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Abstract

We have introduced a new query optimization framework called intensional query optimiza-
tion (IQO), which enables existing optimization techniques to be applied to queries that use
views. In particular, we consider that view definitions may employ unions. Advanced database
technologies and applications—such as federation and mediation over heterogeneous database
sources—lead to such complex view definitions, and to the need to handle complex, expensive
queries.

Query rewriting techniques have been proposed which exploit semantic query caches, materi-
alized views, and semantic knowledge about the database domain to optimize query evaluation.
These can augment syntactic optimization to reduce evaluation costs further. Such techniques
include semantic query caching, query folding, and semantic query optimization. However, most
proposed rewrite techniques ignore views in queries; that is, the views are considered as other
tables. The IQO framework enables rewrites to be applied to various expansions of the query,
even when no such rewrite is applicable directly to the query itself. With IQO, we optimize the
query tree, not just the query.

The IQO framework introduces the notion of a discounted query, which is a query with some
of its expansions “separated out”, so the query can be recast into pieces that can be optimized.
For this approach to be effective, the sum of the costs of evaluating each piece must be less
than the cost of evaluating the query itself. This includes the discounted query. We develop an
evaluation plan for discounted queries that 1s generally more efficient than the evaluation of the
queries themselves.

1 Introduction

We have introduced a new query optimization framework called intensional query optimization
(IQO) [8], which enables existing optimization techniques to be applied to queries that use views.
In particular, the framework allows for view definitions that employ unions. Advanced database
technologies and applications—federation and mediation over heterogeneous database sources, ob-
ject oriented databases and query languages, and data warehousing for decision support—Iead to
such complex view definitions, and tend to incur complex, expensive queries.

Query rewriting techniques have been proposed which exploit semantic query caches, materialized
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views, and semantic knowledge about the database domain to optimize query evaluation. These
can augment syntactic optimization to reduce evaluation costs further. Such techniques include
semantic query caching, query folding, and semantic query optimization. However, most proposed
query rewtite techniques ignore views in queries; that is, the views are considered as other tables.
The IQO framework enables rewrites to be applied to various expansions of the query, even when
no such rewrite is applicable directly to the query itself. With 1QO, we optimize the query tree,
not just the query.

The 1IQO framework introduces the notion of a discounted query, which is a query with some of its
expansions “separated out”. In this way, the query can be recast into pieces that can be optimized.
For this approach to be effective, the sum of the costs of evaluating each piece must be less than the
cost of evaluating the query itself. This includes the discounted query. In this paper, we develop
an evaluation plan for discounted queries that is generally more efficient than the evaluation of the
queries themselves.

Section 2 provides background on semantic optimization and query evaluation, and illustrates a
problem of compatibility between preferred query evaluation strategies and existing semantic opti-
mization approaches. Section 3 provides an example. This motivates our general approach. Section
4 presents a formal framework for discounted queries, Section 5 shows how the framework can be
used for optimization, and Section 6 presents a technique through three progressive refinements for
evaluating discounted queries. Section 7 concludes with issues and future work.

2 Background

2.1 Optimization via Semantics

Rewrite techniques which exploit semantic information about the database and query can improve
the efficiency of query evaluation. These methods include semantic query caching (SQC) [2, 3,
12], query folding (QYF') [14, 18, 15], and semantic query optimization (SQO) [1, 16, 20]. These are
primarily suitable for distributed and federated databases, although they (in particular, SQO) can
also be applied in centralized databases.

The benefit of SQC lies in saving a part (or all) of query processing by using the cached results of
previous queries. In a client-server environment, it is assumed that the client maintains a semantic
description of the data in cache, instead of maintaining a list of physical pages or tuple identifiers.
Query processing can make use of the semantic description to determine what data are locally
available in cache and what data are needed from the server.

QF refers to the activity of determining whether (and how) a query can be answered using a given
set of resources, for instance, materialized views. Rewriting a query using this technique does not
lead, in general, to an equivalent query, but to a query which is contained in the original query [21].

SQO uses semantic knowledge in the form of integrity constraints to reformulate a query into a
semantically equivalent query that can be evaluated more efficiently. The ultimate win in SQO
is the discovery that a query is a misconception [7, 5, 10]; that is, it is subsumed by an integrity
constraint, hence cannot return any answers. In such cases, the query does not need be evaluated
at all.
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2.2 Evaluation Strategies

Database queries containing views (also called intensional predicates) can be evaluated in two
different ways, often referred to as top-down and bottom-up [21]. In the top-down approach, all
extensional unfoldings' of the query are generated, each is evaluated and the answer sets are unioned
together to produce the final answer set.

Bottom-up query evaluation does not require evaluating separately all extensional unfoldings of a
query. Rather, the intensional atoms (views) in the query are substituted with their definitions and
evaluated as specified by these definitions. The relational algebra representation of a query—in
which all intensional predicates have been substituted with their definitions—implies through the
order of the operations an evaluation plan for the query. Union and join operations are intermixed
in the query formula.

2.3 Problem

Previous techniques, which we shall call extensional,? can only be applied to the conjunctive query.
They do not operate over the query tree. If a top-down evaluation is used, all unfoldings of the
query are manifested. In this case, these extensional optimization techniques can be applied to
each unfolding (a conjunctive query as well), and thus be interleaved with the evaluation process.

