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The classification of minimal sets is a central theme in
abstract topological dynamics. Recently this work has been
strengthened and extended by consideration of homomorphisms.

Background material is presented in Chapter I. Given a
flow on a compact Hausdorff space, the action extends natural-
ly to the space of closed subsets, taken with the Hausdorff
topology. These hyperspaces are discussed and used to give a
new characterization of almost periodic homomorphisms.

Regular minimal sets may be described as minimal subsets
of enveloping semigroups. Regular homomorphisms are defined
in Chapter II by extending this notion to homomorphisms with
minimal range. Several characterizations are obtained.

In Chapter III, some additional results on homomorphisms
are obtained by relativizing enveloping semigroup notions.

In Veech's paper on point distal flows, hyperspaces are
used to associate an almost one-to-one homomorphism with a
given homomorphism of metric minimal sets. In Chapter IV, a
non-metric generalization of this construction is studied in
detail using the new notion of a highly proximal homomorphism.
An abstract characterization is obtained, involving only the
abstract properties of homomorphisms. A strengthened version

of the Veech Structure Theorem for point distal flows 1is



proved.

In Chapter V, the work in the earlier chapters is
applied to the study of homomorphisms for which the almost
periodic elements of the associated hyperspace are all
finite. In the metric case, this is equivalent to having
at least one fiber finite. Strong results are obtained by
first assuming regularity, and then assuming that the rel-

ative proximal relation is closed as well.
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CHAPTER 1
INTRODUCTION

1. Preliminaries.

This section is primarily a review of some of the
material in [7].

A transformation group, or flow, (X,T), will consist

of a jointly continuous action of the topological group T
on the compact Hausdorff space X. The group T, with
identity e, 1s assumed to be topologically discrete and
will remain fixed throughout this paper, so we may write X
instead of (X,T). If T acts on X wvia the map

F: XxT—T, we will write xt to denote F(x,t).

A point transitive flow, (X,x) consists of a flow X

with a distinguished point x which has dense orbit, i.e.,
xT = X. A flow is said to be minimal if every point has
dense orbit, or, equivalently, if it contains no proper
closed invariant subset. Minimal flows are also referred

to as minimal sets. Every flow contains minimal sets.

A homomorphism, or extension, of flows is a continuous,

equivariant map. A homomorphism of point transitive flows
is a homomorphism which preserves the distinguished point.
A homomorphism whose range is minimal is always onto, and a
homomorphism whose domain is point transitive is determined
by its value at a single point.

A point x € X is said to be almost periodic if, given

any neighborhood U of x, the set A = {t € T | xt € U}

is syndetic, i.e., there exists a compact set K ¢ T such



that AK = T. A point is almost periodic if and only if
its orbit closure is minimal.

The compact Hausdorff space X carries a natural
uniformity whose indices are the neighborhoods of the
diagonal in X xX. Two points x,x' € X are said to be
proximal if, given any index a, there exists a t ¢ T
such that (x,x')t € a. The set of proximal pairs in X

is called the proximal relation. X 1is said to be distal

if the proximal relation equals the diagonal and is said to
be proximal if the proximal relation equals X xX.

The points x,x' € X are said to be regionally

proximal if there exist nets, <xn> and <<x;> in X,

a net <tn> in T, and a point x" € X such that

X — X X t — x"
n n n

! ——s x! xVE = M
n n n

The relation thus determined on X 1is called the regionally

proximal relation. X is said to be (uniformly) almost

periodic if the regionally proximal relation equals the
diagonal. X is almost periodic if and only if T
determines an equicontinuous family of homeomorphisms of
X.
A homomorphism n: X—Y determines a closed, invariant,

equivalence relation on X, called R1T where

R = {(x,x') € XxX | m{x) = n(x')}.

Conversely, a closed, invariant equivalente relation R on



X determines an epimorphism n: X— X/R. Given wn: X—Y

we define the relative (to =) proximal relation on X to

be the intersection of RTT with the proximal relation on X.

A pair of points (x,x') 1in X are said to be relatively

regionally proximal, or to belong to the relative (to )

regionally proximal relation if there exist nets <xn> and

<x&> in X, a net <tn> in T, and a point x" € X such

that each (x ,x') ¢ R and
n n TT

X — X Xt — x"
n nn

Xl , X' Xl.t X”
n nn
Note that this is not the same as intersecting the regionally
proximal relation with Rn. The homomorphism w: X— Y is
said to be distal if the relative proximal relation equals

the diagonal, proximal if the relative proximal relation

equals Rn’ and almost periodic if the relative regionally

proximal relation equals the diagonal. Note that these
definitions correspond to our definitions for the absolute
case when applied to the unique homomorphism mn: X— 1, where
1 is the one-point transformation group.

Given a family {Xi} of flows we define the product
WT}_{Xi} in the natural way; i.e., (xl,xz,--')t 2
(x,t, x,t, *++). Given a family {(X;>x,)} of point
transitive flows, we define its product to be the point
transitive flow (<Xi>,2§1565 c TE_{Xi}. Given a family
of homomorphisms {ni: Xi——>Y}, where Y 1is fixed, we

define the product _ﬂ}_(ni: Xi——+Y) to be the homomorphism



mn: X—Y where X = {<x£> € TT;{X1}| ni(xi) the same for
all i} and w 1is defined by n(<x£>) =y 1if and only if
ﬂi(Xi) =y for each i. It is easy to see that X 1is a
transformation group and that w 1is a homomorphism.
n: X—Y, as constructed, is also called the pullback of
the family {ni: Xi——+Y}. These are all true products in
the sense of category theory.

Given a transformation group (X,T), we may regard T,
or an appropriate quotient thereof, as a set of self-

homeomorphisms of X. We define E(X), the enveloping

semigroup of X +to be the closure of T 1in XX, taken

with the product topology. E(X) 1is at once a transformation
group and a sub-semigroup of xX. Viewing E(X) as a
collection of functions, it has a natural action on X. We
let xp denote the point in X +thus obtained from x ¢ X
and p € E(X). Some important properties of E(X) are

summarized in the following lemma.

Lemma 1.1.1. Suppose E(X) is the enveloping semigroup

of X. Then

(£) Left multiplication by an element of E(X) is

continuous on E(X).

(ZZ2) Right multiplication by an element of T is

continuous on E(X).

(Z227) The identity, e, in E(X) has dense orbit.

(Zzv) The maps o,° E(X)— X defined by ex(p) = Xp

are homomorphisms with range xT.




(v) Given an epimorphism mw: X—Y there exists a

unique epimorphism w: E(X)—E(Y) such that for each

o = 0—
X € X, ex e"(x) .

(vi) For any set I, E(X'), E(X), and E(E(X)) are

all isomorphic, both as semigroups and as point transitive

transformation groups with base point e.

If E 1is some enveloping semigroup, and there exists
a homomorphism 6: (E,e)— (E(X), e) we say that E is an

enveloping semigroup for X. If such a homomorphism exists,

it must be unique, and, given x € X and p € E we may
write xp to mean x6(p) unambiguously. We make this
definition to evade confusion concerning which enveloping
semigroup we're talking about in situations where such a
distinction is irrelevant. Loosely speaking, any enveloping
semigroup for X acts on X in the same way that E(X)

does.

Lemma 1.1.2. If (X,x) and (Y,y) are point

transitive flows, and E 1is an enveloping semigroup for

both X and Y, there exists a (unique) homomorphism

v (X,x)— (Y,y) if and only if xp = xq for p,q € E

implies yp = yq.

The minimal right ideals of E(X), considered as a
semigroup, coincide with the minimal sets of E(X),
considered as a transformation group. Given a minimal

right ideal I in some enveloping semigroup, we will let



J(I) denote the set of idempotent elements in I.

Lemma 1.1.3. Let E Dbe an enveloping semigroup for

X, with minimal right ideals I, I'y I", etc. Then

(£) J(I) is non-empty, for each minimal right ideal I.

(Z2) up = p whenever p € I and u € J(I).

(222) Iu 1is a group with identity u for each wu ¢ J(I).

(iv) The collection {Iu | u € J(I)} partitions I.

(v) Given wu € J(I), there exists a unique u' € J(I')

such that wu' = u and u'u = u'. We say that u and u'

are equivalent idempotents and the relation thus defined is

actually an equivalence relation.

(vz) If u and u' are equivalent idempotents in I

and I', respectively, (I,u) and (I',u') are isomorphic

as point-transitive transformation groups.

(viZ) Given x € X, the following conditions are

equivalent:

(a) x 1is an almost periodic point;

(b) =xT = xI;

(¢) x = xu for some u ¢ J(I);

(viZ2) Given x ¢ X and a minimal subset K of xT,

there exists a minimal right ideal I' such that K = xI'.

Given an enveloping semi-group, E, for X, and an

element u ¢ E we say that u is a minimal idempotent if

u ¢ J(I) for some minimal right ideal I in E. We have



the following characterization of the proximal relation:

Lemma 1.1.4. Suppose E is an enveloping semigroup

for X. Then for any points x,x' € X (Z) and (Z7Z) are

equivalent:

(z) x and x' are proximal.

(22) There exists a minimal right ideal I in E

such that xp = x'p for every p ¢ I.

Moreover, if X is minimal, (2) and (ZZ) are

equivalent to:

(227) There exists a minimal idempotent u such that

%'y = X

It is also easy to see that if x,x' ¢ X and the pair
(x,x') 1is both proximal and almost periodic, then x = x'.

