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Abstract: The group testing idea is an efficient infection identification approach based on pooling
the test samples of a group of individuals, which results in identification with less number of tests
than individually testing the population. In our work, we propose a novel infection spread model
based on a random connection graph which represents connections between n individuals. Infection
spreads via connections between individuals, and this results in a probabilistic cluster formation
structure as well as non-i.i.d. (correlated) infection statuses for individuals. We propose a class of
two-step sampled group testing algorithms where we exploit the known probabilistic infection spread
model. We investigate the metrics associated with two-step sampled group testing algorithms. To
demonstrate our results, for analytically tractable exponentially split cluster formation trees, we
calculate the required number of tests and the expected number of false classifications in terms of
the system parameters, and identify the trade-off between them. For such exponentially split cluster
formation trees, for zero-error construction, we prove that the required number of tests is O(log2 n).
Thus, for such cluster formation trees, our algorithm outperforms any zero-error non-adaptive group
test, binary splitting algorithm, and Hwang’s generalized binary splitting algorithm. Our results
imply that, by exploiting probabilistic information on the connections of individuals, group testing
can be used to reduce the number of required tests significantly even when the infection rate is high,
contrasting the prevalent belief that group testing is useful only when the infection rate is low.

Keywords: group testing; dynamic group testing; algorithm design; group testing over time; pooled
testing

1. Introduction

The group testing problem, introduced by Dorfman in [1], is the problem of identifying
the infection statuses of a set of individuals by performing fewer tests than individually testing
everyone. The key idea of group testing is to mix test samples of the individuals and test
the mixed sample. A negative test result implies that everyone within that group is negative,
thereby identifying infection statuses of an entire group with a single test. A positive test result
implies that there is at least one positive individual in that group, in which case Dorfman’s
original algorithm goes into a second phase of testing everyone individually.

Since Dorfman’s seminal work, various families of algorithms have been studied, such
as adaptive algorithms, where one designs test pools in the (i + 1)st step by using informa-
tion from the test results in the first i steps, and non-adaptive algorithms, where every test
pool is predetermined and run in parallel. In addition, various forms of infection spread
models have been considered as well, such as the independent and identically distributed
(i.i.d.) model where each person is infected independent of others with probability p, and
the combinatorial model where k out of n people are infected uniformly distributed on the
sample space of (n

k) elements. Under these various system models and family of algorithms,
the group testing problem has been widely studied. For instance, Ref. [2] gives a detailed
study of combinatorial group testing and zero-error group testing, Ref. [3] relates the group
testing problem to a channel coding problem, and Refs. [4–25] advance the group testing
literature in various directions. The advantage of group testing is known to diminish when
the disease is not rare [26–28].
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Early works mainly consider two infection models: combinatorial model where, prior
to designing the algorithm, the exact number of infections is assumed to be known, and
the probabilistic model where each individual is assumed to be infected with probability p
identically and independently. Although there is no general result for arbitrary infection
probabilities and arbitrary correlations, Refs. [29–34] have considered advanced probabilis-
tic models. Our goal in this paper is to consider a realistic graph-based infection spread
model, and exploit the knowledge of the infection spread model to design efficient group
testing algorithms. In this paper, we expand our prior conference paper in [35], to present a
comprehensive analysis.

To that end, first, we propose a novel infection spread model, where individuals are
connected via a random connection graph, whose connection probabilities are known
(For instance, location data obtained from cell phones can be used to estimate connection
probabilities.). A realization of the random connection graph results in different connected
components, i.e., clusters and partitions the set of all individuals. The infection starts with a
patient zero who is uniformly randomly chosen among n individuals. Then, any individual
who is connected to at least one infected individual is also infected. For this system model,
we propose a novel family of algorithms which we coin two-step sampled group testing
algorithms. The algorithm consists of a sampling step, where a set of individuals are chosen
to be tested, and a zero-error non-adaptive test step, where selected individuals are tested
according to a zero-error non-adaptive group test matrix. In order to select individuals
to test in the first step, one of the possible cluster formations that can be formed in the
random connection graph is selected. Then, according to the selected cluster formation,
we select exactly one individual from every cluster. After identifying the infection statuses
of the selected individuals with zero-error, we assign the same infection statuses to the
other individuals in the same cluster with identified individuals. Note that the actual
cluster formation is not known prior to the test design and, because of that, selected cluster
formation can be different from the actual cluster formation. Thus, this process is not
necessarily a zero-error group testing procedure.

Our main contributions consist of proposing a novel infection spread model with
random connection graph, proposing a two-step sampled group testing algorithm which is
based on novel F -separable zero-error non-adaptive test matrices, characterizing the opti-
mal design of two-step sampled group testing algorithms, and presenting explicit results
on analytically tractable exponentially split cluster formation trees. For the considered two-
step sampled group testing algorithms, we identify the optimal sampling function selection,
calculate the required number of tests and the expected number of false classifications in
terms of the system parameters, and identify the trade-off between them. Our F -separable
zero-error non-adaptive test matrix construction is based on taking advantage of the known
probability distribution of cluster formations. In order to present an analytically tractable
case study for our proposed two-step sampled group testing algorithm, we consider expo-
nentially split cluster formation trees as a special case, in which we explicitly calculate the
required number of tests and the expected number of false classifications. For zero-error
construction, we prove that the required number of tests is less than 4(log2 n + 1)/3 and
is of O(log2 n), when there are at most n equal-sized clusters in the system, each having
δ individuals. For the sake of fairness, in our comparisons, we take δ to be 1, ignoring
further reductions of the number of tests due to δ. We show that, even when we ignore the
gain by cluster size δ, our non-adaptive algorithm, in the zero-error setting, outperforms
any zero-error non-adaptive group test and Hwang’s generalized binary splitting algo-
rithm [36], which is known to be the optimal zero-error adaptive group test [28]. Since the
number of infections scale as n

log2 n δ in exponentially split cluster formation trees with nδ

individuals, our results show that we can use group testing to reduce the required number
of tests significantly in our system model even when the infection rate is high by using our
two-step sampled group testing algorithm.
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2. Related Work

In the classical group testing works, the infection model is mostly based on the
combinatorial or i.i.d. probabilistic model [4–25,28]. In more recent works, researchers have
challenged the infection modeling dimension of the group testing problem. These related
works include non-identical and/or correlated infection probabilities. Ref. [29] considers a
probabilistic model with independent but non-identically distributed infection probabilities.
Ref. [30] considers a correlated infection distribution under very specific assumptions.
Ref. [31] considers a system where individuals are modeled as a community with positive
correlations between them for specific setups, such as individuals at contiguous positions
in a line. Ref. [32] considers a model where individuals belong to disjoint communities, and
the system parameters are the number of infected families and the probability that a family
is infected. The authors show that leveraging the community information improves the
testing performance by reducing the number of tests required, from the scale of number of
infections to the scale of number of infected families for both probabilistic and combinatorial
setups. In the subsequent work [33], the authors consider overlapping communities. In [34],
the authors focus on community structured system model, where the underlying network
model is drawn from the stochastic block model. Over a fixed community structure, initial
infections are introduced i.i.d. to the system; then, infection spread within and between
communities is realized, with infections spreading within the community with a higher
fixed probability than between communities. The authors propose an adaptive algorithm
and compare its performance with the binary splitting algorithm that does not leverage
the community information. In [32–34], a form of correlation between the infection status
of individuals is considered, in a structured way, represented by the community structure
networks of the individuals. In [37,38], further structured community network based
systems are considered. In our work, we consider a random graph based infection spread
model, which introduces correlations to the system.

3. System Model

We consider a group of n individuals. The random infection vector U = (U1, U2, . . . , Un)
represents the infection status of the individuals. Here, Ui is a Bernoulli random variable with
parameter pi. If individual i is infected, then Ui = 1, otherwise Ui = 0. Random variables
Ui need not be independent. A patient zero random variable Z is uniformly distributed over
the set of individuals, i.e., Z = i with probability pZ(i) = 1

n for i = 1, . . . , n. Patient zero
is the first person to be infected. Thus far, the infection model is identical to the traditional
combinatorial model with k = 1 infected among n individuals.

Next, we define a random connection graph C which is a random graph where vertices
represent the individuals, and edges represent the connections between the individuals.
Let pC denote the probability distribution of the random graph C over the support set of
all possible edge realizations. For the special class of random connection graphs where
the edges are realized independently, we fully characterize the statistics of the random
connection graph by the random connection matrix C, which is a symmetric n× n matrix,
where the (i, j)th entry Cij is the probability that there is an edge between vertices i and j
for i 6= j, and Cij = 0 for i = j by definition.

A random connection graph C is an undirected random graph with vertex set VC = [n],
with each vertex representing a unique individual, and a random edge set EC = {eij}
which represents connections between individuals that satisfy the following: (1) If eij ∈ EC ,
then there is an edge between vertices i and j; (2) For an arbitrary edge set E∗C , probability
of EC = E∗C is equal to pC (E∗C , VC ). In the case when all 1{eij∈EC } are independent, where
1A denotes the indicator function of the event A, the random connection matrix C fully
characterizes the statistics of edge realizations. There is a path between vertices i and j if
there exists a set of vertices {i1, i2, . . . ik} in [n] such that {eii1 , ei1i2 , ei2i3 , . . . eik j} ⊂ EC , i.e.,
two vertices are connected if there exists a path between them. We summarize the system
and algorithm parameters that we use throughout the paper in Table 1.
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Table 1. Nomenclature.

