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Problem solving based on sensor created area maps is a challenging problem that 

can benefit from a multi-robot approach.  Cooperative problems are most eloquently 

designed through distributed services and systems.  This thesis designs and implements a 

full distributed maze solving solution using simulated robotic sensor platforms.    A 

distributed spatial communication system was developed and tested as a contributing 

element of the maze solving solution.  Autonomous algorithms for communication, 

cooperation, and navigation were constructed and tested through simulation in maze 

solving tests.  Working with an assumed map creating technology in tandem with the 

aforementioned developed technologies resulted in an effective complete solution.  

Although a great deal of future work is recommended to address imperfect mapping 

complications, it was found through simulation and mathematical analysis that multiple 

cooperative robotic platforms can result in significant performance improvements. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Research Context 

The generic focus of this project is to search an unknown region for a specific target as 

quickly and efficiently as possible.  The searching is to be done with mobile robotic 

sensor platforms.  The key idea is that the desired target could be found faster if more 

than one robot searched for it, faster still if participating agents worked together.  The 

problem becomes, how to design a system that searches and collaborates autonomously 

and what is the most effective and efficient method of doing so?  This Master’s project 

attempts to solve this generic search problem and verify that its solution is valid.  The 

generic task is made specific by assuming the unknown region to be a maze (area filled 

with complex obstacles) and taking the target to be an exit.   

1.2 Technology Overview 

Simply exiting a maze is a trivial task as the exit is eventually reached by mindlessly 

following along the exterior wall.  However, to exit a maze quickly and efficiently, 

several technologies and abilities are required. 

 

1.2.1  Map Building 

Accurate maps are essential in most areas of research involving navigation planning 

through obstacle filled environments [2] [9] [15] [16] [17] [18], and the solution 

developed in this project is similarly reliant.  However, a robot starts without knowledge 
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of the surrounding environment; therefore, a map of the maze must be built as the 

solution progresses.   

The field of sensor based area mapping is of high interest in both academia and 

industry.  The objective is to explore and describe an unknown region or environment 

through a sensor/actuator platform.  All sensor data is directly related to the position of 

the platform and thus a location estimate for the platform must be calculated and linked 

to the collected sensor data.  The sensor data can then be converted to spatial data using 

its position estimate, which is then added to a map.  A popular technique for area 

mapping is simultaneous location and mapping which uses sensor data for both location 

estimation and map building [12].  Other methods employ disjoint sensor sets which 

estimate location and build a map separately [14].  The reason that robotic mapping has 

been such a large topic of research is because of its high degree of difficulty [14].  It may 

be many years before mapping becomes a solved problem.  

Environment data collection is an integral part of map building.  Any object that 

inhibits platform movement can be considered as valid map data.  Typically, only 

stationary obstacles are desired to describe a region; thus, data collected from obstacles in 

motion should be filtered out.  Sensor noise and outlier filtering techniques such as those 

found in the Robust Kalman Filter have been found to improve map building 

performance in the presents of erroneous observations [11].  Common sensors used for 

obstacle data collection are ultrasonic sensors and LIDAR, the latter being the vastly 

more accurate and expensive option [10][13].   

Cooperative map building is a key technology in multiple robot mapping solutions 

and requires the ability to merge data from multiple sources.  Existing research has 
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created effective methods of map data merging through the use of occupancy grids and 

more advanced techniques [2][5].  The accuracy results are directly correlated to the 

accuracy of the maps prior to merging. 

1.2.2 Global Position Estimation 

Any method of map building relies heavily on the location of the sensors collecting 

environment data.  This is because any data collected must know its location relative to 

all other data in order for it to be correctly placed in the map.  Multiple data collector 

systems must share a common location reference point or have a reference point in a 

coordinate system common to all participating collectors.  It is required in a mapping 

application for shared spatial data to be useful to those it’s shared. 

Dead reckoning is the most common method of position estimation calculation and 

can be used in cooperative mapping applications if the starting location is globally 

referenced.  The previously stated method of SLAM is one technology that produces an 

estimate position in conjunction with map creation [12].  Other methods fuse global 

referencing updates such as GPS with local position estimates to create an improved 

global position estimate.  Inertial sensors such as gyroscopes and accelerometers can be 

used to create change in position estimates that serves as input to a dead reckoning 

algorithm.  Robotic tracking systems often use wheel encoders in addition to gyroscopes 

to provide much more accurate path scaled location solutions [2][10][11].  Like robotic 

area mapping, location estimation is a very hard problem and may not be solved for quite 

some time.  Location estimation and mapping are very closely related, as the solution for 

one may provide the solution for the other.   
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1.2.3 Distributed Spatial Database 

Mapping large or complex areas could be made much more feasible when multiple 

collectors are used.  However, to do so efficiently requires communication of spatial data.  

Collectors may require map data that is owned by another collector in the system or is not 

yet known to any participating robot.  If a robot is able to define a region that could 

contain data critical to its solution path, it would be beneficial to have the ability to ask 

other participants for data in that region.  Providing this ability may seem trivial when 

thinking of centralized communication requests, but when communication is transported 

into a distributed environment, complications arise.  The option of centralizing the 

location of all spatial data is made unavailable when communication limiting constraints 

are applied and unrealistic when the solution requires scaling to large numbers of 

physical contributors.  Since both communications constrains and the requirement of 

scaling are assumed for this project, a centralized solution is not possible. 

There are many existing technologies that realize a generic distributed database 

system, such as Spanner by Google or the open source database RethinkDB.  

Unfortunately, these systems do not provide a method of querying distributed spatial 

data.  There has been limited research on distributed spatial data query systems and what 

there has been relies on connectivity guaranteed communication networks [7].  

Realistically, many regions that are desirable to explore and map using a cooperative 

system will not have access to a complete communication network such as cell data 

towers.  Robots can be mounted with range limited communication devices such as 

routers, Wi-Fi direct cards, or other range limited communicators.  Therefore, a robust 

non-centralized communication network comprised of range limited router hubs is a 
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requirement for an effective data sharing solution.  Fortunately, mesh communication 

networks that fulfill these requirements have been previously developed and implemented 

[6].  Although existing mesh networks satisfy the project’s direct communication 

requirements, the mesh network’s connectivity constraints make previously developed 

distributed spatial communication systems useless.  Other distributed mapping 

applications have simply shared data between robots that are in direct commination 

proximity from one another [2].  It becomes apparent that a distributed query system that 

takes into account the application at hand and proximity connectivity constraints could be 

extremely beneficial to the overall maze escape search solution. 

1.2.4 Autonomous Functionality 

Using the previously listed technologies every robot has the ability to record surrounding 

environment data in the form of a globally referenced map.  The distributed spatial 

database enables the system to complete spatial queries given a region of interest.  

Additionally, data received by spatial query result can be effectively integrated into a 

robot’s partial map.  There are several steps yet left to take before a distributed maze 

solving solution can be realized.  Map data queries must be autonomously created and 

executed in order to utilize a multiple platform solution and minimize the effort of 

solving the maze.  Each robot must use their partial view of the maze to calculate 

possible navigation plans.  Ideally, the paths that constitute an optimal exit solution will 

be selected. Finally, a controls algorithm must use the selected plans to physically guide 

the robots out of the maze.   

There is quite a log of research involving optimal path planning in an obstacle filled 

environment.  Research concerning multi-robot path planning has made assumptions that 
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do not align with this project.  The most common assumption is that the environment is 

known [8] [4] [3].  Another assumption made is that of a centralized dataset and path 

calculation for robots exploring an unknown environment [2].  Since the desired solution 

is constrained to a distributed system in an unknown maze environment, existing path 

planning systems under conflicting constraints are insufficient.  Distributed exploration 

attempting the completion of Voronoi partitions has been done and closely relates to the 

desired task.  However, this method for optimal exploration does not work well in 

severely obstacle ridden environments such as mazes [1]. 

Multiple methods for single robot optimal path planning have been researched.  Path 

planning on both vector and raster datasets has been accomplished with visibility graph 

calculation and flood fill algorithms, respectively [9] [2].  The map representation 

assumed in this project is vector based; therefore, the base method of shortest path 

calculation will utilize visibility polygons and relate to a visibility graph. 

Intelligent spatial data communication with respect to exploration, problem solving, 

and optimal path calculation is a very specific topic and research concerning this area has 

not been found.  This is most likely due to the fact that a spatial query system designed 

for the purpose of exploratory data sharing has not been integrated into optimal path 

planning technologies.  This project’s method of autonomous query creation relies on 

information derived from the optimal path calculation used. 
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1.3 Project Overview 

Many of the technologies hinged upon by the solution presented in this project are largely 

imperfect.  The focus of this research is to develop an effective distributed spatial 

communication system and create a distributed autonomous solution.  These focal points 

must be verified for correctness and analyzed for performance metrics.  In order to 

accomplish this, the technologies desired for research must be isolated.  A few 

assumptions are made to limit the excessive complications created by map building and 

location estimation.  The assumptions are listed below. 

 Location estimate has a negligible global position and heading error. 

 Sensor data contributing to environment data compilation has negligible error. 

 Participating robots are able to effectively build accurate maps. 

The second chapter of the paper describes the requirements, design, and results of a 

distributed spatial query system.  All results are obtained through mathematical analysis 

and computer based simulation.  Chapter three describes and analyzes all developed 

autonomous technology used for the controlling logic controlling maze escape.  Minor 

verification of correctness is provided for each technology.   Chapter four introduces the 

simulator used in correctness verification of every new technology produced in this 

project.  The simulation program enables full maze escape configuration trials to be run 

and observed.  Through the developed program, the correctness and performance of the 

system as a whole can be observed and analyzed.  The fifth chapter contains an in depth 

description and outline of the theoretically based expected maze escape cost calculation.  

This chapter is very important as it attempts to determine if a beneficial distributed 
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solution is cost effective or even possible.  Chapter six provides result conclusions, final 

remarks, and possibilities for future research. 
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CHAPTER 2 

DISTRIBUTED SPATIAL QUERY 

 

2.1 Introduction 

Spatial databases are frequently used by fields involved in Geographic Information 

Systems (GIS).  Most of the applications in these fields utilize spatial databases 

architected with a centralized data source.  Some applications, however, which benefit 

from the use of a spatial database require the data to be distributed among participating 

nodes in the system, specifically the field of distributed area mapping by spatial feature 

collection requires the aforementioned database architecture. Spatial data collected by 

applications in this field is dependent upon characteristics of the node that performed the 

collection.  This constraint adds complications to those involved with the standard 

distributed spatial database.  This chapter steps through the development and analysis of a 

method for creating and completing data collection queries on a distributed spatial 

database.   

2.2 Design 

The goal of a distributed query is to reach the sources which contain the desired data and 

return said data to the part of the system that initially made the query.  However, without 

a known or static mapping of data to system nodes, it is impossible to know which nodes 

contain the data that the query is requesting at the time of request.  Unfortunately, a 

deterministic, or static spatial data mapping, is implausible with the distributed system of 

concern in this paper.  Therefore the consequences of an unknown data mapping must 
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then be considered.  The returning data related to a single query may be spread out over 

N nodes; hence the state of query completion is impossible to derive from the reception 

of result data sent from any given node.  In addition, returned spatial query data only 

reflects the area that it occupies, not the area that was observed in order to initially collect 

it.  As a result, in order for a node to acknowledge the scope of its collected data, 

additional information is needed in a distributed query system.   

