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Research in monitoring and surveillance has flourished in recent years. Its

applications include control of illegal deforestation, search for survivors in disasters,

and inspection of large infrastructures, among others. Some of the current challenges

lie in establishing control policies that are suited for systems with low power and

limited sensing, actuation and communication capabilities. This thesis has two

main focuses: i) control design for persistent surveillance, where the goal is to

design memoryless policies that achieve surveillance of the largest possible area,

while respecting certain constraints; and ii) optimal sensor usage for monitoring of

denied environments, inside which state observations are costly.

In the first part of the thesis, we design control policies for Markov decision pro-

cesses (MDP) with the objective of generating the maximal set of recurrent states,

subject to convex constraints on the set of invariant probability mass functions. We

propose a design method for memoryless policies and fully observable MDPs with

finite state and action spaces. Our approach relies on a finitely parametrized convex

program inspired by principles of entropy maximization.



Next, we explore the problem of designing controllers for autonomous robots

tasked with maximal persistent surveillance of an area in which there are forbidden

regions. We model each robot as an MDP whose state comprises its position on a

finite two- dimensional lattice and the direction of motion. The goal is to find the

minimum number of robots and an associated time-invariant memoryless control

policy that guarantees that the largest number of states are persistently surveilled

without ever visiting a forbidden state.

In the second part of the thesis, we study the problem of optimal sensor

usage in denied environments, inside which state observations are only available

by incurring an extra cost. Observations outside the denied environment are cost

free. The goal is to understand the trade-off between paying to access the sensor

immediately, and waiting for a free sensor use should the system exit the denied

environment. We show that the analysis of this problem simplifies by recasting it

as renewal reward process, which enables us to establish conditions for which any

local minimum (if it exists) is also a global minimum, thus facilitating the search

for its minimizer.

Finally, we extend these results to the case when the state space is discrete

and the state update is ruled by a Markov chain. We establish conditions on the

initial distribution of the Markov chain that guarantee that any local minimum, if it

exists, is also global. In particular, these conditions rely on constraining the radial

stochastic order of an auxiliary Markov process. By analyzing these problems, we

hope to provide valuable insights into the core of some of the challenges that may

arise in real-world implementations.
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Chapter 1: Introduction

Research in monitoring, surveillance and reconnaissance has flourished with

advancements that enabled the development of autonomous agents capable of un-

dertaking such tasks [1–4]. Applications in this field include environmental mon-

itoring [5–7], emergency response to disasters [8, 9], risk assessment of sensitive

situations [10], and inspection of large aging infrastructures [11], among others. Al-

though technology continues to evolve, allowing for ever more powerful systems,

some of the current challenges lie in developing platforms that are able to cope

with limited sensing, actuation, communication and processing capabilities [12–16].

Solving these challenges are key, for example, in the context of miniature robotics,

where power remains a limiting factor [17].

This thesis has two main focuses: i) the study of control design for persistent

surveillance, where the goal is to design policies that achieve surveillance of the

largest possible area, while respecting certain constraints. We focus on the design

of memoryless policies, which require minimal on-board processing; and ii) the

problem of sensor usage for monitoring of denied environments, inside which state

observations are costly. Here, the goal is to study the trade-off between sensing and

not sensing and determine the optimal policy for sensor usage.
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The guiding philosophy of our approach is to theoretically analyze seemingly

simple problems and, by doing so, to unearth fundamental concepts and design

principles. With this strategy, we hope to provide valuable insights into the core of

some of the challenges that may arise in real-world implementations.

1.1 Maximal Persistent Surveillance

In the first part of the thesis, we examine a problem in maximal persistent

surveillance, which consists of finding a memoryless control policy for an autonomous

agent whose goal is to persistently visit the largest possible set of locations in a given

area. The concept of persistent surveillance is similar to the concept of coverage [18],

but differs in that the area to be surveilled must be revisited infinitely many times.

In our setup, we also impose safety constraints that dictate certain forbidden regions.

In our approach, we model each agent as a fully-observed Markov decision

process (MDP) with finite state and control spaces. The formalism of MDPs is

widely used to describe the behavior of systems whose state transitions probabilis-

tically among different configurations over time. The impact of a control policy is

felt through the actions that dictate the state transition probabilities. While the

traditional framework of MDPs involve a wide variety of costs that depend linearly

on the parameters that characterize the probabilistic behavior of the system, we

take a different approach, as we do not impose a stage cost for visiting a state or

using a control action. Rather, we are concerned with finding a control policy that

leads to the maximal set of recurrent states, subject to convex constraints on the set
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of invariant joint probability mass function (pmf) on the state and control action.

Examples of constraints of interest include the expected value of a function of the

state and(or) action, and lower and upper bounds on invariant pmfs evaluated at

pre-selected state and action pairs. These constraints can be used, for example, to

prohibit the system from ever visiting a certain state, or to increase the proportion

of time during which a particular region is visited as the system evolves.

One of the properties of our approach is that the agents’ states and actions lie

in discrete sets. As we will see in Chapter 3, each state may represent the agents’

position and orientation on a square lattice we wish to persistently surveil. In this

setup, one can think of a vehicle surveilling a city where the streets are arranged

in a grid, an at each intersection (state of the MDP), the vehicle has to determine

whether to continue straight or turn (actions of the MDP).

The square-grid scenario, however, is only one of numerous others that can be

implemented with the MDP formulation, and it should be regarded only as a proof

of concept of our results. The square lattice may be generalized to, for example, the

rigid structure of a bridge, where agents are robots that move on girders and each

point where a girder meets another may be construed as a state of the MDP. The

robots must decide at each girder intersection which path to follow.

Alternatively, in a scenario where the robots travel in a continuous space,

the states of the MDP may be abstracted as regions of the space, which has been

partitioned for surveillance. For example, in the monitoring of a building each

room may be thought of as a state of MDP, and after monitoring a room the robot

must decide which room to visit next. The partitioning of the space may be coarse
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(such as in the building scenario) or it can be fine, effectively discretizing the space.

This approach, however, should be followed with caution due to state-action pair

explosion.

1.1.1 Related Literature

Control design for persistent surveillance has been previously studied and

many problem formulations and approaches have been proposed. In [19, 20], the

authors present a semi-heuristic control policy that minimizes the time between

visitations to the same region. In [21], an algorithmic approach for persistent

surveillance of a convex polygon in the plane is provided. In [22], communication

constraints and sensor failures are incorporated to the problem of persistent surveil-

lance and approximate dynamic programing is used. In [23], the authors describe

a dynamic programming approach with temporal logic specifications, which can be

used to cast persistent surveillance problems. Speed control for robots performing

persistent monitoring on a predetermined path is addressed in [24], where linear

programing techniques are employed. On the implementation front, system archi-

tectures for unmanned aerial vehicles have been designed specifically for persistent

surveillance purposes, such as in [25]. In our work, we focus on memoryless policies

(found via convex optimization) that achieve persistent surveillance of the largest

possible set of locations without violating safety constraints. These semi-heuristic

approaches, however, are not restricted to memoryless policies and do not consider

safety constraints.
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To our knowledge, the problem of maximizing the set of recurrent states of

an MDP under convex constraints had not yet been studied. The most similar

framework appears in a series of papers by Arapostathis et al., where the state

probability distribution is restricted to be bounded above and below by safety vectors

at all times. In [26], [27] and [28], the authors propose algorithms to find the set

of distributions whose evolution under a given control policy respect the safety

constraint. In [29], an augmented Markov chain is used to find the the maximal

set of probability distributions whose evolution respect the safety constraint over all

admissible non-stationary control policies.

1.1.2 Contributions

We solve the problem of maximizing the set of recurrent states of an MDP by

casting a finitely parametrized convex program, which can be easily implemented

using standard convex optimization tools. The proposed optimization program max-

imizes the entropy of the joint pmf with the constraint that the pmf be invariant.

The choice of the entropy as the objective function is rooted on the fact that the

pmf that maximizes entropy under convex constraints also maximizes the support.

The convexity of our approach is achieved by casting the invariance equation as a

linear function of the pmf.

We apply our method to design memoryless controllers for robots that move

in a finite two-dimensional lattice with the goal of achieving persistent surveillance.

The concept of persistent surveillance in this context is analogous to the concept of
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recurrence in Markov chains. In this setup, we also impose safety constraints that

dictate that certain regions are forbidden. The forbidden regions may represent

areas in which robots cannot operate (such as bodies of water) or are not allowed

to visit (such as restricted airspace). The goal is to deploy the minimum number of

robots equipped with a control policy that guarantees persistent surveillance of the

largest possible set of lattice points without ever visiting a forbidden region. The

results are illustrated by numerical examples.

The work on maximal persistent surveillance has been published in [30] and

[31].

1.2 Optimal Sensor Usage in Denied Environments

In the second part of the thesis, we study the problem of optimal sensor usage

in denied environments. In our setup, state observations inside denied environments

are only available by paying a price in the cost to be minimized, whereas outside

the environment observations are free. One can imagine an agent whose goal is

to monitor a desired location inside the denied environment, but disturbances may

cause it to wander away. The agent can only return to the desired location once it

observes its current location. In this scenario, there are two ways the agent accesses

its location: by drifting outside the denied environment, where observations are

readily available; or by paying a price, which can be thought of as a communication

or energy cost, to receive an observation of its location.

Our goal is to understand the trade-off between: i) waiting for a free sensor
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use in the future and ii) paying a penalty to access the sensor immediately. The

agent is modeled as a discrete-time Markov process that evolves in time inside of

the denied environment, and at each time step, the only control available is the

decision whether or not to reset the process back to its initial distribution (and by

doing so incurring an extra cost). The optimal policy needs to take into account

the prospect of a cost-free reset happening in the future, should the process exit the

denied environment.

1.2.1 Related Literature

Research in monitoring and surveillance of denied environments has a rich

literature. On the implementation side, most of the focus is in navigation and path

planning for unmanned aerial vehicles (UAV) in GPS-denied environments [32]. The

solutions that have been proposed usually rely on on-board sensing capabilities, such

as vision [33–35] and optical sensors [36,37]. The work in [38] proposes a scheme for

collaborative navigation in multi-agent systems. In this thesis, we work on a simple

problem formulation to determine the optimal decision of whether to access a costly

sensor (in the absence of any other sensing capability) with the prospect of having

a free sensor access in the future, should the agent escape the denied environment.

On the theoretical front, efforts in event-based control and estimation aim at

establishing protocols for which actuating, computing and sensing are undertaken

only when needed, rather than periodically [39–42]. The work in [43], for example,

proposes a sporadic control scheme for first order linear systems. In our work, when
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the agent exists the denied environment and receives a state observation can be

thought of as event-based sensing. The difference is that the event under considera-

tion is a problem constraint rather than a design parameter, which is generally the

case in the event-based control and estimation literature.

A deceptively similar framework is that of control and estimation over costly

or limited communication channels. These setups occur in the context of networked

systems, where different components of systems are not collocated. The authors of

[44] consider an estimation problem where only a limited number of observations are

available over a finite horizon. The work in [45] proposes an estimation framework

in which a pre-processor decides whether or not to transmit measurements to the

estimator. The most similar problem setup to ours is the one in [46, 47], where the

authors consider an estimation problem in which the system can be reset by paying

a cost, and where the reset policy is a function of the current state of the system.

There are two main features of our work that distinguishes it from the ones

mentioned in the previous paragraph: i) in our work, the decision of whether or

not to use the sensor cannot be a function of the state, which is in general the

case in networked estimation problems; and ii) in our setup, we consider “event-

based”, cost-free sensor usage, which introduces an incentive to not request a costly

observation. To our knowledge, a framework that combines these two characteristics

has not been studied before.
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1.2.2 Contributions

We show that the analysis of this problem simplifies by recognizing that the

stochastic process is in fact a renewal process, and our design parameter is the sup-

port of the stopping time associated with the renewal process. This approach enables

us to establish conditions for which any local minimum, if it exists, is also global,

thus facilitating the search for the minimizer. We also explore the radial stochastic

order of an associated conditioned process, and establish sufficient conditions for

which the previous results hold.

Furthermore, we extend these results to the case when the state space is dis-

crete and the state update is ruled by a Markov chain. Specifically, we focus on

chains whose state space is indexed by integers, and at each time step it can move,

with equal probability, to a neighboring state; or stay at the current state. We

establish conditions on the initial pmf of the Markov chain that guarantee that any

local minimum, if it exists, is also global. In particular, these conditions rely on con-

straining the radial stochastic order of a auxiliary Markov process. The theoretical

results are illustrated by numerical examples.

1.3 Thesis Organization

The thesis is organized as follows. Chapter 2 describes the theoretical approach

to maximal persistent surveillance, by solving an optimization problem that aims

at finding the control policy that maximizes the set of recurrent states of an MDP.

We dedicate Chapter 3 to the application of these results to persistent surveillance.
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In Chapter 4, we explore the problem of sensor usage in denied environments for

stochastic processes in Rn. Chapter 5 extends the results of the previous chapter to

Markov Chains and focuses on establishing sufficient conditions on the initial pmf

of the Markov Chain. Finally, conclusions and future directions are discussed in

Chapter 6.
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Chapter 2: Control Polcies that Maximize the Set of Recurrent States

in MDPs subject to Convex Constraints

The formalism of Markov decision processes (MDPs) is widely used to de-

scribe the behavior of systems whose state transitions probabilistically among dif-

ferent configurations over time. The impact of a control policy is felt through the

actions that dictate the state transition probabilities. The traditional framework of

MDPs involve a wide variety of costs that depend linearly on the parameters that

characterize the probabilistic behavior of the system. Typically, at each time step,

the system incurs a cost (or reward) associated with the current state and control

action, and the goal is to devise a control policy that minimizes the expected cost

over a predetermined time interval. The two most commonly adopted approaches

to tackle these problems are linear and dynamic programming [48,49].

In this chapter we take a different look at MDPs, as we do not impose a stage

cost for visiting a state or using a control action. Rather, we are concerned with

finding a control policy that leads to the maximal set of recurrent states, subject to

convex constraints on the set of invariant joint probability mass function (pmf) on

the state and control action. Examples of constraints of interest include lower and

upper bounds on invariant pmfs evaluated at pre-selected state and action pairs, or
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on the expected value of a function of the state and(or) action. These constraints

can be used, for example, to prohibit the system from ever visiting a certain state,

or to increase the proportion of time during which a particular region is visited

as the system evolves. The motivation for recurrence comes from applications in

surveillance, where it is desirable that the system visits as many states as possible

to improve information gathering.

We consider fully observable MDPs with finite state and action spaces, and

limit our search to memoryless policies. We efficiently solve this problem by casting

a finitely parametrized convex program, which can be easily implemented using stan-

dard convex optimization tools, such as [50]. The proposed optimization program

maximizes the entropy of the joint pmf with the constraint that the pmf is invariant.

The choice of the entropy as the objective function is rooted on the fact that the

pmf that maximizes entropy under convex constraints also maximizes the support.

The convexity of our approach is achieved by casting the invariance equation as a

linear function of the pmf. We also show that, by maximizing the entropy of the

joint pmf (rather than the entropy of the marginal pmf with respect to the state),

we achieve the maximal set of recurrent states with the least number of recurrent

classes.

Once a control policy is applied to an MDP, one can construct a directed graph

of transitions for the resulting Markov chain. Here, the vertices of the graph are the

states and an edge from i to j indicates that the transition from i to j has positive

probability. In this case, the set of recurrent states is the union of the strongly

connected components that are closed, each representing a recurrent class. Hence,
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one could use standard algorithms [51], such as Kosaraju’s or Tarjan’s, to efficiently

find the strongly connected components of the graph and perform the union of the

ones that are closed. However, a control policy that “maximizes” the set of recurrent

states cannot be easily obtained using this method because the graph of transitions

may change for different candidate solutions. Furthermore, because we consider

constraints on the set of invariant pmfs, both the maximal set of recurrent states

and the corresponding control policies will, in general, depend on the actual values

of the entries of the transition probability matrices.

Broadly speaking, reachability is concerned with the determination of whether

a set of states can be reached from another via an appropriate control policy [52].

