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 Fusion tags are widely used in the recovery and purification of recombinant 

proteins.  We have investigated the capture and release of two fusion proteins from cell 

extracts using the aminopolysaccharide chitosan.  We have fused to green fluorescent 

protein (GFP) and to S-ribosylhomocysteinase (LuxS) a “pro-tag” consisting of five 

tyrosine residues that are “activated” by tyrosinase-catalyzed conversion into reactive o-

quinones.  The o-quinones react with the amino groups of chitosan, resulting in the 

covalent conjugation of the fusion protein to chitosan.  The fusion protein is captured 

from solution by precipitation of the protein-chitosan conjugate due to the decrease in 

solubility of chitosan at higher pH.   Additionally, chitosan is used to “pre-precipitate” 

cell extract contaminants such as nucleic acids and phospholipids, and thus, crudely 

purify the fusion protein remaining in solution.  Finally, we released the fusion protein 

from chitosan back into solution using the chitosan-hydrolyzing enzyme chitosanase as 

an alternative to protease cleavage.     
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INTRODUCTION 

 

The selective capture of recombinant proteins has been greatly facilitated by the 

fusion of affinity tags to termini of target proteins.  Traditionally, these tags have been 

employed to recover and purify target proteins, while more recent applications have 

exploited fusion tags for the assembly of target proteins onto patterned surfaces.  

Additionally, there are many examples (e.g. production of therapeutic proteins) where 

protein capture is followed by removal of the affinity tag to release the target protein.  

Typically, this is accomplished by insertion of a protease cleavage site between the 

affinity tag and the target protein.   

Most affinity fusion tags exhibit strong non-covalent interactions with their 

respective ligands.  Examples of commonly used affinity tags include cellulose-binding 

domain (Greenwood et al. 1989; Ong et al. 1991), maltose-binding domain (di Guan et al. 

1988), chitin-binding domain (Chong et al. 1997), biotin (Smith et al. 1998; Tsao et al. 

1996), poly-histidine (Smith et al. 1988), and glutathione S-transferase (Smith and 

Johnson 1988).  An exception is the work of Chilkoti et al. 1994, who chemically 

“activated” a genetically engineered protein by reduction of disulfide bonds, allowing for 

its covalent conjugation to a thermally responsive polymer.     

In this work, we have investigated an “activatable pro-tag” for its ability to 

capture a fusion protein by covalent conjugation to the aminopolysaccharide chitosan.  

The “pro-tag” consists of a pentatyrosine moiety located at the C-terminus of the two 

proteins being investigated, green fluorescent protein (GFP) and S-ribosylhomocysteinase 

(LuxS).  Scheme 1 shows that the tyrosine residues of the “pro-tag” are activated by 
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tyrosinase-catalyzed oxidation and converted to reactive o-quinones (Chen et al. 2001; 

Chen et al. 2003; Kumar et al. 1999; Wu et al. 2002a; Wu et al. 2002b; Yi et al. 2004; Yi 

et al. 2003).  The electrophilic o-quinones of the “pro-tag” can then undergo non-

enzymatic reactions with the nucleophilic amino groups of chitosan to yield a protein-

chitosan conjugate.  Chitosan’s primary amines confer both nucleophilic and pH-

responsive properties (Chen et al. 2001; Chen et al. 2003; Kumar et al. 1999; Wu et al. 

2002a; Wu et al. 2002b; Yi et al. 2004; Yi et al. 2003).  At low pH, the amino groups are 

protonated, so that chitosan is a water-soluble cationic polyelectrolyte.  As the pH is 

increased above chitosan’s pKa (~ 6.3), the amines become deprotonated, and chitosan 

becomes neutral in charge and insoluble.  The precipitation of chitosan at higher pH 

allows separation of the chitosan-protein conjugates from solution.  Thus, chitosan 

confers to the protein-chitosan conjugates pH-dependent solubility that can be exploited 

for recovery and purification of the fusion proteins.   
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To further facilitate recovery and purification of the fusion proteins from cell 

lysates, we utilize chitosan in a “pre-precipitation” step that is aimed to clear lysate of 

nucleic acids and phospholipids (Scheme 2A).  That is, chitosan’s positive net charge 

allows us to exploit chitosan as a capturer of negatively charged species.  Chitosan has 

already been used to coagulate lipids and proteins in the treatment of wastes from various 

process industries (Hwang and Damodaran 1995; Jun et al. 1994).  Additionally, 

Agerkvist et al. 1990, have shown that chitosan could be used as a cationic 

polyelectrolyte to flocculate E. coli cell debris, proteins, and nucleic acids.  In this study, 

the recombinant protein in the cell lysate is not “pre-precipitated” by chitosan, but is 

retained in the clarified supernatant.  In a second step, chitosan is added to the clarified 

supernatant, and enzymatic activation of the “pro-tag” (via tyrosinase addition) results in 

conjugation of the fusion protein to chitosan.  Thus, after the second centrifugation, the 

conjugated protein is captured in the pellet. 
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We demonstrate the release of the recombinant proteins from chitosan through the 

action of two enzymes, enterokinase and chitosanase (Scheme 2B).  Enterokinase (EK) 

recognizes the specific amino acid sequence D-D-D-D-K in the tethering linker, and 

cleaves just after the lysine residue.  We have inserted two EK cleavage sites into GFP’s 

sequence for the release of wild type GFP from chitosan.  EK is commonly used for the 

selective cleavage of the target protein from the affinity tag, however, its effectiveness 

varies widely (Gaillard et al. 1996; Martinez et al. 1995; Rabbani et al. 1997; Reddi et al. 

2002).  As an alternative to EK, we also use chitosanase, which catalyzes the hydrolysis 

of chitosan.  Chitosanase was used in the release of both GFP and LuxS.  This approach 

is expected to yield the fusion protein decorated with residual sugar residues.   

