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The shortest tour distance for visiting all points exactly once and returning to the

origin is computed by solving the well-known Traveling Salesman Problem (TSP). Due
to the large computational effort needed for optimizing TSP tours, researchers have
developed approximations that relate the average length of TSP tours to the number of
points n visited per tour. The most widely used approximation formula has a square
root form: v/n multiplied by a coefficient 5. Although the existing models can
effectively approximate the distance for conventional vehicles with large capacities
(e.g., delivery trucks) where 7 is large, approximations that seek to cover large ranges
of'n, possibly to infinity, tend to yield poorer results for small z values. This dissertation
focuses on approximation models for small » values, which are needed for many
practical applications, such as for some recent delivery alternatives (e.g., drones). The

proposed models show promise in analyzing the real-world problems in which actual



tours serve few customers due to limited vehicle capacity and incorporate realistic
constraints, such as the effects of a starting point location, geographical restrictions on
movements, demand patterns, and service area shapes. The dissertation may open new
research avenues for analyzing the new transportation alternatives and provide
guidelines to planners for choosing appropriate models in designing or evaluating
transportation problems.

Approximation models are estimated from the following experiments: 1) a total of
60 cases are developed by considering various factors, such as point distributions and
shapes of service areas. 2) Solution methods for TSP instances are compared and
chosen. 3) After the TSPs are optimized for each n, the TSP tour lengths are averaged.
4) Lastly, models for the averaged TSP tour lengths are fitted with ordinary least
squares (OLS) regression.

After the approximations are developed, some possible extensions are explored.
First, adjustment factors are designed to integrate the 60 cases within one equation.
With those factors, it can be understood how approximation varies with each
classification. Next, the approximations considering stochastic customer presence (i.e.,
probabilistic TSP) are proposed. Third, the approximated tour lengths are compared
with the optimal solutions of vehicle routing problem (VRP) in actual rural and urban
delivery networks. Here, some additional factors, such as a circuity factor and service
zone shape, are discussed.

Lastly, the proposed methodology is applied to formulate and explore various types

of existing and hypothetical delivery alternatives.
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Chapter 1: Introduction

1.1 Background and Motivation

The shortest tour distance for visiting all # points exactly once and returning to the origin is
computed by solving the well-known Traveling Salesman Problem (TSP) (Applegate et al.
2006). This problem belongs to the class of NP-hard problems in which finding the optimal
path requires computation time that increases exponentially with the number of points n (Ansari
et al. 2018). Due to this large computational effort, researchers have developed approximations
for the relation between the average length of TSP tours and n values. These approximations
provide useful estimates to operators who seek to reduce costs and improve system efficiency
in large-scale problems or some complex transportation systems. Thus, the approximations
have been studied for various transportation planning and system design applications, such as
for public transportation services, facility location, and service fleet sizing.

For long-term system planning and design problems in logistics or public transportation,
planners and service providers can estimate tour lengths and evaluate routing scenarios before

actual demand locations are known (i.e., the exact locations, numbers, and distributions of

demand points). The approximations can help in the development of general planning models
for large and complex systems, e.g., for optimizing characteristics such as zone sizes and
locations, vehicle and fleet characteristics, service quality standards and facility locations.
Based on the results of such system planning models, resources can be efficiently allocated.
For short-term planning problems, the approximations can effectively reveal relations
among vehicle operating variables, instead of applying the TSP algorithm every time the
variables change. Since demands (e.g., package delivery service) vary over days, weeks, and

seasons, operators maintain their vehicle fleet based on the peak demand. With a simple



relation among headway, delivery area size, and demand density per hour for the service area,
the approximation models can account for the following decision variables: frequency, delivery
area size for each vehicle, and the required number of vehicles based on real-time operations.
Similarly, each vehicle's optimal loading capacity (e.g., small or large trucks) or delivery area
partitioned from the entire service region can be obtained with the approximation. This feature
helps to adapt vehicle operation responsively to daily/hourly demands, such as by subdividing
large areas into time-varying and possibly overlapping zones served by TSP tours.

The most widely used approximation formula has a square root form: v/n multiplied by
coefficient S. The existing models can effectively approximate the tour length for vehicles with
large capacities (e.g., trucks) where n is large. However, approximations that seek to cover
large ranges of n, possibly to infinity, tend to yield poorer results for small » values since the
coefficients f decrease as n increases. Therefore, this dissertation focuses on developing
approximation models for small » values to analyze the real-world problems in which actual
tours visit relatively few points. Note that the “small” n values could be subjective depending
on intended applications:

e Flexible-route passenger services (e.g., carpool, dial-a-ride, and airport shuttle)
e Deliveries of large items (e.g., large household appliances)

e Tours by service and repair workers

The approximations proposed in this dissertation may open new research avenues for
analyzing recent transportation options, such as deliveries by robotic vehicles with small
capacity. Deliveries by robotic vehicles and drones have gained traction in e-commerce due to
their potential for reducing labor costs and endeavors to support social-distancing efforts during
the pandemic since late 2019. Each shipment by robots and drones costs about $1.40 and $0.76,

respectively, while the cost per delivery by humans is estimated at $2.50 (Cuthbertson, 2016;



Korman, 2019). For these growing needs of autonomous last-mile delivery, the global market
size is expected to grow from $12.0 billion in 2019 to $91.5 billion by 2030 (Bloomberg, 2019).
Companies, including Amazon, Google, and JD.com, have demonstrated improvements in
deliveries by drones and robots. Amazon has shown a few prototype delivery drones since 2013
and announced that its drones could fly up to 30 minutes while carrying a 5 1b (2.23kg) package.
Google’s Wing drones have completed 3,000 deliveries over an 18-month trial in suburban
areas of the U.S and Australia (Bass et al. 2019). DHL Express (DHL, 2019) may decrease cost
per delivery by up to 80% in urban areas with drones covering a radius of 8-km distance (i.e.,
a round trip of 16 km). JD.com has developed seven types of delivery drones since 2015 and
tested them in rural settings across China and Indonesia, accumulating over five thousand flight
hours. The company has been experimenting with autonomous ground robots serving urban
populations. Similarly, delivery robots of Starship Technologies can carry items within a 4-
mile (or 6-km) radius while cruising at four mph. Besides these efforts by private firms, the
Federal Aviation Administration allows UPS and Wing (Google’s project) to deliver packages
using drones in the U.S as of 2019. Therefore, UPS Flight Forward announces that its drone
delivery started in May 2020 for providing prescription medicines in Florida (UPS Pressroom,

2020).

1.2 Research Objectives and Scope

The overall objective of this dissertation is to develop practical approximations of TSP tour
distances for visiting points while considering realistic situations (e.g., salesman’s loading
capacity and operating conditions). The methodology has the following features:

- Refines the distance approximation models developed by Beardwood et al. (1959) by

focusing on tours with relatively few points.



- Incorporates realistic operating conditions in the methodology, such as the effects of a
starting point location, demand patterns, and various service area shapes (e.g.,
elongation and shape).

- Develops adjustment factors that incorporate the considerations listed above and
change the approximation coefficient accordingly.

- Provides guidelines to planners or researchers for choosing appropriate models in

designing or evaluating transportation problems.

In seeking to achieve the above features, this dissertation pursues several research goals
listed below:

1. Developing a modeling framework that generates random points visited, optimizes
TSP tours, and eventually derives the tour length approximation models through
statistical estimation

2. Comparing the accuracy of solution methods (i.e., metaheuristics) for optimizing
TSP tour instances

3. Identifying the real-world factors which may violate ideal conditions and
assumptions for the tour length approximation, such as specific point distributions,
elongated service regions, and shapes of regions

4. Comparing model outputs and actual tour distance over real networks in urban and
rural areas

5. Providing adjustment factors to conveniently use the approximation methods,
considering the abovementioned operating characteristics

6. Applying the proposed methodology to analyze and compare the optimized freight
transportation systems, including both existing and hypothetical delivery

alternatives



The proposed tour length approximations are designed for a small number of visited points
n where the range for n lies between 2 and 100. Typical ranges considered in the literature for
n have wider ranges than in this dissertation, i.e., 5 to 100,000 points for n. The difference in

accuracy between the two approximations will be explored later.

1.3 Dissertation Overview and Contributions

The organization of this proposed dissertation is as follows. The principal contributions of
this dissertation are underlined.

Chapter 2 introduces a comprehensive review of existing studies in 1) approximation

methods for the Traveling Salesman Problem (TSP), 2) experiment settings for obtaining the
TSP tour length approximation, and 3) planning models that analyze delivery systems by small
vehicles (i.e., drones, robots, vans, or bikes). The literature focuses on an overview of the
approximation methods and considerations that incorporate real-world constraints. Experiment
settings are discussed, including the point generation, solution methods, sample size, and

ordinary least squares (OLS) regression analysis. In particular, a total of fourteen

metaheuristics and TSP solvers are compared in terms of solution accuracy. Delivery

alternatives for existing and hypothetical delivery modes are analyzed with the proposed
models. The gaps in the current knowledge and further possible improvements in
approximation models are identified from the review.

Chapter 3 develops the TSP approximations through few points. The simulation settings

and various factors are introduced for developing the tour length approximation models. This
chapter presents the assumptions and evaluation criteria. Then, a solution procedure based on
metaheuristics and Concord TSP solver is discussed. The optimized TSP instances are

investigated using statistical analysis.



Chapter 4 explores some possible extensions of the TSP tour length approximation. First,

adjustment factors are developed for more accurate and convenient use of the model. The

factors are designed to integrate six considerations into a single equation. Next, approximations

considering stochastic customer presence are developed. Lastly, the approximated tour lengths

are compared with actual tour distances using data in urban and rural areas. After urban or rural

data are mapped in a GIS platform, data processing (e.g., circuity factor) and optimized routes
by a VRP solver are discussed.

Chapter 5 compares the applicability of various types of autonomous delivery systems.

Models are applied to formulate cost functions for deliveries by ground robots, drones, and

conventional trucks. The cost function of each alternative is optimized and compared with total

costs. Sensitivity analyses are designed to explore how system outputs of such delivery systems
vary with changes in baseline inputs.
Chapter 6 discusses the proposed models for analyzing hypothetical delivery alternatives

with limited vehicle loading capacity. This chapter identifies the applicability of the drone

delivery system in terms of'the total cost. In particular, a drone can lift multiple packages within

its maximum payload and serve recipients in a service area of a given radius. Battery capacities,
the primary energy sources for drone operation, are incorporated as a constraint of the planning
model to relate parcel payloads and flight ranges.

Chapter 7 focuses on a last-mile fresh food delivery system for individuals in underserved

communities with food deserts. To build self-sustainable and cost-effective alternative in

delivering fresh items, a total of five delivery alternatives are proposed and optimized based
on total cost.
Chapter 8 summarizes the tasks completed in this dissertation and suggests potential topics

for future research.



Therefore, the main contributions are summarized as follows: 1) Beardwood’s
approximations are refined by incorporating various relevant factors. 2) The exponent for the
number of points 7 is statistically estimated, unlike in the existing studies which assumed that
tour lengths should vary with the square root of n. These improvements help estimate accurate
TSP tour lengths and solve large system planning and design problems, even when the exact

locations of stopping points are not yet known.



Chapter 2: Literature Review

The dissertation selectively reviewed 22 papers approximating TSP tour lengths with low 7
values and 7 papers chosen for their experimental approaches or solution methods. Excluded
from the approximation studies are 1) those dealing solely with many points (e.g., 7 > 100) and
2) those which applied rather than developed approximation methods. The study includes a few
research publications that consider large » values if they are pioneering in some way or worth
mentioning for their experiments. For experimental approaches, the dissertation focuses

comparing solution methods.

2.1 Overview of Average Tour Length Approximation

2.1.1 Approximations for the TSP Tour Lengths

The average distance between two points in both Euclidean and rectilinear space can be
mathematically derived (Larson and Odoni, 1981, Phillip, 2007, and Burgstaller et al. 2009).
Here, the Euclidean space allows vehicle movements in straight lines between any pair of
points, while rectilinear space refers to movements which are restricted to two orthogonal
coordinates. Although average TSP distance with three points can still be analytically
computed, estimating the tour lengths becomes challenging as the number of points # increases.

In early studies for distance approximation models, Mahalanobis (1940) suggested that
average TSP tour lengths for visiting a set of points » in a region served by a single vehicle
asymptotically converged to v/n with large n, where the points n were scattered at random
within the space. Later, Marks (1948) mathematically proved the approximation by providing

a lower bound for the expected value of the distance as follows:

An-1

Average TSP Tour Length (L) = P (1)



where A4 is the zone size.

With a large n, the coefficient S of Equation (1) found by Marks (1948) was roughly 0.7071.

Beardwood et al. (1959) later estimated the coefficient S to be 0.749 for VnA (Beardwood’s
formula) in Euclidean space and numerical experiments by constructing tour instances. After
Stein (1977) estimated f at 0.765 through Monte Carlo experiments, many researchers
estimated the coefficients using different algorithms. For instance, Ong and Huang (1989)
reported that f converged to 0.7425 with normalized TSP tour lengths.

Table 1 Summary of Literature with Beardwood’s Formula

Authors Solution Estimated Problem  Number of Special
Method Coefficient” Type Points n Considerations
Marks (1948) | Theoretical 0.7071 TSP N/A N/A
Derivation
Beardwood et al. (1959) | Theoretical 0.749 TSP N/A N/A
Derivation
Christofides and Eilon | N/A N/A VRP 10-70 N/A
(1969)
Stein (1977) | Partition 0.765 TSP N/A N/A
Heuristic
Daganzo (1984) | Theoretical 0.9 TSP N/A Shape of a space
Derivation e
Ong and Huang (1989) | 3-optimal 0.7425 TSP 5-N/A N/A
Heuristic
Brunetti et al. (1991) | Cavity Method 0.7251 TSP 50 - 800 N/A
Chien (1992) | Exact Solution ~ 0.88" TSP 5-30 Shape of a space
Fiechter (1994) | Parallel  Tabu 0.7298 TSP 500 - N/A
Search 100,000
Lee and Choi (1994) | Multicanonical ~ 0.7239  ~ TSP 50-40,000 N/A
Annealing 0.8075
Kwon et al. (1995) | Exact Solution - TSP 10 - 80 Shape of a space
Percus and Martin (1996) | Chained local 0.7120 TSP 12 - 100 N/A
optimization +0.0002
Johnson et al. (1996) | Iterated Lin- 0.7124 TSP 100 - N/A
Kernighan +0.0002 100,000
Finch (2003) | N/A 0.75983 ~ TSP N/A N/A
0.98398
Hindle and Worthington | Cheapest S TSP 5-50 Point distribution
(2004) | Insertion
Robusté et al. (2004) | Three Heuristic - TSP, 15-139 Shape of a space
Algorithms™"* VRP
Figliozzi (2008) | Monte ~ Carlo - VRP N/A Point distribution,
Simulation depot location
Applegate et al. (2011) | Cutting-plane 0.7241373~ TSP 100 - N/A
method 0.7764689 2,500
Cavdar and Sokol (2015) | Exact Solution - TSP N/A Point distribution,



Shape of a space
Mei (2015) | Cutting-plane . TSP, N/A Point distribution
method VRP
Leietal (2016) | The Concorde 0.7773827~ TSP 20-90 N/A
TSP Solver 0.8584265
Nicola et al. (2019) | Pilot Method B TSP, 25-1,000 Time window,
VRP demands
Madani et al. (2020) | Simulated S TSP 2-15 Shape of a space
Annealing

* the estimates f in the Euclidean space were listed

** Salesman’s origin (e.g., a depot) was positioned at a fixed location

**%* The studies considered other decision variables or other terms from Beardwood'’s
formula, such as the spatial distribution and variance of points

w#x%x Clarke and Wright, Fisher and Jaikumar, and Gillet and Miller algorithm

*A#E* The shape of space is the shape of the region in which points are generated
(e.g., circular, triangular, or sectorial) to be connected by a tour

Fiechter (1994) estimated the coefficient £ at 0.7298 for large values of n ranging from 500
to 100,000. Lee and Choi (1994) showed f to be 0.721, while Percus and Martin (1996)
estimated /5 to be 0.7120 + 0.0002 in Euclidean space. Johnson et al. (1996) generated large set
of points with » up to 100,000 and found the coefficient f to be 0.7124 within the 95%
confidence intervals of = 0.0002. Note that the estimated S is correlated with the value of n
(Franceschetti et al. 2017). Applegate et al. (2011) estimated the coefficient f by running a
regression on the optimized TSP solution instances for randomly generated » ranging from 100
to 2000. Lei et al. (2015) used a similar approach to Applegate et al. (2011) where »n ranged
between 20 and 90. With the two studies combined, the estimated £ asymptotically approached
an interval ranging from 0.7256264 to 0.8584265 and had a downward trend as » increased, as
shown in Table 1. Another loose bound was found between 0.75983 and 0.98398 (Finch, 2003;
Arlotto and Steele, 2016). Although most of the coefficients cluster around 0.7, a few studies
showed outlying values exceeding 0.8 for the following reasons:

» Experiment settings (e.g., coefficients derived from worst-case TSP tour lengths (Finch,
2003))

» Shapes of area (e.g., elongated (Daganzo, 1984) and sectorial shaped area (Chien, 1992))

This is further explained below.
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2.1.2 Approximations for TSP Variants and VRP Tour Lengths

For the TSP variants and Vehicle Routing Problem (VRP), many researchers have attempted
to estimate the coefficient £ through analytical and experimental studies for different
operational settings, such as vehicle capacity, zone shape, geometry, or point distributions. The
key difference between the TSP and VRP is whether the problem considers vehicle loading
capacities, time constraints, or time windows (Kumar and Panneerselvam, 2012). The TSP
solution would have a single route served by one vehicle, while the VRP has multiple routes
possibly served by multiple vehicles. As such, the number of vehicles should be known a priori
for VRP problems. Alternatively, the single TSP route can be split into several equal tours with
an optimistic assumption that a penalty in terms of extra travel distance does not exist (Odoni
and Larson, 1981).

Christofides and Eilon (1969) first incorporated a vehicle capacity per tour in the formula
and suggested approximations to the VRP tour length based on the shape and area of a region.
Daganzo (1984) proposed an intuitive approximation for a generic irregular service zone,
which divided into multiple subareas containing clusters of points. A vehicle route was
developed to serve each cluster. In this setting, he estimated £ at 0.9 for Euclidean and 1.15 for
rectilinear space. Although £ for the Euclidean might overpredict the tour distance, it suited
spaces with typical shapes.

Chien (1992) derived the coefficient £ at 0.88 through empirical simulations and multiple
regressions. The paper considered 16 different shapes varying in the 1) elongation and 2) angle
of space. Rectangular areas with different length-to-width ratios from 1 to 8 were proposed in
Figure 1 (a). Sectorial-shaped areas were developed with eight central angles from 45° to 360°,

as illustrated in Figure 1 (b). The starting point (i.e., a depot) was positioned at the lower left
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side of the service area. From generated TSP instances, the best-fitted coefficients for

Beardwood’s formula were derived through OLS regression.

1:1 1:2 1:4

45° 90°

a5 a0
(b) Angle of Sectorial-shaped Areas
Figure 1 Shape of Areas Developed by Chien (1992)

Aside from the widely used form of Beardwood, later studies included various terms in the
models, such as a length-to-width ratio or area of the smallest rectangle that covered all points.
Kwon et al. (1995) carried out both simulations and OLS regressions to test the previous
variations (i.e., Beardwood, Daganzo, and Chien).

To the best of our knowledge, most tour length approximations are based on regression
methods since the TSP tour lengths associated with n values are non-linear and can be
effectively fitted with the square root form with a reasonably good R’. However, Kwon et al.
(1995) compared results from the regression with a neural network (NN) model for estimating
the TSP tour length; the latter model provided slightly better approximations than the former.

The NN model was difficult to interpret geometrically due to its characteristic as a so-called “a

black box,” where the model would not give any insights. Hindle and Worthington (2004)
12



developed an alternative expressions for estimating TSP tour lengths, as listed in Equation (2).
The authors approximated the average TSP tour length through simulations and regressions.
L=a xn+bxIn(n)+c (2)
where a, b, and ¢ are constants in a 100 x 100 unit square. a = 3.63, b = 85.78, and ¢ = 62.67.
Anther formulation for the approximation was considered by Cavdar and Sokol (2015), as
presented in Equation (3). The model will be discussed more in detail in the Sections 2.1.3 and

4.1.3.

L= 2.791Jn(cstdevx : cstdevy) + O.2669JnA(stdevx : stdevy)/(c_x " Cy) 3)

where cstdevy and cstdevy are the standard deviations of x (horizontal) and y (vertical)
coordinates from center point, stdevx and stdevy are the standard deviations of the x and y
coordinates, ¢, and ¢,, are the average distances of points to the central x and y coordinate, and
A is a service area size.

Two models were proposed based on demand patterns, namely uniformly random and
probabilistic point distribution. The probabilistic demands were designed to simulate point

distributions and settlement patterns.

2.1.3 Special Considerations in Tour Length Approximations

Later studies for TSP approximations, considered zone shape, geometry, or point
distributions. An extended version of Daganzo’s approximation that considered circular and
elliptical spaces was proposed by Robusté et al. (2004). Figliozzi (2008) proposed VRP tour
length approximations using six different spatial distributions. His models also considered time
windows, demands, and depot location. The study showed that time windows negatively

affected the accuracy of the models; the time windows increased travel distance not only
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because the number of routes was increased but also because the distance between points per
route was increased.

In Equation (3), Cavdar and Sokol (2015) developed approximations by incorporating
standard deviations of point coordinates. In this way, their approximations can estimate average
TSP tour length without knowing the exact point distribution. In Equation (3), the
approximation models consisted of a few variables (e.g., the standard deviations of x and y
coordinates from center and of distances between the point and center in a region). The models
were tested with different spatial distributions, including uniform and triangular distribution.
The models performed well for various shapes of a space, such as a triangular or polygonal
service area. However, the average TSP tour lengths are underestimated if n < 7,000. The use
of approximation can be complicated to for the computation of variables, compared to
Beardwood’s variants (i.e., vVn).

Mei (2015) incorporated spatial distributions in approximating the tour lengths. The average
nearest neighbor index was introduced for measuring the dispersion of points; the index utilized
the distance between centroid and each point. As the point distribution changed from dense
(e.g., clustered) to dispersed, the estimates for £ increased linearly. Nicola et al. (2019)
proposed approximations based on regression models by adding more variables, such as time
windows, vehicle capacities, and demands. The proposed model was compared with the
previous models from Cavdar and Sokol (2015) and from Hindle and Worthington (2004).
Unlike other studies estimating the coefficient 5, Madani et al. (2020) investigated the change
of'the TSP tour length if an additional point is added to the service area. They further considered

service area shapes (i.e., square and rectangle).
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2.1.4 Guidelines for Using Distance Approximations

Odoni and Larson (1981) pointed out that Beardwood’s equation could provide a good
approximation if 1) one of the measurements (e.g., width) of space was not much greater than
the other measurement (e.g., length) of a region, 2) points n are distributed randomly and
uniformly and 3) no obstructions or boundaries existed in the region. Such conditions for a
tour’s operating zone were generally called “fairly compact and fairly convex.” For rigorous
definitions of this rule of thumb, numerous measures for both compactness and convexity had
been proposed in the literature. Compactness measures were borrowed from geometric
concepts, such as perimeters, areas, centroids, and vertices (Kaufman et al, 2017). Some
measures are as follows:

e Length-width ratio: the ratio between the length and width of the minimum bounding

rectangle

e Convex hull: the ratio of the area between the space and minimum bounding convex

hull (i.e., the smallest convex polygon containing all the given points)

e Polsby-Popper: the ratio of the area of the space to the squared perimeter of the space.

Similarly, convexity measures have been based on the area or boundary of a space (Zunic
and Rosin, 2004). A boundary-based convexity measure is computed as the ratio of the
perimeter of a space and that of convex hull. An area-based convexity measure computes the
normalized average visible area of a space, divided by the area of the space (Stern, 1989, and
Rote, 2013). The latter method is slightly more challenging to compute.

Most approximation errors here tend to approach zero as n increases: i.e., asymptotically
approaching a certain number. The convergence for TSP tour length approximations can be
observed between n =20 and n = 316,228 (

). The estimated coefficients S only decrease with increases in n values. Therefore,
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when using the approximations for small n, the users must account for discrepancies (e.g.,
lower and upper confidence intervals (Percus and Martin, 1996 and Johnson et al. 1996),

treatments for violating approximation assumptions, or adjustment factors reflecting point

distribution).

2.2 Experimental Approach

2.2.1 Experiment Procedures: Point Generations, Heuristics, and Sample Size

1. Point Generation 2. Solution Method 3. Regression
(Iterations) (e.g., Genetic Algorithm) (Beardwood s coefficient B)

. ) Avg. Tour Length forn =2: 1.333
lteration #1 for n = 49 Avg. Tour Length #1~#1,000: 7.549 Avg. Tour Length forn = 3: 2.019

Avg. Tour Length forn = 49: 7.549
o A bl fR AN 5 | . Ave. Tour Length for n = 50: 7.604
Iteration ﬁZfor n=49 osf (7 MinTour Length #1: 7.608 : etk f

1}

|k A T | -
fin. Tour Length #2: 8.244

@ Joal

o odyg

o B=1.08568
.| lteration #1,000forn =49  |* ’

My, | Tgu £ength #1.000:  6.795

Avg. TSP Tour Length
PR

0
1 5 10 15 20 25 30 35 40 45 50

— — Number of Points
0 02 04 08 08 1

Figure 2 Overall Process for Estimating Beardwood's Coefficient

Except for the theoretical derivations of Beardwood’s coefficients in Table 1, this section
shed light on the derivation of the estimates S from experiments. The experimental method is
illustrated in Figure 2.

First, n points are generated according to a given distribution (e.g., uniformly and randomly)
in a unit space whose area is one. For the point generation, most studies focus on a random and
uniform distribution, while the shape of space is limited to a unit square. Random points
provided in recent simulation programs are generated with the congruential algorithm, which

has been widely used in programming to mimic randomness (Moler, 2008). By generating two
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random numbers uniformly distributed in the interval (0,1), the numbers are regarded as a x-
and y-coordinate of a point in the space. Each point in the x-y plane with both x and y between
0 and 1 is equally likely to be selected.

Second, a solution method is chosen to compute optimized TSP tour lengths. For every TSP
run, the visited points are regenerated after the TSP solution is obtained. From Table 1, no clear
preference or explanation is apparent from researchers in choosing the solution method.
Furthermore, no consensus exists on the “best” heuristic algorithm for solving the TSP
instances as shown in Table 2; ranks imply the shortest TSP solution, while percentage
differences show the difference in ratio between the best solution and the solution obtained by

the selected heuristic method.

17



Table 2 Comparison of Heuristic Algorithms

n Category Authors Solution Method Note
sa | 1s [ ca [ Mma[BcoJaco] Fa [ cs [ uc [pso] s [ gu [ Bs | 1K
05 o dﬁ::rl;ncc Ade(VZJ(())]]EZ)el 3 0?0 A 1.27 A
10 %dli{ﬂa’"enrtnce Gupta (2013) o?o 0.20 —57.6 75(77 I ,:2 753.7 753.7 I 753.7 NA
10 % d?f?enrtnce Da'?foh;r)‘-"m NfA NA N/lA NA N/ZA NA N?A N? A NA p(I:\]iz: Zer::;;:n
13 % d?f?;tnce Ade(\;l(())lk;)el ) 0.10 A 219 NA
15 % dli{(;enrtnce An(SZa(?l ;)t * 0.10 VA 5427 VA
16 %d'i{t?:rl;nce Gupta (2013) -1;4 -12.4 -23,2 -76,3 I -45,4 -;2 22 I 0?0 A
D o dﬁ::rl;ncc Adc(‘;(()):;)a ! 0?0 VA 5(?.2 NA
N (i) Ak | VA m NiA ST Mo
Sl ey B il
» % d?f?;tnce Ade(\;(())ll;)el ) 0.10 NA I 4.24 I NA
Bl o T ]
¥ % dﬁ::rincc Cupta (2013 175 1(;.6 152.4 0%1 04.‘4 12;4 1(?.3 0.2| 0.10 NA
0 % dli{f?enrtnce Gupta (2013) 0?5 oéx 0?5 3.78 ;3 72.44 0?5 0.10 NA
Sl s B NiA 1 NA
40 % dli{f?enrtnce Ade(\;(())ll;)el i} 0.10 NA I 3.23 I NA
© fgme] Moms" ot ]
Sl s BT s B
50 %d?f?:rtnce (“5?23;81 NA 353.0 NA 01.0 NA }ﬁ NA
U d?f?enrtnce Gupta (2013) 19;.6 212.5 4‘.‘0 ;9 4.55 0%0 1?6 oAlo NA
¥ d?f?:rtnce Dang(;a;r)um NfA NA N/IA NA N/ZA NA N?A N/3A NA
© o] oo 00 TNA T30 NA
s v e v e o]
0 i) st | VA o3 VA o]
10 %d?f?:rtnce Gu(r;i)z;;al NA %‘ NA 01.0 NA 3:.8 NA
Rank Crisan et al 1 1
10075 % difference (2021) NA 0.0 NA 0.0

* SA: Simulated Annealing, TS: Tabu Search, GA: Genetic Algorithm, MA: Memetic
Algorithm, BCO: Bee Colony Optimization, ACO: Ant Colony Optimization, FA: Firefly, CS:
Cuckoo Search, HC: Hill Climbing, PSO: Particle Swarm Optimization, NN: Nearest
Neighbor, GH: Greedy Heuristic, HS: Harmony Search, FA: Firefly, and LK: Lin-Kirnighan

For instance, a simulated annealing (SA) algorithm performed better than a genetic

algorithm (GA) by 1.7% from Adewole et al. ( ) comparison. This is done mainly because
the results sensitively vary with some parameter values of heuristic methods and computation
time. In Adewole et al. (2012), a SA procedure for the optimized TSP tour lengths ranging
from n of 10 to 60 performed better than a GA. The GA provided a good solution if the time

was sufficient, meaning that a large population size was provided. In contrast, Damghanijazi
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and Mazidi (2017) showed that the GA performed the best in searching for the TSP solution
for 10- and 59-points; the SA and hill climbing method were the worst. More performance
comparisons of heuristics were conducted by Gupta. 2013, Ansari et al. 2015, Abdulkarim and
Alshammari. 2015, and Gupta. 2020. For a study conducted by Antosiewicz et al. (2013), six
well-known metaheuristic algorithms were compared for » values ranging from 20 to 80. The
key idea was to find the best solution method when the computation time was restricted (e.g.,
100 seconds). The authors presented several criteria for performance (e.g., accuracy,
computation time, and standard deviation); however, none of the algorithms outperformed the
others for all the suggested criteria. Crisan et al. (2021) examined the quality of the TSP
solutions based on a structure of a TSP instance; the instances were classified as semi-
structured and unstructured (randomly uniform). Then, the study used a population-based Ant
Colony Optimization (ACO) and a local search Lin-Kirnighan (LK) heuristic for » ranging
from 100 to 2,900. At n = 100, both heuristics provided the same optimized tour length. In
addition to abovementioned metaheuristics, the Concorde TSP solver (Applegate et al. 1998)
is currently known as the best-performing TSP solver (Hoos and Stuzle, 2014), and thus widely
used for its fast computation and solution accuracy. After an initial solution (and used as an
upper bound) is obtained by the chained Lin-Kernighan heuristic, the solver uses a branch-and-
bound search for a smaller n or cutting-plane method for a complex large » to narrow the search
space. More details on the solver will be discussed in Section 3 of this dissertation.