There are two main reasons why our formulation cannot be cast as a reachability

problem. The first is that reachability is in general distinct from recurrence, partic-

ularly when a reachable state is transient. The second follows from the discussion

above, where we emphasize that optimal solutions may depend on the probabil-

ities of the transitions, and not only on whether which ones occur with nonzero

probability.

To our knowledge, the problem of maximizing the set of recurrent states under

convex constraints has not yet been studied. The most similar framework appears

in a series of papers by Arapostathis et al., where the state probability distribution

is restricted to be bounded above and below by safety vectors at all times. In

[26], [27] and [28], the authors propose algorithms to find the set of distributions

whose evolution under a given control policy respect the safety constraint. In [29],

an augmented Markov chain is used to find the the maximal set of probability
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distributions whose evolution respect the safety constraint over all admissible non-

stationary control policies.

The chapter is organized as follows. Section 2.1 provides basic definitions and

the problem statement. The convex program that solves the problem is presented in

Section 2.2. Numerical examples are given in Section 2.3, while Section 2.4 discusses

results concerning multiple recurrent classes. Conclusions are given in Section 2.5.

2.1 Preliminaries and Problem Statement

The following notation is used throughout the chapter:

X state space of the MDP

U set of control actions

Xk state of the MDP at time k

Uk control action at time k

PX set of all pmfs with support in X

PU set of all pmfs with support in U

PXU set of all joint pmfs with support in X× U

Sf support of a pmf f

The state and control action of the MDP at time k are given by Xk and Uk,

respectively. The recursion of the MDP is given by the (conditional) pmf of Xk+1

given the previous state Xk and control action Uk, and is denoted as:

Q(x+, x, u)
def
= P (Xk+1 = x+|Xk = x, Uk = u).
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We denote any time-homogeneous control policy by

K(u, x)
def
= P (Uk = u|Xk = x), u ∈ U, x ∈ X

where
∑

u∈UK(u, x) = 1 for all x in X. The set of all such policies is denoted as K.

Assumption Throughout this chapter, we assume that the MDP Q is given.

Hence, all quantities and sets that depend on the closed loop behavior are indexed

only by the underlying control policy K.

A pmf fXU in PXU is said to be invariant under control policy K if it satisfies

the following invariance relation:

fXU(x+, u+) = K(u+, x+)
∑

x∈X,u∈U

Q(x+, x, u)fXU(x, u), (2.1)

for all x+ in X and u+ in U. The set of invariant pmfs associated with control policy

K is given by:

IK
def
=
{
fXU ∈ PXU : (2.1) holds with control policy K

}
Finally, the set of all invariant pmfs are given by:

I def=
⋃
K∈K

IK

Problem 2.1.1. Given W, which is a convex subset of PXU, find a joint pmf f ∗XU in

I∩W and a corresponding control policy K∗ such that the following inclusion holds:

SXfXU ⊆ SXf∗XU , fXU ∈ I ∩W; (2.2)

where SXf = {x ∈ X|∑u∈U f(x, u) > 0}.
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Remark Note that a pmf f ∗XU that satisfies (2.2) has maximal support among

all members of the set I ∩W.

The convex set W can be used to cast a wide variety of constraints. For

example, suppose the set F in X contains the states we wish the system never visits.

This requirement can be cast in the following constraint on fXU :

W =
{
fXU ∈ PXU :

∑
u∈U

fXU(x, u) = 0, x ∈ F
}
.

2.2 Solution via Convex Optimization

We propose the following convex program to solve Problem 2.1.1:

f ∗XU = arg max
fXU∈W

H(fXU) (2.3)

subject to:∑
u+∈U

fXU(x+, u+) =
∑

x∈X,u∈U

Q(x+, x, u)fXU(x, u), x+ ∈ X (2.4)

where H : PXU → <≥0 is the entropy of fXU , and is given by

H(fXU) = −
∑
u∈U

∑
x∈X

fXU(x, u) ln(fXU(x, u)),

where we adopt the standard convention that 0 ln(0) = 0.

The following theorem states precisely how the proposed convex program pro-

vides a solution to Problem 2.1.1.

Theorem 2.2.1. Let W be given, and assume that (2.3)-(2.4) is feasible and that

f ∗XU is the optimal solution. In addition, adopt the marginal pmf f ∗X(x) =
∑

u∈U f
∗
XU(x, u)

and let G : U × X → [0, 1] be any function satisfying
∑

u∈U G(u, x) = 1 for all x in

X. The following holds:
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(a) f ∗XU ∈W ∩ I, with K∗ given by:

K∗(u, x) =


f∗XU (x,u)

f∗X(x)
, x ∈ SXf∗XU

G(u, x), otherwise

, (u, x) ∈ U× X (2.5)

(b) SXfXU ⊆ SXf∗XU , fXU ∈ I ∩W,

where SXf = {x ∈ X|∑u∈U f(x, u) > 0}, f ∈ PXU.

Remark An alternative formulation of the proposed convex program that

maximizes the entropy of the marginal pmf with respect to the state (rather than

the joint pmf) would also provide a solution to Problem 2.1.1. As we discuss in

Section 2.4, our formulation has the advantage that the resulting maximal set of

recurrent states is guaranteed to have the smallest number of recurrent classes.

To facilitate the proof of the second part of Theorem 2.2.1, we introduce the

following lemma:

Lemma 2.2.2. Let Y be a finite set and V be a convex subset of PY, which is the

set of all pmfs with support in Y. Consider the following problem:

f ∗ = arg max
f∈V
H(f)

where H(f) is the entropy of f in PY and is given by H(f) = −∑y∈Y f(y) ln(f(y)),

where we adopt the convention that 0 ln(0) = 0. The following holds:

Sf ⊆ Sf∗ , f ∈ V

where Sf = {y ∈ Y|f(y) > 0}, f ∈ PY.
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Proof. Select an arbitrary f in V and define fλ
def
= λf ∗ + (1 − λ)f for 0 ≤ λ ≤ 1.

From the convexity of V, we conclude that fλ is in V for all λ in [0, 1]. Since f ∗ has

maximal entropy, it must be that there exists a λ̄ in [0, 1) such that

d

dλ
H(fλ) ≥ 0, λ ∈ (λ̄, 1). (2.6)

Proof by contradiction: Suppose that Sf * Sf∗ and hence that there exists a y′ in

Y such that f(y′) > 0 and f ∗(y′) = 0. We have that

d

dλ

(
fλ(y

′) ln(fλ(y
′))

)
= −f(y′)

(
ln(fλ(y

′)) + 1
)

goes to∞, as λ approaches 1, since limλ→1 fλ(y
′) = 0. This implies that there exists

a λ̃ in [0, 1) such that

d

dλ
H(fλ) < 0, λ ∈ (λ̃, 1),

which contradicts (2.6).

See [53] for an alternative proof that relies on the concept of relative entropy.

Proof of Theorem 2.2.1.

(a) (Proof that f ∗XU ∈ W ∩ I, with K∗ given by (2.5)) The inclusion of f ∗XU in

W follows from the assumption that (2.3)-(2.4) is feasible. To show that f ∗XU

belongs to I with control policy given by (2.5), we first note that by feasibility it

must satisfy the constraint in (2.4). For each pair (x+, u+) in X×U, we multiply

both sides of (2.4) by K∗(u+, x+):

K∗(u+, x+)
∑
u+∈U

f ∗XU(x+, u+) = (2.7)

K∗(u+, x+)
∑

x∈X,u∈U

Q(x+, x, u)f ∗XU(x, u), x+ ∈ X
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The right-hand side of (2.7) matches the right-hand side of the invariance re-

lation given by (2.1), and for each x+ in SXf∗XU , the left-hand side is equal to

f ∗XU(x+, u+), and therefore the invariance relation in (2.1) is satisfied. More-

over, for values of x+ not in SXf∗XU , the invariance relation is trivially satisfied.

Therefore, f ∗XU belongs to I with control policy given by (2.5).

(b) (Proof that SXfXU ⊆ SXf∗XU , fXU ∈ I ∩W) Follows by noting that the set of

feasible pmfs of the optimization program (2.3)-(2.4) is convex and applying

Lemma 2.2.2.

Remark The implementation of the optimization program described in (2.3)-(2.4)

can be done with any appropriate convex optimization solver. Throughout Chapters

2 and 3, we provide numerical examples that were cast and solved using on CVX [50],

which relies on the software package SDPT3 as its default solver [54]. Each call to

SDPT3 can be solved with O
(
(nm)3.5 log ε−1

)
iterations [55], where n is the number

of states in the MDP, m is the number of control actions, and ε is the accepted

duality gap. It is important to note that CVX relies on a successive approximation

method due to the logarithmic nature of the objective function. In our experience,

however, CVX was able to reliably solve all numerical problems we tested.

2.3 Simple Numerical Examples

Example 2.3.1. We use our method to solve Problem 2.1.1 for the case when

X = {1, . . . , 7} and U = {1, 2}, and we adopt an MDP specified by the following

19



probability transition matrices:

Q1 =



0 0 0 1 0 0 0

0 0 1 0 0 0 0

0 0 .5 .5 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 1

0 0 0 1 0 0 0

0 0 0 0 .6 0 .4



, Q2 =



.4 .6 0 0 0 0 0

.3 .7 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 .3 0 0 0 .7

0 0 0 0 0 .5 .5


where we use the notation Qu

ij

def
= Q(i, j, u). The directed graph of possible transitions

of the MDP is depicted in Fig. 2.1.

We proceed to solving Example 2.3.1, subject to four distinct convex con-

straints on the invariant pmfs and discuss the resulting changes on the control pol-

icy and, in some cases, also the variation on the maximal set of recurrent states1.

For clarity of exposition, all constraints are imposed on the invariant probability of

state 4.

Notation: In what follows, F ∗ij
def
= f ∗XU(i, j), K∗ij

def
= K∗(i, j), and G ∈ [0, 1]2×7

is any matrix whose columns sum up to 1.

1. The following is the solution of Example 2.3.1, with

W =
{
fXU ∈ PXU :

∑
u∈U

fXU(4, u) ≥ .2
}
.

1Our results are rounded to two decimal points, or represented as fractions where appropriate.
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1

2 3

4

5 6

7

Figure 2.1: Example of an MDP with seven states and two control actions. The

dashed and solid lines represent transitions with nonzero probability for control

actions 1 and 2, respectively.

SXf∗XU = {1, 2, 3, 4, 5, 6, 7}

F ∗ =

.02 .09 .07 .11 .05 .08 .07

.02 .11 .07 .09 .09 .05 .08

 ,

K∗ =

.42 .45 .49 .53 .38 .62 .47

.58 .55 .51 .47 .62 .38 .53



2. The following is the solution of Example 2.3.1, with

W =
{
fXU ∈ PXU :

∑
u∈U

fXU(4, u) ≥ .25
}
.
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SXf∗XU = {1, 2, 3, 4, 5, 6, 7}

F ∗ =

.02 .11 .06 .13 .04 .11 .04

.01 .09 .09 .12 .10 .02 .06

 ,

K∗ =

.70 .57 .40 .53 .28 .84 .38

.30 .43 .60 .47 .72 .16 .62


Remark While the maximal set of recurrent states remained unchanged with

respect to the previous case, the control policy had to change to accommodate

the different constraint.

3. The following is the solution of Example 2.3.1, with

W =
{
fXU ∈ PXU :

∑
u∈U

fXU(4, u) ≥ 1/3

}
.

SXf∗XU = {2, 3, 4, 5, 6}

F ∗ =

0 1/6 0 1/6 0 1/6 0

0 0 1/6
1/6

1/6 0 0

 ,

K∗ =

G1,1 1 0 .5 0 1 G1,7

G2,1 0 1 .5 1 0 G2,7


Remark In this case, states 1 and 7 disappear from the maximal set of

recurrent states. The corresponding closed-loop transition graph is depicted in

Fig. 2.2. Note that the following control policy would also lead to an invariant

pmf that satisfies the constraint, however the resulting set of recurrent states
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would not be maximal.

K =

G1,1 1 0 1 G1,5 G1,6 G1,7

G2,1 0 1 0 G2,5 G2,6 G2,7



2 3

4

5 6

Figure 2.2: Closed loop configuration for case (3).

4. The following is the solution of Example 2.3.1, with

W =
{
fXU ∈ PXU :

∑
u∈U

fXU(4, u) = 0
}
.

SXf∗XU = {1, 2, 5, 7}

F ∗ =

 0 0 0 0 0.19 0 .32

.16 .33 0 0 0 0 0

 ,

K∗ =

0 0 G1,3 G1,4 1 G1,7 1

1 1 G2,3 G2,4 0 G2,7 0


Remark The maximal set of recurrent states contains two recurrent classes

in this case. The transitions graph for the closed-loop transition graph is

depicted in Fig. 2.3.
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2

5

7

Figure 2.3: Closed loop configuration for case (4).

2.4 Minimum Number of Recurrent Classes

For a given control policy, the resulting Markov chain may contain multiple

recurrent classes, and in this case the invariant pmf is not unique. In this section

we justify the choice of maximizing the entropy of the joint invariant pmf rather

than the entropy of the marginal pmf with respect to the state. Consider now the

following optimization program:

f ∗XU = arg max
fXU∈W

H(
∑
u∈U

fXU(·, u)) (2.8)

subject to:∑
u+∈U

fXU(x+, u+) =
∑

x∈X,u∈U

Q(x+, x, u)fXU(x, u), x+ ∈ X, (2.9)

and note that its associated control policy, as suggested by Theorem 2.2.1, would

also solve Problem 2.1.1 with the added benefit that the entropy of the marginal

pmf is computationally cheaper. The advantage, however, of using the joint pmf is

that it guarantees the minimum number of recurrent classes, as this section will

show.

Let fXU be an invariant pmf associated with control policy K, and let ηfXU

denote the number of distinct recurrent classes associated with fXU . There must
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exist invariant pmfs f iXU , i = 1, ..., ηfXU , with the property that SX
f iXU

, i = 1, ..., ηfXU ,

are pairwise disjoint, such that:

fXU =

ηfXU∑
i=1

λif
i
XU ,

where λi > 0 and
∑ηfXU

i=1 λi = 1.

Let the set of feasible pmfs with maximal support be given by:

IWmax def
=
{
fXU ∈ I ∩W : SXf̄XU ⊆ SXfXU , f̄XU ∈ I ∩W

}
(2.10)

Corollary 2.4.1. Let f ∗XU be the solution to (2.3)-(2.4). The following holds:

ηf∗XU ≤ ηfXU , fXU ∈ IWmax.

Proof. Suppose there exists a pmf f̂XU in IWmax such that ηf̂XU < ηf∗XU . Since

the set of recurrent classes associated with f̂XU is smaller than the one associated

with f ∗XU , there must exist a pair (x, u) in SXf∗XU × U for which f̂XU(x, u) > 0 and

f ∗XU(x, u) = 0, which contradicts Lemma 2.2.2.

Example 2.4.2. This simple example shows the difference between having an objec-

tive function as in (2.3) and (2.8). Let X = {1, 2, 3, 4}, U = {1, 2} and W = PXU

(i.e., no further constraints are imposed), and consider the MDP specified by the

following probability transition matrices:

Q1 =



1 0 0 0

.5 .5 0 0

1 0 0 0

0 0 1 0


, Q2 =



0 1 0 0

0 0 0 1

0 0 .5 .5

0 0 0 1


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where we use the notation Qu
ij

def
= Q(i, j, u). The directed graph of possible transitions

of the MDP is depicted in Fig. 2.4.

1

2

3

4!

Figure 2.4: Posible transitions of the MDP in Example 2.4.2

Notation: In what follows, Fij
def
= fXU(i, j) and Kij

def
= K(i, j).

Consider the following invariant joint pmf:

F =

.125 0.25 0 .125

.125 0 .25 .125

 ,
which can be achieved by the following control policy:

K =

0.5 1 0 .5

0.5 0 1 .5

 ,
The closed-loop configuration of possible transitions can be seen in Fig. 2.5.

Note that SXfXU = X and that the marginal pmf is uniform and has maximum entropy.

Therefore the proposed pmf is a solution to (2.3)-(2.4), and, alongside the proposed

control policy, solves Problem 2.1.1. However, the resulting Markov chain has two

distinct recurrent classes.
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3
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Figure 2.5: Closed-loop configuration for Example 2.4.2 with policy given in (2.12)

and resulting invariant pmf (2.12).