Let BT denote the Stone-Céch compactification of T.
Since T 1is discrete, BT may be regarded as the set of
ultrafilters on T. BT is a compact Hausdorff space with
the discrete space T a dense subset and any map from T
to a éompact Hausdorff space extends uniquely to BT.
Regarding right multiplication by a fixed element of T as
a map from T to BT, we may extend that map to BT. This
defines a point-transitive action of T on BT, with base
point e. For ©p € BT, Lp(t) = pt then defines another
map from T +to BT which we extend to BT to get a left-
continuous semigroup structure on BT. It may be shown

that (BT,e) 1is the essentially unique universally repelling



object in the cate%ory of point-transitive transformation
groups with acting group T. From this it follows that BT
is its own enveloping semigroup. Hence the minimal sets in
BT are all isomorphic and any one of these may be regarded
as a universal minimal set, i.e., as an essentially unique,
universally repelling object in the category of minimal
transformation groups. We will single out one of these
minimal sets and call it M. It is also clear that BT 1is
an enveloping semigroup for X, whenever X 1is a
transformation group with acting group T.

The set of idempotent elements in M, regarding M
as a semigroup, will be denoted by J. Given a point y
in some transformation group Y, we will let J(y) denote
{u€d | yus=y}

Given a compact Hausdorff space X, C(X) denotes the
Banach algebra of real-valued continuous functions on X
with the sup norm. Given two such spaces X and Y ‘there
is a bijective correspondence between the set of continuous
surjections Vy: X—Y and the set of monomorphisms
¥¥: C(Y)— C(X) such that Vy*(£)(x) = foy(x) for each
x € X and f € C(Y). This gives rise to a correspondence
between point transitive flow and the so called
T-subalgebras of BT which we explicaté below.

Given f € C(BT) and t € T we define the function
tf € C(BT) by (tf)(x) = f(xt) for all x € BT. Given
P € BT we define fp € C(BT) by (fp)(x) = f(px) for

all x € BT. A subalgebra, Q& of C(BT) is called a



T-subalgebra if it is norm closed and if +tf ¢ Q whenever
f eQ and t € T.

Given a point transitive flow (X,x), there is a
canonical homomorphism V: (BT,e)— (X,x). We define the
T-subalgebra, @, associated with (X,x) by @ = ¢¥*(C(X)).
Note that if (X,x) and (X',x') are isomorphic they give
rise to the same associated T-subalgebra.

Next we will see how to construct a point transitive
flow (|Q|, e|Q) from a given T-subalgebra Q in such a
way that if Q is associated with (X,x), then (X,x)
and (]Q|, e|a) are isomorphic.

If p ¢ BT we may define an endomorphism of C(gT),
which we also call p, by p(f) = fp. Given a
T-subalgebra Q, we let |Q| = {p|Q: p ¢ BT} and define
(pj)t = pt|& for t € T, where p|Q denotes the
restriction to QA of the endomorphism given by p, so that
plQ = q|Q@ iff fp = fq for all f € Q. |Q&| gets its
topology as a quotient of BT. Using the Stone-Weierstrauss
Theorem, it may be shown that (X,x) and (|Q|, e|Q) are
isomorphic.

The following lemma is used to characterize minimality

algebraically.

Lemma 1.1.5. Suppose the algebra Q is associated

with the point transitive transformation group (X,x) and

suppose u € J. Then =xu = u if and only if fu = f for

all £ ¢ Q.
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IF {Qi} is a family of T-subalgebras, Ny {Qi} is
itself a T-subalgebra, and U, {Q&} generates a

T-subalgebra, which we denote by \/i {Qi}'

Lemma 1.1.6. Suppose we have a family of T-subalgebras

Q.,, associated with point transitive flows (X.>%x,). Then

(¢) There exists a homomorphism : (Xi,xi)——+(Xj,xj)

if and only if Qj < Q.

(27) Vi {Oi} is associated with the product (X’<Xi>)’

where X 1is the orbit closure of <Xi> in TT} {Xi}.

(¢22) n,; {Q;} 1is associated with the essentially

unique, universally repelling object in the category of all

point-transitive transformation groups which are homomorphic

images of all the (Xi,x ), i.e., (X,x) 1is associated

i

with ﬂi {Qi} if and only if there exist homomorphisms

P (Xi,xi)——+(X,x) and there exists a homomorphism

v: (X,x)— (X',x') whenever (X',x') shares this property.

The following lemma takes care of change of basepoint.

Lemma 1.1.7. If the T-subalgebra Q is associated

with (X,x) and p ¢ BT, then (X,xp) 1is associated with

the T-subalgebra Qp, where Qp = {fp | f ¢ Q}.

2. Hyperspaces.

Given a compact Hausdorff space X, the hyperspace

X

2 is the space of all closed, non-empty subsets of X

with the Hausdorff topology. This can be described as
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follows: For each index a in the natural uniformity of X
we define an index a' on 2X by
a' = {(A,B) | aa) N B # ¢ and a(b) N A # ¢ for each

a €A and Db € B}.

The set of all such a' comprises a uniformity which yields
a compact Hausdorff topology on 2X. If X 1is metrizable
so 1is g%, Convergence in 2X may be described as follows:
Suppose Ai-—+A. Then x € A if and only if there exist
points xi € Ai such that xj——+x for some subnet <xj>

of <x£>. If X 1is a flow (with acting group T) then so

is 2X, where the action on 2%

is given by

At = {xt | x € A}. If w: X—Y is a homomorphism we will
also be interested in the sub-flow 2“, where 2" =

A ¢ 2% | A c nl(y) for some y € Y}. These flows were
heavily used and systematically studied in [11].

X is naturally imbedded in 2X, so any enveloping
semigroup for 2% is also an enveloping semigroup for X.
If A ¢ 2% and P is an element of an enveloping semigroup
X

for 2 we use the notation Aop to denote the action of

X

p on A within 2 and the notation Ap to denote the

set {xp | X € A}, which does not in general belong to 2X.
These two sets are not generally the same. However, we have

the following:

Lemma 1.2.1. Suppose A and B are elements of ZX,

P 1s an element of some enveloping semigroup for ZX, <tn>

is a net in T such that tn——+p, and t € T. Then:




12
() A < B= Ap ¢ Bp and Aop C Bop.
(27) x € Aop <=> x t X, where <xh> is some net

in A and <tm> is some subnet of <tn>.

(¢i2) At = Aot.
(Zv) Ap c Aop.

(v) If A is finite, Aop = Ap.

Proof: (4) 1is entirely obvious.

(2Z) follows from our description of convergence in 5%,

(Zz27) is just the definition of the action of T on 2%,
(Zv) Suppose x € A. Pick a net <tn> in T with
t —p, take X =X for all n and apply (ZZ) noting
that x_t_ -—xp.
nn
(v) Suppose A = {x 5%, 502 05% 1, with k finite
and suppose x € Aop. Then there exist nets <tm> in T

and <x > in A such that t —p and x t — x.
m’ m m m

However, since A is finite, <xm> must have a constant

subnet, <Xj>’ with each Xj = %y for some fixed 1,
1 <1i=%k. Thus x = lim xjtj = lim xitj = %X,P. Therefore
] k|

x € Ap. |

We may use (i) of the preceding lemma to define Aop
when p € BT and A 1is an arbitrary subset of X (not

necessarily closed). The following lemma is clear.

Lemma 1.2.2. Suppose A c X and p € BT. Then
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The following facts will also prove useful:

Lemma 1.2.3. Suppose #: X—Y is a homomorphism, E

an enveloping semigroup for 2% and 1 is a minimal set

[N
(V)]

in E. Then
(£) mw(A)op = w(Aop) for all A € 2%, p € E.
(27) w ' (B)op ¢ mw~!'(Bop) for all B ¢ 2Y, p € B,

(222) w '(y)op ¢ w™'(yp) for all y € Y.

(Zv) Suppose y 1is an almost periodic point in Y,

p €I, and r € I. Then wn~'(y)o(pr) = n l'(yp)er.

Proof: (i) Suppose y € w(A)op. Then there exists
nets <:yn> in w(A) and <tn> in T such that t —p
and y t -—y. Choose a net <xn> in A such that
ﬁ(Xn) =Yy, for each n. Taking subnets if necessary we
assume Xntn—-+x, for some x € X. Then x € Aop and
n(x) = y.

Now suppose y € w(Aop), so that y = n(x) for some
x € Aop. Choose nets <xn> in A and <tn> in T so
t =P and x_t —x. then ﬂ(xn)tn——+y, so y € w(A)op.

(Z2) This follows immediately from (7).

(Z27) This follows from (4Z) above and (v) of Lemma

(Zv) w1 (y)o(pr) = (w7 '(yloplor ¢ w ' (yplor by (Zi7)
and (Z) of Lemma 1.2.1. By Lemma 1.1.3 we can find u € J(I)

and g € I such that yu =y and pqu =gpu = u. Then



iy

1"

n~l(yplor n 1 (yplo(ur) = w~'(yplo(gpur)

m ! (yp)o(qupur) < w7 !(ypqu)o(pur)

(by (Z272) and (Z) of Lemma 1.2.1)

= wl(ywo(pur) = w l(y)o(pr). |

We will illustrate the power of hyperspace methods by
characterizing almost periodicity of a homomorphism n of
minimal sets in terms of the transformation group i
A similar result was obtained earlier by Glasner, using
different techniques.

We will need the following well-known lemma.

Lemma 1.2.4. Suppose w: X—Y is a homomorphism of

minimal sets, S is a dense subset of R", and x.x'.x" ¢ X

Then x and x' are relatively regionally proximal if and

only if there exist nets <xn>, <x$> in X, and <t;> in

T such that each (xn,x;) € S and

X — X x t —x"
n nn
x!'—x! x't —x"
n nn
Proof: The minimality allows us to specify x". A

uniform space argument shows that we can take the pairs

(x ,x') to be in' S. | |
n n

Given the homomorphism n: X—Y, we let m: A,

be the homomorphism defined by w(A) = y <=> A c 7 ! (y).