The problem is that the top-down query evaluation is considered impractical. It may introduce
redundancies both in the join evaluations done and between retrieved answer sets for different
unfoldings.® More importantly, it may require evaluating an exponential number (in the number
of views plus query) of unfoldings. For relational databases, the use of nested views can render
top-down evaluation strategies intractable.

Bottom-up evaluation strategies, however, tend to be more efficient, precisely because the unfoldings
of the query are not manifested. Unfortunately, this means that extensional optimization techniques
are not applicable when a bottom-up evaluation is used, except when a technique fortuitously
applies directly to the query itself.

The intensional query optimization framework allows the exploitation of information such as mis-
conceptions,* cached queries, and materialized views, and can incorporate previous optimization
techniques, enabling them to be used in conjunction with bottom-up optimization strategies. The
key idea of the approach is to rewrite the query so that certain unfoldings of it are “removed”. Such
an unfolding may be a null unfolding, or be easily derived from a materialized view or a previously
cached query. These unfoldings and the modified query may then be evaluated in a more efficient
way than the original query itself.

Unformally, an unfoldingis a result of expanding all the views in the query in one possible way; that is, choosing
one of the unioned definitions for each view. Thus an extensional unfolding does not contain any views or unions.

2We call these extensionalsince they treat the query as if it were extensional. Any views in the query are considered
to be materialized beforehand.

*The intersection of two answer sets may be substantial, representing redundant evaluation work.

*Let us call any unfolding which evaluates to the empty answer set a null unfolding.
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3 Example

Let DB contain five base relations:

Faculty (Name, Department, Rank)

Staff (Name, Department, Years_of_Employment)
Ta (Name, Department)

Life_ins (Name, Insurer, Monthly_premium)
Health_plan (Name, Insurer, Monthly_premium)

Let there be two views (defined here in Datalog) in the DB: the first one defines an employee
relation (via the union of the ta relation and projections from the faculty and staff relations); the
second defines a benefits relation (via the union of projections from the life_ins and health_plan
relations).

employee (X,Y) — faculty(X,Y,7). benefits (X,7) — life_ins (X, Z, W).
employee (X,Y) — staff(X,Y, 7). benefits (X,7) — health_plan (X, Z, W).
employee (X,Y) — ta(X,Y).

Define a query to ask for the names of all employees of the physical plant, p_p, whose benefits are
provided by hmo:

Q: — employee (X,p_p), benefits (X, hmo).
A relational algebra (RA) representation® of this query is:

Q: (wxfaculty(X, p_p, Y)Unxstaff(X, p_p, Z) Unxta(X, p_p))
X

(mx life_ins (X, hmo, W) U nx health_plan (X, hmo, V))

Query Q can also be represented as a parse tree of its RA representation, which is an AND/OR
tree, as shown in Figure 1.

/i\

employee(X,pp) benefits(X,hmo)

T T T

faculty(X,pp,-) ta(X,pp) staff(X,p_p,-) health-plan(X,hmo,) life-ins(X ,hmo,.)
Figure 1: The query tree representation of the original query.

Evaluating the query as specified—in the order of operations as specified in its RA representation—
is equivalent to materializing all nodes of the query tree (the AND/OR tree expansion of the query).
This requires evaluating the leaves first, then executing the unions to materialize the intermediate
nodes employee (X, p_p) and benefits (X,hmo), and then joining them to materialize the root node,
which represents the answer set of the query Q. This type of evaluation is what we call bottom-up.

®We ignore for simplicity explicit representation of select operations.
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Now assume that the following two queries have been asked before and their results are stored
in cache. (Equivalently, we can assume that these formulas represent materialized views or are
subsumed by integrity constraints, so are null unfoldings.)

F:— ta(X, Y), lifecins (X, hmo, _).
G: — staff(X, p-p), health_plan (X, Z, _).
If F and G represent integrity constraints, then the joins:
Ur: ta(X, p-p) M life_ins (X, hmo,_)
and
Uy:  staff( X, p_p) X health_plan (X, hmo,_)

which are computed as part of the query cannot possibly return any answers. Thus they can
be eliminated from the query without changing the result. Otherwise, if F and G are cached
queries or materialized views, it may still be advantageous to evaluate the expressions ta (X, p_p) X
life_ins (X, hmo, _) and staff(X, p-p) M health_plan (X, hmo, _) separately, as it would require
executing single select operations over F and G. In each of these cases, it is beneficial to “remove”
Uy and Uy from the query. This leads to the following RA representation of the query:

Q: ﬂX((faculty(X, p-p, —) Ustaﬁ‘(X, p-p, —) M lz'fe_z'ns(X, hmo, —))
U
Tx ((faculty (X, p_p, —) Uta (X, p_p)) M health_plan (X, hmo, _))
U
x(staff (X, p-p, —) X health_plan (X, hmo, _))

U
mx(ta(X, p_p) M life_ins (X, hmo, _))

The AND/OR tree for the modified query is in fact a query forest; it contains four trees as presented
in Figure 2.

life_ins(X ,hmo,_) health_plan(X,hmo,_)
faculty(X,p-p,-)staff X,p-p,-) faculty(X,p-p,-) ta(X,p-p)
A /@\
staff X,p_p,-)  health_plan(X,hmo,.) ta(X,p_p) life_ins(X ,hmo,_)

Figure 2: The query tree representation of the optimized query.

