
September 1996 IQO|Godfrey & Gryz p. 1 of 21Intensional Query OptimizationP. Godfrey1;2godfrey@arl.mil J. Gryz1jarek@cs.umd.edu1 Department of Computer Science at theUniversity of Maryland at College ParkCollege Park, Maryland, USAand2 U.S. Army Research LaboratoryAdelphi, Maryland, USAAbstractWe have introduced a new query optimization framework called intensional query optimiza-tion (IQO), which enables existing optimization techniques to be applied to queries that useviews. In particular, we consider that view de�nitions may employ unions. Advanced databasetechnologies and applications|such as federation and mediation over heterogeneous databasesources|lead to such complex view de�nitions, and to the need to handle complex, expensivequeries.Query rewriting techniques have been proposed which exploit semantic query caches, materi-alized views, and semantic knowledge about the database domain to optimize query evaluation.These can augment syntactic optimization to reduce evaluation costs further. Such techniquesinclude semantic query caching, query folding, and semantic query optimization. However, mostproposed rewrite techniques ignore views in queries; that is, the views are considered as othertables. The IQO framework enables rewrites to be applied to various expansions of the query,even when no such rewrite is applicable directly to the query itself. With IQO, we optimize thequery tree, not just the query.The IQO framework introduces the notion of a discounted query, which is a query with someof its expansions \separated out", so the query can be recast into pieces that can be optimized.For this approach to be e�ective, the sum of the costs of evaluating each piece must be lessthan the cost of evaluating the query itself. This includes the discounted query. We develop anevaluation plan for discounted queries that is generally more e�cient than the evaluation of thequeries themselves.1 IntroductionWe have introduced a new query optimization framework called intensional query optimization(IQO) [8], which enables existing optimization techniques to be applied to queries that use views.In particular, the framework allows for view de�nitions that employ unions. Advanced databasetechnologies and applications|federation and mediation over heterogeneous database sources, ob-ject oriented databases and query languages, and data warehousing for decision support|lead tosuch complex view de�nitions, and tend to incur complex, expensive queries.Query rewriting techniques have been proposed which exploit semantic query caches, materializedThis research was supported by grant NSF IRI-9300691.



September 1996 IQO|Godfrey & Gryz p. 2 of 21views, and semantic knowledge about the database domain to optimize query evaluation. Thesecan augment syntactic optimization to reduce evaluation costs further. Such techniques includesemantic query caching, query folding, and semantic query optimization. However, most proposedquery rewrite techniques ignore views in queries; that is, the views are considered as other tables.The IQO framework enables rewrites to be applied to various expansions of the query, even whenno such rewrite is applicable directly to the query itself. With IQO, we optimize the query tree,not just the query.The IQO framework introduces the notion of a discounted query, which is a query with some of itsexpansions \separated out". In this way, the query can be recast into pieces that can be optimized.For this approach to be e�ective, the sum of the costs of evaluating each piece must be less than thecost of evaluating the query itself. This includes the discounted query. In this paper, we developan evaluation plan for discounted queries that is generally more e�cient than the evaluation of thequeries themselves.Section 2 provides background on semantic optimization and query evaluation, and illustrates aproblem of compatibility between preferred query evaluation strategies and existing semantic opti-mization approaches. Section 3 provides an example. This motivates our general approach. Section4 presents a formal framework for discounted queries, Section 5 shows how the framework can beused for optimization, and Section 6 presents a technique through three progressive re�nements forevaluating discounted queries. Section 7 concludes with issues and future work.2 Background2.1 Optimization via SemanticsRewrite techniques which exploit semantic information about the database and query can improvethe e�ciency of query evaluation. These methods include semantic query caching (SQC) [2, 3,12], query folding (QF) [14, 18, 15], and semantic query optimization (SQO) [1, 16, 20]. These areprimarily suitable for distributed and federated databases, although they (in particular, SQO) canalso be applied in centralized databases.The bene�t of SQC lies in saving a part (or all) of query processing by using the cached results ofprevious queries. In a client-server environment, it is assumed that the client maintains a semanticdescription of the data in cache, instead of maintaining a list of physical pages or tuple identi�ers.Query processing can make use of the semantic description to determine what data are locallyavailable in cache and what data are needed from the server.QF refers to the activity of determining whether (and how) a query can be answered using a givenset of resources, for instance, materialized views. Rewriting a query using this technique does notlead, in general, to an equivalent query, but to a query which is contained in the original query [21].SQO uses semantic knowledge in the form of integrity constraints to reformulate a query into asemantically equivalent query that can be evaluated more e�ciently. The ultimate win in SQOis the discovery that a query is a misconception [7, 5, 10]; that is, it is subsumed by an integrityconstraint, hence cannot return any answers. In such cases, the query does not need be evaluatedat all.



