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Chapter 1

Introduction

1.1 Conservation laws

Conservation laws arise from the modeling of balance laws of physical quanti-

ties. Specifically, a conservation law asserts the rate of change of the total amount

of substance contained in a fixed domain D is equal to the flux of that substance

across the boundary of D. Denoting the density functions of N substances by

u = (u1, · · · , uN)⊤, and the flux functions by fj = (f1j, · · · , fNj)
⊤, 1 ≤ j ≤ M , the

general form of a system of conservation law in M space variables is

d

dt

∫

D

u dx = −
M∑

j=1

∫

∂D

fjnj dS, x = (x1, · · · , xM) ∈ R
M , t > 0. (1.1.1)

Here n = (n1, · · · , nM)⊤ is the outward unit normal vector to D and dS denotes

the surface element on ∂D, the boundary of D. Applying the divergence theorem

on the RHS of (1.1.1) and moving the time derivative under the integral yields

∫

D

(
∂u

∂t
+

M∑

j=1

∂

∂xj

fj(u)

)
dx = 0.

Shrinking domain D to a point where all partial derivatives of u and fj are contin-

uous, we obtain the differential system of conservation laws,

∂u

∂t
+

M∑

j=1

∂

∂xj
fj(u) = 0. (1.1.2)
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To study the hyperbolicity of the system (1.1.2), we define in the following way, let

Aj(u) = ∇ufj be the Jacobian matrix of fj . The quasi-linear system

∂u

∂t
+

M∑

j=1

Aj
∂u

∂xj

= 0. (1.1.3)

is called hyperbolic if, for each u and unit vector ω = (ω1, · · · , ωM)⊤, the matrix

A :=
∑M

j=1 ωjAj(u) has N real eigenvalues λ1(u,ω), · · · , λN(u,ω) and N linearly

independent corresponding eigenvectors r1(u,ω), · · · rN(u,ω). If the eigenvalues

{λk}N
k=1 are all distinct, the system (1.1.3) is called strict hyperbolic.

Many physical phenomena are dictated by nonlinear hyperbolic systems of

conservation laws and related time-dependent problems. Important examples occur

in gas dynamics, shallow water theory, nonlinear elasticity, magneto-fluid dynamics,

combustion theory, and more. In particular, the driving forces of fluid dynamics are

such problems govern by additional dissipative and dispersive forcing terms. In the

framework of Newtonian fluids, the central problem is the Navier-Stokes equations,

which are derived from the conservation laws of mass, momentum, and total energy

for the flow, driven by convection fluxes together with viscous and heat fluxes. We

will focus on the convection-dominated problems in this dissertation.

For the systems of conservation laws, we study the Cauchy problems,




∂u

∂t
+

M∑

j=1

∂

∂xj
fj(u) = 0

u(x, 0) = u0(x)

(1.1.4)

The most distinctive feature of such problems in several dimensions is the formation

of shock discontinuities. In general there do not exist classical solutions of (1.1.4)

beyond some time interval, even when the initial condition u0 is very smooth. The
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above considerations lead us to consider weak solutions of (1.1.4). A weak solution

of (1.1.4) is not necessarily unique. The entropy condition plays an important role

in selecting the physically relevant solution among those weak solutions. ([Ole63,

Lax73, GR96, Daf00]). It states the additional entropy inequality,

U(u)t +
M∑

j=1

∂

∂xj

Fj(u) ≤ 0 (1.1.5)

for all admissible entropy U with entropy fluxes Fj satisfying the compatibility

relations (∇uU)⊤∇ufj = (∇uFj)
⊤, 1 ≤ j ≤ M . In fact, entropy inequality (1.4.2)

characterizes those physically admissible solutions, which are realizable as vanishing

viscosity limits,

u = lim
ǫ↓0

uǫ, (1.1.6)

where

∂uǫ

∂t
+

M∑

j=1

∂

∂xj

fj(u
ǫ) = ǫ∆uǫ. (1.1.7)

It follows from the entropy inequality (1.4.2) that the total amount of entropy

∫
x
U(u(x, t)) dx does not increase over time. A canonical example is the second

law of thermodynamics, which states that the total entropy decays in an isolated

thermodynamical system.

1.2 Entropy-stable and entropy-conservative schemes

When we turn our attention to the numerical framework of the nonlinear con-

servation laws, entropy stability serves as an essential guideline to seek the physically

relevant numerical solutions. Here we restrict ourselves to the system of conservation

3



laws in one dimensional space,

∂

∂t
u +

∂

∂x
f(u) = 0, (x, t) ∈ R × [0,∞) (1.2.1)

while the further extension in multidimensional spaces can be accomplished dimen-

sion by dimension. We construct the semi-discrete difference approximations in the

general conservative form,

d

dt
uν(t) +

fν+ 1

2

− fν− 1

2

∆xν
= 0, (1.2.2)

where uν(t) denotes the solution along the gridline (xν , t), and fν+ 1

2

is a consistent

numerical flux. The Lax-Wendroff theorem [LW60] states that if the conservative

consistent scheme (1.2.2) converges as the grid is refined then it converges to the

weak solution of the conservation laws (1.2.1). This theorem does not guarantee that

the weak solutions obtained in this manner satisfy the entropy condition, which

is necessary in order to single out an unique ‘physically relevant’ solution among

many weak solutions of (1.2.1). To this end, we now consider the conservative

schemes (1.2.2) that are entropy-stable in the sense of satisfying the discrete entropy

inequality,

d

dt
U(uν(t)) +

Fν+ 1

2

− Fν− 1

2

∆xν
≤ 0, (1.2.3)

which is the discrete analogue of the differential entropy inequality

U(u)t + F (u)x ≤ 0,

for all admissible entropy pair (U(u), F (u)). In particular, when equality holds in

(1.2.3), we obtain the entropy-conservative schemes, which serve as important tools

in our entropy stability study through the comparison.
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In Chapter 2, we start our discussion with the construction of these entropy-

stable/conservative schemes. The key ingredient here is the entropy-conservative

discretization of the convective fluxes fν+ 1

2

in (1.2.2). The main results of entropy

stability/conservation of the numerical schemes were concluded in [Tad87][Theorem

5.2], which states the sufficient condition (sufficient and necessary condition for

three-point schemes) of the conservative scheme (1.2.2) being entropy-stable (re-

spectively, entropy-conservative) is

〈
vν+1 − vν , fν+ 1

2

〉
≤ ψ(vν+1) − ψ(vν), (1.2.4)

and, respectively,

〈
vν+1 − vν , fν+ 1

2

〉
= ψ(vν+1) − ψ(vν). (1.2.5)

Here, we utilize the entropy variables v := ∇uU and the potential function ψ(v) :=

〈v, f(v)〉−F (u(v)). The entropy-conservative numerical fluxes we want to construct

satisfy the condition (1.2.5).

Another important aspect of the construction of such numerical flux is the cer-

tain choice of the integration paths in phase space of the entropy variable. For the

scalar problems, these numerical fluxes are “path-independent”, hence the entropy-

conservative schemes are unique for a given entropy pair. For the system of equa-

tions, the construction of entropy-conservative schemes in terms of numerical fluxes

depends on the choices of entropy function and the integration paths. Discussion on

different choices of integration paths for one-dimensional systems can be found in

[Tad03] and [TZ06]. Specifically, we construct the entropy-stable numerical schemes

in terms of a new family of entropy-conservative numerical fluxes subjected to the
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choice of a physically relevant integration path in the phase space, then imple-

ment such schemes on one-dimensional Navier-Stokes equations for the first time in

[TZ06].

We then extend these entropy-conservative approximations to the multidimen-

sional problems by carrying out the same recipe as indicated in the one-dimensional

setup dimension by dimension. More discussion on two-dimensional setup of such

entropy-stable schemes for 2D shallow water equations can be found in [TZ07].

We focus on the semi-discrete schemes based on the spatial differencing in

this dissertation. A general framework of the entropy stability of the fully discrete

schemes can be found in [LMR02, Tad03]. We are going to utilize the explicit 3-stage

Runge-Kutta method in time discretization for its relatively negligible amount of

numerical viscosity and large stability region. Details about the stability properties

of multistage Runge-Kutta method can be found on [GST01].

1.3 Burgers equation

One-dimensional Burgers equation serves as a prototype example of the scalar

nonlinear conservation law. In Chapter 3, we develop the entropy-conservative

schemes for the inviscid Burgers equation,

∂u

∂t
+

∂

∂x
f(u) = 0, f(u) =

1

2
u2. (1.3.1)

Any convex function U(u) serves as an entropy function for the scalar Burgers

equation. Here we consider a family of entropy functions, Up(u) = u2p p = 1, 2, · · · .

Solutions of (1.3.1) satisfy, at the formal level, the additional conservation law of

6



entropy,

∂

∂t
Up(u) +

∂

∂x
Fp(u) = 0. (1.3.2)

The above entropy equality is balanced by the entropy flux Fp(u) = 2pu2p+1/(2p+1)

satisfying the compatibility relation U ′
p(u)f

′(u) = F ′
p(u). Spatial integration then

yields the total entropy conservation(ignoring the boundary contributions),

∫

x

u2p(x, t) dx =

∫

x

u2p(x, 0) dx. (1.3.3)

In the discrete framework, we construct the entropy-conservative discretization

d

dt
uν(t) +

1

∆x

(
f ∗

ν+ 1

2

− f ∗
ν− 1

2

)
= 0, (1.3.4a)

where f ∗
ν+ 1

2

is three-point entropy conservative numerical flux constructed as

fν+ 1

2

=
2p− 1

2(2p+ 1)
· u

2p+1
ν+1 − u2p+1

ν

u2p−1
ν+1 − u2p−1

ν

. (1.3.4b)

The resulting scheme (1.3.4a) and (1.3.4b) is entropy conservative in the sense that

the discrete analogue of total entropy conservation (1.3.3) is satisfied,

∑

ν

u2p
ν (t) ∆x =

∑

ν

u2p
ν (0) ∆x.

Different numerical results corresponding to a series of different entropy func-

tions with different p’s display the tendency of controlling the L∞−norm of solutions

when the entropy conservation is guaranteed in the numerical approximations.

1.4 One dimensional Navier-Stokes equations

We turn to the system of one-dimensional Navier-Stokes equations governed

by additional viscosity and heat fluxes in Chapter 4. We consider the Navier-Stokes

7



equations governing the density ρ = ρ(x, t), momentum m = m(x, t), and energy

E = E(x, t),

∂

∂t
u +

∂

∂x
f(u) = ǫ

∂2

∂x2
d(u), u =

[
ρ,m,E

]⊤
. (1.4.1)

They are driven by the convective flux f(u) =
[
m, qm + p, q(E + p)

]⊤
, together

with the dissipative flux ǫd(u) = (λ + 2µ)
[
0, q, q2/2

]⊤
+ κ

[
0, 0, θ

]⊤
which stands

for the combined viscous and heat fluxes. Here ǫ denotes the vanishing amplitudes

of viscosity and heat conduction. These fluxes involve the velocity q := m/ρ, the

pressure p and temperature θ which are determined by the polytropic equation of

state. Here, the viscosity λ, µ and conductivity κ are fixed.

The viscous and heat fluxes are dissipative terms in the sense that they are

responsible for the dissipation of total entropy, U(u) = −ρS with the specific entropy

S = ln(pρ−γ),

∂

∂t
(−ρS) +

∂

∂x
(−mS + κ(ln θ)x) = −(λ+ 2µ)

q2
x

θ
− κ

(
θx

θ

)2

≤ 0. (1.4.2)

Spatial integration of (1.4.2) then yields the second law of thermodynamics,

d

dt

∫

x

(−ρS) dx = −(λ+ 2µ)

∫

x

q2
x

θ
dx− κ

∫

x

(
θx

θ

)2

dx ≤ 0. (1.4.3)

In fact, the total entropy balance statement (1.4.3) specifies the precise entropy de-

cay rate. In the case of the Euler equations without viscous and heat fluxes, λ =

µ = κ = 0, total entropy is precisely conserved,
∫

x
−ρS(x, t) dx =

∫
x
−ρS(x, 0) dx.

Indeed, the entropy-stable solutions of the Euler equations are realized as the vanish-

ing Navier-Stokes limits, which is analogous to the vanishing viscosity limit (1.1.6)

we mentioned in the previous section.
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Discretize the Navier-Stokes equations (4.4.6a) in space,

d

dt
uν(t) +

1

∆x

(
f∗
ν+ 1

2

− f∗
ν− 1

2

)
=

ǫ

(∆x)2
(d(uν+1) − 2d(uν) + d(uν−1)) . (1.4.4)

As in Burgers equation, we seek entropy conservative numerical flux f∗
ν+ 1

2

, so that

the numerical entropy decay will be dictated solely by viscous and heat fluxes in

the Navier-Stokes equations. Different from the numerical fluxes outlined in [Tad87]

which are integrated along straight line paths in phase space, f∗
ν+ 1

2

are constructed

along a piecewise-constant path in phase space directed by an arbitrary set of 3

linear independent vectors {rj}j=3
j=1 and its orthogonal set {ℓj}j=3

j=1. In our computa-

tion, a “physically relevant” choice is a Riemann path connecting two neighboring

gridpoints. Our approach is to construct the Roe-path in u-space, then project it

back to v-space to obtain {rj} and {ℓj}. These new entropy-conservative numerical

fluxes admit an explicit and closed-form expression, and enable us to enforce the

entropy stability by fine-tuning the amount of numerical viscosity along each sub-

path carrying different intermediate waves. The resulting entropy-stable difference

schemes (1.4.4) contain no artificial numerical viscosity in the sense that their en-

tropy dissipation is dictated solely by viscous and heat fluxes. Equipped with this

new family of difference schemes, we are able to recover the precise entropy decay

of the Navier-Stokes equations.

Our prototype result about the Navier-Stokes equations is the following.

Theorem 1.4.1. Consider the Navier-Stokes equations (4.4.6a),

∂

∂t
u +

∂

∂x
f(u) = ǫ

∂2

∂x2
d(u).

9



Here, u =
[
ρ,m,E

]⊤
is the vector of conservative variables, f(u) is the correspond-

ing 3-vector of fluxes f(u) =
[
m, qm + p, q(E + p)

]⊤
, and ǫd(u) stands for the

combined viscous and heat fluxes,

ǫd(u) = (λ+ 2µ)
[
0, q, q2/2

]⊤
+ κ
[
0, 0, θ

]⊤

where ǫ signals the vanishing amplitudes of viscosity λ, µ and heat conductivity κ.

We approximate these Navier-Stokes equations by a semi-discrete scheme of the form

d

dt
uν(t) +

1

∆xν

(
f∗
ν+ 1

2

− f∗
ν− 1

2

)
=

ǫ

∆xν

(
d(uν+1) − d(uν)

∆xν+ 1

2

− d(uν) − d(uν−1)

∆xν− 1

2

)
.

(1.4.5a)

Let f∗
ν+ 1

2

= f∗(uν ,uν+1) is the numerical flux given the by the explicit formula,

f∗
ν+ 1

2

= (γ − 1)

3∑

j=1

mj+1 −mj

〈ℓj ,vν+1 − vν〉
ℓ

j , v = v(u) :=
[
− E

e
− S + γ + 1,

q

θ
,−1

θ

]⊤
.

(1.4.5b)

Here, {ℓj = ℓ
j

ν+ 1

2

}3
j=1 are three linearly independent directions in v-space at our

disposal (consult examples 2.2.1, 2.2.2 and 2.2.3 below); {rj =r
j

ν+ 1

2

}3
j=1 is the corre-

sponding orthogonal system and {mj =mj

ν+ 1

2

}4
j=1 are the intermediate values of the

momentum specified along the corresponding path, vj+1 = vj + 〈ℓj ,vν+1 − vν〉rj,

starting with v1 = vν and ending with v4 = vν+1. Then, the resulting scheme

(1.4.5a),(1.4.5b) is entropy stable and the following discrete entropy balance holds1

d

dt

∑

ν

(−ρνSν)∆xν = − (λ+ 2µ)
∑

ν

(
∆qν+ 1

2

∆xν+ 1

2

)2 (
1̂/θ
)

ν+ 1

2

∆xν+ 1

2

− κ
∑

ν

(
∆θν+ 1

2

∆xν+ 1

2

)2 (
1̃/θ
)2

ν+ 1

2

∆xν+ 1

2

≤ 0. (1.4.6)

1We let ẑ
ν+ 1

2

and z̃
ν+ 1

2

denote the arithmetic and geometric means, ẑ
ν+ 1

2

=
(
zν + zν+1

)
/2 and

z̃
ν+

1

2

=
√

zνzν+1.
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The entropy balance (1.4.6) is a precise discrete analogue of (1.4.3). The

scheme (1.4.5a),(1.4.5b) contains no artificial numerical viscosity in the sense that

entropy dissipation is driven solely by the viscous and heat fluxes. In the particular

case that viscosity and the heat conduction are absent, κ = λ = µ = 0, then

the entropy balance (1.4.2) is reduced to the formal entropy equality of the Euler

equations without viscous and heat fluxes,

∂

∂t

(
− ρS

)
+

∂

∂x

(
−mS

)
= 0, (1.4.7)

which in turn, implies the entropy conservation
∫

x
(−ρS)(·, t) dx =

∫
x
(−ρS)(·, 0) dx.