Let us proceed by using the original convex program (2.3)-(2.4). We get:

F ∗ =

0.1268 0.1134 0.1015 0.1583

0.1583 0.1015 0.1134 0.1268

 , (2.11)

K∗ =

0.4447 0.5277 0.4723 0.5553

0.5553 0.4723 0.5277 0.4447

 , (2.12)

which maintains the closed loop interconnection of Fig. 2.4 and results in a Markov

chain with one recurrent class. Note that the marginal pmf does not have maximum

entropy, but the entropy of the joint pmf is maximum.

2.5 Conclusion

This chapter addresses the design of full-state feedback memoryless policies for

MDPs with finite state and action spaces. The main problem is to design policies

that lead to the largest set of recurrent states, subject to convex constraints on

the set of invariant pmfs. We described a finitely parametrized convex program

that solves the problem via entropy maximization principles. Our approach has the
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advantage of yielding a closed-loop Markov chain with least number of recurrent

classes.
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Chapter 3: Maximal Persistent Surveillance

In this chapter we apply the results we have obtained to the problem of max-

imal persistent surveillance. Some of the results from Chapter 2 are reproduced

here for completeness, but proofs have been omitted. The results presented in this

chapter have been published in [66].

The problem of maximal persistent surveillance consists of finding a memo-

ryless control policy that results in the largest possible set of points in the lattice

being persistently visited. The concept of persistent surveillance is similar to the

concept of coverage [18], but differs in that the area to be surveilled must be re-

visited infinitely many times. In our setup, we also impose safety constraints that

dictate certain forbidden regions. The forbidden regions may represent areas in

which robots cannot operate (such as bodies of water) or are not allowed to visit

(such as restricted airspace). The goal is to deploy the minimum number of robots

equipped with a control policy that guarantees persistent surveillance of the largest

possible set of lattice points without ever visiting a forbidden region.

Control design for persistent surveillance has been previously studied and

many problem formulations and approaches have been proposed. In [19,20], the au-

thors present a semi-heuristic control policy that minimizes the time between visita-
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tions to the same region. In [21], an algorithmic approach for persistent surveillance

of a convex polygon in the plane is provided. In [22], communication constraints

and sensor failures are incorporated in the problem of persistent surveillance and

approximate dynamic programing is used. In [23], the authors describe a dynamic

programming approach with temporal logic specifications, which can be used to

cast persistent surveillance problems. Speed control for robots performing persistent

monitoring on a predetermined path is addressed in [24], where linear programing

techniques are employed. In our work, we focus on deploying the minimum num-

ber of robots, equipped with memoryless policies (found via convex optimization),

tasked with persistent surveillance of the largest possible set of locations without

violating safety constraints.

We model each robot as a fully-observed MDP with finite state and control

spaces. This approach, which has been successfully used in the context of naviga-

tion and path planning ( [67–69]), allows for the development of robust and highly

scalable algorithms. Without loss of generality, we consider robots whose state is

taken as its position on a finite two-dimensional lattice and direction of motion

(taken from a set of four possible orientations), and limit the control space to two

control actions (“forward” and “turn right”). The limitation in the control space

illustrates how constrained actuation can be incorporated in our formulation, how-

ever the ideas described in this paper can be extended to more general dynamics

and state/control spaces.

The remainder of this chapter is organized as follows. Section 3.1 provides

notation, basic definitions and the problem statement. The convex program that
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computes the maximal set of persistently surveilled states and its associated control

policy is presented in Section 3.2. Section 3.3 provides details on computing the

smallest deployment of robots necessary for maximal persistent surveillance. We

discuss limiting behavior and use of additional constraints in Section 3.4. In Sec-

tion 3.5, we discuss approaches to the problem of maximal persistent surveillance

when a fixed number of robots are available. Numerical examples are given through-

out the paper to illustrate concepts and the proposed methodology. Conclusions can

be found in Section 3.6.

3.1 Preliminaries and Problem Statements

The following notation is used throughout the paper:

Z× Y set of lattice positions

O set of orientations

X def
= Z× Y×O set of robot states

F ⊂ X set of forbidden states

U set of control actions

The state of the robot will be graphically represented as shown in Fig. 3.1.

The robot’s dynamics are governed by the (conditional) probability of Xk+1 given

the current state Xk and control action Uk, and are denoted as:

Q(x+, x, u)
def
= P (Xk+1 = x+

∣∣ Xk = x, Uk = u),

where x, x+ ∈ X, u ∈ U.
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(1, 2, U)

1 2 3

(3, 1, R)

Figure 3.1: Graphical representation of the state of the robot. In this examples, we

use Z = {1, 2, 3}, Y = {1, 2}, and O = {R,U, L,D}, where R,U, L and D represent

right, up, left and down directions, respectively.

We denote any memoryless control policy by

K(u, x)
def
= P (Uk = u

∣∣ Xk = x), u ∈ U, x ∈ X,

where
∑

u∈UK(u, x) = 1 for all x in X. The set of all such policies is denoted

as K. Note that the computation of a control action may be deterministic (when

K(u, x) = 1 for a given action u) or carried out in a randomized manner, in which

case the policy dictates the probabilities assigned to each control action for a given

state.

Assumption When multiple robots are considered, we assume that they are iden-

tical and have dynamics governed by Q. In these situations, every robot executes

the same control policy. Moreover, multiple robots are allowed to occupy the same

state.

Given a control policy K, the conditional state transition probability of the

closed loop is represented as:

PK(Xk+1 = x+
∣∣Xk = x)

def
=
∑
u∈U

Q(x+, x, u)K(u, x).
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We will refer to this quantity as QK(x+, x)
def
= PK(Xk+1 = x+

∣∣Xk = x).

3.1.1 Recurrence and Persistent Surveillance

A state x ∈ X is recurrent under a control policy K if the probability of a

robot revisiting state x is one, that is:

PK(Xk = x for some k > 0
∣∣ X0 = x) = 1. (3.1)

We define the set of recurrent states XRK under control policy K as follows:

XRK
def
=
{
x ∈ X : (3.1) holds

}
.

Remark Membership in XRK guarantees that once a state is visited, it will be revis-

ited infinitely many times under control policy K. It does not, however, guarantee

that each state in XRK will be visited for all initial states in XRK because XRK may

contain multiple recurrent classes. In fact, a robot will visit a certain recurrent

state x with probability one if and only if it is initialized in the same recurrent class.

Moreover, note that once a robot enters a recurrent class, it will never exit under

control policy K.

We say a state x is persistently surveilled under control policy K and initial

state x0 ∈ X if it is recurrent under K and

PK(Xk = x for some k > 0
∣∣ X0 = x0) = 1. (3.2)

If a state x is persistently surveilled under control policy K and initial state

x0 ∈ XRK, then it must be that x and x0 belong to the same recurrent class.
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We define the set of persistently surveilled states Xpsx0,K under control policy K

and initial state x0 ∈ X to be:

Xpsx0,K
def
=
{
x ∈ XRK : (3.2) holds

}
.

The set Xpsx0,K is a recurrent class of the closed loop dynamics QK. Note that

for every state x in Xpsx0,K, it holds that Xpsx,K = Xpsx0,K. Moreover, if there exists a

recurrent state for which Xpsx0,K = XRK, the set XRK has only one recurrent class.

Given a set F of forbidden states, we define the set of states that are recurrent

and for which the probability of transitioning into F is zero.

The set of F-safe recurrent states XRK,F under a control policy K is defined as:

XRK,F
def
=
{
x ∈ XRK : QK(x+, x) = 0, x+ ∈ F

}
.

We define the maximal set of F-safe recurrent states as:

XRF
def
=
⋃
K∈K

XRK,F.

Finally, the set of F-safe persistently surveilled states Xpss0,K,F under a control

policy K and initial state s0 ∈ S is defined as:

Xpss0,K,F
def
=
{
x ∈ Xpss0,K : QK(x+, x) = 0, x+ ∈ F

}
.

Remark As before, Xpsx0,K,F is a (safe) recurrent class of QK.

3.1.2 Problem Statement

We start by addressing the following problem:
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Problem 3.1.1. (Maximal set of F-safe recurrent states). Given a set of forbidden

states F, determine:

(a) XRF ; and

(b) a control policy K∗ such that XRK∗ = XRF .

In light of Remark 3.1.1, note that in order to persistently surveil all possible

states, we need to determine how many robots to use and in which state they should

be initialized. The following problem addresses this issue.

Problem 3.1.2. (Maximal F-safe persistent surveillance). Given a set of forbidden

states F, determine the minimum number of robots r, a control policy K̂ and a set

of initial states {x1, ..., xr}, so that

r⋃
i=1

Xps
xi,K̂,F = XRF . (3.3)

Remark The following is a list of important comments on Problems 3.1.1 and 3.1.2.

• There is no K such that the states in X�XRF can be F-safe and recurrent.

• Once r robots are initialized with initial states {x1, ..., xr}, it is guaranteed

that the largest possible set of states will be visited infinitely many times

without ever visiting a forbidden state.

We will use the results from Chapter 2 to solve Problems 3.1.1 and 3.1.2.
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3.2 Computing the Maximal Set of Recurrent States

Recall that PXU is the set of all pmfs with support in X×U, and consider the

following convex optimization program:

f ∗XU = arg max
fXU∈PXU

H(fXU) (3.4)

subject to:∑
u+∈U

fXU(x+, u+) =
∑

x∈X,u∈U

Q(x+, x, u)fXU(x, u) (3.5)

∑
u∈U

fXU(x, u) = 0, x ∈ F (3.6)

where H : PXU → <≥0 is the entropy of fXU , and is given by

H(fXU) = −
∑
u∈U

∑
x∈X

fXU(x, u) ln
(
fXU(x, u)

)
where we adopt the standard convention that 0 ln(0) = 0.

The following proposition, which has been modified from Theorem 2.2.1, pro-

vides a solution to Problem 3.1.1.

Proposition 3.2.1. Let F be given, assume that (3.4)-(3.6) is feasible, and that f ∗XU

is the optimal solution. In addition, adopt the marginal pmf f ∗X(x) =
∑

u∈U f
∗
XU(x, u)

and let G : U × X → [0, 1] be any function satisfying
∑

u∈U G(x, s) = 1 for all x in

X. The following holds:

(a) XRF = SXf∗XU
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(b) XRK∗ \ F = XRF for K∗ given by:

K∗(u, x) =


f∗XU (x,u)

f∗X(x)
, x ∈ SXf∗XU

G(u, x), otherwise

, (u, x) ∈ U× X (3.7)

where SXf∗XU is given by SXf∗XU = {x ∈ X :
∑

u∈U f
∗
XU(x, u) > 0}.

The proof of Proposition 3.2.1 closely follows the proof of Theorem 2.2.1 and

is omitted. However, it is important to highlight that constraint (3.6) enforces

F-safety.

Example 3.2.2. Let Z = Y = {1, ..., 5}, O = {R,U, L,D} and consider a robot

whose action space is given by U = {“forward”, “turn right”}. Moreover, let the

set of forbidden states be given by:

F =
{

(z, y, θ) ∈ X : (z, y) ∈ {(1, 1), (1, 5), (5, 1), (5, 5), (3, 3)}
}
,

which means the robot is prohibited from visiting the center and corner locations of

the lattice.

In order to specify Q, we first define an auxiliary conditional pmf Q′ defined

on Z′ = Y′ = {1, 2, 3} and O′ = {R,U, L,D}. For clarity, Q′ is shown graphically

in Fig. 3.2, which contains the probabilities of transitioning to states shown as dark

triangles given the previous state shown as a white triangle. There is uncertainty

only for transitions that occur on the edge of the lattice. Since we consider dynamics

that are spatially invariant, the transition probabilities for states not shown in Fig.

3.2 can be computed by appropriate manipulation of the ones shown. Similarly, Q

is constructed by appropriate expansion of Q′.
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Figure 3.2: Graphical representation of some transitions in Q′.

We use [50] to solve (3.4)-(3.6) and use Proposition 3.2.1 to compute XRF and

a control policy K∗ such that XRK∗ = XRF . The set XRF can be seen in Fig. 3.3, where

the areas in red represent the states in F, and the triangles in blue represent the

states in XRF . The control policy K∗, computed using (3.7), has been omitted due

to space constraints.

3.3 Maximal Persistent Surveillance and

Robot Deployment

In this section, we provide a solution to Problem 3.1.2, which seeks the min-

imum number r of robots, a control policy K̂ and a set of initial states {x1, ..., xr}

so that
⋃r
i=1X

ps

xi,K̂,F = XRF .
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Figure 3.3: Depiction of XRF in blue. The red areas represent the forbidden states.

In light of a previous remark, recall that the set of F-safe persistently surveilled

states Xpsx0,K,F is a recurrent class of QK. In practice, this means that when a robot

with initial state X0 = x0 applies control policy K, it is guaranteed that:

• the robot will never leave Xpsx0,K,F;

• every state in Xpsx0,K,F will be visited infinitely many times;

• states in F will never be visited.

To find all the (safe) recurrent classes in XRK,F, flood-fill-type algorithms may

be used, where the graph of QK is traversed, either in a depth-first or breath-

first manner [51]. An edge from x to x+ of the graph of QK exists if and only if

QK(x+, x) > 0 holds.

Given F and a control policy K, let nK be the number of distinct recurrent

classes of QK, and note that the following holds:

nK⋃
i=1

Xps
xi,K,F = XRK,F,
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where {x1, ..., xnK} is a set of initial states, and
{
Xps
xi,K,F

}nK
i=1

are distinct recurrent

classes.

We define the set of all admissible control policies whose F-safe set of recurrent

states are maximal to be:

KR
F =

{
K ∈ K : XRK,F = XRF

}
,

The following proposition shows that nK∗ ≤ nK for all K in KR
F .

Proposition 3.3.1. Let F be given, and take K∗ to be the control policy in (3.7).

The following holds:

nK∗ ≤ nK, K ∈ KR
F .

The proof of Proposition 3.3.1 is similar to that of Corollary 2.4.1 and is

omitted.

Remark By exploring the graph of QK∗ found in Example 3.2.2, we conclude that

only one robot is required to perform maximal persistent surveillance (i.e., XRF con-

tains only one recurrent class). Any state in XRF may be selected as the robot’s

initial state.

Example 3.3.2. Consider again the example described in Example 3.2.2, and sup-

pose that we now change the set of forbidden states to include location (4, 3) (i.e.,

let F =
{

(z, y, θ) ∈ X : (z, y) ∈ {(1, 1), (1, 5), (5, 1), (5, 5), (3, 3), (4, 3)}
}

).

Re-solving (3.4)-(3.6), applying Propositions 3.2.1 and 3.3.1, and searching

the graph of the closed loop Markov chain, we conclude that at least three robots
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Figure 3.4: Top left: maximal set of recurrent states XRF (in blue). Others: three

recurrent classes whose union is XRF .

are required to perform maximal persistent surveillance of XRF (see Fig. 3.4). Any

state from each recurrent class may be used as initial states, so we can chose the set

of initial states to be:
{

(1, 2, U), (2, 1, U), (2, 4, U)
}

. Note that the set XRF is now

smaller (34 vs. 40 states).
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3.4 Limiting Behavior and Other Constraints

We define TK, the long term proportion of time the robot, under control policy

K, visits state x in X having started at state x0, to be:

TK(x, x0)
def
= lim

k→∞

1

k

k∑
i=1

I
(
Xi = x,X0 = x0

)
,

where I is the indicator function.

3.4.1 Limiting Behavior with One Recurrent Class

Given a forbidden set F, and let f ∗XU be the optimal solution to (3.4)-(3.6),

and K∗ be the control policy computed in (2.5), and suppose XRK∗,F has only one

recurrent class. For any initial state x0 in XRF , the following holds with probability

one:

TK∗(x, x0) = f ∗X(x), (3.8)

were f ∗X(x) =
∑

u∈U f
∗
XU(x, u). Since we have not imposed aperiodicity on QK∗ , we

cannot state stronger convergence. However, equation (3.8) still tells us valuable

information regarding the limiting behavior of the robot.

