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Recently, there has been a considerable interest in various novel two-dimensional

(2D) materials, such as graphene, topological insulators, etc. These materials host

a plethora of exotic phenomena owing to their unconventional electronic structure.

Physics of these 2D materials is understood fairly well, so a natural generalization

is to assemble these materials into three-dimensional (3D) stacks. In this thesis,

we study a number of multilayer systems, where the interlayer interaction plays a

salient role.

We commence with studying graphene multilayers coupled via interlayer tun-

neling amplitude. We calculate the energy spectrum of the system in magnetic field

B parallel to the layers. The parallel magnetic field leads to a relative gauge shift

of the momentum spaces of the individual 2D layers. When the interlayer tunnel-

ing is introduced, we find the Landau levels. We observe two qualitatively distinct

domains in the Landau spectrum and analyze them using semiclassical arguments.

Then, we include electric field E perpendicular to the layers, and analyze the spec-

trum in the crossed-field geometry. If the fields are in resonance E = vB, where v



is the velocity of carriers in graphene, the wave-functions delocalize in the direction

along the field E. We compare this prediction to a tunneling spectroscopy study

of a graphite mesa in the parallel magnetic field. Indeed, the tunneling spectrum

displays a peak, which grows linearly with the applied magnetic field B, and is,

thus, consistent with our theoretical analysis.

Then, we move on to a discussion of Z2 topological insulators within the Shock-

ley model. We generalize the one dimensional (1D) Shockley model by replacing

atomic sites of the original model by the 2D Rashba spin-orbit layers. We analyze

surface states of a topological insulator using a construction of vortex lines in the

3D momentum space. We also study a topological insulator in a thin film geometry,

where the opposite surface states are coupled by the tunneling amplitude. We cal-

culate the tunneling current between the opposite surfaces and a spin polarization

of the current as a function of the in-plane magnetic field.

We conclude with studying a novel chiral order in cuprates. We construct a

helical interlayer pattern of loop-currents. The interlayer magnetic coupling and

magnetoelectric effect lead to optical gyrotropy.
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Chapter 1: Introduction

1.1 Certain low-dimensional models

Low-dimensional physics is one of the key areas in the modern condensed

matter research. It covers a large number of diverse physical phenomena, which

occur in spatial dimensions less than three. The low dimensionality intricately

impacts the physics and often gives rise to exotic phenomena, which are not available

in three dimensions (3D). Let us review a few basic low-dimensional systems and

models that have been of interest recently.

1.1.1 One dimension. Shockley model

Let us begin with an important model introduced by Shockley [1] to study edge

states in one-dimensional (1D) periodic lattices. In the tight-binding description

[2, 3], the unit cell of the lattice consists of two atoms labeled as A and B, which

are connected via alternating nearest-neighbor tight-binding amplitudes t1 and t2

as shown in Fig. 1.1(a). In the momentum k space, the Bloch Hamiltonian of the

model

H(k) =

 0 t1 + t2e
ik

t1 + t2e
−ik 0

 (1.1)
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Figure 1.1: (a) One dimensional Shockley model is shown in the bot-
tom. Localized Shockley wave function (1.3) is shown in the top. (b)
The continuous approximation of the Shockley model - the Jackiw-Rebbi
model (1.4). Continuous functionm(x) (shown in blue) models a domain
wall. There is a non-trivial eigenstate (1.5) (shown in red) localized in
the vicinity of the domain wall.

acts in a sublattice space

Ψ(k) =

 ψA(k)

ψB(k)

 .
The energy spectrum of the Hamiltonian, which is given by the absolute value of

the off-diagonal element of Eq. (1.1)

ε(k) = ±
∣∣t1 + t2e

ik
∣∣ , (1.2)

is gapped unless the tight-binding amplitudes are of equal magnitude |t1| = |t2|. The

eigenvectors of Eq. (1.1), which correspond to spectrum (1.2), are the delocalized

Bloch states propagating through the entire system as plane waves eikx. Besides

the delocalized states, the system may have edge states in case of open boundary
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conditions. If the bond t2 is broken at the boundary as shown in Fig. 1.1(a), one

finds a zero-energy Shockley eigenstate

Ψ(x) =

 (−t1/t2)x

0

 . (1.3)

If t1 > t2, the solution (1.3) grows for x > 0 and is, thus, spurious. If t2 > t1, the

solution is physical since it decays for x > 0, as shown in Fig. 1.1(a). In such a way,

the Shockley criterion can be formulated intuitively: The 1D bipartite lattice has an

edge state if the stronger bond is broken at the edge.

Let us also mention an important continuous version of the Shockley model

- the Jackiw-Rebbi model [4]. Let us fix the second Shockley amplitude t2 = −t

and assume that the first Shockley amplitude t1 is a continuous function of x, i.e.

t1(x) = t + m(x). Here, the function m(x) is referred to as the “mass term” in

the high-energy literature. The profile of the function m(x) changing sign from

left to right, as shown in Fig. 1.1(b), is called the domain wall. We expand the

Hamiltonian (1.1) for small k, substitute k = −i∂x and obtain

H =

 0 m(x)− t ∂x

m(x) + t ∂x 0

 . (1.4)

The Hamiltonian has a non-trivial zero-energy eigenstate [5, 6]

Ψ(x) =

 exp
[
−
∫ x
0
m(x)
t
dx
]

0

 . (1.5)
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Figure 1.2: The number of papers published in Physical Reviev B and
Physical Review Letters containing key words (a) “graphene” and (b)
“topological insulator” in the title or abstract during 2004-2013.

Note, that for a profile of the function m(x) shown in Fig. 1.1, this eigenstate decays

at infinity |x| → ∞ and is localized predominantly in the vicinity of the domain

wall, where the function m(x) changes sign.

Despite conceptual simplicity, the Shockley model is very universal and pro-

vides a basis for studying edge states for a wide variety of systems. To name a few,

the Shockley model describes the edges states in polyacetylene [7], graphene [8],

topological insulators [9] and topological superconductors [10, 11].

1.1.2 Two dimensions

Let us proceed to a discussion of a few important two-dimensional (2D) sys-

tems. Recently, there has been an outburst of research activity in graphene and

topological insulators as evidenced from Fig. 1.2. Let us briefly review these two

topics
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1.1.2.1 Graphene

Graphene is a monoatomic layer of Carbon atoms arranged in a honeycomb lat-

tice as shown in Fig. 1.3(a). It was synthesized using a famous Scotch tape method

in 2004 [12, 13]. Although monoatomic layers were originally believed thermody-

namically unstable, graphene proved to be a robust 2D system, where experiment

and theory meet in a good agreement. Graphene displays outstanding physical

properties surpassing those of other materials. For instance, unique electronic prop-

erties of graphene [14] stem from an unusual electronic energy spectrum, which we

are going to address briefly. The electronic Hamiltonian can be modeled reason-

ably well within a tight-binding approximation, where an elementary cell contains

two equivalent atoms denoted as A and B connected via a nearest-neighbor hop-

ing t. If we denote the elementary translation vectors as a1 = a(1/2,
√
3/2) and

a2 = a(−1/2,
√
3/2), the momentum space p = (px, py) Hamiltonian is

H(p) =

 0 t(p)

t∗(p) 0

 , where t(p) = 1 + eipa1 + eipa2 . (1.6)

The energy spectrum of the Hamiltonian has two bands ε(p) = ±|t(p)| plotted in

Fig. 1.3. In the vicinity of the corners of the Brillouin zone denoted as K and K′

in Fig. 1.3(b), the off-diagonal element of Hamiltonian (1.6) can be expanded as

t(p) = v(∓px − ipy), where v = at
√
3

2
. As a result, the electronic spectrum becomes

linear in momentum

ε(p) = ±|t(p)| ≈ ±vp. (1.7)
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Figure 1.3: (a) Honeycomb lattice of graphene with A (blue) and B (red)
sublattices. Projection of the lattice onto the horizontal axis generates
monoatomic lattice, and onto the vertical axis - the bipartite Shockley
lattice. (b) The energy spectrum of graphene. The dashed line denotes
a boundary of the Brillouin zone.

This linear dispersion, which is often referred to as the Dirac cone, is at the heart

of the unusual electronic properties of graphene. To list a few, graphene exhibits re-

markable electronic transport [15], fascinating optical properties [16], unusual quan-

tization of the Landau Levels(LL) εn = ±
√
2evBn in the strong magnetic field B

that leads to unconventional quantum Hall effect (QHE) [17] observable at room

temperature, etc. Graphene triggered a search of other Dirac materials, i.e. the ma-

terials with linear electronic dispersion (e.g. topological insulators, Weyl semimetals,

etc.).

In passing, let us note a curious resemblance of the graphene lattice to the

Shockley model. In Fig. 1.3(a), we project the graphene lattice onto horizontal and

vertical axes. While projecting onto the vertical axis, all A atoms collapse on the

“blue” Shockley sites, whereas B - on the “red”. In contrast, the projection onto the

horizontal axis yields a trivial lattice with a single atom per unit cell. Based on this
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intuition, we expect that the Shockley edge states (do not) exist on the (armchair)

zigzag boundary of graphene samples, which is confirmed by explicit calculations [8].

1.1.2.2 Topological Insulators

After the experimental observation of QHE in 1980, a new paradigm of topolog-

ical order emerged in the condensed matter community. It was suggested that apart

from symmetry classification, some phases of matter should be classified according

to their topological properties. Recent interest in topological insulators (TI) lies

in a theoretical prediction [18–29] and subsequent experimental realization [30–32]

of the so-called Z2 TIs (we leave the discussion of other exotic topological orders

outside of the scope of this thesis). These are the materials with strong spin-orbit

coupling, where the topological properties guarantee the existence of surface states

with the spin-polarized Dirac-like dispersion.

We study the surface states of the Z2 TIs using the Shockley formalism in

Chapter 4. Below, let us review the famous Haldane model [33], which is a precursor

of modern theory of TIs. This phase represents a gapped insulator exhibiting the

anomalous Hall effect(AHE). Incidentally, the tight-binding model of the Haldane

phase was formulated on graphene lattice. In addition to the nearest tight-binding

amplitude t, the Haldane model includes complex next-nearest-neighbor hopping

t1e
iϕ as well as alternating on-site potentials ±M on the A and B sublattices as

shown in Fig. 1.4(a). As in previous Section 1.1.2.1, we write the Bloch Hamiltonian

H(p) = t0(p)I + t(p) · τ , (1.8)
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Figure 1.4: (a) Tight-binding lattice of the Haldane model. (b) Energy
spectrum corresponding to pure graphene t1 =M = 0. For reference, the
labels K and K′ represent the same points in the momentum space as in
Fig. 1.3(b). (c) Energy spectrum corresponding to the trivial topological
phase t1 = 0, M = 0.5t. (d) Energy spectrum corresponding to the
non-trivial phase t1 = 0.5t, M = 0, ϕ = π/2. In panels (b)-(d), the
red curves were obtained in a ribbon geometry with 30 atoms in the y
direction and infinite number of atoms in the x direction. The black
curves where obtained from the bulk spectrum (1.9). So, the red line
not covered by the black line partner corresponds to an edge mode.
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where the 2-by-2 Pauli τ = (τx, τy, τz) and identity I matrices act in the space

of spinors Ψ(p) = [ψA(p)ψB(p)]T, and the coefficients h(p) depend on the tight-

binding parameters and the 2D momentum p = (px, py)
1. The energy spectrum of

the Haldane Hamiltonian

ε(p) = t0(p)± |t(p)| (1.9)

is gapped unless |M | = 3
√
3t1 sinϕ. Notice, that the off-diagonal elements of the

graphene Hamiltonian (1.6) and the Haldane Hamiltonian coincide, since t(p) =

tx(p) + ity(p). The only difference appears in the diagonal terms determined by

tz(p) and t0(p). The effect of the term tz(p) is crucial: it gappes out the Dirac

cones at the points K and K′ and, so, introduces a mass (in the terminology of

the Jackiw-Rebbi model). The masses at the two non-equivalent Dirac points are

mK = M + 3
√
3t1 sinϕ and mK′ = M − 3

√
3t1 sinϕ. If the signs of the two masses

coincide, i.e. mKmK′ > 0 (or equivalently |M | > 3
√
3|t1 sinϕ|), we call such a

case topologically trivial. However, if the signs of the masses are opposite, i.e.

mKmK′ < 0 (or equivalently |M | < 3
√
3|t1 sinϕ|), we call such a case topologically

non-trivial. Now, let us imagine the entire 2D space is divided into two regions: one

- topologically trivial, and another - topologically non-trivial. Then, when passing

from one region to another, one will change the sign of at least one Jackiw-Rebbi

1

tx(p) = Re t(p) = t (1 + cospa1 + cospa2 ) ,

ty(p) = Im t(p) = t (sinpa1 + sinpa2 ) ,

tz(p) = M + 2t1 sinϕ [sinpa1 − sinpa2 − sinp(a1 − a2) ] ,

t0(p) = 2t1 cosϕ [cospa1 + cospa2 + cosp(a1 − a2) ] .
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mass. According to the discussion in Section 1.1.1, the mass domain wall between

the two regions will generate the Jackiw-Rebbi edge state.

Indeed, exact numerical diagonalization finds such edge states. In Fig. 1.4(b)-

(d), we plot the spectrum of the Haldane Hamiltonian in a ribbon geometry. The

width of the ribbon is 30 atoms in the y direction. The ribbon is infinite in the

x direction, and px is a corresponding momentum. For each momentum px, we

effectively have a 1D tight-binding Hamiltonian with open boundary conditions,

which we diagonalize and obtain 30 eigenvalues. These eigenvalues trace out the

red curves as px goes through the Brillouin zone in Fig. 1.4. For reference, the

spectrum of the Hamiltonian with the periodic boundary conditions is plotted in

black. So, the red lines not covered by the black lines correspond to the edge states.

In Fig. 1.4(b), we show a spectrum of the graphene ribbon without the Haldane

currents, i.e. t1 = M = 0. Compare the Dirac points K and K′ for the graphene

layer in Fig. 1.3(b) with the graphene ribbon in Fig. 1.4(b). In consistency with

the intuition discussed in the end of Sec. 1.1.2.1, we indeed find the Shockley edge

modes at the zigzag edges shown with the thin red line. In fact, the line is double

degenerate, where the degeneracy corresponds to the two states localized at the

opposite edges. Next, in a case of the trivial Haldane phase (t1 = 0 and M = 0.5t)

shown in Fig. 1.4(c), the degeneracy of edges states is lifted, and the spectrum

becomes gapped. In the case of the non-trivial Haldane phase (t1 = 0.5t,M = 0t,

and ϕ = π/2), there are two chiral edge modes traversing the gap. They have

opposite velocities and are localized at the opposite edges of the system. In the

topologically non-trivial regime, the existence of the edge states is protected by
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topology. In contrast, in the topologically trivial case, the existence of the edge

states strongly depends on the boundary conditions. Let us also note that the

two phases of the Haldane model can be distinguished by the Chern number. The

Chern number C is a topological index, which is defined as the integral over the 2D

Brillouin zone using the eigenstates Ψ(p) of Eq. (1.8)

C =
i

2π

∫
d2p ⟨∂pxΨ(p) | ∂pyΨ(p)⟩ = 1

4π

∫
d2p [t̂ · (∂px t̂× ∂py t̂)], (1.10)

where t = t(p)
|t(p)| is a unit vector. The Chern number is an integer Z valued quan-

tity and becomes 0 and ±1 for the topologically trivial and non-trivial cases. The

Haldane order has the quantized Hall conductance σxy = Ce2/h. The value of the

Haldane’s proposal is that it was the first topological order exhibiting quantized

AHE in the absence of external magnetic field. There are reports that AHE has

been observed experimentally [34].

1.2 In current thesis: multilayer structure of novel 2D materials

So, there has been a considerable amount of effort in studying the aforemen-

tioned 2D materials, and they are now fairly well understood. A new step in research

is to combine these novel 2D layers into 3D stacks (just like a 2D layer consists of a

family of 1D chains glued together). This concept is not purely abstract. Recently,

there has been a number of proposals to study stacks of novel 2D materials; let us

list a few examples. It was suggested to assemble the van der Waals heterostruc-

tures with tailored properties using diverse library of available atom-thick materials
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(including graphene) [35]. For example, graphene stacked on Boron Nitride sub-

strate displays a Moire pattern, which has a dramatic effect on electronic spectrum

of graphene [36]. The topological insulator film coated by ferromagnet produces

the AHE state [34]. Multilayer structure of magnetically doped topological insu-

lator and ordinary insulator films realizes the Weyl semimetal phase [37]. It was

suggested how to engineer 3D topological insulators using Rashba-type spin-orbit

coupled heterostructures [38]. The salient feature of all these proposals is that the

interlayer coupling is crucial for the new physics.

So, the main focus of current thesis is studying stacks of novel 2D materials.

We emphasize how interlayer interaction is responsible for emergent physics in 3D

stacks. We discuss layered structures of the Dirac materials such as graphene and

topological insulators in Chapters (2)-(5). In these chapters, the interlayer coupling

produces curious electronic energy spectra. We also address transport phenomena

associated with these spectra. We elucidate a role of an in-plane magnetic and

out-of-plane electric field as spectroscopic tools in these materials. In Chapter (6),

we propose a novel helical order in multilayer cuprate superconductors. The inter-

layer magnetic interaction produces optical gyrotropy, which was recently observed

experimentally. Now, let us briefly discuss the content of each chapter.

1.2.1 Graphene multilayer in a parallel magnetic field

We begin with a study of graphene bilayer and multilayers in a strong in-plane

magnetic field as shown in Fig. 1.5. Within a minimal coupling model, we calculate
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Figure 1.5: A pair of Bernal-stacked graphene layers in the parallel mag-
netic field B applied along the y direction. Variables t and t1 denote the
electron intra and interlayer tunneling amplitudes.

the energy spectrum of the Bernal-stacked graphene bilayer and multilayer, including

graphite. Using the semiclassical analytical approximation and exact numerical

diagonalization, we find that the energy spectrum consists of two domains. In the

low- and high-energy domains, the semiclassical electron orbits are closed and open,

so the spectra are discrete and continuous, correspondingly. The discrete energy

levels are the analogs of the Landau levels. In both domains, the electron wave

functions are localized on a finite number of graphene layers, so the results can be

applied to graphene multilayers of a finite thickness.

1.2.2 Graphene multilayer in crossed electric and magnetic fields

In Chapter 3, we study the graphene multilayer in both in-plane magnetic

B and out-of-plane electric E fields. We calculate the electronic energy spectrum

and show that the problem is equivalent to the Wannier-Stark ladder. Similar to

the case studied in Chapter 2, we find that the wave functions are localized on a
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Figure 1.6: Illustration of the 3D Shockley model. The arrows show the
staggered direction of the Rashba vector (for a detailed discussion see
Section 4.3.

finite number of layers. We find that the spectrum undergoes a dramatic change,

where the resonant condition E = vB is achieved (here v is the velocity of the Dirac

carriers in graphene). We discuss an experimental study of graphite mesa in the

strong in-plane magnetic field B < 55 T. The tunneling spectrum dI/dV (V ) shows

a pronounced peak at finite voltage V0 which grows linearly with B. We explain the

experiment within the developed theoretical framework and attribute the observed

tunneling peak to a resonant delocalization of the wave functions.

1.2.3 Shockley edge states in topological insulators

In Chapter 4, we turn to a study of a new family of layered Dirac materials

- topological insulators. We study the surface states in these materials within the

Shockley model. We generalize the 1D model to 3D case representing a sequence

of coupled Shockley layers as illustrated in Fig. 1.6. The Hamiltonian of the 3D
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Shockley model is a 2×2 matrix with the off-diagonal element t(k,p) depending also

on the out-of-plane momentum k. We show that the existence of the surface states

depends on the complex function t(k,p). The surface states exist for those in-plane

momenta p where the winding number of the function t(k,p) is non-zero when k is

changed from 0 to 2π. The sign of the winding number determines the sublattice on

which the surface states are localized. The equation t(k,p) = 0 defines a vortex line

in the three-dimensional momentum space. Projection of the vortex line onto the

space of the two-dimensional momentum p encircles the domain where the surface

states exist. We illustrate how this approach works for a well-known model of a

topological insulator on the diamond lattice. We find that different configurations

of the vortex lines are responsible for the “weak” and “strong” topological insulator

phases. A topological transition occurs when the vortex lines reconnect from spiral

to circular form. We apply the Shockley model to Bi2Se3 and discuss applicability of

a continuous Jackiw-Rebbi approximation for the description of the surface states.

We conclude that the tight-binding model gives a better description of the surface

states.

1.2.4 Thin film of a topological insulator in a parallel magnetic field

In Chapter 5, we consider a topological insulator in a thin film geometry

illustrated in Fig. 1.7. In this case, the bulk degrees of freedom can be integrated

out, and one can focus on studying the topological edge states localized at the

opposite surfaces of the film. In an ultra-thin limit, the surface states are coupled
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Figure 1.7: Thin film of a topological insulator of thickness d in a parallel
magnetic field By. The surface states ψ1 and ψ2 shown in red and blue
overlap where the thickness d is comparable with the decay length ξ of
the surface state.

by a finite tunneling amplitude t. Similar to a setting of Chapters 2 and 3, we

study a thin-film in the crossed electric and magnetic fields. The parallel magnetic

field produces a relative shift of the in-plane momenta of the two surfaces states.

