Space-Time Tradeoffs for Approximate Spherical Range Counting*

Sunil Aryaf Theocharis Malamatos? David M. Mount$

University of Maryland Technical Report CS—TR-4842 and UMIACS-TR~-2006-57
November 2006

Abstract

We present space-time tradeoffs for approximate spherical range counting queries. Given
a set S of n data points in R? along with a positive approximation factor e, the goal is to
preprocess the points so that, given any Euclidean ball B, we can return the number of points
of any subset of S that contains all the points within a (1 — ¢)-factor contraction of B, but
contains no points that lie outside a (1 + ¢)-factor expansion of B.

In many applications of range searching it is desirable to offer a tradeoff between space and
query time. We present here the first such tradeoffs for approximate range counting queries.
Given 0 < ¢ < 1/2 and a parameter v, where 2 < v < 1/¢, we show how to construct a
data structure of space O(ny?log(1/¢)) that allows us to answer e-approximate spherical range
counting queries in time O(log(ny) + 1/(e7)?"!). The data structure can be built in time
O(ny?log(n/e)log(1/¢)). Here n, ¢, and 7 are asymptotic quantities, and the dimension d is
assumed to be a fixed constant.

At one extreme (low space), this yields a data structure of space O(nlog(1/e)) that can
answer approximate range queries in time O(logn+(1/¢)4~1) which, up to a factor of O(log 1/¢)
in space, matches the best known result for approximate spherical range counting queries. At
the other extreme (high space), it yields a data structure of space O((n/e?)log(1/¢)) that can
answer queries in time O(logn+1log1/e). This is the fastest known query time for this problem.

Our approach is broadly based on methods developed for approximate Voronoi diagrams
(AVDs), but it involves a number of significant extensions from the context of nearest neighbor
searching to range searching. These include generalizing AVD node-separation properties from
leaves to internal nodes of the tree and constructing efficient generator sets through a radial
decomposition of space. We have also developed new arguments to analyze the time and space
requirements in this more general setting.
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1 Introduction

Answering range counting queries is among the most fundamental problems in spatial information
retrieval and computational geometry. The objective is to store a finite set of points so that it is
possible to quickly count the points lying inside a given query range. Examples of ranges include
rectangles, spheres, halfspaces, and simplices. In this paper we consider the weighted, counting
version of the problem for spherical ranges. More generally, we assume each point stores an element
of a semigroup, and the objective is to compute the semigroup sum of points in the range.

Range searching is a well studied problem in computational geometry, and nearly matching
upper and lower bounds exist for many formulations. The most relevant case for us is that of
halfspace range counting queries. Matousek [17] has shown that in dimension d, with space O(m)
it is possible to achieve a query time of O(n/m?log(m/n)), where n < m < n?. Nearly matching
lower bounds have been given in the semigroup arithmetic model, first for simplex range searching
by Chazelle [10] and later for halfspace range searching by Bronnimann, Chazelle and Pach [§].

Spherical range searching involves ranges that are (closed) Euclidean balls. It is well known that
by projecting the points onto an appropriate paraboloid, spherical range searching can be reduced
to halfspace searching in R%*! [11]. Since a halfspace can be viewed as a sphere of infinite radius,
lower bounds on halfspace range queries apply to spherical range queries as well. Unfortunately,
the lower bounds on halfspace range searching destroy any reasonable hope of achieving the ideal of
answering multidimensional spherical range queries in logarithmic query times using roughly linear
storage space. This suggests the importance of pursuing approximation algorithms. Achieving
speed-ups through approximation is reasonable in many applications in engineering and science
where the data or ranges are imprecise [14,16] and also in exact algorithms where approximations
are used to obtain density estimates [18].

Let b(p,r) denote a Euclidean ball in R? centered at a point p and having radius r. Given £ > 0
and the range b(p,r), a set S” C S is an admissible solution to an e-approximate range query if it
contains all the points of a (1 — e)-factor contraction of b(p,r) and does not contain any point that
lies outside a (1 + ¢)-factor expansion of this ball, that is,

Snb(p,r(1—¢)) € S C SNbp,r(1+¢)).

An e-approximate range counting query returns the exact number (or semigroup sum) of the points
in any such admissible solution. Note that the range is approximated, not the count. Although
the error is two-sided, it is an easy matter to modify the values of r and ¢ to generate only
one-sided errors. Arya and Mount [5] considered this problem and showed that with O(nlogn)
preprocessing time and O(n) space, e-approximate range counting queries can be answered in time
O(logn + 1/e4~1). (Their approach applied more generally to ranges that are fat, convex sets.)

In range searching it is often desirable to offer a tradeoff between space and query time. Unfor-
tunately, Arya and Mount’s results on approximate range searching do not admit any such tradeoffs.
In this paper we remedy this situation by offering space-time tradeoffs for approximate spherical
range counting queries. Let S be a set of n points in R, and let 0 < £ < 1/2 be the approximation
bound. We take n and € to be asymptotic quantities and assume that d is a constant. Given a pa-
rameter -y, where 2 < v < 1/¢, we show how to construct a data structure of space O(ny?log(1/e))
that can answer e-approximate range queries in time O(log(nvy) + 1/(e7)¢~1). The data structure
can be built in time O(ny?log(n/e)log(1/¢)). Note that the construction time exceeds the space
by a relatively modest factor of O(log(n/¢)).



At one extreme (y = 2) this yields a data structure of space O(nlog(1/¢)) that answers queries in
time O(logn+(1/2)%"1), thus matching the results of Arya and Mount [5] up to a factor of log(1/¢)
in the space. At the other extreme (y = 1/¢) this yields a data structure of space O(n/(¢%) log(1/¢))
that can answer queries in time O(logn + log1/¢). To our knowledge, these are the fastest query
times for approximate spherical range searching. These results are summarized in Table 1.

Table 1: Summary of results for e-approximate spherical range counting, with low-space (y = 2)
and high-space (v = 1/¢). O(log 1/¢) factors have been omitted.

Query Time Space
Low-Space logn +1/e%1 n
High-Space logn n/e?
Tradeoff | log(ny) + 1/(e7)1 | ny?

Our earlier work on linear space structures for approximate nearest neighbor queries [1] sug-
gested the problem of achieving space-time tradeoffs for spherical range queries. Virtually all range
searching structures operate by precomputing a number of generators, each of which is a subset of
the point set. For counting queries we require that the intersection of any range with the point set
can be expressed as a disjoint cover of an (ideally small) set of generators. The number of points
(or generally the semigroup sum) for each generator is precomputed along with a data structure
for computing the generators needed to answer a query.

The principal challenge in providing space-time tradeoffs in our case is determining a good way
of defining generators. A natural approach is to subdivide the range space so that queries that are
sufficiently similar (in a metric sense, depending on ¢) can take advantage of this by using roughly
the same generator sets. Our approach is to subdivide space hierarchically into hypercube cells
using a quadtree-like decomposition, and each node is responsible for handling queries whose center
lies inside the corresponding cell and whose radius is proportional to the cell size.