  Additionally, we compare the recoveries of the two fusion proteins in the capture 

and release from chitosan.  The first protein GFP exists as a monomer in solution, and 

wild type has a molecular weight of ~ 27 kD ((His)6-EK-GFP-EK-(Tyr)5 ~ 32 kD).  It is a 

stable protein, only denatured under harsh conditions (i.e. pH 2, pH 13, or 6 M guanidine-

HCl) (Ward and Bokman 1982).  Its structure is a β-barrel 42 Å long and 24 Å wide 

around a central helix containing the chromophore (Ormo et al. 1996).  GFP absorbs light 

at 395 nm, and emits green light at 509 nm (Cody et al. 1993).   

The second protein LuxS exists as a dimer in solution, and the wild type monomer 

has a molecular weight of ~ 19 kD ((His)6-LuxS-(Tyr)5 ~ 25 kD).  The monomer has 

approximate dimensions 25 Å x 35 Å x 45 Å (Ruzheinikov et al. 2001).  Each monomer 

is mainly composed of a four-stranded antiparallel β-sheet and three α-helices 

(Ruzheinikov et al. 2001).  In the unique dimer structure, the β-sheets face each other at 

the dimer interface to form a β-barrel, which is flanked by the α-helices (Ruzheinikov et 
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al. 2001).  The two identical active sites are found in deep pockets formed at the dimer 

interface, each containing a Fe2+ ion, which is required for enzyme activity (Zhu et al. 

2003).  As shown in Scheme 3 (adapted from Xavier and Bassler 2003), LuxS catalyzes 

the formation of homocysteine and 4,5-dihydroxy-2,3-pentanedione (DPD) from S-

ribosylhomocysteine (SRH) (Miller and Duerre 1968).  SRH is formed from S-

adenosylhomocysteine (SAH) by the nucleosidase Pfs (Della Ragione et al. 1985).  DPD 

then goes on to become autoinducer-2 (AI-2), a small signaling molecule found in many 

bacterial species (Chen et al. 2002).  LuxS is considerably less stable than GFP, unable to 

withstand high temperatures and extremes of pH.   

 

 

 

There were two major goals of this study.  The first was to recover and partially 

purify both fusion proteins, (His)6-LuxS-(Tyr)5 and (His)6-EK-GFP-EK-(Tyr)5, without 

chromatography.  This will be done by a “pre-precipitation” of contaminants with 

chitosan followed by the tyrosinase-catalyzed capture of the two fusion proteins to 

chitosan through their “pro-tags.”  The second goal was to release the two fusion proteins 

from chitosan into solution using an alternative to protease cleavage.   
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MATERIALS AND METHODS 

 

Materials.  Chitosan (minimum 85% deacetylated chitin; molecular weight 

300,000 g/mol) from crab shells, isopropyl β-D-thiogalactopyranoside (IPTG), phosphate 

buffered saline (PBS) (0.5 mM MgCl2, 2.7 mM KCl, 137 mM NaCl, 1.5 mM KH2PO4, 

8.1 mM Na2HPO4, pH 7.5), imidazole, nickel sulfate, β-mercaptoethanol, bromophenol 

blue, mouse monoclonal anti-polyhistidine, goat anti-mouse IgG conjugated to alkaline 

phosphatase, tyrosinase from mushroom, enterokinase (enteropeptidase) from porcine 

intestine, and chitosanase from Streptomyces griseus were purchased from Sigma (St. 

Louis, MO).  Tyrosinase, enterokinase, and chitosanase were reported by the 

manufacturer to have activities of 3620, 192, and 102.3 Units/mg solid, respectively.  

Luria-Bertani (LB) medium was purchased from Becton Dickinson (Cockeysville, MD).  

Ampicillin sodium salt, glycerol, sodium citrate, citric acid, sodium borohydride, sodium 

phosphate (monobasic), sodium phosphate (dibasic), zinc acetate, trichloroacetic acid, 

Tris base, acrylamide, Bis-acrylamide, methanol, MgCl2·6H2O, and sodium chloride were 

purchased from Fisher Chemical (Fair Lawn, NJ).  Hydrochloric acid and sodium 

hydroxide were purchased from J. T. Baker (Phillipsburg, NJ).  Sodium dodecyl sulfate 

(SDS), glycine, non-fat dry milk, and Tween 20 were purchased from BioRad (Hercules, 

CA).  Mouse monoclonal anti-GFP was purchased from Clontech (Palo Alto, CA). 

 

Plasmid construction and bacterial strains.  The p6His-LuxS-5Tyr plasmid was 

constructed from pTrcHisC (Invitrogen).  After inserting the pentatyrosine tag, the 

resulting plasmid was subsequently transformed into E. coli pfs null-mutant strain NC13 
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(genotype RK4353∆pfs(8-226)::Kanr) (Hashimoto, unpublished).  The p6His-EK-GFP-

EK-5Tyr plasmid was constructed from pTrcHisB (Invitrogen), which contains one 

enterokinase recognition site.  The pentatyrosine tag and the second enterokinase 

recognition site were inserted, and the resulting plasmid was subsequently transformed 

into E. coli strain BL21 (Small, unpublished).  Note that the hexahistidine tag on each 

protein enables purification using immobilized metal affinity chromatography (IMAC) 

when needed. 

 

 Cell culture.  Primary E. coli inocula consisting of 2 mL LB medium, 50 µg/mL 

ampicillin, and one loop E. coli freezer stock were grown overnight (12 - 14 h) in 20 mL 

culture tubes at 30oC and 250 rpm in a shaker-incubator (New Brunswick Scientific).  

