOE, and then investigate the properties of the system

which has that matrix as a Hamiltonian. Variants on this approach are taken in many of the works

mentioned in Section 5.4.4, where we discuss slowly driven quantum chaotic systems.

5.4.3 The Eigenstate Thermalization Hypothesis

Thus, it appears that the spectrum of a quantum chaotic Hamiltonian Ĥ0 can be accurately

modelled with the tools of RMT, at least at a statistical level in the semiclassical limit. What

about the eigenvectors of Ĥ0, denoted by |n⟩? Specifically, let us look at the matrix elements

Amn ≡ ⟨m|Â|n⟩ of a Hermitian operator Â, defined by quantizing some function on phase

space A(z). As it turns out, the properties of these matrix elements can be characterized using

semiclassical methods. We now review two important results in this context, and explain how

they are connected to the Eigenstate Thermalization Hypothesis (ETH), a standard ansatz used to

understand thermalization in isolated quantum systems.

First, consider the diagonal elements of Â, given by Ann ≡ ⟨n|Â|n⟩. Each matrix element

Ann gives the expectation value of Âwhen the system is in the energy eigenstate |n⟩. How should

we expect these expectation values to behave in the semiclassical limit? Recall that an eigenstate

|n⟩ is a stationary state of the quantum dynamics: Under the Schrodinger equation iℏ d|ψ⟩/dt =

Ĥ0|ψ⟩, this eigenstate just picks up a phase factor e−iEnt/ℏ, which leaves the expectation value

of any operator unchanged. One possible classical analogue of this is a phase space distribution
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ρ, confined to a surface of constant energy E = En, which is stationary under the Liouville

equation ∂ρ/∂t = {H0, ρ}. For a system which is ergodic, the unique distribution meeting these

requirements is the microcanonical distribution ρE(z) = δ(H0(z) − E)/Σ(E) [83]. Thus, if

signatures of classical chaos manifest in the eigenstates |n⟩, it is reasonable to guess that the

quantum expectation values Ann are related to the classical averages ⟨A⟩E ≡
∫
dz ρE(z)A(z).

In fact, such a connection has been established rigorously. Consider a classically narrow

region of the energy axis [E,E+∆E], as in our previous discussion of level spacing distributions.

This interval hasN ≈ ρ(E)∆E ≈ Σ(E)∆/hd energy levels, each with an associated expectation

value Ann. Now, let ℏ approach zero, and let ∆E ∝ ℏ go to zero at the same rate. This way,

while the size of the interval [E,E + ∆E] will approach zero, N ∝ 1/hd−1 will approach

infinity (provided that d ≥ 2, which must be true for a chaotic system). In this limit, it has

been proven that the averaged squared deviation between Ann and ⟨A⟩E for eigenstates in this

range approaches zero [185, 247]:

lim
ℏ∝∆E→0

1

N

∑
En∈[E,E+∆E]

|Ann − ⟨A⟩E|2 = 0. (5.22)

This theorem, first established for billiard systems by Shnirelman [248] and then later

generalized, is valid for systems which are classically ergodic. It tells us that in the semiclassical

limit, almost all matrix elements Ann must approximately coincide with the classical average

⟨A⟩E , with E = En.

Similarly, connections between a quantum chaotic system’s classical counterpart and the

off-diagonal matrix elements Amn have also been established. One such connection arises when

taking averages over “nearby”Amn’s with similar values ofEm andEn. Specifically, consider the
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average of |Amn|2 over m and n such that 1
2
(Em +En) ≈ E and En −Em ≈ ∆, for some choice

of mean energy E and energy difference ∆. Wilkinson demonstrated that, in the semiclassical

limit, such an average |Amn|2 can be related to classical quantities [249, 250]:

|Amn|2 ≈ hd−1SA(∆/ℏ;E)
Σ(E)

, (5.23)

Here, SA(ω;E) is the microcanonical power spectrum for the observable A(z), defined

analogously to the power spectrum S(ω;E) in Chapter 2. That is, SA(ω;E) is the Fourier

transform of the autocorrelation function of A(z):

CA(t;E0) ≡ ⟨A(z00)A(z0t )⟩ − ⟨A(z00)⟩⟨A(z0t )⟩, (5.24)

SA(ω;E) =

∫ ∞

−∞
dt e−iωtCA(t;E). (5.25)

Thus, we see that while the diagonal elements Ann are tied to the equilibrium classical quantity

⟨A⟩E , off-diagonal elements Amn are related to the time evolution of the counterpart classical

system, as captured by the correlation function CA(t;E). This is sensible, since for an evolving

state vector |ψ(t)⟩ =
∑

n ane
−iEnt/ℏ, the time-dependence in the expectation value ⟨A⟩t =∑

m,n a
∗
mane

i(Em−En)t/ℏ appears in off-diagonal terms.

These two results, characterizing both the diagonal and off-diagonal matrix elements of

Â, can be encapsulated together in the so-called Eigenstate Thermalization Hypothesis (ETH).

This hypothesis, originally proposed in different forms by Deutsch [251] and Srednicki [252],

has become central to the study of thermalization in isolated quantum systems [87, 88, 253]. The
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standard modern form of the ETH is an ansatz for the matrix elements Amn:

Amn = A
(
E
)
δmn +

1√
ρ
(
E
)fA (∆/ℏ, E)Rmn. (5.26)

As noted by Srednicki, “All the factors in this formula need explanation” [87]. Here, E ≡

1
2
(Em+En) and ∆ ≡ En−Em, and the functions A(E) and fA(ω,E) are real, smooth functions

of their arguments. Without loss of generality, fA(ω,E) may be taken to be a positive, even

function of ω. Finally, the factor Rmn is a complex number satisfying Rnm = R∗
mn, which, when

averaged in the manner of (5.23), yields Rmn = 0 and |Rmn|2 = 1. An operator Â is said to

satisfy the ETH if its matrix elements can be expressed in this form.

The generalization of Shnirelman’s theorem (5.22) ensures that the ETH is valid for the

diagonal elements Ann if we choose A(E) = ⟨A⟩E , since the second term in (5.26) goes to zero

in the semiclassical limit (recall that ρ(E) ≈ Σ(E)/hd). This accounts for the term Eigenstate

Thermalization Hypothesis: Every eigenstate expectation value Ann encodes the microcanonical

or thermal average ⟨A⟩E . Meanwhile, for the off-diagonal elements, if we average the ETH ansatz

over nearbym and n, Wilkinson’s estimate (5.23) allows us to identify fA(ω,E)2 = SA(ω;E)/h.

In this sense, for quantum chaotic systems the ETH is not really a hypothesis at all, but rather

an established result, as long as the operator Â is obtained by quantizing a classical function

A(z). For many other systems, including systems without a direct classical analogue (like certain

quantum lattice systems), the ETH has been numerically verified; for a summary see [88].
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5.4.4 Energy diffusion in slowly driven quantum chaotic systems

To conclude this section, we now provide a review of theoretical and numerical work on

energy diffusion in slowly driven quantum chaotic systems. This body of work includes analysis

of both “real” quantum chaotic models and random matrix theory models. In these studies,

researchers have explored the semiclassical limit, compared the results of different choices of

RMT models, and investigated the difference between energy absorption in quantum chaotic and

integrable systems. Particular attention has been paid to how these quantum chaotic systems

correspond (or do not correspond) to their classical counterparts, adiabatically driven classical

chaotic systems. As briefly discussed in Chapter 2, Section 2.7, these classical systems have

also been studied with a energy diffusion description. Note that in this section, we restrict our

attention to quantum systems which are chaotic even in the absence of driving, as opposed to

systems like the kicked rotor [13, 139, 254], in which chaos is induced by an external drive.

By slowly driven quantum system, we mean a quantum system with a slowly time-

dependent Hamiltonian Ĥ(t), with time-dependent eigenenergies En(t) and eigenstates |n, t⟩.

In such systems, it is common to identify the system’s energy with Ĥ(t), rather than with the

time-averaged Hamiltonian.11 If we write such a system’s state vector as
∑

n cn(t)|n, t⟩, then

the resulting expression ⟨H(t)⟩t =
∑

|cn(t)|2En(t) for the energy expectation value tells us that

the system’s energy can change in two ways: By changes in the populations |cn(t)|2 (i.e., energy

level “transitions”), or changes in the energy levels En(t). Here, the word “slowly” can refer to

at least two things. On one hand, it could mean that the system is being driven at an adiabatic or

approximately adiabatic rate, in the sense of the quantum adiabatic theorem. This theorem states

11Of course, these two definitions of energy may coincide at specific times. For example, for the time-periodic
Hamiltonian Ĥ(t) = Ĥ0 + V̂ cos(ωt), Ĥ0 and Ĥ(t) are equal at t = T/2, 3T/2, 5T/2 ...
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that for sufficiently slow driving, if the system of interest is initialized in the state |n, 0⟩ at t = 0,

then it approximately remains in the state |n, t⟩ throughout its evolution (up to a phase factor)

[131]. Therefore, changes in the system’s energy are dominated by changes in the En(t)’s, at

least for short times. Let us refer to the range of driving speeds, where the adiabatic theorem

is approximately applicable, as the “quantum adiabatic” regime. On the other hand, the drive

may be faster than quantum adiabatic driving, but still slow relative to some classical timescale.

In particular, suppose that the drive is slow enough that for the corresponding classical system,

the classical adiabatic invariant is nearly conserved [98]. For these driving speeds, although the

system’s energy evolution is still slow in a classical sense, probability can flow quickly between

the populations |cn(t)|2. We refer to this range of speeds, which is quantum mechanically fast

but classically nearly adiabatic, as the “classically slow” regime. Both the quantum adiabatic and

classically slow regimes are studied in the work that we now discuss.