September 1996 IQO|Godfrey & Gryz p. 3 of 212.2 Evaluation StrategiesDatabase queries containing views (also called intensional predicates) can be evaluated in twodi�erent ways, often referred to as top-down and bottom-up [21]. In the top-down approach, allextensional unfoldings1 of the query are generated, each is evaluated and the answer sets are unionedtogether to produce the �nal answer set.Bottom-up query evaluation does not require evaluating separately all extensional unfoldings of aquery. Rather, the intensional atoms (views) in the query are substituted with their de�nitions andevaluated as speci�ed by these de�nitions. The relational algebra representation of a query|inwhich all intensional predicates have been substituted with their de�nitions|implies through theorder of the operations an evaluation plan for the query. Union and join operations are intermixedin the query formula.2.3 ProblemPrevious techniques, which we shall call extensional,2 can only be applied to the conjunctive query.They do not operate over the query tree. If a top-down evaluation is used, all unfoldings of thequery are manifested. In this case, these extensional optimization techniques can be applied toeach unfolding (a conjunctive query as well), and thus be interleaved with the evaluation process.The problem is that the top-down query evaluation is considered impractical. It may introduceredundancies both in the join evaluations done and between retrieved answer sets for di�erentunfoldings.3 More importantly, it may require evaluating an exponential number (in the numberof views plus query) of unfoldings. For relational databases, the use of nested views can rendertop-down evaluation strategies intractable.Bottom-up evaluation strategies, however, tend to be more e�cient, precisely because the unfoldingsof the query are notmanifested. Unfortunately, this means that extensional optimization techniquesare not applicable when a bottom-up evaluation is used, except when a technique fortuitouslyapplies directly to the query itself.The intensional query optimization framework allows the exploitation of information such as mis-conceptions,4 cached queries, and materialized views, and can incorporate previous optimizationtechniques, enabling them to be used in conjunction with bottom-up optimization strategies. Thekey idea of the approach is to rewrite the query so that certain unfoldings of it are \removed". Suchan unfolding may be a null unfolding, or be easily derived from a materialized view or a previouslycached query. These unfoldings and the modi�ed query may then be evaluated in a more e�cientway than the original query itself.1Informally, an unfolding is a result of expanding all the views in the query in one possible way; that is, choosingone of the unioned de�nitions for each view. Thus an extensional unfolding does not contain any views or unions.2We call these extensional since they treat the query as if it were extensional. Any views in the query are consideredto be materialized beforehand.3The intersection of two answer sets may be substantial, representing redundant evaluation work.4Let us call any unfolding which evaluates to the empty answer set a null unfolding.



September 1996 IQO|Godfrey & Gryz p. 4 of 213 ExampleLet DB contain �ve base relations:Faculty (Name, Department, Rank)Sta� (Name, Department, Years of Employment)Ta (Name, Department)Life ins (Name, Insurer, Monthly premium)Health plan (Name, Insurer, Monthly premium)Let there be two views (de�ned here in Datalog) in the DB: the �rst one de�nes an employeerelation (via the union of the ta relation and projections from the faculty and sta� relations); thesecond de�nes a bene�ts relation (via the union of projections from the life ins and health planrelations).employee (X,Y) faculty (X,Y,Z). bene�ts (X,Z) life ins (X,Z,W).employee (X,Y) sta� (X,Y,Z). bene�ts (X,Z) health plan (X,Z,W).employee (X,Y) ta (X,Y).De�ne a query to ask for the names of all employees of the physical plant, p p, whose bene�ts areprovided by hmo: Q:  employee (X,p p), bene�ts (X,hmo).A relational algebra (RA) representation5 of this query is:Q: (�Xfaculty (X, p p, Y) [ �Xsta� (X, p p, Z) [ �X ta (X, p p))1(�X life ins (X, hmo, W) [ �Xhealth plan (X, hmo, V))Query Q can also be represented as a parse tree of its RA representation, which is an AND/ORtree, as shown in Figure 1. (X,p p, )employee(X,p p) bene�ts(X,hmo)faculty(X,p p, ) ta(X,p p) sta� health-plan(X,hmo, ) life-ins(X,hmo, )QFigure 1: The query tree representation of the original query.Evaluating the query as speci�ed|in the order of operations as speci�ed in its RA representation|is equivalent to materializing all nodes of the query tree (the AND/OR tree expansion of the query).This requires evaluating the leaves �rst, then executing the unions to materialize the intermediatenodes employee (X, p p) and bene�ts (X,hmo), and then joining them to materialize the root node,which represents the answer set of the query Q. This type of evaluation is what we call bottom-up.5We ignore for simplicity explicit representation of select operations.



September 1996 IQO|Godfrey & Gryz p. 5 of 21Now assume that the following two queries have been asked before and their results are storedin cache. (Equivalently, we can assume that these formulas represent materialized views or aresubsumed by integrity constraints, so are null unfoldings.)F :  ta (X, Y), life ins (X, hmo, ).G:  sta� (X, p p), health plan (X, Z, ).If F and G represent integrity constraints, then the joins:U1: ta (X, p p) 1 life ins (X, hmo, )and U2: sta� (X, p p) 1 health plan (X, hmo, )which are computed as part of the query cannot possibly return any answers. Thus they canbe eliminated from the query without changing the result. Otherwise, if F and G are cachedqueries or materialized views, it may still be advantageous to evaluate the expressions ta (X, p p) 1life ins (X, hmo, ) and sta� (X, p p) 1 health plan (X, hmo, ) separately, as it would requireexecuting single select operations over F and G. In each of these cases, it is bene�cial to \remove"U1 and U2 from the query. This leads to the following RA representation of the query:Q: �X((faculty (X, p p, ) [sta� (X, p p, ) 1 life ins (X, hmo, ))S�X((faculty (X, p p, ) [ta (X, p p)) 1 health plan (X, hmo, ))S�X(sta� (X, p p, ) 1 health plan (X, hmo, ))S�X(ta (X, p p) 1 life ins (X, hmo, ))The AND/OR tree for the modi�ed query is in fact a query forest; it contains four trees as presentedin Figure 2. life ins(X,hmo, )(X,p p, )sta� ta(X,p p) life ins(X,hmo, )health plan(X,hmo, )health plan(X,hmo, )faculty(X,p p, ) ta(X,p p)faculty(X,p p, )sta�(X,p p, )Figure 2: The query tree representation of the optimized query.The new query does not require evaluating the joins ta (X, p p) 1 life ins (X, hmo, ) and sta� (X,p p, ) 1 health plan (X, hmo, ) although it is equivalent to the original query (that is, returns



