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Many schools, states, and countries use scores from large-scale assessments in mak-

ing important high-stakes decisions in such areas as college admissions, academic perfor-

mance evaluations, and job promotions among others. These decisions rely on accurate,

reliable scores from which valid inferences about examinees can be assessed. However,

aberrant test-taking behaviors, including copying from other test-takers and practicing

with real items ahead of time, undermine the effectiveness of such assessments in yield-

ing accurate, precise information on an examinee’s performance. Also, with the wide

adoption of technology-enhanced online learning and testing system, especially as I am

writing my thesis while the outbreak of COVID-19 virus, it is critical to address an ex-

ample question like ”how to make the online-delivered tests more secure?” As a result,

investigating ways to identify potential cheaters after these assessments or batteries have

been taken and data collected is an important endeavor for the numerous administrators of



such assessments. The purpose of this line of research is to create, develop, investigate,

and test new approaches that will incorporate bio-information technology, such as eye-

tracking, into current machine-learning methods in the detection of cheating and other

aberrant testing behaviors in computer-based testing scenarios. In other words, cheating

detection for innovative large-scale assessments with big data techniques augmented by

bio-information technologies will be explored. The eye-tracking systems, in particular,

have the potential to capture cheating and other aberrant test-taking behaviors with visual

information gathered through the analysis of eye movement patterns (saccades, fixations,

pupil size). This type of data can be subtly gathered in real-time on test-takers as they

attempt to answer each assessment item. To assess the visual attention nuances across

test-takers, three negative binomial distribution-based visual fixation counts models will

be presented. Moreover, a joint-modeling approach of integrating product data (e.g., item

responses), process data (e.g., response times), and biometric information (visual fixation

counts) will be demonstrated. By joint modeling the three types of information, we can

assess test-takers’ performance in a comprehensive way. Finally, selected supervised and

unsupervised statistical learning methods will be explored for detecting different types of

responding behaviors.
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Chapter 1: Introduction

Over the last decade, the number of cheating-related test security events has grown

(Wollack & Fremer, 2013), especially on tests that aim to assess student achievement.

These incidents have become more discernible with the use of computer-based testing

(CBT), probably due to the high number of tests given, which could lead to higher rates

of item-exposure. Cheating behavior on educational and psychological tests has been

known to compromise the accuracy of results on assessments of student achievement

(Cizek & Wollack, 2017; Meijer & Sijtsma, 1995; W. J. van der Linden & Guo, 2008;

van Krimpen-Stoop & Meijer, 2001), and thus influence the inferences drawn from these

scores. These undesirable outcomes are exacerbated in high-stakes, competitive assess-

ment scenarios in which fraudulent test-taking behavior not only influences the scoring

of the deviant test-taker, but causes harm to other test-takers as these questionable scores

impact others scores with whom they are directly compared (Sinharay, 2017). Meijer

(1997) suggested that the existence of misfitting responses in test data could negatively

impact the reliability of test scores and validity of the inferences drawn from the scores on

these tests. Hendrawan, Glas, and Meijer (2005) also indicated that model data misfit due

to aberrant response patterns negatively impact item parameter estimation, which could

result in inaccurate latent ability estimates of examinees.
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In order to secure our exams from unethical test-taking behaviors like cheating, in

recent years, a number of statistical methods have been proposed for detecting different

types of test-taking behaviors. The Council of Chief State School Officers (CCSSO)

and Association of Test Publishers (ATP) have suggested the following guidelines for

searching for misconduct (see Table 1.1).

Table 1.1: General guidelines of data forensics Analysis

Data Forensics Analysis Types of Testing Irregularities

Unusual score gains or losses
(test-retake)

Coaching on actual test content,
”helping” during an examination

Eraser (answer changing) analysis
Changing answers by educators,
Inappropriate assistance
during testing

Similarity analysis (collusion)
Sharing answers during testing,
teachers helping before or during
testing, illicit use of stolen test questions

Person fit analysis (aberrant wrong
and right answer patterns)

Inconsistent response patterns
such as answering difficult
questions correctly while missing
easy questions

(Olson & Fremer, 2013)

Based on these guidelines, many statistical indices were created for detecting aber-

rant test-taking behaviors. Response similarity indices are used to evaluate the agreement

of two response vectors from two test takers, mainly focusing on flagging answer copy

cheating or collusion among individual test-takers. The representative indices are the K

index (Holland, 1996a), K1, K2, S1 indices (Sijtsma & Meijer, 1992; Sotaridona, van der

Linden, & Meijer, 2006a), Generalized Binomial index (W. J. van der Linden & Sotari-

dona, 2006) and the ω index (Wollack, 1997). Person-fit indices are computed to assess
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different response patterns of test-takers, which could also be used for detecting copy

cheating and other types of behaviors such as pre-knowledge cheating and item stealing

(e.g., Belov & Armstrong, 2010; Fox & Marianti, 2016; Sinharay, 2017). Eraser detection

indices (EDIs) are utilized to detect suspicious answer changing behaviors (e.g., Sinharay

& Johnson, 2017; Wollack & Cizek, 2016). Gain scores analysis (GSA) are more focused

on flagging teacher cheating. In other words, GSA is mainly used to catch the unexpected

test score fluctuations at the group level. Representative GSA methods include those

proposed by Bishop and Egan (2016) and Skorupski and Egan (2011).

1.1 Limitations of Previous Works

The use and effectiveness of many of those indices used for aberrant behavior de-

tection have been compared and reported in many studies (e.g. Karabatsos, 2003; Reise,

1990; Sinharay, 2017). Many of these methods have been found to be sensitive in detect-

ing different types of behaviors. However, despite nuanced successes of these methods to

detect aberrant testing behavior, they have a number of limitations. The detection power

of the previously introduced indexes and statistics are constrained by their correspond-

ing inputs, such as item responses or response times, without further considering other

information of the test taker. Also, many testing programs have transferred from conven-

tional paper-pencil tests to computer-based tests and testing environments in these years.

A wealth of test-taker related multimodal behavioral data (item responses, response times

and process information) are collected in real time during the administration of tests.

Yet, most of the previously mentioned indices have limited power to incorporate the high
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dimensional behavioral information into their functional forms. Furthermore, current de-

tection methods are isolated from each other on detecting different types of aberrant be-

haviors due to the nature of their designs. As a result, a unified platform for aggregating

the detection power of the most effective methods is lacking.

Some recent methodological investigations have attempted to address the afore-

mentioned limitations (e.g. Dai, 2013; Fox & Marianti, 2017a). Dai (2013) introduced a

mixture Rasch model to explore underlying latent groups by incorporating covariates, col-

lateral information, which could positively impact classification accuracy. Fox and Mari-

anti (2017a) proposed a person-fit test, which accounts for relations between item and

person characteristics by jointly modeling item responses and response times. Though

these methods are good examples of integrating auxiliary information for more accurate

classification of aberrant-behaved test takers from the normally-behaved group, they are

still deficient in a number of ways. First, incorporating high-dimensional input variables

with complex structures is challenging under current modeling frameworks. For exam-

ple, it is increasingly challenging for models to converge if many covariates are added

in the mixture model. Also, many of these variables could be nonlinearly-related to an

outcome of interest. Thus, ignoring such nonlinearities existing among all the covariates

may imply that the fitted linear model fails to accurately capture a systematic pattern be-

tween the outcome variable and a set of predictors (Huber, 1991). Secondly, the power

to detect aberrant behaviors based on these methods for item responses or response times

alone has been quite modest (e.g., Fox & Marianti, 2017a). Inclusion of essential behav-

ioral indicators has the potential for improving the power to detect aberrant test-taking

behaviors.
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1.2 Conceptual Framework for Current Study

In order to address the previous challenges, this study aims to create, develop, inves-

tigate, and test new approaches that would incorporate bio-information technology, such

as eye-tracking, into traditional psychometric models (e.g., IRT and RT models). Also,

the bio-information measures and other psychometric measures can be used as inputs for

various machine-learning methods in the detection of cheating and other aberrant testing

behaviors in computer-based testing scenarios. In other words, cheating detection on in-

novative large-scale assessments with big data techniques augmented by bio-information

technologies will be explored. Data mining algorithms, a class of methods for clustering

cases, can be a convenient methodological platform for detecting fraudulent test taking

behaviors that can overcome noted limitations of traditional methods. Sensitivity to de-

tect aberrant behavior can be potentially increased by incorporating not only process and

biometrical data as inputs into these algorithms, but also indices based on traditional ap-

proaches. Additionally, in contrast to applications involving traditional IRT based, and

RT based methods, data mining algorithms have the facility to examine both linear as

well as nonlinear relations among variables. Therefore, complex interactions between

background, psychometric, and biometric variables would be better approximated than

simply assuming linear relationships among them.

Eye-gaze pattern related variables recorded by an eye-tracking system, in particular,

will be incorporated into the data-mining platform as essential biometric indicators. The

eye-tracking system has the potential to capture cheating and other aberrant test-taking

behaviors with bio-information gathered through the analysis of eye movement patterns
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(e.g., saccades, fixations, pupil size). Such information in the context of large-scale as-

sessment testing scenarios may help address and answer some interesting questions such

as: (a) where does an examinee look and what does this information tell us about aberrant

testing behavior? (b) What information can be ignored? (c) When does blinking occur,

and what information does that convey about the examinees behavior? (d) How does the

pupil react to different stimuli? This type of bio-information can be subtly gathered in

real-time on test-takers as they answer assessment items in a CBT environment. Thus,

many supervised and unsupervised statistical learning methods will be explored in this

study by incorporating biometric information. Also, a new eye-gaze pattern based model

will be proposed. Moreover, the new model would be further jointly modeled with item

response model (IRT) and(or) response time models (RT).

Given the purpose of this research, several research questions to be addressed are:

1. Do differences exist in classification accuracy measured by sensitivity and speci-

ficity rates across the different data mining methods?

2. Which data source - item responses, response times, or eye-tracking data - is most

predictive of aberrant test taking behavior detection?

3. Do differences exist in classification accuracy of aberrant testing behaviors among

conventional standalone approaches and data mining methods? If differences exist,

can they be partially explained by incorporating both biometric and psychological

data?

6



1.3 Research Significance

This study explores the ways of incorporating biological information into tradi-

tional psychological methods by utilizing data-mining algorithms to better understand

test takers’ behaviors. This methodological work has the potential to aid administrators

of large scale assessments to ferret out aberrant behaving examinees, but can lead to fu-

ture research in the area of test security. Second, this study has the potential to create new

eye-tracking measure-oriented models and develop methods that may flag aberrances with

increased accuracy by incorporating biometric measures into current framework. An ad-

vantage of the newly proposed statistical methods is that they would not be solely based

on one source of information, such as item responses, but rather on multiple sources of

information about test-takers including data stemming from bio-information technologies

and integrating log file information. Ideally, all of this information could be the inputs to

be aggregated using highly efficient computational methods such as cloud computing in

the data-mining framework. Third, through the methodological investigations and analy-

ses using empirical data, the signal-to-noise ratio (SNR) could be increased, which means

greater and more accurate classification with high sensitivity to different aberrant testing

behaviors. Fourth, the performances of the different methods (e.g., item response based

person-fit analysis, response time based fraud detection methods, K-means clustering,

supported vector machine, random forest, finite mixture modeling, neural networks) in

detecting different types of aberrant behaviors such as pre-knowledge cheating and copy

cheating in terms of classification accuracy would be further manifested by this study.

Also, this study could edify the research community by comparing cheating behavior de-
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tection accuracy rate by incorporating both biometric and psychological information with

results from the traditional aberrant test-taking detection methods. Moreover, new mod-

els, such as gaze fixation counts based models or mixed effects models for jointly mod-

eling the eye-tracking data with traditional psychometric item response models would be

proposed. Additionally, some machine learning methods yield results that can be inter-

preted in a straightforward manner, which could then be communicated and perhaps for

easily understood by stakeholders. With high quality measures such as eye-tracking data

and indexes computed from the psychometric model, the rates of false negatives could be

better controlled.

Given these potential impacts on the enhancement of security of high-stake assess-

ment, this dissertation begins with an overview of the various methods on aberrant be-

havior detection, including traditional item response and response time based methods as

well as a set of data mining methods, followed by the introduction of eye-tracking tech-

nologies. Chapter 3 describes the detailed research design and the proposed methods.

Results from the current study are presented in Chapter 4. Implications, limitations, and

future directions of the present study are discussed in Chapter 5.
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Chapter 2: Literature Review

Chapter 2 begins with a brief overview of recent developments in test security.

Many item response and response time based detection methods along with their unique

features will be discussed. Next, this chapter introduces various data mining methods,

which could be utilized for test security purposes. In addition, different types of eye-

tracking measures will be introduced. Ultimately, jointly modeling distinct latent con-

structs and their potential applications for incorporating biometric information will be

reviewed.

2.1 Test Security

Maintaining the security and confidentiality of student tests in any assessment pro-

gram is critical for ensuring valid test scores and providing standard and equal testing

opportunities for all students. Cizek (1999) made 18 recommendations for ensuring test

security on large-scale educational achievement testing programs. His recommendations

centered on how to establish rigorous standards for test safety and administration proce-

dures (e.g., seal each test booklet, preventing test administrators from accessing the test

booklets prior to the test). These recommendations provide a concrete foundation for

further discussions on the problem of test security.
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According to Wollack and Fremer (2013), test security generally requires policies,

procedures, and guidelines involving the following characteristics:

1. Test safety should be guaranteed. Steps to ensure this might include the sealing of

individual test booklets prior to delivery and pre-inspecting examination locations.

2. Test administrations must be strict, meaning examination instructions and policies

must be made clear to all test takers.

3. Potential cheating behavior, before, during, and after test administrations should be

carefully monitored and prevented.

4. Test administrators should be provided training to appropriately proctor and report

potential cheating behaviors.

The ultimate purpose of establishing test security is to ensure test results that are

valid and accurate for assessing the performance of examinees.

Test security is vital to maintaining the fairness of the test for all test takers. With-

out test security, the validity and reliability of the test scores would be questioned for all

test takers, regardless of whether they engaged in cheating behaviors (e.g., Hendrawan et

al., 2005; Nering & Meijer, 1998). Insecure test environments also involve problems of

ethical issues. Test takers are more likely to cheat, especially in high-stake tests, when

the test is not secured (Wollack & Fremer, 2013). The insecure test can also negatively

impact the measurement classification validity (Hendrawan et al., 2005). Hendrawan et

al. (2005) indicated that some misfitting of response patterns caused by cheating behav-

iors, such as pre-knowledge cheating and cheating by copying answers could result in bi-
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ased estimates of item parameters. Sotaridona, van der Linden, and Meijer (2006b), who

conducted a similar study focusing on this issue, found that item difficulty and discrim-

ination parameters were consistently larger, and that standard errors of estimates were

larger when the cheating behavior occurred. Hendrawan et al. (2005) also showed that

the misfitting response patterns caused by cheating behavior lead to inaccurate mastery

classification decisions. These studies have shown that the validity and reliability of the

test results are sabotaged if test security is not maintained. Test security is not only about

pre-administration prevention and the detection of aberrant testing behaviors that occur

during the test itself, but this term also encompasses training professional and ethical ad-

ministrators and exam supervisors to implement the test. According to Caveons webinar

(Schoenig, Geraets, & Mulkey, 2016), test security has a conceptual framework. Be-

fore test administration, exam booklets should be acquired and distributed in a safe and

confidential way. During the test administration, supervisors should proctor examinees

closely and report aberrant behaviors honestly and promptly. At the completion of the as-

sessment, test materials should be managed appropriately and undisclosed for preventing

changing item responses. Wollack and Fremer (2013) described unethical behaviors by

overseers of test administration (teachers or exam supervisors) such as failing to report

violations and giving extra help during test administrations. Such actions could under-

mine ethical standards, which could have a corrupting influence on professional conduct

and damage institutional confidence in using test results to make high-stake decisions.

Therefore, maintaining test fairness is absolutely necessary for correctly interpreting test

scores and for preserving the integrity of the testing regimen that organizations rely upon

to make critical decisions.
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2.2 Statistical Methods for Identifying Aberrant Testing Behavior

In recent years, a number of statistical methods have been developed for detecting

different types of aberrant test-taking behaviors. The Council of Chief State School Of-

ficers (CCSSO) and Association of Test Publishers (ATP) have suggested the following

guidelines for searching for misconduct (see Table 1.1). Based on this guidance, specific

indices are suggested for detecting aberrant testing behavior that aligns to the different

testing environments.

2.2.1 Similarity Analysis (Collusion, Answer-Copy)

Detecting collusion and answer copying has become an essential issue in high-

stakes testing. In order to maintain the fairness of the test, many scholars are develop-

ing a variety of methods to detect and prevent answer copying and collusion behaviors

among test takers. Wollack (2011) indicated the following types of test collusion: (1)

illegal coaching by a teacher or test-prep school, (2) examinees accessing stolen test con-

tent posted on a study forum, (3) examinees copying answers from each other during an

exam, (4) examinees harvesting and sharing exam content using e-mail or internet, and (5)

teachers or administrator changing answers after the test has been administered. Based on

these behavioral features, many methods have been proposed to identify examinees who

engaged in colluded behavior (Bay, 1995; Belleza & Belleza, 1989; Cody, 1985; Frary,

Tideman, & Watts, 1977; Hanson, Harris, & Brennan, 1987; Holland, 1996b; Sotaridona

& Meijer, 2002a, 2003; Wollack, 1997).

In general, response similarity analysis attempts to calculate the likelihood of agree-
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ment between two response vectors (Zopluoglu, 2016). Some of these methods focus on

matching incorrect responses between two response vectors; some use both matched in-

correct and matched correct responses as evidence of collusion. The following section

provides a historical and technical overview of the methods used for detecting unusual

response similarities.

2.2.1.1 Identical Errors Analysis

Bird (1927) derived an empirical null distribution of the number of identical errors

by randomly pairing test takers across different locations. The distribution of the number

of identical errors for each pair was used as a norm for a specific test. To determine

who the cheaters were, a cut-off value of the mean plus one standard deviation of the

distribution was used. If the number of identical errors within any pair who were taking

the specific exam was larger than the cut-off value, they are flagged as cheaters for having

an unusual degree of agreement.

This method laid the foundation of many similarity analyses used in educational

testing. It can be easily implemented on a variety of tests in different formats. However,

its weakness is that it does not include a general index to flag cheaters, and the cut-off

value varies across different tests.

Many other scholars have tried different methods to improve this work (Angoff,

1974; Crawford, 1930; Dickenson, 1945; Saupe, 1960). These methods were based on

the idea of using empirical distributions and have been relatively under-researched. Zo-

pluoglu (2016) provided three reasons for this: (1) lack of access by researchers to a
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large-scale datasets, (2) limitations of computational power, and (3) null distributions

were exam-specific, and thus could not be generalized to other tests in a straightforward

manner.

2.2.1.2 Error Similarity Analysis

The error-similarity analysis index (Belleza & Belleza, 1989) based on tests using

multiple choice items was proposed for detecting test collusion by analyzing the proba-

bility of choosing the same series of incorrect alternative choices for every possible pair

of students. The index is defined as follows:

N!
k!(N−K)!

Pk(1−P)N−k, (2.1)

where P stands for the probability of any two students choosing the same wrong distractor

in a multiple choice question. This value was assumed to be 0.4 since it is not possible

to expect that all incorrect alternatives will have the same likelihood of being selected. N

signifies the total number of items in the test, while k is the number of items that received

the same incorrect answers.

The probability of choosing the same incorrect distractor by chance can be calcu-

lated for each pair of students. If there are S students, then the number of comparisons is

S(S−1)/2. The probability for each pair of students is used to determine the probability

of collusion behavior occurring by chance. When the sample size is large, the probability

of collusion could follow the normal distribution with mean of NP and standard deviation

of
√

NP(1−P). Test takers who have possible error-similarity scores above two standard

deviations from the mean on the distribution of error-similarity scores would be consid-
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ered people who had colluded. For example, the probability of two students choosing

the same wrong answer is assumed to be 0.4. The probability of choosing the same five

answers out of 10 wrong items is 10!/(5!5!)0.45(0.6)5 = 0.20065. By calculating all pos-

sible pairs, those who have high error-similarity scores that are two standard deviations

above the mean would be flagged.

This line of research has several limitations. First, the value of P is assumed and

fixed due to the reality that it is not possible to expect with equal likelihood that all

incorrect alternatives will be selected. Second, this procedure requires the use of the

binomial distribution in order to obtain valid results; the sample size, therefore, needs to

be sufficiently large. Third, the error-similarity scores are test-length dependent, making

it difficult to compare across tests with different number of items. All of these methods

are specifically designed for paper-pencil tests due to the limited computational power at

the time that the research was carried out. However, the advantage of this method is that it

is easy to understand and calculate, especially when a computer is available for analyzing

the data.

Based on this work and that of (Saupe, 1960), a series of indices were derived: K1,

K2, S (Holland, 1996b; Sotaridona & Meijer, 2002b). Instead of using a fixed value of

P (the probability of any two students choosing the same wrong distractor in a multiple

choice question), these other indices used linear, quadratic regression equations, or a log-

linear model, respectively to predict P.

15



2.2.1.3 Generalized Binomial Similarity

The previous reviewed studies only focused on identical incorrect answers. W. J. van der

Linden and Sotaridona (2006) proposed a generalized binomial test method that used

a compound binomial distribution for the number of identical incorrect and correct re-

sponses between any pair of examinees. The formula is as follows

PM−c =
O

∑
o=1

(Pico×Pjco), (2.2)

where PM−c denotes the probability of matching for the ith and jth examinees. The prob-

abilities of selecting the oth response alternative of the cth item for examinees i and j, are

Pico and Pjco , respectively.

The probability of observing m matches on C items between two-response vectors

is computed as

f m
C = ∑

(
C

∏
c=1

Pµc
M−c(1−P1−µc

Mc
)

)
, (2.3)

where µc is an indicator of whether or not a pair of examinees has the same responses to

item c. The summation is across all the possible combinations of n matches on C items.

The upper tail of this compound binomial distribution is used as the cut-off value to reflag

the people who have some degree of agreement.