For models of slowly driven quantum chaotic systems, diffusive evolution of energies has

been observed in both of the regimes just mentioned. To understand this diffusion process,

researchers have commonly taken two different routes: (a) Approximation of the system with

a RMT model, followed by theoretical or numerical analysis of this model, and (b) numerical

approximation of the exact dynamics under the Schrodinger equation. Under the umbrella of

approach (a), a variety of Hamiltonians have been considered. These include: Hamiltonians

constructed from matrices sampled from the GOE [255–257], Hamiltonians selected from a

random matrix ensemble that depends on a parameter, the value of which determines the degree

of chaoticity of the Hamiltonian [258, 259], and Hamiltonians with random terms sampled so

as to match Wilkinson’s semiclassical result (5.23) [117]. Meanwhile, in the vein of approach

(b), a number of different models have been investigated, including chaotic billiard systems
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[260, 261], the classically chaotic Pullen-Edmonds oscillator [262], and spin-1/2 chains that

have been shown to have random matrix statistics [263, 264].

The results gathered from studying the models just listed, from both categories (a) and

(b), are varied and impossible to fully summarize in just a few paragraphs. However, with

respect to our aim of applying the classical energy diffusion description in Chapter 2 to quantum

systems, a few salient lessons from these models stand out as especially relevant. First, the

distinction between the quantum adiabatic regime and the classically slow regime manifests

prominently at the level of the energy diffusion description. Both theoretical treatments and

numerical experiments reveal that the rate of energy diffusion depends strongly on which regime

is being considered [105, 114, 255, 265–267]. For example, Wilkinson demonstrated that for

a class of random matrix models, the energy diffusion coefficient scales with a different power

of the driving rate in these different regimes [265, 266]. Second, the semiclassical limit and

the slow driving limit are often non-commuting [114, 267, 268]. On one hand, if the driving

speed is reduced towards zero at fixed ℏ, one expects that the quantum adiabatic regime will

be ultimately reached. On the other hand, for a fixed driving speed, taking ℏ to zero generally

results in the failure of the quantum adiabatic theorem. These two limits interact in various

ways in different random matrix models. Third, slowly driven quantum chaotic systems can

sometimes exhibit dynamical localization, meaning that the evolution of the system in energy

space is ultimately bounded, in contrast to the indefinite energy absorption predicted by the

energy diffusion description [258, 264]. This is similar in spirit to dynamical localization in

systems like the quantum kicked rotor [254, 269], where this phenomenon has been investigated

in detail. Finally, random matrix models can sometimes fail to describe certain important

aspects of quantum chaotic systems, particularly those features which are related to the more
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“regular” aspects of the corresponding classical motion. For example, numerical simulations of a

quantum Bunomovich stadium billiard by Wisniacki and Vergini provide evidence that associated

random matrix models do not account for the semiregular “bouncing ball” modes (see Figure 5.4)

observed in the classical stadium [260]. Meanwhile, Elyutin and Rubtsov argue that certain non-

diffusive elements of a quantum chaotic system’s energy evolution may fail to be reproduced in

a random matrix model which neglects correlations between matrix elements (for example, the

model described in Section 5.5) [262].

Figure 5.4: A bouncing ball mode in the Bunimovich stadium billiard. During this portion of a
particle’s trajectory, the particle’s motion appears highly regular and non-chaotic.

All of these findings have potential implications for the study of quantum chaotic systems

under rapid periodic driving. For example, the interaction between the slow driving limit and

the semiclassical limit may be mirrored by a similar clash between the semiclassical and rapid

driving limits. Alternatively, for some rapidly driven systems, dynamical localization may take

place, especially if the Floquet-Magnus expansion for the system converges (see the discussion

in Section 5.3). Because of these potential connections and others, the body of work discussed

in this section is an ideal starting ground for thinking about quantum analogues to the classical
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energy diffusion model described in Chapter 2.

5.5 Two models for energy absorption in periodically driven quantum chaotic

systems

We conclude this chapter by describing two potential models for quantum chaotic systems

under periodic driving, which may provide insight into energy absorption and diffusion in such

systems. The first is a random matrix model, similar to some of the models for slowly driven

quantum chaotic systems discussed in Section 5.4.4. This model is constructed so as to satisfy the

BGS conjecture and the ETH. The second is a quasiclassical model, discussed elsewhere in the

literature on energy diffusion [114, 117], which is based on two key assumptions: The validity of

Fermi’s golden rule for a time-dependent perturbation V̂ cos(ωt), and the chaotic, ergodic nature

of the quantum system’s classical counterpart. Under these assumptions, the energy evolution of

the system takes the form of a series of random energy jumps E → E ± ℏω, which approaches a

process of energy diffusion as the jump size becomes small in the semiclassical limit. The energy

drift and diffusion coefficients in this model coincide with the classical results (2.22) and (2.20)

as ℏ approaches zero.

5.5.1 A periodically driven random matrix model

First, we describe a random matrix model, which is meant to serve as model for the

quantum analogue of the classical systems discussed in Chapter 2. As discussed in Section

5.2, consider a quantum system with the Hamiltonian Ĥ(t) = Ĥ0 + V̂ cos(ωt), the quantized

version of the monochromatic driving Hamiltonian in Chapter 2. If we substitute the form
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|ψ(t)⟩ =
∑
cn(t)e

−iEnt/ℏ|n⟩ into the Schrodinger equation (5.1), and then take the inner product

of the result with the eigenvector |m⟩, we obtain

iℏ
dcm
dt

= cos(ωt)
∑
n

Vmne
i(Em−En)t/ℏcn, (5.27)

where Vmn ≡ ⟨m|V̂ |n⟩. This set of differential equations is mathematically equivalent to the

Schrodinger equation.

Let us suppose that over a time interval of interest, the probability for the system to have

an energy outside of some range [Emin, Emax] is negligible, so that cn ≈ 0 for En outside of

[Emin, Emax]. In this case, we can restrict our attention to cn’s such that En ∈ [Emin, Emax], and

our possibly infinite-dimensional system of differential equations becomes finite. Then, to solve

these equations, we need two things: The energy levels En ∈ [Emin, Emax], and the associated

matrix elements Vmn. In principle, these could be obtained by diagonalizing Ĥ0, but we know

that this is a nontrivial exercise for a quantum chaotic system. However, the previous discussion

of RMT and the ETH suggests a natural way to model these quantities.

First, let us think about the energy eigenvalues En. Suppose that we have selected our

interval [Emin, Emax] such that Emin is an eigenvalue: Label this energy level E0. What is

the location of the next eigenvalue, E1? Assuming for simplicity that the system possesses

time-reversal symmetry, the BGS conjecture implies the distribution of normalized eigenvalue

spacings of Ĥ0 should match the Wigner-Dyson distribution fWD(ε), the spacing distribution

for a matrix sampled from the GOE. Therefore, instead of attempting to find the true value of

E1, we can model the eigenvalue spectrum by sampling a normalized spacing ε from fWD(ε),

multiplying it by the local mean level spacing 1/ρ(E0) ≈ hd/Σ(E0) to get the corresponding
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unnormalized spacing, and then setting the next energy level to be E1 = E0 + ε/ρ(E0). We can

then sample the next level spacing in the same way, to obtain E2, and we can continue generating

energy levels in the same way until we surpass the energy Emax. In this way, we will have

constructed a model energy spectrum which both satisfies the BGS conjecture, and which has the

proper semiclassical density of states ρ(E) ≈ Σ(E)/hd. This method of course assumes that the

classical density of state Σ(E) is known.

As for the required matrix elements Vmn, we can model these with the help of the ETH

ansatz. If we replace A by V in the ETH ansatz (5.26), and make use of the relations ρ(E) =

Σ(E)/hd, V (E) = ⟨V ⟩E , and fV (ω,E)2 = SV (ω;E)/h, we have

Vmn = ⟨V ⟩E δmn +

√
hd−1

SV

(
∆/ℏ, E

)
Σ
(
E
) Rmn. (5.28)

Given this expression, if the classical functions Σ(E), ⟨V ⟩E , and SV (ω;E) are known, then the

only thing left to calculate is the quantities Rmn, which can be thought of as the elements of a

matrix R̂. Now, for a system with time-reversal symmetry, the basis of eigenvectors |n⟩ can often

be selected such that the Vmn’s are purely real [88]. In this case, a simple choice is to take R̂

to be a matrix sampled from the GOE, as defined in (5.20) in Section 5.4.1. Note that a typical

sample from the GOE is guaranteed to satisfy the previously mentioned conditions Rmn = 0 and

|Rmn|2 = R2
mn = 1.

If the energy levels En and matrix elements Vmn are generated in this way, the system of

equations (5.27) is then fully defined, and can in principle be integrated numerically. In principle,

if the requisite classical quantities ⟨V ⟩E , SV (ω;E), and Σ(E) can be computed, this model could

be used to probe the applicability of the classical energy diffusion description in Chapter 2 to
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quantum chaotic systems under rapid periodic driving. Presently, we are attempting to implement

this model for a periodically driven particle in a two-dimensional clover billiard, which was

numerically simulated in a classical context in Chapter 3, Section 3.5 (this is a driven standard

billiard in the language of Chapter 3). The classical Hamiltonian for this system is H(z, t) =

p2x/2m+p2y/2m−Fx cos(ωt), where (x, y) and (px, py) are position and momentum coordinates,

and where F is a constant. This system has several simplifying properties which make the random

matrix model relatively easy to construct. First, Σ(E) is independent of energy and equal to

Σ(E) = 2πmA, where A is the billiard area. Second, the reflection symmetry of the billiard

implies that ⟨V ⟩E = −F ⟨x⟩E = 0. Finally, the inertial nature of motion in an undriven standard

billiard implies that for every classical trajectory at a given energy, there is another trajectory with

unit energy which traces out the same path in space, but at a different speed. As a consequence

of this time-scaling symmetry, it can be shown that the power spectrum SV (ω;E) = F 2Sx(ω;E)

satisfies the relation Sx(ω;E) = S
(
ω/

√
E; 1

)
/
√
E. Therefore, to obtain Sx(ω;E) for any

energy, it suffices to compute it for the single energy E = 1.