Overnight cultures were used to inoculate 500 mL Erlenmeyer flasks containing 100 mL 

LB medium and 50 µg/mL ampicillin.  The 100 mL cultures were grown at 37oC and 250 

rpm to OD600nm of 0.5 – 0.6, and then added to 3.2 L baffled Erlenmeyer flasks 

containing 1.5 L LB medium and 50 µg/mL ampicillin.  The 1.5 L cultures were grown at 

37oC and 300 rpm to OD600nm of 0.5 – 0.6, when they were induced with 1 mM IPTG, 

and grown for an additional 5 h.  Additionally, zinc acetate was added at induction at a 

final concentration of 100 µM to cells making (His)6-LuxS-(Tyr)5 to improve stability of 

the LuxS protein (Zhu et al. 2003).  The cells were then centrifuged 20 minutes at 4,800 g 

into pellets (Dupont Sorvall), and the cell pellet was stored at -20oC. 

 

Sonication.  The cell pellet containing (His)6-LuxS-(Tyr)5 was resuspended in 50 

mM sodium phosphate pH 5.8.  The cell pellet containing (His)6-EK-GFP-EK-(Tyr)5 was 
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resuspended PBS.  The resuspended cells were placed in an ice-water bath and lysed by 

10 min of sonication (Fisher Scientific Sonic Dismembrator).  Cell lysate was centrifuged 

for 20 minutes at 10,000 g to remove insoluble cellular debris (Eppendorf).  The 

supernatant was decanted, and the pellet was again resuspended in buffer to repeat the 

cycle.  This cycle was performed a total of three times.   

 

Chitosan preparation.  Chitosan solutions were prepared by dissolving chitosan 

flakes in de-ionized water, with dilute hydrochloric acid added dropwise until reaching 

pH 2.  After dissolving completely, 1 M NaOH was added dropwise until the pH 5.8 was 

reached.  It was then filtered and stored at 4oC. 

 

Addition of chitosan to clarified cell lysate.  Clarified cell lysate was “pre-

precipitated” by mixing 4:1 with 0.2 – 0.6 % (w/w) chitosan-water solution pH 5.8.  The 

“pre-precipitated” (PPT) solution was centrifuged 15 minutes at 10,000 g to remove 

insoluble material and impurities.  A 1.2 – 1.6 % (w/w) chitosan-water solution, pH 5.8 

was added to PPT supernatants in a 1:1 ratio.  The PPT supernatant-chitosan mixture was 

reacted overnight (14 – 16 h) in a shaker-incubator at 30°C and 250 rpm with 140 

Units/mL tyrosinase.  The reaction mixtures were then brought to pH ~ 7 by the dropwise 

addition of 1 M sodium hydroxide.  Additionally, the GFP-chitosan conjugates to be used 

in enterokinase reactions were reduced using sodium borohydride at a concentration of 

0.06 mg/mL.  The protein-chitosan conjugates were then centrifuged for 15 minutes at 

10,000 g into pellets, and the supernatants were decanted and saved for analysis. 
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Enterokinase reactions.  GFP-chitosan conjugates were washed twice with PBS.  

The conjugates were then diluted 1:4 with PBS, and vortexed to resuspend the pellet.  

This solution was reacted ~ 2 days with 5 Units/mL enterokinase in a shaker-incubator at 

37°C and 250 rpm. The reaction mixture was then centrifuged for 15 minutes at 10,000 g, 

and the supernatant decanted and saved.   

 

Chitosanase reactions.  Protein-chitosan conjugates were washed twice with 20 

mM sodium phosphate pH 6.4.  The conjugates were then diluted 1:3 with the phosphate 

buffer and vortexed to resuspend the pellet.  This solution was reacted ~ 3 days with 1 

Unit/mL chitosanase in a shaker-incubator at 30oC and 250 rpm.  The reaction mixture 

was then purified via IMAC.   

 

IMAC purification.  The 5 mL HisTrap chelating column (Amersham 

Biosciences) was charged with Ni2+ ions using 0.1 M NiSO4.  The column was 

thoroughly washed with de-ionized water, and then equilibrated with 3 column volumes 

(CVs) of 20 mM sodium phosphate, 0.5 M NaCl, 10 mM imidazole, pH 7.4.  The sample 

was loaded onto the column.  The column was washed with 3 CVs of the previous buffer, 

and the protein was eluted using 3 CVs of 20 mM sodium phosphate, 0.5 M NaCl, 0.5 M 

imidazole, pH 7.4.  All steps were performed at 2 mL/min (1 cm/min linear velocity).  

The eluted sample was dialyzed overnight (16 hr) at 4oC into PBS.  Purified protein 

concentration was determined with an UV/vis spectrophotometer (DU 640, Beckman, 

Fullerton, CA) using UV light at 280nm wavelength.  The dialyzed protein was stored at 

4oC.   
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UV/visible light readings and fluorescence intensity measurements.  A 

Beckman DU 640 Spectrophotometer using UV/visible light at 260, 280, and 595 nm was 

used to measure the content of DNA/RNA, total protein, and cell debris, respectively.  A 

Perkin Elmer LS55 Luminescence Spectrometer was used with an excitation wavelength 

of 395 nm, an emission wavelength of 509 nm, a slit width of 10 nm, and an emission cut 

off of 430 nm.  

 

Addition of chitosan to purified fusion protein.  (His)6-EK-GFP-EK-(Tyr)5 and 

(His)6-LuxS-(Tyr)5 were previously purified via IMAC and dialyzed into PBS as 

described above.  A 1.2 % (w/w) chitosan-water solution pH 5.8 was added in a 1:1 ratio.  

This protein-chitosan mixture was reacted overnight (14 – 16 h) in a shaker-incubator at 

30°C and 250 rpm with and without 140 Units/mL tyrosinase.  The reaction mixtures 

were then brought to pH ~ 7 with 1 M sodium hydroxide, reduced with 0.06 mg/mL 

sodium borohydride, and centrifuged at 10,000 g for 15 minutes.  The supernatant was 

decanted and saved for analysis.   