For the methods previously described, the binomial distribution is the key com-

ponent to be utilized to flag people who are potentially copying from each other in the

similarity analysis. Usually, Type I error rate and power are utilized to evaluate the per-

formance of these proposed indices. The Type I error rate indicates the probability of an

honest test-taker being incorrectly detected as a cheater while power represents the proba-
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bility of accurately detecting pairs who colluded on the test. There some other variations,

such as the ω (Wollack, 1997) and K statistics, based on the generalized binomial test

method (W. J. van der Linden & Sotaridona, 2006). Based on a simulation study (Zoplu-

oglu & Davenport, 2012), the K index yielded high power on detecting copy cheating, and

is used by some large testing companies such as Educational Testing Service (ETS) and

the College Board. All of the proposed similarity analysis methods could be utilized on

paper-pencil, computer-based, and internet-based tests. For the computer adaptive testing,

there is a lack of literature discussing the similarity analysis methods on the copy-cheating

detection, which leaves opportunities for future research. In contrast to comparing item

responses from examinees to detect cheating behavior, some analyses have relied on the

error similarity analysis.

2.2.2 Gain Score Analysis

Cannell (1988) questioned the integrity of achievement gains being made across all

states on norm-referenced tests. He pointed out that achievement gains usually occurred

as a result of unethical teaching practices at the local level, which consequently obscured

test security measures at the higher level (Cannell, 1988). There is some security-related

research that followed Cannell’s report focused on casual factors analysis (e.g., Shepard,

1990; Stonehill, 1988). An example of causal factors analysis demonstrated how teaching

to the test could result in increased gains in standardized test scores (Shepard, 1990).

However, it took more than a decade to consider using statistical methods for detecting

unexpected score gains in the large-scale assessment (Bishop, Liassou, Bulut, & Seo,
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2011).

Jacob and Levitt (2003, 2004) proposed a method for using unexpected gain scores

to detect teacher cheating. They used a method that combined two indicators: (1) un-

expected test score fluctuation and (2) unusual student response patterns. The authors

applied a simple method by ranking the classroom-level gain scores and comparing the

rankings of all the classes across two time points. If scores of some classes increased

unexpectedly, the answer keys of students were checked. The presence of both indica-

tors suggested aberrant testing behavior, such as students receiving help during the test.

Consequently, both students and teacher would be flagged as cheaters. Other analyses

follow a similar idea of comparing the cumulative distribution function (CDF) of total

scores or scaled scores between two yearly assessment periods (Ho, 2008). If the differ-

ence between two CDFs from two years was large, or the high score range had a negative

difference, or the percentage of high scores in the second year had decreased relative to

the first year, then some unexpected gains between the two time points was indicated

(Ho, 2008). However, no universal cut-off value to be applied for these methods currently

exists and thus is rather subjectively applied.

2.2.3 Erasure (Answer Changing) Analysis

Qualls (2001) reported that students rarely erase their original responses. Primoli,

Liassou, Bishop, and Nhouyvanisvong (2011) found that erasures occur in roughly one

out of every 50 items. Additionally, other studies indicated that erasures occurred with in-

creased frequency on more difficult items and that test-takers with middle to high abilities
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were more likely to change their answers (Mroch, Lu, Huang, & Harris, 2014; Primoli

et al., 2011). Based on these studies, several methods were proposed for uncovering sus-

picious answer changing. However, the erasure analysis is more focused on the group

level, such as classrooms and schools instead of individual level (Primoli et al., 2011).

Individual-level behavior usually was checked by other kinds of analyses, such as simi-

larity analysis and person-fit analysis. In erasure analysis, wrong to right (WR) change is

frequently used for statistical modeling. The most straightforward analysis is the group-

level Z-test (Bishop et al., 2011). For example, WR counts for a specific class or a school

is tested against the state population mean. The group would be flagged if the test statistic

was larger than a critical value with certain significant level. Bishop et al. (2011) also

proposed a simple linear regression method that used the mean of the total class erases

(TE) as a predictor with and the mean of the class WR as the outcome variable. The

authors found this method could account for a substantial proportion of variance at the

group level. However, this method suffers from heteroscedastic behavior as conditional

WR variance increases as the TE sum increases (Bishop et al., 2011). In order to over-

come this problem, Poisson regression was used and resulted in a better fitting model. The

groups that have either linear regression or Poisson residuals greater than 1.96 were con-

sidered to be suspicious answer changing groups (Bishop et al., 2011). later this method

was extended to a hierarchical linear modeling framework that used a two-level random

intercepts model within schools and a two-level random slope model that regressed the

number of WRs on individual-level ET counts. They concluded that both models were

more appropriate and fit significantly better than the simple linear regression method.

Ninety-five percent confidence intervals were constructed for each schools slope and were
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flagged if the school interval did not cover the overall mean slope. Like a gain score anal-

ysis, an erasure analysis is a budding research area. Erasure analysis, however, is more

focused on identifying aberrant testing behavior of groups rather than of individuals.

2.2.4 Person Fit Analysis

Many person-fit indices have been created for detecting aberrant test-taking behav-

iors. Person-fit indices are computed to assess different response patterns of test-takers,

focusing on flagging copy-cheating and also on detecting other types of behaviors such

as pre-knowledge cheating and item stealing. The use and effectiveness of person-fit in-

dices used for copy-cheating detection is understudied compared to other analytic meth-

ods (Cizek & Wollack, 2017). However, some proposed person-fit indices have shown

a high degree of power to detect certain aberrant testing behaviors based on examinees

response patterns. For example, the HT index (Sijtsma & Meijer, 1992; Sinharay, 2018)

has been shown to be effective in detecting pre-knowledge cheating with high power. The

central premise behind most of the person-fit indices is to check whether or not a vector

of item responses is aligned with a person’s latent ability that is estimated from a specific

item response theory (IRT) model. Simply speaking, the probability of the reappearance

of a specific item response vector given the person’s latent-ability estimate from the IRT

model that we used is evaluated. Representative person-fit statistics used in different test-

ing environments are presented in the Table 2.1. There are two primary classifications of

these indices: parametric and nonparametric. Some of these methods will be subsequently

introduced.
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Table 2.1: Representative person fit indices

Rash model RT based

U (Wright & Stone, 1979)
PPMC Bayesian approach
(van der Linden & Guo, 2008)

W (Wright & Masters, 1982)
lt(Marianti, Fox, Avetisyan, Veldkamp,
and Tijmstra (2014)

2PL and 3PL Guttman-based index

lz (Drasgow, Levine and Williams,1985) G (Guttman, 1944)

l∗z (snijders, 2001) Agreement Index

ls (Sinharay, 2017) A (Kane & Brennan, 1980)

CAT Group-Based Index

K (Bradlow, Weiss, & Cho, 1998) rpbis (Donlan & Fischer, 1968)

T (van Krimpen-Stoop & Meijer, 2000)
Ht index (Sijtsma, 1988;Sijtsma
& Meijer, 1992)

2.2.4.1 Representative Parametric Indices

U Index. The U index is computed from performing a residual analysis from ap-

plying the Rasch model (Rasch, 1961) to a set of examinees item responses (Wright &

Stone, 1979). The Rasch model is the simplest of IRT models in that it is parameterized

by a single, difficulty parameter. As a consequence of this parsimoniously parameterized

model, analyses require relatively small sample sizes (i.e., the number of examinees) to

produce reasonable data-model fit (Linacre, 1994). Since residuals are at the heart of the

U index computation, the U statistic could alternatively be calculated using other IRT

models such as 2PL or 3PL models; however, the performance of U under these exten-

sions has not been thoroughly studied. The computation of the U person-fit index follows
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U =
I

∑
i=1

(
[Xi−Pi(θ)]

2

Pi(θ)[1−Pi(θ)]

)
, (2.4)

where Pi(θ) is the probability of correctly answering item i given the ability estimate, θ ,

Xi is the dichotomous response (0, 1) of item i for a specific person. This index follows

a Chi-square distribution with I degrees of freedom. Test-taking aberrances would be

flagged by a critical value of the distribution at a certain significance level (α).

There are other indices based on U that have been proposed in the literature, such

as the ZU , ZW and UB indices. These indices are either normalized versions of original

indices with different methods such as ZU and ZW or applied weighting strategies for

different items rather than treating them equally. Results from a comprehensive simula-

tion study (Karabatsos, 2003) showed that U performed better than ZU , ZW and UB in

detecting aberrant test-taking behavior of examinees.

Likelihood-Based Indices. The likelihood-based analysis of examinees response

patterns results in an index called l∗z (Snijders, 2001). The l∗z (Snijders, 2001) statistic

is the asymptotically correct standardized version of the lz statistic (Drasgow, Levine, &

Williams, 1985). Both of these statistics were based on the l∗z statistic defined as the

loglikelihood of the item level scores for a test taker

l =
I

∑
i=1

[Yi jlogPi(θ j)+(1−Yi)log(1−Pi(θ j)], (2.5)

where Yi j, a random variable, denotes test taker j′s response (0 or 1) to item i. And,

Pi(θ j) = P(Yi = 1) is the probability of a correct answer for test taker j on item i. Then
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the expected value of the loglikelihood and its variance can be computed as

E(L|θ) =
I

∑
i

{
Pi(θ j)log Pi(θ j)

1−Pi(θ j)
+ log(1−Pi(θ j))

}
, (2.6)

and,

Var(L|θ) =
I

∑
i

Pi(θ j)(1−Pi(θ j)

[
log Pi(θ j)

1−Pi(θ j)

]2

. (2.7)

In general, the l statistic indicates that how likely it is to capture person j’s response

pattern under a fitted IRT model. Using the l index as a starting point, Drasgow and

colleagues (1985) provided a standardized version of l index in the usual manner by

subtracting the expected value of the right hand expression in Equation 2.6 above and

dividing by its standard deviation.

lz =
l−E(L|θ)

σ(l|θ)
. (2.8)

The statistic in Equation 2.8 follows a standard normal distribution. In practice,

unknown θ would be replaced by an estimate, θ̂ . With this substitution, the value of lz

decreases with increasing degree of person misfit and large negative values of the index

(i.e., those smaller than -1.645 at the 5% significance level) are indicative of aberrant re-

sponse behavior. Although the sampling distribution is standard normal asymptotically,

one limitation to lz is that this index is not valid when true abilities are replaced by sample

ability estimates (W. Molenaar & Hoijtink, 1990; Reise, 1990). To correct this issue, (Sni-

jders, 2001) proposed a slight modification of the index to obtain the desired asymptotic

distribution with sample estimates of ability instead of the true (unknown) values and was

shown to work for different estimates of and under different IRT models (Magis, Rache,

& Bland, 2012). In essence, the revised index of l∗z (Snijders, 2001) modifies both the
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expectation function and the variance function in Equation 2.8 by taking into account the

sampling variability of θ̂ .

The l∗z index based on a 3PL model is computed as

l∗z =
l−E[l|θ ]√√√√

∑
I
i

{
ln
(

Pi(θ j)
1−Pi(θ j

)
− cI(θ j)ri(θ j))

}2

Pi(θ j)(1−Pi(θ j))

, (2.9)

where

cI(θ j) =

∑
I
i P′i (θ j)ln

[
Pi(θ j)

1−Pi(θ j)

]
∑

I
i P′i (θ j)ri(θ j)

, (2.10)

and,

ri(θ j) =
aiexp[ai(θ j−bi)]

ci + exp[ai(θ j−bi)]
, (2.11)

and where, Pi(θi) is the first derivative of Pi(θ j) with respect to θ j, and ai, bi, and ci

represent item discrimination, difficulty and pseudo-guessing parameters, respectively.

The l∗z statistic simplifies when a 1PL or 2PL IRT model is used instead. Additionally, the

l∗z statistic is still compared to a standard normal distribution to evaluate whether the test

taker is aberrant or not (see, e.g., Magis et al. (2012) for a useful flow chart for practical

implementation of l∗z ).

Person Response Function Analysis. Trabin and Weiss (1983) proposed the D

index by utilizing the person response function (PRF; Weiss, 1973) to identify misfitting

item-score patterns. The person response function is a non-increasing function of the

item difficulty parameter. The D index was intended to compare the difference between

the expected PRF function, based on a certain IRT model, and the observed PRF function.

A significant difference between the expected and observed PRF would be indicative of a

misfitting response for that examinee (Trabin & Weiss, 1983).
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The k items are ordered according to their difficulty parameters. Then, the k items

are assigned into S ordered subsets. Each subset contains m items, A1 = {1,2, ...,m},

A2 = {m+1, ...,2m},. . . ,As = {m+k−m+1, ...,k}. The expected PRF is constructed as

an estimate of the expected proportion of correct responses under a certain IRT model in

each subset, and is calculated as: m−1
∑g∈As Xg, s = 1,2, ..,S. The observed proportion is

computed as m−1
∑g∈A Xg, s = 1,2, ..,S. The difference between expected and observed

PRFs is then computed as Ds(θ̂) = m−1
∑g∈As[Xg−Pg(θ̂)], s = 1,2, . . .S. By taking sum-

mation across all the subsets, the D index is computed as

D(θ̂) =
S

∑
s=1

Ds(θ̂). (2.12)

Based on the simulation study conducted by Karabatsos (2003), when the cut-off value

of the D index is equal to 0.55, the detection rate is maximized. Meanwhile, Karabatsos

also indicated that the D index provides the best performance on pre-knowledge cheating

among all of the parametric IRT-based indices.

2.2.4.2 Representative Non-Parametric Indices

Non-parametric person-fit statistics are defined as those that do not depend on any

IRT model (implicit in this definition is the fact that an IRT model stems from a particular

distribution). There are several reasons why non-parametric PFSs are popular alterna-

tives to the more conventional parametric PFSs. First, non-parametric IRT-based indices

are relatively easy to compute since they do not reply on any parametric IRT model.

Computation of parametric person-fit indices involves maximum likelihood or Bayesian

estimation, which can be computationally demanding compared to their non-parametric
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counterparts, given characteristics of the testing situation. Second, nonparametric person-

fit indices yield relatively consistent results compared with parametric person-fit indices,

which often give different results depending on the kind of IRT model used. Several non-

parametric indices, such as the G index, the norm conformity index, and the group-based

index will now be presented.

Guttman Scale Index. The Guttman-based index (Guttman, 1944) or G index mea-

sures the degree of reasonableness of an examinee’s answers to a set of test items (Kara-

batsos, 2003; Meijer, 1994). It was the first nonparametric person-fit index developed for

detecting aberrant test-taking behavior. The way to flag test-taking aberrances is to count

the number of Guttman errors. Let Pm(m = 1, ..., I) denote the proportion of persons who

respond correctly to item m. Assume that there are I ordered items according to Pm in a

test such that Pm ≥ Pn (m = 1, ..., I−1;n = m+1, ..., I). Then, the G index is calculated

as

G =
I−1

∑
m=1

I

∑
n=m+1

Imn, (2.13)

where Imn is an indicator taking on the value of 1 if a person has a Guttman error on items

m and n (i.e., Imn = 1); otherwise, Imn = 0.

The G index excludes all of the item-score combinations (0,1), which are called

Guttman errors. A Guttman error means the examinee answered correctly on a relatively

difficult item m and answered incorrectly on an easier item n according to the Guttman

scale, which orders the items from hardest to easiest. The permitted item-score patterns

are (0,1),(0,0), and (1,1). Table 2.2 demonstrates the calculation process for six hypoth-

esized examinees.
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Table 2.2: Guttman scale and index calculation

Examinee
Item 1

(Hardest)
Item 2

(Moderate)
Item 3

(Easiest) Responses Pairs G

1 1 1 1 (1,1)(1,1)(1,1) 0+0+0

2 0 1 1 (0,1)(0,1)(1,1) 0+0+0

3 0 0 1 (0,0)(0,1)(1,1) 0+0+0

4 0 0 0 (0,0)(0,0)(0,0) 0+0+0

5 1 0 1 (1,0)(1,1)(0,1) 1+0+0

6 1 1 0 (1,1)(1,0)(1,0) 0+1+1

Guttman Scale based Norm Conformity Index. As its name suggests, the Norm

Conformity Index (NCI; Tatsuoka & Tatsuoka, 1983) measures the extent of conformity

or consistency of an individual test takers response pattern on a set of items and is defined

as

NCI = 1−
2∑

I−1
i=1 ∑

I
s=i+1 yi(1− ys)

r(I− r)
, (2.14)

where the realization of a test takers response (0 or 1) to item i is denoted as (i = 1, .., I)

across all items and all the items are ranked from low to high based on their difficulty

levels, in which item s is more difficult than item i. The numerator in Equation 2.14

represents the total number of Guttman conformal pairs, which only allow a test taker to

have two types of response pairs: (1) a relative easy item is answer correctly first and a

more difficult item is answered incorrectly later, which is denoted as (1, 0), or (2) a pair

of easy and hard items is answered correctly, which is denoted as (1, 1). Variable r is

the unweighted total score for a test taker (r < 1). More specifically, NCI measures the

proximity of the pattern to a baseline pattern in which all 0’s precede all 1’s when the

items are arranged in a pre-designated order (e.g., conforming to a Guttman scale)
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Non-Parametric Transposed Scalability Index. The HT index (Sijtsma, 1986; Si-

jtsma & Meijer, 1992) is a nonparametric statistic which is the transposed formulation of

the scalability coefficient, HT (Loevinger, 1948) for items. The HT index for person n is

defined for a complete rectangular dataset of dichotomously scored items where the rows

represent I test takers and columns denote the J items as,

HT (n) =

∑
J
m=1,m=n

([
∑

I
i=1 yniymi/(1− pn pm)

])

∑
J
m=1,m 6=n

(
min

[
pn(1− pm), pm(1− pn)

]) . (2.15)

where y (either 0 or 1) is the proportion of items answered correctly by test taker i, pm

denotes the proportion of items answered correctly by test taker m. The HT index is

the sum of the covariances between test taker n and the other test takers divided by the

maximum possible sum of those covariances. This constricts the range of allowable values

to be between -1 and 1. In scenarios in which the responses of test taker n are random, the

value of HT (n) will be close to zero. In a similar manner, responses that are positively

correlated with all other test takers would result in HT (n) taking on a positive value,

while HT (n) would take on negative values for the situation when test takers responses

are negatively correlated with other test takers. When the data are fit to the Rasch model,

HT (n) is expected to be somewhat positive (Sijtsma & Meijer, 1992).

2.2.4.3 Representative Response Time based Index

Although indices based on item responses have been shown to be somewhat ef-

fective in uncovering particular types of fraudulent testing behaviors, they do have some

limitations. Due to the simple structure of the item response sets, often comprised of
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0s and 1s, test takers could imitate normal testing behavior, thus reducing the ability of

these IRT-based methods to identify actual cheaters. This may be especially true for de-

tection of minor anomalies (e.g., cheating occurring on certain items) for which methods

that possess greater sensitivity are needed. Indices based on examinees response times

represent one such class of methods that use additional testing behavior of the examinees

above and beyond their response profiles. Models for response times (see, e.g., Thissen,

1983; van der Liden & Sotaridona, 2006) were introduced to examine the identification of

cheating behaviors differently than using IRT-based methods. One such method devised

by van der Linden & Guo (2008) proposed assessing aberrant behaviors by examining

response time-based residuals, which the authors defined as the difference between ac-

tual and predicted RTs of a test takers answers using a method of crossvalidation. More

recent, Marianti and colleagues (2014) suggested

lt =
J

∑
j=1

I

∑
i=1

log(Ti j)− (ζi− τ j)

σei

, (2.16)

where Ti j is the response time for test taker j on an item i, ζi is the time-intensity param-

eter that is the averaged population time required for answering that item, τ j is the speed-

iness parameter for each test taker, and ei j is the residual term of log response times. All

the parameters are estimated based on the RT model proposed by van der Linden (2006),

which is

log(Ti j) = ζi− τ j + ei j, ei j ∼ N(0,σ2). (2.17)

These methods—those using IRT modeling of item responses and those using re-

sponse time data—have been useful in detecting various aberrant testing behaviors with

varying degrees of success. However, these conventional methods of aberrant test tak-
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ing behavior detection have several limitations. One limitation of traditional methods is

that they are not well-equipped to integrate the vast amount of process data collected as

a natural byproduct of computer-based or computer-adaptive testing environments. Data

coming from log files as well as other test-taker characteristics are continually generated

and recorded at regular intervals during an assessment administration and may very well

communicate useful and diagnostic evidentiary information to help uncover patterns of

aberrant behaviors. Also, each method is used in isolation from one another. Treating

aberrant test-taking behavior detection in this manner does not exploit the potential ben-

efit that aggregating such information across methods might reveal.

2.2.5 Use of Data Mining Methods to Detect Test Fraud

Mining response data to identify clusters of respondents (e.g., such as those who

exhibit fraudulent test taking behavior) is not a new idea in assessment research. In their

paper detailing the facets of data mining, Romero, Gonzlez, Ventura, Del Jess, and Her-

rera (2009) explained that one must use a data mining strategy that is appropriate for the

type of data one wishes to identify, such as data mining to identify patterns of behaviors.

Their explanation indicates that data mining can facilitate the identification of cognitive

and behavior processes (Berkhin, 2006), and pertinent to the current study, aberrant test-

taking behaviors. According to Kerr and Chung (2012), identification of processes within

response patterns is typically done with clustering algorithms, which can be classified for

the purposes of the current study as either (1) unsupervised machine learning algorithms

or (2) supervised machine learning algorithms.
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Clustering algorithms represent a particular class of unsupervised learning algo-

rithms that will be the primary focus in this dissertation. Clustering algorithms are pro-

cesses that use observed similarities of densities in data to identify patterns and group

similar observations (Berkhin, 2006). Three unsupervised learning methods will be in-

vestigated: (1) K-Means clustering, (2) multivariate normal mixture models, and (3) self-

organization mapping. A category of supervised learning methods whose primary func-

tion is accurate classification will also be investigated. The approaches to be explored are:

(1) K-nearest neighbor (KNN), (2) random forests (RFs), and (3) support vector machine

(SVM). A description of each method is presented followed by some advantages and

disadvantages of each algorithm as they relate to aberrant test taking behavior detection.