Now, this random matrix model may not capture all of the relevant features of a given

quantum chaotic system. In this case, one can attempt to add nuance to the model in various

ways. For example, statistical correlations can be introduced, either between successive energy

level spacings, or between the elements of the matrix V̂ . Of course, in the end, even if such

features are included, the ultimate test of a random matrix model is still comparison with the

original quantum chaotic system.
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5.5.2 The Fermi’s golden rule model of energy diffusion

We now review a quasiclassical model of energy absorption in quantum chaotic systems,

based on Fermi’s golden rule, which yields the classical energy diffusion description in the

semiclassical (ℏ → 0) limit. As with the random matrix model just discussed, we take the

system’s Hamiltonian to be Ĥ(t) = Ĥ0+ V̂ cos(ωt), where Ĥ0 and V̂ are obtained by quantizing

the corresponding observables in Chapter 2. We would like to understand the evolution of

this system’s energy distribution, where we identify Ĥ0 as the system’s energy operator, with

associated eigenvalues En and eigenstates |n⟩. If the drive V̂ cos(ωt) can be treated as weak, then

a common way to model this evolution is via Fermi’s golden rule, which can be derived in the

context of first-order time-dependent perturbation theory. Using rough quasiclassical language,

Fermi’s golden rule tells us that transitions between energy eigenstates of Ĥ0 proceed in discrete

jumps of ±ℏω, with transition rates expressible in terms of the matrix elements of V̂ in the

eigenbasis of Ĥ0.

Motivated by this picture of energy transitions, let us divide the energy axis into a series

of intervals of equal size ℏω. We label each interval by an integer index k = 0, 1, 2 ..., and

let Ek ≡ kℏω define the center of the kth interval. Each of these intervals corresponds to a

coarse-grained energy state of the system. We now model the system’s energy evolution in terms

of classical-like stochastic transitions between these states (see Figure 5.5). More precisely, we

define a continuous-time Markov jump process [93, 94] on the set of energy states k, with the

transition rate Γk,k±1 between neighboring states k and k ± 1 provided by Fermi’s golden rule

[131, 179]:
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Γk,k±1 =
π

2ℏ
|Vmn|2ρ

(
Ek±1

)
. (5.29)

As in the random matrix model just discussed in Section 5.5.1, ρ(E) is the average density of

states of the undriven system, and Vmn ≡ ⟨m|V̂ |n⟩ is a matrix element connecting the eigenstates

|m⟩ and |n⟩. Here, the average |Vmn|2 is similar to the average (5.23) in Section 5.4, except we

are averaging over a narrow range of states n with En ≈ Em ± ℏω, and then averaging over all

m in the kth interval. Γk,k±1 is the probability per unit time that the system will transition to the

state k ± 1, given that it is in the state k. Assuming that the evolution of the system on this set

of states is Markovian (i.e., the probability of a transition only depends on the current state of the

system, and not previous states), these transition rates fully specify the stochastic dynamics of

the system.

Figure 5.5: Diagram of the Markov jump model for the quantum evolution of the system. Each
coarse-grained energy state k, represented by a blue circle, corresponds to a range of the energy
axis of size ℏω, centered at Ek = kℏω. The rate of stochastic jumping between these states is
specified by the transition rates Γk,k±1, given by (5.29).

We pause to note that, as with any quantum jump model of this type, we are not claiming
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that the system actually moves through a series of energy states k which are localized in

energy space. Underneath this quasiclassical model, the evolution is still fundamentally quantum

mechanical, and the quantum state may be spread out in a coherent superposition of many energy

eigenstates at any given moment. Rather, the assumption is that despite the quantum character

of the underlying dynamics, the energy distribution ηQ(E, t) (coarse-grained over the energy

spacing ℏω) nevertheless evolves in the same way as the energy distribution for an ensemble

of classical-like systems, which evolve in the discrete space of states k in accordance with the

transition rates (5.29). An individual realization of this random process, given by a particular

progression through the states k, has no direct physical meaning, since the system does not really

evolve through such states. However, thinking about the quantum evolution of the system in

terms of this counterpart stochastic process will be useful for understanding how diffusive energy

evolution emerges in the quantum context.

What is the classical limit of this Markov jump model, as ℏ approaches zero? Well,

assuming that the undriven system’s classical counterpart is chaotic and ergodic, we may use

Wilkinson’s semiclassical result (5.23) in Section 5.4 to approximate the average |Vmn|2 as

|Vmn|2 ≈ hN−1SV

(
ω;Ek

)
/Σ(Ek).12 SV (ω;E) is the classical microcanonical power spectrum

for the phase space function V (z); note that this may be related to S(ω;E) (the power spectrum

for V̇ (z)) via S(ω;E) = ω2SV (ω;E).13 Upon substituting this estimate for |Vmn|2 into the

Fermi’s golden rule rates (5.29), and invoking Weyl’s law ρ(E) ≈ Σ(E)/hd, we obtain

12 Wilkinson’s formula actually gives the slightly more accurate estimate |Vmn|2 ≈
hN−1SV

(
ω;Ek + ℏω/2

)
/Σ
(
Ek + ℏω/2

)
. However, when we ultimately take the classical limit of the

energy diffusion coefficient in this model ((5.31)), the corrections included by using this better approximation
vanish, so here we neglect them from the start for simplicity.

13The relation S(ω;E) = ω2SV (ω;E) follows from the fact that the autocorrelation function of V̇ (z) is minus
the second time derivative of the autocorrelation function of V (z). In Fourier space, this derivative corresponds to
multiplication by (iω)2 = −ω2.
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Γk,k±1 =
S(ω;Ek)

4(ℏω)2
. (5.30)

Given these semiclassical Fermi’s golden rule rates, we can now think about how a diffusive

evolution of energies arises from the random walk model. For small enough ℏ, each energy jump

of size ℏω will be very small relative to any classical energy scale. In particular, ℏω will be small

relative to the scale over which S(ω;E) changes significantly as a function of E. It follows that

for sufficiently small ℏ, the transition rates (5.30) will be almost constant over a large number of

successive energy states k. As a result, whenever the system jumps from a state k to k′ = k±1, the

subsequent jump will be essentially uncorrelated with it, since the transition rate in the new state

is almost the same regardless of whether the new state is k′ = k+1 or k′ = k− 1. Moreover, the

near-constancy of the transition rates means that these jumps will have nearly identical statistics.

Thus, as in the classical case, we see that the energy evolution of the system over an appropriate

time interval appears as a sequence of many independent, statistically identical energy changes,

resulting in a process of diffusion in energy space. This diffusive description, which is continuous

both in time and in energy space, is valid on a coarse-grained timescale much longer than the

typical time between quantum jumps, and on a coarse-grained energy scale much larger than ℏω.

As a result, the evolution of the coarse-grained energy distribution is governed by a

Fokker-Planck equation, just like (2.11) in Chapter 2. It now remains to determine the drift

and diffusion coefficients associated with this equation. We proceed just as we did in the

classical case. The quantum diffusion coefficient gQ2 (E,ω) is given by Var(E)/∆t, where

Var(E) is the variance acquired by the energy distribution after a short time ∆t, given that the

system was initialized with the energy E = Ek. To calculate this, divide the time interval

169



from t = 0 to t = ∆t into N ≫ 1 subintervals of equal duration δt = ∆t/N . Then,

given that the system is initialized in the state k, consider the energy change ∆E over this

interval as a sum of N changes δE1, δE2 ... δEN associated with each subinterval. For small δt,

each of these subinterval changes is either +ℏω or −ℏω, with approximately equal probability

Γk,k+1dt ≈ Γk,k−1dt, or zero with approximate probability 1−Γk,k+1dt−Γk,k−1dt. It follows that

the variance of each subinterval change is (Γk,k+1 + Γk,k−1)(ℏω)2dt ≈ 2Γk,k+1(ℏω)2dt. Since

these subinterval changes are statistically independent, the variance of ∆E =
∑N

i=1 δEi is simply

Var(∆E) =
∑N

i=1Var(δEi) = 2Γk,k+1(ℏω)2∆t. Since Var(∆E) = Var(E), substituting (5.30)

into this expression yields

gQ2 (E,ω) =
1

2
S(ω;E) = g2(E,ω), (5.31)

in agreement with the classical result.