The most difficult aspect of this approach is achieving good bounds on the space required,
particularly for point sets that are not uniformly distributed and may be highly clustered. Our
approach is to adapt recent techniques derived for approximate nearest neighbor searching based
on approzimate Voronoi diagram (AVDs). Har-Peled [15] introduced the AVD of a point set S
as a quadtree-like partition of space into cells, such that all the points within each leaf cell have
the same approximate nearest neighbor. Later results by Arya et al. [1,2] generalized this by
allowing each cell to store a small number of representative points and showed how this can lead to
significant space improvements. An important element of their work is the notion of subdividing
space hierarchically into hypercubes so that certain separation properties hold with respect to the
point set. Such properties assert that the region surrounding each leaf cell of the decomposition is
simple enough that all the information needed for answering queries can be encoded succinctly.

To achieve our results we have generalized a number of elements of the AVD construction.
We show how to extend the separation properties for nearest neighbor searching (which is closely
related to approximate range emptiness queries) to apply to arbitrary range counting queries. We
have developed new arguments to analyze the total space requirements. Another new element is
generator construction. Because ranges are spherical, rather than using quadtree cells themselves
to define generators, we have developed a more efficient method based on a radial generalization



of a quadtree decomposition of space. This uses a polar representation of the points relative to the
center of each cell. One of the appealing features of our overall approach to range searching is that
it is based largely on quadtree decompositions and straightforward generalizations thereof. These
data structures are easy to implement, and are not subject to numerical issues.

2 Preliminaries

Throughout we assume that the dimension d is a fixed constant and treat n, € and v as asymptotic
quantities. We assume that the set S of points has been scaled and translated to lie within a
ball of radius £/2 placed at the center of the unit hypercube [0,1]¢. Let  and y denote any two
points in R?. We use ||zy|| to denote the Euclidean distance between = and 3 and Ty to denote
the segment joining x and y. We denote by b(x,r) a closed ball of radius r centered at z, i.e,
b(x,r) ={y : ||lzry|]| < r}. For a ball b and any positive real v, we use vb to denote the ball with
the same center as b and whose radius is v times the radius of b, and b to denote the set of points
that are not in b. The concepts of well-separated pair decomposition and box-decomposition trees
will play an important role in our constructions and analyses. We present these next.

2.1 Well-Separated Pair Decomposition

We say that two sets of points X and Y are well-separated if they can be enclosed within two disjoint
d-dimensional balls of radius r, such that the distance between the centers of these balls is at least
ar, where o > 2 is a real parameter called the separation factor. If we consider joining the centers of
these two balls by a line segment, the resulting shape resembles a dumbbell. The balls are the heads
of the dumbbell. A dumbbell separates two points x and y if x is contained in one head and y in the
other. A well-separated pair decomposition (WSPD) of S is a set P = {(X1,Y1), -+, (X, Ym)}
of pairs of subsets of S such that

(i) for 1 <i<m, X; and Y; are well-separated, and
(ii) for any distinct points z,y € S, there exists a unique pair (X;,Y;) such that either z € X;
and y € Y; or z € Y; and y € X;. (We say that the pair (X;,Y;) separates x and y.)

Callahan and Kosaraju [9] have shown that we can construct a WSPD containing O(a‘n) pairs in
time O(nlogn + adn). For each pair, their construction also provides the d-balls enclosing X; and
Y; satisfying the separation criteria mentioned above.

2.2 BD- BBD-trees

A box-decomposition (BD) and balanced box-decomposition (BBD) trees are enhanced forms of
the well known quadtree structure and its higher dimensional generalizations. We provide a short
introduction here to these structures.

The well known quadtree structure (in its multidimensional form) is a hierarchical decomposition
of space into hypercubes in R?. Starting with the unit hypercube U? = [0,1]¢, a quadtree bozx is
any d-cube that can be obtained by a recursive splitting process that starts with U and generally
splits an existing quadtree box by d axis-orthogonal hyperplanes passing through its center into 2¢
identical subcubes. Such a decomposition naturally defines a 2%-ary tree, such that each node is
associated with a cube, called its cell. The size of a quadtree box is its side length. A nice property



of quadtree boxes is that any two quadtree boxes either have disjoint interiors or one is contained
inside the other.

Quadtrees suffer from two shortcomings, which make them inappropriate for worst-case analysis.
First, if points are densely clustered in some very small region of space, it is not possible to bound
the number of quadtree splits needed to decompose the cluster by a function of n alone. The box-
decomposition (BD) tree [6] overcomes this by introducing an additional decomposition operation
called shrinking. Second, if the point distribution is not uniform, the tree may not have logarithmic
depth. The balanced box-decomposition (BBD) tree [7] extends the BD tree and remedies this
problem by employing a balanced shrinking operation.

More formally, a boz-decomposition (BD) tree of a set S of n points is a 2%-ary tree' that
compactly represents a hierarchical decomposition of space [6]. A BD-tree cell is either a quadtree
box or the set theoretic difference of two quadtree boxes, an outer boxr and an inner box. Cells of
the former type are called box cells and cells of the latter type are called doughnut cells. As with
the quadtree, the root node is associated with U¢. When a cell contains at most one point of S it is
declared a leaf. There are two ways that an internal node can be decomposed. A splitting operation
decomposes space into 2% subcubes in exactly the same way as the quadtree. A shrinking operation
decomposes a quadtree box u into two children. The inner child cell is the smallest quadtree box
u’ that contains S N u, and outer child cell is doughnut cell u — v/, which contains no points and
hence is a leaf. The relevant properties of the BD tree are given below. Properties (i) and (iii) are
proved in [6], and property (ii) is a simple generalization of (i).

(i) The BD tree has O(n) nodes and can be constructed in time O(nlogn).

(ii) A collection C of n quadtree boxes can be stored in a BD tree with O(n) nodes such that the
subdivision induced by its leaves is a refinement of the subdivision induced by the quadtree
boxes in C. This can be constructed in time O(nlogn).

(iii) The number of cells of the BD tree with pairwise disjoint interiors, each of size at least s,
that intersect a ball of radius r is at most O((1 +r/s)).

The balanced boz-decomposition (BBD) tree has many of the properties of a BD tree, but it has
O(logn) depth. As in the BD tree, a cell of a BBD tree is a quadtree box or the difference of two
quadtree boxes. Let S be a set of n points in R%, and let T denote its BBD tree. A quadtree box
(not necessarily in T') is nonempty if it contains at least one point of S. We will use the BBD tree
for the following construction, called an annulus cover. Given two concentric balls b; and by, where
bo is contained within b1, and given s > 0 find the set Q of nonempty quadtree boxes of side length
s that overlap the annulus b; — bs.

The properties of the BBD tree that are relevant to this paper are given below. Properties
(i), (iii), and (iv) are proved in [7], property (ii) follows from the analysis in [5], and property (v)
follows from the balancing aspect of the BBD tree. (In particular we use the fact that with every
constant number of levels of descent of the BBD tree the number of points associated with each
node decreases by a fixed constant. The straightforward proof is omitted.)

(i) T has O(n) nodes and O(logn) depth and can be constructed in time O(nlogn).

(ii) It is possible to compute an annulus cover as described above in time O(logn + t), where ¢ is
the number of nonempty quadtree boxes of size s that intersect the larger annulus 2b; — by /2.

The tree defined in [6] is a binary version of this tree, but the assumption that all cells are hypercubes simplifies
our presentation.