2.2.5.1 Unsupervised Machine Learning Methods

K-Means clustering. Although there are several versions of the K-Means algo-

rithm, the current research advocates the version defined by Hartigan and Wong (2012),

which is generally accepted as the preferred K-Means algorithm (Berkhin, 2006; R Core

Team, 2014). K-Means clustering attempts to partition n observations into K clusters in

which each observation belongs to the cluster with the nearest mean. The algorithm be-

gins with a set of K potential centers which can be defined by the researcher or randomly

selected from the data. The choice of initial cluster centers leads to a deterministic par-

titioning of the space. In other words, K-Means will always return the same clustering

solution given the same initial cluster centers (e.g., Steinley, 1985). Since the cluster-

ing solution relies heavily on where the algorithm launches from, especially for small
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datasets (Lattin, Carroll, & Green, 2003), some have argued that the algorithm be run

multiple times from different starting values to ensure the efficacy of the classification

(e.g., Celebi, Kingravi, & Vela, 2013; Khan & Ahmad, 2004).

Once the centers are selected, the algorithm assigns all the test takers to their closest

centers and recalculates the new centers defined by these clusters. Distance is determined

by a user-specified similarity measure – often Euclidean distance or Manhattan distance

(Fossey, 2017). The algorithm goes through multiple iterations of checking each test

taker (e.g., response pattern) to see if it should be moved to a different cluster based

on the centers updated coordinates. If so, it changes the test takers cluster membership,

updates the centers coordinates, and continues to the next iteration until it converges on a

solution where no points are being switched between clusters.

K-Means clustering algorithm offers several main advantages and disadvantages on

aberrant behavior detection. Theses includes:

1. K-Means algorithm is easy to implement. It only requires practitioners to specify

number of clusters to initiate the algorithm. Usually, in test security investigation,

we are expecting to separate aberrantly behaved test takers from the normal popu-

lation. Thus, two underlying clusters could be reasonably assumed as the number

of initial clusters. However, it could also be a disadvantage if users have limited

information to determine number of clusters underlying the data.

2. K-Means algorithm could be computationally efficient with a high dimensional

dataset. The algorithm relies on a nonparametric distance measure to classify ob-

servations consuming less computational memory than other parametric methods,
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which requires estimation of model parameters (Hastie, Tibshirani, & Friedman,

2009). Recently, due to large volumes of process data generated during the com-

puter based testing, K-Means could potentially be useful to analyze high dimen-

sional data for flagging aberrant takers in real time. However, due to the nonpara-

metric nature, K-Means algorithm is sensitive to the initial cluster centers. Many

solutions have been proposed for dealing with this issue (Li, 2011). But, these

extensions could potentially sacrifice certain degree of computation efficiency.

Finite mixture modeling (FMM). Model-based clustering method that might be

useful in identifying aberrant test taking behaviors is finite mixture models, specifically

mixtures of multivariate distributions. Mixtures of multivariate distributions (Everitt,

1981; Titterington & Makov, 1985) have been applied to a wide range of statistical

methodology and take the general form

f (s j|ϕ,ξ ) =
K

∑
k=1

ϕk fk(s j|¸k), (2.18)

where a distribution f is a mixture of K component densities f1, ..., fK and s j is a p-

dimensional vector containing scores for individual j ( j = 1, . . . ,n) on a set of p ob-

served continuous random variables. Vector ϕ = (ϕ1,. . . ,ϕK−1)’ contains the mixing pro-

portions with the caveat that 0 ≤ ϕk ≤ 1 for all k = 1, . . . ,K with ∑
K
k=1 ξk = 1. Vec-

tor ξ ′ = (ξ
′
1,. . . ,ξ

′
K−1) contains all unknown parameters in all K subpopulations, where

ξ
′
k = (µ

′
k,vech(Σk)

′
. Operator vech(Σk) denotes a half-vectorization of a symmetric ma-

trix Σk by stacking only the lower triangular part of Σk. Following McLachlan, Peel, and

Bean (2003), the kth component density of a mixture of multivariate normal distributions
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is given by

fk(s j|ξk) = (2π)−p/2|(Σk|−1/2exp
{

1
2(s j−µk)

′Σk(s j−µk)

}
. (2.19)

One of the main advantages of using a finite mixture model is that an FMM would

manifest hidden clusters embedded in the streams of data by using a likelihood ratio

test (LRT: Cox & Hinkley, 1974) or information based model selection criteria such as

Akaike information criterion (AIC) and Bayesian information criterion (BIC: Anderson

& Burnham, 2002). Thus, it would be useful to explore subcategories of aberrant testing

behaviors rather than simply focusing on aberrant and normally behaved groups, which

could potentially provide more insights for practitioners to understand and investigate on

specific behavioral groupings. Also, by assuming a multivariate Gaussian density, FMM

could reflect the volume, shape and orientation of each cluster by estimating their corre-

sponding variance-covariance structures. This piece of information could be potentially

utilized for understanding characteristics of each identified cluster. For instance, if the fit-

ted Gaussian density contours of each cluster are relatively small and separate, this could

be a strong evidence of existence of different clusters. Just the opposite would occur if

the fitted density contours overlapped too much with each other, the final classification

would be doubtful for making final decision of number of clusters. Yet, FMM is sensitive

to violations of distributional assumptions and completely exploratory. If the observations

do not follow Gaussian distributions, the power of identifying underlying clusters could

be decreased.

Self-Organization mapping (SOM). The SOM algorithm (also known as a Koho-

nen Map) is an artificial neural network algorithm where multidimensional data is mapped
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to a set of k clusters (or nodes). One of the primary reasons SOM is popular is that the

clusters can be mapped to a two-dimensional grid that shows which clusters are similar

to each other. This is a valuable tool of visualizing data and validating clusters (Berkhin,

2006).

The SOM algorithm starts with a large learning rate coefficient, which is used to

shift the cluster centers for all clusters in a large neighborhood, surrounding the win-

ning clusters center, As time (iterations) progress, the neighborhood around each cluster

shrinks to zero so that nearby clusters are not modified when a cluster is updated, and

the clusters themselves are not changed as much by the presentation of new test takers

because the effect of these new test takers is weighted by a decreasing learning algorithm.

This is useful in situations where the researcher presents the same cases to the SOM net-

work over and over again to achieve a more stable estimate of cluster centers. The initial

cluster changes are large, with cluster centers being moved substantially by new test tak-

ers and by changes in neighboring clusters. As the algorithm runs through its iterations,

the learning rate coefficient and the size of the neighborhood shrink until eventually there

are only minute, fine-tuning changes to the winning clusters center (Bullinaria, 2004).

The size of the neighborhood and the rate of decrease can be set by the researcher.

The rate of decrease may be linear or nonlinear, and the neighborhood may exist for all

of the SOM iterations, or it may be defined so that the neighborhood radius shrinks to

zero after a set number of iterations have been completed. For example, in the default

settings of the som package (Yan, 2016) in R (R Core Team, 2017) statistical software,

the neighborhoods radius is chosen to be larger than 2/3 of the unit-to-unit distances for all

of the starting cluster centers. The som package then linearly decreases the radius of the
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neighborhood over 1/3 of the iterations chosen by the researcher (Wehrens & Buydens,

2007). If 2/3 of the starting cluster centers are 100 Euclidean distance units away from

each other, and the researcher specifies 300 iterations, then the radius of the neighborhood

will decrease by one unit at each of the first 100 iterations, after which only the winning

clusters center will be updated. Once the neighborhood radius diminishes to zero, clusters

near the winning cluster are no longer updated when cases are reassigned, and the SOM

algorithm solution is then identical to the logic used by the K-Means algorithm (Kohonen,

1982).

SOM has several benefits for fraudulent testing behavior detection. First, it dis-

plays complex high-dimensional topological relations of the cluster centers in a two-

dimensional grid, which could be easily visualized and interpreted for test security. Sec-

ond, SOM does not rely on any assumptions about the distributions of the data, and the

solutions are not heavily influenced by outliers (Wehrens & Buydens, 2007). This is be-

cause, unlike K-Means, SOM never calculates a cluster centers coordinates by taking the

mean coordinates of all the test takers assigned to the cluster. Instead, the cluster centers

are moved incrementally depending on the case considered at each iteration.

2.2.5.2 Supervised Machine Learning Methods

K-Nearest neighbor. K-nearest neighbor (KNN) is a nonparametric clustering ap-

proach representative of supervised learning algorithms and was first proposed by Fix

and Hodges (1951). KNN is a straightforward algorithm that attempts to classify new

samples (unlabeled observations) by allocating them to the class of the most similar la-
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beled cases by training the machine to learn a function thereby capturing the relation

between the labeled outcome variable and independent variables. The algorithm starts by

specifying the size of the neighborhood (K) of a data point by using a distance measure

such as Euclidean distance, Manhattan distance, Murkowski distance and Hamming dis-

tance. The choice of K has a significant effect on the KNN results. When K is small, the

classification decision would be less stable, and the boundary of separating the different

groups would be less linear (James, Witten, Hastie, & Tibshirani, 2013). As K increases,

the classification results would be more stable, and the classification boundary would be

more linear, which leads to low within-group variance but high classification bias (James

et al., 2013). However, this parameter could be tuned to optimize the classification results.

Also, K is usually an odd number. Once K is specified, the KNN classifier would identify

the K points, which are adjacent to a test observation (a new data point) in the training

dataset by computing the defined distance between them by looping through the entire

dataset. The conditional probability for the test observation belonging to a certain class

would then be estimated. Finally, the new data point would be allocated to the class with

the largest probability. The process would be continued until the last test observation is

assigned. Many R-based KNN packages have been created for running the KNN analysis

such as KernelKnn (Mouselimis, 2018), care package (Kuhn, 2017) and class package

(Ripley, 2018). In the current study, the knn function from the class package was selected

because, (1) this package is one of most well-accepted and tested packages for KNN algo-

rithms, and (2) it is also very user-friendly with detailed instructions and documentation

that appear in many data mining training websites.

KNN shares many similar advantages as K-Means algorithm, such as simplicity
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and flexibility. In addition, many studies have shown that the KNN method is effectively

robust to noisy training data if the training data set is large enough (e.g. Imandoust &

Bolandraftar, 2013; Weinberger & Saul, 2009). Therefore, KNN has the potential to

generate a stable mapping function, which could be utilized for making accurate and

steady classification by limiting the influence of potential outliers. However, it suffers

from its own limitations. KNN is sensitive to redundant and similar features, which could

reduce the classification accuracy (Qian, Yao, & Jia, 2009). In addition, the algorithm has

high computational cost if the training dataset is large due to calculating distance of each

query to all other inputs in the training dataset (Imandoust & Bolandraftar, 2013).

Random forests. A random forest (RF), a representative ensemble method pro-

posed by Breiman (2001), builds a set of classification and regression trees (CART) to

make predictions by aggregating predicted results from each classification tree. CART, a

nonparametric method, recursively segregates the feature space (an n-dimensional vector

space associated with all the predictors) into many small rectangular areas. The CART

algorithm splits predictors in a binary manner meaning each split in the tree-building pro-

cess only generates two sub-nodes from a parent node. In each sub-node, subjects sharing

more homogeneous properties are grouped together. This partitioning process, also called

impurity reduction, minimizes the difference between the averaged impurity in the sub-

nodes and the impurity in the parent node. Several entropy measures, such as the Gini

index, are used to measure the impurity in each sub-node. Each node would be contin-

ually split until some stopping conditions are achieved. Commonly used stopping rules

of the algorithm include (1) the minimum size of subjects left in a node, (2) a minimum

change in the impurity measure after a split, and (3) information criterion such as AIC or
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BIC. After a tree is built, a finalized classification of all the subjects would be predicted in

each terminal node. For the RF method, a set of CARTs is built instead of using a single

tree to make prediction. The rationale for this is that a classification prediction based on

a single tree would be unstable. For example, if the first splitting variable were chosen

differently, the predicted results would be potentially altered especially with a large num-

ber of predictors. Moreover, for the RF algorithm, a predictor at each node is randomly

selected from the entire feature space for splitting the trees.

In each step of the RF algorithm, either a bootstrap sample or a subset of the entire

dataset is randomly selected. Thus, by building a diverse set of tress serving as a voting

committee would yield more stable and unbiased classification prediction than using a

single tree. Voting here means the final prediction is achieved by averaging (weighted

or unweighted) the predicted result from each tree. Many other aggregated methods have

been developed such as Behavior Knowledge Space (BKS) Method (Y. S. Huang & Suen,

1995), Naive Bayes (NB) combination (Domingos & Pazzani, 1997) and Decision Tem-

plates (Kuncheva, Bezdek, & Duin, 2001). Choice of aggregation method notwithstand-

ing, the ensemble voting method would produce more accurate predictions than using

a single tree (e.g., Bauer & Kohavi, 1999; Breiman, 1998; Dietterich, 2000). The pre-

diction accuracy could also be checked by an index known as the out-of-bag error rate

(Breiman, 1996). Since each tree is built based on either a bootstrapped sample or ran-

domly formed subset of the original dataset, the samples are retained so that tree building

could be utilized for checking the prediction accuracy. The advantage of using an out-of-

bag error rate is that it is a relatively more conservative and precise estimate of the error

rate that is closer to the true classification in the population than the overly optimistic re-
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sult from the prediction by using the original dataset (e.g., Boulesteix, Strobl, Augustin,

& Daumer, 2008; Breiman, 1996). Many R packages have been created for implementing

RFs algorithms such as Rpart (Therneau, 2018) and tree (Ripley, 2018) and randomForest

(Breiman, 1996). In this study, randomForest is used for conducting the analysis.

RF algorithm has many advantages. Unlike other supervised learning methods, it

provides tree-based data representation, which can facilitate a visual understanding about

underlying characteristics of classified observations. In test security investigations, this

graphical representation could be further utilized for understanding the behavioral fea-

tures of aberrantly behaved test takers. Moreover, it also runs efficiently on large datasets

and provides the rank of importance of all the features. This piece of information could be

helpful to investigate the key factors of classifying aberrant test takers from normally be-

haved population with high efficiency. For instance, by applying RF algorithm, we could

examine momentary responding time to each question which may indicate suspicious

problem solving behaviorbehavior that may reflect a certain degree of pre-knowledge

of the items. Furthermore, the RF algorithm can handle higher order variable interac-

tions reflecting more realistic complex relations among the variables embedded in the

dataset. Though RF is one of the efficient supervised learning algorithms, some studies

have shown that RF can overfit its dataset if the stopping rules are not properly set (e.g.

Daz-Uriarte & De Andres, 2006; Segal, 2004).

Support vector machine. Support Vector Machine (SVM; Vapnik & Lerner, 1963

has gained popularity as a supervised kernel function based classification method used

in diverse scientific fields (e.g., Furey, Cristianini, Duffy, Bednarski, & Haussler, 2000;

Z. Huang, Chen, Hsu, Chen, & Wu, 2004; Meyer, Leisch, & Hornik, 2003). The SVM
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algorithm attempts to create an optimal separating boundary, a line, plane, or hyper-plane

by using a kernel function (linear or nonlinear) that divides the feature space (an n-

dimensional space for predictors) whose margins are maximal. In this regard, this bound-

ary is the best solution out of an infinite possible number of segregating boundaries. The

optimal separating boundary, also known as the maximal margin hyperplane, is formed

by maximizing the distance between all the training subjects and it. The maximal mar-

gin hyperplane is defined by computing the perpendicular distance from each subject to a

given separating boundary. The smallest such distance is called the margin. As its name

suggests, the maximal margin boundary is that separating hyperplane for which the mar-

gin is largest. The maximal margin here is also known as the hard margin, which means

all the training subjects perfectly lie on either side of the hyperplane without any mis-

classification. Once the maximal margin hyperplane is constructed based on a training

dataset, a new test subject could be classified later based on which side of a hyperplane

it is located. The hard margin plane, however, is quite sensitive to a change in a subjects

data, which may be due to over-fitting the training dataset. Thus, having a hyperplane that

does not perfectly separate all the cases is worthy of attention. Sometimes, this kind of

classification hyperplane is also referred to as the soft margin hyperplane, which is more

robust to the change of an individual subject. The general support vector classifier can be

represented as:

f (X) = b+∑
i∈S

αiK(xi,xi′), (2.20)

where K(xi,xi′) is a kernel function that quantifies the similarity of two observations;

S is the collection of indices of these support points, αi and b are parameters needing
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to be estimated. A simple binary classification example is introduced to help clarify

the hard and soft approaches. Suppose a set of n training subjects on p variables exists

x1, ...,xn ∈ Rn marked with the labels y1, ...,yn ∈ {−1,1}, is classified into two groups

by a linear high-dimensional hyper-plane defined as

yi(b+αi

n

∑
i=1

xi jxi′ j′) = 0. (2.21)

In order to find the maximal margin hyper-plane, the equation above is optimized based

on the constraint to maximize M, subject to

n

∑
i=1

α
2
i = 1, (2.22)

and

f (x) = b+∑
i∈S

αiK(xi,xi′)≥M; for all i = 1, . . . ,n, (2.23)

where M represents the margin of our hyper-plane. This is an example of the hard margin

case requiring each subject in the training set be on the right side of the hyper-plane with

at least an M margin. The soft margin case simply allows the optimization solution to be

extended by again,maximizing M, subject to

n

∑
i=1

α
2
i = 1,

f (X) = b+∑
i∈S

αiK(xi,xi′)≥M(1− εi),

εi ≥ 0 and ∑
i∈n

εi ≥C,

where C is a positive tuning parameter and determines the degree of tolerance of misclas-

sified subjects, which violates the margin. If C = 0, the softer margin would transfer to
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the hard margin case. The term, εi (i = 1, . . . ,n), could allow some subjects to be on the

incorrect side of the hyper-plane. For instance, if εi = 0 , then the ith observation is on

the incorrect side of the hyper-plane.

Among many advantages offered by SVM, one of the main benefits of using it is

that SVM has the flexibility to select different kernel functions to adequately address prac-

tical problems in different modeling scenarios. By applying a proper kernel to the specific

scenario, the performance of SVM could be dramatically improved. For example, poly-

nomial or nonlinear kernel functions may be used when the cluster labels and features are

nonlinearly related. Many kernels have been created for specific cases such as natural lan-

guage processing (e.g., string kernels), speech recognition (e.g., time-alignment kernels),

and image processing (e.g., histogram intersection kernel). SVM is a flexible platform for

identifying aberrances by incorporating more types of data into current detecting frame-

work. For example, writing strings and speech data would be jointly modeled with other

psychometric variables like item response and responding time by applying appropriate

kernel functions. However, to yield accurate results based on SVM, the tuning parameter

and the types of kernel function should be set properly. In this way, it is relatively harder

to be implemented compared with other supervised learning methods.

All the previously mentioned clustering algorithms are processes that use observed

similarities or densities in data to identity patterns or group similar observations (Berkhin,

2006). These data mining methods will be utilized to identify clusters of respondents

(e.g., such as those who exhibit fraudulent test-taking behaviors). The advantages and

disadvantages of applying each algorithm as they relate to aberrant test-taking detection

is presented in table 2.3.
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2.3 Incorporating Biometrics to Detect Aberrant Testing Behaviors

Many methods have been developed to detect various aberrant test-taking behav-

iors. Certainly, these methods have shown success flagging aberrant test takers. However,

these methods are potentially limited by their input data, which is either item response or

response times. To improve detection accuracy beyond the traditional modeling frame-

work, ways of incorporating real-time bio-metric information into traditional detection

methods will be introduced.

2.3.1 Insights into Problem-Solving Using Eye Tracking

Eye tracking as an essential biometric technology will provide unique insights when

assessing students cognitive processes during computerized problem-solving tasks. Eye

tracking also can record temporal and spatial human eye movements, which are a natu-

ral information source for proactive systems that analyze user behavior. Moreover, eye

tracking could also collect information about the location and duration of an eye fixation

within a specific area on a computer monitor and can be critical supplementary data used

in identifying cheating behaviors.

At its core, eye tracking is the measurement of eye activity. Capturing such infor-

mation in the context of large-scale assessment testing scenarios may help address and

answer some interesting questions related to aberrant testing behaviors detection such as:

(a) Where does an examinee look and what does this information tell us about aberrant

testing behavior? (b) When does blinking occur and what information does that convey

about the examinees behavior? (c) How does the pupil react to different stimuli? (d) What
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are the differences between the eye-gaze patterns of the normally behaved and aberrantly

behaved test takers? In contrast, item responses and response times can not provide info-

mation about the eye-gaze patterns.

Holmqvist et al. (2011) classified most eye tracking indicators into four groups:

eye movement, gaze position, numerosity, and latency. Movement indicators (e.g., sac-

cadic direction, saccadic length) reflect the properties of eye gaze paths such as direction,

amplitude, and velocity (e.g., Lee, Badler, & Badler, 2001; Motter & Belky, 1998; Pon-

soda, Scott, & Findlay, 1995; Tatler & Vincent, 2008). Position indicators (e.g., fixations,

dwells) address the question such as where a test taker looks. Numerosity indicators

(e.g., fixations, dwells, blink rate, and regression rate) quantify eye movement related

events in absolute numbers or proportional rates (Holmqvist et al., 2011). Latency indica-

tors are mostly related to reaction time, which catches the time from the on- or offset of a

stimuli/event to a specific reaction from our eyes (e.g. Born & Kerzel, 2008b; Shepherd,

Findlay, & Hockey, 1986). For example, after showing an item on the computer screen,

how soon does a test taker catch the first keyword? All these eye gaze indicators play

important roles in understanding and classifying different test taking behaviors.

Some important eye-tracking indicators will be discussed in details in the following

subsections

2.3.1.1 Fixation

In educational assessment and testing, eye fixation reflects the degree of the test-

takers attention on specific words embedded in the items. In the context of test-taking

46



behavior, fixation is a measure of the temporary eye stoppage at a word of an item or a

part of a graphical instruction when a test taker is solving a question. Several fixation-

related measures are frequently studied in the literature including fixation counts, fixation

rate, fixation duration, and fixation locations.

Many of these measures are used for assessing subjects′ information perception

abilities, such as reading and problem solving. For instance, in reading ability assessment

studies, Born and Kerzel (2008a) found that a reader’ fixation duration was expected to be

longer with more difficult and less frequent words compared with commonly used words.