System
n number of individuals in the system
U infection status vector of size n
Z patient zero random variable

pZ(i) probability of individual i is the patient zero
C random connection graph

EC edge set of C
VC vertex set of C , also equal to [n]
C random connection matrix
F cluster formation random variable
F set of all possible cluster formations, i.e., {Fi}

pF(Fi) probability of true cluster formation is Fi
f number of possible cluster formations, i.e., |F |
σi number of clusters in the cluster formation Fi
Si

j jth cluster in Fi

λj number of unique clusters in F at and above the level Fj
λSj

i
number of unique ancestor nodes of Sj

i in F
δ size of the bottom level clusters in an exponentially split F

Algorithm
Fm sampling cluster formation chosen from F
M sampling function that selects individuals to be tested

U(M) infection status vector of the selected individuals by M
Sα(Mi) the cluster in Fα that contains the ith selected individual by M

KM set of infections among the selected individuals by M
P(KM) set of all possible infected sets that KM can be

T number of tests to be performed
X T × σm test matrix

X(i) ith column of X
y test result vector of size T
Û estimated infection status of n individuals after test results

E f ,α expected number of false classifications given F = Fα

E f expected number of false classifications

In our system model, if there is a path in C between two individuals, then their
infection statuses are equal. In other words, the infection spreads from patient zero Z to
everyone that is connected to patient zero. Thus, Uk = Ul , if there exists a path between k
and l in C . Here, we note that a realization of the random graph C consists of clusters of
individuals, where a cluster is a subset of vertices in C such that all elements in a cluster
are connected with each other, and none of them is connected to any vertex that is not
in the cluster. More rigorously, a subset S = {i1, i2, . . . ik} of VC is a cluster, if il and im
are connected for all il 6= im ∈ S, but ia and ib are not connected for any ia ∈ S and all
ib ∈ VC \S.

Note that the set of all clusters in a realization of the random graph C is a partition of
[n]. In a random connection graph structure, formation of clusters in C along with patient
zero Z determine the status of the infection vector. Therefore, instead of focusing on the
specific structure of the graph C , we focus on the cluster formations in C . For a given pC ,
we can calculate the probabilities of possible cluster formations in C .

To solidify ideas, we give an example in Figure 1. For a random connection graph
where the edges are realized independently, we give probabilities of the existence of edges
(zero probabilities are not shown) in Figure 1a and three different realizations of a random
connection graph C , where all three realizations result in different cluster formations in
Figure 1b–d. In Figure 1, we consider a random connection graph C that has n = 21
vertices, which represent the individuals in our group testing model. Since in this example
we assume that the edges are realized independently, every edge between vertices i and j
exists with probability Cij, independently. As we defined, if there is a path between two
vertices (i.e., they are in the same cluster), then we say that their infection statuses are the
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same. One way of interpreting this is that there is a patient zero Z, which is uniformly
randomly chosen among n individuals, and patient zero spreads the infection to everyone
in its cluster. Therefore, working on the cluster formation structures, rather than the random
connection graph itself, is equally informative for the sake of designing group tests. For
instance, in the realization that we give in Figure 1b, if the edge between vertices 5 and
10 did not exist that would be a different realization for the random connection graph C ;
however, the cluster formations would still be the same. As all infections are determined by
the cluster formations and the realization of patient zero, cluster formations are sufficient
statistics. Before we rigorously argue this point, we first focus on constructing a basis for
random cluster formations.
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(d)
Figure 1. Random connection graph C and three possible realizations and cluster formations. We
show each cluster with a different color. (a) Probabilities of the edges; (b) a realization of C with four
clusters; (c) a realization of C with six clusters; (d) a realization of C with four clusters.

The random cluster formation variable F is distributed over F as P(F = Fi) = pF(Fi),
for all Fi ∈ F , where F is a subset of the set of all partitions of the set {1, 2, . . . , n}. In
our model, we know the set F (i.e., the set of cluster formations that can occur) and the
probability distribution pF, since we know pC . Let us denote |F | by f . For a cluster
formation Fi, individuals that are in the same cluster have the same infection status. Let
|Fi| = σi, i.e., there are σi subsets in the partition Fi of {1, 2, . . . , n}. Without loss of generality,
for i < j, we have σi ≤ σj, i.e., cluster formations in F are ordered in increasing sizes. Let
Si

j be the jth subset of the partition Fi where i ∈ [ f ] and j ∈ [σi]. Then, for fixed i and j,

Uk = Ul for all k, l ∈ Si
j, for all i ∈ [ f ] and j ∈ [σi].

To clarify the definitions, we give a simple running example which we will refer to through-
out this section. Consider a population with n = 3 individuals who are connected according to
the random connection matrix C and assume that the edges are realized independently,

C =

 0 0.3 0.5
0.3 0 0
0.5 0 0

 (1)

By definition, the main diagonal of the random connection matrix is zero, since we
define edges between distinct vertices only. In this example, F consists of four possible
cluster formations, and thus we have f = |F | = 4. The random cluster formation variable
F can take those four possible cluster formations with the following probabilities:
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F =


F1 = {{1, 2, 3}}, w. p. 0.15
F2 = {{1, 2}, {3}}, w. p. 0.15
F3 = {{1, 3}, {2}}, w. p. 0.35
F4 = {{1}, {2}, {3}}, w. p. 0.35

(2)

This example network and the corresponding cluster formations are shown in Figure 2.
Here, cluster formation F1 occurs when the edge between vertices 1 and 2 and the edge
between vertices 1 and 3 are realized; F2 occurs when only the edge between vertices 1 and
2 is realized; and F3 occurs when only the edge between vertices 1 and 3 is realized. Finally,
F4 occurs when none of the edges in C is realized. In this example, we have σ1 = |F1| = 1,
σ2 = |F2| = 2, σ3 = |F3| = 2, and σ4 = |F4| = 3. Note that σ1 ≤ σ2 ≤ σ3 ≤ σ4 as assumed
without loss of generality above. Each subset that forms the partition Fi are denoted by Si

j,

for instance, F3 consists of S3
1 = {1, 3} and S3

2 = {2}.

0.3 0.5

1

2 3

1

2 3

1

2 3

1

2 3

1

2 3

F1 F2 F3 F4edge probabilities

Figure 2. Edge probabilities of C and elements of F in example C given in (1) with clusters shown in
different colors.

Next, we argue formally that cluster formations are sufficient statistics, i.e., they
represent an equal amount of information as the realization of the random graph as far
as the infection statuses of the individuals is concerned. When Z and F are realized, the
infection statuses of n individuals are also realized, i.e., H(U|Z, F) = 0. Then,

I(U; F)

= H(U)− H(U|F) (3)

= H(U)− (H(U, Z|F)− H(Z|U, F)) (4)

= H(U)− (H(Z|F) + H(U|Z, F)− H(Z|U, F)) (5)

= H(U)− (H(Z)− H(Z|U, F)) (6)

≥ H(U)− (H(Z|C ) + H(U|Z, C )− H(Z|U, C )) (7)

= H(U)− H(U|C ) (8)

= I(U; C ) (9)

where in (7) we used the fact that F is a function of C (not necessarily invertible). In
addition, from U → C → F, we also have I(U; F) ≤ I(U; C ), which together with (9) imply
I(U; F) = I(U; C ). Thus, F is sufficient statistics for C relative to U. Therefore, from this
point on, we focus on the random cluster formation variable F in our analysis.

The graph model and the resulting cluster formations we described so far are general.
For tractability, in this paper, we investigate a specific class of F which satisfies the fol-
lowing condition: For all i, Fi can only be obtained by partitioning some elements of Fi−1.
This assumption results in a tree-like structure for cluster formations. Thus, we call F sets
that satisfy this condition cluster formation trees. Formally, F is a cluster formation tree
if Fi+1\Fi can be obtained by partitioning the elements of Fi\Fi+1 for all i ∈ [ f − 1]. Note
that F in (2) is not a cluster formation tree. However, if the probability of the edge between
vertices 1 and 3 were 0, then F would not contain F1 and F3, and F would be a cluster
formation tree in this case. Note that cluster formation trees may arise in real-life clustering
scenarios, for instance, if individuals belong to a hierarchical structure. An example is: an
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individual may belong to a professor’s lab, then to a department, then to a building, and
then to a campus.

Next, we define the family of algorithms that we consider, which we coin two-step
sampled group testing algorithms. In the two-step sampled group testing algorithms, two
steps do not involve consecutive testing phases: the proposed algorithm family in our paper
consists of non-adaptive constructions and should not be confused with semi-adaptive
algorithms with two testing phases such as two stage algorithms in [32]. Two-step sampled
group testing algorithms consist of two steps in both testing phase and decoding phase.
The following definitions are necessary in order to characterize the family of algorithms
that we consider in this paper.

In order to design a two-step sampled group testing algorithm, we first pick one of
the cluster formations in F to be the sampling cluster formation. The selection of Fm is a
design choice, for example, recalling the running example in (1) and (2), one can choose F2
to be the sampling cluster formation.

Next, we define the sampling function, M, to be a function of Fm. The sampling
function selects which individuals to be tested by selecting exactly one individual from
every subset that forms the partition Fm. Let the infected set among the sampled individuals
be denoted by KM. The output of the sampling function M is the individuals that are
sampled and going to be tested. In the second step, a zero-error non-adaptive group test is
performed on the sampled individuals. This results in the identification of the infection
statuses of the selected σm = |Fm| individuals with zero-error probability. For example,
recalling the running example in (1) and (2), when the sampling cluster formation is chosen
as F2, we may design M as

M = {1, 3} (10)

Note that, for each selection of Fm, M selects exactly one individual from each Sm
j . As long

as it satisfies this property, M can be chosen freely while designing the group testing algorithm.
The test matrix X is a non-adaptive test matrix of size T × σm, where T is the required

number of tests. Let U(M) denote the infection status vector of the sampled individuals.
Then, we have the following test result vector y

yi =
∨

j∈[σm ]

XijU
(M)
j , i ∈ [T] (11)

In the classical group testing applications, while constructing zero-error non-adaptive
test matrices, the aim is to obtain unique result vectors, y, for every unique possible
infected set and, for instance, in combinatorial setting, with d infections, d-separable matrix
construction is proposed [39]. In the classical d-separable matrix construction, we have∨

i∈S1

X(i) 6=
∨

i∈S2

X(i) (12)

for all subsets S1 and S2 of cardinality d. As a more general approach, we do not restrict
the possible infected sets to the subsets of [n] of the same size, but we consider the problem
of designing test matrices that satisfy (12) for every unique S1 and S2 in a given set of
possible infected sets. This approach leads to a more general basis for designing zero-error
non-adaptive group testing algorithms for various scenarios, when the set of possible
infected sets can be restricted by the available side information.