In the same time we can compute |S N z| for each box z in the cover. Since quadtree boxes
exist only in discrete sizes (powers of 2) it is understood that if s is not of this form this
construction is performed for the next smaller power of 2.

(iii) The number of cells of the BBD tree with pairwise disjoint interiors, each of size at least s,
that intersect a ball of radius r is at most O((1 + r/s)%).

(iv) Using the BBD tree for a set S of n points, we can find the l-approximate nearest neighbor
of any query point ¢ in time O(logn).

(v) Let 1 <t < n. Consider the set of nodes of the BBD tree that have at most ¢ points but
whose parents have more than ¢ points. The size of such a set is at most O(n/t).

For both BD trees and BBD trees, we define the size of a cell to be the size of its outer box.
Throughout, for a cell u, we will use s, to denote its size. We let r, = s,d/2 and let b, denote the
ball of radius r, whose center coincides with the center of u’s outer box (note that v C b,). For
~v > 0, we will make frequent use of the ball vb,,, which we call the vy-expansion of w.

3 Separation Properties

Let S be a set of n points in R? and let 0 < ¢ < 1/2 and 2 < v < 1/e be two real parameters.
In this section we show how to answer e-approximate spherical range counting queries in time
O(log(ny) + 1/(e7)4"!) using a data structure of space O(ny?log(1/¢)). We will show that the
data structure can be constructed in time O(ny?log(n/e)log(1/¢)).

Throughout we assume that a query ball B is represented by its center point ¢ and radius R.
Recall that S has been scaled and translated to lie within a ball of radius €/2 placed at the center
of the unit hypercube U?. Tt follows that any query ball B that is not contained within U?¢ can
be answered trivially as follows. If the ball contains the center of U, then we can treat all the
points of S as lying in the approximate range and return n as the answer; otherwise, we return 0.
Henceforth, we assume that the query ball B is contained within U?.

During preprocessing, we first construct a BD tree based on the following lemma, which states
that it is possible to construct a BD tree whose nodes enjoy certain separation properties with
respect to the points of S. (See Fig. 1.) Intuitively, part (i) says that, for a leaf cell, if there are
many points close to it, then they are sufficiently well clustered relative to their distance to the
cell. As we will see, (i) is useful in answering approximate range queries when a range is sufficiently
small. When a range is large, however, we need to use information associated with nodes higher
up in the tree. Part (ii) describes the separation properties that aid in this case. This innovation
is needed for range searching (versus nearest neighbor searching). The parameter v controls the
separation and is used to control the space/time tradeoff.

Lemma 1 (Separation Properties) Let S be a set of n points in R?, and let v > 16 and 0 < f < 1
be two real parameters. It is possible to construct a BD tree T with O(nfy?log~y) nodes satisfying
the following properties. Let u be a cell corresponding to a node of T.

(i) Suppose that u is a leaf cell. Then there exists a ball bl, such that |S N (vb, \ b)) = O(1/f)
and the ball ybl, does not overlap u.

(11) Suppose that u is a box cell obtained by a shrink operation. Let v denote the parent cell of u.
Then either:



(a) there exists a ball bl, such that |S N (yb, \ b)))| = O(1/f) and b, does not overlap v, or
(b) 1SN (vby \ 8by)| = O(1/f).

Moreover, in time O(ny?log(ny)log~), we can construct T with the following information stored
at the nodes. For each leaf cell u, we store the ball b, and S N (b, \ bl,). For each box cell u, if
it satisfies (ii.a) we store S N (b, \ 8by) and |S N 8by|, and if it satisfies (ii.b) we store the ball bl,
and SN (yby \ b),).

() (ii.a) (ii.b)
Fig. 1: The separation properties for cells of the BD tree.

Note that the cases in the lemma are neither mutually exclusive nor do they apply to all nodes
(internal nodes obtained by splitting, in particular). When both conditions apply to a node, both
pieces of auxiliary information are stored. In the lemma, the points of size O(1/f) are called
pollutants, since they do not satisfy the separation properties. They result as the leftovers of a
sampling process and are needed to achieve our strongest bounds. Since they are handled by
simple brute force in our query processing, the reader may find it easier to simply ignore them on
first reading.

Before proving Lemma 1, we first prove the following lemma. It can be viewed as a “pollutant-
free” version of the Lemma 1 with slightly stronger separation values. Part (i) of the lemma is
similar to Lemma 4.5 in [1], while part (ii), which deals with separation properties involving the
internal nodes, is new.

Lemma 2 Let S be a set of n points in R? and let v > 16. It is possible to construct a BD tree T

with O(ny*log~y) nodes satisfying the following properties. Let u be a cell corresponding to a node
of T.

(i) Suppose that u is a leaf cell. Then either:

(a) |SNul=1 and SN (vb, \ u) =0, or
(b) there exists a ball b, such that SN (yb, \ b)) =0, and the ball 8yb,, does not overlap w.

(ii) Suppose that u is a box cell obtained by a shrink operation. Let v denote the parent cell of u.
Then either:

(a) |SNwv| =1 and SN (yb, \v) =0, or
(b) there exists a ball b, such that SN (vb, \ b)) = 0, and the ball b, does not overlap v, or
(¢) SN (yby\ 4by) = 0.



Moreover, in time O(ny?log(ny)log~), we can construct T with the following additional informa-
tion stored at the nodes. For each leaf cell u, if it satisfies (i.a) we store the point S Nw, and if it
satisfies (i.b) we store the ball bl,. For each box cell u satisfying (ii.b), we store the ball b),.

Proof: In order to construct T, we first compute a well-separated pair decomposition for S using
separation factor 8. Let D be the resulting set of dumbbells. For each dumbbell P € D, we
compute a set of quadtree boxes Cp as follows. Let x and y denote the centers of the two heads
of P, ¢ = ||zyl||, z denote the center of segment Ty, and Bp denote the set of balls of radius 2/
for 0 < i < [logy + 5], centered at z. For a ball b € Bp, let C, be the set of quadtree boxes
overlapping b that have size r,/(8vd), where 73, denotes the radius of b. Note that |Cy| = O(y4).
Let Cp = Upep,pCh and C = UpepCp. Clearly [Cp| = O(y¢logy) and |C| = O(ny?log~). Finally,
we store all the boxes in C in a BD tree T. By BD property (ii), the number of nodes in T is
O(|C|) = O(ny?log~), and it can be constructed in time O(|C|log|C|) = O(ny?log(ny)log~y). We
will show below that T satisfies properties (i) and (ii) in the statement of the lemma.

In addition to T', we also construct the BBD tree Tj, for S. This takes O(nlogn) time. Let
1-NN denote the approximate nearest neighbor for ¢ = 1. With the help of T, we compute the
1-NN for the center of each leaf cell in 7. By BBD property (iv), each 1-NN computation takes
O(logn) time, so the total time for this step is O((y?logy)nlogn).

We begin with a proof of assertion (i). Let x be a 1-NN of the center of the leaf cell u. We
distinguish three cases.

Case 1: (v ¢ 2vb,) Since z is a 1-NN, it follows that there is no point of S in vb, and so (i.b)
trivially holds (we choose b/, to be the empty ball).