Similarly, setting ǫd = 0 we omit the dissipative terms in Navier-Stokes equations,

and the difference scheme (1.4.5a) becomes entropy conservative,

∑
(−ρνSν)(t)∆xν =

∑
(−ρνSν)(0)∆xν .

Entropy conservative schemes are studied in section 4.4, following [Tad03]. The key

ingredient here is the construction of their entropy conservative fluxes, such as f∗
ν+ 1

2

in (1.4.5b). These fluxes employ the so called entropy variables, v = v(u), which are

discussed in section 2.1. The main results are then summarized in theorems 2.2.2 and

4.4.1. Finally, in section 4.5 we present a series of numerical simulations with the new

schemes. The entropy conservative approximations of Euler equations are ‘purely

dispersive’ and as such, their solutions experience dispersive oscillations, interesting

for their own sake, consult [Lax86, HFM86, Tad86, LLV93, LL96, LR00] and the

references therein. Turning to the Navier-Stokes equations, our simulations provide

a remarkable evidence for the different roles that viscosity and heat conduction

have in removing the dispersive oscillations, to yield sharp monotone profiles of
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well-resolved shock and contact layers. No limiters were added, but instead, the

viscous and heat conduction terms in Navier-Stokes equations are found to serve as

accurate edge detectors. See [TZ06] for the first implementation of this new family

of entropy-stable schemes on 1D Navier-Stokes equations.

Remark 1.4.1. The viscous Navier-Stokes equations dissipate a general family of

entropies, −ρh(S), where h(S) is an arbitrary increasing function . Indeed, arguing

along the above lines we multiply the continuity equation by h(S) and adding it to

(4.2.2)× h′(S) to find

∂

∂t

(
− ρh(S)

)
+

∂

∂x

(
−mh(S) + κ(ln θ)xh

′(S)
)

=

= κh′′(S)Sx
θx

θ
− h′(S)

(
(λ+ 2µ)

q2
x

θ
+ κ

(
θx

θ

)2
)
. (1.4.8)

In the case that the heat conduction is absent, the first term on the RHS of (1.4.8)

vanishes, and we are left with

d

dt

∫

x

(
− ρh(S)

)
dx = −(λ+ 2µ)

∫

x

q2
x

θ
h′(S)dx. (1.4.9)

Thus, the viscous Navier-Stokes equations imply the dissipation of a family of en-

tropies,
∫

x
(−ρh(S)) dx for all h′(S) > 0; consult [Har83]. Each one of these en-

tropies carries its own entropy conservative flux f∗
ν+ 1

2

. The explicit construction of

such fluxes is outlined in theorem 2.2.2 below. Combining these entropy conser-

vative fluxes together with centered differencing of the additional viscous terms,

(λ + 2µ)[0, q, q2/2]⊤, yield a generalization of Theorem 1.4.1 which recovers the

precise entropy balance (1.4.9).

We note in passing that when heat conduction is present, however, the neg-

ativity of the first term on the right of (1.4.8) requires h′′(S) = 0, so that we

12



are left with one canonical entropy, h(S) ∼ S discussed in theorem 1.4.1; consult

[HFM86, HMM86, HM86a, HM86b]. The above characterizations of the general

entropy function of the Navier-Stokes equations satisfy the Harten’s convexity con-

dition in [HLLM98].

1.5 Two-dimensional shallow water equations

It is straightforward to generalize the recipe for ‘faithful’ entropy stable ap-

proximations of multidimensional problems. The extension is carried out dimension

by dimension and as indicated in the one-dimensional setup of theorem 1.4.1, one

has the freedom of choosing different paths in phase space.

In Chapter 5, we extend our discussion to the two-dimensional shallow water

equations.

∂

∂t
u +

∂

∂x
f(u) +

∂

∂y
g(u) = ς

∂

∂x

(
h
∂

∂x
d(u)

)
+ ς

∂

∂y

(
h
∂

∂y
d(u)

)
, (1.5.1)

with u = [h, uh, vh]⊤ being the vector of conserved variables balanced by the flux

vectors f = [uh, u2h + gh2/2, uvh]⊤, g = [vh, uvh, v2h + gh2/2]⊤, and the viscous

flux vector d = [0, u, v]⊤. Here, h = h(x, t) is the total water height, (u(x, t), v(x, t))

are the depth-averaged velocities along x and y direction. Finally, g is the constant

acceleration due to gravity, and ς > 0 is the constant eddy viscosity which models

the turbulence stress in the flow.

The total energy U(u) = (gh2 + u2h+ v2h)/2 serves as an entropy function,

∂

∂t
U(u) +

∂

∂x
F (u) +

∂

∂y
G(u) = −ηh(u2

x + u2
y + v2

x + v2
y), (1.5.2)
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where F (u) = guh2+u3h+uv2h
2

−huux−hvvx andG(u) = gvh2+u2vh+v3h
2

−huuy−hvvy

are the entropy fluxes. Spatial integration of (1.5.2) yields

d

dt

∫

y

∫

x

U(u) dxdy = −ς
∫

y

∫

x

h(u2
x + u2

y + v2
x + v2

y) dxdy. (1.5.3)

For the inviscid case (ς = 0), the total energy is preserved,

∫

y

∫

x

U(u(x, t)) dxdy =

∫

y

∫

x

U(u(x, 0)) dxdy.

Arguing along the same line as the above NSE dimension by dimension, we

obtain the entropy/energy-stable semi-discrete schemes (recall ẑν+ 1

2

:= (zν+1+zν)/2)

d

dt
uν, µ(t) +

1

∆x
(f∗

ν+ 1

2
, µ

− f∗
ν− 1

2
, µ

) +
1

∆y
(g∗

ν, µ+ 1

2

− g∗
ν, µ− 1

2

) =

η

∆x
(ĥν+ 1

2
, µ

dν+1, µ − dν, µ

∆x
− ĥν− 1

2
, µ

dν, µ − dν−1, µ

∆x
)

+
η

∆y
(ĥν, µ+ 1

2

dν, µ+1 − dν, µ

∆x
− ĥν, µ− 1

2

dν, µ − dν, µ−1

∆x
), (1.5.4a)

with the entropy-conservative fluxes f∗
ν+ 1

2
, µ

and g∗
ν, µ+ 1

2

constructed as indicated in

one-dimensional case,

f∗
ν+ 1

2
, µ

=
g

2

3∑

j=1

(hj+1

ν+ 1

2
, µ

)2uj+1

ν+ 1

2
, µ

− (hj

ν+ 1

2
, µ

)2uj

ν+ 1

2
, µ〈

ℓ
xj

ν+ 1

2
, µ, ∆vν+ 1

2
, µ

〉 ℓ
xj

ν+ 1

2
, µ, (1.5.4b)

g∗
ν, µ+ 1

2

=
g

2

3∑

j=1

(hj+1

ν, µ+ 1

2

)2uj+1

ν, µ+ 1

2

− (hj

ν, µ+ 1

2

)2vj

ν, µ+ 1

2〈
ℓ

yj

ν, µ+ 1

2

, ∆vν, µ+ 1

2

〉 ℓ
yj

ν, µ+ 1

2

, (1.5.4c)

Here, uν, µ(t) denotes the discrete solution at the grid point (xν , yν , t), dν, µ :=

d(uν, µ), and v := Uu = [gh− 1
2
(u2 + v2), u, v]⊤ is the entropy variable. Numerical

flux f∗ and g∗ are constructed separately along two different phase pathes dictated

by two sets of vectors {ℓxj} and {ℓyj}. {hj} and {uj} are intermediate values of

height and velocity along the path. The above difference scheme (1.5.4a)-(1.5.4c)
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is an entropy/energy stable scheme with no artificial viscosity in the sense that the

following discrete entropy/energy balance is satisfied,

d

dt

∑

ν, µ

U(uν, µ(t))∆x∆y = −η
∑

ν, µ



ĥν+ 1

2
, µ



(

∆uν+ 1

2
, µ

∆x

)2

+

(
∆vν+ 1

2
, µ

∆x

)2



+ĥν, µ+ 1

2



(

∆uν, µ+ 1

2

∆y

)2

+

(
∆vν, µ+ 1

2

∆y

)2




∆x∆y. (1.5.5)

(1.5.5) is a discrete analogue of the entropy balance statement (1.5.3).

To illustrate the performance of the above generalization of the entropy/energy-

stable schemes, we test two dimensional partial-dam-break problem. The numerical

results, especially those of the fine mesh, successfully simulate both the circular

shock water wave propagations and the vortices formed on the both sides of the

breach. The physical undershoots are also developed near sharp corners of the re-

manent dam. This implementation for 2D shallow water equations was done in

[TZ07] for the first time.

There are many other successful energy-preserving numerical schemes con-

structed for two-dimensional flows. In [Ara97], Arakawa constructed finite-difference

Jacobians that maintain important integral constraints on the continuous Jacobian.

When applied to the vorticity equation governing two-dimensional incompressible

inviscid flow by Arakawa and Lamb in [AL81], maintaining these constraints guar-

antees conservation of energy and enstrophy in the discrete system. Our energy-

preserving schemes show advantage of simplicity over Arakawa schemes in terms of

avoid using the staggered grid.
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The purpose of this dissertation is to present a systematic study of the novel

entropy stable approximate methods of nonlinear conservation laws with no artifi-

cial viscosity. The resulting numerical schemes respect the precise entropy balance

statements of the original systems. Numerical implementations have been done for a

series of fluid equations as prototypes of scalar problems, one-dimensional and two-

dimensional systems of conservation laws, specifically, the Burgers equation, the

1D Navier-Stokes equations, and the 2D shallow water equations. Our simulations

demonstrate the genuine roles of physical dissipation terms in removing spurious

numerical oscillations.
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Chapter 2

Entropy Variables and Entropy-Conservative Schemes

2.1 Entropy dissipation

Let Ω be an open subset of RN . We consider general form of systems of

conservation laws in one space variable,

∂

∂t
u +

∂

∂x
f(u) = 0, (x, t) ∈ R × [0,∞), (2.1.1)

governing the N -vector of conserved variables, u = [u1, · · · , uN ]⊤ ∈ Ω. Here the

functions f(u) = [f1, · · · , fN ]⊤ are called the flux function. Formally the system

(2.1.1) expresses the conservation of N quantities u1, u2, · · · , uN . In fact, if we

ignore the boundary contributions, it follows from (2.1.1) that

d

dt

∫

x

u∆x = 0.

This balance statement means the time invariance of
∫

x
u∆x.

The system (2.1.1) is called hyperbolic if for any u ∈ Ω, the matrix A(u) = fu

has N real eigenvalues λ1(u) ≤ λ2(u) ≤ · · · ≤ λN(u) and N linearly independent

corresponding eigenvectors r1(u), · · · , rN(u), i.e.

A(u)rk(u) = λk(u)rk(u), k = 1, 2, · · · , N.

In addition, if λk(u) are all distinct, the system (2.1.1) is called strict hyperbolic.

Hyperbolicity expresses the well-posedness of the linearization of system (2.1.1)
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about the constant solution with value u, and hence constitute a necessary condition

for the well-posedness of the full system for initial data with values near u.

We assume that the hyperbolic system (2.1.1) obeys an additional conservation

law where a admissible entropy function U(u) is balanced by entropy fluxes F (u)

and G(u).

∂

∂t
U(u) +

∂

∂x
F (u) = 0. (2.1.2)

Here U and F are sufficiently smooth functions from Ω into R. We may restrict

ourselves to convex entropy functions due to the fundamental connection between

hyperbolicity and the strict convexity of entropy function [God61, Moc80]. Specifi-

cally, an entropy function U(u) is said to be strictly convex entropy function associ-

ated with the system (2.1.1) if the Hessian matrix Uuu is positive definite, and this

Hessian matrix symmetrizes the system (2.1.1) upon multiplication ‘on the right’,

[FL71]

fu(Uuu)−1 =
[
fu(Uuu)−1

]⊤
. (2.1.3)

Alternatively, this symmetrization can also be carried out by multiplication ‘on the

left’, where (2.1.3) is replaced by the equivalent statement,

Uuufu = [Uuufu]⊤ .

The Euler equations (4.1.5) of gas dynamics are viewed as a prototype example

for such systems, with the three conservative variables u =
[
ρ,m,E

]⊤
balanced by

the flux f =
[
m, qm + p, q(E + p)

]⊤
and endowed with entropy pairs (U, F ) =

(
−ρh(S), −mh(S)

)
. We now briefly recall the circle of ideas linking the dissipation

of the total entropy,
∫

x
U(u(·, t))dx, and the realization of u as a vanishing viscosity
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limit, in analogy to the vanishing Navier-Stokes limits and their relation to entropic

solutions of the Euler equations. We refer to e.g., [Liu91] and [Daf00], for a more

comprehensive discussion.

Let (U(u), F (u)) be a given entropy pair associated with (2.1.1). Note that

U(u) satisfies the entropy equality (2.1.2) if and only if it is linked to an entropy

flux function F (u) through the compatibility relation

U⊤
u
fu = F⊤

u
. (2.1.4)

Indeed, multiplying (2.1.1) by U⊤
u

on the left, one recovers the equivalence between

(2.1.2) and (2.1.4) for all u’s solving (2.1.1). Of course, these formal manipulations

are valid only under the smooth regime. To justify these steps in the presence of

shock discontinuities, the conservation law (2.1.1) is realized by appropriate vanish-

ing viscosity limits. To this end, we define the entropy variables v(u) := Uu(u).

Because of the additional assumption that the entropy U(u) is strictly convex, the

nonlinear mapping u 7→ v is a one-to-one. Following, [God61, Moc80], we claim

that the change of variables, u = u(v), puts the system (2.1.1) into the equivalent

symmetric form,

∂

∂t
u(v) +

∂

∂x
f(u(v)) = 0. (2.1.5)

The system (2.1.5) is symmetric in the sense that the Jacobian matrices of fluxes
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are symmetric, namely1,

uv(v) =
(
uv(v)

)⊤
and fv(v) =

(
fv(v)

)⊤
. (2.1.6)

Indeed, a straightforward computation utilizing the compatibility relation (2.1.4),

shows that u(v) and f(v) are, respectively, the gradients of the corresponding po-

tential functions, φ and ψ,

u(v) = φv(v), φ(v) := 〈v,u(v)〉 − U(u(v)), (2.1.7)

f(v) = ψv(v), ψ(v) := 〈v, f(v)〉 − F (u(v)). (2.1.8)

Hence the Jacobian matrices H(v) := uv(v) and B(v) := fv(v) in (2.1.6) are

symmetric, being Hessians of the potentials φ(v) and ψ(v). Moreover, the convexity

of U(·) implies that H is positive definite, H = (Uuu)−1 > 0.

Physically relevant solutions of (2.1.1) are postulated as limits of the vanishing

viscosity solutions uǫ, as ǫ tends to zero,

∂

∂t
uǫ +

∂

∂x
f(uǫ) = ǫ

∂2

∂x2
d(uǫ), (2.1.9)

where d(u) is any admissible dissipative flux, and ǫ ↓ 0 stands for vanishing am-

plitudes such as the viscosity coefficients λ, µ, the heat conductivity κ, etc. Here,

the admissibility of the dissipative flux requires the Jacobian du to be H-symmetric

positive-definite, that is,

dH = (dH)⊤ ≥ 0, dH := duH. (2.1.10)

1For brevity of notation we often write f(v) for f(u(v)) whenever the different dependence of

f(u) and f(v) is made clear by the distinction between the conservative variables u and entropy

variables v.
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If we express the dissipation flux in terms of the entropy variables, d(v) = d(u(v)),

then admissibility requires that the v-Jacobian of this flux will be positive symmet-

ric, dH = dv(v) = d⊤
v
(v) ≥ 0. Thus, in this case (2.1.9) reads

∂

∂t
u(vǫ) +

∂

∂x
f(vǫ) = ǫ

∂2

∂x2
d(vǫ),

and all v-dependent fluxes — the temporal, spatial and the dissipation flux have

symmetric Jacobains.