Third, repeated replications on a given n are produced. After the predefined replications for
each n are reached (e.g., 1,000 runs per n values), the TSP tour lengths for each n value are
averaged. Then, the repeated runs move the for n + /. Finally, the averaged TSP tour length is
fitted with OLS regression to estimate unknown parameter /.

The recommended sample size (i.e., the number of intervals in the 3™ column of Table 3)

for running a regression should exceed 23, according to Green (1991). Green compiled a
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comprehensive guide for choosing the minimum sample size as a function of the number of
independent variables and effect size (e.g., a correlation between two variables); the effect size
referred to standardized measures of the size of the mean difference, which generally used in
multiple regression analysis. Many metrics could be used for deriving the effect size, such as
Cohen’s d (t distribution) or o (3> distribution). If the effect size was small, a large number of
observations were needed. Sample sizes ranged from 23 (large effect size), 53 (medium effect
size) and 400 (small effect size). Alternatively, the number of replications N; is simply derived
from the following calculation: N; > 50 + 8 - N,, where Nx is the number of estimates. This
guideline for estimating the instance size is simple and easy to use for a parsimonious model.
In brief, this dissertation summarized and compared 15 metaheuristics from the literature as
TSP solvers. Although researchers reached no consensus on choosing the best performing
algorithm/heuristic for TSP instances, each algorithm has unique features and parameters that

may be preferred for a particular research purpose.

2.2.2 Summary of Literature with Experiments

Table 3 summarized the experiment settings for distance approximations from the literature.
In Table 3, the number of points » is a range of n considered in estimating the coefficient /.
The number of intervals shows how many samples exist within that range (i.e., minimum point
to maximum point), while the increment for n is a growth rate from min to max ». Note that
irregular means n grows randomly in successive intervals.

Table 3 Summary of Studies with Experiments for TSP/VRP Tour Approximation

Authors Number  of Number of Increment Replications Shape of Problem
points n intervals forn pern” space type
Ong and Huang (1989) 5—-N/A N/A Irregular 25 Square TSP
Brunitti et al. (1991) 50 —-800 5 2x™ 500 -20,000 Square TSP
Fiechter (1994) ‘ 500 - 100,000 8 Irregular 10-30 Square TSP
Lee and Choi (1994) ‘ 50 — 40,000 14 Irregular 4-1,300 Square TSP
|

Kwon et al. (1995) 10-80 8 10 10 Irregular TSP
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Percus  and  Martin
(199¢6)

Johnson et al. (1996)
Hindle and Worthington
(2004)

Applegate et al. (2011)

Leietal (2016)
Nicola et al. (2019)
Madani et al. (2020)

* Replications here imply random configurations of point distribution for each n (e.g., Point
generation in Figure 2)
** x implies ‘a factor of”

Ong and Huang (1989) used 25 replications for each n value starting from n = 5. In their
experiments, the sample variable of the optimized TSP tour length was shown to fluctuate, as

shown in Figure 3. Although the variance was not discussed in detail for that study, Yang et al.

(2020) presented the standard deviations of TSPs to model the travel time reliability (i.e., of

tour lengths).
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Figure 3 Sample Variance of the optimized TSP Tour Lengths (Ong and Huang, 1989)

Brunetti et al. (1991) found TSP solutions for their selected » values, which were 50, 100,
200, 400, and 800. For each n, replications ranged from 500 to 20,000. Lee and Choi (1994)

conducted different replications for the selected 14 intervals of n values, where the values
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ranged from 50 to 40,000. As few as four replications were used for large n values (i.e., n =
40,000), while 1,300 replications were conducted for small n values (i.e., n = 50).

Using the eight intervals of n, Fiechter (1994) ran 10 to 30 replications for each n. Since
Kwon et al. (1995) separated training and testing sets for the optimized TSP tour lengths, the

number of instances was smaller than in other studies. For Johnson et al. (1996), n ranged from

100 to 100,000 points, increasing by factors of v/10. The exact TSP tour lengths were obtained
for n values between 100 and 316. Then, the number of replications decreased as n increased.
Percus and Martin (1996) derived the TSP instances for the eight n values between 12 and 100;
replications were conducted between 5 and 12 runs. Unlike other researchers, Hindle and
Worthington (2004) and Madani et al. (2020) conducted the replications with the increment of
one.

Applegate et al. (2011) ran 10,000 replications for generating the TSP instances visiting
each n values. In their experiments, an increment of 100 was chosen for n between 100 and
1,000. Beyond n = 1000, the increment of 500 was selected between 1,500 and 2,500 for n
values. In Lei et al. (2015) experiments were conducted with 100 replications for each n ranging
from 20 to 90. The number of replications for large n increased in Nicola et al. (2019). Since
half of the TSP instances were used for test sets, the unused instances were excluded in Table
3. In brief, the number of replications per n was arbitrary. Some researchers have suggested
descriptive statistics (e.g., mean or standard deviation) and normality test for the obtained TSP
instances (Brunitti et al. 1991; Johnson et al. 1996; Applegate et al. 2011). From this, one can
better understand the central tendency and variability of the generated TSP instances. In

addition, the instances with few n values can be compared with those for large n values.
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2.3 Modeling Deliveries by Small Vehicles

In this section, the vehicles with limited loading capacity are introduced. The existing
alternatives include widely available vehicles, including a bike, small van, personal car, or,
paratransit (e.g., Lyft or Uber delivery). Two hypothetical modes, namely autonomous ground

robotic vehicles (robots) and unmanned aerial vehicles (drones) are discussed.

2.3.1 Existing Delivery Alternatives

Deliveries by bikes could use human-powered or electrically assisted cargo cycles (Schliwa
et al. 2015). An electric cargo bike, called e-bike from here onward, was considered an
environment-friendly method for urban parcel deliveries, due to its low emissions, low space
requirements in loading zones or curbsides, and relatively low impact on roadway traffic. Sheth
et al. (2019) compared delivery costs for trucks and e-bikes under various operating settings,
such as a line-haul distance from a depot, demand density, or delivery volume per stop. They
showed that truck delivery was less expensive with a greater line-haul travel or larger volume
deliveries per stop. E-bike delivery was cost-effective if the fleet served customers near the
depot or covered a dense service area even with low delivery volume per stop. Gruber et al.
(2014) compared the characteristics of e-bikes and passenger cars (or small vans) as package
delivery options in urban areas (i.e., third-party delivery by personal car onward). The bikes
had a smaller delivery area and tour distance than cars, where the demand for bikes was highly
concentrated in inner-city areas. In Berlin, two-thirds of delivery origins and destinations for
bikes were located within the inner city, while cars operated extensively throughout the city.
Average delivery distance for bikes was 5.1 km versus 11.3 km for cars. Within 10 km, 92%
and 56% of deliveries were provided by bikes and automobiles, respectively; the delivery
distances for 99% of the bike shipments and 87% of the car shipments were shorter than 20

km. If no constraints were imposed on the weight of deliveries, 42% of the car shipments could
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be substituted by bikes with a maximum delivery distance of 10 km. Likewise, a 20-km
maximum delivery range could serve 68% of all car shipments and 48% of the resulting
mileage. Mean delivery speeds of vehicles turned out to be 15.9 kph and 17.3 kph for bikes
and cars, separately, where the bikes could have a speed of up to 25 kph. The team concluded
that the e-bikes had great potentials in urban core areas with traffic congestion issues and
limited spaces in loading zones.

Service operators might serve demands with temporarily contracted drivers. Such deliveries
could be useful in meeting an unexpected surge in demands or be justified when the current
demand level was not economically adequate to operate an expensive delivery alternative (e.g.,
weekend deliveries by trucks). A good example of third-party delivery by passenger car (TPC)
was Amazon Flex; Amazon.com has launched Amazon Flex service in 2014 and served more
than 50 U.S. cities. The company hired independently contracted drivers. The drivers, with
their own cars, usually worked a three-hour time window and delivered an average of 40-50

items within a “small block™ of area.

2.3.2 Hypothetical Delivery Alternatives

One promising drone application is parcel delivery, either solely by drones or in
collaborative operation with trucks. Recent achievements in the private domain have shown its
feasibility (Kornatowski et al. 2018; UPS Pressroom. 2017). Amazon.com Inc, an electronic
commerce company, announced the prototype of its Amazon Prime Air drone in November
2015. The prototype drone could fly up to 15 miles with a maximum speed of 50 miles/hour (=
80 km/hour) and carry packages weighing less than five pounds (= 2.27 kg); about 86 percent
of items would be delivered by drones (Rose. 2013). Joerss et al (2016) estimated that
autonomous drones and robots would deliver 80 percent of all items in the 2020s, while the
remaining items would be delivered by conventional transportation. Autonomous delivery

24



services are expected to be increasingly practical with advanced safety and reliability features,
such as automated flight. The drone deliveries are considerably restricted in flight range and
parcel payload because most drones are powered by lithium-ion batteries, which currently limit
flights to about a half hour (UPS Pressroom. 2017). Due to these key disadvantages, a relatively
long tour may be provided by ground transportation (e.g., trucks) while a drone conducts the
last-mile delivery. However, Doosan Mobility Innovation Inc., announced in 2019 that a
drone’s flight time could be extended by over 2 hours with its hydrogen battery, and thus
commercial drones delivering multiple items in a single tour could be practical.

Some of the early contributions to delivery-by-drone focus on such delivery supported by
trucks (DT). The major emphasis was on identifying to what extent resources, such as time,
cost or fuel, can be saved with the help of drones. Ferrandez et al (2016) found that DT could
reduce operating costs. Truck delivery time could be shortened where the speed of drones was
1) about three times faster than truck’s or 2) more than two single-package-carrying-drones
were assigned to each truck. Wang et al (2016) argued that the maximum delivery completion
time could be minimized either by 1) drones which traveled faster than trucks or 2) using more
than two drones per truck; the authors found that the delivery time could be reduced by up to
75% with all the above considered. Figliozzi (2017) designed drone deliveries supported by a
truck and applied a tour length approximation model to estimate the truck’s tour distance. The
study also proposed drone energy consumption for level flight at a constant speed. Campbell
et al (2017) compared conventional truck delivery (C7) and DT with operating and delivery
stop costs. DT offered significant cost savings in suburban areas where demand density was
relatively high. The savings were attributed to the fewer tours needed. The authors suggested
that assigning multiple drones per truck could reduce operating costs by nearly 40%, depending

on the number of drones.
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For relatively short delivery ranges, drones are capable of delivering items without truck
support. Chowdhury et al (2017) studied a one-to-one delivery by drone (OD) for a disaster-
relief operation by minimizing the total delivery cost. Increasing the drone flight height could
reduce service area and increase the system cost, while increasing drone operating speed could
expand the service area and reduce the cost. In addition, unit transportation cost for drones
exceeded that for trucks. Some researchers designed services in which delivery drones visited
multiple demand points in a single tour (Ham. 2018), while others consider energy storage
constraints simultaneously (Rabta et al. 2018; Dorling et al. 2017). Choi and Schonfeld (2018)
modeled a delivery service with a one-to-many demand pattern by drones (MD) incorporating
battery energy storage. They optimized drone fleet size which minimized a total cost function,
as well as the costs of operators and users in service area; improvements in battery energy
storage could allow drone fleet reductions and increasing drone operating speed could reduce
total system cost due to fewer drones and reduced delivery time.

In addition to research on drone deliveries, research on deliveries by robots has been rapidly
advancing. Boysen et al. (2018) designed truck-based autonomous robot system (R7), where
robots launched from trucks. These trucks started from a depot loaded with packages and
robots. When the trucks arrived at a customer’s location, the robots deliver the single item to
the customer’s doorstep; the robots essentially conducted “final-mile” deliveries. Next, the
study formulated the TSP method for a truck route to establish a launching schedule for the
delivery system. The authors explored how the system was affected by 1) the speeds of robots
and 2) truck’s loading capacity. The speeds varied between 2.8 and 3.7 mph. As speeds
increased, the number of delayed deliveries decreased by 75%. Further increases in speeds
were less effective due to diminishing returns. In the team’s baseline demand density, the
optimal number of robots carried by trucks was eight units. Jennings and Figliozzi ( )

investigated the existing regulations in the U.S for delivery robots (e.g., speed, size, or weight
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limit) and examined the specifications for currently available robots. They formulated the costs
of truck-based robot delivery using a distance approximation model. The results showed that
delivery times, Vehicle Miles Traveled (VMT), and costs could be reduced by the proposed
system. For the VMT, trucks could reduce travel distance as much as 31% compared to the
trucks without robots. Bakach et al. (2020) set up a two-tier delivery network for RT. For Tier
1, a truck transports all packages from a depot to a set of micro hubs in the neighborhood of
demand points. From there, the robots conduct the last-mile delivery from the hubs (Tier 2).
The researchers formulated the system using the TSP for the following objectives: finding the
minimum operating cost, minimum number of robot hubs, and minimum number of robots. In
the modelling process, various costs were included, such as gas, driver, and electricity. The
study found the following: 1) Cost per package for the proposed system was much less than
for conventional truck delivery by 67.9% to 92.3% from their baseline. 2) If time windows did
not exist (e.g., for unattended delivery), cost per package in suburban areas showed significant
economies-of-scale with increasing demand density. The operating cost for robots could be as
low as 24-32% of that for conventional trucks. 3) Doubled robot operating speeds from 1.86 to
3.73 mph did not generate meaningful savings. 4) Driver’s pay rate had little influence on the
operating cost of robots. 5) Although many robots per hub were required in urban areas, fewer
micro hubs were needed compared to suburbs.

In contrast with the previous three RT literature, Sonneberg et al. (2019) optimized a robot
delivery system (MR) without aid of trucks where the objective aimed at minimizing the
delivery costs. The system was formulated by a variant of the VRP. Moreover, the robots were
designed to carry more than one package per tour. They found that increasing shipments per
tour could significantly reduce the total daily costs for the system. For instance, the cost for

vehicles with two items carried was about 46% lower than with one single item carried.
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2.4 Summary

The dissertation reviewed the existing tour length approximations dating back to 1940.
Before Beardwood et al. (1959) developed their common formula in the late 1950s, the existing
studies focused on theoretical derivation of the TSP tour length approximation. As more
advanced computers and efficient solution methods were introduced, researchers explored
accurate coefficients for the formula. After Daganzo (1984) considered realistic aspects of
tours, recent studies have focused on various conditions (e.g., shape of service area or spatial
distribution). The following section discusses some remaining gaps in the literature and
opportunities for improvement.

In Section 2.1, most reviewed studies focused on the derivation of asymptotic coefficients
of the TSP tour length and on a relatively large number of points visited per tour. In the
literature, approximations are found only for five or more visited points, as shown in Table 1
(Chien 1992; Hindle and Worthington, 2004). In addition, the average TSP tour lengths would
be inaccurately estimated if the approximations are derived from wide range of n values
(Applegate et al. 2011 and Lei et al. 2015). Therefore, such approximations for small number
of n points show promise in analyzing new type of vehicles and delivery alternatives could be
efficient because actual tours serve relatively few customers, particularly with vehicle loading
capacity or working period constraints. Note that each delivery worker may deliver 200-300
packages per working period in an urban area (Sheth et al. 2019; Tipagornwong and Figliozzi.
2014). Holguin-Veras and Patil (2005) showed that more than 50% of truck routes has less than
six stops, while 95% of the truck routes had less than 20 stops in Denver, Colorado. In addition,

recent transportation alternatives (e.g., dial-a-ride service, paratransit, small vans, deliveries by

bikes, drones, and robots) may not be effectively approximated by such models due to limited

vehicle loading capacity. Although these types of vehicles may not handle economically many
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shipments per tour, new businesses adopting new technologies have grown due to their
advantages, which include speed, responsiveness, or freshness for some items.
In estimating Beardwood’s coefficients, the following results are found. First, the number

of replications for obtaining the optimal TSP tour length significantly varied in the existing

studies, as shown in the 5™ column of Table 3. Kwon et al. (1995), Applegate et al. (2011), and

Lei et al. (2016) used the same runs across all n values, while others did not present any criteria
for the number of replications (e.g., fewer replications for large n, and vice versa). Therefore,
consistent runs would help in providing descriptive statistics of each n (e.g., mean, median,
standard deviation, kurtosis, or skewness); the dataset of the optimum tour lengths can be
investigated further, such as by using sample variance provided in Ong and Huang (1989) in
Figure 3. In addition. if the computation cost is affordable, large runs (e.g., 1,000 iterations per
n value) would provide more reliable estimates of S. Second, except for Hindle and

Worthington (2004), researchers have used a discrete interval of n as an independent variable

for regression. For instance, most studies used the intervals which increased by some factors
or with increments of specified values in Table 3. A larger increment (observable in the 4™
column of Table 3) results in a less accurate value of the coefficient f due to the missing
samples. Additional (smaller) intervals improve estimates for non-linear relations by reducing
interpolation errors.

Furthermore, as Franceschetti et al (2017) pointed out that the estimates  changed with the
value of n, other factors (e.g., the point distribution or shape of space) also affected the
estimates. Lastly, approximations considering many variables (e.g., distribution-free
approximations) may be less applicable than Beardwood’s formula if they require variables
that are often unavailable or known a priori, such as the number of vehicles, length-to-width
ratio of zones, predetermined number of routes, or standard deviations of points. In addition,

approximations with many factors and complicated formulas may degrade the usefulness of
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the approximation. That is, adding more variables may increase the accuracy of the
approximations as well as their complexity. If approximations become too complicated for
practical applications, solving the exact solution may be become preferable. Therefore, the
researchers should consider such trade-offs for approximations.

For practical applications, estimating average tour lengths with relatively small »n values
becomes important for package delivery services by vehicles with limited carrying capacities
(e.g., autonomous ground/aerial vehicles, or bike/passenger car deliveries). Therefore, the
approximations providing tour length estimates for few points are valuable for analyzing and

planning such systems.
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Chapter 3: Methodology

This chapter develops TSP tour length approximation models. First, the simulation settings and
factors for the approximation are discussed. Then, the approximation assumptions and
evaluation criteria are presented. Lastly, a solution procedure based on metaheuristics and TSP

solvers 1s discussed.

3.1 Solution Method

3.1.1 Formulation of Traveling Salesman Problem (TSP)

The exact algorithm for a TSP tour is formulated as the following integer program:

Minimize  Y; Y ;d;;x;;

Subjectto  Xj_;x;; =1 i=12..,n (4
;'L=1in =1 i:], 2,...,]’1 (5)
u—uj+nx; <n-—1 i=23..n

j=2,3..mi*j (6)

xij=0or 1 (7

u; >0 (8)

where 7 is the number of » points (i.e., nodes, instances, or vertices), dj; is the travel distance
between points i and j (i.e., edges or arcs), x;; are binary decision variables determining whether
the sub-route from i to j is chosen in the tour (constraint 7), u; is the sequence number in which
point i is visited (constraint 8), and constraint (6) is designed for sub-tour elimination, which
prohibits solutions consisting of several disconnected tours. Thus, the solution must have a

single tour covering all points.
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3.1.2 Genetic Algorithm (GA)

A genetic algorithm (GA) is a stochastic search method inspired by the process of natural
selection to evolve toward a better solution is chosen. In this algorithm, a finite population of
candidate solutions to a TSP problem is created; these initial populations are randomly selected
from the enumeration of the permutated TSP tours. This population of solutions is represented
as a string of encoded genes called a chromosome. Each chromosome is evaluated and selected
to produce the next generation based on its fitness. After the evaluation, the selected
chromosomes are processed through crossover and mutation operators.

A crossover operator augments the population by selecting some attributes duplicated from
one chromosome and the remaining attributes duplicated from the other, while a mutation
operator changes the attributes of single chromosomes. The algorithm is terminated in the
following cases: 1) when it reaches the pre-specified number of generations (i.e., the number
of cycles) or 2) no improvement in the objective function value is found for a certain number
of generations. In this dissertation, both cases are considered. Throughout this process, the

algorithm leads to an optimal or near-optimal solution (Potvin, 1996).

3.1.3 Parameter Selection for GA

GA parameters directly impacted the solution quality, and such parameters included
crossover rate, mutation rate, population size, and the number of generations (Hassanat, 2019).
Shayanfar (2015) pointed out a trade-off between population size and computation time.
Increasing population size would benefit the solution quality at a decreasing rate. The study
also revealed that a crossover value at 0.5 produced a better solution than other parametric
values. In finding TSP solutions, Rexhepi et al. (2013) investigated the impact of population
size and mutation rate on GA. Initial populations of 1,000, 5,000, and 10,000 were investigated,

while mutation rates were varied between 1% and 10%. Although an increase in initial
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population size did not guarantee a good TSP solution, the solution quality was improved by
increasing the mutation rate when the initial populations were below 2,000. However, if the
number of generations was small (i.e., 51 cycles), it was shown that both large initial population
size and high mutation rate were effective in finding a good solution, according to Beed et al.
(2017). The population size was investigated for 100, 500, and 1,000, while mutation rates
were changed between 1% and 10%.

Table 4 Parameter Section for Genetic Algorithm (GA)

Population Crossover Mutation #of Mas. .
Size Rate Rate Generations COT”p utation
Time (sec)

2~10 100 0.5 0.04 800 0.1
11~15 100 0.5 0.04 1,000 5

16 ~ 20 100 0.5 0.04 1,500 20
21~25 110 0.5 0.04 2,500 30
26~ 30 110 0.5 0.04 3,000 35
31~35 120 0.5 0.04 4,000 55
36 ~40 130 0.5 0.04 4,500 80
41 ~45 140 0.5 0.04 8,000 100
46 ~ 50 150 0.5 0.04 12,000 120

The above parametric modifications are classified as a deterministic parameter control,
while adaptive parameter control uses feedback in altering the parameters (Hassanat, 2019).
For the quality of TSP solutions, the study adopts the latter approach, which increases
population size and the number of generations as n values increase. Note that the parameter
values listed in Table 4 may vary with computing performances. For instance, the results in
Table 4 are obtained with four computers. The maximum computation time is estimated from
the least performing computer. As a result, longer computation times in Table 4 are needed
compared to the other types of known TSP solutions and their computation times (i.e., TSPLIB,
a library of sample instances for the TSP in Reinelt. 1991). Note that a brute-force method (i.e.,

exact search) for solving TSP instances with small instances » takes a long time (Lucas, 2018).
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3.1.4 Concorde TSP Solver and Comparison of Solution Methods

Before generating optimized TSP instances for tour length approximations, the dissertation

evaluates solution methods based on solution quality (i.e., the lowest tour length for TSPs).

First, each heuristic/solver is benchmarked against the best-known solutions of TSPLIB.

Among 112 optimal solutions in TSPLIB, a total of eleven cases are selected. Second, the

solution methods are compared by solving 1,000 randomly and uniformly generated Euclidean

instances. TSPs are generated using MATLAB code (Vedenyov, 2011) and package in R-

programming (Hahsler and Hornik. 2007).

Table 5 Optimized TSP Solutions from Heuristic/Solver

Exact Heuristic/Solver

#TSPLIB | n | ution | Ga 2-opt RNN | Concorde LK

1| eilst | 51| 426 444.90 474.84 505.28 428.87 428.88
2 | berlin52 | 52 | 7,542 | 8,080.43 | 8,489.47 | 8,182.19 | 7,54437 | 7,544.37
3| st70 | 70 | 675 722.39 754.87 761.69 677.11 677.11

4 | eil76 | 76 | 538 582.78 609.10 606.77 54437 54437
5 | pr76 | 76 | 108,159 | 112,496.25 | 119,364.57 | 130,921.00 | 108,159.44 | 108,159.44
6 | rat99 | 99 | 1211 | 131516 | 1,40533 | 1,369.53 | 121924 | 1,219.27
7 | kroA100 | 100 | 21,282 | 22,896.66 | 24,107.01 | 24,698.50 | 21,285.44 | 21,285.44
8 | kroB100 | 100 | 22,141 | 23,061.86 | 24,864.10 | 25,882.97 | 22,139.07 | 22,139.66
9 | kroC100 | 100 | 20,749 | 21,816.12 | 23,740.72 | 23,566.40 | 20,750.76 | 20,750.76
10 | kroD100 | 100 | 21,294 | 22,995.16 | 24,019.85 | 24,855.80 | 21,294.29 | 21,294.29
11 | kroE100 | 100 | 22,068 | 23,648.04 | 25,013.91 | 24,907.02 | 22,068.76 | 22,076.85

* GA: Genetic Algorithm, RNN. Repetitive Nearest Neighbor, LK: Chained Lin-Kernighan
Heuristic

Table 5 indicates that the Concorde and Lin-Kernighan heuristic find nearly optimal

solutions. Their average percent error is about 0.27% and 0.26%, respectively. The gap for

Repetitive Nearest Neighbor (RNN) is 14.82%, while the 2-opt search algorithm overestimates

the optimal solution by 12.87%. The GA produces intermediate accuracy with an average

percent of 6.51%.
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Table 6 Estimated Average TSP Tour Lengths from Heuristics

Heuristic/Solver Rank
n GA | 2-opt | RNN | Concorde | LK GA | 2-opt | RNN | Concorde | LK
2 ] 1.0352 | 1.0352 | 1.0352 N/A N/A 1 1 1 N/A N/A
3 | 1.5871 | 1.5871 | 1.5871 N/A N/A 1 1 1 N/A N/A
4 | 1.8924 | 1.9545 | 1.9242 1.9187 2.1184 1 4 3 2 5
5 | 2.1160 | 2.1973 | 2.1335 2.1193 2.6059 1 4 3 2 5
6 | 2.3021 | 2.4180 | 2.3251 2.2977 3.1169 2 4 3 1 5
7 | 24749 | 2.6511 | 2.5279 2.4901 3.6625 1 4 3 2 5
8 | 2.6129 | 2.8017 | 2.6570 2.6089 4.1643 2 4 3 1 5
9 | 2.7545 ] 2.9647 | 2.8071 2.7531 2.7582 2 5 4 1 3
10 | 2.8702 | 3.0896 | 2.9186 2.8491 2.8491 3 5 4 1 1
11 | 2.9602 | 3.2495 | 3.0643 2.9839 2.9839 1 5 4 2 2
12 | 3.0880 | 3.3723 | 3.1880 3.0977 3.0977 1 5 4 2 2
13 | 3.2053 | 3.5115 | 3.3056 3.1942 3.1943 3 5 4 1 2
14 | 3.3216 | 3.6080 | 3.3964 3.2822 3.2822 3 5 4 1 1
15 | 3.4297 | 3.7159 | 3.5079 3.3797 3.3797 3 5 4 1 1
16 | 3.5063 | 3.8317 | 3.6318 3.4836 3.4836 3 5 4 1 1
17 | 3.6031 | 3.9478 | 3.7420 3.5784 3.5784 3 5 4 1 1
18 | 3.6863 | 4.0556 | 3.8476 3.6667 3.6667 3 5 4 1 1
19 | 3.7887 | 4.1549 | 3.9579 3.7577 3.7577 3 5 4 1 1
20 | 3.8747 | 4.2600 | 4.0503 3.8300 3.8300 3 5 4 1 1
30 | 4.6747 | 5.0766 | 4.9243 4.5518 4.5519 3 5 4 1 2
40 | 5.4372 | 5.7846 | 5.6633 5.1542 5.1542 3 5 4 1 1

* GA: Genetic Algorithm, RNN: Repetitive Nearest Neighbor, LK: Chained Lin-Kernighan

Heuristic

Although the Concorde solver and chained Lin-Kernighan provide a good solution, the

former outperforms if n is particularly low (e.g., » < 10) in Table 6. Table 6 is designed to

compare heuristic performances for randomly generated TSPs and shows that GA generally

provides good solutions until n = 12. Above that n value, the Concorde solver performs better.

However, this does not guarantee that GA always performs better than the others across the

cases. Neither the Concorde solver nor Lin-Kernighan always provides the optimal solutions

below n = 5, where the solution methods accept the local optima to save computation times

from repetitive computations. (Helsgaun, 2000 and Lin and Kernighan, 1973). Therefore,

optimized TSP instances are taken from two algorithms, whichever provides a better solution.
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Although computation time is not the major interest of this dissertation due to a focus on
TSP with low n values, Lin-Kernighan Heuristic is the fastest among five heuristics (e.g., 0.01
seconds for n = 50 and less than 1 second for » = 100). The Concord solver generates a solution

within an average of 0.08 seconds (n = 50), while the GA has the longest computation time.