2.2.1 Coverage Polygon 

Each collector in the distributed system must know what portion of the world was 

explored to yield the environment data that it currently holds.  This is achieved through 

the creation and maintenance of a spatial coverage database.  The spatial database is 

comprised of coverage multi-polygons; each with a quality attribute labeling the 

collector’s error bound density at the time of its most accurate update. 

Each time a collector polls a sensor, thereby observing a portion of the environment, 

the coverage database must be updated.  The exact portion of the environment observed 

is dependent on sensor characteristics.  These characteristics dictate a region, referenced 

by the sensor’s global location, where all environment data was detected.  This region is 

known as a visibility polygon and is used to create coverage polygons.  An example of a 

visibility polygon generated by an ultrasonic sensor is depicted in Figure 1.  An 

ultrasonic sensor is able to detect the closest object within a field of view.  Therefore, its 

visibility polygon is a cone with length equal to the distance value returned from polling.  

If multiple sensors of the same type are polled at the same time, their visibility polygons 

can be unioned together to begin the creation of a new coverage polygon.  A coverage 

polygon differs from a visibility polygon in that it accounts for the accuracy of the 
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collector’s global location estimate at the time the sensor data was collected.  This is 

essential as the visibility polygon is referenced by a location estimate; therefore the exact 

region that could have been viewed is larger than the region defined by a sensor’s 

characteristics.  In addition, a coverage polygon must only represent data from a single 

sensor type.  A sensor type defines the type of data that is collected by a given sensor.  

For example, ultrasonic sensors fall under the physical proximity sensor type.  The spatial 

coverage database must have multiple layers for coverage polygons of different types.  

This way, the coverage maps of different data types will not conflict with one another. 

 

Figure 1: Collector platform (Blue) with for proximity sensors (black) and their visibility polygons 

(yellow) 

To create a coverage polygon, the obtained visibility polygon must be expanded by an 

error bound.  The expansion depends on both the translational and rotational error 

parameters of the collector’s location estimate.  To account for rotational error, a finite 

set of polygons, describing the possible visibility polygon orientations is created.  Each 
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member of the set is then buffered by the maximum radius of the collector’s translational 

error.  The complete coverage polygon is equal to the union of buffered polygons in the 

set (Figure 2).  The final step is to determine the density or quality attribute of the 

coverage polygon.  The quality attribute is a value ranging from zero to one.  As the 

value approaches one, the assumed error in the observed area approaches null.  This is 

expressed by the ratio of the visibility polygon’s area over the area of the final coverage 

polygon.  

 

Figure 2: Expansion of visibility polygon (blue) through rotated union (green) then polygon buffer 

(yellow) to create the final coverage polygon. 

2.2.2 Spatial Coverage Update 

Every new coverage polygon must be used to update its respective collector’s spatial 

coverage database.  The coverage database has a layer for each sensor group in order to 

maintain the observation of different environment data disjoint.  Upon update, the new 

coverage polygon is inserted into the spatial database layer corresponding to the sensor 
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group it represents.  Each layer contains a disjoint set of multi-polygons to efficiently 

describe the observed regions.  In result, any polygons that intersect the new polygon 

must be merged or updated to reflect the new coverage state.  Figure 3 illustrates a merge 

update and figure 4 provides pseudo code that describes the complete relational logic. 

 

Figure 3: Coverage polygons of same quality can be merged (blue).  Overlapping sections must take 

the higher quality value (green). 

 

Figure 4: The polygon relational logic for spatial coverage update.  Database update transactions are 

omitted for simplicity. 

2.2.3 Query Coverage 

A collector’s coverage describes how well an area was observed in order to collect the 

data within that region.  Most collectors in practice will have error in their respective 
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position estimate; therefore their description quality, at any given area, is likely to be 

imperfect.  However, if multiple collectors observe the same region imperfectly, their 

collective knowledge of that region is greater than the individual parts.  Ergo, a 

distributed spatial query’s desire is to calculate the collective observation quality of the 

system in a relevant area.  Once the quality of the entire query region is considered 

acceptable, the query is complete.  To achieve this, spatial queries use collectors’ 

coverage data to record what parts of the interest region have been answered and to what 

extent.  A query message will sum coverage qualities together on subsequent collector 

visits. 

New spatial queries are initialized with a single completion multi-polygon identical to 

the area of interest that has a quality attribute of zero.  This reflects the query region and 

the fact that it has not been answered.  Upon a query’s arrival to a node, the collector 

adds the intersecting areas of its spatial coverage database to the query’s completion 

polygon.  The collector then processes the query based on the current region of interest 

and adds any results to a return query message.  The result message contains a coverage 

polygon equal to the intersection of the original query polygon and the collector’s spatial 

coverage.  This ensures that any returned results are paired with the area that was 

observed in order to collect them.  Any query region that attains a quality attribute greater 

than or equal to one is removed from the query multi-polygon.  If the multi-polygon is 

not empty, the remnants of the processed query is passed on to other collector nodes, 

otherwise, the query is complete.  When query result messages are received by the 

originating node, the node adds the result data to its collected database and the 

completion polygon is merged into its coverage database.  The process of merging this 
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completion polygon is identical to that of the coverage merge described earlier.  Table 1 

demonstrates the progression of a query completion polygon as it is answered by multiple 

collectors. 

Table 1: Progression of a distributed spatial query 

 

2.2.4 Message Passing 

Connectivity between any two nodes over a mesh communication network cannot be 

guaranteed.  Unfavorably, there is no guarantee that a query will ever get to a node with 

relevant information.  Moreover, in the event that a query reaches a node with relevant 

data it cannot be ensured that the results will make it back to the original node.  Since 

there are no connectivity guarantees and the connectivity of the network can change 

constantly, the available communication graph must be explored as quickly and 

thoroughly as possible.  This will give query data the highest probability of reaching 

desired system nodes.  Therefore, each node will broadcast all query messages to all other 

nodes in communication proximity.  This is similar to the technique of optimistic 

replication.  Companies such as Amazon and Google use optimistic replication to share 
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information quickly over large systems.  Regrettably, this communication method 

produces a very large number of messages per query per node on the order of the 

expression displayed in equation 1. 

𝑀(𝑡) = 𝑂(𝐸̃ ∗ 𝑡 + 𝐸̃𝑡)        (1) 

The initial query message is sent by node 𝑄 to 𝐸̃ nodes where 𝐸̃ is the average 

number of directed edges per node in the communication graph.  The second 

communication iteration results in each of the 𝐸̃ nodes around 𝑄 receiving 𝐸̃ messages.  

A fraction of 𝐸̃ nodes times 𝐸̃ receives their first message belonging to 𝑄′𝑠 query.  Upon 

the third iteration, the 𝐸̃ nodes around 𝑄 each receive 𝐸̃2 messages while the next furthest 

group of nodes from 𝑄 each receives 𝐸̃ messages.  A fraction of 𝐸̃ ∗ 𝐸̃ nodes times 𝐸̃ 

receives their first message.  This pattern shows a huge increase in the number of 

messages sent with respect to 𝑡, the number of communication iterations.  If the pattern is 

analyzed to find the number of messages seen by a single node with respect to the 

number of communication iterations yields an expression of order equal to that of 

Equation 1.  Therefore, the order of the number of messages generated must be decreased 

before this method can be considered practical.  This is achieved by removing duplicate 

messages and merging messages originating from identical queries.  This is equivalent to 

changing equation 1 to equation 2. 

𝑀(𝑡) =  𝑂(1𝑡)             (2)   

The number of messages per node per query is therefore of constant order with 

respect to time; however, the number of queries is unbounded.  To keep the number of 

messages per node constant with respect to time and queries, the number of messages per 

node with respect to a single query must go to zero as time goes to infinity.  Both limit 
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and message bound are realized with a query message lifespan.  When a new query is 

produced at time 𝑡0 we have a guarantee that resulting messages will not exist at any 

node after some time 𝑡0 + 𝑇 where 𝑇 is finite.  This analysis indicates that this method is 

feasible in theory. 

 

2.3 Query Simulation Results 

Performance analysis and correctness testing is required before the distributed mesh 

networked spatial query system can be used in the desired maze solving application.  

However, both the unknown data mapping and absent connectivity guarantee 

characteristics of the system make this difficult.  The only thing accomplished with 

mathematical analysis was a bound on message generation.  Determining the typical 

quality of query success is a task better suited for simulation.  A graphical user interface 

along with a simulation program was written in order to perform query analysis and 

correctness testing.  For organizational purposes, simulator details are discussed in 

chapter 4.  

2.3.1 Message Passing and Query Time 

The goal was to see if the number of messages per node was seemingly bounded to a 

constant even when 𝐸̃, the average number of communication network edges was great.  

The test used a grid of 25 collectors distributed so every internal node would have 4 

communication graph edges.   The node distribution is shown below in Figure 5(a). 



18 
 

 

                                    (a)                                                                                            (b)                                                                                                                                

Figure 5:  

(a) Collector distribution of message passing test  

(b) Final query results showing updated coverage database of center green collector 

The center green collector launched a query that contained a rather large region.  The 

first of the results returned at the second communication iteration which is optimal given 

that the closest nodes with relevant information were in immediate communication 

proximity.  Full results returned at the fourth communication iteration which is also 

optimal since the furthest node with relevant coverage was two steps away in the 

communication mesh network (Figure 5(b)). 

The message passing performance did not have positive results initially.  The test was 

first conducted before input queue messages were filtered for duplicates and redundant 

queries.  The initial results showed the number of messages per node rose exponentially 

with each progressive communication iteration.  After 10 iterations, the average number 

of input queue messages per node was about 12,000.  There were so many coverage 

polygons that the program ran out of memory and crashed.  Clearly this kind of optimistic 
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replication would not work with a system of this kind.  The solution was to remove 

duplicate messages from the input queue and merge like query messages before 

processing them.  Like queries messages are ones that are of the same type (query or 

result) and have the same query ID.  The query ID is a 16 byte randomly generated 

unique query identification number generated and attached to a query on creation.  After 

this filtering was implemented, the test was rerun.  The result response times were 

identical as both message passing schemes still traversed the communication network 

graph as quickly and as thoroughly as before.  However, this time the message passing 

results were much better.  The maximum number of input messages any one node 

received upon new communication iteration was 9.  That is the number of input messages 

received before filtering or merging.  This means that filtering and merging input 

messages results in bounding the number of messages sent per node per query.  This is 

the exact result that we were looking for.  Both outcomes from the tests prior and post to 

input message filtering support our message passing mathematical analysis results.  Since 

a message lifespan was implemented we know that if the number of active queries is 

finitely bounded then the number of input messages per node is also finitely bounded.  

From this result we can hypothesize that the number of input messages will increase 

linearly with respect to the number of live input queries. 

In order to verify our previous claim another test is run with a near identical collector 

configuration.  This time however, the center actor executes 4 unique queries 

simultaneously.  The simulation results again showed that query results were received by 

the asking node in an optimal number of steps.  The maximum number of messages 

received by any one node upon communication iteration was 32 while the average was 
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around 10.  This supports our hypothesis that the number of input messages has a linear 

order or increase with respect to the number of queries.  The summation of simulation 

results validates our claim that the message passing method developed is practical in 

application. 