The new query does not require evaluating the joins ta (X, p_p) W life_ins (X, hmo, _) and staff(X,
p-p, —) X health_plan (X, hmo, _) although it is equivalent to the original query (that is, returns
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the same set of answers). The cost of evaluating the joins is saved, so it can be considered the gross
savings due to the optimization.

This naive approach, however, has several problems; these stem from the fact that this type of
query rewriting brings the query closer to its top-down representation. In the extreme case, when
there are many unfoldings to remove, the query takes the form of a union of pure conjunctive
queries. As a consequence, the disadvantages (discussed in Section 2.3) of the top-down approach
to query evaluation become manifest in the evaluation of the “optimized” query. The worst of
these—an exponential number of subqueries generated in the top-down approach—renders the
naive optimization impractical for complex queries. Section 6 is devoted to the presentation of an
approach to intensional query optimization that scales up for arbitrarily large queries and number
of removed unfoldings.

4 Discounted Queries

We make a second pass over the concepts presented above, and formalize the notion of discounting
unfoldings from a query. First, we are obliged to give a definition for query. We shall define a query
to be a set of atoms—to be interpreted as a conjunction—and the set of variables to be considered
as free in the query; that is, the distinguished variables of the query.

Definition 1. Define a query set to be any set of atoms, composed over the predicates, variables,
and constants of the database language. A query is a pair (Q,V) in which Q is a query set,
and V is a set of variables—each of which must appear in @—to be called the distinguished
variables of the query.

Next, we define what an answer set is of a query.

Definition 2. The answer set for a query with respect to a database is the set of all its answers®
with respect to that database. Denote the answer set for query (Q, V) as [[Q]]V. (We assume it

is always known by context with respect to which database a query’s answer set is intended.)
We shall call a query with an empty answer set an null query.
We give a formal definition for an unfolding of a query, introduced earlier.

Definition 3. Given query sets Q@ and U, call U a 1-step unfolding of query set Q with respect
to database DB iff, given some @; € Q and a rule (A «— By,...,B,.) in DB such that
Q;0 = A6 where 6 is a most general unifier [17], then

U= Q_{QZ}U{Blevane}

Denote this by ¢ <! Q. Call U; simply an unfolding of Q, written as U; < Q, iff there is
some finite collection of query sets Uy,. ..Uy such that ¢ <' ... < U, <! Q.

A query set (unfolding) Q is called extensional iff, for every @; € Q, atom (); is written with
an extensional predicate. Call the query set intensional otherwise.

®An answeris any ground substitution 8 over V such that Q8 follows from the database [17].
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One of the 1-step unfoldings of the query in the Example of Section 3 is: {employee (X, p_p),
life_ins (X, hmo, _)}. One of the extensional unfoldings of the query is: {faculty(X,p-p, —),
life_ins (X, hmo, _)}.

A query can be considered to be equivalent to the union of all its extensional unfoldings.

Definition 4. Given any query set Q, let unfolds/ 7 denote the set of all extensional unfoldings
of Q.

unfolds (Q) = {U | U is an extensional query set and U < Q}

We make a natural assumption of our semantics that

[o1" = U U

Ueunfolds (Q)

Vv

and that this is another way to define a query’s answer set.

We introduce a new query structure to be called a discounted query, which can be considered to be
the query with some of its unfoldings “removed” (discounted).

Definition 5. Define a new type of query structure to be called a discounted query set. Given a
query set Q and unfoldings U ,.. .Uy of Q, then Q\{U,, ..., U;} is a discounted query set, to
be read as “query set Q discounting unfoldings Uy ,.. .. U.” Define a discounted query to be a
query with a discounted query set. We call Uy,. . ..Uy unfoldings-to-discount and the tuples in
the answer sets of these unfoldings tuples-to-discount.”

Definition 6. Let us extend the domain of unfolds/! to include discounted query sets, and its
definition as follows. Given discounted query set Q\{Uy,..., Uy},

unfolds (Q\{lh,...,.Ur}) = {R | Ris extensional, R < Q, but R £ U;, fori e {1,...,k}}

Since the unfoldings-to-discount in our example are {staff( X, p_p, —), health_plan (X, hmo, _)} and
{ta(X, p-p), life_ins (X, hmo,—)} then the unfolds of the query are:

{ta (X, p-p), health_plan (X, hmo,_)}
{faculty (X, p_p), life_ins (X, hmo,_)}
{faculty (X, p_p), health_plan (X, hmo,_)}
{staff (X, p_p), health_plan (X, hmo,_)}

Let us now define the answer set semantics of discounted queries as follows:

[[Q\{ulvvuk}]]v = U [[R]]

Reunfolds (Q\{U1,...Ux })

Vv

(Note that this is not the same as relational set minus.)
Clearly, given a query (Q,V), and a collection of unfoldings Uy,. ..Uy of Q, then
[0]" = [Q\{th.....U}] Ulth] u.. U]

"This definition is semantic. We could likewise give a syntactic definition, which is more what we intend. However,
such would be more cumbersome, and this distinction is not important here.



September 1996 1QO—Godfrey & Gryz p. 8 of 21

This provides us a means to treat various unfoldings of the query independent of the query itself.