3.2 Simulation Settings

3.2.1 Scenario Design

This section explains how the dissertation designs various operating conditions in a
simulation setting. A depot - distribution center where vehicles start and end their tours - may
or may not be in a center of city. Here considers depots located centrally or randomly in a
service region. Note that vehicles departing from a depot outside the region would conduct a
TSP tour (i.e., a line-haul distance from the depot to the first recipient of the service region is
not considered). Although the exact shape of the service area varies with district partitions, two
shape categories are considered: square and circle.

The following two categories are essentially relaxing assumptions for approximations
discussed in Section 2.1.4; namely, points are scattered randomly and uniformly in the service
area. The effects of concentrating the n points toward a particular direction (e.g., non-uniform
distribution of the points) will be explored. To do this, the triangular distribution is adopted
with different mode (peak) values in Figure 4 (b) and (c), respectively. Then, a bivariate normal
distribution is designed to reflect a resident distribution in cities.

Lastly, the elongations of service area focus on changes in service area shape (i.c.,
reasonably convex but less compact than the square or circular shape region). The length-to-

width ratio varies from 1 to 4. Note that the coefficients for changes in area size (4) can be

conveniently adjusted by post-processing using the formula fvVnA of Beardwood et al. (1959).
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Figure 4 Illustration of Point Distributions (n = 1,000)

Overall, Figure 5 summarizes the classifications for the TSP simulation, which are extended

from Larson and Odoni (1981).
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Location of depot Shape of service area Point Distribution Elongation

g 1:1 1
— Random — (Case 1)
2 2
— | Square — Declining from Corner 1:2 (Case ‘)
— 1:4 (Case 3
J Centralized (Case 3)
Randomly in —
a study area ‘ Normal (2-0)
—— Circular/Elliptical ~— Normal (3-0)
] Square —] Random
J Declining from Corner
| Centered L
‘ Centralized | I:1(Case 58)
~—— Circular/Elliptical | — Normal (2-0) 1:2 (Case 59)
B Normal (3-0) — | 1:4 (Case 60)

Case  Area  Depot Elongation  Point Case  Area  Depot Elongation  Point Case  Area  Depot Elongation  Point
Number Shape Location (L/W ratio) Distribution Number Shape Location (L/W ratio) Distribution Number Shape Location (L/W ratio) Distribution

1 Square = Random 1 Uniform 21 Square ~ Center 4 Centralized ~ 41  Cir/Ellipt Random 2 Normal (20)
2 Square = Random 2 Uniform 22 Square ~ Center 1 Declining 42 Ci/Ellipt  Random 4 Normal (20)
3 Square = Random 4 Uniform 23 Square ~ Center 2 Declining 43 Cir/Ellipt  Random 1 Normal (30)
4 Square = Random 1 Centralized 24 Square ~ Center 4 Declining 44 Ci/Ellipt  Random 2 Normal (30)
5 Square = Random 2 Centralized 25 Square ~ Center 1 Normal(26) 45  Ci/Ellipt Random 4 Normal (30)
6 Square = Random 4 Centralized 26 Square ~ Center 2 Normal(26) 46 Cir/Ellipt  Center 1 Uniform

7 Square = Random 1 Declining 27 Square ~ Center 4 Normal(26) 47 Ci/Ellipt  Center 2 Uniform

8 Square = Random 2 Declining 28 Square ~ Center 1 Normal(36) 48 Cir/Ellipt Center 4 Uniform

9 Square  Random 4 Declining 29 Square  Center 2 Normal(36) 49 Cir/Ellipt  Center 1 Centralized
10 Square = Random 1 Normal (20) 30  Ci/Elipt Random 4 Normal(30) 50  Cir/Ellipt ~Center 2 Centralized
11 Square = Random 2 Normal (20) 31  Ci/Elipt Random 1 Uniform 51 Cu/Ellipt Center 4 Centralized
12 Square = Random 4 Normal (206) 32 Ci/Elipt Random 2 Uniform 52 Cu/Ellipt ~ Center 1 Declining

13 Square = Random 1 Normal(30) 33 Ci/Elipt Random 4 Uniform 53 Cu/Ellipt  Center 2 Declining

14 Square = Random 2 Normal(30) 34 Cir/Ellipt Random 1 Centralized ~ 54  Cir/Ellipt ~ Center 4 Declining

15 Square Random 4 Normal (30) 35  Ci/Ellipt Random 2 Centralized 55  Cir/Ellipt  Center 1 Normal (20)
16 Square Center 1 Uniform 36 Cir/Ellipt Random 4 Centralized ~ 56  Cir/Ellipt Center 2 Normal (26)
17 Square  Center 2 Uniform 37 Cir/Ellipt Random 1 Declining 57 Cir/Ellipt Center 4 Normal (26)
18 Square Center 4 Uniform 38 Cir/Ellipt Random 2 Declining 58 Cir/Ellipt Center 1 Normal (36)
19 Square Center 1 Centralized 39 Cir/Ellipt Random 4 Declining 59 Cir/Ellipt Center 2 Normal (36)
20 Square Center 2 Centralized 40 Cir/Ellipt Random 1 Normal(26) 60  Cir/Ellipt ~Center 4 Normal (36)

Figure 5 Classifications for Distance Approximation

3.2.2 Simulation Design: Point Generation, Point Distribution, and Least Squares

Method

In a simulation setting, n points are generated based on scenarios developed in Section 3.2.1.
Random numbers provided in the simulation program (i.e., "rand" function) are used for

uniform and random distribution in Figure 5. Using the 'rand' function for producing random
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numbers uniformly distributed in the interval (0,1), two sets of random numbers are generated
(Moler, 2008). These two are regarded as the x- and y-coordinate of demand location in a
service area.

For the cases with non-uniform distributions, the appropriate point generating functions in
the program are used to generate points. The parameters of peak value considered are either
0.1 (declining from corner) or 0.4 (centralized) for a triangular distribution, implying that the
probability of selecting points is high near the peak value within the interval [0, 1]. Since the
randomly generated points for bivariate normal distribution are theoretically unbounded in the
interval [0,1], the points generated outside the service area are truncated. Then, new points are
added until all points lie within the interval. The mean value is 0.5 (i.e., located at the center
coordinate), while the standard deviations (o) are 0.25 for 2-¢ and 0.19 for 3-6. The 95 or 99
percent of the points are generated near the center point (0.5, 0.5) within the standard deviations
of 2-0 or 3-g, respectively.

Then, sets of 1,000 TSP tour instances are generated by changing the points z from 1 to 100

(i.e., 1,000 runs per n value), in increment of one; each set of averaged tour lengths is fitted

using OLS regression to estimate the coefficient § for vnA.

3.3 Results

3.3.1 Descriptive Statistics of the Optimized TSP Instances

Although any of the 60 categories in Figure 5 can be considered, descriptive statistics are
provided in Table 7 only for a randomly located depot in Euclidean space with a square service
area (Case 1). The case may be practically used to approximate TSP distances in urban road
networks, considering that (1) ground vehicles travel on a grid network and (2) distribution

depots are typically located away from central business districts in order to reduce costs. The
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purpose of providing the statistics is to examine whether a specific pattern or distribution exists
for the 1,000 optimized TSPs.

Table 7 Descriptive Statistics and Normality Test (Case 1)

Descriptive Statistics | Normality Test \
" "Mean | Median | 5% 95t STD | Skew | Kurt W | Pvalue
2 1.0274 1.0195 0.2382 1.8468 0.4920 0.1630 -0.6334 | 0.9884 0.0000
3 1.5943 1.5825 0.7868 2.3502 0.4735 0.0196 -0.2635 | 0.9983 0.4530
4 1.8956 1.9049 1.1226 | 2.5943 0.4327 -0.1502 -0.2009 | 0.9972 0.0832
5 2.1118 2.1249 1.3975 2.7370 0.4098 -0.1648 -0.2950 | 0.9958 0.0077
6 2.3023 2.3101 1.6178 2.9185 0.3978 -0.3140 0.2886 | 0.9939 0.0004
7 2.4731 2.4769 1.8609 3.0506 0.3674 -0.0649 -0.0087 | 0.9983 0.4499
8 2.6066 2.6292 1.9936 3.2019 0.3528 -0.2096 0.3853 | 0.9952 0.0030
9 2.7560 2.7583 22135 3.2969 0.3360 -0.0692 -0.0287 | 0.9986 0.6039
10 2.8719 2.8711 2.2942 3.3974 | 0.3373 -0.1569 0.3420 | 0.9968 0.0400
11 2.9563 2.9495 2.4276 3.4977 0.3277 0.1346 -0.0022 | 0.9979 0.2272
12 3.0968 3.1091 2.5433 3.6289 0.3217 -0.0305 -0.0987 | 0.9986 0.6081
13 3.1948 3.1951 2.6836 37117 0.3145 -0.0357 -0.2545 | 0.9985 0.5547
14 3.2820 3.2911 2.7346 3.8112 0.3225 -0.0162 -0.0153 | 0.9983 0.4030
15 3.3973 3.3972 2.8733 3.9166 0.3153 -0.0369 0.0269 | 0.9989 0.8390
16 3.4984 3.5046 29546 | 4.0075 0.3158 -0.0647 -0.1719 | 0.9979 0.2318
17 3.5912 3.5949 3.0707 | 4.0914 | 0.3061 -0.0745 -0.1785 | 0.9982 0.3547
18 3.6689 3.6700 3.1438 4.1822 0.3085 -0.0800 -0.0765 | 0.9986 0.6105
19 3.7554 3.7645 3.2228 4.2425 0.3133 -0.2136 -0.0918 | 0.9963 0.0165
20 3.8308 3.8198 33174 | 4.3258 0.3016 -0.0410 0.0389 | 0.9989 0.7940
21 3.9220 39215 34129 | 4.4192 0.3124 -0.0999 -0.0193 | 0.9987 0.7035
22 3.9947 3.9970 34912 | 4.4821 0.2994 -0.0984 | -0.0387 | 0.9979 0.2264
23 4.0751 4.0688 3.6187 | 4.5413 0.2873 -0.0871 -0.2270 | 0.9977 0.1752
24 4.1492 4.1592 3.6718 4.6046 0.2843 -0.1792 -0.0694 | 0.9971 0.0708
25 4.2154 42348 37177 | 4.6783 0.2876 -0.2153 0.1252 | 0.9953 0.0037
26 4.2758 4.2945 3.7652 | 4.7406 0.2950 -0.2193 -0.0771 | 0.9955 0.0045
27 4.3410 4.3498 3.8432 | 4.7971 0.2852 -0.2394 0.0091 0.9954 0.0040
28 4.4249 44336 39377 | 4.8806 0.2889 -0.2473 0.1734 | 0.9955 0.0046
29 4.4850 4.4950 4.0297 | 4.9217 0.2789 -0.1700 0.3394 | 0.9971 0.0686
30 4.5707 4.5878 41135 5.0211 0.2794 -0.1998 -0.0872 | 0.9964 0.0227
31 4.6213 4.6205 4.1540 5.0803 0.2799 -0.0559 -0.1489 | 0.9989 0.8280
32 4.6811 4.6767 42111 5.1003 0.2671 -0.1415 -0.1379 | 0.9971 0.0633
33 4.7367 47327 4.2849 5.2185 0.2801 -0.0716 0.1786 | 0.9982 0.3542
34 4.8260 4.8459 4.3263 5.2345 0.2715 -0.3088 0.1108 | 0.9934 0.0002
35 4.8581 4.8614 44104 5.3033 0.2718 -0.1394 | -0.0261 | 0.9982 0.3742
36 4.9258 49277 4.4809 5.3664 | 0.2679 -0.1430 -0.0205 | 0.9979 0.2357
37 4.9877 4.9926 4.5477 54111 0.2659 -0.0668 -0.0587 | 0.9992 0.9441
38 5.0510 5.0674 4.6217 5.4556 0.2556 -0.2669 0.1511 0.9951 0.0027
39 5.1000 5.1033 4.6697 5.5448 0.2706 -0.1996 0.2302 | 0.9959 0.0095
40 5.1658 5.1768 4.7270 5.5751 0.2630 -0.2330 0.1815 | 0.9960 0.0115
41 5.2212 52155 4.8053 5.6608 0.2598 0.0260 -0.1390 | 0.9989 0.8286
42 5.2660 5.2739 4.8205 5.6892 0.2625 -0.1312 0.2328 | 0.9978 0.2209
43 5.3374 5.3438 4.8960 5.7539 0.2645 -0.2422 -0.0184 | 0.9957 0.0067
44 5.3916 5.4015 4.9693 5.8275 0.2637 -0.0958 -0.2604 | 0.9972 0.0827
45 5.4518 5.4510 5.0417 5.8572 0.2532 -0.1501 0.2024 | 0.9974 0.1031
46 5.5010 5.5120 5.0790 5.9038 0.2524 -0.3308 0.4369 | 0.9931 0.0001
47 5.5390 5.5424 5.1154 5.9739 0.2532 -0.1241 0.5964 | 0.9957 0.0068
48 5.5847 5.5865 5.1603 6.0034 | 0.2567 -0.1807 0.1385 | 0.9974 0.1161
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49 | 5.6407 5.6456 5.2176 | 6.0598 | 0.2566 | -0.1329 | 0.0118 | 0.9981 | 0.3337
50 | 5.6852 5.6949 5.2687 | 6.0603 | 0.2507 | -0.1535 | -0.0022 | 0.9974 | 0.1174
51 5.7403 5.7568 5.3242 | 6.1355 | 0.2444 | -0.2611 0.1071 | 0.9946 | 0.0011
52 | 5.7973 5.8014 5.3751 | 6.1892 | 0.2465 | -0.1935 | 0.0685 | 0.9973 | 0.0902
53 5.8483 5.8563 5.3944 | 6.2501 | 0.2576 | -0.2493 | -0.0509 | 0.9957 | 0.0068
54 | 5.8903 5.8967 5.4806 | 6.2934 | 0.2477 | -0.0967 | 0.1907 | 0.9977 | 0.1748
55 | 5.9429 5.9552 5.5381 | 6.3334 | 0.2448 | -0.0976 | -0.0080 | 0.9982 | 0.3815
56 | 5.9920 5.9904 5.5594 | 6.4237 | 0.2579 | -0.0009 | -0.2316 | 0.9982 | 0.3918
57 | 6.0365 6.0388 5.6262 | 6.4588 | 0.2537 | -0.1235 | 0.0937 | 0.9982 | 0.3872
58 | 6.0636 6.0670 5.6738 | 6.4440 | 0.2355 | -0.0724 | -0.1621 | 0.9987 | 0.6552
59 | 6.1318 6.1356 5.7087 | 6.5384 | 0.2490 | -0.1722 | -0.0178 | 0.9976 | 0.1487
60 | 6.1404 6.1531 5.6804 | 6.5332 | 0.2554 | -0.2005 | 0.0713 | 0.9961 | 0.0121
61 6.2146 6.2211 5.7865 | 6.6031 | 0.2473 | -0.1266 | -0.1240 | 0.9973 | 0.0914
62 | 6.2562 6.2555 5.8434 | 6.6575 | 0.2427 | -0.0769 | -0.0610 | 0.9988 | 0.7292
63 6.3096 6.3204 5.8860 | 6.6859 | 0.2403 | -0.1372 | 0.2102 | 0.9971 | 0.0706
64 | 6.3506 6.3597 5.9342 | 6.7374 | 0.2444 | -0.1563 | -0.2118 | 0.9967 | 0.0324
65 | 6.3966 6.4027 6.0165 | 6.7843 | 0.2333 | -0.0689 | -0.0921 | 0.9977 | 0.1682
66 | 6.4205 6.4273 6.0108 | 6.8076 | 0.2412 | -0.2048 | -0.0224 | 0.9961 | 0.0135
67 | 6.4759 6.4890 6.0585 | 6.8620 | 0.2445 | -0.1788 | 0.0188 | 0.9971 | 0.0656
68 | 6.5192 6.5163 6.1204 | 69154 | 0.2418 | -0.0689 | -0.2390 | 0.9976 | 0.1599
69 | 6.5717 6.5753 6.1503 | 6.9571 | 0.2408 | -0.2112 | 0.1257 ] 0.9963 | 0.0169
70 | 6.6008 6.6095 6.1961 | 6.9821 | 0.2368 | -0.1802 | 0.1604 | 0.9972 | 0.0820
71 6.6411 6.6511 6.2193 | 7.0447 | 0.2465 | -0.1311 0.1314 | 0.9984 | 0.4624
72 | 6.6829 6.6894 6.2657 | 7.0659 | 0.2417 | -0.0830 | 0.0512 | 0.9983 | 0.4348
73 6.7364 6.7482 6.3096 | 7.1277 | 0.2474 | -0.1988 | -0.0241 | 0.9967 | 0.0326
74 | 6.7857 6.7894 6.3716 | 7.1561 | 0.2418 | -0.1949 | 0.1696 | 0.9971 | 0.0664
75 | 6.8322 6.8401 6.4326 | 7.2078 | 0.2359 | -0.1829 | 0.3072 | 0.9971 | 0.0700
76 | 6.8391 6.8376 6.4233 | 7.2445 | 0.2491 | -0.0958 | -0.1912 | 0.9979 | 0.2443
77 | 6.9125 6.9209 6.5030 | 7.3224 | 0.2420 | -0.0950 | -0.0539 | 0.9986 | 0.5848
78 | 6.9413 6.9475 6.5291 | 7.3250 | 0.2397 | -0.0990 | -0.1370 | 0.9985 | 0.5723
79 | 6.9765 6.9829 6.5841 | 7.3482 | 0.2303 | -0.1479 | -0.0567 | 0.9980 | 0.2765
80 | 7.0184 7.0227 6.6261 | 7.3856 | 0.2388 | -0.0307 | -0.1156 | 0.9987 | 0.6820
81 7.0564 7.0639 6.6714 | 7.4418 | 0.2358 | -0.0182 | -0.1617 | 0.9985 | 0.5338
82 | 7.1084 7.1153 6.7163 | 7.4935 | 0.2342 | -0.0537 | -0.1469 | 0.9985 | 0.5832
83 7.1331 7.1339 6.7564 | 7.5147 | 0.2314 | -0.0391 | -0.2488 | 0.9984 | 0.4917
84 | 7.1671 7.1736 6.7862 | 7.5193 | 0.2306 | -0.1728 | -0.1016 | 0.9972 | 0.0797
85 | 7.2091 7.2153 6.7784 | 7.5763 | 0.2381 | -0.2682 | -0.0888 | 0.9944 | 0.0009
86 | 7.2449 7.2484 6.8675 | 7.6044 | 0.2255 | -0.0959 | -0.0726 | 0.9987 | 0.6889
87 | 7.2683 7.2759 6.8546 | 7.6513 | 0.2357 | -0.0598 | 0.0076 | 0.9983 | 0.4539
88 | 7.3184 7.3323 6.9263 | 7.6963 | 0.2336 | -0.2242 | 0.0399 | 0.9959 | 0.0093
89 | 7.3591 7.3679 6.9471 | 7.7477 | 0.2390 | -0.1479 | -0.1703 | 0.9975 | 0.1253
90 | 7.4007 7.4017 7.0068 | 7.7800 | 0.2348 | -0.0894 | -0.0447 | 0.9985 | 0.5405
91 7.4416 7.4452 7.0361 | 7.8269 | 0.2357 | -0.1097 | -0.0195 ] 0.9972 | 0.0773
92 | 7.4662 7.4654 7.1007 | 7.8368 | 0.2313 | 0.0379 0.0023 | 0.9989 | 0.8093
93 7.5110 7.5109 7.1317 | 7.8946 | 0.2283 | -0.0405 | -0.1791 | 0.9988 | 0.7758
94 | 17.5456 7.5518 7.1590 | 7.9291 | 0.2346 | 0.0079 | -0.3532 | 0.9961 | 0.0135
95 | 7.5979 7.6037 7.2203 | 7.9568 | 0.2300 | -0.1244 | 0.4079 | 0.9974 | 0.1094
96 | 17.6215 7.6234 7.2372 | 7.9783 | 0.2232 | -0.1126 | -0.1641 | 0.9979 | 0.2406
97 | 17.6559 7.6700 7.2633 | 8.0134 | 0.2292 | -0.1668 | 0.0154 | 0.9973 | 0.0927
98 | 7.6841 7.6929 7.2670 | 8.0416 | 0.2297 | -0.2671 0.0361 | 0.9945 | 0.0010
99 | 71.7374 7.7354 7.3556 | 8.1250 | 0.2344 | -0.1171 0.0491 | 0.9978 | 0.2229
100 | 7.7627 7.7668 7.3844 | 8.1333 | 0.2310 | -0.0459 | -0.0281 | 0.9988 | 0.7541

* Bold numbers infer the p-values exceeding 0.05
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In the 7" and 8™ columns of Table 7, measurements for the central tendency and tails of
data distributions are listed for the optimized TSP instances. The 5™ and 95" percentile lengths
are provided to limit the range of values for average TSP tour lengths. To identify whether each
set of tour lengths lies in a reasonable range, additional normality tests can be performed, such
as Shapiro-Wilk, Chi-Square, Kolmogorov-Smirnov, Cramér-von-Mises, or Anderson-Darling
test. These are depending on sample sizes (D'Agostino, 1986). Among the tests, the Shapiro-
Wilk test is conducted, which is (1) widely used to test for normality and (2) sensitive for
sample sizes up to 2,000 (Yap and Sim, 2011). The p-values exceeding 0.05 in the 10" column
of Table 7 indicate that the distribution of the generated TSP instances fits the normal
distribution.

From the test outputs, the optimized TSP instances do not have a specific distribution. This
finding is aligned with Monte Carlo simulation results from Vinel and Silva (2018), where (1)
a consistent deviation from normality exists for n =3 and (2) it is difficult to conclude whether
the optimized TSPs follow a normal distribution between n = 4 and » = 10. The researchers
adopted alternative methods (i.e., PP and QQ plots) for examining the normality of TSPs since

the Shapiro-Wilk test outputs inconsistent results (i.e., p-value) with the sample size.
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Figure 6 PDFs for the TSP Instances for Different n Values
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The probability distribution functions (PDFs) are presented in Figure 6. All the generated
instances for each n value are symmetrical based on the Kolmogorov—Smirnov test. Namely, a
null hypothesis that the optimized TSPs are symmetric is accepted (e.g., with p-values of 0.143

for n =2 and 0.570 for n = 100).
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Figure 7 Simulation Results

The curves for average simulated TSP tour lengths, regression results, and 5th percentile,

and 95th percentile lengths for Case 1 are presented in Figure 7 (a). Average TSP tour lengths

43



increase rapidly as n increases particularly for the smaller values of n. After that, the TSP tour

lengths marginally increase with #.

3.3.2 Standard Deviations of Average TSP Tour Lengths

As Ong and Huang (1989) presented the fluctuations in the variance of the optimized TSP
tour instances in Figure 3, similar trends in standard deviations (SD) were observed. The SDs
decrease as n increases, while the SDs increase as the service area become more elongated in
Figure 8 (b), (¢), and (d). In comparison to square and circular areas (Figure 8 (e) and (f)), the
SDs for circular are smaller than the square since the circle (or ellipse) is more compact than

the square.
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Figure 8 Standard Deviations of the TSP Instances

The SDs for the central depot increase until n reaches 4 points. Since one point among n

points is positioned at a central location for the latter case, the points are less scattered than in

the random depot. It is true for a few n values, but no specific trends can be observed as n



increases. Note that the SDs for point distributions are not presented as the differences are not

clearly noticeable.

3.3.3 Estimated Coefficients f

Table 8 shows estimated coefficients A for vVnA and adjusted coefficients of determination
(R?) according to changes in points n. Ranges imply the difference in coefficients 4 estimated
by the 5™ and 95" percentiles of the TSP tour instance. For a length-width ratio of one, i.e. a
square, all estimated coefficients S are consistent with the finding from Finch (2003) that the
estimates lie between 0.632499 and 0.91996 for Euclidean space. Note that £ estimated by the
5t percentile distances increases as n increases, while # estimated by the 95" distances
decreases as n increases. Overall, the gap between the two percentiles decreases.
3.3.3.1 Comparison between Randomly and Centrally Located Depot

Average TSP tours are shorter for central than for randomly located depots since one point
is always positioned at the center. While the estimated S in the latter case is larger than the
former, the gap diminishes with an increase in z value. In addition, the difference in tour lengths
is unnoticeable if n is beyond fifteen (i.e., as small as 0.3% in difference). The coefficients for
a central depot are generally smaller than for a randomly located depot.
3.3.3.2 Comparison between Square and Circular/elliptical Service Area

The estimated coefficients are approximately 1.13 times greater for square areas than for
circular/elliptical areas since the latter is more compact. The ratios between a squared-shaped
and circular/elliptical area decrease as n increases; the difference in tour lengths with few n
points is huge. For the same reason, average distances between two random points in a circle

are smaller than in a square of equal area (Larson and Odoni, 1981).
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3.3.3.3 Comparison among Point Distributions

Among the different point distributions, the coefficients f estimated from random and
uniform distribution are the largest since the points are loosely distributed compared to the
more concentrated ones in any other distributions in Figure 4. f for centralized and normal
distributions is smaller than any other distribution. Since points are more clustered at center for
normal distribution with 3-c than for 2-c, f for 3-c is smaller.
3.3.3.4 Comparison among Different Elongated Service Areas

For different length-to-width ratios of the service area, the goodness of fit decreases as the
area becomes more elongated. The square root form may not be the best fit if the length-to-

width ratios becomes very high.
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Table 8§ Summary of Estimated Coefficients f

Depot Service n Length-to-width ratio of 1 Length-to-width ratio of 2 Length-to-width ratio of 4

Location Area R D C 20 3o R D C 20 3o R D C 20 3o
Shape

Random  Square 5 0.9094 0.7000 0.6490 0.6900  0.5145  0.9094 0.7000 0.6490  0.6900  0.5145 12260 09569 0.8738  0.9408  0.7005

(Cases 1,2, 10 09194 07179 06682 07133 05363 09194 07179 0.6682 0.7133  0.5363 12050  0.9522  0.8869  0.9486  0.7144

3456 20 0.8851 0.7036 0.6661 0.7125 05429 0.8851 0.7036 0.6661  0.7125  0.5429  1.0840 0.8739  0.8268 0.8847  0.6779

789,10, 30 08612 06910 0.6622 07095 05453 08612 0.6910 0.6622 07095 05453  1.0030  0.8189  0.7819  0.8370  0.6496

11,12, 13, 40 08443 0.6829 0.6592 07069 05461 0.8443 0.6829 0.6592 0.7069  0.5461  0.9506  0.7830  0.7522  0.8049  0.6299

14, 15) 50 0.8320 0.6769 0.6571 0.7048  0.5473  0.8320 0.6769 0.6571  0.7048  0.5473  0.9149  0.7583 0.7311 0.7827  0.6166

100 0.7979  0.6615 0.6504 0.6981  0.5499  0.7979 0.6615 0.6504  0.6981  0.5499  0.8355  0.7014  0.6840  0.7325  0.5859

Cir/Elip 5 0.7484 05210 03952  0.5636  0.6148  0.7484 0.5210 0.3952  0.5636  0.6148  1.0320  0.7215  0.5411  0.7755  0.7716

(Cases 16, 10 0.7601 05395 04198 05799 05810  0.7601 0.5395 04198 05799  0.5810  1.0220 07272 0.5665  0.7800  0.7627

1718, 19, 20 07357 05361 04334 05757 05490  0.7357 0.5361 04334 05757 05490 09317  0.6797 05492  0.7271  0.6949

20,21,22, 30 07205 05340 04397 05717 05365 0.7205 0.5340 0.4397 05717 0.5365 0.8670  0.6446  0.5339  0.6888  0.6483

23,2425 40 07102 05331 0.4428 05695 05304 0.7102 0.5331 04428 05695 05304 0.8244  0.6216 05210 0.6633 0.6192

26,27,28, 50 0.7026  0.5323  0.4446  0.5677  0.5273  0.7026 0.5323 0.4446  0.5677  0.5273  0.7952  0.6053  0.5118  0.6454  0.5995

29, 30) 100 0.6818 05301 04486 05641 05220 0.6818 0.5301 04486 0.5641  0.5220 0.7277 05686  0.4877  0.6046  0.5570

Center Square 5 0.7819 0.6501 0.5619 0.5873 04378  0.7819 0.6501 0.5619 0.5873 0.4378  1.0690 0.8909  0.7543  0.7780  0.5948

(Cases 31, 10 0.8644  0.6901 0.6539 0.6661 05007 08644 0.6901 0.6539  0.6661  0.5007  1.1380 09133 08274 0.7943  0.6634

323334 20 08728 0.6901 0.6811 06955 05275 08728 0.6901 0.6811  0.6955 05275  1.0620  0.8573  0.8029  0.7634  0.6572

353637, 30 08566 0.6842 0.6804 0.6986 05346  0.8566 0.6842 0.6804  0.6986  0.5346  0.9922  0.8100 0.7691 07323  0.6375

38,39, 40, 40 08424 0.6791 0.6768 0.6989  0.5388  0.8424 0.6791 0.6768  0.6989  0.5388  0.9441  0.7775 0.7437 0.7100  0.6218

41,42, 43, 50 0.8306 0.6745 0.6727 0.6989  0.5410  0.8306 0.6745 0.6727 0.6989  0.5410  0.9108  0.7543  0.7249  0.6940  0.6102

44, 45) 100 07974  0.6610 0.6607 0.6953  0.5470  0.7974 0.6610 0.6607  0.6953  0.5470  0.8351  0.7001  0.6818  0.6567  0.5831

Cir/Elip 5 0.6461 04492 03308 04798 04921  0.6461 0.4492 03308 04798 04921 0.8912  0.6125  0.5471  0.6571  0.6706