Similar findings reported in usability studies. For instance, Born and Kerzel (1999) found

long fixation could indicate difficulty in extracting information for problem solving. Fur-

thermore, longer fixation also indicates relatively high level of content engagement, which

is also a reflection of high level of interest expressed by a student (Jacob & Levitt, 2003).

2.3.1.2 Pupil Diameter

Pupil diameter could be utilized to reflect the degree of fatigue, level of interest in a

particular learning content, and the amount of workload of the test takers involved a spe-

cific cognitive task. Many studies reported negative correlation between levels of fatigue

and pupil size (e.g. Lowenstein, 1962; Morad, Lemberg, & Dagan, 2000; Yoss, Moyer, &

Hollenhorst, 1970). For instance, Morad et al. (2000) found that measured pupillary diam-

eters differed significantly between fatigue (24 hours sleep deprivation) and clear-headed

groups, reacting to controlled visual stimulus. This difference indicates changes of pupil

diameter can be an objective measure of fatigue. Moreover, some studies have shown that
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emotional arousal could be an important factor modulating pupils reaction. For instance,

(Zubin & Steinhauer, 1983) found that pupil diameter was enlarged when pleasant and

unpleasant pictures were presented to the experimental participants. Furthermore, other

studies have demonstrated that pupil diameter can be a useful event-related measure of

cognitive load (Hess & Polt, 1964; van Gerven, Paas, van Merrinboer, & Schmidt, 2002).

This effect has been observed for tasks such as content comprehension (Just & Carpen-

ter, 1993), visual searching (Porter, Troscianko, & Gilchrist, 2007), and mental number

calculation (Hess, 1965).

2.3.1.3 Blinking

A seemingly involuntary function of the eye, blinking, is to keep the eyeball moist.

In addition, blinking is highly related to other cognitive functions, like reflex blinking.

Reflex blinks are the reactions to external stimulus for various purposes, such as protect-

ing our eye balls, or maximizing our attention on a subject. Blinking rates, a commonly

used measure of blinking, is defined as the number of blinks per given amount of time.

Studies have shown that blink rate is positively associated with the number of simul-

taneous tasks (Barbato, della Monica, Costanzo, & De Padova, 2012; Colzato, Slagter,

van den Wildenberg, & Hommel, 2009). In contrast, other studies found that people are

more likely to reduce their blink rates when performing visually demanding tasks. For ex-

ample, Benedetto et al. (2011) found that drivers′ blink rates decreases with higher visual

demand, which indicates reallocation of potential cognitive recourses. Also, Fairclough

and Venables (2006) reported similar findings. Blink rate negatively correlated with task
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engagement. Researchers found that this negative relationship may due to the fact that

people are more likely to reduce risk of missing key information during visually engaged

tasks (Drew, 1951; Kennard & Glaser, 1964).

2.3.1.4 Saccades

Saccades, an eye gaze movement measure highly is related to fixation, and reflect

the motion of the eyes from one fixation to another. The amplitude of the movement could

vary from small jumps from one word to another to wide-reaching searches made while

looking around a stadium. This measure could help to understand some general charac-

teristics of eye gaze paths, such as direction, length and dispersion. For instance, many

reading assessment studies (e.g., Kuperman & Van Dyke, 2011; Rayner & Liversedge,

2011) have shown that deficient readers have different eye gaze paths from efficient read-

ers. Their gaze paths are relatively shorter and more scattered compared with efficient

readers (VinuelaNavarro, Erichsen, Williams, & Woodhouse, 2017).

2.3.1.5 Regression

Regression refers to events that involve the motion of the eye in the opposite di-

rection to the text. It often reflects the events related to re-reading and answer checking.

Vitu (1991) classified regression into two types: long-range regression (LRR) and short-

range regression (SRR). LRR means the eye gaze moves oppositely over several words

or even sentences. SRR often refer to the short and rapid backward movements. Born

and Kerzel (2008a) indicated that the occurrence of long-range regressions might due to
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the fact that readers have missed, forgotten, or been unclear about what they have read.

For example, some studies (e.g., Blanchard & IranNejad, 1987; Booth & Weger, 2013;

Inhoff, Greenberg, Solomon, & Wang, 2009; Rayner, Murphy, Henderson, & Pollatsek,

1989) have shown that when items are less familiar, ambiguous or complex, the regres-

sion rate will increase in order to reinstate or reconfirm a cognitive effort. For SRR, some

studies have indicated that SRRs are highly related to how much effort or care a reader

devoted into a reading task. Coff and O’regan (1987), in their study, found that subjects

were more likely to have more SRRs in order to increase the accuracy of registering the

content information.

The relationship between these eye-tracking measures is shown in Figure 2.1.

Figure 2.1: Relationship between several representative indicators

2.3.2 Representative Ways to Integrate Process Data into Psychometric
Methods to Identify Aberrant Test Takers

Many testing programs have transferred from paper-pencil tests to computer-based

or computer adaptive testing, which allows for simultaneously collecting multimodal data

during the exam. The collected multimodel data includes three types. Product data are the
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outcomes of the assessment tests such as item responses or test scores. Process data reflect

the process of how a test taker form his/her final answer for an item/task such as response

time and movements of mouse cursor usually recorded in the log-file. Biometric data are

special cases of process data such as the eye-tracking indicator or heartbeats collected via

sensors.

To understand the relationship between the processed data (e.g., RTs) and the prod-

uct data (e.g., item responses), many methods have been proposed. These methods are

trying to incorporate process data into the traditional psychometric models such as the

Rasch model or 2PL IRT model, which are used for measuring latent abilities. In par-

ticular, RT has been used as ancillary information to better understand test takers′ per-

formance than solely modeling the item responses. Since biometric data serve the same

role as the RT, some representative methods of how to integrate RT into the traditional

psychometric methods would be introduced. These methods can provide insights of how

to incorporate biometric indicators later.

2.3.2.1 Incorporating RT as a Variable Into the Item Response Model

The simplest way to incorporate RT into traditional item response models is to add

RT as an individual variable. Many methods have been proposed to achieve this goal

(e.g., Luce, 1986; Roskam, 1997; Thissen, 1983; Verhelst, Verstralen, & Jansen, 2013)

Roskam′ model. Roskam, one of the pioneers, proposed a model to add log-

transferred RT as a single term into the IRT model. His model could reflect the trade-offs

between the amount of time a test taker spends and the difficulty level of a specific item.
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The model is defined as
Pi(θ j) =

1
1+ exp[−(θ j + lnTi j−bi)]

, (2.24)

where θ j is the person latent ability parameter, lnTi j is the log-transferred response time

term, and bi represents the item specific difficulty parameter. The difference, lnTi j−bi ,

shows the trade-off between how much time a person working on a particular item and

the difficulty level of that item. The interpretation of the difference lnTi j− bi could be

that a test taker would be more likely to spend more time on a harder question than an

easy one, and vice versa.

Thissen’ model. Another well-known attempt to incorporate RTs into the IRT

model is a method proposed by Thissen (1983). His model treated the log-transferred

RT as a dependent variable as opposite to an independent variable. The log-transferred

RT is regressed on a parameter structure, which is similar to the parameterization of the

two probability logistic (2PL) IRT model. The difference is that new terms are added to

reflect the working speed for a person j and item i respectively. The model is defined as

lnTi j = µ + τ j +βi−ρ(aiθ j−bi)+ εi j, εi j ∼ N(0,σ2), (2.25)

where µ represents the grand mean level of the population of test takers and test item

domain; βi and τ j are “slowness parameters” for item i and person j separately; and,

ρ is a regression coefficient that indicates the degree of association between the log-

transferred response times and the log odds of a correct response for the person j and the

item i. The log odds of a correct response is calculated based on the 2PL model, which

is parameterized as ai(θ j − bi). ai is the item discrimination parameter, bi is the item

difficulty parameter; θ j represents the person-side latent ability parameter.
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Later, Ferrando and Lorenzo-Seva (2007) extended Thissen’s model in Equation

2.25 to a new version in order to accommodate the special needs of personality assess-

ment. The updated model is given by

lnTi j = µ + τ j +βi−ρ(
√

ai(θ j−bi)+ εi j, εi j ∼ N(0,σ2) (2.26)

. The difference between the two models in Equations 2.25 and 2.26 is the param-

eterization of the item parameter structure. Instead of using ai(θ j − bi), Ferrando and

Lorenzo-Seva (2007) use a slightly different item parameter structure, which is defined as√
ai(θ j−bi). However, these two models both reflect the trade-off between the working

speed and responding accuracy. For example, for ρ larger than 0, the model given by

Equation 2.26 shows that test takers with higher abilities would use less time than those

who have relatively lower abilities, and vice vera.

2.3.2.2 Joint Modeling of Item Responses and Response Times

The previous section introduces several representative methods to directly add RT

as ancillary information into the IRT models. RT is either treated as an independent

variable or as a dependent variable. However, instead of treating RT as a covariate, RT

itself could be modeled to either manifest the different test takers′working speed or show

the corresponding characteristics of test items. The item features include responding time

required by an item and the discrimination power of an item . Therefore, by jointly

modeling RTs and item responses, the relationship between the working speed and the

responding accuracy could be further discussed either based on the person-side or the

item-side model parameters.
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To jointly model item responses and RTs, it is essential to have a model to fit the

item response time data properly. To achieve this purpose, many RT models have been

proposed to improve the model fit by applying various distributions such as the expo-

nential distribution, the log-normal distribution, the gamma distribution, and the Weibull

distribution (e.g., Maris, 1993; Roskam, 1997; Schnipke & Scrams, 1997; Thissen, 1983;

W. van der Linden, Scrams, & Schnipke, 1999). Among these proposed RT models, the

log-normal response time model proposed by van der Linden (2006) draws much atten-

tion among researchers due to the easy interpretation of the model parameters, which

follow the similar structure as the 2PL-IRT model. The log-normal RT model is defined

as follows

f (ti j,τ j,αi,βi) =
αi

ti j
√

2π

(
−1

2
[αi{ln ti j− (βi− τ j)}]2

)
, (2.27)

where the latent parameter, τ j ∈ ℜ, represents working speed for test-taker j. The item

parameter βi ∈ ℜ denotes time intensity, or simply, the amount of time required for an-

swering a specific item. the parameter αi ∈ ℜ is an item time discrimination parameter.

The mean value, ln ti j, is parameterized as µi j = β i− τ j.

In the following section, methods of jointly modeling of the RTs and item response

are introduced. The differences among these methods are based on the varying assump-

tions of how the item responses are related to the item response times.

Typically, two types of assumptions are made when jointly modeling the item re-

sponses and RTs. van der Linden (2007) assumes that the item responses and response

times are independent after conditioning on their corresponding higher level random ef-

fects, which are the person latent parameters and item parameters. In other words, by
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modeling the higher level random effects on the person and the item side separately, the

item responses and response times are independent of each other. This is the most appeal-

ing approach to jointly model the item responses and the response times, which is defined

as:  Yi j

logTi j

∼ N


θ j−bi

βi− τ j

 ,
1 0

0 σ2
i


 , (2.28)

where Yi j and logTi j are the item responses and the log-transferred response times of per-

son j on item i, respectively. θ j and τ j are the latent person parameters. bi and βi are the

item difficulty and item time intensity parameters, respectively. σ2
i is the time residual

variance of item i. The off-diagonals of the variance-covariance matrix are defined as

0s, which implies conditional independence of item responses and response times after

modeling the patterns existing in the data covered by the mean structures. Figure 2.2 vi-

sualizes the modeling framework under the first assumption.

The second assumption assumes that the existence of the conditional dependencies

(CDs) among the residuals of item responses and the log-transferred response times given

the person and the item structural relationships. This may be due to two sources of vari-

ations when students take their tests: (1) between-person variability across items, and (2)

within-person variability across items.

The between person variation reflects distinct test-takers’ responding behaviors. In

stead of assuming all the test takers are homogeneously responding on their tests. In other

words, all the test takers are normally behaved test takers, we assume that some test takers

are answering questions in aberrant ways such as cheating on their tests or responding
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Figure 2.2: conditional independence of item responses and response times
given latent ability and speediness: θ and τ are the latent ability and the
speediness; T ∗i are the log-transferred response times; εxi are the item re-
sponse residuals

carelessly due to their low motivation. Nevertheless, it is still assumed that each test taker

working on his/her test at a constant speed across all the items with a invariant cognitive

capacity. For example, D. Molenaar, Bolsinova, Rozsa, and De Boeck (2016) proposed

a mixture modeling approach to investigate the intraindividual variation in responses and

response times.

 Yi jk

logTi jk

∼ N


θ jk−bik

βik− τ jk

 ,
1 0

0 σ2
ik


 , (2.29)

where k indicates kth latent class. Yi jk and logTi jk are the item responses and the log-

transferred response times of person j on item i in latent class; and k, respectively; θ jk

and τ jk are the latent person parameters in latent class k. bik and βik are the item difficulty

and item time intensity parameters in kth latent class, separately. The σ2
ik is the time
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residual variance of item i in latent class k. Figure 2.3 is a schematic of this modeling

framework that depicts the relations between measured and latent variables..

Figure 2.3: a mixture modeling approach to investigate the intraindividual
variation in responses and response times: Ck indicates the kth latent class;
θ and τ are the latent ability and the speediness; T ∗i , i = 1, . . . , I are the log-
transferred response times; εxi , i = 1, . . . , I are the item response residuals

In contrast, the within-person variability across items indicates that a test taker

may change his working speed with variant cognitive capacity on answering different test

items. Simply put, the within-person variability refers to the fact that a test takerperfor-

mance may vary from one item to another. The within-person variability could be caused

by the following reasons, including (1) test fatigue (Ackerman & Kanfer, 2009; Acker-

man, Kanfer, Shapiro, Newton, & Beier, 2010); (2) motivation changes (Wise & Kong,

2005); (3) guessing behaviors (Slakter, 1968); and, (4) application of various problem-

solving strategies (van der Maas & Jansen, 2003).

One representative method to discuss the within-person variation would be the

method proposed by Meng, Tao, and Chang (2015). They assumed that item residual

and response time residual are correlated due to within-person variability. The model can
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be represented as:

 Yi j

logTi j

∼ N


θ j−bi

βi− τ j

 ,
 1

σ1,2 σ2
i


 , (2.30)

where σ1,2 indicates the covariance between the item residual and the response time resid-

ual. Figure 2.4 represents a path diagram of this modeling framework that shows the

relations between measured and latent variables.

Figure 2.4: A conditional joint modeling approach for locally dependent item
responses and response times

Thus far, several joint modeling approaches for item responses and response times

were introduced, which provides insights about how to incorporate biometric variables

into psychometric modeling frameworks. For instance, new models based on the gaze

fixation counts collected via an eye tracker could be proposed to reflect the degree of test

engagement when a test-taker solves a set of task questions. Also, the parametrization

used for modeling RTs give a demonstration of how to model other biometric variables,

which could show the individual differences and the item characteristics regarding the
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interested variables. Moreover, the introduced jointly modeling approaches of item re-

sponses and response times could be further extended to add other biometric variables,

which could provide comprehensive assessment about test takers′performance.

2.4 Future Directions and Challenges

Test security has been researched over the past several decades (Cizek, 1999).

Cheating and other kinds of aberrant test-taking behaviors raise concerns about the va-

lidity of decisions made based on the estimated examinees scores. In order to maintain

the fairness among all test-takers, it is important not only to flag improper behaviors but

to take actions against them. In order to better flag the behaviors with high accuracy,

statistical models would be based not only on one source of information, such as item

response. In the future, all sources of information, such as bio-information technologies

about test-takers, would be aggregated using highly efficient computational methods such

as cloud computing. Mislevy et al. (2016), in the Maryland Assessment Research Center

Conference (MARC), indicated new forms of assessments would involve psychometric

models, bio-information, machine learning, and data mining methods with a high effi-

ciency computation platform. Many methods based on ”big-data” are currently under

development. Man, Harring, and Sinharay (2019) and Thomas (2016) has applied sup-

port vector machine, a data-mining method, to pre-knowledge cheating detection. He and

von Davier (2015) proposed a statistical feature selection learning method by finding the

features from the process data for classifying different learning patterns. More kinds of

testing forms will appear, such as online testing and games-based testing. More novel
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item types, such as multi-part directional dependent items, will replace currently used

measures. Growth in learning will not be simply measured at several time points; it will

be monitored constantly over time. How to incorporate psychometric methods to main-

tain the validity of the inferences from an assessment is one of the biggest challenges and

directions for the future. Mueller, Zhang, and Ferrara (2016) summarized four challenges

that must be overcome in the next generation of test-security research. The first is deal-

ing with low signal-to- noise ratio (SNR). Aberrant test-taking behaviors do not always

indicate those behaviors that are harmful to the inferential claims (i.e., validity) of the

assessment, such as tiredness or creative responding. Finding ways to better classify with

high sensitivity is an important research direction to be studied. The second challenge is

in understanding effect sizes. How far can the data differ from the expectation and truly

be considered cheating? How could we transfer abstract metrics into more understand-

able ones? The third challenge is one that still haunts psychometrics and that is how to

explain and convey results to laypersons. Stakeholders have different interests and lev-

els of understanding of how aberrant test-taking behaviors affect their decisions. How to

present methods and results in a logical and comprehensible manner must be considered

and taken seriously. To this end, more data visualization methods need to be developed to

aide in this endeavor. The fourth challenge is how to incorporate justice into the decision-

making process. This would necessarily improve by advancing methods that increase the

accuracy of classification between aberrant and normal test-takers. As important in this

endeavor is controlling the rates of false negatives. By having more accurate measures

and more informative evidence, results from psychometric models could be incorporated

into this justice system.
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2.5 Conclusion

The present literature review has provided a focused overview of some aberrant

test-taking behavior detection methods, including unexpected score gain analysis, erasure

analysis, similarity analysis, person fit analysis, data mining methods and eye-tracking

measures. There remain many different shortages and limitations associated with the pro-

posed methods, primarily because real data analytic situations are often more complicated

and chaotic than models can predict. In 1976, George Box said, all models are wrong but

many may nonetheless be useful, especially when parsimonious. (p. 202). All the mod-

els or indices reviewed have their own advantages to help us understand the underlying

issues. Although none of the methods are perfect, they provide the foundation for im-

provements in each aspect of test security related issues to be made. Future research in

the field of large-scale testing will be both challenging and full of promise.
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Chapter 3: Methodology

In this chapter, the experimental design and the new methods for incorporating bio-

information and their usage for detecting aberrant behaviors will be introduced. First,

the experimental design for data collection will be illustrated. Next, three negative bino-

mial distribution-based visual fixation counts models will be presented. This model will

be used for assessing the visual attention differences among test-takers. Furthermore, a

jointly modeling approach of integrating product data, process data and biometric infor-

mation will be shown. By joint modeling the three types of information, we can assess

test-takers’ performance in a comprehensive way. Lastly, various data mining methods

will be used for classifying different types of test takers.

3.1 Experimental Design

3.1.1 Data Collection

In the proposed study, 298 students, who were over 18 years old were invited to

participate in the eye-tracking lab to take one of the required exams that would mimic the

taking of a high-stakes assessment. All the participants were enrolled through the UMD

Psychology SONA system to avoid any selection bias based on race, gender and major,
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etc. The SONA system is a specific online platform for enrolling participants for various

psychological studies. Also, only those participants were recruited who did not suffer

from blindness having either normal or corrected vision. All the enrolled participants

took an exam, which contained 20 multiple choice items from a high-stake test offered

by the ETS. Ten items were verbal reasoning questions, and ten items were quantitative

methods questions.

3.1.2 Experimental Conditions

There were three conditions in the proposed research design: (1) participants in

the control condition would not receive any test preparation materials, (2) participants re-

ceived questions that were similar to their exam, and (3) participants in the third condition

would receive similar exam questions and the answer key. Participants were randomly as-

signed into different experimental conditions in order to minimize targeted internal and

external experimental threats. The data from all three conditions were then combined to

allow the researcher to conduct blind statistical classification of examinees. Background

information including motivation, test anxiety, Big Five personality traits, morality, and

religiosity, for example, were also be collected. Most of the variables would be later

used as the input data for classifying different test taking behaviors. This study was fully

approved by the University of Maryland institutional review board (IRB).
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3.1.3 Data Recording

All the test items were clearly presented as slides, which were converted to a .pdf

file. Each slide only contained one item. Line space was at least doubled to accommodate

the eye-tracker’s accuracy level (0.5-1 degree of visual angle accuracy).

Test takers’ eye movements were recorded at 60 Hz with the Gazepoint eye-tracking

system. It was placed on a firm large table under a monitor (1024 by 768 resolution; 17-

inch LCD). The eye-tracker has 0.5-1 degree of visual angle accuracy. The recording

area was about 20-25 squares meters without windows to minimize direct and ambient

sunlight. The recording room was inside a suite with limited surrounding noise.

3.2 New Test Engagement Model Based on Visual Fixation Counts

To accurately classify different type of test takers, it is important to select an eye-

tracking variable indicating the degree of visual efforts a test taker puts on an item.

Among all the collected eye-tracking variables, eye fixation counts could be used to

understand the visual engagement when a test taker perform his/her test (e.g., Jacob &

Levitt, 2003; Poole, Ball, & Phillips, 2004). For example, in the human-computer inter-

action and usability study, Poole et al. (2004) indicated that increased gaze fixation counts

on an interested visual area show that it is more essential, more noticeable to the subject

than other visual areas. Similar results were reported by Justice and Lankford (2002) and

by Roy-Charland, Saint-Aubin, Klein, and Lawrence (2006). With this systematic rela-

tion between test engagement and visual fixation counts, a model measuring the cognitive

connection between test takers latent visual engagement and the observed visual fixation
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counts appears warranted. This model could potentially help to understand individual vi-

sual effort differences, which may prove to be an important feature in detecting aberrant

test takers from the normal behaved ones.

To model the relation between gaze fixation counts and test engagement, a negative

binomial fixation (NBF) model was proposed and fitted to real data gathered as part of an

experiment. A Bayesian estimation approach via Markov chain Monte Carlo (MCMC)

was used to estimate model parameters.