5 Optimization by Discounting

5.1 Costs

For discounted queries to be useful for optimization, clearly the following cost equation must hold:

cost (dis_eval (Q\{lf1,.... U}, V)) + Zk: cost (eval (U;,V))+ C < cost (eval (Q,V)) 1)
=1

where eval/2 is a procedure which determines an evaluation strategy for its query (and executes
the chosen strategy), cost/ ! measures the evaluation time of the query (to manifest a strategy and
execute it), and C is the cost involved in somehow choosing U ,. . ..Uy. There must be a specialized
evaluation strategy for discounted queries, denoted as dis_eval/2, which is a focus of our research.
It must be that discounted queries can be evaluated less expensively than the corresponding query,
else this approach will not work. We briefly discuss strategies for dis_eval/2 in the next section.

If we have multiple query optimization strategies [11, 19] available—that is, strategies which exploit
similarities between queries to be evaluated in batch in order to optimize evaluation—we can weaken
this cost equation. Let mult_eval/2 represent such a strategy, which takes a set of queries (and
discounted queries) to be evaluated in batch.

cost (mult_eval ({O\{lh, ..., U}, U, ..., UL}, V))+ C < cost (eval (Q,V)) 2)

We shall not consider multiple query optimization here.

5.2 Applications of Discounting

If it can be determined that a query is null, this is the ideal optimization: the query does not need
to be evaluated because the answer set is already known (to be empty). Likewise, if a collection
of null unfoldings can be found for a query, these may be quite useful to optimize evaluation. Let
MNi,.. N be null unfoldings of query (Q,V). Then one can optimize simply if

cost (dis_eval (Q\{NV1,...,NV;},V)) + C < cost (eval (Q,V))
The null unfoldings of course cost nothing to evaluate.®

Another case when it might be advantageous to separate out a certain unfolding from the query is
when the unfolding can be easily answered from cached queries or materialized views. This can be
particularly pertinent in a client/server environment, in which network communication costs can
dominate the query processing. If the cached queries or materialized views are local, the unfolding
can be evaluated locally, and so not involve any network communication overhead. When the
unfolding can be completely evaluated from a single cached query or materialized view—that is, it
can be computed simply via projections and selects on the cache—the cost is negligible, and could

80f course they do cost something to discover, and this cost, so far, is hidden in C.



September 1996 1QO—Godfrey & Gryz p. 9 of 21

be counted as zero. Thus, this is similar to the null unfolding case. Otherwise, it may be that the
unfolding can be computed by the joins of several caches; this is the method that QF explores.
In this case, the cost of evaluating the unfolding via caches (and QF) must be weighed against
re-evaluating the unfolding, or, perhaps, not discounting it from the query at all.

The ability to separate an unfolding from a query can extend dramatically the domain of appli-
cations of traditional SQO techniques. Almost all SQO algorithms apply to conjunctive queries
only® hence cannot be used when the query is evaluated bottom-up. After an unfolding is sepa-
rated, however, SQO can be used to rewrite it by eliminating some of the atoms (because they are
redundant) or by adding new atoms (when the addition does not change the semantics, but may
simplify the evaluation by, for example, adding a selection or an indexed attribute).

The intensional optimization framework offers a way to incorporate these techniques more gener-
ally. We can simply replace the eval/2 operations in cost equation 1) with, say, sem_eval/2, an
evaluation strategy which incorporates semantic optimization techniques. An important question
is how to decide which unfoldings ought to be discounted from the query so that they may be
semantically optimized.

5.3 Identifying Useful Unfoldings

So far we have ignored the first stage of intensional optimization: determining which unfoldings of
a query are advantageous to discount; that is, finding the collection i ,. .. U;. This is the cost C
in all the above cost equations.

These costs can be non-trivial. However, efficient techniques for such—in particular, identifying
the null unfoldings of a query—have been explored [9], and developed within the context of the
Carmin project, a cooperative database system [5, 6, 10]. For edification of the reader, we briefly
sketch an approach to finding null unfoldings. The general approach that we have developed is as
follows.

o Rewrite each integrity constraint (ZC) by replacing its empty head with the special predicate
bottom, ‘L’, so it becomes a rule (view).

e Assume an “answer” to the query, using Skolem constants.

e Employ standard deduction over these facts (a hypothesized answer), the set of database
views, and the converted ZCs, to determine whether ‘1’ is derivable.

These techniques could be extended to identify when cached queries and materialized views can be
used to evaluate certain unfoldings of queries.

°The papers [13, 16] are the only exceptions known to us.



September 1996 1QO—Godfrey & Gryz p. 10 of 21
6 A Discounted Evaluation Strategy

6.1 Possible Strategies

Whether intensional optimization is feasible hinges on whether there exist good evaluation strate-
gies for discounted queries, dis_eval/2, which are less expensive than evaluating the query itself.
Since, the unfoldings of the query are not manifested in a bottom-up evaluation, there is a ques-
tion of how to “discount” unfoldings during the evaluation and whether this can be exploited for
optimization. We shall demonstrate that discounted queries can be, in general, evaluated bottom-
up less expensively than their corresponding queries [9]. We briefly outline two basic approaches
(described in more detail in [9]) for a bottom-up dis_eval.