An overlap between the shifted Fermi circles and spinor wave functions result in an

unusual dependence of the tunneling conductance on the magnetic field. Because

spin orientation of the electronic surface states in topological insulators is locked

to momentum, spin polarization of the tunneling current can be controlled by the

magnetic field.

1.2.5 Chiral structure in the pseudogap phase of cuprates

In Chapter 6, we study yet another family of novel layered materials - the

copper oxide compounds (also known as cuprates). Formally, they do not belong
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Figure 1.8: (a) Loop-current order in a CuO2 plane has an anapole
moment N . (b) Chiral order on a series of parallel CuO2 planes is
constructed by rotating vector N from one layer to another.

to the Dirac materials family, but the model of a single layer does have Dirac cones

as explained in Appendix (A.3). For a long time, it was believed that essential

physics of cuprate superconductors is confined to 2D CuO2 layers. However, the new

experimental evidence suggests that the interlayer coupling may also be important.

Our order is based on the loop-current model by Varma shown in Fig. 1.8, which is

characterized by the in-plane anapole moment N and exhibits the magnetoelectric

effect. We propose a helical structure where the vector N (n) in the layer n is twisted

by the angle π/2 relative to N (n−1) shown in Fig. 1.8(b). We show that coupling

between magnetoelectric terms in the neighboring layers for this structure produces

optical gyrotropy.
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Chapter 2: Graphene multilayer in a parallel magnetic field

2.1 Introduction

A remarkable manifestation of the Dirac dispersion is the unusual spectrum

of the Landau levels in a perpendicular magnetic field, resulting in the anomalous

quantum Hall effect (QHE) [13,17,39–41]. These results stimulated further investi-

gations of the QHE in the derivatives of graphene. The unusual Landau levels and

the QHE were obtained for a graphene bilayer in Ref. [42]. Although the Landau

levels in graphite were investigated a long time ago [43,44], recent studies [45–50] of

graphene multilayers with a moderate number of layers found interesting features in

the Landau spectrum. Namely, the spectrum consists of the two families of levels,

whose energies scale as B and
√
B, thus indicating the presence of both massive and

massless Dirac fermions in the system [45]. The Landau levels for different stacking

orders of graphene multilayers were studied in Ref. [51].

On the other hand, much less attention was paid to the orbital effect of a

magnetic field parallel to the graphene layers. The Shubnikov-de Haas oscillations

were extensively studied in graphite in a tilted magnetic field, but they tend to

disappear when the field is parallel to the layers. Ref. [52, 53] studied the influ-

ence of a parallel magnetic field on the putative ferromagnetic, superconducting,
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and metal-insulator transitions in graphite. In Ref. [54], the angular magnetoresis-

tance oscillations (AMRO) were observed in the stage 2 intercalated graphite (in

addition to the Shubnikov-de Haas oscillations) for magnetic fields close to the par-

allel orientation. AMRO were first discovered in layered organic conductors [55,56]

and subsequently observed in many other layered materials: see, e.g., Ref. [57] and

references therein.

In this Chapter, we calculate the electron spectrum of two or many coupled

graphene layers in a strong parallel magnetic field. To simplify the problem, we

consider only the minimal model with the electron tunneling amplitudes between the

nearest sites in the plane (t) and out of the plane (t1). Our results should be valid

for the energies greater than the energies of the neglected higher-order tunneling

amplitudes and can be verified by tunneling or optical spectroscopy. We focus only

on the orbital effect of the magnetic field and disregard possible spin effects [58].

We find some mathematical similarities between the electron spectrum of graphene

multilayers in a parallel magnetic field and that of quasi-one-dimensional [59, 60]

and quasi-two-dimensional [61] organic conductors.

We start with the analysis of a graphene bilayer in a parallel magnetic field

(Sec. 2.2) and then proceed to the infinite number of layers (Sec. 2.3). We investi-

gate both the quasiclassical electron orbits in momentum space (Sec. 2.3.2.1) and

the exact equation for the energy eigenfunctions, which reduces to the Mathieu

equation (Sec. 2.3.2.2). We employ both the analytical WKB method and exact

numerical diagonalization to find the energy eigenvalues and eigenfunctions. We

identify the low-energy domain characterized by closed orbits and discrete spectrum
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Figure 2.1: A pair of Bernal-stacked graphene layers in the parallel mag-
netic field B applied along the y direction. t and t1 are the electron
tunneling amplitudes.

(Sec. 2.3.2.3) and the high-energy domain with open orbits and continuous spec-

trum (Sec. 2.3.2.4). The case of a finite number of layers is analyzed at the end of

Sec. 2.3.2.3.

2.2 Graphene bilayer

2.2.1 Model

First, we consider a graphene bilayer and then generalize the problem to many

layers. The crystal lattice of the Bernal-stacked graphene bilayer is shown in Fig. 2.1.

The distance between the nearest atoms in graphene is a = 1.4 Å, and the distance

between the layers is d = 3.3 Å. We restrict our analysis to the minimal tight-

binding model [50] with the intra- and inter-layer tunneling amplitudes t = 3.16 eV

and t1 = 0.38 eV.

There are two sublattices on each graphene layer. Thus, the electron wave
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function is the vector

Ψ = (ψA1 , ψ
B
1 , ψ

A
2 , ψ

B
2 ), (2.1)

where the subscripts 1 and 2 enumerate the layers, and the superscripts A and B

denote sublattices on each layer. Sublattices can be selected in various ways. It is

convenient for us to assign the atoms connected by the interlayer tunneling t1 in the

Bernal stack to sublattice A and other atoms to sublattice B, as shown in Fig. 2.1.

In the vicinity of the K point in the Brillouin zone, the electron Hamiltonian

has the form

H =

 vF (p · σ) t1I
A

t1I
A vF (p · σ∗)

 . (2.2)

Hamiltonian (2.2) acts on the vector (2.1). Correspondingly, σ = (σx, σy) are the

Pauli matrices acting in the sublattice space; p = pxx̂+ pyŷ is the in-plane momen-

tum measured from the K point; vF = (3/2~)ta ≈ 108 cm/s is the electron velocity

in graphene. The terms vF (p ·σ) and vF (p ·σ∗) describe the in-plane Hamiltonians

of the graphene layers. Our choice of the A and B sublattices results in the diag-

onal elements having both σ and σ∗ (complex-conjugated) terms. The term t1I
A

represents the interlayer tunneling, where the matrix

IA =
1

2
(I + σz) =

 1 0

0 0

 (2.3)

connects sublattices A of the adjacent graphene layers.
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Figure 2.2: (a) The electron spectrum (2.4) of a graphene bilayer in zero
magnetic field. (b) The spectrum (2.12) in a nonzero parallel magnetic
field. The magnetic field splits the parabolic spectrum into the two Dirac
cones. An exaggerated value q = 5 of the magnetic field parameter was
utilized here.

Hamiltonian (2.2) has four eigenvalues

ε(p) = ±t1
2
±
√
t21
4
+ v2Fp

2. (2.4)

The well-known spectrum (2.4) is shown in Fig. 2.2(a). The spectrum consists of

the four bands with the parabolic dispersion for small p.

2.2.2 Parallel magnetic field

Now let us introduce the in-plane magnetic field B = ŷB applied along the y

axis. We choose the gauge A = x̂Bz and use the Peierls substitution

p → p+ eA. (2.5)
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Here, we took into account the negative sign of the electron charge, so e corresponds

to its absolute value. If the layer number is denoted by j, the in-plane electron

momentum on the j-th layer changes to

pj = p+ j∆p x̂, (2.6)

where ∆p is

∆p = eBd,
∆p

~B
= 5× 103 cm−1T−1. (2.7)

The momentum change ∆p has the following physical meaning. When an electron

tunnels between the layers, the Lorentz force F = −e[v ×B] changes the in-plane

momentum by

∆px =

∫
Fxdt = eBy

∫
vz dt = eBd. (2.8)

The change in the in-plane momentum results in the relative shift of the Dirac points

on the different layers in the momentum space.

To simplify equations below, it is convenient to switch to the dimensionless

variables

vFp

t1
→ p,

vF∆p

t1
→ q,

ε

t1
→ ε. (2.9)

Here the parameter q is the dimensionless ratio of the “magnetic shift” vF∆p and
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the interlayer tunneling amplitude t1

q =
vF∆p

t1
=
vF
t1

(eBd) = 0.88× 10−3B[T]. (2.10)

The parameter q describes the orbital effect of the magnetic field in our model and

will be frequently referred to as the magnetic field for shortness. It is worth noting

that even for a strong magnetic field this parameter is small q ≪ 1, e.g., q = 0.044

for B = 50 T.

Applying the Peierls substitution (2.6) to Hamiltonian (2.2) and switching to

the dimensionless variables (2.9), we obtain

H =

 ((p− q) · σ) IA

IA (p · σ∗)

 . (2.11)

Hamiltonian (2.11) has the following spectrum:

ε(p) = ± 1√
2

√
p2 + (p− q)2 + 1±W, (2.12)

where

W =

√
[(p− q)2 − p2]2 + 2p2 + 2(p− q)2 + 1. (2.13)

In contrast to the parabolic dispersion (2.4), the spectrum (2.12) has two Dirac

points separated by the magnetic shift q with a saddle point in between, as shown
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in Fig. 2.2(b). Expanding Eq. (2.12) around one of the Dirac points

ε(p) ≈ ± q√
1 + q2

p, (2.14)

we find that the slope of the Dirac cones is controlled by the magnetic field and is

greatly reduced for q ≪ 1.

A dispersion similar to Eq. (2.12) was found for the twisted graphene layers in

Ref. [62], where the relative displacement of the two Dirac cones in the momentum

space results from the spatial rotation of the layers

∆prot/~ = K0∆ϕ = 6× 106 cm−1. (2.15)

Here ∆ϕ = 2◦ is the twist angle, and K0 = 4π/3
√
3a is the distance between

the Γ and K points in the reciprocal space. The saddle point between the two

Dirac points results in the Van Hove singularity in the density of states, which was

observed experimentally in electron tunneling in Ref. [63]. Comparing Eq. (2.7)

with Eq. (2.15), we observe that the magnetic field effect is much weaker than the

effect of twisting. Even for B = 50 T, the magnetic shift is ∆p/~ = 2.5× 105 cm−1

is much smaller than the rotational shift ∆prot/~.
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2.3 Graphite

2.3.1 Model

Now we proceed to the discussion of graphene multilayers. First, we solve the

problem for an infinite number of layers, i.e., for graphite, and then briefly mention

the effect of a finite number of layers.

By analogy with the bilayer Hamiltonian (2.2), the Hamiltonian of graphite

without magnetic field reads in the adopted units (2.9)

H =



. . .

(p · σ) IA

IA (p · σ∗) IA

IA (p · σ)

. . .


. (2.16)

It acts on the vector

Ψ = (· · · ψ̃j−1 ψ̃j ψ̃j+1 · · · ), ψ̃j = (ψAj ψ
B
j ), (2.17)

where the subscript j denotes the layer number, and the superscripts A and B

denote sublattices.

Using the momentum representation in the z direction and introducing the

corresponding momentum k (in addition to the in-plane momentum p), we transform
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Hamiltonian (2.16) into a 4× 4 matrix similar to the graphene bilayer Hamiltonian

(2.2)

H =

 (p · σ) 2IA cos k

2IA cos k (p · σ∗)

 . (2.18)

Hamiltonian (2.18) has the following spectrum

ε1,2(p, k) = ± cos k +
√

cos2 k + p2, (2.19)

ε3,4(p, k) = ± cos k −
√

cos2 k + p2. (2.20)

The subscripts (1,2) and (3,4) denote positive and negative energies, whereas the

subscripts (1,3) and (2,4) correspond to the terms ± cos k. Because the spectrum

has the electron-hole symmetry, we consider only the positive energies ε1,2. The

branches 1 and 2 are equivalent, in the sense that ε1(p, k + π) = ε2(p, k). Thus, it

is sufficient to consider only one branch ε1, which is plotted in Fig. 2.3. Since the

off-diagonal elements of Hamiltonian (2.18) vanish for k = π/2, the dispersion has

the Dirac-type form ε1(p, π/2) = p for k = π/2, as shown in Fig. 2.3.

2.3.2 Parallel magnetic field

2.3.2.1 Semiclassical analysis

In the presence of a magnetic field, electrons move along the isoenergetic sur-

faces in the momentum space. For the field B = ŷB along the y direction, the

electron orbits lie on the intersections of the isoenergetic surfaces of the disper-
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Figure 2.3: Spectrum ε1(p, k) (2.19) of Hamiltonian (2.18) for py = 0.
Each curve corresponds to a given value of the out-of-plane momentum k
indicated on the right. The axes are given in the adopted dimensionless
units (2.9).

sion (2.19) and the planes parallel to the (px, k) plane. The cross-sections of the

isoenergetic surfaces ε1(p, k) = ε = const with the (px, k) plane at py = 0 are shown

in Fig. 2.4. The arrows indicate the direction of electron motion.

Topology of the electron orbits changes with the increase of the energy ε. The

isoenergetic surfaces for the dispersion (2.19) are closed for 0 < ε < 2, so the orbits

are closed too, see Fig. 2.4(a). Thus, based on the Onsager quantization rule [64],

the spectrum is discrete for this energy interval. However, at the critical energy

ε = 2, the isoenergetic surfaces reconnect, as shown in Fig. 2.4(b), and become open

for ε > 2, resulting in the open orbits shown in Fig. 2.4(c). Open semiclassical orbits

lead to a continuous energy spectrum.

Fig. 2.4 shows only the electron orbits for py = 0 and ε > 0. We can find the

topology of the electron orbits and the character of the spectrum for an arbitrary

py, which is a good quantum number for the magnetic field along the y direction.
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Figure 2.4: Semiclassical electron orbits in the momentum space for the
in-plane magnetic field along the y axis. Only the orbits with py = 0
are shown. They are obtained by intersecting the (px, k) plane with the
isoenergetic surfaces ε1(p, k) = ε for (a) ε = 0.1, (b) ε = 2, (c) ε = 2.2.
The orbits are (a) closed for |ε| < 2 and (c) open for |ε| > 2.

The orbits are open, so the spectrum is continuous in px for

ε2 − 2|ε| > p2y. (2.21)

The orbits are closed, so the spectrum is discrete and degenerate in px for

ε2 − 2|ε| < p2y < ε2 + 2|ε|. (2.22)

There are no orbits and no states for

p2y > ε2 + 2|ε|. (2.23)

The domains of the continuous and discrete spectra, defined by the inequalities
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Figure 2.5: Domains of the continuous and discrete spectra in the (py, ε)
plane. The dashed-dotted and dotted curves represent solutions of the
equations ε2 − 2|ε| = p2y and ε

2 + 2|ε| = p2y. The spectrum is continuous
in the region A defined by Eq. (2.21), discrete in the region B defined by
Eq. (2.22), and there are no states in the region C defined by Eq. (2.23).

(2.21), (2.22), and (2.23), are shown in Fig. 2.5 in the (py, ε) plane.

2.3.2.2 Mathieu equation

Now we present a more formal and exact analysis of the electron spectrum in a

parallel magnetic field. Applying the Peierls substitution (2.6) in the dimensionless

units

pj = p+ jq, q = x̂q (2.24)
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to Hamiltonian (2.16), we obtain

H =



. . .

(pj−1 · σ) IA

IA (pj · σ∗) IA

IA (pj+1 · σ)

. . .


. (2.25)

The eigenvalue problem HΨ = εΨ for H (2.25) and Ψ (2.17) reads in components

IA(ψ̃j−1 + ψ̃j+1) +
[
σ(∗) · (p+ jq)− ε

]
ψ̃j = 0. (2.26)

Here, σ(∗) denotes σ for even j and σ∗ for odd j. The matrix equation (2.26)

represents a set of two equations. One of them relates ψBj and ψAj on the same layer

and has the simple form

ψBj =
px ± ipy + jq

ε
ψAj , (2.27)

where the signs ± correspond to even and odd j. Using Eq. (2.27), we algebraically

eliminate ψBj components in Eq. (2.26) and reduce it to the simpler equation

ψAj+1 + ψAj−1 =

(
ε− (p+ jq)2

ε

)
ψAj , (2.28)
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which has the same form for even and odd j. From now on we drop the superscripts

A. In the Fourier representation

ψj =

∫ 2π

0

ψ(k) eikjdk, (2.29)

Eq. (2.28) becomes

(
d

dk
− i

px
q

)2

ψ(k)− V (k)ψ(k) = 0, (2.30)

where

V (k) =
2ε

q2
cos k −

ε2 − p2y
q2

. (2.31)

Here, ψ(k) is a 2π-periodic, twice-differentiable function ψ(k) = ψ(k + 2π). To

further simplify Eq. (2.30), we introduce the function ϕ(k)

ψ(k) = eik(px/q)ϕ(k), (2.32)

which eliminates the term ipx/q from Eq. (2.30) and reduces it to the angular Math-

ieu equation for ϕ(k)

d2ϕ(k)

dk2
− V (k)ϕ(k) = 0. (2.33)

Eq. (2.33) is equivalent to the Schrödinger equation for a particle moving in the 1D

potential V (k) (2.31). The variables ε and py are the parameters that control V (k).

Since V (k) is periodic in k, the Bloch theorem can be applied, so the solutions
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of Eq. (2.33) have the form

ϕκ(k) = eikκuκ(k). (2.34)

Here, κ is the quasimomentum in the space reciprocal to the k space, and uκ(k)

is a 2π-periodic function in k. From Eqs. (2.32) and (2.34) and the periodicity

requirement for ψ(k), we select the solutions of Eq. (2.33) with κ = −px/q. Since

the solutions of Eq. (2.33) are periodic in the quasimomentum ϕκ+1(k) = ϕκ(k), the

parameter ε in Eq. (2.30) must be periodic in px: ε(px) = ε(px + q). Therefore,

the magnetic field effectively introduces the magnetic Brillouin zone in px with the

period q.

We have reduced the original eigenvalue problem (2.28) to the convenient

differential equation (2.33). Different regimes for its solutions are controlled by the

parameters py and ε. If the criterion (2.22) is satisfied, the 1D classical motion is

bounded by the barriers of V (k), as shown in Fig. 2.6(a) for ε = 0.1 and py = 0.

Then the energy spectrum is discrete. On the other hand, if the criterion (2.21) is

satisfied, the potential is negative V (k) < 0 for any k, as shown in Fig. 2.6(b) for

ε = 2.1 and py = 0. Then the motion of a particle is unbounded, and the spectrum

is continuous in px. The first regime corresponds to the closed orbits in Fig. 2.4(a),

and the second regime to the open orbits in Fig. 2.4(c). In the following sections,

we use the approaches of both Sec. 2.3.2.1 and this section to obtain and interpret

the results.
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Figure 2.6: The plots of V (k) (2.31) for py = 0. The cases of ε = 0.1 and
ε = 2.1 are shown on the panels (a) and (b). The classically permitted
region corresponds to V (k) < 0, as indicated by the thick horizontal line.
Thus, the panels (a) and (b) represent bounded and unbounded motion.

2.3.2.3 Closed orbits

In this section, we study the electron spectrum in the domain of the (py, ε)

plane defined by the criterion (2.22) and labeled by the letter B in Fig. 2.5. In this

case, the classical motion of a particle in the 1D potential (2.31) is restricted to the

potential wells separated by the barriers, as shown in Fig. 2.6(a). The height of the

barriers is

h(py, ε) = max[V (k)] =
ε(2− ε) + p2y

q2
. (2.35)

The barriers h(py, ε) ≫ 1 are high everywhere, except at the boundary of the do-

main (2.22). Thus, we can neglect tunneling and use the WKB quantization rule
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for a single well of V (k)

4

π∫
arccos a

√
−2ε cos k + ε2 − p2y dk = 2π

(
n+

1

2

)
q, (2.36)

where

a =
ε2 − p2y

2ε
. (2.37)

The integral on the left-hand side of Eq. (2.36) is proportional to the area enclosed

by the electron orbit in momentum space, see Fig. 2.4(a). Thus, Eq. (2.36) is

equivalent to the Onsager quantization rule in a magnetic field [64]. Using the

incomplete elliptic function of the second kind

E(ϕ,m) =

∫ ϕ

0

√
1−m2 sin2 α dα, (2.38)

Eq. (2.36) can be written as

8
√
2ε
√
1 + aE

(
π + 2arcsin a

4
,

√
2

1 + a

)

= 2π

(
n+

1

2

)
q. (2.39)

Eqs. (2.39) and (2.37) implicitly define εn(px, py) as a function of py and n for a

given magnetic field q, and the spectrum is degenerate in px.

To check validity of the WKB approximation, we diagonalize of the original

Hamiltonian (2.25) numerically and compare results with the solutions of Eq. (2.39).