2.3.2 Environment Data 

The generic performance of the distributed system in simulation was shown.  The final 

tests are used to verify that environment data and query coverage are effectively returned 

by the distributed spatial query.  Figure 6(a) shows the initial coverage of the collector 

and the region it is about to query data from.  When the query is completed, all 

environment data contained in the query region that is also known to the collective 

system should be known to the collector and the regions that were observed to complete 

the query should be present in the collector’s coverage database.  Figure 6(b) shows only 

the environment data known to the collector that originally executed the query in addition 

to the collector’s complete coverage database.  The results show that indeed all data 

known to the system in the area requested is now known by the query originating node.  

The coverage is of the complete area with quality equal to 1, therefore the data query has 

been fully answered. 
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    (a)                                                                                           (b) 

Figure 6:  

(a) The state of the system at the start of a query (originating from red node).  The query region is 

shown as a red circle.  The steel blue lines indicate environment wall data that is not currently in 

view of any node.  

(b) The final state of the system after the completion of the previous query.  All red lines indicate the 

environment data known to the originating node.  The gray regions indicate the red node’s coverage 

database contents.  All other colored lines are the immediate view of the remaining system nodes.  

The number of simulation scenarios is infinite and seemingly uncountable which 

makes automating simulations for a portion of the possibility space difficult.  It is for 

future research to determine what subset of simulation configurations is useful in 

determining additional system performance characteristics.  However, the simulations run 

thus far have yielded useful and positive results. 
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CHAPTER 3 

DISTRIBUTED AUTONOMOUS SYSTEM 

 

3.1 Introduction 

Thus far, every robot has the ability to record surrounding environment data in the form 

of a globally referenced map.  The distributed system is able to complete spatial queries 

given a region of interest.  Data received by spatial query result can be effectively 

integrated into a robot’s partial map.  There are several steps yet left to take before a 

distributed maze solving solution can be realized.  Map data queries must be 

autonomously created and executed in order to utilize a multiple platform solution and 

minimize the effort of solving the maze.  Each robot must use their partial view of the 

maze to calculate possible navigation plans.  It is required that a subset of these plans be 

chosen in order to optimize the maze solution of the system as a whole.  Finally, the 

selected plans must be used to physically exit the maze.   

 

3.2 Minimum Exit Path Calculation 

The process of exit path calculation is applied to each robot’s partial map of the maze.  

The calculation must be performed whenever the map is updated, otherwise, a suboptimal 

exit plan will contribute to the solution.  For the purpose of this research, the assumption 

that maps are represented as collections of globally referenced vectors will continue.  

Optimizing planned navigation through a vector field is difficult (REFERENCE: 

Smoothly Blending Vector Fields for Global Robot Navigation).  In fact, in 3-Space, the 

shortest path problem is NP-hard (REFERENCE: Planning Algorithms).  To solve the 
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problem it is desirable to treat our collection of vectors as a directed graph with weighted 

edges that represent distance.  The goal is to perform a breadth first search on the graph 

starting from the node corresponding to the platform’s start location.  Our search is for 

graph leaves, which are exit nodes.  There may be multiple paths to a single exit or 

multiple exits within a graph.  Therefore, it is our goal to find the shortest path to each 

exit.  The main question is how do we perform a BFS on a collection of vectors?  The 

answer begins with visibility polygons.    

3.2.1 Visibility Polygons     

Given a robot’s placement inside a collection of obstacles, to determine a path past all 

walls it must be known which ones immediately block the robot from moving in any 

given direction.  Whatever blocks the robot’s line of sight in a current direction will also 

block its movement.  Therefore, if it is determined the parts of walls that block our 

current view into infinity in every direction, the robot will know what to immediately 

avoid navigating into.  The algorithm to create a visibility polygon provides exactly this 

information.  By ray tracing at different angles around the current location and picking 

the first wall vector that is intersected, a polygon describing the robot’s current line of 

sight in all directions can be created.  Given a set of walls represented as vectors, figure 7 

provides the visibility polygon constructed from two different starting locations.   
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Figure 7: Examples of two visibility polygons originating from the green circles.   

The information derived from the visibility polygon tells a robot several about the 

surrounding.  The directions of which view is completely blocked by obstacles, partially 

blocked by multiple obstacles, and not blocked by any obstacle.  This information is 

directly used to help compute a path out of the vector field. 

3.2.2 Vector Collection Breadth First Search    

The search starts by calculating a visibility polygon originating at the robot’s current 

global location and creating the search graph’s starting node at that point.  The vertices of 

the resulting polygon are then analyzed to determine their significance.  Each vertex can 

be one of three things.  The vertex can be common to the vertex set comprising our wall 

collection.  This indicates that our vision at this point is blocked by the adjacent wall.  

Sequential vertices in the visibility polygon that are common to our wall vertex set 

signify a dead end over that range of vision.  Therefore, this category of vertex cannot be 

used to continue the search and is ignored.  The second category of vertex is described as 

Example Visibility Polygon 1 Example Visibility Polygon 2
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a point along one of the walls in our collection.  Such a point indicates that another wall 

has blocked the complete view of the observed wall.  Hence, calculating a second 

visibility polygon originating from this point will reveal something more than what the 

current polygon can perceive.  This category of vertex is referred to as a continuation 

point.  A new node belonging to this point is created and by linking it to the node of the 

current visibility polygon, the search is able to advance.  The third and final category is 

known as an infinity vertex, which signifies the situation where no wall data that is 

blocking our view in this direction.  Therefore, we have found an exit to the map.  To 

instill an exit path into the graph, a leaf node belonging to the infinity vertex is created 

then linked to the previous graph node.  By maintaining a list of leaf nodes, every exit 

path can be found by traversing up to the start node.  The BFS is specifically conducted 

by add all continuation nodes to a work queue and saving all infinity vertices as exit 

possibilities.  An iteration of the search removes a single node from the queue and repeats 

the initial procedure with a new start location.  The search finishes when the work queue 

becomes empty.  However, the described method for BFS on our vertex collection is 

lacking one critical feature.  Both BFS and DFS require nodes to be marked once visited 

in order to prevent infinite recursion.  Since our nodes are represented through origin and 

visibility polygon, a simple Boolean marker is insufficient to prevent looping.  To 

effectively ‘mark’ processed nodes, the union of each processed node’s visibility polygon 

is used to determine if new vertices have been visited before.  If a vertex intersects with 

the union of all visibility polygons, it is not added the work queue.  Once the map is fully 

covered by visibility polygons, it is impossible for work to be added to the queue, 

guaranteeing search completion.  
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3.2.3 Edge Weight Calculation 

The sum of edge weights from the start node to any given exit should represent the 

distance that must be traveled to exit by those nodes that are along the way.  The distance 

from the start node to each exit through all possible paths is necessary for the calculation 

of minimum exit paths.  We will call the origin of a node’s visibility polygon a visibility 

point.  The distance between two node’s visibility points is an incorrect representation of 

this distance as a robot may be able to take a more direct path while following the 

direction of these vertices to the exit.  Figure 8 provides an example of this.  We must 

calculate points that describe the minimal exit path within the found minimal exit node 

sequence.  This point will be known as a navigation point and must be calculated for each 

node.  The edge weight between two nodes will be the distance between their navigation 

points.   

 

Figure 8: Red lines connect visibility points that form a non-minimal path.  Green circles represent 

waypoints for a minimum distance path.  The black line shows the possible robot executed path using 

the minimum waypoints. 
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3.2.4 Navigation Point Calculation 

An edge indicates that moving from one visibility point to the other will yield a 

cumulatively more complete view of the wall collection.  This truth is a result of the fact 

that the previous view was blocked by a wall that the second visibility point is able to see 

past.  The closest point to the first visibility point that is able to completely see around 

this blockage is a vertex belonging to the blocking wall.  The vertex that we desire 

additionally belongs to the previous visibility polygon and is sequentially located to the 

second visibility point along the first visibility polygon’s hull.  This point is marked by a 

black dot in figure 9.  This point can help to calculate the navigation point as it provides 

the shortest point around a critical obstacle.  There should be some extra space between 

the wall and the navigation point to allow for effective robot navigation without collision.  

The final element is what direction to put the navigation point with respect to the shortest 

point.  The direction is calculated by using the normalized vector perpendicular to the 

vector between the first and second visibility point 𝑣𝑁
𝑇⃗⃗ ⃗⃗   and the set of walls common to the 

blocking vertex 𝑊⃗⃗⃗ .  If the dot product of that vector and any wall (with its origin equal to 

the common vertex 𝑐̇) is greater than zero, then the two vectors face towards the same 

side of 𝑣 , thus 𝑣𝑁
𝑇⃗⃗ ⃗⃗   must point in the opposite direction in order to avoid collision during 

navigation.  The logic is described below with the navigation point indicated by 𝑛̇.  

Examples of navigation points are illustrated with green circles in figure 9. 

𝑖𝑓  ∃  𝑤⃗⃗  𝑖𝑛 𝑊⃗⃗⃗    𝑠. 𝑡.   𝑤⃗⃗ ∙ 𝑣𝑁
𝑇⃗⃗ ⃗⃗  > 0  

𝑡ℎ𝑒𝑛   𝑛̇ = 𝑐̇ − 𝑣𝑁
𝑇⃗⃗ ⃗⃗     

𝑒𝑙𝑠𝑒  𝑛̇ = 𝑐̇ + 𝑣𝑁
𝑇⃗⃗ ⃗⃗   
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Figure 9: The red lines connect visibility points that are the origin of the visibility polygons.  The 

green circles are the navigation point locations calculated using the wall vertices (black dots) and the 

two visibility points connected by the red line intersected by the wall vertex. 

3.2.5 Exit Plan Stabilization 

An exit node’s visibility point can be located anywhere there exists a view out to an 

infinity point.  This means that there are an unbounded number of possible exit nodes for 

any single exit.  The only thing that prevents the BFS from infinitely generating exit 

nodes is the visibility union’s intersect check.  Unfortunately, the check does not give 

physical exits and exit nodes a one to one relation, or force a physical exit to have a 

unique exit node, independent of starting node location.  The absence of these conditions 

results in possible loop conditions during runtime.  To clarify, the loop does not occur in 

the BFS, the loop is embodied through an oscillation of navigation plan selection.  The 

oscillation causes an indefinite suspension of a robot’s exit progression.  The error is a 

direct result of exit distance calculation variation but is a symptom of a greater problem, 

exit node instability.    
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To assist with the solution, the concept of an exit gate is created.  An exit gate 

combines the two possible exit nodes of any physical exit together.  When viewing an 

exit from inside the maze, two different wall vertices will bound the view span of 

infinity.  Together, they serve the same purpose and consequently should be grouped 

together since exit uniqueness is part of the upcoming goal.  Additionally, exit gates are 

later used for querying purposes.  Figure 10 shows the consolidation.   

The stabilization solution is reached through iteratively updating an exit node’s 

position until no change in position is seen.  When an exit node is found, the calculated 

navigation point is used to create another visibility polygon.  If any exit node extracted 

from this polygon results in an identical navigation point, the previous exit node is 

considered to be stable and is subsequently added to the list of possible exit plans.  This 

stabilization technique creates the possibility of search looping which are easily filtered 

by a recursive check.  Now that all possible exit plans are stable, it is a simple task to 

return the shortest path for each physical exit. 
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Figure 10: The red lines and paired with a green circle show the two possible exit paths.  The green 

circle centered in the gold diamond is the exit gate that results from combining the two redundant 

exit path options. 

 

3.3 Autonomous Query Creation 

The goal of the system is to get each robot out of the maze with minimal effort and in 

minimal time.  To do this, redundant work must be minimized.  The function of map data 

queries is to discover what work has already been done by the system.  By spending 

communication cost in place of physical movement cost, the overall cost of gaining 

redundant information is lowered.  The current problem is to determine what areas should 

be queried and when. 