We have the following lemma.
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Suppose w: X—Y 1is a homomorphism with

Y minimal and

p € BT, and nets <xn> in «#7!'(y) and <tn> in T such

that X X, t

Proof: Let An

u € J(y). Then

since 1w is dis

for each n. Al
' =

x!' ¢ ﬂn {An0p}.

u. Now

(x} = N0 {A)

8 O B8 D

{(An

n distal and we have x,x' € X, y €Y,

a P and xntn——+x'. Then x' = xp.

!

{x_, | n' = n} for each n. Pick

Aocu = A for each closed A ¢ w7 l(y),

A ou = A
n

tal, and, in particular, Anou

so Xu = u. Clearly, ﬂn {Kn} {x} and

Pick q € M so g = qu and upq = qpu =

= 2 {An°(upq)}
°p)eq} > (N {A °p}Pleg 3 {x'leq = {x'q}.

n

Therefore x = x'q. Pick v ¢ J such that upv = up. Let

y'" = n(x'). Then y' = n(x') = #(lim x_t ) = lim(n(x_t ))

nn nn
lim ytn = yp = yup = yupv = y'v. We have x' = x'v also,
since w is distal. Finally, %' = x'v = x'uv = x'qpuv =
Xpuv = XUPV = Xup = XP.

Theorem o2

.6. Suppose mw: X-—Y 1is a homomorphism

of minimal sets.

Then the following conditions are

equivalent:

(2) w is

almost periodic.

(22) Each element of 2" is almost periodic.

(Z22) w 1is

(7:7)) o E

distal.

almost periodic.
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Proof (Zv) ==> (247) ==> (4i) 1s clear.
() => (Zv). Suppose A and A' are elements of "
which are relatively regionally proximal (relative to w).

Then there exists B ¢ 2" and nets <An> and <<A;> in

", <yn> in Y, and <tn> in T such that F(An) =

w(A') =y  for each n and
n n
A —— A At — B
n nn
A' — A A't —— B.
n nn
We must show A = A'. Consider an arbitrary x € A.
By symmetry, it will suffice to show =x ¢ A'. Taking

subnets if necessary, there exists X € An, for each n,
such that X~ Taking a subnet again, xntn——+xo for
some x = € B. Taking subnets two more times, we can find

points x; € A; such that xétﬁ——+x0 and a point x' ¢ A'

such that x;——+x'. We now have n(xn) = W(X;) =y , for

each n, and

R == X Xt — %
n nn
x!' — x! X't — x
n nn
Since w 1is assumed almost periodic, we have x = x'.
Therefore x € A' as required.
(Z2) ==> (42Z27). Consider y € Y and u ¢ J(y). Given
A € 2" with w(A) = y, it will suffice to show that Aou =
A, since we'll then have that every pair of elements in
w 1(y) is almost periodic.
Clearly, the element-wise almost periodicity of "

implies that = 1is distal which in turn implies that Bw = B
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whenever B ¢ n~!(y) and w € J(y).
Thus

A = Au c Aou.

y . p g N
Since 2 1s element-wise almost periodic, we have

Aov = A for some v € J(y). Therefore
Aeu = (Aou)v ¢ (Aou)ov = Ao(uv) = Aov = A

and we're done.

(Z22) => (7). Suppose x and x' are relatively
regionally proximal, with wn(x) = wn(x') = y. We must show
x = x'. MNow m is distal since w is, and w can be
obtained by restricting w. Therefore = is an open map
[see 4]. Therefore, for every y' € Y, there exists a net
<tn> in T such that ﬁ'l(y)tn——+n_l(y') (see Lemma
4.1.1). As a result, the set (v !(y)xnu"!'(y))T is dense
in Rn' Applying Lemma 1.2.4 we see that there exists nets

\ ] . —-1 .
<xn/ and <(xn> in w'(y) and <tn> and <(sn> in T

LS

such that
(a) x t —— x (b) xt s — x
nn nnmn
(¢) x't —— x! (d) x't s — x
nn nnmnmn
Taking subnets, we can find points X and x; in w=t(y)

and elements p,r € BT such that tnsn——>p} tn—*+r and

(e) x —> x (f) x' — %'
n 1 n 1

Applying Lemma 1.2.5 to (b) and (e), and (d) and (f) we get
that X p=x = x;p. Also n(xl) = n(x{) =y and n 1is

distal so ® = x;. Applying Lemma 1.2.5 to (a) and (e),



and (c) and (f) gives

X 2 X DR x;r = x',

18

X = xr and x' =

completing the proof.

1
X1

j 4N

Therefore



CHAPTER 11
REGULAR HOMOMORPHISMS

Regular minimal sets were first studied by Auslander in
[3]. A minimal set is said to be regular if it's isomorphic
to a minimal right ideal in some enveloping semigroup. We
call Z the regularizer of X if Z 1is isomorphic to the
essentially unique minimal right ideal in the enveloping
semigroup of X.

We extend these notions to homomorphisms.

1. Construction of the Regularizer.

In this section we will work with a fixed homomorphism
m: X—Y, where Y is minimal. We will construct a minimal
set N and a homomorphism w: N—Y which we call the
regularizer of .
T (y) -
Suppose y € Y. Then X is a transformation

group whose elements are functions from =~ !(y) +to X.

-1
Definition 2.1.1. Define zy e X" (v) by zy(x) = X

for all x € w !(y). Let E(w,y) be the orbit closure of

. — 7~}
zy, i.e., E(n,y) = zyT c X (Y).

Note that if Y is a singleton {y}, E(w,y) is just

the enveloping semigroup of X, considered as a transformation

group.

Definition 2.1.2. Let Fy: E(v,y)— Y be the unique

homomorphism with Fy(zy) S Vi

19
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We will show that the minimal sets of E(w,y) are
isomorphic and independent of the choice of y. N will be

defined to be the essentially unique minimal set thus defined.

Lemma 2.1.3. Suppose y € Y. Then E(X) is an

enveloping semigroup for E(w,y).

=
Proof: This follows from the fact that E(w,y) c x" ()

and EG" ) L B |

Lemma 2.1.4. Suppose that y € Y and that N and

N' are minimal subsets of E(w,y). Then there is an

isomorphism ¢: N—sN' such that (Fy]N')Oo = Fy|N.

Proof: By (viii) of Lemma 1.1.3 we can find minimal
ideals I and I' in E(X) such that N = zyI and
N' = zyI'. We choose a minimal idempotent u in J(I) so
that yu = y. Let u' be an equivalent idempotent in I'.
Then yu' = yuu' = yu = y. We wish to define a homomorphism
p: N—N' with w(zyu) = zyu'. By Lemma 1.1.2, we need only
check that given elements p and q in E(X) with
(zyu)p = (zyu)q, we also have (zyu')p = (zyu')q. Consider
such p and g. Since zyup = zyuq, we have xup = xuq
for all x € n '(y). For x € w7 l(y), we have xu' € n ' (y)
also, since yu' = y. Thus xu'p = xu'up = xu'uq = xu'q
for all x € n~!(y). Thus zyu'p = zyu'q and ¢ 1is well-
defined. Reversing this argument, there exists V: N'—N
with W(zyu') = zyu. Since a homomorphism of minimal sets

is determined by its value at one point, this proves that o
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is an isomorphism. Fyow(zyu) = v B Fy(zyuU so (FyIN')Ow B

m |N.
nyl I

Lemma 2.1.5. For any two points vy, y' €Y, there

exist minimal sets N € E(w,y) and N' ¢ E(m,y') and an

isomorphism : N'—sN such that (Fy]N)ow - Fy,IN'.

Proof: Let I be a minimal ideal in E(X) again
and pick minimal idempotents wu,u' € J(I) such that yu =y
and y'u' = y'. Since Y 1is minimal we can find p € I
with yp = y'. Then Range (zyp) = r=l{yip € " ¥{yp) =
Range (zy,). Thus, given elements q,r € E(X) with zy,q =
zy,r, it follows that zypq = zypr. Therefore we can define

a homomorphism V: E(w,y')—E(m,y) with W(zy,) = zyp.
T "

oy =
y v ¥y

zy,I and N = y(N'), recalling that

FyOW(zy,) = Fy(zyp) yp = ¥t = Fy,(zy,) so -

We now let N'

a homomorphic image of a minimal set is necessarily minimal.
If we can show that V|N' is one-to-one we'll have the
desired isomorphism. Suppose W(zy,r) = ¢(zy,s) for some
r,s € I. Then zypr = zyps and we must show zy,r =z ,s.
In other words, we need xr = xs, for all x € w l(y'). We
pick q € ITu so that q = qu and pq = gpu = u. Consider

x € m7i(y'). w(xq) = y'q = ypqg = yu = y. Thus =xq € n~l(y)

and we have xgpr = Xgps, since zypr = zyps. Finally,
XY = XUr = XQPpur = XgpPr = XgPS = XJPus = XUs = XS. |
Theorem 2.1.6. Suppose N and N' are minimal subsets

of E(m,y) and E(w,y') respectively. Then there exists an

isomorphism ¢: N—N' such that (?y,lN')om = Fy|N.
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Proof: Just combine the preceding two lemmas.