We now integrate (2.1.9) against v⊤ = U⊤
u

, employ the compatibility relation

U⊤
u
fx = F⊤

x and use ‘differentiation by parts’ on the admissible dissipation on the

right hand side to find

∂

∂t
U(uǫ) +

∂

∂x

(
F ǫ(uǫ) − ǫ

〈
vǫ,d(uǫ)x

〉)
= −ǫ

〈
vǫ

x, dvv
ǫ
x

〉
≤ 0. (2.1.11)

Letting ǫ ↓ 0, we obtain that u will also satisfy, in the sense of distributions, the

entropy inequality, [Lax73]

∂

∂t
U(u) +

∂

∂x
F (u) ≤ 0. (2.1.12)

Here, the passage uǫ → u is required to be strong. In fact, statement (2.1.12) is the

generalization of the entropy decay statements in the second law of thermodynamics.

2.2 Entropy conservative schemes

Let’s consider the Cauchy problem for a general hyperbolic system of conser-

vation laws (2.1.1),




∂u

∂t
+

∂

∂x
f(u) = 0 , x ∈ R, t > 0

u(x, 0) = u0(x)
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We turn our attention to consistent approximations of (2.1.1), based on semi-discrete

conservative schemes of the form

d

dt
uν(t) = − 1

∆xν

(
fν+ 1

2

− fν− 1

2

)
. (2.2.1)

Here, uν(t) denotes the discrete solution along the grid line (xν , t), ∆xν := xν+1−xν−1

2

is the possibly variable mesh spacing and fν+ 1

2

is the Lipschitz-continuous numerical

flux which occupies a stencil of 2p-gridvalues,

fν+ 1

2

= f(uν−p+1, · · · ,uν+p).

The scheme is said to be consistent with the system (2.1.1) if f satisfies

f(u,u, · · · ,u) = f(u), ∀u ∈ R
N .

By making the changes of variables uν = u(vν), we obtain the equivalent form of

(2.2.1)

d

dt
u(vν(t)) = − 1

∆xν

(
fν+ 1

2

− fν− 1

2

)
. (2.2.2)

The essential difference lies with the numerical flux, fν+ 1

2

, which is now expressed

in terms of the entropy variables,

fν+ 1

2

= f (vν−p+1, · · · ,vν+p) := f (u (vν−p+1) , · · · ,u (vν+p)) ,

consistent with the differential flux,

f(v,v, · · · ,v) = f(v) ≡ f(u(v)). (2.2.3)

The semi-discrete schemes (2.2.1) and (2.2.2) are completely identical. It proved

useful, however, to work with the entropy variables rather than the usual con-

servative ones, since system (2.1.1) is symmetrized with respect to these entropy
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variables. The entropy variables-based formula (2.2.2) has the advantage that it

provides a natural ordering of symmetric matrices, which in turn enables us to

compare the numerical viscosities of different schemes, consult [Tad84b, Tad87] for

details. In particular, we will be able to utilize the entropy conservative discretiza-

tion of [Tad03] for the convective part of the system of conservation laws eq(2.1.1),

and thus recover the precise entropy balance dictated by physical dissipative terms

in the original systems.

Let (U, F ) be a given entropy pair associated with the system (2.1.1). Physical

relevance of numerical solutions requires that the scheme (2.2.1) is entropy-stable

with respect to such a entropy pair, in the sense of satisfying a discrete entropy

inequality analogous to (2.1.12), that is

d

dt
U(uν(t)) +

1

∆xν
(Fν+ 1

2

− Fν− 1

2

) ≤ 0. (2.2.4)

In particular, when equality holds in (2.2.4), the scheme (2.2.1) is entropy-conservative.

Here we proceed with the construction of an entropy conservative scheme, in the

sense of satisfying a discrete entropy equality analogous to (2.1.2),

d

dt
U (uν(t)) +

1

∆xν

(
Fν+ 1

2

− Fν− 1

2

)
= 0. (2.2.5)

Here, Fν+ 1

2

= F (uν−p+1, · · · ,uν+p) is a consistent numerical entropy flux, such that

F (u,u, · · · ,u) = F (u), ∀u ∈ RN . The numerical flux of such entropy conservative

schemes will play an essential role in the construction of entropy stable schemes, by

adding a judicious amount of physical viscosity. The results of entropy-stability of

the numerical schemes were concluded in [Tad87][Theorem 5.2], which states,
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Theorem 2.2.1 (Tadmor1987, Theorem 5.2). The conservative scheme (2.2.1) is

entropy-stable (respectively, entropy-conservative) if, and for three-point schemes

(p = 1) only if,

〈
∆vν+ 1

2

, fν+ 1

2

〉
≤ ∆ψν+ 1

2

, (2.2.6)

and, respectively,

〈
∆vν+ 1

2

, fν+ 1

2

〉
= ∆ψν+ 1

2

. (2.2.7)

Here, ∆vν+ 1

2

:= vν+1 −vν and ∆ψν+ 1

2

:= ψ(vν+1)−ψ(vν) denote the differences of

entropy variable and entropy flux potential respectively.

Sketch of the Proof. The proof is based on the identity

d

dt
U(uν(t)) +

1

∆xν

(Fν+ 1

2

− Fν− 1

2

) =
1

2

[〈
∆vν+ 1

2

, fν+ 1

2

〉
− ∆ψν+ 1

2

]

+
1

2

[〈
∆vν− 1

2

, fν− 1

2

〉
− ∆ψν− 1

2

]
, (2.2.8)

where the consistent entropy flux is defined in the following,

Fν+ 1

2

:=
1

2

〈
[vν + vν+1], fν+ 1

2

〉
− 1

2
[ψ(vν) − ψ(vν+1)] .

2

In the scalar case, entropy-conservative schemes are unique with respect to a

given entropy pair. For the systems, there are various choices for the entropy con-

servative numerical fluxes which meet the entropy-conservative requirement (2.2.7).

The key step in the construction of entropy conservative schemes for the systems of

conservation laws is the choice of an arbitrary piecewise-constant path in phase space

of the entropy variable v, connecting two neighboring gridvalues vν and vν+1 through
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the intermediate states {vj

ν+ 1

2

}N
j=1 at the spatial cell [xν , xν+1]. Let {rj

ν+ 1

2

}N
j=1 be

an arbitrary set of N linearly independent N -vectors, and let {ℓj

ν+ 1

2

}N
j=1 be the cor-

responding orthogonal set. We introduce the intermediate gridvalues {vj

ν+ 1

2

}N
j=1,

which define a piecewise constant path in phase space



v1
ν+ 1

2

= vν

v
j+1

ν+ 1

2

= v
j

ν+ 1

2

+
〈
ℓ

j

ν+ 1

2

,∆vν+ 1

2

〉
r

j

ν+ 1

2

, j = 1, 2, · · · , N − 1,

vN+1
ν+ 1

2

= vν+1

. (2.2.9)

Theorem 2.2.2 (Tadmor2004, Theorem 6.1). Consider the system of conservation

laws (2.1.1). Given the entropy pair (U, F ), then the conservative scheme

d

dt
uν(t) = − 1

∆xν

(
f∗
ν+ 1

2

− f∗
ν− 1

2

)
(2.2.10)

with a numerical flux f∗
ν+ 1

2

f∗
ν+ 1

2

=
N∑

j=1

ψ
(
v

j+1

ν+ 1

2

)
− ψ

(
v

j

ν+ 1

2

)

〈
ℓ

j

ν+ 1

2

,∆vν+ 1

2

〉 ℓ
j

ν+ 1

2

(2.2.11)

is an entropy-conservative approximation, consistent with (2.1.1),(2.1.2). Here, v

are the entropy variables, v = Uu(u) and ψ(v) is the entropy potential (2.1.8)

ψ(v) = 〈v, f(u(v))〉 − F (u(v)).

The proof is based on the requirement of entropy conservation in (2.2.7),

〈
∆vν+ 1

2

, f∗
ν+ 1

2

〉
= ∆ψν+ 1

2

. (2.2.12)

The numerical flux (2.2.11) satisfies this entropy conservation requirement, for

〈
∆vν+ 1

2

, f∗
ν+ 1

2

〉
=

N∑

j=1

ψ
(
v

j+1

ν+ 1

2

)
− ψ

(
v

j

ν+ 1

2

)

〈
ℓ

j

ν+ 1

2

,∆vν+ 1

2

〉
〈
ℓ

j

ν+ 1

2

, ∆vν+ 1

2

〉

=

N∑

j=1

ψ
(
v

j+1

ν+ 1

2

)
− ψ

(
v

j

ν+ 1

2

)
= ψ

(
vN+1

ν+ 1

2

)
− ψ

(
v1

ν+ 1

2

)
= ∆ψν+ 1

2

.
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In addition, f∗
ν+ 1

2

is a consistent flux satisfying (2.2.3). Indeed, if we let v
j+ 1

2

ν+ 1

2

(ξ)

denote intermediate path, v
j+ 1

2

ν+ 1

2

(ξ) :=
(
v

j

ν+ 1

2

+ v
j+1

ν+ 1

2

)
/2 + ξ

〈
ℓ

j

ν+ 1

2

,∆vν+ 1

2

〉
r

j

ν+ 1

2

connecting v
j

ν+ 1

2

and v
j+1

ν+ 1

2

, then by (2.1.8), we have

ψ
(
v

j+1

ν+ 1

2

)
− ψ

(
v

j

ν+ 1

2

)
=

∫ 1

2

ξ=− 1

2

d

dξ
ψ
(
v

j+ 1

2

ν+ 1

2

(ξ)
)
dξ

=

〈∫ 1

2

ξ=− 1

2

f
(
v

j+ 1

2

ν+ 1

2

(ξ)
)
dξ, rj

ν+ 1

2

〉〈
ℓ

j

ν+ 1

2

,∆vν+ 1

2

〉
.

Inserted into (2.2.11), we can rewrite the entropy-conservative flux (2.2.11) in the

equivalent form

f∗
ν+ 1

2

=

N∑

j=1

〈∫ 1

2

ξ=− 1

2

f
(
v

j+ 1

2

ν+ 1

2

(ξ)
)
dξ, rj

ν+ 1

2

〉
ℓ

j

ν+ 1

2

, (2.2.13)

and the consistency relation (2.2.3) now follows,

f∗(v,v) =

N∑

j=1

〈
f(v), rj

ν+ 1

2

〉
ℓ

j

ν+ 1

2

= f(v).2

We emphasize that the recipe for construction entropy-conservative fluxes in

(2.2.11) allows an arbitrary choice of a path in phase space. We demonstrate this

recipe with three examples.

Example 2.2.1. Set {rj} along the standard Cartesian coordinates, rj

ν+ 1

2

= ej , j =

1, 2, . . . , N . In this case we have

v
j

ν+ 1

2

=
[(

vν+1

)
1
, . . . ,

(
vν+1

)
j−1

,
(
vν

)
j
, . . . ,

(
vν

)
N

]
, j = 2, 3, . . . , N − 1,

and the entropy conservative flux (2.2.11) is given by the particularly simple explicit

formula
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f∗
ν+ 1

2

=



ψ
(
v2

ν+ 1

2

)
− ψ

(
vν

)
(
vν+1

)
1
−
(
vν

)
1

, . . . ,
ψ
(
v

j+1

ν+ 1

2

)
− ψ

(
v

j

ν+ 1

2

)
(
vν+1

)
j
−
(
vν

)
j

, . . . ,
ψ
(
vν+1

)
− ψ

(
vN

ν+ 1

2

)
(
vν+1

)
N
−
(
vν

)
N




⊤

.

(2.2.14)

We carried out numerical experiments with these fluxes for the approximate solution

of Euler and Navier-Stokes equations. The formulation is particularly simple though

the computed intermediate values might lie outside the physical space ρ, p > 0.

Example 2.2.2. A more ‘physically relevant’ choice than the Cartesian path is

offered by a Riemann path which consists of {uj

ν+ 1

2

}N
j=1, stationed along an (ap-

proximate) set of right eigenvectors, {r̂j

ν+ 1

2

}, of the Jacobian fu(uν+ 1

2

). Set v
j

ν+ 1

2

=

v(uj

ν+ 1

2

), j = 1, 2, . . . , N , and let ℓ
j’s be the orthogonal system to {vj+1 − vj}N

j=1.

This will be our choice of a path for computing entropy stable approximations of

Navier-Stokes equations in section 4.4.1 below. The resulting flux, mixing conser-

vative and entropy variables, admits the somewhat simpler form

f∗
ν+ 1

2

=
N∑

j=1

ψ
(
u

j+1

ν+ 1

2

)
− ψ

(
u

j

ν+ 1

2

)

〈
ℓ

j

ν+ 1

2

,∆vν+ 1

2

〉 ℓ
j

ν+ 1

2

where ψ(u) = U⊤
u
f(u)〉 − F (u) (2.2.15)

Example 2.2.3. If all rj’s are chosen to approach the same direction of ∆vν+ 1

2

,

then by (2.2.13) the flux (2.2.13) ‘collapses’ to the entropy-conservative flux

f∗
ν+ 1

2

=

∫ 1

2

ξ=− 1

2

f
(
vν+ 1

2

(ξ)
)
dξ, vν+ 1

2

(ξ) :=
1

2
(vν + vν+1) + ξ∆vν+ 1

2

. (2.2.16)

The resulting flux (2.2.16) was introduced in [Tad86] and was the forerunner for the

family of entropy conservative fluxes outlined in theorem 2.2.2. It has the drawback,

however, that its evaluation requires a nonlinear integration in phase space. Thus,
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with the loss of linear independence, we lose here the explicit evaluation of the

entropy conservative flux offered in (2.2.11) and demonstrated in the previous two

examples.
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Chapter 3

The Burgers’ Equation

3.1 Entropy conservative schemes

Burgers’ equation([Bur48]) is a fundamental first-order nonlinear partial dif-

ferential equation from fluid mechanics. Though very simple, it provides a model of

wave processes in acoustics and hydrodynamics. Burgers equation is a prototype of

the equations whose solutions can develop discontinuities. Due to its simplicity and

predictable dynamics, Burgers equation is often used as the test case for numerical

methods.

We begin with the inviscid Burgers’ equation as a prototype of the nonlinear

scalar conservation law,

∂u

∂t
+

∂

∂x
f(u) = 0, f(u) =

1

2
u2. (3.1.1)

(3.1.1) describes the evolution of the field u = u(x, t) under the nonlinear advection.

Any convex function U(u) serves as an entropy function for the scalar Burgers

equation. Here we consider a family of entropy functions,

Up(u) = u2p p = 1, 2, · · · , (3.1.2)

so that solutions of (3.1.1) satisfy, at the formal level,

∂

∂t
Up(u) +

∂

∂x
Fp(u) = 0. (3.1.3)

29



These are additional conservation laws balanced by the corresponding entropy flux

functions Fp(u) = 2pu2p+1/(2p+ 1) satisfying the compatibility relation U ′
pf

′ = F ′
p.

Spatial integration then yields the total entropy conservation (ignoring boundary

contributions)
∫

x

u2p(x, t) dx =

∫

x

u2p(x, 0) dx. (3.1.4)

We now turn to the discrete framework. Discretization in space yields the

semi-discrete scheme,

d

dt
uν(t) +

1

∆x

(
fν+ 1

2

− fν− 1

2

)
= 0. (3.1.5)

Here, uν(t) denotes the discrete solution along the gridline (xν , t) with xν := ν∆x,

∆x being the uniform meshsize, and fν+ 1

2

is a consistent numerical flux based on a

stencil of 2r + 1 neighboring grid values, that is

fν+ 1

2

:= f(uν−r+1, · · · , uν+r), f(u, u, · · · , u) = f(u).

This numerical flux makes (3.1.5) conservative in the sense that

∑

ν

uν(t)∆x =
∑

ν

uν(0)∆x.

Fix p. We seek a semi-discrete scheme that conserves the entropy Up(u) = u2p

in the sense of satisfying the discrete analogue of (3.1.3),

d

dt
Up(uν(t)) +

1

∆x
(Fν+ 1

2

− Fν− 1

2

) = 0.