In principle, we can calculate the quantum drift coefficient gQ1 (E,ω) via a similar

computation, though we would need to be careful to account for the small difference in

probability between the transitions k → k + 1 and k → k − 1 (this difference is neglected

in (5.30)).14 Instead, we now obtain gQ1 (E,ω) by relating it to gQ2 (E,ω) via a fluctuation

dissipation relation, as in the classical case. We do so by returning to the exact quantum

dynamics; i.e., evolution of the density operator ρ̂ under the von Neumann equation (5.5). Note

that the identity operator Î is an unnormalized stationary solution to the von Neumann equation,

since the identity operator commutes with all other operators. It follows that the corresponding

unnormalized energy distribution should be a stationary solution to the Fokker-Planck equation

14This calculation requires the more accurate approximation for |Vmn|2 given in footnote 12.
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(after the appropriate coarse-graining in energy space). Recall from Section 5.2 that for a

density operator ρ̂, the corresponding energy distribution is ηQ(E) =
∑

n ρnnδ(E − En), where

ρnn = ⟨n|ρ̂|n⟩. Thus, for ρ̂ = Î , we have the unnormalized energy distribution
∑

n δ(E − En):

This is just the undriven system’s fine-grained density of states, which after coarse-graining

yields ρ(E). Thus, the average density of states ρ(E) ∝ Σ(E) is a stationary solution to

the Fokker-Planck equation. Then, by the same arguments as in Chapter 2, Section 2.4, it

follows that the same fluctuation-dissipation relation (2.22) is also valid for the quantum energy

diffusion process. Since gQ2 (E,ω) = g2(E,ω), the fluctuation-dissipation relation implies that

gQ1 (E,ω) = g1(E,ω) as well. The quantum and classical energy diffusion processes are thus

mathematically identical.

Of course, the analysis just described has some clear problems. For instance, coherences

between different energy eigenstates of the system are effectively ignored (as is often done

implicitly in many applications of Fermi’s golden rule). Moreover, it is not obvious that the

validity of Fermi’s golden rule is consistent with the semiclassical limit. This is because Fermi’s

golden rule is derived in the context of perturbation theory, which naturally assumes small rates of

transition between energy states, while by (5.30), the rates predicted by Fermi’s golden rule itself

diverge as ℏ approaches zero. Other authors have discussed such issues in more detail; see for

example [114] and [117]. Despite these limitations, this model is valuable insofar as it highlights

an important connection between periodically driven quantum systems and the classical energy

diffusion picture.
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Chapter 6: Outlook and future work

In this thesis, we have examined energy absorption in periodically driven chaotic systems,

both classical and quantum. Although we found the energy diffusion framework extremely useful

for characterizing the energy evolution of such systems, many questions concerning the accuracy

and range of validity of this model were left unanswered. This is particularly true in the context of

periodically driven quantum chaotic systems, where our trust in the energy diffusion description

is ultimately based on heuristic models like the model described in Chapter 5, Section 5.5.2,

and on previous work on slowly driven systems (discussed in Chapter 5, Section 5.4.4). In this

chapter, we discuss some possible avenues for future work, which might help to close these gaps

in our understanding.

6.1 Further tests of the classical energy diffusion model

In the realm of classical systems, one clear direction for future work is to test the energy

diffusion description in additional model systems. In Chapter 3, Section 3.5, we corroborated

the energy diffusion model with numerical simulations of a driven particle in a clover-shaped

billiard. In some ways, this system is an ideal testing ground for studying energy diffusion. For

one, an undriven particle in the clover billiard is mathematically guaranteed to exhibit chaotic and

ergodic motion [110]. Moreover, the Fokker-Planck equation for this system is exactly solvable
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(see the solution (E.4) and the surrounding discussion in Appendix E). However, the disadvantage

of the clover billiard as a model system is that it is decidedly “non-generic” in certain respects,

suggesting that it is a significant “inductive leap” to take the numerical simulations of the clover

billiard as a validation of the energy diffusion description more generally. Most noticeably, the

collisions with the wall correspond to a discontinuous evolution in phase space. This manifests

as the characteristic ω−2 scaling of the energy drift and diffusion coefficients g1 and g2 for

billiard systems (see (3.19) and (3.18) in Chapter 3), in contrast to the more rapid decay of

these coefficients for smooth systems. In addition, the clover billiard is not a many-body system,

in contrast to many of the systems commonly studied in statistical physics and condensed matter.

Beyond single-particle billiards like the clover billiard, several classes of systems suggest

themselves as additional test cases for the energy diffusion model. First, one can consider

periodically driven many-particle billiards or systems of hard spheres, as described in Chapter

3, Section 3.6. These systems have the advantage that in certain special cases, the associated

Fokker-Planck equation admits an exact solution. For example, in the dilute gas of hard spheres

analyzed in Section 3.6.4, the coefficients g1 ∝ E1/2 and g2 ∝ E3/2 scale with energy in the same

way as in the clover billiard (since the temperature T in (3.36) is proportional to E). This implies

that the solution (E.4) to the clover billiard’s Fokker-Planck equation is equally applicable to the

dilute hard sphere gas.

Second, certain many-body generalizations of the kicked rotor model [13, 139] may be

a viable testing ground for the energy diffusion description. These systems are defined by a

chain ofN pendula or “rotors” with angular coordinates ϕ1, ϕ2 ... ϕN and corresponding momenta

p1, p2 ... pN , which are coupled together via a Hamiltonian such as:
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H =
N∑
i=1

[
p2i
2m

− κ cos (ϕi+1 − ϕi)
∑
n∈Z

δ (t− nT )

]
. (6.1)

The effect of this Hamiltonian is to make adjacent rotors instantaneously “kick” each other at

evenly spaced times t = 0, T, 2T ... . In certain parameter regimes, Floquet prethermalization

and diffusion of energy has been observed in such models, and in their quantum mechanical

analogues [78, 79, 223–226]. It would be useful to compare these results to the predictions of the

energy diffusion model studied in Chapter 2. Note that technically, a system with the Hamiltonian

(6.1) cannot satisfy the assumption of ergodicity invoked in this thesis, since the dynamics under

the corresponding time-averaged Hamiltonian have a conserved quantity: the total momentum

P =
∑N

i=1 pi. However, this not an essential problem, since if we consider a particular surface

of constant P in phase space, and divide this surface into sub-surfaces of constant energy, then it

is still possible for the system to evolve ergodically on each of these sub-surfaces.

Finally, one may consider chains of interacting classical spin degrees of freedom, or

“Heisenberg spin chains,” as a potential testbed for the energy diffusion model. In these models,

each of the N spins is described by a unit vector S1,S2 ...SN , which evolves under the influence

of both external magnetic fields and the fields of neighboring spins (this is a noiseless, many-

spin version of the model described in Chapter 4, Section 4.3) [172, 173]. Periodic driving

in Heisenberg chains may take the form of, for example, periodic modulation of an external

magnetic field. Since chaos has been numerically observed in certain spin chains [173, 221, 222],

we expect that the energy diffusion model may be relevant to understanding energy absorption in

these systems. If so, this would offer another explanation for Floquet prethermalization in these

models, which has been both numerically observed and theoretically predicted [41, 44].
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6.2 Generalization of the energy diffusion model to systems with a nontrivial

high-frequency driving limit

While more work can be done to validate the energy diffusion model as described in

Chapter 2, we also anticipate that this model may be generalized in some respects. One important

possible generalization would be to systems with a nontrivial high-frequency driving limit, as

described in works such as [12]. In the systems studied in the present thesis, the limit of high-

frequency driving is taken at fixed driving amplitude. In this limit, the driven evolution of the

system approaches the undriven motion, which is governed by the time-averaged Hamiltonian:

We refer to this as a “trivial” high-frequency limit. However, more interesting limiting procedures

are possible. For example, one may consider a situation where as the drive frequency ω

approaches infinity, the amplitude of the driving term in the Hamiltonian is made to scale like

some power of ω. One famous example where this scaling occurs is in the Kapitza pendulum

model [2]. In this system, the fulcrum of a pendulum bob of mass m and fixed length l under the

influence of gravity is made to rapidly oscillate in the vertical direction likeA cos(ωt) (see Figure

6.1). If we take the amplitude A to be proportional to ω−1, it can be shown that this system is

described by a Hamiltonian of the form [12]:

H =
p2

2m
−m cos θ

(
ω2
0 + λω cos (ωt)

)
. (6.2)

Here, θ is the position coordinate of the pendulum, giving the angular displacement of the

pendulum away from the vertical, and p is the corresponding momentum. We take θ = 0 to

correspond to the pendulum hanging straight down. ω0 and λ are constants.
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Figure 6.1: Diagram of one mechanism which can realize the Kapitza pendulum. Here, a rotating
motor causes a lever arm to oscillate up and down. At the end of this lever is the fulcrum of the
pendulum, which oscillates vertically as A cos (ωt). This diagram was drawn by Chris Burks,
and was taken from Wikipedia.

In this Hamiltonian, the drive term ∝ ω cos (ωt) scales linearly with the drive frequency.

As a result, as ω approaches infinity, the dynamics of the system do not approach the dynamics

associated with the time-averaged Hamiltonian H0 ≡ p2/2m − mω2
0 cos θ. Rather, in this

limit, it can be shown that the system’s dynamics are governed by an effective infinite-frequency

Hamiltonian [12]:

Heff ≡ p2

2m
−mω2

0 cos θ +
mλ2

4
sin2 θ ̸= H0. (6.3)

Crucially, provided that λ2 > 2ω2
0 , the effective potential Ueff(θ) ≡ −mω2

0 cos θ +mλ2 sin2 θ/4

has a local minimum at θ = π (see Figure 6.2), which corresponds to the pendulum being

perfectly inverted. This means that in the high-frequency driving limit, this inverted position of
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the pendulum becomes stable; this counterintuitive behavior of the Kapitza pendulum is known

as dynamical stabilization.

