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1. INTRODUCTION
The motivation for the present work arises from the following well-known problem
. . . , = d . . ,
in nonlinear filtering. Let (Xt) be a R ~valued diffusion process with generator A
and let (Wt) be an independent R"-valued standard Brownian motion, both defined on
(3,7,P).  Let
t —
= >
Yt J g(Xs)ds + Wt, t 20, (1.1)
0
where g:Rd*Rm. Compute recursively the conditional expectations Ekf(i;)lYS, 0<ss<t)
for some "sufficiently large” class of functions f defined on Rd. Boundedness and
smoothness assumptions on the coefficients of A will be given later., We assume from
© d
now on that giﬁL (R, i=1,...,m.
A convenient representation for the desired conditional expectations is given by

the Kallianpur-Striebel formula [11]. Define on another probability space (&,F,P) a

diffusion (Xt) with the same distribution of (YL). Then

Blexexp(JCg (x)ax, - 3 5z | %as) |
T(E(R,) [¥,, 0%s<t) = 0 0 , (1.2)
tr 1t 2
Elexp() g (X)AY_ - 5 ) |g(x)|%ds) ]
0 0

which reduces the problem to the computation of integrals on the paths of (Xt) (the
stochastic integral, for each path of (Xt)’ is a Wiener integral computed on the
given path of (Yt)). By differentiating the numerator a weak stochastic partial dif-
ferential equation is obtained for a multiple of the conditional probability measure

qps usually called the Zakai equation |[31]

* T
dg. = A q, dt + 9 8 dYt . ~(1.3)

t

0f course, if we want to solve (l.3) recursively "on line"” on a digital computer

the best we can do is to provide well-behaved discretization algorithms in both space

and time.



It is useful to design algorithms which discretize (1.3) but still retain the
representation (1.2), merely changing the process (Xt) involved. This could be
obtained by replacing the diffusion by a continuous-time finite-state Markov chain
with generator Ah’ which of course is of finite-difference type (the simplest example
is provided by Kushner {17]). But it continues to hold if time is implicitly discre-
tized and the stochastic Trotter product formula [5,2] is used, thereby obtaining the

equation

T, h,A T 1, 12, h,A
(T = 84Dy = @x0(@ Tipypya ) ~ 781 Day s k= 0,1, (1.4)

This scheme has been first obtained by Clark [5], by discretizing implicitly
time in the "robust™ version of (1.3). For us it is more interesting to know that
the solution of (l.4) can be written essentially as in (l.2) replacing (Xt) by a
discrete~time Markov chain (XEZA) with transition matrix (I—AA'II;)“1 [20]. This rela-
tes the convergence of the approximation scheme (l.4) to the weak convergence of
(XEZA) to (Xt) when h,4*0 (h is thought as a mesh parameter of the space discretiza-
tion grid). But this is known to be ensured by the convergence of the discrete
semigroup described by the free behaviour of equation (l.4) (i.e., when Y=0) to the
semigroup generated by A [14]. The relevant polnt is that we would like to establish
convergence for h and A going to zero independently. Our main Theorem 2.4, given in
the following section, gives sufficient conditions for this only in term of Ah and A.

This is reasonable, in that the matrices A, are the parameter of the scheme (1.4) and

h
they have to be chosen with the best possible band structure, so as to solve as
quickly as possible the equation (l.4), without inverting I-A Ag [1]. It turns out
that these conditions are slightly stronger than those given by the Trotter—~Kato-
Kurtz theorem [27, 11, 13J for the convergence of the semigroup generated by Ah to

that generated by A, therefore confirming in an abstract setting that the implicit

discretization of time allows an independent choice of discretization steps in space



and time, respectively [24]. Thus Theorem 2.4 could be of some interest indepen-
dently of the filtering problem; of course it can be successfully applied to show
convergence for different approximate filters which usually do not retain any proba-
bilistic meaning, like those built by Galerkin methods [7].

In Section 3 we review the already cited results connecting convergence of
Markov (Feller-Dynkin) semigroups with weak convergence of their sample paths, With
Theorem 2.4 and this type of results, in Section 4 we obtain convergence results for
the functionals involved in (l.2), computed averaging on the paths of (Xﬁ&A). For
this it is useful to obtain for those functionals a Lipschitz condition in Y, indepen-
dently of (h,A), thereby extending previous results for the Kushner space discretiza-
tion schene [20]. This is done by the arguments used in [17], that is integration by
parts in (l.2) and some martingale estimates (which require conditions on g, too).