Here, Fν+ 1

2

is a consistent numerical entropy flux,

Fν+ 1

2

:= F (uν−r+1, · · · , uν+r), F (u, u, · · · , u) = F (u).
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According to (2.2.7), such 3-point scalar entropy conservative schemes are uniquely

determined by the entropy conservative numerical flux fν+ 1

2

= f ∗
ν+ 1

2

given by,

fν+ 1

2

= f ∗
ν+ 1

2

:=
ψ(uν+1) − ψ(uν)

v(uν+1) − v(uν)
=

2p− 1

2(2p+ 1)
· u2

ν ·
(uν+1/uν)

2p+1 − 1

(uν+1/uν)2p−1 − 1
. (3.1.6)

Recall that v(u) := U ′(u) = 2pu2p−1 is the entropy variable associated with the

entropy U(u) = u2p, and ψ(u) := v(u)f(u) − F (u) = p(2p−1)
2p+1

u2p+1 is the potential

function of the flux f(u(v)). The resulting scheme (3.1.5), (3.1.6) is entropy conser-

vative in the sense that the discrete analogue of total entropy conservation (3.1.4)

is satisfied,

∑

ν

u2p
ν (t) ∆x =

∑

ν

u2p
ν (0) ∆x.

Indeed, we multiply the scheme (3.1.5) by entropy variable vν = U ′
p(uν) = 2pu2p−1

ν ,

then sum up all spatial cells to get the total entropy balance statement,

d

dt

∑

ν

Uν(t)∆x+
∑

ν

vν(f
∗
ν+ 1

2

− f ∗
ν− 1

2

) = 0. (3.1.7)

Since f ∗
ν+ 1

2

are chosen to be the entropy conservative numerical fluxes, the second

term on the left becomes the perfect conservative difference which will vanish after

the summation over all spatial cells. Indeed, a straightforward manipulation on the

entropy conservation requirement (2.2.7) yields the conservative difference,

vν(f
∗
ν+ 1

2

− f ∗
ν− 1

2

) = Fν+ 1

2

− Fν− 1

2

(3.1.8)

where Fν+ 1

2

= (vν + vν+1)f
∗
ν+ 1

2

− (ψν +ψν+1) is the discrete entropy flux. Of course,

all the above manipulations are at the formal level.

To recover the physical relevant entropy inequality, that is

∂tUp(u) + ∂xFp(u) ≤ 0,
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one can add numerical dissipation,

d

dt
uν(t) +

1

∆x

(
f ∗

ν+ 1

2

− f ∗
ν− 1

2

)
=

ǫ

(∆x)2

(
d(uν+1) − 2d(uν) + d(uν−1)

)
, ǫ > 0.

(3.1.9)

This serves as an approximation to the vanishing viscosity regularization

ut + f(u)x = ǫd(u)xx, d′(u) > 0, ǫ > 0.

Sum this scheme (3.1.9) against the entropy variable vν ,

d

dt

∑

ν

Up(uν(t))∆x+
∑

ν

vν

(
f ∗

ν+ 1

2

− f ∗
ν− 1

2

)
= ǫ

∑

ν

vν
d(uν+1) − 2d(uν) + d(uν−1)

∆x
.

(3.1.10)

Due to the same reason indicated in (3.1.8), the second term on the left of (3.1.10)

vanishes. The summation by parts on the RHS of (3.1.10) yields

ǫ
∑

ν

vν
d(uν+1) − 2d(uν) + d(uν−1)

∆x
= − ǫ

∆x

∑

ν

(vν+1 − vν)(d(uν+1) − d(uν))

= − ǫ

∆x

∑

ν

(∆vν+ 1

2

)2
∆dν+ 1

2

∆vν+ 1

2

≤ 0,

since
∆d

ν+ 1
2

∆v
ν+ 1

2

:= d(uν+1)−d(uν )
vν+1−vν

> 0 for d′(u) > 0. The resulting entropy balance that

follows reads,

d

dt

∑

ν

Up(uν(t))∆x = − ǫ

∆x

∑

ν

∆dν+ 1

2

∆vν+ 1

2

(∆vν+ 1

2

)2 ≤ 0. (3.1.11)

The above entropy decay statement is the discrete analogue of the entropy balance

statement (2.1.11) indeed. Observe that the amount of entropy dissipation on the

right is completely determined by the dissipation term ǫd(u). No artificial viscosity

is introduced by the convective term. If we exclude any dissipative mechanism
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(ǫ = 0), the entropy conservative solutions admit dispersive oscillations interesting

for their own sake, consult [Lax86, LL96].

Remark 3.1.1. As I will show you in the following numerical results, these entropy

conservative schemes work better in terms of oscillations for large p. In fact, as

p ↑ ∞, the limit of these schemes is the first order Engquist-Osher scheme [EO80]

which is independent of the different choices of entropy variables. As a matter of

fact, when p increases, the control of a constant entropy,

Up =

[∑

ν

u2p
ν (t) ∆x

] 1

2p

(3.1.12)

approaches the control of L∞-norm of the solutions.

3.2 Time discretization

To complete the computation of a semi-discrete scheme, the semi-discrete en-

tropy conservative scheme (3.1.5),(3.1.6) needs to be augmented with a proper time

discretization. To enable a large time-stability region and maintain simplicity, the

explicit three-stage third-order Runge-Kutta (RK3) method will be used, consult

[GST01], 



u(1) = un + ∆tL(un)

u(2) =
3

4
un +

1

4
u(1) +

1

4
∆tL(u(1))

un+1 =
1

3
un +

2

3
u(2) +

2

3
∆tL(u(2))

(3.2.1)

where

[L(u)]ν = − 1

∆x
(f ∗

ν+ 1

2

− f ∗
ν− 1

2

) (3.2.2)
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.

We note that this explicit RK3 time discretization produces a negligible amount

of entropy dissipation. For a general framework of entropy conservative fully discrete

schemes, consult [LMR02].

3.3 Numerical experiments

3.3.1 Continuous initial condition

We first solve the inviscid Burgers equation (3.1.1) in the domain x ∈ [0, 1]

with the sine initial condition,

u(0, x) = sin(2πx), x ∈ [0, 1]

and periodic boundary enforced by replacing the value at the right most grid point

by the value at the left most one,

u(t, 1) = u(t, 0).

In Fig.3.3.1, we display the numerical solutions for (3.2.1)-(3.2.2) with the numerical

flux (3.1.6) for different choices of p. For small values of p, the dispersive oscillations

become noticeable after the shock is generated in the middle of the figure due to

the absence of any dissipative mechanism in the entropy-conservative scheme. As p

increases, the amplitude of the spurious dispersive oscillations decreases, that indeed

demonstrates the control of L∞-norm through the control of the constant entropy

function (3.1.12).
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Figure 3.3.1: 1D Burger’s equation, sine initial condition, entropy-conservative

schemes, 200 spatial grids, U(u) = u2p
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3.3.2 Shock initial condition

We solve the 1D inviscid Burgers equation (3.1.1) in the domain x ∈ [0, 1]

with the shock initial condition,

u(0, x) =





2, x ∈ [0, 0.5]

1, x ∈ (0.5, 1]

The boundary values are extrapolated from the interior points. Actually, we are

only interested in the propagation of the shock wave in the computational domain

[0, 1]. Within certain period of time, the boundary values do not vary at all. In

Fig.3.3.2, we display the numerical solutions for (3.2.1)-(3.2.2) with the numerical

flux (3.1.6) for different choices of p. Those solutions show the same pattern as

the sine initial condition case. Diminishing amplitude of the dispersive oscillations

demonstrates the control of the L∞-norm of the solution.
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Figure 3.3.2: 1D Burger’s equation, shock initial condition, entropy-conservative

schemes, 200 spatial grids, U(u) = u2p
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Chapter 4

One-Dimensional Navier-Stokes Equations

4.1 Governing equations

The fundamental basis of fluid dynamics is the Navier-Stoke equations, which

characterize any single-phase fluid flow. Based on the assumption that the fluid, at

the scale of interest, is continuum, the Navier-Stokes equations describe the motion

of viscous fluid substances such as liquids and gases through the conservation laws

of mass, momentum, and total energy at any given region of fluid. This set of

equations are widely used to model water flow in a pipe, ocean currents, air flow

around the wing, blood flow, and lots of other problems in hydrodynamics. Some

further applications of the Navier-Stoke equations in magnetohydrodynamics can

be realized by coupling them with Maxwell’s equations.

The Navier-Stokes equations can be simplified by removing the viscous term to

yield the Euler equations, which describe the inviscid fluid flow. From compressibil-

ity point of view, the Navier-Stokes equations can be simplified to a good degree by

making the incompressibility assumption. In reality, all materials are compressible

to some extent, but it is often very useful to assume liquids are incompressible, i.e.

the density of the fluid does not change.

Here we consider the full Navier-Stokes equations for compressible viscous
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flows in one-space dimension,

∂

∂t




ρ

m

E




+
∂

∂x




m

qm+ p

q(E + p)




= (λ+ 2µ)
∂2

∂x2




0

q

q2/2




+ κ
∂2

∂x2




0

0

θ



. (4.1.1)

Here, ρ = ρ(x, t) is the density of the flow, m = m(x, t) is the momentum and

E = E(x, t) stands for the total energy per unit volume. The three equations

express, respectively, conservation laws of mass, momentum and total energy for the

flow, driven by convective fluxes on the left together with viscous and heat fluxes

on the right. These fluxes involve the velocity q := m/ρ, the pressure p = p(x, t)

which is determined by an ideal polytropic equation of state,

p = (γ − 1)e, e := E − m2

2ρ
, (4.1.2)

and the absolute temperature, θ = θ(x, t) > 0, such that Cvρθ = e. The constant

γ > 1 is the specific heat ratio and e = e(x, t) is the internal energy. On the RHS

of (4.1.1) we have the viscous and heat fluxes, depending on the constant Lamé

coefficients of the viscosity λ, µ > 0 and the constant conductivity κ > 0. Finally,

Cv > 0 is the specific heat at constant volume; for simplicity, we set Cv = 1 while

rescaling κ 7→ κ/Cv.

If the heat flux is excluded from the full Navier-Stokes equations, i.e. κ = 0,

we obtain the viscous Navier-Stokes equations

∂

∂t




ρ

m

E




+
∂

∂x




m

qm+ p

q(E + p)




= (λ+ 2µ)
∂2

∂x2




0

q

q2/2



. (4.1.3)
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On the other hand, if we turn off the viscosity, i.e. λ = µ = 0, then the Navier-Stokes

equations amount to

∂

∂t




ρ

m

E




+
∂

∂x




m

qm+ p

q(E + p)




= κ
∂2

∂x2




0

0

θ



. (4.1.4)

If the heat flux and viscosity are both taken away, the system (4.1.1) is reduced to

the compressible Euler equations,

∂

∂t




ρ

m

E




+
∂

∂x




m

qm+ p

q(E + p)




= 0. (4.1.5)

4.2 Physical entropy balance

The additional viscous and heat flux terms on the RHS of the various Navier-

Stokes equations (4.1.1), (4.1.3) or (4.1.4), are dissipative terms in the sense that

they are responsible for the dissipation of the total entropy. To this end, we now

discuss the entropy balance associated with the above equations. We begin with the

specific entropy S := ln (pρ−γ). A straightforward manipulation on (4.1.1), (4.1.2)

yields the transport equation,

St + qSx =
κ

ρ
(ln θ)xx + (λ+ 2µ)

q2
x

e
+
κ

ρ

(
θx

θ

)2

. (4.2.1)

Multiplied by ρ, (4.2.1) becomes

ρSt +mSx = κ(ln θ)xx + (λ+ 2µ)
q2
x

θ
+ κ

(
θx

θ

)2

. (4.2.2)
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On the other hand, pre-multiplying the continuity equation, ρt +mx = 0, by S and

adding it to (4.2.2),

∂

∂t

(
− ρS

)
+

∂

∂x

(
−mS + κ(ln θ)x

)
= −(λ+ 2µ)

q2
x

θ
− κ

(
θx

θ

)2

. (4.2.3)

Spatial integration of (4.2.3) then yields

d

dt

∫

x

(
− ρS

)
dx = −(λ+ 2µ)

∫

x

q2
x ·

1

θ
dx− κ

∫

x

θx
2

(
1

θ

)2

dx. (4.2.4)

Since the expression on the right is negative, we conclude that the total entropy,

∫
x
(−ρS) dx, is decreasing in time, thus recovering the second law of thermodynam-

ics, e.g., [dGM84]. In fact, equation (4.2.4) specifies the precise entropy decay rate,

which is dictated by the viscous and heat fluxes through their dependence on the

nonnegative κ, λ, and µ.

We are going to develop a new family of difference schemes which respect the

above entropy dissipation statements. The typical approach by practitioners in the

field of Computational Fluid Dynamics is to address the general issue of entropy sta-

bility by adding ‘enough’ artificial numerical viscosity — often an excessive amount

of it, in order to mask various discretizations errors and enforce the decay of the total

entropy
∫

x
(−ρS) dx. Our aim here is to construct more ’faithful’ approximations of

the Navier-Stokes equations, with a discrete analogue for the precise entropy decay

statement in (4.2.4).
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4.3 Entropy pairs for Navier-Stokes equations

As shown in Remark 1.4.1, the Navier-Stokes equations admit the family of

convex entropy pairs

U(u) = −ρh(S), F (u) = −mh(S), h′(·) ≥ 0. (4.3.1)

Here S = ln (pρ−γ) is the specific entropy and the convexity of the corresponding

U(u)’s as functions of u = (ρ,m,E)⊤ holds iff h′(S) − γh′′(S) > 0, [Har83]. We

consider two prototype examples.

Example 4.3.1. The simplest choice of h(S) is the specific entropy S itself,

h(S) = S = ln
(
pρ−γ

)
. (4.3.2)

Straightforward computation gives us the following entropy pair, entropy variables,

and potentials.

• Entropy pair U(u) = −ρS and F (u) = −mS;

• Entropy variable (consult [Har83])

v(u) =




−E/e− S + γ + 1

q/θ

−1/θ




(4.3.3)

with the inverse mapping

u(v) =
p

γ − 1




−v3

v2

1 − v2
2

2v3




= w




−v3

v2

1 − v2
2

2v3



,
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where w =
(

γ−1
(−v3)γ

) 1

γ−1

e(
−S
γ−1), S = γ − v1 +

v2
2

2v3
;

• Potential pair φ = (γ − 1)ρ and ψ = (γ − 1)m.

In this case, the general statement of entropy balance in (2.1.11) with the entropy

pair (U, F ) = (−ρS, −mS) amounts to the one we have in (4.2.4),

d

dt

∫

x

−
(
ρS
)
dx = −ǫ

∫

x

〈vǫ
x, dvv

ǫ
x〉 dx = −(λ+2µ)

∫

x

q2
x

θ
dx−κ

∫

x

θ2
x

θ2
dx ≤ 0. (4.3.4)

Example 4.3.2. A particularly convenient form of entropy variables is associated

the entropy function (consult [Har83, Tad03]),

U(u) = −ρh(S) with h(S) =
γ + 1

γ − 1
e

S
γ+1 , (4.3.5)

where we have the following.

• Entropy pair U(u) =
1 + γ

1 − γ
(ρp)

1

1+γ and F (u) =
1 + γ

1 − γ
q(ρp)

1

1+γ ;

• Entropy variable v(u) = ∇uU(u) = −(ρp)−
γ

1+γ




E

−m

ρ




with the inverse mapping

u(v) = −(ρp)
γ

γ+1




v3

−v2

v1




= −
[
(γ − 1)

(
v1v3 −

v2
2

2

)] γ
1−γ




v3

−v2

v1




;

• Potential pair (φ, ψ) =
(
(ρp)

1

γ+1 , m(pρ−γ)
1

γ+1

)

In case that the heat conduction is absent (κ = 0), we apply the general statement

of entropy balance (2.1.11) with the entropy pair, (U, F ) = 1+γ
1−γ

(
(ρp)

1

1+γ , q(ρp)
1

1+γ

)
,
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obtaining

d

dt

∫

x

−(ρp)
1

1+γ dx = −ǫ
∫

x

〈vǫ
x, dvv

ǫ
x〉 dx

≡ −(λ+ 2µ)

∫

x

(γ − 1)h′(S)q2
x

(1 + γ)θ
dx = −λ+ 2µ

1 + γ

∫

x

eS/(1+γ)q2
x

θ
dx ≤ 0.

(4.3.6)

Remark 4.3.1. As noted in [Har83], the flux f(v) is a homogeneous function of

degree η =: (1 + γ)/(1 − γ), f(αv) = αηf(v), ∀α ∈ R. Homogeneity implies that

fv(v)v = ηf(v) which in turn, enables us to rewrite the spatial flux in (2.1.1) in a

skew-adjoint form, f(u)x =
(
fvvx + (fvv)x

)
/(η + 1); consult [Tad84a].

