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Abstract 

Under most reliability model assumptions, all failures in a population are considered 

to come from the same distribution.  Each individual failure time is assumed to 

provide information about the likely failure times of all other devices in the 

population.  However, from time to time, process variation or an unexpected event 

will lead to the development of a weak subpopulation while other devices remained 

durable.  In this paper, estimation techniques for this situation are explored. 

 

Ideally, when such situations arise, the weak subpopulation could be identified 

through determination of root cause and sequestering of impacted devices.  But many 



  

times, for practical reasons, the overall population is a mixture of the weak and strong 

subpopulations; there may be no non-destructive way to identify the weak devices.   

 

If the defect is not inspectable, statistical estimation methods must be used, either 

with or without root cause information, to quantify the reliability risk to the 

population and develop appropriate screening.  The accuracy of these estimates may 

be critical to the management of the product, but estimation in these circumstances is 

difficult.  The mixed Weibull distribution is a common form for modeling latent 

failures.  However, estimation of the mixed Weibull parameters is not 

straightforward.  The number of parameters involved, and frequently the sparseness 

of the data, can lead to estimation biases and instabilities that produce misleading 

results.  Bayesian techniques can stabilize these estimates through the priors, but there 

is no closed-form conjugate family for the Weibull distribution.   This dissertation, 

using Monte Carlo simulation, examines bias and random error for three estimation 

techniques: standard maximum likelihood estimation, the Trunsored method, and 

Bayesian estimation. 

 

To determine how errors in the estimation methods impacts decisions about 

screening, a cost model was developed by generalizing existing screening cost models 

through the addition of the impact of schedule slippage cost and capacity.  The cost 

model was used in determining the optimal screen length based on total life-cycle 

cost.  The estimated optimal screen length for each method was compared to the true 



  

optimal screen length.  Recommendations about when each estimation method is 

appropriate were developed. 
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Nomenclature 

p Mixture ratio (usually estimated) 

p0 True mixture ratio 

θ Characteristic life for Weibull distribution 

sw θθ ,  Characteristic life for weak & strong subpopulations if strong modeled 

β Shape parameter for Weibull distribution 

sw ββ ,  Shape parameter for weak & strong subpopulations if strong modeled 

λ Failure rate for Exponential distribution 

R(t) Reliability at time t 

F(t) 1-R(t) 

L(t) Likelihood function 

LRT Likelihood Ratio Test (for presence of subpopultions, p<1) 

ba,  Parameters for inverted gamma distribution (assumed on θ  in Bayesian 

estimation) 

βα ,  Parameters for beta distribution (assumed on p in Bayesian estimation) 

21,δδ  Parameters for uniform distribution (assumed on β  in Bayesian 

estimation) 

D Observed data 

BIt  Burn-in time (length) 

censt  Censor time 

misst  mission length (or time in field under warranty) 

setupC  fixed setup cost 
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BC  time dependent cost for burn-in per unit per unit time 

fieldC  cost of field repairs during the warranty period 

N  number of parts 

slipC  Cost of schedule slippage 

chngC  Cost of changing batches in burn-in 

pC  Cost of parts 

lossC  Cost of loss in the field 

incentC  Cost of loss of incentives due to field failures 
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Chapter 1: Introduction 

Motivation 

In addition to the failure rates observed during the three typical periods of product life 

(infant mortality, useful life, and wear-out), unexpected clusters of failures may occur 

that deviate from expected, failure rates (see Figure 1).    These latent failures occur 

after the infancy period, during the constant failure rate portion of the bathtub curve.   

Figure 1.  Bathtub curve with additional latent failures   
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Under most reliability model assumptions, all failures in a population are considered 

to come from the same distribution.  Each individual failure time is assumed to 

provide information about the likely failure times of all other devices in the 

population.  However, in situations with latent failures, it may be the case that there is 

a weak subpopulation while some percentage of the devices remained durable, 

[Paulsen, 2004][Meeker, 1987]. 

 

For example, consider some of the thermal cycle test results from the Joint Council 

on Aging Aircraft/Joint Group on Pollution Prevention (JCAA/JG-PP) Lead-free 

Solder Project.  They tested BGAs under thermal cycles of -20oC to +80oC with dwell 

times of 30 minutes at hot and 10 minutes at cold.  They tested single material solder 

combinations (SnPb balls with SnPb solder and SnAgCu balls with SnAgCu solder) 

and mixture situations (SnPb balls with SnAgCu and SnAgCuBi Pb-free solders).  

They noted that in the mixture situations, particularly the SnAgCuBi case, “had a 

population that failed very early and a population that had reliability numbers 

equivalent to the SnPb controls.” [Woodrow, 2006]  This conclusion was easy to 

observe in their experiment because they tested most devices to failure.  When all 

parts are driven to failure, the mixture is evident in Weibull plots by a bend in the 

Weibull curve, as shown in Figure 2.  A single Weibull curve does not fit this data.  

The weak subpopulation parts and the durable parts follow two different distributions.  

The durable parts have lifetimes of 8000 to 10,000 cycles while the many of the weak 
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subpopulation parts fail in less than 1000 cycles.  Additional investigation revealed 

that a weak subset of parts was created by “lead poisoning,” a separate lead phase in 

the metallurgy of the joint, particularly on reworked devices.  The non-uniform joint 

resulted in early cracking. [Hillman, 2006] 

 

 

Figure 2.  Weibull plot of thermal cycle test data (-20oC to +80oC) from JCAA/JG-PP BGA 
testing. [Woodrow, 2006] 
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Figure 3.  Lead phase and cracks observed in weak subpopulation devices from the JCAA/JG-PP 
thermal cycling tests of mixed material BGAs.  [Hillman, 2006] 
 
 

In the experiment, there was a lot of information about the Weibull mixture.  Because 

it was an experiment, it was possible to drive all the parts to failure and create 

Weibull curves for each subpopulation.  It was also possible to perform analyses on 

the failures to determine why the weak subpopulation parts failed early.  However, in 

a production situation, there would be much less information.  Perhaps thermal 

cycling was performed as part of unit assembly and test and some of the weak 

subpopulation failures occurred.  Perhaps their previous testing had been lucky, and 

there had been very few cases of “lead poisoning.”  They did not expect failures in a 

few hundred cycles.  They would not necessarily know if the early failures were 

suggesting that there was a systemic problem with the entire production run or 

whether, as was the case in the experimental data, there was only a percentage of 
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devices that were at risk to fail early.  Even if they knew of the possibility of early 

failures, the percentage of parts in the weak subpopulation would vary.  For a given 

production run, it would be unknown how many parts were at risk.   

 

In this example, obviously it would be preferable in a production situation to use one 

of the single material processes and avoid the root cause all together.  However, say 

that a mixed material situation was unavoidable or the boards had already been built.  

How many thermal cycles should they perform to optimize field performance?  In this 

case, with the experimental results, they may have some information about the 

expected values for the Weibull parameters.  They also have the failure data from the 

production lot.  How should they estimate the reliability for the production lot?  If 

they didn’t have the experimental results and could only depend on the highly 

censored production lot results, how should they perform the modeling? 

 

The causes of latent failures are many.  In this example, it was a random failure mode 

that only appears in a percentage of the lot.  However, they may also be due to lot or 

batch related production problems, and it may be that traceability has been lost.  They 

may be from a failure mechanism that has always been present in the product at a low 

rate and was historically masked by other mechanisms.  These latent failures only 

become visible after other process improvements have reduced the constant failure 

rate enough to unmask them.  In other cases, the latent defects are introduced at 

higher levels of processing and test.  This might include problems with connections, 

exposure of parts to a damaging environment, or electrical overstress during testing.  
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Ideally, when a mixed distribution is suspected, the weak subpopulation could be 

identified through determination of root cause, inspecting, and sequestering of 

impacted devices.  But many times, for practical reasons, when the overall population 

is a mixture of the weak and strong subpopulations; there may be no non-destructive 

way to identify the weak devices.  In the earlier example, there is no non-destructive 

means to inspect solder balls for the Pb-phase.  In another example, a section of a 

wafer might be contaminated but the problem not discovered until after traceability to 

row and column is lost for individual die.  It is unknown what percentage of the die 

were contaminated, and if the die are already packaged, inspection may not be 

possible.  Or, early “freak” failures might be observed in qualification or 

characterization life tests, after infant mortals were already removed.  Root cause may 

be completely unknown.  The numbers of and causes for the “freaks” may be ignored 

for characterizing wear-out for the overall population, but the customer and supplier 

may want to quantify the number of early failures that can be expected in a 

production run, [Paulsen, 2004]. 

 

In these cases, statistical estimation methods must be used, either with or without root 

cause information, to quantify the reliability risk to the population, [Meeker, 1987]. 

The accuracy of these estimates may be critical to the decision making regarding 

release of the product, but estimation in these circumstances is difficult.  There may 

be very few failures, with the majority of devices simply censored.  There may be no 

way of determining what percentage of the censored devices is in the weak 

subpopulation, or even verifying that the weak devices represent a subpopulation 
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instead of an early sign that the entire population is weaker than expected.  These data 

limitations can lead to instabilities in some estimation techniques and it has been 

theorized that some estimation methods may have heavily biased results [Kececioglu, 

1998]. 

 

Once estimation of the distribution or mixture of distributions is established, 

decisions need to be made.  If it is determined that there is a mixture, screens and 

additional burn-in may be possible for removing the weak subpopulation.  However, 

the length and cost of those tests must be weighed against the risk of field failures and 

the potential that screens and additional burn-in may remove useful life from products 

in the main subpopulation.  Appropriate cost models must be developed to determine 

the best course of action.  The model needs to include the cost of screening, the 

impact of the screening on the product life-cycle, the cost of field failures, and 

uncertainties in the reliability modeling. 

 

Background 

If it can be determined that there is a weak subpopulation, one response might be to 

develop a test or screen by which the subpopulation can be detected and removed.  

Ideally the application of such a screen would be based on some sort of easily 

detected characteristic, such as a particular wafer or processing run.  It might be that 

the devices can be visually screened or put through some other non-destructive 

physical analysis, such as EDX or a bond pull.  However, for many of these situations 

there is either not enough information about the failure mechanism to develop such a 
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test or simple inspection is not possible.  It may be the case that the only feasible 

means of removing the weak subpopulation is to perform an extended burn-in or 

Environmental Stress Screen (ESS).  It may also be the case that performing such 

screening is necessary to get additional data for the modeling of the parameters of the 

mixed populations. 

 

ESS and burn-in, although having similar goals, are not identical.  ESS typically uses 

high stress conditions to cause certain types of failure mechanisms to occur more 

quickly than under normal operating conditions [Chan, 1994].  Since different types 

of stresses accelerate different mechanisms, the underlying cause of the weak 

subpopulation must be understood before an ESS can be effectively applied.  Burn-in 

is typically performed under much lower stresses, much closer to the operating 

conditions [Jensen and Petersen, 1982].  Although performing these tests will have 

different logistics and costs, from a modeling perspective they can be treated virtually 

interchangeably.  For example, for ESS, it is necessary to have an acceleration model 

to convert time under ESS into operational time.  Once this conversion has taken 

place, both ESS and burn-in represent consumption of early life for the purposes of 

avoiding latent failures.    

 

Research Goals 

There are two primary objectives for this dissertation: 
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1. Determine the best statistical methodology for evaluating latent failures, 

including the development of a methodology for testing whether a weak 

subpopulation exists. 

2. Develop cost models and decision guidelines to evaluate responses to latent 

failures, including extended burn-in, product replacement, or use-as-is. 

 

 

 

Approach Summary and Analysis Strategy 

Different estimation methodologies for mixed Weibull distributions were 

characterized and compared using a series of Monte Carlo analyses.  The amount of 

bias and random error for the different methods was examined.  These results have 

been used to guide recommendations about when different methods are most 

appropriate.1 

 

A cost model was developed and characterized for a variety of mixed Weibull 

situations and input costs.  The impact of the biases and random errors associated 

with the different estimation methods on the cost estimates was examined.  

Recommendations are made about the use of the different methods when cost-based 

decision making is used. 

 

                                                 
1 Throughout this dissertation, references are made to electrical parts and boards.  
However, these are merely an example of the situation where these techniques might 
be applied.  The results apply equally well to mechanical situations or even to 
survival problems in medical applications. 
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 In Chapter 2, previous work on mixed model estimation, screen length optimization, 

and cost models will be summarized.   Chapter 3 introduces the Monte Carlo 

methodology used to examine three estimation methods.  Chapters 4 through 6 

present the Monte Carlo results for each method.  Chapter 7 develops a burn-in cost 

model.  Chapter 8 discusses the impact of modeling error for each method on the 

decision to perform burn-in using both a minimum reliability and a cost decision rule.  

Finally, Chapter 9 describes plans for future work.  
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Chapter 2: Previous Work 
 

Estimation of mixed population parameters, confidence bounds, and the cost and 

optimal screen length are all areas that have been explored to varying degrees in the 

existing literature.  However, there are still many open questions in all three areas.  

This section reviews the current research for each area and then discusses what is 

lacking to make good decisions when latent failures are observed in electronic 

products. 

Methods of Estimation for Mixed Models  

The basic form of a mixed distribution model is: 

( )
( )
( ) ( ) ( ) ( )

 from the distribution 

 from the distribution G

 from the distribution 1

i

i

i

y F y

z z

x H x p F x p G x= × + − ×

 

where p is the mixture ratio.  For the reliability and electronics world, the two 

distributions are typically taken to be exponential, Weibull, or log-normal: [Ebeling, 

1997], [Chan, 1999] 

( ) ( ) ( ) ( )

( )

( ) ( )

1 2

1 2

1 ,1 2 ,2

1

exp 1 exp (Weibull)

or

1 11 ln 1 1 ln (Lognormal)
med med

R t p F t p G t

t tp p

t tR t p p
s t s t

β β

θ θ

= × + − ×

⎛ ⎞ ⎛ ⎞
= × − + − × −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞
= × − Φ + − × − Φ⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦
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In some cases, in both the theoretical and the reliability fields, these are simplified, by 

assuming that samples in the strong subpopulation have a reliability of 1, independent 

of time.  This assumption is sometimes called the limited failure population model 

[Meeker, 1987], [Hirose, 2005].  This is an appropriate assumption if the MTTF for 

the strong subpopulation is much larger than the maximum time of interest.  It 

reduces the number of parameters to be estimated from five to three. 

 

Work has been done on estimating mixture models in a variety of fields since the 

1970s.  Much of the early work was in the realm of theoretical statistics and 

biostatistics and focused on cases where only the proportion of different elements of 

the mixture is of interest or where small samples from each of the subpopulations are 

observable independent of each other, as well as in the mixture (i.e., samples xi, yi, 

and zi). [Hosmer, 1973], [Murray, 1978], [Hall, 1984]  

 

Even with data from each of the underlying distributions, this problem can be 

difficult, particularly if there is uncertainty about the form of the distributions.  [Qin, 

1999] proposes a likelihood type method for estimating mixture proportion under a 

proportional hazard model.  However, Qin barely touches on the issue of estimating 

the distribution parameters.   

 

Although the work in theoretical statistics and biostatistics may have some 

applicability in electronics reliability, it does not address many of the problems faced 

in a production situation.  First, it is unlikely that data is available from each of the 
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underlying populations; i.e., it is unlikely that the weak subpopulation can be isolated 

and tested without some of the main population being present.  Second, the estimates 

of the parameters, at least for the weak subpopulation, are very important.  Without 

information about the mean time to failure and spread of failures in the 

subpopulation, it cannot be determined whether products from the weak 

subpopulation will meet the reliability requirements, whether they can be screened, or 

whether the mixed population must be quarantined.   