It is possible to query for map data over the entire world.  The effect would be to pull 

in the entire system’s knowledge every time a query is executed.  Even though this would 

fulfill the desired purpose of the query, it is impractical with large systems and may drive 
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the final solution cost above the non-cooperative solution.  The situation is similar when 

querying for all unknown areas as the effect would be to constantly sync with system 

updates.  The only regions of unknown map data that would progress the navigation 

toward an exit solution are those corresponding to exit gates.  If the system has data in a 

region that a robot has scheduled for exploration, querying that data could save the 

physical effort of moving to that area.  The area could be a dead end or a much longer 

route than previously known.  Conversely, a region query yielding deprived results may 

indicate an area unknown to the system.  Regardless, it is decided that each robot must 

only query the critical regions pertaining to their partial map.  The unique exit gates 

returned from navigation path calculation indicate all critical regions.  Spatial query 

polygons are created by expanding the exit gate and adjacent visibility polygon sides.  

Figure 11 shows examples of query polygons created from the critical regions indicated 

by exit gates. 
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Figure 11: The robot (solid purples rectangle) located all exit gates (gold diamonds) using its partial 

map of the environment (purple walls inside of its coverage polygon (gray region)).  Query regions 

(purple unfilled polygons) were calculated using the separate exit gates and the visibility polygons 

from those gates (blue regions).   

 Returning query results integrate into the current map, updating all the critical 

regions to which they apply.  Sequential queries will update critical regions until the 

critical region is found to be a dead end or system knowledge does not include that 

region.  Figure 12 illustrates the results of sequential queries with a system that knows the 
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all desired critical regions.  It can be seen that the robot finishes in minimum time since 

the parts of the maze critical to making an exit decision were filled in before the robot 

had to made a critical route decision. 

 

Figure 12: Steps through sequential queries by a fresh robot to a system with full knowledge of the 

maze.  The query regions are created using the exit gates of each step and when data is returned 

(regions of data are indicated by translucent green polygons) new exit gates are created from the 

query updated map.   

Stage 1 Stage 2 Stage 3

Stage 4 Stage 5 Stage 6

Stage 7 Stage 8
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3.4 Optimal System Path Selection 

The collection of minimal paths to each robot’s closest unknown area may not be the 

optimal solution for the system.  For example, figure 13 shows a scenario where two 

actors have identical minimal paths when the ideal path selection would be to choose 

opposite routes.  Thus a distributed optimal path selection solution is required. 

 

Figure 13: An example of how each robot settles on which route to take based on the route decisions 

and locations of other robots around it. 

Each actor broadcasts their most recent navigation decision to those around them.  

Each agent maintains a time-stamped navigation decision list of those around them.  

(a) Minimum and Optimal Navigation Decision for Robot 1 

(b) Minimum but Non-Optimal Navigation Decision for Robot 2 

(c) Minimum and Optimal Navigation Decision for Robot 2 
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When making a new navigation decision, an agent uses this list to select an optimal path 

for itself.  The selection process involves comparing pairs of navigation paths, checking 

for conflict.  One member of the pair is a navigation possibility belonging to the local 

agent, while the other is from the foreign navigation decision list.  If a conflict is found, a 

distance calculation is required to determine which agent is a better fit for the path.  Two 

paths conflict when any vector connecting one path’s navigation points intersects with the 

other path’s exit gate polygon.  The point where gate intersection first occurs is the 

starting point for distance calculation.  Tracing back from that point to the start of both 

paths yields the distances of both respective agents.  This is done so that navigation 

decisions made from different maps will have deterministic comparisons.   

Given the conflict checking method of path comparison, the selection process can 

begin.  Iterating from its minimal to maximal navigation decision, the local agent checks 

the foreign navigation list for conflict against the iterator’s current navigation plan.  If a 

conflict exists and the current agent is farther from the destination than the foreign agent, 

the iterator continues to check the agent’s next shortest navigation decision.  Conversely, 

if the current agent is closer to the destination than the foreign agent, it will set its 

navigation decision to the iterator’s current and broadcast it.  This will then update the 

foreign agent’s list, in turn forcing that agent to select a different path since it now sees 

that it is farther than another agent and thus non-optimal.  If each possible path is in 

conflict, the agent will take the shortest path.  The consequences of this last policy are the 

acceptance of immediate redundant exploration/work, however it does allow for a faster 

divide and conquer scheme.  The alternative would be to force the blocked agent to wait 

until an unblocked option is available.  However, since it is known that the redundant 
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work is unavoidable, it would minimize execution time of exploration and escape if the 

redundant work was completed immediately.  Since the possibility of multiple blockers 

exists, the optimal selection is the path that is blocked by the least number of foreign 

agents that are closer to the destination than the current actor.  This way, the most even 

distribution of agents is selected.  Figures 14 and 15 illustrate the effect this selection has 

on agent diffusion.  Figure 14 walks through a scenario where the optimal route 

configuration can be immediately chosen where figure 15 demonstrates the system 

maintaining an even exploration distribution.  An even distribution does not guarantee 

that the optimal configuration will be selected as only partial map views are available to 

make earlier decisions.  However, an even distribution trends toward the average case of 

redundant effort when incorrect distribution decisions are made prior to complete maze 

knowledge.

 

Figure 14: Example of distributed optimal path selection. Each robot can see all possible surrounding 

route options.  The distributed path selection service ensured that each robot picked a different route 

which is the most efficient way to explore the maze. 

State 1: Starting Placement
State 2: Final distribution where every 
robot explores a different route
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Figure 15: Example of starting system making sequential decisions divide and conquer.  The result is 

that all possible routes were explored as efficiently as possible. 

 

3.5 Platform Navigation Controls 

The raw navigation plan is a sequence of waypoints that leads to a possible exit region. It 

is the goal of the platform control to follow the sequence of waypoints without colliding 

State 1: Starting robot placement State 2: First two robots take opposite paths 

State 3: Last two robots split even the 
distribution

State 4: All robots have split into separate 
paths resulting in the most efficient 
exploration 
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into any obstacles present in the environment.  Obstacles are detected with a platform’s 

onboard proximity sensors.  Although map data collection is assumed to be handled by 

LIDAR, this research uses a more inexpensive sensor set to collect data for navigation 

control input.  The reason being, cheap sensors are feasible to acquire and use for 

physical experimentation.  Hence, ultrasonic proximity sensors are fixed at useful points 

on the perimeter of a robot’s hull.       

Polling an ultrasonic sensor returns the distance to the object in the sensor’s field of 

vision that is closest to the sensor.  Consequently, a collision avoidance system must 

assume the worst case.  That being, obstacles exist along the entire perimeter of the 

sensor’s field of view at the distance indicated by the sensor.  Figure 16 illustrates the 

difference between the data that resulted in the data point and the worst case assumption. 

 

 

Figure 16: Visual example of actual detected environment features verses the assumption that the 

control algorithm must make based on that detection.   

(a) Green parts are the actual data that was 

detected to yield the raw sensor data. 

(b) Green parts are the assumed locations of 

obstacles based on the raw sensor data. 
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The model of robot mobility in this research is that of a four wheeled rover.  The front 

two wheels are able to swivel in order to change the heading of the robot when all four 

wheels rotate forward or backward along the ground.  Given this model, it is known that 

robot size, wheel base length, and front wheel swivel range dictate the maneuverability of 

the robot.  Therefore, robot hull dimensions (𝑤𝑖𝑑𝑡ℎℎ𝑢𝑙𝑙 , ℎ𝑒𝑖𝑔ℎ𝑡ℎ𝑢𝑙𝑙), wheel base length 

(𝑙𝑤𝑏), and max swivel angle (𝜃𝑚𝑎𝑥) serve as input to our control model.   

The front sensor and the first point in the navigation path controls steering direction 

and magnitude while the side sensors determine if the desired steering instructions will 

result in a side collision.  If the front sensor does not detect an obstacle then the wheels 

can turn directly toward the vector pointing from the robot’s location to the navigation 

point location, provided a side collision will not result.  If a side collision is predicted, the 

turn angle should be decreased until the side collision check passes.  If the front sensor 

detects an obstacle, the worst obstacle assumption mentioned earlier must be made.  

Therefore, the navigation point determines which side of the assumed object we turn 

away from.  Using the visibility polygon constricted from the front sensor field of view 

and its polled value, the point of possible collision is extracted, 𝑃𝐶 .  The opposite front 

corner of the robot 𝑃𝑅, with respect to the direction towards the navigation point, is 

selected.  This is the point that defines the outer edge of the robot’s turning radius circle.  

The radius of the turning circle is determined by the wheel base and the magnitude of the 

front wheel turn angle.  The circle that passes through 𝑃𝑅, 𝑃𝐶, and has a center point 𝑃𝑇 

that intersects a ray tracing perpendicular to the like navigation side of the robot’s back 

tire, determines the minimum turn angle that will not collide with the obstacle.  Figure 17 

shows the turning radius circle just described.  The angle 𝜃𝑙 paired with the turning circle 
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described the arc length that the outer point of the robot must travel in order to miss the 

obstacle.  This angle paired with the radii describing the exterior of the robot is used as 

input in conjunction with the side sensor values to check for an expected collision. 

Full control details are contained in the computer simulation used to implement a 

working maze solving system. 

 

Figure 17: The red circle describes the minimum turning radius of the robot’s most exterior point 

that will prevent a collision with the worst case obstacle detected by the robot’s front sensor.  The 

blue circle shows the robot’s interior turning radius.  
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CHAPTER 4 

MAZE SOLVING SIMULATION 

 

4.1 Goal 

Now that all the technologies required to realize the maze solving solution are known, a 

complete system can be implemented and tested.  However, the ideal map building and 

location estimation assumptions force the system to be implemented through computer 

simulation.  The goal of the simulation program is to enable testing of any desired maze 

environment with any number of participating robots and robot starting placements.  The 

simulation program is to be used for simple testing of the developed technologies since 

the size of the maze exit problem space is much too large to complete a statistically 

significant performance analysis.  Chapters two and three were seen to heavily utilize the 

simulation program and the results of the separate technologies are seen in those sections.  

This chapter will briefly describe the simulation program and step through a few test 

execution examples.   

 

4.2 Description 

The state of the system and environment was held and maintained by the simulation 

program.  Environment data, consisting of sensor detectable features, was globally 

available in a spatial database. Collector state was comprised of a real location, estimated 

location and error bound, communication range, visibility range, queues of input and 

output query messages, a database of observed environment features, and a spatial 
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coverage database.  The mesh communication network is realized by using collector’s 

actual locations and message queues. 

Upon simulation iteration, a collector starts by sending actuator commands to 

platform controllers (motors, legs, etc.).  The simulation intercepts these signals and 

updates the node’s actual location while returning sensor data that the collector uses to 

estimate its own location.  The location estimate provides error estimation parameters 

that are used in conjunction with the collector’s visibility polygons to generate coverage 

polygons.  The coverage polygons are then used to update the node’s spatial coverage 

database.  The simulator uses the collector’s visibility polygons and actual location to 

query the environment spatial database and generate sensor data corresponding to any 

features the visibility polygons intersected.  The sensor data is used by the collector to 

update its known environment features database.  Nodes process all messages located in 

their input queue and write the appropriate messages to their output message queue.  The 

simulated communication network then runs by sending all output queue messages to all 

nodes that are in range.  Once the communication network has finished, the simulation is 

then ready to complete another iteration.  