In Section 5 this result is shown to imply the robustness of the approximate filters

(1.4), in that if they are forced by

t
S = [ g(X)ds + WS, 20 (1.5)
t S t
0
where (if, WE) converges weakly, as €>0, to (ﬁ;, Wt)’ nonetheless the joint distribu-

tion of (if) and the (h,A)-approximate filter computed on the paths of (Yi) converges
weakly, as (h,A,e)>0, to the "ideal” one given by (1.2) and (2.2).

The final section deals with two short examples. The first is Kushner's schenme,
the other one a variation of that which is intended to show that different choices
are possible, depending on the particular structure of the diffusion model, The suf-
ficient conditions are easily checked in any case, but to avoid cumbersome notations
we limit ourselves to the case d=1. However, when the dimension of the state space
increases, the reasonable choices for the approximating chains increase, surely
influencing the speed of computation. Much more work remains to be done on these

issues. Anyway boundedness conditions on the coefficient of the diffusion are



needed, because the state space is not compact, This suggests that the convergence
and robustness results obtained, which holds in general for continuous Feller-Dynkin

processes on locally compact state spaces, will be more meaningful for nondegenerate

diffusions on compact Riemannian manifolds.



2,

First of all we recall the Hille-Yosida theorem.

THEOREM 2.1,

THE ABSTRACT CONVERGENCE THEOREM

Let L by any Banach space.

A linear operator A on L is the infinitesimal generator of a (strongly

continuous) semigroup of operators on L if and only if: D(A) is dense in L and, for

4>0 I-AA is invertible on the whole L, with the inverse JA which is a contraction.

We remark that Hille's proof [9] is just based on the convergence of the impli-

cit time-discretization scheme

[t/a]

A ) to the generalized solution of

(governed by J

the corresponding Cauchy problem with problem with operator A, when A goes to zero.

Yosida [30] approximates this solution with the exponentials of the bounded operators

A

A
called {e t}) the contraction-valued functions of time J

asymptotic behaviour as A0,

Kurtz [13], to prove Theorem 2.

A, = A—l(JA—I). Of course, because A generates a unique semigroup (which will be

and eAAt have the same

/4]
A

We will utilize a generalization of this result, due to

4 by using the more convenient Yosida-type argument.

Let us put ourselves in the setting of [13] which allows to consider convergence

of Markov processes defined on

Lh is a Banach space and there
limiP £ = ifn, which in turns
h->0

nitesimal generator A, of some

h

applications L, will be always

h
this is not assumed now.

We say that the family of

for any feL and T>0

lim sup e

h+0 te|0,T]

different state spaces. Suppose that for each h>0,

h:L->Lh

<M for some M>O0,

exists a bounded map P such that for each feL

On each L, an infi-

h

For numerical

WP

imples that h

contraction semigroup is specified.

finite—dimensional so that A, will be bounded, but

h

At

A
semigroups {e }, h>0, converges to {e t} as h*0 if,

(2.1)

Conditions for (2.1) to hold are given by the Trotter—Kato— Kurtz theorem which

is reported below,



THEOREM 2.2, The following are equivalent:

Aht At
i) e } converges to {e" | for h»0;

ii) for each feL

11mn(1-Ah)—1P f - Ph(I—A)_lfh=0 (2.2)

h>0 b

iii) for each f in a core S of A there exists thD(Ah) such that

lim f, - P fi Vv iAf - P Afi =20 (2.3)
b0 h h™h h

We recall that a core S of the generator A is a linear manifold included in D(A)

The most used cores are linear manifolds

such that A is the closed extension of A g*

dense in L which are invariant under eAt, for t>0.

Theorem 2.2 will be a basic tool in the sequel, in that both conditions ii) and
iii) will be used to prove Theorem 2.4. The fact that ii) > i) is due to Trotter |27],
whereas the converse to Kato [11]. Condition iii) have been introduced by Kurtz
[13].