 

SDS-PAGE and Western blot analysis.  Sample buffer 2x concentration (0.125 

M Tris-HCl, pH 6.8, 20% (v/v) glycerol, 4% (w/v) SDS, 10% (v/v) β-mercaptoethanol, 

0.05% (w/v) bromophenol blue) was mixed with protein samples in a 1:1 ratio, and these 

mixtures were then heated at 95 oC for 5 minutes.  Proteins were separated by SDS 

polyacrylamide gel electrophoresis using 12.5% acrylamide gels at 180 V for ~ 1 hour 

using the BioRad Mini Protean 3 system, and blotted onto BioRad nitrocellulose 

membranes using a BioRad Trans-Blot semi-dry transfer cell and Bjerrum-Schafer-
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Nielsen transfer buffer (48 mM Tris, 39 mM glycine, 20% (v/v) methanol, 0.0375% 

(w/v) SDS) for 30 minutes at 15 V.  Unbound membrane sites were blocked using 5% 

(w/v) non-fat dry milk in 20 mM Tris-HCl, pH 7.5, 500 mM NaCl.  The membrane was 

first incubated at room temperature for 2 hours in mouse monoclonal anti-GFP at 1:500 

dilution or for 1 hour in mouse monoclonal anti-polyhistidine at 1:4,000 dilution.  The 

membrane was then incubated at room temperature for 1 hour in goat anti-mouse IgG 

conjugated to alkaline phosphatase at 1:4,000 dilution.  Both antibodies were diluted in 

20 mM Tris-HCl, pH 7.5, 500 mM NaCl, 1% (w/v) non-fat dry milk, 0.05% (v/v) Tween 

20.  Membranes were developed colorimetrically using Roche NBT/BCIP stock diluted 

1:50 in 0.1 M Tris-HCl, pH 9.5, 0.1 M NaCl, 0.05 M MgCl2.   

 

Isoelectric focusing gel electrophoresis.  (His)6-LuxS-(Tyr)5 and (His)6-EK-

GFP-EK-(Tyr)5 were previously purified via IMAC and dialyzed into PBS as described 

above.  They were mixed 1:1 with Novex IEF Sample Buffer pH 3 – 7 2x concentration 

(Invitrogen) and then loaded onto a Novex IEF pre-cast gel pH 3 – 7 (Invitrogen) using 

Novex cathode and anode running buffers (Invitrogen).  The gel was run at 100 V for 1 

hour, and then 200 V for 2 hours.  It was then fixed in 12% (w/v) trichloroacetic acid for 

30 minutes before staining.   

 

In vitro AI-2 synthesis and AI-2 activity assay.  (His)6-LuxS-(Tyr)5 were 

previously purified via IMAC, dialyzed into PBS, and conjugated to chitosan using 

tyrosinase as described above.  The LuxS-chitosan conjugate was centrifuged to form a 

pellet, and the pellet was washed with PBS.  A solution containing the LuxS substrate 
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SRH was previously made in vitro by the addition of 1 mM SAH in 50 mM Tris-HCl pH 

7.8 to IMAC-purified (His)6-Pfs-(Tyr)5 conjugated to chitosan via tyrosinase (Yi et al., 

unpublished).  The presence of SRH was verified by RP-HPLC analysis (Yi et al., 

unpublished).  The SRH solution was added to the LuxS-chitosan conjugate, and the 

reaction was carried out at 37oC and 250 rpm for 4 hours.  After the reaction, the solution 

was extracted with chloroform, and AI-2 activity was recovered in the aqueous phase.  

AI-2 activity was measured using the cell-based assay described in Surette and Bassler 

1998.  In this assay, Vibrio harveyi AI-2 reporter strain BB170 was grown 16 hours at 

30oC and 250 rpm in autoinducer bioassay (AB) medium (medium recipe according to 

Greenberg et al. 1979), and then diluted 1:5,000 with fresh AB medium.  Then, 180 µL of 

the diluted BB170 cell suspension was mixed with 20 µL of the sample to be analyzed.  

Fresh AB medium was used as a negative control, and 12 hour conditioned medium from 

E. coli wild type strain W3110 grown in LB medium with 0.8% supplemental glucose 

was used as a positive control.  Bioluminescence results were normalized by dividing by 

that of the negative control and by the mg of (His)6-LuxS-(Tyr)5.   
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RESULTS AND DISCUSSION 

 

Conjugation of purified fusion protein to chitosan via tyrosinase. 

 In initial studies, we examined tyrosinase-catalyzed conjugation of purified 

(His)6-EK-GFP-EK-(Tyr)5 and (His)6-LuxS-(Tyr)5 to chitosan.  The experimental design 

is shown schematically in Fig. 1A.  The two fusion proteins were purified via IMAC, 

incubated with chitosan and tyrosinase for 12 hours, brought to pH ~ 7, and centrifuged 

to form chitosan pellet.  Additionally, to assess the relative amounts of covalently-

coupled conjugate versus physically entrapped protein, the IMAC-purified fusion 

proteins were incubated with chitosan but without tyrosinase for 12 hours, brought to pH 

~ 7, and centrifuged to form chitosan pellet.  For all experiments, the decanted 

supernatants were analyzed by Western blots.  By comparing band intensities of the 

supernatants to those of calibration samples, we calculated the amounts remaining in the 

supernatants, which were then compared with the amounts at the start of the experiments 

to calculate the amounts precipitated in the chitosan pellets.   
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The (His)6-EK-GFP-EK-(Tyr)5 reaction pellet and also the pellet formed without 

tyrosinase are both shown in Fig. 1B under UV light to illustrate GFP’s fluorescence.  It 

is apparent from Fig. 1B that a considerable amount of GFP fluorescence was 

precipitated with chitosan.  Additionally, it is shown that significantly more GFP 

fluorescence precipitated with chitosan during tyrosinase-catalyzed conjugation.  We 

calculated from the Western blot in Fig. 1C that 0.80 mg (His)6-EK-GFP-EK-(Tyr)5 was 

bound to each mg of chitosan in the experiment with tyrosinase, and 0.031 ± 0.043 mg 

(His)6-EK-GFP-EK-(Tyr)5 was bound to each mg chitosan in the experiment without 

tyrosinase. It is interesting to note that the supernatant from the tyrosinase reaction in Fig. 