September 1996 IQO|Godfrey & Gryz p. 6 of 21the same set of answers). The cost of evaluating the joins is saved, so it can be considered the grosssavings due to the optimization.This na��ve approach, however, has several problems; these stem from the fact that this type ofquery rewriting brings the query closer to its top-down representation. In the extreme case, whenthere are many unfoldings to remove, the query takes the form of a union of pure conjunctivequeries. As a consequence, the disadvantages (discussed in Section 2.3) of the top-down approachto query evaluation become manifest in the evaluation of the \optimized" query. The worst ofthese|an exponential number of subqueries generated in the top-down approach|renders thena��ve optimization impractical for complex queries. Section 6 is devoted to the presentation of anapproach to intensional query optimization that scales up for arbitrarily large queries and numberof removed unfoldings.4 Discounted QueriesWe make a second pass over the concepts presented above, and formalize the notion of discountingunfoldings from a query. First, we are obliged to give a de�nition for query. We shall de�ne a queryto be a set of atoms|to be interpreted as a conjunction|and the set of variables to be consideredas free in the query; that is, the distinguished variables of the query.De�nition 1. De�ne a query set to be any set of atoms, composed over the predicates, variables,and constants of the database language. A query is a pair hQ;Vi in which Q is a query set,and V is a set of variables|each of which must appear in Q|to be called the distinguishedvariables of the query.Next, we de�ne what an answer set is of a query.De�nition 2. The answer set for a query with respect to a database is the set of all its answers6with respect to that database. Denote the answer set for query hQ;Vi as [[Q]]V . (We assume itis always known by context with respect to which database a query's answer set is intended.)We shall call a query with an empty answer set an null query.We give a formal de�nition for an unfolding of a query, introduced earlier.De�nition 3. Given query sets Q and U , call U a 1-step unfolding of query set Q with respectto database DB i�, given some Qi 2 Q and a rule hA  B1; : : : ;Bn:i in DB such thatQi� � A� where � is a most general uni�er [17], thenU = Q� fQig [ fB1�; : : : ;Bn�gDenote this by U �1 Q. Call U1 simply an unfolding of Q, written as U1 � Q, i� there issome �nite collection of query sets U1,: : :,Uk such that U1 �1 : : :�1 Uk �1 Q.A query set (unfolding) Q is called extensional i�, for every Qi 2 Q, atom Qi is written withan extensional predicate. Call the query set intensional otherwise.6An answer is any ground substitution � over V such that Q� follows from the database [17].



September 1996 IQO|Godfrey & Gryz p. 7 of 21One of the 1-step unfoldings of the query in the Example of Section 3 is: femployee (X, p p),life ins (X, hmo, )g. One of the extensional unfoldings of the query is: ffaculty (X,p p, ),life ins (X, hmo, )g.A query can be considered to be equivalent to the union of all its extensional unfoldings.De�nition 4. Given any query set Q, let unfolds/1 denote the set of all extensional unfoldingsof Q. unfolds (Q) = fU j U is an extensional query set and U � QgWe make a natural assumption of our semantics that[[Q]]V = SU2unfolds (Q)[[U ]]Vand that this is another way to de�ne a query's answer set.We introduce a new query structure to be called a discounted query, which can be considered to bethe query with some of its unfoldings \removed" (discounted).De�nition 5. De�ne a new type of query structure to be called a discounted query set. Given aquery set Q and unfoldings U1,: : :,Uk of Q, then QnfU1; : : : ;Ukg is a discounted query set, tobe read as \query set Q discounting unfoldings U1,: : :,Uk." De�ne a discounted query to be aquery with a discounted query set. We call U1,: : :,Uk unfoldings-to-discount and the tuples inthe answer sets of these unfoldings tuples-to-discount.7De�nition 6. Let us extend the domain of unfolds/1 to include discounted query sets, and itsde�nition as follows. Given discounted query set QnfU1; : : : ;Ukg,unfolds (QnfU1; : : : ;Ukg) = fR j R is extensional, R � Q, but R 6� Ui, for i 2 f1; : : : ; kggSince the unfoldings-to-discount in our example are fsta� (X, p p, ); health plan (X, hmo, )g andfta (X, p p); life ins (X, hmo, )g then the unfolds of the query are:� fta (X, p p); health plan (X, hmo, )g� ffaculty (X, p p); life ins (X, hmo, )g� ffaculty (X, p p); health plan (X, hmo, )g� fsta� (X, p p); health plan (X, hmo, )gLet us now de�ne the answer set semantics of discounted queries as follows:[[QnfU1; : : : ;Ukg]]V = SR2unfolds (QnfU1;:::;Ukg)[[R]]V(Note that this is not the same as relational set minus.)Clearly, given a query hQ;Vi, and a collection of unfoldings U1,: : :,Uk of Q, then[[Q]]V = [[QnfU1; : : : ;Ukg]]V [ [[U1]]V [ : : :[ [[Uk]]V7This de�nition is semantic. We could likewise give a syntactic de�nition, which is more what we intend. However,such would be more cumbersome, and this distinction is not important here.



