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Collaborative engineering has expanded the scope of traditional engineering design to
include the identification and elimination of problems in the manufacturing process. Manu-
facturing features and feature-based representations have become an integral part of research
on manufacturing systems, due to their ability to model the correspondence between design
information and manufacturing activities. One necessary component of an integrated Com-
puter Aided Design/Computer Aided Manufacturing (CAD/CAM) environment is a tool to
automatically recognize manufacturing features from a CAD or solid model.

In this thesis we present a methodology for recognizing a class of machining features and
for addressing the computational issues involved in building tractable and scalable solutions
for automated feature recognition. This approach is described for a class of volumetric fea-
tures based on material removal volumes produced by operations on 3-axis vertical machining
centers.

A computational framework is developed for representing different types of common ma-
chining features and specifying the recognition problem. Based on this framework, novel
serial and multi-processor recognition algorithms are described and analyzed with respect
to their completeness and complexity. The goal of this dissertation is to advance the under-
standing of the basic computational issues that arise in feature recognition from solid models
of mechanical artifacts and to facilitate development of effective and efficient systems that
can scale to address industrial problems.
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Chapter 1

Introduction

1.1 Background and Motivation

In the modern marketplace, computing is essential in all aspects of manufacturing activity.
Computers have brought to life to terms like collaborative engineering and agile manu-
facturing, and have played a critical role in the re-invention of manufacturing in the United
States [23]. In a continuing quest to decrease the time interval between the conceptualization
of a product and first production, information technology has been fused with manufacturing
practice: from design (graphics, visualization), to analysis (numerical methods, simulation),
to synthesis (robotics, manufacturing planning).

It has become increasingly clear that manufacturing is an information intensive under-
taking. The new world of highly Inter-networked collaborative engineering overflows with
information—information of which until very recently human beings had been the sole cus-
todians. This is changing as low-cost computational power and increasingly sophisticated
software technologies are enabling development of intelligent systems for design and man-
ufacturing [23, 205]. Computers are essential tools for modern engineers, enhancing human
abilities to bring better and more cost-effective products to market quickly and efficiently.

Automation of design and manufacturing activities poses many difficult computational
problems. As manufacturing activities are computerized, more fundamental computational
issues emerge. Critical among them is how to enable computers to effectively and intelligently
understand and reason about engineering information.

Engineering information is a broad category containing all varieties of data that are rele-
vant to the product realization process. Information can pertain to manufacturing resources,
production schedules, or business constraints. This thesis is concerned with understanding of
computer-aided design (CAD) information. A CAD system is the modern designer’s drafting
table, allowing her or him to develop engineering drawings and diagrams defining artifacts
that fulfill the designer’s functional intentions. Individual artifacts can then be placed into
assemblies; some assemblies have mechanical properties—many of which can be represented
by annotating the computerized representation of the design and placing constraints on its
configurations. While CAD has become a ubiquitous tool among designers, integration of
CAD with manufacturing activity has remained difficult.



| CAD System ]

Feature Recognition

Figure 1.1: Feature recognition is the interface between CAD and downstream applications.

Integration of CAD with Manufacturing Applications. The vast majority of CAD
activity involves the specification of the geometry and topology of artifacts. While CAD
provides an excellent means of generating precise drawing and solid models of artifacts,
much of the information crucial to the manufacturing process is not geometric. In integrating
CAD with manufacturing applications, one major problem is how to automatically interpret
low-level CAD information in a manner that is useful for automated manufacturing.

The commercial CAD/CAM marketplace is still very much in its infancy, with many
vendors fulfilling limited niches, each with their own particular suite of integrated software
modules and data structures. A de facto CAD/CAM integration scheme has yet to emerge.

Manufacturing features and feature-based representations have become a basic part of
research in manufacturing systems integration. In the most general sense, features are
higher level entities that model the correspondence between design information and manu-
facturing activities. For example, while basic CAD data consists of geometric and topological
information, features can be used to represent how an artifact might be manufactured or
assembled.

For the past decade, considerable research effort has studied the use of features as a way
of abstracting higher level manufacturing data from lower level (geometric) CAD data. What
has become evident is that a necessary component of any integrated Computer Aided De-
sign/Computer Aided Manufacturing (CAD/CAM) environment is a tool for automatically
recognizing manufacturing features directly from a CAD or solid model.

Feature recognition provides a communication medium between CAD and manufac-
turing applications, as illustrated in Figure 1.1. Feature recognition is a basic component
of tools for design analysis and feedback, as well as for systems that automatically generate
process plans and drive manufacturing processes. In all of these cases, recognizing features
from a design is the means of providing a level of design understanding to manufacturing
software systems.



1.2 Thesis Scope and Problem Statement

At a fundamental computational level, feature recognition is the problem of how a machine
can be programmed to interpret the real world. In order to develop sound solutions to the
problem one must, in a manner similar to problems in computer vision, artificial intelligence,
and algorithms, develop a means to specify the problem, define algorithms for solving it, and
measure its computational difficulty. The existing work has made significant advances in
the development of various algorithms and approaches; however, little consensus has been
reached after nearly two decades of effort.

In this thesis we develop a general approach for recognizing machining features from solid
models of mechanical parts and for addressing some of the computational issues involved in
building tractable and scalable solutions for automated feature recognition. The goal of
this thesis is to further the development of systematic methodologies for the recognition of
features from solid models of mechanical designs.

This thesis represents a step toward addressing these issues and making them more
broadly applicable across many domains in which feature recognition is a critical technology.

1.2.1 Research Issues and Approach

This research is an effort toward enhancing the understanding of the computational issues in
feature recognition. In this effort, we have had to address a number of basic research issues.
The following subsections introduce these research issues and briefly outline how they are
addressed by the work in the thesis.

1.2.1.1 Which Features to Recognize?

What general properties can be used to define a class of features that are useful for down-
stream planning and analysis? Often in existing systems, the approach pre-determines the
types of features that will be within the scope of a system. Even within a fixed manufactur-
ing domain, the notion of “which features to recognize” is application and implementation
independent. If a better a priori definition for the features of interest can be put forward,
the research and development community can then focus on developing new and improved
algorithms for finding these features.

Chapters 3 and 4 of this thesis present definitions for a class of volumetric features
that describe material removal volumes produced by machining operations on 3-axis vertical
machining centers, such as the one pictured in Figure 1.2. Based on these definitions, we de-
velop a specification for the recognition problem and trace-based algorithms for constructing
feature instances from CAD data. Chapter 5 analyzes the complexity of these algorithms.
Through this approach, we hope to improve the theoretical understanding of the feature
recognition problem and its computational costs.
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Figure 1.2: A typical machine tool: a vertical machining center [194]. Illustration used
courtesy of Teledyne Cutting Tools, Inc.

1.2.1.2 Recognition of Interacting Features

When two or more features interact the individual feature instances can become distorted
and information vital for reconstructing them can be removed. Figure 1.3 (a) shows an
example of a solid model of a mechanical design containing a number of feature interactions.
In particular, Figure 1.3 (b) shows the profile of one feature instance that one might like to
find in order to perform effective manufacturing planning—the information remaining does
not seem to provide sufficient information from which to generate this volume.

Devising a general means for handling feature interactions has proven very difficult for
a variety of reasons—including the fact that there are differing notions of what it means for
features to interact. The term “feature interaction” has become an area of intense research
activity despite the fact there is little consensus on a definition. This has made it difficult
to evaluate individual approaches. In most cases, interactions are handled with “rules of
thumb” or a proliferation of heuristics that attempt to capture each special configuration



(a): part (b): profile of a target feature

Figure 1.3: A difficult interaction among features. In this case there are no faces left in the
part from which to infer how to create the walls of the x-shaped pocket.

that might arise in a given application.
This thesis defines a categorization of feature interactions in Chapter 6 and discusses how
the approach presented handles feature interactions from the various categories.

1.2.1.3 Recognition of Alternative Features

Just as there may be many different possible ways to achieve a goal state in Al planning, in
manufacturing there usually exist several different ways in which a design can be realized. If
features are in one-to-one correspondence with manufacturing operations, then there may be
many different alternative sets of features that transform an initial workpiece into a final part.
Early work on feature recognition focused on finding a single best feature decomposition for
a given part. However, as the problem of feature alternatives has become better understood
there is general agreement that consideration of alternative feature decompositions is critical.

Chapter 3 introduces notions of well-behaved feature sets and feature-based mod-
els. For example, in the machining domain it is often possible to machine a given design
in several different ways, each corresponding to a different collection of machining features.
Each such collection of features is an example of a feature model. In earlier literature, the
term “feature model” meant different things to different researchers [53, 110]. This thesis
synthesizes these concepts from earlier work in a definition of a feature-based model as a
single, domain-specific feature-based representation of how to manufacture a given design.

The well-behaved feature set is a finite set of feature instances, each of which belongs
to at least one (of the possibly many) feature-based models for the design. For example,
Figure 1.4 illustrates the concepts of feature set and feature-based model in the machining
domain. Consideration of alternative feature models is crucial to facilitate downstream
activities such as design analysis or manufacturing planning where one wishes to optimize
manufacturing cost or time.
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Figure 1.4: A design with alternate interpretations.

1.2.1.4 Building Feature-Based Models and the Interface to Downstream Ap-
plications

In some previous efforts, feature recognition was tightly coupled with a particular down-
stream application—usually manufacturing process planning. The emerging consensus is
that feature recognition is a critical interface with a variety of downstream applications, as
shown in Figure 1.1.

In those systems built for producing process plans or machining operation sequences,
much of the process planning activity is considered during feature recognition: features are
recognized and processes are selected “on the fly.” Features that appear to be unlikely
candidates for promising plans are discarded.

In this work we advocate separating feature recognition from planning. There are two
primary motivations for this: first, feature recognition and its output might be used by
a variety of downstream applications (as indicated above); therefore one should not force
the heuristics specific to a single downstream application (such as process planning) into
feature recognition. In the framework of an integrated environment for concurrent design
and design analysis shown in Figure 1.5, feature recognition plays an important role in
interpreting CAD data for each of the critiquing systems. Each individual critiquing system
must analyze the design with respect to different manufacturing considerations. To this end,
Chapter 7 presents techniques for post-processing of recognized features in order to produce
more realistic features for downstream applications requiring machining features.

Second, when building a plan “on the fly,” algorithms are making decisions about which
features to discard without complete information. By analogy, in order to find the maximal
element of a list one must check each element in the list. Similarly with recognizing fea-
tures, one cannot reliably and efficiently perform manufacturing planning without complete
knowledge of the available manufacturing options (i.e., one needs to have all of the features
to determine which will be in the optimal plan). This is discussed more fully in Chapters 4
and 6.
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Figure 1.5: Integrated environment where computer-aided critiquing systems analyze the
constraints posed on design by downstream manufacturing planning and production con-
straints.

1.2.1.5 Completeness

Given that a recognition system might be interfacing with a number of different CAM ap-
plications, better mathematical specifications are needed for the feature recognition “black
box.” In many respects, this issue shares much in common with current problems in soft-
ware engineering. One needs to be able to pose questions about the input and the output
of a software component for feature recognition and determine if there any limitations and
restrictions. Without improved mathematical specifications, system integration is difficult
and assessing the correctness of algorithms is impossible.

Chapter 4 defines and contrasts several specifications for the feature recognition problem
based on the machining features introduced in Chapter 3. Chapter 6 defines a notion of
completeness for feature-based modeling and feature recognition. In this context, com-
pleteness refers to the ability of an algorithm to unambiguously convey all of the information
required to answer arbitrary questions about the manufacturing possibilities represented by
the features.

1.2.1.6 Real-World Artifacts

Developments in feature recognition have been closely tied to advances in solid and geomet-
ric modeling. Many early feature recognition efforts focused on domains of polyhedral parts,



Figure 1.6: A solid model of a machined part from Allied Signal Corporation. This solid
model contains 419 planar, cylindrical and conical surfaces and illustrates some of the com-
plexities inherent in real world artifacts.

convex feature primitives, and algorithms to find patterns in graphical boundary representa-
tion data structures. As solid modeling technology has advanced, increasingly realistic and
complex real world parts can be modeled. The advance in solid modeling representations,
however, has not produced a corresponding advance in feature recognition technology to
handle the more realistic parts. Feature recognition techniques are often based on assump-
tions about polyhedral objects; some approaches employ intrinsically costly (often NP-hard)
algorithms which may prove difficult to scale to real-world parts.

In practice, mechanical parts are not polyhedra. For example, the machined part shown in
Figure 1.6 is represented by 419 planar, conical, and cylindrical faces. Algorithms that work
well on designs with dozens of surfaces may prove inappropriate for more complex parts with
thousands of geometric and topological entities. This thesis addresses these issues in several
ways. First, the definitions and algorithms of Chapters 3 and 4 are based on a realistic class
of machining features [108] that describe realistic manufacturing operations. The definition
of the domain of parts and the recognition algorithm accommodates most realistic config-
urations of machined artifacts that can be created with these features. Chapter 5 presents
an analysis of the complexity of the algorithms of Chapter 4. Lastly, Chapter 7 presents
techniques for incorporating information about the dimensions of real machine and cutting
tools, as well as analysis of the accessibility of features during the machining processes.

1.2.1.7 Speed and Scalability

Engineering design is an interactive process and speed is a critical factor in systems that
enable designers to explore and experiment with alternative ideas during the design phase.
Even as hardware technology moves forward at an exponential pace, the complexity and size
of software consumes every additional clock cycle and instruction. This growing complex-



ity, coupled with the intrinsic difficulties of handling the complicated artifacts of the real
world noted above, requires the development of scalable solutions to the feature recognition
problem.

Speed has not been an issue addressed in the context of feature recognition. Currently,
for simple parts (polyhedral parts with a few dozen surfaces) recognition times can run
minutes. If systems consider manufacturing issues such as tool accessibility (requiring some
form of interference testing be performed), time can become a computational bottleneck in
the integration framework of Figure 1.5.

Chapter 9 presents efforts toward developing a methodology for applying distributed,
multiprocessor computing techniques to the feature recognition problem. Feature recognition
has been approached using a variety of techniques, some of which are easier to parallelize
than others. This thesis demonstrates that trace-based approaches to feature recognition
(such as the one developed in Chapter 4) are particularly well suited for parallelization.
In addition, the divide-and-conquer parallelism of Chapter 9 enabled the development of
techniques for making geometric and topological modifications to the design that reduce the
costs of solid modeling operations.

1.2.2 Research Objectives

This thesis presents a systematic approach for developing feature recognition systems for
integration of CAD with downstream manufacturing activities. It is expected that this re-
search will be enhance our formal understanding of the basic computational issues behind
the feature recognition problem. In this way, improved and more rigorous feature recogni-
tion systems can be used as components in the next generation of CAD/CAM systems. In
addition, this research reveals a gap at the application level between the development of
theory and the development of CAD/CAM systems. We believe that further research on the
specification, completeness, and complexity of geometric problems in design and manufac-
turing can enhance our understanding of the basic problem and lead to the production of
better CAD/CAM software tools.

A proof-of-concept implementation of a feature recognizer based on the algorithms pre-
sented in this thesis, dubbed F-Rex, has been developed and integrated into IMACS.
IMACS is a system for interactive manufacturability analysis and design critiquing devel-
oped at the University of Maryland at College Park’s Institute for Systems Research. IMACS
and the implementation of F-Rex are discussed in more detail in Chapter 8.

1.3 Thesis Organization

This thesis comprises 11 chapters. The contents of each are summarized as follows: Chap-
ter 2 presents a summary of previous research work in the areas related to this thesis—in
particular, research in the areas of solid modeling, features and feature-based manufacturing,.
Chapter 3 introduces a class of machining features and presents definitions for feature-based
models and for primary and well-behaved features for the machining domain.



Chapter 4 presents a problem specification and develops a trace-based approach to rec-
ognizing instances of the machining features defined in Chapter 3. Chapter 5 addresses
issues of computational complexity and analyzes the complexity of the algorithms presented
in Chapter 4. Chapter 6 builds a notion of completeness for feature-based modeling and
feature recognition and presents demonstrates the completeness of the algorithms presented
in Chapter 4 over the class of well-behaved features defined in Chapter 3.

Chapter 7 uses information about the application domain of machining to improve and
enhance the feature recognition process. In particular, Chapter 7 presents techniques to
modify the set of features returned by the algorithms of Chapter 4 to improve their corre-
spondence to actual machining operations and exclude those that are likely to be unrealistic
for downstream applications. Chapter 8 gives an overview of the IMACS design critiquing
system and of the implementation of a prototype feature recognition system F-Rex devel-
oped with the methodology described in Chapters 3 through 7.

Chapter 9 introduces a parallelization of the feature recognition techniques from Chap-
ter 4 using distributed algorithms. In addition, this chapter outlines several methods that
can exploit the parallelism to simplify individual feature recognition subproblems. Chap-
ter 10 present a discussion of how the terminology and techniques presented in this thesis
can be applied to other manufacturing domains. Lastly, Chapter 11 summarizes the research
contributions of this thesis and outlines a number of research issues for the future.
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Chapter 2

Survey of Related Research Work

This chapter presents a summary of previous research work in the areas related to this thesis.
In particular, the chapter gives a brief history and summary of the field of solid modeling. It
overviews the concept of features and the work on feature-based modeling and applications,
including the fundamental literature on feature recognition from solid models. The chapter
also covers some of the subject areas closely related to features and feature-based modeling,
including process planning, GT code generation, manufacturability analysis and redesign.
Lastly, it summarizes the current research problems and some of the open technical issues
in automated feature recognition.

2.1 Solid Modeling

The field of solid modeling covers a wide area of activity directed toward the representa-
tion and manipulation of 3-dimensional surfaces and volumes. Solid modeling is a critical
element in a growing number of application areas, including robotics, simulation, analysis,
rendering, and (most relevant to this thesis) CAD/CAM. A distinction exists in the liter-
ature between the field of solid modeling and that of geometric modeling. Geometric
modeling is concerned with the representation of surfaces (analytics, splines, etc.) and their
manipulations. This is intimately related to solid modeling; however solid modeling is more
concerned with those objects bounded by such surfaces.
Conceptually, work in solid modeling has proceeded in three levels of abstraction [81]:

1. Symbolic and arithmetic foundations represent the lowest level of abstraction and
are concerned with the computer hardware support of integer and floating point arith-
metic as well as with the abilities of a programming language to express computations
and manipulate memory. Examples include the development of data structures and
handling of issues of mathematical robustness.

2. Mathematical and algorithmic infrastructure describes the fundamental opera-
tions as implemented in the foundation above. Examples include operations for creat-
ing solids, for performing interference tests among solids, and for developing efficient
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algorithms for basic manipulations (such as solid-solid intersection or point-solid clas-
sification).

3. Application and user interface is the highest level of abstraction, focusing on
the development of applications in terms of the infrastructure created by the above.
Traditionally, research in the lower levels of abstraction has been pursued because of
the perception that solid modeling can lead to great enhancements in our ability to
create more effective designs and easily perform complex analysis on them.

As levels (1) and (2) have become better understood, increasingly sophisticated and
robust solid modeling systems have emerged. This has led to increased research activity
at the application level. In particular, given that one has adequate solid modeling tools
at one’s disposal, one begins to ask questions such as: How should functionality be
represented? or How does one represent manufacturing operations and their effect on
a model of a design?

This thesis is primarily concerned with problems that lie in the third category. There
are numerous important concepts from the core solid modeling literature that are directly
relevant to the work described in this thesis. The remainder of this section very briefly reviews
some solid modeling concepts and terminology which will be used throughout this thesis—in
particular, concepts concerned with manipulation and representation of solid models.

For more in-depth coverage of the of the field of solid modeling, interested readers are
referred to the texts by Hoffmann [81], Mantyla [116], Mortenson [128], Faux and Pratt [54]
and Woodwark [211, 18]; as well as the proceedings from the recent conferences on solid
modeling and applications [153, 154, 155]. For an overview of the architecture of solid
modeling systems, readers are referred to [124]. The classic text on computer graphics
of Foley and Van Dam [56] also covers solid modeling and its relationship to graphics and
rendering. For information regarding commercial solid modeling systems, readers are referred
to the product and reference information for Spatial Technologies ACIS modeler [177, 183,
184, 185, 178, 180, 181, 120, 182, 179] as well as the EDS/UNIGRAPHICS Parasolid solid
modeling kernel [176, 175] and the PADL-2 project from the University of Rochester [21].

2.1.1 Representation of 3D Surfaces and Solids
There are three broad classes of schemes for representation of solid models [116, 149]:

1. Decomposition approaches that model a solid as collections of primitive objects con-
nected in some way. Examples of these data structures include quad-trees and oct-
trees [163], which represent space as collections of primitive cells (usually cuboidal).

2. Constructive approaches that model a solid as a combination of primitive solid tem-
plates. For example, a common approach is constructive solid geometry (CSG),
which represents a solid as a boolean expression on some set of primitive solids. Fig-
ure 2.1 gives an illustration of a CSG tree for a simple part in terms of primitive blocks
and cylindrical solids. In a CSG tree, the leaves of the tree contain primitive solids
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Figure 2.1: A CSG Tree.

(usually blocks, prisms, cylinders, etc.) and the tree’s nodes contain operators on the
primitives (in this example boolean subtraction).

3. Boundary-based approaches that model a solid using a data structure that represents
the geometry and topology of its bounding faces. In recent years the boundary-
representation (b-rep) approach has emerged as the dominant representation scheme
in solid modeling and CAD systems. This is due in large part to the representational
power and flexibility of boundary models, as well as to recent advances in numeric
computation that overcame earlier problems with models becoming unstable and in-
consistent.

The work described in this thesis assumes a boundary-representation solid modeler, and
the notation and algorithms will show a bias toward the b-rep format. In particular, a b-rep
usually consists of a graphical structure that models an entity’s topology. The connections
between the nodes in the b-rep graph represent the connections between the topological
components of the entity’s boundary. These topology nodes then contain pointers to their
underlying geometric entities; for example, a face of a solid is a topological entity (repre-
sented as a collection of bounding edges) and it has associated with it a surface (represented
as an equation). An illustration of the distinction between geometric and topological infor-
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Figure 2.2: The distinction between geometric and topological information within the ACIS

Solid Modeler [184].

mation from the ACIS Solid Modeling Kernel is given in Figure 2.2.
One of the most popular of these b-rep structures is the winged-edge representation [81]

and its variations. For more information on boundary representation data structures, inter-
ested readers are referred to [81, 116, 207, 209].

Manifold and non-manifold solids. Operation on these data structures can give rise to
many different configurations of solids. Intuitively, a manifold solid is one whose boundary
can be uniformly unfolded onto a 2-dimensional plane. The manifold condition excludes,
for example, solids whose bounding surfaces are self-intersecting. Non-manifold objects can
be of mixed dimension. For example, the object shown in Figure 2.3 (b) does not have a
closed boundary; the object shown in Figure 2.4 (c) has a boundary containing a dangling
2D surface.

In this thesis we will be primarily concerned with manifold objects. Some of the al-
gorithms presented in subsequent chapters, however, will deal with objects of differing di-
mensions (i.e., boolean operations on 2D faces, building 3D solids from 2D cross-sections,
etc.).

2.1.2 Manipulation of Solids

This section briefly describes some of the common operators used to manipulate geometric
and solid models. In addition to operators common for handling 2D shapes in computer
graphics [56] such as coordinate transformations, rotations, and scaling, there are additional
functions specific to the nature of geometric modeling. Computer graphics is usually con-
cerned with the production of images for display on a display device—the representation
used to generate the picture is largely unimportant. Geometric and solid modeling are con-
cerned with these underlying representations and how to maintain their consistency under
mathematical operations.

The remainder of this section briefly introduces three common classes of operations: Euler
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operations, boolean operations, and sweeps. We shall make extensive use of some of this
terminology throughout the remainder of this thesis.

Euler Operators. FEuler operators act on the topology of a boundary representation data
structure. Starting from an idealized primitive “solid” consisting of one face and one vertex,
one can create a solid through a series of local and global manipulations. Local manipulations
can create (or delete) vertices, edges, and loops; global manipulations can be used to create
(or delete) holes or to divide a body into multiple bodies.

Euler operators have a number of elegant mathematical and algorithmic properties, in-
cluding the ability to describe all valid boundary data structures through a finite sequence
of Euler operators.

A number of solid modeling systems have been based on Euler operators, most notably
Méntyla’s Geometric WorkBench [116]. For a more detailed description of Euler operators,
readers are referred to [116].

Boolean Operations. Solid models can be considered as bounded point sets. Boolean
operations union (UJ), intersection () and difference (—) can be defined on solid models
based on their action on point sets. For example, Figures 2.3 and 2.4 illustrate boolean
difference and intersection, respectively.

The problem arises that solids may lose their “solidness” under boolean operations. For
example, in Figure 2.3 (c) the intersection of A and B has created a 2D entity. In Figure 2.4
(c), the intersection of A and B has left a solid with a dangling 2D surface. In both of these
cases, the result of the operation is not entirely 3D.

Regularized boolean operations correct these ambiguities. If A is a solid, ¢(A) is the
interior of A (point set A minus its boundary) and ¢(A) is the closure of A (point set A
plus its boundary); the regularized boolean operations are defined as follows [116]:

J*, Union: AU B = c(:(AU" B));
N, Intersection: AN B =c(i(AN* B));
—*, Difference: A—*B =c(i(A—*B)).

Examples of the effects of regularized boolean operations are shown in Figure 2.5.

Sweeps. Sweeps are another common representation and tool for manipulation of solids.
Sweeps can be used as a basis for the generation of primitives; for example, the rectangular
volume shown in Figure 2.6 (b) can be modeled as the sweep of the closed edge profile
(shown in Figure 2.6 (a)) along a vector for some fixed distance. Maintaining the topological
consistency of models under sweeps has emerged as a problem of some delicacy. Much in the
same way as with boolean operations, a sweep may not always result in a uniformly 3D solid
model—one example of this can occur when the volume swept out by an edge profile along
some curve is self-intersecting. Sweeping of 3D solids, as shown in Figures 2.6 (c) and (d)
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(a): Two blocks, A and B

(b): Subtract, A— B (c): Intersect, AN B

Figure 2.3: Non-regularized boolean operations.

for a polyhedra, introduces additional mathematical difficulties. In recent years, techniques
have been developed for handling many of these situations [121].

Sweeping of solids has important uses in manufacturing applications. One such applica-
tion is that the representation of the effects of operations (such as material removal during
machining) can be approximated as the path taken by a rotating 3D cutting tool when moved
along a tool path.

2.2 Features and Feature-Based Modeling

The fundamental representation for mechanical designs within a CAD system is the solid
model. For the most part, this exclusively geometric and topological representation is rather
limiting. While solid models provide increasingly good ways to model shape and form, they
do not lend themselves well to direct reasoning about manufacturing activities. The concept
of a feature attempts to bridge this gap by modeling the relationship between the local

16



(a): Solid A (b): Solid B

(c): Intersect, AN B

Figure 2.4: Another example of non-regularized intersection from Méntyla [116].

geometric and topological configurations of a design and the higher-level abstractions. In
this way, semantic information can be conveyed along with the shape.

Features and feature-based approaches have proven popular in a variety of CAD/CAM
application domains. The reason for this increasing popularity is that for most CAD/CAM
problems the design needs to be interpreted in terms of the needs of the particular application.
Significant work has been directed toward defining sets of features to serve as a means of
communication between design and manufacturing [172, 122]. At present, however, most
researchers are convinced that no single set of features can satisfy the requirements of every
possible design and manufacturing domain.

Feature-based characterization of design information has long been viewed as vital for
design analysis and data exchange. In the research community, features have come to mean
different things for different research projects—in the absence of a universal feature class,
each researcher adopts her or his own definitions and types to suit the goals of the particular
application. This has led to the need to formalize representation schemes for features and
data exchange standards. In the absence of an agreed-upon standard, many research groups
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Figure 2.5: Regularized boolean operations.

have created their own feature classes, languages, and hierarchies.

This feature technology relies heavily on the geometric and topological capabilities of solid
modeling and CAD systems. Existing features research deals predominantly with machin-
ing applications—this has been facilitated by easy manipulation of the volume and surface
information important to machining by existing solid modeling systems.

The remainder of this section reviews some of the basic concepts in features and feature-
based modeling, with a special emphasis on work in automated feature recognition. A
comprehensive overview of feature-based manufacturing can be found in [170].

2.2.1 Typical Feature Types

Independent of a manufacturing domain or a particular CAD/CAM application, there are
several generic types of features that are common in the literature. While the following
enumeration is by no means complete, most of the notions for and definitions of features
that exist in the literature today are covered by these categories.
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(a): A wire body W (b): Solid created by sweeping W

(c): A solid body A (d): A new solid created by sweeping A

Figure 2.6: Two examples of sweeping.

Form Features. At the most general level, a form feature can be defined as a local
geometric, topological, or volumetric configuration on a part with engineering significance.
Form features are meant to describe generic shapes with regular geometric and topological
descriptions. A form feature is usually defined by a set of parameters and a set of conditions.
For example, the notch shown in Figure 2.7 (a) can be represented with parameters defining
the dimensions of the rectangular volume of the notch. Its relationship to the part is captured
by a condition states that the three faces of the notch match with faces of the part.

A form feature might be related to a manufacturing operation, such as in Figure 2.8
where the definition for holes can be related to drilling operations. Other common examples
of form features include slots, pockets, and shoulders, as illustrated in Figure 2.7. The faces
corresponding to a “hole” might be related to specific downstream manufacturing activities
such as machining or fixturing.

Surface Features. Surface features are usually defined as collections of 2D patches
on the boundary of a solid. In most cases these 2D patches are simply collections of faces
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(a): notch (b): pocket
(c): slot (d): shoulder

Figure 2.7: Examples of typical form features.

of the solid. Surface features provide a natural way to represent a variety of important
manufacturing information such as:

1.

Tolerances. Certain kinds of design and manufacturing tolerances can be modeled as
relationships between surface features.

Fixture design. Surface features can describe the fixturable part surfaces.

. Manufacturing attributes. Features can relate surface finish and roughness to man-

ufacturing operations.

. Assembly planning. Surface features can be used in robotic assembly planning to

reason about possible placements for grippers.

. Sheet metal manufacturing. The effects of sheet metal manufacturing operations

(such as bending) lend themselves to description using surface features.
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Figure 2.8: Definitions for a cylindrical hole from Vandenbrande [201] (a) and Henderson [77]
(b).

Volumetric Features. A volumetric feature is a 3D shape bounded by a collection of
surfaces. In recent years there has been an increased use of volumetric features, in particular
to describe the material removal volumes created by machining operations. Volumetric
features have a variety of advantages over surface features [144]; primary among them is
that manufacturing process information (in particular in the machining domain) is more
easily described volumetrically. By way of an example, a machine tool moves a cutting tool
through 3D space. The volumetric intersection of this sweep with the current workpiece
corresponds to the effect of the machining operation.

An observation worth noting about form features is that they can describe either surface
or volumetric features. A second point is that the distinction between types of form features
is usually solely based on geometric and topological considerations. From the point of view
of manufacturing processes, these distinctions are often arbitrary—form features need not
have any direct relationship to a specific manufacturing process. For example, while the
features in Figure 2.7 represent different form features, they all can be machined using a
end-mill on a vertical machining center. Hence, from a machining point of view, they can
be considered to be instances of the same type of machining feature.