Momentum dependences of εn(px, 0) and εn(0, py) are shown in Figs. 2.7(a) and (b)

35



0 0.08−0.08 0.04−0.04

0

4

8

12

16

20
x 10

−3

p
x

(a)

× 10−3

n=+1

n=+0

n=+2ε

n=+3

0 0.04−0.04−0.08 0.08

0

5

10

15

20
x 10

−3

p
y

× 10−3

n=+2

n=+1

n=+0

n=+3 (b)

ε

Figure 2.7: Low-energy levels εn(px, py) for q = 0.044. Panel (a) shows
εn(px, 0) vs px for py = 0, and panel (b) shows εn(0, py) vs py for px =
0. Solid lines represent exact numerical diagonalization of Hamiltonian
(2.25). Dashed lines represent the WKB analytical approximation (2.39).
All quantities are presented in the adopted dimensionless units (2.9).

for a few lowest energy levels at q = 0.044. The analytical approximation (2.39)

agrees well with the numerical results for n ̸= 0. The discrete energy levels shown in

Fig. 2.7(a) are degenerate in px and represent the Landau levels in a parallel magnetic

field. However, the n = 0 level has a remarkable dispersion in px. Similarly to the

spectrum of the graphene bilayer in Fig. 2.2(b), the n = 0 level consists of a series

of the Dirac cones shifted by the vector q. This dispersion cannot be obtained from

the approximate WKB equation (2.39), because of the divergence at ε = 0 in the

original equations (2.27) and (2.28).

Fig. 2.7(b) shows that the energy levels εn(0, py) have a quadratic dispersion

in py, except for the n = 0 level. Given the degeneracy in px, the energy levels

εn(px, py) form one-dimensional bands in py, so the density of states diverges at the

bottom points εn(px, 0) of the bands. These singularities in the density of state

can be detected experimentally by electron tunneling or optical spectroscopy. The
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Figure 2.8: Energy levels εn(0, 0) vs the quantum number n at px = 0
and py = 0 for q = 0.044. The horizontal axis shows the combination
q(n+ 1/2). The circles represent solutions of the WKB equation (2.39),
and the small points inside the circles represent numerical data. The
quadratic approximation (2.41) is shown by the solid line. All quantities
are presented in the adopted dimensionless units (2.9).

energies εn(0, 0) are plotted in Fig. 2.8 in the interval 0 < ε < 2 vs the combination

q(n + 1/2) appearing in Eq. (2.39). Depending on the magnetic field q, a different

number nmax of the discrete levels fills the curve. By setting ε = 2 in Eq. (2.36), we

obtain

nmax +
1

2
=

8
√
2

πq
=

3.6

q
. (2.40)

For example, for q = 0.044, we have nmax = 81 levels, which are depicted by circles

in Fig. 2.8.

For small ε and py = 0, we find from Eq. (2.39)

εn =
π2

32E2
(
π
4
,
√
2
)q2(n+

1

2

)2

= 0.7 q2
(
n+

1

2

)2

. (2.41)

We observe that the energies (2.41) depend quadratically on the level number n
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Figure 2.9: The absolute values of the wave functions |ψAj | and |ψBj | on
the sublattices A and B vs the layer number j for q = 0.044, px = q/2,
and py = 0. The variable n denotes the energy level number.

and the magnetic field q. This dependence is different from the usual Landau level

dependence, where the energies are linear in the field and in the quantum number.

The reason for the unusual dependence in our case is the following. For small ε,

the semiclassical orbit in Fig. 2.4(a) shrinks to a thin ellipsoid of the length π in

the k direction and the width
√
2ε in the px direction. Thus, the area enclosed by

the semiclassical orbit is proportional to
√
ε, so the Onsager quantization rule gives

quadratic dependence of the energy on the magnetic field and the level number n.

The quadratic approximation (2.41) is shown by the solid line in Fig. 2.8 and works

well in the region ε < 0.1.

Fig. 2.9 shows the plots of |ψAj | and |ψBj | vs the layer number j for several

energy levels n. We observe that the magnetic field causes localization of the wave

function on a finite number of layers. According to Eq. (2.27), the wave functions

for the low energy levels εn are localized predominantly on the sublattice B. The

magnitudes of |ψAj | and |ψBj | are shown by different vertical scales in panels (a) and
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Figure 2.10: Energy spectrum εn(px, 0) vs px at py = 0 and q = 0.044
for the system with a finite number of layers N . The dashed-dotted,
dashed, and solid lines correspond to N = 7, 21, and ∞. All quantities
are presented in the adopted dimensionless units (2.9).

(b) of Fig. 2.9.

Now let us briefly discuss the spectrum of a finite system with the total number

of layers N . Fig. 2.10 shows εn(px, 0) for N = 7, 21, and ∞. The degeneracy in px is

lifted for a finite number of layers, but, with increasing N , the spectrum approaches

to that of the infinite system with N = ∞. Indeed, if the localization length for a

particular energy level is shorter than the size of the system, the energy of the level

is the same as for N = ∞. Thus, the results obtained for N = ∞ are applicable to

a finite system with a sufficient large N .

2.3.2.4 Open orbits

Now we study the energy spectrum in the domain defined by Eq. (2.21) and

labeled by the letter A in Fig. 2.5. It corresponds to the open electron orbits in
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Fig. 2.4(c). In the Mathieu equation (2.33), the potential V (k) < 0 is negative

for any k, so the motion is unbounded, as shown in Fig. 2.6(b). Then, the WKB

solutions of Eq. (2.33) are

ϕ(k) = e±iS(k), S(k) =

∫ k

0

√
|V (k)| dk, (2.42)

where the signs ± correspond to the direction of motion. Because of the periodicity

requirement for ψ(k) and Eq. (2.32), the phase accumulation in Eq. (2.42) over the

period 2π must be equal to −2πpx/q plus an integer multiple of 2π. Thus we obtain

the following quantization condition for the open orbits

qS(2π) = 2

π∫
0

√
−2ε cos k + ε2 − p2y dk = ∓2π(px + ñq). (2.43)

Here the integer ñ is different from the integer n in Eq. (2.36) and takes both

negative and positive values. The sign of px + ñq corresponds to the two solutions

in Eq. (2.42). Eq. (2.43) can be represented in terms of the elliptic integral (2.38)

4
√
2ε
√
1 + a E

(
π

2
,

√
2

1 + a

)
= ∓2π(px + ñq), (2.44)

where the parameter a is given by Eq. (2.37). In contrast to Eq. (2.39), Eq. (2.44)

contains px, so the energy levels εn(px, py) continuously depend on px.

The energy spectra obtained from Eqs. (2.39) and (2.44) are compared in

Fig. 2.11 with the results of numerical diagonalization of Hamiltonian (2.25) around

the critical energy ε = 2 for py = 0. For ε < 2, the spectrum consists of the energy
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Figure 2.11: Energy spectrum around ε = 2 for q = 0.044 and py = 0.
The solid lines are obtained by numerical diagonalization of Hamiltonian
(2.25). The dashed lines, obtained from Eq. (2.39), are labeled by the
integer n shown on the right. The dashed-dotted lines, obtained from
Eq. (2.44), are labeled by the integer ñ shown at the top. This plot illus-
trates a transition from discrete to continuous spectrum. All quantities
are presented in the dimensionless units (2.9).

levels degenerate in px, which are well described by the analytical approximation

(2.39) for closed orbits. The corresponding level number n is shown on the right

in Fig. 2.11. At the energy ε = 2, the spectrum undergoes a transition to the

regime of continuous dispersion in px. For ε > 2, the spectrum consists of the two

families of lines with the opposite slopes. This spectrum is well described by the

analytical approximation (2.44) for open orbits. The corresponding number ñ labels

the dispersion lines and takes both positive and negative values shown at the top in

Fig. 2.11. Because the left-hand sides of Eqs. (2.39) and (2.44) differ by the factor

of 2 at ε = 2 and px = 0, the numbers n and ñ are connected as n ≈ 2|ñ|. The

approximations (2.39) and (2.44) stop working in the vicinity of the critical energy

ε = 2.

41



For a high energy ε, when the parameter a (2.37) is large, we can obtain the

spectrum explicitly by expanding the square root in Eq. (2.42) for S(k) in powers

of 1/a

S(k) =

√
ε2 − p2y
q

k − ε sin k

q
√
ε2 − p2y

. (2.45)

Then the quantization condition (2.43) gives

√
ε2 − p2y = ∓(px + ñq), (2.46)

which can be written as

ε2ñ = (px + ñq)2 + p2y. (2.47)

The spectrum Eq. (2.47) is the same as for decoupled graphene layers with the

Peierls substitution (2.24).

Substituting the square root expression from Eq. (2.46) into Eq. (2.45), we

obtain the approximate WKB wave functions (2.42) for ε > 0

ϕ(k) = exp

−ipx + ñq

q
k + i

√
(px + ñq)2 + p2y

q(px + ñq)
sin k

 . (2.48)

Then, using Eq. (2.32), we calculate the Fourier transform (2.29) and find the wave

function ψj in the direct space

ψj = Jñ−j


√

(px + ñq)2 + p2y

q(px + ñq)

 . (2.49)

Here Jm(x) is the Bessel function of the m-th order of the first kind. For py = 0,
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Figure 2.12: The absolute value of the wave function |ψj| vs the layer
number j for a state from the domain of continuous spectrum. The
parameters of the plot are ñ = −250, εñ = 10.98, px = py = 0, and
q = 0.044. The solid and dashed lines represent exact numerical diago-
nalization of Hamiltonian (2.25) and the approximate analytical formula
(2.50), respectively.

Eq. (2.49) simplifies to

ψj = Jñ−j

(
sign(px + ñq)

q

)
. (2.50)

The wave function (2.50) is centered at j = ñ, as shown in Fig. 2.12. We ob-

serve that, even though Eq. (2.47) coincides with the spectrum of effectively de-

coupled graphene layers, the corresponding wave function (2.50) is localized on a

large number of layers proportional to 1/q. Similar wave functions are known for

the quasi-one-dimensional conductors in a magnetic field [59,60].

2.4 Conclusions

In this Chapter, we have studied the orbital effect of a strong magnetic field

applied in the y direction parallel to the layers of the graphene bilayer and multi-

43



layers. For the former, the magnetic field splits the parabolic bilayer dispersion into

the two Dirac cones in the momentum space with the spacing proportional to the

magnetic field. For the latter, we have found two domains in the parameter space

with distinct energy spectra. In the low-energy domain, the semiclassical electron

orbits are closed, so the spectrum is discrete and degenerate in px. The energy levels

depends quadratically on py, thus forming a series of one-dimensional bands in py.

The discrete energies of the bottoms of the bands are the analogs of the Landau

levels but depend quadratically on the energy level number n and the magnetic field

B. The n = 0 energy level around zero energy has unusual properties and consists

of a series of shifted Dirac cones, similarly to the bilayer case. In the high-energy

domain, the semiclassical electron orbits are open, so the spectrum in continuous

in px, thus forming two-dimensional bands in px and py. For high enough energies,

these bands evolve into the Dirac cones originating from different layers and shifted

in the momentum space due to the applied magnetic field. In both regimes, the wave

functions are localized on a finite number of layers. Mathematically, the problem

reduces to the Mathieu equation. The WKB approximation for the semiclassical

electron orbits in the momentum space in the magnetic field agrees well with exact

numerical diagonalization, except for a few special cases, where the WKB approach

is not applicable.
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Chapter 3: Graphene multilayer in crossed electric and magnetic fields

3.1 Introduction

Now, let us generalize results of previous Chapter and study graphene multi-

layer in crossed electric and magnetic fields in the geometry shown in Fig. 3.1. The

magnetic field B = Bŷ is parallel to the layers, while the electric field E = Eẑ is

perpendicular, and the distance between the layers is d. We shall demonstrate that,

when the resonance condition for the fields

E = vB (3.1)

is achieved, the electronic wave functions become delocalized in the z direction. As

before, parameter v = 106 m/s is the velocity of the two-dimensional Dirac electrons

in graphene.
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Figure 3.1: Schematic view of two graphene layers and the directions of
the applied electric and magnetic field.

3.2 Hamiltonian and energy spectrum

3.2.1 Hamiltonian

We remind that the Lorentz force, due to the in-plane magnetic field B, induces

a shift of the in-plane momentum on the n-th graphene layer by px → px−qn, where

q = eBd. If the electric field is uniform, it changes the potential energy on the n-

th layer by un, where u = eEd. Thus, using Eq. (2.26) of previous Chapter, the

Schrodinger equation of graphite in the crossed electric and magnetic fields is

vσx(px − qn)Ψn + t1I
A(Ψn−1 +Ψn+1) = (ε− un)Ψn. (3.2)

We remind that, σx acts on the spinor wave function Ψn = (ψAn ψBn )
T , which has

components on both A and B sublattices of the n-th graphene layer. The matrix

IA = (1 + σz)/2 and the amplitude t1 = 0.4 eV describe the interlayer coupling

between the carbon atoms which lie on top of each other in the Bernal stacked
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Figure 3.2: Schematic energy spectrum of graphite in the crossed mag-
netic and electric fields (represented by q and u) in the limit t1 → 0
at different values of u. (a) The Dirac cones have the same energy for
zero electric field at u = 0. (b) With an increase of u, the Dirac cones
shift vertically. (c) When the resonant condition u = vq is met, the
R-branches of the Dirac cones align and become degenerate.

graphite lattice. For simplicity, we set the y component of the in-plane momentum

equal to zero py = 0, however all calculations can be easily generalized to the py ̸= 0

case.

3.2.2 Weak coupling limit

In the limit of zero interlayer coupling t1 → 0, the spectrum is given by a

series of Dirac cones

εm = ±v(px − qm) + um, (3.3)

which correspond to the wave functions localized on m-th graphene layer. The evo-

lution of spectrum (3.3) with the increase of electric field is qualitatively illustrated

in Fig. 3.2. Each Dirac cone consists of two branches corresponding to the left-

moving and right-moving electrons, referred to as the L-movers and R-movers and
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labeled in Fig. 3.2(a). For u = 0, the Dirac cones are shifted horizontally by q, as

shown in Fig. 3.2(a). For u ̸= 0, the Dirac cones also shift vertically as shown in

Fig. 3.2(b). When fields E and H satisfy the resonant condition u = qv, which is

equivalent to Eq. (3.1), the right-moving branches of the spectra align and become

degenerate as shown in Fig. 3.2(c).

Next, let us perform a unitary transformation Ψn = e−
iσyπ

4 Ψ′
n to the basis of

the L and R movers Ψ′
n = (ψRn ψLn ). Then, the Schrodinger equation (3.2) becomes

vσz(px − qn)Ψ′
n +

t1
2
(1− σx)(Ψ

′
n−1 +Ψ′

n+1) = (ε− un)Ψ′
n. (3.4)

Let us temporary neglect matrix σx, then Eq. (3.4) decouples for the R and L modes:

[vpx + n(u− qv)]ψRn +
t1
2
(ψRn−1 + ψRn+1) = εψRn , (3.5)

[vpx + n(u+ qv)]ψLn +
t1
2
(ψLn−1 + ψLn+1) = εψLn . (3.6)

Solutions of Eqs. (3.5) and (3.6) can be enumerated by integer m, so that the

eigenvalues are given by Eq. (3.3) and the eigenfunctions are

ψR,Ln = Jn−m

(
−t1
u∓ qv

)
, (3.7)

where Jm(x) is the Bessel function. The spectrum (3.3) is given by the two sets

of curves εRm = vpx + m(qv − u) and εLm = −vpx + m(qv + u), which have linear

dispersion in px. Notice that the R and L modes “feel” the effect of electric and
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magnetic fields differently. The combination of electric and Lorentz forces shifts the

linear dispersion by (u − qv) for the R-movers and by (u + qv) for the L-movers.

This results not only in different spacing between the R and L modes in Eq. (3.3),

but also in the different localization properties of the corresponding wave functions.

The wave functions (3.7) are localized in the z direction on a finite number of layers

of the order of t1/|u ∓ qv|. So, with an increase of electric field the L (R) movers

become more (less) localized. At the resonance condition u = qv, which is equivalent

to Eq. (3.1), the R-movers “feel” zero net force and become delocalized with their

spectrum

εR = vpx + t1 cos(kz), (3.8)

where the out-of-plane momentum kz is a good quantum number.

3.2.3 Exact diagonalization

The numerically calculated spectrum of full Eq. (3.4) is shown in Fig. 3.3(a)

and (b), whereas the corresponding wave functions are shown in Fig. 3.3(c) and (d).

Although the detailed structure of the spectrum differs from the simple description

given in Eq. (3.3), the general structure remains similar. For the case u = 0, q ̸= 0

studied in Chapter , the spectrum was found to consist of discrete Landau levels

within a window of energy |ε| < 2t1 and a quasi-continuous spectrum outside this

window |ε| > 2t1. When a finite but non-resonant electric field 2u = qv = 0.2t1 is

applied, the discrete Landau levels acquire dispersion in px as shown in Fig. 3.3(a).

The quasi-continuous spectrum consists of a series of parallel lines corresponding to
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Figure 3.3: Numerically calculated energy spectrum and wave functions
for a finite system of 150 layers. The top panels show the energy spec-
trum, whereas the bottom panels show the wave functions corresponding
to the states marked with the “*” and “x” symbols in the top panels. The
left and right columns correspond to the non-resonant 2u = qv = 0.2t1
and resonant u = qv = 0.2t1 cases, respectively. The unit of energy scale
corresponds to tunneling amplitude t1.
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the L and R modes, well described by Eq. (3.3). The wave functions are localized

in the z direction both for the discrete Landau levels and the quasi-continuous

spectrum as shown in Fig. 3.3(c). However, when the resonance between the fields

is achieved u = qv = 0.2t1, the spectrum reconstructs dramatically, as shown in

Fig. 3.3(b). A continuous band of the R-movers corresponding to spectrum (3.8) is

formed and the eigenstates are delocalized as shown in Fig. 3.3(d). However, the

L-movers remain well-localized.

3.3 Experiment and interpretation

3.3.1 Experimental results

Over the last decade, the interlayer tunneling spectroscopy was developed to

measure the energy gap in high-temperature superconductors and charge-density

wave materials [65, 66]. It was also used to study a magnetic field induced charge-

density wave in NbSe3 and graphite [67]. This effect has orbital origin and exists

generally for fields oriented perpendicular to the highly conducting layers. In con-

trast, the interlayer tunneling in parallel magnetic field allows to extract the in-plane

energy spectrum of the carriers in layers [68]. The tunneling experiments between

two graphene sheets in the graphene/insulator/graphene heterostructure recently

began [69, 70]. Let us briefly discuss a tunneling spectroscopy study of graphite

mesa in a strong in-plane magnetic field done by a group of Professor Latyshev.

Mesa-type structures were fabricated by etching thin graphite flakes with a

focused ion beam [71]. Mesa is shown schematically in Fig. 3.4. Current flows
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Figure 3.4: A schematic view of the mesa-type structure.

between the different sides of the crystal as shown in the figure. Owing to a high

interlayer conductivity anisotropy (σ⊥/σ∥ ≈ 104 at low temperatures), the applied

voltage drops mostly on the mesa. Mesa is typically of 1 micron size and contains

a few tens of graphene layers. The experiment was performed in pulsed magnetic

fields in National Laboratory of High Magnetic Fields in Toulouse. Figure 3.5(a)

shows a set of dI/dV (V ) spectra for various in-plane magnetic fields. For magnetic

field greater than 20 T, local maxima develop symmetrically for both polarities of

the bias voltage. Both the magnitude and voltage V0 of the peaks grow with the

magnetic field H. Figure 3.5(b) shows that the dependence V0 vs B is close to linear.

3.3.2 Discussion

We believe that the mechanism of the resonant delocalization of the wave func-

tions in the crossed electric and magnetic field, discussed in Sec. 3.2, is responsible

for the peaks in the differential conductance observed in the experiment. According

to Eq. (3.1), the position of the conductance peak is proportional to the magnetic
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Figure 3.5: (a) Interlayer tunneling spectra of graphite mesa-structure
at various in-plane magnetic fields (the magnitude of the field for each
curve is indicated on the right). (b) Dependence of the position of the
tunneling conductance peak on the in-plane magnetic field B.

field

E = V0/l = vB, (3.9)

where l is the effective length over which the applied voltage V0 drops. Equation

(3.9) is consistent with the experiment. Using Eq. (3.9) and the experimental data

shown in Fig. 3.5(b), we extract l = 1.2 nm, which is about three times longer than

the interlayer distance in graphite. This probably indicates that decoupling of the

interlayer Bernal correlation occurs in 2 − 3 intrinsic tunnel junctions. In NbSe3

mesas, it was demonstrated that charge density wave decoupling can occur within

two intrinsic tunnel junctions of the mesa [71]. Although our theoretical model is

developed for a large number of graphene layers, the resonant condition (3.1) is

expected to be valid even for a few layers.
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3.4 Conclusion

Interlayer tunneling spectra on graphite mesas at strong in-plane magnetic

field B have a peak at voltage V0, which is proportional to the magnetic field B.

The experimental result is consistent with a theoretical picture. Because of the 2D

Dirac nature of electrons in graphene layers, the wave functions delocalize in the

out-of-plane direction when the resonant condition between the fields E = vB is

achieved .
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Chapter 4: Shockley edge states in topological insulators

4.1 Introduction

Theory of topological surface states has been studied in a number of works both

in the tight-binding [9,72] and continuous models [73–77]. Many papers focused on

the bulk-boundary correspondence, i.e., on proving that a sample with non-trivial

topological numbers in the bulk should possess gapless excitations on the surface.

The method of topological invariants, although being very powerful, is often not

physically transparent and not intuitive about the exact mechanism by which the

topological numbers are related to the surface states.