4.4 Entropy stable schemes for Navier-Stokes equations

4.4.1 Entropy stable semi-discrete schemes for Navier-Stokes equa-

tions

4.4.1.1 The compressible Euler equations

Let (U, F ) be an admissible entropy pair associated with the Euler equations

(4.1.5), let v = v(u) denote the corresponding entropy variables outlined in exam-

ples 4.3.1 and 4.3.2 above. To conserve the total entropy
∫

x
U(u(·, t))dx, we appeal

to the semi-discrete scheme (2.2.10) with the entropy-conservative numerical flux

(2.2.11),

f∗
ν+ 1

2

=
3∑

j=1

ψ
(
v

j+1

ν+ 1

2

)
− ψ

(
v

j

ν+ 1

2

)

〈
ℓ

j

ν+ 1

2

,∆vν+ 1

2

〉 ℓ
j

ν+ 1

2

.
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To compute f∗
ν+ 1

2

, we distinguish between two cases. If vν = vν+1, we employ the

equivalent form of the numerical flux in (2.2.13),

f∗
ν+ 1

2

=
3∑

j=1

〈∫ 1

2

ξ=− 1

2

f
(
v

j+ 1

2

ν+ 1

2

(ξ)
)
dξ, rj

ν+ 1

2

〉
ℓ

j

ν+ 1

2

,

which implies that all the intermediate gridvalues coincide, vν = v1
ν+ 1

2

= v2
ν+ 1

2

=

v3
ν+ 1

2

= v4
ν+ 1

2

= vν+1 and the entropy-conservative flux amounts to f∗
ν+ 1

2

= fν = fν+1.

Otherwise, if vν 6= vν+1, we choose to work along the path which is dictated by an

(approximate) Riemann solver. Specifically, we use the eigensystem of the Roe

matrix, [Roe81],




0 1 0

γ−3
2
q̄2
ν+ 1

2

(3 − γ)q̄ν+ 1

2

γ − 1

γ−1
2
q̄3
ν+ 1

2

− q̄ν+ 1

2

Ḡν+ 1

2

Ḡν+ 1

2

− (γ − 1)q̄2
ν+ 1

2

γq̄ν+ 1

2



. (4.4.1a)

Here q̄ and Ḡ are the average values of the velocity q and total enthalpy G =

(E + p)/ρ at Roe-average state,

q̄ν+ 1

2

=
qν
√
ρν + qν+1

√
ρν+1√

ρν +
√
ρν+1

, Ḡν+ 1

2

=
Gν

√
ρν +Gν+1

√
ρν+1√

ρν +
√
ρν+1

. (4.4.1b)

The rj’s are the right eigenvectors {r̂j ≡ r̂
j

ν+ 1

2

}3
j=1 of the Roe matrix (4.4.1a) given

by (omitting the subscript (·)ν+ 1

2

of all averaged variables)

r̂1 =




1

q̄ − c̄

Ḡ− q̄c̄



, r̂2 =




1

q̄

q̄2/2



, r̂3 =




1

q̄ + c̄

Ḡ+ q̄c̄



, (4.4.1c)
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with the corresponding left eigenvector set {ℓ̂j ≡ ℓ̂
j

ν+ 1

2

}3
j=1 given by

ℓ̂
1

=




(2 + δ)/(4(γ − 1))

−(1 + δ)/(2c̄)

(γ − 1)/(2c̄2)



, ℓ̂

2
=




1 − δ2/(2(γ − 1))

δ/c̄

−(γ − 1)/c̄2



, (4.4.1d)

ℓ̂
3

=




−(2 − δ)/(4(γ − 1))

(1 − δ)/(2c̄)

(γ − 1)/(2c̄2)



.

Here δ := (γ−1)q̄/c̄, and c̄ is the average sound speed given by c̄2 = (γ−1)
(
Ḡ− q̄2

2

)
.

We are now able to form the intermediate path in u−space as in (2.2.9)

uj+1 = uj +
〈
ℓ̂

j
, ∆u

〉
r̂j, j = 1, 2, 3. (4.4.2)

Since the mapping between u and v is one-to-one, then these intermediate gridvalues

in u−space, {uj}4
j=1, correspond to intermediate gridvalues {vj}4

j=1 in v−space. We

let {rj}3
j=1 be the (right) vectors connecting these v-values, rj := vj+1 −vj, and let

{ℓj}3
j=1 be the corresponding (left) orthogonal set. We summarize the algorithm of

computing the entropy-conservative flux f∗
ν+ 1

2

in the following.

Algorithm 4.4.1. If uν = uν+1 then f∗
ν+ 1

2

= f(vν); else

• Set u1
ν+ 1

2

:= uν and compute recursively the intermediate states,

u
j+1

ν+ 1

2

= u
j

ν+ 1

2

+
〈
ℓ̂

j

ν+ 1

2

,∆uν+ 1

2

〉
r̂

j

ν+ 1

2

, j = 1, 2, 3. (4.4.3)

Here, {ℓ̂j

ν+ 1

2

} and {r̂j

ν+ 1

2

} are the left and right eigensystems of the Roe matrix

in (4.4.1c), (4.4.1d).
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• Set r
j

ν+ 1

2

= v(uj+1

ν+ 1

2

) − v(uj

ν+ 1

2

) and compute {ℓj}3
j=1 as the corresponding

orthogonal system,

〈
ℓ

j

ν+ 1

2

, rk
ν+ 1

2

〉
= δjk, r

j

ν+ 1

2

:= v
j+1

ν+ 1

2

− v
j

ν+ 1

2

(4.4.4)

• Compute the entropy-conservative numerical flux,

f∗
ν+ 1

2

=
3∑

j=1

ψ
(
v

j+1

ν+ 1

2

)
− ψ

(
v

j

ν+ 1

2

)

〈
ℓ

j

ν+ 1

2

,∆vν+ 1

2

〉 ℓ
j

ν+ 1

2

(4.4.5)

Remark 4.4.1. Observe that if {uj+1

ν+ 1

2

− u
j

ν+ 1

2

}3
j=1 are linearly independent then,

since uv is symmetric positive definite, the corresponding set of directions in v-

phase space, {vj+1

ν+ 1

2

− v
j

ν+ 1

2

}3
j=1 are also linearly independent, at least when uν+1

is in a small neighborhood of uν . It guarantees the existence of the orthogonal

set {ℓj

ν+ 1

2

}3
j=1. But what happens when

〈
ℓ

j

ν+ 1

2

,∆vν+ 1

2

〉
= 0 for certain j’s? For

example, if uν is connected to uν+1 through a k-shock. then the Roe matrix [A]ν+ 1

2

retains the perfect resolution of such a shock by enforcing
〈
ℓ

j

ν+ 1

2

,∆vν+ 1

2

〉
= 0,

∀j 6= k and we can omit the contribution of these sub-paths to the conservative flux

f∗. The general approach is to construct a precise mirror image of the Roe-path in

v-phase space in terms of the right and left orthogonal systems,

r
j

ν+ 1

2

:= [H ]−1
ν+ 1

2

r̂j, ℓ
j

ν+ 1

2

:= [H ]ν+ 1

2

ℓ̂
j
, j = 1, 2, · · · ,

where [H ]ν+ 1

2

denotes an averaged symmetrizer such that ∆uν+ 1

2

= [H ]ν+ 1

2

∆vν+ 1

2

(and there are many different such averages). Then, {rj

ν+ 1

2

}3
j=1 forms the path in

v-phase space, v
j+1

ν+ 1

2

= v
j

ν+ 1

2

+
〈
ℓ

j

ν+ 1

2

,∆vν+ 1

2

〉
r

j

ν+ 1

2

, which retains the desired Roe

property of perfect resolution of shocks. Indeed, if ∆u is a k-shock with speed s
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then it satisfies ∆fν+ 1

2

= s∆uν+ 1

2

= s[H ]ν+ 1

2

∆vν+ 1

2

. But the Roe matrix in (4.4.1a)

is constructed so that ∆fν+ 1

2

= [A]∆uν+ 1

2

= [A][H ]ν+ 1

2

∆vν+ 1

2

(consult [Roe81]),

and we conclude that ∆vν+ 1

2

= rk
ν+ 1

2

. Thus,
〈
ℓ

j

ν+ 1

2

,∆vν+ 1

2

〉
= 0, ∀j 6= k. The

corresponding entropy conservative numerical flux reads

f∗
ν+ 1

2

=
∑

{j|ξj 6=0}

ψ(vj

ν+ 1

2

+ ξjr
j

ν+ 1

2

) − ψ(vj

ν+ 1

2

)

ξj
ℓ

j

ν+ 1

2

, ξj =
〈
ℓ

j

ν+ 1

2

,∆vν+ 1

2

〉
.

4.4.1.2 The Navier-Stokes equations

We turn to the construction of entropy-stable schemes for the full Navier-

Stokes equations (4.1.1). To this end, we rewrite the equation as a system of con-

servation laws

∂

∂t
u +

∂

∂x
f(u) = ǫ

∂2

∂x2
d(u), u =




ρ

m

E



, f(u) =




m

qm+ p

q(E + p)



, (4.4.6a)

with additional diffusive terms

ǫd(u) := (λ+ 2µ)




0

q

q2/2




+ κ




0

0

θ



. (4.4.6b)

For the convection part on the LHS, we use the same entropy-conservative differenc-

ing used for the Euler equations. For the dissipative terms on the RHS, we employ

standard centered differences. We arrive at our main result of one dimensional

Navier-Stokes equations.
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Theorem 4.4.1. Let (U, F ) be a given entropy pair of the Navier-Stokes equations

(4.4.6a),(4.4.6b), which respect the entropy inequality (2.1.11). Consider the semi-

discrete approximation

d

dt
uν(t) +

1

∆xν

(
f∗
ν+ 1

2

− f∗
ν− 1

2

)
=

ǫ

∆xν

(
dν+1 − dν

∆xν+ 1

2

− dν − dν−1

∆xν− 1

2

)
. (4.4.7a)

Here f∗
ν+ 1

2

is an entropy conservative numerical flux (2.2.11),

f∗
ν+ 1

2

=

3∑

j=1

ψ
(
v

j+1

ν+ 1

2

)
− ψ

(
v

j

ν+ 1

2

)

〈
ℓ

j

ν+ 1

2

,∆vν+ 1

2

〉 ℓ
j

ν+ 1

2

, (4.4.7b)

which is outlined in algorithm 4.4.1 above.

{i} The resulting scheme (4.4.7a),(4.4.7b) is entropy-dissipative in the sense

that

d

dt

∑

ν

Uν(t) ∆xν = −
∑

ν

ǫ

∆xν+ 1

2

〈
∆vν+ 1

2

,
∆dν+ 1

2

∆vν+ 1

2

∆vν+ 1

2

〉
≤ 0. (4.4.8)

This entropy balance is a discrete analogue of the entropy balance statements (4.3.4)

and (4.3.6).

{ii} In the specific case of the canonical entropy pair (U, F ) = (−ρS, −mS),

the entropy decay (4.4.8) amounts to (1.4.6)

d

dt

∑

ν

Uν(t) ∆xν = − (λ+ 2µ)
∑

ν

(
∆qν+ 1

2

∆xν+ 1

2

)2 (
1̂/θ
)

ν+ 1

2

∆xν+ 1

2

− κ
∑

ν

(
∆θν+ 1

2

∆xν+ 1

2

)2 (
1̃/θ
)2

ν+ 1

2

∆xν+ 1

2

≤ 0. (4.4.9)

Proof. We multiply (4.4.7a) by [Uu]⊤ν = v⊤
ν , then sum up all spatial cells to

get the balance of the total entropy,

d

dt

∑

ν

Uν(t) ∆xν +
∑

ν

〈
vν , f

∗
ν+ 1

2

− f∗
ν− 1

2

〉
= ǫ

∑

ν

〈
vν ,

dν+1 − dν

∆xν+ 1

2

− dν − dν−1

∆xν− 1

2

〉
.

(4.4.10)
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Since we chose f∗
ν+ 1

2

as the entropy conservative flux, a straightforward manipulation

on the entropy conservation requirement (2.2.12) yields the conservative difference,

〈
vν , f

∗
ν+ 1

2

− f∗
ν− 1

2

〉
= Fν+ 1

2

− Fν− 1

2

, (4.4.11)

where 2Fν+ 1

2

=
〈
(vν + vν+1) , fν+ 1

2

〉
− (ψ(vν) + ψ(vν+1)). On the other hand, sum-

mation by parts on the RHS of (4.4.10) yields

ǫ
∑

ν

〈
vν ,

dν+1 − dν

∆xν+ 1

2

− dν − dν−1

∆xν− 1

2

〉
= −

∑

ν

ǫ

∆xν+ 1

2

〈vν+1 − vν , dν+1 − dν〉

= −
∑

ν

ǫ

∆xν+ 1

2

〈
∆vν+ 1

2

, ∆dν+ 1

2

〉
(4.4.12a)

= −
∑

ν

ǫ

∆xν+ 1

2

〈
∆vν+ 1

2

,
∆dν+ 1

2

∆vν+ 1

2

∆vν+ 1

2

〉
.

(4.4.12b)

By (4.4.11) and (4.4.12b), the semi-discrete entropy balance amounts to

d

dt

∑

ν

Uν(t)∆xν = −
∑

ν

ǫ

∆xν+ 1

2

〈
∆vν+ 1

2
,

∆dν+ 1

2

∆vν+ 1

2

∆vν+ 1

2

〉
. (4.4.13)

Here

∆dν+ 1

2

∆vν+ 1

2

=

∫ 1

2

ξ=− 1

2

dv

(
vν+ 1

2

(ξ)
)
dξ,

where vν+ 1

2

(ξ) is given by (2.2.16). By the admissibility of the dissipative Navier-

Stokes fluxes dv ≥ 0 and the RHS of (4.4.13) is indeed non-positive. Thus, the

semi-discrete scheme (4.4.7a) guarantees the total entropy dissipation.

In the specific case of the entropy pair (U, F ) = (−ρS, −mS), the entropy

variables are found in (4.3.3), and we explicitly compute the inner products in
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(4.4.12a) as (omitting all subscripts),

−
∑

ν

ǫ

∆x
〈∆v, ∆d〉

= −
∑

ν

1

∆x

{
(λ+ 2µ) ∆

(q
θ

)
∆q − λ+ 2µ

2
∆

(
1

θ

)
∆
(
q2
)
− κ∆

(
1

θ

)
∆θ
}

= −(λ + 2µ)
∑

ν

1

∆x
(∆q)21

2

(
1

θν+1
+

1

θν

)
− κ

∑

ν

1

∆x
∆

(
1

θ

)
∆θ

= −(λ + 2µ)
∑

ν

(
∆q

∆x

)2
1

2

(
1

θν+1
+

1

θν

)
∆x− κ

∑

ν

(
∆θ

∆x

)2
1

θν+1θν
∆x ≤ 0.

The discrete entropy balance (1.4.6) now follows. 2

We emphasize the main point made here, namely, we introduce no excessive

entropy dissipation due to spurious, artificial numerical viscosity: by (4.4.8), the

semi-discrete scheme contains the precise amount of numerical viscosity to enforce

the correct entropy dissipation dictated by the Navier-Stokes equations.

4.4.2 Time discretization

Similar to the time integration of the Burgers equation, the semi-discrete en-

tropy conservative scheme (4.4.7a) and (4.4.7b) of 1D Navier-Stokes equations is

integrated with the explicit three-stage third-order Runge-Kutta (RK3) method

(3.2.1), due to the high-order accuracy, large stability region and simplicity of this

method. Consult [GST01],





u(1) = un + ∆tL(un)

u(2) =
3

4
un +

1

4
u(1) +

1

4
∆tL(u(1))

un+1 =
1

3
un +

2

3
u(2) +

2

3
∆tL(u(2))
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where

[L(u)]ν = − 1

∆xν

(f∗
ν+ 1

2

− f∗
ν− 1

2

) +
ǫ

∆xν

(
dν+1 − dν

∆xν+ 1

2

− dν − dν−1

∆xν− 1

2

)

.

We note in passing that though the fully explicit RK3 time discretization need

not conserve the entropy, it introduces a negligible amount of entropy dissipation; for

a general framework of entropy-conservative fully discrete schemes consult [LMR02].

4.5 Numerical experiments

We consider ideal polytropic gas equations as an approximation of air with

γ = 1.4, Cv = 716, κ = 0.03, λ+ 2µ = 2.28 × 10−5

We simulate the Sod’s shocktube problem, [Sod78], where the Euler and Navier-

Stokes equations are solved over the interval [0, 1] subject to Riemann initial con-

ditions

(ρ,m,E)t=0 =





(1.0, 0.0, 2.5) 0 < x ≤ 0.5

(0.125, 0.0, 0.25) 0.5 < x < 1.