In this study, the negative binomial distribution was chosen as a link function for

modeling the visual fixation counts. Unlike the Poisson distribution for count data which

forces the variance to follow the mean, the negative binomial distribution allows for the

data to be overdispersed—variance is unequal to the mean. In addition, the negative bino-

mial distribution was sufficiently flexible so that, for example, the mean structure could

be parameterized in useful ways that incorporate latent person as well as item parameters.

Several structures for the latent person parameters was introduced that are parsimonious,

and unlike other studies (Fox & Marianti, 2016) that assume constant engagement levels

across items, accommodates systematic change across items reminiscent of the implied

mean structure in latent growth models.

3.2.1 The Negative Binomial Fixation Model

The NBF model was designed to reflect item quality and a test taker’s engagement

level with a number of items, i (i = 1, . . . , I), on an assessment. The proposed NBF model

follows a negative binomial distribution, which can be parameterized in various ways. A
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flexible, yet conventional, parameterization is to define the negative binomial distribution

as the number of failures (X) before the rth success in which the probability mass function

(pmf) is defined as:

P(X = x|s, p) =
Γ(x+ s)
x!Γ(s)

ps(1− p)x, (3.1)

where p is the probability of success in each Bernoulli trial (p ∈ [0,1]) and s > 0 denotes

the shape parameter. The expectation of the random variable X : E(X) = s(1− p)/p, and

the variance of X : Var(X) = s(1− p)/p2.

Instead of parameterizing the negative binomial distribution with regard to s and p,

a convenient parameterization utilizes the relation between p and the expectation of the

negative binomial distribution, µ . Through algebraic manipulation, parameter p can be

expressed as a combination of µ and s as

p =
s

s+µ
. (3.2)

In Equation 3.2, the mean µ of the negative binomial distribution can be further

decomposed into a structure that separates the latent person effect (ω j) and item parameter

effect (mi) as

µi j = exp(mi +ω j), (3.3)

where µi j = exp(mi−ω j)> 0; ω ∈ R; and m ∈ R.

In summary, the NBF model is expressed as:

P(xi j|si,mi,ω j) =
Γ(xi j + si)

xi j!Γ(si)

(
si

exp(mi +ω j)+ si

)si
(

exp(mi +ω j)

si + exp(mi +ω j)

)xi j

. (3.4)

Parameter mi is associated with the test and can be interpreted as the visual inten-

sity for item i. The presumption is that this parameter represents the amount of cognitive
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engagement a student tends to exert on a test. Person-specific parameter, ω j for each of

the J test takers ( j = 1, . . . ,J), denotes the overall test engagement level test taker j, and

is assumed, at least initially, to be constant across all the items. Furthermore, a discrim-

ination parameter, αi, for item i is defined as the inverse of σi, and σi =
√

µi·+µ2
i·/si.

Thus, αi reflects the overall dispersion of the fixation counts on item i. Larger values of

αi lead to steeper slopes of the pmf of the negative binomial distribution while smaller

values of αi correspond to shallower slopes. Thus, given any value of the engagement

intensity parameter mi, the difference (i.e., ∆ω) between any two values of engagement

level, say ω1 and ω2, from two test-takers would be larger indicating that the item is more

discriminating than an item having a smaller αi value.

To properly apply this model, several assumptions need to be satisfied. First, it is

assumed that fixations counts for each item solely reflect the different levels of visual

engagement as students perform their tests. For instance, by taking an average across

all the test takers, an item with more fixation counts would indicate a higher level of

visual effort required for solving that item than an item with fewer fixation counts. Also,

fixation counts are assumed independent of each other by conditioning on the latent test

engagement parameter (Ω). Furthermore, test engagement level (ω j) is assumed to be

constant across items. However, this assumption can be relaxed by parameterizing the

mean structure incoperating the linear or quadratic changes across items.

Figure 3.1 represents the fixation count model (constant test engagement across all

the tasks). Tests are solved in a sequential order from item 1 to item I. As is customary

with path diagrams from structural equation modeling, circles indicate latent variables, in

this case Ω, denoting latent engagement. The squares are measured indicators of the latent
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variable. In the case of Figure 3.1, these represent fixation counts collected at each item

point. Small arrows showing measurement errors are attached to the observed indicators.

To give some idea of the distribution of fixation counts, histograms for two items (i.e.,

item 1 and item 3) across test takers used in the upcoming example, with superimposed

normal densities are displayed in Figure 3.2.

Figure 3.1: A graphical representation of the negative binomial fixation model: The circle
indicates the latent variable in the model, while Ω stands for latent test engagement. The
squares represent the fixation counts collected at each item point, which are the indicators
to measure latent engagement. Small arrows showing measurement errors are attached to
the observed indicators.

3.2.2 Negative Binomial Fixation Model with Linear Trend

The NBF model shown in the previous section assumed constant engagement level

for individual test taker across all items. However, this assumption may be unrealistic

because it is likely that test takers may change their responding behaviors at different

stages of their tests Wise and Kong (2005). For instance, test takers may feel fatigue and

be careless towards end of their tests, or, they may start guessing more at end of a test due

to the time pressure to finish all the questions. Thus, a more flexible model is required

that would accommodate with the changes of test engagement.
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Figure 3.2: Two items with fitted fixation counts

An NBF model with flexible linear trend (NBF-LT) is proposed. The mean structure

displayed in Equation 3.5 is reparameterized by adding a test-specific trend indicator,

which takes on the same form as a latent growth model Bollen and Curran (2006),

µi j = exp(mi−XΩ j). (3.5)

In this parameterization, intercept and slope parameters are elements of vector, Ω j, where

Ω j = (ω0 j, ω1 j)
T is assumed to follow a bivariate normal distribution. That is

Ω j =

ω0 j

ω1 j

∼ N


0

0


 σ2

ω0
σω0ω1

σω1ω0 σ2
ω1


 . (3.6)

For test taker j, parameter ω0 j represents the initial engagement level at item 1

and parameter ω1 j is the slope parameter, which permits constant change in engagement

across the items for different test takers. The means of ω0 j and ω1 j are fixed to 0. Letting

the growth parameter means be zero can facilitate the interpretations of individual-specific

intercepts and slopes. For example, E[ω0 j] = 0 is the population expectation of initial
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engagement level and constrains 0 to be a reference starting level. Thus, the sign of

ω0 j indicates whether a person has greater or less initial engagement compared to the

reference level. By fixing the expectation of ω1 j to 0, the sign of ω1 j indicates whether

engagement is increasing or decreasing across items.

Elements of the I×2 design matrix X are formulated to correspond to linear growth

and are defined as

X =

1 1 1 · · · 1

I1 I2 I3 · · · II


T

, (3.7)

where all the test takers’ fixation counts are recorded for the same items, Ii. Usually,

I1, . . . , II take values corresponding to the sequence of answering the questions such as

1,2, . . . , I. Figure 3.3 shows a graphic of the NBF model with flexible linear trend.

Figure 3.3: A graphical representation of the negative binomial fixation model: The circle
indicates the latent variable in the model, while Ω stands for latent test engagement. The
squares represent the fixation counts collected at each item point, which are the indicators
to measure latent engagement. Small arrows showing measurement errors are attached to
the observed indicators.
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3.2.3 Negative Binomial Fixation Model with Quadratic Trend

To accommodate with curvilinear trends in engagement, the NBF-QT model was

proposed. This model extension can help capture nonlinearities in engagement while test-

takers perform their tests. The sign of the coefficient of the quadratic term indicates the

concavity (i.e., curve’s orientation) of the curve. A positive quadratic coefficient would

result in trends that are convex (i.e., open up). In contrast, a negative coefficient would

result in trends that are concave (i.e., opens downward). Accommodating this elaboration

can be done in a straightforward way by extending the mean structure of the NBF-LT

model in Equation 3.8. In the NBF-QT model, parameter vector, Ω j, now has three

elements with the inclusion of a quadratic parameter, Ω j = (ω0 j, ω1 j, ω2 j)
T . Clearly, Ω j

now follows a multivariate normal distribution as

Ω j =


ω0 j

ω1 j

ω2 j

∼ N




0

0

0

 ,


σ2

ω0

σω1ω0 σ2
ω1

σω2ω0 σω2ω1 σ2
ω2



 , (3.8)

with I×3 design matrix X is now defined to accommodate the quadratic growth parameter

as

X =


1 1 1 . . . 1

I1 I2 I3 . . . II

I2
1 I2

2 I2
3 . . . I2

I



T

(3.9)
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3.3 A Three-way Joint Modeling Approach of Item Response, Response
Time and Fixation Counts

Various ways of integrating process data have been introduced in Chapter 2. In-

spired by the works cited in Chapter 2, especially the work of van der linden (2007),

in this proposal, a trivariate joint modeling approach for item responses, RTs and fixa-

tion counts is proposed. This trivariate joint modeling approach delineates the trade-offs

among the responding accuracy, working speediness and visual test engagement. The pro-

posed joint modeling is an extension of the hierarchical modeling framework proposed by

W. J. van der Linden (2006a). In this joint modeling approach, the one-parameter logis-

tic (1-PL) model, the log-normal RT model and the NBF model are specified separately

at level one. The variance-covariance structure of the person and item parameters are

jointly estimated at level two. A Bayesian estimation approach is used to investigate the

proposed hierarchical model.

3.3.1 Measurement Models at Level 1

For item responses, a one-parameter logistic (1-PL) model (Lord, 1952) is used. 1-

PL model describes the relation between an item response of an examinee and one general

latent ability trait, which is formulated as

P(ui j = 1|θ j;bi) =
1

1+ e−D(θ j−bi)
(3.10)

where P(ui j = 1|θ j;bi) is the probability of a correct response to item i, i = 1, . . . , I by

person j, j = 1, . . . ,J; bi is the location parameter (the difficulty parameter) for item i,

and θ j is a general latent trait for person j. D is a scaling constant, which is fixed as 1.7.
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In addition to the 1-PL model, the log-normal RT model (W. J. van der Linden,

2006b) formulated in Equation 2.27 will be utilized to reflect the relationship between

the response times and latent working speed. Moreover, the NBF model formulated in

Equation 3.5 will be used to cover the association between the visual fixation counts and

the latent test visual engagement.

3.3.2 Modeling Item Domain and Person Domain models at Level 2

The second-level models incorporates two correlational structures to account for

the dependencies on both the item and person parameters, respectively.

3.3.2.1 Modeling Person Domain Parameters

In this joint modeling approach, the person domain covers three latent person-side

variables, which are latent ability θ , working speed τ , and visual engagement ω . The

relation among these three person-side latent variables for the population of test takers is

assumed to follow a multivariate normal distribution such that

Θp = (θ ,τ,ω)T ∼MV N(µp,Σp), (3.11)

with mean vector, µp = (µθ ,µτ ,µω)
′, and covariance matrix

Σp =


σ2

θ

σθτ σ2
τ

σθω στω σ2
ω

 . (3.12)

The parameters, σθ ,τ represent the linear dependencies between the latent ability

and the speediness of the test-taker. σθ ,ω represent the relation between the ability and the

73



test visual engagement of the test-taker. στ,ω represent the association between speediness

and the test visual engagement of the test-taker. The sign of the parameters estimates

indicate the trade-offs among all these latent variables. For instance, A negative value

of σθ ,τ indicates that test-takers who solve a task more quickly also have lower latent

ability (Bolsinova, De Boeck, & Tijmstra, 2017; De Boeck, Chen, & Davison, 2017;

W. J. van der Linden, 2006a).

3.3.2.2 Modeling Item Domain Parameters

To account for the item parameter dependencies in this joint modeling approach, a

multivariate normal distribution is defined for the item parameters, ΞI = (bi,βi,mi)
′, such

that

ΞI ∼MV N(µI,ΣI), (3.13)

where the mean vector and symmetric covariance matrix, µI and ΣI , are defined respec-

tively as µI = (µb,µβ ,µm)
′ and

ΣI =


σ2

b

σbβ σ2
β

σbω σβm σ2
m

 . (3.14)

These moments are a restrictive version of parameter vector ΞGI =(bi,βi,mi,αi,ζi)
′,

in which µGI = (µbi,µβi,µmi,µαi,µζi)
′ and
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ΣGI



σ2
b

σbβ σ2
β

σbm σβm σ2
m

σbα σβα σmα σ2
α

σbζ σβζ σmζ σαζ σ2
ζ


respectively. Restrictions are put on these item parameters such that the only parameters

to be estimated will be item location, time intensity, and item visual engagement intensity.

For instance, studies by Bolt and Lall (2003), Fox, Entink, and Avetisyan (2014), and

Wang and Nydick (2015) show that estimating the correlation among the item slopes, item

time discrimination, and item visual engagement discrimination could potentially lead to

model over-fitting. The estimation precision of person-side parameters would be reduced

due to the lower degrees of freedom induced by needlessly estimating these correlations.

Figure 3.3 displays the graphical representation of the trivariate jointing modeling of item

response, response time, and visual fixation counts.

The proposed trivariate joint model can help to integrate eye-tracking indicator (vi-

sual fixation) into traditional psychometric modeling framework. With this joint model-

ing framework, we could have a comprehensive picture of test takers’ cognitive processes

essential to understanding the underlying problem-solving process that is impossible to

assess from item responses alone. In addition, the current joint modeling approach can

be extended to incorporate other essential biometric indicators. Thus, the current joint

modeling approach serves as a elementary foundation for bridging biometric and psycho-

metric information.

75



Figure 3.4: Trivariate joint model approach of item response, response time, and visual

fixation counts

3.3.3 Model Parameter Estimation

In this study, Bayesian estimation of model parameters is implemented in Just An-

other Gibbs Sampler (JAGS; Plummer, 2015), which is housed in the R2jags package

(Su & Yajima, 2015). Convergence is assessed via the coda package. Two chains using

96,000 total iterations with thinning of 2 to alleviate auto-correlation among draws, were

executed. Model parameter estimates and standard deviations were summarized based on

the posterior densities using the final 4,000 iterations after burning-in 92,000. The po-

tential scale reduction factor (PSRF) was used for evaluating convergence for all model

parameters (Gelman, Carlin, Stern, & Rubin, 2003). For the current study, a PSRF value

of 1.1 or less for each model parameter was used as the arbiter indicating convergence.

Constraints for Modeling Identification
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To properly identify the scales of the latent variables, model constraints are needed

either on the item side (fixing the summation of item thresholds to zero) or the person-

side (fixing the expectation of the latent ability parameter to zero). In this study, the model

identification scales were fixed on the person-side by following the convention used for

IRT model estimation (Volodin & Adams, 1995; Wu, Adams, Wilson, & Haldane, 1998).

For the 1-PL model, the population mean of the latent ability, θ , was set to 0 (Lord,

1952), and, the item discrimination parameter for each item was fixed to unity. For the

log-normal RT model, the population mean of latent speediness, τ , was constrained to

0 as well (W. J. van der Linden, 2006c). For the NBF model, the mean of the latent

person-side visual engagement parameter Ω is also set to zero (Man & Harring, 2019).

µω = µθ = µτ = 0. (3.15)

Prior Distributions

The prior distribution of item parameters, ΞI referring to Equation 3.13, for the

proposed model is assumed to be trivariate normal. A Gamma distribution is assumed

for the time discrimination parameter [i.e., νi ∼ Gamma(1,1)]. This is the inverse of the

variances of the log-times on different items (σ2
ε ) based on the RT model: log(Ti j) ∼

N(βi− τ j,σ
2
ε ). In addition, the fixation dispersion parameter for each item [i.e., si ∼

IG(1,1), i = 1, ..., I] is assumed to follow an inverse Gamma distribution as well. Hyper-

priors are defined as

µd ∼ N(0,2), µβ ∼ N(4.0,2), µm ∼ N(0,1) ΣI ∼ IW (II,ν) ,

where II is an 3 by 3 identity matrix, and ν is the degree of freedom, which in this case is

equal to 3.
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Similarly, the prior specification for the person parameters, Θp refering to Equation

3.11, of the three-way joint model follows a trivariate normal distribution. And, the µI

fixed as 0s. And,

Σp =


σ2

θ

σθτ σ2
τ

σθω στω σ2
ω

∼ IW (IP,ν) .

The joint posterior probability for the proposed model can be represented as

p(Θp,ΞI|u, log(T),c) ∝

I

∏
i=1

J

∏
j=1

p(ui j, log(Ti j),ci j|Θ j,Ξi)p(Θ j|µp,Σp)p(Ξi|µI,ΣI)

p(µd)p(µβ )p(µm)p(ΣI|ν)p(µp|0,Σp)p(Σp|ν),

3.3.4 Evaluating Model-data Fit: Posterior Predictive Model Checking

In this study, posterior predictive model checking (PPMC) was used for evaluating

whether the proposed model adequately accounted for the variability existing in the data.

Specifically, PPMC was used to check our model-data fit (see, e.g., Gelman, Meng, &

Stern, 1996; Levy, 2009; Rubin, 1996; Sinharay, Johnson, & Stern, 2006).

Introduction of the Method

Let ψ=(ΘT
p ,Ξ

T
I )

T be the vector of parameters, we are interested in estimating, and

let y be the set of observed data (e,g., item responses, response times, and visual fixation

counts). Thus, the likelihood based on the conditional distribution of the data given model

parameters could be expressed as p(y|ψ), and the prior distributions of all the model

parameters could be denoted as p(ψ). By applying Bayes’ rule, the posterior distribution

for a given set of parameters could be expressed as

p(ψ|y)≡ p(y|ψ)p(ψ)∫
ψ

p(y|ψ)p(ψ)dψ
. (3.16)

78



To check the model-data fit by PPMC, predicted data are generated from the joint

posterior distribution. The generated replicated dataset is denoted as ypred
r for r = 1,

2,...,R; where R indicates the number of draws from the joint posterior distribution. The

distribution of predicted data, named as the posterior predictive distribution of predicted

data (see, Equation 3.16), could be utilized for checking the data model fit.

p(ypred|y) =
∫

p(ypred|ψ)p(ψ|y)dψ. (3.17)

Model fit is evaluated by comparing the differences between the predicted data

ypred
r for r = 1, 2,...,R, and the observed data, y. A small difference would be indicative

of satisfactory data-model fit. Instead of directly comparing the predicted data and the

observed data, a discrepancy measure, T (·), a function of data and model parameters, is

usually computed, which summarizes the data and the corresponding model parameters

(Gelman et al., 1996).

The model-data fit can be evaluated by comparing the difference between the T (ypred,ψ)

and T (y,ψ), which are calculated based on predicted and realized data, respectively. In

practice, a posterior predictive p-value (PPP-value) is defined as the probability of ob-

taining the predicted data that is more extreme than the observed data. The estimated

PPP-value is the proportion of T (ypred,ψ) equal to or larger than T (y,ψ) over the R

draws. A PPP-value close to 0 or 1 is indicative of poor model-data fit since the predicted

data ypred
r is more extreme than the observed data, y. The posterior predictive p-value

(PPP-value) is defined as

p = p(T (ypred,ψ)≥ T (y,ψ)) =
∫ ∫

IT (ypred ,ψ)≥T (y,ψ)p(ypred|ψ)p(ψ|y)dypreddψ,

(3.18)
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where I. is the indicator function. To compute the data-model fit for the proposed model

by applying the PPMC method, Sinharay et al. (2006) suggested the following three-step

procedure outlined in Patz and Junker (1999):

1. Draw the item parameter and person parameter estimates for the proposed model

from the posterior distribution (see, Equation 3.16).

2. Draw ypred from the proposed model given by Equation 3.17 based on the drawn

item parameter and person parameter estimates in step 1.

3. Compute the values of observed and predictive discrepancy measures (e.g., item-

fit statistics or descriptive statistics only based on data) from the above draws of

parameters and data set.

The data-model fit can be evaluated based on the computed PPP-values, which are given

by the Equation 3.18. Figure 3.4, a modification of a schematic presented by Sinharay et

al. (2006), graphically demonstrates the detailed procedure of using the PPMC method to

evaluate the data-model fit.

Discrepancy Measures for the Proposed Models

Three statistics will be introduced in this section. Those three statistics will be used

as different discrepancy measures, T (·), to evaluate the item by person-level date-model

fit for item responses, response times, and visual fixation counts, separately. Specifically,

the values of T (ypred,ψ) and T (y,ψ) will be calculated based on the predicted dataset and

observed dataset based on three statistics. Then, PPP-values will be calculated preferably

based on the discrepancies between T (ypred,ψ) and T (y,ψ) as Figure 2 demonstrated.

The three item-fit statistics are: (1) the W index (Wright & Stone, 1979); (2) the L index
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Figure 3.5: Graphical demonstration of posterior predictive model checking (PPMC)

Method.y, observed data; ypred, predicted data; ψ , model parameters; p(ψ), prior dis-

tributions of model parameters; p(ψ|y), posterior distributions of model parameters; T (.)

discrepancy measures.

(Marianti, Fox, Avetisyan, Veldkamp, & Tijmstra, 2014); and, newly proposed (3) M

index, which will be discussed in detail subsequently.

Item response based W statistic. The W index is computed from performing a

residual analysis from applying the Rasch model (Rasch, 1960) to a set of examinees’

item responses (Wright & Stone, 1979). As a consequence of this parsimoniously param-

eterized model, analyses require relatively small sample sizes (i.e., the number of exam-

inees) to produce reasonable data-model fit (Linacre & Wright, 1994). The computation

of the W index follows
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Wi j =
[Yi j−Pi(θ)]

2

Pi(θ)[1−Pi(θ)]
, (3.19)

where Pi(θ) is the probability of correctly answering item i given the ability estimate, θ ,

Yi j is the dichotomous response (0, 1) of item i for a specific person j.

RT-based L statistic. Marianti et al. (2014) suggested an RT-based item-fit statistic,

named the L statistic. Parameters used for calculating the L statistic are estimated based

on the RT model proposed by W. J. van der Linden (2006c). The L statistic is formulated

as

Li j =
[ln(ti j)−βi + τ j]

2

σ2
ei

, (3.20)

where ti j is the response time for test taker j on an item i, βi is the time-intensity parameter

that is the averaged population time required for answering that item, τ j is the speediness

parameter for each test taker, and σei is defined as 1/νi.