One approach, sketched in the example of Section 3, is to rewrite a discounted query into a collection
of conjunctive queries, for which evaluation strategies already exist [9]. Thus, given unfoldings

Uy,. . .U to discount from @Q, one should find unfoldings Wy,.. .. W; of Q such that

K3

l
unfolds (Q\{l4,...,Us}) = unfolds (W)
=1

Ideally, the collection of Wy,... . W, is minimal in the sense that there is no R > W; such that
Wi,.. Wi, R, Witq,.. .,V has the above property, and there are no distinct W; and W; such
that W; > W,;. Then we have a natural evaluation strategy for Q\{lf,..., Ui }:

K3

I
eval (W;,V) or mult_eval ({Wy,...., W}, V)
=1

The advantage of this approach is that it accounts for all the unfoldings to be discounted “in
parallel]”. The disadvantage is that the collection of W;’s may be large. In essence, this rewrite
approach mixes top-down and bottom-up representation. The query is partially evaluated top-
down, just enough so that the unfoldings to discount are explicitly represented, as shown in the
example in Section 3. Therefore, this approach is equivalent in the limit to top-down evaluation.

A second type of approach is to modify a bottom-up evaluation strategy to account for the unfold-
ings to be discounted during the evaluation process. The advantage here is that the approach is
dynamic: it interleaves evaluation and optimization planning. Thus, cost measures can be judged
during the evaluation to decide whether to discount a given unfolding, depending on whether there
would be any actual cost savings. The disadvantage is that the query is still explicitly split into
subqueries, hence cannot scale up for complex queries.

This dynamic approach can be modified, however, to avoid explicit splitting of a query. We present
below a dynamic approach which would store label information about the unfoldings-to-discount
in the materialized tables during bottom-up evaluation. These labels are then used during the
evaluation to ensure that the the tuples which would result from (the evaluation of) the unfoldings-
to-discount do not contribute to the answer set of the discounted query.



September 1996 1QO—Godfrey & Gryz p. 11 of 21

6.2 Overview

Our strategy shall be a bottom-up materialization strategy for the query tree with the union and
join operations modified to account for the discounted unfoldings. The strategy will ensure two
things:

e that tuples-to-discount do not contribute to the answer set of the discounted query, and
e the joins representing unfoldings-to-discount are never evaluated.

Of course, when the unfoldings-to-discount are null unfoldings, the first property is ensured trivially.
In the case of discounting an unfolding which is a cached query or a materialized view, the tuples
resulting from this unfolding have to be explicitly removed. This can be done either during or after
the actual query evaluation. To ensure the second property, we want somehow to avoid evaluating
the unfoldings-to-discount.

The method shall be to keep extra information in the temporary tables created during the mate-
rialization of the query tree. In essence, each table will have an extra column for each unfolding-
to-discount. The domain of these tag columns is boolean. The value of a tag column for a given
tuple shall indicate whether that tuple belongs to the answer set of the corresponding unfolding-
to-discount. (It is marked as true if yes, and false if no.) On each union or join operation (which
creates a new temporary table), these tag columns’ values must be maintained properly.

By keeping this derivation information for each tuple during evaluation, we can easily ensure the
first property from above: after evaluation of the query, select those tuples which have all false
values in the tag columns (and project away these columns). However, this alone does not ensure
the second property. We shall be able further to use the tag columns to determine during a join
operation which tuples should be joined, and which should not be (because the resulting tuple
would be from an unfolding-to-discount). This can be done whenever the join operation is the last
one relevant to a given unfolding-to-discount. The computation saved is the joining of sections
from the two tables. If these sections (sub-tables) are large, this can be significant. We shall see
that this savings is, in a sense, optimal.

We present the evaluation strategy in three progressive versions. The simplest version will ensure
only the first property; that is, the final answer set will not contain tuples from any unfolding-to-
discount. This strategy does not optimize query evaluation in centralized databases; in fact, it adds
overhead to traditional bottom-up evaluation. However, by reducing the size of the answer set, it
does generate savings in bandwidth for database systems in which query results are sent over a
network. The second version removes the tuples-to-discount during query evaluation, as soon as
is possible. This strategy can reduce the cost of query evaluation, even when it does not involve
network traffic. The third, most complex, strategy ensures the second property from above; that
is, the join operations which represent the unfoldings-to-discount are never evaluated.

6.3 Bottom-up Query Materialization

Evaluation will be done over the query tree. We insist that each node in the query tree be either an
AND or an OR node. (So we do not allow mixed nodes in the tree.) An AND node is a node whose
parent is generated through a join operation; an OR node is a node whose parent is generated
through an union operation. An AND/OR tree can always be rewritten to this effect. Extra nodes
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may have to be added to separate AND and OR nodes. This can be done in an obvious manner.

The first step of our algorithm requires that we rewrite the query tree into binary form. This means
that every node in the tree has either two children or none. Again, this can be done in an obvious
manner by the addition of new interior nodes to the tree. The binary tree representation of the
query of Section 3 is presented in Figure 3.

Given a binary query tree, a bottom-up evaluation strategy is easy to specify.

Definition 7. Let QT be a binary query tree. For any node A in the query tree, call it a leaf if
it has no children, and a branch if it does.

Any branch node AV in a binary query tree has two children, by definition. We arbitrarily fix
an order on the tree, without loss of generality. We refer to one child of N as Ly (for left
child), and the other as Ry (for right child).

Ny Ny N N,

faculty(X,pp,-) /\ health-plan(X hmo, ) life-ins(X,hmo,.)