By using the test result vector y, in the first decoding step, the infection statuses of
the sampled individuals are identified with zero-error probability. In the second stage of
decoding, depending on Fm and the infection statuses of the sampled individuals, other
non-tested individuals are estimated by assigning the same infection status to all of the
individuals that share the same cluster in the cluster formation Fm. In the running example,
with M given in (10), one must design a zero-error non-adaptive test matrix X, which
identifies the infection statuses of individuals 1 and 3.
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Let Û = (Û1, Û2, . . . , Ûn) be the estimated infection status vector. By definition, the
infection estimates are the same within each cluster, i.e., for sampling cluster formation Fm,
Ûk = Ûl , for all k, l ∈ Sm

j , for all j ∈ [σm]. Since M samples exactly one individual from
every subset that forms the partition Fm, there is exactly one identified individual at the
beginning of the second step of the decoding phase and by the aforementioned rule, all
n individuals have estimated infection statuses at the end of the process. For instance, in
the running example, for the sampling cluster formation F2, we have M = {1, 3} as given
in (10) and X identifies U1 and U3 with zero-error. Then, Û2 = U1, since individuals 1 and
2 are in the same cluster in F2.

Finally, we have two metrics to measure the performance of a group testing algorithm.
The first one is the required number of tests T, which is the number of rows of X in the two
step sampled group testing algorithm family that we defined. Having a minimum number
of required tests is one of the aims of the group testing procedure. The second metric is the
expected number of false classifications. Due to the second step of decoding, the overall
two step sampled group testing algorithm is not a zero-error algorithm (except for the
choice of m = f ) and the expected number of false classifications is a metric to measure
the error performance of the algorithm. We use E f = E[dH(U ⊕ Û)] to denote the expected
number of false classifications, where dH(·) is the Hamming weight of a binary vector.

Designing a two-step sampled group testing algorithm consists of selecting Fm, then
designing the function M, and then designing the non-adaptive test matrix X for the second
step of the testing and the first step of the decoding phase for zero-error identification of
the infection statuses of the sampled σm individuals. We consider cluster formation trees
and uniform patient zero assumptions for our infection spread model, and we consider
two step sampled group testing algorithms for the group test design.

In the following section, we present a motivating example to demonstrate our key ideas.

4. Motivating Example

Consider the following example. There are n = 10 individuals, and a cluster formation
tree with f = 3 levels. Full characterization of F is as follows:

F =


F1 = {{1, 2, 3}, {4, 5}, {6, 7, 8, 9, 10}}, w.p. 0.4
F2 = {{1, 2}, {3}, {4, 5}, {6, 7, 8, 9, 10}}, w.p. 0.2
F3 = {{1, 2}, {3}, {4, 5}, {6, 7}, {8, 9, 10}}, w.p. 0.4

(13)

First, we find the optimal sampling functions, M, for all possible selections of Fm.
First of all, note that M selects exactly one individual from each subset that forms Fm, by
definition. Therefore, the number of sampled individuals is constant for a fixed choice of
Fm. Thus, in the optimal sampling function design, the only parameter that we consider is
the minimum number of expected false classifications E f . Note that a false classification
occurs only when one of the sampled individuals has a different infection status than one
of the individuals in its cluster in Fm. For instance, assume that m = 1 is chosen. Then,
assume that the sampling function M selects individual 1 from the set S1

1 = {1, 2, 3}. Recall
that, after the second step of the two-step group testing algorithm, by using X, the infection
status of individual 1 is identified with zero-error and its status is used to estimate the
statuses of individuals 2 and 3, since they are in the same cluster in Fm = F1. However,
with positive probability, individuals 1 and 3 can have distinct infection statuses, in which
case, a false classification occurs. Note that this scenario occurs only when Fm is at a higher
level than the realized F in the cluster formation tree F , where we refer to F1 as the top
level of the cluster formation tree and Ff as the bottom level.

While finding the optimal sampling function M, one must consider the possible false
classifications and minimize E f , the expected number of false classifications. As shown
in Figure 3, the cluster {4, 5} does not become partitioned, and for all three choices of Fm,
M can sample either one of the individuals 4 and 5. This selection does not change the
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expected number of false classifications since U4 = U5 in all possible realizations of F. For
all sampling cluster formation selections, we have the following analysis:

F1

F2

F3

{1,2,3}

{1,2} {3}

{1,2} {3}

{4,5}

{4,5}

{4,5}

{6,7,8,9,10}

{6,7,8,9,10}

{6,7} {8,9,10}

Figure 3. Cluster formation tree F .

• If Fm = F1: If M samples individual 1 or 2 from the cluster S1
1 = {1, 2, 3}, a false

classification occurs if F = F2 and the cluster {1, 2} is infected, in that case, individual
3 is falsely classified as infected. Similar false classification occurs when F = F3 and
the cluster {1, 2} is infected. Similarly, in these cases, if individual 3 is infected, again,
individual 3 is falsely classified as non-infected. Thus, for cluster {1, 2, 3}, when either
individuals 1 or 2 is sampled, the expected number of false classifications is:

(pF(F2) + pF(F3))(pZ(1) + pZ(2) + pZ(3))

= 0.6× 0.3 = 0.18 (14)

Similarly, when individual 3 is sampled from the cluster {1, 2, 3}, individuals 1 and 2
are falsely classified when F = F2 or F = F3 and either the cluster {1, 2} or individual
3 is infected. Thus, in that case, the expected number of false classifications is:

2(pF(F2) + pF(F3))(pZ(1) + pZ(2) + pZ(3))

= 2× 0.6× 0.3 = 0.36 (15)

Thus, (14) and (15) imply that, for cluster S1
1 = {1, 2, 3}, the optimal M should select

either individuals 1 or 2 for testing. As discussed above, for cluster S1
2 = {4, 5},

the selection of sampled individual is indifferent and results in 0 expected false
classification. Finally, for cluster S1

3 = {6, 7, 8, 9, 10}, a similar analysis implies that the
optimal M should select one of the individuals in {8, 9, 10} for testing.

• If Fm = F2: Similar combinatorial arguments follow and we conclude that selection
of sampled individuals from the clusters S2

1 = {1, 2}, S2
2 = {3} and S2

3 = {4, 5} are
indifferent in terms of the expected number of false classifications. Only a possible
false classification can happen in cluster S2

4 = {6, 7, 8, 9, 10} when F = F3 and the
infected cluster is either S3

4 = {6, 7} or S3
5 = {8, 9, 10}. Similar to the case m = 1, if the

sampled individual is either 6 or 7, then the expected number of false classifications is
0.6 in contrast to the 0.4 when the sampled individual is one of 8, 9 and 10. Thus, the
optimal M should select one of the individuals 8, 9 and 10 as the sampled individual
to minimize the expected number of false classifications.

• If Fm = F3: It is not possible to make a false classification since, for all clusters in
F3, all individuals that are in the same cluster have the same infection status with
probability 1.

Therefore, for this example, the optimal sampling function selects either individuals 1
or 2 from the set S1

1; selects either 4 or 5 from the set S1
2; and selects either 8, 9 or 10 from

the set S1
3 if Fm = F1, and the same sampling is optimal with an addition of individual 3,

if Fm = F2. Let us assume that M selects the individual with the smallest index when the
selection is indifferent among a set of individuals. Thus, the optimal sampling function M
for this example is: {1, 4, 8}, {1, 3, 4, 8} or {1, 3, 4, 6, 8}, depending on the selection of Fm
being F1, F2, or F3, respectively.

Now, for these possible sets of sampled individuals, we need to design zero-error
non-adaptive test matrices.
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• If Fm = F1 (i.e., M = {1, 4, 8}): The set of all possible infected sets is P(KM) =
{{1}, {4}, {8}}. By a counting argument, we need at least two tests, since each of
three possible infected sets must result in a unique result vector y, and each one of
these sets has one element. We can achieve this lower bound by using the following
test matrix:

1 4 8
Test 1 0 1 1
Test 2 1 0 1

• If Fm = F2 (i.e., M = {1, 3, 4, 8}): In this case, the set of all possible infected sets is now
P(KM) = {{1}, {3}, {1, 3}, {4}, {8}}. In the classical zero-error construction for the
combinatorial group testing model, one can construct d-separable matrices, and the
rationale behind the construction is to enable the decoding of the infected set, when
the infected set can be any d-sized subset of [n]. However, in our model, the set of
all possible infected sets, i.e., P(KM), is not a set of all fixed sized subsets of [n], but
instead consists of varying sized subsets of [n] that are structured, depending on the
given F . As illustrated in Figure 3, a given cluster formation tree F can be represented
by a tree structure with nodes (Throughout the paper, we use the word “node” only for
the possible clusters in the cluster formation tree representations, not for the vertices in
the connection graphs that represent the individuals.) representing possible infected
sets, i.e., clusters at each level. Then, the aim of constructing a zero-error test matrix is
to have unique test result vectors for each unique possible infected set, i.e., unique
nodes in the cluster formation tree. In Figure 4, we present the subtree of F , which
ends at the level F2, with assigned result vectors to each node. One must assign unique
binary vectors to each node, except for the nodes that do not become partitioned
while moving from level to level: those nodes represent the same cluster, and thus the
same vector is assigned, as seen in Figure 4. Moreover, while merging in upper level
nodes, binary OR of vectors assigned to the descendant nodes must be assigned to
their ancestor node. By combinatorial arguments, one can find the minimum vector
length such that such vectors can be assigned to the nodes.
In this case, the required number of tests must be at least 3 and, by assigning result
vectors as in Figure 4, we can construct the following test matrix X:

1 3 4 8
Test 1 1 0 0 1
Test 2 1 1 1 0
Test 3 0 1 0 1

Note that, for all elements of P(KM), the corresponding result vector is unique and
satisfies the tree structure criteria, as shown in Figure 4.

• If Fm = F3 (i.e., M = {1, 3, 4, 6, 8}): In this case, the set of all possible infected
sets is P(KM) = {{1}, {3}, {1, 3}, {4}, {6}, {8}, {6, 8}}. We give a tree structure
representation with assigned result vectors of length 3 that achieves the tree structure
criteria discussed above, which is shown in Figure 5 where each unique node is
assigned a unique vector except for the nodes that do not become partitioned while
moving from level to level. Note that every unique node in the tree representation
corresponds to a unique element of P(KM). The corresponding test matrix X is the
following 3× 5 matrix:

1 3 4 6 8
Test 1 1 0 0 1 0
Test 2 1 1 1 0 0
Test 3 0 1 0 0 1
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Figure 4. Subtree of F with assigned result vectors for each node.