 

Mixed distributions have also been examined in the reliability engineering and 

electronics fields, the earliest methods of estimation were based interpretation of 

plots.  Surveys of these methods are presented in [Cran, 1976], [Jiang, 1992b], and 

[Jiang, 1995].  The technique involves using Weibull-paper and looking at bends in 

the data.  Various methods exist for determining the appropriate two Weibull curves 

on the graph, but the methods depend on “eye-balling” the data and are subject to the 

same sorts of errors that occur when single Weibull parameters are estimated entirely 

from graphing.  Recent papers acknowledge that extrapolations from these methods 

can have large errors [Kececioglu, 1998]. 

 

With today’s computing power, the most obvious method of estimating the 

parameters is maximum likelihood estimation (MLE) [Meeker, 1987] [Hirose, 2005].  

Due to the complexity of the reliability function for the mixed population, there are 

no closed form solutions for the maximum likelihood estimates of the parameters.  
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Instead, numerical methods, such as the Expectation and Maximization (EM) 

algorithm or grid searches are used [Kececioglu, 1998], [Jiang, 1992b]. 

 

There are potential problems with MLE, particularly in cases where only a limited 

number of failures are observed.  Since numerical methods must be used to maximize 

the likelihood, the speed of convergence may be an issue. In some cases, calculation 

of the MLE parameters may require more computing power or more sophisticated 

software than is available to some practitioners.  There may also be problems with 

convergence of the estimation algorithms or with local minima if starting values are 

not chosen appropriately [Schifani, 1999] [Kececioglu, 1998].   

 

Even more importantly, MLE on samples with few failures can produce biased 

estimates, even when it is used to estimate only one distribution’s parameters. 

[Abernethy, 1999] [Mardia, 1999].  Very few papers actually quantify the amount of 

this bias. 

 

[Hirose, 2005] appears to be the first to systematically quantify bias in the MLE 

parameter estimates for mixed distributions.  Simulations were run on a case where 

the strong subpopulation had a reliability of 1 and was ignored in the modeling.  

Hirose’s results demonstrated that the MLE estimates of the mixture proportion and 

estimates of the mean time to failure (MTTF) were highly correlated for failure times 

from a mixture of exponential distributions (see Figure 4).  This correlation is a major 

contributor to the bias in the parameter estimates. 
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Figure 4.  Graphic produced from reproducing the methodology in Hirose [Hirose, 2005].  The 
plot shows the estimated mixture ratio (p) versus the estimated MTTF (λ) when the true mixture 
ratio was 50% and the two MTTF were 1 and 1x108. 
 

In an attempt to reduce the correlation and the bias, Hirose explored changing the 

assumptions on the mixed model by looking at the impact of removing the constraint 

that the two subpopulations sum to 100% (Trunsored model), ignoring the possibility 

of a mixture (censored model), and using a conditional likelihood for failures only 

(truncated model).  Hirose only looked at cases where the weak subpopulation was at 

least 50% of the overall population, and demonstrated that the estimate of the MTTF 

could be highly biased and the amount of bias varied with the true mixture 

proportion.  Hirose concluded that if the proportion of the weak subpopulation was 

p 

M
TT

F 
(λ
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close to 1 then it was better to ignore the possibility of the mixture (censored model) 

and otherwise it was best to use the Trunsored model.   

 
Figure 5.  Graphic produced by reproducing the methodology in Hirose over the range of 
mixture proportions of 0.6 to 1.  Bias in the estimates of MTTF (λ) versus the true mixture 
proportion (p) for the four model assumptions considered in [Hirose, 2005]. 
 

The figure on the left of Figure 5 reproduces the results from Hirose.  The figure on 

the right expands those results to smaller mixture ratios.  Expanding the simulations 

that Hirose performed shows that for situations where the weak subpopulation is very 

small, use of the Trunsored model produces a large bias in the estimate of the MTTF.  

Using the standard mixture model, with the constraint that the two subpopulations 

sum to 100%, has substantially smaller biases, at least in the case where the strong 

subpopulation has a reliability of 1.  It is expected that varying the other parameters 

will have similar impacts on the amount of bias.  However, Hirose’s results to not 

demonstrate under what circumstances the biases are substantial enough to be a true 

concern. 

 

Other iterative procedures have also been proposed that claim, although do not prove, 

that they eliminate the bias and convergence problems that may exist for MLE 
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[Kececioglu, 1998] [Perlstein, 2001] [Schifani, 1999].  Without quantifying the bias 

in the MLE or their new methods, it is unclear whether these methods are necessary 

or even provide any improvement over MLE. 

 

Optimizing Test and Screen Lengths 

Optimal lengths for burn-in and ESS have been explored for many years, particularly 

from the perspective of removing infant mortals and using decreasing failure rate 

Weibull curves.  There are a number of different criteria that are used for 

optimization.  In some cases, mean residual life, post screen, is taken as the objective 

function.  However, if there is a set lifetime of interest, such as a mission length or a 

warranty period, minimizing the chance of failure during that time period may be the 

more appropriate measure.  In still other cases, there may be a requirement that the 

probability of survival over a time period is at least some value, such as 0.90 

reliability at 100,000 hours. [Leemis, 1990]  Although these may be appropriate 

measures of optimal screen length, in most real world applications, another important 

consideration is the lifecycle cost impact.  

 

The idea of balancing the lifecycle cost of field failures with the cost of performing 

tests to remove the latent failures has been explored with varying degrees of success.  

In some cases, a single distribution is assumed, and the test is designed to remove 

some percentage of infant mortals from a decreasing failure rate Weibull distribution, 

[Mi, 1996].  Others consider latent failures and mixed distributions, including mixed 

Weibull distributions [Perlstein, 1989] [Reddy, 1994] [Pohl, 1995] [Yan, 1997] [Kim, 
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1998].  However, they also frequently assume that the parameters of the Weibull (and 

the costs) are known with a high degree of certainty and make other simplifying 

assumptions.   

 

Summary of Weaknesses of Current Research 

As illustrated in the literature review, there are weaknesses in the current research.  

Although there is mention of maximum likelihood estimation methods producing 

biased results, there is little guidance on how biased the results might be or under 

what conditions bias is most likely to occur.  Small sample sizes are mentioned as a 

possible factor in likelihood of bias, but it is unclear how many failures must be 

observed to avoid the problem.  Understanding of, and attention to these problems 

also varies: some authors do not even mention the possible problems with the MLE, 

while others propose entirely new estimation schemes to avoid the problems with the 

technique. 

 

Many simulation studies have been conducted to look at the effectiveness of 

likelihood ratio methods for confidence bound estimation on single distributions, but 

there does not appear to be similar work on its effectiveness on mixed distributions.  

It is unclear whether some of the proposed correction factors to the likelihood ratio 

method would be appropriate under mixed conditions. 

 

Finally, it is unclear how uncertainties and errors in the parameters of the mixed 

distribution might impact the cost tradeoff regarding further screening and testing.  
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The lack of industry consensus on how to address mixed distributions and the 

possible cost of releasing a product that contains devices from several failure time 

distributions makes it difficult for decision makers to know how to proceed when 

latent failures appear in their products. 
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Chapter 3: Monte Carlo Methodology 
 
In order to determine which estimation methods are most accurate, Monte Carlo 

simulations were developed to estimate parameters under a variety of known 

underlying conditions2.  The cases were selected to be similar to those presented in 

[Hirose, 2005], but also to expand them to a larger range of situations. 

 

The true distribution of the data was always taken from a limited failure population.  

This is a simplification of the general mixed Weibull where it is assumed that samples 

in the strong subpopulation have reliability of 1, independent of time.  This is a 

reasonable model for at least some electronics where the product has been designed to 

have very little probability of failure during normal operating life with margin. The 

overall reliability had the form: 

( ) ( )ptptR −+
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−×= 1exp

β

θ
 

 

Values of the mixture ratio, p, were varied.  In order to allow greater sampling under 

difficult estimation situations, more values of p were examined close to 0 and 1.  

Values of p included in the simulation were: {0.05, 0.10, 0.15, 0.20, 0.25, 0.50, 0.75, 

0.80, 0.85, 0.90, 0.95, 1.00}.  The characteristic life, θ,  was taken to be close to 1 for 

all cases.3  Both a constant failure rate case (β=1) and increasing failure rate (β=3) 

                                                 
2 All simulations and estimations were performed using the SAS Software System 
version 9.1 (Copyright (c) 2002-2003 by SAS Institute Inc., Cary, NC, USA) 
3 For the case of increasing failure rate, the characteristics life was adjusted from 1 to 
maintain a consistent number of observed failures. 
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case were examined.   A censor time of 2 (about twice the characteristic life) was 

chosen .4  Beyond that time, the exact failure time of surviving samples was not 

known; they were only included in the models as surviving past t =2. 

 

For each case, 200 datasets, each containing 100 observations, were generated5.  The 

estimation method was applied to each dataset.  The bias was calculated as the 

average difference between the estimated value and the true value; the random error 

was calculated as the standard deviation of the difference.  In addition, the impact of 

these parameter estimates on the estimates of reliability was also examined.  The bias 

was calculated as the average difference between the estimated value and the true 

value; the random error was calculated as the standard deviation of the difference. 

 
 

                                                 
4 Consistent with the censor time in [Hirose, 2005]. 
5 This was based on the sample size in [Hirose, 2005] and should be a conservative 
example of production lot sizes.  If sample sizes are larger, more failures will be 
observed which will only decrease the errors in the methods. 
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Chapter 4: Maximum Likelihood Estimation 

This chapter summarizes the results of the Monte Carlo simulations using Maximum 

Likelihood Estimation (MLE), including the impact of variation is the underlying size 

of the weak subpopulation and the censor time.  The impact of likelihood ratio tests 

for determining the presence of a weak subpopulation is also explored.  

 

Methodology 

The likelihood was maximized using the Newton-Raphson optimization technique as 

the default.  Although some of the literature has proposed other methods of 

optimization, particularly for the purposes of speed of convergence ([Jiang, 1992b] 

[Kaylan, 1981]), exploration of the impact of optimization technique was not 

performed.   

 

Results 

Most of the alternative methods were developed as a result of concerns about bias or 

errors in the MLE method.  However, the papers developing them do not establish the 

magnitude of those errors.  Thus the first step in this analysis is to examine the 

performance of the MLE method under a variety of conditions. 

 

Some bias was found in the MLE estimates of the mixture ratio.  The amount of bias 

depends on the number of observed failures.  The more failures observed, the smaller 

the observed bias.  For example, when 30 or more failures in the 100 samples were 
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observed the average bias on p was only about 2%, and 90% of the predictions were 

within 20% of the true p.  However, if the true p is very small, the number of 

observed failures in 100 samples will be small.  In the case of the true mixture ratio 

being 0.1, on average, only 8 failures were observed. The bias on p was 32%, and 

only 50% of the estimates were within 20% of the true mixture ratio.  These high 

errors are illustrated in Figure 7.   Because the estimates of all parameters are 

correlated, the bias and random errors in the other Weibull parameters, particularly 

for small mixture ratios and few observed failures are even worse.  The errors are 

summarized in Table 8. 

 

Table 1.  MLE: Errors in Parameters and Reliability Estimates for θ=1, β=1, censor time=2. 
True p Bias in p 

(SD) 
Bias in θ 
(SD) 

Bias in β 
(SD) 

Bias in 
R(10)6 
(SD) 

0.05 0.09 
(0.26) 

28.24 
(160.30) 

43.45 
(428.99) 

-0.02 
(0.07) 

0.1 0.09 
(0.26) 

10.69 
(60.76) 

2.74 
(63.02) 

-0.02 
(0.18) 

0.25 0.07 
(0.21) 

1.80 
(8.45) 

0.08 
(0.28) 

-0.03 
(0.11) 

0.5 0.04 
(0.15) 

0.29 
(0.96) 

0.04 
(0.19) 

-0.03 
(0.12) 

0.75 0.03 
(0.11) 

0.11 
(0.38) 

0.02 
(0.14) 

-0.03 
(0.11) 

0.9 0 
(0.08) 

0.01 
(0.22) 

0.03 
(0.13) 

0 
(0.08) 

1 -0.03 
(0.04) 

-0.06 
(0.13) 

0.05 
(0.11) 

0.03 
(0.04) 

 

 

 

 

                                                 
6 10 times longer than the censor time.  In truth all the at risk subpopulation has failed 
by this point, so R(20)=1- p . 
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Figure 6.  Performance of MLE relative to mixture ratio p.  The mean estimates are represented 
by “+”.  The boxes represent the mean and interquartile range.  The whiskers represent 
minimum and maximum. 
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Figure 7.  Percent Error in Estimates of Mixture Ratio p when the true p is 0.1.  The 100% cases 
are situations where the mixture ratio was estimated to be 1.   
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However, in most applications, the error in the parameter estimates is much less 

important than the errors in the reliability estimate at some time point.  The MLE 

method performs much better with regards to this criterion (see Table 8).  Even in the 

case where the true mixture ratio is 0.1, where there were very high errors in all three 

Weibull parameters, the bias in the reliability estimate is about a 5% under prediction 

in the reliability, as illustrated in Figure 8.  Although it would be preferable to have 

no bias, the fact that the method tends to under predict the reliability is typically 

considered preferable to over-prediction in practice as it is more conservative.   
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Figure 8.  Bias in reliability estimates from the MLE method under assumed mixed Weibull 
distribution.  True conditions were a mixed exponential distribution with mixture ratio of 0.5 
(top) and 0.1 (bottom).  The censor time was 2.  The true reliability is represented by the solid 
line and the prediction by the dashed line.  
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Caution should be taken when the true mixture ratio is close to 1.  In these cases, the 

MLE method tended to predict a higher reliability than truth (see Figure 9).  This is 

because the model form allows for a mixture even when all devices are at risk.  The 

bias in these cases can be substantially reduced by performing a Likelihood Ratio 

Test (LRT) with one degree of freedom to test if the mixture ratio p is significantly 

different from 1.  There are problems with performing a simple likelihood ratio test 

on MLE situations, as described in [Hirose, 2005] and [Maller, 1996], because the 

chi-squared distribution is a poor approximation of the true distribution, particularly 

near boundary conditions.  However, it was also felt that this simple test is the one 

most likely to be incorporated into practice if the MLE is used.  Thus it was applied 

without any correction.  For cases where the mixture ratio is close to 1, even the 

inaccurate, simple chi-squared LRT improved the reliability estimate errors.  The 

reduction in bias when the true mixture ratio is 1 is illustrated in Figure 9.   
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Estimate after testing
for mixture

Estimate assuming
mixture exists

Estimate after testing
for mixture

Estimate assuming
mixture exists

 

Figure 9.  Bias in reliability estimates for the MLE method under assumed mixed Weibull 
distribution.  True conditions were an exponential distribution (with mixture ratio of 1 – no real 
mixture).  The censor time was 2.  The true reliability is represented by the solid line, the 
prediction without testing the significance of p by the yellow squares, and the prediction after 
testing for the significance of p by the orange stars. 
 

There is a complication with using the likelihood ratio test on p when it is small.  