If ¢y: W—2Z and V¥': W'—7Z are transformation group
homomorphisms with the same range, we say that ¢ and V'
are isomorphic if there exists a transformation group
isomorphism 6: W'— W such that o6 = ¥'. Thus Theorem
2.1.6 defines an essentially (up to isomorphism) unique

homomorphism which we call w: N— Y.

Definition 2.1.7. Given a homomorphism n: X—Y,

with Y minimal, we call the homomorphism w: N— Y the

regularizer of w and we say that = is a regular

homomorphism.

Thus a homomorphism is regular if and only if it's

isomorphic to the regularizer of some homomorphism.

2. Abstract Characterizations.

In this section we obtain an abstract characterization
of the regularizer from which other characterizations follow.
In this section w: X—Y is a fixed homomorphism with Y
minimal once again and w: N—Y is the regularizer of =
as constructed in the previous section. Recall that M 1is

the universal minimal set.
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Definition 2.2.1. We say that a homomorphism V: Z—Y,

Z and Y minimal, is regular with respect to w: X—Y if,

given any pair of homomorphisms +y: M—X and 6&: M—72
with mwoy = Y086 there exists a homomorphism 8: Z-—X with

gos = y and mwoB = V.

It will turn out that m: N— Y can be characterized
as the unique "least" homomorphism which is regular with
respect to mwn: X— Y. To obtain this result we first make
some observations about w. To model =, we choose y € Y
and let N be some minimal subset of E(m,y). We take
ff = Fy]N. We may vary the choice of y and N to suit our

convenience since all choices are isomorphic.

Lemma 2.2.2. Suppose vy and '’ are homomorphisms

from M into N with woy = moy'. Then there exists an
automorphism 6: N—N with 6oy' = vy and mwo® =
M
/ A"
N’)r \N
2y 8 Z
™, x//ﬁ
Y

Proof: Regarding M as a minimal ideal in BT we may
represent N by N = zyM. Let u be a minimal idempotent

in J. We can find elements p and p' in M such that



24

ZgP = y(u) and zyp' = y'(u) since N is minimal. Then
zypu = y(u)u = y(uu) = y(u) = z2.P- Similarly, zyp'u = zyp'.
Also yp = F(zyp) = moy(u) = moy'(u) = F(zyp') = F(zy)p' =
yp'. We pick another minimal idempotent v € J(y) and

pick g € Mv so q = qv and pq = gpv = v. Now we'll show

that the functions zyp and zyp' have the same range.

Consider x € Range(zy), recalling that Range(zy) = {5,

Let =x' = xp'q. Then we have mn(x') = n(xp'q) = yp'q
ypq = yv = y, 80 X' € Range(zy) also. We have zyp' =

y'(u) = y'(uu) = y'(Wu = zyp'u and similarly zyp = zypu.

Therefore xpu xp and x'pu = x'p. Now xp' = xp'u =
Xxp'vu = xp'qpvu = x'pvu = x'pu = x'p.  Thus Range(zyp') c
Range(zyp). Similarly Range(zyp) c Range(zyp').

We define 6 so e(zyp') = zyp. It is clear from
the above that zyp'r = zyp's —=3 zypr = zyps for any
r,s € BT. Thus 6 1is a well-defined homomorphism. We can

reverse this to get 67!, so 6 1is actually an automorphism.

Finally 6oy'(u) = G(Zyp') W y(u), so goy' = y. ||

It will soon be seen that the property ascribed to
m: N— Y 1in the preceding lemma characterizes regularity.
The next lemma concerns factoring homomorphisms from M

into X through N.

Lemma 2.2.3. Given a homomorphism y: M-—X, there

exist homomorphisms x: M— N and X: N—X such that

Xox = ¥y, mWol = w, and mWox = wWoy



Proof: Pick some minimal idempotent u € J. Let
x = y(u) and y = n(x). We model N by taking N = zyM.
We now take x(u) = zyu and X(zyu) = x. Consider p,q € BT.
If up = u then up = z uq. If up = z_u
p q, zy P . q zy ) % q
then xp = xq since x € Range(zyu), M and N are both

minimal, so x and X are well-defined homomorphisms, chosen

to make the diagram commute. |

Proposition 2.2.4. w 1is regular with respect to .

Proof: Given homomorphisms y and & as shown in the
diagram below we must find a homomorphism © to complete the

diagram

We apply Lemma 2.2.3 to find homomorphisms x: M—N
and A: N—X such that Xox = ¥y, wo\x = w, and mnox = wox.
We then apply Lemma 2.2.2 to obtain an automorphism ¢ with
906 = w and mwop = w. We then take 6 = rog and we're

done. The complete picture is shown below.
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M
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Definition 2.2.5. Given a homomorphism VY: W—7Z we

say that V¥ 1is coalescent if every endomorphism 6: W—W

with o6 = ¥ 1is actually an automorphism.

This is a generalization of the notion of coalescence

of transformation groups.

Proposition 2.2.6. w: N—Y 1is coalescent.

Proof: This is an immediate consequence of Lemma 2.2.2.

We are now in a position to prove the main result of

this section.

Theorem 2.2.7. Suppose a homomorphism w': N'-——Y is

regular with respect to w: X— Y. Then there exists a

homomorphism ¥: N'—— N such that mwo}y = n'. Moreover,

any other homomorphism onto Y which is regular with

respect to n and which has this additional property is

isomorphic to m: N—Y.

Proof: We represent N by taking N = zyM. Pick
u € J(y). Define y: M—N by «y(u) = zyu. Pick an element
r € n'71(y) ¢ N' and define &: M—N' by &(u) = ru. Now
n'os(u) = w'(ru) = yu = F(zyu) = moy(u). Thus w'od = mwor.

Consider any x € w !'(y). We define 6. N—X by
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ex(zyu) = xu. This is well-defined since xu € Range(zyu).

Now nOGXOY(u) noex(zyu) = fwl{xn) = ¢y = ' (pu) = w'06(n),
Thus n0(6xoy) = n'o§. By the regularity of n' with
respect to n there exists a homomorphism O N'— X

i - - 1
with ¢ 08 (exoy) and moQ ',

The situation so far is shown by the following diagram.

We still wish to construct : N'—N.

We'll now see that for any m,m' € M, 6(m) = 6(m') =—>

vy(m) = y(m'). Observe that «~(m) = y(m') <=> zm =

zym' <==> xm = xm' for all x € n~!'(y). Consider an

arbitrary x € v !(y). We have 5§(m) = s(m') —=—> wx°6(m) =

¢ o6(m') => 0§ oy(m) = 6 oy(m') => 6 (z m) = 6 (z m') =>
X x x R x 'y

xm = xm'.

We now define V: N'—N by vy(ru) = z s Suppose

rup = ruq for some p and q in PBT. Then 6&(up) =

rup ruq = 6(uq). Thus z Up = y(up) = y(uq) = zyuq.
Therefore ¢ is well-defined. Also woy(ru) = F(zyu) =
yu = n'(ru) so moy = w'.

Finally, suppose n": N"—Y is another homomorphism

which is regular with respect to m: X— Y and which has

the property just established for w: N—Y. We wish to
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find an isomorphism a: N"—N with mwoa = w". Since both

n and w" are regular with respect to w and both have

the property shown above we can find homomorphisms a: N"— N
and B: N—N" such that mwoa = n" and n"oB = m. Since =

is coalescent, a@of 1is an automorphism of N. Therefore a

is one-to-one and hence an isomorphism. |

Using the language of category theory, we can describe
m: N—Y as the unique universally attracting object in the
category of homomorphisms which are regular with respect to
me X—Y.

In [3], Auslander obtained several different

characterizations of regular minimal sets. These extend to
homomorphisms.
Proposition 2.2.8. Given a homomorphism w: X—Y

with X and Y minimal, the following statements are

equivalent:

(Z) w is regular.

(£2) m 1is regular with respect to itself.

(Z227) =n 1is its own regularizer.

(Zv) For any two points x,x' € X with a(x) = w(x')

there exists an endomorphism 6: X— X such that 6(x) and

x' are proximal and wo6 = 8.

(v) For any two points x,x' € X with (x,x') almost

periodic and w(x) = w(x') there exists an endomorphism

6: X— X such that 6(x) = x' and wno@ = 9.
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Proof: (¢) ==> (v). Since (x,x') almost periodic,
we can find an idempotent u € J with (x,x")u = (x,x').
We define homomorphisms y: M~—X and «+': M—X by
y(u) = x and «'(u) = x'. Applying Lemma 2.2.2 then yields
the required 6: X—X.
(v) => (Z2). Given homomorphisms +y: M—X and 6&: M—X
with woy = no§ we must find 6: X—X with 60§ = vy and
mo® = 0. Pick u € Jd. Let x = y(u) and x' = 6(u). Then
(x,x")u = (x,x') so (x,x') is almost periodic. Applying
(v) yields the necessary homomorphism.
(72) =—> (4274). Suppose n': X'— Y 1is some other
homomorphism which is regular with respect to n. Pick an
arbitrary y € Y and u € J(y). Pick x € w7 !'(y) and
x' € w' " !(y) arbitrarily. We can define homomorphisms
y: M—X and 6: M— X' with nw'o§ = moy by y(u) = xu
and 6(u) = x'u. By regularity of =«' with respect to X
we can find a homomorphism 6: X'— X such that mnog = n'
and 608 = y. Thus = attracts any other homomorphism which
is regular with respect to n. Therefore, by Theorem 2.2.7,
w 1is its own regularizer.
(¢22) =—> (4). By definition.
(iv) => (v). If a pair of points is both proximal and
almost periodic, the two points are identical.
(v) => (Zv). Suppose x,x' € X and n(x) = w(x'). Pick
u € J(x). Let x" = x'u. Then x"u = (x'u)u = x'u so X"
and x' are proximal. (x,x")u = (x,x") so (x,x") is
almost periodic. Applying (v) then yields the required

endomorphism. |
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Since regular homomorphisms are coalescent, "endomorphism"
may be replaced by "automorphism" in (Zv) and (v).