1C appears as a double band on the Western blot.  In additional experiments (not shown) 

we incubated (His)6-EK-GFP-EK-(Tyr)5 with tyrosinase (and not chitosan) and also 

observed a double band.  Similarly, we calculated from the Western blot in Fig. 1D that 

1.3 mg (His)6-LuxS-(Tyr)5 was bound to each mg of chitosan in the experiment with 

tyrosinase, and 0.25 ± 0.10 mg (His)6-LuxS-(Tyr)5 was bound to each mg chitosan in the 

experiment without tyrosinase.  We assume that the amount of fusion protein bound to 

chitosan in the experiment with tyrosinase represents the total amount of fusion protein 

bound to chitosan, both covalently and non-covalently, and the amount of fusion protein 

bound to chitosan in the experiment without tyrosinase represents the amount of fusion 

protein bound to chitosan non-covalently, presumably by electrostatic interactions.  The 

difference between these values represents the amount of fusion protein bound 

covalently, or 0.77 mg (His)6-EK-GFP-EK-(Tyr)5 per mg chitosan and 1.25 mg (His)6-

LuxS-(Tyr)5 per mg chitosan.  More (His)6-LuxS-(Tyr)5 than (His)6-EK-GFP-EK-(Tyr)5 

was covalently conjugated to chitosan.  Additionally, more (His)6-LuxS-(Tyr)5 than 
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(His)6-EK-GFP-EK-(Tyr)5 was bound non-covalently to chitosan.  Results may be 

explained by differences in non-covalent interactions between chitosan and the two 

fusion proteins and by differences in protein 3-dimensional size and shape.   

 

Activity of purified fusion protein after tyrosinase-catalyzed conjugation to 

chitosan.   

 We examined the activity of (His)6-LuxS-(Tyr)5 and (His)6-EK-GFP-EK-(Tyr)5 

after tyrosinase-catalyzed conjugation to chitosan.  Activity of the GFP-chitosan 

conjugate was determined by measuring fluorescence intensity (FI) after resuspension in 

PBS (395 nm excitation wavelength, 509 nm emission wavelength).  We compared FI of 

the resuspended conjugate to that of soluble unconjugated (His)6-EK-GFP-EK-(Tyr)5 by 

normalizing results based on mg (His)6-EK-GFP-EK-(Tyr)5 in each sample.  The GFP-

chitosan conjugate remained active.  The FI of the conjugate was ½ that of soluble (His)6-

EK-GFP-EK-(Tyr)5, suggesting that some GFP activity was lost during the conjugation 

reaction.     

Activity of the LuxS-chitosan conjugate was determined by in vitro synthesis of 

the LuxS product AI-2.  As shown in Scheme 3, AI-2 is the product of several steps of an 

enzymatic pathway.  First, we synthesized SRH, the LuxS substrate.  A solution 

containing SRH was previously made in vitro by the addition of 1 mM SAH in 50 mM 

Tris-HCl pH 7.8 to IMAC-purified (His)6-Pfs-(Tyr)5 conjugated to chitosan via 

tyrosinase (Yi et al., unpublished).  The presence of SRH was verified by RP-HPLC 

analysis (Yi et al., unpublished).  The SRH solution was added to both the (His)6-LuxS-

(Tyr)5-chitosan conjugate and also to soluble unconjugated (His)6-LuxS-(Tyr)5, and the 
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reaction was carried out at 37oC and 250 rpm for 4 hours.  After the reaction, the solution 

was then extracted with chloroform, and AI-2 activity was recovered in the aqueous 

phase.  AI-2 activity was measured using the cell-based assay described in Surette and 

Bassler 1998.  AI-2 activity of the conjugate (denoted “conjugate”) and soluble 

unconjugated (His)6-LuxS-(Tyr)5 (denoted “soluble”) are shown in Fig. 2.  AI-2 activity 

was normalized by dividing by the activity of the negative control and also by dividing 

by the mg (His)6-LuxS-(Tyr)5 in each sample.  The LuxS-chitosan conjugate remained 

active.  Activity of the conjugate was 1⁄5 that of soluble (His)6-LuxS-(Tyr)5, suggesting 

that some LuxS activity was lost during the conjugation reaction.  This may be due to a 

decrease in stability of the LuxS due to the conditions of the conjugation reaction (1 hour 

30oC incubation with tyrosinase).  This may also be due to burying of (His)6-LuxS-(Tyr)5 

within the chitosan pellet interior, thus decreasing accessibility of its active site.  Indeed, 

we do not know the amount of (His)6-LuxS-(Tyr)5 attached to the surface of the chitosan 

pellet (i.e. exposed to the substrate).  Optimization of the conjugation reaction conditions 

is needed to maximize activity of the (His)6-LuxS-(Tyr)5-chitosan conjugate.   
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Chitosan “pre-precipitation” of cell extract components.   