When the true mixture ratio is small and few failures are observed, the test will 

frequently determine that the estimate p is not significantly different from 1.  In these 

cases, the model will predict reliabilities much lower than the true reliability at 

extrapolated times. Applying the LRT when p is small increases the bias and random 

error substantially, as illustrated in Figure 10.  The MLE method without testing to 

see if the mixture ratio p is less than 1 predicts slightly lower reliability than truth up 

until 0p is about 90%. Above 90%, it predicts slightly higher reliabilities than truth.  
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When the LRT is applied, the model predicts much too conservative reliabilities 

unless p is very close to 100%.  Performing the test preserves the conservatism of the 

model when p is greater than 90%, but at a high cost when p is actually small.  

Further work is needed on adjusting the LRT to be more accurate over a variety of p 

values.  It is currently recommended that the test only be applied when the predicted p 

is greater than 0.9 or when additional conservatism in the reliability estimates is 

needed. 

 

 

 
Figure 10.  Black is the true reliability.  Gold square is without test.  Orange stars is with test.       
 

Estimate assuming
mixture exists

95th percentiles

Estimate after testing
for mixture

95th percentiles

Estimate assuming
mixture exists

95th percentiles

Estimate after testing
for mixture

95th percentiles
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To examine the impact of an increasing failure rate for the weak subpopulation, cases 

with β=3 were also examined.  If β=3 and θ=1, then the reliability of the weak 

subpopulation at the censor time of 2 would be very close to 0.  Since this would 

result in more observed failures, and likely less error in the estimates, the 

characteristic life was also adjusted.  At β=3 and θ=1.6, the reliability of the weak 

subpopulation at the censor time of 2 would be 14%, the same as in the case of β=1 

and θ=1.  Comparisons of reliability predictions at extrapolations to time=4 and 

time=10 are shown in Figure 11.   An increasing failure rate produces larger bias and 

random errors for the MLE model, particularly when p is small and few failures have 

been observed.  At small mixture ratios, the bias can double, but the bias is still in the 

conservative direction.  The random error can be very large, particularly when 

extrapolating far from the censor time.  Performing tests on the significance of p does 

not improve the errors. 
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Figure 11.  Black is true reliability. Gold is the predictions when the true failure rate is constant.  

Purple is the prediction when the true failure rate is increasing. 

 

 

The impact of censor time was also investigated and summarized in Figure 12.  As 

might be expected, the later the censor time, the better the estimate because there will 

be more information about the distribution of the failures.  This is true whether one is 

predicting a relatively small distance from the censor time or substantially farther 

from the censor time.  In a few cases, when the censor time is particularly short and 

the extrapolation time is close to the censor time, the bias is in the direction of over-

predicting the reliability. 

 

Estimate under
constant failure rate

95th percentiles

Estimate under
increasing failure rate

95th percentiles

Estimate under
constant failure rate

95th percentiles

Estimate under
increasing failure rate

95th percentiles
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Figure 12.  Impact of censor time when 5.00 =p .  Errors in R(10) are on the right; errors in 
R(censor time+2) are on the left.  Solid line is true reliability, dash is average predicted, dots are 
5th and 95th percentiles. 
 

 

Chapter Conclusions 

Overall, the MLE ratio does reasonably well in predicting the reliability.  However, 

there is room for improvement, particularly in the errors in the predictions of the 

mixture ratio and Weibull parameters and in cases where few failures are observed.  

Now that baseline performance of the MLE method has been established, it will be 

considered in the next two chapters whether alternate methods proposed in the 

literature reduce these errors. 
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Chapter 5:  Trunsored Estimation 

This chapter summarizes the results of the Monte Carlo simulations using Trunsored 

Estimation, including the impact of variation in the underlying size of the weak 

subpopulation and the impact of likelihood ratio tests for determining the presence of 

a weak subpopulation.  These results are compared to those on MLE and the results 

presented in [Hirose, 2005].  

 

Methodology 

The Censored MLE estimation method ignores the possibility of a mixture and only 

estimates a single Weibull.  The Truncated estimation method uses a conditional 

likelihood on the failures and ignores censored observations: 

{ }( )
{ }( )1

; ,

; ,

r
i

i

f t
L

F T

θ β

θ β=

= ∏ , where r is the number of observed failures 

 

Trunsored method, as developed by [Hirose, 2005], attempts to unify the censored 

and truncated estimation methods.   It removes the constraint that the mixture 

parameters for the different subpopulations sum must to 100%.   As shown in [Hirose, 

2005] for the mixed exponential, solving the likelihood equation for the Trunsored 

model corresponds to the solutions of a truncated model7, and the solution also 

corresponds to the censored model if the mixture ratio is set to 1.  This means that it 

unifies the censored and truncated models and allows better use of the likelihood ratio 
                                                 
7 Parameter estimates are the same; the likelihood values differ. 
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test.   The likelihood was maximized using the Newton-Raphson optimization 

technique as the default.   

 

Results 

The first step in examining the Trunsored method was to attempt to replicate the 

results on mixed exponential models reported in [Hirose, 2005].  He compared the 

performance of Trunsored and MLE for a mixture of exponentially distributed life-

times.  His work also focused on situation where the weak subpopulation made up at 

least 60% of the overall subpopulation because he was interested in the statistical 

behaviors near the boundary condition, when the weak subpopulation was close to 

100% of the overall population. 

 

[Hirose, 2005] only reports bias and standard errors for characteristic life (failure 

rate).  However, for at least that parameter, the simulations generated for this 

dissertation produced very similar results to those reported in [Hirose, 2005].   For 

example, Table 2 provides a comparison of the results for a true mixture ratio of 0.9. 

 

Table 2.  Comparison of [Hirose, 2005] and Results from this Dissertation on Mixed Exponential 
with True Mixture Ratio 0.9 
 Bias in θ STD in θ 5% 95% 

[Hirose, 2005] 0.013 0.195 0.729 1.364 
Replication for 
Dissertation 

0.033 0.248 0.731 1.536 
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Once it was determined that the results from this dissertation were in line with those 

reported by [Hirose, 2005] for comparable cases, additional cases for mixed 

exponential were examined.  As shown in Figure 13, the errors increase dramatically 

as the mixture ratio becomes small.  This is believed to be due to the fact that under 

low mixture ratios, there are few failures observed and the method can become 

unstable. 

 

Figure 13.  Estimated Characteristic Life for Assumed Mixed Exponential.  Results greater than 
or equal to 0.6 correspond to those reported in [Hirose, 2005].  Stars are biases and dashes 
without stars are the 5th and 95th percentiles. 
 

Estimated Characteristic Life

95th Percentile

Estimated Characteristic Life

95th Percentile
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Finally, [Hirose, 2005] results were generalized to assuming a mixed Weibull 

distribution, instead of a mixed Exponential.  The addition of the estimation of the 

shape parameter results in higher error in the parameter estimates, for both the MLE 

and Trunsored methods but the errors are larger for the Trunsored method.  For 

example, for the case when the true mixture ratio was 0.5, when mixed exponential 

model is assumed, the bias in the Trunsored of p was about 0.1 or about 20%.  

However, on the same data, when a mixed Weibull model is assumed, the Trunsored 

of p had a bias of 0.5 or about 100%.  Similarly, the bias on the estimate of the 

characteristic life was about 0.028 for the mixed exponential but was 16 for the mixed 

Weibull case.   

 

                                                 
8 Note that the bias is for 1

λ  in the exponential case to be consistent with our 

parameterization of the Weibull. 
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Figure 14.  Performance of Trunsored relative to mixture ratio p for mixed Weibull.  The mean 
estimates are represented by “+”.  The boxes represent the mean and interquartile range.  The 
whiskers represent minimum and maximum. 
 

 

 

Figure 15.  Distribution of estimates for p for the MLE and Trunsored methods. 
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The biases, particularly in the mixture ratio, are worst when the true mixture ratio is 

small, as illustrated in Figure 14.  This is due to the large skew in the distribution of 

estimated mixture ratios for these cases (see Figure 15).  When the true mixture ratio 

is small, fewer failures are observed.  The overall likelihood is fairly flat.  Whereas 

the MLE bounds p, the Trunsored estimates are unconstrained.  Thus, when few 

failures are observed, there is a higher chance that an “extreme” set of parameters, 

with a lot of bias, will be selected as the optimal estimates.  For example, consider a 

case where four failures are observed at {0.14, 0.65, 1.41, 1.97} and the other 96 

pieces are censored (at t=2).  With the constraint that p<1, the MLE method estimates 

the parameters to be {p=1; θ =55.44;  β =0.96} and the log-likelihood is -19.5677.  

The Trunsored method, without the constraint on p, selects the parameter estimates 

{p=27.34, θ=1847.51; β=0.96}.  The log-likelihood is only slightly improved to -

19.5629.  At the censor time, t=2, the two sets give almost identical reliabilities, 

0.959 for MLE and 0.961 for Trunsored.  The start to diverge at t=10 with 0.824 for 

MLE and 0.818 for Trunsored.  By t=50, they are quite different with 0.404 for MLE 

and 0.159 for Trunsored.  The lack of constraints on the Trunsored method, combined 

with relatively flat likelihoods, means that it will occasionally select parameters with 

extremely large errors.  The flatness of the likelihood is related to the number of 

observed failures.  Thus if the number of parts tested is large, even if the true mixture 

ratio is small, more failures will be observed and the chances of these occasional bad 

cases for the Trunsored methods will go down.  For example, when the sample size is 

100, the average estimate of p, when 1.00 =p , is 2.19.  However, when the sample 

size is increased to 500, creating 5 times as many observed failures, the average 
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estimate falls to only 0.18.  The median estimate only changes by 0.02, so the 

increased sample size is only reducing the tail of the distribution.  Similarly, the 

average estimated characteristic life falls from 94.5 to 13.7 while the median only 

changes by 0.1.  The unconstrained nature of the Trunsored distribution makes is 

susceptible to highly misleading estimates when few failures are observed and the 

likelihood is relatively flat. 

 

In general, when the reliability estimates were extrapolated far from the censor time, 

the error in the reliability became increasingly worse, as illustrated in   

Figure 16.  This is because at higher time points, the value of the mixture ratio p 

becomes increasingly important.  With three parameters in the Weibull model and no 

constraints on p for the Trunsored method, there was a much greater chance of the 

best fit will involve a p greater than 1.  Close to the censor time, the Trunsored 

method for Weibull distributions provided a good fit, but extrapolated, and the 

reliability estimate was likely to be biased very low. 

 

Beyond the specific bias and random errors of the parameter estimates under the 

Trunsored method, there are also theoretical problems when the Trunsored model 

estimates p>1.  Although calculating the reliability for the mixed population using 

these estimated parameters produces good reliability estimates when t is close to the 

censor time, it has problems when extrapolated far from the censor time.  In fact, if 

the estimates mixture ratio is greater than 1, then there will be a time at which the 

estimated reliability will be negative.  This happens for the mixed exponential case 
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for the Trunsored method as well, but because the shape parameter is de facto 

constrained for the mixed exponential case, there are fewer times when extremely 

large mixture ratios are estimated.  Thus, the problem is exacerbated for the mixed 

Weibull. 

 

Another question was whether any of the mixture estimates (Trunsored or MLE) were 

an improvement over simply applying a single Weibull model.  The single Weibull 

model has the same number of parameters as the mixed exponential, so perhaps it was 

possible that it would provide an adequate estimate.   However, as shown in Figure 

17, all of the mixture estimates provide more accurate extrapolations of reliability 

than does a single Weibull model.
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Figure 16.  Comparison of bias in reliability estimates for the under assumed mixed exponential 
model (circles) and assumed mixed Weibull model (stars).  True conditions were a mixed 
exponential distribution.  The censor time was 2 and mixture ratio 50%.  The results for the 
Trunsored method is on the top and the MLE method on the bottom. 
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Figure 17.  Comparison of Trunsored results (mixed Weibull and mixed exponential, from 
Figure 16) to a single Weibull.  Single Weibull is shown by solid dots.  True conditions were a 
mixed exponential distribution.  The censor time was 2 and mixture ratio 50%. 
 

It is possible that some of the error observed is because the mixture ratio is not 

significantly different from zero.  The Trunsored method was primarily proposed to 

improve statistical characteristics for hypothesis testing and confidence intervals, not 

for an inherent improvement in point estimate errors.  There are problems with 

performing a simple likelihood ratio test on MLE situations, as described in [Hirose, 

2005] and [Maller, 1996], because the chi-squared distribution is a poor 

approximation of the true distribution.  [Hirose, 2005] developed the Trunsored 

method to be more compatible with the use of the likelihood ratio test for confidence 

bounds and hypothesis testing.  He shows that the percentiles from the log-likelihood 
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ratio from the Trunsored method are closer to the chi-square distribution than are 

those from the MLE method.  Because the use of the likelihood ratio test theoretically 

should be more appropriate for the Trunsored method than for the MLE method, it 

was expected that the when the test (of whether the mixture ratio p was significantly 

different from 0) was applied to both methods, it should result in the Trunsored 

method errors being smaller than those from the MLE method. 

 

However, in almost all cases, the Trunsored method with LRT had more bias and 

random error than either the Trunsored method prior to the test or the MLE method, 

as illustrated in Figure 18.  For both the MLE and Trunsored methods, the addition of 

the LRT increased bias and error under most circumstances.  The test indicated the 

mixture ratio was insignificant a very high percentage of the time and predicted 

substantially lower reliabilities than truth.  These errors occurred with both the MLE 

and Trunsored estimation methods, although the biases for the Trunsored methods 

were a little higher than those from the MLE method.  A summary of the errors under 

the LRT is provided in Table 9. 

 

The only test that improved accuracy is the MLE method when p0 is close to one.  

This was unexpected since it is close to a boundary condition and the LRT is not 

supposed to be accurate for the MLE method under these circumstances.  However, 

the error in estimates under these circumstances is greatly reduced.  The reduction in 

bias when the true mixture ratio is 1 is illustrated in Figure 18.   Based on these 
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results, it appears that the LRT should only be used if increased conservatism is 

needed or perhaps when the original estimate of p is already very close to 1. 

 

Based on the results of these simulations, it is believed that the power of the 

likelihood ratio test for detecting a true mixture is low.  In the cases examined, the 

majority of which had a mixture, the test was likely to revert to the null hypothesis, 

that there was no mixture.  In cases where there truly was no mixture, performing the 

test reduced the errors.  In the field, the applicability of the test depends on the prior 

knowledge of the existence of a mixture and how much conservatism is desired.  If 

the user in the field believes it likely that there is no mixture then performing the test 

is a good idea.  If there is a desire to err on the side of conservatism, that the risk of 

over predicting reliability is too costly, then performing the test is a good idea.  

However, if physical evidence and knowledge of the root cause strongly suggests that 

a mixture exists, performing the test may introduce more conservatism on the 

reliability estimate than is necessary.   
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Figure 18.  Impact of Testing on Trunsored Method.  Red stars is without LRT on p; orange 
squares is with LRT on p.  Dash line is the average estimate of the reliability at time=10.  The 
light dotted lines represent the 5th and 95th percentiles on the estimate. 
 
 

Since the model assumes a non-constant failure rate and to examine the impact of an 

increasing failure rate for the weak subpopulation, cases with β=3 were also 

examined.  If β=3 and θ=1, then the reliability of the weak subpopulation at the 

censor time of 2 would be very close to 0.  Since this would result in more observed 

failures, and likely less error in the estimates, the characteristic life was also adjusted.  