Note that the pmf that maximizes the entropy is “as uniform as possible.”

However, additional convex constraints can be added to our formulation in order to

shape the distribution of the optimal pmf and, thus, influence the limiting behavior

of the robot.
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Consider the following constraint:

∑
(z,y)∈D, θ∈O, u∈U

fXU((z, y, θ), u) > α, (3.9)

where D ⊂ Z × Y is a region of the lattice. The set D can be interpreted as a

region of high interest that should be surveilled more often. Suppose the convex

program (3.4)-(3.6) and (3.9) is feasible, that f ∗∗XU is the optimal solution and K∗∗ is

the associated control policy. The following holds for any x0 in XRF with probability

one:

∑
(z,y)∈D, θ∈O

TK∗∗
(
(z, y, θ), s0

)
> α.

Example 3.4.1. Let Z = Y = {1, ..., 10}, O = {R,U, L,D}, and consider again

a robot whose action space is given by U = {“Forward”, “Turn Right”}. The

dynamics Q are similar to what was used in Examples 3.2.2 and 3.3.2, except that

we add uncertainty to the transition of states that lie in the interior of the grid (see

Fig. 3.5). The probabilities for states on the edge of the grid are the same as before

(see Fig.3.2).

.2 .2

1 2 3

1

3

2

Forward

.7

.3

1 2 3

Turn Right

Figure 3.5: Graphical representation of some transitions in Q′.
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Figure 3.6: Left: Solution to Example 3.4.1; Right: Solution to Example 3.4.1

disregarding the extra constraint.

The set of forbidden states is given by:

F =
{

(z, y, θ) ∈ X :(z, y)∈{(2, 2),(2, 3),(3, 2),(3, 3),(8, 8),(8, 9),(9, 8),(9, 9)}
}
,

and consider D =
{

(z, y) ∈ Z× Y : 3 ≤ z, y ≤ 8
}

, and let α = 0.75.

We solve (3.4)-(3.6) using [50]. In Fig. 3.6, each state that belongs in SRF is

shown in blue, where the darker the blue, the higher the value of f ∗X . The image

on the left in Fig. 3.6 shows the solution to Example 3.4.1. The image on the right

shows the solution disregarding the extra constraint. Note that the distribution is

relatively uniform.
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3.4.2 Limiting Behavior with Multiple Recurrent Classes

Consider again f ∗XU and K∗ as before, and, without loss of generality, let XRK∗,F

have two recurrent classes with initial states x1 and x2
(
i.e., Xpsx1,K∗,F ∪ X

ps
x2,K∗,F =

XRK∗,F
)
. For any initial state x0 in Xpsx1,K∗,F

(
equiv., Xpsx2,K∗,F

)
, the following holds

with probability one:

TK∗(x, x0) =
f ∗X(x)

β
, (3.10)

where β=
∑

x∈Xps
x1,K∗,F

f ∗X(x)
(
equiv. β=

∑
x∈Xps

x2,K∗,F
f ∗X(x)

)
.

With equation (3.10) in mind, note that additional convex constraints may

also be used to influence the limiting behavior of the robots. Moreover, by carefully

selecting the number of robots allocated to each recurrent class, one can achieve a

desirable limiting behavior for the ensemble of robots.

3.5 Deployment of a Fixed Number of Robots

The problem we proposed and solved in this chapter is that of finding the

minimum number of robots capable of achieving maximal persistent surveillance. A

natural extension is to tackle the situation when a fixed number of robots (which may

be fewer than the minimum number necessary for maximal persistent surveillance)

is available to undertake the task. The following formalizes the problem:

Problem 3.5.1. Given a set of forbidden states F and a number of available robots
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r̄, determine a control policy K̂ and a set of initial states {x1, ..., xr̄}, so that

r̄⋃
i=1

Xps
xi,K̂,F is largest. (3.11)

Recall that by solving the original optimization program (3.4)- (3.6), we obtain

a control policy K∗ and a set of recurrent states with nK∗ recurrent classes. The

following proposition solves Problem 3.5.1:

Proposition 3.5.2. Without loss of generality, let {x̄1, ..., x̄nK∗} be members of each

recurrent class of the closed loop Markov chain QK∗, such that:

∣∣Xpsx̄1,K∗,F∣∣ ≥ · · · ≥ ∣∣Xpsx̄nK∗ ,K∗,F∣∣ (3.12)

Two situations arise:

i) r̄ ≥ nK∗

In this case the number of available robots is sufficient for maximal persistent

surveillance, with control policy K∗. The additional robots can be distributed at

random amongst the recurrent classes.

ii) r̄ < nK∗

When the number of available robots is not sufficient for maximal persistent

surveillance, choose control policy K∗ and initial states {x̄1, ..., xr̄}.

Proof. Situation i) follows from the main contents of this chapter. It remains to

show that the strategy for situation ii) is optimal. This can be seen by noting that

by solving (3.4)- (3.6) we maximize the entropy of the joint pmf fXU . By Lemma

2.2.2, the pmf that maximizes the entropy, not only has the largest support, but
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also the maximal support. This means that any state-action pair that can be made

recurrent is recurrent in the closed loop Markov chain QK∗ . Therefore the best that

can be done with fewer robots than nK∗ is to deploy them to the largest recurrent

classes.

3.6 Conclusion

In this chapter we have applied the results obtained in Chapter 2 to the prob-

lem of maximal persistent surveillance for robots whose dynamics are governed by

MDPs. We dealt with safety constraints by casting a convex constraint on the in-

variant pmf, which allowed the application of our method. The simple structure of

the resulting controllers makes them implementable in small robots.
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Chapter 4: Sensor Usage in Denied Environments

In this chapter, we study the problem of sensor usage in denied environments,

inside which observations of the state of the system are only available by paying a

price in the cost to be minimized. One can imagine an agent whose goal is to stay

put at a desired location inside the denied environment, but disturbances cause it to

wander away. The agent can only return to the desired location once it observes its

current location. In this scenario, there are two ways the agent accesses its location:

by drifting outside the denied environment, where observations are readily available;

or by paying a price, which can be thought of as a communication cost, to receive

an observation of its location.

It should be clear that the agent may have an incentive to not pay to access its

location with the expectation that it will sooner or later wander outside the denied

environment, at which point it will receive free access to its location and be able

to return to the desired location. On the other hand, recall that the goal of the

agent is to stay put at the desired location and, by waiting until the eventuality

of existing the denied environment, the cost paid by deviating too much from the

desired location may outweigh the cost of using the sensor.

In the literature, efforts in event-based control and estimation aim at estab-
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lishing protocols for which actuating, computing and sensing are undertaken only

when needed, rather than periodically [39–42]. The work in [43], for example, pro-

poses a sporadic control scheme for first order linear systems. In our work, when the

agent exists the denied environment and receives a state observation can be though

as an event-based sensing. The difference is that the event under consideration is a

problem constraint rather than a design parameter, which is generally the case in

the event-based control and estimation literature.

A deceptively similar framework is that of control and estimation over costly

or limited communication channels. These setups occur in the context of networked

systems, where different components of systems are not collocated. The authors of

[44] consider an estimation problem where only a limited number of observations are

available over a finite horizon. The work in [45] proposes an estimation framework

in which a pre-processor decides whether or not to transmit measurements to the

estimator. The most similar problem setup to ours is the one in [46, 47], where the

authors consider an estimation problem in which the system can be reset by paying

a cost, and where the reset policy is a function of the current state of the system.

There are two main features of our work that distinguishes it from the ones

mentioned in the previous paragraph: i) in our work, the decision of whether or

not to use the sensor cannot be a function of the state, which is in general the

case in networked estimation problems; and ii) in our setup, we consider “event-

based”, cost-free sensor usage, which introduces an incentive to not request a costly

observation. To our knowledge, a framework that combines these two characteristics

has not been studied before.
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Our main goal is to understand the trade-off between waiting for a free sensor

use in the future and paying to immediate sensor access. In our problem formulation,

we strip this problem down to the fundamentals: we consider a Markov process that

evolves in time inside of the denied environment. At each time step, the only control

variable is the decision whether or not to reset the process back to its initial state

by paying a price (this represents the task of using the sensor and returning to the

desired location).

We show that the analysis of this problem simplifies by recognizing that the

stochastic process is in fact a renewal process, and our design parameter is the

support of the stopping time associated with the renewal process. Our approach

enables us to establish conditions for which any local minimum, if it exists, is also

global, thus facilitating the search for the minimizer. We provide various numerical

examples to illustrate these results.

Although the treatment and examples we provide focus on Rn, some of the

results in this chapter can be extended to stochastic processes in different spaces,

since the cost we consider rely solely on expectations and the nature of the underlying

process does not play a direct role in the cost. In Chapter 5, for example, we extend

the results of this chapter to Markov chains.

This chapter is organized as follows: in Section 4.1, we formalize the problem

formulation. Section 4.2 recasts the problem using as a renewal process. In Section

4.3, we establish a recursive expression for the cost we wish to minimize. Section 4.4

describes conditions on the problem that facilities the search for the optimal design

parameter. In Section 4.5, we introduce the concept of radial stochastic order, which
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plays an important role in determining if the conditions established in Section 4.4

are satisfied. Sections 4.6 and 4.7 provide numerical examples. Finally, we conclude

in Section 4.8.

4.1 Initial Considerations

Consider a discrete-time Markov process Xk that takes values in Rn and a

subset D of Rn. The process is initialized according to a known distribution that

is symmetric around 0, which we take to be, without loss of generality, the desired

state. At each time step and for as long as the process remains contained in D,

a decision can be made to reset the process back to its initial distribution. This

is called a controlled or an active reset. Every time the process undergoes such

reset, a penalty of ρ is accrued in the cost we wish to minimize, which penalizes the

deviation from 0 in the averaged infinite horizon sense. Whenever the process exits

the set D, however, it undergoes a passive reset where it is reinitialized to the initial

distribution without penalty.

Note that, without paying the price, direct observation of the process is not

available in the set D and the decision of resetting the process can only depend on

the binary observation (and its history) of whether the process has exited the set D.

In other words, a controlled reset depends only on the number of time steps that

have elapsed since the previous reset.

It should be clear that if no penalty is imposed per controlled reset, the optimal

policy would be, in most cases of interest, to perform a reset at every time step. On
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the other hand, if the reset penalty is too high, it may be beneficial to simply wait

out until the process exits the set D and a penalty-free reset takes place. Although

we will explore these situations, the main focus will be on cases that fall in between

these two extremes.

The following notation is used throughout the chapter:

Xk process at time k

Uk control at time k

ρ cost per active reset

E[Y ] expectation of random variable Y

P(A) probability of event A

4.1.1 Problem Formulation

In what follows, we formalize the problem. Recall that Xk, k = 0, 1, ..., is

a Markov process that takes values in Rn. Let Rk, k = 0, 1, ..., be a sequence of

independent identically distributed random variables, whose probability distribution

is symmetric around 0. The denied environment is represented by the set D, which is

also symmetric around 0. If a reset (either active or passive) happens at time k, the

value of the process at time k+ 1 is set to Rk+1. Recall that a passive reset happens

whenever the process exists the set D whereas a controlled reset happens according

to the binary reset variable Uk, which takes the value 1 for a controlled reset and

0 otherwise. Whenever a reset does not happen, the process evolves according to

its own update function f , which may also depend on an auxiliary sequence of

independent random variables.
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Figure 4.1: Diagram of process update rule

Let the process Xk evolve according to the following recursion:

Xk+1
def
=


f(Xk, Nk), Uk = 0 and Xk ∈ D

Rk+1, Uk = 1 or Xk /∈ D
(4.1)

for some real-valued function f and where Nk is an independent identically dis-

tributed sequence of random variables, which can be thought of as the noise in the

system. The block diagram of the recursion rule is given in Fig. 4.1.

As previously discussed, the reset variable Uk cannot depend on the process

value Xk since direct observations of the process are not available. It can, however,

use knowledge of the last time the process exited the set D. Therefore, the reset

variable is determined according to a policy U of the following type:

Uk = U
(
{Ij(Xj /∈ D)}kj=0

)
(4.2)

where U maps the history up to time k of the indicator function Ij of the event

Xj /∈ D to a binary value 0 (wait) or 1 (reset).
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For a given reset penalty ρ in R+, consider the following cost:

GU def
= lim

N→∞

1

N
E

[
N∑
k=1

g(Xk, Uk)

]
, (4.3)

where the reset variable Uk is determined according to the policy U , and the state

cost g is some non-negative real-valued function that has the following structure:

g(x, u) =



ρ u = 1

0 x /∈ D

ḡ(x) otherwise

(4.4)

for some non-negative real-valued function ḡ : Rn → R+.

A stage cost of this type means that when a passive reset occurs (x /∈ D), no

cost is incurred, whereas when a controlled reset takes place (u = 1), a cost of ρ is

incurred. Finally when the stage is reset-free, a cost of ḡ is incurred which depends

only on the value of the process.

We are ready to state the main problem:

Problem 4.1.1. Given the stochastic process and real-valued cost described in (4.1)

and (4.3), a positive reset penalty ρ and a subset set D in Rn, find the optimal reset

policy U∗ as in (4.2) such that:

U∗ = arg min
U
GU (4.5)

4.2 Renewal Process

The first step in solving Problem 4.1.1 is to recognize that the underlining

stochastic process is in fact a renewal process, since it renews when Uk = 1 or when
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Xk exits the set D. With this approach, instead of using the cost in (4.3), we consider

an equivalent cost structure that uses the concept of cycles. The idea is simple: we

rewrite the cost using the expectation of a cycle whose length is a random variable

T , which is known as a stopping time, and function as the inter-arrival time of a

cycle in the context of renewal reward processes. This means we can focus on only

one cycle (of unknown length given by T ) rather than the entirety of the whole

infinite horizon. This is a known result in renewal reward process theory and is

given below:

Lemma 4.2.1. The cost in (4.3) is equivalent to the following cost:

GU =

E
[∑T

k=1 g(Xk, Uk)

]
E[T ]

(4.6)

where the random variable T is the length of the cycle.

Proof. See [70], Theorem 3.6.1

From now on and with some abuse of notation, we will use the time index k to

refer to time steps inside of a cycle rather than those in the complete infinite time

horizon. Therefore whenever the cycle reaches time step k = 4, we can assume a

reset has not happened in k= 0, 1, 2 or 3 (otherwise the cycle would have ended

and a new one begun).

The probability distribution of the cycle length T will depend on the parame-

ters of the process in (4.1) and on the reset policy U , which is our design parameter.

In fact the ability to shape the distribution of T through U is what differs Problem

4.1.1 from a standard renewal process problem.
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It should now be clear that the reset policy U can only depend on how many

time steps have elapsed without a reset having occurred. Moreover, any reset policy

of interest can be parameterized by a single positive integer i, namely the number

of time steps to wait without a passive reset having occurred before triggering a

controlled reset. In other words, the reset policy parameterized by i at (cycle) time

k is given by:

Ui
(
{Ij(Xj /∈ D)}kj=0

)
=


1, k = i and

∑k
j=0 Ij(Xj /∈ D) = 0

0, otherwise

(4.7)

In light of this discussion, we can reparameterize the cost in terms of i, as

follows:

Gi =

E
[∑Ti

k=1 g(Xk, Uk)

]
E[Ti]

(4.8)

where Uk is determined according to the policy Ui in (4.7), and Ti is the appropriate

stopping time for Xk under policy Ui.

We are now ready to state an equivalent problem to Problem 4.1.1:

Problem 4.2.2. Given the stochastic process and real-valued cost described in (4.1)

and (4.8), a positive reset penalty ρ and a subset D in Rn, find the optimal reset

parameter i∗, such that:

i∗ = arg min
i
Gi (4.9)

56



4.3 The Recursive Expression of Gi

The main challenge in finding the optimal reset parameter lies in computing

the expectations in Gi, which in general require heavy computational effort, even

for simple one dimensional cases with additive noise. It is therefore beneficial to

explore the behavior of Gi as a function of the reset cost ρ and establish properties

that can be exploited in the search for the optimal reset parameter. The goal of this

section is to develop a recursive expression for G. We begin by defining the following

probabilities:

pj
def
= P

(
Xj−1

1 ∈ D, Xj /∈ D
)
, (4.10)

qj
def
= P

(
Xj

1 ∈ D
)
. (4.11)

where Xj−1
1 ∈ D is short-hand notation for the event: X1 ∈ D, X2 ∈ D, ..., Xj−1 ∈ D.