September 1996 IQO|Godfrey & Gryz p. 8 of 21This provides us a means to treat various unfoldings of the query independent of the query itself.5 Optimization by Discounting5.1 CostsFor discounted queries to be useful for optimization, clearly the following cost equation must hold:cost (dis eval (QnfU1; : : : ;Ukg;V)) + kPi=1 cost (eval (Ui;V)) +C < cost (eval (Q;V)) 1)where eval/2 is a procedure which determines an evaluation strategy for its query (and executesthe chosen strategy), cost/1 measures the evaluation time of the query (to manifest a strategy andexecute it), and C is the cost involved in somehow choosing U1,: : :,Uk. There must be a specializedevaluation strategy for discounted queries, denoted as dis eval/2, which is a focus of our research.It must be that discounted queries can be evaluated less expensively than the corresponding query,else this approach will not work. We brie
y discuss strategies for dis eval/2 in the next section.If we have multiple query optimization strategies [11, 19] available|that is, strategies which exploitsimilarities between queries to be evaluated in batch in order to optimize evaluation|we can weakenthis cost equation. Let mult eval/2 represent such a strategy, which takes a set of queries (anddiscounted queries) to be evaluated in batch.cost (mult eval (fQnfU1; : : : ;Ukg;U1; : : : ;Ukg;V)) +C < cost (eval (Q;V)) 2)We shall not consider multiple query optimization here.5.2 Applications of DiscountingIf it can be determined that a query is null, this is the ideal optimization: the query does not needto be evaluated because the answer set is already known (to be empty). Likewise, if a collectionof null unfoldings can be found for a query, these may be quite useful to optimize evaluation. LetN1,: : :Nk be null unfoldings of query hQ;Vi. Then one can optimize simply ifcost (dis eval (QnfN1; : : : ;Nkg;V)) +C < cost (eval (Q;V))The null unfoldings of course cost nothing to evaluate.8Another case when it might be advantageous to separate out a certain unfolding from the query iswhen the unfolding can be easily answered from cached queries or materialized views. This can beparticularly pertinent in a client/server environment, in which network communication costs candominate the query processing. If the cached queries or materialized views are local, the unfoldingcan be evaluated locally, and so not involve any network communication overhead. When theunfolding can be completely evaluated from a single cached query or materialized view|that is, itcan be computed simply via projections and selects on the cache|the cost is negligible, and could8Of course they do cost something to discover, and this cost, so far, is hidden in C.



September 1996 IQO|Godfrey & Gryz p. 9 of 21be counted as zero. Thus, this is similar to the null unfolding case. Otherwise, it may be that theunfolding can be computed by the joins of several caches; this is the method that QF explores.In this case, the cost of evaluating the unfolding via caches (and QF) must be weighed againstre-evaluating the unfolding, or, perhaps, not discounting it from the query at all.The ability to separate an unfolding from a query can extend dramatically the domain of appli-cations of traditional SQO techniques. Almost all SQO algorithms apply to conjunctive queriesonly9 hence cannot be used when the query is evaluated bottom-up. After an unfolding is sepa-rated, however, SQO can be used to rewrite it by eliminating some of the atoms (because they areredundant) or by adding new atoms (when the addition does not change the semantics, but maysimplify the evaluation by, for example, adding a selection or an indexed attribute).The intensional optimization framework o�ers a way to incorporate these techniques more gener-ally. We can simply replace the eval/2 operations in cost equation 1) with, say, sem eval/2, anevaluation strategy which incorporates semantic optimization techniques. An important questionis how to decide which unfoldings ought to be discounted from the query so that they may besemantically optimized.5.3 Identifying Useful UnfoldingsSo far we have ignored the �rst stage of intensional optimization: determining which unfoldings ofa query are advantageous to discount; that is, �nding the collection U1,: : :,Uk. This is the cost Cin all the above cost equations.These costs can be non-trivial. However, e�cient techniques for such|in particular, identifyingthe null unfoldings of a query|have been explored [9], and developed within the context of theCarmin project, a cooperative database system [5, 6, 10]. For edi�cation of the reader, we brie
ysketch an approach to �nding null unfoldings. The general approach that we have developed is asfollows.� Rewrite each integrity constraint (IC) by replacing its empty head with the special predicatebottom, `?', so it becomes a rule (view).� Assume an \answer" to the query, using Skolem constants.� Employ standard deduction over these facts (a hypothesized answer), the set of databaseviews, and the converted ICs, to determine whether `?' is derivable.These techniques could be extended to identify when cached queries and materialized views can beused to evaluate certain unfoldings of queries.9The papers [13, 16] are the only exceptions known to us.



September 1996 IQO|Godfrey & Gryz p. 10 of 216 A Discounted Evaluation Strategy6.1 Possible StrategiesWhether intensional optimization is feasible hinges on whether there exist good evaluation strate-gies for discounted queries, dis eval/2, which are less expensive than evaluating the query itself.Since, the unfoldings of the query are not manifested in a bottom-up evaluation, there is a ques-tion of how to \discount" unfoldings during the evaluation and whether this can be exploited foroptimization. We shall demonstrate that discounted queries can be, in general, evaluated bottom-up less expensively than their corresponding queries [9]. We brie
y outline two basic approaches(described in more detail in [9]) for a bottom-up dis eval.One approach, sketched in the example of Section 3, is to rewrite a discounted query into a collectionof conjunctive queries, for which evaluation strategies already exist [9]. Thus, given unfoldingsU1,: : :,Uk to discount from Q, one should �nd unfoldings W1,: : :,Wl of Q such thatunfolds (QnfU1; : : : ;Ukg) = lSi=1unfolds (Wi)Ideally, the collection of W1,: : :,Wl is minimal in the sense that there is no R > Wi such thatW1,: : :,Wi�1, R, Wi+1,: : :,Wl has the above property, and there are no distinct Wi and Wj suchthat Wi >Wj . Then we have a natural evaluation strategy for QnfU1; : : : ;Ukg:lSi=1 eval (Wi;V) or mult eval (fW1; : : : ;Wlg;V)The advantage of this approach is that it accounts for all the unfoldings to be discounted \inparallel". The disadvantage is that the collection of Wi's may be large. In essence, this rewriteapproach mixes top-down and bottom-up representation. The query is partially evaluated top-down, just enough so that the unfoldings to discount are explicitly represented, as shown in theexample in Section 3. Therefore, this approach is equivalent in the limit to top-down evaluation.A second type of approach is to modify a bottom-up evaluation strategy to account for the unfold-ings to be discounted during the evaluation process. The advantage here is that the approach isdynamic: it interleaves evaluation and optimization planning. Thus, cost measures can be judgedduring the evaluation to decide whether to discount a given unfolding, depending on whether therewould be any actual cost savings. The disadvantage is that the query is still explicitly split intosubqueries, hence cannot scale up for complex queries.This dynamic approach can be modi�ed, however, to avoid explicit splitting of a query. We presentbelow a dynamic approach which would store label information about the unfoldings-to-discountin the materialized tables during bottom-up evaluation. These labels are then used during theevaluation to ensure that the the tuples which would result from (the evaluation of) the unfoldings-to-discount do not contribute to the answer set of the discounted query.