At β=3 and θ=1.6, the reliability of the weak subpopulation at the censor time of 2 

would be 14%, the same as in the case of β=1 and θ=1.    An increasing failure rate 

produces larger bias and random errors for the reliability estimate for both methods.  

Estimate assuming
mixture exists

95th percentiles

Estimate after testing
for mixture

95th percentiles

Estimate assuming
mixture exists

95th percentiles

Estimate after testing
for mixture

95th percentiles



 

 46 
 

Once again, the impact on the Trunsored method is more dramatic than for the MLE 

method.  The results for a few conditions are provided in Appendix 2:  Estimation 

Errors.  The errors for the characteristic life are actually smaller for the increasing 

failure rate case, but the errors in the shape parameter have increased substantially.  

This leads to the overall increase in error for the reliability estimate. 

 

Chapter Conclusions 

The Trunsored method performed better under mixed Exponential assumptions than 

under mixed Weibull assumptions.  Under mixed Weibull, it occasionally selects 

parameter values which produce nonsensical reliability values, even relatively close 

to the censor time.  This typically happens when few failures are observed and the 

likelihood is relatively flat.  The lack of constraints on the parameter values under the 

Trunsored method means that extreme parameter values may be selected when only 

minimal improvement is made to the likelihood.  These results happen less frequently 

if the population is larger and thus more failures are observed.  This situation is not 

improved by testing for the presence of the weak subpopulation nor if there is an 

increasing failure rate. 
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Chapter 6: Bayesian Estimation 
 
This chapter develops the methodology for performing Bayesian estimation in mixed 

Weibull situations and summarizes the results of the Monte Carlo simulations using 

the Bayesian technique.  These results are compared to those from MLE. 

Methodology 

It is assumed that a product comes from either a weak or strong subpopulation with a 

mixture ratio p.9  
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As with all Bayesian analyses, assumptions must be made about the prior knowledge 

of the parameters.  It is assumed that the mixture and characteristic life parameters are 

all independent of each other.  It is also assumed here that the shape parameters are 

independent from the other variables.  This is perhaps a more difficult assumption, 

but is common in the Bayesian reliability literature [Martz, 1982] [Canavos, 1973]. 

 

One commonly used set of priors on the Weibull is the inverted gamma distribution 

on Θ  and the uniform distribution on Β   [Martz, 1982] [Canavos, 1973]10.  This is 

                                                 
9 Note that this is a slightly different parameterization of the Weibull than is typically 
used: the shape parameter β is only applied to the random variable t.  This is to allow 
easier separation of the shape and characteristic life parameters in the integrations 
needed to calculate the posterior distribution.  It is recommended in Martz and Waller 
[1982]. 
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similar to the assumption made in [Perlstein, 2001], who assumed a beta prior on the 

mixture parameter p and gamma priors on each of the failure rates.  Since for the 

Weibull distribution, the standard parameterization uses characteristic life, the 

parameter of interest is similar to the inverse of the failure rate parameter in the 

exponential case.  If Λ is a random variable having a Gamma distribution with 

parameters ( )1,a b− , then 1
Θ =

Λ
 has an inverted gamma distribution with pdf 

( ) ( )

11 exp , 0
aab bg a b

a
θ

θ θ

+
⎛ ⎞ ⎛ ⎞= − >⎜ ⎟ ⎜ ⎟Γ ⎝ ⎠ ⎝ ⎠

  

 

Thus, for consistency with the previous literature, it will be assumed that the 

characteristic life parameters ,W SΘ Θ  follow inverted gamma priors, the shape 

parameter Β  follows a uniform distribution, and the mixture parameter p follows a 

beta prior. 

 

Using a generalization of the likelihood parameterization proposed in [Perlstein, 

2001],  

                                                                                                                                           
10 Capital Greek letters are used here for the random variables of the parameters, as is 
customary for Bayesian analysis. 
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where mt =∑ l the sum of the elements of the mth permutation of vectors of size l  

from { }1 ,..., nt t t= . 

 

The joint posterior distribution has the form:11 

( ) ( ) ( )
( )unC

DpLpg
Dpg SWSWSWSW

SWSW ,
|,,,,,,,,

|,,,,
θθββθθββ

θθββ
×

=    

 

For simplicity, a constant for this denominator is defined to be: 
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where ( ) ( )2121  , and  , SSWW δδδδ are the limits of the prior uniform distribution assumed 

for Wβ  and Sβ  respectively. 

                                                 
11 D represents the observed Data. 
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Using the joint posterior distribution, the posterior expected values of the parameters 

and the reliability can be calculated. 
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The remaining integrals with respect to Sβ  and Wβ  do not have closed form solutions 

and must be numerically integrated.  However, limiting the numeric integration to 

these two integrals, as opposed to numerically integrating over all five parameters, 

greatly simplifies the problem and decreases the computational time. 

 

Results 

In the baseline case, p was taken to have prior distribution Beta(0.5, 0.5) with likely 

values either close to 0 or 1, with less likelihood of middle values; θ was taken to 

have the prior Γ(4, 3) an expected value of 1; β was given a uniform distribution prior 

between 0 and 6.   These prior distributions are illustrated in Figure 19. 
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Figure 19.  Prior distributions on p (left), θ (middle) and β (right) for baseline case.   
 

 

As illustrated in Figure 20 and Figure 21, the Bayesian method performed very well.  

It had less bias and random error in its estimates of the mixture ratio than the MLE 

method did in almost all cases, particularly for small values of p.  For example, for 

p=0.05, the bias and random error in a were reduced by an order of magnitude; this 

translated to a reduction in the reliability estimate at time 10 from -0.02 to 0 in bias 

and 0.07 to 0.03 in random error.  However, given that the prior gave high weight to 

very small and very large values of p, the strong performance of the Bayesian method 

under these conditions is not unexpected.  The performance of the Bayesian method 

at p=0.5, with a lower likelihood under the prior, is a harder test.  Under this 

condition, the Bayesian method performed comparably to the MLE method.  The bias 

in its estimate of p was a little higher (0.06 versus 0.04 for mixture) but its random 

error was smaller (0.09 versus 0.15).  The difference in the estimate of the reliability 

at time 10 was also very small, (-0.05 versus -0.03 bias and 0.09 versus 0.12 random 

error).  These results suggest that the Bayesian method would be a better choice than 

the MLE method, since when the prior is close to correct the Bayesian method 

produces more accurate estimates of the mixture ratio and even when the prior gives 

low likelihood the Bayesian method performs about as well. 

p 
                      0 1 0.5 0.25 0.75
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                      0 102   4  6 8
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Figure 20.  Performance of Bayesian method relative to mixture ratio p. [Baseline case: 
p~Beta(0.5, 0.5); θ~Γ(4, 3); β~U(0, 6)]   

 

Figure 21.  Comparison of Error in R(10), 5 times the censor time, for MLE and Bayesian 
estimates [Baseline case: p~Beta(0.5, 0.5); θ~Γ(4, 3); β~U(0, 6)]   
 

True mixture ration p 

Bias from Bayesian 

Bias from MLE 

95th percentiles on 
error from Bayesian 
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error from MLE 
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Next, the priors were left as in the baseline case, but an increasing failure rate was 

considered.  In this case, the shape parameter γ was increased to 3.  The characteristic 

life θ was also increased, to 1.6, in order to maintain similar numbers of observed 

failures at the censor time.  The results for the reliability estimate at t=10 are shown 

in Figure 22.  The method seemed very insensitive to the shape of the Weibull, with 

errors being virtually identical for the constant failure rate and increasing failure rate 

cases.  This result was expected since a uniform prior was placed on the shape 

parameter. 

 

Figure 22.  Comparison of Error in R(10) between the baseline case where true characteristic life 
θ=1 and true shape parameter β=1 and the alternate case where true θ=1.6; true β=3. [Baseline 
prior case: p~Beta(0.5, 0.5); θ~Γ(4, 3); β~U(0, 6)] 
 

Of greater concern was whether the Bayesian method would be robust under 

inaccurate priors on the mixture ratio p and the characteristic life θ.  First a prior 

distribution that gave higher weight to low values of the mixture ratio was selected 

Dot=Bias from 
baseline 

Wide dash=95th 
percentiles on error 
from alternate 

Star=Bias from 
alternate 

Fine dash=95th 
percentiles on error 
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True mixture ration p 



 

 55 
 

(p~Beta(0.5, 2)).  As expected, the performance of the Bayesian method improved for 

low and even medium values of p, as illustrated in Figure 23.  The performance only 

got worse at p>0.8.  At p=1, the p~Beta(0.5, 2) case had bias of 0.1 and random error 

of 0.03 for R(10) as compared to 0.05 and 0.03 for the baseline p~Beta(0.5, 0.5) case.  

Similarly, as shown in Figure 24, when a prior was selected to give higher likelihood 

to middle values (p~Beta(2, 2)), bias in the estimates of p and the reliability at 10 got 

2 to 3 times worse under this prior for true mixture ratios close to 0 or close to 1.   

 

Figure 23.  Comparison of Errors in R(10)  between baseline Bayesian case (p~Beta(0.5, 0.5), 
θ~Γ(4, 3), and β~U(0, 6)) and alternate case where p has high likelihood of being small 
(p~Beta(0.5, 2), θ~Γ (4, 3), β~U(0,6) ) 
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Figure 24.  Comparison of Errors in R(10)  between baseline Bayesian case (p~Beta(0.5, 0.5), 
θ~Γ(4, 3), and β~U(0, 6)) and alternate case where p has high likelihood of being a middle value 
(p~Beta(2, 2), θ~Γ (4, 3), β~U(0,6) ) 
 

 

Even though the Bayesian method is sensitive to the choice of prior on p, it is still 

appears to be more robust than the MLE method.  None of these increases in error 

from choices of prior on p are comparable to the order of magnitude reduction in the 

errors in p between the MLE and any of the Bayesian cases for small mixture ratios. 

 

The robustness of the Bayesian method with regards to the prior on the characteristic 

life θ was also examined.  In the first case, shown in Figure 25, the prior was adjusted 

to give an expected value of 0.5 (instead of 1).  In this case the probability of θ being 

greater than or equal to 1 (the true value) was about 0.09.  This case produced almost 

no change in the errors from the baseline case where the expected value of θ was 

equal to 1.  In the second case, shown in Figure 26, the prior was adjusted to give an 
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expected value of 4.3, with the chance of θ being less than or equal to 1 being about 

0.09 for symmetry.    In this case, the Bayesian estimate produced much worst 

estimates of the reliability than did the baseline case or the MLE method.  Reducing 

the expected value to 2 did not substantially correct the problem, as illustrated in 

Figure 27, nor did more than doubling the chance of θ being less than or equal to 1, as 

illustrated in Figure 28. 

 

Figure 25.  Comparison of Errors in R(10)  between baseline Bayesian case (p~Beta(0.5, 0.5), 
θ~Γ(4, 3), and β~U(0, 6)) and alternate case where θ is likely to be small (p~Beta(0.5, 0.5), θ~Γ 
(2.5, 0.75), β~U(0,6) ).  For the alternate case, the expected value of θ is 0.5 and the chance of θ 
being greater or equal to 1 is about 0.09.  The dots represent the baseline case and the stars the 
alternate case.    There is almost no difference in the results. 
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Figure 26.     Comparison of Errors in R(10)  between baseline Bayesian case (p~Beta(0.5, 0.5), 
θ~Γ(4, 3), and β~U(0, 6)) and alternate case where θ is likely to be large (p~Beta(0.5, 0.5), θ~Γ 
(1.915, 3.935), β~U(0,6) ).  For the alternate case, the expected value of θ is 4.3 and the chance of 
θ being greater or equal to 1 is about 0.09.  The dots represent the baseline case and the stars the 
alternate case.  The alternate case performs much worse unless p0 is very high. 
 

 

 
Figure 27.     Comparison of Errors in R(10)  between baseline Bayesian case (p~Beta(0.5, 0.5), 
θ~Γ(4, 3), and β~U(0, 6)) and alternate case where θ is likely to be large (p~Beta(0.5, 0.5), θ~Γ 
(5.35, 8.68), β~U(0,6) ).  For the alternate case, the expected value of θ is 2 and the chance of θ 
being greater or equal to 1 is about 0.09.  The dots represent the baseline case and the stars the 
alternate case.  The alternate case performs much worse unless p0 is very high. 
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Figure 28.     Comparison of Errors in R(10)  between baseline Bayesian case (p~Beta(0.5, 0.5), 
θ~Γ(4, 3), and β~U(0, 6)) and alternate case where θ is likely to be large (p~Beta(0.5, 0.5), θ~Γ 
(1.5, 2.15), β~U(0,6) ).  For the alternate case, the expected value of θ is 4.3 and the chance of θ 
being greater or equal to 1 is about 0.2.  The dots represent the baseline case and the stars the 
alternate case.  Even with a much higher probability of small θ, the alternate case performs 
much worse unless p0  is very high. 
 

 

These for the variants in the prior on θ suggest that the Bayesian model is more 

sensitive to over estimating θ with the prior than to under estimating θ with the prior.  

This lack of symmetry seems at first counter-intuitive.  The cause is related to the 

correlation between estimates of the mixture ratio p and estimates of the characteristic 

life θ.  Estimates of p and θ tend to be correlated with higher estimates of θ being 

associated with higher estimates of p.  The likelihood function for the mixed Weibull 

cases considered in this paper tend to be relatively flat, particularly with low true 

mixture ratios because there is only limited observed failures.  These flat likelihoods 

are heavily influenced by the prior distribution, as shown in Figure 29.  If the prior 

distribution on θ has a larger weight on high values, then it is likely that a high 

Baseline θ prior 

Alternate θ prior 

True mixture ration p 



 

 60 
 

estimate of p will also be selected.  This result is shown by the smaller error in the 

reliability estimates when the true mixture ratio is close to 1 and the higher θ prior is 

selected in Figure 26 and Figure 27.  However, when the true mixture ratio and 

characteristic life are small, the higher priors dominate the flat likelihood and create 

more error in the posterior. 

 

 

Figure 29.  Left is the joint prior for p and θ.  Right is log=likelihood (β held at 1) for a case 
where true p is 0.1 and 12 failures were observed.  The 25th percentile for the log-likelihood was -
56 and the 75th percentile was -45.  The flatness of the likelihood is dominated by the prior in the 
posterior.  The likelihood function is only able to put low weight on situations with θs and high 
p0s. 
 

On the other hand, if the prior on θ has a larger weight on small values, the estimates 

of p will also tend to be small.  But if the true mixture ratio p is large, more failures 

will have been observed than suggested by the prior.  If more failures are observed, 

the likelihood function is less flat and the priors have less influence on the estimates 

from the posterior distribution, as shown in Figure 30. 

 

p 
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Figure 30.  Left is the joint prior for p and θ.  Right is log=likelihood (β held at 1) for a case 
where true p is 0.9 and 84 failures were observed.  The 25th percentile for the log-likelihood was -
267 and the 75th percentile was -167.  The larger number of failures means that the log-likelihood 
is less flat and that cases with very small θs have very low likelihoods, countering the inaccurate 
prior distribution. 
 
 

This theory was further substantiated by looking at a case where the prior on p gave 

preference to low values and the θ prior continued to over-predict θ.  As shown in 

Figure 31, the errors in reliability were substantially smaller as long as the true p was 

less than about 0.8. 