Case 2: (z € u) We claim that (i.a) must hold; that is, besides z, there can be no other point of
S in ~b,. For the sake of contradiction, suppose that there is a point y € S N ~b,, y # .
Consider the dumbbell P € D separating points x and y. Intuitively, our strategy is based
on showing that P should have forced u to split. Let 2’ and 3’ denote the centers of the
two heads of P, £ = ||2'y/||, and z denote the center of segment 2/y/. Using the definition
of well-separatedness and the triangle inequality, we obtain ||zz| < 5¢/8 and ¢ < 4|xy||/3.
Recall that b(z,f) € Bp. Since b(z,{) overlaps z, there must be a quadtree box @ € Cy. )
of size sy < ¢/(8vd) that contains z. Since ¢ < 4[|zyl||/3 and ||zy| < vsud (because both x
and y are contained in b, ), we get s; < s,,/6. Thus u should have been split further, which
contradicts our assumption that u is a leaf.

Case 3: (z € 2vb, \ u) Define b, to be the ball centered at 2 such that 16!, just touches u. Let
p € u be the point where 16vb), touches u. For this choice of b),, we will show that (i.b) holds.
Obviously 8vb!, does not overlap u, so we only need to show that S N~b, C b.,. For the sake
of contradiction, suppose there is a point y € SN (vb, \ ¥},). Consider the dumbbell P € D
separating points  and y. As in Case 2, we will derive a contradiction by showing that P
should have forced u to split.

To this end, let 2’ and y’ denote the centers of the two heads of P, £ = ||z'y/||, z denote
the center of segment 2’y/, and 2’ denote the center of segment Z7. Using the definition of
well-separatedness and the triangle inequality, we get 4||zy||/5 < € < 4|xy||/3,||zz| < 5¢/8,
and ||z2'|| < ¢/8.



We claim that the largest ball in Bp must overlap p. By our choice of ¥, ||zp|| = 16yr, where
r denotes the radius of b),. Since y € b/, ||zy|| > r. Thus [|zp|| < 16v||zy|| < 2094, where we
have used the inequality 4||zy||/5 < ¢ given above. By the triangle inequality, we get

lzpll < |zl + llzpll < 5€/8 + 20+¢.

Recalling that the largest ball in Bp has radius at least 32/, it follows that this ball must
overlap p.

Let b the smallest ball in Bp that overlaps p. We now consider two subcases and show that
both lead to a contradiction. If b = b(z,¢) (recall this is the smallest ball in Bp), then there
must be a quadtree box @ € Cp of size sy < £/(8yd) that contains p. Since ¢ < 4|zy||/3 and

|lxy|| < 2vs,d (because both = and y are contained in 27b,,), we get s; < s,,/3. Thus u should
have been split further, a contradiction.

Otherwise if b # b(z,¢), then it is clear that b has radius r;, satisfying r, < 2||2p| (because
the radii of the balls in Bp differ by a factor of 2). Since z and y are both contained
in 2vb,, by convexity, the midpoint 2z’ of segment Ty also lies in 2vb,. By the triangle
inequality, ||zp|| < ||z2/|| + ||2’p||- Since ||22’|| < £/8,¢ < 4||xy||/3, and ||zy|| < 2vsud, we get
22|l < vsud/3. Thus, ||zp| < vsud/3 + 2ysud < Tys,d/3. By our construction, there must
be a quadtree box @ € Cp, that overlaps p having size s; < 1,/(8vd) < 2|/2p||/(8vd) < 7s,/12.
Thus u should have been split further, a contradiction. This completes the proof of (i).

Now let us prove assertion (ii). Since u is obtained from v by a shrink operation, clearly w = v\u
is a doughnut leaf cell. Hence we can apply part (i) of this lemma to w. First, suppose that w
satisfies (i.a); that is, [SNw| = 1 and SN (yb, \w) = O (here we have replaced by, by b, as b, = by).
It follows that |SNwv| =1 and SN (yb, \ v) =0, and so (ii.a) holds.

Next suppose that w satisfies (i.b); that is, there exists a ball b/, such that S N ~b, C b, and
the ball 8b/, does not overlap w. It follows that there must be a point p on the boundary of u
such that p & 8yb/,. Let x denote the center of b, and let r be its radius. Then |xp|| > 8yr.

We distinguish two cases, depending on whether x € (7/2)b, or not. If x € (7/2)b, then we
claim that b/, C 4b,, (and so (ii.c) holds). To prove this claim, let o denote the center of u. By the
triangle inequality, ||zp|| < ||zo|| + |lop|| < Tsud/4+ sud/2 = 9s,d/4. Since ||zp|| > 8yr and v > 16,
it follows that r < ||zp||/128 < 9s,d/512. Thus, the distance of a point in ), from o is at most
|lxol| + r < 7syd/4 4+ 9s,d/512 < 2s,d. Hence b, C 4b,, as desired.

Otherwise, if x & (7/2)b,, then we set b), = b/, and claim that (ii.b) holds for this choice of b.,.
In other words, we need to show that vb), does not overlap v. Recall that 8yb! does not overlap
w, so it suffices to show that vb) does not overlap u. Let p’ be any point in u. By the triangle
inequality, |zp|| > ||xo| — |lop|] > Tsud/4 — sud/2 = 5s,d/4. Also, ||pp'|| < sud. Again, by the
triangle inequality, [zp|| > |lzp| — |lpp'll. Thus [|zp'||/[lzpll = 1 — [lpp'[l/||lzp||. Using the above
inequalities on ||zp|| and ||pp’||, we obtain ||zp'||/||zp|| > 1/5. Recalling that the radius r of b/, is at
most ||zp||/(87), it is clear that vb) does not contain p’. This completes the proof of (ii). O

With the use of Lemma 2 we can now provide the proof of Lemma 1. The lemma follows easily
proved by combining Lemma 2 with a sampling procedure based on the BBD tree as described in [2].
This technique yields a BD tree with much fewer cells enjoying only slightly weaker separation
properties. The proof is similar to Lemma 4 in [2]. We briefly sketch it here focusing on the
construction time.



Proof: (Of Lemma 1) First we construct the BBD tree T} for the set S of n points. This takes
O(nlogn) time. Let A be the set of nodes of T}, that contain at least one and at most 1/ f pollutant
points (of S), but whose parents contain more than 1/f pollutants. By BBD property (v), |N] is
O(nf). Let T} be the truncated BBD tree whose leaves are the nodes in A/. Let X be the cells
corresponding to the nodes in N. Let S’ C S be the set of points obtained by sampling one point
arbitrarily from each cell in X. We construct the BD tree T" described in Lemma 2 for S’ but using
the value 27 in place of v in the lemma. We also store the information with the nodes as described
in the lemma. Since |S’| = O(nf), the number of nodes in T is O(nfy?logy) and the time to
construct it is O(nfy?1log(ny)log~).

We claim that the nodes of T" satisfy properties (i) and (ii). Suppose first u is a leaf cell satisfying
Lemma 2(i.b). That is, there exists a ball b/ such that S’ N 2vb, C bl) and the ball 16vd!, does
not overlap u. Define b, = 2b!/. Tt follows that 8yb!, does not overlap u. By using standard BBD
tree searching techniques on 7}, we can find the set X’ C X of cells that overlap b, \ b;, in time
O(]X'|logn) time [5]. Recall that S’ includes one point of S from each cell in X’ and there is no
point of S in the region 2vb,, \ t},/2. It follows that each cell in X’ overlaps the boundaries of both
27b,, and ~b, or overlaps the boundaries of both o/, and ¥, /2. By BBD property (iii), |X’| = O(1)
and so the time to find X’ is O(log n). By scanning the points of S in each cell in X”, we can identify
those points that are contained in vb,, \ b},. Since each cell in X’ has at most O(1/f) pollutants, it
follows that the number of such points is O(1/f). Thus u satisfies (i). Similarly, we can establish
(i) for leaves satisfying Lemma 2(i.a).