Recently there has been interest in features for other manufacturing life-cycle consid-
erations, such as features with associated functional engineering significance. El Maraghy
et al. [51] proposed and implemented a design tool employing functional features. Func-
tional features were also a key part of the work of Schulte et al. [168]. Henderson and
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Taylor [78, 79, 193] developed a system for conceptual modeling in an effort to represent
features, functionality, dimensions, and tolerances within a solid modeling system.

2.2.2 Manufacturing Features

The feature concept had its beginning with the process planning of machined parts [122].
Historically, process planning systems for machining have employed features to represent
machining operations. Manufacturing features have grown to fill important roles in a variety
of manufacturing application domains, such as assembly, inspection, etc.

Each different manufacturing application domain has different requirements for its spe-
cific feature definitions. Requirements and specifications for satisfactory manufacturing fea-
ture definitions in various domains have been addressed numerous times in previous work.
Pratt [122] states that features should be capable of representing, among other things, com-
ponent primitives, connectivity between entities, and geometric, topological, and size con-
straints. As pointed out in [52], some of the properties that features should be capable of
encoding are:

1. Functional: those relating to application-specific functions and operations.

2. Assembly: those modeling the relations between design attributes and datum hierar-
chies.

3. Precision: those representing tolerances, datums, and surface finishes.
4. Form: those for geometric entities, primitives, and boolean operations on primitives.

5. Manufacturing: those embodying domain specific-information about manufacturing
processes, process capabilities, and tooling requirements.

A number of attempts have been made to define and classify manufacturing fea-
tures [22, 62, 200, 24]. Although there are differences among these approaches, many of
them share important similarities. For example, a machining feature usually corresponds to
the volume of material that can be removed by a machining operation. In general, man-
ufacturing features usually have associated geometry and tolerance information that can
be matched with the design attributes of the part and can be used to parameterize the
manufacturing operations.

For manufacturing domains that involve discrete manufacturing operations (such as ma-
chining, sheet metal bending, forging, etc.), a feature can be thought of as a parameterized
object. This notion of features is becoming increasingly common and is gaining widespread
acceptance [152, 24].

Note that manufacturing features are not necessarily equivalent to the usual notion
of form features. A manufacturing feature may be defined as a form feature; however,
form features need not have any direct correspondence to manufacturing operations. An
illustration of this distinction is given in Figure 2.9.
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Figure 2.9: Form features and their equivalent machining features.

2.2.2.1 Machining Features

The manufacturing domain that has received much of the attention of researchers in academia
and industry has been machining. A machining feature attempts to capture the effect of a
cutting tool (such as a drill or a mill) used in a machining center to operate on a workpiece.
In general, machining features model material removal operations. For example, a machining
feature might be defined as the volume swept by a cutting tool during machining and can
be represented as a parameterized solid [24, 131].

Machining features have been defined both as surface features and as volumetric fea-
tures [144]. When defined as surfaces, machining features are collections of faces that are
to be created by a machining operation. Historically, the dominant approach was to define
machining features as collections of surfaces. In recent years, however, an increasing num-
ber of researchers are adopting the position that machining features should be defined as
parameterized solids that model the volume removed by the machining operation. Volumet-
ric machining features provide a more comprehensive representation of the actual machin-
ing operation [144] and are becoming the norm in the current generation of feature-based

CAD/CAM systems.
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Figure 2.10: Example feature taxonomy from Laakko and Mantyla [110].

Classifying machining features. There have been numerous attempts to classify ma-
chining features and devise feature hierarchies. In addition to the MRSEYV Library for 3-axis
machining features of Kramer [108, 107] mentioned in the next section, Nau et al. [130]
developed a machining feature library for process planning. Similarly, Gindy [62] presented
a feature hierarchy describing the geometric information required for a class of form fea-
tures for process planning. Figure 2.10 presents a machining feature taxonomy developed by
Laakko and Mantyla [110].

In addition to academic efforts, there have been numerous feature categorization attempts
made in industry. One of the early efforts was that of the Computer-Aided Manufacturing
International consortium (CAM-I) [171]. CAM-I produced numerous reports and studies of
the technological issues relating to features in the context of automated manufacturing.

Working with CAM-I, Pratt and Wilson [143] produced a study of the use of form fea-
tures within a geometric modeling system. In this work, they provided a methodology for
defining features and performing design in either boundary-representation or CSG-based
solid modeling systems.

Another CAM-I study conducted by the John Deere Company [22], attempted to exhaus-
tively enumerate all possible features that might be used for process planning of machined
parts. This study attempted to produce a comprehensive list of all manufacturing features.
This list was then to be used to generate higher-level descriptions of the part and deduce fea-
ture relationships for every component in the company. This work was survey-like in nature
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and did not provide any mathematical structure or definitions for the feature types; nor did
it attempt to determine the relationship between features and manufacturing operations.

In another industrial effort, Allied-Signal, as part of Brooks et al.’s [20] XCUT project,
presented a classification of machining features for process planning.

The two most mathematically comprehensive approaches for defining machining features
are those of Chang [24] and Vandenbrande and Requicha [200]. Chang’s feature definitions
are based on the shape of the cutting tool and the cutting trajectory. Vandenbrande and
Requicha [200] adopt a similar method and classify tool-swept volumes as different types of
volumetric machining features.

2.2.2.2 Other Types Of Features

Although much of the research work on features has dealt with machining, other recent work
has employed features for inspection planning [119], part coding [109], and other manufac-
turing processes, such as injection molding [141]. Stanford University’s NEXT-Cut [35] used
features for concurrent design of both the product and the manufacturing process while con-
sidering constraints imposed by a variety of manufacturing domains. In other domains where
designing for properties other than manufacturability (such as disassembly, reuse, etc.), the
feature classes of interest may be quite different than those currently employed.

2.2.2.3 Feature Definition Systems and Feature Definition Languages

Because feature needs vary greatly by application domain, there have been a variety of
efforts directed toward the development of general feature definition languages. The
basic premise of a feature definition language is to give the user flexibility in defining their
own feature class tailored to suit the needs of their particular application.

Examples of advanced feature-based modeling systems capable of incorporating user-
definable functional features include: The ASU Feature Testbed [173, 172], which includes
a generic feature mapping shell that allows mapping features from one application to other;
and the systems developed by Laakko and Méntyla [110] and El Maraghy et al. [51].

Some feature recognition systems have also incorporated the ability to have user-definable
feature classes for the purposes of customization and extendibility [161, 110]. Recent work
has applied Object-Oriented Design (OOD) methodologies to CAD tools to incorporate
feature classes, customization, and recognition in a unified system [110]. In such systems,
users can define classes of features relevant for individual applications. Another approach to
customization is feature languages [41, 198]. In this case, the user defines a grammar and
primitives for a dialect of features and their means of recognition.

2.2.2.4 Standards, Feature Classes, and Feature Hierarchies

One of the major objectives of features research has been the integration of CAD with
CAM; this, in turn, has generated a great deal of attention and interest from the standards
community about defining standard feature classes. The objective of standardization is to
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get everyone to agree on classes of features, or at least to agree on how to define classes
of manufacturing features, to enable integration of applications and data sharing among
manufacturing applications at the feature level.

STEP. STEP is the International STandard for the Exchange of Product Model Data be-
ing developed by the International Organization for Standardization (ISO). PDES stands for
Product Data Exchange using STEP and it represents the activity of several organizations
in the United States in support of STEP. The organizations involved with PDES comprise
many corporate, government, and standards development entities.’

Description data in STEP is handled by defining an information model in the EXPRESS
data modeling language [166, 186] for each type of data required. Once an information model
is defined, data for representing a specific product can be represented using the STEP rules
for mapping EXPRESS to a physical file [8, 7, 199]. The EXPRESS model defines the data

entities that describe the class of objects in the domain.

Defining Features in STEP. A means for describing generic classes of features for the
purposes of data exchange has been evolving within the standardization community. STEP
Part 48 [46] deals with the characterization and representation of form features to cover
a wide variety of shapes of industrial interest. The basic idea behind this document is that
feature data occurs at three levels of abstraction:

1. Application features have domain-specific connotations that are not directly related
to their shape. For example, an application feature named “assembly hole” conveys

both functional (fastening in an assembly) and process (the hole might be drilled)
information.

2. Form features are generic shape properties of a product (as mentioned above) with no
application connotation and no presumption about their representation. For

example, “circular cross-section” might be the name of a form feature that describes
the assembly hole.

3. Form feature representations are employed to represent shape properties. For
example, a “sweep” of a “circular profile” above might be used to model the circular
cross-section form feature.

STEP Part 48 is concerned with feature representation at levels 2 and 3. Currently the
standard is in a state of flux and what exists of it does not contain all of the information one

1The organizations include: IGES/PDES Organization, a voluntary standards organization that partici-
pates in developing the STEP standards; many IPO/ISO committees including the Form Features Committee
and the Manufacturing Technology Committee; PDES, Inc., a consortium of major companies whose goal
is advancing the implementation of PDES; and the National Institute of Standards and Technology, which
has established a National PDES Testbed under the funding of the Computer-aided Acquisition and Logistic
Support program of the Department of Defense.
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would need to associate with feature definitions. For example, the ability to handle informa-
tion about tolerances, user-defined form features, functionality, manufacturing process, and
size is non-existent within Part 48. These issues may be addressed in later revisions to Part
48 or in other standards (as yet undefined).

STEP Application Protocol 224 (AP 224) is for defining mechanical engineering products
for process planning using form features. STEP AP 224 builds on the generic representation
mechanisms of Part 48 and defines specific form features relating to the shape of a single
part that can be used in manufacturing. Specifically, the document provides a definition
for machining features to facilitate the identification of manufacturing shapes that are
human and machine-interpretable. Within AP 224, machining features are a class of shapes
which represent volumes to be removed from a part by machining. In this way, the informa-
tion represented using AP 224 to drive decisions made by computer-aided process planning
systems.

While STEP does provide some mechanisms for representing geometric and topologi-
cal form features, there exists no definitive structure for representing and exchanging all
the relevant information associated with a manufacturing feature. Shah [174] describes his
investigation of the STEP form features model.

Example of a STEP-based Feature Library. Kramer [108, 107] developed a library of
Material Removal Shape Element Volumes (MRSEVs) as a means of categorizing the shapes
of volumes to be removed by machining operations on a 3-axis machining center. MRSEVs
can be defined using the EXPRESS modeling language and STEP form features. Kramer
has written such definitions for a subset of the MRSEV library, and has defined the rest of
the MRSEV library using an EXPRESS-like language.

MRSEVs features are volumetric form features and the MRSEV hierarchy provides a
framework for describing a large class of entities of interest to machining. Each entity
type has a number of required and optional attributes. MRSEV instances have been used
for applications such as process planning and NC-program generation [106]. Kramer’s main
MRSEYV types include linear swept features, edge-cut features, ramps, and rotational pockets.
Figure 2.11 provide an illustration of the feature subclasses in the MRSEV hierarchy.

2.2.3 Feature-Based Design

While creating a design of a part, the designer interacts extensively with her or his CAD
tool. A design feature is a shape or form that has significance to the design engineer. In
many cases the design process on a CAD system consists of a sequence of operations and
manipulations performed with design features.

Design features can have functional significance or aesthetic attributes. In this way a
designer working with design features can more readily construct a detailed design of the
artifact that she or he has in mind. In some systems, design features correspond directly to
manufacturing operations. The basic idea is that as the design process progresses, feature
information is recorded and becomes part of the CAD model. For example, if the designer
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Figure 2.11: The MRSEV feature taxonomy from Kramer [108].

is designing a machinable component, the features might correspond to removal volumes
created by moving cutting tools. When the design is completed, the CAD model contains all
the information about how the designer arrived at the final product. Figure 2.12 provides
an example of a typical design feature: a counter-sunk hole.

There are several prototype systems based on this approach, including NEXT-Cut [35]
and the Quick Turnaround Cell (QTC) [24]. They provided a feature-based design inter-
face and model the part directly in terms of machining features. In the commercial world,
Parametric Technologies’ Pro/ENGINEER and Bentley Systems’ MicroStation (Figure 2.12)
CAD packages are heavily dependent on the idea of designing with parametric features.

One of the most successful efforts at unifying geometric representation, visualization,
and manufacturing has been the (¢_1 Project at the University of Utah [44, 192]. In O/ 1
(“alpha one”), geometry is represented and visualized using NURBS. Mechanical designs can
be created in (¥.1 using a library of machining features—features that correspond directly to
operations available in the (¢_1 manufacturing cell. For more complex shapes, the NURBS
models can be used by O¢_1 to generate tool paths for machining the surfaces on a 6-axis
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Figure 2.12: An example of a commercial feature-based CAD system: The MicroStation from
Bentley Systems Incorporated. Note the feature palette at the upper right lists a number
of parameters for holes. The part pictured has several design features: counter-sunk and
counter-bore holes as well as two bosses.

machining center.

Traditionally, feature-based design was supposed to alleviate the need for feature
recognition. However, feature-based design has not been able to overcome several significant
inherent problems which it has alone.

1. With feature-based design, a designer models the design directly in terms of manufac-
turing features; hence in this scheme, design features are equivalent to manufacturing
features. This eliminates the need to perform feature recognition because the design is,
in some sense, defined in terms of a set of operations that may be used to manufacture
it. But the features that the designer uses to define the final product may not represent
the best way of creating the product.

2. In the majority of cases, the features that are most natural for use during the design
phase are not manufacturing features. A designer working through a conceptual design
and attempting to create detailed geometry does not think in terms of machining
operations. Rather, design features are often better defined in terms of function, shape,
and form. An additional problem, one that emerges strongly in the case of machined
parts, is that design features might be additive. For example, a designer might add a
rib to strengthen a part. The problem emerges that, while some design features might
have some degree of correspondence with manufacturing operations, many will not.
At some level, feature recognition will be required to translate the part information
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(geometry, topology, and design features) into a description in terms of machining
features.

It has also been pointed out that some of the most useful features to designers are those
directly useful for performing analyses. Therefore, translation from a CAD model
and/or design features to the features for analysis must occur at some point. For
designs created using a feature-based design approach and represented with design
features, there must exist some facility for translating these design features into feature
viewpoints for use in the downstream applications [151].

3. For many manufacturing domains the feature-based description of a design is not
unique [115, 96, 98, 95]. Selecting which interpretation is most suitable to drive man-
ufacturing planning requires that the designer be an expert in the relevant domain.

4. As noted in the previous points, a design may need to be analyzed for a number of
different manufacturing and product life-cycle considerations. Each of these different
domains might require its own domain-specific set of features; hence the design must
be interpreted differently for each life-cycle domain. This implies that, within an
exclusively design-by-features system, the designer must assume the task of generating
all of the relevant feature-based descriptions of the design—a task requiring substantial
effort on the part of the designer and one that might introduce conflicts among various
descriptions.

While feature-based design has proven quite useful as an effective means to allow the de-
signer to work with functional features and create detailed designs more easily, the consensus
appears to be that feature recognition will be required at some level. At the very minimum,
feature recognition is perhaps the only reasonable way to generate multiple feature-based
descriptions. It is also believed that feature-based design provides an opportunity to capture
other important manufacturing information, such as the designer’s intent and the design
rationale [104, 172]. For a recent review of research in the area feature-based design, readers
are referred to [162].

2.2.4 Feature Recognition

Creating a survey of the field of automated feature recognition presents a difficulty because
attempts span a wide variety of applications. Research goals, application domain, and tech-
nique vary greatly over the works in the field and leave few bases for comparisons between
methods. Motivations for feature recognition include classification of parts for group tech-
nology, generation of paths for numerically controlled machining, and creation of process
plans for part manufacture.

We classify these approaches based on the computer science techniques they employ.
This section presents an overview, by no means complete, of many existing approaches. For
another summary of recent work readers are referred to [98].
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2.2.4.1 Pattern Recognition

Extracting features from a 3D solid model can be viewed as a problem of pattern recognition.
Syntactic pattern recognition [57] uses structural information to create a description or a
classification of the artifact. This approach to pattern recognition has widespread use in
computer vision (picture recognition, scene analysis, classification of pictorial patterns),
speech recognition, natural language processing, and recognition of written characters.

A variation or extension of a context free grammar [82, 111] forms the core of a syntactic
pattern recognition algorithm. In such a grammar, the terminal symbols usually represent
a primitive element of the application domain. For automated feature recognition, a primitive
can be an edge or a face—because these are among the fundamental building blocks of every
feature. The grammar also contains rules that determine how these fundamental primitives
may be combined. There may be a rule S — « that generates a specific type of feature
or a rule 7' — v that generates a class of similar edge contours. The scene is then
parsed much like a compiler parses a computer language [2]. During parsing the structural
information embodied in the rules, such as the existence of a depression in the object, can
be exploited. Utilizing these techniques, algorithms can recognize features and classify the
shape of a solid. Most approaches based on pattern recognition techniques address only 2D
shapes or 2D cross-sections of solids.

Ryszard Jakubowski [89, 90], using edges as pattern primitives, generated group tech-
nology part codes for mechanical parts based on their 2D cross-sections. This approach is
concerned only with mechanical part classification and is described for a restricted set of 2%—
dimensional parts. Information is obtained by parsing the edge primitives in the silhouette
of the part. This information and basic manufacturing data are used to categorize the part.
In Jakubowski’s work there is much grammatical formality and little mention of features.
Among the practical limitations, for example, the approach addresses only 2%—dimensional
parts. Also, the primitives used in this study limit the complexity of a silhouette because
there are only a finite number of 2D edges and rules in the grammar. These limitations and
the fact that the method is presented as a formalism without demonstrated computational
viability make this approach impractical for classification of complex parts and automated
feature recognition.

In Srinivasan, Liu and Fu [187], an approach similar to Jakubowski’s is investigated.
The goals of the work are shape classification for group technology process selection and
representation of the volume that must be machined to create the object. Grammars for
generating shape families are presented. These grammars, like those in Jakubowski [89, 90],
describe the outline of the part. This work built on Jakubowski’s, but many of the same
limitations still exist: the class of shapes is limited and it does not allow for the reasoning
about geometry and topology necessary for automated feature recognition.

Henderson and Anderson [11] use a grammar to classify holes based on how they are
manufactured. A 2D cross-section is obtained from a 3D CAD database. The grammar
is then used to extract the holes from the cross-section, as illustrated in Figure 2.13. The
grammar classifies the hole based on several hole families. The limitations in this approach
are representative of the limits of all feature recognition systems based on syntactic pattern
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Figure 2.13: The pattern primitives and parse of a counter-sunk hole from Henderson and
Anderson [11].

recognition techniques. The eight pattern primitives in the grammar are capable of repre-
senting only a small subset of the angles that could exist in a hole. In addition, there could
be ambiguity in the 2D cross-section caused by features other than holes (this problem could
be eliminated by assuming that a hole is the only type of feature). Ambiguity could also
arise from interactions between holes—what if two perpendicular holes intersect? What if
holes are not perpendicular to the surface of the object? These limitations do not diminish
the significance of the work, which is its contribution to the ability to communicate with a
geometric database on a feature level. However, this communication consists of a small set
of basic questions about an extremely restricted set of objects.

In another related grammar-based effort, Kramer [105] presents a parser for converting
a solid model representation of a design into a feature-based representation.

2.2.4.2 Graph-Based Methods

Graph-based algorithms have proven useful for extracting some classes of features. These
methods fall into two categories: those based on graph search [39, 30] and those based on
pattern matching [91, 141, 156]. A common difficulty for both categories of the graph-based
approach is that the graph-based representations for solid models of parts are difficult to
extend to the complex geometry and topology found in real industrial parts. Also methods
based on pattern matching and finding subgraph isomorphisms (a problem known to be
NP-hard) are prone to combinatorial difficulties.

Graph-based feature recognition systems represent the geometric and topological informa-
tion about an object using graph structure—usually a structure obtained from (or embedded
in) the data structure of the boundary representation of the object. Recognition of features
can be defined as a search or parse of the graphical structure. An advantage of graph-based
systems is the theoretical and algorithmic foundations of graph theory [75]. This affords
the opportunity to exploit the mathematics of graph theory to define the problem and the
opportunity to draw on the many algorithms that deal with searching, traversing, parsing,
or matching graphs [3, 19, 145]. For a general reference on the combinatorial complexity of
graph and grammatical approaches to feature recognition readers are referred to Peters [139].
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Searching and Matching. In one of the most significant early works in feature recogni-
tion, Kyprianou [109] presented the first effort to automatically parse solid models of parts
for group coding. His approach, as outlined in his doctoral dissertation [109], is often catego-
rized as grammatical or syntactic pattern recognition; in actuality it was an early graph-based
method to code parts for group technology classification. He developed an algorithm that
identified basic types of protrusions and depressions in a CAD model and inferred from them
a classification for the global shape of the object. The algorithm used a grammar based on
adjacency relationships of faces, convexity and concavity of edges, and existence of edge
loops to parse the object. Specific feature structures could be looked for during the parse
and, based on the types of features found, a classification for the part could be generated.

Kyprianou’s work did not include a specification for the set of objects it could classify
and it is unclear what happens when the algorithm is presented with an object outside its
scope. The method has difficulty parsing objects for which necessary structural information
is lost due to interactions among feature types. Kyprianou’s thesis was one of the first in
the area of automated feature recognition and it has served as a fundamental reference for
later works.

Figure 2.14: The attributed adjacency graph representation for a rectangular hole from Joshi

and Chang [91].

Joshi and Chang [91] present a graphical structure called an attributed adjacency
graph and, based on this data structure, the develop algorithms for feature recognition
based on subgraph isomorphism algorithms to match feature patterns to patterns in the
topology of polyhedral parts. Their goal is to improve machine understanding of design to
facilitate the automation of process planning. The attributed adjacency graph is built from
the information contained in the boundary representation of the solid model. Nodes in the
graph represent faces of the object; arcs in the graph denote edges of the object. Each arc
has an attribute indicating the concavity or convexity of the edge it represents. Figure 2.14
provides an example of the attributed adjacency graph representation of a rectangular hole.

An elegant aspect of this approach is that it clearly defines the types of 3D objects and
features within its scope. This work has its limitations, however: it addressed only six
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types of form feature and the object class is restricted to polyhedral objects. The feature
recognition algorithm involves heuristic improvements to the NP-hard subgraph isomorphism
problem. Attempts are made to handle feature interactions using rules for two specific types
of interaction. These two types of interactions cover many, but not all, of the interactions
possible for the six types of recognizable features. The drawbacks to this approach under-
score the difficulty in developing an elegant and practical approach to automated feature
recognition.

Figure 2.15: The generalized edge-face adjacency graph representation for an object from

De Floriani [39].

De Floriani [39] introduces a graphical structure called a generalized edge-face ad-
jacency graph (an example of which is shown in Figure 2.15) for recognition of features
such as protrusions, depressions, through holes, and handles. In this scheme, the features
and the object are represented using the generalized face-edge adjacency graph in such a
way that the features form biconnected and triconnected graphs. Hence, feature extraction
becomes a problem of searching a graph for the biconnected and triconnected components
and classifying them as one of the feature types.
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This approach uses graph theory and established, polynomial-time algorithms to produce
a formal feature recognition system. The recognition algorithm does not have the complexity
problems of the Joshi and Chang approach because the features are all defined as biconnected
and triconnected components. Unfortunately, not all desired features can be described as
biconnected or triconnected components in a generalized face-edge adjacency graph. The
approach ignores most geometric information, placing little emphasis on shape and location
of faces. In addition, it is unclear how this type of approach would handle shapes with
nonplanar faces, nonperpendicular edges, and having complex feature interactions. The
algorithm for recognizing the features defines the type of features that will be recognizable—
those that form unique components in the generalized face-edge adjacency graph. Other
work from the same research group [53, 40] uses an approach similar to this to generate a
hierarchical feature structure to represent objects at higher levels of abstraction.

Sakurai and Gossard [161] developed a system for recognition of user-defined features
based on a similar graph search strategy. An important contribution of this work is that it
emphasizes the separation of the feature definitions from the feature recognition algorithm.
Because features are often domain-specific, Sakurai and Gossard advocate a procedure to
enable the user to specify those features that are important to the application. The features
and the object are then represented with some variation of an attributed adjacency graph.
The process of feature recognition is redefined to a graph search problem. This method is
very similar to Joshi and Chang’s [91] and shares many of its drawbacks. However, unlike
Joshi and Chang, no attempt is made to characterize and deal with feature interactions.
In fact, the approach characterizes features as collections of surfaces and then “fills in” the
volumes when they are recognized. This act of filling in the feature volumes can make what
remains of a valid object unrecognizable within the available feature set; since filling in one
feature will inadvertently fill in part of any other feature that shares its volume. For example,
if two features share a volume, “filling in” when finding the first of them may render the
other feature unrecognizable.

Gavankar and Henderson [26, 60] explore graph-based pattern matching techniques to
classify feature patterns based on geometric and topological information from the part. This
approach operates solely on the topology of the solid model of the part and is limited in the
kinds of features it can extract (i.e., only features with a single entrance face are considered)
and in the fact that the general protrusion/depression information is not further classified
into specific machining features.

Corney and Clark [30, 31, 34, 32, 33] have had success extending the capabilities of
graph-based algorithms to more general 2%-dimensional parts. In particular, they built
boundary-representation-based recognition procedures to find DP-features (depressions and
protrusions) from CAD models for machined parts (similar to the feature types of [109]).
They point out that DP-features are basic elements in a number of feature hierarchies and
taxonomies. They outline how procedures for DP-features can be used to find high-level
shape information about a given part quickly and efficiently. They argue that this high-
level DP-feature description can then be used for a variety of purposes, including designing
more efficient algorithms for finding low-level features, such as features corresponding to
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individual machining operations. Currently their approach only supports 23-dimensional
polyhedral objects and does not evaluate whether or not the DP-features are accessible for
machining.

Fields and Anderson [55] present an approach to feature recognition that overcomes some
of the representation and efficiency problems common in previous work. Unlike pattern-
based or decomposition-based recognition methodologies, they categorize sets of faces on the
surface of the part into classes of general machining features: protrusions, depressions, and
passages. The shapes within each class, while sharing many operational similarities, can
vary in geometry and topology. For each of their feature classes, they present a linear-time
algorithm.

Graph Grammars. Methods based on graph grammars have been used both to recognize
features and to translate between different feature representations.

Chuang and Henderson [26] explored graph-based pattern matching techniques to classify
feature patterns based on geometric and topological information from the part. In later
work, Chuang and Henderson [27] were the first to note the need to address explicitly both
computational complexity and decidability when defining the feature recognition problem.
This paper formalized the problem of recognizing features (including compound features) by
parsing a graph-based representation of a part using a web grammar.
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~
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Figure 2.16: The representation of a slot using the augmented topology graph grammar from
CMU [141, 156].

Efforts at Carnegie Mellon University by Finger et al. [141, 156] have employed graph
grammars for finding features in models of injection molded parts. They define objects to
be elements in a language generated by an augmented topology graph grammar and
then use their graph grammar to parse a representation of an object. The advantage of their
graphical structure is that it contains both geometric and topological information (unlike
the structures of [39, 53, 91, 161]). This graphical structure, as shown in Figure 2.16, can
also be used to define general features. A grammar can then be defined to describe the class
of objects that can be generated with a specific set of features. To recognize the features, the
grammar is used to parse the object. The grammar is used to produce the object in much the
same way that a computer language compiler uses a grammar to determine if the program
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it has been given is in a specific computer language [2]: as the object is parsed, information
about the features can be produced. Extensions of these concepts to the problem translation
between differing feature representations can be found in [151].

This approach has many attractive properties, among them the ability to define the
needed features and the use of a formal graph grammar for describing a language of shapes.
The use of a graph grammar to parse an object creates its own computational complexity,
however, because of the pattern searching required for parsing. Feature interactions are not
addressed and the scope of the work is limited to injection molding.

2.2.4.3 Volume Decomposition

Geometric algorithms for finding convex hulls have been employed to decompose polyhedral
parts and identify form features. In an early effort along these lines, Woo [208] proposed a
method for finding general depression and protrusion features on a part by decomposing the
convex hull of the solid model. The approach had several problems, including the existence
of pathological cases in which the procedure would not converge. The non-convergence of
Woo’s approach has been solved in recent work by Kim et al. [102, 103, 204, 136], whose
system produces a decomposition of the convex hull of a part into general form features.
Kim’s approach uses convex volume decompositions to produce alternating sums of volumes
and techniques for partitioning the solid to avoid non-convergence. Kim further improved
the approach by performing additional mapping of the found volumes to machining features.
Extension of this method from polyhedra to the more general surfaces required for realistic
parts is currently under investigation [123].

In other work on volumetric approaches, Sakurai and Chin [159] propose an algorithm
for recognizing general protrusions and cavities through “spatial decomposition and compo-
sition.” The method generates alternative features and, although able to handle intersecting
features, is computationally expensive and may generate very large numbers of alternative
features. However, it is limited to a domain of polyhedral parts with orthogonal faces and
it does not provide a means of grouping features into feature-based models.

More recently, Sakurai and his colleagues refined this cellular decomposition approach [158,
160, 159, 157, 38]. Such methods are computationally expensive, often producing a large
number of cells with a large (often exponential) number of ways for them to be combined into
features. They have several advantageous properties, however, including that they can be
employed to produce alternative feature decompositions and, in the case of machining, that
the cells can be used to generate many of the tool paths of interest in planning applications.

Efforts along similar lines have been undertaken at Arizona State University [169] and
at the University of Texas at Austin [28]. The work at ASU uses a decomposition approach
based on half-space partitioning. The primitive cells created by this process are then cate-
gorized using a degrees-of-freedom (DOF) analysis, wherein each cell is considered relative
to the possible machining directions on a three-axis machining center. This DOF approach
has several computational drawbacks, among them that it appears to be computationally
intensive, as pointed out by Han and Requicha [74]. Further, is it unclear as to how these
degrees of freedom, often presenting infinitely many selections for possible operation setup
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directions, will be resolved into a finite number of tractable possibilities. For example, deter-
mining tool accessibility might require extensive boolean operations with the part (in order
to determine interference) throughout many different possible degrees of freedom. The work
at UT Austin formalizes a variation on the Sakurai approach to generate a decomposition
in terms of maximal cells.

One limitation common to the decomposition approaches is that they appear to be exclu-
sively applicable to material removal operations in the machining domain. It is unclear how
such techniques can be adapted to deal with the features that occur in other manufacturing
domains, such as assembly planning, sheet metal bending, casting, forging etc. A second
limitation can be found in the complexity of the parts these approaches can handle: in all
of the above cases, the domain is confined to polyhedra or planar and cylindrical surfaces.
How these approaches can be modified to handle many real-world problems, where the parts
might be manufactured with multiple processes (e.g., casting and then machining) and might
be composed nearly entirely of curved surfaces is unclear. Thirdly, none of these approaches
considers the constraints imposed on features by the cutting tools, in particular features may
have unmachinable corners or might be inaccessible.