 

Figure 31.  Comparison of Errors in R(10)  between Case 1 that allows high mixture ratios 
(p~Beta(0.5, 0.5), θ~Γ (1.915, 3.935), β~U(0,6)) and Case 2 that does not (p~Beta(0.5, 2), θ~Γ 
(1.915, 3.935), β~U(0,6)).  Although the prior on θ still allows high values, the change in prior on 
p limits their likelihood on the posterior. 
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Chapter Conclusions 

As expected, the Bayesian method is sensitive to the choice of prior.  However, it 

generally performs well, when compared to MLE, unless poor choices of prior are 

made on both the mixture ratio p and the characteristic life θ.  It is particularly 

sensitive to situations where the prior distribution is selected to give large probability 

to high values of the characteristic life and mixture ratio simultaneously.  It seems 

that it is better to select a prior with an expected value less than or equal to the true θ 

than to possibly overestimate θ.   

 

When a low mixture ratio is suspected, the Bayesian method can greatly reduce the 

errors in the estimates over the MLE method so long as a good prior is selected for θ.  

It is suspected this is because at low mixture ratios, particularly few failures will be 

observed.  The MLE then has little data for its parameter estimates, while the 

Bayesian method gains information from its priors.  If the prior distribution does not 

out-weigh the data into producing results with higher than truth mixture ratios and 

characteristics lives, the Bayesian method produces good results. 

 

If a poor prior distribution is chosen with the assumption that the mixture ratio is very 

low (i.e. gives too much probability to mixture ratio values lower than truth), the 

Bayesian method will perform worse than the MLE method.  However, the increase 

in error under these circumstances is smaller than the decrease in error in 

circumstances where the mixture ratio really is very small.  Based on these results, it 



 

 63 
 

is recommended that Bayesian methods be considered when a low mixture ratio is 

suspected.   
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Chapter 7: Cost Model 

Decisions about performing additional burn-in to find weak parts can be made based 

on a fixed requirement (such as the overall reliability is required to be 0.99) or may 

be based on the cost effectiveness of the decision.  In order to determine if the burn-in 

is cost effective, a cost model must be developed.  With the cost model, one can find 

the optimum balance between investing in burn-in and avoiding field failure.  In this 

chapter, previously developed cost models are reviewed, a new model is formulated, 

and the impact of the new aspects of the model are examined. 

 

Previous Cost Models 

Most burn-in cost models in the literature are similar to the one proposed by Perlstein 

[Perlstein, 2001].  This model is relatively straightforward with a fixed portion, a time 

dependent portion, and different failure costs corresponding to failures during burn-in 

and in the field.   

( ) ( ) ( )[ ]θθθ ||| BmissBfieldBIoppBIBsetuptotal tFttFNCtFNCtNCCC −+⋅⋅+⋅⋅+⋅⋅+=  

where  

=setupC fixed setup cost  

=BC time dependent cost for burn-in per unit per unit time 

=oppC lost opportunity cost of products which fail during burn-in 

=fieldC cost of field repairs during the warranty period 

=N number of parts 

=BIt burn-in time (for a given part or batch) 
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=misst mission length (or time in field under warranty) 

( ) =θ|tF CDF of parts given a set of mixed Weibull parameters θ  

For the problem addressed in this dissertation, the same general scheme used by 

Perlstein, of fixed, variable, and two different failure costs, is used as a basis but with 

some important modifications. 

FFFBBsetuptotal CCCCC +++=  

where  

=setupC fixed set-up cost 

=BC burn-in cost (dependent on number of pieces and length of time) 

=FBC cost of failures during burn-in 

=FFC cost of failures in the field 

 

As in [Perlstein, 2001], the burn-in costs depend on the number of devices to be 

burned in and the length of the burn-in12.  However, the cost may increase if the 

length of the burn-in exceeds the allotted program schedule or if the capacity of the 

burn-in fixture is exceeded.  The notion of capacity constraints was introduced in 

[Chi, 1989].  However, Chi’s paper did not explicitly relate capacity to the cost 

impacts, most obviously the cost of schedule slips must be included if the capacity 

constraint is violated.  [Alani, 1996] also considers capacity and schedule constraints, 

but did not allow for long burn-in times to consume useful life in the strong 

subpopulation, as was done in [Perlstein, 2001].  The model proposed here does both.  

                                                 
12 Although this model is written in terms of performing device burn-in, the same 
model could be adjusted to apply to board or unit burn-in. 
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Without including the capacity and schedule slip components, the cost of performing 

the burn-in will be incorrect and performing the burn-in may appear much less 

expensive than it really is.  This would lead to incorrect decisions about the optimal 

and most cost effective burn-in time. 

 

New Model Formulation 

If the number of pieces is less than the capacity of the burn-in fixture and the burn-in 

time is less than the time allowed in the schedule then burn-in cost is the same as that 

proposed by [Perlstein, 2001] 

tBIB CtNC ⋅⋅=1  

where =tC burn-in test cost per part per unit time 

 

If the number of pieces is less than capacity but the burn-in time is greater than the 

time allowed in the schedule then there is a cost for the schedule slip.  The schedule 

slippage cost is assumed to be a function of the amount of time over the schedule 

allowance. 

( ) slipschBItBIB CttCtNC ⋅−+⋅⋅=2 , if tBI > tsch 

 

If the number of pieces is over capacity, then the burn-in must be performed in 

multiple batches.  There are costs associated with performing the switch to a new 

batch in addition to the burn-in cost per part per unit time. 

( )13 −⋅+⋅⋅= KCCtNC chgtBIBI  
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where =K number of batches = ⎥⎥
⎤

⎢⎢
⎡

Capacity
N  

Note that the amount of time needed to complete the burn-in for all parts is KtBI ⋅ .  

This assumes that the set up for the first batch is included in the overall set up costs 

setupC . 

 

If the number of pieces is over capacity and the total time for performing the burn-in 

on all batches is more than the time allocated in the schedule, then there are penalties 

for both the batch switch over and the schedule slippage. 

( ) ( ) slipschBIchgtBIB CtKtKCCtNC ⋅−⋅+−⋅+⋅⋅= 14  

 

The cost of failure during burn-in is the cost of the part ( pC ) plus the costs associated 

with the man power to handle the replacement.  Of course, the parts from the weak 

subpopulation are at higher risk for failing during the burn-in. 

  

Field failures have higher cost than failures during burn-in as they may impact 

availability, warranties, customer payments, and public perception of the product.13  

The cost model described in this dissertation is based on one commonly used in the 

satellite market where field repairs are not feasible.  One failure might impact so-

called incentive payments.  In these cases, the first failure is noted by the customer 

                                                 
13 The cost of money may also impact the difference in field failure versus burn-in 
failure costs.  Postponing the cost associated with the failure might be preferable in 
some cases.  However, the cost of money is ignored in this model, since it is expected 
that the increase in cost between a failure occurring in the field and it occurring on 
test far outweighs the cost of money.  However, the cost of money could impact the 
conclusions under some circumstances. 
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and they reduce payment to the supplier, but the product is still likely to be functional 

due to redundancy.  However, if two failures occur then there is a program loss and 

the penalty cost is much higher.14 

 

Case Study Parameter Values 

This dissertation looks at several cases, which can roughly be divided into a satellite 

example and a high end consumer example.  Neither involves field repairs, but both 

involve a cost for field failures. 

 

Some parameters were assumed to be the same for both sets.  Others, such as mission 

life and field failure cost were different.  The common parameters are, 

200$=setupC 15 

01.0$=tC  per part, per hour 1 

15$=chgC  per batch16 

5$=pC  per part17 

100=n parts 

10000000=sθ hours 

2=sβ  

                                                 
14 There does not seem to be an analytical solution to minimizing the cost model with 
respect to BIt .  Numeric methods are required. 
15 [Reddy, 1994], [Pohl, 1995], [Yan, 1997] 
16 [Perlstein, 2001] 
17 [Yan, 1997] 
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In satellite contract pricing, typically there is an up-front cost of purchasing the 

satellite and a series of performance incentives that are only paid after certain 

milestones.  These incentives are typically 10% to 20% of the cost of the satellite. [de 

Selding, 2005]  It is only the incentive payments18 that are impacted by a field failure.  

Satellites are typically $200 million to $1 billion. [Bearden, 2001]   So that would put 

incentive payments between $20 million and $200 million.  $50 million for the total 

incentive package was selected as representative of a satellite case.  Incentive 

payments are tied to several different units, and loss of performance on any one of 

these units results in a loss of payment, with a total loss of incentive only coming 

from a total satellite loss ( lossC ).  It was assumed that the payments were tied to the 

performance of 10 critical unit types (each with primary and redundant units) and loss 

of the primary unit for any of them would result in a 10% loss of incentive payments 

( incentC ).19  Since the weak parts were assumed to only be in one of these critical unit 

types, a part field failure was assumed to cost $5 million in incentive payments.  So, 

for the satellite case,  

50$=lossC mil 

5$=incentC mil 

100000=missiont  hours (approximately 11 years) 

 

                                                 
18 Also the potential for future business and insurance costs on future programs, but 
these are ignored for this study. 
19 In reality, this amount would also depend on when in the mission  the field failure 
occurred, but this complexity was dropped for the purposes of the model developed 
here.  Note that this also means that in some cases, if enough critical, primary units 
fail, incentive payments could fall to $0, even if the satellite is fully functional.  The 
exact impact of individual unit failures varies greatly between contracts. 
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For the consumer case, 

5000$=lossC  

0$=incentC  

50000=missiont hours (between 5 and 6 years) 

 

The cost of schedule slip, slipC , may include only the cost to having a few engineers 

without work for a few hours or it may be a much bigger cost.  If the parts go into a 

unit on the critical path of the program, a slip in schedule for the parts may result in a 

“marching army” being without work awaiting delivery of the parts to the unit an the 

unit to the system.  It may also be the case that a slip in the schedule of this program 

could delay other programs – and cause them to have slip costs, impacting the 

manufacturer for both programs.  For this reason, two values of slipC  were considered 

for both models. 

{ }1000,$100,$0$=slipC  per hour 

 

In both cases other parameters were allowed to vary to determine their impact on the 

cost model.  In particular, 

{ }100,50,10=scht  hours 

{ }100,50,20,10=capacity  parts per batch 

The parameters for the weak subpopulation were also varied: 

{ }99.0 ,9.0 ,5.0 ,1.0 ,01.0=p  
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{ }5 1, ,5.0=wθ  

{ }2 1, ,5.0=wβ  

 

Discussion 

The model allows for a balance between the cost of performing longer burn-ins and 

the cost of field failures.  The cost of field failures is, of course, driven by the mixture 

ratio and the parameters of the weak subpopulation.  Thus different Weibull 

parameters lead to different optimal burn-in times, as shown in Figure 32.  Since the 

characteristic life of the strong subpopulation is so much longer than the mission life, 

the only measureable disadvantage of a longer burn-in is its impact on schedule.  

Changes in the value of the mixture ratio p do not have a big impact on the optimal 

burn-in time but impacts the total cost, as illustrated in Figure 33. 
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Figure 32.  Impact of weak subpopulation’s shape parameter on optimal burn-in time.  If 
1=wβ , then the optimal burn in time is 46 hours.  However, if 2=wβ , then the weak parts 

can be weeded out faster and the optimal burn-in time is only about 16.5 hours.  ( 01.00 =p , 

000,100=missiont , 5=wθ , 10=capacity , 0=slipc , 000,000,5=incentc , 000,000,50=lossc ) 
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Figure 33.  Impact of varying mixture ratio.  The five plots represent values of 0p  {0.01, 0.1, 0.5, 
0.9, and 0.99}.  ( 000,100=missiont , 1=wθ , 1=wβ , 10=capacity , 0=slipc , 000,000,5=incentc , 

000,000,50=lossc ) 
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Similarly, other parameters tend to impact the total cost more than the optimal burn-in 

time.  For example, increasing the parts cost ( pc ) from $5 to $50 raises the total cost 

by about $90 but doesn’t change the optimal burn-in time.20  There are similar results 

when the batch change cost ( changec ) is adjusted.  Changing the per part, per hour test 

cost ( tc ) can impact the optimal burn-in time.  If slippage cost is low, then the 

optimal burn-in time is driven by the test cost.  However, if slippage cost is high, the 

optimal burn-in time is insensitive to the test cost and only the total cost is impacted.  

For example, if the slippage cost is $0, adjusting the per part, per hour test cost from 

$0.01 to $0.10 changes the optimal burn-in time from 102 hours to 64.5 hours and 

almost doubled the total cost from $719 to $1403.21  However, if the slippage time is 

$100 per hour, both hourly test costs result in an optimal test time of 17 hours.  The 

total cost changes from $24,854 to $25,007.  

 
 
The differences between the satellite case and the commercial case, in terms of 

mission length and cost of field failure, have a large impact on the optimal burn-in 

time as well.  For example, for the same case shown in Figure 34 with 1=wβ , while 

the satellite case showed a steady decrease in cost over burn-in time, for the 

commercial case, there is a steady increase in cost with burn-in time.  For all cases 

with mixture ratio of 1%, there was no benefit of performing burn-in for the 

                                                 
20 This was true for at least 3 cases of other parameters for satellites:   
Case 1={ 10,10,0,5.0,1,1.0 ====== capacitytcp schslipww βθ };  
Case 2={ 10,10,0,1,1,5.0 ====== capacitytcp schslipww βθ };  
Case 3={ 10,10,100,1,5,1.0 ====== capacitytcp schslipww βθ } 
21 Satellite case and 10,10,5.0,1,1.0 ===== capacitytp schww βθ  
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commercial case.  Burn-in only became cost effective if the mixture ratio was more 

than 10%, shown in Figure 35.  This illustrates that the balance between doing burn-

in or not depends a lot on the expected loss from field failures.  If only a very small 

percentage of parts are at risk and the cost of a field failure is small then there will be 

little value to burn in.  For the commercial case, when only 1% are at risk, the 

expected field failure loss is only 50.0$5000$01.0 2 =⋅ .  It is unlikely that such a 

small expected loss would ever justify spending money on burn-in.  It is only when 

the cost of a field failure is higher or a higher percentage of parts are at risk for failure 

that a burn-in is warranted. 

 

Figure 34 Commercial case with small percentage of weak parts.  Note that when the percentage 
of weak parts are small, the commercial case almost always shows little value to burn-in.  
( 01.00 =p , 000,50=missiont , 5=wθ , 1=wβ , 10=capacity , 0=slipc , 0=incentc , 000,5=lossc ) 
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Figure 35.  With larger percentages of parts at risk, short burn-ins may be effective.  ( 10.00 =p , 

000,50=missiont , 5=wθ , 1=wβ , 10=capacity , 0=slipc , 0=incentc , 000,5=lossc ) 
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time.  For example, consider the satellite case where the mixture ratio is 10%, the 

Weibull parameters for the weak subpopulation are 1=wθ  and 5.0=wβ , and the 

schedule only allows for a slip of 10 hours, shown in  
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Figure 36.  If the issue of slipping schedule ( 0=slipC  ) is ignored, similar to the 

models proposed by [Perlstein, 2001] then the optimal burn-in time is past 50 hours.  

The total cost at 50 hours is about $936.  However, using the new model, if each hour 

of slippage cost $1000, then the optimal burn-in time is 17 hours and the total cost is 

about $15,719.  The use of the new model, which realistically takes into account that 

there are costs to slipping schedule, significantly shortens the recommended burn-in 

time and reflects a much larger cost.  Previous models would have made an incorrect 

recommendation. 