Our discussion shows that in O(logn+1/f) time we can compute SN (b, \ b),) and b), for each
leaf cell u. Summed over all leaf cells, the time for this computation is therefore O(ny%lognlog~).
We can prove (ii) in essentially the same way and show that the processing time for a box cell is
the same as for a leaf cell. (We omit the straightforward details.) Finally, combining the time for
computing 1" and T}, with the time for computing the required information for the nodes of T', we
obtain a total construction time as stated in the lemma. This completes the proof. O

It will be convenient to view the BD tree described in Lemma 1 as a collection of three types
of cells as described below. (This is not a pure classification, since cells may be of more than one
type.) Cells of type-2 and type-3 satisfy certain separation properties with respect to the points of
S, while cells of type-1 generally do not. Letting u denote the cell under consideration, u has the
following properties depending on its type.

Type-1: u enjoys no separation property in general.

Type-2: There exists a ball b, such that |[S N (vb, \ b,)] = O(1/f), and the ball vb), does not
overlap u.

Type-3: u is a quadtree box. There is an associated quadtree box v such that u C v and |[S N

(’va \ 8bu)| = O(l/f)

Our query processing will be presented with a pair (¢, R) where ¢ is the center and R is the
radius of the query ball B.

Lemma 3 Let S be a set of n points in RY. Let v > 16 and 0 < f < 1 be two real parameters. In
O(ny*log(nvy)log~y) time, it is possible to construct a data structure with O(nfy?) cells of type-1,
type-2, and type-3, respectively, such that the following holds. For any query (q, R), where q is a
point in U and 0 < R < V/d is a real number, in O(log(n7)) time, we can find a cell u such that
q € u and u satisfies one of the following properties.

10



(i) w is of type-1 and yry, /4 < R < yry /2.
(11) u is of type-2 and R < yry /4.
(1i1) w is of type-3 and yr,/4 < R < vr,/4, where v denotes the quadtree box associated with w.
(see properties of type-3 cells given above.)

Proof: Let T be the BD tree described in Lemma 1. Let x be the leaf cell that contains ¢q. If
R < 4ry;/4, then we set u to x. Observe that property (ii) holds in this case. Otherwise, let v be
the first node on the path from leaf = to the root, such that R < ~r,/4, and let w be v’s child on
this path. Note that both v and w are box cells, and yry, /4 < R < yr,/4. There are two cases to
consider. If w is obtained from v by splitting, then r, = 2r,, and so we have yr,,/4 < R < yry, /2.
In this case, property (i) holds with u set to w. Otherwise, w is obtained from v by shrinking.
In this case, if property (ii.a) of Lemma 1 holds, then clearly property (ii) holds with u set to v.
Finally, if property (ii.b) of Lemma 1 holds, then property (iii) holds with u set to w.

To complete the proof, we show that it possible to determine the cell u efficiently. We could do
this by transforming the (unbalanced) BD tree into a (balanced) BBD tree and applying an appro-
priate search procedure there. Justifying this, however, this would involve a deeper understanding
of the internal structure of the BBD tree [7] than we care to get into at this point. Instead, we will
show how this can be done using an alternate balanced tree structure.

Let us focus on the fundamental operations that are required. Given the BD tree and a query
(¢, R), there is a unique path from the root of the tree to the leaf whose cell contains gq. The sizes
of the cells associated with the nodes of the tree decrease monotonically as we descend the tree.
Our objective is to compute the first node v along this path such that R < vr,/4, or failing this,
to return the last node of the path. To do this, we convert the BD tree T" into a balanced tree
structure, such as a link-cut tree [20] or topology tree [12]. Either data structure can be modified to
support such searches in O(logm) time, where m is the number of nodes in the tree. The resulting
tree structure has the same space requirements as the BD tree and the resulting search time will
be O(log(n)), as desired. O

Henceforth, we refer to this data structure described in the preceding proof as the augmented
BD tree. It will be convenient to rephrase properties (i) to (iii) slightly in terms of the query ball
itself.

Lemma 4 Assume the same conditions as in Lemma 3. For any query ball B = b(q, R) C U?, in
O(log(nv)) time, we can find a cell u such that g € u and u satisfies one of the following properties.

(1) w is of type-1 and (v/8)b, C B C ~b,.
(17) u is of type-2 and B C ~by,.
(731) w is of type-3 and (v/8)by, C B C vb,, where v denotes the quadiree box associated with w.
(see properties of type-3 cells given above.)

Proof: Since b(q, R) C U?, it follows that ¢ € U¢ and 0 < R < v/d. By Lemma 3, for the query
(¢, R), in O(log(nvy)) time, we can find a cell v such that ¢ € u and wu satisfies one of the three
properties listed therein.

Suppose that property (i) of Lemma 3 holds. That is, u is of type 1 and vr,/4 < R < yry,/2.
By the triangle inequality, the distance of any point in the range B from the center of w is at
most R + ry < (yry/2) + ry. Since v > 16, this is at most vr,. Thus B C ~b,. Again, by the
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triangle inequality, the distance of any point on the boundary of B from the center of u is at least
R —ry > ~ry/4 — ry. Since v > 16, this is at least yr, /8. Thus (v/8)b, C B. Thus, property (i)
of Lemma 3 implies that (v/8)b, C B C vb,. Similarly, we can establish properties (ii) and (iii) as
well. O

4 Approximate Range Counting

In this section we describe how to apply the results of the previous section to construct a data
structure for answering approximate range counting queries, and how queries are answered. First,
we set f = (¢7)9"! and construct the augmented BD tree T described in Lemma 3. (If v < 64, we
set v to 64 before using the lemma.) This takes time O(ny?log(ny)log~y). Let b(g, R) € U? denote
the query ball. Applying Lemma 4, it follows that, in O(log(n7y)) time, we can find a cell u such
that ¢ € u and u satisfies one of the three properties listed therein.

In the next three subsections, we consider each of the three types of cells in turn (first type-
2, then type-3, and finally type-1). In each case we describe the information stored with each
type of cell and explain how this information helps to answer queries efficiently. To speed up the
preprocessing, we assume that we have also constructed the BBD tree T} for the set S of points.