If an implicit discretization scheme is applied to the evolution equation

-k
governed by A , the discrete contraction semigroup JE AS (I—AAh) is obtained on
b

h’

the space L Our objective is to find sufficient conditions under which

h.
{J&tgAJ} converges to {eAt} in the same sense of (2.1), as (h,A)>0., As mentioned before

R
we consider continuous—time semigroups "asymptotically equivalent” to {J&tg J} by means
b

of the following estimate |13]|. Define the bounded operator on Lh

A =A_1(J 1) (2.4)

h,A h,A

which is easily shown to generate a contraction semigroup.

THEOREM 2.3. For any feL, t>0 and €>0

i A t
lt/a] _ “h,a . )
h,A e ) th i< 2t A

Fu A (BRip £1 4 (et+h)IA

N fu), (2.5)

"(J h, ATh h, APh

€t



We are now ready to prove the promised convergence theorem.

THEOREM 2.4. Let us suppose that for any £ in a core S of A, thSD(Ah) (at least for

h sufficiently small) and

lim IAP £ - P AFl = 0 (2.6)
vl 1 S

Then, for any feL and T>0

eAtf”

h =0 (2.7)

lim sup g

t/ A
A th - P
(h,8)>0 te|0,T]

L
h,

Proof., By Theorem 2,2 it is enough to prove that for amy feL

) le £ - B (1-0) 71 = o, (2.8)

1im I(I-A h

(h,8)>0 h, &

-1

Being HPh"<M and H(I—Ah A) i<l, it is enough to prove (2.8) for feS. Note that
»

it is possible to write
_1

= - A = 2.9

Ah,A A (T-04)) Ath,A (2.9)

so that, for any gED(Ah)

(I—Ah’A)_lg = (I—Ah(I—AAh)"l)'lg = [(1—(A+1)Ah)(1-AAh)'1]“1g =
= (1A ) TN I-M)E = Ty (e baye)
Therefore, if f€S
II(I—Ah’A)—]‘th - Ph(I—A)_lf IS, ARED
+ IlJA+l,hth—Pthfll < AllAhphf o+ "JA+1,hth - Pthfll (2.10)

By (2.6) it is clear that for each feS there exists K>0 such that, for h>0



nAhthngK (2.11)

so that the first term in the r.h.s. of (2.10) goes to zero as (h,A)*0, The same

assumption implies that, for f&€S

lim  «(&+1)A

- P Afi =0 (2.12)
(h, 28)~0

hE b

and by Theorem 2.2 the norm of

1 1

f=J f-prJf

(I-(A+DA) A+1, b h h"1

th - Ph(I—A)

goes to zero as (h,A)>0. This proves that for any feL, T>0

A t
A
lim sup e b, p.f-P eAtfh =0 (2.13)

(h,4)*0 tel0,T] b h

To get (2.7) it is enough again to consider f€S in (2.5). Use the fact that

uPhN<M and, by (2.9) and (2.11), that

WA L\th o=

n, AP Eu S AP £ <K, feS, (2.14)

", 680 h

to show that the r.h.s. of (2.7) is uniformly bounded with respect to h and can be

made uniformly small for t€[0,TJ with an appropriate choice of € and taking A suf-
At

ficiently small. So the fact that {e ’

(t/a
h,o

; has the same asymptotic behaviour as

1J J} (as both h and 2 goes to zero) is obtained and (2.7) is finally established.

The condition (2.6) is slightly stronger than the mere convergence of the
At
semigroups le h } to {eAtf in that in (2.3) the particular choice fh = th is made.

But it is interesting that this condition involves only Ah; it does not require to

compute J that is to solve (I—AAh)f = g for all possible gGLh, instead that for

h, &

one g at a time,



3. FELLER-DYNKIN SEMIGROUPS AND WEAK CONVERGENCE
Let us consider a particular class of Markov semigroups. Let E and Eh be

complete, separable, locally compact spaces and N be a measurable map from E, to E,

h
for h>0. Let (Xt) and (Z:), h>0 be Markov processes with respect to their own fami-
lies of o—-algebras, possibly defined on different probability spaces. We suppose
that the corresponding algebraic semigroups of operators {TE} and {Tt} on Lm(Eh) and
Lw(E), respectively, are Feller-Dynkin [6]. If we denote by é(Eh) (a(E)) the Banach
space of continuous functions on Eh(E)’ which go to zero at infinity (when the one-
point compactification is done), this means that these semigroups are strongly con-