 

This impact only increases when a capacity constraint is also implemented.  Consider 

that the capacity is only 10 parts, so to burn-in all parts will take 10 batches.  If there 

is no cost of schedule slippage, the optimal burn-in time is still past 50 hours (even 

though there is now a cost of swapping batches).  However, now instead of a slow 

increase in cost past 17 hours, there is a dramatic increase in costs after 6 hours.  This 

is illustrated in Figure 37. 
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Figure 36.  Impact of schedule slippage cost.  When there is no cost to schedule slippage, then the 
optimal burn-in is past 50 hours; more burn-in always reduces costs.  However, if the cost of 
schedule slippage is included, then past 17 hours the burn-in costs more money than it saves.  
( 10.00 =p , 000,100=missiont , 1=wθ , 5.0=wβ , 100=capacity ,  10=scht , 000,000,5=incentc , 

000,000,50=lossc ) 
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Figure 37.  If capacity is also limited, the schedule slippage costs are multiplied by the number of 

batches, so the increase in costs of going past the schedule is much more.  ( 10.00 =p , 
000,100=missiont , 1=wθ , 5.0=wβ , 10=capacity ,  10=scht , 1000=slipc 000,000,5=incentc , 

000,000,50=lossc ) 
 

Chapter Summary   

One method of determining if the burn-in is cost effective is to find the burn-in length 

that optimizes the life-cycle costs.  With the cost model, one can find the optimum 

balance between investing in burn-in and avoiding field failure.  In this chapter, a new 

cost model was developed that added the impacts of schedule slippage and capacity to 

existing cost models for burn-in testing.  It was shown that these improvements can 

have significant impact on determination of the optimal burn-in length. 
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 Chapter 8:  Impact of Model Error on Burn-in Decision Rules 
 
 
As discussed in Chapter 2, there are a number of different decision criteria that are 

used for determining whether extended burn-in should be performed and, if so, the 

length of the optimal burn-in.  Two types of decision rules are examined here.   

 

The first is common in government contracts.  It requires that a certain probability of 

survival at end of life is achieved.  To that end, if a weak subpopulation or infant 

mortality problem is suspected, the burn-in time must produce a conditional reliability 

that meets the requirement. 

 

The second decision rule takes advantage of the cost model developed in Chapter 7 

and is more likely applicable to more commercial cases.  It determines the optimal 

burn-in length based on minimizing overall lifecycle cost. 

 

 

Optimal Burn-in Time Given an End of Life Reliability Requirement 

Chapters 4 through 6 explored the impact of the estimation method errors on the 

reliability estimate.  However, when a specific reliability goal must be met, it is a 

conditional reliability that is of interest. Recall that, for a standard reliability estimate, 

the Bayesian technique performed better than the others when the true mixture ratio 

was small.  The MLE and Trunsored techniques performed similarly unless the 

mixture ratio was very large.  When the mixture ratio was large, the Trunsored 
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method would occasionally predict unreasonably large values for p and thus had 

much higher variability than the other methods.  The MLE method performed the best 

at high mixture ratios.  These results are once again illustrated in Figure 38. 

 

Figure 38.  True and estimated reliability at time=10 ( 1=wβ , 1=wθ ) for all three estimation 
methods.  Blue is Bayesian; gold is MLE; red is Trunsored. 
 
 
These results continue to be true, only to a larger extent, when the conditional 

reliability is examined.  This is illustrated in Figure 39.  The Baysian estimate of the 

conditional reliability is much better than the others when the mixture ratio p is small.  

The MLE estimate tends to be better at larger mixture ratios.  The Trunsored method 

has very wide variability, skewing its results. 
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Figure 39.  Reliability at time=10 conditioned on time=2  ( 1=wβ , 1=wθ ).  Blue is Bayesian; 
gold is MLE; red is Trunsored. 
 
 
To examine the impact of these errors on conditional reliability on the determination 

of the appropriate burn-in time, it was assumed that a conditional reliability of 0.99 

was required at end of life.  The results if a mission was relatively short, only 10 

compared to an original censor time of 2 and a characteristic life of 1 were 

examined.22  The simulation cases from the previous chapters were used.  For each set 

of estimated parameters, it was determined what length of burn-in ( bit ) was required 

such that ( ) 99.0|10 >+ bibi ttR .  This burn-in time was compared to the true required 

burn-in time, based on the true parameter values.  The results are summarized in 
                                                 
22 The results are almost identical for longer life times because the reliability at t=10 
larger times are so close with these parameter values.  Using the lifetimes proposed 
for the satellite and commercial cases described in Chapter 7 tent to only change the 
times by less than 0.1. 
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Table 3.  Since the reliability at end of life for the Trunsored model was frequently 

negative, any negative reliability was set to 0.  Once this condition was applied, the 

results of the Trunsored and MLE methods were identical.  The end of life reliability 

depends almost exclusively on the value of the mixture ratio p for our case studies 

(since the characteristic life is relatively small).  The cases where the Trunsored 

model was selecting a value of p greater than 1 result in the negative reliability 

conditions.  By forcing the reliability to be 0, in essence, the same limit as on the 

MLE case is being imposed.  Thus the two methods produce the same burn-in results 

if negative reliability is disallowed.  They would not necessarily produce the same 

results if the characteristic life was larger than the censor time and closer to the end of 

life time. 

 

Table 3.  Optimal burn-in time given an end of life reliability requirement 
 Mean STD Median Q1 Q3 5th 

percentile 
95th 

percentile 
Percentage of cases 

where 
( ) 99.0|10 >+ bibi ttR  

could not be achieved 
p=0.1 True burn-in time to achieve ( ) 99.0|10 >+ bibi ttR : 2.5 
Bayes 2.8 1.5 2.5 1.7 3.9 1.2 5.9 0 
MLE / 
Trunsored 

3.9 8.7 1.7 1.3 2.9 1.1 13.6 10% 

p=0.5 True burn-in time to achieve ( ) 99.0|10 >+ bibi ttR : 4.7 
Bayes 6.4 3.3 5.5 3.9 7.6 2.8 13.6 0 
MLE / 
Trunsored 

6.4 7.4 4.3 3.1 6.5 2.3 18.8 5% 

p=0.9 True burn-in time to achieve ( ) 99.0|10 >+ bibi ttR : 6.9 
Bayes 7.0 2.2 6.7 5.5 8.0 4.0 10.5 0 
MLE / 
Trunsored 

6.4 2.8 5.8 4.5 7.6 3.4 11.9 22% 

p=1.0 True burn-in time to achieve ( ) 99.0|10 >+ bibi ttR : Not possible 
Bayes 6.6 1.6 6.3 5.5 7.4 4.6 9.2 0 
MLE / 
Trunsored 

6.2 2.2 5.7 4.6 7.3 3.5 10.6 48% 
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Figure 40.  Bayesian estimates of optimal burn-in time for p0=0.1. 
 

 

 

Figure 41.  MLE and Trunsored estimates of optimal burn-in time for p0=0.1. 
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Figure 42.  Bayesian estimates of optimal burn-in time for p0=0.5. 
 
 
 

 
Figure 43.  MLE and Trunsored estimates of optimal burn-in time for p0=0.5. 
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Figure 44.  Bayesian estimates of optimal burn-in time for p0=0.9. 
 
 
 
 

 
Figure 45.  MLE and Trunsored estimates of optimal burn-in time for p0=0.9. 
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Figure 46.  Bayesian estimates of optimal burn-in time for p0=1.0. 
 
 

 
Figure 47.  MLE and Trunsored estimates of optimal burn-in time for p0=1.0. 
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On average, the methods recommend a longer burn-in than is necessary.  However, 

this is in part due to the skewness of the distributions of estimated values.  When the 

median optimal burn-in times are examined, the methods tend to suggest burn-ins that 

are slightly too short. In general, the Bayesian results provide the most accurate 

estimate of the burn-in time required to meet the decision rule.  Even at the mixture 

ratio of 0.5, which is unlikely under the baseline Bayesian prior examined, the errors 

in the Bayesian method are not much higher than the others.  In other cases, where the 

prior is more accurate, the Bayesian method performed better than the others.   

 

However, the Bayesian method does not ever predict that the mixture ratio is 1 and 

the burn-in will be ineffective.  In all cases, it provides estimates such that the 0.99 

reliability can be achieved.  In the case where p0=1.0 and β=1, this is incorrect.  All 

parts are at risk and there is a constant failure rate.  In this situation, the burn-in is 

useless at screening for the anomaly.  However, the Bayesian method still predicts 

that burn-in will screen weak parts and improve the end of life reliability.   
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Optimal Burn-in Time Given a Life-cycle Cost Decision Rule 

A cost-based decision rule was examined for both the satellite and consumer 

assumptions presented in Chapter 7.  For each, four cases were examined, varying the 

mixture ratio, capacity, and schedule slip costs.  These cases are summarized in Table 

4. 

 

Table 4.  Cost-based decision rule case studies 
 0p  Capacity  slipC  scht  

Case 1 0.1 10 0 10 

Case 2 0.1 10 1000 10 

Case 3 0.1 100 1000 10 

Case 4 0.05 10 0 10 

 

First the estimated costs under each method were examined for each case study.  

These are shown in Figure 48 for the satellite cases and Figure 50 for the commercial 

cases.  95th percentiles on the Trunsored case were very wide, with maximum costs 

more than an order of magnitude larger than those from the other methods.  This was 

expected since the distribution of Trunsored estimates had such a long tail.  However, 

the medians for all methods were close to the true costs, as illustrated in the enlarged 

figures in Figure 49 and Figure 51.  
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Figure 48.  Satellite case full scale with 5th and 95th percentiles shown.  Blue is Bayesian; gold is 
MLE; red is Trunsored. 
 

 
Figure 49.  Satellite Case: Zoom with only medians shown. Blue is Bayesian; gold is MLE; red is 
Trunsored. 
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Figure 50.  Commercial case full scale with 5th and 95th percentiles shown.  Blue is Bayesian; 
gold is MLE; red is Trunsored. 

 
Figure 51.  Commercial Case: Zoom with only medians shown.  Blue is Bayesian; gold is MLE; 
red is Trunsored. 
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with the evaluation of minimum reliability based decision rule, the simulation cases 

from the previous chapters were used.  For each set of estimated parameters, it was 

determined what length of burn-in ( bit ) minimized the estimated total life-cycle costs.  

This burn-in time was compared to the true required burn-in time, based on the true 

parameter values.  The results are summarized in Table 5 for the satellite case and 

Table 6 for the commercial case.  In some cases, the optimal burn-in time was 

estimated to be quite large.  To reduce computation time, the maximum burn-in time 

examined was 100 hours.  If the estimated parameters predicted an optimal burn-in 

time greater than 100 hours, the optimal burn-in time was set to 100 hours.  This 

means that the summary statistics presented in Table 5 and Table 6 are biased a bit 

low.  The percentage of cases where this truncation was applied is given in the tables. 

This bias is greatest in the lines with the greatest percentage of truncated cases and 

will be most severe in the estimated mean and standard deviation.  So, for example, 

while the mean optimal burn-in time for the Trunsored method in Case 2 is reported 

as 14.4, already much higher than the true optimal of 4.2, the true mean for that 

method would be higher because 10.1% of cases should have been averaged in at 

values greater than 100.   

 

Examples of the distributions of the optimal burn-in times are provided in Figure 52 

through Figure 57.   Notice that in some of the distributions, such as those shown in 

Figure 53 and Figure 56, there is a bimodality in the estimated optimal burn-in times.  

The peak around 10 is associated with cases where the optimal burn-in time is 

thought to be the maximum time before the schedule is exceeded (since 10=scht ).  In 
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the satellite case in Figure 53, the true optimal is at about 10.  However, there is still a 

peak around 4 or 5.  These cases are associated with an estimated shape parameter 

1>β  and an estimated mixture ratio close to correct.  When the weak subpopulation 

is thought to have an increasing failure rate, the burn-in time can be shorter, 

corresponding to the smooth distribution of values less than 10 in the figure. 

 

The skewness of the MLE and Trunsored method pulls the average optimal burn-in 

times much higher than truth, particularly for the satellite cases.  Thus, on average the 

burn-ins would be longer than necessary, spending more money on the burn-in than 

required.  However, the median optimal burn-ins are, for almost all cases, lower than 

the true optimal time.  Thus in most situations, the methods would suggest burn-ins 

that were too short.  Most of the time, these mistakenly too short bur-ins are not 

terribly costly, only about 10% to 20% more than the optimal burn-in’s cost for 

satellite situations and only about 1% to 5% for the commercial cases.  The median 

estimated values are very similar for all three methods.  The more costly situations 

are where a longer burn-in is recommended than the true optimal.  These occur much 

more often, and more severely, in the MLE and Trunsored methods as their predicted 

optimal burn-in times are very skewed.  In cases where schedules slips are costly, 

such as cases 2 and 3 for the satellite systems, the average predicted length for the 

Trunsored and MLE methods is about 10 hours longer than optimal.  These result in 

costs 2 to 20 times more than the optimal costs. 
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Table 5: Optimal burn-in time using cost-based decision rule and satellite case 
 Mean STD Median Q1 Q3 5th 

percentile 
95th 

percentile 
Percentage of 

cases where cost 
still decreasing 
with tbi>100 

Case 1: True Optimal Burn-in Time=13.0 
Bayes 15.1 15.3 9.9 6.0 17.8 2.8 45.5 0.5% 
MLE 23.6 32.8 8.2 4.4 22.1 2.2 >100 13.4% 
Trunsored 23.8 33.0 8.2 4.4 22.2 2.2 >100 13.9% 

Case 2: True Optimal Burn-in Time=4.0 
Bayes 4.2 1.7 3.9 2.9 5.1 1.8 7.5 0% 
MLE 13.7 28.1 3.1 2.2 5.6 1.4 >100 8.2% 
Trunsored 14.4 29.5 3.1 2.2 5.6 1.4 >100 10.1% 

Case 3: True Optimal Burn-in Time=10.0 
Bayes 8.6 3.4 9.9 6.0 10.2 2.8 14.1 0% 
MLE 18.4 29.2 8.2 4.4 10.2 2.2 >100 9.9% 
Trunsored 18.7 29.8 8.2 4.4 10.2 2.2 >100 10.9% 

Case 4: True Optimal Burn-in Time=12.4 
Bayes 12.2 15.5 7.9 4.3 13.4 2.0 39.9 1.8% 
MLE 27.6 38.3 6.2 2.8 33.1 0 >100 19.9% 
Trunsored 28.3 38.9 6.2 2.8 35.6 0 >100 20.9% 
 

Table 6: Optimal burn-in time using cost-based decision rule and commercial case 
 Mean STD Median Q1 Q3 5th 

percentile 
95th 

percentile 
Percentage of 

cases where cost 
still decreasing 
with tbi>100 

Case 1: True Optimal Burn-in Time=2.3 
Bayes 2.6 1.1 2.6 1.8 3.2 1.2 4.9 0% 
MLE 12.0 27.7 2.0 1.5 3.4 0.7 >100 7.8% 
Trunsored 12.9 29.6 2.0 1.5 3.4 0.7 >100 9.9% 

Case 2: True Optimal Burn-in Time=0.3 
Bayes 1.2 0.2 1.2 1.2 1.2 1.2 1.2 0% 
MLE 1.1 0.2 1.2 1.2 1.2 0.7 1.2 0% 
Trunsored 2.0 9.3 1.2 1.2 1.2 0.7 1.2 0.9% 

Case 3: True Optimal Burn-in Time=2.3 
Bayes 2.6 1.1 2.5 1.9 3.2 1.2 4.9 0% 
MLE 3.3 3.0 2.0 1.5 3.4 0.7 10.2 0% 
Trunsored 6.3 17.4 2.0 1.5 3.4 0.7 10.2 3% 

Case 4: True Optimal Burn-in Time=1.8 
Bayes 1.7 0.9 1.8 1.2 2.2 0 3.0 0% 
MLE 17.5 35.4 1.4 0.8 3.1 0 >100 14.3% 
Trunsored 18.5 36.8 1.4 0.8 3.2 0 >100 16.5% 
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Figure 52 Distribution of optimal burn-in times for Case 3 using Bayesian estimation and 
satellite costs 

 

Figure 53.  Distribution of optimal burn-in times for Case 3 using MLE and satellite costs 
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Figure 54.  Distribution of optimal burn-in times for Case 3 using Trunsored estimation and 
satellite costs 
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Figure 55 Distribution of optimal burn-in times for Case 3 using Bayesian estimation and 
commercial  costs 

 
Figure 56.  Distribution of optimal burn-in times for Case 3 using MLE and commercial  costs 
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Figure 57.  Distribution of optimal burn-in times for Case 3 using Trunsored estimation and 
commercial  costs 
 
 
 

Chapter Summary 

As with the estimates of reliability examined in Chapters 4 through 6, the Bayesian 

method appears to perform the best in terms of predicting optimal burn-in time.  