The resulting fully-discrete schemes (4.4.14) has a spatial stencil involving three-

point gridvalues, with one boundary value on the left boundary and one boundary

value on the right required to close the system. For simplicity, Dirichlet boundary

conditions are used in our computation. As a matter of fact, we are only interested

in the shock propagation within the given finite domain here. The treatments on

the boundaries do not concern us in this numerical experiment.
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Due to the small scale of the computation of one dimensional problems, nu-

merical tests of the Sod problem for Navier-Stokes equations are done in Matlab.

The Matlab program runs for 1-2 hours on a PC with Intel Pentium 4 3.0GHz CPU

to get the following results. In the following figures, we display the numerical so-

lutions for the fully discrete scheme (4.4.14) with the numerical flux (2.2.11), or

in its equivalent yet simpler form (2.2.15). Uniform space and time grid sizes, ∆x

and ∆t, are used. Both viscous and inviscid cases are explored. We use different

spatial resolutions for the same problem, and adjust time step according to the CFL

condition. Different choices of entropy function are also tested in the numerical

experiments. We group our results into four sets.

1. Euler equations. The first four sets of figures are devoted to the Euler equations

with zero viscous and heat fluxes (4.1.5).

With the choice of the entropy pair

(U(u), F (u)) =

(
1 + γ

1 − γ
(ρp)

1

1+γ ,
1 + γ

1 − γ
q(ρp)

1

1+γ

)
, (4.5.1)

Figure 4.5.1 depicts the density, velocity, and pressure fields at t = 0.05 and t = 0.1;

here we use ∆x = 0.001 and ∆t
∆x

= 0.025. Comparing these to the corresponding

results of the canonical entropy pair

(U(u), F (u)) =
(
−ρ ln(pρ−γ), −m ln(pρ−γ)

)
, (4.5.2)

in figure 4.5.2, we see that the different choices of entropies do not affect the be-

havior of the numerical solutions. Figures 4.5.1(d) and 4.5.2(d) demonstrate the

conservation of the total entropies: the negligible amount of entropy decay ∼ 10−4

is introduced by the RK3 time discretization.

53



Next, we make the same comparison for the refined the spatial mesh, taking

∆x = 0.00025, ∆t
∆x

= 0.1. Figure 4.5.3 presents the computed solutions of density,

velocity, and pressure fields at t = 0.05 and t = 0.1 with the entropy pair (4.5.1)

while figure 4.5.4 depicts the solutions with the canonical entropy pair (4.5.2). The

total entropy is shown in figures 4.5.3(d) and 4.5.4(d).

The above results demonstrate the purely dispersive character of the entropy

conservative schemes. Dispersive oscillations on the mesh scale are observed in

shocks and contact regions, due to the absence of any dissipation mechanism, consult

[Lax86, LL96]. The numerical solutions do not blow up. Actually, as we refine the

mesh, these dispersive oscillations approach a modulated wave envelope. The study

of these modulated waves in the conservative Euler equations would be an extremely

challenging task. A similar entropy conservative Lagrangian formulation of Euler

equations of [TT61] motivated the discussion in [Lax86].

2 Navier-Stokes equations with heat flux. We solve the Navier-Stokes equa-

tions (4.1.4). The results are summarized in the next three sets of figures 4.5.5–4.5.7.

We follow the same pattern of plotting density, velocity, pressure and total entropy.

As before, the choice of entropy pairs (4.5.1) in figures 4.5.5 and 4.5.6 are very

similar.

The presence of heat flux causes the oscillations to be dramatically reduced

around the contact discontinuity. Furthermore, oscillations are significantly damped

around the shock; when the mesh is well-refined, figure 4.5.7 shows that heat con-

duction causes these oscillations to be well localized in the immediate neighborhood
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of the shocks. If the mesh is underresolved, a small portion of dispersive oscillations

persist in the neighborhood of shocks.

3. Navier-stokes equations with viscosity and no heat flux. We solve the

viscous Navier-Stokes equations (4.1.3). The results are summarized in figures 4.5.8–

4.5.9. Since the results are essentially independent of the choice of entropy, we chose

to quote here only the results for the canonical pair (4.5.2).

The viscosity in Navier-Stokes equations is doing a better job than heat flux

in damping oscillations around the shock discontinuity. The plots of total entropy,

reveal a greater entropy decay than the Navier-Stokes equations with heat conduc-

tion. On the other hand, we still observe an oscillatory behavior around the contact

discontinuity, even with the refined mesh in figure 4.5.9.

4. Full Navier-stokes equations with viscous and heat fluxes. In figures

4.5.10–4.5.11 we record the results for the full Navier-Stokes equations (4.1.1). As

before, the difference due to different entropy functions is undetectable and we chose

to record here only the canonical entropy.

As expected, these numerical solutions are the smoothest ones found in our

numerical experiments. especially in very fine meshes, depicted in figure 4.5.11.

Small oscillations remain with underresolved meshes.

Not only the oscillations around the shocks are damped out by viscosity, but

the oscillations around the contact discontinuity are significantly reduced due to

the heat flux. Compared with the results of Navier-Stokes equations with heat

conduction (4.1.4) in figures 4.5.6–4.5.7, oscillations in the neighborhood of the
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shock are better damped here thanks to the viscosity terms. The remaining sharp

“spike” at the tip of shock discontinuity is due to the relatively small viscosity

coefficient of air.
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Figure 4.5.1: Euler equations with 1000 spatial gridpoints, U(u) = 1+γ
1−γ

·

(pρ)
1

1+γ , ∆t = 2.5 × 10−5, ∆x = 10−3
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Figure 4.5.2: Euler equations with 1000 spatial gridpoints, U(u) = −ρ ln (pρ−γ) and

same ∆t and ∆x as figure 4.5.1
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Figure 4.5.3: Euler equations with 4000 spatial gridpoints, U(u) = 1+γ
1−γ

·

(pρ)
1

1+γ , ∆t = 2.5 × 10−5, ∆x = 2.5 × 10−4
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Figure 4.5.4: Euler equations with 4000 spatial gridpoints, U(u) = −ρ ln (pρ−γ) and

same ∆t and ∆x as Figure 4.5.3
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Figure 4.5.5: Navier-Stokes equations with heat conduction and no viscous term.

1000 spatial gridpoints, U(u) = 1+γ
1−γ

· (pρ) 1

1+γ , ∆t = 2.5 × 10−5, ∆x = 10−3
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Figure 4.5.6: Navier-Stokes equations with heat conduction and no viscous terms.

1000 spatial gridpoints, U(u) = −ρ ln (pρ−γ) and same ∆t and ∆x as Figure 4.5.5
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Figure 4.5.7: Navier-Stokes equations with heat conduction and no viscous terms.

4000 spatial grids, U(u) = −ρ ln (pρ−γ) , ∆t = 2.5 × 10−5, ∆x = 2.5 × 10−4
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Figure 4.5.8: Navier-Stokes equations with viscous terms and no heat conduction.

1000 spatial gridpoints, U(u) = −ρ ln (pρ−γ) , ∆t = 2.5 × 10−5, ∆x = 10−3
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Figure 4.5.9: Navier-Stokes equations with viscous terms and no heat conduction.

4000 spatial grids, U(u) = −ρ ln (pρ−γ) , ∆t = 2.5 × 10−5, ∆x = 2.5 × 10−4
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Figure 4.5.10: Navier-Stokes equations with viscosity and heat conduction. 1000

spatial gridpoints, U(u) = −ρ ln (pρ−γ) , ∆t = 2.5 × 10−5, ∆x = 10−3
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(d) Total entropy v.s. time

Figure 4.5.11: Navier-Stokes equations with viscosity and heat conduction. 4000

spatial gridpoints, U(u) = −ρ ln (pρ−γ) , ∆t = 2.5 × 10−5, ∆x = 2.5 × 10−4

67



Chapter 5

Two-Dimensional Shallow Water Equations

5.1 Governing equations

Consider a three-dimensional domain in which the homogenous fluid flows with

a free surface under the influence of gravity. One of the widely used approaches for

the description of such unsteady free-surface flows is that of shallow water. Under

the shallow-water approximation that refers to the fact that a horizontal scale is in

excess of the depth of the fluid, the 3D Navier-Stokes equations can be simplified

to the shallow water equations with the depth-averaged continuity equation and

momentum equations. The motions of the fluid are driven by the variations of the

height of the free surface while the density is assumed to be constant. In general,

the shallow water equations describe the time and space evolutions of the depth-

averaged horizontal velocity components and the fluid elevation. Wide applications

of the shallow water equations can be found in modeling the wave propagation in

atmosphere and ocean as well as gravity waves in the smaller domain.

Neglecting diffusion of momentum due to wind effects and Coriolis terms, we

consider two-dimensional shallow water equations in the conservative form for free-

surface compressible flow with flat frictionless bottom on two dimensional x-y plane,

∂

∂t
u +

∂

∂x
f(u) +

∂

∂y
g(u) = ς

∂

∂x

(
h
∂

∂x
d(u)

)
+ ς

∂

∂y

(
h
∂

∂y
d(u)

)
, (5.1.1a)
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with u being the vector of conserved variables,

u = [h, uh, vh]⊤, (5.1.1b)

balanced by the flux vectors

f = [uh, u2h+ gh2/2, uvh]⊤, g = [vh, uvh, v2h + gh2/2]⊤, (5.1.1c)

and the viscous flux vector

d = [0, u, v]⊤. (5.1.1d)

The system (5.1.1a) represents the mass and momentum conservation. Here, h =

h(x, y, t) is the total water depth which plays the role of density, and (u(x, y, t), v(x, y, t))

are the depth-averaged velocity components along x and y direction. Finally, g is

the constant acceleration due to the gravity, and ς > 0 is the constant eddy viscos-

ity. By ignoring the small scale vortices in the motion, we calculate a large-scale

flow motion with eddy viscosity ς that characterizes the transport and dissipation

of energy in the smaller scale flow.

If we turn off the eddy viscosity (ς = 0), the system (5.1.1a) is reduced to the

homogeneous inviscid shallow water equations,

∂

∂t
u +

∂

∂x
f(u) +

∂

∂y
g(u) = 0. (5.1.2)

The shallow water equations constitute a hyperbolic or incompletely parabolic

system, solutions to which can exhibit discontinuities associated with hydraulic

jumps and bores in flow or the propagation of sharp fronts. In the numerical sim-

ulations of shallow water flows, the conservation of energy guarantees the numer-

ical schemes are nonlinearly stable and free of artificial numerical viscosity, which
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may dramatically change the profiles of the solutions in long time integration. In

this chapter, we are concerned with the energy-stable numerical methods for sim-

ulating flow situations in which discontinuities are present initially. Specifically,

we apply entropy-stable schemes to solve the two dimensional partial-dam-break

problem. In our computation, energy conservation will be enforced through the

conservation of entropy by choosing the sum of the potential and kinetic energies

U = (gh2 +u2h+ v2h)/2 as a generalized entropy function. The resulting numerical

scheme is energy-stable with no artificial numerical viscosity in the sense that energy

dissipation is driven solely by the eddy viscous fluxes. In the particular case that

eddy viscosity is absent, ς = 0, our scheme precisely preserves the total energy U .

5.2 Energy balance

5.2.1 Entropy/energy conservation and dissipation

We consider the inviscid shallow water equations (5.1.2),

ux + f(u)x + g(u)y = 0.

Any smooth solution u satisfies the additional conservation laws of an admissible

entropy U(u), which is balanced by entropy fluxes F (u) and G(u),

∂

∂t
U(u) +

∂

∂x
F (u) +

∂

∂y
G(u) = 0. (5.2.1)

(5.2.1) indeed is the case if the entropy function U(u) is linked to the entropy fluxes

F (u) and G(u) through the compatibility relations,

U⊤
u
fu = F⊤

u
, U⊤

u
gu = G⊤

u
. (5.2.2)
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In fact, multiplying (5.1.2) by U⊤
u

on the left, one recovers the equivalence between

(5.1.2) and (5.2.2) for all classical solutions u’s of (5.1.2).

In the presence of shock discontinuities, (5.1.2) is realized by appropriate van-

ishing viscosity limits. To this end, we turn to the viscous shallow water equations

(5.1.1a),

ut + f(u)x + g(u)y = ς [(hd(u)x)x + (hd(u)y)y] .

We integrate (5.1.1a) against the entropy variable v := Uu, employ the compatibility

relations (5.2.2) and use ‘differentiation by parts’ on the dissipation terms on the

RHS to find the following entropy balance statement,

∂

∂t
U(u) +

∂

∂x
(F (u) − ς 〈v, hd(u)x〉) +

∂

∂y
(G(u) − ς 〈v, hd(u)y〉) =

− ς [〈vx, hdvvx〉 + 〈vy, hdvvy〉] ≤ 0. (5.2.3)

Spatial integration of (5.2.3) yields

d

dt

∫

y

∫

x

U(u) dxdy = −ς
∫

y

∫

x

[〈vx, hdvvx〉 + 〈vy, hdvvy〉] dxdy ≤ 0. (5.2.4)

For the inviscid shallow water equation (ς = 0), the global entropy conservation is

satisfied,
∫

y

∫

x

U(u(x, t)) dxdy =

∫

y

∫

x

U(u(x, 0)) dxdy.

5.2.2 Entropy variables for shallow water equations

As I mentioned above, we apply the entropy-stable discretization constructed

in Chapter 2 to guarantee the energy stability in our numerical approximations. To

71



this end, we employ the depth-averaged sum of the potential and kinetic energies

as a generalized entropy function,

U(u) =
gh2 + u2h+ v2h

2
. (5.2.5)

Straightforward computation gives us the following entropy fluxes, entropy variables

and potentials.

• Entropy fluxes

F (u) = guh2 +
u3h+ uv2h

2
, G(u) = gvh2 +

u2vh+ v3h

2
; (5.2.6)

• Entropy variable

v(u) =




gh− u2 + v2

2

u

v




(5.2.7)

with the Jacobian matrices

H(v) := uv =
1

g




1 u v

u c2 + u2 uv

v uv c2 + v2



, (5.2.8)

(H(v))−1 = vu =
1

h




c2 + u2 + v2 −u −v

−u 1 0

−v 0 1



, (5.2.9)

where c :=
√
gh is the ‘sound’ speed, or wave celerity.

• Potential of u(v)

φ(v) =
gh2

2
, (5.2.10)
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and potentials of f(u(v)) and g(u(v)), respectively,

ψx(v) =
guh2

2
, ψy(v) =

gvh2

2
. (5.2.11)

In this case, the general statement of entropy/energy balance of shallow water equa-

tions in (5.2.4) with the entropy function and fluxes

(U, F,G) =

(
gh2 + u2h + v2h

2
, guh2 +

u3h+ uv2h

2
, gvh2 +

u2vh + v3h

2

)

amounts to

d

dt

∫

y

∫

x

U(u) dxdy = −ς
∫

y

∫

x

h(u2
x + u2

y + v2
x + v2

y) dxdy ≤ 0. (5.2.12)

Due to the negativity of the expression on the RHS, we conclude that the total en-

tropy/energy
∫

y

∫
x

gh2+u2h+v2h
2

dxdy is decreasing in time, thus recovering the energy

stability. In fact, the expression on the RHS specifies the precise decay rate, which

is dictated solely by the viscous fluxes through their dependence on the nonnegative

eddy viscosity ς.

5.3 Energy stable schemes

5.3.1 Entropy/energy-stable semi-discrete schemes for shallow water

equations

The second-order semi-discrete entropy conservative schemes (2.2.10), (2.2.11)

can be extended to two dimensional problems in a straightforward manner. The

construction of the piece-wise constant intermediate path in u and v-spaces can be

carried out separately in x and y directions as indicated in (2.2.9).
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Let (U, F,G) be the admissible entropy function (5.2.5) and entropy fluxes

(5.2.6) associated with the two dimensional shallow water equations, v := Uv be

the corresponding entropy variable outlined in (5.2.7), and (ψx, ψy) be the potential

pair (5.2.11). In order to conserve the total entropy/energy
∫

y

∫
x
U(u(x, y, t)) dxdy

in our numerical approximation, we argue along the same line as one dimensinoal

Navier-Stokes equations dimension by dimension. We discretize the convective parts

on the LHS by the entropy/energy differencing. For the dissipative terms on the

RHS, we employ the centered differences, while the intermediate h-values are taken

to be the arithmetic mean of two neighboring grid-points, ĥν+ 1

2
,µ := (hν+1,µ+hν,µ)/2.