N N
tinuous on C(Eh)(C(E)). Let nh a continuous map of E,_ into E (if Eh is not compact

h

nh has to map the infinity of E, into the infinity of E, but this is not usually the

h
case). Those maps induce corresponding bounded linear transformations of C(E) into

C(Eh) by
(th)(X) = f(nh(x)), X €E, (3.1)

Finally define X? = nh(Z:), h>0 and observe that this processes have versions with
sample path in the Skorohod space D[O,W;EJ of E-valued cadlag functions [29]. For
metrics on this space we refer to L21,15J; a particular case will be discussed in the
next section.

It is quite clear that the convergence of {TS} to {Tt} as h*0 in the sense of
(2.1) relates the expectation of functionals of the corresponding processes at each
instant of time. The following important theorem, due to Kurtz [14] involves the

whole sample paths.

1 1 h
THEOREM 3.,1. 1If 1T?} converges to {Tt} and Xg converges weakly to X , then (Xt) con-
verges weakly to (Xt), as h*0, as a D[O,W;EJ—valued random variable.
The previous theorem refers only to continuous-time Markov processes, but it can

be easily extended. The argument used in Section 2 has in fact a stochastic



interpretation. In fact, let Ah be the infinitesimal generator of {TE} on C(Eh) and

Qh its transition function: then, for ADOQ, f€C(Eh)
-1 1 STk
(1-88)""£(x) = [ £(y) (67 [ e " o (t,x,dy)dt], xeE, (3.2)
E 0
h
h,A
which shows that a discrete-time Markov process (ZkA , k=0,1,...) can be built such

that for each fSC(Eh)

E(f(Z(k+l>A)|ZkA =x) = (I- AAh) Lx) = Jh’Af(x). (3.3)

Now it is quite easy to show that A defined in (2.4) is the infinitesimal

h, A
~h,A
generator of a Feller-Dynkin process (Z:’ ), which can be obtained with a random time
change which turns the intervals between the jumps of (Zh ) to be 1i.i.d. exponential
~h,A ~h,A
variables with mean A, Moreover the distance between the processes Xt’ =T (Z )
h h, A .
1 . . A
and Xtt/AJ nh(ztt/AJA) in the D[O,W,E]ﬂmetric goes to zero in probability as (h,A)

goes to zero LISJ. This allows to modify the previous theorem in the following way.

i A
THEOREM 3,2, 1If {T?} converges to {Tt} and Xg’ converges weakly to Xo, then (X[ /A} )

converges weakly to (Xt)’ as a D[O,W;E]—valued random variable.

10



4, APPLICATION TO FILTERING

We return to the problem stated in Introduction by identifying the "copy"” of
the state process in (1.2) with the Feller-Dynkin one of the last section. Moreover
we have now to suppose that this process is continuous (so that, at least locally, it
is a diffusion L8J). We need to introduce an extension of its infinitesimal genera-
tor, called the full generator LlSJ, which is a possibly multivalued operator
AeL (E)xL (E) such that

~ t
(g,h)eA g(Xt) - é h(XS)ds

is a martingale w.r.t. the increasing family of O-algebras generated by (Xt).

Suppose now that each component of g in (l.1) is bounded, uniformly continuous
and belongs to D(&3, and the products gigj, i,j=1,...,m, too. We let Ké =
(Kél,...,gém) where Aéi stands for any element of the K;image of g i=l,...,m. By
integrating by parts inside the expectations of the Kallianpur-Striebel formula (1.2)
this can be expressed for any path yECOLO,“;RmJ (continuous functions which starts

from zero) of (Yt) through the "robust” version LSJ

t t
ELEGx exn(y (Dg(x) = J v (s)ag(x) =5 ) [g(x)]as)]
£ Y =y(s), 0%s<t) = 0 0
T top 1t 2.
Elexp(y (£)g(X) - é y (s)dg(X) —7é lg(XS)I ds) |