2.2.4.4 Knowledge-Based and Rule-Based

Expert systems are used to automate deductive reasoning tasks requiring expert knowledge.
The goal is to encode the knowledge and experience of an expert into rules. Given a set
of facts, the rules can be used to reason about the domain. A mechanical engineer must
analyze a solid object to determine how to manufacture it; therefore, feature recognition can
be viewed as the creation of an expert system to reason about the manufacturability of a
solid object.

Henderson, in his 1984 Ph.D. thesis [77], created an expert system in Prolog to perform
feature recognition. In this system, rules are used to define feature instances. For example,
one possible definition for a hole is as “a cylindrical surface with an open top and open
bottom.” The feature rules become a part of an expert system that interacts with the
CAD database. The process of feature recognition is performed by applying the rules to the
database and letting Prolog’s theorem prover determine feature instances. This approach
was the first to employ an expert system to perform feature recognition.

An important aspect of Henderson’s work is the attempt to create general rules. The idea
is that the basic concept of “hole” remains unchanged despite the large, possibly infinite,
variety of variations of specific instances. The system contains definitions for classes of
2%—dimensional features including holes, slots, and pockets.

As the approach is detailed in the thesis, however, no attempt is made to deal with
the feature interactions and the system is restricted to 2%—dimensional parts. The Prolog
rules defining the features rigidly specify each class of feature—hence each new feature type
requires additional rules. Expert systems have proven effective tools for creating systems with
large feature vocabularies. As these vocabularies grow, so does the time needed for Prolog to
perform the search. For expert-system-based methods to deal with feature interactions, rules
need to be given to specify all types of interactions-—including interactions among feature
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classes and interactions between specific instances. Expert systems perform well with limited
sets of features and possible interactions but require large amounts of special-case information
to be feasible for more realistic applications.

Dong [41, 42, 43] pursued the development of feature recognition by frame-based rea-
soning to facilitate computer-aided process planning from a CAD system. To address this
problem, he presented a prototype frame-based knowledge representation scheme for features
and parts, along with a rudimentary feature description language. Dong’s approach included
the ability to construct volumetric features from surface features and perform an analysis of
tool accessibility. Using this knowledge representation, algorithms were developed to trans-
late the solid model into the frame representation and recognize a set of eleven feature types
from four feature classes. These eleven feature types are explicit manufacturing features that
can be employed directly in the process planning system. The significance of this work lies
not as much in its contributions as a feature recognition system, as it does in its recognizing
of features adequate for interpretation with a process planner. The frame-based approach is
novel; however, it remains unclear how feature interactions would affect the system’s ability
to find adequate feature information to facilitate process planning.

Marefat et al. [117] developed a formal feature recognition method based on Dempster-
Schaffer theory and hypothesis-testing techniques. A key component of their work is an
aggressive approach to handling feature interactions and intersections as well as proofs of
the completeness of their feature generation hypotheses. Marefat’s method builds on the
representation scheme of [91] and uses a novel combination of expert system and hypothesis
testing techniques to extract surface features from polyhedral objects. In arguing that the
approach is complete over its class of polyhedral features, Marefat was the first to attempt
to prove that an algorithm was capable of generating all features in a defined class that can
be found from the geometry of a part.

In a recent follow-up effort to the work of Marefat, Trika et al. [196] extend and improve
some of Marefat’s original results and address completeness over a domain of iso-oriented
polyhedral parts.

The most comprehensive approach to date for recognizing machining features and han-
dling their interactions has been the OOFF system (Object-Oriented Feature Finder) of
Vandenbrande and Requicha [200, 202, 201, 203]. Vandenbrande’s thesis [201] advocates
a sophisticated approach to feature recognition involving a variety of artificial intelligence
and computational geometry techniques. Vandenbrande’s work, using a knowledge-based
approach like Dong’s, provides a framework for recognizing a significant class of realistic
machining features of interest for process planning via a frame-based reasoning system in
combination with queries to a solid modeler. The goal of the work is to generate a feature
description of an object that satisfies rigid machinability requirements.

Features are built by searching the boundary representation of the object for hints. A
hint for a type of feature can be thought of as a byproduct of the feature being present in
the object. For instance, a cylindrical surface can be a hint for the existence of a hole; a slot
hint can be two parallel surfaces as shown in Figure 2.17. If the recognition algorithm finds
a cylindrical surface, it may indicate the existence of a hole. The recognizer collects all the

39



Figure 2.17: The highlighted parallel planar faces are a “hint” at the existence of a rectan-
gular slot as described by Vandenbrande [201].

hints that exist in the object and categorizes them based on how promising they are.

The hints are extracted from the solid model and classified as to their potential for
building a feature instance; unpromising hints are discarded. A frame-based reasoning system
then acts on the hints and attempts to complete a feature frame including the information
needed to construct geometrically maximal feature instances and build a set of features
compatible with the hints. One of the fundamental contributions of Vandenbrande’s work
was a formal method for representing interactions among the features by calculating the
“required” and “optional” volumes for each promising feature instance. Primitive features
can be combined into composite features that have manufacturing significance.

This approach also allows the recognizer to deal with feature interactions in a more general
manner because hints deal with the features on a more abstract level; thus interactions can
be dealt with based on the hints. The hints, however, are actually special cases themselves:
to add more features you need more hints and more rules for combining the hints. The
approach based on a set of 2%—dimensional features—no provision is made for the inclusion
of other feature types. The approach also produces some alternate feature interpretations;
however, the generation of alternatives is not well controlled nor is the class of alternatives

produced by OOFF specified.

2.2.4.5 Hybrid Approaches

The recent work of Laakko and Mantyla [110] couples feature-based design with feature
recognition to provide for incremental feature recognition. This type of approach recognizes
changes in the geometric model as new or modified features while preserving the existing
feature information. The approach also provides for some forms of customizability by using
of a feature-definition language to add new features into the system.

To address the combinatorial complexities of feature recognition for realistic artifacts,
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recent work by Gadh and Prinz [58] describes techniques that abstract an approximation
of the solid model and extract features from the approximation. They were the first to
describe techniques for combating the combinatorial costs of handling complex and realistic
industrial parts (i.e., those with thousands of topological entities). They point out that, in
such cases, traditional knowledge-based, decomposition, and pattern-matching techniques
are computationally impractical because the fundamental algorithms (i.e., forward chaining
in a frame-based reasoning system or subgraph pattern matching) are inherently exponential.

Gadh and Prinz’s method abstracts an approximation of the geometric and topological
information in a solid model and finds shape features in the approximation. Their approach
employs a differential depth filter to reduce the number of topological entities. A second
pass maps the topological entities onto structures called “loops.” In their work, features are
defined using the high-level loops rather than as patterns in the boundary representation’s
geometry and topology. This approach significantly reduces the number of entities that
need to be searched in order to build feature instances. While their of approach holds
much promise for addressing combinatorial problems, they do not address how to extend
the techniques to better handle interacting features and more non-linear (non-faceted) solid
models.

2.2.4.6 Human Supervised/Assisted

When feature recognition has made it into commercial software tools it has been in the
form of human supervised feature identification. The basic idea is to have the computer
aid the human process planner (for example) in choosing the features. Once a suitable set
of features has been selected by the user, the process planning tool can generate operation
sequences. This approach is adopted by Van Houten in the ICEM-PART [198, 29] process
planning system. PART supports more than 30 feature types, each classified as face sets or
face patterns. PART first makes an attempt to automatically identify features in the CAD
model using a graph-based method. The automatically generated feature set serves as a
starting point for the user who then interacts with a feature editor to add, delete or modify
features in this set prior to using it to generate a process plan.

2.2.4.7 Other Approaches

Other feature recognition work that does not fit directly into any of the above categories
includes some recent work with neural networks. In particular, Peters [138] describes tech-
niques for training neural networks to recognize feature classes that can be customized by
the end user.

Prabhakar and Henderson [142] described the use of neural networks to recognize and
classify features for a domain of polyhedral objects. A strength of this approach is that they
exploit the trainability of a neural net to incorporate new feature types. Further, neural
nets have been demonstrated to be effective in classifying patterns in domains where there
is “noise.” This noise is in the form of incomplete or missing feature data lost due to feature
intersections and interactions.
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The limitations of this connectionist approach include slow recognition speeds, difficulties
in distinguishing between topologically similar features, and the fact that it has only been
tested in a restricted domain.

2.3 Other Relevant Work

In this section we review several research areas in which feature recognition has significant
impact and utility. Traditional feature recognition application areas such as part coding
and process planning are no longer alone. Feature recognition and translation is becoming
a crucial element for a variety of systems and applications—each with its own special set of
requirements. We review some of these areas and their issues below.

2.3.1 Part Coding

As noted earlier in Section 2.2.4, a frequently addressed application for feature recognition
has been the automated generation of group technology (GT) part codes. The basic idea
group technology is to develop a systematic means of categorizing things that are “similar”
from a manufacturing point of view. By analogy, group technology attempts to do for man-
ufacturing what the biological classifications genus/species/phylum do for the categorization
of living things. As noted in [25], group technology can be defined as the science of grouping
similar problems with the objective that, by drawing on the knowledge of similarity, one can
devise a single solution for sets of problems, thus saving time and effort.

Feature recognition has been applied to this problem with the idea that, if one can
generate feature data about a part, one can classify it based on the manufacturing operations
that will probably be used to produce the features. This was the objective of one of the
first feature recognition methodologies, that of Kyprianou [109]. More recently Ames [10]
describes a large-scale effort employing expert systems.

2.3.2 Process Planning

Automated process planning is one of the key elements required to seamlessly integrate CAD
and manufacturing [9]. Numerous efforts have been made to automate process planning for
machined components [35, 9, 20, 24, 130, 69, 206, 198]. Over the course of this research,
two dominant approaches to computer-aided process planning (CAPP) have emerged: the
variant approach and the generative approach.

In the variant approach, a process plan for a new part is obtained by retrieving an existing
plan for a similar part from a corporate plan library. This existing plan is then modified
for use with the new part. In the generative approach, new process plans are created from
scratch using knowledge about the manufacturing processes and procedures that capture the
planning task.

The process planning task involves a variety of related activities, including: selection
of machining operations, cutting tools, tool assemblies, and machine tools; calculation of
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setups and fixtures; selection of cutting parameters; sequencing of operations; part routing;
and toolpath generation. As expected, all of these activities are intimately inter-related and,
for the most part, cannot be executed independently. Several iterations are usually required
to find an optimal process plan.

Identification of machining features from the CAD model of a part is one of the criti-
cal functions prior to planning. The set of recognized features completely determines the
machining operations that get selected and, in turn, the set of plans that can be generated.

Although significant progress has been made in CAPP, there does not yet exist a com-
pletely automated planning system capable of handling moderately complex real-world parts.
For more information on CAPP and a literature survey on plan generation, readers are re-

ferred to [9, 24, 206, 25].

2.3.3 Manufacturability Evaluation

Manufacturability evaluation and analysis involves the identification and diagnosis of man-
ufacturing problems during the design phase. The fundamental goal of such systems is to
interactively, while the designer creates a design, analyze its manufacturability with respect
to the manufacturing domain at hand and to offer advice about potential ways of improv-
ing the design. A computer-aided manufacturability analysis tool can be used to assess the
manufacturability of a design and calculate an estimate of the production cost and time. In
doing so, problem design elements can be identified and suggestions can be made for changes
to the design that improve its manufacturability.

In this application domain, feature recognition is used to construct feature instances
from the data in the CAD model. This feature information is used to generate alternative
interpretations of how the design might be manufactured; these are then used to estimate
feasibility and machining cost and to generate feedback to the designer. In addition, the
features constructed by a recognition system may be used to ensure that the available pro-
cesses and facilities can satisfy the manufacturing constraints of the design. For example,
there must be a set of features that can be used to generate a sequence of machining op-
erations, meet the tolerance requirements of the design, and ensure that, at each step, the
intermediate workpiece geometry is suitable for fixturing and setup.

Gupta et al. [67] describe a methodology for early evaluation of manufacturability for
prismatic machining components. Their methodology identifies all machining operations that
can be used to create a given design and, using those operations, generates different operation
plans for machining the part. Each operation plan generated is examined for whether it can
produce part’s shape and tolerances. If the plan can create the part, a manufacturability
rating (based on estimated machining time for the part) for the plan is calculated. If no
operation plan can be found, then the given design is considered unmachinable; otherwise,
the manufacturability rating for the design is the rating of the best operation plan.

For a survey of recent literature in the area of computer-aided manufacturability analysis
for a wide variety of manufacturing domains, readers are referred to [66].
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2.3.4 Automated Redesign

Automatic generation of suggestions for redesign goes hand in hand with manufacturability
evaluation. For a manufacturability evaluation tool to be effective, it is not adequate for
the tool to simply produce a rating component and a list of manufacturing problems. Many
designers are not manufacturing specialists, and they might not be qualified to identify
how to correct the problems noticed by a manufacturability evaluation system. This is
particularly true in cases where the part is manufactured by multiple manufacturing methods
or is produced by a supplier. To address such problems, it is emerging that manufacturability
analysis systems will need the ability to generate redesign suggestions.

Traditionally, the redesign process has been manual task, however automated systems
are beginning to appear. Most existing approaches for automated generation of redesign
suggestions [167, 84, 86] propose only local geometric design changes (e.g., changes to the
parameters of individual features), and some [76] present completely redesigned parts. Be-
cause of interactions among features, however, it is sometimes impossible to arrive at an
improved design without carefully choosing a combination of modifications.

Based on the manufacturability analysis methods of Gupta et al. [67], Das et al. [37, 65]
have created an approach for suggesting improvements to a given design to reduce the number
of setups required to machine a part. This involves using different machining operations to
satisfy the geometric constraints put on the part by the designer. These constraints are
based on the functionality of the part. Different modifications are combined to arrive at
redesign suggestions.

With automated redesign, feature recognition might be employed to generate a set of
alternative features—features that might not occur in the best plan but which might provide
some starting points for reasoning about how the design might be modified.

2.3.5 Design for “X”

The Design for Manufacture and Assembly (DFMA) methodology has been promoted
as an effective way to identify and eliminate the manufacturing problems during the design
stage. In DFMA, all of the design goals and manufacturing constraints are considered simul-
taneously and analyzed over the life cycle of a product. Manufacturing, however, consists
of activities in many different domains, each having different characteristics. A design that
is good for one domain may not be suitable in another. For example, a design that is easy
to assemble may not be easy to machine. Consideration of these types of constraints starts
at the conceptual design stage and continues through the embodiment and detailed design
phases. Such analysis results can identify design elements that pose problems for manu-

facturing and suggest changes to address them. Figure 2.18 graphically presents the basic
concepts behind DFMA.

There have been a variety of approaches to implementing the DFMA methodology, rang-
ing from building interdepartmental design teams to equipping designers with manufac-
turability checklists. The pioneering work of Boothroyd and Dewhurst [15] in establishing
design-for-assembly guidelines has led to the development of several automated advisory sys-
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Figure 2.18: Design for Manufacture and Assembly: dealing with manufacturing life-cycle
considerations during the design phase.

tems [88, 83]. Boothroyd [16] presents a review of DFMA methodologies in use at different
companies.

With the advent and popularity of various CAD tools, there has been increasing interest
in supporting DFMA through intelligent CAD systems: as a designer creates a design, a
number of critiquing systems analyze its manufacturability with respect to different manu-
facturing domains (example manufacturing domains include machining, fixturing, assembly,
and inspection) and offer advice about potential ways of improving the design.

Recently there has been a proliferation of tools for critiquing various aspects of a design
(performance, manufacturability, assembly, maintenance, etc.). In many respects, DFMA is
leading the way toward design for “X,” (DFX) where “X” might represent any potential
product life-cycle consideration (i.e., any “-bility”). By taking into account other life-cycle
considerations, more comprehensive analysis of a product can be performed [87, 85]. One
major obstacle to DFMA /DFX is the immense complexity and difficulty involved in building
a single system that can handle all manufacturing domains and all life-cycle considerations.

In this general DFX scenario, the role of feature recognition is to facilitate communication
between the design and each manufacturing and life-cycle “view” of the design. For exam-
ple, one feature recognition module might map the design to machining features to analyze
manufacturability and perform process planning; a second feature recognition module might
find surface features for fixturing and assembly planning; a third might communicate with
simulation and analysis software to identify inefficiencies in the product’s performance and
how they relate to the shape of the design. In DFX, features come from a variety of man-
ufacturing domains and from different stages in the manufacturing life cycle—this presents
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great challenges to current CAD-based feature recognition technology.

2.4 Discussion: Research Issues for Feature Recogni-
tion

This section critically analyzes the previous research work in automated feature recognition.
In particular, we focus on some of the key research issues that have not been adequately
addressed in the current literature.

What is evident is that feature recognition has emerged as a critical research area in
CAD/CAM integration and many different approaches have been developed over the last
decade. Feature recognition is a problem of how to reason about shape. Based on the
information in the existing literature, several crucial research issues are evident. The items
on this list are highly inter-related; in addition this list is by no means exhaustive. It does,
however, contain the points most relevant to the work in this thesis:

Developing a problem specification. One may argue that “producing a feature de-
scription of an object for manufacturing” serves as an adequate definition of the problem;
however, as noted there is currently no clear definition of “manufacturing feature” [171].
Theoretically, there are infinitely many and in the absence of some formalization for the fea-
ture recognition problem it is difficult to characterize what systems actually do. Without a
precise statement of the problem it is impossible to judge the effectiveness of any algorithm.
This absence has tended to create ad hoc solutions with algorithms that are collections of

special cases designed to deal with each feature and each interaction in isolated application
domains.

Feature interactions. When features intersect with each other, this changes their topol-
ogy and geometry in ways that can be difficult to take into account. Hence, it is often unclear
what specific classes of parts and feature interactions can be handled by various existing ap-
proaches. The ability to handle interacting features has become an informal benchmark
for feature recognition systems and has been the focus of numerous research efforts, among
them [41, 58, 91, 117, 200].

What has emerged are several distinct types of feature interaction problems. One type is
interaction during feature recognition, where an instance of one feature removes information
require for the recognition of another. A second type of feature interaction is dependent on
the manufacturing process. For example, in machining quite often operations interact—i.e.,
the presence of a certain operation affects the manufacturability of some other operations.
Exhaustively enumerating all possible interactions can result in a large number of rules and
make rule-based approaches unattractive. The part in Figure 1.3 (a) presents an example
containing interactions at both levels. Figure 1.3 (b) shows one feature instance that should

be found to perform effective planning; however, it is unclear how to generate this volume
from the information in the part.
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It has proven difficult to categorize and control which interactions are handled [200]
and how; most current approaches rely on simple case-by-case or implementation-specific
heuristics. A simpler and more general approach is needed.

Finding alternative feature interpretations. For machined parts, quite often a part
has more than one valid interpretation. In most downstream applications it is important
to be able to consider all feasible feature interpretations. This requires that alternative
interpretations be generated as different collections of features. Most earlier research in
feature recognition and process planning focused on generation of a single interpretation.
Most existing systems focus on generating the optimum plan for individual features and
many have limited capability to identify and account for feature interactions.

Recently, generation of alternative interpretations has received a great deal of research
attention:

e Maintyla et al. [115] proposed the concept of feature relaxation to support the idea
of design by least commitment. The feature relaxation groups are pairs of geometric
features that are interchangeable.

o Karinthi [96, 98, 95] performed the first systematic work on the generation of alterna-
tive interpretations for an object as different collections of volumetric features. They
presented a means of computing the alternate interpretations of parts using an algebra
to operate on the features.

e The AMPS process planning system [24] uses feature refinement heuristics to com-
bine features into more complex configurations, or to divide features into multiple
primitive features. Since the techniques are based on heuristics, it is not entirely clear
when (and which) alternative interpretations will be produced.

o In feature recognition work by Sakurai [160], the volume to be machined is decomposed
into cells. Exhaustively, each combination of cells is then matched against user-defined
feature templates. While the method is capable of generating all alternative feature
interpretations composed of the primitive cells, it does so at a large combinatorial cost.

e Waco and Kim [204] have extended convex decomposition techniques to produce alter-
native decompositions of the removal volume through aggregating and growing form
feature primitives.

o Vandenbrande and Requicha’s OOFF System [200] produces alternative features in cer-
tain cases—however, there is no specific definition for this class of alternatives. OOFF’s
class of alternatives is dependent on the process planning heuristics that are used to
make decisions about which features to keep and which to discard as unpromising.

What has emerged is that there are two distinct ways in which feature recognition can
be used to generate alternative feature-based models (FBMs) from a single CAD model.
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1. Generating FBMs Directly. In this approach, feature-based models are gener-
ated “on the fly,” as the feature instances are recognized. These approaches typically
produce a single feature-based model for the given part. In this approach, whenever
alternatives are encountered, a decision is made “on the fly” using a greedy heuristic
to select the most promising feature or to discard others. Such greedy heuristics con-
sider only the current feature in relation to the part (and sometimes the stock) and
those features found up to that point in the recognition process. In this way, features
are discarded based only on partial information and a potentially useful feature-based
model could be eliminated from consideration.

This approach has several drawbacks. First, until we have information about all of the
other features that might be in the feature-based model, applying a greedy heuristic
to build the model on a “best-fit” basis may require extensive backtracking to produce
optimal results. Second, including domain-specific evaluation criteria as part of fea-
ture recognition introduces many difficulties. Hence, this approach is not appropriate
for complex parts with a large number of alternative feature-based models. This is
addressed in more detail in Chapter 4.1.

2. Generating feature-based models from a Feature Set. In this approach, two
steps are used to generate feature-based models:

(a) Recognize a set of alternative features. From the given part, first recognize
a set of alternative features. Note that, at this level, all the features that appear
promising are retained in this set of features.

(b) Generating and evaluating alternative feature-based models. Once we
have recognized a set of alternative features, we can generate feature-based models
from this set. Intuitively, one can think of the set of alternative features found
through feature recognition as vectors forming a basis for the “feature space” of
the given part. Knowing a good set of spanning features allows us to better define
upper and lower bounds so that the evaluation functions can navigate efficiently
through the space of feature-based representations.

For parts with many different feature-based models this latter approach appears more
promising. Previous research, however, has nearly exclusively addressed the former approach.
In addition, it is clear that feature recognition shares an intimate relationship with process
planning even though most systems continue to work with purely geometric information.
Whenever alternative interpretations (alternative potential plans) are present, in the absence
of full information about the complete set of alternative features, arbitrary choices are made
among various possible alternatives.

CAD/CAM integration. As was illustrated in Figure 1.1, feature recognition is the in-
terface between design and downstream applications. In order to perform reliable planning,
manufacturability analysis, redesign, or DFX, feature recognition must be capable of gener-
ating all promising interpretations for the design. In certain cases, the set of valid feature
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instances could be infinite or, at the very least, few of these valid feature instances will
make practical manufacturing sense. In either case, there might be a very large number of
interpretations, making it infeasible to generate all possible plans.

For the approach based on a feature set to work effectively, we believe there needs to be an
improved definition for which features and feature-based alternatives should be recognized—
we must decide which instances to recognize. Whether or not a system produces correct
results will depend on the set of features used as a target in Step 1 and on knowledge that
the system is complete (as described below) over that set of features.

Further development of trace-based feature recognition. The work of Marefat and
Kashyap [117] presented an early trace-based technique where information from the solid
model is used to generate hypotheses about the existence of features. These hypotheses are
tested to see if they give rise to valid feature instances.

Vandenbrande and Requicha [200] were the first to formalize trace-based (or hint-based)
techniques for constructing features from information in a solid model. In the work of
Vandenbrande, the traces are used to fill “feature frames” in a frame-based reasoning system.
After filling frames with the trace information in the part, the system classifies the partial
frames and attempts to complete the frame information for those that appear promising,
using a variety of geometric reasoning and computational geometry techniques.

At USC, recent work by Han and Requicha [73] has enhanced Vandenbrande’s work and
integrated it with feature-based design through an incremental approach. At Purdue, Trika
has extended some of the results of Marefat. Aside from these two efforts, however, there
has been no additional activity in the area of trace-based feature recognition to improve its
underlying mathematical basis and enhance its ability to scale to real world problems.

Complexity. Computational complexity is a problematic issue for many approaches to
feature recognition. As with problems in computational intelligence, the computer time
grows tremendously when dealing with realistic situations [58]. The expense required to
maintain the rules or perform searches and geometric computations can be difficult to man-
age. Because these will eventually be desirable to represent, it is important to attempt to
measure computational complexity.

Existing methods make mention of complexity but rarely attempt to classify it. As
pointed out by Peters [139], both grammatical methods and some graph-based approaches
are prone to combinatorial difficulties. Some of the approaches that have incorporated com-
plexity measures [39, 55] are often representationally limited, covering a restricted domain
of parts (e.g., polyhedra) and/or feature types (e.g., not manufacturing process features).

For those approaches which employ expert systems and knowledge-based reasoning [41,
91, 117, 200], the inherent exponential nature of automated reasoning algorithms might im-
pede their ability to scale to more complex problems. Further complicating matters is the
fact that some approaches to feature recognition perform process planning “on the fly” as
features are recognized. In the presence of multiple alternatives, performing elaborate plan
optimization is computationally expensive and may result in time consuming analysis. Since
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design analysis is best performed interactively, response time is a significant concern. Thus,
for automated feature recognition, approaches should focus on quickly and efficiently produc-
ing a useful feature set, rather than on performing elaborate feature-by-feature optimization.

Handling real-world artifacts. Many approaches have proven difficult to extend to the
more complex surfaces and features found in realistic manufacturing problems. For example,
graph-based approaches [39, 91] began appearing in great number nearly a decade ago, yet
they continue to prove difficult to extend more complex feature types. Similarly, the feature
instances encoded with rule-based and knowledge-based systems are often only those for sim-
ple isolated feature instances or those with easily described interactions. Many approaches
are still struggling to come to grips with parts that contain non-planar faces.

In reality, commercial CAD and solid modeling systems have made huge advances in
representational ability. Existing feature recognition work is still mainly concentrated on
mid-1980’s solid modeling representations (polyhedra) and only on the most rudimentary
test parts (e.g., brackets with only a handful of isolated features).

In the future, fast and effective feature recognition will be required for parts comprised of
thousands of geometric and topological entities, hundreds of feature instances, and numerous
feature types. Current technologies based on form features may not prove to be highly
useful when faced with industry’s need to have information generated about features that
directly describe manufacturing processes. As more real-world shapes are incorporated,
computational complexity (as described above) will become increasingly problematic.

Completeness. Informally, when one speaks of the completeness of a feature recognition
algorithm, one is referring to the algorithm’s ability to produce all features instances from
some well-defined class of features and parts. Discussion of completeness was initiated with
the work of Marefat [117]

From a devil’s advocate point of view, one might claim that all feature recognition systems
are complete over something; i.e., they are complete over the set of features they can handle.
Unfortunately, such recursive definitions yield little information. What is evident is that a
main purpose of feature recognition (perhaps the main purpose) is to generate alternative
feature-based descriptions with which to reason about a design. In this context, complete-
ness precisely categorizes which features and feature-based models will be generated—and
hence which types of analyses using the features can be answered. Without some notion of
completeness, feature-based models are produced on an ad hoc basis.

What is needed is a means of illustrating that completeness can be attained over a class
of features that is useful for reasoning about manufacturing. Further, we would like to see
that completeness can be defined independent of the algorithm that recognizes the features;
i.e., first define the set of features of interest and then build the algorithm to recognize them.
This type of approach would stand in contrast to much existing work, which often defines
the feature types as by-products of what the algorithm is capable of generating (e.g., in
using a connected component algorithm, one is limited to features expressible as connected
components).
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We anticipate that an analysis of completeness can help to better define which aspects of
the feature recognition problem can be done automatically and which are best left to human
supervision.

2.5 Summary

While automated feature recognition has emerged as a critical technology, many approaches
that have been developed lack a consistent formalization of the problem—thus their overall
utility has been difficult to evaluate. Further, many approaches employ techniques that are
inherently limiting; either representationally or in terms of the computational complexity
of the reasoning and recognition algorithms. Few approaches have demonstrated the ability
to scale to real world artifacts and even fewer have presented concise mathematical means
with which to specify the domain of features, alternatives, and parts that they are capable
of handling.
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Chapter 3

Developing Feature Definitions

This chapter introduces a class of machining features and presents definitions for feature-
based models, primary features and well-behaved features.

3.1 Machined Parts and Machining Features

A common class of solids are those described by r-sets with manifold boundaries [116, 149].
In the context of this thesis, a solid is an r-set whose boundary representation is a manifold
consisting of analytic surfaces (e.g., planar, elliptical, toroidal, conical and spherical surfaces).
The boundary of a solid S, denoted b(S), is the set of 2D surfaces contained in the boundary
representation of S. A design is specified in terms of a solid model and associated design
attributes (such as tolerances, design features, and geometric and topological specifications)
that are to be realized through machining operations. In this thesis, we will focus on the
geometric and topological design attributes.

A machined part, P, is a solid object represented by a solid model of the part design
to be produced by a finite set of machining operations. For example, Figure 3.1(a) shows
a design for a simple bracket and Figure 3.1(b) shows a CAD model of the bracket design.
Machining operations remove material from a workpiece to create the design attributes
of the part. The initial workpiece or stock, S, is the solid object of raw material to be
acted upon by a set of machining operations generating features, (i.e., P C S as shown in
Figure 3.1(c)). As illustrated in Figure 3.1(d), the total removal volume is referred to as the
delta volume (A), and it is the regularized difference [81] of the initial workpiece and the
design: A = S —* P. Another design of a machined component is given in a later chapter
(see Figure 8.7).

In this thesis a machining feature, M, is a parameterized volumetric template that
represents the solid volume swept by a rotating cutting tool, such as those shown in Fig-
ure 3.2, during a machining operation. An instance of a machining feature, f, is created by
a specific machining operation with a single cutting tool in one tool setup. To perform a
machining operation, one sweeps the tool along some trajectory using a machining center
(such as the one shown in Figure 1.2). Ounly a portion of this swept volume corresponds to
the volume of material that can be removed by the machining feature—the portion swept out
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(a): design of a simple bracket (b): part (after machining)
(c): stock (before machining) (d): the delta volume

Figure 3.1: An example part and stock.
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(b): end-milling tool

Figure 3.2: An illustration of typical cutting tools as found in a tool catalog [164, 165]. The
variables refer to parameters in the specification for the tool which appears elsewhere in the
catalog.

by the cutting surfaces of the rotating cutting tool. This volume is called removal volume
of feature f and is denoted rem(f). The volume swept out by the non-cutting portion of
the tool is referred to as the accessibility volume, acc(f). The volumetric intersection of
the feature’s removal volume with that of the workpiece is the effective removal volume,
eff(f) = S N* rem(f). Feature accessibility and inaccessibility is discussed in greater detail
in Chapter 7.

Feature Validity. In machining there are many conditions under which a feature is invalid.
Many of these conditions can only be tested during the generation of a machining operation
plan. However, there are some basic criteria that invalidate features regardless of their role
in a particular operation plan. An instance f of a machining feature is valid if there exists
at least one correct machining operation plan that is realizable with available manufacturing
resources and that includes f; otherwise f is invalid. In particular, for feature recognition,
we will say that a machining feature is valid for a given part P if:

o4



|

(c): chamfering (d): filleting

Figure 3.3: Parameterized feature instances.