In this Chapter, we show that the surface states in TIs can be understood

based on the Shockley model also discussed in Chapter 1.1.1. The Shockley model

was also applied to surface states in topological superconductors [11]; however, we

focus only on surfaces states in semiconductors. In Sec. 4.2, we review once more

the 1D Shockley model and show how the Shockley criterion can be formulated

in terms of a topological winding number for the off-diagonal matrix element of

the bulk Hamiltonian, thus connecting bulk properties with the surface states as

discussed in Refs. [8, 9, 78–81]. In Sec. 4.3.1, we generalize the model to 3D by

replacing atoms by the 2D layers parallel to the xy plane and assigning the in-
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plane momentum dependence p = (px, py) to the interlayer tunneling amplitudes

t1 and t2. In Sec. 4.3.3, we study vortex lines in the 3D momentum space [82, 83],

where the off-diagonal matrix element of the bulk Hamiltonian vanishes. We show

that the projection of the 3D vortex lines onto the 2D in-plane momentum space

encircles the domain where the surface states exist. We observe that the tight-

binding TI Hamiltonians studied in Refs. [19, 20, 22, 72] have the Shockley-model

structure and can be understood using our approach. In Sec. 4.4.1, we illustrate

the Shockley mechanism for the Fu-Kane-Mele model on the diamond lattice [20].

We show how the surface states evolve when the parameters of the Hamiltonian

vary. In Sec. 4.4.2, we show that reconnection of the vortex lines represents a phase

transition in the TI Hamiltonian. The spiral vortex lines correspond to a phase

with an even number of Dirac cones (the “weak” TI phase), while the circular

vortex lines correspond to a phase with an odd number of Dirac cones (the “strong”

TI phase). In Sec. 4.5, we apply the Shockley model to describe the surface states

in Bi2Se3, which is formed by the quintuple layers of Bi and Se [73, 74, 84–87]. The

electronic structure of this material near the Fermi level can be well described by

the hybridized pz orbitals located near the outer layers of the quintuplets [74, 84].

Thus, the Shockley model with the intra-quintuplet and inter-quintuplet tunneling

amplitudes t1 ant t2 gives a plausible description of this material. Surface states have

complementary properties depending on how the crystal is terminated [84]. Breaking

the t2 amplitude introduces a cut between the quintuplets. In this case, the surface

states have a Dirac cone in the Brillouin zone (BZ) center [85, 86]. Breaking t1

introduces a cut inside the quintuplet. In this case, the Shockley model predicts the
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surface states with the Dirac cones on the boundary of the BZ. The similar effect

was considered for the Bi1−xSbx alloy in Ref. [88]. In Sec. 4.5.2, we discuss whether

a continuous approximation for the TI Hamiltonian gives a good description of the

surface states. We conclude that the tight-binding models are better suitable for the

description of the surface states. Then, in Sec. 4.6, we generalize the Shockley model

by including additional tight-binding amplitudes. For all these models, we find that

the edge state is always localized on one sublattice, which is rarely mentioned in the

TI literature.

4.2 1D Shockley model

4.2.1 The original Shockley model

In this section, we briefly review the Shockley model [1, 3] and its properties.

Let us consider a 1D linear chain of atoms shown in Fig 4.1(a). The unit cell

contains two atoms labeled as A and B, which are connected via the alternating

nearest-neighbor complex tight-binding amplitudes t1 and t2. So, the Hamiltonian

of the model is

H =
∑
z

Ψ†(z)
[
UΨ(z) + VΨ(z − 1) + V †Ψ(z + 1)

]
, (4.1)

U =

 0 t∗1

t1 0

 , V =

 0 t∗2

0 0

 . (4.2)
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Figure 4.1: Panel (a): 1D chain of atoms with alternating tunneling
amplitudes t1 and t2 representing the Shockley model, Eq. (4.1). Panel
(b): The bulk energy spectrum of the system, Eq. (4.8), with a non-zero
gap for |t1| ̸= |t2|. Panel (c): The exponentially decaying edge state,
Eq. (4.18), for |t1|/|t2| < 1 with the penetration depth ξ = 1/ln|t2/t1|.
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Here, z is the integer coordinate of the unit cell, t1 and t2 are the intra-cell and the

inter-cell tunneling amplitudes, and Ψ(z) is the spinor

Ψ(z) =

 ψa(z)

ψb(z)

 , (4.3)

where ψa(z) and ψb(z) are the wave functions on the sites A and B. In the Fourier

representation Ψ(z) =
∫ 2π

0
dk
2π
eikz Ψ(k), the Hamiltonian is

H =

∫ 2π

0

dk

2π
Ψ†(k)H(k)Ψ(k), (4.4)

where

H(k) = U + V e−ik + V †eik =

 0 t∗(k)

t(k) 0

 (4.5)

is a 2× 2 matrix acting in the AB sublattice space, and

t(k) = t1 + t2e
ik = t1 + t2q, q = eik. (4.6)

Then, the Schrödinger equation

 0 t∗(k)

t(k) 0


 ψa

ψb

 = E

 ψa

ψb

 (4.7)
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gives two particle-hole symmetric energy bands with the eigenvalues E(k) and eigen-

functions Ψ(k)

E(k) = ±|t(k)|, (4.8)

Ψ(k) =
1√
2

 ei arg[t(k)]

±1

 . (4.9)

The energy spectrum has a gap if |t1| ̸= |t2|, as illustrated in Fig. 4.1(b) for real

t1 and t2. Notice that the bulk wave function (4.9) has equal probabilities on both

sublattices. In contrast, as we shall see below, the wave function of an edge state is

localized only on one sublattice.

A boundary to the 1D lattice can be introduced by cutting either t1 or t2 link.

Let us consider a half-infinite system for z ≥ 1, z = 1, 2, 3, . . ., corresponding to

the cut of the t2 link. In this case, the atom A is exposed on the edge, as shown

in Fig. 4.1(a). Mathematically, the boundary condition is introduced by requiring

that the wave function vanishes at the fictitious site z = 0 and at infinity

ψa(0) = 0, ψb(0) = 0, (4.10)

ψa(+∞) = 0, ψb(+∞) = 0. (4.11)

It is shown in Appendix A.1 that the edge state can exist only for E = 0. So, we

substitute E = 0 into Eq. (4.7) and find that the wave functions on the A and B
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sublattices decouple

t(k)ψa = (t1 + t2e
ik)ψa = 0, (4.12)

t∗(k)ψb = (t∗1 + t∗2e
−ik)ψb = 0, (4.13)

where k is now a complex wave-number, so t∗(k) is not a complex conjugate of t(k).

In the real space, Eq. (4.13) can be written as a recursion relation

ψb(z)t
∗
1 + ψb(z − 1)t∗2 = 0 (4.14)

for z ≥ 1. Using this recursion relation and the boundary condition ψb(0) = 0,

we find that ψb(z) vanishes for z ≥ 1. In contrast, the real-space representation of

Eq. (4.12)

ψa(z)t1 + ψa(z + 1)t2 = 0 (4.15)

for z ≥ 1 does not involve ψa(0) from Eq. (4.10). So, the solution on the A sublattice

is

ψa(z) = qz−1
0 , (4.16)

where, q0 is obtained by solving the equation t(k0) = 0, following from Eq. (4.12)

for a complex wave-number k0

q0 = eik0 = −t1
t2
. (4.17)

Depending on whether |q0| < 1 or |q0| > 1, the solution in Eq. (4.16) either satisfies
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the condition (4.11) at infinity or not. If |t2| > |t1|, then |q0| < 1, as shown in

Fig. 4.2(a), and the wave function (4.16) exponentially decays at z → +∞, as shown

in Fig. 4.1(c), so the edge state exists. In contrast, if |t1| > |t2|, then |q0| > 1, as

shown in Fig. 4.2(b), and the wave function (4.16) exponentially grows at z → +∞,

so an edge state does not exist. To summarize, by solving Eqs. (4.12) and (4.13) with

the appropriate boundary conditions (4.10) and (4.11), we obtain the zero-energy

edge state

Ψ0(z) =

 1

0

 qz−1
0 , E0 = 0 , (4.18)

which exists only if

|q0| =
|t1|
|t2|

< 1. (4.19)

Equation (4.19) constitutes the Shockley Criterion: In the 1D tight-binding model

with alternating tunneling amplitudes given by Hamiltonian (4.1), the edge state

exists if the bond of the greater magnitude is broken at the boundary.

Let us now consider an alternative formulation of the Shockley criterion (4.19)

in terms of the winding number

W =
1

2πi

∫ 2π

0

dk
d

dk
ln t(k). (4.20)

The winding number W represents the phase change of the complex function t(k)

when the real variable k changes from 0 to 2π. The function t(k) also defines a

closed contour

C ′ = {t(k) = t1 + t2e
ik, k ∈ (0, 2π)} (4.21)
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Figure 4.2: Topological formulation of the Shockley criterion (4.19).
Panels (a) and (b) compare the two cases, where the root q0 (the red dot)
lies inside or outside the unit circle C = {q = eik, k ∈ (0, 2π)}. An edge
state exists for |q0| < 1, panel (a), and does not exist for |q0| > 1, panel
(b). An alternative formulation in terms of the winding number (4.20)
is illustrated in panels (c) and (d). The edge state exists if the winding
number is non-zero, panel (c), and does not exist if the winding number
is zero, panel (d).
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in the 2D plane of (Re t,Im t), as shown in Fig. 4.2, panels (c) and (d). If |q0| < 1, or

equivalently |t2| > |t1|, the contour C ′ winds around the origin (red dot), as shown

in panel (c). If |q0| > 1, or equivalently |t1| > |t2|, the contour C ′ does not wind

around the origin, as shown in panel (d). So, the Shockley criterion (4.19) can be

formulated in terms of the winding number

W =


1, edge state exists,

0, edge state does not exist.

(4.22)

This formulation was discussed in a number of papers [8,9,80,81]. While the wind-

ing number (4.20) is calculated using the off-diagonal element t(k) of the Hamilto-

nian (4.5), it can be equivalently expressed through the eigenfunctions Ψ(k) defined

in Eq. (4.9)

WZ =
1

πi

∫ 2π

0

dkΨ†(k)∂kΨ(k). (4.23)

This expression is called the Zak phase [8] (up to π in the denominator and related to

the Berry phase) and is an alternative representation of the winding number (4.20).

4.2.2 On-site energies in the 1D Shockley model

Let us further generalize the model and include on-site energies εa and εb in

Hamiltonian (4.5)

H(k) =

 εa t∗(k)

t(k) εb

 , (4.24)
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As shown in Eq. (4.18) for εa = εb = 0, the edge state solution is localized on the A

sublattice. Therefore, adding the on-site energy εa simply shifts the energy of the

edge state without changing its wave function irrespective of εb. So, if criterion (4.19)

is satisfied, the edge state is localized on the A sublattice and has the energy

E0 = εa. (4.25)

It is also convenient to transform the Hamiltonian to the symmetrized form H

H(k) =
εa + εb

2
+

 h t∗(k)

t(k) −h

 , h =
εa − εb

2
. (4.26)

The offset (εa + εb)/2 just uniformly shifts all energies and will be omitted below,

so the Hamiltonian becomes

H(k) =

 h t∗(k)

t(k) −h

 . (4.27)

The bulk spectrum of the Hamiltonian (4.27) is generally gapped

E(k) = ±
√
h2 + |t(k)|2. (4.28)

By denoting the Pauli matrices acting in the AB sublattice space as τ =
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(τx, τy, τz), Hamiltonian (4.27) can be written as

H(k) = τ · d(k), d(k) = [Ret(k), Imt(k), h]. (4.29)

When k changes from 0 to 2π, the vector d(k) traces a closed contour Γ in the cor-

responding 3D space. The criterion (4.22) is equivalent to the following statement:

The edge state exists if the projection of the contour Γ onto the xy plane encloses

the origin [9]. Note that the Zak phase (4.23) is equal toWZ = Ω/2π, where Ω is the

solid angle of the contour Γ viewed from the origin. For h = 0, the contour Γ lies in

the xy plane, so Ω = 2π and WZ = 1. However, for h ̸= 0, the contour Γ lies off the

xy plane, and Ω is a fraction of 2π. So, in general, the Zak phase WZ is fractional

and does not give a number of the edge states, whereas the criterion (4.22) remains

applicable.

4.3 3D Shockley-like model

4.3.1 Generalization to the 3D case

Let us generalize Hamiltonian (4.27) to the 3D case. Instead of alternating

atomic sites, let us consider a sequence of alternating layers A and B perpendicular

to the z direction, as shown on Fig. 4.3. Now, all parameters of Hamiltonian (4.27)
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Figure 4.3: 3D generalization of the Shockley model described by Hamil-
tonian (4.30) with h(p) defined by Eq. (4.33). The arrows show the
staggered direction of the Rashba vector n.

acquire dependence on the in-plane momentum p = (px, py)

H =

 h(p) t∗(k,p)

t(k,p) −h(p)

 . (4.30)

The off-diagonal matrix element

t(k,p) = t1(p) + t2(p)e
ik (4.31)

describes the p-dependent inter-layer tunneling amplitudes, while h(p) represents

the intra-layer Hamiltonian. We denote the in-plane momentum as p = (px, py) and

the out-of-plane momentum in the z direction as k 1.

For a fixed value of the in-plane momentum p, Hamiltonian (4.30) reduces to

1Note that this notation is different from the (k · p) method in the literature.
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the 1D model (4.27), for which the edge state was studied in Sec. 4.2. The surface

states exist for those in-plane momenta p where criterion (4.19) is satisfied. The

surface states are localized on the A sublattice, and the energy spectrum E0(p) of

the surface states is determined by the in-plane Hamiltonian h(p)

E0(p) = h(p). (4.32)

In our construction of the generalized Shockley model, we put a restriction

that the diagonal element h(p) does not depend on k. Physically, it means that

tunneling amplitudes connect only different sublattices A and B, but not A to A or

B to B. Thus, Hamiltonian (4.30) is not the most general 3D Hamiltonian, however

it applies to many models in the literature.

4.3.2 Spin-orbit interaction

So far, we have not considered spin of the electron. After including the spin

variable in Hamiltonian (4.30), the terms h(p) and t(k,p) become 2 × 2 matrices

acting in the spin-1/2 space, and the full Hamiltonian becomes a 4×4 matrix. We

assume that t(k,p) is proportional to the unit 2 × 2 matrix, but h(p) may include

the Pauli matrices σ acting on the spin variable. In vicinity of the time-reversal-

invariant momentum point p = 0, the Hamiltonian h(p) must be bilinear in p

and the spin-Pauli matrices σ. For example, h(p) can have the Rashba spin-orbit

coupling form

h(p) = v(σxpy − σypx) = v(σ × p) · ẑ, (4.33)
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Figure 4.4: Energy spectrum of the 3D Shockley model described by
Hamiltonian (4.30) in the vicinity of p = 0. The spectrum of the bulk
states, Eq. (4.35), is shown by the solid parabolas in both panels. Ac-
cording to the Shockley criterion, surface states exist if |t1| < |t2|, panel
(a), and do not exist otherwise, panel (b). The surface states have the
linear dispersion, Eq. (4.34), shown by the transparent Dirac cone in
panel (b).

where v has the dimension of velocity. Notice that the diagonal term ±h(p) in

Hamiltonian (4.30) has opposite signs on the A and B sublattices. This corresponds

to staggered direction of the Rashba vector n = ±ẑ on different layers for the spin-

orbit coupling vn(σ × p) as shown in Fig. 4.3. In the vicinity of p = 0, let us

also approximate t1(p) ≈ t1(0) and t2(p) ≈ t2(0) and assume that |t1(0)| ̸= |t2(0)|.

Then, the surface states exist only if |t1(0)| < |t2(0)|, and the spectrum of the surface

states has linear dependence on |p|

E0(p) = ±v|p|, (4.34)
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Figure 4.5: The thick blue curve is a vortex line in the 3D momentum
space defined by Eq. (4.36). Its projection onto the 2D momentum space
p defines the boundary of the shaded area, where the surface states exist.

which is illustrated by the Dirac cone in panel (a) of Fig. 4.4. The wave functions of

the surface states have in-plane spin-polarization perpendicular to the momentum

p. On the other hand, the bulk spectrum is parabolic in the vicinity of p = 0

E2(k,p) = |t(k, 0)|2 + v2p2, (4.35)

as shown in both panels of Fig. 4.4 by solid colors. Note that, because of the

assumption |t1(0)| ̸= |t2(0)|, the off-diagonal element t(k,p) is non-zero in the vicin-

ity of p = 0 and so the bulk spectrum (4.35) is gapped. On the other hand, if

|t1(0)| = |t2(0)|, the bulk spectrum is gapless, and the Hamiltonian undergoes the

topological phase transition, as will be shown in Sec. 4.4.
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4.3.3 Vortex lines in 3D momentum space

In principle, the tunneling amplitudes t1(p) and t2(p) may depend on the in-

plane momentum p. So, the surface state existence criterion can only be satisfied

in a certain domain of the 2D momentum space p. In this section, we discuss how

to identify this domain for the Hamiltonian (4.30).

Let us consider the equation

t(k,p) = 0 (4.36)

for the complex function t(k,p) in Eq. (4.31). It is equivalent to two equations

Re t(k,p) = 0 and Im t(k,p) = 0, which define a line in the 3D momentum space

(k,p). In general, the complex-valued function t(k,p) has a phase circulation around

the line where it vanishes, i.e. Eq. (4.36) defines a vortex line in the 3D momentum

space [78, 82, 83]. As an example, such a vortex line and its projection on the 2D

momentum space p are shown in Fig. 4.5. Phase winding of the function t(k,p)

along an arbitrary contour γ can be calculated as

W (γ) =
1

2πi

∮
γ

dl
d

dl
ln t(k,p), (4.37)

where the notation l = (k,p) is used for brevity. For instance, the phase winding

along the contour γ3 around the vortex line in Fig. 4.5 is non-zero

W (γ3) = 1. (4.38)

71



Because the BZ is periodic in k, we can also define a closed contour by varying

0 < k < 2π for a fixed value of the in-plane momentum p. Such contours γ1 and

γ2 are shown in Fig. 4.5, and the phase windings (4.37) are well defined for these

contours. The contours γ1 and −γ2 can be merged into the contour γ3. So, the

following equation holds

W (γ3) = W (γ1)−W (γ2). (4.39)

Given Eq. (4.38) and the condition (4.22) thatW (γ1,2) ≥ 0, we find that the winding

numbers are W (γ1) = 1 and W (γ2) = 0. Since a non-zero winding number is

required for existence of the surface states according to Eq. (4.22), we conclude that

the surface states exist for the 2D momenta p in the shaded area of Fig. 4.5 and do

not exist outside. Thus, we have shown that the projection of the vortex line (4.36)

onto the 2D momentum space p defines the domain where the surface states exist.

While the main focus of this work is the 3D systems, let us comment on the 2D

case l = (k, px), where px and k are the momenta parallel and perpendicular to the

edge of the 2D system. The 2D case can also be viewed as a slice of 3D momentum

space shown in Fig. 4.5 at a fixed momentum py. Then, the solution of the equation

t(k, px) = 0 generally defines a set of vortex points in the 2D momentum space l.

Similarly to the 3D case, a projection of the vortex points onto the px momentum

space identifies a domain in px for which the edge states exist. This method was

used in Ref. [8] to find the edge states in graphene ribbons.
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Figure 4.6: Illustration of the diamond crystal structure and the tight-
binding model described by Hamiltonian (4.41). The lattice has two
atoms in a unit cell shown by the red (A) and blue (B) spheres.

4.4 Diamond Model

4.4.1 Hamiltonian and surface states

In this section, we illustrate how the Shockley model can be applied to study

the surface states for a particular TI model of Ref. [20]. However similar approach

can be applied to other models [19, 22,72].

Let us consider a tight-binding model on the diamond lattice shown in Fig. 4.6.

The diamond lattice has two equivalent atom positions denoted by A (red) and B

(blue). Atoms of each type form 2D triangular lattices, so that the A and B layers

alternate along the z direction similarly to Fig. 4.3. The nearest A and B layers form

a distorted graphene lattice. So, when viewed along the z direction, the structure

looks like the ABC-stacked graphite lattice. We define the nearest-neighbor vectors
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an, n = 1, 2, 3, 4, as shown in Fig. 4.6, as well as the vectors

δ1 = a3 − a2 = (1/2 , −
√
3/2),

δ2 = a1 − a3 = (1/2 ,
√
3/2), (4.40)

δ3 = a2 − a1 = (−1 , 0),

which are the in-plane elementary translation vectors of the unit length |δn| = 1.

The Hamiltonian of the model has the form of Eq. (4.30)

H =

 h(p) t∗(k,p)

t(k,p) −h(p)

 , (4.41)

where the unit cell consists of the A and B atoms connected by the vector a3. The

off-diagonal part

t(k,p) = t1(p) + t2e
ik, (4.42)

t1(p) = t1(1 + e−ipδ1 + eipδ2), (4.43)

describes the nearest-neighbor tunneling between the A and B sublattices with the

amplitude t1 along the vectors an, n = 1, 2, 3, and the amplitude t2 along the vector

a4
2. In Eqs. (4.42) and (4.43), we distinguish between the in-plane-momentum-

dependent function t1(p) and the tight-binding amplitude t1. Equation (4.43) de-

2For the diamond model, the variable k is the momentum along the translation vector a4 −a3.
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Figure 4.7: Lines of constant value for the graphene spectrum function
|t1(p)|/|t1| = C, for C = 0.5, 1, 2, within the Brillouin zone (BZ), de-
noted by the dashed lines. The contour lines degenerate to points at
the BZ corners (K and K′ points) at C = 0 and at the BZ center at
C = 3. The thick red dots denote the time-reversal-invariant momenta
points (4.47).

scribes the well-known tight-binding spectrum of graphene [14]

|t1(p)|/|t1| =
√

3 + 2 cos(pδ1) + 2 cos(pδ2) + 2 cos(pδ3) (4.44)

The contour plots of |t1(p)|/|t1| = C, for C = 0.5, 1, 2, are shown in Fig. 4.7.