4.3 User Interface 

A functioning simulation program is essential for final results, but a graphical user 

interface is required to effectively inspect the state of the simulation at each iteration.  

The GUI must enable the user to view and edit the environment.   

The environment and collector spatial databases store everything in Spatialite (extension 

of Sqlite) utilizing the WGS84 standard coordinate system for Earth (latitude and 

longitude).  Since the projection does not directly translate to pixels, everything that is 
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displayed must first be converted to Cartesian coordinates using a global reference point 

specific to the current view window.  The coordinates describe the meter offset 

(north/south, east/west) from the given reference point.  The Cartesian meter offset 

coordinates must then be converted to pixels using a translation and scale transformation 

matrix that is specific to the screen’s viewing window.  Whenever the viewing window is 

changed from a pan or a zoom user action, the transformation matrix must be recalculated 

and applied to every object that is drawn.  This conversion must be done in reverse order 

whenever a user simulation edit occurs.   

To add environment features to the database the user must simply right-click while 

holding down a particular key to draw a desired outline.  The environment view can be 

hidden or displayed to allow for a more realistic collector view.  Exits can be created 

using a polygon drawing tool that functions similar to the wall add function.  Once an 

exit is reached by a robot, it considers its task complete and will no longer move but will 

answer query requests sent from other robots.  Collectors can be added to the simulation 

at any time with any desired starting location to enable all possible collector 

configurations. Once a collector is present the simulation will be able to run.  The user is 

able to play, pause, or step through simulation iterations which allows any single 

simulation state to be analyzed.  When a collector is clicked on they become selected.  

When this occurs, a separate property window appears which displays in text that node’s 

state.  The UI will load and display the selected node’s coverage polygons, message 

query polygons, exit gate, chosen and minimum paths, ultrasonic sensor visibility 

polygons, and all known environment data.  Other nodes will simply display the 

environment data that currently intersects their visibility polygon.  The user is able to 
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make a query on behalf of any selected node for testing purposes.  When the simulation is 

run queries will be made autonomously by the different collectors in the system.  Once a 

query is made, selecting different nodes will reveal the states and locations of that 

query’s messages.  The quality attribute of both coverage and completion polygons are 

represented through the UI by both its graphical alpha fill value and its textual 

representation in a collector’s property window.  For historical viewing purposes, each 

robot records all previous locations which are used to create a path history.  The path 

history is used to show simulation test results through a single image. 

4.4 Results 

The first example demonstrates improvement in path efficiency through autonomous 

spatial query.  Figure 18 shows two different paths exiting a spiral maze environment.  

The purple path shows the results of a robot exploring the environment without any other 

robot present.  The red path results from a second robot starting after the first had reached 

the exit at the same location as the first.  The red robot was able to query the first robot 

for any information it had collected during its escape in autonomously generated regions 

of interest.  The red path is clearly more efficient and had a length of 84.3 meters while 

the purple path had a length of 120.1 meters.  The test shows that minimum path 

calculation, autonomous query, and navigation controls are all effectively working to 

help reach a solution. 
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Figure 18: Initial solution path (purple) Query improved solution path (red) 

Figure 19 displays the results of the second example.  Four robots started in the center 

of a multiple choice maze.  Optimal path selection dictated that each robot explored a 

different initial branch option.  Data sharing through query informed each robot which 

branch options were dead ends so that when returning robots were required to pick 

another branch, the non-dead end option was always selected.  Table 5 shows the exit 

times of all participating robots. 
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Figure 19: Results of a four robot solution origination from the center of a ‘plus sign’ maze 

Table 2: Exit distances of example 2 test 

 Pink Dark Blue Light Blue Green Average 

Exit Path Distance 20.8 49.1 51.1 46.7 41.9 

 

 

The third example is shown in figure 20 and used the same maze structure as the 

previous example with the exit located at the bottom branch.  The number of robots used 
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to solve the maze is varied while the starting locations are held relatively constant.  It is 

seen that the worst case travel time of a single robot is avoided when the work is evenly 

distributed among extra workers.  Table 6 lays out exit distances of each solution.  The 

average exit distance and therefore time is seen to decrease as robots are added. 

 

Figure 20: The solutions of a ‘plus sign’ maze with bottom branch exit using 1, 2, and then 3 robots 

 

 

 

Single Robot Solution Two Robot Solution

Three Robot Solution
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Table 3: Exit distances and distance averages of robot number varied tests 

 Robot 1 Distance Robot 2 Distance Robot 2 Distance Average Distance 

Run 1 91.2 - - 91.2 

Run 2 90.2 38.7 - 64.5 

Run 3 67.3 69.6 38.5 58.5 

 

The final example attempts to demonstrate the need for theoretical mathematical 

analysis.  Figure 21 is of two tests run on a three-like maze structure where sequential 

branch decisions are required to exit the maze.  Table 7 shows the average distances 

required to exit given the different robot configurations.   Unlike the previous example’s 

tests, adding more robots did not decrease the exit time even though four robots would 

clearly be able to more efficiently explore the given region.  The reason that the three 

robot test had a lower distance was due to the fact that the entire maze was not explored 

unlike the four robot test.  However, since that branch was a dead end, its exploration was 

not required for maze solution.  Branch decisions are up to chance and the simulation 

program created was not designed to control these decisions, it only calculates what they 

will be.  Consequently, the simulation is unequipped to create every possible exploration 

outcome.  However, it is desired to know how many robots will best solve any given 

maze.  Determining the expected exit distance and cost of a solution is the only way to 

find the optimal maze solution configuration.   The research will now turn to theoretical 

expected value calculation to determine the optimal configuration. 
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Figure 21: Two tests run on a tree-like maze structure.   

Table 4: Robot exit distances and averages of tree maze tests  

 Robot 1 Robot 2 Robot 3 Robot 4 Distance Average 

Test 1 45.5 32.5 30.5 42.7 37.8 

Test 2 48.5 33.0 31.3 - 37.6 

 

 

 

 

 

 

 

 

 

 

Four Robot Test Three Robot Test
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CHAPTER 5 

EXPECTED ESCAPE COST/TIME CALCULATION 

 

5.1 Introduction 

The following chapter attempts to find the expected cost of exiting any unknown region, 

given a set of robots.  The goal is to determine what robotic configuration optimizes the 

time and cost to escape a maze.  The equation for the expected value is shown in equation 

3.  The variable 𝑍 is the size of the event space which is equal to the number of possible 

ways the system can exit the maze.  The sum of all event probabilities must equal one as 

it is assumed that the system must eventually escape.  From this it can be seen that the 

average event probability must decrease as 𝑍 increases.  The cost and probability of each 

separate event must be known to evaluate the expression.  Trial simulation and physical 

experiment are only practical for a small number of events, as execution time per event 

can be quite long.  Therefore, the calculation of expected values must be approached 

mathematically. 

𝐸[𝑋] = ∑ 𝑐𝑖𝑝𝑖
𝑍
𝑖=1                     (3) 

𝑐𝑖 = 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑒𝑣𝑒𝑛𝑡 𝑋𝑖  

𝑝𝑖 = 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑒𝑣𝑒𝑛𝑡 𝑋𝑖 

5.2 Problem Space 

The maze escape problem should be discretized in order to ensure a countable number of 

possible escape events.  The discretized maze shown in figure 22 will be the base for the 

estimated value calculation.  The maze space is broken up into grid cells of four types, 

known, unknown, exit unknown, and exit known.  Each robot starts in one interior cell 
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that is set from unknown to known.  Event possibilities branch out from there, one 

created for each possible exploration direction.  Every new event recursively branches on 

its exploration possibilities.  The act of taking a direction accrues exploration cost for the 

event and decreases the probability that it will happen.  When an event branch reaches an 

exit cell, the product of the current probability and cost is added to the expected cost 

expression.  Once all event branches have reached an exit, the expected cost calculation is 

complete.  This is known as the brute force answer and although it seems very simple to 

calculate, the amount of work required is impractical. 

 

Figure 22: Discretized maze serves as representation of the problem environment used for 

mathematical analysis 

To calculate the expected cost for 𝑅 robots, it is required that every scenario where all 

robots exit the region be found.  The expected cost for every possible starting location 

configuration must be averaged.  The number of possible starting location combinations 

is given by equations 4 and 5.  The number of unique combinations is large but not large 

enough to make brute force calculate impractical for small grids and numbers of robots.  

However, the number of unique combinations is only the run time coefficient of the 

expected value calculation.  The number of events given a single configuration is equal to 

the number of paths from a start location to each exit cell to the power of 𝑅.  

Consequently, the number of events required to discover optimal maze solving 

  

  

  

  

  

    

  

    

      
Exit Unknown 

Region Unknown 

Exit Known 

Region Known 
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configurations is far larger than what is possible to calculate.  It is concluded that a brute 

force solution will not be used. 

𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠 = 𝑁2∗𝑅    (4) 

𝑇𝑜𝑡𝑎𝑙 𝑈𝑛𝑖𝑞𝑢𝑒 𝐶𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠 = 𝑂(𝑁2 𝑐ℎ𝑜𝑜𝑠𝑒 𝑅) =
𝑁!

𝑅!(𝑁−𝐾)!
      (5) 

5.2.1 Non-Brute Force Problem Space 

Since the calculation of all possible events of 𝑅 robots is too great a task, the state of the 

individual must be calculated and used to create an inference of the system state that is 

used to construct a solution.  The new problem space for the expected value calculation 

assumes an unknown starting location configuration.  This assumption is essential for a 

non-brute force calculation.  The effects of particular starting location configuration 

characteristics are accounted for later.  First, the components of an individual robot’s 

state and the path toward a solution must be described before any complications can be 

addressed.   

A robot starts in a randomly chosen cell with a known region consisting of only that 

cell and an unknown area of size 𝑁2 − 1.  The robot must attempt to exit the maze by 

exploring unknown areas.  There are two methods of unknown region exploration, one 

physical and the other based on communication query.  The details of both are laid out 

below. 

 Physical – A robot uses its motors to move from its current position within its 

known region to a bordering unknown region.  The cost of such a move is 

dependent on the desired destination block and the current position of the robot.  

Since a brute force solution is inaccessible, there is no way to know the current 

location of the robot or which unknown block is desired for exploration.  The 
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minimum movement is one block where the maximum is 𝑛 blocks, where 𝑛 is the 

current number of blocks in the robot’s known region.   

 Communication Query – A robot asks the collective distributed system if the 

robot’s desired block to explore is shared with the system’s set of known blocks.  

If it is, the desired block then becomes known to the asking robot.  The cost of a 

communication query scales with the number of robots in the system.  The 

probability that the system will have the requested data relies on the known 

regions of the other robots in the system.  Sequential communication queries have 

changing success probabilities as the unknown region of the robot making the 

query changes each time useful information is returned.  This probability is given 

by equation 6 while its calculation is addressed further along. 

𝑃𝑟[𝑄𝑢𝑒𝑟𝑦𝑆𝑢𝑐𝑐𝑒𝑠𝑠] =
𝐴𝑟𝑒𝑎[⋃ 𝐸𝑟 ⋂𝑆𝑖

𝑅
𝑖 ≠𝑟 ]

𝐴𝑟𝑒𝑎[𝐸𝑟]
      (6) 

 

Assuming that at each step one cell is switched from an unknown to a known cell, 

there now exists a sequence of the number of known cells incrementing from 1 to 𝑁2.  