λ = 0

λ = 3

π
2 π

3π
2 2π

θ

-1

0

1

2

Ueff(θ)

Figure 6.2: Plot of the effective potential Ueff(θ) for the Kapitza pendulum, for m = ω0 = 1. For
λ = 0 (blue curve), this is just the time-averaged potential, which has a local maximum at θ = π.
This value of θ corresponds to the pendulum being inverted, which is an unstable equilibrium. In
contrast, for λ = 3 >

√
2ω0 =

√
2 (orange curve), Ueff(θ) has a local minimum at θ = π, so this

equilibrium point is now stable.

How is this connected to the energy diffusion description? Well, under the infinite

frequency Hamiltonian (6.3), the dynamics of the pendulum will not be chaotic, since the

pendulum only has a single degree of freedom. However, one can imagine an analogous periodic

driving protocol for a system with ≥ 2 degrees of freedom, wherein the driving amplitude is

made to scale proportional to some power of ω; for examples, see [12, 218, 270]. Suppose that

for such a system, an infinite-frequency effective Hamiltonian Heff can be obtained, and that the

dynamics under this Hamiltonian are chaotic and ergodic. For large but finite driving frequencies,

we anticipate that the dynamics of the system will be closely approximated by evolution under

Heff , plus a small perturbation. This suggests that the dynamics of the system might be described

by a process of energy diffusion, where the energy of the system is now associated with the
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infinite-frequency Hamiltonian Heff , rather than the time-averaged Hamiltonian. Here, it is the

chaotic, ergodic nature of motion under Heff which induces the decay of correlations necessary

for diffusive evolution.

One interesting feature of this version of the energy diffusion model is that

prethermalization occurs with respect to the Hamiltonian Heff . This is consistent with certain

Floquet prethermal model systems, where prethermalization has been observed to occur with

respect to a Hamiltonian other than the time-averaged Hamiltonian [218, 270]. Of course, this

potential generalization of the energy diffusion model has only been roughly sketched here. More

work needs to be done to understand whether such a generalization is valid, and if so, to determine

the associated energy drift and diffusion coefficients.

6.3 Testing the energy diffusion description in quantum chaotic systems

Finally, we reemphasize that more work needs to be done to understand the applicability

of the classical energy diffusion description to periodically driven quantum chaotic systems. A

full account of this potential quantum-classical correspondence would describe both the range of

validity of the energy diffusion model in quantum systems, and the quantum corrections to this

classical description. Probing these connections can be done with both theoretical and numerical

methods.

First, a number of theoretical semiclassical methods could be employed to explore the

relationship between periodically driven quantum systems and the energy diffusion description.

In Chapter 5, Section 5.4 we already discussed the use of random matrix theory to this end. If

the validity of the BGS conjecture is assumed, then the tools of random matrix theory can be
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employed to model the properties of the system’s Hamiltonian. However, even without random

matrix theory, semiclassical techniques can be used to approximately describe the evolution of

quantum systems in terms of classical dynamics. For example, the van Vleck formula provides a

semiclassical expression for the quantum evolution operator, which should remain valid for short

times at least [271]. Regardless of the specific approach taken, one important object to study

in an analysis of energy diffusion in quantum systems is the Floquet Hamiltonian ĤF , and its

associated Floquet-Magnus expansion. As discussed previously in Chapter 5, Section 5.3, the

convergence properties of the Floquet-Magnus expansion are closely tied to the system’s ability

to absorb energy from the drive.

Second, numerical simulations can offer another perspective on the possibility of quantum-

classical correspondence. One numerical approach is to simulate a random matrix model of a

periodically driven quantum chaotic system, like the one constructed in Chapter 5, Section 5.5.1.

Alternatively, for a given “real” quantum chaotic system, one can attempt to compute the actual

energy levels and matrix elements needed to approximately solve the Schrodinger equation. In

either approach, solutions to the Schrodinger equation (and the resulting energy distribution)

could be compared to the predictions of the energy diffusion description. Also, the Floquet

Hamiltonian ĤF (or equivalently, the Floquet operator ÛF ) could in principle be calculated;

diagonalizing this operator would provide important information about the system’s evolution. Of

course, regardless of the numerical method pursued, difficulties arise in the semiclassical limit,

where the density of states ρ(E) ≈ Σ(E)/hd ∝ h−d becomes very large. In this regime, many

energy levels of the system need to be simulated, leading to extremely large matrix computations.
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Appendix A: Generalization to non-monochromatic drives

Here, we generalize the calculation of the diffusion coefficient g2 in Chapter 2 for non-

monochromatic periodic drives V (z, t/T ).

A general periodic driving term may always be decomposed as a Fourier series with

fundamental frequency ω:

V (z, t/T ) =
∑

k∈Z\{0}

Vk(z)e
ikωt. (A.1)

Here, since V (z, t/T ) is a real-valued function, the phase space functions Vk(z) ≡ Vk must

satisfy the relation V−k = V ∗
k . The sum runs over the set of all integers excluding zero, since

V (z, t/T ) has zero time average over a period by definition.

The instantaneous rate of change of the system’s energy is given by (2.4). Substituting the

decomposition (A.1) into this expression yields

dE

dt
= −

∑
k∈Z\{0}

V̇k(z)e
ikωt, (A.2)

where we have defined V̇k(z) ≡ V̇k ≡ {Vk, H0}.1 If we integrate this expression over a time

∆t, we can use it to compute Var(E) = ⟨(∆E)2⟩ − ⟨∆E⟩2, the energy variance acquired by an

ensemble of trajectories over this time (this is analogous to (2.16)):

1Note that V̇k is generally not equal to the time derivative of Vk, but they do coincide for the undriven system.
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Var(E) =
∑

k,l∈Z\{0}

∫ ∆t

0

dt

∫ ∆t

0

dt′ e−ikωt+ilωt′C(kl)
neq (t, t

′;E0). (A.3)

Here, C(kl)
neq (t, t′;E0) ≡ ⟨V̇ ∗

k (zt)V̇l(zt′)⟩ − ⟨V̇ ∗
k (zt)⟩⟨V̇l(zt′)⟩ is a nonequilibrium correlation

function, and ⟨...⟩ denotes an average over a microcanonical distribution of initial conditions

with energy E0.

Just like in the monochromatic case, we now approximate these correlation functions

C
(kl)
neq (t, t′;E0) by their equilibrium counterparts, defined in terms of the undriven trajectories

z0t :

C(kl)(s;E0) ≡ ⟨V̇ ∗
k (z

0
0)V̇l(z

0
s)⟩ − ⟨V̇ ∗

k (z
0
0)⟩⟨V̇l(z0s)⟩. (A.4)

If we make this substitution in (A.3), and use the variable of integration s ≡ t′ − t instead of t′,

we have

Var(E) =
∑

k,l∈Z\{0}

∫ ∆t

0

dt

∫ ∆t−t

−t

ds ei(l−k)ωt+ilωsC(kl)(s;E0). (A.5)

Now, consider the (k, l) term in this sum, which we denote by Ikl. If we reverse the order

of integration, the outer integral over s will run from −∆t to ∆t, and the inner integral over t

will run over some subset of the range [0,∆t], determined by the value of s. The inner integral

is a simple integral of ei(l−k)ωt, which for l ̸= k is bounded in magnitude by 2/(|l − k|ω). The

magnitude of Ikl is thus bounded by

|Ikl| ≤
2

|l − k|ω

∫ ∆t

−∆t

ds |C(kl)(s;E0)|, (A.6)
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where we have invoked the triangle inequality |
∫ b

a
dx f(x)| ≤

∫ b

a
dx |f(x)| for integrals.

As in the monochromatic case, we are interested in ∆t ≫ τC , since the system will only

exhibit energy diffusion on timescales much longer than τC , the intrinsic correlation time for the

system. For s ≫ τC , the correlation function C(kl)(s;E0) will be approximately zero. Thus

for ∆t ≫ τC , we incur little error by setting the range of s in (A.6) to (−∞,+∞). (A.6)

then becomes a ∆t-independent bound on |Ikl|. Since we are ultimately interested in calculating

g2(E0, ω) = Var(E)/∆t, this bound tells us that the l ̸= k contributions to g2 can be neglected,

since Ikl/∆t will be very small for large ∆t.

Meanwhile, the l = k terms in (A.5) are generally not negligible. For these terms, the

integral over t and s can be approximated using the same techniques as was used to evaluate

(2.16) in the monochromatic case; details may be found in references such as [124]. If we make

these approximations, and relabel E0 as E, our final expression for g2(E0, ω) = Var(E)/∆t

becomes

g2(E,ω) = 2
∞∑
k=1

S(k)(kω;E). (A.7)

where

S(k)(ν;E) =

∫ ∞

−∞
dt e−iνtC(kk)(t;E) (A.8)

is the power spectrum of V̇k(z0t ), which is equal to the Fourier transform of the the autocorrelation

function C(kk)(t;E) = ⟨V̇ ∗
k (z

0
0)V̇k(z

0
t )⟩ − ⟨V̇ ∗

k (z
0
0)⟩⟨V̇k(z0t )⟩ by the Wiener-Khinchin theorem

[125]. Note that the sum over k now only runs over positive integers. This is because the k term

S(k)(kω;E) and the −k term S(−k)(−kω;E) can be shown to be equal, by invoking the relation
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V−k = V ∗
k . Therefore we have just included the positive k terms, and then doubled the result.

Finally, we can quickly confirm that this reduces to the result (2.20) for the monochromatic

case, when V (z, t/T ) = V (z) cos(ωt). In this case, we have V±1(z) = V (z)/2, and Vk(z) = 0

for k ̸= ±1. For this choice of the functions Vk, (A.7) simplifies to (2.20).
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Appendix B: Details in the derivation of the fluctuation-dissipation relation

Here, we argue that the quantity in square brackets in (2.21) is zero, which allows us to

establish the fluctuation-dissipation relation (2.22) (see Chapter 2, Section 2.4). We do so by

identifying this quantity with an unnormalized probability current, which we then show must

vanish.