September 1996 IQO|Godfrey & Gryz p. 11 of 216.2 OverviewOur strategy shall be a bottom-up materialization strategy for the query tree with the union andjoin operations modi�ed to account for the discounted unfoldings. The strategy will ensure twothings:� that tuples-to-discount do not contribute to the answer set of the discounted query, and� the joins representing unfoldings-to-discount are never evaluated.Of course, when the unfoldings-to-discount are null unfoldings, the �rst property is ensured trivially.In the case of discounting an unfolding which is a cached query or a materialized view, the tuplesresulting from this unfolding have to be explicitly removed. This can be done either during or afterthe actual query evaluation. To ensure the second property, we want somehow to avoid evaluatingthe unfoldings-to-discount.The method shall be to keep extra information in the temporary tables created during the mate-rialization of the query tree. In essence, each table will have an extra column for each unfolding-to-discount. The domain of these tag columns is boolean. The value of a tag column for a giventuple shall indicate whether that tuple belongs to the answer set of the corresponding unfolding-to-discount. (It is marked as true if yes, and false if no.) On each union or join operation (whichcreates a new temporary table), these tag columns' values must be maintained properly.By keeping this derivation information for each tuple during evaluation, we can easily ensure the�rst property from above: after evaluation of the query, select those tuples which have all falsevalues in the tag columns (and project away these columns). However, this alone does not ensurethe second property. We shall be able further to use the tag columns to determine during a joinoperation which tuples should be joined, and which should not be (because the resulting tuplewould be from an unfolding-to-discount). This can be done whenever the join operation is the lastone relevant to a given unfolding-to-discount. The computation saved is the joining of sectionsfrom the two tables. If these sections (sub-tables) are large, this can be signi�cant. We shall seethat this savings is, in a sense, optimal.We present the evaluation strategy in three progressive versions. The simplest version will ensureonly the �rst property; that is, the �nal answer set will not contain tuples from any unfolding-to-discount. This strategy does not optimize query evaluation in centralized databases; in fact, it addsoverhead to traditional bottom-up evaluation. However, by reducing the size of the answer set, itdoes generate savings in bandwidth for database systems in which query results are sent over anetwork. The second version removes the tuples-to-discount during query evaluation, as soon asis possible. This strategy can reduce the cost of query evaluation, even when it does not involvenetwork tra�c. The third, most complex, strategy ensures the second property from above; thatis, the join operations which represent the unfoldings-to-discount are never evaluated.6.3 Bottom-up Query MaterializationEvaluation will be done over the query tree. We insist that each node in the query tree be either anAND or an OR node. (So we do not allow mixed nodes in the tree.) An AND node is a node whoseparent is generated through a join operation; an OR node is a node whose parent is generatedthrough an union operation. An AND/OR tree can always be rewritten to this e�ect. Extra nodes



September 1996 IQO|Godfrey & Gryz p. 12 of 21may have to be added to separate AND and OR nodes. This can be done in an obvious manner.The �rst step of our algorithm requires that we rewrite the query tree into binary form. This meansthat every node in the tree has either two children or none. Again, this can be done in an obviousmanner by the addition of new interior nodes to the tree. The binary tree representation of thequery of Section 3 is presented in Figure 3.Given a binary query tree, a bottom-up evaluation strategy is easy to specify.De�nition 7. Let QT be a binary query tree. For any node N in the query tree, call it a leaf ifit has no children, and a branch if it does.Any branch node N in a binary query tree has two children, by de�nition. We arbitrarily �xan order on the tree, without loss of generality. We refer to one child of N as LN (for leftchild), and the other as RN (for right child).12 3faculty(X,p p, )4 58 9 health-plan(X,hmo, ) life-ins(X,hmo, )6 7N N N NNNN NNta(X,p p, ) sta�(X,p p, )Figure 3: The binary tree representation of the original query.We assume that any leaf N in the (binary) query tree has a corresponding table in the database;that is, the answer set forN is derivable from some table in the database via selects and projections.Call N 's table (with any selects and projections implicit) TN .Algorithm 1 shows an evaluation strategy. In any implementation of this, we assume that all thenatural optimizations are made: all relevant selects in the query tree are pushed as far down thequery tree as possible to the relevant nodes, and all columns that can be projected when making a(temporary) table are projected out.Note that there are choices when transforming the query tree into binary form. The �nal binaryform dictates the order of the join operations to be performed. Of course join order is quiteimportant in the e�ciency of evaluation. The transformation into binary form should be done withthe syntactic query optimizer in order to choose a good join order.6.4 Optimization IWe shall modify Algorithm 1 to handle discounted queries. This shall involve replacing the unionand join operations with specialized versions, which handle and exploit the tag columns for theunfoldings-to-discount, as discussed above.