1. f creates some portion of the boundary of P (i.e., (b(rem(f))) N* b(P) # §)*;
2. f does not interfere with P (i.e., (rem(f)Uacc(f)) N* P = 0);

The set of all valid feature instances is called the valid feature set, V. Testing of these
feature validity conditions is addressed in more detail in Chapter 7.

Machining features are referred to in terms of the operations used to create them. For
each feature f in V, type(f) is f’s feature type. For example, we say that the hole % in
Figure 3.3(a) is an instance of a drilling feature. The pocket p in Figure 3.3(b) is an an
instance of an end-milling feature and is characterized by the edge profile bounding the
area swept by the milling tool.

In illustrations and figures of features in this thesis we adopt the conventions used by
Gupta [70]. Features are drawn as their total removal volumes, i.e., as they are swept by the
cutting portion of the cutting tool.

3.1.1 Definition of a Machining Feature Class

In a machining operation, a cutting tool is swept along a trajectory and material is removed
by the motion of the tool relative to the current workpiece. The volume resulting from a
machining operation is called a machining feature. A machining feature can be manufactured

INote that b(rem(f)) and b(P) are both 2D entities; hence their regularized intersection will also be a
uniformly 2D entity.
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with a single machining operation made on one machine setup. Each has has a single
approach direction (or orientation) for the tool, represented by a unit vector, @.

Features are parameterized solids that correspond to various types of machining opera-
tions on a 3-axis vertical machining center. The features described in this thesis are based
on Kramer’s MRSEV Feature Library, in particular hole, pocket, and edge-cut feature types.
For more information, including the full mathematical and EXPRESS language definitions
for the MRSEV features interested readers are referred to [108, 107].

Drilling Feature Milling Feature
location P
location P orientation v
radius r depth d
orientation ¢ edge profile E
depth d bottom blend biype, ba

island edge profiles [

e— & —»]

Figure 3.4: Classes of machining features: drilling and milling.

1. In order to create a drilling feature, we will sweep a drilling tool (such as the one
shown in Figure 3.2(a)) of radius r for a distance d along the trajectory represented by
its orientation vector ¢, ending at a datum point p, as shown in Figure 3.4. Thus,
the volume describing the drilling feature can be modeled as a parameterized volume,
as shown in Figure 3.3(a), formed by the regularized union of a cylinder of radius r
with a cone that represents the conical tip of the drilling tool. The conical tip has a tip
angle that describes the shape of the surface of the drilling tool end. We assume there
exists a finite number of possible tip angles based on the available drilling tools; for

simplicity all of the examples of drilling features shown in this thesis have tip angles
of 120, 90, or 60 degrees.
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Figure 3.5: Two other kinds of cutting tools for milling from tool catalogs: (a) a ball end-
mill that could be used to create milling features with round bottom blends [48]; and (b) a
face-milling tool [164].

2. To create a milling feature, we will sweep a milling tool (such as those shown in
Figures 3.2(b), 3.5(a) and (b)) whose orientation vector is ¥, starting at a datum point
p, and moving through a swept volume of depth d whose cross-sectional area is bounded
by an edge profile [108] E = {e1, eq,...€,}, as shown in Figure 3.4. An edge profile
is an ordered collection of co-planar edges that, when joined end-to-end, form a closed,
non-self-intersecting, continuous curve. Thus, the volume describing the milling feature
can be modeled as a parameterized volume, as shown in Figure 3.3(b).

In practice, it is impossible for a rotating cutting tool to sweep out a volume with
convex corners. The parameters above describe the profile of the effective removal
volume (eff(f)) for a milling feature; hence it is not required that all of the corners
be non-convex or round. As a result, the effective removal volume on its own does
not always correspond directly to the removal volume created by a milling operation.
Profile offsetting (as described in Section 7.4) is preformed to deduce the shape of
the removal volume rem( f) as swept by the tool from eff(f). This modifies the effective
removal volume so that it more directly corresponds to the milling operation.

The parameters for milling features also include:

e Within the area bounded by the edge profile E there may be a finite set I of zero
or more islands. Each island 7 in I is bounded by its own edge profile E;.

e Depending on the shape of the milling tool, there may be a transition surface
between the bottom face of the milling feature and its side and island faces.
There are three possibilities for the shape of this transition surface, as shown
in Figure 3.7. To represent which of these shapes a milling feature has, we will
associate an optional bottom blend type by, and dimension b; with the feature.
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(a):pocket-milling feature (b):face-milling feature

(c):step-milling feature

Figure 3.6: Subclasses of milling features based on the type of edges in their edge profiles.
The corners of the features are curved to take into account the radius of the cutting tool
used to machine them. Arrows indicate feature orientation.
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(a): round blend (b): flat blend (c): no blend

Figure 3.7: Types of bottom blends: transition surfaces between side and bottom faces of
milling features.

The shape and dimensions of blend surfaces are highly dependent on the shape
and dimensions of individual cutting tools. This topic is discussed in more detail
in Chapter 7.

The edges in the profile of a milling feature can be classified as open or closed.
Suppose f is a milling feature with an edge profile ' and e is an edge in the profile.
Then each edge € of F is a subset of the boundary of some side face s of milling feature
f, where s is the face formed by sweeping e along the orientation vector of the profile.
We classify e is as closed edge if the interior of s intersects with the part boundary or
if e is a concave edge on the part P. Otherwise, ¢ is an open edge. Figure 3.8, from
Gupta [70], shows three examples of milling profiles along with the edge classifications
of each profile.

Intuitively, open and closed edges attempt to categorize the nature of machining a
milling profile, during which the cutting tool cannot cross any closed edge. Crossing a
closed edge implies that the tool is gouging into the final part shape. Crossing an open
edge, on the other hand, is usually permissible and amounts to tool motion outside the
workpiece.

In this thesis we adopt the convention used by Gupta [70] with regard to listing edges
in an edge-loop: edges in an outer edge-loop are listed clockwise and the edges in any
inner edge-loops are listed counter-clockwise. Hence, if traveling along the edges of
any edge-loops in a milling profile, the material removed during the milling operation

will be on the right side of the edges.

Milling features can be partitioned into three subclasses, depending on which edges of
E are open and which edges of F are closed:

(a) Figure 3.6(a) shows an example of a pocket-milling feature. For this subclass
of milling feature each edge in the edge profile E is closed.

(b) Figure 3.6(b) shows an example of a face-milling feature. Face-milling features
are often machined with special face-milling cutting tools, such as the one pictured
in Figure 3.5. For this subclass of milling feature there are no islands or bottom
blends and all of the edges in the edge profile £ are open.
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(a)
Figure 3.8: Examples of edge classification from [70]. Closed edges are drawn with solid
lines; open edges are drawn with dashed lines.

(c) Figure 3.6(c) shows an example of a step-milling feature. For this subclass of
milling feature at least one, but not all, of the edges in F are open.

3. To create a chamfering feature we will sweep a chamfering tool such as the one
shown in Figure 3.9(a) with orientation vector ¥. The sweep will start at a datum
point p and move at a depth d along a trajectory described by an edge profile £ =
{e1,€2,...€,} of straight and elliptical edges, as depicted in Figure 3.10. Thus, the
volume describing the chamfering feature can be modeled as a parameterized volume,
as shown in Figure 3.3(c). The parameters for this volume also include the cutting
tool’s tip angle a? and an optional end radius r., to denote the conical surface that
might be left at the start and end of a chamfer.

4. To create a filleting feature we will sweep a filleting tool such as the one shown in
Figure 3.9(b) with orientation vector ¥ and radius r. The sweep will start at a datum
point p, and move along a trajectory described by an edge profile E = {ey, ez,...€,} of
straight and elliptical edges, as depicted in Figure 3.10. Thus, the volume describing the
filleting feature can be modeled as a parameterized volume, as shown in Figure 3.3(d).
Note that each edge e in the edge profile £ bounds a curved surface of radius r that is
tangent to the orientation vector ¢’ at the edge e.

The parameters for this volume also include an optional end radius r., to denote the
toroidal surface that might be left at the start and end of a fillet. We will assume that
there is a finite set of available tools, each with fixed radii.

2We assume that there are one or more tools available with a 45 degree tip angle. The bounds on tooling
parameters is discussed in Chapter 7.
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(b): filleting tool

Figure 3.9: Other cutting tools for chamfering and filleting [48].

For drilling and milling features it is possible for a given feature instance to extend
completely through the stock material. In this thesis, these feature instances will be called
through features. An example of a through feature (a through hole) can be found in
Figure 3.1(a). Features that do not extend through the part (e.g., those with bottom or
ending surfaces) are called blind features.

In practice, chamfering and filleting features occur in the final stages of machining. One
application of these types of features is to make minor modifications to the part surfaces
to facilitate assembly operations. The edge profile for chamfering and filleting features is
slightly different than that for end-milling features. Whereas for end-milling features the
tool sweeps out the entire 2D cross-section inside the profile, for chamfering and filleting
features the profile defines the path of the tool along the edges of the workpiece that are
being modified. An example of a part with a chamfered surface is shown in Figure 3.11.

Feature Instances. The machining features defined above are parameterized solids. A
specific instance is defined by assigning a specific attribute values. For example, suppose we
choose the following attribute values for a drilling feature:
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Chamfering Feature Filleting Feature

location P .
. . - location D
orientation v . . =
orientation v
edge profile E .
radius r
depth d edge profile F
angle a gep

. end radius .
end radius r,

location = (16,10,4);
orientation = (-1,0,0);
depth = 16;
radius = 4.

This would define the conical-bottomed hole illustrated in Figure 3.12(a). Similarly, the
following values would define a pocket with a single island as pictured in Figure 3.12(b):

location = (0,0,1);

orientation = (0,1,0);

depth = 2

profile = {ei, ez, €3, €4, €5, €6, €7, €5, €9, €10, €11 };
islands = {hL};

profile I, = {612, €13, €14, 615};

height I, = 2.
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Figure 3.11: A part with a chamfer feature, the ANC101 test part from the CAM-I consor-
tium (note the chamfered edges of the middle protrusion).

3.2 Feature-Based Models for Machining

A feature-based model (FBM) is a finite set of valid feature instances of machining features
F={f1, f2, f3,--., fn} that describes operations that can be used to create a part P from a
piece of stock material S. The features in F' describe the volume of material to be removed
by the machining operations that create a part P from a piece of stock S. More specifically,
an FBM is any finite set of machining features with these properties:

1. Sufficiency: the features in F' describe one possible way to machine P from S:

S —*P C | rem(f).

fEF

2. Necessity: no proper subset of F' can be used to machine P from S, i.e., Vf; € F':

S—*Pg |J rem(f).

fe(F-{£.})

In this way, an FBM does not contain redundant features and each feature of F' con-
tributes to the interpretation of the part.

3. Validity: as defined previously in Section 3.1. In general, validity would require that
f meets machinability requirements such as those for accessibility, fixturability, and
tolerances. Development of a general methodology that simultaneously considers all
of these issues is beyond the scope of this thesis. Testing feature validity criteria is
discussed in more detail in Chapter 7.
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(a) An instance of a drilling feature. (b) An instance of a milling feature.

Figure 3.12: Example instances of drilling and milling features.

An FBM can be thought of as a high-level, unordered machining operation plan. Note that
there may be many FBMs of P and S, each corresponding to a different interpretation of the
part P as a set of machining features F'. F' need not model the optimal way of machining
the design as there may exist many alternatives, each corresponding to a different collection
of machining operations that could be used to produce the design from a given piece of stock
material. By analogy, just as a solid model provides a unique description of the geometry
and topology of an artifact, a feature-based model provides a machining features description
of a part.

For a downstream manufacturing application, generation and evaluation of machining
plans is performed by generating FBMs and determining possible orders in which the features
in the FBM might be machined. Since each FBM is basically a volumetric set cover of the
delta volume produced from the feature alternatives, models can be generated with variations
on set covering techniques [147, 137], using pruning heuristics to discard unpromising FBMs.
This was the approach taken to manufacturability by Gupta [70].

3.3 Primary and Well-Behaved Machining Features

For arbitrary manufacturing domains, the set of all valid features V can be unmanageably
large (even infinite). Hence it is necessary to isolate a set of representative feature instances
from the set of possible valid features. In particular, we define the set of primary features
by imposing restrictions on the set of possible features. It has been shown that by manip-
ulating primary features, one can generate and reason about the other feature instances of
interest [70].

For an arbitrary part P there exists a set of valid features V. One immediate observation
is that given two features f and g in V, if f’s effect on the workpiece is subsumed by g¢’s
effect on the workpiece, then f can be ignored. We define a relation < among machining
features as:

f =g = rem(f)N* S Crem(g)N* S
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Specifically for the feature types in M this implies:
e Drilling: ¢ has a depth and a radius greater than or equal to those of f;

e Milling: the 2D surface defined by the edge profile of g contains the 2D surface defined
by the edge profile of f;

e Chamfering and Filleting: ¢’s edge profile contains the edge profile of f.

Intuitively, these conditions imply that f can be replaced with ¢ in any feature-based model
that contains f. Given a set of valid feature instances, one can use the relation < to determine
which features to keep and which to discard.

We can also use < to isolate which features from V are most suitable for generation and
evaluation of feature-based models, as discussed in Section 3.2. In particular, we can use <
to partition V into disjoint classes of equivalent features by building an equivalence relation
on V. Two features f and ¢ are equivalent (f ~ g) if there exists a valid feature h of the
same type and setup orientation as both f and ¢ such that f < h and g <X h.

Proof that ~ is an equivalence relation on V:

o Reflexive: f ~ f follows from the definition of <.

e Symmetric: Given that f ~ g, we know Jh such that f < h and ¢ < h; using the same
h,g~f.

e Transitive: Given that f ~ ¢g and g ~ h, show f ~ h.
Proof of transitivity:
f ~ g = Jisuch that f <¢and ¢ <
g ~ h = 31’ such that ¢ < ¢ and h <¢’
We must show that there exists a feature j such that f < j and h < 3.
There are three cases, if f and h are

— Drilling features: then h is deeper and larger than g, therefore it is also deeper
and larger than f;

— Milling features: then h’s edge profile contains g’s edge profile which in turn
contains f’s edge profile;

— Chamfering and Filleting features: Similar to the situation for milling features,
Rh’s edge profile contains ¢’s edge profile which in turn contains f’s edge profile.

Hence ~ is an equivalence relation.

The equivalence classes induced on V by ~, [V]~, can be used to define the set of primary
machining features P; i.e., each equivalence class contains one instance of a primary feature.
We will be interested in features that correspond to the maximal realistic machinable volume
made by a single machining operation in a single machining setup. Let C' be a set of features
(for example, those features in one of the equivalence classes [V]~) and let f be any feature
in C. Then f is C-primary if f satisfies these properties:
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a): stock S ): part P (c): not primary: ): not primary:
too short too long

(e): primary

Figure 3.13: Example of primary and non-primary drilling features (from [70]).

e f removes as much stock material as possible without intersecting P. In other words,
rem( f) does not intersect P, and there is no feature instance g in C' that has the same
machining operation and orientation as f, does not intersect P, and removes more
material than f. More formally, there is no g in C' with the same orientation vector as

f such that:
rem(f)N*P =10
type(f) = type(9)
rem(g) N* P =0
and

(rem(f) N* S) C (rem(g) N*S).

o f is the smallest feature in C that satisfies the above property. In other words, for
every feature instance g in C that satisfies the above property,

rem(f) C rem(g).

A feature is primary if it is [V]~-primary.

Figure 3.13 shows examples of primary versus non-primary drilling features. Figure 3.14
shows examples of primary and non-primary milling features. Figure 3.15 shows a similar
example where the primary features take into account the radius of the milling tool used to
machine them.
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(a): stock S (b): part P
(c): non-primary (d): non-primary

(e): primary

Figure 3.14: Examples of non-primary and primary instances of milling features (from [70]).
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(a): stock S ): part P
:  not primary ):  not primary ):  primary
(too small) (too large) with offsetting

Figure 3.15: Examples of non-primary and primary instances of milling features when the
radius of a milling tool is taken into account. See Chapter 7 for a full description of feature
offsetting.

Well-Behaved Features. Primary features can occur in a number of configurations and
not all of these yield features that describe reasonable machining operations. Note that the
removal volumes for the features in M are bounded by different types of surfaces, each of
which (planar, conical, etc.). When these surfaces occur on the boundary of a part P they
can be considered a subset of the boundary of one or more instances of machining features
in M. As defined above, primary features are not related to their contributions to the shape
of the part. Boundary information can be used to eliminate unrealistic primary features. In
particular, we define a feature f to be well-behaved if it satisfies any of these properties:

1. fis a C-primary drilling feature, where C is the set of all drilling features f in V such
that f’s ending surface or a portion of its side surface is part of b(A), the boundary of

A.

2. f is a primary milling feature, and f subsumes a C-primary milling feature, where C' is
the set of all milling features g in V such that the edges in 5(A) contain portions of two
or more non-collinear edges from ¢’s edge profile. For an example, see Figure 4.6(c).

3. f is a C-primary through milling feature where C is the set of all through milling
features f in V such that b(A) contains a portion of one or more of f’s curved side
surfaces or portions of two or more of f’s planar side surfaces.

4. f is a C-primary filleting or chamfering feature, where C is the set of all filleting and
chamfering features f in V such that b(f) C b(A) and every edge in b(rem(f) N* A)N*
b(A) is an edge in the set of edges of A.
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Figure 3.16 shows an example of the distinction between primary and well-behaved
drilling features; Figure 3.17 shows the same for milling features. For the example bracket
in Figure 3.1, Figure 3.18 shows an example of a well-behaved feature set.

In previous work, it has been shown that well-behaved primary features can be manipu-
lated to produce other feature instances in the same equivalence class as well as to generate
the machining volumes used in a machining plan. Furthermore, a primary feature instance
can provide good upper and lower bounds on parameters such as machining cost for the
other features instances in the same equivalence class (the largest reasonable machining op-
eration is described by the primary feature). Hence, the set of primary feature instances
is suitable for performing many downstream applications (such as manufacturing planning
or manufacturability analysis) [70]. The truncation operation will depend upon the other
features used to generate the plan, and is discussed in greater detail in [67, 71, 70].

3.4 Summary

This chapter has introduced a class of features for machining and showed how to define
feature-based models, as well as primary and well-behaved features in the context of ma-
chining features.
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(¢): well-behaved primary drilling feature

Figure 3.16: Maximal versus well-behaved drilling features (right isometric and side views).

In Figure (b), (b(rem(f))) N* b(P) = 0.
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(¢c): primary milling feature (d): primary milling feature

Figure 3.17: Primary versus well-behaved milling features (right isometric and side views).
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Figure 3.18: A well-behaved primary feature set for the bracket example of Figure 3.1.
Arrows denote feature orientation. The curved edges on the milling features take into account
the radius of a end-milling cutting tool (discussed in more detail in Chapter 7).
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Chapter 4

Recognition of Features

This chapter presents our trace-based approach to recognizing instances of the machining
features defined in Chapter 3.

4.1 Problem Specification

Prior to development of recognition algorithms a problem specification is required. This
section explores several different problem definitions and develops a new specification for the
feature recognition problem that is subsequently addressed in this thesis.

In particular, given solids representing the part P and the stock S as input, ideally one
would like an algorithm that returns the set of all valid features that can be used to generate a
machining plan for producing P from S. In this vein, the problem for this class of machining
features might be stated as follows:

Definition 4.1.1 Feature Recognition
INPUT: given a part P and a piece of stock §

OUTPUT: return the set of all valid feature instances F found from P and S.

This definition corresponds to the task of finding all valid machining features that might
be used to manufacture of a particular part. Computationally this definition produces the
following problem:

Observation. There exist parts for which there are infinitely many valid feature
instances.

Example 1. As an example, consider the part shown in Figure 4.1(a). This part has an
angled pocket and needs to be machined from a rectangular block of stock using standard end-
milling operations. We shall assume that our manufacturing resources include end-milling
tools ranging in size from 3mm to 100mm (in 1mm increments). As shown in Figure 4.1(b),
because of the angle on the walls of the pocket, two end-milling operations are needed to
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create it. Therefore, we need to represent this pocket as two end-milling features f and f’.
Any value of d between d; and ds can be selected as the depth of the end-milling feature f;
depending on d, there are many possible values for d’, the depth of the end-milling feature
f'. d’ can have values between d] and d4—this leads to infinitely many possible combinations
of feature instances f and f’. Which pair of these feature instances are most appropriate
depends on the available manufacturing resources and the optimization criteria. If this
part had other features, they would also influence which of these possible parameterizations
produces the most desirable feature instances f and f’.

In general, if a feature parameter (such as width or depth of cut) can be assigned values
from a continuous scale (such as from a range of real numbers) and none of the values results
in an invalid feature (i.e., makes invalid every plan that includes this feature), there will be
an infinite set of feature instances for the part.

(a): upper right view (b): front view

X,

Y

113\' */‘B '

d2 d2’

dl dr

(¢): possible depths for features f and f’

Figure 4.1: A part that gives rise to infinitely many unique feature instances of end-milling
features f and f’ (arrows denote feature orientation).

Example 2. One possible modification to this definition might be to consider a maximal
feature instance. In the context of machining, a feature f is maximal if, given a part P
and piece of stock S, it removes as much material as possible; i.e., for all other features g,
rem(g) N* S C rem(f) N* S and rem(g) N* P = rem(f) N* P = 0.

Consider the example of a bottomless pocket pictured in Figure 4.2. In this case, de-
pending on the depth d of the milling features there are infinitely many possible choices for

74



(b): milling feature of depth d;

d2

(¢): milling feature of depth d; (d): milling feature of depth d3

Figure 4.2: The part from Figure 3.17 which happens to give rise to infinitely many unique
primary feature instances.
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profiles of features to describe valid machining operations to manufacture portions of the
pocket’s volume. While only a few of the potential profiles are shown in the figure, there
is a continuum of choices for where one might locate the bottom surface of a feature. Each
of these choices gives rise to a different maximal feature profile (i.e., the profile cannot be
enlarged any further in either the x or y directions without creating a feature that intersects
with the part).

From these observations, it is evident that developing a general algorithm for producing
the set of all valid feature instances (or maximal valid feature instances) is not possible.
This stems from the fact that the above definition contains no notion of which of the many
possible valid features one wants. In practice, one wants a set of features that optimizes
some evaluation criteria—for example, an objective function measuring manufacturing cost.
In this case, the goal of the feature recognition procedure is to directly recognize the set
of features that map to a good (or even optimal) operation plan. This provides us with a
second possible definition for the problem:

Definition 4.1.2 Feature Recognition

INPUT: given a part P, a piece of stock S, and a function C(F') (e.g., C esti-
mates the cost of the features in F').

OUTPUT: return a feature-based model F' for P and S with minimal cost, i.e.,
C(F) < C(F") for all other feature-based models F of P and S.

Under this definition, the feature recognition problem includes the task of finding the
optimal feature-based model. In considering manufacturing constraints and knowledge from
machining, feature recognition becomes an optimization problem. Many of the valid fea-
ture instances can be ignored because they are not going to prove most cost effective in a
manufacturing plan; this reduces the infinite problem defined by Definition 4.1.1 to one of
searching the space of alternative feature-based models.

Observation. In the worst case, for an arbitrary part P and piece of stock 95,
there exist exponentially many alternative feature-based models F.

Let F, be a finite subset of the valid feature set (i.e., . C F) and let T be the size of
F, (T = |F;]). Let A be the number of alternative feature-based models that can be defined
using the feature instances in F,.

Consider the case in which a part can be expressed as m spatially disjoint regions to
be manufactured and there are n; choices of possible feature instances for the i** region.
Therefore T = ny + ny + - - - + n,,. The number of alternative feature-based models for this
part is A = ny X ng X - -+ X n,,. The worst case for A will be when n; = ny = -+ = n,,. If
we let n = ny, we get Z =n X m, and A = n™. By substituting m = Z/n,

A= (nt/™)T,
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Figure 4.3: A part that gives rise to exponentially many alternative feature-based models.

To determine the worst case, we differentiate

In(A) = ;ln(n)
dn TA
dn T2~ 1o

Substituting for A,

dn

<% equals to 0 only when

(1 — In(n)) = 0.

Therefore the worst case occurs when n = e. This implies that, for discrete sets of features,
the worst case is when n = 3.

Substituting 3 for n we get A = (v/3)%. Hence in the worst case the number of feature-
based models for the part is exponential in number of feature instances

A€ O(k).

Consider the part shown in Figure 4.3(a). If machined from a rectangular piece of stock
material, each of the 8 disjoint corner “notches” generates three possible feature instances,
shown by the arrows in Figure 4.3 (b). Therefore, these 24 possible feature instances result
in 24 different feature-based models that describe the notched regions of the part (when
the through holes are taken into account the total number of FBMs is 242 - 28). An earlier
version of this proof was presented in [72]; similar results have been reported by Han and
Requicha [74].

In Definition 4.1.2, the feature recognition problem has been combined with the need
to select an optimal set of features for some downstream application. An example of this
type of definition can be found in many approaches to process planning, where a process
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plan is developed as features are recognized. This type of approach has two immediate
drawbacks, as mentioned in Chapter 2. First, without information about the other features
in the feature-based model extensive backtracking through the exponential search space of
FBMs might be required to produce optimal results. Second, with this definition, feature
recognition discards features based on domain-specific evaluation criteria—thus restricting
the overall utility of the output of the system. For example, the features best for process
planning may not be best for automated redesign.

A third possibility is to recognize a subset of all valid feature instances that includes a
representative set of features that are suitable for interfacing with downstream applications,
such as cost estimation and operation planning. In the scope of this thesis, we shall define
the feature recognition problem as the task of finding the set of well-behaved primary
feature instances, as defined in Section 3.3:

Definition 4.1.3 Feature Recognition
INPUT: given a part P, a piece of stock S.

OUTPUT: return the set F of well-behaved primary features occuring in the
feature-based models of P and S.

Observation. In the worst case, there are at most polynomially many well-
behaved primary features.

Let f be a well-behaved primary feature from the feature class defined in Chapter 3
and assume that there are at most O(n) geometric and topological entities in the boundary
representation of the delta volume A.! There are four possibilities for what f is:

1. f is a drilling feature: Because f is well-behaved, we know that its removal volume
rem(f) must share a portion of its boundary with the boundary of the part A (i.e.,
b(rem(f))N*b(A) # 0). Further, the surface b(rem(f)) * b(A) is describable with at
most two well-behaved primary features (one feature in the case where no through
feature is possible).

If there is another well-behaved primary feature capable of describing b(rem(f)) N* 6(A),
then there would exist a drilling feature g, g # f, such that b(rem(g))N" 6(A) C
b(rem(f))N*b(A). Looking at the feature parameters, if this is the case then we know
that the radius of g cannot be less than that of f (otherwise g would not be primary);
in addition, the radius of g cannot be greater than that of f (otherwise f would not
be primary). Hence the radius of g is the same as that of f. Similar arguments can
be made for the other feature parameters, therefore f = g. Therefore the number of
well-behaved primary drilling features is O(2 - n).

2. f is an end-milling feature, in which case there are two possibilities:

1Please see Chapter 5 for a discussion of how to calculate a reasonable value for n.
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(a) The edges of b(A) contain portions of two or more non-collinear edges from the
edge profile of a primary end-milling feature g which is subsumed by f. In this
case, given that there are O(n) geometric and topological entities in b(A), there
can be at most O(n?) possible fs.

(b) b(A) contains a portion of one or more of f’s curved side surfaces or portions of
two or more of f’s planar side surfaces. Similarly, because the b-rep of b(A) is of
size O(n) there can be at most O(n + n?) possible fs.

For each of these cases, if an additional well-behaved primary feature is capable of
covering b(rem(f)) Nb(A), then there would exist a milling feature g, g # f, such that
b(rem(g)) Nb(A) < b(rem(f))Nb(A). Considering the feature parameters, if this is
the case then we know that the profile of ¢ cannot be smaller than that of f (otherwise
¢ would not be primary); in addition, the profile of g cannot be larger than that of f
(otherwise f would not be primary). Hence the profile of g is the same as that of f
and the depth of the features must be different.” However, if both f and ¢ have the
same profile and different depths then one of them is not primary (i.e., the shorter
feature can have its depth extended), therefore f = g and the maximum number of
well-behaved end-milling features is the total number of possibilities for the two cases
above. Each of these cases can give rise to at most a constant number of end-milling
features, therefore the total number is O(n + 2 - n?).

3. f is a chamfering feature: Because f is a well-behaved chamfering feature we know
that b(rem(f))N*b(A) # 0 contains the set of faces of the part that are effected
by f. Further, we know that the edges in the edge profile for the feature are each
bounding edges for these faces. If there existed another primary chamfering feature g
that machined the same collection of faces, it would have an edge profile longer than
the edge profile of f and contain the edge profile of f. Such a feature would contradict
the assumption that f was primary. Hence the number of well-behaved chamfering
features is in the order of the number of surfaces those features might have created.
Because any given surface in the part P can belong to at most two chamfering features,
the total number of well-behaved chamfering features is O(2 - n).

4. f is a filleting feature: This case is the same as that for chamfering features.

Based on the values for each feature type, the number of well-behaved primary feature
instances is O(n?).

In this section we have shown that recognition of well-behaved primary features is a

tractable goal. Techniques for recognizing this class of features are presented in the remainder
of this chapter.
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4.2 Trace-based Recognition of Features

In this section we present our methodology for recognizing the class of features M defined in
Chapter 3. In particular, the algorithms developed below reconstruct the effective removal
volume (eff(f)) for well-behaved machining features f from the geometry and topology of
the part P and stock S. To accomplish this, we will employ a trace-based approach to
feature recognition.

A trace represents the partial information remaining in the solid model of the part
produced by an instance of a feature. A trace can comprises of geometry and topology,
design features, tolerances, and other design attributes associated with the CAD model.
While the traces addressed in this thesis cover only geometry and topology, this approach
can be expanded upon with traces based on other forms of design information or enhanced
with more domain-specific machining knowledge. A trace t)s for a feature type M represents:

e the information contributed to the part by an instance of a feature of type M (similar
to the notion of feature presence [200]).

e sufficient information to calculate the parameters of one or more equivalent feature
instances of type M that are also capable of creating the trace.

Trace-based approaches have several properties that are just beginning to be exploited
by researchers, including:

e Feature traces can be derived from a variety of design information, such as tolerances,
surface finish requirements, and functional information associated with surfaces.

e Feature classes can be customized by users. Recognition routines for new features can
be built by introducing traces for the new features and methods for building instances
of the new features from these traces.

e Trace-based techniques can be adapted to recognize features from a variety of manufac-
turing domains and processes. Existing feature recognition literature focuses primarily
on machined parts, due in part to the fact that the functionality of solid modeling
systems is well particularly suited for manipulating volumes that describe material to
be machined and decomposing these volumes into features.

As noted in Section 2.4, trace-based techniques have been addressed previously by a number
of researchers [117, 200, 73].

We are interested in recognizing the effective removal volumes for well-behaved primary
features; hence the traces used to develop recognition algorithms are based on the properties
of these features as presented in the previous section. For example, one trace for the drilling
feature in Figure 3.13 is the conical ending surface of the hole. Similarly, a trace for the
end-milling feature in Figure 3.15 might be its bottom surface. Techniques are presented in
Chapter 7 to deduce the removal volume rem(f) and the accessibility volume acc(f) from
the effective removal volume eff(f).