Note that pj is the probability that the process exists the set D at time j

but not before, while qj is the probability that the process remains in D up to and

including time j. These probabilities make up the probability mass function of the

cycle length Ti associated with reset policy Ui, which we can now define as follows:

Ti =


j Xj−1

1 ∈ D, Xj /∈ D

i X i
1 ∈ D

(4.12)

Accordingly, the probability mass function of Ti is:

P(Ti = j) =


pj j < i

pi + qi j = i.

(4.13)
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The next major step is to construct a straightforward but very useful recursion

of Gi, but before doing so it is important to establish two useful relationships.

Lemma 4.3.1. The following holds:

i) qi = pi+1 + qi+1,

ii) E
[
Ti+1

]
= E

[
Ti
]

+ qi, where E
[
T1] = 1.

Proof. Item i follows from the law of total probability. For item ii, note the follow-

ing:

E[Ti+1]
def
=

i∑
j=1

jpj + (i+ 1)(pi+1 + qi+1)

=
i∑

j=1

jpj + (i+ 1)qi (Lemma 4.3.1, item i)

=
i∑

j=1

jpj + iqi + qi

=
i−1∑
j=1

jpj + i(pi + qi) + qi

= E[Ti] + qi

The next lemma provides a recursive method to compute Gi.

Lemma 4.3.2. The cost function Gi in (4.8) can be computed recursively as follows:

Gi+1 =
ti
ti+1

Gi +
1

ti+1

{
ηiqi − ρpi+1

}
(4.14)

where ti
def
= E[Ti], ηi

def
= E

[
ḡ(Xi)

∣∣ X i
1 ∈ D

]
and G1 = ρq1.
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The usefulness of this lemma is two-fold. First it provides a much more efficient

way of computing Gi for all i than the original form. The recursive expression

relies on the computation of two difficult-to-compute parameters (for each i): the

probabilities qi’s (from which one can compute the probabilities pi’s by applying

Lemma 4.3.1, item i); and the expectations ηi = E
[
ḡ(Xi)

∣∣ X i
1 ∈ D

]
. Second, it

makes explicit the dependence of the evolution of Gi on the reset penalty ρ, which

will be of great importance in the next section when we establish the main result of

the chapter.

We proceed by proving the lemma:

Proof of Lemma 4.3.2. Recall that the cost Gi in (4.8) is given by:

Gi =

E
[∑Ti

k=1 g(Xk, Uk)

]
E[Ti]

,

and let vi
def
= E

[∑Ti
k=1 g(Xk, Uk)

]
, so that the cost can written as:

Gi =
vi
ti
. (4.15)

The expression for each vi can be expanded by conditioning on all the events

that would trigger a reset:

vi =
i∑

j=1

E

[
Ti∑
k=1

g(Xk, Uk)
∣∣∣ Xj−1

1 ∈ D, Xj /∈ D
]
pj + E

[
Ti∑
k=1

g(Xk, Uk)
∣∣∣ Xj

1 ∈ D
]
qi

(4.16)

=
i∑

j=1

E

[
j−1∑
k=1

ḡ(Xk)
∣∣∣ Xj−1

1 ∈ D, Xj /∈ D
]
pj + E

[
i−1∑
k=1

ḡ(Xk) + ρ
∣∣∣ X i

1 ∈ D
]
qi

(4.17)
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where the first term is obtained by noticing that for each j a penalty-free reset takes

place at time j and a cost of ḡ is incurred up until time j−1 (since g(x, u) = 0 when

x /∈ D). The second term represents the only instance a controlled reset happens

under policy Ui and a penalty of ρ is incurred (along with the stage costs ḡ until

time i− 1).

For simplicity of notation, we define:

hpj
def
= E

[
j−1∑
k=1

ḡ(Xk)
∣∣∣ Xj−1

1 ∈ D, Xj /∈ D
]
, and (4.18)

hci
def
= E

[
i−1∑
k=1

ḡ(Xk)
∣∣∣ X i

1 ∈ D
]
, (4.19)

where hpj is the expectation of sum of the stage costs conditioned on the event

that a passive reset happens at time j and hci is the expectation conditioned on a

controlled reset (at time i), without accounting for the reset penalty ρ. Therefore

the expression for vi can be written as follows:

vi =
i∑

j=1

hpjpj + hciqi + ρqi. (4.20)

We proceed by taking the difference Gi+1 − Gi:

Gi+1 − Gi =
vi+1

ti+1

− vi
ti

=
1

ti+1ti

{
vi+1ti − viti+1

}
=

1

ti+1ti

{
vi+1ti − vi(ti + qi)

}
=

1

ti+1ti

{
(vi+1 − vi)ti − viqi)

}
(4.21)
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The difference vi+1 − vi can be simplified as follows:

vi+1 − vi =
i+1∑
j=1

hpjpj + hci+1qi+1 + ρqi+1 −
( i∑
j=1

hpjpj + hciqi + ρqi

)
= hpi+1pi+1 + hci+1qi+1 + ρqi+1 − hciqi − ρqi

= hpi+1pi+1 + hci+1qi+1 − hciqi + ρ(qi+1 − qi)

= hpi+1pi+1 + hci+1qi+1 − hciqi − ρpi+1 (Lemma 4.3.1, item i)

= hpi+1P(Xi+1 /∈ D | X i
1 ∈ D)qi + hci+1P(Xi+1 ∈ D | X i

1 ∈ D)qi

− hciqi − ρpi+1 (Baye’s rule)

=
(
hpi+1P(Xi+1 /∈ D | X i

1 ∈ D) + hci+1P(Xi+1 ∈ D | X i
1 ∈ D)

)
qi

− hciqi − ρpi+1

The term in parenthesis can be further reduced as follows:

hpi+1P(Xi+1 /∈ D | X i
1 ∈ D) + hci+1P(Xi+1 ∈ D | X i

1 ∈ D) =

= E

[
i∑

k=1

ḡ(Xk)
∣∣∣ X i

1 ∈ D, Xi+1 /∈ D
]
P(Xi+1 /∈ D | X i

1 ∈ D)+

E

[
i∑

k=1

ḡ(Xk)
∣∣∣ X i+1

1 ∈ D
]
P(Xi+1 ∈ D | X i

1 ∈ D) =

= E

[
i∑

k=1

ḡ(Xk)
∣∣∣ X i

1 ∈ D
]

where the last step is found by the law of total expectation. Therefore vi+1 − vi

equals:

vi+1 − vi = E

[
i∑

k=1

ḡ(Xk)
∣∣∣ X i

1 ∈ D
]
qi − hciqi − ρpi+1

=

(
E

[
i∑

k=1

ḡ(Xk)
∣∣∣ X i

1 ∈ D
]
− E

[
i−1∑
k=1

ḡ(Xk)
∣∣∣ X i

1 ∈ D
])

qi − ρpi+1

= E
[
ḡ(Xi)

∣∣∣ X i
1 ∈ D

]
qi − ρpi+1.
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Define ηi
def
= E

[
ḡ(Xi)

∣∣ X i
1 ∈ D

]
and we reach the simplest expression for

vi+1 − vi:

vi+1 − vi = ηiqi − ρpi+1,

Continuing from Eq. (4.21) we have:

Gi+1 − Gi =
1

ti+1ti

{
(ηiqi − ρpi+1)ti − viqi)

}
=

1

ti+1

{
(ηiqi − ρpi+1)− vi

ti
qi)
}

=
1

ti+1

{
(ηiqi − ρpi+1)− Giqi)

}
(4.22)

Finally, rearranging terms we arrive at the desired recursive expression:

Gi+1 = Gi +
1

ti+1

{
(ηiqi − ρpi+1)− Giqi)

}
=

1

ti+1

{
Giti+1 − Giqi)

}
+

1

ti+1

{
ηiqi − ρpi+1

}
=

1

ti+1

{
Gi(ti+1 − qi)

}
+

1

ti+1

{
ηiqi − ρpi+1

}
=

1

ti+1

{
Giti
}

+
1

ti+1

{
ηiqi − ρpi+1

}
(Lemma 4.3.1, item ii)

=
ti
ti+1

Gi +
1

ti+1

{
ηiqi − ρpi+1

}

4.4 Finding the Optimal Reset Parameter

The search for the optimal reset parameter is theoretically simple since Gi maps

the natural numbers to the real line. However, computing the values of Gi, even

with the aide of the recursive expression found in Lemma 4.3.2, is computationally
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daunting. Therefore, it is desirable to investigate properties of Gi and to establish

conditions that provide guarantees relating to the optimal reset parameter. In this

section, we establish sufficient conditions that guarantees that if a local minimizer

exists it is global. In situations like this, the optimal reset parameter can be found,

as we will discuss later, by recursively computing Gi and comparing it with the

previous value.

Theorem 4.4.1. Consider Problem 5.1.3 with stage cost ḡ and reset penalty ρ.

Define the function function r : Rn → R where:

r(x)
def
= ḡ(x)− ρP(f(x,N) /∈ D) (4.23)

where N is a random variable with the same distribution as Ni’s used in Eq. (4.1).

Further suppose that:

E
[
r(Xi) | X i

1 ∈ D
]
≤ E

[
r(Xi+1) | X i+1

1 ∈ D
]

(4.24)

for all i.

The following holds: if there exists a parameter i such that Gi ≥ Gi−1, then

Gj ≥ Gj−1 for all j > i

Theorem 4.4.1 states that, under certain conditions, once the function Gi starts

increasing it always increases from then on. We proceed with the proof of the

theorem.

Proof of Theorem 4.4.1. Recall from Eq. (4.22) the expression for the difference

Gi+1 − Gi used in the proof of Lemma 4.3.2:

Gi+1 − Gi =
1

ti+1

{
(ηiqi − ρpi+1)− Giqi)

}
(4.25)
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By assumption, there exists a reset parameter i and an ε ≥ 0 such that Gi −

Gi−1 = ε, thus we have:

1

ti

{
ηi−1qi−1 − ρpi − Gi−1qi−1)

}
= ε

ηi−1qi−1 − ρpi − Gi−1qi−1 = tiε

ηi−1 −
pi
qi−1

ρ− Gi−1 =
ti
qi−1

ε (4.26)

Assume by contradiction that there exists a δ > 0 such that Gi+1 − Gi = −δ and

therefore:

1

ti+1

{
ηiqi − ρpi+1 − Giqi

}
= −δ

ηiqi − ρpi+1 − Giqi = −ti+1δ

ηi −
pi+1

qi
ρ− Gi = −ti+1

qi
δ (4.27)

Subtracting Eq. (4.27) from Eq. (4.26):

ηi−1 −
pi
qi−1

ρ− Gi−1 −
(
ηi −

pi+1

qi
ρ− Gi

)
=

ti
qi−1

ε−
(
− ti+1

qi
δ
)

(
ηi−1 −

pi
qi−1

ρ
)
−
(
ηi −

pi+1

qi
ρ
)
− Gi−1 + Gi =

ti
qi−1

ε+
ti+1

qi
δ(

ηi−1 −
pi
qi−1

ρ
)
−
(
ηi −

pi+1

qi
ρ
)

= Gi−1 − Gi +
ti
qi−1

ε+
ti+1

qi
δ(

ηi−1 −
pi
qi−1

ρ
)
−
(
ηi −

pi+1

qi
ρ
)

= −ε+
ti
qi−1

ε+
ti+1

qi
δ(

ηi−1 −
pi
qi−1

ρ
)
−
(
ηi −

pi+1

qi
ρ
)

=
ti − qi−1

qi−1

ε+
ti+1

qi
δ(

ηi−1 −
pi
qi−1

ρ
)
−
(
ηi −

pi+1

qi
ρ
)

=
ti−1

qi−1

ε+
ti+1

qi
δ

Since both terms in the right hand side of the last expression are assumed to be
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positive, we conclude that:

(
ηi −

pi+1

qi
ρ
)
<
(
ηi−1 −

pi
qi−1

ρ
)
, (4.28)

Next, we note that:

pi+1

qi
=
P
(
X i

1 ∈ D, Xi+1 /∈ D
)

P
(
X i

1 ∈ D
) ,

= P
(
Xi+1 /∈ D

∣∣ X i
1 ∈ D

)
,

and therefore:

ηi −
pi+1

qi
ρ = E

[
ḡ(Xi)

∣∣ X i
1 ∈ D

]
− ρP

(
Xi+1 /∈ D

∣∣ X i
1 ∈ D

)
= E

[
ḡ(Xi)− ρI(Xi+1 /∈ D)

∣∣ X i
1 ∈ D

]
= E

[
ḡ(Xi)− ρI(f(Xi, Ni) /∈ D)

∣∣ X i
1 ∈ D

]
= EXi|Xi

1∈D

[
E
[
ḡ(Xi)− ρI(f(Xi, Ni) /∈ D)

∣∣ X i
1 ∈ D, Xi

]]
= EXi|Xi

1∈D

[
E
[
ḡ(Xi)− ρI(f(Xi, Ni) /∈ D)

∣∣ Xi

]]
= EXi|Xi

1∈D

[
ḡ(Xi)− ρP(f(Xi, Ni) /∈ D)

]
Define the function r(x)

def
= ḡ(x)− ρP(f(x,N) /∈ D). The inequality in (4.28)

becomes:

EXi|Xi
1∈D

[
r(Xi)

]
< EXi−1|Xi−1

1 ∈D

[
r(Xi−1)

]
which is a contradiction, by the assumption in (4.24).

The same method can be recursively applied to show that Gj ≥ Gj−1 for all

j > i.
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A direct result of Theorem 4.4.1 related to the optimal parameter is the fol-

lowing:

Corollary 4.4.2. Under the same conditions of Theorem 4.4.1, if a local minimum

exists it is global.

Proof. Follows directly from Theorem 4.4.1

The optimal reset parameter can be found using the scheme described in

Fig.4.2.

false

G1 = ⇢q1

i = 1

i = i + 1

Compute Gi+1

Gi+1 > Gi

i⇤ = i

true

Figure 4.2: Finding the optimal reset parameter

It is also useful to establish properties concerning cases when the optimal

strategy is to always perform controlled-reset:

Corollary 4.4.3. Consider the same conditions as in Theorem 4.4.1, and suppose
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the reset penalty ρ satisfies the following condition:

ρ ≤ q1η1

p2 + q2
1

(4.29)

The following holds: the policy to always reset is optimal, i.e. i∗ = 1.

Proof. We proceed by showing that if ρ satisfies inequality (4.29), then it must be

that G2 − G1 ≥ 0 and, by Theorem 4.4.1, Gi+1 − Gi ≥ 0 for all i. From inequality

(4.29), we get:

q1η1 ≥ (p2 + q2
1)ρ

q1η1 ≥ p2ρ+ q1G1

q1η1 − p2ρ− q1G1 ≥ 0

1

t2

{
q1η1 − p2ρ− q1G1

}
≥ 0

G2 − G1 ≥ 0

where the last line follows from Eq. (4.22), and the result follows.

4.5 Radial Stochastic Order

Recall condition (4.24) in Theorem 4.4.1, repeated below for convenience:

E
[
r(Xi) | X i

1 ∈ D
]
≤ E

[
r(Xi+1) | X i+1

1 ∈ D
]

for all i.

Checking if this condition is satisfied for a set of problem parameters may

be difficult or even impractical. Therefore it is important to establish easy-to-

check conditions for which the inequality in (4.24) holds for all i. One approach to
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accomplish this is to establish a stochastic order of the conditional process {Xi|X i
1 ∈

D}.

Stochastic orders are partial orders and come in many different flavors. At their

essence, they provide a way to compare random variables or analyze the evolution of

stochastic processes. For example, by the usual stochastic order in R, the random

variable X is less than the random variable Y if P(X < τ) ≥ P(Y < τ) for all τ ,

and when this holds, E[l(X)] ≤ E[l(Y )] for all nondecreasing functions l : R→ R.