Note that t1(p) has the linear Dirac-like dependence on the momentum p at the BZ

corners, K and K′ points in Fig. 4.7.

The diagonal term h(p) in Hamiltonian (4.41) describes the spin-orbit inter-

action [20]

h(p) =
2
√
2

3
ΛSO

∑
i,j,l=1,2,3

ϵijl (σ · [ai × aj]) sin(pδl), (4.45)

where ΛSO is the strength of the spin-orbit coupling, and ϵijl is the antisymmetric

75



Figure 4.8: The plot of the particle-hole symmetric spectrum E0(p),
Eq. (4.46), induced by the spin-orbit Hamiltonian h(p) (4.45). In the
vicinity of the time reversal invariant points, shown with the thick red
dots, the Hamiltonian (4.45) becomes linear in momentum. The dashed
line denotes the boundary of the BZ.

tensor. For simplicity, we do not include the inter-layer spin-orbit coupling involving

the vector a4 in Hamiltonian (4.45), unlike in Ref. [20]. Hamiltonian (4.45) has a

gapless particle-hole symmetric spectrum E0(p) = ±
√
h2(p),

E2
0(p)/Λ

2
SO = h2(p)/Λ2

SO (4.46)

= sin(pδ1) sin(pδ2) + sin(pδ1) sin(pδ3) + sin(pδ2) sin(pδ3) +
∑
j=1,2,3

sin2(pδj),

which is shown in Fig. 4.8. The energy E0(p) vanishes at the four time-reversal-

invariant momenta (TRIM)

p∗ ∈ {Γ,M1,M2,M3}, (4.47)
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where Γ is the BZ center, and M1, M2, M3 are at the centers of the BZ boundary,

as shown in Figs. 4.7 and 4.8. Hamiltonian (4.45) is bilinear in the momentum and

spin operators in the vicinity of the TRIM points

h(p+ p
(Γ)
∗ )

ΛSO

≈
√
3

2
(σxpy − σypx), (4.48)

h(p+ p
(M3)
∗ )

ΛSO

≈ −
√
3

2
σxpy −

1

2
√
3
σypx −

2
√
2√
3
σzpx.

(4.49)

Thus, the energy spectrum E0(p) has the shape of the Dirac cones in the vicinity

of TRIM points, as shown in Fig. 4.8. It is important to distinguish the linear,

Dirac-like, behavior of the off-diagonal term t1(p) in the vicinity of the BZ corners

(K and K′ points) and of the diagonal term h(p) in the vicinity of the TRIM points,

which are different sets of points in the BZ.

The bulk spectrum of Hamiltonian (4.41)

E2(k,p) = |t(k,p)|2 + E2
0(p), (4.50)

contains contributions from both the diagonal h(p) and the off-diagonal t(k,p)

terms. The bulk spectrum becomes gapless when both contributions vanish for

some momenta (k,p)

E0(p) = 0, (4.51)

t(k,p) = 0. (4.52)
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Given Eq. (4.42), Eq. (4.52) is equivalent to

|t1(p)| = |t2|, (4.53)

which defines a contour line in Fig. 4.7. Conditions (4.51) and (4.52) can be satisfied

simultaneously only for special values of the parameters t1 and t2. The bulk spectrum

becomes gapless, for |t2| = |t1|, when the contour line (4.53) passes through the

TRIM points M1, M2, M3, and for |t2| = 3|t1|, when it passes through the Γ point.

t2 broken t1 broken TI

0 < |t2| < |t1| − M1,2,3, Γ Weak
|t1| < |t2| < 3|t1| M1,2,3 Γ Strong

3|t1| < |t2| M1,2,3, Γ − Weak

Table 4.1: The table shows the points in the BZ where the surface states exist
depending on the parameters of the model and which bond is broken at the surface.
According to Fig. 4.8, the surface states have the Dirac cones at the corresponding
points. Letters M1, M2, M3, Γ denote positions of the TRIM points (4.47).

Hamiltonian (4.41) has the Shockley form, Eq. (4.30). Therefore all the con-

clusions of Secs. 4.2 and 4.3 apply here, including the criterion (4.19) for existence

of the surface states. We find that the surface states have the dispersion E0(p) and

exist for those in-plane momenta p where the following condition is satisfied

|t1(p)| < |t2|. (4.54)

The boundary of this domain is given by Eq. (4.53). When we change the parameter

t2 while keeping t1 fixed, the Hamiltonian undergoes a transition between the phases
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with odd and even numbers of surface Dirac cones, called the “strong” and “weak”

TI phases in Ref. [20]. For small |t2| ≪ |t1|, the contour lines given by Eq. (4.53)

wind around the BZ corners K and K′ (see Fig. 4.7 for C = 0.5), and criterion (4.54)

is satisfied in the small area inside. The surface states do not include the Dirac

cones of E0(p), shown in Fig. 4.8, because the TRIM points (red dots) are in the

area where Eq. (4.54) is not satisfied. Thus, Hamiltonian (4.41) is in the “weak”

TI phase in this case. For |t1| = |t2|, the contours (4.53) become straight lines

passing through the TRIM points M1, M2, M3, as shown in Fig. 4.7 for C = 1.

So, both Eqs. (4.51) and (4.53) are satisfied at the TRIM points, and the bulk

spectrum, Eq. (4.50), becomes gapless. This marks a transition to the “strong” TI

phase. When |t1| < |t2| < 3|t1|, the contour forms a circle around the BZ center,

see Fig. 4.7 for C = 2. Criterion Eq. (4.54) is satisfied in the exterior of the circle,

and so the surface states contain the Dirac cones at the TRIM points M1, M2 and

M3. When t2 reaches the critical value |t2| = 3|t1|, the contour (4.53) shrinks to

the single point Γ. The bulk spectrum becomes gapless, and this marks a transition

to the “weak” TI phase again. For |t2| > 3|t1|, the Shockley criterion is satisfied

everywhere in the BZ, so the surface states include the Dirac cones for all TRIM

points (4.47).

As discussed above, the Shockley criterion (4.54) is written for the case where

the t2 bond is broken at the surface. If, on the other hand, the crystal termination is

such that the t1 bond is broken at the surface, the existence criterion for the surface
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state becomes complementary to the criterion (4.54)

|t1(p)| > |t2|. (4.55)

So, the surface states now exist for those momenta p where they did not exist in the

case of the broken bond t2 and have the Dirac cones at the complementary TRIM

points. This is summarized in Table 4.1, which shows the Dirac cones belonging to

the surface states depending on whether t1 or t2 is broken at the surface. In the

“strong” TI phase, there is an odd number of the Dirac cones in the surface states,

so, at least, one surface Dirac cone always exists. In contrast, in the “weak” TI

phase, there is an even number of the surface Dirac cones, so the surface states may

disappear under certain conditions.

4.4.2 3D vortex lines

In the previous section, we showed that the 2D contour defined by Eq. (4.53)

represents the boundary separating the domain in the 2D momentum space where

the Shockley criterion is satisfied. On the other hand, the contour (4.53) is just the

projection of the 3D vortex line, defined by Eq. (4.52)

t(k,p) = t1(p) + t2e
ik = 0, (4.56)

onto the 2D momentum space, as discussed in Sec. 4.3. Let us discuss evolution of

these 3D vortex lines with the change of the parameters t1 and t2. In the vicinity
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Figure 4.9: Vortex lines in the 3D momentum space defined by
Eq. (4.56), and shown for different values of the parameters: (a)
|t1| > |t2|, (b) |t1| = |t2|, and (c) |t1| < |t2| < 3|t1|. The vortex lines
are shown by the thick lines with the arrows representing vorticity. The
thin lines show projections of the vortex lines, which encircle the shaded
area in the 2D momentum space p, where the Shockley criterion (4.54) is
satisfied and the surface states exist. The dashed lines show the bound-
aries of the BZ. The part of the vortex lines residing in the first BZ is
highlighted in red in panel (b). The three panels show the evolution of
the vortex lines with the change of the parameters of the Hamiltonian.
At |t1| = |t2|, the vortex lines reconnect at the TRIM points and change
their topology from spirals for |t1| > |t2| to the loop for |t1| < |t2|. The
change of the vortex lines topology is responsible for a transition from
the “weak” to “strong” TI phase in the Hamiltonian (4.41).
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of the BZ corners p0 = (±4π/3, 0), K and K′ points in Fig. 4.7, where the function

t1(p) vanishes, Eq. (4.43) can be linearized

t1(p0 + p) ≈ −
√
3

2
t1(±px + ipy). (4.57)

So, for |t2| ≪ |t1|, Eq. (4.56) with t1(p) defined in Eq. (4.57) describes spirals in the

3D momentum space (k,p) [89]

 px

py

 =
2√
3

t2
t1

 ± cos k

sin k

 , (4.58)

as shown in Fig. 4.9(a). Projections of these spirals onto the 2D momentum space

p encircle the corners K and K′ of the 2D BZ. With the increase of t2, the spirals

grow until t2 reaches the critical value |t2| = |t1|. At this point, the vortex lines

reconnect as shown in Fig. 4.9(b) and transform into three families of straight lines

obtained by intersections of the planes

{pδ1 = π + 2πn}
∩

{pδ3 = −k + 2πm}, (4.59)

{pδ2 = π + 2πn}
∩

{pδ3 = k + 2πm}, (4.60)

{pδ3 = π + 2πn}
∩

{k = π + 2πm}, (4.61)

where n and m are independent integers. The part of these lines residing in the

first BZ forms a loop highlighted in red for clarity in Fig. 4.9(b). With the further

increase of t2, the vortex line detaches from the BZ boundary and becomes a closed
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loop, as shown in Fig. 4.9(c). In the vicinity of the Γ point, the function t1(p) given

by Eq. (4.43) can be expanded to the second order in p, so the vortex line defined by

Eq. (4.56) is given by the intersection of a cylinder and a plane in the 3D momentum

space (k,p) {
p2x + p2y =

2

3

(
9− t22

t21

)}∩{
k = π +

√
3
t1
t2
py

}
. (4.62)

For the critical value |t2| = 3|t1|, the vortex line shrinks to the Γ point and then

disappears for |t2| > 3|t1|.

So, we observe that the vortex lines change their topology at the critical values

of the model parameters |t2| = |t1| and |t2| = 3|t1|. These are the critical values

where the transitions happen between the “weak” and “strong” TI phases. So, the

configuration of the vortex lines (4.56) is directly related to the topological phase of

the full Hamiltonian H, Eq. (4.41).

Now, let us illustrate that the vortex lines are gauge-dependent, i.e., different

choice of phases in the tight-binding model leads to different vortex lines. Let

us choose the elementary cell consisting of the A and B atoms connected via the

vector a2 shown in Fig. (4.6), rather than a1 chosen in Eqs. (4.41)-(4.43). Then,

Eq. (4.43) becomes t1(p) = t1
(
1 + e−ipδ3 + eipδ1

)
, which is equivalent to the 2π/3

rotation of t1(p) in Eq. (4.43) around the k axis. Since t1(p) defines the vortex lines

via Eq. (4.56), the vortex lines are 2π/3 rotated compared to the lines shown in

Fig. 4.9. Notice, however, that the area where the surface states exist, shown by the

shaded area in Fig. 4.9, is C3 symmetric and thus remains the same for a different

gauge choice.
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We also point out that the Shockley Hamiltonian (4.41) and the vortex lines

are constructed for a particular crystal termination and cannot be directly used to

study surface states for other surfaces. For a different crystal termination, we need

to redefine the in-plane p′ and the out-of-plane k′ momenta relative to the “new”

surface. Since the “new” momenta (k′, p′x, p
′
y) are related to the “old” momenta

(k, px, py) through some orthogonal transformation O: (px, py, k)
T = O (p′x, p

′
y, k

′)T,

the diagonal element of Hamiltonian (4.41) is generally a function of both k′ and

p′: h(p) = h(k′,p′). So, the Hamiltonian of the “new” surface does not have

the Shockley form (4.41), which requires that h(p′) is independent of k′, and the

Shockley criterion is not directly applicable (see a discussion in the end of Sec. 4.3.1).

4.5 Shockley model description of Bi2Se3

4.5.1 General analysis

Despite its simplicity, the Shockley model may be directly relevant to the

description of real materials, such as Bi2Se3. The crystal of Bi2Se3 is formed by

a sequence of quintuple layers [73, 74, 84, 86, 87]. Each quintuplet consists of five

alternating layers of Bi and Se, as sketched in Fig. 4.10(a). Chemical bonding

within the quintuplets is relatively strong, whereas the inter-quintuplet Van der

Waals attraction is relatively weak. So, the natural cleavage plane lies between the

quintuplets, as shown in Fig. 4.10(a).

For the relevant energy interval near the Fermi level, the electronic structure

can be captured by considering the electronic orbitals localized near the outermost

84



Figure 4.10: The crystal of Bi2Se3 is formed by quintuple layers, schemat-
ically shown by the blue boxes. Each quintuplet consists of the alter-
nating layers Se-Bi-Se-Bi-Se. The tight-binding tunneling amplitudes t1
and t2 connect the orbitals of the outermost edges of the quintuplets.
Then, depending on whether t2 or t1 is broken at the surface, as shown
by the red line in panels (a) and (b), surface states occur in different
regions of the 2D momentum space, as shown in Panels (c) and (d).

layers of Se within the quintuplets [84], as shown by the thick lines in Fig. 4.10(a).

Then, the Shockley amplitudes t1 and t2 describe the intra- and inter-quintuplet

tunneling between these orbitals, as shown in Fig. 4.10(a). The tunneling amplitudes

t1 and t2 may depend on the in-plane momentum p.

As shown in the previous section, the Shockley surface states strongly depend

on how the crystal is terminated. When the crystal is cut between the quintuplets,

and t2 is broken on the surface as shown Fig. 4.10(a) and realized experimentally, a

single Dirac cone is observed at the BZ center [85], as shown in Fig. 4.10(c). So, in

terms of the Shockley model, the surface state existence criterion |t1(p)| < |t2(p)|

is satisfied at the BZ center and not satisfied at the BZ boundary.

In principle, the surface can also be introduced by cutting the quintuplet layer
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and breaking the bond t1, as shown in Fig. 4.10(b). To the best of our knowledge,

this type of surface has not been observed in Bi2Se3. In the previous section, we

found that, for alternative crystal terminations, the surface states have the Dirac

cones at the complementary TRIM points of the 2D BZ. Thus, we conclude that,

when the quintuplet is broken at the surface as in Fig. 4.10(b), the surface states

should have Dirac cones at the boundary of the 2D BZ as shown in Fig. 4.10(d). A

similar prediction was made for the BixSb1−x alloy in Ref. [88].

We can estimate the Shockley tunneling amplitudes t1(p) and t2(p) for p close

to the Γ point based on the band-structure calculations of Ref. [73]. As discussed in

Sec. 4.2.1, the extreme values of the energy gap can be obtained from the off-diagonal

matrix element t(k) = t1 + t2e
ik
∣∣
k=0,π

= t1 ± t2. We compare these values with the

band structure along the direction k ∈ (0, π) for the fixed in-plane momentum p = 0,

which is shown in Fig. 2(b) of Ref. [73]. From the set of equations t1 + t2 = 0.28 eV

and t1 − t2 = −0.6 eV, we obtain the following estimate

t1 = −0.16 eV, t2 = 0.44 eV. (4.63)

Note that the geometric distance between the orbitals on the adjacent quintuplets

is shorter than the distance between the orbitals within the quintuplet. Therefore,

in the vicinity of the Γ point, the inter-quintuplet tunneling |t2| should be greater

than the intra-quintuplet tunneling |t1|, which is consistent with Eq. (4.63).
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4.5.2 Continuous approximation

In previous sections, we have shown that, in the Shockley model, existence of

the surface states relies explicitly on the tight-binding nature of the model. However,

continuous models [73–77] are also widely used to describe the surface states in the

TI models and in real materials, such as Bi2Se3. A continuous approximation is

obtained by expanding the Hamiltonian in the powers of the momentum k in the z

direction. This is equivalent to disregarding the BZ periodicity for the momentum

k and taking the limit where the size of the elementary cell in the z direction goes

to zero. In this subsection, we examine the applicability of the continuous-limit

approximation.

4.5.2.1 First-order expansion

Let us consider the Shockley Hamiltonian (4.30) for the fixed value of the

in-plane momentum p = p∗, where the diagonal elements vanish

H(k) =

 0 t∗(k)

t(k) 0

 , (4.64)

t(k) = t1 + t2e
ik. (4.65)

Without loss of generality, let us make an assumption that t2 > 0. If the energy gap

|t(k)| reaches minimum at k = 0, then t1 < 0 as in Eq. (4.63). Then, we expand

87



t(k) to the first order in k around k = 0

t(k) = t1 + t2 + it2k. (4.66)

The tight-binding boundary conditions (4.10) and (4.11) correspond the following

boundary conditions [84] for the continuous approximation

ψa(z → 0) ̸= 0, ψb(z → 0) = 0, (4.67)

ψa,b(z → ∞) = 0. (4.68)

Using these boundary conditions, we solve the Schrödinger equation HΨ = 0 for

Hamiltonian (4.64) with the continuous t(k), Eq. (4.66), and obtain the surface state

Ψ0(z) =

 1

0

 eik0z. (4.69)

The exponential decay length in Eq. (4.69) is given by the parameter

k0 = i

(
1 +

t1
t2

)
, (4.70)

which is the root of the equation t(k0) = t1 + t2 + it2k0 = 0. Boundary condi-

tions (4.68) are satisfied if Im k0 > 0 or equivalently t1 > −t2; otherwise, the

surface state does not exist if t1 < −t2. So, the continuous model (4.66) with the

appropriate boundary conditions (4.67) and (4.68) gives the surface state existence
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criterion

|t1| < |t2|, (4.71)

which coincides with the Shockley criterion (4.19). The continuous wave func-

tion (4.69) correctly approximates the discrete wave function (4.18) if the decay

length is very long or equivalently ||t1|−|t2|| ≪ |t2|. However, the estimated tunnel-

ing amplitudes t1 and t2 in Eq. (4.63) do not satisfy the latter condition for Bi2Se3.

Therefore, we conclude that the discrete Shockley model gives a more appropriate

description of the surface states in Bi2Se3, than a continuous approximation, because

the difference between |t1| and |t2| is rather large.

4.5.2.2 Higher-order expansion

One may truncate the series for eik in Eq. (4.66) at a higher order in k

t(k) = t1 + t2 + t2

N∑
n=1

(ik)n

n!
. (4.72)

However, such a truncation gives worse continuous description of the Shockley sur-

face state. The equation t(k) = 0 now has N roots k1, . . . , kN . So, there are N

independent coefficients cn in a general solution Ψ(z) = c1e
ik1z + . . . + cNe

ikNz to

satisfy the boundary conditions (4.67) and (4.68). This gives rise to a large number

of the unphysical surface state solutions, while the Shockley model predicts only

one surface state. Most of the roots kj have large imaginary parts Im kj ∼ 1. These

solutions are spurious, because they correspond to the wave functions decaying over
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Figure 4.11: Plot of the function t(k) in the complex plane of (Re t, Im t).
The second-order expansion for t(k), given by Eq. (4.79) is plotted by
the solid line for −π/2 < k < π/2. The function t(k) in the Shockley
model, given by Eq. (4.65) with the parameters t1 and t2 from Eq. (4.63),
is plotted by the dashed line. The Shockley contour winds around the
origin, which guarantees existence of the surface state.

a length shorter than the unit cell of the crystal. For example, for N = 2, Eq. (4.72)

is

t(k) = t1 + t2 + it2k − t22k
2/2. (4.73)

Then, the equation t(k) = 0 has two roots

k1,2 = i±
√

−1 + 2(1 + t1/t2). (4.74)

In the limit |1 + t1/t2| ≪ 1, the roots become k1 = i(1 + t1/t2) and k2 = 2i. We

observe that, while the first root k1 reproduces the correct approximation Eq. (4.70),

the second root k2 has a large imaginary part and must be discarded. In another

regime, when the expression under the square root in Eq. (4.74) is positive, both
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roots have large imaginary parts Im k1,2 = 1, so the continuous approximation is

not applicable. Moreover, as pointed out in Ref. [84], the continuous description

does not distinguish between two possible ways of terminating the crystal shown in

Fig. 4.10(a) and (b). A correct boundary condition should be chosen to distinguish

between different possible surface terminations.