A subset of a transformation group is called "almost
periodic" if it's the range of an almost periodic element in
an appropriate‘product space. This is not the same as being
an almost periodic element in a hyperspace. Condition (v) of
Proposition 2.2.8 tells us that the fibers of regular
homomorphisms are partitioned by their maximal almost periodic

subsets, which are of the form =n~!(y)u where y € Y and

u € Jd(y).

Corollary 2.2.8. Suppose w: X—Y 1is a regular

homomorphism and I is a minimal right ideal in some

enveloping semigroup for X. Suppose y € Y. Then the

collection of sets P = {w '(y)u | u € J(I) and yu = y}

partitions w7l (y).

Proof: We'll say that two points in n !'(y) are
P-related if they belong to some common member of P. We
must show that this is an equivalence relation. Reflexivity
follows from the fact that all points in X are almost
periodic, X being minimal. Symmetry is obvious. Suppose
(x,x') and (x',x") are P-related. Then (x,x') and
(x',x") are almost periodic pairs in w7 !(y). By (v) of
Proposition 2.2.8, we can find automorphisms a and B
such that a(x) = x', B(x') = x", woa = w, and wof = w.
Then «°f 1is an automorphism also with (aoB)(x) = x" and

mo(aoR) = w. Pick an idempotent u ¢ I such that =xu = x.
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“Then yu =y and x"u = (@) (x)u = (aoP)(xu) = (a°B)(x) =
= x". Thus (x,x") 1is a P-related pair also and the P
relation is transitive. ||
We can draw some additional conclusions from Proposition
2.2.8. Given a homomorphism V: Z-—W, we define Aut ¢ =
{6 | 8 an automorphism of Z and Vo8 = ¥}. We say that

is a group extension if whenever =z,z' € Z and. y(z) = V¥(z'),

there exists 6 € Aut V¥ such that 6(z) = z'.

Corollary 2.2.10. A homomorphism of minimal sets is a

group extension if and only if it's distal and regular.

Proof: This follows from condition (v) ‘of Proposition
2.2.8 and the fact that a homomorphism of minimal sets is
distal if and only if the fibers are almost periodic sets

[see 4]. ]

Corollary 2.2.11. A proximal homomorphism of minimal

sets is always regular.

Proof: If a pair of points is both proximal and almost
periodic, the two points are the same. Thus the identity
automorphism connects any almost periodic pair in a common

fiber and condition (v) of Proposition 2.2.8 applies. | |

roposition 2.2.12. Suppose mw: X—Y 1is a homomorphism

of minimal sets. Then n is regular and almost periodic if

and only if m is a group extension and Aut n admits a

compact Hausdorff topology making it a topological group and

making its action on X Jjointly continuous.
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-
Proof:<=We've already shown that group extensions are

always regular, so we just need to show that w 1is almost
periodic. Suppose (x,x') 1is a relatively regionally
proximal pair in X. Then there exist nets <xg> and

<x;> in X and <tn> in T such that n(xn) = n(x;) for

each n and:

X — X Xt — X
n n
X! — x! X't — x
n n
Since w 1s a group extension, each x; = an(xn) for some
a € Aut m. Thus we have
(a) x_—— x (¢) x t — x
n nn
(b) a (x )—— x' (d) a (x t ) — x
n n n nnn

Taking subnets if necessary, we can assume a —a for
some a € Aut m, since Aut m 1is assumed compact Hausdorff.
Applying the joint continuity to (a) and (b) gives a(x) = x'
and (¢) and (d) give «a(x) = x. Thus x = x' and = 1is
almost periodic.

—> We know we have a group extension by Corollary 2.2.10.
By the Ellis Joint Continuity Theorem [see 6] it will suffice
to show that the action on X and the multiplication on
Aut m are separately continuous.

First we'll show that given elements x,x' € X and a

net <an> in Aut m and a € Aut m we have
an(x)-——+ a(x) <=> an(x')‘——+ a(x').

Assume an(x)——+a(x). It will suffice to show that some
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subnet of <an(x')> converges to a(x') so we may assume
that <an(x')> converges. Pick p € BT with xp = x' and
a net <tﬁ> in T with t_—p. Then

lim {an(x’)> E 1im <1im<<an(x)ta>> = 1§m <aj(x)tj>
for some subnets <aj> of <an> and <tj> of <tm>. The
almost periodicity of w implies that 1lim <aj(x)tj> =
a(x)p = a(x') by Theorem 1.2.6 and Lemma31.2.5. Thus
an(x')——*a(x') as required.

Next we fix x € X and y €Y with w(x)) =y,

a —alx ) is a bijection from Aut w to n‘l(yo). We use

this to topologize Aut n with the subspace topology of

n—l(yo) in X which is compact Hausdorff. We then have

a — g <==> ¢qg (x ) — x
n n o

If X — X in X and a € Aut w we surely have
a(xn)——>a(x). If a —>a in Aut m and x € X we have
a —a =—>a (x )—a(x ) => a (x)—a(x). Thus the action
n n o 0 n
is separately continuous.

Suppose Bn——+B € Aut w and a € Aut m. Then Bn——>B

==> Bn(xo)——+B(xo) —> Bn(a(xo))—~>B(a(xo) —> B _oa— poa.
Also B —p —> Bn(xo)——+B(Xo) => a(Bn(Xo))——+a(B(X0))
==> qof -~ aof. Thus the multiplication in Aut n 1is

separately continuous. | |

3. Automorphism Groups.

We let G Dbe the automorphism group of the universal

minimal set M. Given a homomorphism y: M —X we may
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define a subgroup G(X,y) = {a € G | yoa = y}. Varying v
while keeping X fixed yields conjugate subgroups. These
groups and their quotients contain considerable information
about minimal sets. They have been studied extensively by
Ellis [7] and Auslander [4]. In particular, it's known
that the normal subgroups of G correspond to regular
minimal sets, up to proximal homomorphisms. We'll see that
this extends to regular homomorphisms.

In this section, n: X—Y is a fixed homomorphism
of minimal sets and y 1is a fixed point in Y. We'll
consider only those homomorphisms y: M-—X such that
woy(m) = ym for all m € M. Thus mwoy 1is independent of
the choice of y and we may write G(Y) instead of G(Y,noy).
We will also write G(X) instead of G(X,y) when the choice
of ¥ is irrelevant.

The following lemmas are from [4]:

Lemma 2.3.1. Given homomorphisms y: M—X and

y't M—X with X minimal, there exists an automorphism B

of M such that y'of = .

Lemma 2.3.2. Suppose X and Y are minimal and we

have homomorphisms +y: M—X and n: X—Y. Then n 1is a

proximal homomorphism if and only if G(X,y) = G(Y,moy).

Proposition 2.3.3. If = is regular, then G(X) is

a normal subgroup of G(Y) and Aut(n) is naturally

isomorphic to G(Y)/G(X).
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Proof: Choose some +v: M—X as indicated before and
let G(X) = G(X,y). Suppose a € G(X,y) and B € G(Y). We
must show that PB~'af € G(X,y). By Proposition 2.2.8, there's

a unique ¢ € Aut(w) such that ¢oyof = y. Therefore

vo (B 1aB) = goyoBo(B laB) = goyoaoB = goyoB = y. Thus we
have B7'ap € G(X,y) proving that G(X,y) is a normal
subgroup.

As noted above, given B € G(Y) there exists a unique
¢ € Aut m such that g¢oyop = y. Define F: G(Y)— Aut(m)
by TF(B) = ¢~!. We'll show that F is a group epimorphism
and that ker F = G(X,y). Consider B, and B, in G(Y).

Let B, = B,°Bp, and let F(Bi) =9y forn 4 = 1,25 and

Now ¢2°¢1°Y°B1°Bz = ¢2°Y°Bz = v so we must have 9,00,

-1 - -1 -1 - =
¢, Therefore ¢, T 0 e, and F(B1°Bz) = F(Ba) =
F(p )oF(B, ). Therefore F is a homomorphism.

Consider B € G(Y). F(B) = identity <=> identityeyop = ¥
<==> yofB zy <=> B €G(X,y). Thus ker F=G(X,y). Finally, consider
¢ € Aut m. By Lemma 2.3.1, there is an automorphism B of
M such that ¢ loyoep = y. Also woyoB = nO@TIOYOB = woy SO

B € G(Y). Thus F(B) = (¢~1')"! = ¢. Therefore F is onto.|]|

To prove a partial converse we need the following

technical lemma:

Lemma 2.3.4. Suppose we have homomorphisms of minimal

sets y: M—X and w: X—Y. Suppose u € J, x = y(u),

and y = n(xo). We represent the regularizer of m by

taking N = zyM. We define a homomorphism P: N—X by
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P(zyu) = x,u. Suppose ¢ € Aut m and Poyogp = Poy for

every V¥ € Aut n. Then ¢ is the identity automorphism on

N.
Proof: It will suffice to show that @(zyu) = Z .
Pick r € M such that w(zyu) = zyr. Let 1r' = uru. Then
p(z u) = ¢(z_u)u = z ru = z uru = z r' also. Range(z ) =
¥y y y b4 y y
w 1(y), so we must show that xr' = xu for all x € n”-'(y).