However, for these decision rule cases, only small mixture ratios and only a 

reasonably accurate prior were examined.  It is expected that, as with reliability 

estimation, when the mixture ratio is larger (and more failures observed) or when the 

prior is less accurate, the Bayesian method will not perform as well. 

 

With both the end of life reliability requirement and cost-based decision rules, all 

methods performed reasonably well most of the time.  The medians for the 

distributions of optimal burn-in times were quite accurate for all three estimation 



 

 99 
 

methods and all cases examined.  However, the weaknesses in the MLE and 

Trunsored methods occur because of their skewed distributions.  Occasionally, they 

will predict much longer burn-in times than are truly required.  These can lead to 

substantial unnecessary costs.  Unfortunately, there does not seem to be a pattern by 

which these cases can be identified based on the data observed.   
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Chapter 9:  Conclusions, Contributions, and Future Work 
 

Review of Findings and Contributions 

The purpose of this dissertation was to developed recommended methodology for 

when a limited number of latent failures have been observed and a weak 

subpopulation is suspected.  The circumstances under which the work in this 

dissertation is most likely to be of use is summarized in Figure 58.  There must be 

early failures observed before all the product has been delivered.  This would most 

likely be due to a limited burn-in or ESS test where early, unexpected failures have 

been observed.  Of course, if non-destructive inspection methods are available, it 

would likely be the most effective technique.  If the failure mechanism is well 

understood and can be quickly accelerated without consuming too much of the useful 

life of strong devices, the techniques may or may not be needed to confirm that all (or 

a sufficient percentage) of the parts have been removed from the population.  If the 

failure mechanism is unknown or if a balance between screening and consuming 

useful life must be struck, the empirical methods such as those developed in this 

dissertation must be applied. 
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Figure 58.  Summary of circumstances when empirical mixture estimation methods are needed. 
 

 

This dissertation is the first work to extensively examine the estimation properties of 

Bayesian, MLE, and Trunsored estimation for mixed Weibull situations using Monte 

Carlo analysis.  These results are summarized in Figure 59.   It demonstrated 

problems with the Trunsored method that were not identified under the mixed 

exponential situations used to develop it [Hirose, 2005].  This dissertation developed 

a simplified technique to reduce the number of numeric integrations needed for using 

Bayesian estimation for mixed Weibulls, and showed the Bayesian technique to be 

robust, particularly when few failures are observed. 
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Figure 59.  Summary of when each estimation method is most likely to be appropriate. 
 

A new cost model for life cycles with possible burn-in was also developed.  The new 

model adds the impacts of schedule slippage and capacity that were not include in 

previous cost models.  It was shown that these cost elements can change decisions 

about the optimal burn-in length and whether a burn-in is recommended.   The use of 

the new model, which realistically takes into account that there are costs to slipping 

schedule, significantly shortens the recommended burn-in time and reflects a much 

larger cost.  Previous models would have made an incorrect recommendation. 

 

Finally, errors in the estimation methods were examined with respect to decision 

making about optimal burn-in lengths.  Two decision rules, one where a minimum 

end of life reliability was required and one based on minimizing life cycle costs, were 

examined.  In both cases, it was discovered that the MLE and Trunsored methods had 

skewed distributions, occasionally recommending unrealistically long burn-ins.  

However, the median and first and third quartiles for all methods produced reasonable 

estimates of the optimal burn-in time. 

 

These results can help practitioners make better decisions about how to estimate 

parameters and design burn-ins when mixed Weibull distributions are suspected. 
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Future Work 

There are several areas of possible future work.  These are natural extensions of the 

work developed here, but would allow it to be more broadly applicable in practical 

settings. 

 

Additional Case Studies 

Although a variety of true parameters were examined as case studies in this 

dissertation and many results can be generalized, there are other case studies that 

would help increase the understanding of how the estimation methods behave.  In 

particular, most case studies presented here focus on situations where the 

characteristic life was slightly shorter than the censor time (in most cases 1=θ  and 

2=censort ).  It would be useful to confirm that the estimation behaviors do not change 

when the characteristic life is longer than the censor time. 

 

A few cases were examined where the population size was larger, and thus more 

failures were observed even when the mixture ratio p was small (see Chapter 5:  

Trunsored Estimation).  However, these were only generated for a cases with small 

mixture ratio.  More extensive characterization of the impact of population size, and 

number of observed failures, would be valuable. 

 

Finally, this dissertation focused on limited failure population cases, where the strong 

subpopulation was assumed to have a reliability of 1 for all times of interest.  
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Although this is a reasonable assumption in many applications, where the parts have 

already been qualified to have a low failure rate during normal operating life, there 

may be cases where some probability of failure should be considered for the strong 

subpopulation.  This is particularly important to consider in the cost model, where 

“eating into” useful life can have a large impact on total life-cycle costs.  

 

Confidence Bounds 

Although the distribution of the estimates and quantiles were examined, methods for 

estimating confidence bounds were not developed.  Most textbooks on reliability 

analysis present only the asymptotic-normal theory for calculation of confidence 

bounds on Weibull parameters, these bounds are only accurate for large sample 

situations.  They can be too small for situations where few failures were observed and 

their asymmetric properties can create problems when only a one-sided bound is 

desired [Meeker, 1987]. Methods using the Wald Statistic and Fisher Information 

have also been examined, but again may have problems in small sample situations 

[Jeng, 2001].  

 

Another method is the use of the likelihood ratio statistic, which under asymptotic 

conditions is approximately distributed as a chi-squared random variable with one 

degree of freedom.  Several studies have compared the asymptotic-normal method to 

the likelihood ratio method for single Weibull distribution confidence bounds and 

found the likelihood ratio method to have more accurate and better-behaved 

confidence intervals.  A number of modifications to and correction factors for the 
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likelihood ratio method have also been examined [Vander Wiel, 1990] [Doganaksoy, 

1991] [Doganaksoy, 1993]. 

 

More limited work exists on confidence bounds for mixed distributions.  Some work 

has been done in the theoretical statistics community, but as with the estimation of the 

parameters, these methods may not be appropriate under real-life conditions [Qin, 

1999].  Confidence bounds for the situation where the strong subpopulation can be 

ignored (because its mean time to failure is well beyond mission life) were examined 

in [Meeker, 1987], but only for considering the time of first failure.  In all other cases 

found, it is assumed that the likelihood ratio statistic is the appropriate method for 

confidence bound calculations, as in [Meeker, 1987] and [Hirose, 2005]. 

Comparisons of the likelihood ratio statistic to other methods of confidence bound 

estimation do not appear to have been explored.   

 

It had been planned to look at methods such as likelihood ratio bounds for the MLE 

and Trunsored methods.  However, the only methods I was able to develop for 

calculating the bounds were very computationally intense, requiring grid searches for 

every case.  This method for finding the confidence bounds was not feasible for the 

extensive simulations performed here under the time constraints of this dissertation.  

In order to examine confidence bound estimation, new more efficient code will need 

to be developed. 

 

 



 

 106 
 

Role of Accelerated Testing and Changing Life Conditions 

Although, as discussed in the introduction, if only the screen conditions are 

accelerated, performing an accelerated test is equivalent to performing a longer test 

and is therefore addressed in this dissertation.  However, there are times when both 

the screen and use applications are adjusted, for example if a part is used in two 

applications with different temperatures and burn-in is performed at 1.5 times the 

application temperature.  Say it is desirable to establish a burn-in length for all 

applications.  It is necessary to know whether the application with the smaller or 

larger acceleration should be used as “worst case” (i.e., the application which requires 

the longer burn-in to establish a given reliability or cost). 

 

Because the optimal burn-in time is related to conditional reliability, a ratio is of 

interest.  Obviously, at higher acceleration, the reliability at a given time is lower.  

Under a standard Weibull, at higher acceleration, the conditional reliability is also 

lower, as shown in Figure 60.  However, under a mixed Weibull, the ratio is no longer 

monotonic, as shown in Figure 61 and Figure 62.  Depending on the time point of 

interest, the shape of the conditional reliability curve relative to acceleration factor 

may change.  Sometimes higher acceleration factors may produce lower conditional 

reliability and sometimes lower.  This means that establishing a burn-in screen for 

some “worst case” acceleration condition may be difficult because it may not be 

obvious what the worst case condition is.   
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The behavior under acceleration, when both the application and test conditions are 

adjusted, seems counterintuitive.  The behavior is related to derivatives of logarithms 

of reliability functions, not a space most practitioners are used to thinking of.  

Because the behavior is counterintuitive, more exploration of conditional reliabilities 

of mixed Weibull distributions under acceleration is needed. 
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Figure 60.  The impact of acceleration on conditional reliability for a standard Weibull (mixture 
ratio=1).  The screen (of length 5) and time point of interest (10) were accelerated using the same 
factor.  Higher acceleration produces lower conditional reliability. 
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Figure 61.  The impact of acceleration on conditional reliability for a mixed Weibull (mixture 
ratio=0.5).  The screen (of length 5) and time point of interest (10) were accelerated using the 
same factor.  Changing the acceleration factor no longer produces a monotonic behavior. 
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Figure 62. The impact of acceleration on conditional reliability for a mixed Weibull (mixture 
ratio=0.5).  The screen (of length 5) and time point of interest (50) were accelerated using the 
same factor.   
 
 

Quick rules for developing burn-in lengths 

The work in this dissertation helps establish the appropriate use of different 

estimation methods and development of optimal screen lengths.  However, in many 

cases, executives will want a quick “rule of thumb” regarding the expected 

recommended screen length.  It is expected that a such a rule could be developed, 

based on looking at the amount of scatter in the failure times observed to that point.  

However, such a rule would likely depend on uncertainty in the estimates and 

confidence bounds, which have not yet been explored.   
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 Appendix 1:  Median Rank Regression  
 
Another class of estimations, based on median rank regression, was also examined as 

part of this work.  However, the problems encountered with the method were so 

extensive that they were not pursued fully.  This appendix summarizes some of the 

problems discovered. 

 

Median Rank Regression (MRR) is commonly used in engineering studies for 

estimating Weibull parameters.  Partially, this is due to the relationship between MRR 

and the plotting of data on Weibull paper; the line and coefficients typically derived 

from Weibull paper correspond to those derived from MRR estimation.  Furthermore, 

some studies have shown MRR to be better, in terms of bias and error, than MLE, 

particularly when sample sizes are small. [Abernethy, 1999] [Mardia, 1999]  Others 

recommend MRR because of the convergence problems and other computational 

problems with MLE. [Kececioglu, 1998].  Several industry-focused reliability courses 

and software packages state that MRR is “recommended as the engineering standard” 

for Weibull analyses of small samples. [Abernathy, 2000] [Amari, 2008] 

 

MRR in a non-mixture situation begins with the calculation of the adjusted rank: 

( ) ( ) ( )1 1
1

i i
i

i

rr O t n
O t

rr
−× + +

=
+

 

where irr = reverse rank of the ith observation 

n = number of devices on test 
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The adjusted rank is then used to calculate the median rank: 

( ) ( ) 0.3
0.4

i
i

O t
MR t

n
−

=
+

 

 

Failure times and median ranks are transformed as: 

( )lni iY t=  

( )
1ln ln

1i
i

X
MR t

⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠

 

 

Weibull parameters are found by performing a basic linear regression of Y on X.  The 

shape parameter is the slope of the regression.  The scale parameter is found by: 

intexpθ
β

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 

 

A variants of MRR for mixed Weibull situation, based on  the work in [Kececioglu, 

1998] was considered.   

 

 [Kececioglu, 1998] uses all the data and allows for estimation of parameters from 

both the weak and strong subpopulations.  The concept involves assigning a portion 

of each failure and censored point to each of the subpopulations, based on a Bayesian 

estimate of the likelihood of the outcome occurring in the subpopulation.  First, 

parameters are postulated for the two subpopulations, either through prior knowledge 

or from graphical estimation.   
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Then each failure time is split into the two subpopulations.  The proportion of the 

failure time in the weak subpopulation is: 

( ) ( )
( ) ( ) ( )

1
1

1 21
i

i
i i

pf t
P t

pf t p f t
=

+ −
 

 

The proportion in the strong subpopulation of the failure times in the strong 

subpopulation are chosen similarly. 

 

The two subpopulations are then treated completely separately and MRR applied to 

each.  Because the number of failures is no longer integral, the calculation of the 

adjusted rank needs to be changed.  [Kececioglu, 1998] presents the calculations for 

situations with no censored observations.  He calculations the adjusted rank (or mean 

order number) as:23 

 

( ) ( )
1

i

j i j k
k

O t P t
=

= ∑  

where j = 1 or 2 (for each of the subpopulations). 

 

 

The median ranks are calculated similarly to the single population case: 

 

                                                 
23 I’d like to add some theoretical discussion about how this compares to the typical 
calculation of adjusted rank.  However, I’ve been really struggling with this theory.  
I’m going to leave it alone for now and see if it is worth going back to. 
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( ) ( )
( ) 0.4
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This is very similar to the general calculation of the median rank, but is lacking the -

0.3 in the numerator.  This is likely because in many cases, when only a portion of the 

failure is assumed to fall in each population, ( )j iO t  is less than 0.3, creating a 

negative median rank.  Kececioglu does not discuss this change to the median rank 

formulation. 

 

Then the regression proceeds normally.  Once new Weibull parameter estimates have 

been established, the proportion of the failures in each subpopulation can be adjusted.  

This in turn leads to new parameter estimates.  The new mixture ratio is estimated as: 
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[Kececioglu, 1998] uses the sum of the correlation coefficients for each 

subpopulation as the objective function to be maximized.  [Kececioglu, 1998] 

proposes that simply iterating through this system will eventually converge to the 

values that maximize the sum of the correlation coefficients, but he does not prove 

that the iterations converge, much less to the maximal value. 