Despite these problems, the k2 terms were kept in the effective description of

Bi2Se3 in Ref. [74]

H = H0 +H1, (4.75)

H0 = ϵ(k) + (M0 +M1k
2)τz +B0kτy, (4.76)

H1 = A0τx(σ × p), (4.77)

where M0 = −0.28 eV, M1 = 6.86 eVÅ
2
, B0 = 2.26 eVÅ, A0 = 3.33 eVÅ; τy and

τx are the Pauli matrices. In Eq. (4.77), H1 represents spin-orbit interaction and

explicitly depends on the spin operators σ and the in-plane momentum p. H0

depends on the out-of-plane momentum k and is responsible for the existence of the

surface states. Following Ref. [74], we drop the term ϵ(k) in Eq. (4.76), because it is

proportional to the unit matrix. Then we apply the unitary transformation e−iτyπ/4,
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which changes τz → −τx and τx → τz. So, the Hamiltonian becomes U †H0U → H0

H0 =

 h(p) t∗(k)

t(k) −h(p)

 , (4.78)

t(k) = −M0 −M1k
2 + iB0k, (4.79)

h(p) = A0(σ × p). (4.80)

Now, the Hamiltonian H0 has the same form as in Eq. (4.30). Following Ref. [84], we

infer that the basis for the Hamiltonian (4.78) corresponds to the basis of electron

orbitals located at the outermost layers of the quintuplet. Then, the off-diagonal

matrix element t(k) in Eq. (4.79) corresponds to the second-order expansion of the

off-diagonal element of the Shockley model (4.73), while h(p) defines the in-plane

dispersion.

To make explicit correspondence with the previous section, we change units

for k: ka → k, where a = 1 nm is the size of the elementary cell of Bi2Se3 in the z

direction. So, we rewrite the parameters M1/a
2 → M1, B0/a → B0 in the energy

units of eV

M0 = −0.28 eV, M1 = 0.07 eV, B0 = 0.23 eV.

Notice that t(k), Eq. (4.79), parametrizes a parabola in the complex space (Re

t,Im t) when k is changed. So we plot t(k) defined by Eq. (4.79) for −π/2 < k <

π/2 by the solid line in Fig. 4.11. Figure 4.11 also shows the plot t(k) for the
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discrete Shockley model (4.64) with the parameters (4.63) by the dashed line. We

see that the continuous approximation to the Hamiltonian agrees with the Shockley

model within a limited range of k with the continuous approximation. Nevertheless,

the continuous approximation has serious deficiencies for construction of the wave

functions, as described above, whereas the Shockley model provides a good overall

description for the surface states in Bi2Se3.

4.6 Generalized Shockley model

In this section, we generalize the Shockley model to include additional inter-

cell tunneling amplitudes. To simplify notations, we present results for the 1D case.

However, the results can be straightforwardly generalized to the 3D case by assigning

dependence on p = (px, py) to the tunneling amplitudes, as discussed in Sec. 4.2.

4.6.1 Additional tight binding amplitude t3

Let us consider a 1D Hamiltonian of the form given by Eq. (4.1) with

U =

 0 t∗1

t1 0

 , V =

 0 t∗2

t3 0

 , (4.81)

where the matrix V now contains an additional tight-binding amplitude t3. The 1D

chain model corresponding to Eq. (4.81) is illustrated in Fig. 4.12. The amplitude

t1 describes tunneling between the A and B sublattices inside the unit cell, and the

amplitudes t2 and t3 between the unit cells. The introduction of this tight-binding
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Figure 4.12: An illustration of the generalized Hamiltonian (4.82). The
Hamiltonian describes a tight-binding model with the elementary cell
comprised of the A and B sites, which are connected via the complex
tight-binding amplitudes t1, t2 and t3.

amplitude is motivated by the TI literature [9, 72] as well by the novel 1D models

such as the superconducting Majorana chain [10,90] and the Creutz ladder [91,92].

This model is a natural mathematical generalization of the models considered in the

previous sections. The Hamiltonian of the general model has the same form as in

Eq. (4.5),

H(k) =

 0 t∗(k)

t(k) 0

 , (4.82)

with

t(k) = t1 + t2e
ik + t3e

−ik. (4.83)

As in Eqs. (4.12) and (4.13), the eigenstate equations for the wave functions

on the A and B sublattices decouple at E = 0. (Appendix A.2 proves that the edge

state can exist only for E = 0.) The zero-energy state on the A sublattice has the
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complex momentum k obtained from the equation

t(k) = t1 + t2e
ik + t3e

−ik = 0. (4.84)

We substitute q = eik and obtain an equation for the rational function t(q)

t(q) = t1 + t2q + t3q
−1 = 0, (4.85)

which has two solutions

q1,2 = eik1,2 =
1

2t2

(
−t1 ±

√
t21 − 4t2t3

)
, (4.86)

with the complex momenta k1,2. Using these momenta, we construct an edge state

that satisfies the boundary conditions given by Eqs. (4.10) and (4.11). The edge

state has the energy E0 = 0 and is localized on the A sublattice

Ψ0(z) =

 ψ
(0)
a (z)

0

 , E0 = 0, (4.87)

ψ
(0)
a (z) = qz1 − qz2 = eik1z − eik2z. (4.88)

The wave function (4.88) satisfies the boundary condition (4.11) if Im k1 > 0 and

Im k2 > 0 or, equivalently,

|q1| < 1 and |q2| < 1. (4.89)
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Likewise, a zero-energy state on the B sublattice has the complex momenta k ob-

tained from the equation

t∗(k) = t∗1 + t∗2e
−ik + t∗3e

ik = 0. (4.90)

Notice that the symbol of complex conjugation ∗ applies only to the tunneling

amplitudes in Eq. (4.90), so t∗(k) ̸= [t(k)]∗ if Im k ̸= 0. Equation (4.90) can be

obtained by replacing k → k∗ in Eq. (4.84). So, the two solutions k′1,2 of Eq. (4.90)

and the corresponding q′1,2 can be obtained from Eq. (4.86)

k′1,2 = k∗1,2, q′1,2 = 1/q∗1,2. (4.91)

The edge state exists on the B sublattice

Ψ0(z) =

 0

ψ
(0)
b (z)

 , E0 = 0, (4.92)

ψ
(0)
b (z) = (q′1)

z − (q′2)
z = eik

′
1z − eik

′
2z (4.93)

if Im k′1 > 0 and Im k′2 > 0 or, equivalently,

|q1| > 1 and |q2| > 1. (4.94)

To summarize, the edge state (4.88) exists on the A sublattice if both roots of

Eq. (4.85) are inside the unit circle, as in Eq. (4.89) and in Fig. 4.13(a). The edge
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state (4.93) exists on the B sublattice if both roots of Eq. (4.85) are outside the unit

circle, as in Eq. (4.94). The edge state does not exist if one of the roots is inside

and another root is outside the unit circle

|q1| > 1 and |q2| < 1, (4.95)

as shown in Fig. 4.13(b). Obviously, the conditions (4.89) and (4.94) cannot be met

simultaneously, so edge state cannot exist on both sublattices simultaneously.

Like in Sec. 4.2.1, the criterion for the edge states existence can be formulated

in terms of the winding number of the complex function t(q) along the unit circle

C = {|q| = 1}

W =
1

2πi

∮
|q|=1

dq
d

dq
ln [t(q)] . (4.96)

The criteria given by Eqs. (4.89), (4.94), and (4.95) are summarized in the following

W =


1, edge state ψ

(0)
a (z) exists,

0, edge state does not exist,

−1, edge state ψ
(0)
b (z) exists.

(4.97)

To prove it, we use Cauchy’s argument principle

W = Z − P, (4.98)

which relates the winding number W of a complex function t(q) on a contour C

with the number of zeros Z and the number of poles P inside the contour C. Since
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t(q) given by Eq. (4.85) has a pole at q = 0, as shown by the thick black dot in

Fig. 4.13(a) and (b), the number of poles is P = 1. The edge state exists on the A

sublattice if |q1,2| < 1, in which case W = Z −P = 2− 1 = 1. The edge state exists

on the B sublattice if |q1,2| > 1, in which case W = Z − P = 0− 1 = −1. The edge

state does not exist for |q1| > 1 and |q2| < 1, in which case W = Z−P = 1− 1 = 0.

In other words, according to Eq. (4.97), the edge state exists if the closed

contour

C ′ = {t(k), k ∈ (0, 2π)} (4.99)

winds around the origin, as shown in Fig. 4.13(c). The direction of winding of t(k)

defines the sublattice on which the edge state is localized. An analogous criterion

was proposed in Ref. [9].

For the tunneling amplitudes t1, t2, and t3 connecting the nearest unit cells,

Eq. (4.99) defines an ellipse

t(k) = t1 + (t2 + t3) cos k + i(t2 − t3) sin k, (4.100)

which is shifted by t1 from the origin. In case where the tunneling amplitudes are

real, the ellipse in Eq. (4.100) encloses the origin if

|t1| < |t2 + t3|. (4.101)

Eq. (4.101) represents the generalized Shockley rule of a stronger bond: The edge

state exists if the broken inter-cell bond t2 + t3 is stronger than the intra-cell bond
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Figure 4.13: Topological formulation of the Shockley criterion. The roots
q1,2 of Eq. (4.85) are shown in panels (a) and (b) by red dots. An edge
state exists if the roots are on the same side of the unit circle C = {q =
eik, k ∈ (0, 2π)}, as shown in panel (a). No edge state exists if the roots
are on the opposite sides of the unit circle, as shown in panel (b). The
thick black dot at the origin is the pole of Eq. (4.85). An alternative
formulation in terms of the winding number (4.97) is shown in panels
(c) and (d). An edge state exists if the contour C ′ = {t(k), k ∈ (0, 2π)}
winds around the origin, as shown in panel (c). No edge state exists if
the contour C ′ does not wind around the origin, as shown in panel (d).

t1.

Our consideration does not include tunneling amplitudes connecting sites on

the same sublattices in different unit cells. Including such terms would make h in

Eq. (4.30) depend on k. When these tunneling amplitudes connect only the nearest

neighboring unit cells, the problem can still be solved as shown in Ref. [9].
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4.6.2 Arbitrary periodic function t(k)

In the most general form, Hamiltonian (4.82) can be written as

H(k) =

 0 t∗(k)

t(k) 0

 , (4.102)

where

t(k) =
N∑

n=−N

tne
ikn. (4.103)

This model describes a 1D tight-binding chain, where each unit cell is coupled to N

preceding and N successive unit cells. Therefore, for a half-infinite system at z ≥ 1,

the boundary conditions require that the wave function vanishes at the fictitious N

sites adjacent to the boundary

Ψ(−N + 1) = 0, . . . , Ψ(−1) = 0, Ψ(0) = 0, (4.104)

similarly to Eq. (4.10). As in the previous section, let us substitute q = eik and

rewrite Eq. (4.103) in the polynomial form

t(q) =
N∑

n=−N

tnq
n. (4.105)

This polynomial has 2N roots. Suppose, the number of roots N1 with |qj| < 1,

j = 1, · · · , N1, is greater than N : N1 > N . In this case, we can construct a trial
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wave function

Ψ(z) =

N1∑
j=1

αjq
z
j , (4.106)

which vanishes at z → ∞. The coefficients αj in Eq. (4.104) are obtained by solving

a set of N boundary condition equations (4.104). Therefore, in general, there are

N1−N linearly independent solutions for the edge states localized on the sublattice

A. The same result can be formulated using the winding number in Eq. (4.96).

Indeed, the function (4.105) has a pole of the N -th order at q = 0 and N1 zeros

at |qj| < 1, j = 1, . . . , N1. Therefore, using Cauchy’s argument principle (4.98), we

obtain

W = Z − P = N1 −N. (4.107)

Thus, the winding numberW of the function t(k) gives the number of the edge states.

On the other hand, ifW < 0, then there are |W | degenerate edge states localized on

the sublattice B. The edge states cannon exist simultaneously on both sublattices

A and B. There are no edge states for W = 0. Finally, in the limit N → ∞, the

winding criterion applies to an arbitrary complex function t(k) periodic in k.

4.7 Symmetries

In this section, we discuss the symmetries of the Shockley model. Let us first

consider the case h(p) = 0 in the generalized Shockley Hamiltonian (4.30)

H(k,p) =

 0 t∗(k,p)

t(k,p) 0

 . (4.108)
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In this case, the A and B sublattices have equal on-site energies, which is re-

flected by a chiral symmetry of the Hamiltonian: τzH(k,p)τz = −H(k,p), where

τ = (τx, τy, τz) are the Pauli matrices acting in the AB sublattice space. There-

fore, Hamiltonian (4.108) belongs to the class AIII of chiral Hamiltonians [28]. As

a consequence of chiral symmetry, the energy spectrum is symmetric: if Ψ is an

eigenstate HΨ = EΨ, then τzΨ is also an eigenstate corresponding to the opposite

energy HτzΨ = −EτzΨ. Therefore, if a non-degenerate eigenstate with E = 0 ex-

ists, it should be an eigenstate of τzΨ = λΨ, λ = ±1. So, the E = 0 state must

be localized on one of the sublattices, consistently with Eq. (4.18). The winding

number W ∈ Z of the vector d(k,p), defined in Eq. (4.29), gives the number of

surface states for a fixed p.

In Sec. 4.2.2, we generalized the Shockley model by including the diagonal

element h(p)

H(k,p) =

 h(p) t∗(k,p)

t(k,p) −h(p)

 . (4.109)

The Hamiltonian (4.109) does not have a chiral symmetry, but it has another sub-

lattice symmetry (iτyK)H (iτyK) = H, where K is the operator of complex conju-

gation. This symmetry exchanges the sublattices, iτyK (ψA , ψB)
T = (ψ∗

B , −ψ∗
A)

T ,

and makes the bulk spectrum symmetric (there is an opposite energy counterpart

iτyKΨ for every eigenstate Ψ). However, this symmetry is broken at the boundary

of the crystal, where one of the sublattices is exposed at the surface, as shown in

Fig. 4.3. As a result, the surface state gains the dispersion E0(p) = h(p), whereas

the opposite-energy counterpart of the surface state is localized at the opposite sur-
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face. The number of the surface states is still given by the winding number W ∈ Z

of the vector d(k,p) as a function k for a fixed p.

In this work, we discussed Hamiltonians with the time-reversal symmetry in

the presence of spin-orbit coupling, which belong to the class AII of topological in-

sulators classification [28]. The spin-orbit coupling and the time-reversal symmetry

require the term h(p) to have the 2D Dirac-type form, as discussed in Sec. 4.3.2.

However, the Shockley Hamiltonian (4.109) is applicable in a more general case,

where the term h(p) is an arbitrary Hermitian matrix not necessarily respecting

the time-reversal symmetry. So, the Shockley Hamiltonian (4.109) can describe the

quantum Hall states, which belong to the class A of topological insulators classifi-

cation [28]. In addition, the Shockley model can describe superconducting systems,

in which case Eq. (4.109) should be understood as a Bogolyubov-de Gennes Hamil-

tonian [11,82,83,93], and iτyK represents the particle-hole symmetry.

4.8 Conclusions

We explore a tight-binding theory of the surface states in topological insulators.

We show that the surface states can be understood using the simple and well-known

Shockley model [1,3], a 1D model with the A and B atoms per unit cell, connected

via alternating tunneling amplitudes. We generalize the 1D Shockley model to the

3D case described by the 2× 2 Hamiltonian (4.30) with the diagonal element h(p)

and the off-diagonal element t(k,p). The diagonal element h(p) defines the energy

dispersion of the surface states, while the complex-valued off-diagonal element t(k,p)
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defines the domain of existence of the surface states. The surface states exist for

those in-plane momenta p where the phase winding of t(k,p) along k ∈ (0, 2π) is

non-zero. The sign of the winding number gives the sublattice A or B, on which

the surface states are localized. Equation t(k,p) = 0 defines a vortex line in the 3D

momentum space [78, 82, 83], and projection of the vortex line onto the 2D space

of p is the boundary of the domain where the surface states exist. We apply this

approach to the TI model on the diamond lattice [20]. We show how the evolution

of the vortex lines is responsible for transitions between the “weak” and “strong”

TI phases. We discuss why the discrete Shockley model is better than continuous

models for the description of the edge states in real materials, such as Bi2Se3. The

tight-binding model demonstrates that different types of surface states are formed

depending on how crystal is terminated [84]. The surface states have the Dirac cone

at the center of the Brillouin zone when the crystal is cut between the quintuple

layers of Bi2Se3, but, when the crystal is terminated inside the quintuple layer, the

surface states have three Dirac cones on the boundary of the Brillouin zone. We

also generalize the Shockley model to an arbitrary complex function t(k) periodic

in k, which includes the long-range inter-cell tunneling amplitudes. We prove the

validity of the winding number criterion in this general case as well.
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Chapter 5: Thin film of a topological insulator in a parallel magnetic

field

5.1 Introduction.

As discussed in previous Chapter, the three-dimensional (3D) topological insu-

lators have the helically-spin-polarized surface states with the two-dimensional (2D)

Dirac dispersion, which are observed experimentally [85, 94–96]. Experiments show

that the Fermi level is often lifted to the conduction band, thus making the topo-

logical surface states less relevant for the properties of real materials [97]. In part,

this motivated the study of the thin films of TIs, where the Fermi level, bulk gap

and the hybridization between the opposite surface states can be tuned [98–100].

A number of intriguing effects for the TI films were predicted in the case where

the top and bottom surfaces interact [101]. In the ultra-thin limit, a gap opens in

the surface states electronic spectrum due to hybridization between the opposite

surfaces [75,99,102,103].

While most papers study the in-plane transport properties of the surface states,

here we study the tunneling conductance G per unit area across the ultra-thin TI

film in the presence of a parallel magnetic field By (see Fig. 5.1). The in-plane
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magnetic field results in a relative shift of the Dirac cones of the surface states in

momentum space, as discussed in related works on graphene bilayer [104]. However,

unlike the spectrum of graphene, the spectrum of the TI thin film remains gapped

until a critical value of the magnetic field is achieved [105]. Motivated by the

original measurements of G vs By for a GaAs bilayer by Eisenstein et al. [106],

here we calculate the tunneling conductance for a TI film as a function of the

parallel magnetic field. In contrast to other systems, the spin structure of the

electronic spectrum for the surface states of TI results in unusual dependence of the

tunneling conductance on By. In a recent experiment [107], the authors observed a

strong By dependence of the out-of-plane current in a film of Bi2Te3. The predicted

theoretical dependence G vs By is in qualitative agreement with the experimental

curve. In addition, we predict that the spin polarization of the tunneling current is

proportional to the magnetic field. The 100% spin polarization can be achieved for

an experimentally accessible strength of the magnetic field.

5.2 Model.

Let us consider a film of TI, which has two states ψ1 and ψ2 localized at

the opposite surfaces of the film, as shown in red and blue in Fig. 5.1. While the

wave functions are localized in the z direction, electrons are free to move parallel

to the surface, so the in-plane momentum p = (px, py) is a good quantum number.

For clarity of consideration, we model the surface states by the simple Rashba
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Figure 5.1: Thin film of a topological insulator of thickness d in a parallel
magnetic field By. The surface states ψ1 and ψ2 shown in red and blue
overlap and couple when the thickness d is comparable with the decay
length ξ of the surface state.

Hamiltonians

hψ1,ψ2 = ±h(p), (5.1)

h(p) = v ẑ(σ̂ × p) = v(σ̂xpy − σ̂ypx). (5.2)

Different signs ± correspond to the surface states ψ1 and ψ2 and describe the unit

Rashba vectors ±ẑ (see Fig. 5.1 of Chapter 4), which are collinear with the normals

to the corresponding surfaces. The variable v has dimensions of velocity, and σ̂α =

(1̂, σ̂) denotes a full set of the operators acting in the spin space, where 1̂ is a 2× 2

unit matrix and σ̂ = (σ̂x, σ̂y, σ̂z) are the Pauli matrices. Hamiltonian (5.2) has the
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following eigenstates and eigenenergies

| p,±⟩ = 1√
2

 1

±e−i arctan(px/py)

 , E0(p) = ±v|p|, (5.3)

where the spectrum has a well-known form of the 2D Dirac cone. The spinors in

Eq. (5.3) describe the helical spin-momentum locking with the spin polarization

perpendicular to the momentum

S(p) = ⟨p,± | σ̂ | p,±⟩ = ±(p× ẑ)

|p|
, (5.4)

so the helicity (5.4) is opposite for the | p,+⟩ and | p,−⟩ bands. Because of the

minus sign for hψ2 in Eq. (5.1), the bands | p,±⟩ are energetically-inverted, and,

so, the helicities for the opposite surface states ψ1 and ψ2 are opposite for a fixed

energy. The wave functions of the surface states ψ1 and ψ2 decay into the bulk and

have a finite decay length ξ, as illustrated in Fig. 5.1. So, when the thickness of the

film d becomes comparable with the decay length d ∼ ξ, there is a finite coupling

between the surface states t, which we assume to be proportional to the unit matrix

in the spin space. So, the TI film can be modeled by a 4 × 4 Hamiltonian H(p),

which acts on the 4-component wave function Ψ

H(p) =

 h(p) t

t −h(p)

 , Ψ =

 ψ1

ψ2

 . (5.5)
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Figure 5.2: The spectrum (5.7) of Hamiltonian (5.6) for different values
of magnetic shift: (a) q = 0, (b) q = 2t, (c) q = 4t.

This Hamiltonian was also used in Ref. [105] for description of a thin film. Even

though the bulk bands usually contribute to the electronic properties of the real

materials [97], we ignore a possible bulk effect in order to highlight the contribution

of the surface states. Hamiltonian (5.5) has the spectrum E(p) = ±
√
v2p2 + t2,

where the energy gap is determined by the tunneling element t. Experimentally,

gap varies from 0.25 eV for the ultra-thin 2 nm film to 0.05 eV for the 5 nm film of

Bi2Se3 [102].