(Cases 46, 10 07181 05055 03874 05405  0.5407  0.7181 0.5055 0.3874  0.5405  0.5407  0.9587  0.6753  0.5725  0.7207  0.7180

47,48 49, 20 07251 05235 04174 05597 05430  0.7251 0.5235 0.4174  0.5597 05430  0.9088  0.6588  0.5430  0.7046  0.6805

50,51,52, 30 0.7151 05261 04287 05613 05375 0.7151 0.5261 04287 05613  0.5375 0.8558  0.6335 05273  0.6760  0.6430

53,54,55 40 07067 05272 04342 05619 05328  0.7067 0.5272 04342 05619 05328 0.8176  0.6144 05158  0.6539 0.6170

56, 57,58, 50 07001 05275 04377 05615  0.5298 07001 0.5275 0.4377 0.5615  0.5298  0.7908  0.6002  0.5071  0.6384  0.5994

59, 60) 100 0.6808  0.5281 04452 05608  0.5235  0.6808 0.5281 0.4452  0.5608  0.5235  0.7264  0.5668  0.4852  0.6014  0.5585

* highlights imply the estimates with a low goodness of fit (R° < 0.8)
* R: Random and uniform, D: declining from corner, C: Centralized, 20 and 3c: normal distribution within 2 and 3 standard deviations
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Table 9 Estimated Coefficients f with Length-to-Width Ratio of 1

Depot Service n R D C 20 3o

Location  Area B Range R’ B Range R’ B Range R’ B Range R’ B Range R’
Shape

Random Square 5 0.9094  0.505~1.466  0.89 0.7000 0.361~1.043  0.88 0.6490  0.336~0.981 0.88 0.6900 0.378~1.043 0.89 0.5145 0.265~0.805 0.89

(Cases 1, 10 0.9194  0.658~1.165 0.97 0.7179  0.474~0.880 0.97  0.6682  0.445~0.900 0.97 0.7133  0.481~0.955 097 0.5363 0.347~0.742 0.97

4,7 10, 20 0.8851 0.719~0.818  0.98 0.7036  0.537~0.866 0.99  0.6661 0.510~0.826  0.99  0.7125  0.547~0.879 0.99  0.5429  0.399~0.695 0.99

13) 30 08612 0.734-0.984 098 0.6910 0.559~0.886 0.99 0.6622 0.536~0.790 0.99 0.7095 0.574~0.845 099 0.5453  0.425-0.670 0.9

40 08443 0.739~0.945 098  0.6829 0571~0.793 0.99 0.6592  0.550~0.769 099 0.7069  0.590~0.823 0.99  0.5461  0.440~0.656 0.99

50 0.8320  0.742~0.919  0.98 0.6769  0.578~0.775 0.99  0.6571 0.559~0.755 0.99  0.7048  0.600~0.808 0.99  0.5473  0.452~0.646 0.99

100  0.7979  0.741~0.853  0.99 0.6615  0.594~0.728 0.99  0.6504  0.583~0.717 0.99  0.6981  0.627~0.768 0.99  0.5499  0.324~0.622 0.99

Clr/Ellp 5 0.7484 0.414~1.064 0.89 0.5210  0.277~0.786  0.88 0.3952  0.175~0.658  0.85 0.5636  0.304~0.836 0.90  0.6148 0.324~N/A  0.74

(Cases 10 07601  0540-0.962 098 05395 0365-0.722 097 04198 02450617 095 05799 0.394-0768 098 05810 0412-N/A 091

31, 34, 20 0.7357  0.597~0.866  0.99 0.5361 0.411~0.666 0.99  0.4334  0.298~0.578 0.99  0.5757 0.443~0.710 0.99  0.5490 0.440~N/A 0.96

37, 40, 30 0.7205  0.613~0.822  0.99 0.5340 0.430~0.641 0.99 04397 0.326~0.559 0.99 05717 0.464~0.682 099 05365 0.447~0.629 0.98

43) 40 07102 0.620~0.795 099 05331 0.442-0.626 0.99 04428 0.343~0.547 099 05695 0.476~0.664 099 05304 0.452-0.610 0.99

50 07026  0.624~0.776 099 05323  0.450~0.616 099 04446 0354~0.538 0.99  0.5677 0484~0.652 099 05273 0.457~0.599 0.99

100  0.6818  0.631~0.730  0.99 0.5301  0.472~0.589 0.99  0.4486  0.383~0.515 0.99 0.5641 0.504~0.623 099  0.5220 0.471~0.574 0.99

Center Square 5 0.7819  0.448~1.113  0.78 0.6501  0.389~0.930 0.85 0.5619 0.301~0.848 0.76  0.5873  0.305~0.900 0.76  0.4378  0.213~0.691 0.77

(Cases 10 08644 06131114 092 06901 0476-0.916 095 06539 0425-0.894 0.89 0.6661 04380905 090 0.5007 0316-0.702 090

16, 19, 20 0.8728  0.703~1.037  0.98 0.6901  0.529~0.854 0.99  0.6811 0.517~0.850 0.97  0.6955  0.529~0.865 0.97  0.5275  0.386~0.678 0.97

22 25 30 08566 0725-0981 099 06842 0.552-0817 099 06804 05470815 098 06986 0.563-0835 099 05346 0414-0.660 098

28) 40 08424 07350944 099 06791 0.566~0.791 0.99 0.6768 0.563~0.790 099 0.6989  0.582~0.815 0.99  0.5388 0.433~0.649 0.99

50 0.8306  0.739~0.918 0.98 0.6745  0.574~0.773 0.99  0.6727  0.573~0.772 0.99  0.6989  0.595~0.801 0.99  0.5410 0.445~0.641 0.99

100  0.7974  0.740~0.853  0.99 0.6610  0.593~0.728 0.99  0.6607  0.593~0.727 0.99  0.6953  0.624~0.765 099  0.5470  0.477~0.619 0.99

Cil’/Elip 5 0.6461  0.366~0.926 0.78  0.4492  0.238~0.683 0.77  0.3308 0.137~0.569 0.75  0.4798  0.247~0.727 0.77  0.4921 0.311~0.697  0.80

(CClS@S 10 0.7181  0.506~0.924  0.98 0.5055  0.337~0.687 0.91 0.3874  0.220~0.578 0.89  0.5405 0.358~0.731 0.91 0.5407  0.387~0.695 0.93

46, 49, 20 0.7251 0.583~0.857 0.98 0.5235  0.399~0.651 0.97 04174 0.283~0.563 0.96  0.5597 0.429~0.694 097 0.5430 0.435~0.617 0.98

52, 55, 30 0.7151 0.605~0.817  0.99 0.5261  0.423~0.632 0.99 04287 0.315~0.549 0.98 0.5613  0.453~0.670 0.99  0.5375  0.449~0.626 0.99

58) 40 0.7067  0.615~0.939  0.99 0.5272  0.437~0.620 0.99  0.4342  0.334~0.539 0.99 05619 0.468~0.656 099  0.5328 0.456~0.610 0.99

50 07001  0.621~0.774 099 05275 04450611 099 04377 0347-0.532 099 05615 0477-0.646 099 05298  0.460~0.600 0.99

100  0.6808  0.629~0.729  0.99 0.5281  0.469~0.587 0.99  0.4452 0.380~0.512 0.99 0.5608 0.501~0.620 0.99  0.5235  0.474~0.574 0.99
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Table 10 Estimated Coefficients f with Length-to-Width Ratio of 2

Depot Service n R D C 20 3o

Location  Area B Range R’ B Range R’ B Range R’ B Range R’ B Range R’
Shape

Random Square 5 1.0200 0.597~1.425 .91 0.7860 0.412~1.196 (089 0.7260 0.396~1.083 (o909 0.5801  0.307~0.915 0.89  0.7820  0.427~1.189  0.89

(Cases 2, 10 10140 07091293 (95 0798 0501~1085 095 (7366 0.474~1.003 (95 05917 0368~0.847 095 07883 0.513-1.087 0.95

5.8 11, 20 09341 0.758~1.096 093 07458 0.559-0.924 096 (7042 0.532-0.875 097 05755 0.415-0.749 098 07538 0.573~0.936 0.97

14) 30 08903 0.759~1.012 (93 0.7188 0.576~0.855 0.96 06864 0.552~0.819 (98 0.5665 0.437~0.705 099  0.7353  0.595~0.876 0.98

40 08637 0.757~0.965 094 07027  0.584~0.816 0.97 (6762 0.563~0.787 099  0.5622  0.450~0.681 0.99  0.7250  0.607~0.843  0.99

50 8465 0.755~0.934 (95 0.6923  0.589~0.791 098 0g700 0.571~0.767 (99 0.5596  0.459~0.665 0.99 0.7181  0.614~0.822 0.9

100 08051 0.747~0.861 (98 0.6687 0.600~0.734 0.99 (6559 0.588~0.722 (99 0.5557 0.483~0.629 0.99 07034  0.633~0.773 0.9

Cir/Elip 5 08524 0495-1231 090 04478 0210~0.757 089 05927 0327~0.909 0.90  0.6401  0.362~0.924 091  0.6383  0.359~0.961 0.9

(Cases 10 0.8471 0.587~1.105 094 04737 0.265~0.726 0.95 0.5880 0.376~0.824 093  0.6480  0.439~0.859 097  0.6437  0.422~0.886 0.95

32, 35, 20 07851  0.630~0.930 094  0.5229  0.343~0.727 0.96 0.5680  0.422~0.721 0.97 0.5906  0.464~0.720 091  0.6137  0.466~0.767 0.97

38, 41, 30 0.7523  0.637~0.859 0.95  0.5205 0.368~0.688 0.98  0.5573  0.442~0.675 098  0.5639  0.466~0.665 0.93  0.5981 0.481~0.719  0.98

44) 40 0.7330  0.639~0.821 096  0.5134  0.382~0.656 0.98  0.5502  0.451~0.649 099 0.5501 0.467~0.636 0.95 0.5892  0.490~0.691 0.98

50 0.7202  0.639~0.796 0.96  0.5070  0.390~0.632 0.99  0.5458  0.459~0.633 099 0.5422  0.468~0.618 0.96  0.5831  0.496~0.673  0.99

100 0.6902  0.638~0.739  0.98 04866  0.408~0.568 0.99  0.5370  0.479~0.597 0.99  0.5287 0.476~0.582 0.99  0.5716  0.511~0.632  0.99

Center Square 5 09132 0.534~1.297 0.82  0.7408 0.452~1.073 0.87 0.6416  0.347~0.980 0.82  0.5075  0.261~0.818 0.81 0.6862  0.364~1.054 0.80

(Cases 10 0.9541 0.653~1.238  0.91 0.7619  0.514~1.026 0.94  0.6990  0.448~0.972 091 0.5469  0.334~0.798 0.90  0.7324  0.459~1.020  0.90

17, 20, 20 09184  0.737~1.087 095  0.7323  0.557~0.905 097 0.7645 0.566~0.961 095 0.5569 0.401~0.728 0.97  0.7316  0.548~0.914  0.97

23, 26, 30 0.8829  0.748~1.008 0.96  0.7120  0.572~0.845 098  0.7509  0.595~0.902 0.97 0.5553  0.428~0.692 0.99  0.7237  0.580~0.864  0.99

29) 40 0.8599  0.751~0.963 096  0.6987  0.581~0.810 0.98  0.7328  0.604~0.856 0.97  0.5540  0.442~0.671 0.99  0.7167  0.596~0.834  0.99

50  0.8438  0.750~0.932 097  0.6895 0.587~0.787 098  0.7184  0.607~0.824 0.97  0.5533  0.453~0.658 0.99  0.7118  0.606~0.815  0.99

100 0.8044  0.746~0.860 098  0.6680  0.600~0.734 0.99  0.6799  0.610~0.747 098  0.5527  0.481~0.626 0.99  0.7003  0.629~0.966  0.99

Cli‘/Ellp 5 0.7538  0.441~1.103  0.81 0.3895  0.169~0.682 0.79  0.5200 0.274~0.814 0.80  0.5669  0.342~0.829 0.82  0.5608  0.294~0.858  0.81

(Cases 10 0.7931 0.535~1.047 091 0.4274  0.231~0.667 0.89  0.5571  0.355~0.783 090  0.5934  0.410~0.788 0.91 0.5980  0.373~0.831 091

47, 50, 20 0.7693  0.612~0.916 096  0.4455 0.297~0.614 097  0.5560  0.416~0.703 097 0.5750  0.454~0.701 0.97  0.5956  0.446~0.749  0.97

53, 56, 30 0.7460  0.629~0.855 0.97  0.4496  0.326~0.583 098  0.5498  0.438~0.665 098  0.5599  0.465~0.659 0.97  0.5867  0.469~0.707  0.98

59) 40 07294  0.634~0.818 097 04520 0.346~0.565 0.99  0.5453  0.449~0.644 0.99  0.5502  0.469~0.876 0.98  0.5810 0.481~0.683 0.99

50 07178  0.636~0.794 0.98  0.4524  0.356~0.553 0.99  0.5422 0.456~0.629 0.99 05435 0472~0.618 098 0.5768  0.488~0.667 0.99

100 0.6893  0.637~0.738  0.99 04532  0.385~0.522 0.99  0.5356  0.475~0.595 0.99  0.5301  0.478~0.583 0.99  0.5682  0.507~0.630  0.99
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Table 11 Estimated Coefficients S with Length-to-Width Ratio of 4

Depot Service n R D C 20 3o

Location  Area B Range R’ B Range R’ B Range R’ B Range R’ B Range R’
Shape

Random Square 5 12260 0552-N/A 088 09569 0404~1.610 090 08738 0.375-1477 089 09408 04I3-1562 089 07005 0293-1243 0.8

(Cases 2, 10 12050 0782-N/A 095 09522 0561~-N/A 097 08869 0529~1266 097 09486 0.575~1348 097 07144 0405-1.082 0.97

5,8 11, 20 10840 0858-N/A 087 08739 0.631~N/A 092 08268 0.599-N/A 095 08847 0.644-NA 095 06779 0485-0.914 0.97

14) 30 1.0030  0851~N/A 081 08189 0.642~N/A 089 07819 0615-N/A 093 08370 0.658-N/A 093 0.6496 0.481-0.830 0.96

40 09506 0.834-N/A 080 07830 0.641~N/A 088 07522 06190879 092 08049 0.661-0.937 092 0.6299 0.490~0.779 0.96

50 09149 08181001 081 07583 0.639-0.866 0.89 07311 0.618-0.839 092 07827 0.661-0.894 092 06166 0.494-0.745 0.96

100 08355 0.776-0.891 090 0.7014 0.628-0.770 0.94 0.6840 0.613-0.752 096 07325 0.658-0.802 096 0.5859  0.668~0.505 0.98

Cir/Elip 5 10320 0465-1655 090 07215 0320~1213 087 05411 0201~1.004 086 07755 0.073~1312 087 07716 0.360~1233 0.88

(Cases 10 10220  0.637-NA 097 07272 0433-1.057 096 05665 02910905 096 07800 0464-1.129 096 07627 0483~1.052 0.9

32,35 20 09317 0717-N/A 091 06797 0488-0.886 095 05492 0349-0782 098 07271 0.527~-N/A 095 06949 0527-NA 090

38 41, 30 08670 0718-N/A 085 0.6446 0497-0.799 093 05339 03720714 098 06888 0.536-0.847 093 0.6483  0.524-N/A 086

44) 40 08244 0.708-N/A 084 06216 04990748 093 05210 0384-0.671 098 0.6633 0538-0.792 092 0.6192 0.518-0.727 0.86

50 07952 0.700~N/A  0.84 0.6053 0499-0.738 093 05118 0391~0.641 098 06454 0537-0.756 093 05995 0.512-0.693 0.87

100 07277 0.671~0.780 091 05686 0.500~0.637 096 04877 0407-0.570 098 0.6046 0.535-0.674 096 0.5570 0.498-0.618 0.94

Center  Square 5 10690 0500~1.698 080 08909 0465-1411 085 07543 0330-1296 080 07780 0329~1365 075 05948 0240~1.083 0.7

(Cases 10 11380 0726~1.508 093 09133 0.588~1280 096 0.8274 0485~1203 093 07943 0428-1235 092 06634 0369~1.020 091

17.20, 20 10620 0.836-1251 093 0.8573 0.630~1.078 095 08029 0.578~1.028 097 07634 0491~1.059 096 0.6572 0.451~0.891 0.97

23,26, 30 09922 08381122 089 08100 0.638-0.971 093 07691 0.601~0.932 096 07323 05050964 096 0.6375 0.474~0818 0.97

29) 40 09441  0959-1.046 087 07775 0.638-0.906 092 07437 0.608-0.873 095 07100 0510-0.907 096 0.6218 0.483~0.771 0.97

50 09108 08140997 086 07543 0.636~0.863 091 07249 0.610-0.834 095 0.6940 0513-0.869 096 06102 0.488-0.740 0.97

100 08351 0.775-0.890 092 07001 0.627-0.768 0.95 0.6818 0.610~0.750 097 06567 0.519~0.786 097 05831  0.502~0.666 0.98

Cir/Elip 5 08912 0409-1454 079 06125 0263~1077 079 05471 0210~0.990 088 06571 0266~1.156 079 06706 0.329-1.09% 0.78

(Cases 10 09587 0597~1318 093 06753 0392~1.002 092 05725 0333~0853 091 07207 0411~1.066 093 07180 0455~1.004 092

4750, 20 09088 0.692~1.105 095 0.6588 0.466~0.867 097 05430 0354-0.758 096 07046 05010923 097 0.6805 0.517-0.856 0.95

53,56 30 08558 0.704~0.991 092 0.6335 0485-0.789 096 05273 0371~0.701 097 06760 0522~0.837 096 06430 0521~0.775 093

59) 40 08176 0.700~0.923 090 06144 0491-0.742 096 05158 0381-0.662 097 0.6539 0527-0.785 095 06170 0.516~0.726 0.92

50 07908  0.694~0.878 0.90  0.6002 0.493-0.709 096 05071 0388-0.635 098 0.6384 05290750 095 05994 0.512-0.693 0.92

100 07264 0.670~0.779 093 05668 0498-0.636 097 04852 0.405-0.568 098 0.6014 0.532~0.671 097 05585 0.500~0.620 0.95
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Figure 9. Investigation for Estimated p

Figure 9 (a) shows all coefficients 8 and goodness of fit values (R?) estimated with different

n values (i.e., with different numbers of intervals) for Case 1. Adjusted R’ increases as n

increases. The coefficients have an uptrend before n = 8, and then the estimated f decreases

between 8 and 100 points Figure 9 (b) shows details of relative percent changes for this

reversal. The relative percent changes in estimated f decrease with n. Beyond n = 63, the

changes are below 0.01%.

Table 12 Comparison of Exact and Estimated Tour Lengths

; , Exaf:t Estimated MAPE

Solution | Tour Length (%)
oo | 2|0
oo | 2|0
oo |2 e b
0979 |51y | ias | itai

Since the exact tour lengths for visiting 2 and 3 points can be derived analytically, the

estimated distance in Table 12 can be compared with the exact tour lengths presented. The

Mean Absolute Percentage Error (MAPE) suggests that the approximation models could
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effectively explain the TSP tour lengths when n > 3. Across the different scenarios developed
in Section 3.2.1, the lowest MAPE overall is found at £ of 0.7979 in Table 8. For the exact

distance of three points (n = 3), S of 0.9094 provides the best solutions.

3.4 Summary

Using the optimized TSP instances, approximation models are developed with an OLS
regression. The models consider the various scenarios, such as depot location, distance metrics,

service area shapes, and point distributions.
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Chapter 4: Extensions of Tour Length Approximation: Adjustment
Factors, Probabilistic Tour Length Approximation, and
Comparison on Approximated versus Actual Road Network
Distance

This chapter introduces various extensions for the TSP tour length approximation. First,
adjustment factors that integrate various considerations into a single equation are developed
for easy use of the proposed approximations. Assuming that the number of visited points is
preset and only a subset of the points is visited based on a probabilistic distribution (e.g.,
uniform distribution), approximations are designed for such probabilistic TSP’s (P-TSP).
Lastly, the approximation results from Chapter 3 are applied to estimate the tour lengths for
rural freight delivery and urban package delivery networks. After the actual and estimated tour

lengths are compared, findings and implications are discussed.

4.1 Adjustment Factors for Approximations

To conveniently use the approximation coefficient £, adjustment factors are designed to
integrate various considerations from Chapter 3 within one equation. With the factors, it can
be understood how sensitively the estimated £ varies with each classification. The coefficient

S for one classification can be converted to another using Equation (9).

{Lzﬁ\/n_A

)]
B =Dy Dy Dy D3-Dy-Ds

where Dy is an adjustment factor associated n values for the coefficient for a random depot in

a square service area (Case 1), D; is a random-to-center conversion factor, D: is, a square-to-
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circular conversion factor, D3 and D+ are adjacent factors for point distribution, and Ds is an
elongation (i.e., a length-to-width ratio) adjustment factor
In addition to the above adjustment factors, the finding in Krarup and Pruzan (1980) showed

that the average ratio of distances between Euclidean and rectilinear space is fixed as 1.26.

4.1.1 Curve Fitting Methods and Computation Steps

Curve fitting methods are used to present the best fit of given data points. First, the relative
ratios (1) between coefficients § in Table 8 or (2) between optimized TSP tour lengths are
computed for one to another classification. For Dy, the coefficients S for Case 19 (i.e., central
depot) are divided by S of the baseline Case 1 (i.e., random depot). Since the adjustment factors
for bivariate normal distributions Dy are varied according to the standard deviation (o), the tour
lengths with different standard deviations (ranging from 0.01 to 0.5) are generated. Then, the
lengths are normalized (i.e., divided by the TSP tour lengths generated on uniform and random
distributions). For elongation Ds, a length-to-width ratio x is introduced as a variable. Note that
the range for o ranges between 0.01 and 0.5, while x is between 1 and 4.

After all fractions are computed, various curve fitting methods (e.g., exponential,
polynomial, and power) are applied. The adjustment factors with the highest goodness of fit

are chosen, as presented in Equations (10) — (15).

D — {—0.0040 «n? +0.0563 n + 0.7285 (if n < 8) 10
07 11.0580 * n0-0616 (if n > 8)
0.0462 ;

D, = { 0.8337 xn (if Cente.red) (11)
1 (otherwise)
0.8034 * n0-0126 (if circular/elliptical)

D, = ) (12)
1 (otherwise)
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0.7381 * n00249 (if centralized)
D3 =1 0.6575 xn%0%*  (if declining from corner) (13)

1 (otherwise)
0.5491 ;
D, = { 1.6310 x o (if nor@al) (14)
1 (otherwise)
x 00319 (ifelongated)
D: = 15
> { 1 (otherwise) (15)

In Equation (10), the approximated TSP tour length is based on Case 1. In Figure 10 (¢), Do
is divided into two segments at n = § for the best fit, where an inflection point for coefficients
[ is found at that n value in Figure 10. From the literature and Table 8, f does not converge to
a specific value as n increases. After adding Equation (10), the square root of #» no longer holds.
This result implies that finding the best exponent of n could improve the approximation
accuracy. Equations (10) — (15) are fitted, and the fitting results are described in Table 13 and
14. For Ds in Equation (15), the tour lengths are not significantly increased within the length-
to-width range of 1 and 4, while the unit area is unchanged. The tour lengths increase by 1.1%
atx=1.4and 4.5% atx =4.

Although estimation with the highest R’ is often regarded as preferable, this study also
considers: (1) ease of use, (2) intuitive explanation, (3) overfitting, and (4) reasonable value of
the goodness of fit. If the R’ is not significantly different between the highest and second
highest, it would be better to choose a simpler method mainly because of computation and
convenience. The same rule applies to other goodness of fit measures, including the sum of
square error (SSE) and root mean square error (RMSE). Besides, the estimated adjustment
factors should show a clear relation between n and B. Since R’ can only increase when more
variables (e.g., the number of variables or the number of terms) are added, a simpler method

would be preferable to avoid overfitting estimations.
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Table 13 Curve Fitting for Adjustment Factor Associated n Values (Do)

Model Type
Exponential | Polynomial Polynomli{at){brld Power
Formula a*exp®™ a*n+b | a*n’+b*n+c a*n®
a 0.9067 -0.0012 -0.0040 1.0580
Coefficient b -0.0015 0.9042 0.0563 -0.0616
c - - 0.7285 -
Goodness SSE 0.0104 0.0116 0.0000 0.0002
of fit RMSE 0.0105 0.0111 0.0020 0.0015
Adj R? 0.9185 0.9042 0.9906 0.9980

In Table 13, all the adjusted R exceeding 0.90. Based on the considerations listed earlier,

the estimation from the power method is chosen.
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Table 14 Curve Fitting Results for Equations (10) — (14)

D, D D; Dy D;s

Clustered | Dispersed | Normal w

Formula a-n® an® an® an® ac? xb
Coefficient a 0.8337 | 0.8034 | 0.7381 0.6575 | 1.6310 -
b 0.0462 | 0.0126 | 0.0249 | 0.0464 | 0.5491 0.0319
SSE | 0.0039 | 0.0000 | 0.0000 | 0.0000 | 0.0610 0.1617
GoofdeSS RMSE | 0.028 | 0.0026 | 0.0011 0.0036 | 0.1105 0.4022
ot Adj.R? | 0.71 0.94 0.99 0.99 0.91 0.96

In Table 13 and 14, most relations are well fitted with the power method.

4.1.2 Validation of Adjustment Factors

Table 15 displays absolute percent errors using the proposed f (referring to Table 8), while

adjustment errors are percent differences of average tour lengths of 1,000 TSPs and adjustment

factors (Do, D1, D2, D3, D4, and Ds).

Table 15 Percent Adjustment Error (1/2)

. n values Random-Center | Square-Circular |Declining from corner|  Centralized 36 L/W:2 L/W:4
Est.p |Eq. (10)| Est.f [Eq.(11)| Est.p [Eq. (12)[ Est.p |Eq.(13)| Est. |Eq.(13) Est.ﬁ‘ Eq. (15)| Est.p |Eq.(15)| Est.p |Eq.(14)| Est.p |Eq.(14)
2| 1936 | 1112 | 3021 [ 2611 | 1832 [ 829 19.45 8.83 19.78 | 5.60 1824 | 1926 | 1921 | 17.63 | 21.57 | 5.16 19.88 | 13.90
3] 076 6.38 6.91 6.99 111 8.15 0.86 6.38 0.72 9.58 1.35 6.68 1.49 3.79 3.03 11.62 | 034 | 3572
4| 405 6.35 6.76 2.20 421 751 374 6.99 3.68 9.15 2.83 5.82 3.98 1.68 1.92 1429 | 448 | 3775
5] 406 3.99 1083 [ 2.88 329 | 387 5.30 5.58 5.74 7.58 5.82 5.24 5.40 2.56 5.30 1545 | 468 | 349
6] 222 1.90 3.04 3.64 1.80 | 2.34 1.68 2.69 1.98 441 1.61 7.63 1.27 371 4.02 1186 | 415 | 30.20
71 L74 0.95 3.82 3.36 1.64 1.50 2.02 2.15 2.71 3.83 1.93 7.76 111 431 5.04 1244 | 1.88 | 26.77
8| 048 0.10 2.55 2.00 074 | 0.83 0.71 0.90 0.71 1.51 1.59 7.70 1.46 3.59 3.76 1152 | 023 | 2522
91 013 0.64 3.30 2.18 0.15 | 036 0.03 0.27 1.03 1.09 1.55 7.86 2.19 3.03 3.03 4.08 248 | 21.68
10 128 1.14 3.83 2.97 053 | 022 0.56 0.70 0.57 0.42 1.4 7.36 1.03 3.50 5.13 2.49 435 | 20.12
20| 322 2.63 1.24 0.63 271 2.34 2.15 1.52 0.37 0.15 0.51 5.18 0.40 0.51 5.58 2.62 8.87 744
30| 310 2.74 2.69 1.69 2.16 1.91 2.04 1.74 0.83 0.51 0.73 3.00 091 4.87 5.44 4.42 9.30 1.44
40 | 326 3.10 3.04 2.98 249 | 229 1.78 1.62 0.87 0.73 0.93 1.89 0.20 6.15 4.86 4.48 9.08 1.89
50 | 336 3.30 3.29 4.04 237 | 217 2.15 2.05 0.66 0.62 0.04 0.53 0.31 7.97 4.25 4.60 7.91 3.05
60 | 0.65 3.58 0.13 4.4 027 | 216 0.22 1.76 0.07 0.74 0.03 0.58 0.57 9.99 0.46 4.66 1.37 4.10
70| 112 3.12 1.17 5.07 0.70 1.86 0.75 1.73 0.17 0.82 0.74 0.75 0.06 10.48 1.12 4.37 2.66 4.45
80 | 1.66 2.85 1.57 5.14 1.12 1.64 0.80 1.31 0.48 1.00 0.63 1.70 0.10 11.43 1.97 435 3.62 4.61
9| 223 271 2.34 5.60 1.66 1.63 0.84 0.92 0.43 0.84 0.67 2.40 0.15 1230 | 2.64 439 4.26 4.55
100 271 2.56 2.58 5.58 1.91 1.38 1.27 0.97 0.53 0.84 0.82 2.91 0.47 13.40 | 291 4.03 4.90 4.58
Avg| 1.94 | 2.95 2.14 391 152 | 2.10 1.29 1.72 0.75 | 1.08 0.81 2.75 0.66 7.68 2.81 454 | 4.4 6.65

* L/W implies a length-to-width ratio of service area

The overall absolute percent errors for the proposed S are lower than for the adjustment

factors. Although large percent errors are observed for n = 2, the percent errors for the proposed

[ generally decrease. For elongated service areas, large errors are found in proposed models

and adjustment factors.
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Table 16 Percent Adjustment Error (2/2)

Case 27 Case 28 Case 34 Case 35 Case 53 Case 58 Case 60

(Square, Center,| (Square, Center, | (Circular, Random, | (Elliptical, Random, | (Elliptical, Center, | (Circular, Center, | (Elliptical, Center,

B L/W: 4,2 Sigma) | L/W: 1, 3 Sigma) |L/W: 1, Centralized)| L/W: 2, Centralized) | L/W: 2, Declining) | L/W: 1, 3 Sigma) | L/W: 4, 3 Sigma)

Egs. (10), Eqs. (10), Egs. (10), Egs. (10), Egs. (10), Egs. (10), Egs. (10),

Est. g|(11), (14),|Est. g (1), (15) Est. an Est. | (12),(13), |Est. f| (11),(13), |Est. g| (11), (12), |Est. g | (11), (12),

as) ’ a4 a14) 14), a5) (14), (15)
2 30.57 4.49 31.59 31.05 23.21 39.26 12.12 13.69 27.38 18.36 30.20 5.87 33.29 24.69
3 1.18 27.80 | 18.73 11.93 2.02 26.92 37.75 0.04 2.70 5.96 3.04 22.75 1.61 72.02
4 4.52 17.97 11.42 3.38 4.94 25.06 48.09 3.01 15.56 12.00 5.42 27.37 5.07 74.86
5 16.55| 39.34 8.71 2.35 6.53 26.26 54.97 4.51 25.17 15.86 9.56 27.98 10.22 77.01
6 0.26 19.11 1.18 0.83 1.01 27.23 46.06 2.54 14.61 15.55 2.68 28.86 2.52 72.08
7 2.30 20.74 2.72 0.50 1.33 27.77 43.83 3.39 16.43 14.96 2.70 27.31 4.29 72.66
8 1.39 19.41 3.77 0.30 0.68 28.32 46.37 1.58 18.16 15.50 3.37 27.79 4.53 72.39
9 0.22 17.24 6.50 2.26 3.33 26.86 38.98 4.09 12.59 8.56 3.45 26.98 1.16 65.48
10 0.13 17.33 6.08 2.02 3.13 26.83 38.40 4.25 12.06 7.56 3.26 26.91 0.03 63.68
20 4.41 8.81 2.55 5.02 1.34 24.59 30.15 5.48 5.05 1.31 1.06 23.11 5.44 46.92
30 5.48 3.84 1.33 5.83 0.88 23.12 26.13 6.15 3.08 1.85 1.51 21.88 6.82 36.96
40 5.19 1.44 1.22 7.01 1.16 21.86 25.09 5.62 1.93 3.95 1.54 21.19 6.90 31.42
50 4.75 0.04 0.89 7.46 0.87 21.36 24.58 5.11 1.35 5.37 1.14 21.30 6.18 28.74
60 0.67 1.08 0.28 8.30 0.49 20.63 23.63 4.57 1.13 6.21 0.02 21.53 0.65 27.09
70 1.66 1.84 0.49 8.79 0.64 20.22 23.44 4.36 1.37 6.62 0.33 21.32 1.92 25.51
80 2.21 2.19 0.58 9.11 0.32 20.24 23.42 4.07 0.60 7.86 0.61 21.17 3.02 24.16
90 2.80 2.60 0.55 9.28 0.87 19.59 23.16 4.00 0.84 8.12 0.36 21.64 3.23 23.92
100 3.08 2.72 0.91 9.84 0.61 19.60 23.30 3.65 0.57 8.79 0.58 21.53 3.86 23.15
Avg 2.84 4.91 1.56 7.25 1.05 22.22 26.72 4.60 3.40 6.01 1.22 22.10 3.62 34.53

Table 16 shows adjustment errors when the adjustment factors are used in combination

according to Equation (9). Due to the large errors, it should be recommended that no more than

two factors be used at a time, namely Do and any other adjustment factor in Equation (9).