The basic components of this approach to feature recognition are:
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(a): Trace 1: cylindrical surface (b): Trace 2: conical surfaces

Figure 4.4: Parts illustrating drilling traces 1 and 2.

1. A finite set of feature types, M. In the context of this thesis, M is made up of the
feature types defined in Chapter 3.

2. Each feature type M in M has associated with it a finite set of traces tar,, tar,, - - - tu,-
Traces are developed below in Section 4.2.1.

3. For each trace, tu,, there is a procedure Py,, () such that Py, () constructs, from the
information in the solid model of the part and stock material, instances of features of
type M capable of producing the trace tps,. Algorithms are presented at the end of
this chapter (Section 4.3).

4.2.1 Defining a Set of Traces

This section introduces traces for the features defined in Chapter 3.

Drilling features. Instances of well-behaved primary drilling features can be found from
any subface of their conical end surface or cylindrical side face. From these surfaces, one can
determine the radius and orientation of a drilling feature. In the event that the surface was
produced by a hole extending through the part, there are two possible primary machining
feature instances: one in each direction along the axis of the cylindrical surface. These
through holes are modeled as two unique drilling features as opposed to as a single form
feature. For non-through features (those accessible in only one direction) the location for
the primary feature instance can be found from the end surface, if one exists, or by calculating
the deepest point at which the conical tip of the drilling tool (see Figure 3.2) can be placed
without intersecting the part.
We present here two traces for drilling features:
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1. Trace 1: any convex cylindrical surface s, in the delta volume is a possible side surface
created by a drilling operation.

Rationale: This trace is used to build instances of drilling features when a portion of
their side surface remains on the boundary of the delta volume. An example of this
trace 1s illustrated in Figure 4.4(a).

2. Trace 2: a convex conical surface sy in the delta volume as a conical ending surface
describing the cutting tip of a drilling tool.

Rationale: This trace is used to build an instance of a drilling feature when only a
portion of its ending tip surface remains on the boundary of the delta volume. An
example of this trace is illustrated in Figure 4.4(b).

End-milling features. Trace 1 for end-milling features is edge-based and captures a large
number of configurations of milling features; traces 2 and 3 are used to build instances of
end-milling features when only a portion of their side surfaces is present on the boundary of
the delta volume. With traces 2 and 3, the end-milling features extend completely through
the stock material. Examples of such features include through pockets and profiles.

1. Trace 1: an edge e; = (v, v2) in the delta volume.

Rationale: This trace is used to determine the profile of end-milling features. Given
an edge e; = (vy,v;), orientations and locations for potential milling features can
be obtained from other edges® e; = (vs,v4) in the delta volume for which the vertices
v1, V2, , Vs, V4 are coplanar. Two examples of end-milling trace 1 are given in Figure 4.5.

For trace 1, each edge pair e; and e; in the delta volume can belong to one of three
different types of well-behaved primary feature instances:

(a) As pictured in Figure 4.6(a), edge e; is an edge of one of the bottom surfaces of a
milling feature (i.e., e; could have been created as part of the planar bottom face
or as a blend surface of the feature).

(b) As pictured in Figure 4.6(b), edge e; could be an edge of a side surface of a milling
feature having no bottom surface present in the part.

(c) As pictured in Figure 4.6(c), edge e; could be a subset of an edge of a side surface
of a milling feature that extends through the part (a through pocket).

For example, one possibility is that e; and e; are coplanar with or on the boundary
of the bottom surface of the end-milling feature, such as shown in Figure 4.5(b) and
Figure 4.6(a). Another possibility is that the bottom surface of the end-milling feature
has been eliminated through some interaction with other features, as illustrated in
Figures 4.5(b) and 4.6(b) and (c).

ZNote that in the solid model of the delta volume, the edges e; and e; might be non-linear curves, e.g.,
they could be elliptical.
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(a): Part from Figure 1.3. (b): no bottom surface present.

Figure 4.5: Illustrations of milling trace 1. In (a) the wire denotes the profile of the desired
end-milling feature.

2. Trace 2: a planar surface in the delta volume, considered as a face created by the side
cutting surface of an end-mill during the same machining operation. Figure 4.7(a)
shows an example of milling trace 2.

Rationale: For some instances of through milling features, all that may remain are
walls. This trace begins with a single planar wall and, by considering other planar
surfaces in the delta volume, obtains orientations for potential through milling features
from the normal vectors; i.e., two non-parallel planar surfaces can be used to determine
the orientation of the through features that might have made them (if any) as the dot
product of their normals.

3. Trace 3: a cylindrical surface in the delta volume as a surface created by the side cutting
surface of an end-mill. An example of end-milling trace 3 is given in Figure 4.7(b).

Rationale: The profile of a milling feature might comprise curved edges, for example
the corner radii created when a round tool machines a convex corner. This trace uses
these curved surfaces to determine the orientation of potential through features.

Chamfering and Filleting features. In ordinary machining practice, the operations that
create chamfer and fillet features usually occur after the major material removal operations.
The traces for these features are based on a combination of faces and edges. The two
fundamental parameters that must be determined to infer the existence of these feature
types are the profile and the orientation. The profile consists of a sequence of edges and the
orientation is computed using these edges along with the surfaces affected by the feature.

1. Chamfering Trace 1: a planar surface s bounded by four edges, two of which are equal
in length to the cutting surface of an available chamfering tool and one of which e,
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edge ep

(a): bottomed milling feature (b): bottomless milling feature

edge’ey

(c): through milling feature

Figure 4.6: Three possible cases of milling features.

is perpendicular to the orientation of the tool during the machining operation. An
illustration of this trace is shown as edge profiles £} and F, in Figure 4.8.

Rationale: Chamfering takes one or more convex edges of the workpiece and removes
a triangular cross-section of material along the length of these edges. When the tool

is moved along a straight edge profile (e.g., E;) this process creates a new planar face
on the part.

. Chamfering Trace 2: a concave conical surface s with height and angle equal to that
of the cutting surface of an available chamfering tool.

Rationale: In this case the cutting tool is moved along a curved edge profile, creating
a new conical face on the part.

. Filleting Trace 1: a concave cylindrical surface s with a radius equal to that of the
cutting edge of an available filleting tool and with at least one bounding edge e perpen-
dicular to the orientation of the tool during the machining operation. An illustration
of this trace is shown as edge profiles F; and E; in Figure 4.9.

Rationale: Filleting takes one or more convex edges of the workpiece and removes a
quarter-circular cross-section of material along the length of these edges. When the tool

84



(b): Trace 3

Figure 4.7: Parts illustrating end-milling traces 2 and 3.

(a): potential chamfered surface (b): traces for the features

Figure 4.8: Traces for chamfering features.

is moved along a straight edge profile (e.g., E1) this process creates a new cylindrical
face on the part.

4. Filleting Trace 2: a concave toroidal surface s with a minor axis equal to that of
an available filleting tool and with at least one bounding edge perpendicular to the
orientation of the tool during the machining operation.

Rationale: In this case the cutting tool is moved along a curved edge profile, creating
a new toroidal face on the part.

A presentation of the details of the various procedures P;,, () for constructing feature
instances from these traces is given in the next section.
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(a): potential filleted surface (b): traces for features

Figure 4.9: Traces for filleting features.

4.3 Feature Recognition Algorithms

Throughout this section we shall be using several example parts when describing the feature
recognition algorithms. For most of the examples, we will use the part and stock pictured
in Figure 4.10.

An algorithm for trace-based recognition of features can be given as follows:

RECOGNIZE_WELL-BEHAVED_FEATURES(P, 5)
INPUT: solid models of a part P and stock S
OUTPUT: the set of well-behaved feature instances, F.

1. Given a collection of feature types and their traces, M, input a solid model for the
part, P, and for the initial stock material, S.

2. Initialize F = 0.

3. From P and S, identify the set of all potential traces present: 7. In this thesis 7 is a
set of geometric and topological entities (such as edges, surfaces, and vertices).

4. For each potential trace ¢t in 7 do

(a) If t matches a tpy,, call the procedure Py, (t) and construct (if possible) feature
instances, fq,... f, of type M. Add these to the set of all feature instances, F.

5. Return the feature set F.

The following sections present the geometric algorithms for constructing individual well-
behaved primary feature instances based on the traces in the previous section.
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(a): stock (before machining) (b): part (after machining)

Figure 4.10: An example part and stock from [71].

4.3.1 Recognizing Drilling Features

Well-behaved drilling features are perhaps the most straightforward to recognize. From a
portion of the conical ending surface, one can determine both the location and the orientation
of the drilling feature. The radius r for the primary feature is calculated based on two
observations. First, it must be less than or equal to the maximum radius in the available set
of drilling tools (this is discussed in more detail in Chapter 7). Second, it is the largest value
such that the removal volume of the feature does not interfere with the part. The depth
of the primary drilling feature is the minimal distance along its orientation vector from its
location to the boundary of the workpiece.
For a given face f, there are several possibilities, as addressed below:

Algorithm: Drilling Trace 1.
1. Input face f, part P, and stock S.
2. Confirm that face f corresponds to drilling trace 1; i.e., f is a convex cylindrical face.

3. Determine values for radius and orientation parameters from f, as shown in Fig-
ure 4.11(a) where f is a cylindrical face that is part of the side of a drilling feature.

4. Find the maximal non-intrusive cylinder cmax, as shown in Figure 4.11(b). If cpax
cannot be extended beyond the stock, exit and return an empty list of features.

5. Determine a location for a maximal drilling feature hpax, as shown in Figure 4.11(c).
There are two cases:
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(c): build feature (d): truncate feature

Figure 4.11: Construction of a drilling feature from drilling trace 1.

(a) In the case of a through hole, a location outside the stock on the axis of the hole
can be chosen for each of the two primary drilling features.

(b) In the case where f has not been made by a through hole, the end of the drilling
feature is located on the planar side face of ¢pax. Note that there exist situations
where this yields an approximation of a primary feature; however, for purposes of
machining [70], this approximation produces satisfactory results.?

6. Truncate [70] the features (in the example, truncate hma.x) to get the instances of
the primary drilling features, as shown in Figure 4.11(d) for hs. In the event that f

is accessible bi-directionally, there will be two instances of primary drilling features
(shown in Figure 4.15 for holes hs and hg).

3The exact location point for these types of features can be calculated in several ways. We will not present
an specific algorithm here as it would involve introduction of routines specific to a particular solid modeling
system.
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7. Exit and return the list of features that were found.

Algorithm: Drilling Trace 2.
1. Input face f, part P, and stock S.
2. Confirm that face f corresponds to drilling trace 2; i.e. f is a convex conical face.

3. Determine values for radius and orientation parameters from f where f is a conical
face that is part of the tip of a drilling feature.

4. Find the maximal non-intrusive cylinder ¢max, as shown in Figure 4.11(b), and verify
f’s accessibility by checking that cpnax extends beyond the stock along the orientation.
If it does not extend beyond the stock, exit and return an empty list of features.

5. Determine a location for a maximal drilling feature hmayx, as shown in Figure 4.11(c),
by calculating the apex of the conical surface f.

6. Truncate [70] the feature (in the example, truncate hpa.x) to get the instance of the
primary drilling feature, as shown in Figure 4.11(d) for hs.

7. Exit and return a list containing the feature that was found.

4.3.2 Recognizing Face-Milling, Step-Milling and Pocket-Milling
Features

The three major parameters that must be determined to recognize a milling feature are
its orientation, location, and profile. These parameters are more interrelated than those
of drilling features and hence there are different traces for each of the various possibilities.
Determination of bottom blends are dependent on a number of tooling constraints and are
handled as a part of post-processing activity, as described in Chapter 7.

Algorithm: Milling Trace 1. This is the most general trace for recognizing milling
features. Starting from a single edge e;, an orientation for a milling feature is determined
from e; and a second coplanar edge e;. For a given ey, there are in the worst case O(n)
possible orientations for a primary milling feature, where n is the number of edges in the
part P.

For each of the three cases shown in Figure 4.6, the profile of the milling feature or features
are computed as a normal projection of the part faces that lie in the half-spaces above and
below (with respect to the orientation) the plane containing the edges. The projection is
computed onto the plane containing the edges e; and ey (shown in Figure 4.12(a)). In the
first and second cases, this plane is the bottom surface of a milling feature that creates the
edges and their adjacent surfaces. Note that this still applies when the bottom surface of the
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feature has been eliminated through interactions with other features and no longer exists in
the model of the part P.

In the third case, the feature extends through the part and thus has no bottom surface
present in the delta volume. For this situation, the plane containing e; and e; provides
the orientation vectors +/ — ¢ for the through features. The part faces are mapped onto a

projection plane perpendicular to ¥, arriving at a cross-section of the through feature capable
of creating these edges and surfaces.

1. Input edge e; = (p1,p2), part P, and stock S.
2. For each e; = (ps, pa) in the delta volume, e; # ey do:

(a) Confirm that edges e; and ey are co-planar and non-colinear. If not, loop to (2).
(b) Compute the orientation of the features, (p; — p3) X (p2 — pa)-
(c) Let H be the plane through the points py, ps, p3 and py, and:

i. let Habove be the projection of the faces of P lying above (+norm(H)) the
plane H onto H.

ii. let Hpelow be the projection of the faces of P lying below (—morm(H)) the
plane H onto H.

(d) If (a) the intersection Hapove N* Hpelow contains an edge profile with portions

of e; and ez or (b) Habove = Hpelow and Hpelow contains an edge profile with
portions of e; and ey, then:

i. Let H' = Hapove N* Hpelow be the profile of the through feature.

ii. Sweep H' in both directions (4+norm(H) and —norm(H)) until it completely
exits the stock material S.

iii. Truncate the features to the size of the stock in order to make them primary.

iv. Exit and return the list of features that were found.
Else, build feature instances for each of Hypove and Hpelow:

i. Sweep Hapove along +norm(Hapove) until it completely exits the stock ma-
terial S (such as shown in Figure 4.12(a)).

ii. Sweep Hapove along —norm(Hapove) until it hits the part P (such as shown
in Figure 4.12(b)).

iii. Select a vertex on the profile of the bottom face of this swept volume as a
location for the feature.

iv. Repeat steps 1-3 for Hpelow-

v. Truncate the two features to the size of the stock to make them primary.

vi. Exit and return a list of features that were found.

Another examples of the steps in recognition of milling features from trace 1 is given in

Figure 4.13.
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(a): Find edge profile (b): Locate edge profile

my

profile E

(c): Build feature instance

Figure 4.12: An example of the recognition of a bottomless pocket-milled feature from milling
trace 1.

Algorithm: Milling Trace 2. Milling trace 2 covers a number of cases of through milling
features not addressed by trace 1. With milling trace 2, construction of milling features
begins with a pair of faces of the delta volume, f; and f,. Milling trace 2 considers the case
in which f; and f; are faces of the part P created as side surfaces of an instance of a through
milling feature.

For these through features, the feature orientation is along one of the two directions
+(norm( f1) x norm( f2)) and —(norm( f1) x norm( f2)). As these features extend through the
part, there is no bottom surface present in the delta volume—hence an arbitrary location
can be chosen for a projection plane p. Mapping all of the part faces onto p yields the largest
milling feature profile capable of creating these surfaces. Given the profile, two primary
milling feature instances are created. We truncate ppax to obtain the primary feature, as
shown in Figure 4.13(d), with a depth sufficient to extend the feature instance outside the
stock. An example of through milling features is given for features p; and pg in Figure 4.16.

1. Input face fy, part P, and stock S.
2. For each face f, in A, f, # f1 do:
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profile

(¢): build maximal feature (d): truncate feature to be primary

Figure 4.13: Construction of a step-milling feature from milling trace 1.

(a) Verify that f1 and f; are non-parallel planar faces and determine the potential
feature orientations: +norm(f;) x norm(f;) and —norm(f;) x norm(f3).

(b) Pick a vertex p;, of fi and create a plane H passing through p; normal to
norm( f;) X norm(fz).
(c) Project the surfaces of the part P onto H.

(d) If there is no profile created by the projection onto H incident with f; and fa,
exit returning an empty feature list.

(e) If there is a profile H' on H created by this projection incident with f; and f;
then:

i. Sweep H' along +norm(H') and —norm(H") until it completely exits the stock
material S.

ii. Select one vertex from each of the bounding edge profiles of the top and
bottom faces of this swept volume to be locations for the features (one oriented

+norm(H'), the other —norm(H")).
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i1, Truncate the two features to the size of the stock to make them primary.
iv. Exit and return a list of the features that were found.

Algorithm: Milling Trace 3. Milling trace 3 covers a number of cases of through milling
features not addressed by traces 1 and 2. In particular, it covers situations where the profile
of the through milling feature contains curved edges. In this trace, construction of milling
features begins with a convex cylindrical or elliptical face of the delta volume, f;.

1. Input face f1, part P, and stock S.
2. Verify that f; is a convex cylindrical or elliptical surface.
3. Determine feature orientations from the axis of fi, +axis(f1) and —axis(f1).

4. Pick a point py, on the axis of f; and create a plane H passing through p;, normal to

axis( f1).
5. Project the surfaces of the part P onto H.

6. If there is no profile created by the projection onto H incident with f, exit returning
an empty feature list.

7. If there is a profile H' created by this projection incident with f; and f, then:
(a) Sweep H' along +norm(H’) and —norm(H’) until it completely exits the stock

material S.

(b) Select one vertex from each of the bounding edge profiles of the top and bottom
faces of this swept volume as locations for the features (one oriented +norm(H’),
the other —norm(H")).

(c) Truncate the two features to the size of the stock to make them primary.

(d) Exit and return a list of the features that were found.

Algorithm: Classification of Milling Features. Based on the edge profile and feature
orientation, £ and ¥, the milling feature can be classified as pocket-milling, face-milling, or
step-milling.

1. Input an edge profile E for a milling feature f, a set of island profiles I (possibly
empty), and an orientation vector .

2. If I is empty and all of the edges in F are open, return “face-milling feature.”
3. Else, if all of the edges in F are closed, return “pocket-milling feature.”

4. Else, return “step-milling feature.”

Profiles for any islands can be obtained by covering [183] the edge profile F with a
planar face and calculating its 2D intersection with the part P. Any interior edge loops will
correspond to islands.
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4.3.3 Recognition of Chamfering and Filleting Features.

Given a surface s that is a portion of a face of a chamfering or filleting feature as shown in
Figures 4.8(a) and 4.9(a), we construct a feature instance as follows:

1. Determine the set of possible orientations for feature instances that could have made
the surface.

2. For each possible orientation, find the edge profile £ for f and find the adjoining
surfaces create by the operation. Figures 4.8(b) and 4.9(b) indicate the orientations
for a chamfering tool and filleting tool.

3. Construct the feature instances, as shown in Figures 4.8(c) and 4.9(c).

The specifics of the algorithms for chamfering and filleting features depend on the param-
eters of the available cutting tools. In practice, such algorithms would have to interact with
a manufacturing resource database—often a database specific to the machine shop at hand.
Because these tool parameters can be passed into a commercial system when it is deployed,
and in order to simplify the presentation of these algorithms, we will assume, referring to
Figure 3.9(a), the availability of chamfering tools such that:

1. Tip angle: The tip angle is the angle between the cutting edge of the tool and the
tool’s axis. The algorithms below are based on a 45° tip angle.

2. Cutting length: The cutting length refers to the length of the cutti)rig edge of the
tool. In Figure 3.9(a), for tools with 45° tip angles, this length is 22 - A. In the

algorithms below we will assume that there are minimum and maximum values for A,
4
Amina Amax-

For filleting features the conditions are similar:

1. Cutting radius: The radius of the cutting surface of the tool, R as shown in Fig-
ure 3.9(b). In the algorithms below we will assume that there are minimum and
maximum values for R, Rumin, Rmax- The value for parameter F in Figure 3.9(b) is
typically a fraction of B. We will assume that £ = %R.

2. Cutting profile: The cutting profile refers to the shape and length of the cutting edge
of the tool. Referring to the parameters in Figure 3.9(b), the algorithms below will
assume that the cutting profile is § of the circular arc of radius R. Consideration of
other cutting profiles (such as those with a combination of straight and curved edges)
introduces additional complexity not addressed by the algorithms below.

If additional tools are available, these algorithms can be modified to retrieve tool specifi-
cations from a manufacturing resource database [93] and then determine the existence of a
feature that might have been created to match those particular parameters. Other tooling-
specific constraints are also addressed in Section 7.2.

4Specific values are discussed in Chapter 7.
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Algorithm: Chamfering Trace 1.
1. Input a planar face f, part P, and stock S.

2. Verify that among the bounding edges for face f is a pair e;,e; of equal length
(len(eq) =len(e;)) and within the cutting length bounds for available chamfering tools
(Amin <len(es) < Amax)-

3. Determine orientations: As illustrated in Figure 4.8, let e3 = (p1,p2) and eq =
(p3, pa) be the other two bounding edges of the face f and calculate orientation vectors
for potential features v, and vy, such that: (a) v, is perpendicular to (py — p2), (b) vo2
is perpendicular to (ps — p4), and (c) the angle between both v,; and v, and norm(f)
is 45°. Start building two edge profiles, £y = {e3} and E; = {e4}.

4. Determine profile: For the possible orientation v, let s,, be the plane passing
though e3 and perpendicular to v,;. Check edges e; of A that lie in the plane s to see
if they belong to the edge profile of the feature by asking;:

(a) Does e; share a vertex with either of the edges at the ends of the profile E;?

(b) Is e; adjacent to a face that can be made with the same chamfering operation?
Test the condition in step 2 (above) and conditions in step 3 of the algorithm for
chamfering trace 2 (below).

If the answer to both of these is yes, then add e; to the edge profile F;. Repeat
these steps until candidate edges are exhausted. This is basically a depth-first
search on the edges connected to the edge es.

5. Construct feature instances: Build the profile of the tool and sweep it along the
edges in the edge profile E;. Unite the volumes created by sweeping along each of the
segments of the profile and return the result—this is the chamfering feature, as shown

in Figure 4.14(a).
6. Repeat steps 4-5 for e4 and v,;.

7. Return the set of the chamfering features that were found.

Algorithm: Chamfering Trace 2.
1. Input a conical face f, part P, and stock 5.

2. Determine orientations: For a conical face f, the orientation of the feature is along
the axis of the surface, v, = axis(f). Add the bottom edge e; of face f to the set of
edges in the edge profile E.

3. Verify that the length of surface of f is within the cutting length bounds for available
chamfering tools (Amin <len(f) < Amax). If yes, the f might have been made as a
chamfer by a machining operation with orientation v,.
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Figure 4.14: Instances of chamfering features for the part and traces in Figure 4.8 and
instances of filleting features for the part and traces in Figure 4.9.

4.

Determine profile: For the possible orientation v,, let s,, be the plane passing though
the edge e; and perpendicular to v,. Check edges e; of A that lie in the plane s to see
if they belong to the edge profile of the feature by asking:

(a) Does e; share a vertex with either of the edges at the ends of the profile E7?

(b) Is e; adjacent to a face that can be made with the same chamfering operation?
Test the condition in step 2 of the algorithm for chamfering trace 1 and the
conditions in step 3 (above).

If the answer to both of these is yes, then add e; to the edge profile E. Repeat
these steps until candidate edges are exhausted.

Construct feature instances: Build the profile of the tool and sweep it along the
edges in the edge profile £. Unite the volumes created by sweeping along each of the
segments of the profile and return the result.

Return the set of the chamfering features that were found.

Algorithm: Filleting Trace 1.

1.

2.

Input a cylindrical face f, part P, and stock S.

Verify that the radius of the surface f is within the cutting radius bounds for available
filleting tools (Rmin <len(ez) < Rmax) and its profile is i— of a circular arc.

Determine orientations: As illustrated in Figure 4.9, let ez = (p;,p2) and ey =
{p3,pa) be the two bounding edges of the face f and calculate orientation vectors for
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potential features vy and v,y such that: (a) vy is perpendicular to (p; —p2) and normal
to the surface of f at ez, (b) v,2 is perpendicular to (ps — ps) and normal to the surface
of f at ey.

4. Determine profile: For the possible orientation v, let s,,, be the plane passing
though e3 and perpendicular to v, . Check edges e; of A that lie in the plane s to see
if they belong to the edge profile of the feature by asking:

(a) Does e; share a vertex with either of the edges at the ends of the profile E;?

(b) Is e; adjacent to a face that can be made with the same filleting operation? Test
the condition in step 2 (above) and conditions in step 3 of the algorithm for
filleting trace 2 (below).

If the answer to both of these is yes, then add e; to the edge profile ;. Repeat
these steps until candidate edges are exhausted.

5. Construct feature instances: Build the profile of the tool and sweep it along the
edges in the edge profile F;. Unite the volumes created by sweeping along each of the
segments of the profile and return the result—this is the filleting feature, as shown in

Figure 4.14(b).
6. Repeat steps 4-5 for e4 and v,s.

7. Return the set of the filleting features that were found.

Algorithm: Filleting Trace 2.
1. Input a toroidal face f, part P, and stock S.

2. Determine orientations: For a toroidal face f, the orientation of the feature is the
axis of the torus, v, = axis(f). Add the bottom edge e; of face f to the set of edges in
the edge profile F.

3. Verify that the radius of the surface f is within the cutting radius bounds for available
filleting tools (Rmin <len(ez) < Rmax) and its profile is % of a circular arc.

4. Determine profile: For the possible orientation v,, let s, be the plane passing though
the edge e; and perpendicular to v,. Check edges e; of A that lie in the plane s to see
if they belong to the edge profile of the feature by asking:

(a) Does e; share a vertex with either of the edges at the ends of the profile £7

(b) Is e; adjacent to a face that can be made with the same filleting operation? Test
the condition in step 2 of the algorithm for filleting trace 1 and the conditions in

3 (above).

If the answer to both of these is yes, then add e; to the edge profile E. Repeat
these steps until candidate edges are exhausted.
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Figure 4.15: Drilling features for the part shown in Figure 4.10.

5. Construct feature instances: Build the profile of the tool and sweep it along the
edges in the edge profile E. Unite the volumes created by sweeping along each of the
segments of the profile and return the result.

6. Return the set of filleting features that were found.

4.4 Summary

In this chapter we developed a specification for the feature recognition problem and presented
techniques for trace-based recognition of well-behaved primary machining features. This
work consists of:

1. An enumeration of traces for the feature types in Chapter 3;
2. Presentation of the control structure for the general feature recognition algorithm;

3. Development of individual feature recognition algorithms based on the feature traces.

It is important to point out that these traces and functions are not presented as the opti-
mal way of recognizing this particular class of features, but rather as one specific method.
More importantly, this chapter presents an general algorithmic framework for the recognition
problem—oproviding a structure that can be extended to include additional feature types and
enhanced by adding new traces.

The effect of the algorithm RECOGNIZE_WELL-BEHAVED _FEATURES is shown in Fig-
ures 4.15 and 4.16. For the part shown in Figure 4.10, there exist traces to generate the
features in the figures. In this case, the well-behaved primary feature set is

F = {pl, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, pl4, p15,
h1, h2, k3, h4, b5, h6, BT, h8, b9, h10}.
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Figure 4.16: End-milling features identified for the part shown in Figure 4.10.
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Chapter 5

Measuring Computational Complexity

This chapter addresses issues of computational complexity. Specifically, we will calculate the
complexity of the algorithms presented in Chapter 4.

5.1 A Brief Background

The bibliography for complexity results that are specific to solid modeling is not exten-
sive. Even when confined to boundary representation solid modeling, algorithms and data
structures vary greatly among different systems. Existing work contains empirical and some
theoretical analysis of the time and space costs for various data structures for representing
solids.

Woo [209] analyzes several types of boundary representation data structures and com-
pares their time costs for a set of primitive operations and space requirements. Weiler [207]
presents data structures for curved surfaces and their time and storage complexities. Ala [4, 5]
builds on this work and introduces variations on the boundary representation data struc-
ture with advantages for certain applications. Extensions to face-based representations are
introduced in [40] and algorithms for their manipulation are analyzed.

Hoffmann [81] is an excellent source of worst-case complexity analysis for boolean oper-
ations on boundary data structures. In the feature recognition literature, De Floriani [39]
presents an analysis of the complexity of her methodology. Peters [139] illustrates some
of the combinatorial difficulties inherent in many graph-theoretic approaches to the feature
recognition problem. Fields and Anderson [55] present a linear-time recognition algorithms
for a variety of surface features.

Other attempts to measure performance include timing results, most notably in [10, 109,
38]. Results of this type are highly dependent on the hardware, the software implementation,
the domain of interest, and the particular test cases chosen for the timing tests. Further com-
plicating matters is the fact that in many cases the feature recognition problems addressed
vary greatly. For example, most approaches for machining feature recognition do not per-
form an evaluation of feature accessibility for machining, Vandenbrande’s [200] does and it
incurs a cost to do so. Hence, plain timing results represent a weak basis for comparison
between feature recognition methodologies.
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5.2 Approach

The algorithms presented in the previous chapter are defined in terms of calls to a solid
modeling system. Measuring the complexity of such algorithms poses several difficulties.
Calculating the computational complexity in this case can be approached several ways:

1. Data Structures Level: The feature recognition problem can be defined in terms of
a specific data structure and a set of algorithms on the data structure. For example,
certain approaches define features as graph patterns to be found as subgraphs of a
larger graph that represents the structure of the part.

2. Application Level: The feature recognition problem can be defined at an applica-
tion level, where the functionality is specified in terms of specific types of data and
operations on it without specifying in detail how the operations are going to be carried
out—for example, sorting a list of solid models based on the volume of space that they
occupy. An algorithm might be proposed which runs in O(n?) time, factoring out the
cost of calls to a mass property procedure that calculates the volume of individual
solids. In this case the details of how the mass property routine has been implemented
will be specific to the solid modeler and not part of the specification of the sorting
problem.

For approaches based on data structures abstracted from a solid model of a part, such
as graph-based methods [39, 91, 30, 31, 34, 32, 33], the computational cost is most easily
calculated using the first method: counting the number of operations on the data structures.
Peters [139] uses a similar approach to compute abstract complexity bounds on instances of
the feature recognition problem itself.

Other approaches to feature recognition, including the one described in this thesis, employ
extensive queries to the solid modeling system to reason about geometry and to extract
feature instances. In this case, the complexity of feature recognition algorithms depends on
the cost incurred by executing boolean operations, sweeps, and queries to the solid modeler—
and this in turn depends on many implementation-specific details such as data representation
and overhead costs of the solid modeler.