September 1996 IQO|Godfrey & Gryz p. 13 of 21While there exists a branch in QT% Choose the next operation.Choose a branch N from the query tree QTsuch that LN and RR are leaves.Cases:N is an AND node.Union TLN and TRN to create TN .N is an OR node.Join TLN and TRN to create TN .% Clean up.Erase nodes LN and RN from QT.For A 2 fLN ;RNgIf TA is a temporary table thenRemove TA from the database.Algorithm 1: Bottom-up Materialization of the Query TreeGiven discounted query QnfU1; : : : ;Ukg, let QTQ be a binary query tree for query Q as in Figure 3.We shall introduce new columns, CUi , for i 2 f1; : : : ; kg, as the tag columns corresponding to theunfoldings-to-discount. Thus, CU1 is added to tables TN6 and TN8 and CU2 is added to tables TN7and TN9 . During the materialization process, tables will include certain of these tag columns, andthe new union and join operators will set their values accordingly.6.4.1 The Modi�ed Union OperationWe assume for a well-formed query tree that the tables to be unioned at any union step are union-compatible. With our addition of tag columns, this may now be violated. The two tables to beunioned may not be union-compatible over the tag columns. Thus, we need to modify the union step�rst to make the tables union-compatible by adding any tag columns that are needed. Algorithm2 shows this. These are the only ways in which we need to modify the union step.Note that if the operation involves two nodes both subsumed by a given unfolding-to-discount,neither corresponding table has a tag column for that unfolding. We only add the column whenthe operation involves one node subsumed by the unfolding and one not. It is only after that pointthat the tag column is needed. Thus we add the tag columns only on a need-by basis.6.4.2 The Modi�ed Join OperationWe must assign the correct values to tag columns of joined tables. If a tuple results from the joinof one tuple which was derived under a given unfolding-to-discount U (hence the value of its CUis true), and a second tuple which was not (hence the value of its CU is false), then the resultingtuple is not in the answer set of U . (So CU for the resulting tuple should have the value false.)Only when both tuples being joined were derived under U should the resulting tuple's column CUbe set to true.



September 1996 IQO|Godfrey & Gryz p. 14 of 21% Add new tag columns on a need-by basis.For each UiFor fA;Bg = fLN ;RNgIf A 2 Ui then% Clearly B does not belong to Ui, by de�nition.Add column CUi to TA.Instantiate all values of CUi in TA to true.% Make union-compatible.For each UiFor fA;Bg = fLN ;RNgIf CUi belongs to TA but not to TB thenAdd column CUi to TB.Instantiate all values of CUi in TB to false.% Union the two tables.Union TLN and TRN to create TN .% Clean up.Remove LN and RN from QT.For A 2 fLN ;RNgIf TA is a temporary table thenRemove TA from the database.Algorithm 2: The Modi�ed Union OperationWe de�ne an auxiliary notion of mergesN and then de�ne a modi�ed notion of join.De�nition 8. Let mergesN be the collection of column assignment statements(TLN :CU ^TRN :CU ) as CUfor each unfolding-to-discount U which has a tag column in both tables TLN and TRNDe�nition 9. De�ne the following criteria for the join.� colsN : the relevant query columns to be kept for the query at node N plus any tagcolumns from tables TLN and TRN not accounted for in mergesN .� joinN : the relevant query join criteria for LN and RN to produce N .� selLN and selRN : the relevant query selects for LN and RN , respectively.Now we can state a relational algebra expression for TN in terms of TLN and TRN .TN := �colsN ;mergesN (�selLN TLN 1joinN �selRN TRN )This expression represents the modi�ed join operation. This can be readily implemented in SQL.The modi�ed union and join operations have no in
uence (except for adding extra columns) on the�nal answer set of a query. Their only purpose is to keep the trace information about the unfoldings-to-discount via the tag columns. The last step of the optimization algorithm then consists in usingthis information to select only the tuples that are known not to be in an answer set of any unfolding-to-discount of the query. To ensure this, it is su�cient to select the tuples that have the value false



September 1996 IQO|Godfrey & Gryz p. 15 of 21for all their tag columns.6.5 Optimization IIAs stated in Section 6.2, removing tuples-to-discount from the �nal query answer set according tothe optimization described above does not improve e�ciency of query evaluation (unless the query'sanswer set is shipped over a network). For complex queries, however, such removal can be executedduring query evaluation; that is, before the �nal answer set is produced. In other words, we canpush some of the selects for false over the tag columns further down in the query tree. Considerthe following example.Let the query be (A [ B) 1 (C [ D) 1 E, and the unfolding-to-discount be A 1 C 1 E. Then,all tuples in the answer set of the join A 1 C can be eliminated from the answer set of the join(A[B) 1 (C [D) as soon as it is evaluated. This can be done because the tuples generated by thejoin A 1 C contribute only to the answer set of the unfolding-to-discount and no other unfoldingsof the query. Note that the gross savings achieved through this optimization is equal to the cost ofthe join of the result of A 1 C with E.We introduce the notion of a closing of an unfolding-to-discount by a node in a query tree|notnecessarily the root node|and modify our original algorithm by allowing the elimination of certaintuples-to-discount from the tables representing such nodes.De�nition 10. Unfolding U is closed by node N with respect to binary query tree QT if everynode in U that cannot be reached from the root of QT through AND nodes only, is in thesub-AND/OR tree rooted by N , and there is no other node below N in the sub-AND/ORtree rooted by N which has this property.Given discounted query QnfU1; : : : ;Ukg and binary query tree QTQ for Q, de�ne closeN foreach node in QTQ as the subset of the unfoldings-to-discount, fU1; : : : ;Ukg, which are closedby N .The intuition of the de�nition of closing is as follows. Consider the nodes of U that do not lie underN . None of these nodes contain a column for U and since none of these tables will be used in a union(because there are AND nodes only between these nodes and the query tree root) such columns willnever be created for the tuples from these tables. Hence, no tuple in the table represented by thenode N could contribute to a change in the value in the column CU when they are joined duringevaluation with other tables represented by the nodes of U . Thus, the tuples with the value truefor any unfoldings in closeN can be removed immediately after the table TN is materialized.6.6 Optimization IIIIn the next step, one can push the tag selects even further down, in a sense beneath the joins. Thatis, for a join which is closing an unfolding-to-discount, say U , the join itself can be optimized: forany pair of tuples|one from the �rst table and the other from the second|to be considered for joincomparison, if both have the value true in tag column U , the pair should be immediately droppedfrom consideration. Going a step further, it would be better to ensure somehow that such pairsnever even arise for consideration during the join operation.