Synchronously, the number of unknown cells becomes a decrementing sequence from 

𝑁2 − 1 to 0.  These sequences are state variables that describe a robot’s progression to 

guaranteed maze escape.  Each time an unknown area is explored, there is a probability 

that the exploration will take the robot to an exit.  This exit probability is dependent on 

how many blocks have been previously explored and how many blocks have yet to be 

seen.  When the number of explored blocks reaches 𝑁2, the probability of escape 

becomes 1, as the number of unknown non-exit blocks is now 0.  A simple example will 

help explain and show what extra information is required for a generic calculation. 
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5.3 Process Example Walkthrough 

A two by two maze entrapping a single robot will serve as an example of the calculation 

process.  Assuming that all blocks bordering the maze area are exit blocks, all possible 

starting locations have an equal likelihood of escape.  This is because each block has two 

edges touching exit regions and two touching other maze blocks.  Given a generic 𝑁𝑥𝑁 

maze, table 5 lays out the probabilities of escape from different block types.   

Table 5: Characteristics of exit boarder cell types  

 Number of Cells in 𝑵𝒙𝑵 Number of Escape Edges Escape Probability 

Corner Cell 4 2 .5 

Edge Cell 𝑁2 − (𝑁 − 2)2 − 4 1 .25 

Inner Cell (𝑁 − 2)2 0 0 

 

Taking a single randomly chosen start location, the probability that the next explored 

edge will be an exit is given by equation 7 with a cost of 1 move.  There is no possibility 

of spatial query since there is only a single robot in the system.  The calculation of the 

remaining escapes continues under the probability that the robot did not escape with the 

previous move.  Currently, the robot’s state consists of two connected known cells and 

two unknown cells.  Both known blocks have three edges that can explored.  Two out of 

the three of each would lead to an exit, which yields a final probability of 4/6 for exit at 

the next step with a worst case movement cost of 2.  Moving to a third unknown block 

will give a total of eight possible moves to unknown space with size of them leading to 

an exit.  The exit probability of this state is 6/8 with a worst case movement cost of 3.  



55 
 

After moving to the final block, the robot is guaranteed to exit with a maximum 

movement cost of 4.  Figure 23 shows the escape progression. 

𝑃𝑒𝑠𝑐𝑎𝑝𝑒[𝑋1] =  
4

𝑁2 ∗ .5 +
𝑁2−(𝑁−2)2−4

𝑁2 ∗ .25        (7) 

 

 

Figure 23: Progression of expected value calculation of a single robot in a 2x2 maze 

To calculate the expected cost of escaping the problem space, the probability of 

reaching each state must be calculated.  The probability of reaching state 𝑋𝑖 is 𝑃[𝑋𝑖], 

which is the probability that the robot did not escape in any prior state.  Equations 8 and 9 

define aforementioned probabilities.  The cost accrued at state 𝑖 is between best and worst 

cases, 1 and 𝑖 movement units respectively.  However, the total cost of each state is the 

current state’s cost plus the cost of reaching the previous state.  State costs are defined by 

equations 10 and 11.   

𝑃[𝐸𝑠𝑐(𝑋𝑖)] =
𝐸𝑥𝑖𝑡 𝐸𝑑𝑔𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝐸𝑑𝑔𝑒𝑠
         (8) 

𝑃[𝑋𝑖] = 𝑃[𝑋𝑖−1] ∗ (1 − 𝑃[𝐸𝑠𝑐(𝑋𝑖−1)])       (9) 

𝑀(𝑖) = [1, 𝑖]          (10) 

𝐶𝑜𝑠𝑡(𝑋𝑖) =  𝐶𝑜𝑠𝑡(𝑋𝑖−1) + 𝑀(𝑖)          (11) 
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Using the state probability and cost equations, an expected cost equation can be 

constructed.  Equation 12 and table 6 illustrate the complete expected cost calculation for 

both best and worst case scenarios.  To ensure the calculation is correct, the probabilities 

of all escape events is summed and verified to be 1 (Equation 13). 

𝐸[𝑒𝑠𝑐𝑎𝑝𝑒] = ∑𝑃[𝑋𝑖] ∗ 𝑃[𝐸𝑠𝑐(𝑋𝑖)] ∗ 𝐶𝑜𝑠𝑡(𝑋𝑖)

𝑁2

𝑖=1

                         (12) 

Table 6: Best and worst case results of the expected value calculation on a 2x2 grid 

 𝑃[𝑋𝑖] 𝑃[𝐸𝑠𝑐(𝑋𝑖)] 𝐶𝑜𝑠𝑡𝑏𝑒𝑠𝑡(𝑋𝑖) 𝐶𝑜𝑠𝑡𝑤𝑜𝑟𝑠𝑡(𝑋𝑖) 𝑇𝑜𝑡𝑎𝑙𝑏𝑒𝑠𝑡 𝑇𝑜𝑡𝑎𝑙𝑤𝑜𝑟𝑠𝑡 

𝑋1 1 .5 1 1 - - 

𝑋2 .5 .67 2 3 - - 

𝑋3 .17 .75 3 6 - - 

𝑋4 .042 1 4 10 1.71 2.67 

 

𝑃[𝐸𝑠𝑐𝑎𝑝𝑒] = ∑𝑃[𝑋𝑖] ∗ 𝑃[𝐸𝑠𝑐(𝑋𝑖)]

𝑁2

𝑖=1

=
1

2
+

1

3
+

1

8
+

1

24
= 1                  (13) 

5.4 Single Robot Calculation 

The example provided in the previous section had a known number of exit and non-exit 

edges at every step.  The next goal is to calculate the expected number of total edges and 

exit edges at every step of the solution given an 𝑁𝑥𝑁 maze size so that the probability for 

escape can be effectively calculated.  Future research could find an equation to describe 

this or a brute force method of calculation, but such information is not known at this time. 
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Consequently, the equation for escape probability changes from equation 8 to equation 

14.   

𝑃[𝐸𝑠𝑐(𝑋𝑖)] =
𝐸𝑁,𝑛[𝑛𝑢𝑚𝑏𝑒𝑟 𝑒𝑥𝑖𝑡 𝑒𝑑𝑔𝑒𝑠]

𝐸𝑁,𝑛[𝑛𝑢𝑚𝑏𝑒𝑟 𝑒𝑑𝑔𝑒𝑠]
                             (14) 

5.4.1 Expected Edge Estimation 

Starting with the expected total number of exploration edges, an upper and lower bound 

should first be found.  All blocks in a robot’s known region must be connected to each 

other by at least one side.  The maximum number of edges in a continuous configuration 

of 𝑛 same sized squares occurs when ∃ a sequence of construction such that each block 

added to the formation increases the net sum of structure edges by 2, starting from the 

second block.  Formula 15 gives the maximum possible number of edges given 𝑛 blocks 

which is the upper bound for the expected number of edges.  The minimum number of 

edges results from square block formations.  Formula 16 provides the lower bound for the 

expected number of edges.   

𝑀𝑎𝑥𝐸𝑑𝑔𝑒𝑠(𝑛) = 2 + 2𝑛       (15) 

𝑀𝑖𝑛𝐸𝑑𝑔𝑒𝑠(𝑛) = 𝑛 − (√𝑛 − 2)
2
+ 4            (16) 

Now that the desired bounds have been found, they must be used to create an 

expected value function.  Within a bounding 𝑁𝑥𝑁 region, as 𝑛 approaches 𝑁2, the 

maximum number of edges converges toward 𝑀𝑖𝑛𝐸𝑑𝑔𝑒𝑠(𝑁2).  This trend results from 

the fact that as free space within the bounded region decreases, more square construction 

patterns are forced to occur, eventually forming a complete 𝑁𝑥𝑁 grid.  The trend is 

replicated by changing the weight each bound contributes to the function as a whole.  The 
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expected value approximation function is given in equation 17 with its results shown in 

figure 24.    

𝐸𝑁,𝑛[𝑛𝑢𝑚 𝑒𝑑𝑔𝑒𝑠] ≈ 𝐸𝑑𝑔𝑒𝑠𝑁(𝑛) =
𝑁2 − 𝑛

𝑁2
𝑀𝑎𝑥𝐸𝑑𝑔𝑒𝑠(𝑛) +

𝑛

𝑁2
𝑀𝑖𝑛𝐸𝑑𝑔𝑒𝑠(𝑛)    (17) 

 

Figure 24: Results of number of edges expected value estimation equation 17 (black).  Function lays 

in-between upper and lower bounds and trends to the lower bound dictated by the confining maze 

structure.   

 

The expected number of exit edges is a much simpler to estimate.  Each known block 

is treated as though its placement had been randomly chosen and the expected number of 

edges is added together with the others.  Equation 18 depicts the expected number of exit 

edges given a grid size and the current number of known blocks.  The equation assumes 

that each bordering block is an exit.  However, to account for a more restrictive number 

of exits, the numerators of the expression must be changed to reflect the new 

configuration.  In addition, the minimum edge limit must go to this new exit bound as 

well.  The complication of consideration for the continuous blocks assumption is not 

included, as a way of effectively doing so is not known. 
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𝐸𝑁,𝑛[𝑛𝑢𝑚𝑏𝑒𝑟 𝑒𝑥𝑖𝑡 𝑒𝑑𝑔𝑒𝑠] ≈ 𝐸𝑥𝑖𝑡𝑠𝑁(𝑛) = 𝑛
4

𝑁2
∗ 2 + 𝑛

𝑁2 − (𝑁 − 2)2 − 4

𝑁2
∗ 1    (18) 

 

Now that the desired approximations are complete, they can be used to calculate the 

probability that a robot will escape at each step.  Figure 25 displays the estimated escape 

probability for a ten by ten maze.  The estimated probability serves as input to a program 

that calculates the expected escape cost for a single robot and any size square maze.  The 

results of said program on a two by two maze are shown in table 4 and function as a 

comparison to the calculation previously performed by hand (table 7).  Confidence in the 

estimate is strengthened resulting from the near identical solutions.  Equation 19 

describes the new cost calculation method implemented by the earlier program. 

𝐸[𝑊𝑜𝑟𝑘] = ∑𝑃[𝑋𝑖] ∗
𝐸𝑥𝑖𝑡𝑠𝑁(𝑖)

𝐸𝑑𝑔𝑒𝑠𝑁(𝑖)
∗ 𝐶𝑜𝑠𝑡(𝑋𝑖)

𝑁2

𝑖=1

                               (19) 

 

Figure 25: Escape probability estimate (blue) using edge and exit edge expected value 

approximations. 
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Table 7: Best and worst case expected values of a 2x2 grid using the per step expected number of 

edges and exits for exit probability estimation   

 𝑃[𝑋𝑖] 𝑃[𝐸𝑠𝑐(𝑋𝑖)] 𝐶𝑜𝑠𝑡𝑏𝑒𝑠𝑡(𝑋𝑖) 𝐶𝑜𝑠𝑡𝑤𝑜𝑟𝑠𝑡(𝑋𝑖) 𝑇𝑜𝑡𝑎𝑙𝑏𝑒𝑠𝑡 𝑇𝑜𝑡𝑎𝑙𝑤𝑜𝑟𝑠𝑡 

𝑋1 1 .5 1 1 - - 

𝑋2 .5 .69 2 3 - - 

𝑋3 .16 .83 3 6 - - 

𝑋4 .026 1 4 10 1.68 2.57 

 

Before moving onto a more complex solution, equation 19 will be used to observe the 

cost pattern as 𝑁 increases.  Both best and worst case expected escape cost calculations 

for mazes with 𝑁 ranging from 1 to 15 are shown in figure 26. 