What is evident is that application-level solid modeling algorithms are difficult to analyze
using traditional algorithmic complexity measurement techniques. One fundamental reason
for this is that the solid modeling data structures and algorithms operate at a much lower
level than the problem itself. In order to address these issues and obtain reasonable metrics
for measuring the complexity of these algorithms at the application level, we make the
following observations:

o There is no authoritative reference on the general complexity of solid modeling opera-
tions (such as booleans, sweeps, and the like) for boundary-representation data struc-
tures. The complexity of these operations appear to lie between O(n?) and O(n*) or
O(n®) time, depending on the particular configuration of geometric entities and many
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implementation-specific details. Therefore, precise measurement of the complexity of
these algorithms at the data structure level is not possible.

e The consensus is that solid modeling operations account for the vast majority of the
computational cost during feature recognition [200]. Hence, measuring the number of
solid modeling operations (and building algorithms that reduce the total number of
solid modeling queries) is a reasonable and useful objective.

e One can choose to treat the solid modeling operations (in the case of the ACIS Solid
Modeler [183], these operations are calls to the application protocol interface (API))
as taking O(c) time, for some constant ¢. One can then measure the complexity of the
feature recognition algorithms in terms of the number of solid modeling operations re-
quired; after which one can factor in their cost (somewhere between O(n?) and O(n®)).
Because functionality and APIs vary among existing systems, where one draws the line
between the work of the recognition algorithms and the activity occurring within the
modeler is somewhat arbitrary. In the analysis presented below, the modeler supports
all the numeric activities as well as manipulation and interrogation: “Return the list
of edges in an entity,” “Does e bound face f?” “Does feature m; intersect feature ms,”
ete.

The remainder of this chapter presents the theoretical complexity results for the algo-
rithms presented in Chapter 4 with respect to the number of calls to solid modeling opera-
tions, using the above approach. It should be noted that, in measuring complexity in this
way, we are developing rough upper bounds for the feature recognition problem. In most
cases these complexities will apply only to involved operations; e.g., subtracting a simple
cylinder from a rectangular block is unlikely to take O(n*) time.

5.3 Theoretical Results

Given that the part P and stock S are represented by some boundary data structure, there
are several parameters we shall use in calculating the complexity of our trace-based feature
recognition algorithms:

1. n, the complexity boundary models for the part and the stock.

In the scope of this thesis, n is roughly equivalent to the size of the data structure
representing the delta volume. In general for edge-based boundary representation data
structures [207, 209], n will be n = O(|E|) where E is the set of edges of the solid. To
calculate a rough upper bound on the worst case, we can say the size is O(n) where
n=FKE+V +F+42G and E,V, and F are the number of edges, vertices, and faces of
part, and G is its genus. Using the Euler-Poincaré formula, 0 =V — E+ F —2(1 — G),
we can simplify this to n = 2 + 2E; hence n = O(F). It should be noted that
the Euler-Poincaré formula pertains to polyhedra, hence in this analysis n = O(F)
represents only a very rough upper bound on the class of solids discussed in this thesis.
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Attaining a better upper bound would require more specific knowledge of the types of
data structures used to represent analytic surfaces and of the algorithms used by the
particular system to manipulate them.

2. | M|, the number of different feature types to be recognized.

Note that |M] is a constant when M is a fixed class of features (i.e., when there is no
provision for the addition of user-defined feature types). As the problem is specified in
Chapter 4, the class of features is not a parameter of the recognition procedure.

3. Nraces = Maxpem(|{tmy,trg, - - ta, }|), the maximum number of traces for any one
feature type.

We will assume that each feature subclass has a fixed number of traces associated with
it from which to reconstruct feature instances. Hence this value will be a constant.

4. |T|, the size of the set T of unique traces that can be generated from the part, stock,
and feature type information.

|T| is a function of the number of the feature types, their traces, and the complexity
of the part, stock, and delta volume.

5. O(r(n)) where 7(n) = maxv,, (O(t(n))), where t(n) is the worst-case complexity of
the procedure P, (). O(7(n)) is the maximal worst case complexity of the algorithms
that build feature instances from traces.

The value for 7(n) can be determined by calculating the complexity of each of the
algorithms that construct feature instances from individual traces.

With the above parameters, one can calculate the complexity of a feature recognition sys-
tem. Generally, on a single processor, the formula for complexity based on these parameters
is:

O(IM] - Nraces - IT| - 7(n)).

Because | M| and nyaces are constants, this can be simplified to
O(e- [T - 7(n))

for some constant c.

At question are the values for |T'| and the function 7(n). Specific values will depend on
the traces used, the implementation of the algorithms to build feature instances out of traces,
and the cost of executing solid modeling operations to do the necessary geometric reasoning.
In the following section, we present a brief analysis of the complexity of the recognition
algorithms given in Chapter 4.
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5.3.1 Algorithm Analysis

There are two levels of algorithms presented in Chapter 4. The control algorithm RECOG-
NIZE_WELL-BEHAVED_FEATURES examines of each of the |T'| traces, and calls the feature
recognition algorithms for each trace when appropriate. As this section presents, the analysis
of the complexity of these algorithms with respect to the number of calls to a solid modeler
is straightforward.

Analysis of RECOGNIZE_WELL-BEHAVED _FEATURES.
RECOGNIZE_WELL-BEHAVED_FEATURES traverses the information in the solid models of
the part P and stock S in a search for traces. Hence, the complexity of the algorithm is
O(|T). In the worst case each geometric and topological entity in P or S (or S —* P) can
belong to each trace for every feature. Based on the traces presented earlier we know the
number of traces is roughly equal to the number of geometric and topological entities; hence
O(n) possible traces might arise from a specific P and S. Hence |T'| € O(| M| - Niraces - ).
Factoring out the constants, |T'| € O(n).

Analysis of Algorithm: Drilling Trace 1. Walking through the algorithm of Sec-
tion 4.3.1, steps 1-3 consist of informational queries to the modeler. Step 4 involves building
a primitive and performing an intersection test. Depending on the results of this test, step
5 determines a suitable location for the drilling feature using a finite set of queries to the
modeler. Lastly, any features found (at most 2) are truncated to the size of stock-—again
through a fixed set of modeler operations. The algorithm for drilling trace 1 is purely se-
quential and contains no loops. Hence, it is O(c) for a constant ¢, because the algorithm
makes a fixed number of calls to the solid modeler.

Analysis of Algorithm: Drilling Trace 2. The complexity of this algorithm is also O(c)
for a constant ¢ for the same reasons as the algorithm for drilling trace 1. The algorithm
makes a fixed number of information gathering queries to the modeler (steps 1-3) then
executes a fixed number of entity creation routines and boolean operations.

Analysis of Algorithm: Milling Trace 1. The algorithm for milling trace 1 of Sec-
tion 4.3.2 is more intricate than the algorithms for either of the drilling traces. Steps 2
consists of a for loop considering all of the additional edges in the delta volume and of
complexity O(n). In the body of the loop, steps (a) and (b) consist of simple queries and
entity creation routines. Step (c) performs projections to obtain candidate milling feature
edge profiles. Step (d) takes the profiles and builds feature instances from them. In each of
the steps a finite number of calls is made to routines for booleans, projections, and sweeps.
While projections and sweep routines in particular can be intricate (of the order of Q(n?)),
the algorithm for milling trace 1 still makes only a fixed number of calls to a modeler each
time it passes through the for loop—hence it is order of O(c - n) for a constant c.
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Analysis of Algorithm: Milling Trace 2. The algorithm for milling trace 2 of Sec-
tion 4.3.2 operates similar to that for milling trace 1.

In particular the algorithm consists of a for loop considering all of the additional planar
faces in the delta-volume—this loop is of complexity O(n). The body of the loop consists
of simple queries and entity creation routines. The profile, as with the algorithm for milling
trace 1, is calculated with projections. In each of the steps a finite number of calls is made
to routines for booleans, projections, and sweeps. As in the case of the algorithm for milling
trace 1, only a fixed number of calls is made to a modeler each time is passes through the
for loop—hence it is order of O(c - n) for a constant c.

Analysis of Algorithm: Milling Trace 3. The algorithm for milling trace 3 presents a
simpler situation in which the trace information does not require a traversal of the part and
stock geometry and topology. In particular, proceeding from a single curved surface, a fixed
number of operations is made to determine the orientation and profile of a through feature
capable of creating the trace’s curved surface. As with the algorithms for drilling features,
this algorithm is in O(c) for a constant c.

Analysis of Algorithm: Classification of Milling Features. The algorithm for clas-
sification of milling features, called once for each milling feature produced, examines each
edge of the edge profile of the feature. At each edge it performs some fixed number of com-
putations (face sweeps and booleans) to determine if a given edge is open or closed. This
algorithm is then O(n'), where n' is the number of edges in the profile; because n’ < n, this
can be simplified as O(n).

Analysis of Algorithms for Chamfering Traces 1 and 2. The algorithms for cham-
fering traces 1 and 2 (as well as those for filleting traces) are nearly the same in structure.
Steps 1-3 perform queries to determine if the trace is within the bounds that can be consid-
ered as a chamfer and to calculate the orientation of the features that might have created
it. The complexity in these algorithms occurs during the determinations of the edge profile.
To build the edge profile, one needs to consider the edges formed by a slice of the part. As
noted, this can be done as a depth-first search on the connected set of edges created by this
slicing—at worst case O(n) edges. For each of these edges, a fixed number of operations is
called to see if it can be considered as part of the chamfer’s profile and, if so, to construct
the parameterized chamfer feature. This for loop is called at most twice; hence the overall
complexity of the chamfer algorithms is O(2 - n) or just O(n).

Analysis of Algorithms for Filleting Traces 1 and 2. The filleting algorithms operate
are similar to those for chamfering traces 1 and 2. Their worst-case complexity is also O(n).

Given the complexities for the trace algorithms, we know that 7(n) € O(n). Thus,

using the formula given above, the overall complexity of the algorithm RECOGNIZE_WELL-
BEHAVED_FEATURES is O(|T'| - n), or simply O(n?). Note that this is what we would
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expect based on the argument in Section 4.1 that each individual geometric or topological
element of the delta volume’s boundary representation can belong to at most O(n?) well-
behaved features. The algorithm RECOGNIZE_WELL-BEHAVED_FEATURES considers each
of these |T'| traces and, for each trace, a constant number of well-behaved feature instances
is constructed. To build each feature instance might itself involve the consideration of other
geometry and topology data, at a cost of O(n), for an overall complexity on the order of
O(n?).

Factoring in the cost of the solid modeling operations, the overall complexity of RECOG-
N1ZE_WELL-BEHAVED _FEATURES is between O(n*) and O(n®) or O(n").

5.3.2 Additional Computational Issues

The above results are for the feature recognition algorithms only. Integration with down-
stream applications often implies the generation of alternative feature-based models and
manufacturing plans. This search through the space of alternative feature-based models, as
pointed out by [74], is inherently exponential. This is related to Definition 2 for the feature
recognition problem as given in Chapter 4.1.

5.4 Summary

This chapter outlined a general formula for calculating the complexity of the feature recog-
nition problem and applied it to the feature recognition algorithms in Chapter 4.
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Chapter 6

Completeness

One of the fundamental problems in solid modeling is ensuring the accuracy and completeness
of geometric representations {116]. Traditionally, geometric information was conveyed using
line drawing and graphical models. Such representations prove quite adequate when human
beings are the sole interpreters of the data but often fall very short of the requirements for
machine interpretation. In this context, completeness refers to a representation’s ability
to unambiguously convey sufficient information about an object for calculating answers to
arbitrary geometric questions.

This chapter builds an analogous notion of completeness for feature-based modeling
and feature recognition. In this chapter we argue that the algorithms presented in Chapter 4
are complete over the class of well-behaved features (as defined in Chapter 3).

6.1 Motivations and Computational Issues

It has been pointed out by Marefat [117, 118] that existing feature recognition methodologies
have had only limited success in identifying and describing alternative feature interpretations.
There are a variety of reasons for this shortcoming. One reason is that since features can
intersect with each other, the introduction of a new feature into a design can divide other
features into spatially disjoint components—components which may be computationally ex-
pensive to identify and recombine. This poses difficulties in feature recognition: rule-based
methods must capture all geometric situations that arise from the choice of feature hints and
the ambiguities inherent in manipulating multiple interpretations with many separate rules;
graph-based algorithms must syntactically or structurally capture these complexities.

A fundamental problem appears to be the lack of a systematic means to describe the
appropriate set of feature instances to recognize. Without an a priori definition for which
feature instances to recognize, the criteria for selecting which instances to generate are
typically ad hoc heuristics based on local and incomplete information.

For example, in most approaches to feature recognition the particular set of features
recognized is a byproduct of the implementation of the system. For some of the decom-
position approaches, the features are primitive cells or combinations thereof. How specific
cells are used will depend on the implementation and the geometry of the given part. For
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knowledge-based approaches, the behavior of the system is embedded in the rules for com-
pleting features from the traces left in the CAD model. In this case, the feature set depends
on the rules and their interactions in the reasoning system; rules must continually be added
to handle each unforeseen special case.

6.2 Defining Completeness

Assessment of how well a feature recognition system addresses these problems can be ac-
complished by asking whether the system is complete. Intuitively, completeness refers to
the ability of a system to produce all features appearing in a specific, well-defined class of
feature instances. If a system produces all features in a given class C, then we say that the
system is complete over C.

In the existing literature, there have been several efforts at guaranteeing completeness.
The feature algebra of Karinthi [94], starting from a single initial feature interpretation,
exhaustively generates alternative interpretations of the part by manipulating the features
with algebraic operators, but does not include a methodology for recognizing the features.
Sakurai [160] presents a system that decomposes the volume to be machined into disjoint cells
and then recombines them to form compound feature instances. This method is complete
over the class of features that can be built from compositions of these primitive cells. In
another effort, Marefat [117] states that his hypothesis testing approach is complete over his
class of hypothesis generators for features. All of these methods are prone to combinatorial
obstacles and are limited to polyhedral models.

It should be noted that in existing systems completeness has not been addressed in
terms of any factors that directly relate to manufacturing. In these cases, completeness is
determined with respect to criteria that are artifacts of the computational approach chosen
for recognizing the features.

6.2.1 Approach

In order to address this problem, we will define a feature recognition algorithm to be C-
complete over some class of features C if it produces, for any given part P and stock S, the
set of all features in C that might be used in the manufacture of P.

A full formal proof of completeness of a feature recognition procedure would require:

1. A specification for the feature recognition problem, such as the one given in Chapter 4.

This definition expresses the input set and output set of a feature recognition “black
box.”

2. Given a specification for the problem, one must determine whether or not the problem
is computable [82]; i.e., one must show there exists an algorithm such that for every
instance of the problem it halts and returns the correct answer. Proving computability,
in a strictly formal sense, involves showing that the problem (feature recognition) can
be coded into a Turing machine (in order to show the existence of such an algorithm).
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In most domains, such a proof is a practical impossibility. It is widely accepted that
if an the existence of an algorithm (stated in a programing language) can be shown,
then the problem is computable.

3. To demonstrate an encoding into a Turing machine (or into a structured programming
language at a reasonable level of detail), more mathematically rigorous definitions of
features are required. In addition, one needs to map the problem from a continuous
domain to a discrete domain. This means that a discrete version of the geometric prob-
lem must be developed in which solid models and feature instances are parameterized
from a countable set.

With respect to (2) and (3), the feature recognition problem bears some resemblance to
the problem of tiling the plane [100, 195, 14, 150]. Tiling describes the problem of asking,
given templates for 2D tiles, whether the plane (or some subset of it) can be covered with
instances of tiles. There are several computability results in the area of 2D tilings that have
employed mappings of a geometric tiling problem to a Turing machine. A similar approach
would have to be adopted to obtain a full and formal proof of completeness.

It is evident that for practical problem domains the mathematical tools for performing a
full and formal proof of completeness do not exist. This has these immediate consequences:

e It is impossible for a feature recognition algorithm to be complete over the set of all
valid machining features ¥V because, as noted in Chapter 4, there are parts for which
there are infinitely many possible instances of machining features.

e Even if we restrict ourselves to primary features, completeness is still impossible: there
are simple machinable parts that can have infinitely many primary features (as illus-
trated earlier in Figure 4.2).

e There are only finitely (in fact, polynomially) many well-behaved primary features for
any given part, as proven in Section 4.1. Thus completeness over the set of well-behaved
features is an attainable goal.

Within the context of this thesis, an argument for the completeness of the algorithms fol-
lows from the fact that the feature traces are derived from the properties of the well-behaved
features. In particular, if W is the class of well-behaved feature an argument that the pro-
cedure RECOGNIZE_WELL-BEHAVED _FEATURES from Section 4.3 is W-complete over the
class of well-behaved features can be made as follows: given a part P, a piece of stock S, and a
well-behaved feature instance f, we know that f contributes unique geometric and topologic
characteristics to the boundary of P. RECOGNIZE_WELL-BEHAVED_FEATURES searches for
these contributions and reconstructs the feature f (or some equivalent feature). For each
geometric and topological attribute of P, all well-behaved features capable of producing that
entity are eventually produced.

More specifically, with regard to the well-behaved features from Chapter 3, there are
three possible cases:
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1. f is a drilling feature. The boundary of the delta volume, b(A), must contain a
portion of f’s cylindrical side surface or ending surface. An orientation for potential
drilling features can be obtained from the axes of these surfaces; the surface infor-
mation can also determine the feature profiles (in this case the radii of the surfaces).
This orientation and the profile fix the other defining feature parameters (depth and
location).

The algorithms for drilling traces 1 and 2 described in Section 4.3 represent an imple-
mentation of this case.

2. f is a milling feature. Since f is well-behaved, b(f) N b(A) contains surface or
edge information from f or from a feature f’ that is subsumed by feature f. Hence,
b(f) N b(A) contains surfaces and/or edges in a plane perpendicular to the orientation
of the feature f. This plane contains the bottom face of feature f or of a feature f’.
In the second case, the f’ is used to determine the location of the bottom surface of f.
Given the location of the bottom surface, one can calculate the edge profile, location,
and depth for the feature f.

The algorithms for milling traces described in Section 4.3 represent an implementation
of this case.

3. f is a chamfering or filleting feature. The edges of f’s edge profile are edges in
b(A) and b(f)N*b(A) is non-empty. An orientation for f is calculated by examining the
edges and faces in b(A). Using edge profile £, the other surfaces made by the machining
operation are found by examining the part topology—this information can be used to
build one or more volumetric feature instances capable of creating b(f) N* b(A).

The algorithms for chamfering and filleting traces described in Section 4.3 represent
an implementation of this case.

While the techniques used in this thesis to develop the algorithms of Chapter 4 are
closely tied to the specification of the set of well-behaved features, this situation need not
generalize: for example, one might pose the question of the completeness of an algorithm A
across a number of different classes of features, C1,Cs, . ..Cs. Alternately, one might consider
a number of different algorithms, A;, A,, ... Ar, and their completeness over a specific class
of features C. In this way, a formalization of completeness can separate the specification of
“which features to recognize” from the particular recognition algorithm or method employed.
The argument for the completeness of this thesis” approach serves to illustrate the utility of
the general concept of completeness as developed in this chapter.

6.2.2 Feature Interactions

The ability to recognize interacting features has been a stated goal of a number research
efforts, among them [41, 58, 117, 91, 200]. While it is agreed upon as a problem of critical
importance [210], however, the concept of feature interactions lies largely undefined in
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the general literature. In most cases, the definition for the term is implied, vague, or specific
to one particular approach.

Feature interactions pose a major challenge to the development of robust and reliable
feature recognition systems. Given the previous arguments for completeness of the approach
presented in this thesis, it should follow that the approach presented in this thesis will find
all well-behaved features regardless of how they “interact.” The question arises as to what
“Interact” means. We observe that there are three different classes of feature interactions:

1. Geometry/topology-level feature interactions occur when the feature instances
share common entities if considered as volumes or surfaces. A geometry/topology-
level interaction occurs, for example, when two or more volumetric features have a
non-empty intersection or when two or more surface features share boundaries.

2. Trace-level feature interactions occur when one or more features f; ... f, interfere
with the traces of another feature, fy. For example, f; ... f, might distort or destroy
information critical to the algorithmic reconstruction of fy. In such interaction, there
is no tractable way to deduce the existence of fy from the information remaining in the
design (geometry, topology, design attributes, etc.). An example of such an interaction
would be a milling feature that leaves only a single side face in the delta volume. In
such a situation there is no way to determine the orientation of the feature from this
side face. Another example is that of a drilled hole made with a ball-end mill which
contributes only a portion of its spherical tip surface on the part. In this case, there
are infinitely many possible orientations for drilling features that left this trace.

3. Manufacturing plan-level feature interactions occur when the manufacturing
operations represented by the features affect one another during the generation and
execution of a manufacturing plan. For example, in machining, precedences among
the machining operations are affected by the setups for each feature. Machining of a
feature might destroy a precondition for fixturing the part during machining of another
feature. As another example, given that two features f; and f; intersect volumetrically,
a planner has to make a choice about how to machine the shared volume. This kind
of feature interaction can only be handled when manufacturing attributes (such as
tolerances, surfaces finish, and the like) are considered along with the other alternative
features available to the planner.

Existing work has addressed the interactions problem in a number of ways, usually touch-
ing on one or more of the above levels. In most cases, however, it is usually not made clear
which type of feature interaction is intended.

The approach to feature recognition presented in this thesis is complete for features with
arbitrary geometric and topological interactions. With regard to trace-level interactions, this
approach recognizes all features for which there exists at least one trace.

Lastly, the feature recognition algorithms presented in Chapter 4 do not address the
problem of plan-level interactions. Planning, cost estimation, and other downstream appli-
cations are independent of feature recognition as defined in this thesis. In these types of
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interactions, a planner must make a decision—a decision that is based on domain knowledge
about the planning problem being addressed. Hence, these types of interactions have to be
addressed by the downstream applications whose planning activity is based on the primary
well-behaved feature set, F.

6.3 Related Issues: Correctness and Soundness

Researchers have recently raised the question of proving correctness and soundness of feature
recognition algorithms and systems. In this section we address some of the issues and
obstacles to attaining mathematically rigorous proofs for these properties. Many of the
ideas from the discussion of completeness in the previous section can be applied to shed
additional light on how one might prove soundness and correctness.

Motivations for building mathematical tools with which to reason about these issues
are numerous. Computational robustness is chief among these, due to the often mission-
critical nature of engineering analysis software. As engineers increasingly rely on computer-
aided analysis tools and automated reasoning software, the potential for grave errors being
introduced by faults within computer software (or with the human user’s interpretation
of the results produced by software) increases. This has been extensively documented in
the mainstream as well as science media. For example, Petroski [140] describes some of
the hazards caused by analysis software for civil engineering and a recent cover story in
Scientific American [61] describes some of the significant obstacles that still need to be
overcome in the design and implementation of large software systems.!

In the following two sections, we propose definitions for correctness and soundness of
feature recognition systems and discuss how these issues can be addressed.

6.3.1 Correctness

A program described by a structured programming language (such as Lisp, C/C++,
Pascal, etc.) is basically a function mapping a set of input data to a set of output data. To
prove correctness, one must show that the program computes a function that is equivalent to
its specification. The proof of correctness consists of showing that the effect on the data by
the basic commands in the language as they are listed in the code add up to the specification.

Formally, program correctness is defined as showing that a given program |II |is correct
with respect to some functional specification fr. For purely illustrative purposes, Figure 6.1
presents an example program and Figure 6.2 the formal proof of its correctness using Mills’
functional semantics method [59, 125, 127].

To briefly describe some of the notation in the figure:

o function composition;

the function defined by code fragment II;

1The article focuses on the highly publicized baggage system at the Denver International Airport.
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factorial ( integer m)
s=1;
while m > 0 do
{
s =8*m;
m=m—1;
}

return s;

Figure 6.1: A program for computing m!.

domain((I1]) the functional domain of [IT};
-, V, | standard meanings from logic: not, and, or.

Readers interested in reading more on formal methods for program correctness (or verifying
the proof in Figure 6.2) are referred to the extensive literature in this area [114, 126, 45, 59,
80, 125, 127].

This example is solely intended to show the complexity of generating formal proofs of
program correctness; hence, we shall not present any description of the technique. Note that
this example proof is for a relatively trivial program—proofs for programs as easy as the
straightforward case of sorting a list of numbers may run for many tedious pages. Matters are
further complicated by the existence of complex data structures, nested loops, and function
calls. One might speculate that a full proof of correctness for a feature recognition system
might require many thousands of pages.

Given the practical impossibility of proving correctness for algorithms at the scale of a
feature recognition system, what can be done to ensure the correctness of such a complex
software system? This thesis proposes the following approach:

1. Develop implementation-independent and algorithm-independent specifications for the
feature recognition problem, as was done in Section 4.1. This exercise involves devel-
oping several layers of definitions including those for a class of features and those for
which members of the class are to be recognized.

2. Systematically divide the problem into structured components, as was done in Sec-
tion 4.2, whose cumulative effect conforms to the problem specification. This involves
developing algorithms to solve each of the subproblems.

We would informally claim that with respect to the specification given in Section 4.1, the
trace-based algorithms in Section 4.2 are correct. However, it appears that a formal proof
of correctness is beyond the capabilities of existing mathematical tools. For an essential
reference on the hazards of building large software systems, readers are referred to [92].
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Theorem 6.3.1 The program II in 6.1 is correct with respect to functional spec-
ification fr=(m<1=>s=mm=m—1)|(m>1=s=mlm=0)

Proof: using Mills’ functional semantics.
Step I: Determine fypnije,  functional specification for what is computed by the

while loop ([while ... |).

Let B be the code body of the while loop.

We know that fynile = if and only if:

1. fwhile.. = |if &> 0 then Blo fwhile. ;

2. domain(fuhile.) = domain((while ... );

3. if b <, funite = () (i.e., nil).

Suppose
fonile=(m>0=s=sxmlim=0)|(m <0)

Therefore

lif m > 0 then B|:(m>0:>.s:s*m;m:m—1)|(m§0:>())

Step I (a): show

fwhile... = [if b > 0 then B]o fyhile...

using truth tables,

(m>0=>s=sxm;m=m~ 1)V
(m>0=s=s+xmlm=0)
Table 1: | m > 0
m—1>0
m>1

(m <0)v
(m<0= ()
Table 2: [ m <0 —_ —
m<0 —_— —

0 0

sxm
skm*(m—1)!
s*m!

oo 3| 3
|

Figure 6.2: A formal proof of correctness for the factorial program II from Figure 6.1 using
the functional semantics techniques of Mills [59, 125, 127] (the proof is continued on the
next page).
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(m < 0)V
(m>0=s=sxmlm=0)
Truth Table 3: | m <0

m >0

cannot happen

(m>0=s=sxmm=m-1vV | s
(m<0)
Truth Table 4: | m > 0 m—1 sxm
m-—1<0
m=1 0 s *m!
Therefore,

Iifm>0then B|°fwhile =
(m>1=s=s*xmlm=0)|
(m=1=>s=s+mlm=0)| =
(m<0=())

(m>0=>s=sxm!im=0)|(m<0) = fyhile

Step I (b): Note that domain(fyhite...) = domain().
Step I (c): Note that if b < then fynie = ().

Step II: determine the function computed by the program II and check that
it conforms to the specification.

s=1; while ... | = fwhile(s =1)

(m>1=>s=1xmlim=0)|

(mM<1l=>s=(1)*xmm=m-—1)
= (m>1=>s=mlm=0)]

(m<l=>s=mym=m-1)

= (1]

Figure 6.2 continued.
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6.3.2 Soundness

In general, a program is said to be sound if it never produces incorrect results. By exten-
sion, a feature recognition procedure can be defined as sound if it always produces valid
features. Presented at this level, soundness seems like a highly desirable quality for a feature
recognition system to possess.

In the context of feature recognition, however, developing a mathematical definition for
soundness presents several issues:

1. What is meant by an valid feature? In a domain of machined parts there are many
conditions under which a feature could be invalid. For example, any volumetric feature
that intersects with the final part geometry is considered invalid. Including any such
feature in a plan would result in overmachining of the part. However, development a
mathematical definition for what it means to have a valid feature is unclear and highly
dependent on the particular application domain for which one is recognizing features.

2. Given that validity is a term relative to the downstream application at hand, even
within the context of individual applications validity is defined on a largely ad hoc
basis. In machining, as pointed out by Gupta et al. [72], a natural way of classifying
the features is to partition them into those that we consider valid for manufacturing
planning and those that we consider invalid—i.e., those unlikely to occur in any reason-
able manufacturing plan. Hence, defining validity requires formalizing the relationship
between features and the manufacturing plans they can be used to generate.

3. In defining validity in terms of manufacturing plans for various downstream applica-
tions, the soundness of features becomes dependent on a number of complex factors. In
the realm of machining, this means real-world constraints such as the availability of cer-
tain individual machine tools on a shop floor or the manufacturing schedule currently
planned for the shop at hand. Machine tool downtime or conflicts have a measurable
effect on the soundness of individual plans and features. Without better computa-
tional characterizations of these effects, developing a general notion of soundness that
has utility for the developers of feature recognition systems will prove difficult.

We observe that formal proofs for soundness depend on the context in which the features
are being used. The soundness of a feature recognition system for cost estimation may be
very different if used for process planning. Further, formally proving soundness requires a
better mathematical understanding of how features map to manufacturing operations and
plans.

6.4 Summary

This chapter developed the notion of completeness for feature recognition systems. In par-
ticular, the argument for the completeness of this thesis’ approach serves to illustrate how
to apply the general concept of completeness (as developed in this chapter) to a specific
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instance of the feature recognition problem. In this way, formalization of completeness can
be used to separate the specification of “which features to recognize” from the recognition
algorithm or method employed. These results were extrapolated to illustrate the difficulties
inherent in formalizing analogous notions for correctness and soundness.
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Chapter 7

Post-Recognition Processing

The application domain of machining poses a variety of constraints on the types of features
that can be considered valid and useful. We can use knowledge from a number of sources to
improve and enhance the feature recognition process. This chapter presents techniques to
modify the set of well-behaved primary features F returned by the algorithms of Chapter 4
to improve their correspondence to actual machining operations and exclude those which are
likely to be unrealistic for downstream applications.

7.1 Approach

Although the feature types defined earlier are intended to correspond to machining opera-
tions, specific feature instances can sometimes present unrealistic machining requirements.
The approach described in this thesis separates, to the greatest practical degree, feature
recognition from domain-specific manufacturing considerations. Therefore, such considera-
tions are performed as post-processing steps on the basic well-behaved primary feature set
that is produced by the recognition algorithms.

Given the RECOGNIZE_WELL-BEHAVED _FEATURES procedure from Chapter 4, we in-
troduce here an additional algorithm:
BUILD_FEATURES(P, S)
INPUT: solid models of a part P and stock S
OUTPUT: a set of feature instances, F.

1. ¥ = RECOGNIZE_WELL-BEHAVED _FEATURES(P, S).
2. For each feature f in F do:

(a) Perform a check on the tooling constraints; if f is outside the bounds of reasonable
tooling parameters then remove it from F.

(b) Perform an inaccessibility check of f; if f is inaccessible, remove it from F.

3. For each milling feature f in F do:
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(a) Examine the edge profile of f to identify subclassification for milling feature (i.e.,
pocket-milling, face-milling, or step-milling).

(b) Determine if the feature f has bottom blends.

(c) Offset the edge profile of f.

(d) Perform an inaccessibility check of f;
if f is inaccessible, remove it from F.

4. Return(F).

This algorithm adjusts the set of well-behaved primary features, F, to account for tooling,
accessibility, and the machinability of profiles. The remainder of this chapter defines these
terms and describes techniques and algorithms for dealing with their effects on features in

F.