Consider such an x. Pick p € M so that x = X p. We
wish to define € Aut(w) by w(zyu) = z_pu. Suppose

x' ¢ Range(zyp). Then x' = x"p for some x" € n7'(y).

Therefore w(x') = n(x"p) = yp = n(xo)p = w(x) ¥
Range(zy) = n '(y). Thus Range(zyp) C Range(zy) and ¥ is
well-defined. Also FOW(zyu) = F(zypu) S YpUu ¥ ¥ B F(zyu)
so y € Aut(m).

Finally, we see that Poyoyp = Poy =——> Powow(zyu) B
Pow(zyu) =D PoW(zyr') = Pow(zyu) = P(zypr') = P(zypu) s
P(zyupr') = P(zyupu) =D xoupr' = R upy =—> g pr' = R DU —>

Xr' = xu and we're done. |

We can now prove the following partial converse to

Proposition 2.3.3.

Proposition 2.3.5. Suppose mw: N—Y is the regularizer

of the homomorphism of minimal sets n: X—Y. If G(X) is

a normal subgroup of G(Y) there is a proximal homomorphism

P: N—X with wop = 7.

Proof: Pick an idempotent u € J, & homomorphism
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y: M—X, and x € X such that y(u) = x ~ and "(Xo) = y.
Represent N Dby N = zyM. Define a homomorphism 6&6: M—N
by &(u) = z U Define P: N—X by P(zyu) = XU =R
We then have the foilowing commutative diagram:

It will suffice to show G(N,8) = G(X,y), by Lemma
2.3.2. 1It's clear that G(N,8) < G(X,y). We'll show that
G(X,y) ¢ G(N,8). Consider a € G(X,y). We must show that
a € G(N,8), i.e., that 6oa = 6. We have mosoa = moyoq =
mos so there exists an automorphism ¢ € Aut(w) with
pod = Soa, by the regularity of = and Proposition 2.2.8.
If we can show that ¢ 1is the identity we'll have 6oa = §
and we'll be done.

Consider any ¥ € Aut(w). By Lemma 2.3.1, we can find
B € G such that Vo8 = 60Bf. This implies that Vv 'o6 = 6o0p7!
as well. Also, WOBOB = moyo§ = MO =—=> MoyoB = Moy SO
B € G(Y). Now BoaoB™! € G(X,y) by normality. Thus
Poyogoy o5 = PoyoposoB ' = PoyosoaoB ! = PooBoaof ! =
yoBoaoB~! = v = PoS. Since & is onto, we have Poyogoy ™! =
P which implies Poyop = Poy. Applying Lemma 2.3.4, we see

that ¢ 1is the identity and we're done. ||

We conclude this section by computing the group

associated with the regularizer of a homomorphism of minimal
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sets. This turns out to be the largest subgroup of G(X)

which is normal in G(Y).

Proposition 2.3.6. Suppose w: X— Y 1is a homomorphism

of minimal sets, with regularizer w: N—Y. Then G(N) =

N {BG(X)B~! | B € G(Y)}.

Proof: We choose y: M—X, 6: M—N, and P: N—X
as in the proof of the preceding proposition. We regard G(X)
as G(X,y) and G(N) as G(N,8). Clearly G(N,5) c G(X,y) c
G(Y) and we have G(N,8) a normal subgroup of G(Y) by
Proposition 2.3.3. Therefore G(N,8) ¢ BG(X,y)B"! for each
B € G(Y). We still must show N {BG(X,y)B~! | B € G(Y)} ¢
G(N,8). Consider a € N {BG(X,y)B™' | B € G(Y)}. We wish to
show a € G(N,8). Let F: G(Y)— Aut(w) be the group
homomorphism defined in the proof of Proposition 2.3.3. By
definition, F(a) !'ogoa = & so F(a)os = Boa. Since F is
onto, every element of Aut(m) can be represented as F(9),
for some 6 € G(Y). Consider an arbitrary F(6) ¢ Aut(w).
We have TF(6)os = 806 and F(8) 'os = 6067 !. Since
a €N {pG(X,v)B~! | B € G(Y)} and 6 € G(Y), there exists
X € G(X,y) such that a = 6 !'oXo6. Thus aco™! = g lon,
We then have PoF(8)oF(a)oF(8) 'os = PoF(6)oF(ad)osopn ™! =
PoF(6)080a06™! = PoBoBoaoB ! = vyo0oaod ™' = y0000 loh = yor =
v = Po§. & 1s onto, so we've shown that PoF(8)oF(a)oF(e)~ ! =
P, i.e., PoF(8)oF(a) = PoF(8). Applying Lemma 2.3.4, we get

that F(a) is the identity. Thus a € ker F = G(N,5). |
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4., An Algebraic Characterization.

In this section we fix an idempotent u € J and consider
only point-transitive transformation groups whose base point
is left fixed by u. Such transformation groups are necessarily
minimal. There is a natural isomorphism between G, the
automorphism group of M, and the group Mu, with the
element a € G going into the element a(u) in Mu. We
will use this isomorphism in deliberately confusing the two
groups. We will write G(X,x) to mean G(X,y) where
vy: M—X 1is defined by +y(u) = x.

Suppose we have a homomorphism w: (X,x)— (Y,y).

Recall that we can represent the regularizer as
e (N,zyu)—~>(Y,y) where Zg € X"_l(Y) and zy(x) = % Pep
all x € w'(y). The following proposition describes N

algebraically.

Proposition 2.4.1. Suppose the T-subalebras O and

B are associated with (X,x) and (Y,y) vrespectively.

Then (N,zyu) is associated with the T-subalgebra

V {Qa | a € 6(Y,y)}.

Proof: We first observe that w7 !(ydu = {xa | a € G(Y,y)}.
We have y: M— X with «y(u) = x and G(Y,y) = G(Y,movy).

If a € G(Y,y), mn(xa) = moyoa(u) = moy(u) = y and xau = xXa

so xa € w '(y)u. Suppose x' € n !'(y)u. Since (X,x) 1is
point-transitive, xp = x' for some p ¢ BT. Since xu = X
and x'u = x' we have xupu = x'. We can take a = upu

and we have a € G(Y,y) as required.
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Since zyu consists of the elements of w~'(y)u,
"strung out" in a product space and N 1is the orbit closure
of zyu in that product space, the result follows by applying

(Z7) of Lemma 1.1.6 and Lemma 1.1.7. | |

Corollary 2.4.2. Suppose again that the T-subalgebras

Q. and ® are associated with (X,x) and (Y,y) respectively.

Then m: (X,x)— (Y,y) 1is regular if and only if Qa c Q

for all a € G(Y,y).

Proof: Since a homomorphism is regular if and only if
it is its own regularizer, Proposition 2.4.1 tells us that
is regular if and only if Q= V {Qa | a € G(Y,y)}. However,
since we're assuming xu = X, we always have Q = Qu ¢

V {Qa | a € G(Y,y)}. The result follows. |

In [7], occasional mention and use is made of algebras
like those discussed here. Much of the development in this
chapter could be carried out in the algebraic context, and
certain arguments would simplify. However, this would have
several disadvantages. Firstly, in discussing w: X— Y,
we would have to assume both X and Y minimal, while
really it's only the minimality of Y which is essential.
Secondly, we'd have to carry unwanted base points and we'd
have to repeatedly re-prove that the choice of base point
doesn't matter. Finally, such an approach would be less

intuitive.
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5. Products and Admissible Properties.

In this section we establish a result connecting
regularizers and products of homomorphisms and use it to show
that the regularizer depends only on the minimal sets involved.
Admissible properties were studied in [3] where it is shown
that the class of regular minimal sets coincides with the
class of P-universal minimal sets for admissible properties
P. We extend this result to homomorphisms.

Given a homomorphism w: X—Y, with Y minimal, we
let K(w) denote the class of homomorphisms which are regular
with respect to w. We have seen that the regularizer of =«
is the essentially unique universally attracting object in
K(m).

We'll consider a family of homomorphisms L Xi——+Y,
with Y minimal. Let Fi: Ni——+Y be the regularizer of
m.: X;—Y, for each i. Let n: N—Y be the product of
the homomorphisms 7w, : N,—Y so N = Kn> | n, €e N and

A 1

Fi(ni) the same for all 1i}. Let N be a minimal set in

N and % be the restriction of w to N.

Proposition 2.5.1. %: N——Y is the essentially unigue,

universally attracting object in 0, K(m, ). Also ¥ is
regular.

Proof: TFirst we observe that 7 ¢ K(w.) for any given
i. Suppose we have homomorphisms «v: M——+Xi and 6§: M— N

with Tos = miov- We must find 6: N-—+xi completing the

diagram



Letting Pi: ’I:I'——+Ni be the projection we have a diagram

where ¢ 1s the homomorphism whose existence is guaranteed

by the regularity of "y with respect to "y We just take
0 = chPi.
Now suppose w': N'-—Y is also in 0y K("i)' Pick a

point y € Y and an idempotent u € J(y). Pick T ¢ N and
n' € N' such that n'(n') = %(n) =y, Tu =7, and n'u = n.
It will suffice to show that, given p and q in BT,

n'p = n'q —> Np = NIq as this will insure the existence of a
homomorphism a: N'— N such that a(n') = n. Now we can
write T = <ni> where ny € Ni for each i, ngu = n, and

Fi(ni) = y. Thus we need only show n,p = n.q for each 1.

. .o -1 - . -1
We define PRI (y)——>Xi by zi(x) = x for all =x ¢ e (y).