Visual fixations based M statistic. To evaluate the data model fit based on the vi-

sual fixation counts, a visual fixation counts based item-fit M statistic is proposed. The M

statistic is a residual-based model-fit measure, which is constructed from a summation of

the variance weighted squared residuals defined as the differences between the observed

outcome, ci j, and predicted value, E(ci j). (Cochran, 1952; Fox & Marianti, 2017b; ?).

The M statistic is formulated as

Mi j =
[ci j− exp(mi−ω j)]

2

σ2
i j

, (3.21)

where ci j is the visual fixation counts for test taker j on an item i, mi is the visual-intensity

parameter that is the averaged population visual efforts required for answering that item,
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mi is the individualized visual engagement parameter, and σ2
i j is the variance of the visual

fixation counts, which is defined as σ2
i j = exp(mi−ω j)+ exp(2(mi−ω j))/si.

Those three statistics were utilized as different discrepancy measures (see Figure

3.5), to calculate the PPP-values evaluating the item by person-level date-model fit for

item responses, response times, and visual fixation counts, respectively. Having a PPP-

values close to 0 based on a discrepancy measure would indicate problematic data-model

fit, and implies the proposed model fails to sufficiently regenerate the data (Sinharay et

al., 2006). In the results section, the item-wise data-model fit for the item responses,

response times, and visual fixation counts will be calculated by averaging over all the

persons’ PPP-values for each item, and the results will be reported.

3.4 Integration of Bio- and Psychometrical Infomation into Machine Learn-

ing Methods for Detecting Aberrant Behaviors

In this study, data mining algorithms introduced in Chapter 2, a class of methods

for clustering observations, will be a useful platform for combining various information

that can detect different types of aberrant behaviors. The sensitivity will be tested to

detect aberrant behavior will be potentially increased by incorporating not only process

and biometrical data as inputs into these algorithms, but also indices based on traditional

approaches. Additionally, in contrast to applications involving traditional IRT-based and

RT methods, data mining algorithms will be used to examine both linear and nonlinear

relations among variables, thereby increasing its flexibility to benefit from modeling inter-

actions between background, psychometric, and biometric data. To classify three types of
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test-takers mentioned in the section 3.1, different detection methods will be applied. Two

representative data mining methods: unsupervised (K-means clustering) and supervised

(random forest) learning methods will be investigated. In addition, an item response-

based person-fit index Ht and a response time based person-fit index lt will be calculated.

A real dataset will be analyzed to compare the various detection methods.

3.4.1 Data Normalization

Data normalization, also called feature scaling, is a process to transfer the range

of different independent variables or features onto a common scale. This process will be

performed for the supervised learning methods in this study (see, Vapnik 1963, for a dis-

cussion of the advantages for supervised learning methods). For traditional and unsuper-

vised learning methods, however, data normalization will not be performed because they

are either invariant to monotonic transformations of individual features or because they

can change the original characteristics of the data. Also, many traditional methods are

parameter model-based clustering methods, which do not rely on the geometric distance

measures for classification. Thus, it is not necessary to implement feature normalization

(e.g., Dubes & Jain, 1988; Hastie et al., 2009; Strobl, Malley, & Tutz, 2009).

Four types of scaling methods have drawn much attention in practical usage. These

are scaling by variance, mean normalization, scaling by minimum and maximum values,

and scaling to unit length (Fukunaga, 2013). In this study, variables were scaled by its

minimum and maximum values, implying that all independent variables will be scaled to

the range [0, 1]. An advantage of this type of scaling is that it can accommodate binary

item responses.
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3.4.2 Feature Selection

The purpose of the feature selection is to choose the essential featuers to improve

the overal classification accuracy. After data normalization, to best capture the hid-

den insights from the dataset, and make inferences from the model; a set of features{
x{1},x{2} . . . ,x{m}

}
, also called independent variables or attributes, will be selected from

the total number of potential input features
{

x{1},x{2} . . . ,x{M}
}

, where m < M . This is

essentially a filtering process (see discussion in John, 1994; Koller, 1996; Miller, 1990).

Implementing this selection process increases the interpretability of the model making it

becomes less complex and more parsimonious. In this study, two filtering methods will

be used as feature selection methods. These methods are: (1) Pearson correlation be-

tween any pair of input variables, and (2) the variable importance index (VII). VII works

by randomly permuting the values of a feature (input) variable, which brakes the origi-

nal relation between the variable and other variables. Then, the permuted feature is used

again with other unpermuted features for making predictions. If the prediction accuracy

decreases, the gap before and after the permutation on a specific variable, averaged across

all the trees, will be used as a measure of variable importance. Usually, the permutation

importance is calculated based on the out-of-bag (OOB) subjects, which are the samples

left behind for training the classification trees. The OOB samples can be utilized as a test

dataset for evaluating the prediction accuracy.

The VII for each tree t is defined as

V I(X j) =
1
nt

∑
nt

t (
̂errOOBt− errOOBt)

where the ̂errOOBt represents the classification errors based on the permuted OBB sam-
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ples for a specific tree t. errOOBt denotes the classification errors based on the OBB

sample without any permutations for the tree t. The VII for a feature is averaged impor-

tance score across all the trees built in the forest.

Based on the methods mentioned above, a set of variables that will be considered

in the analyses are listed in the Table 3.1.

Table 3.1: Input psychological and biological variables for data mining methods

Psychological variables Biological variables

Item responses Fixation duration (sec)
Item response times for each item Number of fixations
Total response time for the entire test Average time to 1st review (sec)

Self-reported motivation indicators
Averaged revisits (average number
of revisits made to the AOI)

Latent speediness Latent visual engagement levels
Efforts of test preparation indicators Revisit indicator to the AOI (0/1)
Ten-item personality inventory

3.4.3 Outcome Measures and Expected Results

Based on the methods mentioned above, a final set of variables will be selected

from results of the two feature selection methods. For each of the proposed methods,

a method-based classification of aberrant and non-aberrant test takers will be obtained.

Sensitivity and specificity will be used as outcome measures for evaluating the perfor-

mance of different methods. Sensitivity is defined here as the percentage of test takers

that are identified as aberrant and that are classified as aberrant by the particular method.

It will be calculated as 100× [T P/(T P+FP)]. TP stands for the true positive (i.e., TP

are those test takers correctly classified as aberrant) and FP stands for the false positive

(i.e., FP are those test takers incorrectly classified as non-aberrant). Specificity on the

other hand, is defined here as percentage of test takers that are identified as non-aberrant
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(normal) and that are classified as non-aberrant by the particular method. Again, speci-

ficity will be computed as 100× [T N/(T N +FN)]. TN stands for the true negative, and

FN stands for the false negative. As a mean of comparison of the performance of aberrant

test taking behavior detection, the sensitivity and specificity rates will be reported and

compared across the proposed methods.

3.5 Research Significance

First of all, this study will explore the ways of incorporating biological informa-

tion into traditional psychological methods by developing new models and utilizing data-

mining algorithms to better understand test takers behaviors. This work extends method-

ological work has the potential not only to aid administrators of large scale assessments to

ferret out aberrant behaving examinees, but also can lead to future research in the area of

test security. Second, this study has the potential to create and develop methods that may

very well flag aberrances with increased accuracy. An advantage of the newly proposed

statistical methods is that they would not be based solely on one source of information,

such as item responses, but rather on multiple sources of information about test-takers

including data stemming from bio-information technologies and integrating log file infor-

mation. Ideally, all of this information will be the inputs to be aggregated using highly

efficient computational methods such as cloud computing in the data-mining framework.

Third, through the methodological investigations and analyses using empirical data, the

signal-to-noise ratio (SNR) could be increased, which means greater and more accurate

classification with high sensitivity to detect different types of aberrant testing behaviors.
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Fourth, the performances of the different methods (e.g., item response based person-fit

analysis, response time based fraud detection methods, K-means clustering, random for-

est) in detecting different types of aberrant behaviors such as pre-knowledge cheating and

copy cheating in terms of classification accuracy will be further manifested by this study.
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Chapter 4: Results

In this chapter, the results of the study presented in Chapter 3 will be elaborated.

First, data visualization and exploratory data analysis (EDA) will be conducted. Then, the

results of three innovative eye-gaze fixation models are presented. In addition, a proposed

three-way factor model – jointly modeling item responses, RTs, and visual fixation counts

– will be fitted to the data in different experimental conditions. Therefore, the behavioral

pattern differences across various experimental conditions are assessed. Lastly, results

from implementing both unsupervised and supervised learning methods that classify types

of test-takers will be presented.

4.1 Summary Statistics of the Collected Data across conditions

A total of N = 335 university students who had normal or corrected vision were

recruited for the study. Students were asked to take a test consisting of I = 10 questions

related to verbal reasoning. The test material used for the current study followed the struc-

ture of a high-stakes credentialing exam. Data from subjects who did not complete the

designed tasks were excluded from the following analysis, leaving N = 298 participants

in the study. Table 4.1 lists the numbers of subjects in each condition.
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Table 4.1: Number of subjects in each condition

Condition 1 Condition 2 Condition 3

,Number of subjects 93 98 107

Note: Condition 1: participants in the control condition who did not receive any test preparation
materials. Condition 2: participants received items that were similar to their exam. Condition 3:
participants in the third condition would receive similar exam questions and the answer key.

The collected dataset includes 103 variables, which measure visual engagement,

working speed, responding accuracy, content revisits, test anxiety, and personality. The

variable names are listed in Table A.1 (see Appendix A). Table B.1 (see Appendix B)

shows the summary statistics of all the variables across the different experimental condi-

tions.

4.2 Data Visualization Across Different Experimental Conditions

Based on the descriptive statistics of the collected data, it is not hard to gain in-

sights about the group differences by comparing the means for each variable across three

experimental conditions. In order to have better understanding about the data and to

properly model it for accurate inferences, eventually, the collected data will be explored

by showing the bivariate scatterplots of the major variables, which are quite useful and

straightforward for interpreting tends and the associations among the key variables. All

the scatterplots were created based on the total scores for each individual, see Figure 4.1.

For instance, on the top left of Figure 4.1, the total scores were calculating by summing

up the 10 item scores. By visualizing the key variables, it is helpful to figure out the most

appropriate means for answering our research questions.
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Figure 4.1: Scatterplots of essential variables under condition 1. The
variable names showing in the matrix from the top left to the bottom
right are: total.score, total.gaze, total.time, total.revisits, total.anxiety.score,
WTAS.score, personality score. The distribution of each variable is listed on
the diagonal of the plot matrix. The bivariate scatterplots are listed on the
off-diagonal.

Figure 4.1 displays the scatterplots for the essential variables for assessing the be-

havioral patterns of test-takers in condition 1. For the first three panels showing the dis-

tributions, listed from the top left on the diagonal of the matrix, the total scores, total gaze

counts, and total response times are essentially normally distributed. These factors will

be jointly modeled to uncover associations among the latent constructs endorsed by these
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indicators. For other Likert-scaled indicators measuring test-anxiety and personality, al-

though the distributions look erratic, they will be used to as the input features for each

of the data mining methods. Because the data mining methods are non-parametric, they

depend less on the underlying distribution of the input features.

Figure 4.2: Scatterplots of essential variables under condition 2.

Figure 4.2 shows the scatterplots for the same set of variables demonstrated in Fig-

ure 4.1 for assessing test-takers behavioral patterns under condition 2. Focusing on the

distributions in the first three panels listed from the top left on the diagonal (total scores,

total gaze counts, and total responding times) their panel plots show bimodal and skewed
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distributions, which are different from the ones shown in condition 1. The bimodal distri-

bution may indicate a mix of two groups of test-takers with different test-taking strategies,

responding to the items in different ways. In addition, the total gaze and total response

time are skewed to the right, which means, on average, test-takers tend to spend a shorter

time finishing the items on their tests. For other Likert-scaled indicators measuring test-

anxiety and personality, the distributions became more skewed and peaked compared than

the ones demonstrated in Figure 4.1.

Figure 4.3: Scatterplots of essential variables under condition 3.
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Figure 4.3 demonstrates test-takers behavioral patterns under condition 3. In gen-

eral, all the distributions listed on the diagonal are relatively more skewed with less vari-

ability. Looking at the first three panels listed from the top left, their distributions are very

skewed with high peaks, which indicate the responding behavioral patterns of test-takers

under condition 3 are dramatically different from test-takers in the other conditions. The

results show that test-takers in this group correctly answered the items more rapidly with

less visual attention. Also, all the test-takers in condition 3 behaved more alike.

4.3 Negative Binomial Visual Fixation Models

In this section, visual fixation, an essential eye-tracking indicator, is modeled to

reflect the degree of test engagement when a test taker solves a set of questions. Three

negative binomial models demonstrated in Chapter 3 were evaluated for modeling visual

fixation counts produced by test takers answering questions. The three models are: 1) neg-

ative binomial fixation model (NBFM); 2) negative binomial fixation model with linear

trend (NBFM-LT); and, negative binomial fixation model with quadratic trend (NBFM-

QT).

4.3.1 Item Parameter Estimates

Table 4.2 illustrates the parameter estimates of 10 items over the three proposed

models. The item parameter estimates reflecting the visual intensity, m̂, varied from 3.113

to 5.419. Item 1 was the least engagement-intensive item (m̂ = 3.194). In contrast, item

10 demanded the most visual effort from test-takers (m̂ = 5.407). One thing to note is
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that the item visual intensities were higher for the last three items. This confirmed our

presumptions in light of the fact that the last three questions were reading comprehension

questions, which required more visual effort for test-takers. Also, the results indicated

that item 1 was the most discriminating item on the test. The results were consistent

across the three proposed models.

Table 4.2: Item parameter estimates

Model NBFM NBFM-LT NBFM-QT

Item m α m α m α

1 3.194(.029) 0.187(.010) 3.113(.053) 0.187(.010) 3.209(.023) 0.186(.010)
2 3.829(.024) 0.137(.007) 3.745(.051) 0.136(.008) 3.841(.017) 0.138(.007)
3 3.792(.027) 0.113(.009) 3.708(.052) 0.114(.010) 3.803(.022) 0.111(.009)
4 4.264(.044) 0.036(.003) 4.180(.062) 0.037(.003) 4.276(.040) 0.036(.003)
5 4.744(.022) 0.068(.007) 4.660(.050) 0.066(.007) 4.755(.015) 0.069(.006)
6 4.417(.032) 0.045(.004) 4.334(.055) 0.046(.004) 4.428(.028) 0.044(.004)
7 3.990(.035) 0.064(.005) 3.907(.056) 0.063(.005) 4.001(.029) 0.065(.005)
8 5.255(.020) 0.054(.006) 5.172(.049) 0.052(.006) 5.267(.115) 0.057(.005)
9 5.248(.025) 0.030(.003) 5.165(.051) 0.031(.003) 5.259(.018) 0.030(.002)
10 5.407(.020) 0.050(.005) 5.324(.049) 0.050(.006) 5.419(.012) 0.046(.004)

Note: NBFM: negative binomial fixations model; NBFM-LT: negative binomial fixations model
with linear trend; NBFM-QT: negative binomial fixations model with quadratic trend. m: visual
intensity parameter showing how much visual effort required for answering an item. α: visual
discrimination parameter.

4.3.2 Person Parameter Estimates

Table 4.3 presents the estimated variance-covariance matrix of person parameters

of the three proposed models. In general, overall small variability was seen in random

test takers engagement. The variance of the test engagement fitted with the NBF model

was 0.029 (SD = 0.004), which indicates a noteworthy contrast in individuals degrees

of test engagement. Figure 4.4 displays the constant test engagement for each test-taker

across the 10 items. For the NBF-LT model, the variability of the initial test engagement

was 0.086 (SD = 0.03), and the variance of the slopes of test engagement was 0.017 (SD

= 0.003). Moreover, the estimate of covariance between the initial test engagement and
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the slope parameters based on the NBF-LT model was negative, which was -0.016 (SD =

0.006, Cor.= -0.418). This result shows that test takers who were highly engaged initially

also exhibited increase in engagement with a lower growth rate than those whose initial

engagement levels were lower as demonstrated in Figure 4.5. For the NBF-QT model, the

variance of the initial test engagement was 0.053 (SD = 0.08), the variance of the slope

was 0.003 (SD = 0.002), and the quadratic term variance was 0.0003 (SD = 0.0002).

However, the fitted quadratic term was negligible. The individual engagement non-linear

trajectories were presented in Figure 4.6.

Table 4.3: Variance covariance estimates

Model NBFM NBFM-LT NBFM-QT

Par. Means(SD) Means(SD) Means(SD) Means(SD) Means(SD) Means(SD)

ω0 .029(.004) .086(.03) .053(.008)
ω1 -.016 (.006) .017(.003) 0 .003(.002)
ω2 0 0 .0003(.0002)

In summary, three negative binomial distribution-based fixations models were pro-

posed. The first model named as NBF model was defined by assuming constant engage-

ment levels across all the items. A slope term and a quadratic term were added to the first

model as two extensions. The NBF-LT model and the NBF-QR model used a parsimo-

nious parameterization of the mean structure to capture changes in engagement exhibiting

either linear or nonlinear trends. Results revealed measurement quantities and individual

differences in their test engagement during problem-solving. Two item engagement pa-

rameters: engagement intensity and discrimination parameters, were designed for reflect-

ing the visual efforts associated with an item. The estimated person parameter revealed

individual test engagement differences across items. In the following section, the NBFM

model will be utilized to jointly model visual fixation counts, item responses, and RTs,
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which might help comprehensively assess the test-takers’ performance.

Figure 4.4: Individual test engagement estimates based on the negative bino-
mial fixation model.

Figure 4.5: Individual test engagement estimates based on the negative bino-
mial fixation model with linear trend.
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Figure 4.6: Individual test engagement estimates based on the negative bino-
mial fixation model with quadratic linear trend.

4.4 Three-way Factor Model Parameter Estimates

In this section, as an example, hypothesized normally behaved test-takers from

condition 1 were analyzed to gain insights on test-takers behavioral characteristics and

item features based on the newly proposed three-way factor model, which jointly analyze

item responses, RTs, and visual fixation counts simultaneously. Item parameter estimates

based on the three measurement models were reported, which include item features such

as item difficulty, time intensity, and visual intensity. Additionally, the associations be-

tween all the person-side latent constructs are discussed, demonstrating the test-takers

behavioral characteristics. Additionally, the trade-offs among all the item-side parame-

ters are discussed in a subsequent section.
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4.4.1 Item Parameter Estimates

Item parameter estimates for condition 1 data, of N = 93 subjects who did not

receive any test preparation materials, are presented below. The summarized item features

across the three measurement models are reported in Table 4.4.

Table 4.4: Item parameter estimates of three-way factor model

Model 1-PL RT NBFM

Item b β ν m α

1 -1.05 (.241) 1.92 (.046) 0.43 (.032) 3.20 (.026) 0.19 (.010)
2 -0.52 (.235) 2.65 (.027) 0.21 (.017) 3.86 (.022) 0.14 (.007)
3 -0.56 (.228) 2.59 (.029) 0.23 (.018) 3.81 (.023) 0.11 (.009)
4 0.31 (.227) 3.02 (.043) 0.36 (.028) 4.28 (.043) 0.04 (.003)
5 0.97 (.237) 3.58 (.027) 0.21 (.016) 4.77 (.020) 0.07 (.007)
6 -0.14 (.215) 3.09 (.036) 0.32 (.024) 4.42 (.030) 0.05 (.004)
7 0.50 (.222) 2.67 (.039) 0.36 (.027) 4.03 (.033) 0.06 (.005)
8 0.99 (.240) 3.98 (.025) 0.18 (.014) 5.28 (.017) 0.05 (.006)
9 0.61 (.217) 3.97 (.025) 0.20 (.016) 5.26 (.022) 0.03 (.003)

10 0.09 (.215 ) 4.14 (.024) 0.18 (.014) 5.42 (.018) 0.05 (.005)

1-PL IRT Model. The 1-PL IRT model was fit to the data to estimate the item

difficulty. Table 4.4 shows that the item difficulty parameter estimates, b̂, varied from -

1.03 to 0.98, which based on comparing the estimate to its standard deviation of posterior

distribution (or looking at the 95% credible interval), were statistically significant from

zeros. Among all the items, item 1 was the easiest item while item 8 was the most difficult

item, which was expected since item 8 was a reading comprehension question while item

1 was a sentence equivalence question, which only consists of a single sentence and one

blank.

Lognormal RT Model. In terms of the RT model, the time intensity parameter

estimates, β̂ , ranged from 1.92 to 4.41, which were all statistically significant from zeros

demonstrated in Table 4.4. On average, test-takers spent the least time responding to item
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1 (β̂1 = 1.92). In contrast, item 10 required the most amount of time on average for test-

takers to answer. In terms of visual discrimination parameter α varied from 0.03 to 0.19,

the results indicated that item 1 was the most discriminating item on the test while item

10 was the least one.

NBF Model. For the NBF model, Table 4.4 outlines the parameter estimates of 10

items. The visual intensity parameter, m̂, varied from 3.113 to 5.419. Item 1 was the least

engagement-intensive item (m̂= 3.20). In contrast, item 10 required the most visual effort

from test-takers (m̂ = 5.407). which matched our expectations since the item 10 was a

reading comprehension question requiring a lot of visual effort for test-takers to answer.

Also, the results indicated that item 1 was the most discriminating item on the test.

4.4.2 Variance-Covariance Estimates

Table 4.5 exhibits the results of the parameter estimates of the variance-covariance

of person- and item-domain at the structural level of the three-factor model (see Figure

3.4). This is of interest due to the structure-level item domain variance-covariance matrix

between all the item parameters indicating pair-wise associations between item responses,

RTs, and visual fixation counts.