The factors for bivariate normal distributions and elongated service areas produce the large

absolute average percent errors among the six factors. They apply similarly to the cases if

multiple factors are jointly used. Although some limitations exist for their use, these factors are

valuable for understanding the relations between the TSP tour lengths and each classification.

For instance, planners can roughly estimate how much the actual point distribution may affect

vehicle miles traveled (e.g., whether it leads to minor or huge changes).

4.1.3 Comparison with Other Tour Length Approximations

This section computes the approximated TSP tour lengths with different existing

approximation models and compares them with average tour lengths of 1,000 TSP instances.
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The absolute percent difference is used for the comparison. The approximation models include
Daganzo (1984), Hindle and Worthington (2004), and Cavdar and Sokol (2015). Daganzo’s
approximation is one of the earliest ones and remains similar to Beardwood’s equation, while
other approximations have some variations, as shown in Equations (2) and (3). In particular,
Cavdar and Sokol (2015) can estimate average TSP tour length without having the exact
distribution of points or service area shape. Note that comparison results in some applications

are introduced in Section 5.3.2.

Table 17 Comparison of Percent Differences Using Existing Approximation Models

n vaues

Center

Circular

LIW: 4

30

Other Cases

Case 1

Case 16

Case 31

Cased

Case 13

Case 27

Case 35

Case 60

C&S

H&W

D

C&S

H&W

D

C&S

H&W

D

C&S

H&W

D

C&S

H&W

D

C&S

H&W

D

C&S

H&W

D

C&S

H&W

D

5

28.00

34

3813

18.14

129

R4

7.51

263

24.26

04.87

58.54

7520

16.62

80.51

797

7175

4161

65.07

17.03

7017

1.79

"o

20.04

57.55

10

21

330

46.88

19.62

446

46.28

1.4

24.00

3623

58.88

5.9

76.85

21.54

73.03

1.01

.9

281

7062

18.%4

£6.31

1447

63.75

261

6329

20

1748

239

5.02

16.88

1.76

%430

565

2.5

49

4172

4.3

76.30

213

62.21

2116

65.67

37.5

M.9%

16.52

66.14

2.3

5321

209

04.52

30

16.19

137

5790

14.35

148

57.86

1.25

20.00

5017

3.4

4062

75.34

244

53.73

3%.16

60.68

232

.90

13.84

63.70

3202

4587

13.39

64.03

40

1315

149

60.40

1246

150

6040

9.56

19.1

5.30

31.66

3610

74.68

238

51.50

4089

56.57

2148

.1

10.80

67.98

446

4015

743

63.89

5

1.74

197

62.25

11.15

206

62.22

10.59

19.83

55.76

2%

30.55

7429

224

234

4412

52.98

290

746

1.01

66.15

38.50

3545

181

63.65

60

10.4

287

63.68

10.6

240

63.85

11.65

19.93

57.66

209

26.34

739

21.64

414

4%

50.23

19.11

M4

10.88

£6.83

4110

3220

242

63.84

70

10.04

32

6497

9.57

332

04.93

12.33

202

5918

17.05

262

7313

215

4198

L

4156

16.54

"33

9.18

68.96

4265

205

.76

6342

80

9.5

386

66.03

9.2

384

66.04

1275

2089

60.46

13.23

19.18

3.5

23

4807

51.57

455

1213

.2

8.96

7014

4.3

219

1210

6333

%0

8.95

417

66.92

847

4%

66.86

1340

2190

61.51

10.25

16.16

7353

215

84

5314

4358

9.07

M2

8.31

.16

45.76

200

15.76

6345

100

8.91

572

67.70

8.27

565

67.72

13.56

2.1

62.50

[l

1345

73.56

2.9

48.54

5461

213

6.37

.39

[l

7382

46.89

20.78

19.10

6361

Avg.

13.69

319

59.46

1222

426

99.12

9.7

2.58

5223

257

3238

7449

21.80

94.68

40.66

95.34

2.5

10.72

11.89

68.54

35.58

38.89

12.74

62.88

* C&S: Cavdar and Sokol (2015), H&W: Hindle and Worthington (2004), and D: Daganzo (1984)

Table 17 shows the absolute percent differences when applying each approximation model
to each case with the 1,000 TSP instances. Cavdar and Sokol (2015) indicate that the model
tends to underestimate the tour lengths when n < 1,000. For the estimates by Cavdar and Sokol,
Table 17 presents the decrease in the percent differences as n increases. It may be noted that

20 for the circular area. The

the “absolute” percent differences decrease beyond n
approximation from Hindle and Worthington (2004) produces good estimates for Cases 1 and

16, where the cases have similar experiment settings, such as a square area with uniform
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distribution. However, the approximation yields poor results for other cases. Lastly, the
estimation results from Daganzo’s approximation show the largest differences.

Table 18 Estimation Results for Small/Large n Values Using Adjustment Factors

n Ollizgtzhed App{gﬁgglated % Error | Replication
200 10.7339 11.0754 3.18 100
300 12.9704 13.3101 2.62 100
400 14.8995 15.1640 1.78 100
500 16.5246 16.7781 1.53 100
600 18.0356 18.2237 1.04 100
700 19.5046 19.5427 0.20 100
800 20.7823 20.7621 -0.10 100
900 22.0045 21.9008 -0.47 100

1,000 23.1587 22.9721 -0.81 100
2,000 32.4540 31.4527 -3.09 10
3,000 39.6515 37.7990 -4.67 10
4,000 45.7128 43.0640 -5.79 10
5,000 51.0360 47.6479 -6.64 10
6,000 55.8877 51.7532 -7.40 10
7,000 60.2507 55.4988 -7.89 10
8,000 64.4203 58.9619 -8.47 10
9,000 68.2225 62.1955 -8.83 10
10,000 71.8250 65.2380 -9.17 10

Although the scope of this dissertation covers small n values, Table 18 is designed for the
applications of adjustment factors to large n values. With the second column of Table 15
combined, the percent error decreases until n = 10. After n = 100, the errors keep decreasing.
In brief, it is shown that the adjustment factors can estimate the tour lengths for up to 2,000

points within a reasonable percent error range.

4.2 Tour Length Approximation with Stochastic Customer Presence: Probabilistic Traveling

Salesman Problem

Jaillet (1985) introduced a probabilistic traveling salesman problem (P-TSP); a
probabilistically chosen subset of £ points is visited from »n known points (i.e., 0 <k <n). With
this feature, stochastic customer presence (or customer’s acceptance of the service) can be

considered in the conventional TSP.
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Consider that some points on the optimized TSP tour are absent or unavailable. In Jaillet
(1985), the sequence of visiting the points along the optimized tour is preserved instead of re-
optimizing the TSP instance with the remaining points. Here, the optimized TSP tour for
visiting all points » should be determined before how many points & are chosen. For instance,
delivery workers whose daily demands and delivery routes are fixed do not visit some of the
preassigned delivery points, possibly due to the absence of the recipient from home for attended
delivery or due to the lack of any demand at some points during a particular tour. Those points
are removed, and then the route is optimized while maintaining the previous sequence of visits.
The P-TSP can be helpful for analyzing such cases with uncertain demands.

In this section, the tour length approximations for P-TSP are developed by introducing the
probability p that a pre-located point is actually visited during a tour. However, the detailed
steps for computing P-TSPs would be different from Jaillet’s original proposal. Preserving the
visiting sequence is intended to reduce the computation times, which is no longer an interest
of this dissertation. More importantly, the P-TSP solution obtained from the remaining
sequence of visits does not guarantee an optimal solution (Wissink 2019). Thus, the TSPs are

re-optimized without using the preserved sequence of orders from a prior solution.

4.2.1 Simulation Design and Result

Simulation settings similar to those in Section 3.2 are applied for the P-TSP instances. The
instances are in Euclidean space, where the points are uniformly and randomly distributed over
a unit square. n value ranges from 10 to 100 with an increment of 10. The uniform distribution
is selected to represent the probability of being visited p, where p is a mean varying from 0.1
to 1.0 with an increment of 0.1. If a sample size is large enough, the average TSP tour lengths

(i.e., as random variables from the same distribution) depend only on p according to the central
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limit theorem, regardless of the range of uniform distribution (i.e., the minimum and maximum
values).

Table 19 Estimated Tour Lengths with Different Range of Uniform Distribution

Uniform Distribution n=20 n =40 n =60 n =380 n=100
0 0 0 0, 0,
Case Min | Mean | Max | & Tour | % r Tour | % r Tour | % v Tour | % v Tour | %
Length | Error Length | Error Length | Error Length | Error Length | Error

0.77 | 0.88 | 0.99 | 17.71 [3.6386] 0.36 | 35.10 | 4.8656 | 0.27 | 52.44 | 5.8994 | 0.68 | 70.94 | 6.6508 | 0.26 | 88.20 | 7.3319 | 0.08
0.80 | 0.88 ] 0.96 | 17.53 13.6342] 0.49 | 35.23 | 4.8883 | 0.20 | 52.83 | 5.8382 ] 0.37 | 70.32{ 6.6092 | 0.37 | 88.20 | 7.3330 | 0.10
0.84 | 0.88 | 0.92 | 17.58 [3.6287] 0.64 | 35.16 | 4.8712| 0.15 | 52.78 | 5.8420 | 0.30 | 70.28 | 6.6031 | 0.46 | 88.62 | 7.3505 | 0.34
0.85 | 0.88 | 0.91 | 17.60 [3.6534] 0.04 | 35.19 | 4.8803 | 0.04 | 52.79 | 5.8198 | 0.68 | 70.26 | 6.6148 | 0.29 | 88.09 | 7.3234 | 0.03
0.87 | 0.88 ] 0.89 | 17.74 13.6327] 0.53 | 35.11 | 4.9001 | 0.44 | 52.77 | 5.8341 | 0.44 | 70.42 [ 6.6222 | 0.17 [ 87.98 | 7.3438 [ 0.25
0.88 | 0.88 | 0.88 | 18.00 [3.6519] 0.00 | 35.00 | 4.8786| 0.00 | 53.00 | 5.8596 | 0.00 | 70.00 | 6.6338 | 0.00 | 88.00 | 7.3259 | 0.00

AN || o ]| —

In Table 19, the average TSP tour lengths are estimated from 1,000 TSP instances for each
n value (i.e., the same p = 0.88 with different ranges of uniform distribution). Compared to the
tour length for Case 6 with the other five cases, all the absolute percent errors listed in Table
19 are below 1%.

Table 20 Average TSP Tour Lengths for Various Probabilities

)4

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10 N/A 1.0436 | 1.5874 | 1.9196 | 2.1897 | 2.3951 [ 2.6781 | 2.7800 [ 2.9454 | 3.1149
20 1.0161 | 1.9428 | 2.4109 | 2.7877 | 2.8635 | 3.0855 [ 3.2840 | 3.4750 [ 3.6585 | 3.8308
30 1.5673 | 2.4492 | 2.7554 | 3.0883 | 3.3905 | 3.6818 [ 3.9235 | 4.1187 [ 4.3697 | 4.5707
40 1.9390 | 2.7876 | 3.0993 | 3.4839 | 3.8063 [ 4.1279 | 4.4246 | 4.6870 | 4.9324 | 5.1658
50 2.2100 | 2.8821 | 3.3952 [ 3.8186 | 4.2230 | 4.5738 | 4.8735 | 5.1692 | 5.4306 | 5.6852
60 2.4437 | 3.0834 [ 3.6521 | 4.1448 [ 4.5663 | 49372 | 5.2828 [ 5.5960 | 5.8866 | 6.1404
70 2.6351 | 3.2949 | 3.9066 | 4.4281 | 4.8769 | 5.2839 | 5.6351 | 5.9820 | 6.3006 [ 6.6008
80 2.7875 | 3.4950 | 4.1400 [ 4.6867 | 5.1723 | 5.5923 | 5.9824 | 6.3628 | 6.6987 [ 7.0184
90 2.9937 | 3.6565 | 4.3477 | 4.9365 | 5.4381 | 5.8916 | 6.3063 | 6.6981 | 7.0546 | 7.4007
100 3.1182 | 3.8442 | 4.5531 | 5.1576 | 5.6979 | 6.1860 | 6.6039 [ 7.0061 | 7.3986 | 7.7627

n

After a total number of 1,000 replications for each # value is run across all p values, the

optimized TSPs are averaged as presented in Table 20.
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4.2.2 Curve Fitting Result and Validation

The average tour lengths for unit squares in Table 20 are fitted to derive relation for » and
p using Equation (16).
L=p-n% pP (16)
where p is a probability of being visited, while a and b are estimated exponents.

Table 21 Estimators for Equation (16)

Unrestricted | Restricted
Case Case
p 1.0213 0.8132
a 0.4386 0.5
b 0.4204 0.4696
R’ 0.9936 0.9763

While estimating the exponents and coefficient f from curve fitting, the two cases are
designed. For the unrestricted case, the estimators (i.e., 5, a, and b) can have any value. For the
restricted case, the exponent a is forced to be 0.5 (i.e., Beardwood’s formula). The estimators
for both cases are listed in Table 21. The coefficient f is about 26.7% higher for the unrestricted
case than for the restricted one, while R? is slightly worsened in the restricted case due to the

reduced degree of freedom. Note that 5 and exponent a are interrelated.

Using the estimators, the TSP tour lengths for both cases are estimated in Table 22.

L =1.0213 - n04386 . 04204 (17)

The unrestricted case in Equation (17) also confirms that the tour lengths can be better

estimated with statistical estimation for the exponent of n values and relevant coefficient f.
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Table 22 Percent Errors Using P-TSP Results

Unrestricted Restricted
App. App.
P " Tour Ave. % Error| Tour Ave 1, o Error
TSPs TSPs
Length Length
20 1.9317 1.9428 0.57 1.7080 1.9428 12.09
02 40 2.6180 [ 2.7876 6.08 2.4154 | 2.7876 13.35
50 2.8872 [ 2.8821 0.18 2.7005 | 2.8821 6.30
100 3.9130 [ 3.8442 1.79 3.8191 3.8442 0.65
10 1.9075 1.9196 0.63 1.6723 1.9196 12.88
20 2.5852 | 2.7877 7.26 2.3650 | 2.7877 15.16
0.4 40 3.5037 [ 3.4839 0.57 3.3447 | 3.4839 4.00
50 3.8639 | 3.8186 1.19 3.7395 3.8186 2.07
100 5.2367 | 5.1576 1.53 5.2884 | 5.1576 2.54
10 2.0951 2.1897 4.32 1.8571 2.1897 15.19
20 2.8394 [ 2.8635 0.84 2.6263 | 2.8635 8.28
0.5 40 3.8483 [ 3.8063 1.10 3.7142 | 3.8063 2.42
50 4.2439 [ 4.2230 0.49 4.1526 | 4.2230 1.67
100 5.7518 | 5.6979 0.95 5.8726 | 5.6979 3.07
10 2.5528 [ 2.7800 8.17 2.3157 | 2.7800 16.70
20 3.4597 [ 3.4750 0.44 3.2749 | 3.4750 5.76
0.8 40 4.6890 [ 4.6870 0.04 4.6315 | 4.6870 1.19
50 5.1711 5.1692 0.04 5.1781 5.1692 0.17
100 7.0083 7.0061 0.03 7.3230 | 7.0061 4.52
10 2.8038 [ 3.1149 9.98 2.5716 | 3.1149 17.44
20 3.8000 | 3.8308 0.80 3.6367 | 3.8308 5.06
1 40 5.1501 5.1658 0.30 5.1431 5.1658 0.44
50 5.6797 | 5.6852 0.10 5.7502 | 5.6852 1.14
100 7.6976 | 7.7627 0.84 8.1320 | 7.7627 4.76
Average % Error 1.52 4.89

The average absolute percent for the unrestricted case is 1.52%, which is much lower than
for the restricted one. The large errors for the restricted case are found at low n values; this
implies that the unrestricted model (i.e., estimating the exponent for @) can increase the overall
estimation accuracy by reducing the difference between the estimated and optimized tour

lengths, particularly at low n. If p is 1.0, S for the restricted case becomes 0.8132, which is

about 2% above the previous result of f =0.7979 at n with 100 in Table 8.

Although the actual visited points are identical (e.g., n-p = 20), the approximated tour
lengths in different combinations can be different. For instance, tour lengths are overestimated
at small p (e.g., n = 100 with p = 0.2) and underestimated at large p (e.g., n = 40 with p = 0.5).
The gap in tour lengths between small and large p decreases as p approaches 0.5. One reason
for this is rounding errors for the estimators in Table 21. Another possible reason is the

estimation errors from the residual (i.e., error terms that represent imperfect goodness of fit).
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4.3 Comparison of Approximated Distance versus Actual Road Network

Distance

4.3.1 Case Study for Rural Area

4.3.1.1 Network Description

The road network used is agricultural product delivery routes for Appalachian Sustainable
Development (ASD). ASD is a non-profit organization focusing on sustainable agriculture
development in the central Appalachian region, including Southwest Virginia, Eastern
Kentucky, West Virginia, Eastern Tennessee, and Southeast Ohio. ASD’s goal is connecting
producers to wholesale and retail outlets, searching for local farm products to catalyze
economic opportunities in the food and agriculture sector in distressed communities. The
organization concentrates on perishable items (e.g., fruits or vegetables) and depends on
trucking to reach markets.

With a fleet of two refrigerated trailers, ASD serves South, North, and Kentucky routes
biweekly and West Virginia routes weekly. ASD collaborates with several partners for
aggregation and food processing. Fresh items are gathered in six aggregation facilities first,
and then the items are delivered to five wholesalers/grocers/retailers/food markets in a service

region (Figure 11).

@ E @ Farmer/grower

g% g]% Aggregation facility
O0—0O O0—0O

E Grocer/wholesaler

Figure 11 Example of ASD’s Delivery Operation
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Although the delivery service has been implemented, more profitable transportation routes
and various delivery scenarios should be thoroughly explored. Another objective in this chapter
is to compare actual and approximated tour lengths. With the comparison results, planners will
be informed about some considerations in using approximation models for analyzing
transportation system planning problems.
4.3.1.2 Data Processing

A total of 119 delivery points (e.g., farmer, aggregation, and wholesalers) are mapped using
geographic information systems (GIS) software: ArcGIS Pro. This section presents the
following: 1) service areas, 2) delivery routes, and 3) a circuity factor.
4.3.1.2.1 Service Area Z

The service area Z is an artificial region that encompasses most of the delivery points and
major streets/highways. Z is created using boundaries that can be reached within a 3- and 5-
hour driving on a road network from either aggregation facility (i.e., depot) or centroid. In
Figure 12 (a), most of the delivery and pick-up points (colored in purple) are included within
a 5-hour driving distance from the centroid, while Figure 12 (c) — (h) are generated based on
each depot’s location. All isochrones are hourly (e.g., 1-, 2-, 3-, 4-, and 5-hour isochrones from

each centroid).

Trento e = Harrsburg
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(a) Centroid (b) Study Areé}s Overlapped
68



o 4
philadelphia Columius I Phladelpnia

| < « o
 Washington o Washingon

Piladelphia

,,,,,,,,,

Washingon

Caastal Plain

,,,,,,, Geora)

(g) Depot 5 ﬂ (h) Depot 6
Figure 12 Illustration of Service Areas

Polygons in Figure 12 (b) are partitions of the entire area close to each point (i.e., Voronoi
polygons). Although the points are allocated to be served by the nearest depot (orange), some

points located outside of the service area (i.e., 3-hr isochrones) may not be served.
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Table 23 Summary of Service area

Z Driving hour n
(mi?) (hr) (points)

Centroid | 116,961.0 5 119
Depot 1 | 47,262.2 3 6
Depot 2 | 38,869.7 3 29
Depot 3 | 48,4814 3 2
Depot 4 | 37,000.9 3 45
Depot 5 | 48,573.6 3 5
Depot 6 | 44,965.3 3 9

Table 23 shows the service area size accessible within specified driving hours and the
number of delivery points in the region.
4.3.1.2.2 Delivery Scenarios and VRP Solver

The current ASD deliveries serve only wholesalers and retailers. In Figure 13 (a), the
baseline scenario consists of two separate deliveries: ASD’s truck delivery and farmer’s self-
delivery. From aggregation facilities (i.e., depots) where growers gather agricultural goods, the
ASD trucks start their journeys to the wholesalers/retailers. In an alternative scenario, these
trucks visit all farms within the service area for item pick-ups and deliveries to the
wholesalers/retailers.

The vehicle capacity is set at 30 items per truck, while the driver’s working period is 10
hours/day across scenarios. Each scenario is modeled as the capacitated vehicle routing
problem with time windows (CVRPTW): one of the variants of VRP in which vehicles have a
homogeneous loading capacity serving customers with a specific visiting hours of delivery
points and terminating conditions of delivery. For simplicity, it is further assumed that

loading/unloading time per stop or break time for the driver is small enough to be negligible.
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Farmer’s self delivery

(a) Baseline Scenario

One-to-many pick-up delivery

om

* Grower/farmer oSl Small truck
Depot 7B Large truck

(b) Alternative Scenario

Figure 13 Delivery Scenarios

Each delivery scenario is formulated as a VRP with given vehicle capacity and driver’s

working period. Then, delivery routes are optimized with a tabu search, which optimizes the

sequence for visiting the stops.

4.3.1.2.3 Circuity Factor ¢

Since the dead-end or one-way road networks in rural areas increase tour distance, a circuity
factor can be considered in approximating tour lengths. The circuity factor is the average ratio

of actual travel distance to Euclidean distance, as shown in Equation (18). The circuity factor

is greater or equal to 1 ( ):

_ XDn
YD,
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where c is a circuity factor in the service area, D, is a summation of network distances of a
randomly selected set of two points (i.e., O-D pair) within the service area, and De. is a
summation of Euclidean distances between the two points

At least 30 samples (i.e., distance pairs) are required to estimate the circuity factor (Ballou
et al. 2002). From 87 distance pairs, a circuity factor of 1.49 is computed with standard
deviation of 0.37, according to Equation (18). The estimated circuity factor is used for
approximating tour length in the ASD service region.
4.1.3 Results and Analyses

Delivery routes for baseline and alternative delivery scenarios are optimized, as shown in
Table 24 and 25. Note that excluded points are the growers located outside the service area or
cannot be visited within the time constraint (i.e., driver’s working period of 10 hours). The
delivery distance for all farmers’ self-delivery is reduced from 5,920.2 miles to 3,698.7 miles
by ASD’s trucks visiting farmer’s locations.

Table 24 Results for Baseline Scenario

Delivery to wholesales/retailers Farmer's self-delivery
Depot | Route Dy n | Excluded | Depot | # Routes | Avg. Dn | n | Excluded
1 452.8 3
1 > 4342 > 1 6 53.5 1
1 570.7 3 1
2 > 4919 > 2 28 99.7 1 2
3 1 406.8 5 3 2 42.6 1
1 401.2 3
4 > 4048 > 4 45 35.6 1
5 1 363.3 5 5 5 534 1
6 1 503.3 2 3 6 9 93.1 1
Total 9 4,028.9 | 27 4 Total 95 5,920.2 | 6 2
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Table 25 Results for Alternative Scenario

Delivery to wholesales/retailers Pick-up delivery
Depot | Route Dn n | Excluded | Depot | Route Dn n | Excluded
1 1 4528 | 3 1 1 463.3 6
2 4342 | 2 ) 1 419.4 8
) 1 570.7 | 3 1 2 570.0 |19
2 4919 | 2 3 1 125.2 2
3 1 406.8 | 5 4 1 420.1 |18
4 1 4012 | 3 2 311.0 |27
2 4048 | 2 5 1 434.9 5
5 1 3633 | 5 6 1 443.1 2
6 1 5033 | 2 3 2 511.7 7 3
Total 9 4,028.9 | 27 4 Total 9 3,698.7 | 94 3

Figure 14 shows the optimized tour routes for the baseline and alternative scenarios. Note

that the delivery routes in Figure 14 (b) seem straight lines, but the distances for the routes are

based on the actual road network.
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Figure 14 Illustration of Optimized Delivery Routes
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Table 26 compares tour lengths estimated by the proposed approximations with the

optimized tour lengths. App. Tour Lengths are TSP tour distances estimated from Beardwood's

formula (i.e., Bv/nd ), while Opt. Tour Lengths are the optimized tour distances by a Tabu
search considering the actual road network in the service area. Note that the Concorde solver
discussed in Chapter 3 is originally designed for TSP; the Tabu search is introduced here for a
VRP solver. The coefficients S associated with n values are taken from Table 8 (Case 10),
while a circuity factor ¢ for the service area is fixed as 1.49. It is assumed that the service area
Z and the number of delivery points served by trucks are divided by the number of routes. For
instance, delivery area A for Depot 1 becomes 23,631.1mi?.