 

Figure 26: Worst (red) and best (blue) case expected exit cost/time values over a range of NxN maze 

grid sizes. 

5.4.2 Maze Complexity Coefficient 

Although upper and lower bounds for maze completion cost and time are critical for 

expected value estimation, it must be known what dictates cost estimations that lie 

between these bounds.  More specifically, what influences the average movement length 
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required to explore an unknown block given 𝑖 currently known blocks?  The answer is 

maze complexity, how much is physical movement impeded by the maze structure.  It is 

desired to know, given a start and destination location pair, the minimum travel distance 

between the two.  Given any maze structure, its complexity can be quantified by equation 

21 where 𝐵 is the set of blocks within the maze.  At each step, the coordinate system 

distance between the start and destination blocks is multiplied by 𝜑.  This effectively 

inflates travel costs to represent the resistance made by maze obstacles.  Phi’s minimum 

is 1 indicating that no obstacles are present in the maze while its maximum is unknown.   

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐵𝑙𝑜𝑐𝑘 𝑃𝑎𝑖𝑟𝑠 = ∑ ∑ 1

𝐵−(𝑏0→𝑏𝑖)

𝑏𝑗=𝑏𝑖+1

𝐵

𝑏𝑖=𝑏0

= ∑ 𝑘

𝑁2−1

𝑘=1

=
(𝑁2 − 1)𝑁2

2
= 𝑃(𝑁)   (20) 

𝑀𝑎𝑧𝑒𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 =
1

𝑃(𝑁)
∑ ∑

𝑀𝑖𝑛𝑇𝑟𝑎𝑣𝑒𝑙𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑏𝑖, 𝑏𝑗)

𝐶𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑆𝑦𝑠𝑡𝑒𝑚𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑏𝑖, 𝑏𝑗)

𝐵−(𝑏0→𝑏𝑖)

𝑏𝑗=𝑏𝑖+1

𝐵

𝑏𝑖=𝑏0

= 𝜑 

(21) 

The exact start and destination block locations are still unknown at each step; 

consequently, phi will simply be used to vary the average case.  The average case being 

at least √𝑛 moves must be made to explore at step 𝑋𝑛.  Figure 27 shows the distribution 

of average and best case costs over a range of maze sizes when different phi values are 

applied.  As the complexity of the maze increases, both best and average cases converge 

to the worst case cost.  This puts the realistic range of phi values to lie between 1 and 

𝑀(𝑁), where 𝑀(𝑁) is the minimum value of phi that causes the average case to nearly 

reach the worst case.  A better definition would be the first value of phi that causes the 

cost increase to fall beneath a threshold, as increasing phi while holding grid size 
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constant results in a monotonically increasing sequence.  This information will be used to 

determine optimal system configurations for mazes of varying complexity. 

 

 

Figure 27: Relationship between maze size and complexity with respect to average and best case 

expected exit costs/times 

 

5.5 Multiple Robot Complications 

Since the method used to calculate expected exit cost is derived from the viewpoint of the 

individual, only the cost function will be changed to account for the effects of 

communication and coordination.  As described in earlier, spatial queries substitute 

communication cost for movement cost when exploring a new unknown cell.  A query’s 

success depends on the collective knowledge of the system.  If the system does not know 

about the desired cell, then any cost accrued from attempting to query the data was spent 
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without benefit.  There is a probability that a query will succeed and we must determine 

what this is at a given state.  The area that the known system has in common with a 

robot’s interest region verses the size of the interest region is directly related to the 

probability of query success, as stated by equation 6 from section 5.2.1.  However, since 

the information required to evaluate equation 6 is not available.  Therefore, a method of 

query success probability estimation must be developed. 

5.5.1 Query Success Probability 

The probability that a randomly chosen cell is contained in the system’s collective known 

region is the size of the union of each robot’s known regions over the size of the maze.  

The size of this region is dependent on two things, the amount of redundant exploration 

and the total number of physical explorations by the system.   

Now that unknown cell exploration can be performed by communication query, the 

total number of known cells in a robot’s state does not accurately represent the amount of 

unique work a robot has performed.  Hence, an additional state variable 𝑚 is required to 

record the number of known blocks that were explored my physical movement.  This 

state variable can be used to make an inference about the number of unique blocks known 

to the system.  A crude estimate is 𝑚 ∗ 𝑅 where 𝑅 is the number of robots in the system.  

Redundant exploratory work reduces the total number of known cells, therefore, to 

improve this estimate, it must be taken into account. 

Distributed optimal path selection used in the system’s solution ensures that two 

robots will never explore the same unknown edge unless it is the only option.  

Consequently, redundant exploration only results from a condensed starting distribution.  

A condensed starting distribution occurs when multiple robots start in the same location.  
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If there are less unique routes than robots, redundant physical exploratory work is 

unavoidable.  The total number of unique starting locations over the number of robots 

provides a ratio that describes the chance of unavoidable redundant exploration.   

To produce the probability of query success, the size of known regions that are 

disjoint from the current robot’s known regions must be estimated.  Both the amount of 

redundant work and the number of successful queries contribute to this estimate.  The 

number of explorations performed through query indicates a reduction in the amount of 

unique information contained in the exterior system without a contribution to the amount 

of physical work performed by the system.  Simply, the more a robot completes queries 

successfully, the less likely subsequent queries will succeed without physical effort.  If 

the latter were not true, every robot in the solution would move briefly, and then wait for 

everyone else to find the exit.  State variable 𝑞 is added to record the number of 

successful queries. 

Equation 22 puts both new state variables together to produce an estimate of query 

success probability.  The expression represents the probability that a randomly chosen 

block not included in the current robot’s known region lies in the system’s set of known 

blocks.  A logically sound method for modeling the characteristic of unavoidable 

redundant exploration is not currently known and thus an assumption of evenly 

distributed starting locations is used. 

𝑃𝑟[𝑄𝑢𝑒𝑟𝑦𝑆𝑢𝑐𝑐𝑒𝑠𝑠] =
(𝑅 − 1)𝑚 − 𝑞

𝑁2 − 𝑚 − 𝑞
                                      (22) 
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5.5.2 Query Attempt Expected Cost 

If any region bordering the current robot’s known region is known by the system, then 

one of the possible queries will succeed.  When it is decided to attempt a communication 

based exploration, the behavior of a robot is to query regions until success is met or every 

bordering region has been attempted, constituting failure.  Using this logic and the 

calculated probability of a single query success, the expected cost of a communication 

based exploration attempt is reached.  The cost to send and process a single query locally 

is given by the variable 𝐶𝑞.  However, it must be inferred that if we are making a query, 𝑅 

other robots are making queries.  No assumption is made about the timing of these 

externally originating queries, although the cost accrued locally to process them is 

allocated here.  Equation 23 denoting the cost of a single query effectively takes into 

account an even piece of the total work required to execute queries over the distributed 

system.  The expected communication exploration cost calculation must use the number 

of bordering regions; equations 24 and 25 utilize the expected number of edges 

accordingly. 

𝐶𝑜𝑠𝑡(𝑄𝑢𝑒𝑟𝑦) = 𝐶𝑞𝑅 = 𝐶(𝑄)                                        (23) 

𝐸𝑁,𝑟[𝐸𝑥ℎ𝑎𝑢𝑠𝑡𝑖𝑣𝑒𝑄𝑢𝑒𝑟𝑦𝐶𝑜𝑠𝑡] = ∑ 𝐶(𝑄)(1 − 𝑃𝑟[𝑄𝑢𝑒𝑟𝑦𝑆𝑢𝑐𝑐𝑒𝑠𝑠])𝑖

𝐸𝑁,𝑖[𝑛𝑢𝑚𝑏𝑒𝑟 𝑒𝑑𝑔𝑒𝑠]

𝑖=0

  (24) 

𝐸𝑁,𝑛[𝑛𝑢𝑚𝑏𝑒𝑟 𝑒𝑑𝑔𝑒𝑠] = 𝐸𝑑𝑔𝑒𝑠𝑁(𝑛)          𝑥 = 1 − 𝑃𝑟[𝑄𝑢𝑒𝑟𝑦𝑆𝑢𝑐𝑐𝑒𝑠𝑠] 

𝐸𝑁,𝑛[𝐸𝑥ℎ𝑎𝑢𝑠𝑡𝑖𝑣𝑒𝑄𝑢𝑒𝑟𝑦𝐶𝑜𝑠𝑡] = 𝐶(𝑄)
1 − 𝑥𝐸𝑑𝑔𝑒𝑠𝑁(𝑛)

1 − 𝑥
= 𝐸𝑁,𝑛[𝐶𝑞]        (25) 

If every query fails, a new block must still be explored, so a physical move is made.  

The probability that the communication exploration is unsuccessful and the cost of a 
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physical move must be included in the expected cost calculation.  This probability is 

shown in equation 26.  Equation 28 provides the full communication exploration attempt 

cost definition. 

𝑃𝑟[𝐶𝐹] = (1 − 𝑃𝑟[𝑄𝑢𝑒𝑟𝑦𝑆𝑢𝑐𝑐𝑒𝑠𝑠])𝐸𝑁,𝑛[𝑛𝑢𝑚𝑏𝑒𝑟 𝑒𝑑𝑔𝑒𝑠]                        (26) 

𝑃𝑟[𝐶𝑆] = 1 − 𝑃𝑟[𝐶𝑜𝑚𝑚𝐹𝑎𝑖𝑙]                                                (27) 

𝐸𝑁.𝑛[𝐶𝑜𝑚𝑚𝐴𝑡𝑡𝑒𝑚𝑝𝑡𝐶𝑜𝑠𝑡] = 𝑃𝑟[𝐶𝑆] ∗ 𝐸𝑁,𝑛[𝐶𝑞]   +   𝑃𝑟[𝐶𝐹] ∗ (𝐸𝑁,𝑛[𝐶𝑞] + 𝑀(𝑛))  (28) 

With the intentions of minimizing total exit cost, an exhaustive communication 

attempt or a sole physical exploration must be attempted at each step.  The decision is 

based on which possibility has the lower expected cost.  The expected communication 

cost is dependent on the state variables 𝑚, 𝑞, and 𝑛 while movement cost is dependent 

on 𝑛.  If movement is selected, state variable 𝑚 is incremented by one and its cost and 

time is added to calculation counters.  Otherwise, state 𝑚 is incremented by the product 

of one and the probability that all queries failed, 𝑞 is incremented by the product of one 

and the probability that at least one query succeeded, and the expected cost and time are 

added to state counters.  This procedure is described with pseudo-code in figure 28.

 

Figure 28: Expected cost of exploration options dictate which option is chosen.  Logic contributes to 

expected cost/time calculation 
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5.5.3 Physical Exit Cost 

When an exit is found through a query, extra effort is required for the robot to physically 

reach that exit.  To account for this extra time and cost, the product of exit probability, 

step probability, and movement cost is added to the total exit cost and time.  This cost 

does not affect the cost of reaching later steps as it is only added when an exit is found.  

Equation 29 provides a definition for exit cost. 

𝐸𝑥𝑖𝑡𝐶𝑜𝑠𝑡(𝑋𝑖) = 𝑃[𝑋𝑖] ∗ 𝑃[𝐸𝑠𝑐(𝑋𝑖)] ∗ 𝑀(𝑖)                                 (29) 

5.6 Results 

Now that other complications have been accounted for, the following calculations will 

include all variables considered in this research.  These variables are listed below. 