We then obtain the entropy/energy stable semi-discrete schemes

d

dt
uν, µ(t) +

1

∆x
(f∗

ν+ 1

2
, µ

− f∗
ν− 1

2
, µ

) +
1

∆y
(g∗

ν, µ+ 1

2

− g∗
ν, µ− 1

2

)

=
ς

∆x
(ĥν+ 1

2
, µ

dν+1, µ − dν, µ

∆x
− ĥν− 1

2
, µ

dν, µ − dν−1, µ

∆x
)

+
ς

∆y
(ĥν, µ+ 1

2

dν, µ+1 − dν, µ

∆x
− ĥν, µ− 1

2

dν, µ − dν, µ−1

∆x
), (5.3.1a)

with the entropy-conservative fluxes f∗
ν+ 1

2
, µ

and g∗
ν, µ+ 1

2

outlined in (2.2.11) along x

and y direction, respectively,

f∗
ν+ 1

2
, µ

=

3∑

j=1

ψx
(
v

j+1

ν+ 1

2
,µ

)
− ψx

(
v

j

ν+ 1

2
,µ

)

〈
ℓ

xj

ν+ 1

2
,µ,∆vν+ 1

2
,µ

〉 ℓ
xj

ν+ 1

2
,µ

=
g

2

3∑

j=1

(hj+1

ν+ 1

2
, µ

)2uj+1

ν+ 1

2
, µ

− (hj

ν+ 1

2
, µ

)2uj

ν+ 1

2
, µ〈

ℓ
xj

ν+ 1

2
, µ, ∆vν+ 1

2
, µ

〉 ℓ
xj

ν+ 1

2
, µ, (5.3.1b)

g∗
ν, µ+ 1

2

=

3∑

j=1

ψy
(
v

j+1

ν,µ+ 1

2

)
− ψy

(
v

j

ν,µ+ 1

2

)

〈
ℓ

yj

ν,µ+ 1

2

,∆vν,µ+ 1

2

〉 ℓ
yj

ν,µ+ 1

2

=
g

2

3∑

j=1

(hj+1

ν, µ+ 1

2

)2vj+1

ν, µ+ 1

2

− (hj

ν, µ+ 1

2

)2vj

ν, µ+ 1

2〈
ℓ

yj

ν, µ+ 1

2

, ∆vν, µ+ 1

2

〉 ℓ
yj

ν, µ+ 1

2

, (5.3.1c)
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Here, uν, µ(t) denotes the discrete solution at the grid point (xν , yµ, t) with xν :=

ν∆x, yµ := µ∆y, ∆x and ∆y being the uniform mesh sizes, and dν, µ := d(uν, µ).

Numerical flux f∗
ν+ 1

2
, µ

and g∗
ν, µ+ 1

2

are constructed separately along two different

phase pathes dictated by two sets of vectors {ℓxj} and {ℓyj}. {uj}, {vj}, and {hj}

are intermediate values of height and velocities along pathes. Here in (5.3.1b) and

(5.3.1c), ∆vν+ 1

2
, µ := vν+1, µ − vν, µ and ∆vν, µ+ 1

2

:= vν, µ+1 − vν, µ. The physical

relevance of the intermediate solutions along the path needs to be maintained. To

this end, we choose to work along the pathes which are determined by (approximate)

Riemann solvers. Specifically, we use the eigensystems of the Roe matrix in x

direction, [Roe81, Gla87],




0 1 0

c̄2
ν+ 1

2
, µ

− ū2
ν+ 1

2
, µ

2ūν+ 1

2
, µ 0

−ūν+ 1

2
, µv̄ν+ 1

2
, µ v̄ν+ 1

2
, µ ūν+ 1

2
, µ



, (5.3.2a)

and the Roe matrix in y direction,




0 0 1

−ūν, µ+ 1

2

v̄ν, µ+ 1

2

v̄ν, µ+ 1

2

ūν, µ+ 1

2

c̄2
ν, µ+ 1

2

− v̄2
ν, µ+ 1

2

0 2v̄ν, µ+ 1

2



. (5.3.2b)

Here ū, v̄, and c̄ are the average values of the velocities u, v and the sound speed

c :=
√
gh at Roe-average state,

ū =
uR

√
hR + uL

√
hL√

hR +
√
hL

, v̄ =
vR

√
hR + vL

√
hL√

hR +
√
hL

(5.3.2c)

c̄ =

√
g(hR + hL)

2
, (5.3.2d)
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where the subscripts (·)R and (·)L represent two neighboring spatial grid-points.

The vector sets {r̂xj}3
j=1 and {r̂yj}3

j=1 are chosen to be the right eigenvectors of the

x-Roe matrix (5.3.2a) and the y-Roe matrix (5.3.2b), respectively, (omitting the

sub/superscripts of all averaged variables)

r̂x1

=




1

ū− c̄

v̄



, r̂x2

=




0

0

c̄



, r̂x3

=




1

ū+ c̄

v̄



, (5.3.2e)

r̂y1

=




1

ū

v̄ − c̄



, r̂y2

=




0

−c̄

0



, r̂y3

=




1

ū

v̄ + c̄



, (5.3.2f)

with the corresponding left eigenvector sets {ℓ̂xj

}3
j=1 and {ℓ̂yj

}3
j=1 given by

ℓ̂
x1

=




ū+ c̄

2c̄

− 1

2c̄

0



, ℓ̂

x2

=




− v̄
c̄

0

1

c̄



, ℓ̂

x3

=




−ū+ c̄

2c̄
1

2c̄

0



, (5.3.2g)

ℓ̂
y1

=




v̄ + c̄

2c̄

0

− 1

2c̄



, ℓ̂

y2

=




ū

c̄

−1

c̄

0



, ℓ̂

y3

=




−v̄ + c̄

2c̄

0

1

2c̄



. (5.3.2h)

We now are able to form the intermediate pathes along x and y directions in u-space

as in (2.2.9),

u
j+1

ν+ 1

2
, µ

= u
j

ν+ 1

2
, µ

+

〈
ℓ̂

xj

, ∆uν+ 1

2
, µ

〉
r̂xj

, j = 1, 2, 3,

u
j+1

ν, µ+ 1

2

= u
j

ν, µ+ 1

2

+

〈
ℓ̂

yj

, ∆uν, µ+ 1

2

〉
r̂yj

, j = 1, 2, 3.
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Then the construction of the entropy/energy conservative numerical fluxes f∗
ν+ 1

2
, µ

and g∗
ν, µ+ 1

2

follows the algorithm indicated in Algorithm 4.4.1.

Remark 5.3.1. We want to point out that in the case
〈
ℓ̂

j
,∆u

〉
= 0 for certain

j’s in u-space, which may cause
〈
ℓ

j,∆v
〉

= 0 in v-space, hence fail Algorithm

4.4.1. Arguing along the same line as Remark 4.4.1, we compute the corresponding

entropy/energy numerical fluxes in the alternate formulas,

f∗
ν+ 1

2
, µ

=
∑

{j|ξxj
6=0}

ψx(vj

ν+ 1

2
, µ

+ ξxj

r
j

ν+ 1

2
, µ

) − ψx(vj

ν+ 1

2
, µ

)

ξxj ℓ
xj

ν+ 1

2
, µ, ξxj

=
〈
ℓ

xj

ν+ 1

2
, µ,∆vν+ 1

2
, µ

〉
,

g∗
ν, µ+ 1

2

=
∑

{j|ξyj
6=0}

ψy(vj

ν, µ+ 1

2

+ ξyj

r
j

ν, µ+ 1

2

) − ψy(vj

ν, µ+ 1

2

)

ξyj ℓ
yj

ν, µ+ 1

2

, ξyj

=
〈
ℓ

yj

ν, µ+ 1

2

,∆vν, µ+ 1

2

〉
,

where the right and left eigensystems {rxj}3
j=1 {ryj}3

j=1 and {ℓxj}3
j=1 {ℓyj}3

j=1 are

constructed as the precise mirror images of the Roe-pathes in v-space,

rxj

ν+ 1

2
, µ

:= [H ]−1
ν+ 1

2
, µ

r̂xj

ν+ 1

2
, µ
, ℓ

xj

ν+ 1

2
, µ := [H ]ν+ 1

2
, µℓ̂

xj

ν+ 1

2
, µ, j = 1, 2, 3

r
yj

ν, µ+ 1

2

:= [H ]−1
ν, µ+ 1

2

r̂
yj

ν, µ+ 1

2

, ℓ
yj

ν, µ+ 1

2

:= [H ]ν, µ+ 1

2

ℓ̂
yj

ν, µ+ 1

2
, j = 1, 2, 3

where [H ]ν+ 1

2
, µ and [H ]ν, µ+ 1

2

denote the averaged symmetrizers such that

∆uν+ 1

2
, µ = [H ]ν+ 1

2
, µ∆vν+ 1

2
, µ and ∆uν, µ+ 1

2

= [H ]ν, µ+ 1

2

∆vν, µ+ 1

2

.

Here we conclude our main result of two dimensional shallow water equations

in the following theorem.

Theorem 5.3.1. Let U be a given entropy function, and (F,G) be corresponding

entropy flux pair of the shallow water equations (5.1.1a)-(5.1.1d), which respect the
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entropy inequality (5.2.3). Consider the semi-discrete approximation (5.3.1a),

d

dt
uν, µ(t) +

1

∆x
(f∗

ν+ 1

2
, µ

− f∗
ν− 1

2
, µ

) +
1

∆y
(g∗

ν, µ+ 1

2

− g∗
ν, µ− 1

2

)

=
ς

∆x
(ĥν+ 1

2
, µ

dν+1, µ − dν, µ

∆x
− ĥν− 1

2
, µ

dν, µ − dν−1, µ

∆x
)

+
ς

∆y
(ĥν, µ+ 1

2

dν, µ+1 − dν, µ

∆x
− ĥν, µ− 1

2

dν, µ − dν, µ−1

∆x
), (5.3.3a)

Here f∗
ν+ 1

2
, µ

and g∗
ν, µ+ 1

2

are entropy-conservative numerical fluxes (5.3.1b) and (5.3.1c),

f∗
ν+ 1

2
, µ

=
g

2

3∑

j=1

(hj+1

ν+ 1

2
, µ

)2uj+1

ν+ 1

2
, µ

− (hj

ν+ 1

2
, µ

)2uj

ν+ 1

2
, µ〈

ℓ
xj

ν+ 1

2
, µ, ∆vν+ 1

2
, µ

〉 ℓ
xj

ν+ 1

2
, µ, (5.3.3b)

g∗
ν, µ+ 1

2

=
g

2

3∑

j=1

(hj+1

ν, µ+ 1

2

)2vj+1

ν, µ+ 1

2

− (hj

ν, µ+ 1

2

)2vj

ν, µ+ 1

2〈
ℓ

yj

ν, µ+ 1

2

, ∆vν, µ+ 1

2

〉 ℓ
yj

ν, µ+ 1

2

, (5.3.3c)

{i} The resulting difference scheme (5.3.3a)-(5.3.3c) is entropy stable with no

artificial viscosity in the sense that the following discrete entropy balance is satisfied,

d

dt

∑

ν, µ

U(uν, µ(t))∆x∆y = −ς
∑

ν, µ

[
1

∆x2

〈
∆vν+ 1

2
, µ, ĥν+ 1

2
, µ

∆dν+ 1

2
, µ

∆vν+ 1

2
, µ

∆vν+ 1

2
, µ

〉

+
1

∆y2

〈
∆vν, µ+ 1

2

, ĥν, µ+ 1

2

∆dν, µ+ 1

2

∆vν, µ+ 1

2

∆vν, µ+ 1

2

〉]
∆x∆y. (5.3.4)

The entropy balance (5.3.4) is a discrete analogue of the entropy balance state-

ment (5.2.4).

{ii} In the specific case of the generalized entropy function U = (gh2 + u2h+

v2h)/2 being the sum of potential and kinetic energy, and the corresponding flux pair

(F,G) =
(
guh2 + u3h+uv2h

2
, gvh2 + u2vh+v3h

2

)
, the entropy decay (5.3.4) amounts to
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the energy dissipation statement,

d

dt

∑

ν, µ

U(uν, µ(t))∆x∆y = −ς
∑

ν, µ



ĥν+ 1

2
, µ



(

∆uν+ 1

2
, µ

∆x

)2

+

(
∆vν+ 1

2
, µ

∆x

)2



+ĥν, µ+ 1

2



(

∆uν, µ+ 1

2

∆y

)2

+

(
∆vν, µ+ 1

2

∆y

)2




∆x∆y. (5.3.5)

Proof. We multiply (5.3.3a) by [Uu]⊤ν, µ = v⊤
ν, µ, then sum up all spatial cells to

get the balance of the total entropy,

d

dt

∑

ν, µ

Uν, µ(t)∆x∆y+
∑

ν, µ

〈
vν, µ, f

∗
ν+ 1

2
, µ

− f∗
ν− 1

2
,µ

〉
∆y+

∑

ν, µ

〈
vν, µ, g

∗
ν, µ+ 1

2

− g∗
ν,µ− 1

2

〉
∆x

= ς
∑

ν, µ

〈
vν, µ, ĥν+ 1

2
, µ∆dν+ 1

2
, µ − ĥν− 1

2
,µ∆dν− 1

2
,µ

〉 ∆y

∆x

+ ς
∑

ν, µ

〈
vν, µ, ĥν, µ+ 1

2

∆dν, µ+ 1

2

− ĥν,µ− 1

2

∆dν,µ− 1

2

〉 ∆x

∆y
(5.3.6)

Since numerical fluxes f∗
ν+ 1

2
, µ

and g∗
ν, µ+ 1

2

are chosen as the entropy conservative

fluxes in x and y direction respectively, they must satisfy the entropy conservative

requirement in (2.2.7),

〈
∆vν+ 1

2
, µ, f

∗
ν+ 1

2
, µ

〉
= ∆ψx

ν+ 1

2
, µ
,
〈
∆vν, µ+ 1

2

, g∗
ν, µ+ 1

2

〉
= ∆ψy

ν, µ+ 1

2

.

A straightforward manipulation on the above requirements yields the perfect con-

servative differences,

〈
vν, µ, f

∗
ν+ 1

2
, µ

− f∗
ν− 1

2
, µ

〉
= Fν+ 1

2
, µ − Fν− 1

2
, µ, (5.3.7a)

〈
vν, µ, g

∗
ν, µ+ 1

2

− g∗
ν, µ− 1

2

〉
= Gν, µ+ 1

2

−Gν, µ− 1

2

, (5.3.7b)

where the discrete entropy fluxes are given by

2Fν+ 1

2
, µ =

〈
(vν, µ + vν+1, µ), f∗

ν+ 1

2
, µ

〉
− (ψ(vν, µ)) + ψ(vν+1, µ)

2Gν, µ+ 1

2

=
〈
(vν, µ + vν, µ+1), g

∗
ν, µ+ 1

2

〉
− (ψ(vν, µ)) + ψ(vν, µ+1).
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On the other hand, summation by parts on the RHS of (5.3.6) yields

ς
∑

ν, µ

〈
vν, µ, ĥν+ 1

2
, µ∆dν+ 1

2
, µ −ĥν− 1

2
,µ∆dν− 1

2
,µ

〉 ∆y

∆x

= −ς
∑

ν, µ

〈
∆vν+ 1

2
, µ, ĥν+ 1

2
, µ∆dν+ 1

2
, µ

〉 ∆y

∆x

= −ς
∑

ν, µ

〈
∆vν+ 1

2
, µ, ĥν+ 1

2
, µ

∆dν+ 1

2
, µ

∆vν+ 1

2
, µ

∆vν+ 1

2
, µ

〉
∆y

∆x

(5.3.8a)

ς
∑

ν, µ

〈
vν, µ, ĥν, µ+ 1

2

∆dν, µ+ 1

2

−ĥν,µ− 1

2

∆dν,µ− 1

2

〉 ∆x

∆y

= −ς
∑

ν, µ

〈
∆vν, µ+ 1

2

, ĥν, µ+ 1

2

∆dν, µ+ 1

2

〉 ∆x

∆y

= −ς
∑

ν, µ

〈
∆vν, µ+ 1

2

, ĥν, µ+ 1

2

∆dν, µ+ 1

2

∆vν, µ+ 1

2

∆vν+ 1

2
, µ

〉
∆x

∆y

(5.3.8b)

By (5.3.8a)-(5.3.8b), and (5.3.7a)-(5.3.7b), the semi-discrete entropy balance of two

dimensional shallow water equations (5.3.6) amounts to

d

dt

∑

ν, µ

Uν, µ(t)∆x∆y = −ς
∑

ν, µ

[
1

∆x2

〈
∆vν+ 1

2
, µ, ĥν+ 1

2
, µ

∆dν+ 1

2
, µ

∆vν+ 1

2
, µ

∆vν+ 1

2
, µ

〉

+
1

∆y2

〈
∆vν, µ+ 1

2

, ĥν, µ+ 1

2

∆dν, µ+ 1

2

∆vν, µ+ 1

2

∆vν+ 1

2
, µ

〉]
∆x∆y. (5.3.9)