F1

F2





1

1

1









0

1

1









0

1

0









1

0

1









1

0

1









1

1

0









1

1

0









0

1

1









0

1

0









1

0

0









0

0

1





F3





0

1

0





Figure 5. F with assigned result vectors for each node.

A more structured and detailed analysis of the selection of the optimal sampling
function and the minimum number of required tests is given in the next section.

We finalize our analysis of this example by calculating the expected number of false
classifications where E f ,α denotes the conditional expected false classifications, given
F = Fα:

• If Fm = F1:

E f = ∑
α

pF(Fα)E f ,α

= pF(F2)E f ,2 + pF(F3)E f ,3

= 0.2(0.3× 1) + 0.4(0.3× 1 + 0.5× 2)

= 0.58 (16)

• If Fm = F2:

E f = pF(F3)E f ,3

= 0.4(0.5× 2)

= 0.4 (17)

• If Fm = F3, we have E f = 0.

Note that the choice of Fm is a design choice, and one can use time sharing (Time
sharing can be implemented by assigning a probability distribution to Fm over F , instead of
picking one cluster formation from F to be Fm deterministically.) between different choices
of m, depending on the specifications of the desired group testing algorithm. For instance,
if a minimum number of tests is desired, then one can pick m = 1, which results in two
tests, which is the minimum possible, but with expected 0.58 false classifications, which is
the maximum possible in this example. On the other hand, if a minimum expected false
classifications is desired, then one can pick m = 3, results in 0 expected false classifications,
which is the minimum possible, but with 3 tests, which is the maximum possible in this
example. Generally, there is a trade-off between the number of tests and the number
of false classifications, and we can formulate optimization problems for specific system
requirements, such as finding a time sharing distribution for Fm that minimizes the number
of tests for a desired level of false classifications, or vice versa.
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In the following section, we describe the details of our proposed group testing algorithm.

5. Proposed Algorithm and Analysis

In our F -separable matrix construction, we aim to construct binary matrices that have n
columns, and for each possible infected subset of the selected individuals, there must be a
corresponding distinct result vector. A binary matrix X is F -separable if∨

i∈S1

X(i) 6=
∨

i∈S2

X(i) (18)

is satisfied for all distinct subsets S1 and S2 in the set of all possible infected subsets, where
X(i) denotes the ith column of X. In d-separable matrix construction [39], this condition
must hold for all subsets S1 and S2 of cardinality d; here, it must hold for all possible
feasible infected subsets as defined by F . From this point of view, our F -separable test
matrix construction exploits the known structure of F and thus it results in an efficient
zero-error non-adaptive test design for the second step of our proposed algorithm.

We adopt a combinatorial approach to the design of the non-adaptive test matrix X.
Note that, for a given M, we have σm individuals to be identified with zero-error probability.
The key point of our algorithm is the fact that the infected set of individuals among those
selected individuals can only be some specific subsets of those σm individuals. Without
any information about the cluster formation, any one of the 2σm subsets of the selected
individuals can be the infected set. However, since we are given F , we know that the
infected set among the selected individuals, KM, can be one of the 2σm subsets only if there
exists at least one set Sj

i that contains KM, and there is no element in the difference set

M\KM such that it is an element of all sets Sj
i containing KM. This fact, especially in a

cluster formation tree structure, significantly reduces the total number of possible infected
subsets that need to be considered. Therefore, we can focus on such subsets and design the
test matrix X by requiring that the logical OR operation of the columns that correspond
to the possible KM sets to be distinct, in order to decode the test results with zero-error.
Let P(KM) denote the set of possible infected subsets of the selected individuals, i.e., the
set of possible sets that KM can be. Then, matrix X must satisfy (18) for all distinct S1 and
S2 that are elements of P(KM). Note that the decoding process is a mapping from the
result vectors to the infected sets and thus we require the distinct result vector property to
guarantee zero-error decoding.

Designing the X matrix that satisfies the aforementioned property is the key idea of
our algorithm. Before going into the design of X, we first derive the expected number
of false classifications in a given two step sampled group testing algorithm. Recall that
false classifications occur during the second step of the decoding phase. In particular, in
the second step of the decoding phase, depending on the selection of the sampling cluster
formation Fm, the infection statuses of selected individuals M are assigned to the other
individuals such that the infection status estimate is the same within each cluster. For fixed
sampling cluster formation Fm and the sampling function M, the number of expected false
classifications can be calculated as in the following theorem.

Theorem 1. In a two step sampled group testing algorithm with the given sampling cluster
formation Fm and the sampling function M over a cluster formation tree structure defined by F and
pF, with uniform patient zero distribution pZ over [n], the expected number of false classifications
given F = Fα is

E f ,α = ∑
i∈[σm ]

(
|Sα(Mi)|

n
· |Sm

i \Sα(Mi)|

+ ∑
Sα

j ⊆Sm
i \Sα(Mi)

|Sα
j |2

n

)
(19)
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and the expected number of false classifications is

E f = ∑
α>m

pF(Fα)E f ,α (20)

where Sα(Mi) is the subset in the partition Fα which contains the ith selected individual.

Next, we obtain Theorem 2 to characterize the optimal choice of the sampling function
M. First, we define βi(k) functions as follows. For i ∈ [ f ] and k ∈ [n],

βi(k) ,∑
j>i

pF(Fj)

(
|Sj(k)| · |Si(k)\Sj(k)|

+ ∑
Sj

l⊆Si(k)\Sj(k)

|Sj
l |

2
)

(21)

where Si(k) is the subset in partition Fi that contains k.

Theorem 2. For sampling cluster formation Fm, the optimal choice of M that minimizes the
expected number of false classifications is

Mi = arg min
k∈Sm

i

βm(k) (22)

where Mi is the ith selected individual. Moreover, the number of required tests is constant and is
independent of the choice of M.

We present the proofs of Theorems 1 and 2 in Appendix A.
The optimal M analysis focuses on choosing the sampling function that results in the

minimum expected number of false classifications, among the set of functions that select
exactly one individual from each cluster of a given Fm. For some scenarios, it is possible to
choose a sampling function that selects multiple individuals from some clusters of a given
Fm that achieves expected false classifications–required number of tests points that cannot
be achieved by the optimal M in (A6). However, for the majority of the cases, the sampling
functions of interest, i.e., the sampling functions that choose exactly one individual from
each Fm, are globally optimal. First, the sampling functions that select multiple individuals
from a cluster that never becomes partitioned further in the levels below Fm is sub-optimal:
these sampling functions select multiple individuals to identify who are guaranteed to
have the same infection status. For instance, in zero expected false classifications case, i.e.,
the bottom level, Ff is chosen as the sampling cluster formation, sampling more than one
individual from each cluster is sub-optimal. Second, picking the sampling cluster formation
Fm and choosing an M such that multiple individuals are chosen from some clusters that
further become partitioned in the levels below Fm, is equivalent to choosing a sampling
cluster formation below Fm and using an M that selects exactly one individual from each
cluster of the new sampling cluster formation, except for the scenarios where there exists
partitioning of multiple clusters in two consecutive cluster formations in a given F , and
one can consider a sampling function that selects multiple individuals from some clusters
of a given Fm that cannot be represented as a sampling function that selects exactly one
individual from each cluster of another cluster formation Fm′ . For the sake of compactness,
we focus on the family of sampling functions M that selects exactly one individual from
each cluster of the chosen Fm.

Thus far, we have presented a method to select individuals to be tested in a way to
minimize the expected number of false classifications. Now, we move on to the design
of X, the zero-error non-adaptive test matrix which identifies the infection statuses of the
selected individuals M with a minimum number of tests. Recall that, since |F | = f , there
are f possible choices of Fm, and each choice results in a different test matrix X.
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Based on the combinatorial viewpoint stated in (18), we propose a family of non-
adaptive group testing algorithms which satisfy the separability condition for all of the
subsets in P(KM), which is determined by F . We call such matrices F -separable matrices
and non-adaptive group tests that use F -separable matrices as their test matrix as F -separable
non-adaptive group tests. In the rest of the section, we present our results on the required
number of tests for F -separable non-adaptive group tests.

The key idea of designing an F -separable matrix is determining the set P(KM) for a
given set of selected individuals M and the tree structure of F so that we can find binary
column vectors for each selected individual where all of the corresponding possible result
vectors are distinct. Note that, for a given choice of Fm, if we consider the corresponding
subtree of F which starts from the first level F1 and ends at the level Fm, the problem of
finding an F -separable non-adaptive test matrix is equivalent to finding a set of length T
binary column vectors for each node at level Fm that satisfy the following criteria:

• For every node at the levels that are above the level Fm, each node must be assigned
a binary column vector that is equal to the OR of all vectors that are assigned to its
descendant nodes. This is because each node in the tree corresponds to a possible
set of infected individuals among the selected individuals where each merging of the
nodes corresponds to the union of the possible infected sets which results in taking
the OR of the assigned vectors of the merged nodes.

• Each assigned binary vector must be unique for each unique node, i.e., for every node

that represents a unique set Sj
i . For the nodes that do not split between two levels, the

assigned vector remains the same. This is because each unique node (note that when
a node does not split between levels, it still represents the same set of individuals)
corresponds to a unique possible infected subset of the selected individuals and they
must satisfy (18).

In other words, for a cluster formation tree with assigned result vectors to each node,
a sufficient condition for achievability of F -separable matrices as follows:

Let u be a node with Hamming weight dH(u). Then, the number of all descendant

nodes of u with constant Hamming weights i must be less than (dH(u)
i ) for all i. This

must hold for all nodes u. Furthermore, the number of nodes with constant Hamming
weight i must be less than (T

i ) for all i. In addition, Hamming weights of the nodes
must strictly decrease while moving from ancestor nodes to descendant nodes.

This condition is indeed sufficient because it guarantees the existence of unique set of
vectors that can be assigned to each node of the subtree of F that satisfies the merging/OR
structure determined by the subtree.