 Having established that the “activatable pro-tag” facilitates removal of purified 

fusion protein from solution by simple precipitation with chitosan, we turned upstream to 

examine the initial separation of fusion protein from cell extracts.  That is, to remove 

nucleic acids and phospholipids in the cell lysates and recover (His)6-LuxS-(Tyr)5 and 

(His)6-EK-GFP-EK-(Tyr)5, we performed an initial “pre-precipitation” (PPT) step as 

illustrated in Scheme 2A.  In this step, chitosan solution pH 5.8 (without tyrosinase) was 

added to the clarified cell lysates to coagulate negatively charged species.  All clarified 

lysates were at the same concentration of wet cell weight per volume resuspension buffer.  

Upon addition of chitosan, precipitation was immediately observed at all pH conditions.  

The lysate-chitosan mixtures were centrifuged to remove the precipitated chitosan.  The 

clarified lysates and the PPT supernatants were analyzed by UV light at 260nm and 

280nm and by visible light at 595nm.  We have used UV light at 260 nm and 280 nm to 
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measure nucleic acid content and total protein content, respectively, and visible light at 

595 nm to measure cell debris.  The clarified lysates and the PPT supernatants were also 

analyzed by Western blots to determine recovery of (His)6-LuxS-(Tyr)5 and (His)6-EK-

GFP-EK-(Tyr)5.   

The pre-precipitation of (His)6-EK-GFP-EK-(Tyr)5 clarified lysate was performed 

at pH 7.0.  Shown in Fig. 3A, absorbance measurements of the PPT supernatant at all 

three wavelengths were low compared to absorbance measurements of the clarified 

lysate.  There was 25 ± 2.7 % remaining at 260 nm, 29 ± 2.5 % remaining at 280 nm, and 

62 ± 5.7 % remaining at 595 nm.  Results indicate that nucleic acids, cell debris, and total 

protein were precipitated by chitosan.  The amount of (His)6-EK-GFP-EK-(Tyr)5 

remaining after pre-precipitation was determined by comparing the Western blot band 

intensities of the clarified lysate and the PPT supernatant to that of a known amount of 

IMAC-purified (His)6-EK-GFP-EK-(Tyr)5, and is depicted in Fig. 3B.  Recovery of 

(His)6-EK-GFP-EK-(Tyr)5 was 94 ± 6.7 %, and only 0.0027 ± 0.0046 mg (His)6-EK-

GFP-EK-(Tyr)5 was lost per mg of chitosan.  The amount of (His)6-EK-GFP-EK-(Tyr)5 

lost during the PPT step differs from the amount lost in the experiments without 

tyrosinase described previously (0.031 ± 0.043 mg lost per mg chitosan).  We assume this 

is due to differences in experimental conditions (i.e. clarified lysate (His)6-EK-GFP-EK-

(Tyr)5 vs. IMAC-purified (His)6-EK-GFP-EK-(Tyr)5).     
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In the pre-precipitation of (His)6-LuxS-(Tyr)5, several different pH conditions 

were examined to determine optimal recovery.  The cell pellet was initially resuspended 

in four different buffers: PBS pH 7.5, 50 mM sodium phosphate pH 6.2, 50 mM sodium 

phosphate pH 5.8, and 50 mM sodium citrate-citric acid pH 5.2, resulting in four different 

lysates at pH 7.0, pH 6.4, pH 6.1, and pH 5.5, respectively.  After addition of chitosan 

solution pH 5.8 and centrifugation, the four PPT supernatants remained at pH 7.0, pH 6.4, 

pH 6.1, and pH 5.5, respectively.  The amount of (His)6-LuxS-(Tyr)5 remaining after pre-

precipitation was determined by comparing the Western blot band intensities of the 

clarified lysate and the PPT supernatant at each pH condition to that of a known amount 

of IMAC-purified (His)6-LuxS-(Tyr)5, and is depicted in Fig. 3C.  Recovery at pH 7.0 

was 23 ± 0.81 %, with 0.50 ± 0.0053 mg (His)6-LuxS-(Tyr)5 lost per mg chitosan.  

Recovery at pH 6.4 was 39 ± 3.5 %, with 0.20 ± 0.012 mg (His)6-LuxS-(Tyr)5 lost per mg 

chitosan.  Recovery at pH 6.1 was 42 ± 13 %, with 0.086 ± 0.0012 mg (His)6-LuxS-

(Tyr)5 lost per mg chitosan.  Recovery at pH 5.5 was 45 ± 1.6 %, with 0.070 ± 0.0021 mg 

(His)6-LuxS-(Tyr)5 lost per mg chitosan.  More LuxS precipitates with chitosan as the pH 

of the PPT step increases.  This may be explained by electrostatic interactions between 

LuxS and chitosan.  As stated previously, chitosan has a pKa of 6.3, and is theoretically 

more positively charged at pH 5.5 than at pH 7.0.  To determine the theoretical overall 

charge of (His)6-LuxS-(Tyr)5 at different pH conditions, we performed isoelectric 

focusing gel electrophoresis on IMAC-purified (His)6-LuxS-(Tyr)5 and found it has a pI 

of 6.0.  (His)6-LuxS-(Tyr)5 theoretically has overall positive charge at pH 5.5 and 

increasing overall negative charge as pH increases above 6.0.  Thus, we expect more 

LuxS to precipitate with chitosan as pH is increased.  Although PPT pH 5.5 resulted in 
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higher recovery of LuxS, we chose pH 6.1 for all future PPT experiments because we 

were concerned that LuxS is less stable at lower pH.  Indeed, we have evidence that LuxS 

decreases in stability as pH decreases below neutrality based on mg (His)6-LuxS-(Tyr)5 

recovered in clarified lysate at different pH conditions.   