September 1996 IQO|Godfrey & Gryz p. 16 of 21To ensure that such pairs never arise can be accomplished by joining only portions of the two tables,such that tuple pairs each having true for a tag column being closed inherently cannot occur. Thus,the original join can be replaced with the union of a collection of such joins over appropriate selectson the tables. We shall show a partitioning of the tables which accomplishes this, and call themodi�ed join procedure the partitioned join of the tables.The intuition of how the partitioned join can be an optimization is as follows. The partitioned joinreduces the number of operations to be done during the join execution, compared with a straightjoin of the two tables. If a na��ve cross-join strategy is chosen|that is, to materialize the cross-joinof the two tables, and then select for equality of the join attributes|clearly the partitioned joinsaves steps: the tuple pairs we want to avoid simply do not appear in the cross-join. If a sort-scan-merge style join strategy is chosen, the number of scan operations that are done in sum for thepartitioned join will be inherently fewer than would be done by the straight join. (Both tables muststill be sorted in full and indexed, in either case.) If the percentage of tuples with the value true intag columns for unfoldings being closed is large, the number of saved scan steps is signi�cant.The partitioned join adds overhead. The tables must be sorted and indexed over the tag columnsfor the unfoldings being closed so that the appropriate partitions of the tables can be e�cientlyaccessed during the individual joins. If both tables are small to begin with, or if the percentage oftuples marked true is small, this overhead may outweigh any bene�t.The partitioned join operation will be de�ned similarly to the modi�ed join de�ned in Section 6.4.2.Instead of considering all tuples from the tables during the join, we will only look at the tuplesselected according to the select patterns de�ned below.De�nition 11. Let J � closeN . De�ne select patterns patLN ;J and patRN ;J as follows.patLN ;J := VU2J (TLN :CU = false)patRN ;J := VU2J (TRN :CU = true) ^ VU2(closeN�J )(TRN :CU = false)We describe the intuition behind this de�nition using our example. The result of the join of the ta-bles TN2 andTN3 should not contain tuples that result from the joins ta (X, p p) 1 life ins (X, hmo, )and sta� (X, p p, ) 1 health-plan (X, hmo, ). To ensure this exclusion, it is enough to select forthe join TN21TN3 only such pairs of tuples from TN2 and TN3 that do not both have the valuetrue for either CU1or CU2 . Another way of stating this is to select from TN2 and TN3 tuples whosevalues for CU1 and CU2 are respectively:TN2 TN3CU1 CU2 CU1 CU2false false true truefalse true true falsefalse false true falsetrue false false truefalse false false truetrue true false falsetrue false false falsefalse true false falsefalse false false false