Table 26 Comparison between Approximated and Optimized Tour Lengths (Rural)

App. Opt.
Depot | Z(mi?) | n B ¢ | #Routes L];zlgl:h L];;:lgl:h leiﬁzsnce
(mi) (mi)
1 47,262.2 6 0.7179 1.49 2 284.81 463.3 38.53
2 38,869.7 | 29 | 0.6910 1.49 2 55591 989.4 43.81
3 48,481.4 2 0.7000 1.49 1 324.78 125.2 -159.47
4 37,0009 | 45 | 0.6769 1.49 2 650.72 731.1 10.99
5 48,573.6 5 0.7000 1.49 1 514.01 434.9 -18.19
6 44,965.3 6 0.7179 1.49 1 555.60 954.7 41.80
Total 93 2,885.8 | 3,698.6

The average absolute percent difference between actual and approximated tour lengths is
52.1%. Percent differences for service areas (i.e., Depots 1 - 6 in Table 26) vary significantly.
Possible reasons for this discrepancy are violations in assumptions (i.e., point distribution and
tour characteristics) when applying the approximations. Furthermore, delivery points are
clustered rather than uniformly distributed, as shown in Figure 12 (a). For some established

routes, tour zones are neither compact nor convex due to low connectivity in the rural road
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network, as presented in Figure 15. Note that the approximation assumptions are discussed in

Section 2.1.4.
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(Routes for Depot 1) (Route for Depot 6)

Figure 15 Some Tours Violating Assumptions in Approximation

To overcome that estimation error, lower/upper bounds of coefficients £ can be considered,
which are presented in Table 8. For instance, the percent error decreases to as low as 0.7%
using the upper bound of f (74.5% for absolute percent error).
4.3.1.4. Comparison of Results between Actual and Random Point Distribution

This section is designed for investigating the approximated TSP tour lengths in the previous
network with a different point distribution. Therefore, it will be explored how the

approximation assumptions (i.e., the point distribution and minimum number of points) affect

the tour lengths.
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Table 27 Comparison between Approximated and Optimized Tour Lengths (Rural)

App. Tour | Opt. Tour .
Route | 7 iy | n | 5 ¢ })};ngth Iljength Difference
# s - (%)
(mi) (mi)
1 47,262.2 | 5 | 0.7000 | 1.49 226.7 371.0 38.9
2 47,2622 | 5 | 0.7000 | 1.49 226.7 416.7 45.6
3 47,2622 | 7 | 0.7179 | 1.49 232.5 413.9 43.8
4 47,2622 | 6 | 0.7179 | 1.49 232.5 418.3 44.4
5 47,262.2 | 16 | 0.7036 | 1.49 227.9 327.1 30.3
6 47,262.2 | 12 | 0.7036 | 1.49 227.9 450.0 49 4
7 47,262.2 | 12 | 0.7036 | 1.49 227.9 217.7 4.7
8 47,262.2 | 16 | 0.7036 | 1.49 227.9 217.5 4.8
9 47,2622 | 10 | 0.7179 | 1.49 232.5 405.0 4.6
10 47,2622 | 11 | 0.7036 | 1.49 227.9 384.8 40.8

Using the same network in Section 4.1.1, one hundred hypothetical delivery points are
randomly generated in the service area. In Table 27, a total of ten routes are then optimized by

the tabu heuristic.
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Figure 16 Optimized Routes for Hypothetical Delivery Points

The difference in the average absolute percent error between actual and approximated tour
lengths decreases from 32.6% to 13.1% (from the previous result in Table 26). All optimized

routes consist of at least five n within a fairly convex delivery area, as illustrated in Figure 16.
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4.3.2 Case Study for Urban Area

4.3.2.1 Network Description

To validate the proposed approximations in an urban area, the city of College Park,
Maryland, is chosen as a study area. The area of the city is about 8.68 mi?, with a population
0f 32,163 in 2019. Delivery points (i.e., physical addresses of houses/apartments/buildings) are
obtained from the OpenAddresses database, an online repository for geocoded addresses. In

the dataset 4,288 addresses are available for College Park.

Beltsville S g Beltsville

nnnnnn dale 5 3 Adeiphi Hillandale
@ Laboratbry

a7 %

Adelphi

Springhill Lake Springhill Lake

AAAAAAA

“¥Rd East Riverdale 4] e t YRI East Riverdale

(a) City of College Park (b) Berwyn Town

Figure 17 lllustrations of Physical Addresses

To reduce the sample size, a subset of the city, Berwyn town, is chosen. In it, 1,025 delivery
points are selected. About 54.3 percent of the points are clustered due to many residential
apartments in that region. However, the overall delivery points are reasonably distributed
uniformly over the service area, as shown in Figure 17 (b). The circular service area
surrounding these points is 0.28 mi?. It is assumed that all points are served by trucks departing

from a single depot located outside of the service region.
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4.3.2.2 Route Optimization

Although delivery trucks can carry up to 300 packages in a dense urban area (Figliozzi,
2017), a truck capacity is set here at 200. Trucks spend an average time of three minutes per
stop, while the driver’s working shift is 10 hours/day. Note that trucks are not necessarily
loaded to their full capacity.

Table 28 Optimized Results for Delivery Routes

Travel | Unloading
Opt. Tour . .
Route n Length (mi) Time Time (hr)
(hr)
1 133 2.38 0.2 6.7
2 200 1.27 0.1 9.5
3 180 3.86 0.4 9.0
4 131 3.56 0.4 6.6
5 104 3.34 0.2 5.2
6 170 0.88 0.1 8.5
7 107 0.88 0.1 5.9
Average | 146.4 2.31 0.2 7.3
Total 1,025 16.17 1.5 51.3

Similar to the rural case study in Section 4.1, each delivery route is optimized by the same
solver, and the optimized truck routes are presented in Table 28 and Figure 18. Since the
vehicles serve a small block of the delivery area with a large demand density, the delivery time
mainly consists of item unloading (e.g., a driver in Route #1 spends 0.2 hours for driving and

6.7 hours for unloading).
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Figure 18 lllustrations of Optimized Truck Routes

Figure 18 (f) shows that the optimized routes 6 and 7 are identical due to large demands in

that route.

4.3.2.3 Results and Analyses

In Table 29, the coefficient f is selected as 0.8591, based on the number of stops, circular

service area, and distance metric. That is, § of 0.6818 in Table 8 is multiplied by 1.26 for the

rectilinear space (Krarup and Pruzan 1980).



Table 29 Comparison between Approximated and Optimized Tour Lengths

" Delivery App. Tour | Opt. Tour Difference
n p Routes Area Length Length (%)
(mi’) (mi) (mi) ’
1,025 0.8591 7 0.04 2.09 2.31 9.6

The average number of items carried is about 146 per truck (i.e., n of 1,025 divided by the
number of routes). Compared to the case study for a rural area, the average percent error is as
low as 9.6% due to the following reasons: 1) uniformly distributed data points, 2) compact and

convex circular service area, and 3) high connectivity (e.g., two-way grid road).

4.4 Summary

This chapter explores some possible extensions of the TSP tour length approximations.
First, a total of six adjustment factors are developed to integrate the proposed approximations
within one equation. Development for adjustment factor associated n values Do is a key
contribution in this dissertation since f is not a fixed value when n changes. The TSP tour
lengths can be more precisely estimated with Do than with the existing approximation models.
The adjustment factors help planners understand how the tour lengths are sensitively varied by
changes in a particular factor. Lastly, researchers can be informed about what was tried and
yielded weak results when the factors were combined.

Second, the approximations considering stochastic customer presence are proposed. Third,
the tour lengths for rural freight delivery and urban package delivery network are estimated
from the dissertation's result. Then, the tour lengths are compared with the approximated
distances. The results show that urban areas have favorable conditions for satisfying the

imposed approximation assumptions, such as point distribution.
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Chapter 5: A Comparison of Optimized Deliveries by Robots,

Drones, and Trucks

5.1 Problem Statement

This chapter proposes a distance approximation to estimate the average TSP length for
vehicles serving the limited numbers of points # that can be visited per tour and applies it to
models for analyzing various types of package deliveries. For approximation models, average
TSP tour lengths with different numbers of delivery points # are simulated and then fitted using
regression. The models are applied to formulate cost functions for deliveries by ground robot,
drone, and conventional truck. Each cost function is optimized and compared with total costs.
Sensitivity analyses are designed to explore how system outputs of such delivery systems vary
with changes in baseline inputs, including (1) energy cost, (2) user value of time spent waiting
for deliveries, (3) service area size, and (4) demand density. For analytic purposes,
characteristics of the modes and the baseline for service properties are preset. Several factors
that may affect actual applications, such as weather conditions, regulations, and safety issues

(e.g., that drones should fly under 400 feet and below 100 mph) are not considered here.

5.2 Methodology

5.2.1 Baseline Numerical Values

Demands (i.e., delivery points) are determined as the product of demand density O, service

area Z, and vehicle departure interval /4. The demands are served during working periods W.
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Table 30 Variable Definitions and Baseline Values

Symbol Variable | Units ‘ Value Range Note
Decision Variables

4 Size of Delivery miles? - -
Area

h Departure Interval hr - -

Output Variables

Co Operating Cost $/hr - -

G Total Cost $/hr - -

Cw User Waiting Cost ~ $/hr - -

L Average TSP miles - -
Distance

N Number of Vehicles vehicles - -

T Average Delivery hrs - -
Time

Input Variables
b Energy Cost $/kWh 0.012 0.010-
0.014
B Battery Capacity kAh 5.4 (drone) -
8 (robot)

D Driver Pay Rate $/hr 40 -

H Handling Cost $/hr 1.5 -

0 Demand Density packages/ 20 1-40

(mile?- hr)

Sa Drone Capacity packages 5 -

S Ground Robot packages 10 -
Capacity

S Truck Capacity packages 150 -

T Dwell Time hrs / stop 0.03 -

Va Drone Speed mile / hr 50 -

Vi Ground Robot mile / hr 10 -
Speed
Truck Speed

v User Value of Time  $/hr 0.21 0.10 -
Spent Waiting for 0.42
Items

w Working Periods hrs / day 24 -

z Size of Service Area miles? 18 1-36

The interval (i.e., headway) % helps concentrate goods for economical loads per vehicle.

Equation (19) indicates how the delivery area A is limited by 4 and vehicle capacity Ss, S», and

82



St. Other conditions being equal, vehicles serve a smaller delivery area 4 since more demands
are generated during longer intervals 4. Similarly, 4 increases as vehicle capacity increases.

Most 4 is smaller of Z, but 4 may possibly be larger than Z if 4 is very small.

A< L (19)

Packages are delivered along a last-mile delivery route L at vehicle operating speed Va
or V. Average delivery time 7 is computed using Equation (20); average dwell time per stop

Twis additional time spent per stop for last-mile deliveries.

T = Vil + T, (QhA) 20)

The number of vehicles serving the service area Z is determined based on vehicle reuse
after completing tours. In Equation (21), the number of vehicles N can be found by dividing T’

by the departure interval 4.
T
N = X (21)

For service alternatives that rely on single vehicles to serve multiple pick-ups or delivery
points, the resulting tour lengths are estimated with Equation (22) which approximates the

average TSP tour length L:

L = B/ QhA? (22)

where £ is a constant listed in Table 8 which depends on the shape of service area, location of
distribution center, and distance metric.

The energy cost b is proportional to electricity use. The average electricity cost is $0.012
per kWh (U.S. Energy Information Administration, 2019). Here proper voltage is assumed to

be provided in charging batteries: 18.5 volts for robots and 15.2 voles for drones, for instance.
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The handling cost H, for monitoring drone operation, is estimated based on industry rates
(Fulfillment by Amazon, 2019). Using the findings from Joerss et al. (2016) that consumers
are willing to spend $5 per shipment in addition to regular delivery prices for same-day
delivery, the value of time spent waiting for deliveries v is estimated by converting the
additional charge to hourly: $5 divided by the daily working period W. Since the value is
estimated from consumer’s willingness to pay for fast delivery, the baseline input for v is not

typically regarded as small.

5.2.2 Model Assumptions

For this section, delivery systems for ground robots, drones, and conventional trucks are
specified, mathematically formulated and then compared in terms of total cost.
Assumptions for Delivery System

5-1. The demand does not vary with service quality and is served by a single depot located

at the center of a circular service area.

5-2. Delivery vehicles carry homogeneous items (e.g., equal package weight and volume)

and spend the same dwell time at each last-mile delivery point.

5-3. The demand is uniformly distributed within the service area and over time.

5-4. Ground robots and drones use energy storage completely in every delivery tour (i.e.,

battery capacity is zero after a completion of each tour).

All the customers’ demands are assumed to be non-stochastic and known before a scheduled
delivery is initiated. A service area is shaped by a drone’s maximum round-trip flight range
which encloses a circle. For a fair comparison among delivery options, delivery vehicles are
operated in a circular service area, as shown in Figure 19, carrying identical items and spending

equal dwell times per stop. Assumption 5-3 is made since the spatial distributions of service
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regions are not considered for a general and transferable system design. For Assumption 5-4,
the actual amount of energy spent could be computed as in the reference (Choi and Schonfeld,

2018), but estimating it is beyond the scope of this study.

Ground Robot Delivery Drone Delivery

Conventional Truck Delivery

O Service Area EEE Ground Robot
e DemandPoint g Drone

Last-mile Tour q®® Truck

Depot

Figure 19 Delivery Options Serving Study Area

For operational settings, deliveries are available throughout a day, i.e., 24-hour operation.
The tours of ground robots and conventional trucks are routed in rectilinear space, while drones
travel in Euclidean space. Drones maintain a steady level flight at a constant operating speed.
Energy consumption associated with other maneuvers, such as acceleration, deceleration,

landing and taking off;, is not considered.

5.2.3 Model Formulations

The cost function includes operator C, and user cost Cy as listed in Equation (23). The first
term of the equation expresses the costs for system operation associated with item handling H,

energy charge cost b-B, driver pay rate D, as well as the number of operating vehicles N. The
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sum of handling cost and energy cost per average delivery time 7 is applied to drone and robot
delivery, while only D and N are considered for conventional truck. The second term of
Equation (23) reflects the waiting time for deliveries which is half the interval 4 multiplied by

total demands and value of time spent waiting for items v.

Minimize C; = C, + C,,

N - (b?B + H) + @ (Drone and Robot)

- N-D+ @ (Conventional Truck) 29
Subject to
(QhA) < S; (24)
T<WwW (25)
N = integer (26)

where i identifies a delivery option: ground robots, drones, and conventional trucks.

For constraints, the sum of packages carried by vehicles should not exceed the vehicle’s
maximum capacity. Considering it, Equation (19) is rearranged as in Constraint (24). Each
vehicle tour should be completed during the specified working periods 7 in Constraint (25).

Lastly, Constraint (26) requires an integer number of vehicles N for realistic applications.

5.3 Numerical Results and Sensitivity Analyses

5.3.1 Numerical Results

Using the baseline inputs listed in Table 30, the optimization results for deliveries by robots,

drones, and trucks are summarized in Table 31. With the imposed Constraints (24) — (26), the
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optimal departure interval /4", which minimizes the total cost function C; is found by
differentiating the objective function C: with respect to 4.

Table 31 Optimization Results for Delivery Alternatives

Robots | Drones | Trucks
Coefficient f 0.9184 0.7336 0.9233
Departure interval, " (hr) 0.162 0.056 1.667
Delivery area, A” (mi?) 3.09 4.50 4.50
Avg. TSP distance, L 5.10 3.48 21.45
(mi/vehicle tour)
Avg. Delivery time, T 0.81 0.22 5.75
(hr/vehicle tour)
Number of vehicles, N* 6 4 4
Costs Operating, Co 72.6 89.5 71.9
elements (%) | User waiting, C»» | 27.4 10.5 28.1
Total cost, C; ($/hr) 222 19.9 222.5
Cost per delivery ($/delivery) 0.38 1.00 0.37
Critical Constraints (24) (24) (24)

In ground robot delivery, six robots N with departure interval 4 of 0.162 hours and delivery
area 4 of 3.09 mile? can optimize the total cost C; as $22.2 per hour. Average TSP distance L
per vehicle tour is computed as 5.10 miles. For this 2" and 4™ combination, the operating and
user waiting cost constitute 72.6% and 27.4%, respectively, of the total cost. Cost per delivery
of $0.38 is found by dividing 7. by demands. The optimized intervals /4" for all delivery
vehicles are observed away from the cost-minimizing interval due to capacity Constraint (24).
In summary, deliveries by robots and drones have lower total cost 7¢ than by truck for our

baseline inputs.

87



5.3.2 Comparison the Suggested Model to Other Research work

This section compares the previous results using different coefficient § of Equation (22),

such as Daganzo (1984). In general, the optimized / decrease as /8 increases; operating cost Co

is associated with f.

Table 32 Comparison of Results Based on Different Coefficients

Robots Drones Trucks
Coefficient g for Proposed | Daganzo | Proposed | Daganzo | Proposed | Daganzo
Equation (22) 1.1584 1.15 0.7484 0.90 1.0054 1.15
Departure interval, &* 0.167 0.167 0.056 0.056 1.667 1.667
(hr)
Delivery area, A" (mi%) 3.00 3.00 4.50 4.52 4.50 4.50
Avg. TSP distance, L 6.30 6.30 3.55 3.56 23.37 26.73
(mi/vehicle tour)
Avg. Delivery time, T 0.93 0.93 0.22 0.22 5.94 6.27
(hr/vehicle tour)
Number of vehicles, N* 6 6 4 4 4 4
Costs Operating, C, 70.8 70.8 89.5 89.5 71.9 71.9
elements | User waiting, 29.2 29.2 10.5 10.5 28.1 28.1
(%) Cy
Total cost, C; ($/hr) 21.4 21.4 19.8 19.8 222.5 222.5
Cost per delivery 0.36 0.36 0.99 0.99 0.37 0.37
($/delivery)
Critical Constraints (23) (23) (23) (23) (23) (23)

In Table 32, decision variables (i.e., A" and A") for delivery alternatives are nearly
unchanged except the total cost C:. This is due to the integer vehicle Constraint (25). Note that

optimized 4 can be changed for all modes if the constraint is not imposed.

5.3.3 Sensitivity Analyses

Sensitivity analyses are conducted to explore how outputs vary with changes in baseline
inputs: energy cost b, user value of time spent waiting for items v, service area size Z, and
demand density Q. These baseline inputs can be flexibly adjusted by the operating conditions

for planning purposes.

88



5.3.3.1 Changes in Energy Cost

In the United States, the range of electricity rates varies between 0.010$/kWh and
0.013$/kWh in recent years (U.S. Energy Information Administration, 2015). The rates change
for various reasons, such as seasonal and regional effects, or price changes for raw materials.
This section is designed to show how total cost C: changes with energy cost b. Since C: for
conventional trucks is unaffected by b, that option is omitted. In Figure 20 (a), the difference
between total costs decreases as b increases. It is likely that C; for drone exceeds the cost for

robot at large b. Note that the optimal interval 4" is unchanged due to Constraint (23).

30 350
25 300
= ---e-c-e723 = 250
# 20 =
~ LAY
W = - a2
o 15 w
=T
: S
g 10 s 25 e
S 2 e
2 M 20 gmos
0 15
0.0l 0.011 0.012 0.013 0.014 0.015 0.10 0.15 021 031 042
Battery Charge Cost ($/kWh) User Value of Time (S/hr)
| --o--Robots —=—Drones | | --#--Robots —=—Drones Trucks |
(a) Energy cost b (b) User value of time spent waiting for goods v
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5.3.3.2 Changes in User Value of Time Spent Waiting for Items

400

300

Total Cost ($/hr)
:DJ

9
Service Area (mi%)

18

27

| --#--Robots —=—Drones

Trucks |

(c) Service area size Z

400

300

200

Total Cost ($/hr)

1
Density Density (package/mi*/hr)

10

20

30

40

| --8--Robots —=— Drones

Trucks |

(d) Demand density Q

Figure 20 Effects of Inputs on Total Costs

As noted for the baseline inputs, the baseline value of time spent for waiting items v is an

already high value. Willingness to pay for urgent goods, such as blood or medical supplies,

could be higher and thus the values are changed within plus or minus 50% of the current

baseline. In Table 31, user waiting cost Cy contributes less to the cost function. Thus, total cost

C: for drone delivery is less sensitive to v than the cost for other types of delivery. The gap in

C: between ground robots and drones widens as v increases from Figure 20 (b). Thus, drones

could be the most cost-effective delivery option for items at high v.

Table 33 Results for Sensitivity Analysis

b 0.01 | 0.011 | 0.012 | 0.013 | 0.014 v 010 | 0.5 |021 |031 |042
Robot | 204 |21.6 |222 |228 |234 Robot | 19.0 |20.6 |222 [253 |284
C: | Drone | 17.9 | 189 |199 [209 |219 | C |Drone | 188 [193 |19.9 |209 |22.0
Truck | - - - - - Truck | 230.9 | 247.6 | 264.3 | 297.0 | 329.7
Robot | 6 6 6 6 6 Robot | 6 6 6 6 6
N* | Drone | 4 4 4 4 4 N | Drone | 4 4 4 4 4
Truck | - - - - - Truck | 5 5 5 5 5
h" | Robot | 0.16 | 0.16 [0.16 |0.16 |0.16 |/”" | Robot | 0.16 |0.16 |0.16 |0.16 |0.16

90




Drone | 0.06 | 0.06 | 0.06 | 0.06 |0.06 Drone | 0.06 | 0.06 | 0.06 |0.06 | 0.06
Truck | - - - - - Truck | 1.72 1.72 1.72 1.72 1.72
z 1 9 18 27 36 0 1 10 20 30 40
Robot | 6.6 | 154 |222 |255 |315 Robot | 9.1 170 | 222 |264 |303
C: | Drone | 53 |155 | 199 [244 |29.0 | C | Drone | 8.1 145 [ 199 [254 |309
Truck | 86.5 | 166.9 | 264.3 | 319.8 | 333.7 Truck | 127.2 | 166.9 | 264.3 | 278.1 | 333.7
Robot | 2 4 6 7 9 Robot | 4 5 6 7 8
N* | Drone | 1 3 4 5 6 N | Drone | 2 3 4 5 6
Truck | 2 3 5 6 6 Truck | 3 3 5 5 6
Robot | 0.33 [ 022 |0.16 |0.13 |0.11 Robot | 043 023 [0.16 [0.13 |0.11
h" | Drone | 0.19 | 0.08 |0.06 |0.05 |0.04 |4 |Drone| 029 |008 |0.06 |0.05 |0.04
Truck |3.13 [250 [ 172 | 142 |1.25 Truck | 3.85 250 |1.72 | 139 [1.25

5.3.3.3 The Effects of Service Area Size & Demand Density

With changes in demand density Q, service area size Z can be used to analyze delivery
systems adapted to rural settings. Thus, a rural area may be represented by large Z with low Q.
Note that delivery area 4 is a decision variable determined in the optimization process, while
Z is given as an input variable. The rate of increase in total cost C: for trucks is below the rates
for robots and drones. This is mainly due to large capacity for truck S: with a greater
consolidation ability (i.e., large interval 4 compared to other modes). Delivery by drone has
lower C: than the delivery by robot until demand density Q reaches 34 packages/mi*/hr. In
Table 33, the diminishing rate of the optimal interval 4" for drones is greater than for robots,
and thus more vehicles are added to the system. In short, vehicles with larger carrying capacity

may be favored for Z that are larger or have higher demand densities.

5.4 Summary

This chapter analyzes deliveries by ground robot, drone, and conventional truck. Deliveries
by robots and drones have lower total cost than by truck for our baseline inputs. Sensitivity

analyses are designed to explore how outputs vary with changes in the inputs for (1) energy
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cost, (2) user value of time spent waiting for deliveries, (3) size of service area, and (4) demand
density. Drones can be a cheaper delivery option than robots if energy charge cost is near our
baseline range, but the difference in total costs diminishes as that cost increases. At high value
of time spent waiting for items (e.g., blood or medical supplies), drones may be the most cost-
effective option. Changes in the size of service area and demand density can be used to analyze
delivery systems in rural settings. According to this analysis, delivery vehicles with larger
carrying capacity may be favored for service areas that are larger or have higher demand

densities.

Future extensions may consider more evaluation factors for deliveries by ground robots or
drones, which include the costs for capital investment. In addition, operating conditions for
drone delivery, such as winds, noise, or item drop-off methods for drones may be considered

as constraints.
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Chapter 6: Optimization Approaches for Investigating Various

Drone Delivery Alternatives

6.1 Problem Statement

Drone deliveries are considerably restricted in flight range and parcel payload because most
drones are powered by lithium-ion batteries, which currently limit flights to about a half hour
(UPS Pressroom. 2017). Although these key disadvantages are likely to be alleviated with
improved technology, it is useful to consider these characteristics and examine the operating
variables in the overall operation process.

Due to range and payload constraints, some of the early contributions to delivery-by-drone
focus on such delivery supported by trucks (DT). The major emphasis was on identifying to
what extent resources, such as time, cost or fuel, can be saved with the help of drones.
Ferrandez et al (2016) found that DT could reduce operating costs. Truck delivery time could
be shortened where the speed of drones was 1) about three times faster than truck’s or 2) more
than two single-package-carrying-drones were assigned to each truck.

Wang et al (2016) argued that the maximum delivery completion time could be minimized
either by 1) drones which traveled faster than trucks or 2) using more than two drones per truck;
the authors found that the delivery time could be reduced by up to 75% with all the above
considered. Campbell et al (2017) compared conventional truck delivery (CT) and DT with
operating and delivery stop costs. DT offered significant cost savings in suburban areas where
demand density was relatively high. The savings were attributed to the fewer tours needed. The
authors suggested that assigning multiple drones per truck could reduce operating costs by

nearly 40%, depending on the number of drones.
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DT and OD alternatives may not be optimal for drones delivering a single item per stop, if
the drones have an available energy surplus for delivering additional items at different stops.
These possibilities motivate the present paper, which assesses alternative delivery approaches
and compares their costs.

For analyzing the abovementioned delivery systems, the study adopts distance
approximation methods that estimate average tour lengths conducted by vehicles with
relatively few visited points. The chapter formulates four alternatives of package delivery
services with and without the aid of drones: (1) conventional truck (CT), (2) drone supported
by truck (D7), (3) one-to-one delivery by drone (OD), and (4) one-to-many delivery by drone
(MD). For analytic purposes, characteristics of drones and the baseline for service properties
and service area are preset. The specified variables are explored through sensitivity analyses.
These tests identify the critical factors contributing to the total costs of a delivery system, which
include user’s and operator’s costs. Several factors that may affect actual applications, such as
weather conditions, government regulations, and safety issues (e.g., that drones should fly

under 400 feet and below 100 mph), are not yet considered here.

6.2 Alternative Descriptions

This section explains various alternatives of package delivery alternatives with or without
the help of drones. Drone delivery is classified by whether it is supported by other types of

modes or able to carry multiple packages.
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For fair and consistent analysis among alternatives, no items exceed the drones’ maximum
allowable payload. Both trucks and drones conduct delivery tasks in a service area of similar
size within the drones’ maximum delivery range, where a distribution depot is randomly

located in the service zone.

6.2.1 Conventional Truck Delivery (CT)

Trucks can carry many more items than drones and thus require longer delivery completion
time for each delivery tour due to more stops as well as lower last-mile speeds. A truck’s dwell
time per delivery point exceeds a drone’s since more time is needed for loading/unloading
items, searching for a parking spot, parking vehicles, and performing delivery activities.
Another characteristic for C7 is that a last-mile delivery is carried out by human drivers, which
implies that the maximum number of deliveries per daily tour may be limited by driver’s

working period per day rather than by vehicle capacity.
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Both the line-haul and last-mile tours by trucks are assumed here to be conducted in a
rectilinear space where the vehicle movements are restricted to two orthogonal coordinates.
The resulting distance between two visited points is computed as the sum of the absolute
differences of their coordinates as shown in Figure 22. Figure 21. For consistent comparison,
trucks are assumed to start tours at the center of service area. Both line-haul and local travel
speed are assumed to be identical. Although actual delivery time may vary with road traffic

conditions and time of day, this study does not consider the conditions.

6.2.2 Drone Delivery Supported by Truck (DT)

Since the delivery range of drones is constrained by battery energy storage, a relatively long
tour is provided by ground transportation while a drone serves “last-mile” deliveries only. This
drone can be sent to a demand point before a truck arrives there. In Figure 21, by the time the
truck arrives at the demand point, the drone has completed its task and is ready to land on the
truck (e.g., a grey truck). Note that the truck travels along bold lines while the drone follows
dashed lines in Figure 21. By doing so, the trucks move toward demand points without stopping
at each point for the last-mile deliveries. The alternative may be subdivided depending on: (1)
the number of drones per truck, (2) the drones’ capability of carrying multiple packages, and
(3) the possibility of different operating speeds for trucks and drones.

Since information on actual service characteristics for DT in private organizations are
mostly proprietary, it is challenging to consider all possible cases. If operating speed is higher
for drones than trucks, the trucks may skip some delivery points and move directly to the next
destination. For simplicity, the study presets that each truck carries one delivery drone. Then,
the truck visits multiple customers per tour while the drone conducts a last-mile delivery by

carrying a single item per drone stop. The last-mile distance for drones is assumed to be
96



relatively small since the drones leave from the truck near the delivery point, and the remaining
distance is small enough to be negligible. Benefits from employing drones are that some dwell
time per stop does not affect the overall delivery time because the two modes move in parallel,
and additional deliveries can be made during the saved time. For this case, the maximum

number of deliveries per tour is likely to be limited by truck capacity.

6.2.3 One-to-one Delivery by Drone (OD)

In this alternative, delivery drones serve a single destination per tour, i.e. a one-to-one
delivery. Once the drones complete their task, they return to the depot and prepare for the next
delivery (e.g., battery recharging, maintenance or item fulfillment). One-to-one delivery by
drone can be feasible (1) if a service area can be manageably covered by drones, or (2) battery
swapping/recharging stations exist in the middle of delivery route to cover a large service area

(Rabta et al. 2018; Hong et al. 2017). The former case is considered here.

6.2.4 One-to-many Delivery by Drone (MD)

For one-to-many delivery drones utilize the energy surplus from the previous OD alternative
to conduct additional deliveries within their maximum allowable energy storage; the drones
serve several customers per tour. The relation between package weight and flight distance will

be discussed in the next section.