4.4.3 Item-Side Variance-Covariance Structure

The estimated covariance between item difficulties and item visual intensities was

0.43 (Cor. = 0.59) with a 95% credible interval of 0.02 to 0.56 indicating that item dif-

ficulties were positively correlated with item visual intensities for the current test (see

Figure 4.7). The estimated covariance between item difficulties and item time intensities

was 0.42 (Cor. = 0.59) with a 95% credible interval of 0.29 to 0.87, which shows sig-
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Table 4.5: Variance-covariance estimates of three-way model

Item Item Parameters Person Parameters

Variance-CovarianceParameters Variance-CovarianceParameters

Mean CI Mean CI

σ2
b 0.701 (0.022,0.839) σ2

θ
0.488 (0.233,0.850)

σ2
m 0.737 (0.292,0.875) σ2

ω 0.017 (0.013,0.007)
σ2

β
0.731 (0.280,0.874) σ2

τ 0.021 (0.015,0.029)
σb,β 0.421 (0.292,0.875) σθω 0.001 (-0.020,0.023)
σb,m 0.426 (0.022,0.555) σθτ 0.000 (-0.026,0.027)
σβ ,m 0.606 (0.189,0.733) σωτ 0.003 (-0.001,0.007)

nificant association between the item difficulties and time intensities for the given test.

Moreover, the estimated covariance between item visual intensities and item time inten-

sities was 0.61 (Cor. = 0.83) with a 95% credible interval of 0.19 to 0.73, which is also

showing significant result that the item time intensities were positively correlated with

item visual intensities (see Figure 4.7).

Figure 4.7: Scatter-plots for item parameter estimates. A loess non-parametric smoothed
curve is plotted for each scatter-plot

101



4.4.4 Person-Side Variance-Covariance Structure

The person-side covariance σθ ,τ , σθ ,ω , and σω,τ , illustrated in Table 4.5, were es-

timated to be 0.001 (95% credible interval: 0.026 to 0.027; Cor. = 0.005); -0.001 (95%

credible interval: -0.023 to 0.020; Cor. = -0.011); and -0.003 (95% credible interval:

-0.007 to 0.001; Cor. = -0.159) respectively, see Figure 4.8. Remarkably, all the person-

side covariance estimates were not statistically significant from 0. The non-significant

correlations could be a result of the subjects lacking motivation required to finish the

designed assessment (Wise & Kong, 2005)

Figure 4.8: Scatter-plots for person parameter estimates. A loess non-parametric
smoothed curve is plotted for each scatter-plot

4.4.5 Accessing the Item-Wise Data Model Fit

Posterior predictive model checking (PPMC; Gelman, Carlin, Stern, Dunson, Ve-

htari, & Rubin, 2014) was used to evaluate model-data fit. Specifically, three item-fit

statistics based discrepancy measures were used to calculate the item-wise data model fit

for item responses, RTs, and visual fixation counts separately. Recall that the three item
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fit statistics introduced in Chapter 3 are: 1) W index (Wright Stone, 1979); 2) lt index

(Marianti, Fox, Avetisyan, Veldkamp, Tijmstra, 2014); and, newly proposed 3) Mc index.

Figure 4.9 shows the PPMC-values for W , lt , as well as Mc. In general, comparison

of the PPMC-values for the three models across 10 items shows satisfactory data model

fit. All the PPMC-values were above the 0.05 level, which is the cut-off of evaluating

the model data fit. A PPMC value greater than 0.05 indicates that there are no systematic

differences between the realized and predictive values, and thus an adequate data model

fit. However, the IRT model was the least satisfactory because its PPMC-values over 10

items were systematically lower than the ones calculated based on the RT model and NBF

model. Whereas, the PPMC-values calculated based on the W were still above the 0.05

threshold indicating agreeable fit. In addition, Figure 4.9 further demonstrates the details

of item-wise fits for the given data set, which summarize the PPMC-values calculated over

2000 iterations. The three dash horizontal lines denote the percentiles of PPMC-values

ranging from 0.05, 0.5 and 0.95, respectively. PPMC-values lying below the dash line at

0.05 levels would indicate the non-satisfactory data-model fit. All the PPMC-values in

Figure 1 were above 0.05, which confirms that the proposed three-way joint model fits

the data set well.

In all, the results are suggestive and demonstrated several interesting findings. First,

given the condition 1 dataset, the fitted three-factor model reveals that the three latent di-

mensions were not statistically significantly correlated to each other, which demonstrates

weak trade-offs among the accuracy, working speed, and visual engagement of test-takers

when their eyes were being tracked. Second, the estimated structure of the measurement

features of the proposed model was instructive for the practitioners in the testing industry.
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Figure 4.9: Posterior predictive p-values for 1-PL IRT model, log-normal response time
model, and negative binomial visual fixation counts model over 10 items. The three dash
horizontal lines denote 0.05, 0.5 and 0.95, respectively. The box-plots represent the item
by person-level PPP values. The whiskers indicate the minimum and maximum PPP
values for each item.

The results show that item difficulty, time intensity, and visual intensity were positively

related to each other, which indicates that difficult items require more time and visual

efforts for the test takers to answer. By running the three-way factor model, we could po-

tentially comprehensively evaluate the test-takers performance in technology-enhanced

environment such as game base testing or scenario-based virtual reality learning tasks.

4.5 Assessing Test-Taking Behaviors Across Different Experimental Con-
ditions

To understand and evaluate the pattern differences in test-taking behaviors across

distinct experimental conditions, a multiple-group joint three-way factor model of item

responses, RTs, and visual fixation counts were fitted separately to the data in different

conditions. Parameter estimates of the level-1 measurement models across the three con-

ditions were reported. Moreover, the distinctions of the associations of the person-side
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and the item-side parameters were reported by showing the corresponding covariance es-

timates across the contrasting experimental conditions.

4.5.1 Impact of Having Pre-knowledge of Test Items on Item Character-
istics

To evaluate the impact of having pre-knowledge of test questions on the proper-

ties of test items (see Figure 4.10), Table 4.6 displays a comparison of item parameter

estimates of the proposed model with respect to the three experimental conditions. In

general, item difficulties (b̂), time intensities (β̂ ), and visual intensities (m̂), on average,

tend to show lower values in the condition 3 than the other two conditions (see Table 4.6).

This is potentially attributable to the fact that test-takers tend to spend less time, and less

visual effort on a test with which they were more familiar by practicing the similar items

in advance.

Item difficulty estimates across conditions. In general, items, on average, appeared

to be much easier in condition 3 than the other two conditions. Across item difficulties,

b̂ ranged from -1.06 to 0.99 in the condition 1, varied from -1.55 to 0.79 in the condition

2, and fluctuated from -4.09 to -0.24. Intriguingly, the difference (bd f f (1,2)) in item diffi-

culties between the condition 1 and condition 2 is not as large as the difference (bd f f (1,3))

between condition 1 and condition 3 (see Figure 4.10), which means practicing items

beforehand without knowing the answer keys has limited impact on item difficulties. In

contrast, the item difficulties would decrease greatly if the test-takers practice the equiva-

lent items with keys.

Time intensity estimates across conditions. Similarly, test-takers who practiced
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the items or knew the answer keys beforehand tend to take less time to finish their tests.

By averaging the time intensities across the 10 items, ¯̂
β (the averaged time intensity) is

3.21 in the condition 1; 2.367 in the condition 2, and 2.102 in the condition 3 (see Table

4.6). By taking the exponential of each averaged time intensity estimate, the unit of ¯̂
β

were converted into seconds. On average, test-takers in condition 1 took about 25 sec to

finish an item, ones in condition 2 used about 11 sec, and ones in condition 3 took about 8

sec. The results show that, on average, that test-takers in condition 3 who were practicing

items beforehand with answer keys worked three times faster than the ones in condition 1

who did not receive any test preparation materials on answering an item.

Visual intensity estimates across conditions. A trend of visual intensities similar to

the summarized response patterns in the previous session was observed, which indicates

test-takers familiar with the items tend to put less visual effort on searching for informa-

tion to answer the questions (see Figure 4.10). By averaging the visual intensities across

the 10 items, ¯̂m (the averaged visual intensity) is 4.427 in the condition 1; 3.707 in the

condition 2, and 3.505 in the condition 3 (see Table 4.6). By taking the exponential of

each averaged visual intensity estimate, the unit of ¯̂m were converted into counts. In gen-

eral, test-takers in condition 1 generated about 84 fixation counts to finish an item, ones

in condition 2 produced about 40 fixation counts, and ones in condition 3 created about

33 fixations. The results show that, on average, that test-takers in condition 3 put much

less visual effort than the ones in the other two conditions on solving questions.
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Table 4.6: Item parameter estimates across different experimental conditions

Condition Model 1-PL RT NBFM

Item b sd β sd ν sd m sd α sd

C1

1 -1.05 0.24 1.92 0.05 0.43 0.03 3.20 0.03 0.03 0.012
2 -0.52 0.24 2.65 0.03 0.21 0.02 3.85 0.02 0.03 0.006
3 -0.6 0.23 2.59 0.03 0.24 0.02 3.80 0.02 0.04 0.011
4 0.31 0.22 3.02 0.04 0.36 0.03 4.27 0.04 0.05 0.003
5 0.97 0.24 3.57 0.03 0.21 0.02 4.76 0.02 0.03 0.007
6 -0.14 0.22 3.08 0.04 0.33 0.02 4.42 0.03 0.03 0.004
7 0.50 0.22 2,67 0.04 0.36 0.03 4.02 0.03 0.03 0.005
8 0.99 0.24 3.98 0.03 0.18 0.01 5.27 0.01 0.04 0.007
9 0.6 0.22 3.97 0.02 0.21 0.02 5.26 0.02 0.04 0.003
10 0.09 0.23 4.14 0.02 0.18 0.01 5.42 0.01 0.04 0.005

C2

1 -0.67 0.24 1.81 0.06 0.44 0.03 3.07 0.06 0.12 0.011
2 -1.55 0.29 1.81 0.06 0.39 0.03 3.03 0.05 0.13 0.012
3 -0.48 0.22 1.99 0.05 0.34 0.03 3.22 0.05 0.12 0.010
4 0.13 0.23 2.43 0.06 0.45 0.03 3.73 0.06 0.05 0.005
5 0.64 0.24 2.74 0.06 0.42 0.03 4.01 0.05 0.05 0.004
6 -0.21 0.23 2.34 0.06 0.42 0.03 3.66 0.05 0.06 0.005
7 0.78 0.24 2.21 0.06 0.42 0.03 3.48 0.06 0.07 0.006
8 0.66 0.23 2.90 0.07 0.56 0.04 4.32 0.06 0.03 0.002
9 0.79 0.24 2.78 0.08 0.63 0.05 4.38 0.07 0.02 0.002
10 -0.17 0.23 2.66 0.08 0.62 0.05 4.17 0.07 0.02 0.002

C3

1 -4.09 0.55 1.69 0.06 0.4 0.03 2.98 0.06 0.13 0.012
2 -3.76 0.51 1.51 0.06 0.41 0.03 2.80 0.06 0.15 0.014
3 -1.91 0.31 1.92 0.08 0.59 0.04 3.36 0.07 0.05 0.005
4 -1.72 0.28 2.29 0.08 0.73 0.05 3.82 0.08 0.03 0.003
5 -1.92 0.29 2.46 0.06 0.41 0.03 3.77 0.06 0.05 0.004
6 -1.81 0.30 2.16 0.06 0.43 0.03 3.52 0.06 0.07 0.006
7 -1.23 0.28 2.11 0.06 0.41 0.03 3.40 0.06 0.08 0.007
8 -2.39 0.33 2.32 0.07 0.52 0.04 3.80 0.06 0.04 0.004
9 -0.24 0.25 2.23 0.07 0.56 0.04 3.76 0.07 0.04 0.004
10 -0.81 0.28 2.33 0.07 0.55 0.04 3.84 0.07 0.04 0.004
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Figure 4.10: Item parameter estimates across distinct experimental conditions, and neg-
ative binomial visual fixation counts model. Red: Condition 1; Black: condition 2, and
Blue: condition 3.

4.5.2 Impact of Having Pre-knowledge of Test Items on Test-Takers Be-
havior

Table 4.7 shows the impact of having pre-knowledge of test items on the test-

takers behaviors. The behavioral pattern differences were demonstrated via comparison

of the three person-side covariances, indicating association among the interested latent

constructs (ability, working speed, and visual engagement) across the three experimental

conditions. As a trend, as students gain more pre-knowledge of the test items the correla-

tion between latent ability and working speed increased from 0.005 in condition 1 (95%

credible interval: -0.023 to 0.020) to 0.672 (95% credible interval: 0.496 to 0.621) in
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condition 3. The increased correlation between latent ability and working speed might be

caused by test-takers in condition 3 receiving practice items with answer keys. Therefore,

they answered more items correctly than the ones who did not receive any test preparation

materials.

Table 4.7: Person-side correlation matrix estimates

Condtions C1 C2 C3

Paramter Mean CI Mean CI Mean CI

Corθ ,ω -0.011 (-0.244,0.227) -0.193 (-0.437,-0.108) -0.678 (-0.812,-0.505)
Corθ ,τ 0.005 (-0.239,0.251) 0.24 (-0.020,0.327) 0.672 (0.496,0.810)
Corω,τ -0.152 (-0.359,-0.080) -0.899 (-0.935,-0.886) -0.91 (-0.942,-0.867)

Note: C1: condition 1; C2: condition 2; C3: condition 3; CI: credible interval; Cor.: Correlation.

In terms of changes in the trade-offs between the latent ability and visual engage-

ment across conditions, Figure 4.11 shows that test-takers who were familiar with the test

items tended to put less visual efforts on answering items. The correlation between those

two latent constructs dropped from -0.011 in condition 1 (95% credible interval: -0.244

to 0.227) to -0.678 in the condition 3 (95% credible interval: -0.812 to -0.505). Similarly,

negative trade-offs between the working speed and visual engagement was observed. The

correlation (rθ ,ω ) decreased from -0.152 in the condition 1 (95% credible interval: -0.359

to 0.062) to -0.910 in the condition 3 (95% credible interval: -0.942 to -0.867). This re-

sult infers that as test-takers knew the answer keys of practice items, they favored quickly

answering the questions without elaborately paying attention to the content (See. Figure

4.11).

To summarize, the item parameters at the measurement level were significantly

affected by the amount of pre-knowledge test-takers had, especially when the test-takers

practiced equivalent items with answer keys. Correspondingly, the associations among
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Figure 4.11: Scatterplots for person-side parameter estimates. A loess non-parametric
smoothed curve is plotted for each scatterplot

person-side latent constructs (e.g., latent ability, working speed, and visual engagement)

were greatly affected by the pre-knowledge, as well. The ability estimates of test-takers

with pre-knowledge on test-items were positively correlated with their working speed.

Their abilities were negatively associated with their visual engagement levels, and their

working speed was negatively correlated with their visual engagement levels. In other

words, test-takers might be inclined to finish their tests quickly by paying less attention

to the content of items, and answering most items correctly.

In contrast, when the test-takers had access to test-preparation materials without
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keys, their ability estimates were not correlated significantly with their working speed or

visual engagement. However, a strong negative correlation between the working speed

and visual engagement could still be expected. For instance, a high ability test taker sta-

tistically was likely to work either quickly or slowly on their test. In addition, the ones

finishing their tests quickly paid less visual attention to the content compared to the ones

who worked slowly. This is of interest because testing companies could potentially tackle

identification of suspicious aberrant test-takers by matching their behavioral characteris-

tics with our findings mentioned above.

4.6 Use of Person-fit Statistics to Classify Different Responding Behav-
iors

PFS’s are widely utilized in the industry as approaches to identify how aberrant

test takers behaved during their tests. In order to show differences in the performance

between the PSF’s and the data mining methods on separating aberrant cases from the

normally behaved ones, the results of two representative PFS’s studied previously were

evaluated: an item response based PFS called l∗z statistic,and a RT based PFS, called

lt statistic. The l∗z statistic was calculated by using the lzstar function in the R package

PerFit (Tendeiro, Meijer, & Niessen, 2016). Commonly, PFSs are computed when a small

portion of aberrances exists in a dataset. To show the shortages of using PFSs to classify

cases showing more than two types of aberrant-responding behaviors , the current dataset

mixing of cases from three conditions were directly fitted to the lzstar function.

In this study, the results reported based on the PFS’s would be questionable because

there are significantly fewer hypothesized normally behaved cases in condition one than in
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the other two aberrant conditions, which violates the basic assumption of using PFS’s. As

a result, it is hard to come up trustworthy cut-offs values since they were highly dependent

on the underlying ability distribution of the test-takers, which was heavily contaminated

by the large number of aberrant cases. Table 4.8 shows the sensitivity and specificity

rates for using the two representative PFS’s. It can be seen in Table 4.8 that having a

large number of aberrant cases resulted in substantially low values in both sensitivity

and specificity rates. Figure 4.12 indicates that PFS-based methods failed to separate

the normally behaved subjects from the aberrances ( l∗z PFS: left panel; lt statistic: right

panel).

Table 4.8: Sensitivity and specificity for PFS IRT- and RT-based methods

% Consistent Decision l∗z PFS ltPFS

Sensitivity 0.04 0.00
Specificity 0.88 0.89
Overall accuracy 0.30 0.28

Figure 4.12: PFS’s performance of classifying different type of responding behaviors. l∗Z
PFS is on the left, lt PFS is on the right. The blue line indicates the cut-off
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4.7 Use of Data Mining Methods to Classify Different Responding Be-
haviors

In this section, the use of representative data mining methods as an alternative group

of methods to the PFS’s was examined with a focus on classifying different types of test-

takers who belong to distinct experimental conditions. Although the previously inves-

tigated item response and RT-based methods are popular in the industry as approaches

to identifying aberrant test-taking behavior (e.g., pre-knowledge and copy cheating), the

data mining-based methods have yet to be fully investigated. To show the benefits of us-

ing data mining methods over the traditional PFS’s, two groups of data mining methods

introduced in Chapter 3 were used to classify different responding behavior, which are:

1) unsupervised learning methods, and 2) supervised learning methods.

To properly use the unsupervised and supervised learning methods, data normal-

ization was performed to put all the input variables onto the same scale by using the

maximum-minimum method mentioned in Chapter 3. The final set of features was se-

lected based on two methods discussed in Chapter 3: 1) Pearson correlation between any

pair of input variables and 2) the variable importance index (VII).

To achieve the optimal classification accuracy, the feature selection was conducted.

Among 60 total features, 13 features were highly correlated (r ≥ 0.9), shown in Figure

4.13. Additionally, the rank of importance of features calculated based on the VII method

was demonstrated in Figure 4.14. Among all the features, the top ranked features weighed

heavily on classifying different responding behaviors were related to: 1) total scores, 2)

revisits, 3) latent visual engagement, 4) fixation counts, and 5) RTs. In contrast, the per-

113



sonality measures and Westside test anxiety measures were less important for separating

aberrances from normally behaved test-takers. Based on the VII values, the last 8 features

were removed from the feature set to achieve optimal results: 1) WTAS1, 2) WTAS9, 3)

WTAS8, 4) WTAS5, 5) Conscientious, 6) WTAS 10, 7) Agreeableness, and 8) WTAS6.

In summary, 52 total features were selected for the rest of the analysis.
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Figure 4.13: Pair-wise correlations between features
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Figure 4.14: Feature importance
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4.7.1 Representative Unsupervised Learning Methods

K-Means. After normalizing data and selecting essential features, a representative

unsupervised learning method was performed to cluster subjects who belong to different

test-taking experimental conditions. The focus was twofold here: (1) to evaluate the im-

provement in classification accuracy in using unsupervised learning methods, and (2) to

reduce the error rates of misidentifying aberrances. The specificity and sensitivity were

calculated along with the accuracy rate across different conditions, and results were sum-

marized based on 10-folds cross-validation. After applying the K-means method, three

clusters of test-takers were identified based on their responding behavioral characteristics.

This is because the elbow point of the dashed line in Figure 4.15, showing that the total

within-cluster sum of squares, drifted much less after the elbow point, which is K = 3 (the

optimal number of clusters). Within each cluster, the sums of squares were 293.9 (cluster

1), 191.55 (cluster 2), and 342.24 (cluster 3) separately. The ratio of the within-cluster

sum of squares to the total sum of squares is 0.73.

Table 4.9: Classification accuracy for K-Means methods with three groups

True label

1 2 3

Sensitivity 0.989 0.575 0.877
Specificity 0.946 0.945 0.823

Overall accuracy 0.812

An evaluation of the classification of all the test-takers based on the K-Means

method is demonstrated in Table 4.9. Table 4.9 indicates that subjects who belong to

condition 1 and 3 were well classified with sensitivity rates of 98.9% and 87.7%. How-

ever, 33 subjects with the correct label of condition 2 were classified incorrectly into
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Figure 4.15: Number of optimal clusters based on K-Means method

condition 3, which indicates the K-means method is limited to differentiate the condition-

2 and 3 subjects with the selected input features. However, Table 4.10 shows that both

sensitivity (99.4%) and specificity (89.3%) were high after combining conditions 2 and 3

into one class, all of which have certain amount of pre-knowledge on test items.

Table 4.10: Sensitivity and specificity for K-means methods with two groups

% Consistent Decision K-Means

Sensitivity 0.994
Specificity 0.893

Overall accuracy 0.96

As an example, Figure 4.16 visualizes segregations among the three clusters as a

result of applying K-Means method to the data based on two features: 1) the number of

fixations, and 2) the number of revisits across ten items. From Figure 4.16, item 9 shows

a clear boundary between the subjects who belong to condition 1 (circles) and the others

(condition 2 - crosses and condition 3 - triangles).
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Figure 4.16: Segregations among the three groups based on K-means method. Condition
1 marked as circles; condition 2 marked as crosses, and condition 3 marked as triangles.
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These results provide some insight on how the K-means method performs more

precisely compared to traditional PSFs. First, the K-means method has much higher

power to separate the three clusters with high balanced accuracy (0.994) compared to the

PFSs (l∗z : 0.32, and lt : 0.28). Moreover, after combining all the subjects in condition 2 and

3, the overall predictive accuracy rate of the K-means method was 0.96. Second, K-means

could be used to identify more than two clusters of subjects who had different behavioral

characters. Whereas, the PFSs could only be used to separate the aberrant cases from

the normally behaved test-takers. This means that the K-means method has an invaluable

advantage to be used to identify aberrances when multiple aberrant behaviors are mixed

together. Importantly, real world data is even more complex than the experimental data,

and requires the unsupervised learning method like K-means to help the practitioners to

make fine decisions about who behaved aberrantly or not.