The problem of designing an F -separable non-adaptive group test can be reduced to
finding the minimum number T, for which we can find σm binary vectors with length T,
such that all vectors that are assigned to the nodes satisfy the above condition. Here, the
assigned vectors are the result vectors y when the corresponding node is the infected node.

We have the following definitions that we need in Theorem 3. For a given F , we define
λ

Sj
i

as the number of unique ancestor nodes of the set Sj
i . We also define λj as the number

of unique sets Sb
a in F at and above the level Fj. Note that ∑a≤j σa is the total number of

sets Sb
a in F at and above the level Fj, and thus we have

∑
a≤j

σa ≥ λj (23)

Theorem 3. For given F and Fm for m < f , the number of required tests for an F -separable
non-adaptive group test, i.e., the number of rows of the test matrix X, must satisfy

T ≥ max

{
max
j∈[σm ]

(λSm
j
+ 1), dlog2(λm + 1)e

}
(24)
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with the addition of 1’s removed in (24) for the special case of m = f .

We present the proof of Theorem 3 in the Appendix A. Note that Theorem 3 is a
converse argument, without a statement about the achievability of the given lower bound.
In fact, the given lower bound is not always achievable.

Complexity: The time complexity of the two-step sampled group testing algorithms
consists of the complexity of finding the optimal M given Fm and F , the complexity of
the construction of the F -separable test matrix given M and F , and the complexity of the
decoding of the test results given the test matrix X and the result vector y. In the following
lemmas, we analyze the complexity of these processes.

Lemma 1. For a given cluster formation treeF and a sampling cluster formation Fm, the complexity
of finding the optimal M as in Theorem 2 is

O(n( f −m)ζm) (25)

where ζm = max
k∈[n]
|{S f

l : S f
l ⊆ Sm(k)\S f (k)}|.

Proof. In order to find the optimal M, βm(k) needs to be calculated as in (21) for each
k ∈ [n]. The complexity of each of these calculations is bounded above by the number
of cluster formations below Fm multiplied by the number of clusters at level f that do
not include the individual k and form the cluster Sm(k), i.e., the clusters S f

l that satisfy

S f
l ⊆ Sm(k)\S f (k). Note that this upper bound varies for each k ∈ [n] and the total

complexity is the summation of these sizes multiplied by f −m, i.e., the number of cluster
formations below Fm, for each k ∈ [n]. As an upper bound, we consider the maximum of
these sizes, i.e., ζm, concluding the proof.

In the next lemma, we analyze the complexity of the construction of the F -separable
test matrix given M and F .

Lemma 2. For a given cluster formation tree F and a sampling function M, the complexity of
assigning the binary result vectors to the nodes in F , and thus the construction of the F -separable
test matrix is Ω(mσm).

Proof. When the cluster formation tree F and the sampling function M are given, in order
to assign unique binary result vectors to each node in F that represents a unique possible
infected cluster, we need to consider the subtree of F that starts with the level F1 and ends
at the level Fm, as in the example in Figure 4. Then, we need to traverse from each bottom
node in the subtree, to the top node, to detect every merging of each cluster. This results
in finding the numbers λSm

j
for j ∈ [σm] and λm and unique binary test result vectors can

be assigned to each unique node in F . The traversing on the subtree of F starting from
the bottom level Fm to the top level for each bottom level node has the complexity Θ(mσm).
This traversing does not immediately result in the explicit construction of unique binary
result vectors to be assigned, but it gives an asymptotic lower bound for the complexity of
the construction of the F -separable test matrices.

Note that the Lemma 2 is an asymptotic lower bound for the complexity of the binary
result vector assignment to the unique nodes in F , and thus for the construction of the
F -separable test result matrix X. This analysis is a baseline for the proposed model and
proposing explicit F -separable test matrix constructions with an exact number of required
tests, and complexity is an open problem.
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Lemma 3. For a given F -separable test matrix X, with corresponding cluster formation tree F
with assigned binary result vectors to each node and the result vector y, the decoding complexity
is O(1).

Proof. While constructing the F -separable test matrix, we consider the assignment of the
unique binary result vectors to the nodes in the given cluster formation tree F . For a given
test matrix X and the result vector y, the decoding problem is a hash table lookup, with the
complexity O(1).

Since, during the proposed process of assignment of unique binary result vectors
to each unique node in F , we specifically assign the test result vectors to every unique
possible infected set, the decoding process is basically a hash table lookup, resulting in fast
decoding with low complexity.

Key Steps of the Proposed Algorithm: The summary of the key steps of the two-step
sampled group testing algorithm is given below:

• We start with the assumption that exact connections between the individuals are not
known, but the probability distribution of the possible edge realizations are known.

• The given edge set probability distribution results in a random cluster formation
variable, F. Each possible cluster formation is a partition of the set of all individuals.

• Out of all possible cluster formations (which we call this set as F ), one cluster forma-
tion is selected as the sampling cluster formation, which we call Fm.

• Exactly one individual is selected from each cluster in Fm. These individuals are then
tested and identified.

• The selection is carried out according to the sampling function M. For the given choice
of Fm, M selects the individuals from the clusters that minimizes the expected number
of false classifications, given in Theorem 2, and this results in the expected number of
false classifications given in Theorem 1.

• By using the given set of possible cluster formations, F , an F -separable test matrix is
constructed to identify the individuals selected by M. This test matrix is guaranteed to
identify the selected individuals since the construction is based on assigning a unique
test result vector to every possible infected set among the selected individuals.

• In Theorem 3, we present a converse argument by giving a lower bound for the
required number of tests, in terms of the system parameters.

• After obtaining the test results and identifying the selected individuals with zero-error,
for each selected individual, their infection status is assigned to the others in their
cluster, in Fm. Note that there is exactly one individual selected and identified from
every cluster in Fm. This step introduces possible false classifications.

• Selecting Fm from lower levels from the possible cluster formations tree results in
lower expected false classifications while increasing the number of required tests for
identification. This results in a trade-off between the number of tests and expected
false classifications. By using a randomized selection of Fm, intermediate points can
also be achieved for the expected false classifications and required number of tests.

In the next section, we introduce and focus on a family of cluster formation trees
which we call exponentially split cluster formation trees. For this analytically tractable family
of cluster formation trees, we achieve the lower bound in Theorem 3 order-wise, and we
compare our result with the results in the literature.

6. Exponentially Split Cluster Formation Trees

In this section, we consider a family of cluster formation trees, explicitly characterize
the selection of optimal sampling function, and the resulting expected number of false
classifications and the number of required tests. We also compare our results with Hwang’s
generalized binary splitting algorithm [36] and zero-error non-adaptive group testing
algorithms in order to show the gain of utilizing the cluster formation structure as achieved
in this paper.
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A cluster formation tree F is an exponentially split cluster formation tree if it satisfies
the following criteria:

• An exponentially split cluster formation tree that consists of f levels has 2i−1 nodes at
level Fi, for each i ∈ [ f ], i.e., σi = 2i−1, i ∈ [ f ].

• At level Fi, every node has 2 f−iδ individuals where δ is a constant positive integer, i.e.,
|Si

j| = 2 f−iδ, i ∈ [ f ], j ∈ [σi].

• Every node has exactly two descendant nodes in one level below in the cluster for-
mation tree, i.e., every node is partitioned into equal sized 2 nodes when moving one
level down in the cluster formation tree.

• Random cluster formation variable F is uniformly distributed over F , i.e., pF(Fi) =
1/ f , i ∈ [ f ].

We analyze the expected number of false classifications and the required number of
tests for exponentially split cluster formation trees, by using the general results derived in
Section 5. In Figure 6, we give a 4-level exponentially split cluster formation tree example.
In that example, there is a 20 = 1 node at level F1 and the number of nodes gets doubled at
each level, since each node is split into two nodes when moving one level down in the tree.
In addition, the sizes of the nodes that are at the same level are the same, with the bottom
level nodes having the size δ.

F1

F2

F3

F4

Figure 6. A 4-level exponentially split cluster formation tree.

Being a subset of cluster formation trees, exponentially split cluster formation trees
correspond to random connection graphs where edges between individuals are not inde-
pendently realized in non-trivial cases. For instance, in Figure 7, we present four different
possible realizations of edges of a 4-level exponentially split cluster formation tree system,
given in Figure 6, where there are δ = 4 individuals in the bottom level clusters. Here, if the
edges between individuals are realized independently, then there would be possible cluster
formations that do not result in an exponentially split cluster formation tree structure.
The edge realizations are correlated in the sense that, if there is at least one edge realized
between two bottom level neighbor clusters, then there must be at least one edge realized
between other bottom level neighbor cluster pairs as well. Similarly, if there is at least one
bottom level cluster pair that are not immediate neighbors but get merged in some upper
level Fk in F , then other bottom level cluster pairs that get merged in Fk must be connected
as well. In Figure 7, in F4 realization, the only edges that are present are the edges that
form bottom level clusters. In F3 realization, there are at least one edge realized between
each bottom level neighbor cluster pair, resulting in clusters of eight individuals. Similarly,
there are more distant connections that are realized in F2 and F1. From a practical point of
view, the 4-level exponential split cluster formation tree example in Figures 6 and 7 can
be used to model real-life scenarios, such as the infection spread in an apartment complex
with multiple buildings. In the bottom level, there are households that are guaranteed to be
connected, and, in the F3 level, the households that are in close contact are connected, in the
F2 level, there is a connection building-wise and, in F1, the whole community is connected.
Note that the connections given in Figure 7 are realization examples that fall under four
possible cluster formations and all edge realization scenarios are possible as long as the
resulting cluster formation is one of the four given cluster formations. While designing
the group testing algorithm, the given information is the probability distribution over the
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cluster formations, and in practice, one can expect a probability distribution where bottom
level cluster formations, i.e., cluster formations towards F4, have higher probabilities in a
community where there are strict social isolation measures, and high immunity rates for a
contagious infection, whereas higher probabilities of upper level cluster formations, i.e.,
cluster formations toward F1, can be expected for communities with high contact rate and
lower immunity.

(a) F4 (b) F3

(c) F2 (d) F1

Figure 7. Four realizations of a random connection graph C that falls under four different cluster
formations in a 4-level exponentially split cluster formation tree with δ = 4.