The difference in recovery of (His)6-LuxS-(Tyr)5 and (His)6-EK-GFP-EK-(Tyr)5 

during pre-precipitation was substantial (42% and 94%, respectively).  We first believed 

that results could be explained by differences in electrostatic interactions between the 

fusion proteins and chitosan.  To determine the theoretical overall charge of (His)6-EK-

GFP-EK-(Tyr)5 at PPT pH 7.0, we performed isoelectric focusing gel electrophoresis on 

IMAC-purified (His)6-EK-GFP-EK-(Tyr)5 and found it has a pI of 5.3.  (His)6-EK-GFP-

EK-(Tyr)5 theoretically has greater overall negative charge at pH 7.0 than (His)6-LuxS-

(Tyr)5 at pH 7.0, yet more (His)6-EK-GFP-EK-(Tyr)5 than (His)6-LuxS-(Tyr)5 

precipitated with chitosan at pH 7.0.  Thus, the differences in recoveries of the two fusion 

proteins cannot be explained by electrostatic interactions alone.  Instead, the lower yield 

of LuxS from the pre-precipitation step may be because it is less stable than GFP.  As 

stated previously, GFP is known to be very stable even under harsh conditions (Ward and 

Bokman 1982), while LuxS has been shown to have low stability (Zhu et al. 2003).  The 

low stability of LuxS may cause it to denature and precipitate, thus decreasing the soluble 

recovery in the PPT supernatant.   Additionally, as stated previously, differences in 3-

dimensional size and shape of the two fusion proteins may also affect chitosan binding.   

Shown in Fig. 3D, absorbance measurements of the (His)6-LuxS-(Tyr)5 PPT 

supernatant at pH 6.1 at all three wavelengths were low compared to absorbance 

measurements of the (His)6-LuxS-(Tyr)5 clarified lysate at pH 6.1.  There was 20 ± 0.040 
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% remaining at 260 nm, 22 ± 0.20 % remaining at 280 nm, and 4.1 ± 1.3 % remaining at 

595 nm.  Results indicate that nucleic acids, cell debris, and total protein were 

precipitated by chitosan.    Results from PPT experiments with both (His)6-LuxS-(Tyr)5 

and (His)6-EK-GFP-EK-(Tyr)5 are supported by the work of Agerkvist et al. 1990, who 

demonstrated that flocculation of E. coli cell extracts with chitosan removed 98% of cell 

debris, 50% of proteins, and 85% of nucleic acids, while 60% of a protein of interest (in 

their case, β-galactosidase) was retained in the supernatant.   

 

Capture of fusion protein by conjugation to chitosan. 

To capture (His)6-EK-GFP-EK-(Tyr)5 and (His)6-LuxS-(Tyr)5 from the PPT 

supernatant, we conjugated (His)6-EK-GFP-EK-(Tyr)5 and (His)6-LuxS-(Tyr)5 to chitosan 

using tyrosinase, thus completing the entire procedure illustrated in Scheme 2A.  PPT 

supernatant was incubated with chitosan and tyrosinase overnight, and the reaction 

mixture was then centrifuged.  The reaction supernatant was decanted, and the pellet was 

washed twice with buffer.  The reaction supernatant and subsequent washes were 

analyzed by SDS-PAGE and Western blot.  Our results indicated that 75 ± 9.5 % of 

(His)6-EK-GFP-EK-(Tyr)5 and 54 ± 17% of (His)6-LuxS-(Tyr)5 in the clarified lysates 

was captured by conjugation to chitosan.  SDS-PAGE analyses (not shown) revealed that 

there was a significant amount of unprecipitated native protein in the reaction supernatant 

and the first buffer wash of the pellet, but that the second buffer wash was essentially 

protein free.  Due to the large amount of lysate proteins in the reaction supernatant and 

subsequent washes, we surmise that a minimal amount of such proteins were captured by 
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chitosan.  These results indicate that (His)6-EK-GFP-EK-(Tyr)5 and (His)6-LuxS-(Tyr)5 

were successfully conjugated to chitosan directly from clarified lysates.   

 

Enterokinase release of GFP. 

We then explored the release of GFP into solution from chitosan using the 

protease enzyme enterokinase (EK, Scheme 2B).  Unlike the initial experiments that used 

IMAC-purified GFP, these experiments were aimed at releasing GFP that was first 

captured from the PPT supernatant by tyrosinase-catalyzed conjugation to chitosan.  The 

conjugate was centrifuged to form a pellet, and the pellet was washed with PBS (pH 7.5).  

The pellet was then resuspended in PBS and incubated with EK.  Shown schematically in 

Fig. 4A, EK clips the protein sequence at the two specific EK recognition sites.  After EK 

cleavage, the pentatyrosine tag should remain attached to the chitosan chain and appear in 

the pellet.  The hexahistidine tag should separate from wild type GFP, and both should be 

released into solution.   
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Shown in Fig. 4B is the Western blot analysis of the EK reaction supernatant 

(denoted “EK”), the initial clarified lysate (denoted “LYS”), the PPT supernatant 

(denoted “PPT”), the conjugation reaction supernatant (denoted “C”), and the conjugate 

buffer washes (denoted “W1” and W2”).  Additionally, a known amount of (His)6-EK-

GFP-EK-(Tyr)5 was also analyzed (not shown).  The EK reaction supernatant does 

indeed contain soluble GFP.  Thus, EK can cleave GFP from the GFP-chitosan conjugate, 

and release the GFP into solution.  However, as indicated by the bar chart, the enzyme 

was not effective.  By comparing Western blot band intensities, we calculated that less 

than 10 % of the GFP conjugated to chitosan was recovered in solution via EK.  In 

comparison, when the reaction was performed over the same time period with soluble 

unconjugated (His)6-EK-GFP-EK-(Tyr)5, greater than 70 % was released from its N- and 

C- terminal tags (not shown).  A possible explanation for the ineffectiveness of EK when 

used with the conjugate is that the EK was not able to access its cleavage site (Gaillard et 

al. 1996).  This could be due to a change in folding of the (His)6-EK-GFP-EK-(Tyr)5  

when bound to the chitosan or due to blockage by the chitosan chains.   