To begin, let us define a probability current J for systems described by the energy diffusion

model. For a given solution η, we define:

J [η](E, t) ≡ − d

dt

∫ E

Emin

dE ′ η(E ′, t). (B.1)

Here, Emin denotes the minimum possible energy of the system, which may be −∞. By

definition, J [η](E, t) ≡ J gives the instantaneous rate of flow of probability across the point

E in energy space at the time t. Put differently, over a short time interval [t, t + dt], J [η](E)dt

is the fraction of trajectories in the ensemble which increase from an energy < E to an energy

> E, minus the fraction which go the other way.

If we move the time derivative in (B.1) under the integral sign, and use the expression for

∂η/∂t furnished by the Fokker-Planck equation (2.11), then we may integrate with respect to E ′

to obtain
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J [η](E, t) = K[η](E, t)−K[η](Emin, t), (B.2)

where we have defined K[η](E, t) ≡ g1η − 1
2
∂(g2η)/∂E.

In fact, the boundary termK[η](Emin, t) can be shown to vanish, by way of the construction

in Figure B.1. At any given time t, consider a solution η′ to the Fokker-Planck equation which is

identical to η for E near Emin, but which vanishes along with its derivatives near E = Emax

(the maximum possible energy of the system, which may be infinite). By construction, we

have K[η′](Emin, t) = K[η](Emin, t) and K[η′](Emax, t) = 0. Moreover, by conservation of the

total probability, we know that J [η′](Emax, t) must vanish, which implies that K[η′](Emax, t) =

K[η′](Emin, t) by (B.2). Combining these equalities, we see that the boundary termK[η](Emin, t)

must be zero, and so (B.2) takes the form:

J [η](E, t) = g1η −
1

2

∂

∂E
(g2η) . (B.3)

This vanishing of the boundary term is physically plausible, since the instantaneous flow of

probability at an energy E should only depend on the behavior of η near E. If this term was

nonzero, it would suggest a “nonlocal” probability current from Emin to E (or vice versa), which

is inconsistent with the small energy changes predicted by the energy diffusion description.

With the expression (B.3) identified as the probability current, we can return to (2.21) in

Chapter 2, Section 2.4. (2.21) now simply tells us that the unnormalized current J [Σ](E) is

constant as a function of E:
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Figure B.1: Construction used to establish the expression (B.3) for the probability current, for a
system with a finite range of possible energies. The distribution η′(E, t) (dashed purple line) is
defined so that it is equal to the distribution η(E, t) (solid blue line) around E = Emin, and so
that it vanishes along with its derivatives near E = Emax.

0 = − ∂

∂E

[
g1Σ− 1

2

∂

∂E
(g2Σ)

]
= −∂J [Σ](E)

∂E
. (B.4)

We may determine this constant via a construction similar to the one pictured in Figure

B.1. Consider a normalized solution to the Fokker-Planck equation Σ′(E, t) ≡ Σ′ which is equal

to Σ for energies near Emin at some time t. Such a solution exists as long as the volume of phase

space Ω(E) (see (2.8)) is finite, which we previously assumed. By (B.3), the currents J [Σ](Emin)

and J [Σ′](Emin, t) are equal. But by the definition of the probability current (B.1), J [Σ′](Emin, t)

must vanish, and so J [Σ](Emin) is zero as well. Since J [Σ](E) is a constant, this means that it

must vanish for all E: J [Σ](E) = g1Σ − 1
2
∂(g2Σ)/∂E = 0. Solving this equation for g1 yields

the fluctuation-dissipation relation (2.22).
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Appendix C: Details in the calculation of g2 for billiard systems

In this appendix, we fill in certain technical details of the calculations in Chapter 3, where

we derived the expression (3.18) for the energy diffusion coefficient for billiard systems. We

start from (3.13) in Chapter 3 (labelled as (C.1) in this appendix), which expresses the energy

variance Var(E) in terms of a sum over collisions with the billiard wall. We argue that correlations

between different terms in this sum may be effectively ignored for large ω, allowing us to obtain

the simplified expression (3.14) ((C.8) in this appendix). We then further evaluate this quantity

in terms of an integral over the billiard boundary, leading to the result (3.15).

First, we reproduce (3.13) here:

Var(E) = 4ω−2

〈[
N∑
k=1

(Fk · n̂k) (vk · n̂k) sin(ωtk)

]2〉

− 4ω−2

〈
N∑
k=1

(Fk · n̂k) (vk · n̂k) sin(ωtk)

〉2

+O(ω−3).

(C.1)

Let us start at the second term, corresponding to the square of ⟨∆E⟩. Defining the shorthand

ak ≡ (Fk · n̂k) (vk · n̂k), we have:

⟨∆E⟩ = 2ω−1

〈
N∑
k=1

ak sin(ωtk)

〉
+O(ω−2). (C.2)
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The kth term in this sum depends on ak and tk, which are ultimately determined by the

initial conditions (x0,v0) for each particle in the ensemble. Since (x0,v0) is randomly sampled

according to the microcanonical distribution (3.8), ak, tk, and N are all random variables.

Therefore, we may express the average of each term as an average with respect to Pk(ak, tk, N),

the joint probability distribution for ak, tk, and N . By the rules of conditional probability,

Pk(ak, tk, N) may be decomposed as

Pk(ak, tk, N) = Pk(ak, N)Pk(tk|ak, N), (C.3)

where Pk(ak, N) is the joint probability distribution for ak and N , and Pk(tk|ak, N) is the

probability distribution for tk, conditioned on particular values of ak and N . For the kth term

in (C.2), we then compute the average by summing over all possible values of N , and integrating

over all values of ak and tk:

⟨∆E⟩ = 2ω−1

∞∑
N=0

N∑
k=1

∫
dak Pk(ak, N) ak

∫
dtk Pk(tk|ak, N) sin(ωtk) +O(ω−2). (C.4)

Recall that the quantities being averaged over are associated with trajectories in an

ensemble of driven particles. However, for large values of ω, each driven trajectory is only

weakly perturbed from its undriven counterpart: The trajectory evolved from the same initial

condition (x0,v0), but with F(x) = 0. So, to leading order in ω−1, we may replace Pk(ak, N)

with P 0
k (ak, N), the joint distribution for ak and N in the absence of driving. Similarly, we

replace Pk(tk|ak, N) with P 0
k (tk|ak, N), the conditional distribution for tk in the absence of
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driving. Importantly, these new undriven distributions are entirely independent of ω, since they

are completely determined by the dynamics of the undriven trajectories. Assuming that these

undriven distributions differ from their driven counterparts by an amount of order O(ω−1), we

obtain:

⟨∆E⟩ = 2ω−1

∞∑
N=0

N∑
k=1

∫
dak P

0
k (ak, N) ak

∫
dtk P

0
k (tk|ak, N) sin(ωtk) +O(ω−2). (C.5)

Finally, consider the inner integral over tk. The integrand is the product of P 0
k (tk|ak, N),

which is independent of ω, and sin(ωtk), an oscillatory function with zero time average. It is

straightforward to show that integrals of this form approach zero like ω−1 or faster for large ω.

Therefore, this integral is of order O(ω−1) for each k, and we are left with

⟨∆E⟩ = O(ω−2). (C.6)

This implies that Var(E) = ⟨(∆E)2⟩+O(ω−4). We may now express (3.13) as:

Var(E) = 4ω−2

〈
N∑
k=1

N∑
l=1

akal sin(ωtk) sin(ωtl)

〉
+O(ω−3). (C.7)

We evaluate this average similarly to how we computed ⟨∆E⟩. The logic is the same: To

leading order, the average may be calculated with respect to the ensemble of undriven trajectories.

Then, for l ̸= k, the integrals over tk and tl in the average are of order O(ω−1), because of the

oscillating factor sin(ωtk) sin(ωtl) in the integrand. The contribution of the l ̸= k terms to Var(E)

is therefore of order O(ω−3), because of the factor ω−2 outside the sum. For the l = k terms, we
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note that sin(ωtk) sin(ωtl) = sin2(ωtk) = 1
2
− 1

2
cos(2ωtk), the sum of a constant term and an

oscillatory term. The contributions to Var(E) corresponding to the oscillatory term −1
2
cos(2ωtk)

are also of order O(ω−3). Thus, the only remaining contribution to Var(E) is given by

Var(E) = 2ω−2

〈
N∑
k=1

a2k

〉
0

+O(ω−3), (C.8)

where we have added the subscript 0 to emphasize that the average is over the ensemble of

undriven particles. Recalling that ak = (Fk · n̂k) (vk · n̂k), we see that this is (3.14) in Chapter

3.

We briefly pause to interpret this result. In evaluating ⟨(∆E)2⟩ and ⟨∆E⟩, we have seen

that for large ω, the oscillatory factors sin(ωtk) average to zero. These factors become effectively

uncorrelated with one another, and with the quantities ak. Intuitively, this lack of correlation

arises because otherwise similar trajectories in the ensemble may have totally different values of

sin(ωtk): Two nearby trajectories with even a small difference between their associated collision

times tk will have a huge O(ω) difference in the corresponding values of ωtk. As a result, the

phases ωtk mod 2π effectively become independent random variables, uniformly distributed on

[0, 2π).

To reiterate, the average (C.8) is taken over a microcanonical ensemble of initial conditions

with energy E0, evolved for a time ∆t according to the undriven equations of motion. The sum∑N
k=1 a

2
k is over all collisions which occur from t = 0 to t = ∆t. Our strategy will be to

decompose this sum into many small contributions, evaluate the average of each contribution,

and then add up all these results.