Then we may represent Ni as ZiM and, by regularity, there

1

exists an automorphism By of Ni such that Bi(ziu) n

i)

I

for each i. Therefore it suffices to show that Z,up

z;uq, i.e., that xup = xug for all x ¢ n{l(y).
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Given x ¢ n{l(y), we can define homomorphisms x: M-—+Xi

and A: M—N' such that x(u) = xu, and Xu) = n'. We

have a diagram

.
W X
.L/
TSNP 1
Xi<\ 8 /N
n Lt
i\ W
Y

since n' ¢ K(ni) implies the existence of 6. Thus xup =
6(n'p) = 8(n'q) = xuq.

Next we see that T is regular. Suppose (n,n') 1s an
almost periodic pair in ¥ !'(y) with n = <np> and n' =
<n;>. Then (ni,ni) is an almost periodic pair in F{l(y),
for each i, and we can use the regularity of the
homomorphisms Fi to get the necessary automorphism.

Since W: N-—Y is regular, it is also coalescent.

Thus, if there is another universally attracting object in

N; K(r,), it must be isomorphic to . |

Next we see that the regularizer of wn: X— Y, where X
is not necesarily minimal, depends only on the restrictions
of m to minimal subsets of X.

Given m: X— Y, with Y minimal, let {wi} be the
collection of minimal subsets of X and let My ® n|wi,
for each i. Let w: N—Y be the regularizer of = and

let m: N—Y be the universally attracting object in

ﬂi K(ni).



. . ~v . - .
Proposition 2.5.2. ® and w are isomorphicj; i.e.,

there exists an isomorphism 6: N— N such that mog = ¥.

Proof: Since w is the essentially unique universally
attracting object in K(m) it suffices to show that
meN, K{n,) and 7 € K(m).

1 i

Suppose we're given a: M——»wi and B: N— Y such that
Mo = m,oa. To show o€ K(r,) we must find y: N—W,

completing the diagram below

/M
a \P
gl RE
i Y P
m k_ i
X

However, the existence of y 1is guaranteed since Wi c X,
Ty = n|Wi, and w € K(w). Similarly, given 6: M—X and
At M— N with w08 = mox we must find ¢ N— X completing

the diagram

to show N € K(v). We can do this, since 6(M) must be one

of the sets W,, w, = n|W,, and & € K(w,). |
i i i i

Definition 2.5.3. Given a property P of homomorphisms

and a minimal set Y, we say that P 1is Y-admissible if

() Y has a P-extension.
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(z7) Given a family of P-extensions Myt XY,

homomorphisms obtained by restricting the product w: X—Y

the

to minimal subsets of X also have property P (here
X = {<xi> | ni(xi) the same for all i}). We say that P

is admissible if it is Y-admissible for every minimal set Y.

Definition 2.5.4., If P is a property of homomorphisms,

we say that mw: X—Y is a P-universal extension of Y if

it is universally repelling in the category of P-extensions

of Y.

Proposition 2.5.5. A homomorphism n: X—Y, with Y

minimal, is regular if and only if it's a P-universal

extension, for some Y-admissible property P.

Proof: =>Define a homomorphism : Z—Y to have
property P if and only if there exists a homomorphism
§: X—7Z with Vo6 = w. =w 1is P-universal by construction,
but we still must show that P is Y-admissible. Suppose
we have families of homomorphisms vy Wi——>Y and 6 ¢ x——+wi
with Yjob, = m for each i. Let V{: W—Y be the product
and suppose w = <w£> is an almost periodic point in W. It
will suffice to find a homomorphism y: X—W such that
y(x') = w for some x' € w '(y) and Voy = m. Let y =y(w)
and pick an idempotent u € J(w). Pick x' € n-'(y) so
u = x'. For each 1, pick %, € éil(wi) SO xiu = Xy
n(xi) = n(x') and (X',Xi) is an almost periodic pair, for
each 1, so there exist automorphisms ei on X such that

! - 2 . ! - t Y+
ei(x ) = Xy - Define y: X— W by y(x') = (ﬁioei(x s



46

Then y(x') = w.

= Let {ni: Xi——rY} be the family of P-extensions of Y
and let %: N-——Y be the essentially unique, universally
attracting object in ﬂi K(ﬁi). Then the Y-admissibility
of P and the method of construction of 7 implies that ¥
is a P-extension. The construction also tells us that, for
each 1, there exists a homomorphism 6, ﬁ——»Xi with

~s

[av) . . .
nioé = nm so ® 1s P-universal, T 1is regular, hence

coalescent, and this implies that it is isomorphic to any

other P-universal extension of Y. ||

Corollary 2.5.6. If P is a Y-admissible property

and Y is minimal, there exists an essentially unique P-

universal extension of Y.

Proof: Let {ﬁi: Xi——+Y} be the family of P-extensions
of Y and let ¥: N-—Y again be the essentially unique,
universally attracting object in K(ﬂi). Them w dis the

desired object, by the proof of the preceding proposition. |

Next we show that distal, almost periodic, and proximal
are all admissible properties of homomorphisms. Since the
identity homomorphism is always distal, almost periodic, and
proximal it will suffice to show that condition (Z7) of

Definition 2.5.3 1is satisfied in each case.

Proposition 2.5.7. Distal and almost periodic are

admissible properties of homomorphisms.

Proof: Assume we have a family of distal (almost periodic)
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homomorphisms m Xi——rY with product w: X—Y and
projections Pi: X—X, . Then if (x,x') 1s a relatively
proximal (regionally proximal) pair in X each

(Pi(x), Pi(x')) is relatively proximal (regionally proximal)

in Xi and the result follows. ||

The universal distal and almost periodic extensions of

minimal sets are used extensively in [7].

Lemma 2.5.8. Suppose w: X—Y 1is a homomorphism of

minimal sets. Then n is proximal if and only if w7~ !(y)u

is a singleton whenever y € Y and u € J(y).

Proof: ==> Suppose we have y € Y, u € J(y) and
w(x) = w(x') = y. Then the pair (xu,x'u) is proximal and
almost periodic. Therefore =xu = xu'.
<= QObvious. ||
Proposition 2.5.8. Proximal is an admissible property

of homomorphisms.

Proof: Suppose Y 1is minimal and we have a family
"yt Xi——+Y of proximal homomorphisms and suppose Z is a

minimal subset of the product w: X—Y. Let P_: Z—X,

i
denote the projections and let Wi = Pi(Z)’ a minimal set.
Suppose x and X' are in Z and w(x) = w(x') = y. Pick
a minimal idempotent wu € J(y). By the preceding lemma, we

just need xu = x'u. Let x = <xi> and x' = <xi>. Applying
the lemma to the homomorphisms ni|wi we get Xgu = Xiu for

each i, completing the proof. | |
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We will also show that a homomorphism of minimal sets

is distal (almost periodic) if and only if its regularizer

is. The next two lemmas are well-known.
Lemma 2.5.10. Given a diagram of minimal sets,
X
N\‘
i J
P
Y

n 1is distal if and only if both X and ¢ are distal.

Proof: It is clear from the definition that X and ¢
distal implies = distal and that = distal implies X\
distal. Proposition 5.22 of [7] says that, since X and
W are both minimal, X\ carries the proximal relation on
X onto the proximal relation on W. From this it follows

that w distal implies A distal. | |

Lemma 2.5.11. If we have a diagram of minimal sets

with w almost periodic, then ¢ 1is almost periodic.

Proof: By Theorem 1.2.6, 2™ is element-wise almost
periodic and it will suffice to show that 2% is element-wise

almost periodic. Suppose A ¢ 2°. Then A7!'(A) ¢ 2" and
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AH(A) = (A71(A))ou for some u € J. Then
Aou = (M(AT1(A)))ou = A((ATI(A))ou) = A(ATI(A)) = A
and A 1is an almost periodic element. |

Proposition 2.5.12. A homomorphism of minimal sets is

distal (almost periodic) if and only if its regularizer is.

Proof: Given wn: X—Y, with X and Y minimal and
n distal (almost periodic) the regularizer is also, by its
method of construction, since distal (almost periodic) is an
admissible property.

If w: N—Y is the regularizer of n: X—Y and w
is distal (almost periodic) then so is w by Lemmas 2.10

and 2.11, since w factors through . ||

Remark. The notion of a "universal object" used here
and elsewhere in the literature of topological dynamics
differs from standard usage. Generally an object Y in a
category K 1is called "universally attracting" if, given
any object X in K, there exists a unique morphism from
X to Y. Such objects are automatically unique in the
sense that given two such there is a unique isomorphism
between themn.

We call the object Y in the category K wuniversally
attracting if, given an object X in K, there exists some
(not necessarily unique) homomorphism from X to Y. The
uniqueness of a universal object in this sense remains to be

proved. We generally do this by using a '"coalescence"
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property (every endomorphism is an automorphism).



CHAPTER 111
RELATIVE ENVELOPING SEMIGROUPS

The enveloping semi-group E(X) of a transformation
group, X, 1s at once both a semigroup and a transfor-
mation group. Both of these structures carry important
dynamical information about X. Given a homomorphism
mn: X—Y, with Y minimal, we have constructed
transformation groups E(w,y), for each y € Y which in
some ways generalize the transformation group structure of
E(X). This analogy is pursued further in this chapter.
However, E(m,y) has no semigroup structure. We will
define another object associated with the homomorphism w,
called S(m,y), for each y € Y, which is a semigroup.
Some of the information in the semigroup structure of E(X)
will generalize to S(mw,y). Generally, the properties of
E(X) split in two directions when relativized, with the
transformation group properties going to E(w,y) and the
semigroup properties going to S(m,y).

Once again, in this chapter we'll be dealing with a
fixed homomorphism w: X— Y, with Y minimal.