(4.1)
for any f bounded and measurable,

In fact, by assumption g(Xt) is a R'—valued semi-martingale whose decomposition
is given by

t ~
g(X) = g(Xy) +é‘ (Ag)(X)ds + M (4.2)

where Mt is a continuous square-integrable martingale having the matrix-valued

increasing process LlOJ
11



t
i,j ~ N Iy
= é [(Agigj)(Xs) - g5(X) (Mg ) (X)) - g; (%) (Ag, ) (X,) Jds (4.3)

t
Being <M>t locally bounded, R = / yT(s)dMS and exp(Rt - %-<R>t) are martingales
0
L23J, from which the boundedness of the denominator is easily obtained for each

yeC O,W;RmJ. By Riesz theorem this implies that for each y there exist finite

ol

measures ut(y), t20, such that

o <E,u (y)>
E(f(Xt)IYS=y(s), 0<s<t) ='?TTEZT?75 , t20 (4.4)
where <f,u> = f f(x)u(dx) and
E
ut(y)(dx)
Ht(y)(dx) T e msane (4.5)
J . (y)(dz2)
E

is a regular conditional probability measure.
Now let us suppose that, for h>0, Ah is the infinitesimal generator of a
continuous—time Markov chain with finite state space Eh = {1,2,...,Nh}. Let

n, associate with each state i a point xr in E and for each function on E let th be

the N, -vector of the evaluations of f at points {x?,...,xg }, which is always con-

h
h
sidered with the sup norm. We are allowed to identify Eh with nh(Eh) and the values

h

of th with those of £ in the sequel. For A>0 and yCCO{O,W;RmJ let us consider the

implicit time—discretization equation (l.4), which can be rewritten as

h,A T _A h,A

Ur+1)a = Jn,a B

h,A Bra B o K= 0slheee, (4.6)

A
BkA being a Nh

exp(g’ (1) (7 (1) D)=y(k8)) - 3 blg(x %)),

-th order diagonal matrix, whose i-th diagonal element is

Let us consider on some probability space the discrete-time Markov chain

12



h, 4 h
(ka , k=0,1,,..) with initial probability vector 4 (it is supposed qug = 1) and

transition matrix J .
m h, A

THEOREM 4,1, The solution of equation (4.6) can be expressed in the following way:
N
for any feR

k=1

£ qkA ELf(XkA )exp(;: lg" (X WA Yyt 8) - y(aa)) -—- )g(X )IZAJ)J. (4.7)

Proof. It requires only a substitution of (4.7) into (4.6) which yields

T.T A h,A T h,4_
£y, Bradka = (BkA n, of) 4l
k
A h 1 h,0, 2
= BLECE(X(L ) 2 % exp( L BT D s -y - 5 gt 1% ]

A A
which is equal to quh’ by the Markov property of ( h, ) and the projective pro-
(k+1)A A

perty of conditional expectations.

It can be easily shown that (4.7) gives the numerator of a Kallianpur-Striebel
type formula for an estimation problem in discrete time.
h, A . .
We can extend the function qkz to continuous time by

t t
T, h, . 2
Ay = ELf(XL /AJA)eXP((J) g (X} AJA)y(s)ds -—~O lg(XL /AJA)I ds)|  (4.8)

if y is in CéLO,m;EJ. A similar expression holds in this case for Ut

t t
<E,u(y)> = ELE(X dexp( ) g(X )9 (s)ds —% 5(x) | %as) | (4.9)
0

Now let pt (y) = q (y)/(l q (y)) The following theorem states the relevant

consequence of Theorem 2.4 for our problem.
THEOREM 4.2. Let us suppose that the convergence condition (2.6) holds and

13



1

O[o,w;RmJ, T>0 and

h
p, converges weakly to the law of XO’ as h*0. Then, for each y&C

f bounded and uniformly continuous

T h, &
1lim sup |f pt’ (y) - <f,1%(y)>] = 0 (4.10)
(h,8)>0 telo,T]

Proof. For each y as above define the function ¢1:D[O,W;EJ+D[O,wJ as

o 1t 2
q)l(X)(t) = exp() g (x(s))y(s)ds - 7] lg(x(s))|“ds) (4.11)
0 0

and observe that for each T>0O there exist two real constants E;and K such that
K <log 9, (x)(t) <K, x€D[0,=;E ], te[0,T] (4.12)
Therefore, if ¢f(x)(t) = f(x(t))¢l(x)(t), then