4.1 Type-2 cells

By property (ii) of Lemma 4, each type-2 cell is responsible for handling queries centered in u that
lie entirely within its y-expansion. We handle the points in the cluster ball o/, by subdividing
them into a grid of small disjoint generator subsets, and we handle the relatively small number of
pollutants by brute force. During the preprocessing phase, for each type-2 cell u, we compute a set
Q(u) of weighted quadtree boxes as follows. Let b, be the ball described in Lemma 1(i). If b/, is
the empty ball or does not overlap b, then we set Q(u) = (). Otherwise, we expand the ball ¥/,
such that vb), just touches u. Henceforth, we will use b/, to refer to this expanded ball and 7], to
denote its radius. (See Fig. 2.) We then find the set Q(u) of nonempty quadtree boxes of diameter
2¢(y — 1)r!,/3 that overlap b.,. By a straightforward packing argument, |Q(u)| = O(1/(7)%). For
each box z € Q(u), we assign it a weight equal to |S N z|. By BBD property (ii), we can compute
Q(u) and assign weights to the boxes in it in time O(log n+t,,), where t,, is the number of nonempty
quadtree boxes of diameter 2e(y — 1)r/,/3 that overlap the ball 2b/,.

vo,
vf s
S astyayys
ow| Hral

Fig. 2: Processing of type-2 cells.

Next, we scan the list of O(1/f) = O(1/(sy)*!) pollutants in S N (yb, \ ¥,) and eliminate
those points that are contained in a box in Q(u); let P(u) denote the set of points that remain.
Assuming the floor function, P(u) can be easily computed in time O(1/(ey)4™1).
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By storing P(u) and Q(u) with each type-2 cell u, we can answer queries as follows. Recall
that u is responsible for answering the query for a ball B centered in u such that B C ~b,. To
answer this query, we do a linear scan of the boxes in Q(u) and compute the total weight of the
boxes that overlap B. To this we add the number of points of P(u) that lie inside B and return
it as the answer. The correctness of this approach is obvious from Lemma 1(i) and the fact that if
B overlaps a box z in Q(u) then the diameter of z is at most € times the radius of B. The query
time is O(|Q(u)| + [P(u)]) = O(1/(e7)?).

By using a slightly more sophisticated method, we can reduce the query time by a factor
of O(1/(e7)). The idea is to organize the quadtree boxes in Q(u) into a BD tree during the
preprocessing phase. By BD property (ii), this can be done in time O(|Q(u)|log|Q(u)|). With
the help of this BD tree, using standard techniques [5], we can find the total weight of the boxes
z € Q(u) that overlap the query range B in time proportional to the number of boxes of Q(u)
that overlap OB. A straightforward packing argument [5] shows that this quantity is O(1/(sy)4"1).
Since the time to scan P(u) is also O(1/(ey)4!), this quantity bounds the overall query time.

We now estimate the space requirements for all the leaves. By the bounds on |P(u)| and
|Q(u)| given above, the space used for a leaf u is O(1/(s7)?). Recall that the number of leaves
is O(nfytlogy), where f = (e7)%!'. Thus, the total space used by all the leaves together is
O((ny?1'log~)/e). However, this simple bound is based on the assumption that, for every type-2
cell, |Q(u)| achieves its worst case space bound. Lemma 5 shows that this cannot happen and
improves this bound by a factor of nearly O(1/(e7)) using a charging argument (similar to that
used in [2]). Let By denote the set of type-2 cells of T'.

Lemma 5 Let T be the BD tree described in Lemma 4 for any value of f, 0 < f < 1. For any cell
u € Br, let Q(u) be as defined above. Then Y, 5 |Q(u)| = O(ny?log(1/¢)).

Proof: Recall that By includes all the leaf cells of T'. In addition, if w is a box cell obtained by
a shrink operation that satisfies property (ii.b) of Lemma 1, then its parent cell v belongs to Bp.
We will establish this lemma only for the set of leaf cells; the proof for the other case is similar.

Let D be the set of dumbbells corresponding to the well-separated pair decomposition of S,
using separation factor 8. Each dumbbell P € D allocates a unit charge to the leaf cells in T
satisfying certain conditions. Let a and b denote the centers of two heads of P, ¢ = ||abl|, and o
denote the center of the segment ab. Let Bp denote the set of balls, centered at o, having radius 2°¢,
where log(c1y) <@ <log(ca/e) for suitable constants ¢; and c2. For a ball b € Bp, let Cy be the set
of leaf cells in T" overlapping b that have size at least c3r/7y, where r;, denotes the radius of b and
c3 is a suitable constant. The dumbbell P allocates a unit charge to each leaf cell in Cp = Upep,Cp-
By BD property (iii), |C;| = O(y?). Since the number of balls in Bp is O(log(1/(g7))), it follows
that P allocates a unit charge to O(y?log(1/(e7))) leaf cells. Thus, the total charge allocated by
all the dumbbells together is O(ny?log(1/(e7))).

Next we show that each leaf cell u receives a charge from at least Q(|Q(u)| — 1) dumbbells.
Recall that 77, is the radius of the ball b/, such that the ball vb!, just touches u. We now show that
there exists a subset Q'(u) C Q(u) such that |Q'(u)] = Q(|Q(u)|) and the distance between any
pair of boxes in Q'(u) is at least Q(e7yr],). We can find Q' (u) as follows. Initially, we set Q' (u) = 0.
We then consider the boxes in Q(u) one by one. Two boxes in Q(u) are said to be neighbors if they
share a (d — 1)-facet. At each step, we add a box in Q(u) to Q'(u) and then eliminate it and all
its neighbors in Q(u) from further consideration. We continue in this manner until all the boxes in
Q(u) have been pruned. Clearly this process finds a set Q'(u) with the desired properties.
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Let X' (u) be the set of points obtained by picking one point of S from each box in Q'(u). The
distance between any two points in X' (u) is Q(eyr),) and at most O(r,). It is easy to show that
there exist |X(u)| — 1 distinct dumbbells in D that separate pairs of points in X(u) (we omit the
straightforward details). Noting that s, = Q(r,), one can now verify that each of these dumbbells
allocates a charge to cell u, for a suitable choice of the constants ¢, co and ¢3. Thus we have shown
that each leaf cell u receives a charge of Q(|Q(u)| —1).

Let L7 denote the set of leaf cells of T. Since the total charge allocated by all the dumb-
bells together is O(ny?log(1/(e))) and the number of leaf cells is O(nfy%log~y), it follows that

D uery Q)] = O(ny%log(1/(e7)) + nfy?logvy) = O(ny?log(1/e). This completes the proof. O

Using this lemma and the bound on |P(u)| given above, it follows that the space used by all
the type-2 cells is O(ny%log(1/¢)).

We now estimate the preprocessing time for all the type-2 cells. Recall that for each type-2 cell
u, P(u) can be computed in time O(1/(y)?"!) and Q(u) can be computed in time O(t, + logn).
Here ¢, is the number of nonempty quadtree boxes of diameter 2¢(y — 1)r/,/3 that overlap the ball
2b!,. Applying a similar charging argument as used above to bound > uesy |Q(u)], it follows that
> ey tu = O(ny?log(1/¢)). Thus, in time O((fy%logy)nlogn + (y%log(1/¢))n), we can compute
P(u) and Q(u) for all type-2 cells u. Also, recall that it takes O(]Q(u)|log|Q(u)|) time to organize
the boxes in Q(u) into a BD tree. Since |Q(u)| = O((1/e7)%) and > uesy Q)| = O(ny?log(1/¢)),

it follows that
> 19(u)|log|Q(u)| = O(ny*log?(1/e)).

uEBP

Thus, the total preprocessing time for all the type-2 cells is O((fy*logy)nlogn + (v¢log?(1/e))n)
= O(ny?log(n/e)log(1/e)).