Specifically, let us divide up the boundary of the billiard into infinitesimal patches, indexed
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by a variable l: Each patch is centered on a point x(l) on the boundary, and has a (d − 1)-

dimensional hyper-area dS. Moreover, we partition velocity space into infinitesimal hypercubes

of hyper-volume ddv labeled by m, each centered on a velocity point v(m). Finally, we divide

up the time interval from t = 0 to t = ∆t into infinitesimal segments of duration dt, beginning

at successive times t(n) = n dt = 0, dt, 2 dt .... Let us now sum a2k, only counting collisions

associated with a particular choice of the indices l, m, and n: Those collisions which occurred

on the patch containing x(l), with incoming velocity in the velocity cell corresponding to v(m),

between the times t(n) and t(n) + dt. If we denote an average over such a restricted sum with

⟨...⟩0,l,m,n, then Var(E) is just a sum over such averages:

Var(E) = 2ω−2
∑
l,m,n

〈
N∑
k=1

a2k

〉
0,l,m,n

+O(ω−3). (C.9)

For a given choice of l, m, and n, what is this average? Well, for all collisions

associated with a particular l and m, we have that a2k ≈
[
F(x(l)) · n̂(x(l))

]2 [
v(m) · n̂(x(l))

]2 ≡

(F · n̂)2 (v · n̂)2, so this factor can be brought outside the average. Then, we are simply

averaging over the number of collisions corresponding to l, m, and n. This is only nonzero for

a small fraction of the ensemble with associated phase space volume v(m) · n̂(x(l)) dt dS ddv ≡

v · n̂ dt dS ddv (see Figure C.1); the corresponding average is therefore ρE0(x
(l),v(m)) ≡ ρE0

times this volume elment. Thus, we can convert the sum of over l, m, and n into an integral over

x, v, and t, obtaining:

Var(E) = 2ω−2∆t

∫
dS

∫
v·n̂>0

ddv ρE0 (F · n̂)2 (v · n̂)3 +O(ω−3). (C.10)

Note the restriction to v · n̂(x) > 0, since a collision can only occur if the incoming
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velocity v is directed towards the wall. We can interpret the quantity ρE0(x,v)v · n̂(x) as

the differential average collision rate in the microcanonical ensemble, for collisions at the

point x on the boundary with incoming velocity v. Var(E) is then obtained by integrating

[F(x) · n̂(x)]2 [v · n̂(x)]2 over all possible collisions, weighted by the rate at which each type

of collision occurs.

Figure C.1: Diagram of collisions associated with a given choice of l, m, and n, for the case
of d = 2 dimensions. The curved line represents the billiard boundary, and n̂(x(l)) ≡ n̂ is
the outward-facing normal near such collisions. Over the infinitesimal time interval from t(n)

to t(n) + dt, any particle in the shaded parallelogram with velocity v(m) ≡ v will collide with
the boundary sometime during this interval. The area of this parallelogram is v · n̂ dt dS, and
so collisions associated with l, m, and n correspond to a phase space volume of v · n̂ dt dS ddv.
Analogous arguments apply to higher-dimensional billiards.

With the definition of ρE0(x,v) (see (2.6)), we may perform the integral over v using

d-dimensional spherical coordinates. The result is

Var(E) = 4Bd−1ω
−2∆t

(d+ 1)mΣ(E0)

∫
dS vd+1

E0
(F · n̂)2 +O(ω−3). (C.11)

Here, Bd−1 is the hyper-volume of the unit ball in (d− 1)-dimensional space, and vE0(x) ≡ vE0
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is defined as in (3.16).

We can rewrite this expression in terms of γE0(x), the differential average collision rate for

collisions at the location x. γE0(x) is obtained by integrating ρE0(x,v)v · n̂(x) over all v such

that v · n̂(x) > 0. This is another spherical integral; the result is given by (3.17). Comparing

(3.17) and (C.11), we obtain (3.15) in Chapter 3.
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Appendix D: Alternative calculation of g2 for billiards

In this appendix, we provide an alternative derivation of the energy diffusion coefficient

in a billiard system. We show that the billiard-specific expression for g2, given by (3.18),

may be obtained directly from the more general result g2(E,ω) = 1
2
S(ω;E). This establishes

consistency between the general approach of Chapter 2, applicable to an arbitrary chaotic

Hamiltonian system subject to a a rapid periodic drive, and the billiard calculations in Chapter 3.

The result g2(E,ω) = 1
2
S(ω;E), first given in (2.20), is valid under the general

assumptions for energy diffusion laid out in Chapter 2, plus the assumption of a monochromatic

driving Hamiltonian V (z) cos(ωt). The power spectrum S(ω;E) =
∫∞
−∞ dt e−iωtC(t;E) is

the Fourier transform of the autocorrelation function C(t;E) for the observable V̇ (z0t ). Since

C(t;E) ≡ ⟨V̇ (z00)V̇ (z0t )⟩ − ⟨V̇ (z00)⟩⟨V̇ (z0t )⟩ is a real-valued, even function of t, we may ignore

the imaginary part of the factor e−iωt in its Fourier transform, and express g2 as

g2(E,ω) =

∫ ∞

0

dt cos(ωt)C(t;E). (D.1)

Note the new range of integration (0,∞).

To begin deriving the billiard-specific expression for g2, given by (3.18), let us now

integrate by parts twice in the above expression. Upon doing so, we find that the boundary

terms at t = ∞ vanish, since C(t;E) and its time derivatives approach zero for large t (this is the
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decay of correlations induced by the chaotic dynamics). We are then left with

g2(E,ω) = −ω−2C ′(0+;E)− ω−2

∫ ∞

0

dt cos(ωt)C ′′(t;E), (D.2)

where primes ′ denote partial derivatives with respect to time, and where C ′(0+;E) is the limit of

C ′(t;E) as t approaches zero from the right. Now, the integral on the right hand side will decay

to zero as ω approaches infinity: This integral is simply the real part of a Fourier transform, and

the Fourier transform of any well-behaved (e.g., square-integrable) function will approach zero

at large arguments. Therefore, for large ω, the leading order contribution to g2 is simply given by

g2(E,ω) = −ω−2C ′(0+;E). (D.3)

For Hamiltonian systems with smooth dynamics in phase space, this expression simply

provides the unhelpful approximation g2(E,ω) = 0: For such systems, C(t;E) is a smooth,

even function of t, and therefore C ′(t;E) is odd and must vanish at t = 0. This is reflective of

the fact that the Fourier transform of a smooth function decays faster than any power of ω−1 for

large ω [126]. However, for a billiard, the discontinuous evolution of the system during collisions

produces a cusp at t = 0 in the autocorrelation function C(t;E), allowing the slope C ′(0+;E) at

the cusp to be nonzero (see Figure D.1). We now turn to the calculation of this slope.

By definition, we can compute C ′(0+;E) by considering the correlation function C(t;E)

for small t > 0, and then taking the limit of [C(t;E)− C(0;E)] /t as t approaches zero. For

a billiard, V (z) corresponds to the potential function V (x), and therefore V̇ (zt) is given by

dV (xt)/dt = −F(xt) · vt ≡ −Ft · vt. The correlation function C(t;E) is then
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Figure D.1: The autocorrelation function C(t;E) = ⟨(F0 · v0) (Ft · vt)⟩ for a typical billiard
system. C ′(0+;E) is the slope of C(t;E) to the right of the cusp at t = 0.

C(t;E) = ⟨(F0 · v0) (Ft · vt)⟩, (D.4)

where we have noted that ⟨Ft · vt⟩ = 0, since −Ft · vt is the time derivative of V (xt), and the

equilibrium average of the time derivative of any phase space function must vanish.

Now, the ensemble average defining C(t;E) is an integral over microcanonically

distributed initial conditions (x0,v0). For small (infinitesimal) t > 0, we may divide these

initial conditions and the corresponding trajectories into two groups: Trajectories which evolve

smoothly according to Newton’s law (3.1) during the interval [0, t], and trajectories which include

a single collision with the billiard boundary during this time interval. Working to first order in t,

for the first class of trajectories we may approximate Ft · vt by F0 · v0 + t [d (Ft · vt) /dt]t=0.

For the trajectories with a collision, by the reflection law (3.2) we have Ft · vt ≈ F0 · v0 −

2(F0 · n̂)(v0 · n̂), where n̂ is the unit normal to the wall at the point of collision (there is also

a term of order t here, but the fraction of trajectories with a collision is itself of order t, so we

can neglect this). So, if we use ⟨...⟩C and ⟨...⟩NC to denote modified averages where we only

integrate over trajectories which collide (C) or do not collide (NC) with the wall, then we have
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⟨...⟩ = ⟨...⟩C + ⟨...⟩NC , and our approximations for the two cases yield:

C(t;E) = ⟨(F0 · v0)
2⟩C − 2⟨(F0 · v0) (F0 · n̂) (v0 · n̂)⟩C

+ ⟨(F0 · v0)
2⟩NC + t

〈
(F0 · v0)

d (F0 · v0)

dt

∣∣∣∣
t=0

〉
NC

+O(t2).