T h,b
faq, (y) _ <f,ut(y)>

< anf 1Tt onTIC sup 5T ) - < 3]y

sup
ceto,1] |17 %) <> | eelo,r] telo,T]
A - T h,A
+ ( inf <1,u(y)> inf quE’ y)) L sup ,]<f,ut(y)>l sup |1 qtg’ (y) - <l,ut(y)>]) <
tel0,T | tel0,T | tel0,T tel0,T]|
K h,a, ,
<k E(“¢f(xh’A) - ¢f(X)“m T) +e ke hf“E(“(pl(X ) ¢1(X)"“,T) (4.13)

where “'"”,T stands for the sup norm on [O,TJ. Note that we have placed (X:’A),
h>0, >0 and (Xt) on the same probability space: by the weak convergence assured by
Theorems 2,4 and 3.2 this can be done even assuring that (X?’A(w)) converges to
(Xt(w)) in D|0,*;E | for each w l4]. Being the paths of (Xt) continuous this implies
uniform convergence on each compact set. But f and g are uniformly continuous, so

that the two terms under the expectation sign in (4.13) converge to zero for each w,

By bounded convergence theorem, the proof is accomplished.

The successive step will be to extend the convergence in (4.10) to all possible

14



are reduced to the corresponding ones for wz;A(y) and w¢i(y), i=1,2,... .,

This allows to solve the following "robustness” problem., Let us consider
continuous processes (if,w:), € > 0, considered as C[O,W;EJ X COLO,“;RmJ - valued
random variables, which are a family of "physical” state and noise models
depending on some parameter, converging to the "ideal" diffusion plus white
noise model of the Introduction (i;,wt) as this parameter degenerates. The
typical situations to have in mind are carefully reviewed in L16J. Note that
the output map defined in (l.1) is defined on each sample path (X,W) of the

state and noise processes, yielding a continuous map

y: CLO,=5E] x €10, =R™ [ > ¢ [0,%;R" | (5.6)
with all the spaces endowed with the metric of uniform convergence on compact
intervals,

The approximate filter (5.5) is applied to the "physical” output process
YE = y(i£,we). The following result extends the similar one proved by Kushner
[19] for one particular chain in continuous time, in the meantime giving a more

direct proof in that unnormalized conditional probabilities are not used.

—€ € —_
THEOREM 5,1, Let us suppose that (xt,wt) converges weakly to (Xt’wt) as
€ > 0, where (i;) is a continuous E-valued Feller—Dynkin process and (Wt) an
independent Rm—valued standard Brownian motion, Then, under the hypotheses of
—€ € h,A ¢ o
Corollary 4.1, the process (X ,W ,p > (Y )) converges weakly to (X_,W i (Y)) as

(e,h,8) > 0, considered as Cl0,";E| x C O,W;RmJ X D[O,W;FYE)J ~ valued random

ol
variables.

Proof. For € > 0, h > 0, 4 > 0, define the functions

A |
2% clo,mE | x o Lo, =™ | > clo, =k ] x ¢ 0,8 | x D0,=; (B)]
€ B e - h,A, ~
SR = G &) (5.7)

19



and X, with the same domain and range space, defined by

xGw) = (x,w, Iy (x, ). (5.8)
—£ A =£ € A €
Let X LI X and W B8 W . By the remarks following Corollary 4.1,
£ A
X s converges to X uniformly on compact sets. Being X continuous, it

suffices to to apply Theorem 5.5 in [3] to get the desired result, l:jr

A comprehensive discussion of the meaning of weak convergence-type results
like Theorem 5.1 is given in [14]. However, again, the important thing is to
note that the way €,h,A approach zero cannot destroy convergence. We believe
that those results could be of particular importance for sequential decision

problems on partially observed diffusions [1].