While the concept of the usual stochastic order in R is straightforward, their

vector counterparts face many challenges, especially in regards to the expectation

property for nondecreasing functions, which is crucial for our purposes. Therefore,

from now on we restrict ourselves to the class of problems with radial symmetry

where the denied set D in Rn is given by:

D = {x ∈ Rn | ‖x‖ < w} (4.30)

where ‖ · ‖ represents the Euclidean norm in Rn.

Definiton 4.5.1. A stochastic process Xk in Rn is said to be increasing in the radial

stochastic order, written Xk ≤r Xk+1, if

∫
‖x‖≤t

fXk(x)dx ≥
∫
‖x‖≤t

fXk+1
(x)dx (4.31)

for all k ≥ 1 and all t in R+; where fXk is the joint probability density function

(pdf) of the process at time k.

In other words, if Xk ≤r Xk+1 for all k, the probability of Xk being within

any radius t of the origin does not increase. A very useful result in the study of
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stochastic orders refers to the expectation of nondecreasing functions. Here we focus

on functions that are radially nondecreasing, which we define next.

Definiton 4.5.2. A function l : Rn → R is radially nondecreasing function when,

for all x and y with ||x|| ≤ ||y||, the following holds:

l(x) ≤ l(y) (4.32)

Lemma 4.5.3. Suppose Yk is a vector stochastic process in Rn with increasing

stochastic order, and let l : Rn → R be a radially nondecreasing function. The

following holds:

E[l(Yk+1)] ≥ E[l(Yk)] (4.33)

for all i.

Proof. The proof is straigthfoward by defining a new stochastic process Zk where

Zk = ||Yk|| and a function l̃ : R+ → R where: l̃(z)
def
= l(y) for any y such that

||y|| = z. Clearly, Zk has increasing usual stochastic order and l̃ is nondecreasing,

and the result follows by Theorem 1.2.8 in [71].

Corollary 4.5.4. Condition (4.24) in Theorem 4.4.1 is satisfied for all i if the

following holds:

• The conditioned process Xk given that Xk
1 ∈ D has increasing stochastic order.

• The function r : Rn → R where:

r(x)
def
= ḡ(x)− ρP(f(x,N) /∈ D) (4.34)

is radially nondecreasing.

Proof. Follows from Lemma 4.5.3.
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4.6 Concrete Cases: the Real Line

To illustrate the results of this chapter, we analyze a case with a real-valued

stochastic process with additive noise. The denied set is given by:

D = {x ∈ R : − w ≤ x ≤ w} (4.35)

for some w in R+.

The stage cost is given by ḡ(x) = x2, and the process has the following update

rule:

Xk+1 =


Xk +Nk, Uk = 0 and Xk ∈ D

Rk , Uk = 1 or Xk /∈ D
(4.36)

where Rk and Nk are two independent sequences of independent and identically

distributed random variables

4.6.1 Uniform noise

Suppose Rk and Nk are uniform with support in [−a, a], for some a in R+.

The purpose of this example is to illustrate that depending on the value of a when

compared to w, the process Xk conditioned on the event Xk
1 ∈ D may not satisfy

the stochastic ordering condition of Theorem 4.4.1. For example, suppose a and w

are such that w/2 < a ≤ w. The probability density function of X1 given X1 ∈ D is

simply the uniform density since a ≤ w. The density function of X2 given X2
1 ∈ D
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is given below:

fX2|X2
1∈D(x) =



x+2a
w(4a−w)

−w ≤ x ≤ 0

−x+2a
w(4a−w)

0 ≤ x ≤ w

0 otherwise

(4.37)

The plots of the density functions in question can be seen in Fig. 4.3.

w a wa0
x

fX2|X2
12D(x)

fX1|X12D(x)

⌧⌧

area = c

Figure 4.3: Example where the stochastic ordering condition in Theorem 4.4.1 is

not satisfied.

It is immediate that:

2a

w(4a− w)
= fX2|X2

1∈D(0) > fX1|X1∈D(0) =
1

2a
(4.38)

for all values of a and w that satisfy w
2
< a ≤ w, and therefore there exists some τ

such that:

P(−τ ≤ X1 ≤ τ | X1 ∈ D) < P(−τ ≤ X2 ≤ τ | X2
1 ∈ D), (4.39)

One example of such τ is depicted in Fig. 4.3, for which:

P(−τ ≤ X2 ≤ τ | X2
1 ∈ D)− P(−τ ≤ X1 ≤ τ | X1 ∈ D) = c > 0. (4.40)
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for some positive c highlighted in Fig. 4.3.

Therefore X1|X1 ∈ D >st X2|X2
1 ∈ D and Theorem 4.4.1 cannot be applied.

With the aid of numerical computation, it can be shown that the stochastic

ordering condition of Theorem 4.4.1 is satisfied whenever:

a ≤ w

2
(4.41)

Due to the nature of convolutions that involve the uniform density, it is tedious

to demonstrate this analytically, though it could be done by showing that, when

the condition (4.41) is satisfied, the pdfs of two consecutive (conditioned) random

variable cross only once in the interval [0, w].

The constraint that a ≤ w/2 is in fact a realistic one, since in most cases of

interest the event that the agent leaves the set D in one time step has very low (or

zero) probability.

Suppose therefore that a ≤ w/2 and therefore the stochastic ordering condition

of Theorem 4.4.1 is satisfied. In order to satisfy the second condition of the theorem,

consider a uniform random variable N with support in [−a, a] and the function:

r(x) = x2 − ρP(|x+N | > w) (4.42)

The second term in r is given by:

P
(
|x+N | > w

)
=


0 0 ≤ x < w − a

1
2a
x− w−a

2a
w − a ≤ x ≤ w,

(4.43)
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and therefore:

r(x) =


x2 0 ≤ x < w − a

x2 − ρ
2a
x+ ρ(w−a)

2a
w − a ≤ x ≤ w

(4.44)

Clearly, r is increasing in [0, w − a] . To guarantee that r is nondecreasing in

the entire interval, the derivative of r(x) must be nonnegative in said interval, and

therefore ρ needs to satisfy:

2x− ρ

2a
≥ 0

2x ≥ ρ

2a

ρ ≤ 4xa

for all x. This will hold in the interval [w − a, w] when:

ρ ≤ 4a(w − a). (4.45)

Moreover, from Corollary 4.4.3 we know that an optimal policy is to always

reset (that is, i∗ = 1 when the reset penalty satisfies:

ρ ≤ a2

3
. (4.46)

Example 4.6.1. Consider the denied set D given in (4.35) where w = 10, that is:

D = {x ∈ R : − 10 ≤ x ≤ 10}

The process is updated according to (4.36) where the noise and reset variables are

uniform with support in [−3, 3] (that is, a = 3). Finally, ḡ(x) = x2.
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Figure 4.4: Conditioned pdfs for Example 4.6.1

We begin by checking the stochastic ordering condition of Theorem 4.4.1.

Fig. 4.4 shows the evolution of the first seven conditioned pdfs of interest, where it

can be checked by inspection that the stochastic order condition is satisfied.

The next step is to consider the values of ρ for which the function r given in

(4.44) is nondecreasing. By the inequality in (4.45), ρ must be less than or equal

to 84. Fig. 4.5 shows the plots of the function r for three values of ρ: 70, 84, and

100. As expected when ρ = 100, the function does not satisfy the nondecreasing

condition.

Finally, Fig. 4.6 shows the cost Gi for four values of ρ for which the function

r satisfies the nondecreasing requirement. As expected, when ρ = 2 ≤ 3 = a2/3 the

optimal reset parameter is i∗ = 1.

74



-10 -5 0 5 10
x

0

10

20

30

40

50

60
r(x
)

;  = 70

-10 -5 0 5 10
x

0

10

20

30

40

50

60

;  = 84

-10 -5 0 5 10
x

0

10

20

30

40

50

60

;  = 100

Figure 4.5: Plots of r in Example 4.6.1 for three different values of ρ: 70, 84, and

100. As expected when ρ = 100, the function does not satisfy the nondecreasing

condition.
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Figure 4.6: Gi in Example 4.6.1 for four different values of ρ: 2, 25, 60, and 80.

75



4.6.2 Gaussian Noise

Recall from the beginning of the this section that we have a denied set D on

the real line given by D = {x ∈ R : − w ≤ x ≤ w} for some w in R+, that the

stage cost is given by ḡ(x) = x2, and the process has the following update rule:

Xk+1 =


Xk +Nk, Uk = 0 and Xk ∈ D

Rk , Uk = 1 or Xk /∈ D.

In this subsection, Rk and Nk are two independent sequences of independent

and identically distributed Gaussian random variables with zero mean and variance

σ2.

What distinguishes the Gaussian from the uniform case is that the conditional

pdfs of interest will always satisfy the stochastic ordering condition for any combi-

nation of w and σ. As with the uniform case, this is difficult to show analytically,

but has been verified numerically.

With regards to the function r, we can calculate the following probability:

P
(
|N + x| > w

)
= 1 +

1

2

[
erf

(−w − x
σ
√

2

)
− erf

(
w − x
σ
√

2

)]
, (4.47)

and write the r as follows:

r(x) = x2 − ρ
{

1 +
1

2

[
erf

(−w − x
σ
√

2

)
− erf

(
w − x
σ
√

2

)]}

The first derivative of r is given by:

r′(x) = 2x− ρ√
2πσ

[
− e

−(w+x)2

2σ2 + e
−(w−x)2

2σ2

]

76



Therefore, the function r is nonnegative in [0, w] for values of ρ that satisfy

the following for all values of x in [0, w]:

ρ ≤ 2
√

2πσx

[
− e

−(w+x)2

2σ2 + e
−(w−x)2

2σ2

]−1

Therefore:

ρ ≤ min
0≤x≤w

2
√

2πσx

[
− e

−(w+x)2

2σ2 + e
−(w−x)2

2σ2

]−1

(4.48)

Example 4.6.2. Consider the denied set D given in (4.35) where w = 10, that is:

D = {x ∈ R : − 10 ≤ x ≤ 10}

The process is updated according to (4.36) where the noise and reset variables are

Gaussian with mean zero and variance 4 (that is, σ = 2).

We proceed by checking the conditional pdfs of interest, which can be seen in

Fig. 4.7.

Next, solving the right hand side of (4.48) we find that ρ must be less than

98.1955 so that the associated function r is nondecreasing in [0, w]. The plots of r

for different values of ρ can be seen in Fig. 4.8.

Finally, Fig. 4.9 shows the cost Gi for four values of ρ for which the function r

satisfies the nondecreasing requirement. As expected, when ρ = 3.9 ≤ 3.9984 = q1η1
p2+q21

,

the optimal reset parameter is i∗ = 1 (by Corollary 4.4.3).
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Figure 4.7: Evolution of conditioned pdfs for Example 4.6.2.
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Figure 4.8: Plots of r in Example 4.6.2 for four different values of ρ: 80, 95, 98.1955,

and 110. As expected when ρ = 110, the function does not satisfy the nondecreasing

condition.
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Figure 4.9: Gi in Example 4.6.2 for four different values of ρ: 3.9, 25, 50, and 77.
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4.7 Concrete Cases: the Real Plane

To conclude this chapter, we show an example with a stochastic process with

additive Gaussian noise in R2.

Example 4.7.1. Consider the denied set given by:

D = {(x, y) ∈ R2 : ||(x, y)|| ≤ 10} (4.49)

The reset penalty is 50 and state cost is given by ḡ(x, y) = x2 + y2 so that the

overall stage cost is:

g(x, y, u) =



50 u = 1

0 x /∈ D

x2 + y2 otherwise

(4.50)

The process is given by Zk in R2 and has the following update rule:

Zk+1 =


Zk +Nk, Uk = 0 and Zk ∈ D

Rk , Uk = 1 or Zk /∈ D.

where Rk and Nk are two independent sequences of independent and identically dis-

tributed Gaussian random vectors with mean zero and variance Σ, where:

Σ = 4

 1 0

0 1

 (4.51)

Fig. 4.10 shows the evolution of the pdf of Zk|Zk
1 ∈ D. A cross-section of the

pdfs can be seen in Fig. 4.11. As expected, the radial stochastic order is increasing.
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the contour plots.
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The cross-section of the function r for different values of ρ can be seen in Fig.

4.12. The figure shows that for ρ = 50, the function is radially increasing. The

optimal reset parameter was found to be i∗ = 4, as can be seen in the plot of Gi in

Fig.4.13.
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Figure 4.12: Cross-section of the function r(x, y) for diferent values of ρ.
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Figure 4.13: Gi for Example 4.7.1

Four sample paths are shown in Fig. 4.14 for four different reset parameters:

2, 4, 6 and “never” (i =∞). Below each sample path, we plot the associated running

cost given by:

Ḡi(k) =
1

k

k∑
j=1

g(xj, yj, uj) (4.52)
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Ḡ6

(c) i = 6

-15 -10 -5 0 5 10 15
-15

-10

-5

0

5

10

15

100 200 300 400 500 600 700
0

5

10

15

20

25

30

35

40

x

y

Cost

k

G4 = 23.4502

Sample Path

Ḡ1
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Figure 4.14: Sample paths for Example 4.7.1. The red circles represent passive

resets while the blue circles represent controlled resets.
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4.8 Conclusion

In this chapter we proposed a problem of optimal sensor usage in denied en-

vironments. We used the framework of renewal reward processes to establish a

recursive expression for the cost we wished to minimize, and established conditions

in Theorem 4.4.1 under which any local minimum, if it exists, is also global. We

showed that when an auxiliary process has increasing radial stochastic order, the

conditions for which Theorem 4.4.1 holds simplifiy to checking if a certain function

is radially increasing. We illustrated the results with concrete scalar and vector

examples.
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Chapter 5: Sensor Usage in Denied Enviroments: Markov Chains

In this chapter, we adapt the theory developed in Chapter 4 for the case

when the state space is discrete and the state update is ruled by a Markov chain.

Specifically, we focus on chains whose state space is indexed by integers, and at each

time step the chain can stay at its current state, or move, with equal probability, to

a neighboring state.

This approach overcomes a difficulty present in the previous chapter: checking

whether the process Xk|Xk
1 ∈ D ha increasing radial stochastic order. In Chapter

4, this task involved computing an integral for all radiuses inside the denied envi-

ronment D, whereas here, as we will show, the task simplifies to computing finitely

many dot products. Moreover, by eigen-decomposing a submatrix of the probability

transition matrix of the Markov chain, we aim at better understanding the evolution

of the conditioned probability mass function (pmf) of Xk|Xk
1 ∈ D, which is essential

to establishing the radial stochastic order of the process.

The main focus of this chapter is to establish conditions on the initial pmf of

the Markov chain that guarantee that the radial stochastic order of Xk|Xk
1 ∈ D is

increasing for all time steps so that previous results, such as Theorem 4.4.1, can be

applied. The results of Chapter 4, which can be easily adapted to Markov chains,
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are reproduced in this chapter (with appropriate modifications) for completeness,

but their proofs are omitted since they are nearly identical to those found in Chapter

4.

The chapter is organized as follows: Section 5.1 provides the problem formula-

tion. In Section 5.1, we reformulate the problem as a renewal process and, in Section

5.2, we provide results from Chapter 4 adapted to Markov chains. The main results

of this chapter can be found in Section 5.3, where we characterize initial pmfs that

guarantee increasing radial stochastic order of the conditioned process. Finally, we

conclude with final remarks in Section 5.4.

5.1 Problem Formulation

In this chapter, we adopt most of the notation used in Chapter 4. In addition,

we reserve bold-face small-case letters, such as v for vectors, and bold-face upper-

case letters, such as P , for matrices.

Consider a Markov chain whose state at time k is given by Xk in Z, and whose

transition probabilities are given by:

P
(
Xk+1 = x

∣∣ Xk = x
)

= α (5.1)

P
(
Xk+1 = x+ 1

∣∣ Xk = x
)

= β (5.2)

P
(
Xk+1 = x− 1

∣∣ Xk = x
)

= β (5.3)

for some α and β in [0, 1] such that α ≥ 2β and α + 2β = 1.
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The denied set D is a subset of Z that is symmetric around 0 and is given by:

D = {−n, ..., 0, ...n} (5.4)

for some positive integer n. The transition diagram of the Markov chain and the

denied set D are depicted in Fig. 5.1

0 1 n1n

↵

� � ��� � � �

↵↵ ↵↵

set D

Figure 5.1: Diagram of Markov chain

The chain is initialized to some intial pmf f̃1 that is symmetric around 0, such

that

P(X1 = x) = f̃1(x) (5.5)

for all x in Z.