7.2 Tooling Constraints

Some features may violate constraints on the physical dimensions of available tooling. For
example, not every cylindrical surface may be machinable with a drilling operation because
there are physical limits on the maximum radius available in the available set of drilling
tools. Similarly, bounds exist on the dimensions of surfaces identified as blends, fillets, or
chamfers.

While the specific selection of tooling is a task for process planning or analysis, we can
devise some simple general checks to identify and discard any obviously unrealistic features
at the time of recognition. Note that in creating these tests, our only objective is to discard
or modify features that present fundamentally unmachinable requirements. In the context of
other application domains, one would want to devise similar tests based on the requirements
of that particular domain.

The following is a list of machining constraints and how they are addressed within the
framework presented in Chapters 3 and 4. While the parameters presented below are by no
means exhaustive, they can be use to eliminate what are, with high probability, unrealistic
feature instances. The values are based on a survey of common cutting tools as listed in
cutting tool catalogs [48, 99, 164, 165, 194].

e For drilling features there are three parameters we consider:

Flute length: Flute length refers to the length of the cutting surface of the tool. For
the drilling tool in Figure 7.1 the flute length is l;. We truncate any drilling
features requiring tools with flute length greater than 128mm (approximately 5
inches).

Tool diameter: The D parameter on the drilling tool in Figure 7.1. We discard any
drilling feature requiring a tool diameter greater than 40mm.
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Length/Diameter (L/D) ratio: For drilling tools such as the one shown in Fig-
ure 7.1, the L/D is the ratio of the length of the tool to its diameter—i.e., the
ratio of D to l4. For most drilling tools the maximum drilling depth is 3 to 5 times
the diameter of the tool. As a post processing step we truncate drilling features
with a L/D ratio greater than 6.

Figure 7.1: A drilling tool from [48].

e For milling features one parameter considered:

Blend surfaces: Milling operations can leave a transition surface between the walls
of the feature and the bottom surface of the feature. The size of these blend
surfaces depends on the parameters of the available tool. We consider curved
surfaces (cylinders, tori, and spheres) to be possible round blends if their diameter
is between 3mm and 25mm. For flat blends, we consider only conical surfaces
rectangular planar surfaces with width! between 2mm and 40mm. An algorithm
for identifying bottom blends on milling features is given below.

e For chamfering and filleting features several parameters need to be considered, some

of which were presented along with their recognition algorithms in Chapter 4. For
chamfering features:

Tip angle: The tip angle is the angle between the cutting edge of the tool and the
tool’s axis. In the context of this thesis, the tip angle is assumed to be 45°.

Cutting length: The cutting length refers to the length of the cutting edge of the
tool. In Figure 3.9(a), for tools with 45° tip angles, this length is 5? - A. In the
algorithms below we will assume that there are minimum and maximum values
for A, Apin = 3mm and, A = 35mm.

When speaking of a conical surface, width refers to the distance between the bounding edges at the top
and base of the cone. For example, width would equal the distance between the vertex at the top of the
cone and the cone’s elliptical base, measured along the cone’s surface.
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For filleting features:

Cutting radius: The radius of the cutting surface of the tool, R as shown in Fig-
ure 3.9(b). We assume that there are minimum and maximum values for R,
Ryin = 3mm, and R, = 19mm.

Cutting profile: The cutting profile refers to the shape and length of the cutting
edge of the tool. Referring to the parameters in Figure 3.9(b), the algorithms
below will assume that the cutting profile is }Z of the circular arc of radius R,
hence 2.35mm< R < 29.9mm.

Both flute length and L/D ratio have a significant impact on how (and if) a feature can
be machined. For example, milling features of excessive depth might not be machinable due
to the lack of an available tool that is long enough and of the right diameter to machine the
feature’s contour and avoid excessive tool chatter.

Ideally, these parameters would be obtained from a manufacturing resource database
that contains the cutting tools available in the context of the given application [93]. These
parameters will vary greatly depending on the available set of cutting tools and machine
tools, which in turn will vary greatly depending on the particular application. The interface
of feature recognition with manufacturing resource information is beyond the scope of this
thesis; hence we have opted to simplify the problem by selecting some common values. If
necessary, the approach presented in this thesis could be extended to interface with different
databases or could be fine-tuned to work with a specific collection of resources.

Determining Bottom Blends. Given bounds on the sizes of available tooling, the follow-
ing algorithm takes a milling feature f and determines if there exists bottom blends. It does
this by examining the surfaces of the part P adjacent to E for surfaces that fall within the
parameter bounds to be considered as possible blends. In particular, if any blend surfaces
are found, we adjust the profile F and modify the feature volume. Given a face b that is a
bottom blend for a milling feature with profile F, an algorithm for adjusting £ can be given
as follows:

1. Input a part P, a milling feature f, and parameters by, and by representing the
minimum and maximum sizes for blend surfaces.

2. Let s be the planar face corresponding to the bottom surface of f, as defined by E’s
edges.

3. For each edge e in F and in the profiles of the islands of f do:

(a) Let b be the face of P adjacent to e; if there is no such face, loop to (3).

(b) Verify that bis a blend surface; if b is not a blend surface loop to (3). In the context
of this thesis we consider only a fixed number of blends, therefore b is either a
cylindrical, spherical, or toroidal surface with radius bmin < 7 < bmax; Or b is a
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planar or conical surface with width w (between bounding edges) bpyin < W < byax.
For flat blends we will assume a 45° angled tool.

(c) Let py be the face formed by taking the projection of b onto the plane containing
s.

(d) Let s = p, U* s and let £’ be the edges bounding s.
4. Return F'.

Note that in this thesis we consider only milling features with constant bottom blends;
we do not consider milling features with either multiple (blends of mixed radii) or varying
bottom blends. Further note that bottom blends are only possible for pocket-milling and
step-milling features.

7.3 Offsetting

Offsetting is the process of deducing a milling feature’s removal volume (rem(f)) from its
effective removal volume (eff(f)). Determined solely from the part and stock, a milling
feature’s profile might contain sharp corners that cannot be machined by a milling tool; or
it might be the case that the most cost-effective way to mill a volume is to perform the
machining operation using the largest possible tool. Such situations might require the tool
to move outside the boundary of the stock material.

After a possible milling profile has been identified, we will want to adjust its profile to
provide an offset feature, such as that shown in Figure 7.2, that takes these machinability
considerations into account. In the figure, the edges of profile E have been offset to take into
account the radius of a cutting tool. An example of an offset step-milling feature is given in
Figure 8.9(c).

Offsetting the edge profile of a potential milling feature involves the following steps:

1. Estimation of an optimal tool size. In a typical milling operation, a larger tool
diameter implies a shorter cutting trajectory and less operation cost and time. How-
ever, a variety of constraints resulting from the geometric configuration of the profile
might restrict the maximum tool size that can be employed. In this step, the geometry
of the profile is used to calculate an upper bound on the tool size. For this, we employ
the algorithms developed by Gupta [70].

2. Alteration of the profile. In some profiles, the estimation of tool size might reveal
machinability problems. For example, two adjacent closed profile edges meeting at
a convex corner result in a tool radius estimate of zero; a narrow distance between
closed edges in the profile might return an estimate smaller than the smallest available
tool. This step modifies profiles by offsetting convex corners inward to account for the
corner radius left by a tool (shown for the closed edges in Figures 7.3(b) and (c)) or by
dividing an otherwise unmachinable profile into a set of multiple profiles that can be

122



<

): stock and part

(b): feature (c): offset feature

Figure 7.2: Offsetting to produce more realistic machining volumes.
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open edges

closed edges

Figure 7.3: An example of edge profile offsetting.

machined with the available milling tools. An algorithm for profile alteration is given
below.

3. Offsetting the profile. After finding a bound on the tool size, the open edges of a
milling feature are offset to account for the radius of the milling tool, as shown for the
open edges in Figures 7.3(b) and (c). The tool can move on or outside these edges
during machining. Again, we have used algorithms developed by Gupta [70].

7.3.1 Profile Alteration

In some profiles, the estimation of tool size might reveal machinability problems. For ex-
ample, two adjacent closed profile edges meeting at a convex corner result in a tool radius
estimate of zero; a narrow distance between closed edges in the profile might return an
estimate smaller than the smallest available tool. This step modifies profiles by offsetting
convex corners inward to account for the corner radius left by a tool (as shown for the closed
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edges in Figures 7.3(b) and (c)) or by dividing an otherwise unmachinable profile into a set
of multiple profiles that can be machined with the available milling tools.

To address these situations we will want to modify the profile to conform to the machining
constraints. This involves developing an algorithm that offsets convex corners to account
for the corner radius and divides profiles into multiple profiles that can be machined with
the given tooling. This algorithm assumes that the milling feature profile is composed of
straight lines and circular arcs.

Algorithm: Modify Milling Profile.
1. Input a milling feature f with edge profile F, part P, and tool diameter d.

2. For every pair of consecutive closed edges in E meeting at a convex corner introduce
a corner radius of 1d, as shown in Figure 7.4.

3. For each closed edge e; of the set of edges F do:

(a) Let v be the vector pointing from edge e; into the interior of the profile defined
by E. Build the tool sweep area A as shown in Figure 7.6(a).

(b) If Aintersects with another closed edge e; as shown in Figure 7.6(b) (for simplicity,
we assume ¢ < j) then

i. Extend edges e; and e; to their intersection and introduce a corner radius
(based on their vectors v, and v,) as in Step (2). This creates one new
closed edge profile e;...e; and leaves one open edge profile e;41...€;-1.

ii. With the remaining edges, join edges e;41 and e,y with an open edge to close
the profile.

4. Return the set of edge profiles created.

An example of the 5 new profiles that would be produced by this algorithm for the part
pictured in Figure 7.5 is shown in Figure 7.7.

This algorithm is designed to produce improved profiles for milling where the original
profile was undesirable or unmanufacturable. In practice an algorithm of this kind will
have to include some form of optimization criteria. There are numerous trade-offs between
selection of tool size, cutting speeds, wear, etc., not to mention the fact that the features
represented by these profiles must be sequenced for machining during an operation plan.
This algorithm does not address these latter concerns.
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Figure 7.4: The effect of feature profile offsetting.
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Figure 7.5: An example of a problem profile for which the desired tool radius is too large to
machine the entire feature.
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Figure 7.6: Example of testing closed edges for interference.
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Figure 7.7: Altered profiles from example 7.5.
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7.4 Accessibility

Accessibility is a very complicated property to verify. It depends on the shape and dimensions
of the machine tool and the cutting tool, and the order in which the features are machined—
all of which are not decided until a machining plan is generated. Development of a general
methodology for determining whether a feature f is accessible would require generating all
of the alternative operation sequences that employ the feature f, to see if f is accessible
in any one of them. Such algorithms have been developed in the context of generating and
evaluating alternative machining plans [68, 67, 70], but are beyond the scope of feature
recognition per se.

In this section we develop criteria to eliminate obviously inaccessible features by calcu-
lating an approximation of a features accessibility volume acc(f) from its removal volume
rem(f) and effective removal volume eff(f). In practice, a cutting tool is held by a tool
assembly, such as those shown in Figure 7.8, and attached to a machine tool. For each fea-
ture f we calculate an accessibility volume, acc(f), that is an approximation of the volume
swept out by the non-cutting portion of the tool and the tool assembly while the feature
f is machined. If acc(f) has a non-empty intersection with the part P, then feature f is
inaccessible in every machining plan for P, and thus can be discarded.

The accessibility volume for the features in M as defined in Chapter 3 is calculated using
two parameters:

Maximum tool cutting length: This is the longest cutting length possible for a tool.
For drilling and milling tools we use a value of 128mm. Hence the removal volume
for any feature instance rem(f) can be no deeper than 128mm. For chamfering and
filleting tools this value is much less. We will use an estimated value of 20mm for
both chamfering and filleting feature types based on the bounds on tools presented in
Section 7.2.

Maximum tool non-cutting length: This is the length of the non-cutting portion of the
tool between the end of the cutting surface and the beginning of the tool assembly.
For this parameter we use a value of 32mm.

Tool assembly radius: This is the radius of the tool assembly, r,, such as those shown in
Figures 7.8 and 7.9(a). In order to exclude only those obviously inaccessible features,
we select a value of r, =10mm.?

Given the above parameters, the accessibility volume for the features in M is calculated
as follows:

Drilling feature: Given a drilling feature f of radius r with location p and a unit vector
v denoting orientation, acc(f) is defined by four half-spaces, acc(f) = (Hy N* Hy) U*

2The smallest radius tool assembly available from a survey of a variety of catalogs [48, 99, 164, 165, 194].
This value represents an approximate lower bound on the size of the tool assembly needed to hold a tool of
a given radius. Provisions for custom tooling is beyond the scope of this work.
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Figure 7.8: Example tool assemblies from cutting tool manufacturer’s catalogs [164, 99].

(H3N* Hy). Hy is defined by the plane passing through point (p+v-128) and normal to
v; Hy by the cylinder containing the points p’ whose distance from the ray defined by v
and p is less than r. Hj is defined by the plane passing through point (p+v- (128 +32))
and normal to v and Hy by the cylinder containing the points p’ whose distance from
the ray defined by v and p is less than max(20, r 4-10)mm. An example of this is shown
in Figure 7.9(b).

Milling feature: Given a milling feature f with an edge profile E, location p and a unit
vector v denoting orientation, acc(f) is defined by four half spaces, acc(f) = (Hy; N*
H,) U* (Hz N* Hy).

H, is defined by the plane passing through point (p + v - 128) and normal to v and
H; by the volume containing the points p’ which, when projected on +/ — v onto the
plane containing F, lie within E. Hj is defined by the plane passing through point
(p+ v- (128 + 32)) and normal to v and Hy by the volume containing all points p'
which, when projected on +/ — v onto the plane containing F, lie within a distance of
10mm from E. An example of this is shown in Figure 7.10(a).

Chamfering and Filleting features: Given a chamfering or filleting feature f with an
edge profile E, a unit vector v denoting orientation, and radius r of the cutting tool,?

SReferring to the parameters in Figure 3.9 the radius of the tool is calculated using parameter A for
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(a): A drilling tool assembly, from [165] (b): Drilling feature h and acc(h)

Figure 7.9: Hlustration of a tool assembly and accessibility volume for drilling features.

acc(f) is defined by four half spaces, acc(f) = (H; N* Hz) U* (Hs N* Hy).

H, is defined by the plane passing through point (p+wv-20) and normal to v and H, by
the volume containing the points p’ which, when projected on +/ — v onto the plane
containing F, lie within a distance of r from E. Hj is defined by the plane passing
through point (p+ v - (20 4+ 32)) and normal to v and Hy by the volume containing all
points p’ which, when projected on +/ — v onto the plane containing E lie within a
distance of max(20,r 4+ 10)mm from F.

While the volumes defined above represent very rough estimates of the accessibility vol-
ume for each feature, they do provide an effective means of excluding numerous instances of
unreasonable features.

Figures 7.9(a) and (b) illustrate the accessibility and removal portions of feature volumes
for drilling features.

An example of how these volumes can be used to calculate interference with the workpiece
is given in Figure 7.10. In Figure 7.10 (b), the recognition algorithm for milling trace 1
returns a deep pocket. By calculating the accessibility volume (Figure 7.10 (a)) for this
feature instance, one can determine the existence of tool interference with the workpiece

(Figure 7.10(c)) and discard the feature because it is unlikely to be manufacturable with
common tooling.

chamfering features and parameter R for filleting features.

130



profile
(b): A deep milling feature (c): Interference with acc(m)

Figure 7.10: Testing for feature accessibility.
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7.5 Summary

This chapter presents three post-processing steps to operate on the set of well-behaved
features produced by the algorithms in Chapter 4. In particular, features are discarded or
truncated based on the bounds of common cutting tools. The profiles of milling features
returned by the algorithms in Chapter 4 might not correspond directly to the volumes swept
out by the rotating cutting tool, if they have characteristics such as sharp convex corners. The
profiles of milling features are modified to enhance their correspondence to actual machining
operations by taking into account the radius of a milling tool that might machine them.
Lastly, features are tested for inaccessibility by approximating the volume occupied by the
non-cutting portion of the tool and the tool assembly.
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Chapter 8

Implementation and Examples

This chapter gives an overview of the IMACS design critiquing system and of the implemen-

tation of a prototype feature recognition system F-Rex developed with the methodology
described in Chapters 3 through 7.

8.1 Overview of IMACS

The framework described in this thesis has been employed to develop a proof-of-concept
implementation of a feature recognition system. This system, F-Rex, is part of the IMACS
Project (Interactive Manufacturability Analysis and Critiquing System) under development
at the University of Maryland College Park’s Institute for Systems Research. Within IMACS,
as illustrated in Figure 8.1, the role of the feature recognition module is to produce the set
of well-behaved primary features from the part’s geometry and topology. This feature set is
used by the other subsystems for manufacturability analysis and redesign.

8.1.1 Software Tools Employed

During the implementation of F-Rex and IMACS we employed a number of development
tools. The majority of the code is written in the C++ language [101, 189, 191, 190, 113, 50]
using version 3.0.1 of the AT&T C++ compiler from SUN Microsystems. The current system
runs on SPARCStations model IPX, 2, 5, and 10-30 workstations under SUN OS 4.1.3.

The remainder of this section gives a brief description of each of the other software tools:

ACIS and the ACIS 3D Toolkit. Spatial Technologies’ ACIS® is a solid modeling
kernel, a C++ library of of routines and functions with which to develop applications.
There are two basic components of the ACIS Solid Modeler: the ACIS Kernel [183, 184,
185, 178] and the 3D Toolkit [180, 181, 120, 182, 179]. The Kernel provides the core C++
library and application protocol interface (API) for the modeler. The 3D Toolkit provides
an extended set of higher-level API calls as well as Scheme [1] language interpreter based
on the Elk Scheme [47] dialect. The Scheme language interface to ACIS includes both a

separate development environment interpreter and an embeddable interpreter, so one can
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Figure 8.1: Feature recognition operating within the IMACS system.

incorporate 3D Toolkit Scheme code into a C++ application. The 3D Toolkit also provides
tools for extending and customizing this Scheme interface.

ACIS is the geometry engine of IMACS and F-Rex. In much the same way as the
use of Motif, Xlib and X Windows [146] can speed the development of interactive graphical
programs and interfaces, ACIS provides a large library of routines for creation, manipulation,
and interrogation of geometric and topological entities with which to build applications. I-
Rex uses a mixture of calls to the ACIS kernel and Scheme functions.

HOOPS. Ithaca Software’s HOOPS® [13] is a library of C-language routines for display
and manipulation of 3D graphics. HOOPS is tightly integrated with ACIS to open display
windows for ACIS solids and to control rendering.

NIHCL. The NIH C++ Class Library [64, 63] (previously known as the “OOPS” Class
Library) is a portable, UNIX-system-compatible C++ class library from the National Insti-
tutes of Health. The current IMACS implementation is based on version 3.14 of the library,
which provides method functions for common data structures such as lists, sets, stacks, and
arrays. NIHCL was used to encapsulate many of the solid modeling functions by creating
classes for solid models and features.

Tcl/Tk and Expect. Tclis an embeddable tool command language developed by Ouster-
hout at the University of California at Berkeley [132, 134, 135]. Tk [133] is a graphical user
interface toolkit based on Tcl.
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Expect [112] is an extension to TCL that enables control of other interactive applications.
Following a script, Expect knows what output is to be produced by a program and what the
correct response should be. TCL provides structures for branching and control.

An Expect script can invoke other programs and run them simultaneously, passing in-
formation among their processes in a manner similar to reading and writing among multiple
files. Expecttk is Expect plus the TK motif-like graphical user interface extensions to TCL.
With Expect/Expectk, one can combine independent interactive applications into a package
controlled by a single GUI.

Tcl, Tk and Expect/Expecttk were used to create the graphical user interface for the
IMACS and F-Rex programs.

8.1.2 Description of other Modules

This section briefly describes the different components in the IMACS system and their rela-
tionship to the F-Rex feature recognition module.

IMACS Designer. IMACS Designer is a basic user interface for the ACIS® 3D Toolkit.
The objective of IMACS Designer was to give users easy visual access to the functionality
of the ACIS 3D Toolkit and enable them to invoke many of the basic Toolkit commands
through a graphical user interface.

IMACS Designer is written in the language Expectk and runs on the UNIX platforms
supported by the 3D Toolkit. The interface provides a matrix to many of the core commands
of the 3D Toolkit. The basic idea is that we can parameterize the Toolkit’s Scheme commands
by selecting options with a mouse and entering the necessary parameters. Expect then
constructs the appropriate scheme commands and sends them to the Toolkit. An illustration
of the IMACS Designer interface is shown in Figure 8.2.

Tolerancing Module. This module is a prerequisite to the manufacturability analysis
tool. The Tolerancing module allows the designer to associate a limited number of ANSI
Y14.5 tolerances with the solid model of the design. This tool is further described in [70].
Currently, F-Rex does not make use of this tolerance information when generating feature
instances.

Manufacturability Analysis. This is the core IMACS module—it uses the set of fea-
tures produced by F-Rex to generate and evaluate alternative machining plans for the part
by incorporating precedence constraints and information about machining parameters and
tolerances. The cost and time for machining plans that satisfy the design requirements are
used to estimate a rating of the part’s manufacturability [67, 70].

Redesign. This module formulates redesign suggestions based on plan information and
the set of well-behaved features. By making modifications to the operations in the generated
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Figure 8.2: Screen capture of the IMACS Designer interface.

plans, it creates modified versions of the design that, in addition to satisfying design re-
quirements, have improved manufacturability [65, 37]. The new designs are presented to the

designer as alternative possibilities to be considered. At the current time, implementation
of this module is in progress.

8.1.3 Integration of F-Rex with other Modules

F-Rex communicates with the other IMACS modules using the well-behaved primary feature
set, F. This information includes the ACIS solid models for each of the features that were
recognized, along with their attributes (type, depth, edge profile, etc.). This information

is transmitted in the form of a file containing the feature attribute values along with solid
models (ACIS .sat files) for the instances of each feature.
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8.2 The F-Rex Implementation: Limitations and Re-
strictions

F-Rex exists in both a serial and a distributed parallel version (the parallel version is dis-
cussed in Chapter 9). In both cases, the design and shape of the stock material are provided
directly from a CAD system (IMACS Designer) as ACIS solid models. ACIS models rep-
resenting the instances of features from the class of machining features M are produced as
output, along with information about feature parameters. Both implementations of F-Rex
are only proofs-of-concept based on the theory outlined in the preceeding chapters.

For the algorithms described in Chapter 4, the current implementation of F-Rex handles
drilling traces 1 and 2 in their entirety. The implementation handles many common cases
of milling traces 1-3. The algorithms of Section 4.3.2 rely on numerous calls to a projection
routine—an operation not directly supported by the ACIS Solid Modeling Kernel.! For
the purposes of the implementing of the framework in this thesis, we have written some
limited extensions to ACIS to handle a number of the common cases where 3D projections
are necessary. Development of robust 3D projection and sweeping routines for the full class
of solids described by ACIS (i.e., both manifold and non-manifold objects with boundaries
that might consist of both analytic and b-spline surfaces) has been the subject of intensive
research activity [121) and development of robust sweeping algorithms is beyond the scope
of this thesis. Identification of chamfering and filleting features has been omitted because
they are required by the downstream IMACS modules.

The post-processing algorithms and heuristics described in Chapter 7 are implemented
partially in F-Rex and partially in the downstream modules. Currently F-Rex performs some
accessibility /inaccessibility analysis. Offsetting is being addressed as part of the redesign
system. Lastly, the heuristics for tooling constraints and bottom blends have been held for
later implementation.

Even with these limitations, F-Rex is a functional feature recognition system and has
been employed for a variety of real-world examples. It would require an expanded imple-
mentation effort to make it fully correspond to the theory outlined in this thesis—a software
development task that would be most appropriately and effectively executed as part of a
commercialization effort.

8.3 Examples

The examples below (unless otherwise noted) are the output of F-Rex. The orientation of
milling features is noted by their extension beyond the stock material.

!Higher dimensional sweeping of 3D bodies and projections are supported by several third party ACIS
“husks,” including the STRATA tool path generation husk.
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Figure 8.3: The simple bracket example from Figure 3.1.

8.3.1 Example: Simple Bracket

Figure 8.3 shows an example of a simple bracket with 16 faces that appeared earlier in
Figure 3.1. F-Rex produces 3 drilling and 16 milling features for this part, as illustrated in
Figure 8.4.
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Figure 8.4: The features identified by the F-Rex system for the bracket from Figure 3.1.
F-Rex has extended milling features slightly beyond the stock material to indicate their
orientation. If milling features were truncated to the size of the stock, the above picture
would include several apparent duplicates.
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Figure 8.5: A part with a number of intersecting features.

8.3.2 Example: A Housing

Figure 8.5 presents a part with 89 planar, cylindrical, and conical faces to be machined out
of a rectangular block of stock material. F-Rex identified 51 drilling and milling features;
Figure 8.6 shows 35 of these features. Those not shown are additional drilling features that
are entirely subsumed by one of the milling features.

140



SRR R

Figure 8.6: Some of the features found for the part in Figure 8.5.
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8.3.3 Example: A Socket

The example part in Figure 8.7 is a design of a socket taken from [148]. Figure 8.7(a)
shows the design for the socket and Figure 8.7(b) a CAD model of the design. The initial
workpiece, S5, is a cylindrical object of raw stock material to be acted upon by a set of
machining operations that generate features (Figure 8.7(c)). Machining operations remove
material from the initial workpiece to create the design attributes of the part (i.e., P C S).
Figure 8.7(d) illustrates the delta volume for this particular part and stock.

This part, when machined from a cylindrical piece of stock material, has 37 faces in the
delta volume. There are 12 drilling and 20 end-milling features in its feature-based models
that can be produced. F-Rex identified 22 feature instances, as shown in Figure 8.8.

An example of post-processing. To illustrate the distinction between the theory and
algorithms presented in Chapters 3 through 7 and the current implantation of F-Rex,
Figure8.9 shows examples of non-primary, primary, and offset primary milling features for
the socket. Figure 8.10 shows the 22 offset, accessible, well-behaved features produced by
the BUILD_FEATURES algorithm for the part in Figure 8.7. Note that the features pictured
in Figure 8.8 are described only as their effective removal volumes; the curved edges in the
profiles of milling features shown in Figure 8.10 have been adjusted by profile offsetting.

The features in Figures 8.10 can be used to generate 512 different feature-based models
(FBMs) for the part; Figure 8.11 shows the two of the possible FBMs:

Fl == {hh h% h37 h47 h57 h6> h7a my, Mo, M3, M4, Ms, mG}
and
F2 = {hla h27 h3, h8, h97 h107 hlla my,my, My, Mg, My, mlO}-

Figure 8.12 illustrates a limitation of F-Rex’s current implementation of the RECOG-
NIZE_WELL-BEHAVED_FEATURES algorithm. The figure shows several through features
that can be recognized using the algorithm for milling trace 2. Our current implementa-
tion’s limited form of projection does not allow it to find these features.
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(a): design of a socket (b): part (after machining)

(c): stock (before machining) (d): the delta volume

Figure 8.7: An example from [148] of a design of a socket, along with solid models for the
part, stock, and delta volume.
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Figure 8.8: The features identified by F-Rex for the part shown in Figure 8.7(b).
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Figure 8.9: Examples of non-primary, primary, and offset primary feature instances.
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Figure 8.10: The offset well-behaved features as they would appear after post-processing by
BUILD_FEATURES for the part shown in Figure 8.7(b).
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Figure 8.11: Two alternative feature-based models consisting of drilling and milling features

for the part in Figure 8.7(b).
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Figure 8.12: Features for the part shown in Figure 8.7(b) that are recognizable using milling
trace 2 but not identified by the F-Rex implementation.
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8.4 Summary

This chapter provided an overview of the implementation of the IMACS manufacturability
analysis system and the F-Rex feature recognizer. We outline the distinctions between the
algorithms and theoretical results developed in Chapters 3 through 7 and the implemented
prototype. In addition, we present detailed examples of the output of the F-Rex feature
recognition system.
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Chapter 9

Parallelization

This chapter presents a parallelization of the feature recognition techniques from Chapter 4
using of distributed algorithms. In addition, this chapter outlines methods which can exploit
this divide-and-conquer parallelism to further simplify individual subproblems.

9.1 Related Work: Multi-Processor Solid Modeling

The bibliography of work on multi-processor algorithms for solid modeling applications is
limited but growing. Currently, most work has focused on parallel operations on CSG trees
and other CSG representations of polygonal or polyhedral entities. Ellis et al. [49] have de-
veloped the RayCasting Engine: a hardware-implemented facility for sampling solids repre-
sented in CSG for a variety of purposes, including rendering and mass-property calculations.
They outline how this special-case hardware makes possible brute-force solutions to difficult
computational problems, such as spatial sweeping and offsetting.

Narayanaswami and Franklin [129] present a parallel multi-processor method for calculat-
ing the mass properties of polygonal CSG objects and outline some extensions for applying
the techniques to 3-D polyhedra. Banerjee et al. [12] have developed parallelized algorithms
for evaluating CSG trees that operate with a fixed number of processors with shared memory.

In the domain of boundary representation modeling, Karinthi et al. [97] have produced
a parallel algorithm for performing boolean set operations on polygons and polygons with
holes. In Almasi et al. [6], these techniques are extended to more general loops of edges.

Strip and Karasick [188] present techniques for performing solid modeling operations
on a massively parallel SIMD (single instruction multiple data) computer. They provide
a data structure for representation of solid models and a variety of parallel algorithms for
implementing solid modeling operations. In addition, they present performance comparisons
with serial implementations.
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Figure 9.1: Inter-networked computational resources: the network as the computer.

9.2 Distributed Algorithms for Feature Recognition

Existing work on feature recognition has dealt with exclusively serial computer architectures.
In the distributed computing paradigm, collections of autonomous computational resources
are interconnected on a network, as illustrated in Figure 9.1 [197]. While these resources do
not share main memory, they may share access to common devices such as peripherals, file
systems, output devices, etc. Software systems can use the network and shared peripherals
to exchange information between the autonomous resources.

A fundamental issue when building distributed software systems is how to enable inde-
pendent computers to cooperate with each other in solving problems. In this section, we will
apply distributed algorithms to the problem domain from Chapter 4 in order to build more
efficient and scalable solutions to the feature recognition problem.

9.2.1 Observations

Trace-based techniques lend themselves well to parallelization, providing several levels at
which the problem can be divided. What might be less evident is that, in parallelizing the
problem, one can make additional geometric and topological simplifications to independent
problem subtasks to reduce their computational difficulty.

The feature types (outlined in Chapter 3) and their traces (outlined in Chapter 4) each
introduce natural partition lines along which the problem can be divided into independent
subproblems to be solved by different processors.

As presented in Chapter 3, the final feature set F contains all those feature instances
from M that are members of feature-based models of the part. F contains all instances of
the feature types in M present in the given part. Note that for the features in M, the act
of recognizing a feature of type M; is independent of the recognition of a feature of type
Mj,;—hence the feature instances of type M; can be calculated separately from those of type
M,. For instance, in the example domain presented in Chapter 4, a particular drilling feature
f being a member of some feature-based model does not alter the potential existence of any
end-milling features.
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Trace Decomposition

Figure 9.2: Overview of the divide-and-conquer distributed approach.