20



6. TWO EXAMPLES

Let us first consider the chain proposed by Kushner, which is obtained by
suitably modifying a simple difference scheme applied to the generator of a dif-
fusion [16]. We limit ourselves to the one~dimensional case in which such a
scheme always works,

Let Cg(ék) the space of k-times continuously differentiable function on R,
with all those derivatives bounded (which go to zero at infinity). Let (i;) be

the solution of the martingale problem with full generator

. 2 ,
(RD () =+ a(x) —g;(-f- (x) + b(x) —g;f; x) fscf)
(6.1)

where it must be supposed that a(x) » A > 0 for x€R and a(*) and b(+) are bounded and
Holder, in order to have a well-posed martingale problem L28Jand the restriction
A of X to Cif)é to be extendible to a generator of a Feller-Dynkin semigroup on
¢ [6]. But we need also to use C as a core, and for dz to be invariant under
At

e , a(*) and b(+) have to be also in Cé.

(3/3t — A)f = 0 can be differentiated twice w.r.t. the space variable |25].

In this case, the parabolic equation

For each h > 0, let us consider a finite grid G, of equispaced points of

h

distance h, which tends to cover the whole line as h * 0, and define a Markov

chain on G, by the following non-zero intensities: for xE&G

h h
h 1 1,-

a (x,x-h) = a(x) +—=b (%)
2h2 h

ah(x,x) = - 12 a(x) - %-]b(x)l (6.2)
2h

ah(x,x+h) = 12 a(x) +-l-b+(x)
2h h

except for the first and the last point of the grid, which are made absorbent.

Let nh be the inclusion of G, into R, and let Ph be defined as in Section 4.

h
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It is clear that condition (2.6) is satisfied once we show that for fsC2

2

] 3% 3 1 1 - 1 1
sup |+ a(x) + b(x) - (=== a(x) + =b (x))f(x~h) + (== a(x) +=— |b(x)| £(x) +
XSRIZ X —a-;(? X 'ﬂé; 2h2 X h X X 2h2 a(x h ] X I X

- (—1-2- a(x) +%b+(x))f(x+h)| < 8(h) (6.3)
2h

where 6(h) goes to zero as h * 0, The behavior at the boundary is controlled by
the boundedness assumptions on a and b and the fact that feaz. The expression

of the r.h.s, of (6.3) can be rewritten as

(x) 2 bt
22 (£(x+h) + E(xh) = 26(x) = £"(O%) +--E§-)- (£(x+h) - £(x) - £'(x)h) +
2h

_ b_(x)

o (f(x~h) ~ £(x) = £'(x)h)

which clearly shows uniform convergence (f" is in fact uniformly continuous).
Moreover, for any gECs, the boundedness condition (4.,16) is verified, and
Corollary 4.1 and Theorem 5.1 can be applied.

Such method can be extended to the case Rd, d > 1, with additional assump-
tions on the coefficients [16]. The verification of conditions (2.7) and (4.9)
is still straightforward. It is clear that the method could take into account
boundary conditions, too.

Example 2. This rather artificial example serves only as a sample to show
that reasonable alternatives to the previous space discretization scheme exist,
even in dimension one. Of course, this is much more true in higher dimensions,
given that the complexity of the topology of a grid increases., Suppose that
a =1 in (6.1), and write b = —0V/9x. Usually, it will be easier to compute the
“potential” V than its derivative so that it makes sense to define the following

approximating chain, holding fixed the grid Gh as before:
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1
— (5 + V(x) - ¥(x-h)), if V(x-h) < min{V(x), V(x+h)}
h
Eh(x,x—h) =
otherwise,
2h (6.4)
—ﬁ% O%-+ V(x) - V(x+h)) , if V(x+h) < min{V(x), V(x-h)}
h
zh(x,x+h) =
5 otherwise
2h
, h h h
letting a (x,x) = -(a (x,x-h) + a (x,x+h)) and the other terms to be zero

(including the boundary ones). Condition (2.6) is reduced to checking

SUP}—% L(V(x) = V(x*h))E(x*h) - (V(x) - V(x*h))f(x) ] +-%;(V-f(x)l < 8(h)

X ER h
for each feéz, where 6(h) goes to zero as h >» 0. This is because, when the
V-terms in (6.4) repeatedly disappear around x, as h * 0, it is necessarily
(9v/3x)(x) = 0., This allows to prove the boundedness condition for any gECS,
so the convergence property of the filtering algorithm derived from (6.4) is the

same as in the previous example.
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