 

Furthermore, the solution to his example at the end of Section 2 neither maximizes 

the sum of the correlation coefficients nor appears to be the values to which the 

iterations converge.  The example has failure times for 10 observations (3.0, 28.5, 

71.6, 91.1, 129.1, 157.8, 188.9, 226.1, 278.0, 367.2).  [Kececioglu, 1998] suggests 

starting values of: 1 1 2 2
ˆ ˆ ˆ ˆˆ 0.3, 0.6, 39.4, 2.3, 233.5p β θ β θ= = = = = .  He then reports 

optimum values for the estimation method 

as: 1 1 2 2
ˆ ˆ ˆ ˆˆ 0.3, 0.5, 50, 1.9, 193p β θ β θ= = = = = .  These produce an total correlation 

coefficient of 0.972 0.981 1.953+ = .  Using his same starting values and the iterative 

methodology described in the paper, the very first iteration produces estimates of 

1 1 2 2
ˆ ˆ ˆ ˆˆ 0.30, 0.38, 44.25, 1.91, 209.73p β θ β θ= = = = = , which have a total correlation 

coefficient of 1.996, higher than the optimal value reported in the paper.  

Furthermore, subsequent iteration produce lower total correlation coefficients, and the 

exact value reported in the paper could not be reproduced.  When the paper’s basic 

equations are run through a standard non-linear programming routine, the coefficients 

obtained are 1 1 2 2
ˆ ˆ ˆ ˆˆ 0.998, 0.4, 1.31, 0.74, 83.54p β θ β θ= = = = =  with a total 

correlation coefficient of 1.999. 
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Several modifications to [Kececioglu, 1998] are needed to allow it to be used in the 

general cases.  For censored observations, ( )j kP t  is not known.  Instead, there is only 

the probability of the device surviving to the censor time.  To allow those to 

contribute to the adjusted rank, the reliability at the censor time for any censored 

devices prior to tk is included. 

( ) ( ) ( )
1

where indicator variable that censor time  is less than the failure time 

i

j i j k i j m
k

i m i

O t P t I R t

I t t
=

= + ×

=

∑ ∑  

 

Since in our simulation, the censoring only occurs after the failure times, the 

modification is only needed for ( )j NO t .   

( ) ( ) ( )
( ) ( )1 1 1 2 2

i
j j cens

j N j k
k cens cens

p R t
O t P t u

p R t p R t=

×
= + ×

× + ×∑  

 

where u is the number of devices censored at tcens. 

 

In addition, to prevent having to perform an iterative scheme by hand, the 

optimization was performed using a standard non-linear programming routine.  In this 

routine, p̂  was not calculated as in Kececioglu.  Instead it was simply entered as 

another parameter need to be estimated in the maximization. 

 

Using either this modified p̂  or the original proposed by Kececioglu, the errors from 

MRR were large.  Kececioglu MRR had the highest random error of any of the 

methods in its estimates of α.  It also had large bias on α  unless the true mixture ratio 



 

 115 
 

was between about 0.5 and 0.75, and the bias increased when many failures were 

observed, whether from a higher α, higher shape parameter or a delayed censor time.  

The errors in the mixture ratio estimate lead to large errors in the reliability estimates 

as well, producing biases and random errors each over 5 times larger than the MLE 

method under almost every condition examined, as shown in Figure 63. Given these 

large errors, attempts at performing the MRR method were abandoned. 

 

 
Figure 63.  Mixture is Black; Kececioglu MRR is red.  Time=10. 
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Table 7.  Kececioglu MRR: Errors in Parameters and Reliability Estimates for θ=1, β=1, censor 
time=2. 
True α Bias in a 

(SD) 
Bias in θ 
(SD) 

Bias in β 
(SD) 

Bias in 
R(20)24 
(SD) 

0.05 0.33 
(0.46) 

0.11 
(0.18) 

-0.13 
(0.21) 

-0.32 
(0.45) 

0.1 0.42 
(0.47) 

0.18 
(0.21) 

-0.18 
(0.21) 

-0.42 
(0.47) 

0.25 0.32 
(0.41) 

0.23 
(0.20) 

-0.21 
(0.18) 

-0.31 
(0.41) 

0.5 0.11 
(0.36) 

0.28 
(0.20) 

-0.19 
(0.13) 

-0.11 
(0.36) 

0.75 0.29 
(0.30) 

0.29 
(0.14) 

-0.22 
(0.10) 

-0.01 
(0.30) 

0.9 -0.04 
(0.23) 

0.29 
(0.10) 

-0.21 
(0.08) 

0.04 
(0.23) 

1 -0.10 
(0.19) 

0.26 
(0.09) 

-0.19 
(0.06) 

0.10 
(0.19) 

 

 

 

                                                 
24 10 times longer than the censor time.  In truth all the at risk subpopulation has 
failed by this point, so R(20)=1-α. 
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Appendix 2:  Estimation Errors 
 

Table 8.  Errors in Parameters and Reliability Estimates for θ=1, β=1, censor time=225. 
True p Estimation 

Method 
Bias in p 
(SD) 

Bias in θ 
(SD) 

Bias in β 
(SD) 

Bias in 
R(10)26 
(SD) 

MLE 0.12 
(0.30) 

42.68 
(190.63) 

0.72 
(1.82) 

-0.03 
(0.09) 

Trunsored 2.61 
(18.48) 

110.70 
(354.19) 

0.72 
(1.82) 

-0.08 
(1.11) 

0.05 

Bayesian 0.01 
(0.02) 

-0.10 
(0.45) 

0.25 
(0.26) 

-0.01 
(0.02) 

MLE 0.10 
(0.27) 

14.73 
(77.77) 

0.38 
(1.02) 

-0.02 
(0.08) 

Trunsored 0.80 
(0.29) 

247.88 
(1351.60) 

-0.04 
(1.00) 

-0.15 
(0.13) 

0.1 

Bayesian 0.00 
(0.04) 

-0.04 
(0.45) 

0.24 
(0.26) 

0.00 
(0.04) 

MLE 0.06 
(0.18) 

1.05 
(4.51) 

0.08 
(0.28) 

-0.03 
(0.10) 

Trunsored 0.73 
(6.69) 

42.84 
(310.22) 

0.08 
(0.28) 

-0.03 
(0.11) 

0.25 

Bayesian 0.01 
(0.06) 

0.04 
(0.37) 

0.14 
(0.22) 

-0.01 
(0.06) 

MLE 0.04 
(0.15) 

0.29 
(1.00) 

0.03 
(0.19) 

-0.03 
(0.12) 

Trunsored 0.55 
(4.49) 

25.64 
(311.80) 

0.03 
(0.19) 

-0.04 
(0.17) 

0.5 

Bayesian 0.02 
(0.08) 

0.05 
(0.30) 

0.07 
(0.17) 

-0.02 
(0.08) 

MLE 0.01 
(0.11) 

0.06 
(0.33) 

0.03 
(0.15) 

-0.01 
(0.10) 

Trunsored 0.45 
(10.23) 

9.40 
(183.23) 

0.03 
(0.16) 

-0.03 
(0.16) 

0.75 

Bayesian 0.00 
(0.07) 

-0.01 
(0.19) 

0.06 
(0.14) 

0.00 
(0.07) 

MLE 0.00 
(0.07) 

0.01 
(0.21) 

0.03 
(0.12) 

0.00 
(0.08) 

Trunsored 0.21 
(4.38) 

3.31 
(89.99) 

0.02 
(0.14) 

-0.08 
(0.17) 

0.9 

Bayesian -0.03 
(0.05) 

-0.06 
(0.14) 

0.05 
(0.11) 

0.03 
(0.05) 

MLE -0.03 
(0.04) 

-0.06 
(0.13) 

0.05 
(0.11) 

0.03 
(0.04) 

Trunsored 0.11 
(1.98) 

1.39 
(39.30) 

0.01 
(0.13) 

-0.04 
(0.16) 

1 

Bayesian -0.06 
(0.03) 

-0.13 
(0.10) 

0.09 
(0.10) 

0.06 
(0.03) 

                                                 
25 Cases with <3 failures deleted 
26 5 times longer than the censor time.  
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Table 9.  After Likelihood Ratio Test on p: Errors in Parameters and Reliability Estimates for 
θ=1, β=1, censor time=2.  (Compare to Table 8)27 
True p Estimation 

Method 
Bias in p 
(SD) 

Bias in θ 
(SD) 

Bias in β 
(SD) 

Bias in 
R(10)28 
(SD) 

MLE 0.65 
(0.44) 

608.13 
(2460.29) 

0.41 
(1.75) 

-0.09 
(0.12) 

0.05 

Trunsored 0.86 
(0.28) 

902.77 
(3275.47) 

0.11 
(1.64) 

-0.12 
(0.12) 

MLE 0.59 
(0.43) 

205.43 
(1349.25) 

0.17 
(1.07) 

-0.11 
(0.14) 

0.1 

Trunsored 0.80 
(0.29) 

255.94 
(1371.63) 

-0.04 
(0.99) 

-0.15 
(0.13) 

MLE 0.42 
(0.38) 

9.31 
(12.50) 

-0.04 
(0.33) 

-0.16 
(0.18) 

0.25 

Trunsored 0.63 
(0.28) 

13.90 
(12.20) 

-0.17 
(0.29) 

-0.24 
(0.15) 

MLE 0.23 
(0.27) 

1.58 
(1.94) 

-0.04 
(0.23) 

-0.16 
(0.21) 

0.5 

Trunsored 0.39 
(0.22) 

2.62 
(1.79) 

-0.14 
(0.22) 

-0.27 
(0.18) 

MLE 0.12 
(0.16) 

0.43 
(0.58) 

-0.03 
(0.18) 

-0.11 
(0.15) 

0.75 

Trunsored 0.21 
(0.11) 

0.74 
(0.46) 

-0.10 
(0.15) 

-0.20 
(0.10) 

MLE 0.06 
(0.08) 

0.17 
(0.24) 

-0.02 
(0.13) 

-0.06 
(0.08) 

0.9 

Trunsored 0.23 
(0.10) 

3.07 
(89.53) 

-0.05 
(0.10) 

-0.09 
(0.06) 

MLE 0.00 
(0.03) 

-0.01 
(0.12) 

0.02 
(0.10) 

-0.01 
(0.03) 

1 

Trunsored 0.07 
(1.97) 

1.26 
(39.30) 

0.01 
(0.09) 

0.00 
(0.08) 

 

 

                                                 
27 Testing for presence of mixture not performed for Bayesian method 
28 5 times longer than the censor time.  
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Table 10.  Errors in Parameters and Reliability Estimates for θ=1.6, β=3, censor time=2. 
True p  Estimation 

Method 
Bias in p 
(SD) 

Bias in θ 
(SD) 

Bias in β 
(SD) 

Bias in 
R(10)29 
(SD) 

MLE 0.13 
(0.31) 

1.17 
(4.22) 

2.04 
(5.27) 

-0.09 
(0.24) 

Trunsored 12.45 
(49.97) 

20.04 
(115.87) 

2.04 
(5.27) 

-0.89 
(6.97) 

0.05 

Bayesian 0.01 
(0.03) 

0.68 
(0.87) 

-0.22 
(0.69) 

-0.01 
(0.03) 

MLE 0.08 
(0.26) 

0.47 
(1.78) 

4.17 
(98.24) 

-0.08 
(0.23) 

Trunsored 10.68 
(53.87) 

6.34 
(40.65) 

4.16 
(98.24) 

-0.45 
(2.38) 

0.1 

Bayesian 0.01 
(0.04) 

1.30 
(0.94) 

-0.19 
(0.60) 

-0.01 
(0.04) 

MLE 0.07 
(0.21) 

0.22 
(0.73) 

0.22 
(0.82) 

-0.07 
(0.21) 

Trunsored 12.55 
(73.89) 

4.15 
(37.32) 

0.21 
(0.83) 

-0.43 
(2.11) 

0.25 

Bayesian 0.02 
(0.06) 

2.27 
(1.33) 

-0.07 
(0.48) 

-0.02 
(0.06) 

MLE 0.04 
(0.15) 

0.07 
(0.29) 

0.12 
(0.58) 

-0.04 
(0.14) 

Trunsored 2.05 
(27.03) 

0.49 
(4.87) 

0.12 
(0.59) 

-0.16 
(1.03) 

0.5 

Bayesian 0.03 
(0.09) 

2.35 
(0.95) 

-0.12 
(0.39) 

-0.03 
(0.09) 

MLE 0.03 
(0.11) 

0.03 
(0.17) 

0.08 
(0.44) 

-0.03 
(0.11) 

Trunsored 0.55 
(8.48) 

0.20 
(2.35) 

0.07 
(0.46) 

-0.12 
(0.96) 

0.75 

Bayesian 0.03 
(0.08) 

2.37 
(0.79) 

-0.10 
(0.35) 

-0.03 
(0.08) 

MLE 0.00 
(0.08) 

-0.01 
(0.11) 

0.10 
(0.38) 

0.00 
(0.08) 

Trunsored 1.04 
(17.10) 

0.17 
(2.03) 

0.06 
(0.42) 

-0.14 
(1.33) 

0.9 

Bayesian 0.00 
(0.05) 

2.29 
(0.75) 

-0.04 
(0.32) 

0.00 
(0.05) 

MLE -0.04 
(0.05) 

-0.04 
(0.08) 

0.15 
(0.33) 

0.04 
(0.05) 

Trunsored 0.22 
(3.87) 

0.08 
(0.90) 

0.04 
(0.40) 

-0.10 
(1.12) 

1 

Bayesian -0.05 
(0.03) 

2.24 
(0.66) 

0.12 
(0.25) 

0.05 
(0.03) 

 
 

                                                 
29 5 times longer than the censor time.  
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Appendix 3:  Detailed Calculations for Bayesian Posterior 
 

[Perlstein, 2001] demonstrates that it is easier to manipulate the expanded form of the 

likelihood.  First, some notation must be established. 

Let mt =∑ l the sum of the elements of the mth permutation of vectors of size l  from 

{ }1 ,..., nt t t= .  So for example, if 4n =  there are 
4

6
2

⎛ ⎞
=⎜ ⎟

⎝ ⎠
 permutations of vectors of 

size 2.  So for 2=l , m takes on values from 1 to 6: 

4 4 4

1 1 2 2 1 3 3 1 4
1 1 1

4 4 4

4 2 3 5 2 4 6 3 4
1 1 1

t t t t t t t t t

t t t t t t t t t

= = =

= = =

= + = + = +

= + = + = +

∑ ∑ ∑

∑ ∑ ∑

l l l

l l l

l l l

l l l

      

Similarly, mt =∏ l the product of the elements of the mth permutation of vectors of 

size l . 

 

Using this notation, the likelihood equation can be rewritten as: 

( ) ( )

( )( )
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exp

exp
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n u
n u vv

W S W S
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W W

nn
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β β
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⎝ ⎠
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∑
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∑
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ll

l

ll

l
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The posterior distribution is calculated using Bayes Theorem: 
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( ) ( ) ( )
( ) ( )
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Let us start by considering the integral in the denominator. 
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where 
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The remaining integrals with respect to Sβ  and Wβ  do not have closed form solutions 

and must be numerically integrated.  However, limiting the numeric integration to 

these two integrals, as opposed to numerically integrating over all five parameters, 

greatly simplifies the problem and decreases the computational time. 

 

For simplicity, a constant for this denominator is defined: 
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Using the joint posterior distribution, the posterior expected values of the parameters 

and the reliability can be calculated. 
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