 𝑁   – size of grid width and height 

 𝑅   – number of robots 

 𝐶𝑚 – cost of physically moving the robot one block 

 𝐶𝑞  – cost of a single spatial data query 

The goal is to find the optimal number of robots given a maze size and cost 

configuration.  The optimal number of robots occurs when the maze exit time becomes 

minimal.  Maze exit time is derived from the state variable 𝑚, reflecting the time spent on 

physical movement.  The time spent on communication is thought to be negligible in 

reference to movement time and is therefore excluded from the exit time summation.  
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Equations 30 through 32 define the final calculation method for expected exit cost and 

time.  

𝐸[𝑊𝑜𝑟𝑘] = ∑[𝑃[𝑋𝑖] ∗
𝐸𝑁,𝑖[𝑛𝑢𝑚𝑏𝑒𝑟 𝑒𝑥𝑖𝑡 𝑒𝑑𝑔𝑒𝑠]

𝐸𝑁,𝑖[𝑛𝑢𝑚𝑏𝑒𝑟 𝑒𝑑𝑔𝑒𝑠]
∗ 𝐶𝑜𝑠𝑡(𝑋𝑖) + 𝐸𝑥𝑖𝑡𝐶𝑜𝑠𝑡(𝑋𝑖)]

𝑁2

𝑖=1

    (30) 

𝐶𝑜𝑠𝑡(𝑋𝑖) =  𝐶𝑜𝑠𝑡(𝑋𝑖−1) + 𝐶𝑜𝑠𝑡(𝑖)                                          (31) 

𝐶𝑜𝑠𝑡(𝑖) = 𝑀𝑖𝑛(𝐸𝑁.𝑖[𝐶𝑜𝑚𝑚𝐴𝑡𝑡𝑒𝑚𝑝𝑡𝐶𝑜𝑠𝑡],𝑀(𝑖))                             (32) 

5.6.1 Maze Size vs. Number of Robots 

First, the number of robots with respect to grid sizes will be calculated while holding both 

movement and communication costs constant.  Figure 29 is a three-dimensional graph of 

all exit costs and times given different grid sizes and robots each iterated over a value 

range.  

 

Figure 29: Time dependence on the number of robots used to solve a maze.  Varies with grid size. 
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The initial trend with respect to robot number over all grid sizes is an exponential 

decay of exit time while individual exit cost decreases in a gradual linear pattern.  As the 

number of robots continues to increase, a point is reached where exit time begins to 

increase towards the limit of the single robot exit time.  Formula 33 represents a fitting 

pattern for this exit time trend, where 𝑡1 is the exit time of a lone robot, 𝑡𝑚 is the 

minimum exit time of any robot configuration, and 𝑅0 is the first number of robots that 

triggers the second trend segment.  Both 𝜇1 and 𝜇2 determine the rate of exponential 

change and are dependent on grid size.  It is observed that there are ranges of robots for 

each grid size that result in minimum exit times.  Table 8 provides these exact ranges for 

the cost configuration 𝐶𝑚 = 1 and 𝐶𝑞 = .1.  The staggered cost increases and minimum 

robot ranges is due to the varied accuracy of the edge estimates used over the grid size 

range. 

𝐸𝑥𝑖𝑡𝑇𝑖𝑚𝑒𝑁(𝑅) = max (𝑡1𝑒
𝑅
𝜇1 , 𝑡𝑚) + max(0, (𝑡1 − 𝑡𝑚) (1 − 𝑒

−𝑅+𝑅0
𝜇2 ))       (33) 
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Table 8: Minimum exit times and the ranges of robots that are able to achieve those times 

Grid Size (𝑁) Min Exit Time Range of Robots 

2 1.76 (4,11) 

3 2.13 (8,14) 

4 3.09 (7,17) 

5 3.41 (10,17) 

6 4.50 (9,19) 

7 4.81 (12,19) 

8 6.02 (10,22) 

9 6.34 (13,22) 

10 7.64 (12,24) 

 

Looking into the cause of the aforementioned exit time trends, the cost spent on 

communication is compared against time of exit.  Figure 30 illustrates the relation 

between the two, the number of robots changing communication cost and query success 

probability.  The figure shows that at the beginning, adding more robots will increase 

communication cost expenditures while significantly reducing escape time.  There is a 

point where adding more robots starts to decrease communication cost while continuing 

to decrease escape time.  This is due to the fact that many more attempted queries 

succeed; thereby reducing the total communication cost even though individual query 

attempts are more expensive.  A later moment in the trend shows that eventually the 

increase of single communication cost outweighs the incurred benefits to query success 

probability.  When this happens, robots find it more cost effective to physically explore 
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their surroundings verses attempting queries, producing an increase in maze exit time.  

These exact points of pattern change are dependent on the base communication cost and 

the size of the maze.  Both correlate with an accelerated moment placement with respect 

to the number of robots added to the system. 

 

Figure 30: Exit time trend changes as more robots are added to the solution 

5.6.2 Communication Cost vs. Number of Robots 

Now that the pattern of exit time with respect to grid size and number of robots is known, 

the effect of communication cost variation is desired.  The following calculations result 

from holding grid size constant while the values of communication cost and number of 

robots are iterating over a specified range.  Figure 31 and 32 display expected exit time 

values give a 15 by 15 grid.  Figure 32 assumes the worst case step travel distance while 

figure 31 assumes an average travel distance.  Where the previous calculation held 

communication query cost constant at ten percent of a single block movement, the current 

calculations iterate over a range of one to one hundred and fifty percent.   
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Figure 31: Dependence of expected exit time on a varied query cost with respect to the number of 

robots.  Average movement exploration costs are assumed.    

 

Figure 32: Dependence of expected exit time on a varied query cost with respect to the number of 

robots. Worst case movement exploration costs are assumed.    
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It becomes clear that query cost and the maximum number of robots able to benefit an 

exit solution are negatively correlated.  Meaning, as query cost is increased, the 

maximum number of beneficial robots decreases.  As mentioned previously, when too 

many robots are added to the system, it becomes more cost efficient to physically explore 

than to query.  Decreasing the base query cost that is scaled by the number of the robots 

in the system, allows for more robots to be effectively utilized before optimal cost and 

therefore exit times are adversely impacted.   

There is an interesting difference present in the crowding effect distributions of the 

average verses the worse movement case.  The number of robots able to benefit the 

solution seems to be greater in the worst case assumed calculation.  This is counter 

intuitive since querying is much more beneficial to the worst case solution, hence it may 

be thought that variance in its cost would have a greater adverse impact on the solution.  

However, the maximum estimated exit time is far greater in the worst case, and so it takes 

more crowding for the increased cost to become greater than any movement possibility.  

The information to extract from the average and worst case distribution difference is, the 

less total travel distance required, the more impact communication cost has on solution 

scaling. 

It might be desired to find the most cost efficient number of robots to collaboratively 

escape a maze.  Adding a robot will most likely increase the total cost of the system but 

may also reduce exit time.  The most efficient number of robots for a given configuration 

will have the minimum product of total system escape cost and escape time.  Figure 33 

provides the cost benefit distribution described.   



74 
 

 

Figure 33: Reflection of the rate of change in efficiency with respect to query cost and the number of 

robots in a solution configuration 

Unfortunately, the best performance with respect to total system cost is achieved with 

a single robot over all valid query costs.  As a result, the points of most efficient 

performance have the slowest maze exit times.  When analyzing total system cost with 

respect to a linear change in exit time, it is observed that exponential system cost increase 

is required for linear exit time decrease.  This correlation is shown by figure 34. 
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Figure 34: Exponential increase in cost with respect to a linear change in time scale. 
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CHAPTER 6 

CONCLUSIONS AND RECOMMENDATIONS 

With respect to the distributed query technology, the message passing policy of 

optimistic replication through broadcast provides an optimal method of graph traversal 

over a mesh network.  It was found that without filtering batches of messages, the total 

number produced per query at a given node is of exponential order.  Fortunately, filtering 

and merging of like query messages at the node level decreased the order of messages 

generated to a constant, transforming optimistic replication into a practical policy for 

distributed spatial query systems.  The filtering and merging methods used to obtain the 

change in performance rely on the information gained by the query completion polygon.  

Therefore, distributed applications that do not explicitly benefit from the maintenance of 

coverage polygons may gain implicit benefit through its use.  Simulation based utilization 

and performance testing of the query system discovered it to be a feasible and scalable 

method of spatial communication.  Additional testing is required to produce accurate 

performance characteristics in terms of required bandwidth per query.  Implementation of 

the designed system using physical routers with mesh network firmware is greatly 

recommended.   

The simulation program proved essential for the process of developing and testing all 

autonomous system algorithms and behaviors.  It was verified that the method for 

minimal path calculation through modified graph traversal correctly created optimal exit 

paths for all known exits.  Navigation point calculation provided waypoints that 

described key points of a minimal exit path.  Exit gate stabilization eliminated all solution 

path selection looping over a stable map dataset.  Regions selected for distributed spatial 
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query effectively described areas where additional data would impact solution path.  It 

was found that a robot only queried for data that was essential to its own exit solution, 

thereby reducing communication cost to a minimal amount.  Data returned from 

autonomous queries helped reduce redundant exploration and was a key part of 

decreasing exit time.  Optimal path selection effectively distributed robots such that all 

exploration was done with as little redundancy as possible.  The combination of 

intelligent query requests and distributed optimal path selection, resulted in a minimum 

amount of redundant exploration work.  The control algorithm stabilized robots on their 

selected navigation plan while effectively avoiding obstacles.  Any major control 

oscillation was due to toggling of selected paths.  Future work could include a PID 

controller in order to eliminate minor control oscillations.  The developed system 

effectively solved all mazes tested and utilized all participating robots while minimizing 

solution cost.  Performance and correctness testing using existing map building and 

location estimation methods is desired for future work.  The required changes for a 

system accounting for location and data error bounds are significant and may prove to be 

extremely difficult.  However, once these changes are made, it is recommended that the 

system be implemented through physical devices.   

The expected cost and time calculations showed that multiple robots cooperatively 

solving a maze can drastically decrease the total solving time and cost of escape per 

robot.  It was found that given a maze size and communication cost ratio, there exists a 

range of participating robots that attain a minimum expected exit time.  After too many 

robots are added, the exit time starts to converge back to the maximum exit time.  This is 

due to the fact that the operating goal of the solving system is to exit with minimal cost.  
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Active robots attempt to utilize communication only when it could benefit the solution 

time.  If this were not the case, adding robots to a system would only continue to 

converge the expected exit time to the minimum possible exit time.  However, as robots 

are added, system cost per robot increases toward an unbounded limit.   

Cost benefit analysis revealed that an exponential system cost increase was required 

for linear expected solution time decreases.  There exists a range where linear speed-up 

increases only require linear solution cost increases with a slope coefficient dependent on 

base communication cost.  Therefore, in energy cost limited solutions that have strict 

time requirements, efficient communication hardware is extremely beneficial to design a 

system that performs adequately.  One major complication that was left out of the 

expected value calculations was shared exit conditions.  Once a robot has found an exit, 

that exit location may be shared with all other robots.  The reason that the complication 

was not included in the previous calculations is that what a robot can do with another’s 

exit location is unknown.  The path between that robot and the exit may be unknown and 

the expression for the expected cost of finding a connecting path is thus far undefined.  

This is something that could be addressed in future research.  
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