N Ny

ta(X,pp,-) staff(X,pp,-)
Figure 3: The binary tree representation of the original query.

We assume that any leaf A" in the (binary) query tree has a corresponding table in the database;
that is, the answer set for A/ is derivable from some table in the database via selects and projections.
Call A’s table (with any selects and projections implicit) Ty

Algorithm 1 shows an evaluation strategy. In any implementation of this, we assume that all the
natural optimizations are made: all relevant selects in the query tree are pushed as far down the
query tree as possible to the relevant nodes, and all columns that can be projected when making a
(temporary) table are projected out.

Note that there are choices when transforming the query tree into binary form. The final binary
form dictates the order of the join operations to be performed. Of course join order is quite
important in the efficiency of evaluation. The transformation into binary form should be done with
the syntactic query optimizer in order to choose a good join order.

6.4 Optimization I

We shall modify Algorithm 1 to handle discounted queries. This shall involve replacing the union
and join operations with specialized versions, which handle and exploit the tag columns for the
unfoldings-to-discount, as discussed above.
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While there exists a branch in QT

% Choose the next operation.
Choose a branch A from the query tree QT
such that £y and Ry are leaves.

Cases:
AN is an AND node.
Union Tg,, and Tg,, to create T .

N is an OR node.
Join Tg,, and Tg,, to create T .

% Clean up.
Erase nodes L and R from QT.
For A€ {Ly,Rn}
If T4 is a temporary table then
Remove T 4 from the database.

Algorithm 1: Bottom-up Materialization of the Query Tree

Given discounted query Q\{if,..., U}, let QT g be a binary query tree for query Q as in Figure 3.
We shall introduce new columns, Cy,, for i € {1,...,k}, as the tag columns corresponding to the
unfoldings-to-discount. Thus, Cyy, is added to tables Ty, and Ty, and Cyy, is added to tables Ty,
and Ty, . During the materialization process, tables will include certain of these tag columns, and
the new union and join operators will set their values accordingly.

6.4.1 The Modified Union Operation

We assume for a well-formed query tree that the tables to be unioned at any union step are union-
compatible. With our addition of tag columns, this may now be violated. The two tables to be
unioned may not be union-compatible over the tag columns. Thus, we need to modify the union step
first to make the tables union-compatible by adding any tag columns that are needed. Algorithm
2 shows this. These are the only ways in which we need to modify the union step.

Note that if the operation involves two nodes both subsumed by a given unfolding-to-discount,
neither corresponding table has a tag column for that unfolding. We only add the column when
the operation involves one node subsumed by the unfolding and one not. It is only after that point
that the tag column is needed. Thus we add the tag columns only on a need-by basis.

6.4.2 The Modified Join Operation

We must assign the correct values to tag columns of joined tables. If a tuple results from the join
of one tuple which was derived under a given unfolding-to-discount ¢ (hence the value of its Cy
is true), and a second tuple which was not (hence the value of its Cy is false), then the resulting
tuple is not in the answer set of . (So Cy for the resulting tuple should have the value false.)
Only when both tuples being joined were derived under ¢ should the resulting tuple’s column Cyy
be set to true.
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% Add new tag columns on a need-by basis.
For each U,
For {A,B} = {Lx, Rn}
If A € U; then
% Clearly B does not belong to U;, by definition.
Add column Cy, to T 4.
Instantiate all values of Cy, in T 4 to true.

% Make union-compatible.
For each U,
For {A,B} = {Lx, Rn}
If Cyy;, belongs to T 4 but not to T then
Add column Cy; to Tp.
Instantiate all values of Cy, in Tp to false.

% Union the two tables.
Union T, and Tg, to create Ty .

% Clean up.
Remove L and Ry from QT.
For A€ {Ly,Rn}
If T4 is a temporary table then
Remove T 4 from the database.

Algorithm 2: The Modified Union Operation

We define an auxiliary notion of merges,, and then define a modified notion of join.
Definition 8. Let merges,  be the collection of column assignment statements
(T2, -Cu ANTr,.Cy) as Cy
for each unfolding-to-discount ¢/ which has a tag column in both tables T, and Tx,,
Definition 9. Define the following criteria for the join.

e colsy: the relevant query columns to be kept for the query at node A plus any tag
columns from tables T, and T, not accounted for in merges,,.

e join,: the relevant query join criteria for £y and R to produce V.

o sel;,, and selr,.: the relevant query selects for Lyrand Ry, respectively.

Now we can state a relational algebra expression for T in terms of T, and Tx,,.

Ty = HcolsN,mergesN(UselﬁN TL'N MjoinN USQIRN TRN)
This expression represents the modified join operation. This can be readily implemented in SQL.

The modified union and join operations have no influence (except for adding extra columns) on the
final answer set of a query. Their only purpose is to keep the trace information about the unfoldings-
to-discount via the tag columns. The last step of the optimization algorithm then consists in using
this information to select only the tuples that are known not to be in an answer set of any unfolding-
to-discount of the query. To ensure this, it is sufficient to select the tuples that have the value false
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for all their tag columns.