Optimal sampling function and expected number of false classifications: Due to the
symmetry of the system, for any choice Fm, each element of Sm

i has the same βm(i) value
for all i ∈ σm. Therefore, the sampling function selects individuals from each set arbitrarily,
i.e., the selection of a particular individual does not change the expected number of false
classifications. Thus, we can pick any sampling function that selects one element from each
Sm

i . By Theorem 1, the expected number of false classifications, for given Fm, is

E f = ∑
α>m

1
f ∑

i∈[σm ]

(
|Sα(Mi)|

n
· |Sm

i \Sα(Mi)|

+ ∑
Sα

j ⊆Sm
i \Sα(Mi)

|Sα
j |2

n

)
(26)

= ∑
α>m

1
f

σm

σα

(
δ(2 f−m − 2 f−α) + (2α−m − 1)δ2 f−α

)
(27)

= ∑
α>m

2 f+1δ

f

(
2−α − 2m−2α

)
(28)

=
2 f+1δ

f

(
∑

α>m
2−α − 2m ∑

α>m
2−2α

)
(29)

=
2 f+1δ

f

(
(2−m − 2− f )− 2m

3
(2−2m − 2−2 f )

)
(30)

=
δ

3 f

(
2 f−m+2 + 2m− f+1 − 6

)
(31)

This expected number of false classifications takes its maximum value when Fm = F1,

E f =
δ

3 f

(
2 f+1 + 22− f − 6

)
(32)

and it takes its minimum value when Fm = Ff as E f = 0. Since the choice of Fm is a design
parameter, one can use time sharing between the possible selections of Fm to achieve any
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desired value for the expected number of false classifications between E f = 0 and E f
in (32).

Required number of tests: We first recall that, if we choose the sampling cluster
formation level Fm, the required number of tests for selected individuals at that level for
whom we design an F -separable test matrix depends on the subtree that is composed of the
first m levels of the cluster formation tree F . Note that the first m levels of an exponentially
split cluster formation tree is also an exponentially split cluster formation tree with m levels.
In Theorem 4 below, we focus on the sampling cluster formation choice at the bottom level,
Fm = Ff and characterize the exact required number of tests to be between f and 4

3 f . This
implies that the required number of tests at level Ff is O( f ), and thus the required number
of tests at level Fm is O(m).

Theorem 4. For an f level exponentially split cluster formation tree, at level f , there exists an
F -separable test matrix, X, with not more than 4

3 f rows, i.e., an upper (achievable) bound for the
number of required tests is 4

3 (log2 n + 1) for n individuals. Conversely, this is also the capacity
order-wise, since the number of required tests must be greater than f .

We present the proof of Theorem 4 in Appendix A.
Expected number of infections: In an exponentially split cluster formation tree struc-

ture with f levels, the expected total number of infections is

f

∑
i=1

1
f

2 f−iδ =
δ

f
(2 f − 1) (33)

since pF(Fi) = 1/ f and if F = Fi, then there are 2 f−iδ infections. Thus, the expected number
of infections is O

(
n

log2 n

)
.

Comparison: In order to compare our results for the exponentially split cluster for-
mation trees with other results in the literature, for fairness, we focus on the zero-error
case in our system model, which happens when Fm = Ff is chosen. The resulting sampling
function selects in a total of 2 f−1 individuals, and the resulting number of required tests is
between f and 4

3 f , i.e., O(log2 n), as proved in Theorem 4. Note that, by performing at most
4
3 f tests to 2 f−1 individuals, we identify the infection statuses of 2 f−1δ individuals with
zero false classifications, which implies that the number of tests scales with the number of
nodes at the bottom level, instead of the number of individuals in the system. This results
in a gain scaled with δ. However, in order to fairly compare our results with the results in
the literature, we ignore this gain and compare the performance of the second step of our
algorithm only, i.e., the identification of infection statuses of selected individuals only. To
avoid confusion, let δ = 1, i.e., each cluster at the bottom level is an individual and thus
n = 2 f−1.

From (33), the expected number of infections in this system is 2 f−1
f = O( n

log2 n ).

When the infections scale faster than
√

n, as proved in [26] (see also [28]), non-adaptive
tests with zero-error criterion cannot perform better than individual testing. Since our
algorithm results in O( f ) = O(log2 n) tests, it outperforms all non-adaptive algorithms
in the literature. Furthermore, we compare our results with Hwang’s generalized binary
splitting algorithm [36], even though it is an adaptive algorithm and also it assumes the
prior knowledge of exact number of infections. Hwang’s algorithm results in a zero-error
identification of k infections among the population of n individuals with k log2(n/k) +O(k)
tests and attains the capacity of adaptive group testing [28,36,40]. Since the number of
infections takes f values in the set {1, 2, 22, . . . , 2 f−1} uniformly randomly, the resulting
mean value of the required number of tests when Hwang’s generalized binary splitting
algorithm is used is
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E[THwang] =
f−1

∑
i=0

1
f

(
2i log2 2 f−1−i

)
+ O

(
n

log2 n

)
(34)

=
f − 1

f

f−1

∑
i=0

2i − 1
f

f−1

∑
i=0

i2i + O
(

n
log2 n

)
(35)

=
2 f − f − 1

f
+ O

(
n

log2 n

)
(36)

= O
(

n
log2 n

)
(37)

Thus, the expected number of tests when Hwang’s generalized binary splitting algo-
rithm is used scales as O

(
n

log2 n

)
which is much faster than our result of O(log2 n). We

note that Hwang’s generalized binary splitting algorithm assumes the prior knowledge
of exact number of infections, and is an adaptive algorithm, and furthermore, we have
ignored the gain of our algorithm in the first step (i.e., δ = 1). Despite these advantages
given to it, our algorithm still outperforms Hwang’s generalized binary splitting algorithm
for exponentially split cluster formation trees.

7. Numerical Results

In this section, we present numerical results for the proposed two-step sampled group
testing algorithm and compare our results with the existing results in the literature. In the
first simulation environment, we focus on exponentially split cluster formation trees as
presented in Section 6, and in the second simulation environment, we consider an arbitrary
random connection graph, as discussed in Section 3, which does not satisfy the cluster
formation tree assumption. In the first simulation environment, we verify our analytical
results by focusing on exponentially split cluster formation trees. In the second simulation
environment, we show that our ideas can be applied to arbitrary random connection graph
based networks.

7.1. Exponentially Split Cluster Formation Tree Based System

In the first simulation environment, we have an exponentially split cluster formation
tree with f = 10 levels and δ = 1 at the bottom level. For this system of n = 2 f−1δ = 512
individuals, for each sampling cluster formation choice Fm (which is a design parameter),
from m = 1, i.e., the top level of the cluster formation tree, to m = 10, i.e., the bottom level
of the cluster formation tree, we calculate the expected number of false classifications and
the minimum required number of tests. Note that the required number of tests is fixed for
a fixed sampling cluster formation Fm, while the number of false classifications depends on
the realization of the true cluster formation Fα and patient zero Z. This is because of the fact
that, when a sampling cluster formation is selected, the test matrix of choice is guaranteed
to identify the sampled individuals with zero-error, independent of the realized infections.
In Figure 8a, we plot the expected number of false classifications which meets the analytical
expressions we found in Section 6. To plot Figure 8, we run our simulation and realize the
infections 1000 times to numerically obtain the average number of false classifications in
the system. While calculating the minimum number of required tests, for each choice of Fm,
our program finds the minimum T that satisfies the sufficient criteria that we presented in
Section 5 and in the proof of Theorem 4 by searching over possible assignments of binary
result vectors to the nodes in the given exponentially split cluster formation tree, starting
from the vector length 1 and increasing the vector length by 1 if no such assignment is
found. When a binary vector assignment to the nodes is found, the resulting test matrix
is constructed and used for running the simulation 1000 times to obtain the numerical
average of the expected number of false classifications. We plot the minimum required
number of tests in Figure 8b. Note that, unlike the number of false classifications, for a
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fixed Fm, the number of required tests is fixed and thus we do not repeat the simulations
while calculating the required number of tests. The resulting non-adaptive test matrix X is
fixed for a fixed Fm and identifies the infection statuses of the individuals that are selected
by M, with zero-error.

Next, for this network setting, we compare our zero-error construction results with the
results of a variation of Hwang’s generalized binary splitting algorithm [36,40], presented
in [41], which further reduces the number of required tests by reducing the O(k) term
in the capacity expression of Hwang’s algorithm. As we state in the comparison part of
Section 6, the required number of tests in our algorithm scales with O(log2 n). In our
numerical results, we see that the required number of tests is 13 at level m = f = 10, as
seen in Figure 8b. On the other hand, the average number of required tests for Hwang’s
algorithm scales as O

(
n

log2 n

)
, and is approximately 172 in this case. Furthermore, when we

remove the assumption of known number of infections, we have to use the binary splitting
algorithm presented originally in [42], which results in a number of tests that is not lower
than individual testing, i.e., n = 512 tests in this case. For Hwang’s generalized and the
original binary splitting algorithm results, we run these algorithms 1000 times by realizing
the infection statuses of the population at each iteration to obtain the numerical average of
the number of required tests for both of these algorithms.
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Figure 8. (a) Expected number of false classifications vs. the choice of sampling cluster formation Fm;
(b) required number of tests vs. the choice of sampling cluster formation Fm.

7.2. Arbitrary Random Connection Graph Based System

In our second simulation environment, we present an arbitrary random connection
graph C with 20 individuals, shown in Figure 9c, where the edges realize independently
with probabilities shown on them (zero probability edges are not shown). In this system,
since each independent realization of nine edges that can be either present or not results in a
distinct cluster formation, in total, there are 29 = 512 cluster formations that can be realized
with positive probability. Note that this system with the random connection graph C does
not yield a cluster formation tree, yet we still apply our ideas designed for cluster formation
trees here. For each one of the 512 possible selections of m, we plot the corresponding
expected number of false classifications in Figure 9a and the required number of tests in
Figure 9b for our two-step sampled group testing algorithm.