(D.5)

In this expression, the first and third terms sum to yield ⟨(F0 · v0)
2⟩ = C(0;E). Since

the fraction of trajectories which collide with the wall is of order t, the fourth term is just the

unmodified average t ⟨(F0 · v0) [d (Ft · vt) /dt]t=0⟩, up to O(t2) corrections. But this average

vanishes, since (F0 · v0) [d (Ft · vt) /dt]t=0 is just the time derivative of (Ft · vt)
2 /2 at t = 0

(recall that equilibrium averages of time derivatives vanish). We are left with

C(t;E) = C(0;E)− 2⟨(F0 · v0) (F0 · n̂) (v0 · n̂)⟩C +O(t2). (D.6)

This modified average over colliding trajectories may then be computed similarly to the average

(C.9) in Appendix C, using Figure C.1 as a guide. For a given v0, and a given infinitesimal patch

of the billiard wall (with hyper-area dS), a set of trajectories in a region of volume (v0 · n̂) t dS

will collide with the patch. Integrating over all such patches, and over all velocities v0 with

v0 · n̂ > 0, we obtain

C(t;E) = C(0;E)− 2 t

∫
dS

∫
v0·n̂>0

dv0 ρE (F0 · v0) (F0 · n̂) (v0 · n̂)2 +O(t2), (D.7)

where ρE ≡ ρE(x0,v0) is the microcanonical distribution.
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Finally, consider the integral over v0 in the above expression. We can decompose any v0

as v0 = v∥n̂ + v⊥, where v∥ ≡ v0 · n̂ is the component of v0 parallel to n̂, and v⊥ ≡ v0 − v∥n̂

is the projection of v0 parallel to the billiard boundary. The integral over v0 may be considered

as an integral with respect to v∥ and v⊥ separately, where the integral over v∥ runs from 0 to ∞,

and the integral over v⊥ runs over all v⊥ ∈ Rd−1. This decomposition becomes useful when

we consider the factor (F0 · v0) = v∥ (F0 · n̂0) + F0 · v⊥ in the integral. When we integrate

over v⊥, the integral over the second term F0 · v⊥ vanishes, since we are integrating uniformly

over all possible orientations of v⊥ (this follows from the fact that ρE ∝ δ (E(x0,v0)− E) =

δ
(

1
2
mv2∥ +

1
2
m|v⊥|2 + U(x0)− E

)
is a spherically symmetric function of v⊥). Thus, upon

dropping this term, we obtain the result

C(t;E) = C(0;E)− 2 t

∫
dS

∫
v0·n̂>0

dv0 ρE (F0 · n̂)2 (v0 · n̂)3 +O(t2). (D.8)

Taking the limit as t goes to zero, and substituting the result into (D.3), then yields our desired

expression for g2:

g2(E,ω) = 2ω−2

∫
dS

∫
v0·n̂>0

dv0 ρE (F0 · n̂)2 (v0 · n̂)3 . (D.9)

This is (C.10) in Appendix C, up to a factor of ∆t and O(ω−3) corrections. The subsequent

calculations in Appendix C show that this expression is equal to (3.18), the billiard-specific

expression for g2 obtained in Chapter 3.
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Appendix E: Description of numerical calculations for the clover billiard

Here, we describe the details of the numerical simulations presented in Chapter 3, Section

3.5. For a particle in the clover billiard subject to a force F cos(ωt), we discuss how to evolve the

particle according to the equations of motion, and how to solve the corresponding Fokker-Planck

equation.

First, let us describe the evolution of the trajectory ensemble. We consider an ensemble of

particles with initial energy E0 at t = 0, with a microcanonical distribution of initial conditions.

For a standard billiard (U(x) = 0), the microcanonical distribution (2.6) corresponds to sampling

the initial positions x0 from a uniform distribution over the billiard’s area, and the initial velocities

v0 from an isotropic distribution with fixed speed v0 ≡
√
2E0/m. We generate N ≫ 1

independent samples in this way, and then evolve each sample in time by alternately integrating

the equations of motion (3.1), and updating the velocity according to the reflection law (3.2)

whenever the particle collides with the wall. In between the kth and (k+ 1)th collisions, we may

integrate (3.1) explicitly to obtain xt and vt. Using the same notation as in Section 2.4, we find:

xt = xk +

[
v+
k − F

mω
sin(ωtk)

]
(t− tk)−

F

mω2

[
cos(ωt)− cos(ωtk)

]
, (E.1)

vt = v+
k +

F

mω

[
sin(ωt)− sin(ωtk)

]
. (E.2)
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We see that the particle rapidly oscillates within a small envelope about a straight-line average

trajectory. Given the above expressions, finding the next position and velocity at the (k + 1)th

collision is simply a matter of solving numerically for where and when this trajectory next

intersects with the billiard wall.

In this way, we determine the trajectory of each particle in the ensemble between t = 0

and some t = ∆t. Then, for any time t ∈ [0,∆t], we compute the energy E = 1
2
m|vt|2 of each

particle, and collect all of these energy values into a histogram. This histogram gives an excellent

approximation of the energy distribution η(E, t); it only deviates from η(E, t) due to the finite

number of samples and the small machine error accrued when computing each trajectory.

To compare these results with the energy diffusion description, we then solve the Fokker-

Planck equation (2.11). For a standard billiard, the Fokker-Planck equation admits an analytical

solution which has been studied previously. To show this, we note that by (3.21) and (3.22), we

have g1 = CE1/2 and g2 = 4CE3/2/(d+ 1), where C is a constant independent of energy. If we

substitute these expressions into (2.11), and define the rescaled time variable s ≡ Ct, then after

some manipulations we obtain:

∂η

∂s
=

2

d+ 1

∂

∂E

[
E(1+d)/2 ∂

∂E

(
E(2−d)/2η

)]
. (E.3)

This equation is identical to Equation (60) in [72]. This reference also provides the solution to

this equation for the initial condition η(E, 0) = δ(E − E0), which we reproduce here:
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η(E, t) = η(E, s/C) =
d+ 1

sE
1/2
0

(
E

E0

)(d−3)/4

Id−1

[
4(d+ 1)

s
E

1/4
0 E1/4

]
· exp

[
−2(d+ 1)

s

(
E

1/2
0 + E1/2

)]
.

(E.4)

Here, Id−1(x) is the modified Bessel function of the first kind, of order d− 1.

It only remains to compute the constant C for the special case of the clover billiard:

C =

(
2

m

)3/2
ω−2

λ

1

S

∫
dS (F · n̂)2 . (E.5)

In d = 2 dimensions, S is the perimeter of the billiard, and the integral over dS is a line

integral over the billiard boundary. For a constant F(x) = F, upon performing the appropriate

line integrals we find that S−1
∫
dS [F(x) · n̂(x)]2 = F 2/2, where F ≡ |F|. Then, we can use

the relation λ ≡ d
Bd

Bd−1

V

S
with d = 2 to obtain λ = πV/S. In two dimensions, V is the area of

the billiard. V and S are geometric quantities which may be computed in terms of the radii R1

and R2. For the specific case of R1 = 1 and R2 = 2, we find that λ ≈ 2.610. Upon combining

these results, and setting m = 1, we obtain:

C ≈ 0.5419ω−2F 2. (E.6)

With this result, we may now determine the distribution η(E, t) at any time t, given the parameter

choices m = 1, R1 = 1, R2 = 2, and F = F (x̂ + ŷ)/
√
2. We simply select values for F and ω,

and then substitute the resulting value of C into (E.4) (recalling that s = Ct, and that d = 2).
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scientifiques de l’École normale supérieure, volume 12, pages 47–88, 1883.

[190] G. W. Hill. On the part of the motion of the lunar perigee which is a function of the mean
motions of the sun and moon. Acta Math., 8(1):1–36, 1886.

[191] A. M. Lyapunov. The general problem of the stability of motion. Int. J. Control, 55(3):531–
534, 1992.

[192] I. Scholz, J. D. van Beek, and M. Ernst. Operator-based Floquet theory in solid-state nmr.
Solid State Nucl. Magn. Reson., 37(3-4):39–59, 2010.

[193] E. S. Mananga and T. Charpentier. On the Floquet–Magnus expansion: applications in
solid-state nuclear magnetic resonance and physics. Phys. Rep., 609:1–49, 2016.

[194] K. L. Ivanov, K. R. Mote, M. Ernst, A. Equbal, and P. K. Madhu. Floquet theory in
magnetic resonance: Formalism and applications. Prog. Nucl. Magn. Reson. Spectrosc.,
126:17–58, 2021.

213



[195] M. Holthaus. Floquet engineering with quasienergy bands of periodically driven optical
lattices. J. Phys. B, 49(1):013001, 2015.

[196] C. A. Klausmeier. Floquet theory: a useful tool for understanding nonequilibrium
dynamics. Theor. Ecol., 1(3):153–161, 2008.

[197] J. P. Tian and J. Wang. Some results in Floquet theory, with application to periodic
epidemic models. Appl. Anal., 94(6):1128–1152, 2015.

[198] R. A. Calico and W. E. Wiesel. Control of time-periodic systems. J. Guid. Control Dyn.,
7(6):671–676, 1984.

[199] S. C. Sinha and P. Joseph. Control of general dynamic systems with periodically varying
parameters via Liapunov-Floquet transformation. 1994.

[200] I. A. Assi, J. P. F. LeBlanc, M. Rodriguez-Vega, H. Bahlouli, and M. Vogl. Floquet
engineering and nonequilibrium topological maps in twisted trilayer graphene. Phys. Rev.
B, 104(19):195429, 2021.

[201] K. Drese and M. Holthaus. Floquet theory for short laser pulses. Eur. Phys. J. D, 5(1):119–
134, 1999.

[202] S.-I. Chu and D. A. Telnov. Beyond the Floquet theorem: generalized Floquet formalisms
and quasienergy methods for atomic and molecular multiphoton processes in intense laser
fields. Phys. Rep., 390(1-2):1–131, 2004.
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