6.5 Optimization 11

As stated in Section 6.2, removing tuples-to-discount from the final query answer set according to
the optimization described above does not improve efficiency of query evaluation (unless the query’s
answer set is shipped over a network). For complex queries, however, such removal can be executed
during query evaluation; that is, before the final answer set is produced. In other words, we can
push some of the selects for false over the tag columns further down in the query tree. Consider
the following example.

Let the query be (AU B) X (C'U D) M E, and the unfolding-to-discount be A X C' X E. Then,
all tuples in the answer set of the join A X ' can be eliminated from the answer set of the join
(AUB)X (CUD) as soon as it is evaluated. This can be done because the tuples generated by the
join A X (' contribute only to the answer set of the unfolding-to-discount and no other unfoldings

of the query. Note that the gross savings achieved through this optimization is equal to the cost of
the join of the result of A X ' with F.

We introduce the notion of a closing of an unfolding-to-discount by a node in a query tree—not
necessarily the root node—and modify our original algorithm by allowing the elimination of certain
tuples-to-discount from the tables representing such nodes.

Definition 10. Unfolding ¢/ is closed by node A with respect to binary query tree QT if every
node in U that cannot be reached from the root of QT through AND nodes only, is in the

sub-AND/OR tree rooted by A, and there is no other node below A in the sub-AND/OR
tree rooted by A” which has this property.

Given discounted query Q\{if,..., Uy} and binary query tree QT 5 for Q, define closeys for
each node in QT as the subset of the unfoldings-to-discount, {If, ... U}, which are closed
by V.

The intuition of the definition of closing is as follows. Consider the nodes of ¢f that do not lie under
N. None of these nodes contain a column for 2/ and since none of these tables will be used in a union
(because there are AND nodes only between these nodes and the query tree root) such columns will
never be created for the tuples from these tables. Hence, no tuple in the table represented by the
node N could contribute to a change in the value in the column C;; when they are joined during
evaluation with other tables represented by the nodes of 4. Thus, the tuples with the value true
for any unfoldings in closey can be removed immediately after the table T is materialized.

6.6 Optimization II11

In the next step, one can push the tag selects even further down, in a sense beneath the joins. That
is, for a join which is closing an unfolding-to-discount, say i/, the join itself can be optimized: for
any pair of tuples—one from the first table and the other from the second—to be considered for join
comparison, if both have the value true in tag column ¢/, the pair should be immediately dropped
from consideration. Going a step further, it would be better to ensure somehow that such pairs
never even arise for consideration during the join operation.
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To ensure that such pairs never arise can be accomplished by joining only portions of the two tables,
such that tuple pairs each having true for a tag column being closed inherently cannot occur. Thus,
the original join can be replaced with the union of a collection of such joins over appropriate selects
on the tables. We shall show a partitioning of the tables which accomplishes this, and call the
modified join procedure the partitioned join of the tables.

The intuition of how the partitioned join can be an optimization is as follows. The partitioned join
reduces the number of operations to be done during the join execution, compared with a straight
join of the two tables. If a naive cross-join strategy is chosen—that is, to materialize the cross-join
of the two tables, and then select for equality of the join attributes—clearly the partitioned join
saves steps: the tuple pairs we want to avoid simply do not appear in the cross-join. If a sort-scan-
merge style join strategy is chosen, the number of scan operations that are done in sum for the
partitioned join will be inherently fewer than would be done by the straight join. (Both tables must
still be sorted in full and indexed, in either case.) If the percentage of tuples with the value true in
tag columns for unfoldings being closed is large, the number of saved scan steps is significant.

The partitioned join adds overhead. The tables must be sorted and indexed over the tag columns
for the unfoldings being closed so that the appropriate partitions of the tables can be efficiently
accessed during the individual joins. If both tables are small to begin with, or if the percentage of
tuples marked true is small, this overhead may outweigh any benefit.

The partitioned join operation will be defined similarly to the modified join defined in Section 6.4.2.
Instead of considering all tuples from the tables during the join, we will only look at the tuples
selected according to the select patterns defined below.

Definition 11. Let J C closey. Define select patterns pat,, ; and patg, 7 as follows.

pat;,. 7 = A (Tg,.Cy = false)
ueg

patg,. 7 = A (Try.Cy=true) A A (TR, Cy = false)
uedg Ue(closepn—T)

We describe the intuition behind this definition using our example. The result of the join of the ta-
bles Ty, and Ty, should not contain tuples that result from the joins ta (X, p_p) M life_ins (X, hmo, _)
and staff (X, p_p, —) X health-plan (X, hmo, ). To ensure this exclusion, it is enough to select for
the join Tn,MTp, only such pairs of tuples from Ty, and Ty, that do not both have the value
true for either Cyy0r Cyy,. Another way of stating this is to select from Ty, and Ty, tuples whose
values for Cy, and Cyy, are respectively:

Y
Cu,
false | false || true | true

false | true || true | false
false | false || true | false
true | false || false | true
false | false || false | true
true | true || false | false
true | false || false | false
false | true || false | false
false | false || false | false
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Note that tuples with values of Cz, and Cyy, as described in line 1 represent the select pattern with
J = {U1 Uls}, lines 2 and 3 with J={U, }, lines 4 and 5 with J={lUy}, and lines 6-9 with 7={0}.

The definition of a partitioned join operation is now straightforward.

Definition 12. (Partitioned Join) We modify slightly Definition 8 for merges,  to not include
closey. We also modify Definition 9 of cols s likewise. Then the partioned join for N is as
follows.