In this simulation, for each possible choice of the sampling cluster formation Fm,
we calculate the set of all possible infected sets P(KM) for all possible choices of M and
calculate the resulting expected number of false classifications by also calculating pF, the
probability distribution of random cluster formations and select the optimal sampling
function M. For the required number of tests, we find the minimum number of tests
that satisfies the sufficient criteria that we presented in Section 5 in order to construct
F -separable matrices for this system. In our simulation environment, this procedure
is achieved by brute force, since this system is not a cluster formation tree as in our
system model and we cannot use the systematic results that we derived. This simulation
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demonstrates that the ideas presented can be generalized and applied to arbitrary random
connection graph structures.
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Figure 9. (a) Expected number of false classifications vs. the choice of sampling cluster formation
Fm; (b) required number of tests vs. the choice of sampling cluster formation Fm; (c) random
connection graph.

Since the system here is arbitrary unlike the exponentially split cluster formation tree
structure in the first simulation environment in Section 7.1, the resulting expected number
of false classifications is not monotonically decreasing when we sort the resulting required
number of tests in the increasing order for the choices of Fm. In Figure 9a, we mark the
choices of sampling cluster formations that result in the minimum number of expected false
classifications within each required number of the test range. By using time sharing between
these choices of the sampling cluster formations, dotted red lines between them can be
achieved. The six corner points in Figure 9a,b correspond to the following cluster formations,

F1 ={{1-18}, {19-20}} (38)

F43 ={{1-6}, {7-13}, {14-18}, {19-20}} (39)

F184 ={{1-6}, {7-9}, {10-13}, {14-18}, {19}, {20}} (40)

F428 ={{1}, {2}, {3-6}, {7-9}, {10-13}, {14-17}, {18},
{19}, {20}} (41)

F510 ={{1, 2}, {3-6}, {7-9}, {10-13}, {14, 15}, {16},
{17}, {18}, {19}, {20}} (42)

F512 ={{1}, {2}, {3-6}, {7-9}, {10-13}, {14, 15}, {16},
{17}, {18}, {19}, {20}} (43)

For instance, F43 in (39) is composed of four clusters with S43
1 = {1, 2, 3, 4, 5, 6}, S43

2 =
{7, 8, 9, 10, 11, 12, 13}, S43

3 = {14, 15, 16, 17, 18} and S43
4 = {19, 20}. When Fm = F43 is chosen

as the sampling cluster formation, the resulting expected number of false classifications is
E f = 1.505, and the required number of tests is 3, as seen in Figure 9a,b. For the sampling
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cluster formation choices which are not one of the six cluster formations listed above, these
six cluster formations can be chosen to minimize the expected number of false classifications
while keeping the required number of tests constant. For instance, all choices of m between
m = 2 and m = 42 result in the required number of three tests as m = 43 but yield a larger
E f than what m = 43 yields.

For this system as well, we calculate the average number of required tests for Hwang’s
generalized binary splitting algorithm by using the results of [36,40,41] as in the first
simulation (by implementing and running these algorithms 1000 times where we realize
the infection statuses of the population for each iteration) and find that the average number
of required tests is 16.4 in this case. Similar to the first simulation environment, the binary
splitting algorithm presented originally in [42], which does not require the exact number of
infections, cannot perform better than individual testing.

8. Conclusions

In this paper, we introduced a novel infection spread model that consists of a random
patient zero and a random connection graph, which corresponds to non-identically dis-
tributed and correlated (non i.i.d.) infection statuses for individuals. We proposed a family
of group testing algorithms, which we call two step sampled group testing algorithms, and char-
acterized their optimal parameters. We determined the optimal sampling function selection,
derived expected false classifications, and proposed F -separable non-adaptive group tests,
which is a family of zero-error non-adaptive group testing algorithms that exploit a given
random cluster formation structure. For a specific family of random cluster formations,
which we call exponentially split cluster formation trees, we calculated the expected number
of false classifications and the required number of tests explicitly, by using our general
results, and showed that our two-step sampled group testing algorithm outperforms all
non-adaptive tests that do not exploit the cluster formation structure and Hwang’s adaptive
generalized binary splitting algorithm, even though our algorithm is non-adaptive, and
we ignore our gain from the first step of our two-step sampled group testing algorithm.
Finally, our work has an important implication: in contrast to the prevalent belief about
group testing that it is useful only when the infections are rare, our group testing algorithm
shows that a considerable reduction in the number of required tests can be achieved by
using the prior probabilistic knowledge about the connections between the individuals,
even in scenarios with a significantly high number of infections.
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Appendix A

Theorem A1. In a two step sampled group testing algorithm with the given sampling cluster
formation Fm and the sampling function M over a cluster formation tree structure defined by F and
pF, with uniform patient zero distribution pZ over [n], the expected number of false classifications
given F = Fα is
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E f ,α = ∑
i∈[σm ]

(
|Sα(Mi)|

n
· |Sm

i \Sα(Mi)|

+ ∑
Sα

j ⊆Sm
i \Sα(Mi)

|Sα
j |2

n

)
(A1)

and the expected number of false classifications is

E f = ∑
α>m

pF(Fα)E f ,α (A2)

where Sα(Mi) is the subset in the partition Fα, which contains the ith selected individual.

Proof. For the sake of simplicity, we denote the subset in partition Fα that contains the ith
selected individual by Sα(Mi). We start our calculation with the conditional expectation,
where F = Fα is given. Observe that an error occurs, in the second step of the decoding
process, only if Fm is at a higher level of the cluster formation tree than the realization
of F = Fα and the true infected cluster K = Sα

γ is merged at the level Fm, i.e., α > m
and Sα

γ /∈ Fm. Since there is exactly one true infected cluster, which is at level Fα, false
classifications only happen in the set Sm

θ that contains Sα
γ. Now, we know that, for the given

sampling function M, the θth selected individual is selected from the set Sm
θ and in the

second step of the decoding phase, its infection status is assigned to all of the members of
the set Sm

θ . Therefore, the members of the difference set Sm
θ \Sα(Mθ) are falsely classified if

the set Sα(Mθ) is the true infected set. In that case, all members of Sm
θ would be classified as

infected while only the subset of them, which is Sα(Mθ), were infected. On the other hand,
when the cluster of the selected individual at level Fα is not infected, i.e., the infected cluster
is a subset of Sm

θ \Sα(Mθ), then only the infected cluster is falsely identified, since all of
the members of Sm

θ are classified as non-infected. Thus, we have the following conditional
expected number of false classifications when F = Fα is given, where p

Sj
i

denotes the

probability of the set Sj
i being infected

E f ,α = ∑
i∈[σm ]

(
pSα

Mi
|Sm

i \Sα(Mi))|

+ ∑
Sα

j ⊆Sm
i \Sα(Mi)

pSα
j
|Sα

j |
)

(A3)

= ∑
i∈[σm ]

(
|Sα(Mi)|

n
· |Sm

i \Sα(Mi)|

+ ∑
Sα

j ⊆Sm
i \Sα(Mi)

|Sα
j |2

n

)
(A4)

where (A4) follows from the uniform patient zero assumption. Finally, since false classifica-
tions occur only when α > m, we have the following expression for the expected number
of false classifications

E f = ∑
α>m

pF(Fα)E f ,α (A5)

concluding the proof.
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Theorem A2. For sampling cluster formation Fm, the optimal choice of M that minimizes the
expected number of false classifications is

Mi = arg min
k∈Sm

i

βm(k) (A6)

where Mi is the ith selected individual. Moreover, the number of required tests is constant and is
independent of the choice of M.

Proof. We first prove the second part of the theorem, i.e., that the choice of M does not
change the required number of tests. In a cluster formation tree structure, when we sample
exactly one individual from each subset Sm

i , P(KM) contains single element subsets of
selected individuals, since, when F = Fm, we have exactly one infected individual that
can be any one of these individuals with positive probability. Now, consider the cluster
formation Fm−1. Since it is a cluster formation tree structure, there must be at least one Sm−1

i
such that Sm−1

i = Sm
j ∪ Sm

k , Sm
j 6= Sm

k , which means that P(KM) must contain the set of
selected individuals from Sm

k and Sm
j as well because of the fact that, in the case of F = Fm−1,

these individuals can be infected simultaneously. Similarly, when moving towards the
top node of the cluster formation tree (i.e., F1), whenever we observe a merging, we must
add a corresponding union of the subsets of individuals to P(KM), which is the set of all
possible infected sets for the selected individuals M. Thus, the structure of distinct sets
of possible infected individuals do not depend on the indices of the sampled individuals
within each Sm

i , but depends on the given F and Fm, completing the proof of the second
part of the theorem.

We next prove the first part of the theorem, i.e., we prove that selecting the individual
that has the minimum βm(k) value for each Sm

i results in the minimum expected number
of false classifications and thus it is the optimal choice. First, recall that, by definition, M
depends on Fm and thus we design sampling function M for a given Fm. Now, recall the
expected number of false classifications stated in (A1) and (A2). Designing a sampling
function that minimizes E f for a given Fm can be achieved as follows. From (A1) and (A2),

min
M

E f

=min
M

{
∑

α:m<α

pF(Fα) ∑
i∈[σm ]

(
|Sα(Mi)|

n

× |Sm
i \Sα(Mi)|+ ∑

Sα
j ⊆Sm

i \Sα(Mi)

|Sα
j |2

n

)}
(A7)

=
1
n ∑

i∈[σm ]

min
M

{
∑

α:m<α

pF(Fα)

(
|Sα(Mi)|

× |Sm
i \Sα(Mi)|+ ∑

Sα
j ⊆Sm

i \Sα(Mi)

|Sα
j |2
)}

(A8)

=
1
n ∑

i∈[σm ]

(
∑

α:m<α

pF(Fα)

(
|Sα(k∗i )|

× |Sm
i \Sα(k∗i )|+ ∑

Sα
j ⊆Sm

i \Sα(k∗i )
|Sα

j |2
))

(A9)

where k∗i = arg min
k∈Sm

i

βm(k), and (A9) is the minimum value of the expected number of

false classifications for given Fm. The sampling function M defined in (A6) achieves the
minimum and thus it is optimal, completing the proof of the first part of the theorem.
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Theorem A3. For given F and Fm for m < f , the number of required tests for an F -separable
non-adaptive group test, i.e., the number of rows of the test matrix X, must satisfy

T ≥ max

{
max
j∈[σm ]

(λSm
j
+ 1), dlog2(λm + 1)e

}
(A10)

with the addition of 1’s removed in (A10) for the special case of m = f .