September 1996 IQO|Godfrey & Gryz p. 17 of 21Note that tuples with values of CU1 and CU2 as described in line 1 represent the select pattern withJ = fU1 [U2g, lines 2 and 3 with J=fU1g, lines 4 and 5 with J=fU2g, and lines 6-9 with J=f;g.The de�nition of a partitioned join operation is now straightforward.De�nition 12. (Partitioned Join) We modify slightly De�nition 8 for mergesN to not includecloseN . We also modify De�nition 9 of colsN likewise. Then the partioned join for N is asfollows.TN := SJ�closeN �colsN ;mergesN (�selLN ;patLN ;JTLN 1joinN �selRN ;patRN ;JTRN )Notice that we would not need to partition for all the unfoldings-to-discount in closeN ; we couldpick a subset of them. This can be done dynamically, and a subset can be chosen which wouldprovide the best optimization. (This is discussed in the next section.) The tuples-to-discount fromany unfolding-to-discount in closeN which was not chosen to partition over can be removed afterthe join is completed, just as described in Section 6.5.6.7 Savings AnalysisWe present an analysis of the potential savings associated with IQO. Some of the savings can beexpressed as the proportion of tuples eliminated from the query's answer set by the optimizationalgorithm. The purpose of this analysis is twofold. First, this is a �rst-level approximation of thenet savings via IQO in any practical system. A complete analysis would have to account not onlyfor the number of tuples eliminated, but also the point in the query evaluation at which the removaltakes place (the sooner it happens, the larger the savings), as well as any overhead costs incurredby the algorithm. Second, the number of eliminated tuples serves as a simple heuristic that couldbe used within an optimization algorithm. Such a heuristic would be useful to decide when an\optimization" step should be performed, and when it should be skipped.The proportion of tuples-to-discount in the �nal answer set depends on three variables: the prob-ability that a tuple is tagged with true for an unfolding-to-discount, the number of unfoldings-to-discount and the size of the join (how many tables participate).Let us consider the case of a two-way join and assume a uniform distribution of tuples-to-discountamong all tuples in each table. Let piL(F ) and piR(F ) be the probabilities that a tuple in the left orright tables, respectively, have a value false for i-th unfoldings-to-discount to be closed by the join.The tuple is not eliminated by the join if it results from a join of two tuples, one each from the leftand the right tables, such that the two tuples do not both have the value true for any tag columncorresponding to an unfoldings-to-discount being closed. Hence, the probability that a tuple is noteliminated can be expressed as: �ni=1[piR(F ) + (1� piR(F ))piL(F )]where n is the number of unfoldings-to-discount closed by the node. The probability that a tupleis eliminated (that is, the proportion of tuples that are eliminated) is then simply:1� �ni=1[piR(F ) + (1� piR(F ))piL(F )]Consider again the example in Section 3. Assume that in TN2 in Figure 3, 40% of the tuples
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0 2 4 6 8 10p(T)=10%p(T)=30%p(T)=50%p(T)=90% p(T)=70%100%806040200 (a) 2-way join 0 2 4 6 8 10p(T)=30%p(T)=50%p(T)=70%p(T)=90%020406080100% (b) 5-way joinFigure 4: Potential answer set reduction with respect to the number of unfoldings-to-discount.came from the ta table and 30% of the tuples came from the sta� table. Similarly, assume that inTN3 20% of the tuples came from the life ins table and 80% from the health plan table. Assumeindependence of the tag columns' values, and that the set of tuples (with the tag columns pro-jected out) marked true and the set marked false for any tag column are mostly disjoint. Given,U1=ta (X, p p) 1 life ins (X, hmo, ) and U2= sta� (X, p p) 1 health plan (X, hmo, ), we know:p1L(F ) = 0:6, p2L(F ) = 0:7, p1R(F ) = 0:8 and p2R(F ) = 0:2. This means, the proportion of tupleseliminated from the �nal answer set is equal to �0.3, 30%.The formula above can be generalized to an m-way join. Let pij(F ) be the probability that a tuplein Tj is false in tag column Ci. The formula then has the form:1� �ni=1Rimwhere Rim is de�ned recursively as:� Ri1 = pi1(F )� Rim = pim(F ) + (1� pim(F ))Rim�1In the special case when pij(F ) = p(F ) (= 1�p(T )), for 1 � j � m; 1 � i � n, this formula reducesto: 1� [1� p(T )m]nThis function is plotted in Figure 4 for 2-way and 5-way joins.7 ConclusionsIntensional query optimization provides framework to apply e�ective semantic optimization suchas semantic query caching [2, 3, 12], query folding [14, 18, 15], and semantic query optimization[1, 16, 20], to queries in realistic domains in which views may be complex and may use unions.



September 1996 IQO|Godfrey & Gryz p. 19 of 21The concept of a discounted query|which is the query with some of its expansions (unfoldings)\removed"|enables this. This then leaves the question of how to evaluate e�ciently the discountedquery.We have developed a bottom-up evaluation strategy (in three progressive versions) for discountedqueries which, in general, is more e�cient than the evaluation of the query itself. This optimizationarises from two sources. First, the number of tuples in the discounted query's answer set is a subsetof the query's. We show an analysis of how much smaller the discounted query's answer set may bewith respect to the unfolding-to-discount. This translates to a cost savings whenever this answerset must be shipped across a network, as in a client-server environment, and an I/O savings for theRDBMS because fewer tuples are written during evaluation. Second, the cost of the join during theevaluation can be reduced by avoiding the consideration of tuples which would have resulted froman unfolding-to-discount. With this evaluation strategy for discounted queries, the IQO frameworknow provides a viable approach for optimization.There are many further issues we must explore with respect to IQO framework. This includesexploring which types of interaction with syntactic optimizer would be most bene�cial. CurrentlyIQO is done in a prior step, and syntactic optimization occurs over the resulting queries. We alsoneed to understand better the various cost trade-o�s that can arise in IQO, and how best to balancethem.We are also exploring other pertinent applications of IQO. The framework allows for discountingqueries for purposes other than just optimization. For instance, unfoldings may be discounted whichwould violate data security if answered. Thus, the (discounted) query still could be answered anddatabase security maintained.References[1] U. S. Chakravarthy, J. Grant, and J. Minker. Logic based approach to semantic query opti-mization. ACM Transactions on Database Systems, 15(2):162{207, June 1990.[2] C. M. Chen and N. Roussopoulos. The implementation and performance evaluation of theADMS query optimizer: Integrating query result caching and matching. In Proc. of the 4thInternational Conference on Extending Database Technology, Cambridge, UK, 1994.[3] S. Dar, M. Franklin, B. J�onsson, D. Srivastava, and M. Tan. Semantic data caching andreplacement. In Proceedings of the 22nd International Conference on Very Large Data Bases(VLDB), Bombay, India, Sept. 1996. To appear.URL: http://www.cs.umd.edu/projects/dimsum/papers/semantic caching.ps.gz[4] T. Gaasterland, P. Godfrey, and J. Minker. An overview of cooperative answering. Journal ofIntelligent Information Systems, 1(2):123{157, 1992. Invited paper.[5] T. Gaasterland, P. Godfrey, and J. Minker. An overview of cooperative answering. Studiesin Logic and Computation 3, chapter 1, pages 1{40. Clarendon Press, Oxford, 1994. Appearsorginally as [4].URL: http://karna.cs.umd.edu:3264/papers/GGM92:survey/GGM92:survey.html
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