6.3 Methodology

6.3.1 Baseline Numerical Values

This section discusses the characteristics of delivery modes (i.e., drones and trucks) and

their service properties. A cost function is formulated for each delivery alternative and
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numerically find an optimal consolidation time which minimizes the system’s total cost. A
service area is the region where demands are generated and served by delivery modes. Most
input variables for delivery drones are adapted from specifications provided by drone
manufactures. Other baseline numerical values, such as the service area and drone operating
speed, are taken from Amazon.com (Rose. 2013; UPS Pressroom. 2017). The following
symbols are used in this paper:

Table 34. Variable Definitions and Baseline Values

Symbol Variable Units Value Range
Decision Variables
Aa Delivery Area for Drone km? - -
Ay Delivery Area for Truck km? - -
C Total System Cost $/hr - -
C. Capital Cost $/hr - -
C, Operating Cost $/hr - -
Cv User Waiting Cost $/hr - -
h Consolidation Time hrs - -
L Last-mile Distance km - -
N Number of Drones vehicles - -
Ny Number of Trucks vehicles - -
N, Number of Packages package / - -
vehicle
N, Number of Trips trips / vehicle - -
R Energy Spent per Tour % - -
(from full energy charge)
Tw Delivery Complete Time hrs - -
Input Variables
a Average Wait Time - 0.5 -
Coefficient
p Payload Percentage of Drone - 0.5 -
(from drone weight)
y, & | Fractions for Energy Use in - 0 -
Non-Level Flight of Drones
D Line-haul Distance km 0 0-10
H Driver Pay Rate $ / (truck-hr) 40 36 -44
i Interest Rate % 6.5 -
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Coefficients for
Approximation Equation (30)
Battery Charging Cost
Handling Cost

Indirect Cost

Purchase Cost for Drone
Purchase Cost for Truck
Demand Density

Max. Allowable Payload for
Drone

Vehicle Storage Capacity
Dwell Time for Drone
Dwell Time for Truck
Operating Speed for Drone
Operating Speed for Truck
User Value of Time
Working Periods

Drone Weight

Average Package Weight
Service life for Drone
Service Area

$ / trip

$ / drone
$ / drone
$ / vehicle
$ / vehicle
package /
(km?-hr)
kg

kg
hr / package

hr / package
km / hr
km/ hr

$ / (person-hr)

hrs / day
kg

kg

year
km?

See Table 8

0.006
1

0.5
3,300
50,000
1

0.5 * wa

200
0.03
0.15 (for CT)
50
30
0.6
12
11

1

3
16%n

30-70

0.54 - 0.66

11-17

15.2°x -
16.8°n

Delivery vehicles travel along a line-haul distance D to the first customer, and the remaining

packages are delivered along the shortest last-mile delivery route L at average operating speeds

Va and Vi The line-haul travel distance D depends on the location of distribution center. For

the last-mile delivery distance L, the trucks and drones in alternative MD follow an efficient

Traveling Salesman Problem (TSP) tour, while drones in DT and OD travel the shortest direct

distance. Details about the last-mile delivery distance will be discussed in the next section.

Equation (27) formulates delivery complete time 7« for individual modes in completing a tour,

considering the number of packages (i.e., visited points) N, and the associated dwell time per

stop 7z and T:. The dwell time is estimated by considering a series of delivery processes per

delivery point that depend on the mode of transport. For instance, 7z includes take-off, landing,

unloading, accelerating, and decelerating, while 77 entails the time spent for parking and last-
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mile delivery activity. Note that the dwell time 7« for DT alternative is not added to the entire

delivery time, as discussed in the alternative description section.

( ”VZD + T,(QhA) (for CT)
t
T < LT/ZD (for DT trucks) 27
= t
m T, (for DT drones)
=2+ Ty N, (for OD and MD)
Va

The demands of a service area are determined by the product of demand density O, service
area Z, and consolidation time /4. The demands are served during working period W and
assumed to be uniformly generated over time and space. The consolidation time / is a holding
time needed to concentrate goods for economical loads per vehicle. Using this relation,
Equation (28) shows how delivery area A is associated with vehicle capacity, Sz and S:, and
package weight, wp. More demands are generated as % increases, and thus vehicles serve
compact delivery area 4 as shown in Figure 22. In most cases, 4 is smaller (subset) of Z.
However, it could be possible that 4 could be larger than Z where 4 is extremely small. In
addition, 4 is determined either by considering vehicle storage capacity (s:= 2,500) or the
average number of deliveries per hour multiplied by driver’s working period (s:= 16.7-W);
each driver can deliver 200-300 packages in an urban area (Figliozzi. 2017). This distinction

occurs because the maximum deliveries per tour vary for our alternatives.

O Service region, Z

™ Delivery area, A

Figure 22. Delivery Area A in Response to Consolidation Time h
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The truck fleet is determined based on vehicle reuse after a completion of each tour. In
Equation (29), the number of trucks serving the system N; can be found by dividing round-trip
delivery time 7/« by the consolidation time /4. The numbers of trucks and drones are identical
for DT (i.e., a one-to-one paired relation). The drone fleet Ns for OD and MD is determined by

vehicle reuse and the number of items carried per tour.

Si .
4=t i=dt (28)
(v, =" (CT and DT)
4Nd = N, (DT) (29)
LNd = W T (0D and MD)
N, h

The number of packages for drones N, in Equations (27) and (29), ranges from one to the
maximum allowable payload Sa. Although payload is related to many factors, including vehicle
weight and motor thrust that is a function of air density, rotor diameter, the number of propellers
and motor power, the maximum payload 8 - w; is set by considering the percentage S from the
total vehicle mass for drones wa (Flynt. 2017; Hwang et al. 2018; Lee. 2018). Average package
weight per stop wp can have any value below the maximum allowable payload Sa.

Battery energy storage is set to allow a single package-carrying drone to complete a round
trip across a service area; this is the minimum required energy for delivering a parcel to a
customer located at the outskirt of the service area. Battery charge cost is proportional to
electricity use. Purchasing cost for drones Pz is found by averaging prices of high-end
commercial drones. While indirect cost and handling cost, such as monitoring drone operation

are considered, the costs related to facility construction or rent are omitted here.

N =X (30)

=
Trt
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In Equation (30), daily trips N: is the average number of tours made by delivery vehicles
during the daily working period. User value of time v is applicable for unattended deliveries,
where users would usually wait at their homes, offices, or other convenient places, with little
disruption to their other activities. Considering a user’s willingness to pay for faster delivery,
such as USD 119 for a year subscription to Amazon Prime, the user’s expectation for this type
of delivery service is reasonably higher than for other types of unattended deliveries. According
to a recent survey on the value of time for a same-day delivery, about 9% of consumers are
willing to spend USD 5 on top of regular parcel delivery prices. Reflecting this finding, the
user value of time is set as $0.625 per person per hour (Joerss et al. 2016), i.e., USD 5 divided
by working period W. It should be noted that the baseline for the value of time is not necessarily
set as a small value according to the reference since the value is estimated from consumer’s

willingness to pay for fast delivery.

6.3.2 Model Assumptions and Formulations

6.3.2.1 Preprocessing Input Variables

Some variables from the baseline are preprocessed for easier computation. First, a distance
approximation is introduced for the shortest last-mile travel from a depot to each demand point.
Second, battery energy storage is introduced as a constraint for drones considering payload
(e.g., package weight) and flight range.
6.3.2.1.1 Approximation of Distance Traveled

For service modes that rely on single vehicles to serve multiple pick-up or delivery points,
the resulting tour lengths are estimated with Beardwood’s formula in Equation (31). This

formula provides good approximations where the shape of the service area is “fairly compact
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and fairly convex”, the delivery points are assumed to be uniformly distributed, and the number
of delivery points is adequately large, e.g., more than five points. Specifically, this formula
approximates the length L of the shortest TSP tour that connects » randomly located delivery
points in a delivery zone whose area is A4:

L = k(nA)%> 31
where k is a coefficient that depends on the local street pattern, shape of service area, and
average number of visited points. To reflect tour length for types of road networks (e.g., rural

or urban), the value of k£ can be multiplied by an appropriate circuity factor.

6.3.2.1.2 Flight Range and Payload Associated with Battery Capacity
D’Andrea (2014) formulates drone energy consumption considering various factors, such
as air resistance, battery cost, and cost of electricity usage. Figliozzi (2018) refines the formula

to derive energy E for level flight at a constant speed as shown in Equation (32).

_ . g(mp+my)
E=p-t=""200 (32)

where p is power required for level flight in watts, ¢ is flight duration in seconds, d is flight
range in meters, m, is payload in kg, m,, is drone weight including battery in kg, r is lift-to-
drag ratio set as 3, 1 is power transfer efficiency for motor and propeller set as 0.5, and g is the
gravity acceleration constant (9.81 meters/second?).

At least 20% of the full charge energy E should be maintained (i.e., never dip below
20%) for a margin of safety. This is generally known as “the 80% flight rule”, which is
commonly used with lithium-ion polymer batteries for the safety, maintenance and protection
of drones. Since the exact battery capacity is unknown, that capacity is roughly presumed from
drones at Amazon.com, in which a full charge of battery allows a drone to make a round-trip

of a 16-kilometer while carrying a single item.
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According to Equation (32), the energy consumption of drones increases proportionally
with the combined vehicle and parcel weight. Battery capacity is expressed as energy
consumption multiplied by duration, and flight range is proportional to the battery energy.
Since batteries for delivery drones store a fixed amount of energy, battery capacity can be
treated as a constant. It should be noted that drone weight, power transfer efficiency, and lift-
to-drag ratio are assumed to be constants in this analysis. Then, the relation among the number
of packages N, (i.e., payload m;), drone operating speed Vu, and flight duration ¢ can be found.
First, the number of packages N, varies inversely with drone operating speed, d/t. Thus,
vehicles can carry more parcels at energy-conserving lower speeds. Second, flight distance d
varies inversely with the number of packages. Using Equation (32), it can be computed by the
number of packages or average flight distance.

This energy storage relation is used for bounding a drone’s maximum flight range
associated with the number of parcels carried as well as estimating the drone’s operating cost
Co. To derive the operating cost for battery charge, the percentage of remaining energy R can
be expressed as follows.

( (mp+B-wq)d—0.002(Np+B-wg)VqTq

* 100« (1 —vy) (for DT)

(mp+ﬁ-wd)d
ase—Euse +0- d—0.001(N,+p- (L+D)
R = = Ebafe . = (mp Wd) (mp‘l',B.‘E’dI;d Wd) * 100 * (1 - Y) (for OD) (33)
(na B0 00) 100 (1) for D)

where Ebase 15 the energy estimated from drones of Amazon.com allowing a drone to complete
a round trip to and from one customer across the service area, Euses 1S the amount of energy
spent in a delivery tour, and m, has a baseline value of 1 kilogram/package in this case. Both y
and J'are fractions of battery energy storage associated with drone landing and takeoff, which

reduce the energy usable for delivery distances of drones.
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6.3.2.2 Model Assumptions

The assumptions for both truck and drone deliveries are listed here.

6-1. The demand does not vary with service quality and is served by a single depot
randomly located in service area.

6-2. The demand is fairly uniformly distributed within the service area and over time
(i.e., 12 hours a day).

6-3. All daily demands are served within a predetermined working shift W.

6-4. The tours of each truck are routed in rectilinear space, while drones travel in
Euclidean space.

6-5. Drones maintain a steady level flight at a constant operating speed. Energy
consumption associated with other maneuvers, such as acceleration, deceleration,
landing and taking off, is considered as a fraction (i.e., y and J) of the maximum battery
energy storage.

6-6. External factors—such as system malfunctions, headwinds, and noise—have no
effect on system performance or total cost.

For Assumption 6-1, the circular service area is shaped by a drone’s maximum round-trip
flight range, which encloses a circle. Assumption 6-2 is proposed since the spatial distributions
of service areas are not considered for a general and transferable system design. All the
customers’ demands (i.e., delivery points) are assumed to be stable and known before a delivery
trip is scheduled (Assumption 6-3). The required number of batteries per drone is assumed to
be sufficient for all service types supported by drones; the exact figure can be estimated by
considering battery energy storage, energy spent per tour, and battery recharge time. For

convenience, only the recharging cost is considered. For Assumption 6-5, the specific final-
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mile package drop-offs are not considered since various methods are suggested by operators
(e.g., Zipline’s parachute attached package, Prime Air’s drop-off method by landing drone on
the ground, and Wing’s package dropping by cable). Instead, fractions for energy use of non-
level flight of drones y and J are introduced for specific drone uses related to energy

consumption for package drop-off procedures at a destination and takeoff from depot.

6.3.2.3 Model Formulations

6.3.2.3.1 Cost Function of Conventional Truck Delivery (CT)

The cost function consists of supplier and user cost. The system cost includes the capital
which satisfies the peak-period demands and operating cost associated with the number of
delivery vehicles, such as battery charge, driver pay rate, management, and maintenance. The
user cost reflects the waiting time for deliveries. The total cost function C: is identical for all
the alternatives discussed previously and all costs are hourly.

C.=C.+C,+C, (34)

The above cost components are expressed as follows:

_ PeNe ((+DY-1
¢ 365*24{ i(1+i)Y } (35)
C,=H"N; (36)
Cy = aQZhv (37)

In Equation (35), the capital cost is expressed as the present worth of the investment in truck
purchases. Equation (36) includes the costs for system operation, which directly relate to the
number of trucks and the tours made within the consolidation time /4. Equation (37) specifies

the users’ cost of waiting to receive packages, which is half (i.e., a is 0.5) the consolidation
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time multiplied by total demands and user value of time. The user waiting cost applies similarly
for all the delivery strategies.
6.3.2.3.2 Cost Function of Drone Delivery Supported by Truck (DT)

The capital cost includes drone purchases. The operating cost differs from the previous case
by considering additional costs related to battery charging and item handling for drones. The

user waiting cost remains as in Equation (37).

_ (PeNe+Pg'Ng) ((1+D)Y -1
= 365%24 { i(1+0)Y } (38)
Co — H . Nt + (MC'NT'Eused+Mi+Mk) Nd (39)

h

Another distinction from CT is that dwell time does not affect the overall delivery time
because drones and trucks do their tasks in parallel.
6.3.2.3.3 Cost Function of Drone-only One-to-one Delivery (OD) / one-to-many Delivery
(MD)

The operating cost is adjusted for deliveries solely by drones while user waiting cost remains

the same as in Equation (37).

_ (PaNa) {(1+i)"—1}
¢ 365h L i(1+))Y

(40)

Co — (MC'NT'Eus}eld"'Mi"'Mk) Nd (41)

The difference between OD and MD is due to the number of vehicles dispatched Na, and the
costs associated with battery recharging M Eused.
6.3.2.3.4 System Constraints

Constraints apply individually to delivery strategies. The total cost function of DT is

bounded by constraints (42) and (43). All the listed constraints restrict the other alternatives.

107



(for trucks)
(for drones)

(42)

(43)

(44)

Constraint (42) specifies that the maximum number of packages per vehicle is less than or

equal to its maximum capacity or allowable payload, while constraint (43) requires that a

delivery tour should end within one working shift. Constraint (44) binds that the energy spent

for each drone tour should not exceed a safety margin. Thus, the drone flight range associated

with the number of packages is bounded according to Equation (33).

6.4 Numerical Results and Sensitivity Analysis

6.4.1 Numerical Results

The optimal cost functions in Equations (34) — (37) are found by differentiating the objective

function C: with respect to the consolidation time /. The results must also satisfy the imposed

constraints. Using the baseline inputs listed in Table 34, the results for each alternative are

summarized in Table 35.

Table 35. Results of Each Delivery Strategy

MD
CT DT OD | N,=2 3 4 5
Total cost, C; ($/hr) 387.82 | 207.8 | 361.3 | 312.0 | 290.0 | 276.7 | 267.5
Cost Operation, G, 46.1 37.2 44.3 44.3 44.4 444 | 444
elements | Capital, C. 1.6 1.3 1.6 1.6 1.6 1.5 1.5
(%) Waiting, C,, 523 | 615 | 54.1 54.1 541 | 541 | 54.1
Deliveries (packages) 676 427 652 563 523 499 483
Cost / delivery ($/package) 0.574 | 0.487 | 0.555 | 0.554 | 0.555 | 0.555 ] 0.554
Consolidation time, /4 (hr) 0.84 0.53 0.81 0.7 0.65 0.62 0.6
Delivery area, 4 (km?) 23.8 37.7 8.2 9.5 10.3 10.8 11.1
Number of vehicles, N, or N, 4.5 1.8 63.3 53.9 49.4 46.5 44 .5
Battery usage (%) - 16.6 10.2 18.1 25.9 33.8 42.0
Avg. delivery distance (km) 22.8 54.1 2.4 3.7 4.7 5.6 6.3
Delivery completion time, 75, (hr) 3.76 0.96 0.08 0.13 0.18 0.23 0.28
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Trucks depart from a depot every 0.84 hours for CT and 0.53 hours for DT, while all the
drones leave the depot every T hours. Cost per delivery—total cost over demands generated
in consolidation time — ranks D7, MD, OD, and CT in ascending order. For drone deliveries,
the cost saving from carrying more packages per drone is diminishing. In addition, the fleet

size for drones is marginally reduced as more packages can be carried per drone tour.

6.4.2 Sensitivity Analysis

Cases are designed to explore how alternatives are affected by input variables. The results
can be considered by operators in planning and managing deliveries.
6.4.2.1 Elasticity to Input Parameters

This section examines how small changes in inputs affect system outputs and thus identifies
the critical factors in package delivery systems. The parameters considered here are the driver
hourly pay H, demand density Q, value of time v, drone operating speed Va, and size of service
area Z. The driver pay rate is the key cost component in truck deliveries and notably affects the
optimized decision variables. For exploring the effects of demand density on system
performance, lower demand density may represent rural areas, while higher density may
represent urban areas. The user value of time for waiting goods is explored since the value may
differ for different customers (e.g., with different incomes), types of items (e.g., fresh
products), or places where customers reside. The operating speed of drones not only affects
delivery ranges but associated operating cost, based on Equation (41). Lastly, the variation of

service area size is examined how that affects the effectiveness and costs of alternatives.
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Table 36. Elasticity to Input Parameters

Parameter Range Number of Vehicles N; Consolidation Time h* Total Cost Ci*
CT DT OD MD CT DT OD MD CT DT OD MD
Np=2 Np=§ Np2 Np=5 Np2 Np=§
Driver's Hourly Rate, H 0% 047 050 - - - 045 035 - - - 045 034
+10% 058 -031 - - - 050 020 - - - 047 036
Demand Density, Q

-10% 049 027 071 0.74 079 051 -048 -011 011 015 046 040 089 0.89 0.90

+10% 047 043 074 0.73 0.81 055 066 013 013 018 049 043 090 0.90 091

Value of Time, V 0% 047 051 010 014 000 041 033 031 048 042 051 060 053 053 053

+10% 043 062 017 013 013  -041 -043 -056 -049 057 054 062 056 0.56 0.55

Drone Operating Speed, Vd

-10% - - 052 046 041 - - 02 025 15 - - 021 02 21

0% - - 038 055 041 - - 027 016 037 - - 023 0M 02

Service Area, Z 0% 047 051 100 100 100 041 033 000 000 000 051 060 100 100 100
+10% 043 062 100 100 100 041 043 000 000 000 054 062 100 100 100

Table 36 summarizes the results of elasticities to inputs. First, changes in driver pay rate
have greater effects on the service performances of CT than DT (e.g., either on consolidation
time or on user waiting) due to higher operating cost, as shown in Table 35. As demand density
increases, more trucks and drones are required. Although both truck and drone fleet sizes
increase with the density, the increase for drones is much greater than for trucks due to the
small drone payload. The optimal consolidation time /" is reduced as users place a higher value
on waiting time. Since DT has the smallest fleet to serve customers and a relatively large
consolidation time, a larger fleet is required for DT than for other options. For elasticities to
drone operating speed, analysis for DT is excluded since the delivery completion time is
unaffected by that speed; a consolidation time is only determined by the truck capacity S
regardless of drone speed variations. The optimal consolidation time 4" for drone delivery
decreases as the speed increases. This is not attributed to a decrease in user waiting cost but to
a decrease in operating cost from energy spent according to equation (8). Overall, the study
area can be served with fewer drones as drone speed increases. Lastly, an increase in service

area changes delivery tour distances L. Consolidation times for all modes decrease with the
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size of service area due to the large number of packages generated (Q-Z-h). A drone fleet
linearly increases with the service area, while truck fleet shows moderate changes according to
Equation (28) and vehicle loading capacity (S« and S;).

6.4.2.2 Deliveries with Larger Drones

This analysis shows the effectiveness of deploying larger drones in a delivery system for
carrying more items per MD drone by raising the maximum payload constraint (41). Since the
average weight per item is unchanged, this case solely applies to MD alternative. As of 2018,
the U.S. Federal Aviation Administration defines as “small” unmanned aircrafts which weigh
less than 25 kilograms or 55 pounds. This limit allows the baseline drones (i.e., 10 kilograms)
to be replaced with larger drones which can carry more packages.

The analysis examines 20%, 40% and 60% heavier drones whose payload is a product of
parameter £ and drone gross weight wa. In Figure 23, numbers in parentheses within the legend
denote the number of items carried per tour N,. The associated battery energy storage should
increase with the weight of drones, thus affecting the energy used by drones in Equation (33),

while drone purchase costs P remain as in the baseline.
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Figure 23. Effects of Large Drones for MD alternative

Energy increases with drone weight as in Figure 23 (d). For drones utilizing nearly their
maximum energy storage (i.e., 60% heavier drones with 8 items), delivery operation is possible
with a high consolidation time. A small delivery area reduces the last-mile tour distance
according to Equations (28) and (31). The energy is used inefficiently with heavier drones if
all the loaded items N, can be carried by lighter drones.
6.4.2.3 Special Case: Location of Distribution Depot

This analysis examines how the location of distribution hub affects the overall system and
system performance. This is done by changing the line-haul distance D and coefficient & for
last-mile distance L. Including the baseline setting that the hub is randomly placed in a service
area, three cases are proposed. For the ‘center’ case, the distribution hub is located at the center

of service area. The other two cases change the line-haul distance D.
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Figure 24. Effects of Location of Distribution Depot
Comparing the effects of depot locations in a service area (e.g., centered and randomly
located), the changes in total costs for drones are approximately 2.6%, while the changes for
trucks are unnoticeable, as shown in Figure 24 (b). In external distribution depots, both total
cost and fleet size increase with the length of line-haul travel. The drone fleet increases
substantially with line-haul distance, where average delivery distance for drones (i.e., a sum of

last-mile and line-haul travel) is greater than for trucks.

6.5 Summary

The drone delivery industry is mostly run by private companies, whose achievements

indicate that such services are becoming practical. Aside from technical difficulties, many
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concerns exist and must be overcome regarding safety, security, regulations, or noise problems.
This paper identifies the various alternatives of package delivery services with and without
drones. Each delivery method is formulated with a system cost function and compared
individually. The authors employ their recently developed distance approximation methods
that estimate average tour lengths when only a few points are visited points due to the limited
payload of drones. In addition, an energy constraint is incorporated in the model to reflect
delivery range associated with payload. It is shown how the optimum delivery area size and
consolidation time for minimizing the total cost change as system inputs are varied.

Utilizing drones for package deliveries may be cost-effective compared to conventional
trucks. For our baseline values, drones supported by trucks have both the lowest total cost and
cost per delivery, while the drone deliveries without trucks become competitive with the cost
as more packages are loaded per tour. The study examines sensitivity of alternatives to
influential inputs, including driver pay rate, demand density, user value of time, drone
operating speed, size of service area, and drone size. Total cost for conventional trucks is more
influenced by the driver pay rate than the cost for truck deliveries supported by drones.
Although both trucks and drones can conduct frequent delivery tours as the demand density
increases, the fleet size for drone-only deliveries increases more than that for trucks because of
a payload constraint. Among the four delivery alternatives, a change in user value of time
greatly changes total cost for truck delivery supported by drones. The higher operating speeds
benefit in reducing costs for both single- and multi-package-carrying drones. Large drones may
carry more items per tour but the energy may be used inefficiently with heavier drones if the

drone’s carrying capacity is underused. As a special case for the effects of distribution hub
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location, the study finds that drone fleet size is greatly affected by the locations of the depot
compared to fleets for truck delivery if the depot is located outside the service area.

Future extensions may model the possible alternatives for delivery drones supported by
trucks (DT) and compare them with system cost, such as the number of drones loaded per truck
or drones’ capability of carrying multiple packages. It is desirable to explore delivery systems
while considering additional operating conditions, such as winds and noise, and determine how

these affect system cost.
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Chapter 7: Innovative Methods for Delivering Fresh Food to

Underserved Populations

7.1 Problem Statement

The lack of access to fresh foods within reasonable distance and at affordable prices has
become a public health concern for individuals living in underserved communities and remote
rural areas. Such areas are generally called food deserts. These food deserts are mostly
attributed to a scarcity of full-service grocery stores (i.¢., selling fresh, canned, dry, and frozen
foods), farmers’ markets, vehicle availability, or reliable transportation. Thus, residents in food
deserts often travel further to access a grocery store, which increases transportation costs and
tightens an already limited budget of the household. Furthermore, the lack of access to the
foods necessary for a healthy and balanced diet may lead to poor health outcomes. While
location decisions for existing grocery stores are based on the profit-maximizing economic
principle, system inequity in lower accessibility to fresh foods has emerged as an unintentional
by-product. That is, a food desert is an example of market failure that warrants government
involvement to improve equity and reduce social costs (e.g., health costs) associated with lower
consumption of fresh foods. Therefore, reaching the underserved communities with cost-
effective delivery alternatives would be an important service.

The chapter presented here aims to develop a last-mile fresh food delivery system,
considering the combinations of transportation modes, for communities with poor access to
fresh food. Various fresh food delivery alternatives are identified, including conventional
trucks, electric cargo bikes, third-party deliveries by personal car, personalized ride

transportation services, and parcel lockers. The corresponding performance and cost functions
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for each alternative are formulated. The individual alternatives are separately optimized, and
the results are compared. Finally, the study conducts sensitivity analyses in terms of 1) service
area size, 2) demand density, 3) user value of time spent waiting for goods, 4) combined
deliveries by trucks and estimates 5) mode share for home-deliveries. Using the findings from
sensitivity results, the model suggests the optimal mode of transportation for delivering fresh
products in the Washington Village/Pigtown section of Baltimore city. The study’s main
contribution is to evaluate each delivery alternative in terms of total cost, thus enabling local
jurisdictions to design the best-suited delivery alternative for the underserved community.
Although the delivery alternatives can serve general types of customers and other

neighborhoods, the chosen modes are not overly expensive to operate.

7.2 Alternative Descriptions

g Grocery Stores

(c) Third-Party Personal Car Deliveries (d) Personalized Ride Deliveries
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Figure 25 Delivery Alternatives Serving Study Area

The study developed models for the five types of alternatives for fresh food deliveries:
trucks, e-bikes, third-party personal cars, personalized ride services, and parcel lockers.

Alternative characteristics are discussed below.

7.2.1 Truck Deliveries

In Figure 25 (a), delivery trucks visit all the users (i.e., demand points) in the service area.
Trucks travel from the depot a line-haul distance at cruising speed to a corner of the delivery
area. From there, drivers drop off groceries at each doorstep by conducting a last-mile delivery
tour at average local speed. The study assumes that trucks can load up to 250 packages but may

not necessarily travel with a full load.

7.2.2 E-bikes Deliveries

This type of delivery is done by electrically-assisted cargo bikes carrying a small number
of items compared to trucks and requires a fulfillment center somewhere inside a service area
(Conway et al. 2011). Due to the e-bike’s limited loading capacity (150 to 300 Kg), frequent
fulfillment trips to the depot are generated. Thus, the depot is replaced with stationed trucks.
Therefore, the bike replenishes packages from trucks, while e-bikes serve only the last-mile

deliveries. The fulfillment truck as in the truck deliveries is depicted in Figure 25 (b).
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7.2.3 Third-party Delivery by Personal Car (TPC) Deliveries

Drivers in third-party delivery by personal car conduct the same delivery process as in truck
deliveries (Figure 25 (c)). Aside from a limited loading capacity, delivery characteristics

remain the same as for trucks.

7.2.4 Personalized Ride (PR) Deliveries

Instead of delivering items to customers, this alternative considers a vehicle collecting
customers in a service area and taking them to the nearest grocery store (Figure 25 (d)). The
vehicle is randomly positioned in a service area and travels the shortest distance at an average
operating speed to a corner of the customer pick-up locations. The customer’s return trip after
grocery shopping is considered, as well, possibly with a different driver. For simplicity, the

study considers a scheduled-based taxi service, rather than an on-demand service.

7.2.5 Parcel Locker Deliveries

For this case, truck drivers drop off all the items in lockers (Figure 25 (¢)). Users then need
to access the pick-up locations to receive their items. The costs related to the user’s access to

the locker are included in the cost function.

7.3 Methodology

7.3.1 Assumptions for Delivery System

7-1. The demand does not vary with service quality (e.g., changes in vehicle operating

speed).
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7-2. The demand is uniformly distributed within the service area, and deliveries consist of

one package per customer (i.e., per delivery point).

7-3. The parcel lockers are evenly distributed within the service area.

7-4. All items in a parcel locker are taken until next scheduled vehicle leaves a depot.

For Assumption 7-1, all the customers’ demands are assumed to be non-stochastic and
known before a scheduled delivery is initiated. Assumption 7-2 is made since the spatial
distributions of service regions are not considered for general and transferable system design.
In practice, once packages are delivered, users have some days to pick them up. Since
measuring a rate of receiving items is out of the scope of this study, parcel locker users receive
their orders before next scheduled vehicles leave a depot (Assumption 7-4) for simplicity.

The study further assumes that parcel lockers are on public property, and the operating cost
for the lockers is low enough to be negligible. Some benefits of environmentally friendly modes
are not considered, such as gas emissions. Due to difficulties in modeling each produce item
with respect to the freshness over time, this study assumes insulated temperature-controlled
packaging (e.g., refrigerated bags filled with ice packs) to deliver goods. These items usually
stay fresh for up to 24 hours after the expected delivery time. Note that the model users may
consider adding a delivery time constraint to the model (which will be discussed in Section

7.3.3.6) to reflect the required freshness.

7.3.2 Baseline Numerical Values

Demands are determined as the product of demand density Q, service area Z, and vehicle

departure interval 4. The demands are served during regular shift /' and assumed to be
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uniformly generated over time and space. The headway #4 is required to concentrate goods for
efficient loads per vehicle.