Once the chain in initialized, it evolves according to the transition probabilities

described in (5.1) - (5.3), until it undergoes a reset. When a reset happens, the chain

is reinitialized to the same initial pmf f̃1. There are two distinct situations when a

reset takes place: i) when the reset variable Uk is set to one (active or controlled

reset); and ii) when the chain leaves the denied set D (passive reset).

One can think of an active reset as an agent’s decision to pay a price ρ to use an

expensive sensor and observe its location, enabling the agent to return to its initial

position (represented by the initial pmf f̃1). Similarly, a passive reset happens when
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the agent wanders outside the denied set D, where state observations are readily

available (and free). The agent can therefore return to its original location without

paying for sensor usage.

The reset variable Uk cannot depend on state of the chain Xk since direct

observations of the process are not available in D. It can, however, use knowledge

of the last time the chain exited the denied set. Therefore, the reset variable is

determined according to a policy U of the following type:

Uk = U
(
{Ij(Xj /∈ D)}kj=0

)
(5.6)

where U maps the history up to time k of the indicator function Ij of the event

Xj /∈ D to a binary value 0 (wait) or 1 (reset).

For a given reset price ρ in R+, consider the following cost:

GU def
= lim

N→∞

1

N
E

[
N∑
k=1

g(Xk, Uk)

]
, (5.7)

where the reset variable Uk is determined according to the policy U , and the state

cost g is some non-negative real-valued function that has the following structure:

g(x, u) =



0 x /∈ D

ρ u = 1

ḡ(x) otherwise

(5.8)

for some non-negative real-valued function ḡ : Z→ R+.

A stage cost of this type means that when a passive reset occurs (x /∈ D), no

cost is incurred, whereas when a controlled reset takes place (u = 1), a cost of ρ is
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incurred. Finally when the stage is reset-free, a cost of ḡ is incurred which depends

only on the current state of the Markov chain.

We are ready to state the main problem:

Problem 5.1.1. Given the Markov chain described in (5.1) and real-valued cost

described in (5.7), a positive reset penalty ρ and set D as in (5.4), find an optimal

reset policy U∗ as in (5.6) such that:

U∗ = arg min
U
GU (5.9)

5.1.1 The Renewal Process Formulation

As we did in Chapter 4, the first step in solving Problem 5.1.1 is to recognize

that the underlining stochastic process is in fact a renewal process, since it renews

when Uk = 1 or when Xk exits the set D. With this approach, instead of using the

cost in (5.7), we consider an equivalent cost structure that uses the concept of cycles.

The idea is simple: we rewrite the cost using the expectation of a cycle whose length

is a random variable T , which is known as a stopping time. This means we can focus

on only one cycle (of random length T ) rather than on whole infinite horizon. This

is a known result in renewal process theory and is given below:

Lemma 5.1.2. The cost in (5.7) is equivalent to the following cost:

GU =

E
[∑T

k=1 g(Xk, Uk)

]
E[T ]

(5.10)

where the random variable T is the length of the cycle.

Proof. See [70], Theorem 3.6.1
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From now on and with some abuse of notation, we will use the time index k to

refer to time steps inside of a cycle rather than those in the complete infinite time

horizon. Therefore whenever the cycle reaches time step k = 4, we can assume that

a reset has not happened in k = 0, 1, 2 or 3 (otherwise the cycle would have ended

and a new one begun).

Furthermore, we can now consider an equivalent Markov chain with a finite

state space, whose transition probabilities are given in Fig. 5.2 and below:

P
(
Xk+1 = x

∣∣ Xk = x
)

= α, x ∈ D (5.11)

P
(
Xk+1 = x+ 1

∣∣ Xk = x
)

= β, x ∈ D (5.12)

P
(
Xk+1 = x− 1

∣∣ Xk = x
)

= β, x ∈ D (5.13)

P
(
Xk+1 = x

∣∣ Xk = x
)

= 1, x ∈ {−n− 1, n+ 1} (5.14)

0 1 n1n

↵

� � ��� � � �

↵↵ ↵↵1 1

set D

Absorbing
state

Absorbing
state

n + 1n � 1

Figure 5.2: Diagram of Markov chain with absorbing states.

The transition probabilities of the modified chain is given by the (2n + 3) ×
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(2n+ 3) matrix P̄ given below:

P̄ =



1 0 · · · · · · · · · · · · 0

β α β 0 · · · · · · 0

0 β α β 0 · · · 0

...
. . . . . . . . .

...

0 · · · 0 β α β 0

0 · · · · · · 0 β α β

0 · · · · · · · · · · · · 0 1



(5.15)

Finally, the equivalent chain is initialized according to the pmf f1 given by:

f1(x) =


f̃1(x) x ∈ D

1
2

∑
τ /∈D f̃1(τ) x ∈ {−n− 1, n+ 1}

(5.16)

The probability distribution of the cycle length T will depend on the pmf f1,

the probabilities α and β, and on the reset policy U , which is our design parameter.

It should now be clear that the reset policy U can only depend on how many time

steps have elapsed without a reset occurring. Moreover, any reset policy of interest

can be parameterized by a single positive integer i, namely the number of time steps

to wait without a passive reset having occurred before triggering a controlled reset.

In other words, the reset policy parameterized by i at (cycle) time k is given by:

Ui
(
{Ij(Xj /∈ D)}kj=0

)
=


1, k = i and

∑k
j=0 Ij(Xj /∈ D) = 0

0, otherwise

(5.17)
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In light of this discussion, we can reparameterize the cost in terms of i, as

follows:

Gi =

E
[∑Ti

k=1 g(Xk, Uk)

]
E[Ti]

(5.18)

where Uk is determined according to the policy Ui in (5.17), and Ti is the appropriate

stopping time for Xk under policy Ui.

We are now ready to state an equivalent problem to Problem 4.1.1:

Problem 5.1.3. Given the Markov chain described in (5.1) and real-valued cost

described in (5.18), a positive reset penalty ρ and set D as in (5.4), find the optimal

reset parameter i∗ such that:

i∗ = arg min
i
Gi (5.19)

5.2 Finding the Optimal Reset Parameter

The results in this section rely solely on expectations and not on the nature of

the underlining stochastic process. Therefore these results are direct adaptation of

those in Chapter 4. They have been reproduced here (with appropriate modifications

where needed) for completeness, but the proofs have been omitted.

Theorem 5.2.1. Consider Problem 5.1.3 with stage cost ḡ and reset penalty ρ.

Define the function r : Z→ R where:

r(x)
def
= ḡ(x)− ρβI(x ∈ {−n, n}) (5.20)
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where I is the indicator function. Further suppose that:

E
[
r(Xi) | X i

1 ∈ D
]
≤ E

[
r(Xi+1) | X i+1

1 ∈ D
]

(5.21)

for all i.

The following holds: if there exists a parameter i such that Gi ≥ Gi−1, then

Gj ≥ Gj−1 for all j > i

Proof. See proof of Theorem 4.4.1.

Theorem 5.2.1 states that, under certain conditions, once the function Gi starts

increasing it always increases from then on. A direct result of Theorem 4.4.1 related

to the optimal reset parameter is the following:

Corollary 5.2.2. Under the same conditions of Theorem 5.2.1, if a local minimum

exists it is global.

5.2.1 Radial Stochastic Order for Markov Chains

Checking if a finitely valued discrete random process has increasing radial

stochastic order consists on computing finitely many dot products for each time

step k and comparing their values.

Let η0, ...,ηn−1 be 2n + 1-dimensional column vectors such that the lth entry

of ηr is given by:

ηr[l] =


1 −r ≤ l ≤ r

0 otherwise

(5.22)
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Definiton 5.2.3. A Markov chain Yk is said to be increasing in the radial stochastic

order, written Yk ≤r Yk+1, if

ηTr pk ≥ ηTr pk+1 (5.23)

for all k ≥ 1 and all r in {0, ...n}; where pk is the pmf of Yk.

Definiton 5.2.4. A function l : Z → R is radially nondecreasing function when,

for all x and y with |x| ≤ |y|, the following holds:

l(x) ≤ l(y) (5.24)

Lemma 5.2.5. Suppose Yk is a Markov chain in Z with increasing stochastic order,

and let l : Z→ R be a radially nondecreasing function. The following holds:

E[l(Yk+1)] ≥ E[l(Yk)] (5.25)

for all i.

Corollary 5.2.6. Condition (5.21) in Theorem 5.2.1 is satisfied for all i if the

following holds:

• The conditioned process Xk given that Xk
1 ∈ D has increasing stochastic order.

• The function r : Rn → R where:

r(x)
def
= ḡ(x)− ρβI(x ∈ {−n, n}) (5.26)

is radially nondecreasing.

Proof. Follows from Lemma 5.2.5.
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5.3 Characterizing initial pmfs

In this section, the goal is to characterize initial pmfs for which the resultant

Markov chain has increasing stochastic order. This is motivated by Corollary 5.2.6,

which guarantees application of Theorem 5.2.1 and its derivations. Since the ap-

plication of these results has been extensively covered in Chapter 4, we omit this

treatment here and focus solely on the task of identifying conditions on the initial

pmf that guarantees that the radial stochastic order is increasing.

Before proceeding with the main results, we need to introduce a vector notation

for the pmf of the state of the Markov chain at any given time k given that the chain

has not exited the denied set D. The aim is to establish conditions so that the radial

stochastic order of these pmfs is increasing.

Let v1 a (2n + 1)-dimensional column vector that represents the pmf of X1

given that X1 ∈ D, where entries of v1 are indexed from −n to n. The vector v1 is

given by:

v1
def
=

1∑
x∈D f1(x)

[
f1(−n) · · · f1(0) · · · f1(n)

]T
. (5.27)

For simplicity, without loss of generality, we consider from now on only initial

pmfs that have support in D, and therefore:

v1 =

[
f1(−n) · · · f1(0) · · · f1(n)

]T
. (5.28)

For k ≥ 2, let vk be a column vector that represents the pmf of Xk given that
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Xk
1 ∈ D. The evolution of the conditional pmfs vk are given by:

vk+1 = γ−1
k Pvk (5.29)

= γ−1
k P

kv1 (5.30)

where P is a (2n+ 1)× (2n+ 1) matrix given by:

P =



α β 0 · · · · · · · · · 0

β α β 0 · · · · · · 0

0 β α β 0 · · · 0

...
. . . . . . . . .

...

0 · · · 0 β α β 0

0 · · · · · · 0 β α β

0 · · · · · · · · · 0 β α



, (5.31)

and γk is normalization factor given defined by:

γk
def
= 1

TP kv1 (5.32)

where 1 is the unit column vector of appropriate dimension.

Remark Note that the matrix P represents the non-absorbing states of the Markov

chain P̄ and as such is not stochastic. Therefore the normalization terms γ are

necessarily strictly less than 1.

5.3.1 Decomposition of P

We proceed by establishing an eigen-decomposition of the matrix P , which

will serve as the foundation of the main results of this chapter. Because of the
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special nature of the matrix P , its eigenvectors are independent of the parameters

α and β, which will enable us to establish a few general results for the whole class

of matrices of the type considered here.

Lemma 5.3.1. For any matrix P as in (5.31) with parameters α and β, its eigen-

values are given by:

λj = α + 2β cos
( jπ

2n+ 2

)
(5.33)

for j = 1, ..., 2n+ 1.

Moreover, for each eigenvalue λj we can write an associated eigenvector as

follows:

uj =
1√
n+ 1



sin
(

jπ
2n+2

)
sin
(

2jπ
2n+2

)
...

sin
(

(2n+1)jπ
2n+2

)


. (5.34)

Finally, the eigenvectors uj’s are orthonormal.

Proof. It suffices to show that Puj = λjuj for all j, which is straightforward using

the fact that 2 sin θ cosφ = sin(θ − φ) + sin(θ + φ). For a direct construction of the

eigenvalues and eigenvectors from the matrix P , see [72].

The orthogonality of the eigenvectors follows from the symmetry of P . To
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check that ‖uj‖ = 1, note that:

‖uj‖2 =
1

n+ 1

2n+1∑
l=1

sin2
( ljπ

2n+ 2

)
=

1

n+ 1

2n+1∑
l=1

1

2
− 1

2
cos
( 2ljπ

2n+ 2

)
=

2n+ 1

2n+ 2
− 1

2n+ 2

2n+1∑
l=1

cos
( 2ljπ

2n+ 2

)
=

2n+ 1

2n+ 2
− 1

2n+ 2

(
sin
(

4n+3
2n+2

jπ
)

2 sin
(

jπ
2n+2

) − 1

2

)
(5.35)

=
2n+ 1

2n+ 2
− 1

2n+ 2

(
− 1

2
− 1

2

)
(5.36)

=
2n+ 1

2n+ 2
+

1

2n+ 2

= 1

where the line (5.35) is due to Lagrange’s trigonometric identity, and (5.36) is

reached by noting that

sin
(4n+ 3

2n+ 2
jπ
)

= sin
(

2jπ − 1

2n+ 2
jπ
)

=− sin
( jπ

2n+ 2

)

Remark Note that the eigenvectors uj do not depend on the parameters α and β.

This means that all matrices of this type have the same eigenvectors.

Finally, the matrix P can be written according to its eigenvectors and eigen-

values, as follows:

P =
2n+1∑
j=1

λjuju
T
j (5.37)
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Due to the orthonormality of the eigenvectors uj’s, the k − th power of P is

given by:

P k =
2n+1∑
j=1

λkjuju
T
j , (5.38)

and the conditional pmf vk+1 by:

vk+1 = γ−1
k

2n+1∑
j=1

λkjuju
T
j v1 (5.39)

5.3.2 Initial pmfs for Increasing Radial Stochastic Order

Any initial pmf v1 can be written as a linear combination of the eigenvectors

uj’s since they form a basis in R2n+1. Therefore, v1 can be represented by the

weights bj’s of the linear combination:

v1 =
2n+1∑
j=1

bjuj (5.40)

And therefore, the conditional pmf ’s vk+1 can be written as:

vk+1 = γ−1
k

2n+1∑
j=1

λkj bjuj, (5.41)

Recall from the definition of radial stochastic order for Markov chains that

η0, ...,ηn−1 are column vectors in R2n+1 such the lth entry is given by:

ηr[l] =


1 −r ≤ l ≤ r

0 otherwise

(5.42)

and consider the following matrices Γr(t) indexed by r in {0, ..., n− 1} and t in R+:

Γr(t)[i, j]
def
=

1

2
(λiλj)

t ln(λi/λj)
(
djη

T
r ui − diηTr uj

)
(5.43)
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where dj
def
= 1

Tuj.

The following theorem provides a condition on the weights bj’s that guarantee

that the Markov chain has increasing radial stochastic order. Although the condition

is hard to check, it functions as the basis of the results that follow, which are more

tractable.

Theorem 5.3.2. Suppose b, a column vector whose entries are the weights bj’s in

(5.40), is such that

bTΓr(t)b ≤ 0 (5.44)

for all r in {0, ..., n− 1} and t in R+. The following holds:

{Xk | Xk
1 ∈ D} ≤r {Xk+1 | Xk+1

1 ∈ D} (5.45)

for all k.

Proof. Suppose by contradiction that there exists an r and a k such that:

ηTr vk+1 > η
T
r vk (5.46)

(which would imply that (5.45) does not hold).

Recall that the conditional pmf ’s vk can be written as:

vk+1 = γ−1
k

2n+1∑
j=1

λkj bjuj, (5.47)

and therefore we have that:

γ−1
k

2n+1∑
j=1

λkj bjη
T
r uj − γ−1

k−1

2n+1∑
j=1

λk−1
j bjη

T
r uj > 0. (5.48)
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Let the function hr : R+ → [0, 1] be given by:

hr(t) =
1

γ̂(t)

2n+1∑
j=1

λtjbjη
T
r uj (5.49)

where γ̂ : R+ → [0, 1] is given by:

γ̂(t)
def
=

2n+1∑
j=1

λtjbjdj (5.50)

where dj
def
= 1

Tuj.