It is important to note that the release of GFP into solution demonstrates that at 

least some (His)6-EK-GFP-EK-(Tyr)5  was initially conjugated to chitosan through the 

“pro-tag,”rather than through its naturally occurring tyrosine residues.  That is, the “pro-

tag” can be activated by tyrosinase to allow for the covalent conjugation of the fusion 

protein to chitosan. 
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Chitosanase release of fusion protein. 

To release (His)6-EK-GFP-EK-(Tyr)5 and (His)6-LuxS-(Tyr)5 into solution by an 

alternative method, we used the chitosan-hydrolyzing enzyme chitosanase.  For these 

experiments, (His)6-EK-GFP-EK-(Tyr)5 and (His)6-LuxS-(Tyr)5 were captured from PPT 

supernatants by tyrosinase-catalyzed conjugation to chitosan.  The conjugates were each 

centrifuged to form a pellet, and each pellet was washed with 20 mM sodium phosphate 

pH 6.4.  Each pellet was then resuspended in the phosphate buffer and incubated with 

chitosanase.  Additionally, the chitosanase reaction solution was purified via IMAC for 

analysis.   

To anticipate results from chitosanase release, it is necessary to consider some of 

the characteristics of this enzyme-polysaccharide system.  Chitosan is a copolymer of 

glucosamine and N-acetylglucosamine, and chitosanase-catalyzed hydrolysis results in a 

mixture of monomeric and oligomeric products (Wu et al. 2002a).  Because chitosanase 

was used after fusion protein capture by tyrosinase-catalyzed conjugation to chitosan, the 

released proteins should retain both hexahistidine and pentatyrosine tags, and be 

decorated by sugars of varying size.  Additionally, we anticipate the reaction mixture will 

also contain oligomers of hydrolyzed chitosan not conjugated to (His)6-EK-GFP-EK-

(Tyr)5 or (His)6-LuxS-(Tyr)5. 

We observed a color change during the chitosanase reaction.  Initially, the 

chitosan pellet appeared white and opaque.  By the end of the chitosanase reaction, the 

chitosan pellet had disappeared, and the resulting solution was opaque brown/orange and 

contained some small precipitates.  In addition, we observed a dramatic reduction in the 
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viscosity of the solution, which allowed us to directly load the reaction mixture onto 

SDS-PAGE and onto IMAC columns.   

Western blot analyses of (His)6-EK-GFP-EK-(Tyr)5 and (His)6-LuxS-(Tyr)5 

chitosanase reaction mixtures are shown in Fig. 5A and Fig. 5B, respectively.  Also 

shown are Western blot analyses of the initial clarified lysate (denoted “LYS”), the PPT 

supernatant (denoted “PPT”), the conjugation reaction supernatant (denoted “C”), and the 

conjugate buffer washes (denoted “W1” and “W2”; not shown for (His)6-LuxS-(Tyr)5).  

Additionally, known amounts of (His)6-EK-GFP-EK-(Tyr)5 and (His)6-LuxS-(Tyr)5 were 

also analyzed (not shown).  There was a significant amount of released (His)6-EK-GFP-

EK-(Tyr)5 in the corresponding chitosanase reaction solution (denoted “CE” in Fig. 5A).  

However, there was virtually no released (His)6-LuxS-(Tyr)5 observed in its chitosanase 

reaction mixture (denoted “CE” in Fig. 5B).  We believe this is due to blockage of the 

anti-poly-histidine binding sites by the hydrolyzed chitosan.  Anti-GFP antibody was 

used to analyze the GFP samples in Fig. 5A, and anti-poly-histidine antibody was used to 

analyze the LuxS samples in Fig. 5B.  When the same GFP samples were analyzed using 

anti-poly-histidine antibody, we similarly observed no released GFP in the chitosanase 

reaction mixture (not shown).  Additionally, when the chitosanase reaction mixtures were 

purified via IMAC, the eluted protein samples were shown to contain significant 

quantities of fusion proteins (denoted “CE-IM” in Fig. 5A and Fig. 5B).  Therefore, we 

believe the hydrolyzed chitosan present in the chitosanase reaction samples prevents the 

anti-poly-histidine antibody from accessing its binding site on each fusion protein.  By 

comparing Western blot band intensities, we calculated that the IMAC-purified 

chitosanase reaction mixtures in Fig. 5A and Fig. 5B contained greater than 90 % of the 
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amount captured by conjugation to chitosan.  Thus, the chitosanase enzyme was effective 

at hydrolyzing the chitosan, and the majority of (His)6-EK-GFP-EK-(Tyr)5 and (His)6-

LuxS-(Tyr)5 captured could be released through the chitosanase reaction.  This compares 

favorably with enterokinase release of GFP.   
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CONCLUSIONS 

 

 We report a facile method for the capture and release of recombinant protein from 

cell extract.  Protein capture from solution is based on a “pro-tag” that is enzymatically 

activated to conjugate the protein to the aminopolysaccharide chitosan.  Specifically, the 

“pro-tag” consists of five tyrosine residues that are activated by tyrosinase-catalyzed 

conversion into reactive o-quinones, which subsequently react with chitosan.  Because 

the “pro-tag” is “inactive” in the absence of tyrosinase, it is possible to use chitosan in 

initial protein recovery steps to coagulate cell debris from the cell extracts.   Additionally, 

we show that the recombinant proteins retain activity after being conjugated to chitosan.  

Recombinant protein release from the chitosan and into solution is achieved by an 

alternative to protease cleavage using the chitosan-hydrolyzing enzyme chitosanase.   
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