Here,

∆dν+ 1

2
, µ

∆vν+ 1

2
, µ

=

∫ 1

2

ξ=− 1

2

dv(vν+ 1

2
, µ(ξ)) dξ, vν+ 1

2
, µ(ξ) :=

1

2
(vν, µ + vν+1,µ) + ξ∆vν+ 1

2
, µ

∆dν, µ+ 1

2

∆vν, µ+ 1

2

=

∫ 1

2

ξ=− 1

2

dv(vν, µ+ 1

2

(ξ)) dξ, vν, µ+ 1

2

(ξ) :=
1

2
(vν, µ + vν,µ+1) + ξ∆vν, µ+ 1

2

By admissibility of the viscous flux, dv ≥ 0, the RHS of (5.3.3a) guarantees the

total entropy dissipation in the sense of satisfying (5.3.9).
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When the sum of potential and kinetic energy serves as a generalized entropy

function, U = (gh2 + u2h + v2h)/2, the corresponding entropy fluxes and entropy

variables are found in (5.2.6)and (5.2.7). We then explicitly compute the RHS of

(5.3.9) to obtain the following,

−ς
∑

ν, µ

[
1

∆x2

〈
∆vν+ 1

2
, µ, ĥν+ 1

2
, µ

∆dν+ 1

2
, µ

∆vν+ 1

2
, µ

∆vν+ 1

2
, µ

〉

+
1

∆y2

〈
∆vν, µ+ 1

2

, ĥν, µ+ 1

2

∆dν, µ+ 1

2

∆vν, µ+ 1

2

∆vν+ 1

2
, µ

〉]
∆x∆y

= − ς
∑

ν, µ

[
1

∆x2 ĥν+ 1

2
, µ

(
∆u2

ν+ 1

2
, µ

+ ∆v2
ν+ 1

2
, µ

)

+
1

∆y2 ĥν, µ+ 1

2

(
∆u2

ν, µ+ 1

2

+ ∆v2
ν, µ+ 1

2

)]
∆x∆y

The semi-discrete entropy/energy balance statement (5.3.5) now follows.2

Remark 5.3.2. It should be pointed out that even though the semi-discrete scheme

(5.3.3a)-(5.3.3c) conserves the sum of total potential and kinetic energy, the poten-

tial enstrophy 1
2
η2/h may increase considerably, especially for the flow over steep to-

pography, due to spurious energy cascade into smaller scales, consult [AL77, AL81].

Here, η is the absolute vorticity expressed as the sum of the relative vorticity ∂v
∂x

− ∂u
∂y

and the Coriolis parameter at that latitude, and the overbar (·) denotes a horizontal

average. After time integrations of sufficient length, a significant amount of energy

exists in the smallest resolvable scales, where truncation error is large. Under such

circumstances, the smoothness of numerical solutions highly depends on the grid

size.

As shown in [Ara97], a finite-difference Jacobian was designed to maintain

important integral constraints on the continuous Jacobian J(a, b) := axby − aybx.

81



Specifically, the absolute potential vorticity η/h and kinetic energy are conserved

in the discretization. When this discrete Jacobian is applied to the vorticity equa-

tion governing two dimensional incompressible inviscid flow, the total energy and

the absolute potential enstrophy in the discrete system shall be conserved. These

potential enstrophy and energy conserving schemes for the shallow water equations

make more sense for the problems in atmospheric sciences, in which flow over and

near mountains (steep topography) is governed during advective processes by the

conservation of absolute potential vorticity. See more details of these schemes in

[AL81].

In this dissertation, we are interested in extension of the entropy stable schemes

without artificial numerical viscosity in two dimensional problems. As I will show

you in the next section, we still obtain satisfying numerical solutions of two dimen-

sional shallow water equations with the choice of not very complicated topogra-

phy and relatively fine computational mesh in the absence of enstrophy-conserving

mechanism. It remains to be an open problem that our entropy/energy stable dis-

cretization can be incorporated with the enstrophy-conserving schemes.

5.3.2 Boundary condition

The numerical treatment of boundaries is intended to be as physically relevant

as possible. We describe two basic types of boundary conditions that are applicable

to the two dimensional shallow water problems: the first type simulates a boundary

at infinity or a transmissive boundary; the second type applies in the presence of
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solid fixed walls.

5.3.2.1 Transmissive boundaries

These are cases in which boundaries are supposed to be transparent in the

sense that waves are allowed to pass through. The inflow and outflow conditions

need to be described, hence the method of characteristics in two dimension fol-

lows. The local value of the Froude number Fr := V/
√
gH determines the flow

regime and, accordingly, the number of boundary conditions to apply. Here V and

H denote the characteristic velocity and length scales of the phenomenon, respec-

tively. For subcritical flow, two external boundary conditions are required at inflow

boundaries, whereas only one boundary condition is required at outflow boundaries.

Two dimensional supercritical flow requires three inflow boundary conditions and

no boundary condition at outflow boundaries where the flow is only influenced by

the information coming from the interior nodes.

5.3.2.2 Reflective boundaries

This is a particular case in which the flow is confined in a fixed field by the

solid walls. We simply impose the reflective boundary conditions. Since our testing

problems in next section are concern with the flow in a square basin, we consider

the solid boundaries along x and y-direction with the computational domain in the

lower-left corner without losing generality, as shown in Figure 5.3.2.2. By the three-

point stencil used in our semi-discrete scheme, we try to impose the value of one
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computational grid point added outside boundary.

Figure 5.3.1: Right-hand boundary

The reflection is incorporated by changing the sign of the normal component

of the velocity, while the water depth is unaltered. The values at all the (ν, N + 1)

points on the right-hand side of the wall are replaced by the values at interior (ν, N)

points and sign of the normal velocity component u is switched,

hν, N+1 = hν, N , uν, N+1 = −uν, N , vν, N+1 = vν, N ;

the values at all the (N+1, µ) points on the top of the wall are replaced by the values

at interior (N, µ) points and sign of the normal velocity component v is switched

hN+1, µ = hN, µ, uN+1, µ = uN, µ, vN+1, µ = −vN, µ;

the values at all the (N + 1, N + 1) point in the upper-right corner are given by

hν+1, N+1 = hν, µ, uν+1, N+1 = −uν, µ, vν+1, N+1 = −vν, µ.
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5.3.3 Time discretization

Similar to the time discretizations of the Burgers equation and one dimensional

Navier-Stokes equations, we integrate the entropy stable scheme (5.3.3a)-(5.3.3c)

with the explicit three-stage Runge-Kutta method (3.2.1) by its high-order accuracy,

large stability region and simplicity. Consult [GST01] for more detail of its strong

stability-preserving property.





u(1) = un + ∆tL(un)

u(2) =
3

4
un +

1

4
u(1) +

1

4
∆tL(u(1))

un+1 =
1

3
un +

2

3
u(2) +

2

3
∆tL(u(2))

where

[L(u)]ν, µ = − 1

∆x
(fν+ 1

2
, µ − fν− 1

2
, µ) − 1

∆y
(gν, µ+ 1

2

− gν, µ− 1

2

)

+
ς

∆x
(ĥν+ 1

2
, µ

dν+1, µ − dν, µ

∆x
− ĥν− 1

2
, µ

dν, µ − dν−1, µ

∆x
)

+
ς

∆y
(ĥν, µ+ 1

2

dν, µ+1 − dν, µ

∆x
− ĥν, µ− 1

2

dν, µ − dν, µ−1

∆x
). (5.3.10a)

5.4 Numerical experiments

We test our entropy-stable schemes with the two dimensional frictionless partial-

dam-break problem originally studied by Fennema and Chaudhry in [FC90]. It im-

poses computational difficulties due to the discontinuous initial conditions. It also

involves other computational issues like boundary treatments and positive-water-

depth preserving solver.

As shown in Figure 5.4, the simplified geometry of the problem consists of a
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Figure 5.4.1: Geometry configuration and initial setting of 2D Partial-Dam-Break

problem

1400× 1400 m2 basin with a idealized dam in the middle. Water is confined by the

fixed, solid, frictionless walls in this square basin. To prevent any damping by the

source terms, a frictionless, horizontal bottom is used. All walls are assumed to be

reflective. The initial water level of the dam is 10m and the tail water is 9.5m high.

The central part of the dam is assumed to fail instantaneously or the gate in the

middle of the dam is opened instantly. Water is released into the downstream side

through a breach 280m wide, located between y = 560 and y = 840, forming a wave

that propagates while spreading laterally. A negative wave propagates upstream

at the same time. For simplicity, the Coriolis force is ignored in the computation.

The acceleration due to gravity is taken to be 9.8m/s2. Although there is no

analytical reference solution for this test problem, but other numerical results of

similar problems are available in [FC90, CK04].

All the numerical tests are done by a C++ program run on P4 3.0 GHz
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computer. In the following figures, we display the numerical solutions for the fully

discrete scheme (5.3.10a)-(5.3.10a) with the numerical fluxes (5.3.3b)-(5.3.3c). The

sum of potential and kinetic energy serves as the generalized entropy function in the

design of our numerical schemes,

U(u) =
gh2 + u2h+ v2h

2
.

Uniform space and time grid sizes, ∆x = ∆y and ∆t are used. The computational

model is run for up to 50 s after the dam broke when the water waves haven’t reached

the boundaries. Both inviscid and viscous cases are explored. For the viscous cases,

the eddy viscosity is taken to be 10m2 · s−1. We use different spatial resolutions for

the same problem, and adjust time step according to the CFL condition. We group

our results into two sets.

1. Inviscid shallow water equations. The first two sets of six figures are devoted

to the two dimensional shallow water equations (5.1.1a) with zero eddy viscosity

ς = 0.

Firstly, we use a 50×50 cell square grid with ∆x = ∆y = 28m. Figure 5.4.2(a)

and 5.4.2(b) depict the perspective plots of water surface profiles at t = 25s and

t = 50s respectively. Figure 5.4.2(c) and 5.4.2(d) depict the contour lines of water

surface elevation at the same moments. The velocity field at time t = 50 s is shown

in Figure 5.4.2(e). In the perspective plots Figure 5.4.2(a) and 5.4.2(b), remnants

of the dam are represented by jumps near the middle of the plot. The vertical scale

is exaggerated with respect to the horizontal scales. In the velocity field Figure

5.4.2(e), the velocity is indicated by an arrow with the magnitude represented by
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the length of the arrow.

We see that the numerical solutions of the water depth in Figures 5.4.2(a)

and 5.4.2(b) successfully simulate both the circular shock water wave propagations

and the vortices formed on the both sides of the breach. The undershoots are also

developed near sharp corners of the remanent dam. These steep degressions in the

water surface are noticeable downstream of the breach at t = 50 s. Similar numerical

tests were done in [CK04] by the second-order central-upwind schemes, which were

originally proposed in [ST92]. Due to the absence of any dissipative mechanism

in the numerical schemes, dispersive errors of the numerical schemes, in the form

of spurious oscillations in the mesh scale, are noticeable near the breach. Figure

5.4.2(f) demonstrates the conservation of the total entropy.

We display the numerical solutions of the same problem in the refined spatial

mesh, taking ∆x = ∆y = 7m. Following the same pattern as Figure 5.4.2, Figure

5.4.3 presents the perspective plots and contour plots of water surface, velocity

fields, and total entropy conservation. The profiles of the water elevation in Figure

5.4.3(a) and 5.4.3(b) demonstrate smoother numerical solutions due to the decrease

of the grid size, while the spurious oscillations in the mesh scale are still detectable

near the breach because of the entropy-conservative shallow water solver with the

increase of the total enstrophy.

2 Viscous shallow water equations. We solve the shallow water equations

(5.1.1a) with the eddy viscosity ς = 10m2 · s−1. The results are summarized in

the next three sets of figures Figure 5.4.4, Figure 5.4.5 and Figure 5.4.6. We follow
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the same pattern of plotting the perspective plots and contour plots of water surface,

velocity fields, and total entropy. As before, both the coarse mesh (50×50) and the

fine mesh (100 × 100)/(200 × 200) are tested.

As shown in Figure 5.4.4(a) and 5.4.4(b), the presence of the eddy viscosity

causes the oscillations to be dramatically reduced around the breach. In addition

to eliminating the wiggles, the eddy viscosity terms also single out the undershoot

near sharp corners of the remanents of dam without damping it, see Figure 5.4.4(c)

and 5.4.4(d). The plot of the total entropy/energy in Figure 5.4.4(f) demonstrates

the total entropy/energy dissipation due to the presence of the eddy viscosity.

When the mesh is refined, Figure 5.4.5 shows that the solution is better

smoothed due to the decrease in the grid size. The amplitude of those wiggles

near the breach are significantly reduced though they are still detectable. Further

refinement of the mesh from (100× 100) to (200× 200) generates very smooth solu-

tions of the water depth h in Figure 5.4.6(a) and 5.4.6(b), when the oscillations are

limited in the very small mesh scale.
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Figure 5.4.2: Shallow water equations, ς = 0, Dam-Break, 1400 × 1400m2 basin,

reflective-slip boundary, ∆x = ∆y = 28m, ∆t = 0.2 s
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Figure 5.4.3: Shallow water equations, ς = 0, Dam-Break, 1400 × 1400m2 basin,

reflective-slip boundary, ∆x = ∆y = 14m, ∆t = 0.01 s
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Figure 5.4.4: Shallow water equations, ς = 10m2 · s−1, Dam-Break, 1400× 1400m2

basin, reflective-slip boundary, ∆x = ∆y = 28m, ∆t = 0.2 s
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Figure 5.4.5: Shallow water equations, ς = 10m2 · s−1, Dam-Break, 1400× 1400m2

basin, reflective-slip boundary, ∆x = ∆y = 14m, ∆t = 0.01 s
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Figure 5.4.6: Shallow water equations, ς = 10m2 · s−1, Dam-Break, 1400× 1400m2

basin, reflective-slip boundary, ∆x = ∆y = 7m, ∆t = 0.002 s
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[Ole63] O. A. Olĕınik. Discontinuous solutions of non-linear differential equa-
tions. Amer. Math. Soc. Transl. (2), 26:95–172, 1963.

[Roe81] P. L. Roe. Approximate Riemann solvers, parameter vectors, and differ-
ence schemes. J. Comput. Phys., 43(2):357–372, 1981.

[Sod78] Gary A. Sod. A survey of several finite difference methods for sys-
tems of nonlinear hyperbolic conservation laws. J. Computational Phys.,
27(1):1–31, 1978.

[ST92] Steven Schochet and Eitan Tadmor. The regularized Chapman-Enskog
expansion for scalar conservation laws. Arch. Rational Mech. Anal.,
119(2):95–107, 1992.

[Tad84a] Eitan Tadmor. Numerical viscosity and the entropy condition for con-
servative difference schemes. Math. Comp., 43(168):369–381, 1984.

[Tad84b] Eitan Tadmor. Skew-selfadjoint form for systems of conservation laws.
J. Math. Anal. Appl., 103(2):428–442, 1984.

[Tad86] Eitan Tadmor. Entropy conservative finite element schemes. In T. E.
Tezduyar and T.J.R. Hughes, editors, Numerical Methods for Compress-
ible Flows - Finite Difference Element and Volume Techniques, pages
149–158. Proc. winter annual meeting of the ASME AMD, AMD, 1986.

[Tad87] Eitan Tadmor. The numerical viscosity of entropy stable schemes for
systems of conservation laws. I. Math. Comp., 49(179):91–103, 1987.

97



[Tad03] Eitan Tadmor. Entropy stability theory for difference approximations of
nonlinear conservation laws and related time-dependent problems. Acta
Numer., 12:451–512, 2003.

[TT61] J. G. Trulio and K. R. Trigger. Numerical solution of one dimensional
hydrodynamical shock problem. UCRL Report 6522, 1961.

[TZ06] Eitan Tadmor and Weigang Zhong. Entropy stable approximations of
Navier-Stokes equations with no artificial numerical viscosity. J. Hyper-
bolic Differ. Equ., 3(3):529–559, 2006.

[TZ07] Eitan Tadmor and Weigang Zhong. Novel entropy stable schemes for
1d and 2d fluid equations. In Hyperbolic Problems: Theory, Numerics,
Applications, page in press. Proc. of 11th. Inte. Conf. on Hype. Prob.
Theo. Nume. Appl., Springer, 2007.

98