4.2 Type-3 cells

By property (iii) of Lemma 4, each type-3 cell u is responsible for handling query ranges B that
are centered in u and satisfy (v/8)b, € B C b, where v is u’s parent cell. Since v > 64, it follows
that B D 8b,. Thus the exact answer to such a query can be computed as the sum of |S N 8b,|
and the number of points of S N (yb, \ 8b,) that lie within B. Both |S N 8b,| and S N (yb, \ 8by)
are precomputed and stored with u, so the query can be answered in time O(1/(e7)¢~!). The total
space and preprocessing time for all the type-3 cells is the same as for all the type-2 cells.

4.3 Type-1 cells

By property (i) of Lemma 4, each type-1 cell u is responsible for handling query ranges B that are
centered in u such that v'b, C B C +"b,, where v/ = v/8 and v = . Such a cell does not generally
enjoy any separation properties with respect to the point set S. Our approach is to compute a cover
of the annulus 7"b, \ 7'b, by a set of disjoint regions such that the subset of points lying within
these regions can be used as generators for the query. We describe two approaches for constructing
these regions. The first is a simple method based on a grid decomposition of the annulus. The
second achieves better query performance and can be thought of as a radial version of a quadtree
decomposition taking place in the space of polar coordinates. We provide both because the space
analysis of the second method depends on the space analysis of the first.
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During the preprocessing phase, we compute an annulus cover Q(u) by boxes of size €v's, /4
for the annulus 7", \ 7'b,. For each box z € Q(u), we assign it a weight equal to |[S N z|. (See
Fig. 3(a).) By BBD property (ii) this can be done in time O(logn + t,), where ¢, is the number
of nonempty quadtree boxes of size £v's, /4 overlapping the larger annulus 2v”b,, \ (7//2)by. In the
same time, using standard techniques [5], we compute the number of points in S N +'b, that are
not contained in any box of Q(u), and store this information with w.

y’bu\\\.: oy

£Y/16 \

gy's, /4 ey's,d/16

@ (b)

Fig. 3: Processing of type-1 cells: (a) the annulus cover Q(u) and (b) the nonempty radial fragments
F'(u).

By a straightforward packing argument, |Q(u)| = O(1/&%). Let Ar denote the set of type-1 cells.
Since | Ar| = O(nfy%log~), where f = (e7)%1, it follows that Y uear Q)] = O((ny?*1log~)/e).
This bound can be significantly improved by using a charging argument similar to that used earlier
for type-2 cells. Applying this argument yields >_ . 1. [Q(u)| = O(ny*log(1/¢)). (We omit the
details.) Similarly, we obtain . 4. tu = O(ny?log(1/¢)). Thus, the time to compute Q(u) for
all the cells u € A7 is O((fy?logy)nlogn + (v?log(1/e))n).

It is possible to answer a query by computing the total weight of the boxes in Q(u) that overlap
the range B. However, since |Q(u)| can be as large as Q(1/&%), this would lead to a high query time.
We now discuss how this can be reduced to O(1/(e7)¢~!) by using a more efficient decomposition
of the annulus based on a radial decomposition of space.

First we need to introduce some notation. Let o denote the center of the quadtree box u. Let
H denote the axis-parallel hypercube of size 7's,d centered at o. Consider a regular grid of side
length e(v')%s,/(167) on each of the 2d faces of dimension (d — 1) of H. Let C be the set of cones
that have their apex at o and whose base is a cell in the grid placed on the faces of 0H. Extend
each cone through this base to infinity. It is easy to see that the angular diameter of each cone in C
is at most ey'/16 and |C| = O(1/(e7)4"1). Let B be a set of O(1/¢) spheres between +'b, and +"b,,,
such that the radii of any two successive spheres differs by at most ¢9's,d/16. The boundaries of
both 4'b,, and ~"b, are included in B. (See Fig. 3(b).) We refer to a cell in the arrangement of
C U B as a fragment. Note that v"b, \ 7'b, is partitioned into O(1/(ey)4~!(1/e)) fragments; let
F(u) denote this set of fragments.

During the preprocessing phase, for each quadtree box z € Q(u), we determine a fragment in
F(u) that it overlaps (assuming the floor function, this takes constant time), and add the weight
of z to the weight of the fragment. Initially we assume that the weight of all the fragments is zero.
(The reason for assigning weights from quadtree boxes of the annulus cover, rather than from the
point set S directly, is that quadtree boxes share a common coordinate system, which allows us to
construct and analyze them globally for all nodes. In contrast, the radial fragments are based on
coordinate systems that are local to each node.) At the end of this process, the weight of a fragment
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is the sum of the weights of all the quadtree boxes in Q(u) that transfer their weight to it. Let
F'(u) denote the set of fragments that finally have a non-zero weight. (See Fig. 3(b).) Since F'(u)
typically has fewer fragments than F(u), we use hashing [13,19] to compute only the fragments of
F'(u) along with their associated weights. This can be done in time O(]Q(u)|). The total space
used to store F'(u) over all type-1 cells is >°, 4. [F'(v)] <32, c 4, 1Qu)| = O(ny?log(1/¢)).

We answer a query by scanning the fragments of F'(u) and determining the total weight of
the fragments that overlap the range B. To this we add the precomputed number of the points of
S N ~'b, that are not included in any box of Q(u). The correctness of this method follows from
Lemma 7. Intuitively, the lemma shows that the algorithm makes errors only with respect to points
of S that lie close to the boundary of B. An important ingredient in its proof is Lemma 6, which
implies that all points in a fragment are at nearly the same distance from any point in cell u. Define
the absolute ratio between two positive numbers x and y to be the maximum of z/y and y/x.

Lemma 6 Let 0 <e <1/2 and ¥ > 2. Let u be a hypercube of side length s centered at o. Let x;
and x9 be two points such that ||ox1|| > [|oxe|| > Fsd, ||ox1| — ||ox2| < e¥sd/8, and Lxioxe < 5/8.
Then for any point o' in u, the absolute ratio of ||0'z1|| and ||0'x2| is at most 1 + /3.

Proof: Let 2} be the point on the ray oz such that |ox)| = |ozz2||. Let § = Zo'oz| and
¢ = Zo'oxs. Applying the law of cosines to Ao’ox] and Ao'oxs, we obtain

lo'z[* = [lo'ol* + [loz}|* — 2[00 - [lo} || - cos, (1)

and
o/ za||* = [lo/o||* + llozz||* — 2[|00|| - [lomz| - cos ¢. (2)

Subtracting Eq. (2) from Eq. (1), we get

lo'z||* = llo'z2]|* = 2]|d/o]| - lows| - (cos ¢ — cos0)

= 2[|dol| - [loxz| - 2sin((6 + ¢)/2) sin((6 — ¢)/2).

Note that sin((6 + ¢)/2) < 1, sin((0 — ¢)/2) < |6 — ¢|/2 and, by the triangle inequality on
angles, |0 — ¢| < Zzioxe < e%/8. Thus

o'z 1* = llo'w2||* < llo'ol| - [lowal| - £5/4.