5.3 Spectrum in a parallel field.

Let us now discuss the spectrum of the TI thin film in a parallel magnetic field

B = Byŷ. In the Landau gauge A = zBy x̂, the Peierls substitution p → p − eA

transforms the Hamiltonian (5.5) into

H(p) =

 h(p− q/2) t

t −h(p+ q/2)

 , q = eByd x̂. (5.6)
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As discussed in Chapters 2 and 3 the in-plane magnetic field leads to a shift of the

in-plane momenta q on the opposite surfaces. The Zeeman term can be included in

the definition of q 1. The spectrum of Hamiltonian (5.6) is [105]

E(p) = ±
{
v2p2y +

[(
t2 + v2p2x

)1/2 ± vq

2

]2}1/2

. (5.7)

The evolution of the spectrum for growing magnetic field q is shown in Fig. 5.2. For

zero magnetic field q = 0, the spectrum is gapped [Fig. 5.2(a)]. For small magnetic

field, the double generate bands split into two bands. For critical magnetic field

q = 2t, the gap closes [Fig. 5.2(b)], and the two Dirac cones are created at positions

p =
√
q2/4− t2 [Fig. 5.2(c)] with growth of the magnetic field. Compare, the

spectrum of a graphene bilayer shown in Fig. 2.2 (Chapter 2) with a spectrum of

TI film shown above. In case of the TI film, finite magnetic field q = 2t is needed

to close the gap, and only then the Dirac cones are created. In contrast, the bare

spectrum of a graphene bilayer is gapless, and therefore the spectrum splits into the

two Dirac cones already for infinitesimal field q. Below, we shall be interested in the

limit t→ 0, where the spectrum is given merely by the two shifted Dirac cones.

E(p) = ±v
∣∣∣p± q

2

∣∣∣ , (5.8)

1In the presence of the Zeeman term, the magnetic shift becomes q = By(ed− 2gµB/v), where
µB is the Bohr magneton, v = 5× 105 m/s, and g ∼ 1 is the g-factor. The Zeeman contribution is
comparable to the orbital contribution only for a small thickness d = 2gµB/ev ∼ 0.2 nm. So, the
Zeeman contribution can be neglected for the films used in experiments, where d > 1 nm.
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Figure 5.3: Electronic spectrum (5.8) of the thin film consists of the
two Dirac cones spin-polarized in the opposite directions as shown with
circulating arrows. The Dirac cones are shifted by qx due to the parallel
magnetic field By. Tunneling between the Dirac cones is dominated by
the electrons with momenta p1 and p2 where the shifted Fermi circles
|p± q/2| = pF intersect.

as shown in Fig. 5.3. A similar shift of the Dirac cones was discussed for a twisted

graphene bilayer [63].

5.4 Tunneling current in a parallel field.

When a small potential difference V is applied between the opposite surfaces

of the film, the out-of-plane tunneling current per unit area

jα = (j0, j) = it
(
ψ†
1σ̂αψ2 − ψ†

2σ̂αψ1

)
(5.9)

111



flows between the opposite surfaces, where ψ1 and ψ2 are the annihilation operators

on the corresponding surface states. Here, we put ~ = 1 for simplicity and reestablish

the correct units in the end of calculation. So, the tunneling current is written

in a convenient four-component form, such that ej0 and ~
2
j are the charge and

spin currents. Using the linear-response theory for w as a perturbation [108], the

tunneling conductances per unit area Gα = limV→0 ⟨jα⟩/V can be expressed through

the spectral functions A1,2(E,p) evaluated at the Fermi energy EF as

Gα =
w2e

2π

∫
d2pTr

[
σ̂αA1

(
EF ,p+

q

2

)
A2

(
EF ,p− q

2

)]
. (5.10)

Here, Gα = (G0,G) has four components, where eG0 and ~
2
G correspond to the

tunneling conductance for charge and spin currents. The spectral functions A1,2 are

given in the momentum space

A1,2

(
EF ,p± q

2

)
= δ

(
v
∣∣∣p∓ q

2

∣∣∣− EF

) ∣∣∣p∓ q

2
,±
⟩⟨

p∓ q

2
,±
∣∣∣ , (5.11)

where the opposite signs correspond to the opposite surfaces ψ1 and ψ2, and the

spinors | p,±⟩ are defined in Eq. (5.3). Using Eqs. (5.10) and (5.11), let us first

calculate the tunneling conductance G0 for the charge current

G0 =
w2e
2πv2

∫
d2p δ

(∣∣p− q
2

∣∣− pF
)
δ
(∣∣p+ q

2

∣∣− pF
)
f(p),

f(p) =
∣∣⟨p− q

2
,+ | p+ q

2
,−⟩

∣∣2 , (5.12)

112



where pF = EF/v is the Fermi momentum. According to Eq. (5.12), the tunneling

current is carried by the electrons that have the in-plane momenta p1 and p2 cor-

responding to the intersection points of the shifted Fermi circles |p± q/2| = pF , as

shown by the thick dots in Fig. 5.3. In addition, there is a contribution f(p) due to

the non-trivial scalar product between the spinors (5.3) corresponding to the Fermi

circles.

As a warm up, let us first consider the case where is no spin-momentum locking,

so f(p) = 1 and Eq. (5.12) gives

G
(1)
0 (q) =

2t2ep2F
π~3v2q

√
4p2F − q2

. (5.13)

The tunneling conductance G
(1)
0 diverges at q = 0 and q = 2pF , as shown by the

dashed line in Fig. 5.4(a). For a small magnetic field q ≪ 2pF , the tunneling

conductance is large because of the large overlap between the two Fermi circles

shown in the left part of Fig. 5.4(b). For an intermediate magnetic field q ∼ pF , the

Fermi circles intersect only at two points p1 and p2, so the tunneling conductance

decreases. For q ∼ 2pF , the two points p1 and p2 come together, so the Fermi

circles overlap at the locally flat regions as shown in the right part of Fig. 5.3(b),

and the tunneling conductance is large again. Once q > 2pF , the two Fermi circles

separate, and the tunneling conductance drops to zero. The experimental curve

of the tunneling conductance for a GaAs bilayer [106] shows behavior similar to

Eq. (5.13), but the divergences at q = 0 and q = 2pF are smeared out due to a finite

scattering time τ .
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Figure 5.4: (a) The tunneling conductances for spin-unpolarized G
(1)
0 ,

Eq. (5.13), and spin-polarized G
(2)
0 , Eq. (5.14), Fermi circles are shown

by the dashed and solid black lines, respectively. The latter curve G
(2)
0

corresponds to the negative magnetoresistance. The red curve is the
spin polarization (5.16) of the tunneling current, and the right vertical
axis shows its value, where 1 corresponds to 100% spin polarization.
(b) Schematic views of the shifted Fermi circles |p ± q/2| = pF for the
corresponding values of q. The tunneling is allowed for the momenta p1

and p2 where the Fermi circles intersect, also shown in Fig. 5.3. The spin
polarizations for these momenta are shown by the blue and red arrows
corresponding to the ψ1 and ψ2 surfaces. The vector sum of the arrows of
the same color defines the net spin polarization of the tunneling current,
which grows with the increase of q as illustrated in the bottom of panel
(b).
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Now, let us consider the form-factor f(p) in Eq. (5.12) arising from the spinor

eigenstates (5.3) of the Rashba Hamiltonian (5.2). As discussed above, the sur-

face states have opposite spin polarizations. In Figs. 5.3 and 5.4, the polarizations

corresponding to the different Fermi circles are shown by the blue and red arrows

intersecting at the angle ϕ, the value of which follows from simple trigonometry:

cosϕ = q/2pF . The form-factor f(p) in Eq. (5.12) takes into account an overlap

between the spinors on the different Fermi circles and is equal to f(p1,2) = cos2 ϕ.

So, the tunneling conductance (5.12) is multiplied by a factor of q2/4p2F relative to

Eq. (5.13)

G
(2)
0 (q) =

t2eq

2π~3v2
√

4p2F − q2
. (5.14)

The tunneling conductance given by Eq. (5.14) is plotted by the solid line in Fig. 5.4(a).

In contrast to G
(1)
0 , the tunneling conductance G

(2)
0 is suppressed as q → 0, because

spin polarizations of the Fermi circles are opposite at the points p1 and p2, as shown

in Fig 5.4(b) on the left. This is a signature of the opposite spin helicity of the Fermi

circles and thus may be used as a way to detect it. For q near 2pF , however, the

spin configurations are almost aligned, as shown in Fig. 5.4(b), so, G
(1)
0 and G

(2)
0

become equal.

The non-trivial spin structure of the Fermi circles not only modifies the tun-

neling current, but also makes it spin-polarized. Let us define spin polarization as

the ratio of the spin current over the charge current

S =
⟨j⟩
⟨j0⟩

=
G

G0

, (5.15)
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where the second equation follows from the definition of the conductance. Using the

property that the eigenstates (5.3) have the well-defined spin orientation (5.4), we

obtain from Eq. (5.10)

S =
S(p1 − q/2) + S(p2 − q/2)

2
= cosϕ ŷ =

ed

2pF
B. (5.16)

So, the spin polarization of the tunneling current is determined by the vector sum of

the spin directions at the momenta p1 and p2. Indeed, in the process of tunneling,

the electrons with the in-plane momenta p1 and p2 move from the “blue” to “red”

Fermi circle, carrying the total spin, which is a vector sum of the spins at the mo-

menta p1 and p2, in agreement with Eq. (5.16). The helical spin configuration (5.4)

is such that the net spin polarization S is parallel and proportional to B, as illus-

trated in Fig. 5.4(b). At q = 0, the spins at the points p1 and p2 are opposite, and

the spin polarization of the tunneling current vanishes. At q = 2pF , the spins at

the points p1 and p2 are collinear and the tunneling current is fully spin-polarized.

Also, notice that the electron tunneling at p1 changes the spin polarization from

the “blue” to “red” arrow, thus creating a torque S(p1 + q/2)− S(p1 − q/2) in x̂

direction. However, the torque is opposite at p2, so the net torque is zero.

5.5 Experimental relevance.

Let us estimate the critical magnetic field By where the Fermi circles almost

detach, i.e., where q = 2pF . We take the realistic value v = 5 × 105 m/s, assume

d = 5 nm (5 quintuple layers of Bi2Se3) and carrier concentration corresponding to
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EF = 30 meV. Using Eq. (5.6) for q, we estimate the critical value of the field as

By = 20 T. This value is experimentally accessible and can be further reduced by

either increasing the thickness d or decreasing the Fermi momentum pF .

An intriguing strong negative magnetoresistance effect was reported for the

Sn-doped films of Bi2Te3 in Ref. [107]. A weak in-plane magnetic field less than

1 T causes a large drop of the out-of-plane resistance Rzz as shown in Fig. 4(c)

of Ref. [107]. Since Rzz ∝ 1/G0, a decrease in resistance Rzz corresponds to an

increase in conductance G0, which qualitatively agrees with plot of G
(2)
0 vs q shown

in Fig. 5.4(a). In addition, the effect of Sn doping was studied in Ref. [107]. The Sn

doping leads to a decrease of carrier concentration and pF , which is corroborated

by an increase of resistance Rzz in the experiment. At the same time, the mag-

nitude of negative magnetoresistance increases dramatically with doping, as shown

in Fig. 4(a,b) of Ref. [107]. This observation is consistent with Eq. (5.14), where

the conductance G
(2)
0 increases when pF decreases (for q < 2pF ). However, our

idealized model may be not fully applicable to the experiment [107], where poly-

crystalline films were studied. Grain boundaries and defects may host topological

states [109,110], which can contribute considerably to the tunneling current.

Equation (5.14) was obtained for an idealized situation where the temperature

T and the inverse scattering time 1/τ are much lower than the Fermi energy EF .

For realistic TI materials, the scattering rate 1/τ is finite due to impurities or other

mechanisms. When 1/τ , T , and fluctuations of chemical potential [111] become

comparable with EF , the predicted effects would be smeared out. However, the

majority of TIs are not strongly-correlated systems, so the effects of interactions
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between electrons should not alter the predicted effects considerably.

While the isotropic Dirac cone approximation is valid for small energies in

Eq. (5.3), it is not exact for higher energies, where energy spectrum has hexagonal

warping anisotropy, and spin polarization has an out-of-plane component. In this

case, the analytic formula (5.14) is not applicable, but can be easily generalized. The

appropriate spectrum E(p) and spinors | p,±⟩ should be substituted into Eq. (5.11),

and the tunneling conductance obtained from Eq. (5.10). In general, the tunneling

conductance may depend on the in-plane orientation of the magnetic field B due

to anisotropy of the surface state dispersion. This effect can be utilized to obtain

information about hexagonal warping experimentally.

5.6 Conclusions.

We have theoretically studied tunneling conductance between the opposite sur-

face states in a thin film of TI when a parallel magnetic field is applied. The helical

spin polarization and the overlap between the Fermi circles result in the unusual

spin polarization of the tunneling current. Our theoretical results are qualitatively

consistent with the experiment [107]. However, further experimental verifications

are needed. First, magnetoresistance in Ref. [107] was measured for a relatively

weak magnetic field B < 1 T. We predict non-monotonous behavior of magne-

toresistance for a large magnetic field: the conductance (resistance) could sharply

decrease (increase) when the magnetic field exceed the condition B > 2pF/ed. Sec-

ond, a measurement of the spin polarization of the tunneling current is desirable.
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This effect may be important for spintronic applications and may pave the way to

observation of spin-polarized currents in TIs.
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Chapter 6: Chiral structure in the pseudogap phase of cuprates

6.1 Introduction.

The nature of the pseudogap phase in underdoped cuprate superconductors

has been a long-standing problem [112]. A series of optical measurements [113–116]

revealed gyrotropy in this state. It was observed that the polarizations of incident

and reflected light differ by a small angle θK , called the polar Kerr angle. Initially,

these experiments were interpreted as the evidence for spontaneous time-reversal

symmetry breaking. Theoretical models [117–120] derived optical gyrotropy from

the anomalous Hall effect. In these scenarios, the order parameter is equivalent to

an intrinsic magnetic field perpendicular to the layers, which permeates the system

and points inward and outward at the opposite surfaces of a crystal. Therefore, the

Kerr angle should have opposite signs at the opposite surfaces of the crystal.

However, recent reports [121, 122] found that the Kerr angle has the same

sign at the opposite surfaces of a sample. Therefore, the observed gyrotropy is

not consistent with the time-reversal-symmetry breaking due to a magnetic order

and should be interpreted as the evidence for natural optical activity due to chiral

symmetry breaking [123]. Systems with helical structures, such as cholesteric liquid

crystals and some organic molecules, typically exhibit optical gyrotropy and the
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Figure 6.1: (a) Loop-current order in a CuO2 plane. Black arrows show
directions of microscopic persistent currents between copper and oxygen
atoms. Green arrow shows the anapole moment N . (b) Chiral order
constructed on a series of parallel CuO2 planes. The vector N rotates by
the angle π/2 from one layer to another, and the period of the structure
is fourfold. The blue and red curves are the two magnetic field lines that
intertwine in a double helix.

polar Kerr effect. It is important that the sign of the Kerr angle in this case is the

same at the opposite surfaces of the system, in contrast to the gyrotropy produced

by a magnetic order (see Chaps. 11 and 12 in Ref. [123]).

Theoretical scenarios for appearance of chiral order in cuprates were pro-

posed in Refs. [122, 124]. Three possible orders were studied phenomenologically

in Ref. [122]: 3-plane rotation of distorted Fermi circles, 4-plane rotation of a struc-

ture with an in-plane ferroelectric moment, and 4-plane rotation of an in-plane

density wave with period 3. A formula for gyrotropy of a chiral metal was de-

rived in Ref. [124] in terms of the Berry curvature in momentum space. However,

Ref. [125] questioned applicability of the implied assumption of coherent electron
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motion between the layers in Ref. [124]. X-ray circular dichroism due to chiral order

was discussed in Ref. [126].

6.2 Helical order of the anapole moments.

Here, we propose a novel chiral state, which could account for the polar Kerr

effect in cuprates without requiring coherent electron motion between the layers.

The starting point for our construction is the model of persistent loop currents

by Simon and Varma [127] shown in Fig. 6.1(a). The configuration of persistent

currents is such that the total magnetic flux through the lattice unit cell vanishes.

The anomalous Hall effect is zero [128], and this state does not exhibit magnetic

gyrotropy. The loop-current order [129] is characterized by the anapole moment

N [130,131], shown by the green arrow in Fig. 6.1(a) and defined as

N =

∫
d2r [m(r)× r] =

1

2c

∫
d2r r2j(r). (6.1)

Here m(r) and j(r) are the microscopic densities of the magnetic moment and

electric current, and the integral is taken over the unit cell. The square symmetry

of the lattice allows four possible orientations [132] for the vector N , which can be

obtained by progressive π/2 rotations of the configuration shown in Fig. 6.1(a).

We propose a novel chiral state where the anapole moments N (n) in consecu-

tive CuO2 layers labeled by the integer number n are rotated by π/2, so that they

trace out a helix, as shown in Fig. 6.1(b). This arrangement is somewhat similar to
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cholesteric liquid crystals 1. This spiral structure breaks three-dimensional inversion

symmetry and can be qualitatively visualized as follows. The in-plane triangular

loop currents in Fig. 6.1(a) produce perpendicular magnetic fields of the opposite

signs shown by the circled red dot and blue cross at the centers of the loops. When

the anapole moments N (n) are arranged in the spiral structure in Fig. 6.1(b), the

red and blue magnetic field lines, propagating from one layer to another, form a

double helix due to twisting of N (n).

The chiral structure is characterized by a pseudoscalar order parameter Ξ

changing sign upon inversion

Ξ =
⟨
ẑ · [N (n) ×N (n+1)]

⟩
, (6.2)

where ẑ is the unit vector along the z axis. If the anapole vector N (n) is static,

Eq. (6.2) does not need the brackets for averaging. However, if the vector N (n)

fluctuates, the brackets in Eq. (6.2) represent thermodynamic and, possibly, quan-

tum [133] averaging. The chiral order parameter Ξ is a local correlation function

of the orientations of N (n) in the neighboring layers and does not require long-

range order in N (n). Spontaneous chiral symmetry breaking is known for other

systems [134,135]. The configuration with π/2 rotations in Fig. 6.1(b) maximizes Ξ

for a given absolute value of N . Notice that Eq. (6.2) is similar to the Dzyaloshinskii-

1However, the director in cholesterics does not have an arrow, whereas the vector N does.
For a director without an arrow, the structure in Fig. 6.1(b) would have two layers in the unit
cell and would not be chiral. Since the anapole moment N does have an arrow, the structure
in Fig. 6.1(b) has four layers in the unit cell and is chiral, because it breaks three-dimensional
inversion symmetry.
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Moriya interaction for spins and to the Lifshitz invariant N · [∇×N ] with ∇ = ẑ∂z

in the continuous limit.

6.3 Electrodynamics of gyrotropic media

In electrodynamics of media [123], natural optical activity arises when inver-

sion symmetry is broken and the expansion of the dielectric tensor εµν(ω,k) in

powers of the wave vector k has a nonvanishing first-order term

εµν(ω,k) = εµν(ω, 0) + iγ(ω)ϵµνzkz. (6.3)

Here ϵµνλ is the antisymmetric tensor, and kz is the wave vector of an electromagnetic

wave propagating along the z axis. The second term in Eq. (6.3) represents a

nonlocal effect along the z axis and is responsible for gyrotropic properties of the

medium. The polar Kerr angle θK is determined by the following formula [136] to

the first order in the coefficient γ in Eq. (6.3)

tan θK(ω) =
ω

c
Im

[
γ(ω)

1− ε(ω)

]
. (6.4)

It is clear that nonzero Kerr angle requires an imaginary part, i.e., dissipation, either

in ε(ω) or γ(ω). Below, we derive the second term in Eq. (6.3) for the spiral structure

in Fig. 6.1(b).
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6.4 Magnetoelectric effect in a single CuO2 plane.

First let us consider a single CuO2 plane with loop currents in Fig. 6.1(a). In-

tegration of the electron field, schematically shown in the left diagram in Fig. 6.2(a),

gives an effective action for the electromagnetic field with a magnetoelectric term

[123,137]. By symmetry, it has the form [129]

SME =

∫
dω d2r β(ω)Bz(−ω) [N ×E(ω)]z. (6.5)

Here E = (Ex, Ey) is the in-plane electric field, Bz is the out-of-plane magnetic

field, and N = (Nx, Ny) is the in-plane anapole moment. Given Eq. (6.1), the

anapole moment N is the time-reversal-odd and parity-odd vector, so Eq. (6.5) has

the correct symmetry structure. It is represented graphically by the right diagram

in Fig. 6.2(a). Equation (6.5) is written in the frequency representation for the

electromagnetic fields, whereas N is taken to be static, i.e. having zero frequency,

and β(ω) is a frequency-dependent coefficient. The effective action in Eq. (6.5) is

written in the continuous, long-wavelength limit by averaging the electromagnetic

fields over distances longer than the unit cell of the lattice.