Secondly, the set of traces 7 (from the generic algorithm in Section 4.2) introduces an
additional level for partitioning the problem. Recall that for each feature type M in M,
there is a collection of traces tas1, tare, - - . tarx for building instances of features of type M.
One can decompose the problem of finding all features of type M by trace and handle each
trace tpr; on a different processor.

One observation is that this may introduce some redundancy; i.e., it may be possible
to find the same feature instance f in different ways using different traces. There are two
possible approaches to handling this redundancy. One method is to delete duplicate features
when building the final feature set F. A second approach, and the one which we will
employ, is to handle the traces capable of producing equivalent feature instances together
on the same processor and remove duplicates as they are found. This introduces another
level of parallelization by dividing the set of traces found into independent subsets. In this
way redundancies are addressed at the level at which they occur, thus simplifying the task
of building the final feature set F.

Parallelizing feature recognition produces other indirect benefits—in particular, a large
portion of the costs in a feature recognition system are due to the complexity of geomet-
ric computations and geometric reasoning. When isolating independent problem subtasks,
one can make geometric and topological simplifications that identify the information in the
original part needed to build and verify the feature instances. In this way, many of the
subproblems may require only a fraction of the information present in the solid models of
the original part and stock.
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9.2.2 Distributed Algorithms

For the problem domain of Section 4.1, we will employ a divide-and-conquer approach: a
central computing resource acts as a server to set up the problem and transmit subtasks
to client machines distributed on the network, as illustrated in Figure 9.2. Each of the
individual client processors is given an independent portion of the global feature recognition
problem.

Recalling the serial trace-based algorithm of Section 4.2, we present an outline for a
multi-processor trace-based feature recognition system. There are two main components to
this system: a server algorithm and a client algorithm. The server algorithm is presented as
follows:

Server algorithm.

1. Input a collection of feature types, M, a solid model for the part P, and for the initial
stock material S. Initialize F = {.

2. For each feature type M in M do:

(a) Identify a free resource and fork a new process on it.
(b) For each trace type tps for feature type M do:

i. Find the set T;,,, of instances of traces of type tas;.
ii. Decompose the set Tt,,, into independent subtasks, 74, 7,,...7;.
ii1. For each 7; do:
A. Decompose the part P using the 7;. Result is P'.

B. Fork a new process on a free resource to call the client recognition algo-
rithm on P'.

iv. Let Fi,,, be the set of features returned by the client.
3. f = fUVtM, FtM,-
4. Remove duplicate features from F.

5. Return F.

Client algorithm. The client algorithm is to be invoked by the server on each of the
available computational resources:

1. Input a feature type, M, a trace type, tpr, a set of instances 1" of trace ¢pr;, and solid
models for the part P’, and the stock material S.

2. Simplify the solid model of the part P’. Result is P”.

3. Call P(tai) to build feature set Fy,,,.
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4. Return Fy,,,.

To implement this client-server algorithm, three technical areas must be addressed, as
described in the subsequent subsections.

9.2.2.1 Task Initialization

There are four levels at which the recognition problem is initialized:

e Types of features to be recognized: different feature types (in this example drilling

and end-milling) are considered by separate computing resources, as discussed in Sec-
tion 9.2.1.

e Types of feature traces: different traces for each of the feature types are considered
by separate computing resources, as discussed in Section 9.2.1.

¢ Trace decomposition: given a specific feature type and a trace for recognizing it,
decompose the set of instances of this trace to independent subsets to subdivide the
recognition task. This is discussed below in Section 9.3.1.

e Part simplification: given a specific feature type and a trace for recognizing it, alter
the geometric and topological information in the solid model of the part to reduce its
complexity. This is discussed in Section 9.3.1.

9.2.2.2 Task Distribution

Once tasks are initialized, the next phase is to distribute the individual tasks to the available
computing resources. This is done by invoking a client feature recognition procedure for each
separate task, with each client on its own processor.

In the example domain of Chapter 4, distributing tasks is straightforward: each task
identified during initialization is executed on its own processor. This becomes more complex
when bounds are placed on the number of available computing resources.

9.2.2.3 Synthesis of Results

Each separate client procedure, upon termination of its portion of the recognition task,
transmits its results back to the server machine. The features returned are then integrated
into an overall solution. In this domain, recombining results requires building the final
feature set as the union of those returned by each client machine.

However, the fact that this example domain lends itself well to building an overall so-
lution from the separate subtasks may not generalize to other manufacturing domains. For
example, this phase might have to include additional computations such as modeling feature
interactions, eliminating redundant features, or identifying compound features or feature
groups.
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9.3 Example

This section presents detailed examples of how the multi-processor algorithms described
above are applied to the recognition of features from specific parts.

9.3.1 Task Initialization

The task decomposition stage groups feature information and isolates traces to be handled
by separate computing resources. There are four levels of task decomposition.

For illustration purposes, we shall assume there is no limit on our computational re-
sources. When there is a bound on the number of processors available, the task decom-
position or the distribution of the task may need to vary to more efficiently partition the
problem. In our implementation (discussed in Section 9.5), we distribute the tasks evenly
over the available processors.

The decomposition by feature type and decomposition by trace, as noted before, are
straightforward. In developing techniques for part decomposition and simplification, one is
faced with a trade off between the sophistication of techniques and their computational costs.
Using very sophisticated techniques to maximize the ability of each individual processor to
produce useful feature instances in a minimal amount of time might increase the computa-
tional overhead to a degree that mitigates the benefits of parallelization. In choosing the
following conditions, we have picked decompositions and simplifications that are computa-
tionally cheap. While it is certainly possible to present more complex decomposition criteria,
an important consideration is that the conditions themselves cannot be more complex than
the original recognition problem. If the decomposition conditions were themselves costly,
the overhead considerations might eliminate any of the speedup benefits we hope to achieve
by using a multi-processor approach.

(a): part (after machining) (b): part (underside view)

Figure 9.3: An example part to illustrate the multiprocessor techniques.
The remainder of this section discusses the decomposition of part geometry and topology

and techniques for model simplification. For illustration purposes we shall refer to the
example part in Figure 9.3 when describing the specifics of the parallel approach.
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Trace Decomposition. A given feature instance might be created from any one of several
traces it leaves in the part. The objective of this phase is to gather together all of the trace
information capable of producing equivalent or identical feature instances. While we will
only consider geometric and topological information in this thesis, this decomposition can
be extended to include other data (i.e., tolerances, surface properties, etc.).

We present a four-part decomposition for the geometric and topological information in
the part. The conditions are based on properties of the traces for constructing feature
instances. There may be other conditions that provide an equivalent means of arriving at a
task decomposition with the desired properties. Decomposition of the geometry and topology
based on feature types and traces proceeds as follows:

1. Decomposition for drilling traces 1 and 2:
Group together cylindrical and conical faces with equivalent axes that are convex with
respect to the delta volume A.

Rationale: This collects all possible drilling traces that might be machined in the same
orientation. Drilling features with multiple traces (e.g., several separate cylindrical
faces) can be isolated and identified.

2. Decomposition for end-milling trace 1:
Group together all coplanar edges and faces. In the example illustrated in Figure 9.4,
disjoint planar part faces and their bounding edges are grouped to be handled on the
same processor. This grouping collects all faces sharing the same underlying surface.

Rationale: This collects all possible end-milling traces that might be machined in the
same orientation, possibly by the same operation. End-milling features with multi-

ple traces (e.g., a bottom surface divided into multiple subfaces) can be isolated and
identified.

3. Decomposition for end-milling trace 2:
Group cylindrical surfaces with equivalent axes.

Rationale: This groups all potential corner radii and curved walls for end-milling
features with the same machining orientation.

4. Decomposition for end-milling trace 3:
Group planar surfaces with normals perpendicular to a common vector; i.e., for each
grouping there is a vector v such that, for all surfaces s; and s, in the grouping,
normal(s;) - v = normal(s;) - v = 0. Note that some surfaces may be present in more
than one group.

Rationale: This groups traces for end-milled features based on machining orientation;
hence, through features that can be machined in the same orientation are placed in
the same group.

The above decomposition groups together those traces from the part that might produce
equivalent feature instances. In this way, redundancies can be eliminated at the subprocess
level to facilitate later recombination of results.
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Figure 9.4: Example trace decompositions based on milling trace 1. The shaded faces have
been grouped based on their underlying surfaces and are to be handled on a single processor.
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Part Simplification. The objective of this step is to reduce the amount of data that must
be considered by each processor to a minimum sufficient to construct feature instances from
the traces it has been given. In this way, one can reduce the cost incurred by solid modeling
operations during feature recognition. For example, one can reduce the number of geometric
and topological entities while still retaining the information required to construct feature
instances from the particular trace. In this way the complex part geometry that does not
affect the feature trace under consideration can be eliminated.

This approach to part simplification is similar to the bounding-box techniques used in
current solid modelers. Many solid modeling systems, when performing complex operations
(such as booleans or interference tests), compute bounding boxes around entities in the
boundary model and preform simplified computations on the boxes. The results of these
cheaper computations are used to determine whether more detailed numeric computations
are necessary. An example of this is the basic boolean intersection algorithm; i.e., if the
bounding boxes of two entities do not intersect then the two entities do not intersect.

We simplify the solid models of the part and stock in these ways:

1. Simplification based on drilling trace 1:

Given a cylindrical surface c in the delta volume of radius r, P’ contains all the portions
of P that lie within r of the axis of c.

Rationale: This simplification retains enough information to check for tool gouging
and interference. To check for interference between the workpiece and the machine
tool, this radius can be enlarged depending on the size of the tool assemblies available
in the particular set of manufacturing resources.

2. Simplification based on drilling trace 2:
Given a conical surface ¢ in the delta volume with a maximum radius r and located at
point d, P’ contains all the portions of P that lie within r of the axis of ¢ and in the
half-space above d.

Rationale: This simplification is the same as that for drilling trace 1.

3. Simplification based on end-milling trace 1:
For a given set of co-planar edges and faces, let p be the plane containing this set of
edges and faces. Let d be a root point in the plane p and let v be p’s normal vector;
P’ contains all the portions of P that lie in the half-space defined by d and v.

Rationale: This simplification retains all geometric and topological information that
lies above the bottom surface of the milling feature and discards all information below
it.

4. Simplification based on end-milling traces 2 and 3:
No simplifications are made for these traces.

Rationale: Finding these types of end-milling feature instances might require consid-
eration of information from the entire part, and the processing required in this case
might be costly.
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Figure 9.5 illustrates part simplification for end-milling trace 1. In the figure, the edges of
the shaded planar faces are being considered as traces indicating potential bottom surfaces
of an end-milled features; vector v denotes the orientation of the potential feature. In
each case, the trace information is used to eliminate the portion of the part lying below
the trace—information that does not get considered when building a feature instance in
direction v. Note that, in making this rudimentary simplification, the number of geometric
and topological entities to be considered is greatly reduced.

Figure 9.5: Example simplifications based on milling trace 1.
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9.4 Computational Improvements

We can expect the speedup to be no more than a factor of K, where K is the number of
processors available. In reality, the task decomposition to set up parallelization incurs some
added cost, as does the recombination of results at the end. These additions are negligible,
however, when compared with the costs incurred to perform the recognition process on each
of the subproblems.

Within a trace-based methodology, as outlined in Section 5.3, the overall complexity of
recognition depends on two factors: the difficulty in generating the set 7' of potential traces,
and the complexity of the methods for generating feature instances from traces, 7(n).

Given K processors, we can theoretically expect the complexity of the parallelized version
of the trace-based algorithm to be:

K

In Section 5.3, a rough upper bound on the size of T' was computed from the model of the
part and the types of traces by counting the number of geometric and topological entities:
|7'| € O(n). The complexity of the feature construction routines is more difficult to assess
and is where the majority of the computational costs occur. Much of this cost is due to
geometric queries and reasoning operations used to find the parameters of feature instances.

For the trace-based algorithms in Chapter 4, 7(n) € O(n). By substitution, the lower bound
on the performance of a parallelized algorithm is:

o

'TL2

%)

In the worst case the complexity of the parallel algorithm will remain O(n?). While this
situation can theoretically occur, most (if not all) of these pathological cases are for geo-
metric configurations that are highly unlikely to correspond to a real-world machined part.
In practice, therefore, the performance of these algorithms and their speedup from paral-
lelization is likely to be better. For example, because basic solid modeling routines are of
at least quadratic complexity in the size of the model, small reductions in the number of

entities in the model (through simplification) translate into proportionally larger reductions
in computational cost.

N

9.5 Distributed Implementation

In the distributed implementation, F-Rex runs on a cluster of SUN workstations with pro-

cesses communicating over the Internet using UNIX-based and TCP/IP-protocol network

software utilities and shared disk storage. The geometric computations required for task ini-

tialization are implemented with direct C++ calls to the ACIS kernel; distributed processes

are invoked using UNIX remote shell commands (rsh); and the resulting feature set is gen-

erated by examining the features produced by each processor and eliminating redundancies.
The distributed implementation works as follows:
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1. Initialize the problem: create, for each subproblem, (1) the set of traces, 7', and (2)
the simplified solid model of the part, P’. This information is written to shared disk
storage.

2. Distribute the subproblems: use rsh (remote shell) to invoke serial F-Rex processes
on each of the available machines with 7' and P’ as input.

3. Simplify: for each trace ¢t € T on each machine, further simplify P’ using the com-
plexity reduction techniques as described above to yield P”.

4. Recognize: execute the serial trace-based recognition procedure for trace ¢ and part
P". Write recognized features (if any) to disk.

5. Combine: each separate process leaves a set of features F, by writing to the disk.
When all of the processes have terminated, combine all of the Fis into a single feature
set and eliminate redundancies.

6. Post-process: perform inaccessibility check and offsetting on the recognized features.

7. Output: display the final feature set, F.

The current distributed implementation is rather crude and could be made vastly more
efficient by making use of inter-process and inter-machine communication tools and remote
procedure calls (rpc’s). Currently most inter-process communication takes place using a
shared disk. Ideally one would like the distributed implementation to be more transparent
and adaptable—i.e., easily adjustable to variations in load on the different machines. In
its current form, distributed F-Rex provides numerous computational advantages over its
serial counterpart. With the incorporation of a number of basic network communication,
synchronization, and data sharing algorithms, it is our belief that the performance would be
vastly improved.

9.6 Examples

The data for the examples below has been collected using six processors, one SPARCStation
model 10, one model 2, and 4 IPX models. In this version of the implementation, when
the number of tasks is greater than 6, the tasks are distributed evenly over the available
Processors.

These timing results represent the elapsed clock and CPU times and are not absolute
measures of the intrinsic difficulty of the feature recognition problem—this example domain
is not directly comparable to those of other feature recognition efforts. Further, there are
hidden costs in the implementation not directly related to the recognition of feature templates
(such as feature accessibility analysis) and these algorithms and their implementation can
certainly be optimized. The results are intended to provide a rough indication of the time-
lag experienced by the user of the system. More significant than any precise calculation of
elapsed time is the speedup factor between the serial and parallelized algorithms.
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Figure 9.6: A fixture from ICEM’s PART System.

Example. The example part in Figure 9.3 is a shuttle intended to move along a guideway,
with many of the feature instances added to reduce weight. The solid model of this part
contains 281 faces. In serial mode, F-Rex took over one hour to find the more than 100
feature instances. When running distributedly, F-Rex took 2 minutes to set up the task
decomposition and approximately 32 minutes to find the features. In this case, simplification
resulted in a 43% reduction in the number of geometric and topological entities that had to
be considered.

Example. For the example part in Figure 8.7, when run distributedly on 6 processors,
F-Rex took 10 seconds to set up the decomposition and approximately 12-16 seconds to
identify the features. In this case, simplification resulted in a 35% reduction in the number
of geometric and topological entities that had to be considered.

Example. The example part in Figure 9.6 is a fixture used in Control Data Corporation’s
ICEM PART Process Planning System. The solid model for this part contains 245 faces.
When running in serial, F-Rex took over one hour to find the feature instances. In parallel,
F-Rex took 1.3 minutes to set up the problem and approximately 12 minutes to recognize the

features. In this case, simplification resulted in a 23% reduction in the number of geometric
and topological entities that had to be considered.

9.7 Summary

This chapter developed a parallelization of the trace-based algorithms presented in Chap-
ter 4. Basic distributed computing tools were used to implement a prototype of this parallel
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approach and some experimental results were presented to illustrate the potential payoffs
resulting from the use of multi-processor computing techniques.
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Chapter 10

Application to Other Domains

As noted in Chapter 2, several attempts have been made to define and classify manufacturing
features [22, 62, 200, 24]. Chapter 3 developed definitions for machining features, which
in turn were used as the basis for developing the feature recognition algorithms presented in
subsequent chapters. It is our belief that many of the concepts presented in this thesis in
the context of machining can be applied to other manufacturing domains.

It is believed this will help to define more systematic approaches for a number of other
problems in feature-based manufacturing. In this appendix, we present some brief examples.

10.1 Manufacturing Features

A manufacturing feature is a parameterized object describing a discrete manufacturing
operation. The parameters of a feature either directly relate to or can be used to derive
the parameters of the underlying manufacturing operation. The manufacturing operation
associated with a particular feature is the feature’s type. Various parameters of a feature
can be assigned values from either a discrete or a continuous data set.

We will say that a feature instance f is valid if there exists at least one correct manu-
facturing plan that is realizable with available manufacturing resources and that includes f;
otherwise f is invalid. In the domain of machined parts there are many conditions under
which a feature is invalid; e.g., any volumetric feature that intersects with the final part
geometry is considered invalid because including any such feature in a plan would result in
cutting into the final part geometry. The set of all valid feature instances is called the valid
feature set, ).

Example: Machining.

As presented earlier in Chapter 3, machining features are volumes that correspond directly
to the actions of individual cutting tools during a machining operation. The parameters of
the feature volume can be used to calculate accessibility, tool size, tool path, and cutting
speeds and feeds [70] for the machining operation that created it.
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Example: Automated Assembly Planning.
One major aspect of the automated assembly planning problem is reasoning about how indi-
vidual components can be configured using robotic manipulators. In the context of assembly
planning, manufacturing features might correspond to gripping or mating surfaces on the in-
dividual components. For a given assembly configuration and part to be incorporated into it,
there would exist a set of possible “gripping and mating features.” An automated planning
system can use these features to reason about whether the part can be gripped properly; if
it is possible to place it into the assembly onto an appropriate set of mating surfaces; if it
can be moved through space while being held on those features without interference (this
is known as the motion planning problem); and if the robotic arm can extract itself from
the assembly once the part is in place. In the context of assembly planning, a feature might
have to contain information about geometry, topology, and spatial motion.

Similar feature types have been suggested for the domain of automated fixture planning
to identify workpiece holding constraints [36].

Example: Sheet Metal Manufacturing.

Recent work by Bourne and Wang [17] proposes several categories of features for sheet metal
manufacturing. Their feature types are based on the manufacturing operations required in
their Intelligent Bending Workstation, including features describing bending operations and
those that affect the positioning of robotic manipulators.

10.2 Feature-Based Models

We define a feature-based model (FBM) to be a finite set of valid feature instances
F ={f1,fs f3,-.., fn} that describes a set of operations that can be used to create a part P
from a piece of stock material 5. More specifically, an FBM is any finite set of manufacturing
features with the following properties:

1. Sufficiency: the features in F' describe one possible way to create P from S.

2. Necessity: no proper subset of F' creates P from S. In this way, an FBM does not
contain redundant features and each feature of F' contributes to the interpretation of
the part.

3. Validity: validity would requires that each feature f in F' meet manufacturability
requirements. This will depend on the specific manufacturing domain.

An FBM can be thought of as a high-level, unordered operation plan. There may be many
FBMs of P and S, each corresponding to a different interpretation of the part P as a set of
manufacturing features F. A particular F' need not model the optimal way of creating the
design, as there might exist many alternatives, each corresponding to a different collection of
operations that could be used to produce the design from a given piece of stock material. By
analogy, just as a solid model provides a unique description of the geometry and topology of
an artifact, a feature-based model provides a unique manufacturing description of an artifact.
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10.3 Primary Features

Primary features represent a set of feature instances from the set of all possible valid features
that are useful for reasoning and manufacturing planning. For arbitrary manufacturing
domains, the set of all valid features V can be large (even infinite). In defining the set of
primary features, one can impose restrictions on the set of possible features. The basic
concept is that primary features, if defined properly for a given manufacturing domain, can
be used and manipulated to generate and reason about all of the other feature instances of
interest [70].

For an arbitrary part P there exists a set of valid features V; we define the set P (P C V)
of primary instances by building an equivalence relation:

1. Define the relation < between features as follows: given manufacturing features f and g
from V, f < g if f’s effect on the workpiece is subsumed by ¢’s effect on the workpiece.
Intuitively this means that in the presence of g, the feature f is redundant; i.e., no
feature-based model can contain both f and g.

2. The relation < can be used to form an equivalence relation on the set of all valid
features, V: f and g are equivalent (f =~ g) if there exists a valid feature h of the
same type as both f and g such that f < h and ¢ <X h. Proof that f ~ g forms an
equivalence relation will depend on the particular manufacturing domain.

3. The equivalence classes induced by ~ define the set of primary features P; i.e., each
equivalence class contains one instance of a primary feature. The specific characteristics
of the primary features will depend on the particular manufacturing domain under
consideration.

In the machining domain, one way to define primariness of features is by using a restricted
form of volumetric maximality, as was done in this thesis. This is not the only way to
define primary features for machining. The definition adopted in this thesis (and that of
Gupta [70]) does have several intuitively appealing justifications of why these features are
good for automated planning—in particular the fact that a primary feature volumetrically
contains all features that might actually be used to produce reasonable machining plans. In
this way primary features can be used to effectively prune the search space of alternative
plans and to generate good upper bounds on cost.

In the context of other domains, such as assembly planning or sheet metal manufacturing,
the characteristics of primariness may be less clear. Depending on the application, when
performing automated planning the primary features in these domains can represent a range
of possible operations-—in contrast to machining, for which we adopted a definition in which
the features correspond to single operations. For example, in the assembly domain a primary
feature could represent the degrees of freedom and interference constraints in a motion path,
in addition to the configuration of the gripper on a part.
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10.4 Completeness

As presented in this thesis, the objective of completeness is to formally categorize when
a particular approach or algorithm works well and when it does not work as well. To dis-
cuss completeness at all, one needs to develop a reasonably formal problem specification.
While this may seem an obvious step, it is very difficult in practice. In particular, devel-
oping formal specifications for problems that are often arbitrarily defined in feature-based
computer-integrated manufacturing is challenging.

In the context of other manufacturing applications, an analysis of completeness can be
used to determine the limits of what is feasible for a fully automated system. Completeness
can then be used to help refine the interface to a feature recognition system that incorpo-
rates human interaction by identifying situations that give rise to problems for automated
approaches.

167



Chapter 11

Conclusions

This thesis has presented a systematic methodology for the development of algorithms for
recognizing machining features from solid models of mechanical designs. This chapter sum-
marizes the research contributions and outlines a number of research issues for the future.

11.1 Research Contributions

This thesis has attempted to advance the state-of-the-art in automated feature recognition
on several fronts. In particular:

Developed an implementation-independent definition for which features to rec-
ognize. The approach in this thesis is to keep the definition of a feature class and the
features to be recognized distinct from the choice of a feature recognition algorithm. It is my
belief that the features defined in Chapter 3 can be used in conjunction with a number of
different recognition methodologies. Chapter 4 of this thesis applies trace-based techniques
to build recognition algorithms based on the specifications in Chapter 3.

Presented an approach for measuring the complexity of application-level CAD al-
gorithms. Previous research on CAD/CAM and solid modeling applications lacks analyses
of the complexity of the problems being solved. While there have been some notable efforts at
measuring the complexity of individual approaches to feature recognition [40, 39, 55, 139, 38|,
none have presented a general way of measuring the complexity of algorithms built on top
of the existing infrastructure provided by a solid modeling system:.

I have proposed in this thesis that, given a means of specifying the problem to be solved,
meaningful measures of the complexity of the real-world problem can be taken independent
of the implementation. In particular, complexity can be measured in terms of the number
of solid modeling operations. I believe that this technique can be easily applied to other
domains where the level of algorithmic abstraction is several levels above the fundamental
data structures.
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Furthered the development of trace-based feature recognition. In the development
of my traces and feature construction methods I have advanced the functionality and scope
of trace-based recognition systems. In this area I have followed the lead of the research of
Vandenbrande [200], in particular focusing on extending some of the traces he outlined to
include cases not covered by his original work as well as incorporating traces for new feature

types.

Presented feature-recognition as an interface to multiple downstream applica-
tions. Most previous work in feature recognition was developed with a single application
goal in mind—most often automated process planning of machined parts. In this work I
have illustrated that different downstream applications entail different requirements for a
feature recognition system. The features most useful for process planning might not be the
most useful for automated redesign.

My approach has been successfully used to develop methodologies for automated man-
ufacturability analysis and redesign, problems similar in nature to the process planning
problem yet with subtly different needs. I have shown that by separating feature recognition
from specific applications I can build a more generic tool with a broader range of utility.

Introduced techniques for reasoning about completeness. Completeness and sound-
ness have emerged as vital issues for system integration and for controlling computational
complexity. In particular, I have introduced notation and a degree of formalism that can
be used to specify the computational feature recognition problem in terms of its input and
output. Previous work had not satisfactorily addressed this issue, resorting either to descrip-
tions in terms of low level data structures in restricted toy domains or to vague descriptions
based on the implementation.

Introduced parallelization and distributed algorithms to feature recognition.
Existing work in feature recognition is exclusively serial in nature. I have shown that, using
current technology and software tools, effective and useful parallelization can be achieved for
computationally intensive problems in CAD/CAM such as feature recognition. I feel that
this area has huge potential to radically change the way systems are designed and imple-
mented. Whereas previously monolithic systems were constructed on a single desktop, I can
now exploit the maximum resources the computer network can provide and design software
to harness the power of the network rather than just an individual machine. In doing this
I can achieve not only computational speedups but also reductions in the complexity of the
individual feature recognition subproblems.

11.2 Anticipated Impact

It is expected that this research will enhance our formal understanding of the basic computa-
tional issues that lie behind the feature recognition problem. In this way, improved and more
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rigorous feature recognition systems can be used as components in the next generation of
CAD/CAM systems. In addition, this research reveals a gap at the application level between
the development of theory and the development of CAD/CAM systems. It is believed that
further research on the specification, completeness, and complexity of geometric problems in

design and manufacturing can enhance our understanding about basic problems and lead to
the production of better CAD/CAM software tools.

11.3 Recommendations for Future Work

To build a scalable and practical feature recognition system for real-world parts and integrate
engineering design with downstream activities, a number of extensions to this research will
be needed. In particular, these are some recommendations for future research:

1. Integration of multiple feature recognition techniques into a single system.

Some approaches to feature recognition are good for finding high-level features, oth-
ers for more detailed features; some are fast, some are more comprehensive. A great
potential payoff exists if multiple feature recognition techniques can be effectively in-
tegrated into a single system. Such a “feature recognition cocktail” could operate at
several levels of detail, depending on the situation and the application. It is my be-
lief that F-Rex can be one component of such an integrated software solution and,
instead of building all of these systems in isolation, a more holistic approach should be
taken—one that incorporates the best aspects of each into one comprehensive feature
recognition system.

2. Shape and manufacturing similarity assessment.

The proliferation of CAD and solid modeling in industry has created an emerging prob-
lem: how is the CAD data stored in the corporate database? An obvious application
might be for a designer to query the corporate database with a solid model of a pre-
liminary design and ask “is there a design in the database that is similar to this one?”
Traditional database indexing schemes do not lend themselves well to the indexing of
solid models.

I feel that feature recognition can be used to generate feature-based indexes for storage
and retrieval of parts. Feature-based part indexing can have a number of advantages
over existing approaches (such as GT coding), including the ability to index based on
a space of different possible machining plans by indexing feature-based models.

3. Move features beyond geometry.

Currently, features are tied to geometry and topology and, in most work, they are
tied to machining as a manufacturing process. In the future, features will need to
support multiple manufacturing domains and manufacturing processes. For example,
planning for fixturing, machining, and assembly requires new types of feature-based
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representations. Features might include information about the design’s history and the
designer’s intent; as well as information about the conceptual design and the design’s
functional specification. Such higher level features will require feature definitions that
are symbolic rather than merely numeric.

4. Real-world parts.

As has been mentioned often in recent press, academic research needs to better un-
derstand the problems of industry. To this end, improved feature recognition research
requires better and more realistic parts and fewer “simple bracket” examples, such as
the one in Figure 3.1. Methods that work well on isolated simple features and parts for
which there are only a few possible plans may prove difficult to scale to real-world parts.
For example, the research community should begin to focus on a common collection
of benchmark parts; parts with many curved surfaces and dozens of feature interac-
tions, requiring multiple machining setups and incorporating interacting tolerance and
precedence constraints.

5. Improved complexity measurements.

Design is an interactive process and, for many potential applications, response time
and computational complexity are vital issues for feature recognition systems. Existing
work, while easily demonstrated on simple examples, might not provide acceptable
results when faced with the complexity and ambiguity of the artifacts of the real
world. Based on the work in this thesis, I believe that with careful assessment of the
domain of interest, most feature recognition problems in design and manufacturing are
not inherently intractable. The problem of optimal operation planning with features,
however, is likely to be provably NP-hard. Better and more precise means of measuring
the complexity of algorithms (such as those in Chapter 4) developed at the application
level of a solid modeling system are needed.

6. The role of human supervision.

The role of human supervision in the feature recognition process has not been rigorously
addressed by the academic research community. What is likely to emerge is that there
will be classes of features that are easy to identify through automated means and
other classes of features (some of which will be vital for certain applications) that are
difficult or impossible to recognize through automated means. In these situations an
analysis of the completeness of automated methods can be used to find the dividing line
between feasible and unidentifiable features. The issue then becomes one of how to (1)
automatically identify what types of geometric configurations may contain problematic
feature instances and (2) build a powerful yet pleasant user interface for a qualified
human user to manually pick out the necessary feature instances. The role of the
human being will be an integral component of the feature recognition system of the
future.

7. Development of a “science of features.”
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The definitions presented in this thesis are an initial attempt to mathematically de-
scribe feature recognition as a computational problem in design and manufacturing.
Many of the engineering concepts described in this thesis are difficult to define mathe-
matically. While the definitions presented here proved an adequate basis on which to
develop my approach, additional work will be necessary to improve and enhance the
mathematical tools for describing engineering information.

It is my belief that research in this area must proceed along two lines:

(a)

Additional work is needed to improve our understanding of the nature of engineer-
ing information. Features are still very much a vague “catch all” for describing ad
hoc manufacturing knowledge. Continued study and categorization of engineering
information and knowledge is required, coupled with the development of better
representation schemes for modeling this data. Given more rigorous definitions,
more formal proofs will be possible about the computability and complexity of
manufacturing problems.

Given more comprehensive representations of engineering information, the scope
of the feature recognition problem will expand to include all types of mappings
between different manufacturing viewpoints. This will require whole new classes
of algorithms to be developed that can extend the features concept beyond simple
geometric shapes to be the alphabet for an ontalingua that can describe engineer-
ing knowledge.
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