Proof. First, we have that each unique node (nodes that represent a unique subset Sj
i)

represents a unique possibly infected set KM where each result vector must be unique as
well. Therefore, in total, we must have at least λm unique vectors. Furthermore, when
m < f , it is possible that the infected set among the sampled individuals is the empty set.
Thus, we have to reserve the zero vector for this case as well. Therefore, the total number
of tests must be at least dlog2(λm + 1)e in general, with an exception of m = f case, where
we can assign the zero vector to one of the nodes and may achieve dlog2(λm)e.

Second, assume that, for any node j at an arbitrary level Fi, i < m, the set of indices of
the positions of 1’s must contain the set of indices of the positions of 1’s of the descendants
of node j. Moreover, since all nodes that split must be assigned a unique vector, Hamming
weights of the vectors must strictly decrease as we move from an ancestor node to a
descendant at each level. Considering the fact that the ancestor node at the top level can
have Hamming weight at most T and the nodes at the level Fm must be assigned a vector
which has Hamming weight at least 1, including the node that has the most unique ancestor
nodes, T must be at least max

j∈[σm ]
(λSm

j
+ 1). Similar to the first case, when m = f , we can have

a zero vector assigned to one of the bottom level nodes, and thus we can have T at least
max
j∈[σm ]

λSm
j

.

Theorem A4. For an f level exponentially split cluster formation tree, at level f , there exists an
F -separable test matrix, X, with not more than 4

3 f rows, i.e., an upper (achievable) bound for the
number of required tests is 4

3 (log2 n + 1) for n individuals. Conversely, this is also the capacity
order-wise, since the number of required tests must be greater than f .

Proof. By using the converse in Theorem 3, we already know that the required number of
tests is at least f from (24) since there are λ f = 2 f − 1 unique nodes and also λ

S f
i
+ 1 = f

for every subset S f
i . This proves the converse part of the theorem.

In order to satisfy the sufficient conditions for the existence of an F -separable matrix,
each node in the tree must be represented by a T length vector of sufficient Hamming
weight, so that (i) every descendant can be represented by a unique vector with positions
of 1’s being the subsets of the positions of 1’s of their ancestor nodes, and (ii) OR of vectors
that are all descendants of a node must be equal to the vector of the ancestor node. In our
proof, we show that, for exponentially split cluster formation trees, it is sufficient to check
that we have sufficient number of rows in X to uniquely assign vectors to the bottom level
nodes, i.e., the subsets S f

i at level Ff .
First, as we stated above, from the converse in Theorem 3, an F -separable test matrix

of an exponentially split cluster formation tree with f levels must have at least f rows.
However, for exponentially split cluster formation trees, this converse is not achievable:
There are 2 f−1 nodes at level f but ( f

1) binary vectors with Hamming weight 1. Since, for
f > 3, ( f

1) is less than 2 f−1, we cannot assign distinct Hamming weight 1 vectors to the
bottom level nodes. Thus, we need vectors with a length longer than f . Now, assume that
an achievable F -separable test matrix has f + k rows, where k is a non-negative integer.
Our objective in the remainder of the proof is to characterize this k in terms of f .
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We argue that, if the number of nodes at the bottom level, which is equal to 2 f−1, is

less than
k+1
∑

i=1
( f+k

i ), then we can find an achievable F -separable test matrix, i.e.,

k+1

∑
i=1

(
f + k

i

)
≥ 2 f−1 (A11)

is a sufficient condition for the existence of an achievable F -separable test matrix for a
given ( f , k) pair. Minimum k that satisfies (A11) will result in the minimum number of
required tests f + k. In our construction, we assign each node at level Fi a unique vector
with Hamming weight f + k + 1− i, except for the bottom level Ff . Since each node is
assigned a unique vector, when moving from a level to one level down, descendant nodes
must be assigned vectors that have Hamming weight at least 1 less than their ancestor
node. At the bottom level, we use the remaining vectors with a Hamming weight less
than or equal to k + 1. We choose a minimum such k for this construction, resulting in the
minimum number of tests.

Before proving the achievability of this above construction, we first analyze the minimum
k that satisfies (A11) in terms of f . We state and prove in Lemma A1 in Appendix A that
k = f /3 satisfies (A11), giving an upper bound for the minimum k, thus finalizing the first
part of the achievability proof. This, in turn, shows that we can use all vectors of Hamming
weight 1 through k + 1 in the bottom level to represent all 2 f−1 nodes at that level.

Next, we show that, for the upper levels, our construction is achievable, i.e., we can
find sufficiently many vectors of corresponding Hamming weights. By using Lemma A2 in
the Appendix A, and the fact that, for k ≤ f /3, when f ≥ 13, we have(

f + k
k + 2

)
≥ 2 f−2 (A12)

which implies that we can find unique vectors of Hamming weight k + 2 to assign to the
nodes at level Ff−1 (one level up from the bottom level). For the remaining levels below

d( f + k)/2e, we have ( f+k
i ) > ( f+k

i+1) and the number of nodes decreases by half as we move
upwards on the tree. Thus, we can find unique vectors to represent the nodes by increasing
the Hamming weights by 1 at each level, which is the minimum increase of Hamming
weights while moving upwards on the tree. For the remaining nodes, which are above the
level d( f + k)/2e, we can use the lower bound for the binomial coefficient,(

f + k
i

)
≥
(

f + k
i

)i
≥ 2i (A13)

to show that there are unique vectors of required weights at those levels as well.
Thus, there are sufficiently many unique vectors of appropriate Hamming weights

at every level. Finally, we have to check whether or not there are sufficient number of
unique vectors for every subtree of descendants of each node. In exponentially split cluster
formation trees, due to the symmetry of the tree, any descendant subtrees of each node is
again an exponentially split cluster formation tree. If we assume that k, where the number
of rows of X is equal to f + k, satisfies (A11) with k being a minimum such number, then
every descendant subtree below the top level has parameters ( f − i, k), and we show in
Lemma A1 in the Appendix A that they also satisfy the condition (A11). For f values that
are below the corresponding threshold in our proof steps (e.g., f ≥ 13 threshold before (A12)
above), manual calculations yield the desired results. This proves the achievability part of
the theorem.



Information 2023, 14, 48 28 of 30

Lemma A1. Minimum k that satisfies

k+1

∑
i=1

(
f + k

i

)
≥ 2 f−1 (A14)

is upper bounded by f /3.

Proof. We prove the statement of the lemma by showing that the pair ( f , k) = ( f , f /3)
satisfies (A14). We first consider the left-hand side of (A14) when f is incremented by 1 for
fixed k, and write it as

k+1

∑
i=1

(
f + k + 1

i

)
= 2

k+1

∑
i=1

(
f + k

i

)
+ 1−

(
f + k
k + 1

)
(A15)

which follows by using the identity (a
b) = (a−1

b−1) + (a−1
b ).

Second, we prove the following statement for k ≥ 1,

k+1

∑
i=1

(
4k
i

)
≥ 23k−1 (A16)

Note that, when k = f /3, (A16) is equivalent to (A14) for f values that are divisible by 3.
For f values that are not divisible by 3, since the pairs ( f − 1, k) and ( f − 2, k) satisfy (A14)
when the pair ( f , k) satisfies (A14), by (A15), it suffices to prove the statement in (A16).

We prove (A16) by induction on k. For k = 1, the inequality holds. Assume that the
inequality holds for a k ≥ 1, then we show that it also holds for k + 1. In the lines below,
we use the identity (a

b) = (a−1
b−1) + (a−1

b ) recursively,

k+2

∑
i=1

(
4k + 4

i

)
=

k+2

∑
i=1

(
4k + 3

i

)
+

k+2

∑
i=1

(
4k + 3
i− 1

)
(A17)

=
k+2

∑
i=1

(
4k + 2

i

)
+

k+2

∑
i=1

(
4k + 2
i− 1

)
+ 1

+
k+1

∑
i=1

(
4k + 2

i

)
+

k+1

∑
i=1

(
4k + 2
i− 1

)
(A18)

...

=9
k+1

∑
i=1

(
4k
i

)
− 5
(

4k
k + 1

)
+

(
4k

k + 2

)
+ 4
(

4k
k− 1

)
+ 5
(

4k
k− 2

)
+ A (A19)

=9
k+1

∑
i=1

(
4k
i

)
− 2k + 11

k + 2

(
4k

k + 1

)
+ 4
(

4k
k− 1

)
+ 5
(

4k
k− 2

)
+ A (A20)

=8
k+1

∑
i=1

(
4k
i

)
− k + 9

k + 2

(
4k

k + 1

)
+

(
4k
k

)
+ 5
(

4k
k− 1

)
+ 6
(

4k
k− 2

)
+ A′ (A21)

=8
k+1

∑
i=1

(
4k
i

)
+ 3
(

4k
k− 2

)
+ A′′ (A22)

≥23k+2 (A23)
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where A, A′, A′′ are positive terms that are o
(
( 4k

k−2)
)

, and we use the identity (a
b) =

a−b+1
b ( a

b−1) after Equation (A19) to eliminate the negative ( 4k
k+1) term. Inequality (A23)

follows from the induction assumption. This proves the statement for k + 1 and completes
the proof.

Lemma A2. When k ≤ 2n−8
5 , the following inequality holds:

1
2

k

∑
i=1

(
n
i

)
<

(
n

k + 1

)
(A24)

Proof. We prove the lemma by induction over k. First note that the inequality holds when
k = 1,

1
2

(
n
1

)
<

(
n
2

)
(A25)

Then, assume that the statement is true for k. Now, we check the statement for k + 1,

1
2

k+1

∑
i=1

(
n
i

)
<

3
2

(
n

k + 1

)
(A26)

≤ n− k− 1
k + 2

(
n

k + 1

)
(A27)

=

(
n

k + 2

)
(A28)

where (A26) follows from the induction assumption, and (A27) is because k ≤ 2n−8
5 . This

proves the statement for k + 1 and completes the proof.
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