Ty = jCcLI-(J)seN HcolsN,mergesN(UselﬁN,patﬁNJT/LN MjoinN UseIRN,patRNJTRN)
Notice that we would not need to partition for all the unfoldings-to-discount in closeyr; we could
pick a subset of them. This can be done dynamically, and a subset can be chosen which would
provide the best optimization. (This is discussed in the next section.) The tuples-to-discount from
any unfolding-to-discount in closey which was not chosen to partition over can be removed after
the join is completed, just as described in Section 6.5.

6.7 Savings Analysis

We present an analysis of the potential savings associated with [IQO. Some of the savings can be
expressed as the proportion of tuples eliminated from the query’s answer set by the optimization
algorithm. The purpose of this analysis is twofold. First, this is a first-level approximation of the
net savings via [QO in any practical system. A complete analysis would have to account not only
for the number of tuples eliminated, but also the point in the query evaluation at which the removal
takes place (the sooner it happens, the larger the savings), as well as any overhead costs incurred
by the algorithm. Second, the number of eliminated tuples serves as a simple heuristic that could
be used within an optimization algorithm. Such a heuristic would be useful to decide when an
“optimization” step should be performed, and when it should be skipped.

The proportion of tuples-to-discount in the final answer set depends on three variables: the prob-
ability that a tuple is tagged with true for an unfolding-to-discount, the number of unfoldings-to-
discount and the size of the join (how many tables participate).

Let us consider the case of a two-way join and assume a uniform distribution of tuples-to-discount
among all tuples in each table. Let pi.(F) and pi(F) be the probabilities that a tuple in the left or
right tables, respectively, have a value false for ¢-th unfoldings-to-discount to be closed by the join.
The tuple is not eliminated by the join if it results from a join of two tuples, one each from the left
and the right tables, such that the two tuples do not both have the value true for any tag column
corresponding to an unfoldings-to-discount being closed. Hence, the probability that a tuple is not
eliminated can be expressed as:

2y [pR(F) 4 (1 — pR(F))pe(F)]

where n is the number of unfoldings-to-discount closed by the node. The probability that a tuple
is eliminated (that is, the proportion of tuples that are eliminated) is then simply:

1= I [l (F) + (1 = pl (F))pa(F)]

Consider again the example in Section 3. Assume that in Ty, in Figure 3, 40% of the tuples
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Figure 4: Potential answer set reduction with respect to the number of unfoldings-to-discount.

came from the ta table and 30% of the tuples came from the staff table. Similarly, assume that in
T, 20% of the tuples came from the life_ins table and 80% from the health_plan table. Assume
independence of the tag columns’ values, and that the set of tuples (with the tag columns pro-
jected out) marked true and the set marked false for any tag column are mostly disjoint. Given,
Ur=ta (X, p_p) W life_ins (X, hmo,_) and Uy= staff(X, p-p) M health_plan (X, hmo,_), we know:
pe(F) = 0.6, p2(F) = 0.7, pL(F) = 0.8 and p%(F) = 0.2. This means, the proportion of tuples
eliminated from the final answer set is equal to ~0.3, 30%.

The formula above can be generalized to an m-way join. Let p;(F) be the probability that a tuple
in T; is false in tag column C;. The formula then has the form:

1 - 17, Ry,

where R} is defined recursively as:

* By =pi(F) o

o Ry = pn(F) + (1= p(F) R,
In the special case when p;(F) =p(F)(=1=p(T)), for 1 <j<m, 1 <i<n, this formula reduces
to:

L= [1=p(T)"]"

This function is plotted in Figure 4 for 2-way and 5-way joins.

7 Conclusions

Intensional query optimization provides framework to apply effective semantic optimization such
as semantic query caching [2, 3, 12], query folding [14, 18, 15], and semantic query optimization
[1, 16, 20], to queries in realistic domains in which views may be complex and may use unions.
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The concept of a discounted query—which is the query with some of its expansions (unfoldings)
“removed”—enables this. This then leaves the question of how to evaluate efficiently the discounted

query.

We have developed a bottom-up evaluation strategy (in three progressive versions) for discounted
queries which, in general, is more efficient than the evaluation of the query itself. This optimization
arises from two sources. First, the number of tuples in the discounted query’s answer set is a subset
of the query’s. We show an analysis of how much smaller the discounted query’s answer set may be
with respect to the unfolding-to-discount. This translates to a cost savings whenever this answer
set must be shipped across a network, as in a client-server environment, and an 1/0 savings for the
RDBMS because fewer tuples are written during evaluation. Second, the cost of the join during the
evaluation can be reduced by avoiding the consideration of tuples which would have resulted from
an unfolding-to-discount. With this evaluation strategy for discounted queries, the IQO framework
now provides a viable approach for optimization.

There are many further issues we must explore with respect to IQO framework. This includes
exploring which types of interaction with syntactic optimizer would be most beneficial. Currently
1QO is done in a prior step, and syntactic optimization occurs over the resulting queries. We also
need to understand better the various cost trade-offs that can arise in IQO, and how best to balance
them.

We are also exploring other pertinent applications of IQO. The framework allows for discounting
queries for purposes other than just optimization. For instance, unfoldings may be discounted which
would violate data security if answered. Thus, the (discounted) query still could be answered and
database security maintained.
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