Table 37 Variable Definitions and Baseline Values

Symbol Variable Units Value Range Note
Decision Variables ‘
A | Size of Delivery Area km? - -
h | headway hr - -
Output Variables ‘
C, | Operating Cost $/hr - -
C, | Riding Cost $/hr - -
C; | Total Cost $/hr - -
C, | Waiting Cost $/hr - -
Cy | Access Cost $/hr - -
L; | Average Traveling Salesman km - -
Problem (TSP) Distance
L, | Expected Shortest Distance km - -
N | Number of Vehicles vehicles - -
N; | Number of Lockers stations - -
T | Total Delivery Time hrs - -
Input Variables
B, | Driver Pay Rate $/(truck - hr) 40 -
D | Line-haul Distance km 16.1 -
[ | Length of Service Area km NA -
N | Number of Stations stations 1 -
for e-Bike Replenishment
O | Demand Density packages or 7.7 04-15.4
person/
(km? - hr)
Ss | Personalized Ride Capacity person 1 -
S» | Bike Capacity packages 20 -
S1 | Locker Capacity packages 50 -
S, | TPC Capacity packages 45 -
S: | Truck Capacity packages 15-w -
(truck)
250 (others)
T | Dwell Time hrs / stop 0.05 -
(Truck, e-bike, and TPC)
T | Dwell Time hrs / stop 0.5 -
(e-Bike replenishment and
Locker)
T, | Max. Allowable Access Time hrs 0.17 -
V4 | Line-haul Speed kph 50 -
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Vi | Walking Speed kph 3 -

V1 | Local Speed kph 15 -

vy | User Value of Time Spent for $/hr 12 -
Access

vi | User Value of Time Spent for $/hr 5 -
Riding

vy | User Value of Time Spent for $/hr 0.625 03-1.25
Waiting

W | Working Periods hrs / day 8 -

w | Width of Study Area km N -

Z | Size of Service Area km? 46.6 2.6-103.6

Equation (45) indicates how delivery area A is associated with 4 and vehicle capacity S, S,
Ss and Sp. Other conditions being equal, vehicles serve a smaller delivery area 4 since more
demands are generated during longer intervals / according to Equation (45). Based on delivery
alternatives, A4 is determined either by considering vehicle storage capacity (s:= 250) or the
average number of deliveries per hour multiplied by driver working period (s:= 15-W); each
driver may deliver 200-300 packages per working period in an urban area (Sheth et al. 2019;
Tipagornwong and Figliozzi. 2014). For instance, the capacity for door-to-door services is
determined by the driver working hour, while the capacity for fulfillment (e.g., locker or bike

replenishment stations) is done by the vehicle storage capacity.
A< — (45)

Delivery vehicles travel along a line-haul distance D to the first customer at average line-
haul speed Va (if applicable to alternatives), and the remaining packages are delivered along a
last-mile delivery route L: or Ls at local speed V7; the vehicles return to a depot along the same
line-haul route after deliveries are completed. From these, total delivery time 7 is computed
using Equation (46). Average dwell time per delivery point 7 or Twis the amount of time spent
per each stop and depends on alternative types. The dwell time for vehicles conducting last-

mile deliveries T is shorter than the one for vehicles refilling items 75 since the latter takes
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more time for the number of items. 7w for bike replenishment and parcel locker is assumed to
be equal, but not obtained from observations; the actual values for 7» and 7 may differ from
the time spent for searching parking lot or traffic congestion. The configuration of 7 is

adjustable based on the delivery alternative and will be discussed in a later section.

( (% + é—i) + Tin(QAh) (truck and TPC)

B+ T (QhA) (e — bike)
T = % +T, N, (bike replenishment truck) (46)

L
Ls (PR)
Vi
2D Lt

\(V_d n V_l) +T, - N (locker)

The number of vehicles serving the area is determined based on vehicle reuse after the

completion of each tour. In Equation (47), the number of vehicles N can be found by dividing
T by h.

T

N=- (47)

The operator costs are modeled with cost functions associated with vehicle travel distance
at various operating speeds, dwell times at delivery locations, service frequencies, as well as
the number and size of vehicles. For service alternatives that rely on single vehicles to serve
multiple pick-ups or delivery points, the resulting tour lengths are estimated with Beardwood’s
formula and its extensions. This formula approximates the length L: of the shortest Traveling
Salesman Problem (TSP) tour that connects any »n randomly located points in a zone whose
area is A. Beardwood’s formula provides good approximations where the shape of the service
area is “fairly compact and fairly convex”, the delivery points are uniformly distributed, and

the number of delivery points is adequately large (Larson and Odoni. 1981). The shortest
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expected distance Ls is for a vehicle serving a single destination per tour (i.e., personalized ride
service).

{ Ly = k/QhA? (Truck, e — Bike, TPC, and Locker) 48)

Ly = ks\Z (PR)
where £ is a constant that depends on the local street pattern, as discussed in Table 8, while &
is 0.67 for vehicles randomly positioned in rectilinear space where movements are restricted
to two orthogonal coordinates (Larson and Odoni. 1981).

Using the findings from Joerss et al. (2016) that consumers are willing to spend $5 per
shipment in addition to regular delivery prices for same-day delivery, the value of time spent
waiting for deliveries vy is estimated by converting the additional charge to hourly, i.e., $5
divided by the daily working period W. Since the value is estimated from consumer’s
willingness to pay for fast delivery, the baseline input for v, is not necessarily regarded as
small. The user value of riding time v; could be higher than the actual value since it is estimated
from commute trips. Note that the value of time spent waiting for deliveries v, is much smaller
than that of time spent for riding v: and access vx since the users would usually wait at their

homes, offices, or other convenient places, with little disruption to their other activities.

7.3.3 Cost Function

The cost function includes the operator’s and user’s costs. The operator cost considers the
operation costs related to the number of operating trucks and driver pay rate. The user cost can
be represented as the cost of the time for waiting Cw, in-vehicle riding C», or accessing to service
facilities Cx. To sum up, the total cost is expressed in Equation (49).

C; = operator cost + user cost

=C,+C,+C+C, (49)
124



It is noted that the elements of the cost function are selectively applicable for each delivery
alternative.
7.3.3.1 Truck Deliveries Formulation

Among the user cost components in Equation (50), only user waiting is considered for truck
deliveries. Therefore, total cost for truck deliveries consists of C, and Cy.

Co=B, N (50)

C, = (51)

Equation (50) expresses the costs for system operation, which directly relate to the number
of trucks and driver pay rate. Equation (51) includes the users’ cost of waiting to receive
packages, which is half the interval # multiplied by total demands and v.. This user waiting
cost applies similarly to all the delivery alternatives.
7.3.3.2 E-bike Deliveries Formulation

E-bike delivery model consists of bikes and trucks in the system, and its total cost follows
a similar structure to truck deliveries. Since fulfillment for the bikes (e.g., a stationed truck) is
conducted at the center of service region, trucks travel back and forth between a center point

and depot as shown in Equation (46). Likewise, a line-haul distance for bikes is omitted.
7.3.3.3 Third-party Personal Car (TPC) Deliveries Formulation
TPC model follows the same structure to the previous alternatives. The key difference from

the truck delivery is attributed to vehicle capacity Sp.

7.3.3.4 Personalized Ride (PR) Formulation

Total cost for personalized ride services includes the user riding as a cost. Note that Cw and

C:r are doubled due to returning users back to their origins.
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_ 2L(Qzh)v;

C
r v

(52)

Each demand point represents user pick-up location (e.g., a customer’s home). The number
of packages QhA is replaced by the passenger. Equation (52) expresses the costs associated

with the average in-vehicle travel time spent by users.

7.3.3.5 Parcel Locker Deliveries Formulation

Total cost for parcel locker deliveries consists of an operator, user waiting, and user access
cost. Users in locker deliveries need to access their nearest locker, which increases user cost as
follows:

_ v (QZ2)(w+)
Cx - 4Vkm (53)

Average dwell time per locker 7 is set as a larger value than to other types of deliveries; a
delivery person would place items in bulk to each locker. Note that average TSP distance L: in
Equation (48) is a distance for visiting all the lockers; namely, QhA4 is replaced by N;.. Average
access distance for a service unit (i.e., a parcel locker) is one-fourth of the sum of length / and
width w of Z; the distance is inversely proportional to the square root of the number of lockers
Nrunder the assumption that these lockers are evenly distributed over Z. Then, user access cost

Cs is derived as user access time multiplied by the value of time spent for access vu.

smn) |

PE——
e

h2 h1  h3 h
(hr)
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(a) Case 1
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($/hr) \ ($/hr)

:
) v v

h2 h3 h1 h h3 hi h2 h
(hr) (hr)

(b) Case 2 (c) Case 3
(Shaded areas indicate feasible regions for h satisfying Constraints (54) or (55))

Figure 26 System Constraints on Cost Function

In Equation (50), Co is inversely proportional to 4. Note that Cw and C; vary proportionally

with 4. Overall, total cost function Cr shows a U-shaped curve as shown in Figure 26.

7.3.3.6 System Constraints

For system constraints, the sum of packages (or passengers for personalized ride services)
carried by vehicles should not exceed the vehicle’s maximum capacity. Therefore, Equation
(45) is rearranged as in Constraint (54). Each vehicle tour should be completed during the
specified working hour # in Constraint (55). Constraint (56) restricts user access time to at
most a 10-min walk (Chavis et al. 2018). The left-hand side of Constraint (56) expresses the

user access distance: the length of the walk.

(Qh4) < §; (54)

T<w (55)
(w+l)

W N < T (56)

N = integer (57)

Lastly, Constraint (57) has the number of vehicles N be an integer for practical application.
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7.3.3.7 Optimization

The optimal vehicle departure interval 4, which minimizes the total cost function as well as

meets the imposed constraints, is found by differentiating the objective function C: with respect

to 4. Figure 26 shows how these sets of constraints affect total cost. Assuming /; to be the cost-

minimizing departure interval, 42 to be the interval bounded by working hour constraint (55),

and /3 to be the one bounded by capacity constraint (54), Case 1 in Figure 26 (a) shows the

cost-minimizing /; to be optimum.

The optimal C; is derived at 43 for Case 2, while none of the intervals satisfy with Case 3. It

should be remembered that the number of vehicles N is estimated by considering both vehicle

capacity in Constraint (54) and the last-mile distance in Equation (48). On the contrary,

Constraints (55) and (57) are the one adding realistic operational considerations in the system

without imposing any changes to the system.

7.4 Numerical Results and Sensitivity Analyses

7.4.1 Results

Using the baseline inputs listed in Table 37, the results for each alternative are summarized

in Table 38.
Table 38 Optimization Results of Alternatives
. In-store | User pick-ups
Results Home-delivery Service | and drop-offs
Truck e-bike TPC PR Locker
Headway, & (hr) 1.66 0.64 0.71 0.05 0.99
9.1 50.5
. 2 _
Delivery area, 4 (km~) 7.8 (bike)  (truck) 52 32.6
Travel distance
(km/vehicle tour) 70.8 232 322 54.2 9.2 454
Total Delivery time, 7 80 32 09 2. 0.4 2.9

(hr/vehicle tour)
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Number of vehicles, N 5 6 2 6 17 3

Number of lockers, /V; - - - - - 4

Avg. load per vehicle 119.5 38.5 115.6 42.6 1 118.8

Load factor (%) 99.6 85.6 64.3 94.7 100 47.5

Cost Operating, Co 52.7 82.2 75.8 49.2 7.8
0sts Waiting, Cu 473 17.8 242 0.7 7.0

elements

(%) Access, Cx - - - - 85.2

Riding, C; - - - 50.1 -

Total cost, C; ($/hr) 379 389 317 1,372 1,536

Cost per delivery 40.38

($/delivery) 0.63 1.68 1.23 431

Operator cost per delivery |, 53 1.38 0.94 | 20.00 0.34

($/delivery)

Critical constraint

equations (54) (54) (54) (54) (56)

* Note: TPC = third-party deliveries by personal car, PR = personalized ride services

In home-delivery services, five trucks N with a headway 4 of 1.66 hours and delivery area
A of 7.8 km? optimize the total cost C; as $379 per hour. Travel distance per vehicle tour is
computed as 70.8 km, by adding average TSP distance L: to twice line-haul distance 2D.
Average load per vehicle indicates how many items or passengers are loaded per vehicle, and
a load factor shows a percentage of the actual number of items and vehicle capacity. In this 4
and 4 combination, the operating and user waiting cost constitute 52.7% and 47.3%,
respectively, of the total cost. Cost per delivery of $0.63 is derived by dividing C: by total
demand Q-Z-h. The constraints that bound each alternative’s cost function is listed in the last
row of Table 38. In e-bike operation, the system outputs for e-bikes and fulfillment trucks are
optimized concurrently; two trucks refill the items for six bikes according to bike replenishment
schedule. Due to low consolidation 4, both TPC and e-bikes show higher costs per delivery
than the one for the truck.

Among home deliveries, TPC shows the lowest total cost C: due to 1) low user cost Cw
resulted from the smaller consolidation time (i.e., the optimal headway %) and 2) the vehicle

capacity constraint (54) resulting from storage capacity Sp. PR is an expensive alternative due
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to the large NV . The cost per delivery for PR is high due to small # and Ss. Note that PR’s cost
per delivery is one-way ride here. This result may seem surprisingly costlier than the actual
operation, possibly for the following reasons: 1) An operator provides access to a few selected
stores in the service region, which potentially reduce Ls by decreasing the coefficient in tour
distance equation (48). 2) The driver pay rate B, for PR may be calculated differently from
other types, where B, is decided by various factors, such as service region and surcharges
associated with booking, driver supply, and time of day. For simplicity, the above traits are not
considered. The majority fraction of total cost in parcel locker consists of user access cost Cx,

and the operator cost per package is the lowest among the alternatives.

7.4.2 Sensitivity Analyses

7.4.2.1 The Effects of Service Area Size
As more demands are generated with an increase in Z, more delivery vehicles are needed to
serve the increased users (the reverse is also true). This analysis finds the effectiveness and
costs of alternatives as the size of Z changes. Z is examined from 2.6 km? to 103.6 km?.
1000
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(Total costs for PR and locker increase up to 3,3968/hr and 3,5168/hr, respectively)
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(a) Total Cost, C; (b) Ranks of Alternatives
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Figure 27 System Outputs for Changes in Service Area Z

Figure 27 (a) shows that total cost C: increases with Z for all alternatives. Home-delivery
services have moderate increases compared to PR and parcel lockers. The jumps in C:
correspond to the vehicles incrementally added to the system according to the integer constraint
(57). More distinctive jumps are observed for the lockers due to increase in the number of
lockers added to the system based on user access time constraint (56); user access cost Cx
decreases as more stations are deployed. Figure 27 (b) indicates the ranks of each alternative
regarding Cy; these ranks change as vehicles and stations increase. The locker delivery is the
cost-effective service alternative at small Z with a large consolidation 4. Figure 27 (¢) and (d)
show the number of vehicles N and headway 4, respectively, which vary with Z.
7.4.2.2 Changes in User Value of Time Spent Waiting for Goods

In Table 38, the user waiting cost Cy shares 0.7% to 47.3% of total cost C; depending on

alternatives. Since Cw is dependent on user value of time vu, this section explores a case in
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which v, varies by regions or customers who have different values of time spent waiting for

goods (Joerss et al. 2016). v, ranges from about half to twice the baseline.

1800 5 i 4 L 4 4 4 4 4 4 A

1600 M—A’H"—A

1400

o~

¢
E 1200 Z
=
#1000 %
: et 3
S 800 “
S : /
= 600 < /
= /_”.,..—4——"
= 400 W é ?
200 =
0 1
03 0.6 09 12 03 0.6 09 12
Value of Time Spent for Waiting, Vu ($/hr) Value of Time Spent for Waiting, Vv, ($/hr)
—o—Truck —=—e-Bike ——TPC ——PR —&Locker | | ——Truck —=—e-Bike ——TPC ——PR ——Locker |
(a) Total Cost, C; (b) Ranks of Alternatives
18 1.8
16 1.6
14 14
% 12 12
o) o
g g
> 8 [
= z 08
L (G ———————————————— ]
2 g o5
E ¢ =
8 e 0.4
z 2
0 0.2
03 0.5 0.7 09 1.1 1.3 0
Value of Time Spent for Waiting, Vu ($/hr) 0.3 0.5 0.7 0.9 1.1 1.3
Value of Time Spent for Waiting, Vu ($/hr)
—o—Truck e-bike (truck) e-bike (bike)
——TPC ——PR ——Locker | =o—Truck e-Bike =+=TPC ——PR q—Locker|

(c) Number of Vehicles, N (d) Headway, A

Figure 28 System Outputs for Changes in User Value of Time Spent for Waiting v

Although the departure interval /4 generally decreases with increases in user costs associated
with v, the intervals stay unchanged in this range of changes due to the vehicle capacity
constraint (54) in Figure 28. C: for PR is nearly unchanged since the alternative is heavily

dependent on user riding cost C; rather than Cw from Table 38. Ranks are inverted between
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trucks and e-bikes at v, of 0.7, and it occurs because Cy constitutes more portions in truck’s

cost function than the others.

7.4.2.3 Variation in Demand Density

For exploring the effects of demand density Q on system performance, lower demand

density may represent suburban areas while higher density may represent urban areas. The

range of Q varies from 0.4 to 15.4 packages (or persons) per square kilometer per hour.
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For truck deliveries below Q of 6.2, the optimal / is unable to be found in Figure 29 since
h is unbounded by Constraints (54) and (55): i.e., a Case 3 of Figure 26. Although truck
deliveries may be operable in such low Q, the result suggests that the operation is not
economical. Either e-bike or PR is the cost-effective mode depending on Q.
7.4.2.4 Combined Deliveries by Trucks

Trucks may be utilized to deliver items to bike or locker fulfillment on the way customers’
locations. This analysis is designed to explore trucks performing more than a single task in
terms of cost-effectiveness under the assumption that demands are divided by the number of
alternatives existed. In this case, total demands for each delivery alternative would be assigned
by the given percentages to the alternatives, where the fraction is determined by satisfying
working hour constraint (55). Therefore, vehicles serve the equal number of demands while
providing more options. Note that the related delivery time 7 and stops increase; the cost for
operating each alternative is added up. Although the baseline inputs remain unchanged, truck
capacity S is determined by truck loading capacity (i.e., 250 packages) rather than by driver
working period.

Two scenarios are designed. For Scenario 1, trucks carry out a door-to-door service while
delivering items to an e-bike fulfillment station. Scenario 2 is that trucks serve customers and
fulfill items at lockers. In case of 15% allocation for Scenario 1, it implies that 15% of demands
are assigned by trucks while the rest is served by e-bikes.

Table 39 Results of Combined Delivery Based on Scenarios

Results Scenario 1 Scenario 2
Truck & e-Bike Truck & Locker
Assigned demand 15% 30% 15% 30%
Headway, h (hr) 0.62 0.60 1.44 1.97
Delivery area, A (km’) | 9.3 51.8 9.6 53.9 22.5 16.3
(bike)  (truck) (bike) (truck)
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Travel distance | 21.7  82.9 20.1 1053 67.3 73.5
(km/vehicle tour)
Total Delivery time, T | 2.8 4.5 2.4 7.3 5.7 7.9
(hr/vehicle tour)
Number of vehicles, N 5 8 5 13 4 4
Number of lockers, N, - - - - 4 4
Avg. load per vehicle | 449  28.1 43.3 16.6 129.6 177.3
Load factor (%) | 99.8 11.2 96.2 6.7 51.8 70.9
Costs ‘ Operating, C, 88.5 91.7 8.2 11.8
Elements | Waiting, C, 11.5 8.3 15.4 20.4
(%) ‘ Access, C, - - 76.4 67.8
Total cost, C; ($/hr) 587 785 1,428 1,289
Cost per delivery 2.61 3.63 2.75 1.82
($/delivery)
Operator cost per delivery 2.31 3.33 0.23 0.22
($/delivery)
Critical constraint equations (54) (54) (56) (56)

In Scenario 1 of Table 39, average package load per truck (or load factor for truck) is small
since more trucks with underutilized capacity should be deployed. Truck and bike operations
are jointly optimized by the same optimized /4, where the trucks conducting their own last-mile
deliveries are coordinated by the bike fulfillment schedule. Thus, the economic operation for
Scenario 1 is not justified, and the combined service might as well serve customers within two
separate services. On the other hand, Scenario 2 shows that C; decreases with consolidation 4
compared to the results illustrated in Table 39. Therefore, the combined operation would be

beneficial only for lockers for our baseline.
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7.5 Discussion and Summary

7.5.1 Discussion

The suggested model is applied in analyzing the optimal delivery mode for fresh food delivery
of the Washington Village/Pigtown section of Baltimore, Maryland. Wahsington
Village/Pigtown is categorized into a food desert in Baltimore City (Chavis et al. 2018). The
size of service area Z is approximately 9.6 km? with a population of 5,134. Grocery store
density (i.e., the number of corner stores per 10,000 residents) is 38.2 (Baltimore City Health
Department. 2017). Since demand density Q for this area is unavailable, the demand density of
the area is estimated from the grocery store density divided by working periods W and service
area size Z. As a result, O becomes 0.26 packages/km?/hr. Note that all the potential customers
are assumed to use the delivery service.

Due to low demand density Q, the required delivery vehicles are much fewer than in the
baseline shown in Table 37. The least expensive transportation mode turns out to be the parcel
locker delivery. The optimal headways for home deliveries exceed working period W. This
indicates that the delivery service operates every 4 hours; trucks would serve the study area Z
every two day, for instance. In Table 40, note that 1) delivery area A4 is larger than the service
area Z, which is feasible, and 2) the critical constraint is changed from vehicle capacity in Table

38 to working hours for truck delivery due to low Q.
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Table 40 Results of Delivery Service for Washington Village/Pigtown

Home-delivery In-store | User pick-ups
Results Service | and drop-offs
Truck e-bike TPC PR Locker
Headway, h (hr) | 48.40 18.15 18.15 0.29 1.96
Delivery area, A (km?) | 46.4 9.1 534 37.0 - 483.3
(bike)  (truck)
Travel distance | 71.1 24.0 32.2 56.2 4.2 57.5
(km/vehicle tour)
Total Delivery time, T | 8.0 3.2 0.9 3.6 0.2 1.9
(hr/vehicle tour)
Number of vehicles, N 1 1 1 1 2 1
Number of lockers, N, - - - - - 1
Avg. load per vehicle | 120.0 449 449 449 1 1.9
Load factor (%) 100 99.7 17.9 99.7 35.9 5.0
Costs | Operating, C, 52.6 85.6 748 | 969 80.5
elements Waiting, Cw 47.4 14.4 25.2 2.6 3
(%) | Access, Cx - - - - 16.5
' Riding, C; - - - 0.5 -
Total cost, C; ($/hr) | 76.0 93.5 53.5 82.6 49.7
Cost per delivery | 0.63 2.08 1.19 57.4 10.2
($/delivery)
Operator cost per delivery | 0.33 1.78 0.89 55.6 8.07
($/delivery)
Critical constraint equations | (55) (54) (54) (54) (56)

7.5.2 Summary

An area with limited access to fresh products within reasonable distances and prices was
called a food desert. This became a public health concern associated with lower consumption
of fresh foods. To mitigate this, the study aimed to develop a cost-effective last-mile fresh food
delivery system that addressed the lack of mobility. The chapter identified and optimized five
delivery alternatives: conventional trucks, e-bikes, personalized ride transportation services,
parcel lockers, and third-party deliveries by personal car. The optimized outputs for alternatives

were compared with total cost. Sensitivity analyses were conducted in terms of 1) service area
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size, 2) demand density, 3) user value of time spent waiting for goods, and 4) combined
deliveries by trucks.

Numerical results showed that third-party deliveries by personal car were the most cost-
effective option in delivering fresh items, while the truck delivery ranked second for our
baseline values. The personalized ride service and parcel locker delivery were more expensive
than home-delivery services. Although more vehicles and frequent trips were needed with an
increase in service area size across alternatives, home-delivery services had moderate increases
in total cost compared to other types. The personalized ride was less influenced by changes in
user value of waiting time. At a low demand density, the truck operation may not be
economically operable. The study explored trucks performing more than a single task; trucks
carried out a door-to-door service while delivering items to e-bike fulfillment stations or parcel
lockers. Only the latter use of trucks was economically justifiable.

Future extensions of this study may include the following. By applying real-world inputs to
the suggested model, more specific variables may be considered, such as the effects of roadway
network configuration or dividing service areas into several. Sensitivity to changes in public
policy variables such as tax incentives to participating grocers may be considered to identify a
practical business model that public agencies can manage in collaboration with grocers and
carriers. Although the study assumes that all packages are insulated with appropriate
temperature-controlled packaging similarly to private meal-kit delivery services, researchers
may consider deliveries without the packaging. Then, the mandatory completion time for a
delivery tour can be imposed in the model. Finally, the user value of time spent waiting for

goods may be explored. Although baseline inputs are intended for food deserts in urban
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circumstances, the model can be tailored for rural settings with proper service area size,
demand density, and a reasonable coefficient for the distance approximation equation.

This analysis compares alternatives based on their relative costs. Further studies might also
compare such alternatives in terms of service quality, capacity, and suitability for various

environments.
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Chapter 8: Conclusions and Future Research

8.1 Research Summary and Contributions

The dissertation develops the tour length approximations for Traveling Salesman Problem
(TSP) when the number of visited points 7 is relatively small. The principal contributions of
this dissertation are underlined and summarized below.

Chapter 2 provides an extensive review of existing research work for the TSP
approximations and solution methods. The approximations dealing with small » values are

reviewed, while a total of fourteen metaheuristics and TSP solvers are compared in terms of

solution accuracy.

Chapter 3 develops the TSP approximations through few points. The approximation models

account for various factors, such as area shapes, elongations, point distribution, and depot

locations. The optimized TSP instances are further investigated using statistical analysis (e.g.,
some extreme values, variance, and normality). The effects of those factors on tour lengths are

explored.

Chapter 4 introduces some extensions for the approximations. First, a total of 6 adjustment

factors are proposed that integrate the above considerations into a single equation. The

estimation of the exponent for the number of points # is a key contribution in this dissertation

since the previous studies apparently assumed without checking that it should be 0.5, i.e., that
tour lengths should vary with the square root of n. When subjecting this exponent to statistical
estimation, it is found that its value can be considerably smaller than 0.5. With this estimated
exponent, the TSP tour lengths can be more precisely approximated than with the previous

models. Second, approximations for probabilistic TSP are developed to reflect stochastic
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customer presence (or customer’s acceptance of the service). Such approximations are

beneficial for analyzing how changes in demand affect tour lengths when » is known. Third,
the approximated tour lengths are compared with the actual distances for rural and urban

delivery networks. Urban areas have favorable conditions (e.g., point distribution) for

satisfying imposed approximation assumptions, and thus the approximated and actual tour

lengths differ by as little as 9.6%.

Chapters 5, 6, and 7 present applications of the tour length approximations; most of the
vehicles considered in these chapters have a low vehicle carrying capacity. In Chapter 5, a

comparison of deliveries by robots, drones, and trucks is presented. The total cost of each

alternative is formulated and then optimized for comparison. Some sensitivities are
investigated, such as to changes in energy cost, user value of waiting time for delivery, and
carrying capacity.

The next application formulates and compares four alternatives of package delivery service

with and without the aid of drones. Each delivery alternative is optimized numerically with an

objective of total cost minimization. Analyses are conducted with respect to sensitivity to driver
pay rate, demand density, user value of waiting time for delivery, drone operating speed,
service area size, drone size, and distribution hub location. For reasonable baseline inputs,
results indicate that using drones for package deliveries may be cost-effective compared to
using conventional trucks.

In Chapter 7, a last-mile fresh food delivery system is proposed for individuals in

underserved communities. Five delivery alternatives with various modes are considered. The

total cost is formulated and optimized for each alternative. Then, the optimized results for the

alternatives are compared. The dissertation examines whether delivery trucks could perform
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multiple tasks (i.e., delivering items to customers and fulfillment centers in a single delivery
tour). Lastly, mode shares for home deliveries were estimated when multiple delivery
alternatives coexisted.

Thus, the key contributions are highlighted as follows. First, Beardwood’s approximations
have been refined by considering adjustments for various factors. Second, the exponent
for n values is statistically estimated rather than assumed to be 0.5. These improvements help
estimate accurate TSP tour lengths and solve large system design problems, in which the exact

demand points are uncertain the time of planning.

8.2 Future Research

Although this dissertation makes distinct contributions in developing TSP tour length
approximations, some of the following potential extensions may be considered in future
research.

1. Some considerations for TSP formulations:

(i) Constraints on the sequence of visits: some items may need to be dropped earlier
than the others, (e.g., heavy items or time-sensitive deliveries) although that tends
to increase the tour length. The effect of these conditions on the tour lengths can be
analyzed.

(ii) Changes in the objective function for TSPs and resulting approximations: the
current objective function for TSP instances is to minimize a function related to cost
(i.e., the tour length). The function can be changed according to the user’s
intentions. While minimizing the total distance traveled for the TSPs, the objective

function can be modified, e.g., to optimize coverage or maximize profitability.
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Some points may be excluded from a tour if the marginal profitability of delivery
is considered. For instance, if most of the points to be visited are clustered, some of
the remaining points may be skipped and possibly visited on the next tour. The
resulting approximations from the optimized TSPs can be compared with the results
in Table 8.

2. Exploration of other forms for adjustment factors: only a multiplicative form is
considered for combining all adjustment factors in Equation (9). The absolute percent
errors can be thoroughly investigated when the factors are multiplied (e.g., errors
attributed to multicollinearity). Alternatively, other possible forms can be thoroughly
explored to reduce the errors.

3. Representation of the actual road network in the context of approximation: the
actual road network may be more precisely represented in the approximation by
considering non-uniform point distributions or circuity factors, as discussed in Section
4.3. It would be worth investigating which factors should be accounted for and how the
approximated tour lengths can better reflect the actual network characteristics.

4. Various probability distributions for probabilistic TSP: stochastic customer
presence can be modeled with different probabilities, such as Poisson distribution or
normal distribution. The estimates (i.e., exponent and coefficient) can be re-computed

and compared.
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