4.7.2 Representative Supervised Learning Methods

In this section, two selected supervised learning methods, K-nearest neighbors

(KNN) and random forest (RF), were performed to classify subjects in various exper-

imental conditions in order to see whether it is possible to obtain higher classification

accuracy rates compared to the unsupervised learning method, like K-means, as well as

further reduce error rates. The specificity, sensitivity, and accuracy rates are of interest

here.

KNN. The KNN algorithm was used to predict the class membership of a subject

by identifying other cases closest to it that show similar behavioral pattern. Starting the

algorithm requires specifying the number of neighborhoods (K) as a tuning parameter.
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Figure 4.17 shows that by calculating error rate across different neighborhood values (K)

given the dataset, three clusters should be expected since it yields the lowest classification

error rate (error rate = 0.157).

Figure 4.17: The optimal number of neighborhood based on the KNN algorithm.

The performance of the KNN method is summarized in Table 4.11. Subjects who

were in condition 1 and 3 were accurately classified with high sensitivity rates of 99.9%

and 90.6% respectively. However, the sensitivity rate for condition 2 was relatively lower,

about 64%, which indicates it is challenging to use the KNN method to separate the

subjects in condition 2 from condition 3. This can be attributed to the fact that subjects in

condition 2 and 3 both practiced the items before taking their real tests. As a result, they

could possibly behave similarly due to having pre-knowledge of the items, which made it
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more difficult for KNN method to differentiate between these two conditions. However,

if we combine the condition- two and three as one group, Table 4.12 shows that there are

substantial increases in both sensitivity (99.4%) and specificity (93.3%).

Table 4.11: Classification accuracy for KNN methods with three groups

True label

1 2 3

Sensitivity 0.99 0.643 0.906
Specificity 0.933 0.944 0.88

Overall accuracy 0.841

Table 4.12: Sensitivity and specificity for KNN Methods with two groups

% Consistent Decision K-Means

Sensitivity 0.99
Specificity 0.933

Overall accuracy 0.951

As demonstrated in Figure 4.18, the grouping result of using the KNN method was

demonstrated based on two features: 1) the number of fixations, and 2) the review time

across ten items. It can be seen from Figure 4.17, for instance, that item 2 shows a

clear separation between the subjects who belong to condition 1 (circles) and the others

(condition 2 - crosses and condition 3 - triangles).

In general, the results for the KNN method were similar to the results of for K-

means, with a high accuracy rate of classifying different responding behaviors. However,

one thing to note is that the specificities were relatively higher with the KNN method

as compared to the K-means method. This means that the supervised learning methods

have promising power to differentiate various types of responding behaviors, while at the

same time protecting normally behaved ones from being misidentified as aberrant cases
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in practice.

Random Forest. To make results easy to explain to practitioners, another super-

vised learning method was used to classify different types of responding behaviors. Using

the RF method, decision trees can be displayed graphically. This graphical display easily

shows the critical features for yielding the final clusters.

To generate valid results based on the RF method, two parameters need to be tuned

or defined. One is the number of trees in the forest, and another is the number of variables

(mtry) that need to be randomly considered at each splitting node. Usually, the default

setting for mtry is calculated as the square root of the total number of features. Therefore,

in this study, mtry is equal to 7 (rounded down). The number of trees is tuned by comput-

ing the classification error, which is demonstrated in Figure 4.19. It can be shown from

Figure 4.19 that having 304 trees yields the lowest classification error.

The performance of the RF method is summarized in Table 4.13. It can be seen that

subjects who are in conditions 1 and 3 were accurately classified by the RF algorithm at

high sensitivity rates, 99% and 87% respectively. The sensitivity rate for condition 2 is

87%, which is about 23% higher than the sensitivity rate calculated based on the KNN

method. Also, after combining conditions 2 and 3 as one group, Table 4.14 shows that

both sensitivity and specificity are high, which indicates that the RF method successfully

identified the subjects who had pre-knowledge of test items. The RF method yields the

highest overall accuracy rate compared to other methods, approximately 98.4%.

A classification tree built based on the training dataset is plotted in Figure 4.20.

As shown in Figure 4.20, the tree splits from the top node, which is the number of fix-

ations for item 10. Under that node, we can see two options: either yes marked as Y
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Figure 4.18: Segregations among the three groups based on KNN method. Condition 1
marked as circles; condition 2 marked as crosses, and condition 3 marked as triangles.
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Figure 4.19: Number of trees in random forest.

Table 4.13: Classification accuracy for RF Methods with three groups

True label

1 2 3

Sensitivity 0.99 0.862 0.866
Specificity 0.977 0.936 0.943

Overall accuracy 0.905

or no labeled as N. If the cases satisfied the condition listed at the node, then they were

assigned to the left side of the node, and if not, they were assigned to the right side. The

splitting process continues until some stopping condition was met as mentioned in Chap-

ter 3. At the bottom level, the final predicted cluster membership was assigned to each

case. The membership was assigned a value of 0, 0.5 and 1, indicating condition 1, 2 or 3

respectively. By following all of the conditions (nodes) from the top to the bottom, prac-

titioners could gain insights about the behavioral characteristics of a group who behaved
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Table 4.14: Sensitivity and specificity for RF methods with two groups

% Consistent Decision K-Means

Sensitivity 0.99
Specificity 0.977

Overall accuracy 0.984

aberrantly in their tests. For example, as shown in Figure 4.20, when a test-taker put low

visual effort into answering item 10 (Number.fixation.10 < 0.34), performing carelessly

over the entire test, but answered item 8 correctly, this person would most likely be clas-

sified as an aberrant test-taker who had a lot of pre-knowledge about the items. This is

significant as one seeks for a method to accurately flag the aberrantly behaved test-takers

with interpretable graphs.

Figure 4.20: Classification Tree as a demonstration of classifying different types of re-
sponding behaviors. A value of 0, 0.5 and 1, indicating condition 1, 2 or 3 respectively.
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In summary, a comparison of the capacities on clustering different types of re-

sponding behaviors across different statistical methods was presented. The results suggest

that the overall sensitivity, specificity, and overall accuracy rates based on the supervised

learning methods were relatively higher than the ones based on the traditional IRT- and

RT-based methods as well as the unsupervised learning methods. In addition, it is chal-

lenging to use IRT- and RT-based methods to accommodate complex datasets with large

numbers of aberrances. In contrast, data mining methods are able to overcome that lim-

itation and accurately classify different types of test-taking behaviors. Particularly, the

specificity base of the RF method was much higher than other methods, which implies

that the RF method could potentially protect normally behaved test takers from incorrect

classified as wrongdoers.
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Chapter 5: Discussion

In this study, many methods were created, developed, and investigated that incor-

porate bio-information technology, namely eye tracking, in the classification of different

types of responding behaviors in computer-based testing scenarios. This study explores

the potential to combine psychometric and biometric information to assess test-takers be-

haviors.

First, the collected experimental data was visualized and summarized. Next, three

innovative gaze fixation based models were proposed. The first model, named the NBF

model, was defined by assuming constant engagement levels across all the items. A slope

term and a quadratic term were added to the first model as two extensions to the base

model. The NBF-LT model and the NBF-QR model used a parsimonious parameteriza-

tion of the mean structure to capture changes in engagement exhibiting either linear or

nonlinear trends. To properly identify the scale of the latent variables, the expectations of

the person-side latent variables Ω were fixed as 0s, which were aligned with the previous

research from Fox and Marianti (2016). The proposed model helped to understand indi-

vidualized differences in test engagement levels and show item characters, including how

much visual effort was required for answering an item and its discriminating power.

Second, A three-way a hierarchical joint model was proposed to jointly model item

responses, RTs, and visual fixation counts. A 1-PL IRT model was used to model the
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item responses, a log-normal response time model was utilized for modeling RTs without

truncation, and a negative binomial visual fixation counts model was selected to model

the gaze fixations. These three measurement models were jointly modeled at the lower

level of the hierarchy. At the higher level of the hierarchical model, the mean vectors

and variance-covariance structures were estimated for both person and item parameters,

respectively. This modeling approach permits the evaluation of trade-offs among respond-

ing accuracy, working speed, and visual engagement as reflected by the person-domain

model.

Third, a three-way joint model was fit to the data across different experimental

conditions. Thus, behavioral pattern differences across different experimental conditions

were uncovered along with the gaps of item parameters estimates. The results show that

pre-knowledge had large effects on the item characteristics. In addition, the associations

among person-side behavioral constructs (e.g., latent ability, working speed, and visual

engagement) were greatly affected by pre-knowledge. With pre-knowledge on test-items,

the ability estimates of test-takers were positively correlated with their working speed. In

contrast, ability estimates were negatively associated with test-takers visual engagement

levels, and their working speeds were negatively correlated with their visual engagement

levels. One thing to note is that when the test-takers had no access to test-preparation

materials, their ability estimates were not correlated with their working speed nor with

their visual engagement levels. This is of interest because testing companies could poten-

tially tackle identification of suspicious aberrant test-takers by matching their behavioral

characters against these findings.

Lastly, representative data mining methods were utilized to classify different types
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of test-takers using multimodal data including estimates from the joint modeling previ-

ously mentioned. These newer methods are well suited to tackle identification of various

test-taking behaviors as they can incorporate vast amounts of data coming from numer-

ous rich sources (e.g., process data, biometrical data, and psychometric data). This point

is particularly salient as many testing administrations are moving away from pencil-and-

paper assessments toward computer-based environments. The findings from this study

showed that the data mining methods investigated here gave relatively high detection

rates (sensitivity) compared with traditional methodsespecially the supervised methods.

Traditional methods were able to flag aberrant test takers who have pre-knowledge of the

test items without incorrectly classifying normally-behaved test-takers as aberrances.

The current study successfully, as an attempt, integrated biometric and psycho-

metric information with various machine learning methods to classify different types of

responding behaviors. To better understand the individual differences in their test en-

gagement during problem-solving, three models were proposed to manifest some unique

insights about test takers problem-solving patterns. Then, the proposed joint-modeling

approach marries various measurement models from the field of psychometrics with data

mining methods from the field of machine learning. Additionally, this method could

be used for any scenario in which researcher believes that biometric and psychometric

information may be essential in the classifications of various behaviors, not limited to

educational testing. Yet, there were limitations in the application of this method in the

current study, which are discussed in more detail below.
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5.0.1 Limitations for the Current Work

All the proposed models were estimated within a Bayesian framework using an

MCMC algorithm. This estimation procedure appeared to be effective at recovering item

and person parameters. However, a more comprehensive simulation study would need to

be conducted to investigate conditions found in practice.

Also, as with the majority of studies, the findings of this study have to be seen

in light of some limitations. Conclusions about the manifested test-takers’ behavioral

patterns across different experimental conditions was merely based on the current research

design, which is subject to the several limiting factors such as sample size and number of

test items. Therefore, practitioners or applied researchers should be cautious as to what

findings could be properly generalized to industry practice.

An additional limitation of applying the results of this study is that the proposed

models require collecting gaze data via eye tracking devices, which are expensive and

difficult to use. However, the proposed models could be widely applied to analyze mul-

timodal data, including eye-tracking data, to evaluate students task performance in a

technology-enhanced simulation based testing system.

To take advantage of supervised methods for classifying different types of respond-

ing behaviors, a true class of membership labels need to be created in the first place. For

practical use, test companies need to know the true labels of different types of responding

behaviors based on a serious investigation in order to build a blacklist to train the models.

To overcome this shortage, traditional and unsupervised learning methods could be used

to build preliminary labels. In the end, all the results could be taken into account to make
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final decisions on test behaviors.

5.0.2 Recommendations for Future Directions

Several model extensions could be further considered beyond those presented here.

An interesting next elaboration might be to extend the three-way joint model by incorpo-

rating finite mixtures. This is vital for educational and psychological testing, where test

takers show different problem-solving behaviors such as carelessness and copy cheating,

or implement unintentionally distinguished strategies in different learning groups (e.g,

male / female, low- / high-achievement students, etc). The latent groups that would be

uncovered from such an analysis could promote a better clustering of different types of

test takers with different behavioral patterns. A second elaboration is to develop response

models for polytomous or graded responses. This is important for psychological testing

where items are Likert-scaled. Another methodological extension would be to carry out

a sensitivity analysis to measure the impact of various prior distributions on parameter

estimation for the proposed models.

In addition, data mining methods are able to work with complex datasets with large

sample sizes and high dimensional features, but also can be surprisingly useful in the

case where sample size is small compared to the number of features. In this latter case,

traditional parametric methods may be useless or may yield unstable parameter estimates

due to the limited sample size. With the development of TELS, data mining methods can

play an important role to analyze such data with high efficiency, as shown in this study.

To classify various test-taking behaviors with high accuracy, numerous sources of

information regarding test-takers, including information originating from biometric tech-
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nologies, need to be aggregated utilizing profoundly proficient computational methods

like cloud computing. Also, other types of biometric information could be integrated into

the current modeling framework such as Electroencephalogram (EEG), facial expression

recognition, and body and body part movement. While writing this thesis, the COVID-19

virus is spreading rapidly over the world. As a consequence, many schools decided to

switch to online instruction and learning, which results in an increscent need of having

an online protocol platform to security the online delivered exams. Thus, it is essential to

continuously develop new measures and tools integrating all kinds of psychometric and

biometric information to secure the exams rendered in differ forms.

Mislevy (2016) showed that new types of educational assessments would include

psychometric models, biometrics, machine learning, and data mining methods utilizing

a high-effectiveness computation system. Through methodological examinations and in-

vestigations utilizing empirical data, the signal-to-noise ratio (SNR) could be improved.

This implies that grouping accuracy could be improved, gaining sensitivity to nuanced

behaviorial patterns.

Obviously, reality is significantly more unpredicatable than any model could suf-

ficiently catch. A high-efficiency modeling structure like that used by many machine-

learning methods could be utilized to uncover unpredicted, concealed patterns in a large

amounts of informationletting the information represent itself. This might be the best

route for classifying different test-taker behaviors, which can be very challenging to rec-

ognize from typical test-taking behaviors. However, test companies also need to be alert

to the possibilities of overextending the statistical results to judge a test-taker’s suspicious

testing behavior without a follow-up panoramic investigation. Put the matter another way,
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test companies need to seek specific guidance from experts on how to prevent potential

epical false-positives.
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Appendix A: List of Variable Names
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Table A.1: Variable names

Variable (abbreviation) Full Terminology in the Data and Description

No.fixation The number of visual fixation counts.

Res.Time
Response time: time used by a test-taker to answer
an item.

P-value
P-value: a measure of item difficulty, which the
proportion of test-takers who answered an item
correctly. A high P-value indicates high easiness.

No.Revisits
The number of revisits: the frequency of saccades
move back to the previously viewed area of
interest (AOI).

Total.Score Total scores: the number of items answered correctly.

Total.Time
Total time: the total time spent by a test-taker to finish
the test.

Total.gaze
Total time: the total number of visual fixation counts
generated by a test-taker while performing the test.

V.Engmt

Latent visual engagement: an individualized parameter
showing the visual engagement level for each test-taker
performing a test, which is estimated from the negative
binomial visual engagement model.

Ability

Latent ability: an individualized ability parameter
indicating cognitive ability of decoding questions,
which is estimated from the one-parameter logistic
model.

Speed
Latent speediness: a parameter representing how fast
a test-taker work on his/her test, which is estimated
based on the lognormal response time model.

WTAS WTAS: Westside test anxiety scale.

Extraversion
Extraversion: one of the big five personality traits.
The scores are calculated by averaging item 1 and
item 6 in the ten-item personality inventory - (TIPI).

Agreeableness
Agreeableness: one of the big five personality traits.
The scores are calculated by averaging item 2 and
item 7 in the ten-item personality inventory - (TIPI).

Conscientious
Conscientious: one of the big five personality traits.
The scores are calculated by averaging item 3 and
item 8 in the ten-item personality inventory - (TIPI).

Emotional
Emotional: one of the big five personality traits.
The scores are calculated by averaging item 4 and
item 9 in the ten-item personality inventory - (TIPI).

Openness
Openness: one of the big five personality traits. The
scores are calculated by averaging item 5 and
item 10 in the ten-item personality inventory - (TIPI).
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Appendix B: Summary Statistics of All the Variables
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Table B.1: Summary Statistics of All the Variables

Experimental Conditions

Condition 1(N=93) Condition 2(N=98) Condition 3(N=107)

Mean SD Med Mean SD Med Mean SD Med

No.fixation.1 24.6 5.4 25 22.3 10 20 20.2 9 18
No.fixation.2 47.4 6.7 47 21.9 10.4 20.5 17 9.3 15
No.fixation.3 45.1 8.9 43 27.3 16.1 24 32.3 28.8 18
No.fixation.4 72.4 31.3 62 48.9 42.5 37.5 51.9 47.5 28
No.fixation.5 117.7 15 122 61.1 38.4 51 49.9 45 39
No.fixation.6 83.4 22.1 80 43.3 29 35 36.8 31.6 28
No.fixation.7 55.8 14.4 56 35.3 29.7 28 32.3 22.7 26
No.fixation.8 195.9 18.8 197 84.5 56.1 75 55.8 68.9 35
No.fixation.9 193 34.6 182 83.4 66.2 64.5 48.6 45.8 33

No.fixation.10 226.4 25.9 228 75.7 71.2 51.5 53.5 50.5 35
Res.Time.1 7.3 2 7.9 6.8 3.7 5.8 5.8 2.7 5.2
Res.Time.2 14.3 2.2 14.3 6.9 3.7 5.7 5 3.2 4.1
Res.Time.3 13.7 3.1 12.9 8.5 5.4 7.1 9.3 8.6 5.2
Res.Time.4 22.1 9.8 18.6 15.1 14 10.6 15.1 14.4 7.9
Res.Time.5 36 4.6 37 18.8 12.4 14.6 14.7 13.1 10.9
Res.Time.6 23 7.1 21.3 12.7 8.7 10.2 10.5 9.4 7.6
Res.Time.7 15.1 4.2 14.6 10.9 9.9 8.5 9.8 7.6 7.4
Res.Time.8 54 4.2 55 23.6 16.7 20.1 14.9 18.9 8.9
Res.Time.9 53.7 9.4 51 22.9 19.4 17 12.6 12.7 7.8

Res.Time.10 63.4 6.8 64.3 20.8 20.6 12 14.2 14.8 8.8
P-value.1 0.7 0.5 1 0.6 0.5 1 1 0.1 1
P-value.2 0.6 0.5 1 0.8 0.4 1 1 0.2 1
P-value.3 0.6 0.5 1 0.6 0.5 1 0.8 0.4 1
P-value.4 0.4 0.5 0 0.5 0.5 0 0.8 0.4 1
P-value.5 0.3 0.5 0 0.4 0.5 0 0.8 0.4 1
P-value.6 0.5 0.5 1 0.6 0.5 1 0.8 0.4 1
P-value.7 0.4 0.5 0 0.3 0.5 0 0.7 0.5 1
P-value.8 0.3 0.5 0 0.4 0.5 0 0.9 0.3 1
P-value.9 0.4 0.5 0 0.3 0.5 0 0.5 0.5 1

P-value.10 0.5 0.5 1 0.6 0.5 1 0.6 0.5 1
No.Revisits.1 5.2 3.1 5 3.7 3.4 3 3.5 2.4 3
No.Revisits.2 13.9 6 14 3.6 3.4 3 2.9 2.2 3
No.Revisits.3 10.9 4.3 10 3.5 2.9 3 5.2 6.1 3
No.Revisits.4 16.6 7.9 16 8.1 8.1 5.5 9.7 10.8 5
No.Revisits.5 20.3 8 19 11.2 8.4 9 9.1 12.2 6
No.Revisits.6 28.5 10.3 28 7.6 9.5 6 6.4 5.4 5
No.Revisits.7 19 8.8 19 6.2 7.4 4 5.2 5.2 4
No.Revisits.8 60.2 17 58 14.1 13.2 10 9.8 17.7 5
No.Revisits.9 52 19.5 51 16.8 13.4 14.5 10.9 11.9 8
No.Revisits.10 60.8 24 55 11.8 11.1 8.5 9.2 10.7 6

Total.Score 10.2 3.3 10 9.9 3.4 10 15.9 2.6 16
Total.Time 608 81.7 599.5 276.6 166.1 250 197.6 143.8 147.3
Total.gaze 2117.5 229.1 2142 949.4 514.4 841.5 697.2 430.2 560
V.Engmt 0 0.1 0 0 0.4 0 0 0.5 0.1
Ability 0 0.5 0 0 0.7 0 0 1.1 0
Speed 0 0.1 0 0 0.5 0.1 0 0.5 0.1

Anxiety 3.4 1 4 3 1.1 3 2.8 1.1 3
WTAS1 2.7 1.2 3 2.7 1.1 3 2.7 1.1 3
WTAS2 3.4 1.2 4 3.4 1.2 3 3.5 1.2 4
WTAS3 2.9 1.1 3 2.8 1.2 3 2.9 1.1 3
WTAS4 2.6 1.2 2 2.5 1.1 2 2.7 1 3
WTAS5 2.8 1.1 3 2.8 1 3 2.8 1 3
WTAS6 2.3 1.2 2 2.3 1.1 2 2.3 1.1 2
WTAS7 2.4 1.3 2 2.5 1.2 2 2.5 1.1 2
WTAS8 2.9 1.4 3 3 1.1 3 3.2 1.2 3
WTAS9 3.9 1.2 4 3.8 1.2 4 3.9 1.1 4
WTAS10 2.6 1.2 3 2.8 1.2 3 2.4 1.2 2

Extraversion 4.2 1.5 4 4.2 1.5 4 4.5 1.5 4.5
Agreeableness 4.7 1.3 5 5 1.2 5 4.9 1.1 5
Conscientious 5.1 1.3 5.5 5.4 1.2 5.5 5.4 1.2 5.5

Emotional 3.6 1 3.5 3.7 1 3.5 3.9 0.9 4
Openness 5 1.3 5 5.5 1 5.5 5.2 1.1 5.5

Note: SD represents standard deviation; Med represents median.
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