Therefore, the assumption which we wish to contradict becomes:

hr(k)− hr(k − 1) > 0. (5.51)

and therefore:

∫ k

k−1

h′(t)dt > 0 (5.52)

where the derivative is given by:

h′r(t) =
1

γ̂2(t)

2n+1∑
j=1

∑
i<j

bibj(λiλj)
t ln(λi/λj)

(
djη

T
r ui − diηTr uj

)
(5.53)

=
1

γ̂2(t)
bTΓr(t)b (5.54)

≤ 0 for all t, by the condition in (5.44), (5.55)

which is a contradiction.

The constraint in (5.44) is, in general, not easy to check since it has to hold

for all r and all t. Below we provide a sufficient condition that does not depend on

t and guarantees that (5.44) holds for all t.
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Corollary 5.3.3. Suppose b, a column vector whose entries are the weights bj’s in

(5.40), is such that

1
TΨr(b)1 ≤ 0 (5.56)

for all r in {0, ..., n− 1}, and where:

Ψr(b)[i, j]
def
=


1
2
bibj ln(λi/λj)

(
djη

T
r ui − diηTr uj

)
(i, j) ∈ {1, 3}∣∣∣ λiλj2λ1λ3

bibj ln(λi/λj)
(
djη

T
r ui − diηTr uj

)∣∣∣ otherwise

. (5.57)

The following holds:

{Xk | Xk
1 ∈ D} ≤r {Xk+1 | Xk+1

1 ∈ D} (5.58)

Proof. The proof relies on computing a bound on bTΓr(t)b and showing that if the

condition of the corollary is satisfied, then (5.44) of Theorem 5.3.2 is also satisfied.

bTΓr(t)b =
2n+1∑
j=3

∑
i<j

bibj(λiλj)
t ln(λi/λj)

(
djη

T
r ui − diηTr uj

)
(5.59)

= b1b3(λ1λ3)t ln(λ1/λ3)
(
d3η

T
r u1 − d1η

T
r u3

)
+

2n+1∑
j=5

∑
i<j

bibj(λiλj)
t ln(λi/λj)

(
djη

T
r ui − diηTr uj

)
(5.60)

Note that the indices in the summation are odd because the even-indexed terms of
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the matrix are zero.

bTΓr(t)b = (λ1λ3)t
{
b1b3 ln(λ1/λ3)

(
d3η

T
r u1 − d1η

T
r u3

)
+

2n+1∑
j=5

∑
i<j

bibj

(λiλj
λ1λ3

)t
ln(λi/λj)

(
djη

T
r ui − diηTr uj

)}
≤ (λ1λ3)t

{
b1b3 ln(λ1/λ3)

(
d3η

T
r u1 − d1η

T
r u3

)
+

2n+1∑
j=5

∑
i<j

∣∣∣bibj(λiλj
λ1λ3

)t
ln(λi/λj)

(
djη

T
r ui − diηTr uj

)∣∣∣}
≤ (λ1λ3)t

{
b1b3 ln(λ1/λ3)

(
d3η

T
r u1 − d1η

T
r u3

)
+

2n+1∑
j=5

∑
i<j

∣∣∣bibj λiλj
λ1λ3

ln(λi/λj)
(
djη

T
r ui − diηTr uj

)∣∣∣}
= (λ1λ3)t1TΨr(b)1

≤ 0 for all t.

And so, by Theorem 5.3.2, the stochastic order is increasing.

Although Corollary 5.3.3 is easy to check, it is somewhat conservative since

it relies on the triangle inequality. This conservativeness worsens as the dimension

of the problem grows. Nevertheless, we provide the next example to demonstrate a

case when it applies.

Example 5.3.4. Let n = 5, α = 0.6, and the initial pmf v1 be such that the

even indexed entries of b be zero, and b1 = 0.3580, b3 = 0.1192, b5 = 0.0137,

b7 = −0.0002, b9 = 0.0002 and b11 = 0.0001.

For such parameters, 1TΨr(b)1 = −0.0063,−0.0180,−0.0215,−0.0129,−0.0042
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for r = 0, 1, 2, 3, 4, respectively. Therefore, Corollary 5.3.3 holds and

{Xk | Xk
1 ∈ D} ≤r {Xk+1 | Xk+1

1 ∈ D} (5.61)

for all k.

Figure 5.3 shows the pmfs vk for k = 1, 5, 10, 20 on the left and the evolution

of ηTr vk until k = 30 on the right. The figure shows that the radial stochastic order

is indeed increasing.
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Figure 5.3: The evolution of the pmfs of Xk | Xk
1 ∈ D (left) and ηTr vk (right) for

Example 5.3.4. The figure shows that the radial stochastic order is increasing, as

guaranteed by Corollary 5.3.3.

5.3.3 A Special Case

This subsection explores a special case, when the initial pmf is restricted to be

a linear combination of eigenvectors u1 and u3, that is, the symmetric eigenvectors

associated with the largest and third-largest eigenvalues. The study of pmfs derived
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from these eigenvectors is important because, being associated with large eigenval-

ues, these eigenvectors dominate in the general case with all symmetric eigenvectors,

as we will see in the next subsection. For now, we provide the following result:

Corollary 5.3.5. Let the initial pmf be a linear combination of u1 and u3 with

weights b1 and b3, such that:

b1b3

(
d3η

T
r u1 − d1η

T
r u3

)
≤ 0 (5.62)

for all r in {0, ..., n− 1}. The following holds:

{Xk | Xk
1 ∈ D} ≤r {Xk+1 | Xk+1

1 ∈ D} (5.63)

Proof. The proof is straightforward by computing:

Ψr(b) = b1b3 ln(λ1/λ3)
(
d3η

T
r u1 − d1η

T
r u3

)
(5.64)

≤ 0, (5.65)

since ln(λ1/λ3) ≥ 0 for any choice of α and β, and b1b3

(
d3η

T
r u1−d1η

T
r u3

)
≤ 0. The

result follows from Lemma 5.3.4.

Remark For all odd n ≤ 104, we have found numerically that

(
d3η

T
r u1 − d1η

T
r u3

)
> 0 (5.66)

for all r in {0, ..., n− 1}. Therefore initial pmfs with b1 > 0 and b3 ≤ 0 will result in

Xk|Xk
1 ∈ D having increasing radial stochastic order for all k. When b3 is positive,

the radial stochastic order will be decreasing for all k.
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Remark Note that the assumption in Corollary 5.3.5 does not rely on the eigen-

values of P . It relies only only its eigenvectors, which are the same for all P of the

type considered in this chapter.

In the following example the initial pmf is a linear combination of eigenvectors

u1 and u3 for n = 5 (see Fig. 5.4). Two cases are shown: b1 > 0, b3 < 0; and b1 > 0,

b3 > 0.

-6 -4 -2 0 2 4 6
-0.5

0

0.5

-6 -4 -2 0 2 4 6
-0.5

0

0.5

u1
u3

xx

Figure 5.4: Eigenvectors u1 and u3 for n = 5.

Example 5.3.6. Let the initial pmf v1 be a linear combination of u1 and u3 with

weights b1 and b3:

v1 = b1u1 + b3u3 (5.67)

We consider two cases:

• b1 = 0.3649 and b3 = −0.1336

• b1 = b3 = 0.2447.

As shown in Fig. 5.5, when b1 > 0 and b3 < 0, the radial stochastic order is

increasing, as guaranteed by Corollary 5.3.5. When b1 > 0 and b3 > 0, the radial

stochastic order is decreasing.
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Figure 5.5: The evolution of Xk | Xk
1 ∈ D and ηTr vk for Example 5.3.6. On the left,

with b1 > 0, b3 < 0, the figure shows that the radial stochastic order is increasing,

as guarateed by Corollary 5.3.5. On the right, with b1 > 0, b3 > 0, the figure shows

that the radial stochastic order is decreasing.

5.3.4 A Bound on k for Increasing Stochastic Order

So far we have considered radial stochastic orders that rely on the sign of

ηTr vk for each r and for all time k ≥ 1. However, a natural extension is to consider

situations when the radial stochastic order is increasing only after some k̃ > 1, after
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which the results developed so far apply.

Definiton 5.3.7. A Markov chain Yk is said to be increasing in the radial stochastic

order after time k̃, written Yk ≤r,k̃ Yk+1, if

ηTr pk ≥ ηTr pk+1 (5.68)

for all k ≥ k̃ and all r in {0, ...n}; where pk is the pmf of Yk.

The results presented in the section build upon the results of the previous sec-

tion and provide a bound on k after which the radial stochastic order is guaranteed

to be increasing.

Corollary 5.3.8. Consider any valid weight vector b such that:

b1b3

(
d3η

T
r u1 − d1η

T
r u3

)
≤ 0 (5.69)

for all r in {0, ..., n− 1}. There exists a k̃ such that

{Xk | Xk
1 ∈ D} ≤rst {Xk+1 | Xk+1

1 ∈ D} (5.70)

for all k ≥ k̃.

Moreover, one such k̃ is given by:

k̃ = ceil
(

arg min
t

{
t | Φr,b(t) ≤ 0, r ∈ {0, ..., n− 1}

})
(5.71)

where:

Φr,b(t)
def
= cr13 +

2n+1∑
j=5

∑
i<j

(λiλj
λ1λ3

)t∣∣ crij ∣∣, (5.72)

and crij
def
= bibj ln(λi/λj)

(
djη

T
r ui − diηTr uj

)
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Proof. Recall from the proof of Corollary 5.3.3 that:

bTΓr(t)b ≤ (λ1λ3)t
{
b1b3 ln(λ1/λ3)

(
d3η

T
r u1 − d1η

T
r u3

)
+

2n+1∑
j=5

∑
i<j

∣∣∣bibj(λiλj
λ1λ3

)t
ln(λi/λj)

(
djη

T
r ui − diηTr uj

)∣∣∣}
= (λ1λ3)t

{
cr13 +

2n+1∑
j=5

∑
i<j

(λiλj
λ1λ3

)t∣∣ crij ∣∣}
= (λ1λ3)tΦr,b(t)

Clearly, there exists a t̃ for which:

Φr,b(t) ≤ 0 (5.73)

for all r and t ≥ t̃. This can be seen by noting that c13 is negative by assumption,

and that, since the ratio of eigenvalues is less than one for all (i, j) in question, all

other summands, although positive, go to zero exponentially fast. The smallest t̃

for which Φr,b(t) is less or equal to zero is:

t̃ = arg min
t

{
t | Φr,b(t) ≤ 0, r ∈ {0, ..., n− 1}

}
(5.74)

The result follows with k̃ = ceil(t̃).

We finish this discussion with a numerical example:

Example 5.3.9. Let n = 5, α = 0.6 and consider an initial pmf v1 such that

P(X1 = −2) = P(X1 = 2) = 0.4 (5.75)

P(X1 = −4) = P(X1 = 4) = 0.1 (5.76)

We begin by finding the weight vector b by projecting v1 on the eigenvectors

uj’s. Since v1 is symmetric, the entries associated with the odd eigenvectors are
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zero, and b1 = 0.3563, b3 = −0.1493, b5 = 0.1254, b7 = 0.0437, b9 = −0.3126 and

b11 = 0.2746

Based on a previous discussion and the fact that b1 > 0 and b3 < 0, the

inequality in (5.69) is satisfied. Computing the bound in (5.74), we get that t̃ =

6.4550 and therefore the stochastic order is guaranteed to be increasing for all k

greater than 7.

Fig. 5.6 shows the plots of Φr,b(t)for each r as well as the evolution of ηTr vk for

each r. The figure shows that the radial stochastic order is indeed increasing after

k = 7. The evolution of the conditioned pmfs vk can be seen in Fig. 5.7. The figure

on the left represents the evolution up until k = 7, and the one on the right depicts

the evolution from k = 7 until k = 30 (with increasing radial stochastic order).
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Figure 5.6: The plots of Φr,b(t) (left) and the evolution of ηTr vk (right) for Example

5.3.9. This figure shows that the radial stochastic order is increasing after k = 7.
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Figure 5.7: The evolution of Xk | Xk
1 ∈ D for Example 5.3.9. The image on the

left shows vk for k = 1, 3, 5 and 7. On the right, vk for k = 7, 11, 16 and 30. As

expected, the radial stochastic order in increasing after k = 7.

5.4 Conclusion

In this chapter we have extended the results of Chapter 4 for Markov chains,

and focused specifically on establishing conditions on the initial pmf of the chain

for which the radial stochastic order of Xk|Xk
1 ∈ D is increasing and, therefore, the

results established in Chapter 4 can be applied.

The results have been achieved by writing the pmfs of the conditioned process

in terms of the eigenvectors of a sub-matrix of the Markov chain. We established

a main result in Theorem 5.3.2, from which other results follow. We showed that

there exists an easy-to-check, albeit restrictive, sufficient condition for the theorem;

we established conditions for initial pmfs that are linear combinations of the two

symmetric eigenvectors associated with the largest eigenvalues; and we provided
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conditions on the initial pmf and a bound on k after which the radial stochastic

order of the Markov chain is guaranteed to be increasing.
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Chapter 6: Conclusions

This thesis had two main focuses: i) the study of control design for persistent

surveillance, where the goal is to design policies that achieve surveillance of the

largest possible area, while respecting certain constraints; and ii) the problem of

sensor usage for monitoring of denied environments, inside which state observations

are costly. Our guiding philosophy was to theoretically analyze seemingly simple

problems and, by doing so, to unearth fundamental concepts and design principles.

We addressed the design of full-state feedback memoryless policies for MDPs

with finite state and action spaces. The main problem is to design policies that

lead to the largest set of recurrent states, subject to convex constraints on the set

of invariant pmfs. We described a finitely parametrized convex program that solves

the problem via entropy maximization principles. Our approach has the advantage

of yielding a closed-loop Markov chain with least number of recurrent classes.

Next, we have applied the results obtained in Chapter 2 to the problem of

maximal persistent surveillance for robots whose dynamics are governed by MDPs.

We dealt with safety constraints by casting a convex constraint on the invariant pmf,

which allowed the application of our method. The simple structure of the resulting

controllers enables their implementation in small robots.
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In the second part of the thesis, we tackled the problem of optimal sensor usage

in denied environments. We used the framework of renewal reward processes to

establish a recursive expression for the cost we wished to minimize, and established

conditions under which any local minimum, if it exists, is also global. We showed

that when an auxiliary process has increasing radial stochastic order, the conditions

for which the result holds simplify.

Next, we have extended the results on sensor usage in denied environments

for Markov chains, and focused specifically on establishing conditions on the initial

pmf of the chain for which the radial stochastic order of the auxiliary process is

increasing. The results have been achieved by writing the pmfs of the conditioned

process in terms of the eigenvectors of a sub-matrix of the Markov chain. We

established a main result in Theorem 5.3.2, from which other results follow. We

showed that there exists an easy-to-check, albeit restrictive, sufficient condition for

the theorem; we established conditions for initial pmfs that are linear combinations

of the two symmetric eigenvectors associated with the largest eigenvalues; and we

provided conditions on the initial pmf and a bound on k after which the radial

stochastic order of the Markov chain is guaranteed to be increasing.

6.1 Future Directions

A natural extension of our work, both in regards to the problem of maximal

persistent surveillance and the problem of optimal sensor usage, is the validation

of the results in a test-bed environment. The first problem would be best suited
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for small robots with limited on-board processing and actuation capabilities. The

second can be tested on small aerial vehicles with the aid of motion capture systems.

We believe the results developed in this thesis would serve well as guiding principles

in real world implementations.

On the theoretical front, the problem of optimal sensor usage can be fur-

ther developed in many different directions, amongst which we highlight two. i)

Although the work was developed for discrete-time systems, we believe it would ex-

tend nicely to the continuous case. The underlying process would be characterized

by the diffusion equation and the auxiliary process, whose radial stochastic order

is of importance, would be characterized by a diffusion equation with absorbing

boundaries. ii) Since we considered binary control policies (reset or not), it would

be interesting to see what happens in a traditional framework, in which the choice

of control can affect the state in a more general fashion, such as in the context of

linear time-invariant systems.
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