By taking a variation of Eq. (6.5), we find that an in-plane electric field induces

an out-of-plane magnetization

Mz(ω) =
δSME

δBz(−ω)
= β(ω) [N ×E(ω)]z. (6.6)
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Figure 6.2: (a) Left: Feynman diagram for the effective action of elec-
tromagnetic fields (wavy lines), obtained by integrating out the electron
field (solid lines with arrows). Right: The magnetoelectric term in the
effective action, Eq. (6.5), where the double line represents the anapole
moment N . (b) Coupling between the magnetoelectric terms at the
neighboring layers produces the effective action for the electric field in
Eq. (6.9). The dashed wavy line represents the magnetic field propaga-
tor, and the double solid line represents the interlayer correlator of the
anapole moments in Eq. (6.2).

Physical interpretation is clear by symmetry in Fig. 6.1(a). An in-plane electric

field E ⊥ N promotes electron transfer from one triangular loop to another, thus

breaking symmetry and making one loop current stronger, which results in the net

perpendicular magnetization.

Similarly, an out-of-plane magnetic field induces an in-plane electric polariza-

tion

P (ω) =
δSME

δE(−ω)
= β(ω) [N ×Bz(ω)]. (6.7)

The perpendicular magnetic field Bz lowers the energy for one loop current and

increases for another in Fig. 6.1(a), which results in electron transfer between the

loops and the in-plane electric polarization P ⊥ N .
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6.5 Interlayer coupling and the gyrotropic term.

Now let us consider many parallel layers labeled by the integer number n. In

this case, we expect a magnetic coupling between magnetizations at the neighboring

layers

SMM = −
∫
dω d2r

∑
n

ΛM (n)
z (ω)M (n+1)

z (−ω). (6.8)

This term should be derived microscopically from the distribution of electric currents

inside the unit cell comparable to the interlayer distance d. Here we simply write

Eq. (6.8) by symmetry for the long-wavelength fields Mz with a phenomenological

coefficient Λ. We assume that the interlayer coupling between magnetizations is

instantaneous; i.e., Λ is frequency independent. This assumption is valid when the

interlayer distance d is much smaller than the wavelength of light: d≪ λ = 2π/kz.

Substituting Eq. (6.6) into Eq. (6.8), we obtain an effective action for the

electric fields in the multilayer system

SEE =−
∫
dω d2r |β(ω)|2

∑
n

Λ[N (n)×E(n)(ω)]z [N
(n+1)×E(n+1)(−ω)]z, (6.9)

where we used the standard relation β(−ω) = β∗(ω) for a linear response func-

tion. Figure 6.2(b) illustrates this calculation diagrammatically. By coupling the

magnetoelectric vertices shown in Fig. 6.2(a) and integrating out the magnetic field

propagator shown by the dashed wavy line, we obtain the effective action for the

electric field in Eq. (6.9). The double solid line represents the interlayer correlator

of the anapole moments in Eq. (6.2).
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Let us choose the x and y axes along the crystallographic direction a+ b and

b− a in Fig. 6.1, so that the vectors N (n) = −N (n+2) are along x for odd n and y

for even n. Expanding the vector products in Eq. (6.9), we find two terms in the

sum, for odd and even n. Changing the variable n → n − 1 in the latter sum, we

find

SEE =

∫
dω d2r |β(ω)|2

∑
n odd

ΛN (n)
x N (n+1)

y E(n)
y (ω) [E(n+1)

x (−ω)− E(n−1)
x (−ω)].

(6.10)

Using Eq. (6.2), taking the continuous limit z = nd, where E
(n+1)
x − E

(n−1)
x =

2d (∂Ex/∂z) and 2d
∑

n odd =
∫
dz, and integrating by parts in z, we get

SEE = −ΞΛ

2

∫
dω d3r |β(ω)|2 ẑ ·

[
E(ω)× ∂E(−ω)

∂z

]
, (6.11)

or, equivalently,

SEE =
ΞΛ

2

∫
dω d3r |β(ω)|2 E(ω) · [∇z ×E(−ω)]. (6.12)

Comparing Eq. (6.11) with the standard expression

S =
1

8π

∫
dω d3k εµν(ω,k)Eµ(ω,k)Eν(−ω,−k), (6.13)
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we obtain the coefficient γ in the second term in Eq. (6.3)

γ(ω) = 4πΞΛ|β(ω)|2. (6.14)

Equation (6.14) shows that the gyrotropic coefficient γ(ω) is determined by the chiral

order parameter Ξ, the interlayer magnetic coupling Λ, and the magnetoelectric

coefficient β(ω). The sign of γ depends on the sign of Ξ.

The above derivation was presented for equally spaced CuO2 layers. However,

many cuprates have the bilayer structure, where the interlayer distances alternate

between d ∓ ∆d. In this case, the interlayer coupling coefficient in Eq. (6.8) is

Λ(n) = Λ ± ζ for even and odd n. As a result, we find an additional term, which

is similar to Eq. (6.10), but with Λ → −ζ and E
(n+1)
x −E(n−1)

x → E
(n+1)
x +E

(n−1)
x =

2Ex. This term contributes an off-diagonal symmetric term to the dielectric tensor

εxy = εyx = −4πΞζ|β(ω)|2/d, which becomes diagonal in the crystallographic basis

of a and b

εaa = −εbb = 4πΞζ|β(ω)|2/d. (6.15)

Thus, we find that the helical structure in the presence of bilayers produces nematic-

ity, i.e. anisotropy between the crystallographic directions a and b. This is clear

by symmetry in Fig. 6.1(b), where the pairs of layers (n, n + 1) have the preferred

direction N (n) +N (n+1) along a. Equations (6.14) and (6.15) generate circular and

linear dichroism. If Λ ∼ ζ, the linear dichroism is much stronger than the circular

one because d≪ λ = 2π/kz.
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Figure 6.3: Schematic illustration of the rotation of electric polarization
for the chiral state shown in Fig. 6.1(b). The electric field E(n) at the
bottom layer induces the magnetization M (n), which couples to the top
layer and induces the electric polarization P (n+1) ⊥ E(n) because of the
twist in the anapole moments N (n) ⊥ N (n+1).

Figure 6.3 illustrates these results graphically. The electric field component

E(n) ⊥ N (n) generates a magnetization M
(n)
z at the bottom layer via the magneto-

electric effect in Eq. (6.6). The magnetizationM
(n)
z produces a magnetic field B

(n+1)
z

in the same direction at the top layer via Eq. (6.8). This magnetic field induces an

electric polarization P (n+1) ⊥ N (n+1) at the top layer via the magnetoelectric ef-

fect in Eq. (6.7). Taking into account the third layer n + 2 (not shown), we find

that P (n+1) ∝ ẑ × [c2E
(n+2) − c1E

(n)] with some coefficients c1 and c2. For equally

spaced layers with c1 = c2, we get Eq. (6.11). For bilayers with c1 ̸= c2, we get the

additional nematic term in Eq. (6.15).
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6.6 Experimental relevance.

Let us discuss possible experimental evidence for the proposed chiral order in

cuprates. Neutron scattering measurements [138–140] provide support for the loop

currents shown in Fig. 6.1(a). However, the NMR experiments [141] find no evidence

for the local magnetic fields predicted by this model. So, the experimental situation

remains controversial. A survey of experimental evidence supporting loop currents

is presented in Ref. [142].

Although the loop-current order in Fig. 6.1(a) breaks rotational symmetry

in the plane as specified by the vector N , the neutron scattering measurements

[138–140] always observe the full rotational symmetry. This may be due to domains

with different N , but the spiral order shown in Fig. 6.1(b) also provides a natural

explanation. While the system has the tendency to break rotational symmetry in

each CuO2 layer, we argue that it tries to restore macroscopic symmetry by orienting

the vectors N orthogonally in the neighboring layers, which is consistent with the

spiral structure.

Moreover, Refs. [138, 139] concluded that the microscopic magnetic moments

are not perpendicular to the layers, as expected from the loop currents in Fig. 6.1(a),

but have an in-plane component. This effect can be explained by the spiral order

in Fig. 6.1(b) [143]. Since the magnetic field lines are twisted in a double-helix

structure, they are naturally tilted with an in-plane component. In the presence of

N , the energy of the system contains the term N · [∇ ×B] = B · [∇ ×N ] [131].

Since it is linear in B, whereas magnetic energy goes as B2, the system develops
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an equilibrium in-plane magnetic field B ∝ [∇ ×N ] parallel to N in Fig. 6.1(b),

in qualitative agreement with Refs. [138,139]. Moreover, the total energy decreases

as −|∇×N |2, which favors the spiral structure.

Finally, the recent x-ray measurements [144–146] found doubling of the unit

cell in YBa2Cu3O7−x in the z direction 2. Given the bilayer structure of YBa2Cu3O7−x,

the new unit cell contains four CuO2 layers. The fourfold period is consistent with

the spiral order shown in Fig. 6.1(b).

For bilayer materials, the spiral structure in Fig. 6.1(b) naturally produces

nematicity, where the oxygen atoms to the left and right of the copper atom in

Fig. 6.1(a) are not equivalent to the oxygen atoms above and below. This nematic

symmetry is in qualitative agreement with the pattern observed in the scanning tun-

neling measurements [147], although the same pattern was observed experimentally

in bilayer and single-layer cuprates.

6.7 Conclusion.

We propose a fourfold chiral state for cuprates obtained by twisting Varma’s

loop-current order by π/2 in consecutive CuO2 layers. We show that this state

exhibits natural optical activity and derive the gyrotropic coefficient. For bilayer

compounds, we also find nematicity and linear dichroism. Our model is based on

magnetic coupling between the CuO2 layers and does not require coherent electron

tunneling between the layers and long-range order in the chiral structure. Other

2Experiments [144–146] also found the biaxial in-plane wave vectors (qx, 0) and (0, qy) for the
structure. Here we study the conceptually simplest case where the order parameter is uniform in
the plane with qx = qy = 0. Generalization to nonzero qx and qy requires a separate study.
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models for the polar Kerr effect in cuprates invoked magnetoelectric effects [148]

and coupling between loop currents with different N [128], but considered only a

single layer, rather than the spiral multilayer structure.
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Chapter A: Appendix

A.1 Edge states in the original Shockley model

In Sec. 4.2, the Schrödinger equation for the wave function Ψ(z) was given in

a recursive form for the integer coordinate z ≥ 1. The main question is whether

the recursion generates a decaying function Ψ(z) → 0 as z → ∞, which represents

an edge state, or an increasing function Ψ(z) → ∞ as z → ∞, which is unphysical.

Below, we use the generating function method to find convergence criterion for

the edge-state solution Ψ(z). The Schrödinger equation for the original Shockley

model (4.1) is

VΨ(z) + (U − E)Ψ(z + 1) + V †Ψ(z + 2) = 0, (A.1)

V =

 0 t2

0 0

 , U =

 0 t1

t1 0

 , (A.2)

where Ψ(z) = [ψa(z), ψb(z)]
T and z ≥ 1, whereas the boundary condition is

(U − E)Ψ(1) + V †Ψ(2) = 0. (A.3)
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Let us multiply the z-th Eq. (A.1) by the (z − 1)-th power of an auxiliary complex

variable q and take a sum for z ≥ 1

∞∑
z=1

qz−1
[
VΨ(z) + (U − E)Ψ(z + 1) + V †Ψ(z + 2)

]
= 0. (A.4)

Introducing the generating function

G(q) =
∞∑
z=1

qz−1Ψ(z), (A.5)

Eq. (A.4) can be written as

[q2V + q(U − E) + V †]G(q) = V †Ψ(1), (A.6)

where we utilized the boundary condition (A.3). From Eq. (A.6), we obtain the

generating function in terms of Ψ(1)

G(q) = [q2V + q(U − E) + V †]−1 V † Ψ(1), (A.7)

In order to investigate convergence of Ψ(z), we use the following proposition

Proposition 1. A rational generating function G(q) corresponds to an edge

state, i.e. Ψ(z) → 0 as z → ∞, if and only if all poles qj=1,2,3,... of G(q) have the

absolute values greater than one, |qj| > 1.

Indeed, a rational function with the poles qj can be transformed to the form

G(q) =
∑

j
fj(q)

(q−qj)nj , where fj(q) is a polynomial function, and nj is the order of
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the pole qj. Consider a simple example of the first-order pole G(q) = q1
q1−q =∑

z(q/q1)
z, which corresponds to the geometric progression. According to Eq. (A.5),

the expansion coefficients give the wave function Ψ(z) = 1/qz−1
1 . Then, the absolute

values of the pole |q1| < 1, |q1| = 1, and |q1| > 1 correspond, respectively, to an

un-physical growing solution Ψ(z) → ∞ at z → ∞, a bulk state Ψ(z) = eikz, and a

decaying edge state Ψ(z) → 0 as z → ∞. The case of a more complicated G(q) can

be reduced to the above simple consideration.

Now let us use Proposition 1 to investigate convergence of Ψ(z). Using Eq. (A.7)

and the expressions for U and V in Eq. (A.2), we find

G(q) =
ψa(1) t2

(t1 + t2q)(t2 + t1q)− E2q

 t1 + t2q

Eq

 . (A.8)

The poles of Eq. (A.8) are given by the zeros q1 and q2 of the denominator, unless

they are canceled out by zeros in the numerator. Using Vieta’s formulas for the

quadratic equation in the denominator, we obtain q1q2 = 1. So, if q1 is greater than

one, |q1| > 1, then q2 is less than one, |q2| < 1. Using Proposition 1, we conclude

that there is no edge state if the generating function G(q) in Eq. (A.8) has two

poles. In order to obtain an edge state, we need to reduce the number of poles of

the generating function G(q). Notice that, if we put E = 0, one pole is canceled

out, and G(q) greatly simplifies

G(q) =
1

1 + (t1/t2)q

 1

0

 , (A.9)
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and the edge state exists if

|t2/t1| > 1. (A.10)

A.2 Energy of the edge states in the generalized Shockley model

In this section, we use the generating function method to prove that an edge

eigenstate for Hamiltonian (4.27) can exist only for the eigenenergy E = 0. Like in

the previous section, Hamiltonian (4.27) can be given in a recursive form Eq. (A.1)

with the following U and V

V =

 0 t∗2

t3 0

 , U =

 0 t∗1

t1 0

 . (A.11)

Using Eq. (A.7) we obtain the generating function

G(q) =
N(q)

D(q)
, (A.12)

where the numerator

N(q) =

 Eq β(q)

α(q) Eq


 ψ1

ψ2

 (A.13)

and denominator

D(q) = α(q) β(q)− E2q2 (A.14)
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are defined through the polynomials

α(q) = t3q
2 + t1q + t2, (A.15)

β(q) = t∗2q
2 + t∗1q + t∗3. (A.16)

In Eq. (A.13), the following notation is used for brevity

 ψ1

ψ2

 = V †

 ψa(1)

ψb(1)

 . (A.17)

According to Proposition 1, the poles of Eq. (A.12) determine whether G(q) cor-

responds to an edge state. The potential poles of G(q) are given by zeros of the

quartic polynomial D(q) in the denominator. Thus, let us find the structure of zeros

of D(q). Suppose, q1 is a solution of the quartic equation D(q1) = 0. Then, since

[D(1/q∗)]∗ = D(q)/q2, 1/q∗1 is also a solution of the quartic equation D(1/q∗1) = 0.

So, in the most general case, the polynomial D(q) has zeros q1 and q2, as well as

1/q∗1 and 1/q∗2. Thus, according to Proposition 1, the only way to build an edge

state is to have the smallest poles |q1| < 1 and |q2| < 1 canceled out by the zeros of

the numerator N(q). So, both components of the vector

N(q) =

 t∗2ψ2q
2 + [t∗1ψ2 + Eψ1]q + t∗3ψ2

t3ψ1q
2 + [t1ψ1 + Eψ2]q + t2ψ1

 (A.18)
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must be proportional to (q − q1)(q − q2) and, thus, be linearly dependent. Hence,

the coefficients in front of the terms q2 and q0 should also be linearly dependent and

so

ψ1ψ2(|t2|2 − |t3|2) = 0. (A.19)

If |t2| ̸= |t3|, then ψ1ψ2 = 0, so the substitution of ψ1 = 0 and ψ2 ̸= 0 (or vice

versa) in Eq. (A.18) and the requirement, that both components of N(q) are pro-

portional, lead to E = 0. The case |t2| = |t3| is trivial, because Vieta’s formulas

for Eq. (A.18) require that |q1q2| = |t2/t3| = 1, which contradicts to the initial as-

sumption that |q1| < 1 and |q2| < 1. Thus, we have proved that the edge states of

Hamiltonian (4.27) can only exist for E = 0, and there are no other edge states.

A.3 Tight-binding model of Varma’s loop-current order

Below, we show that the energy spectrum of Varma’s loop-current order has

Dirac cones due to a special toroidal symmetry of the problem. We use the three-

band Emery Hamiltonian for the CuO2 lattice tight-binding model shown in Fig. A.1(a)

HE(p) =


Ec −2it sin px

2
2it sin py

2

c.c. 0 −4t1 sin
px−χ

2
sin py−χ

2

c.c. c.c. 0

 . (A.20)

The Hamiltonian is given in the momentum space and acts on a spinor wave-function

Ψ = [ψc ψx ψy]
T with components corresponding to Cu, Ox and Oy orbitals. The

Copper and Oxygen orbitals are separated by the charge-transfer gap Ec = 3 eV in
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Figure A.1: Tight-binding model of the loop-current order in a CuO2 plane. The
phase χ describes the alternating magnetic fluxes triangles.

energy. The tunneling amplitudes t = 1 eV and t1 = 0.5 eV describe the Copper-

Oxygen and Oxygen-Oxygen hopping. The sign of t1 amplitudes is chosen to satisfy

the overlap of the Oxygen p orbitals and Copper d orbitals as shown in Ref. [149].

In order to obtain an effective two-band Hamiltonian we write the eigenstate

equation for the Hamiltonian (A.20) as

Ecψc + Tψ = λψc, (A.21)

T †ψc + hxyψ = λψ. (A.22)
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Here, we introduce the matrices

hxy =

 0 −4t1 sin
px−χ

2
sin py−χ

2

c.c. 0

 , (A.23)

T =

[
−2it sin px

2
2it sin py

2

]
, (A.24)

to explicitly separate the wave-functions on Copper ψc and Oxygen orbitals

ψ =

 ψx

ψy

 . (A.25)

From Eq. (A.21), we solve for

ψc = − 1

Ec − λ
Tψ, (A.26)

and substitute ψc in Eq. (A.22)

(
hxy −

1

Ec − λ
T †T

)
ψ = λψ. (A.27)

For Ec ≫ λ ∼ t, it is valid to neglect λ in the denominator in Eq. (A.27), and we

obtain an effective two-band Hamiltonian

H = hxy −
1

Ec
T †T. (A.28)
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So, using definitions (A.23) and (A.24) we write Eq. (A.28) as

H = h0(p)I + h(p) · σ, (A.29)

where (I, σx, σy, σz) are the identity and Pauli matrices acting in the space of Oxygen

orbitals (A.25). The coefficients h are

h0 = −2t2

(
sin2 px

2
+ sin2 py

2

)
, (A.30)

hx = 4

(
t2 sin

px
2
sin

py
2

− t1 sin
px − χ

2
sin

py − χ

2

)
, (A.31)

hy = 0, (A.32)

hz = −2t2

(
sin2 px

2
− sin2 py

2

)
, (A.33)

and t2 = t2/Ec = 0.33 eV.

Let us discuss the implications of the toroidal symmetry T P . The time-

reversal operation transforms the Hamiltonian (A.29) as

T H(p) = H∗(−p), (A.34)

whereas the inversion operation transforms the Hamiltonian as

P H(p) = H(−p), (A.35)

Since, the loop-current order has the combined T P symmetry, the Hamiltonian
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should be invariant under the operation of both symmetries

H(p) = T P H(p) = H∗(p). (A.36)

We apply condition (A.36) to Hamiltonian (A.29). Since, the Pauli matrix σy

changes sign under the complex conjugation, the condition (A.36) constrains

hy(p) = 0 (A.37)

in agreement with Eq. (A.32). As discussed in , hy component of vector h vanishes,

i.e. hy(p) = 0. The electronic energy spectrum of Hamiltonian (A.29) has two bands

ε±(p) = h0(p)± |h(p)| = (A.38)

= h0(p)±
√
h2x(p) + h2z(p).

Notice that, the equation h(p) = [hx(p), 0, hy(p)] = 0 generally has non-trivial

solutions in two-dimensions p = (px, py), since the number of equations matches the

numbers of variables. Therefore, we expect to find acidental degeneracies ε−(p) =

ε+(p) in the energy spectrum (A.38), where h(p) = 0. We plot spectrum (A.38) for

various values of χ in Fig. A.2. Indeed, we observe that the degeneracies consistently

occur as we change parameter χ from 0 to π. For χ = 0, the two bands touch

parabolically in the center of the Brillouin zone, as shown in Fig. A.38(a). With a

slight increase of the parameter to χ = π/3, we observe the appearance of the four
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Figure A.2: Electronic spectrum (A.38) of Hamiltonian (A.29) for various values of
parameter χ: (a) χ = 0, (b) χ = π/3, (c) χ = π/2, (d) χ = π. The energy axis ε is
given in eV, whereas the momenta run across the Brillouin zone, i.e. |px| < π and
|py| < π.
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degeneracies. As shown in Fig. A.2(b), the degeneracies have a shape of deformed

and tilted Dirac cones. For χ = π/2, the energy spectrum contains two Dirac cones

offset in energy and momentum, as shown in Fig. A.2(c). For χ = π, the Dirac

cones have the same energy as shown in Fig. A.2(d).
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