We can rewrite this as

lo"z4[1* ool llozafl €7
lo' 2|2 = ol (o] 4
[egdl 1 Sl
loza| = flooll 1 —[lo'ol|/loxa| 4~
where we have used the triangle inequality |o’zz|| > [Joxz|| — ||o’o]|. Since [[0'o|| < sd/2 and

o2 > 4sd > 2sd, we get [[o'o||/([lox2| — [[o'ol]) < 1/(2% — 1) and 1/(1 — [[d'o||/[loz2]]) < 4/3.
Thus

lofall? | 4 1 ey _ 2
3 4

< —
[/ 2| 2y -1 -9

which simplifies to
lo'z[1/llo'2ll < 1+¢€/9. (3)
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By a symmetric argument, it follows that

lo'z2|/llo'2 || < 1+¢€/9. (4)
Also, by the triangle inequality,
Izl fo'zyll + fleaanll ) Nl
lo'a ||~ lo' 4 B loz || = [lo'ol|

Since ||oz! || > Asd, ||o'o|| < sd/2 and, by the statement of the lemma, ||z12]|| < e%sd/8, we get

[zl c4/8 -
< < 1 —. 5
ozl ST e <1 (5)

Similarly, we can show that
lo'z ||/ o"z1]| < 1+¢/6. (6)

Combining Egs. (3) and (5), we get
lo"z1l[/[lo"z2]] < (1+e/9)(1+¢/6) < 1+¢/3,

since £ < 1/2. Similarly, combining Eqs. (4) and 6, we get ||o'z2a]|/||0'z1]] < 1+4¢/3. This completes
the proof. a

Lemma 7 Let v > 64. Let v be a type-1 cell. Let B be a query ball centered at a point in u such
that v'b, € B C ~"b,,, where v' =~/8 and v = ~. Let r denote the radius of B. Let p be a point
in S whose distance from OB is at least re, and let z € Q(u) be the quadtree box that contains p.

(i) If p € B, then any fragment in F'(u) that overlaps z must also overlap B.
(i) If p ¢ B, then no fragment in F'(u) overlaps both z and B.

Proof: Let o denote the center of cell u and let o’ € u denote the center of ball B. To prove (i),
observe that the diameter of each box in Q(u) is at most ev's,d/4 < re/2, since r > ~'s,d/2. By
the triangle inequality, the distance of any point in z from o' is at most (1 —¢) +re/2 < r. It
follows that z C B, which implies (i).

To prove (ii), let t € F'(u) be any fragment that overlaps B. Let x2 be any point in tN B and x1
be the point in ¢ that is farthest from o. The definition of fragments implies that Zzi0xe < ev'/16,
lox1|| > |loxa|| > +'sud/2 and |jox1| — |loxa| < €¥'sud/16. Applying Lemma 6, it follows that
lo'z1||/||o'z2]] < 14 €/3. Since the diameter of box z is at most re/2, it follows that the distance
of any point in z from o' is at least 7(1 +¢&) —re/2 > r(1 + £/3). Thus ¢ cannot overlap z. This
completes the proof. O

The query time of this method is O((1/e7)?1(1/¢)), since it is proportional to the number of
fragments in F'(u). While this is already a significant improvement over the query time obtained
by searching all the boxes in Q(u), we can speed it up still further through the use of BD trees. The
idea is to organize the fragments of F'(u) into 2d BD trees, one for each of the faces of H. Since
the fragments of F(u) are pieces of a d-dimensional annuli, they are certainly not quadtree boxes.
Nonetheless, by applying an appropriate transformation to polar coordinates, it is possible to map
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the fragments to a d-dimensional grid of hypercubes, from which we can then apply any standard
algorithm for constructing a BD tree from a set of quadtree boxes [5]. To see how a point in this
“fragment space” can be described as d polar coordinates, the first d — 1 polar coordinates arise by
shooting a ray from o through this point until it hits a (d — 1)-dimensional face of the hypercube
H, and then representing the resulting point using a local coordinate system for this face. Based
on these coordinates alone, the fragments form a (d — 1)-dimensional grid of hypercubes of side
length h = €(v')?s,/(167). The last coordinate of the polar representation arises from the distance
of the point from the center of H. Along this axis, each fragment has a length of r = ev's,d/16.
By scaling this last coordinate by the amount h/r, in polar space the fragments are now mapped
to a grid of d-dimensional hypercubes, as desired.

Now, by applying standard techniques to the resulting BD tree [5], we can determine the total
weight of the fragments of F’(u) that overlap B in time proportional to the number of fragments
that intersect OB (transformed into polar space). Applying Lemma 6, it is not hard to show that
OB intersects O(1) fragments in each cone of C, which implies that the query time is O(1/(ey)41).

It takes O(|F'(u)|log |F'(u)|) time to construct the BD trees for the fragments in F'(u). Noting
that 3,4, |17 (u)| = O(ny?log(1/¢)) and |F'(u)| = O((1/e7)4=1(1/¢)), it follows that

Y 1F ()log|F'(u)] = O(mylog(1/e)).

uEAT

Thus, the preprocessing time for all the type-1 cells is O((fy%logvy)nlogn + (y¢log?(1/e))n) =
O(n*log(n/z) log(1/2)).
Putting it all together, we have shown the following theorem.

Theorem 1 Let S be a set of n points in R, and let 0 < &€ < 1/2 and 2 < v < 1/ be two real
parameters. Then we can construct a data structure of O(ny%log(1/e)) space that allows us to
answer e-approvimate range queries in time O(log(ny) + 1/(e7)®1). The time to construct the
data structure is O(ny%log(n/e)log(1/¢)).

5 Concluding Remarks

We have presented an algorithm and data structure that provides space-time tradeoffs for approxi-
mate spherical range counting queries in fixed dimensions. At one extreme (low space), our results
yield a data structure of space O(nlog(1/e)) that can answer approximate range queries in time
O(logn + (1/£)4=1) which, up to a factor of O(log 1/¢) in space, matches the best known result [5].
At the other extreme (high space), it yields a data structure of space O((n/e%)log(1/¢)) that can
answer queries in time O(logn + log1/¢). This is the fastest known query time for this problem.

Although we have not shown it here, our results can be adapted to answering approximate kth
nearest neighbor queries, where 1 < k < n. In range searching the query ball’s radius is given.
In the kth nearest neighbor problem, the problem in essence is to determine the range radius of
the ball, centered at the query point, that contains k£ points. It is possible to generalize the search
algorithm used in range searching to determine this radius. This additional generality results in an
increase by a factor of O(1/(e7)) in the query time. The space bounds are the same.

The results of this paper apply to the general case of range queries in which the points have been
assigned weights that have been drawn from any faithful semigroup. (The case of range counting
is the simplest variant of this in which the semigroup is the natural numbers under addition.) A
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natural question is whether the computational complexity of approximate range searching is lower
for semigroups and range shapes that satisfy certain additional properties. A semigroup (S, +) is
idempotent if x+x = x for all x € S, and it is integral if for all k > 2, the k-fold sum x+- - -+x is not
equal to x. In [4] we show that the complexity of approximate range searching for Euclidean balls
is significantly lower for idempotent semigroups than for integral semigroups. In [3] we showed that
the benefits offered by idempotence do not apply if the range shape is allowed to have sharp corners.
We also show there that if ranges are not Euclidean balls, but are sufficiently smooth convex shapes,
then the assumption that the semigroup is idempotent can offer significant improvements in query

time.
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