Let Pn(y) = {(x,x'") | x,x'" proximal in X and
n(x) = n(x'") = y}, for each y € Y. The following theorem

generalizes a result of Ellis [7].

Theorem 3.1. Let y € Y. Then P (y) 1is an equivalence

relation if and only if E(w,y) contains just one minimal set.

51
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Proof: ==> Suppose we have y €Y with P _(y) an
equivalence relation. Recall that each minimal set in
E(n,y) 1is of the form zyI, for some minimal right ideal
I in E(X). Suppose I and I' are minimal right ideals
in E(X); we'll show that zyI = zyI'. Pick equivalent
idempotents u and u' in J(I) and J(I') vrespectively,
such that yu = y = yu'. Consider x € n7!'(y); it will
suffice to show that =xu = xu'. We have (x,xu) ¢ Pn(y)
and (x,xu') ¢ Pﬂ(y). Therefore (xu,xu') ¢ Pn(y) by
hypothesis. Since xu and xu' are proximal, there exists
an idempotent u" in some minimal right ideal I" in E(X)
such that u" 1is equivalent to u and u' and xuu" =
xu'u"., We have xu = xuu" = xu'u" = xu'.

<== Suppose E(mw,y) contains just one minimal set. Consider

points x, x', x" din X such that (x,x') é Péy) and
(x',x") EInﬁy). Then there exist minimal right ideals I

and I' in E(X) such that xp = x'p for all p ¢ I and
x'q = x"q for all q € I'. By hypothesis zyI = zyI' o)

we can pick p € I and q € I' so zyp = zyq. Then xq =

Xp = x'p = x'q = x"q. Thus x and x" are proximal .and
(%s2") E'Réy). Réy) is obviously reflexive and symmetric

and we've shown Iﬂﬁy) transitive so we have that Iﬂfy) is

an equivalence relation. |

Corollary 3.2. The relative (to ) proximal relation

is an equivalence relation if and only if E(w,y) contains

just one minimal set, for all y € Y.
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Examples of Markley [14] show that there are
homomorphisms mn: X —Y such that Pﬂ(y) is an equivalence
relation for some points y € Y and not for others. Let C
be a minimal subset of the circle under the action of an
intransitive homeomorphism without periodic points. Then C
is a Cantor set and there exists a homomorphism ¢: C—Y,
where Y 1s a circle with an irrational rotation, such that
each fiber is either a singleton or a doubly asymptotic pair
of endpoints of an interval excluded from C. A distal
homomorphism {: X—C is obtained by taking a "finite skew
product" of C and the discrete space {l,+*+,n} under the
action of the permutation group Sn. Take n = goy. Then if
y € Y is the image of a doubly asymptotic pair in C, Pn(y)
will not generally be an equivalence relation but if ¢ 7' (y)
is a singleton, then Pn(y) is the diagonal.

Some further consequences of Theorem 3.1 will be useful

later.

Proposition 3.3. If the relative (to =) proximal

relation is closed it is also an equivalence relation.

Proof: Take y € Y. We need only show that E(n,y)
contains just one minimal set. Consider such minimal sets
zyI and zyI' where I and I' are minimal right ideals
in E(X). Pick equivalent idempotents u and u' in J(I)
and J(I'), respectively, such that yu = yu' = y. Consider
x € m '(y) and pick a net <(tn> in T such that tn——*u'.

We have x and xu relatively proximal; hence xt and
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xutn are relatively proximal for each n3; hence xu' and
xuu' are relatively proximal, since that relation is closed.
However, (xu', xuu') 1is an almost periodic pair. Therefore
xu' = xuu' = xu. Since x was an arbitrary point in 1w ~!(y),

we have 2z u = z u'. Therefore 2z I = z I'. ||
y y ¥ y

Proposition 3.4. If both X and Y are minimal then

the relative proximal relation is closed for w: X—Y if

and only if m = yoX where X 1is a proximal homomorphism

and vy 1is a distal homomorphism.

Proof: ==> Let P denote the relative proximal
relation. P1T is certainly invariant, hence it is a closed
invariant equivalence relation and PTT € Rn' Letting

W = X/PTT we have uniquely defined homomorphisms i: X-—W
and y: W-—Y such that +yoX = m. Clearly 2\ 1is proximal.
Proposition 5.22 of [7] says that since X and W are

minimal, X carries the proximal relation on X onto the

proximal relation on W. Suppose w and w' are proximal
and +v(w) = y(w'). Then there exist x,x'" € X which are
proximal and such that Xx) = w and X(x') = w'. We have
m(x) = yoh(x) = y(w) = y(w') = yor(x') = w(x'") so (x,x')

is in the relative (to 1w) proximal relation. Therefore

AMx) = Mx'") and w = w'. Therefore y 1is a distal
homomorphism.
<— Suppose we have a net <(x_,x!)> in X2 with each

(x_,x!) relatively proximal and (x;x') ¢ X? such that

(x_,x')— (x,x'"). Then, for each n, X(x_) and X(x')
n i n n
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are proximal, by Proposition 5.22 of [7] and Yok(xn) =
YOX(x;). Since vy 1s distal, we have X(xn) = k(xé) for
each n. Therefore M(x) = AMx') and x and x' are
relatively proximal since X is a proximal homomorphism. ||

Next we define the semigroups S(w,y) associated with
a homomorphism w: X—Y. TFor y €Y, 1let E_ = {p € BT |

¥

yp = y} and define an equivalence relation ~ on Ey by

p ~q if and only if =xp = xq for all x € w~'(y). For

PssTs8 E By, we have that p~q and r ~ s implies

pr ~ gs. Thus the quotient Ey/w carries a semigroup
structure.
Definition 3.5. Given a homomorphism w: X-—Y and

y € Y, the semigroup S(w,y) is defined by S(m,y) = Ey/w.

Proposition 3.6. Suppose w: X—Y is a homomorphism

of minimal sets. Then n is distal if and only if S(w,y)

is a group, for each y € Y. Moreover, in this case, each

S(w,y) is isomorphic to Aut m, where w: N—Y is the

regularizer of .

Proof: Given an element p € Ey, for some vy, we'll

let P denote the equivalence class of p in S(w,y).
Suppose S(m,y) is a group, x,x' € w'(y), and x and x'
are proximal. Then there exists a minimal idempotent u € BT
such that x = xu = x'u. Then u E\Ey and U € S(m,y). By
hypothesis, we can find p ¢ Ey such that P = u~'. Then

x' = x'up = xup = x. Thus, if each S(w,y) is a group,

must be distal.
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Now suppose n 1is distal. Consider y € Y and

u € J(y). We have = !(y) = w7 !'(y)u so we may represent

m: N—Y by taking N = zyuT = zyT. Define a function
F: E —Aut m by F(p) = «
¥

F is well-defined since endomorphisms of minimal sets are

if and only if (z_J) = .
i nly a zy zyp

determined by their value at one point and since Aut m

is transitive on the fibers of w. F is onto, since
zyT = N. Also, for p,q ¢ Ey we have
F(p) = F(q) <=> 2P T 2.9 <=> p ~ q.
Thus F induces a bijection T: S(m,y)—>Aut n. Consider
p € Ey and suppose F(p) = a. There exists an automorphism
L p: M—M defined by Lup(m) = upm for m € M. We can
u

define a homomorphism A: M— N by A(u) = 2 Then TwoX\ =

FokoLup and, by the regularity of w, there exists an
a' € Aut m such that a'o\ = XOLup. Now a'(zy) = a'oi(u) =
ML (u) = Aupu) = z pu = z p = a(z ). Thus a' = a and

up y ¥ y

F{plox = XOLup. Now consider q € Ey and suppose F(g) = B.
Th FE = B ) = F oAx(u) = oL (u) =
en (pq)(zy) (upugq (zy) (upuq) upugq u
AL oL (u) = aoxoLi (u) = a°Boi(u) = a°B(z_). Thus
up ugq uq ¥

?(3Ei) = F(pgq) = a°B -when F(P) = a and TF(J) = B. Thus

ar 14

is an isomorphism and S(mn,y) is a group. ||



CHAPTER IV
Xx* AND Y¥

Given a homomorphism mn: X—Y of metric minimal sets,

Veech, in [16] constructed a diagram

0
T w
\7
w

XY

51 1Y

Koresisep ¥
i1

where the homomorphism n* is open and the homomorphisms &
and vy are almost one-to-one. He used this to obtain his
well-known structure theorem for point distal minimal sets.
Ellis used a similar, but different construction to extend
Veech's theorem to point-distal, quasi-separable
homomorphisms in [8]. McMahon and Wu studied a non-metric
version of the original Veech construction in [13], obtaining
a partial generalization.

Here we obtain a complete generalization of this
construction in the non-metric case. The notion of a "highly-
proximal" homomorphism, recently formulated by Auslander, is
essential and is studied in some detail. Certain uniqueness
results are obtained. Our results are applied to strengthen
Ellis' version of the Veech Structure Theorem. These results

are also applied to almost finite extensions in Chapter V.

1. Open and Highly Proximal Homomorphisms.

We call a homomorphism open if it's an open map. Since

we always work with compact Hausdorff spaces we may formulate

57
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openness quite easily in terms of nets. Thus a homomorphism
n: X— Y 1is open at a point x € X if given any net <yi>
in Y with yi——+ﬁ(x) there exists a net <xj> in X with
xj-—+x and <ﬁ(Xj)> a subnet of <y > The following lemma

s y p . i
puts this in terms of the enveloping semigroup action on 2 .

Lemma 4.1.1. Suppose Y minimal and y, € Y. Then

m: X—Y 1is open at all points of w~!(y ) if and only if

w1 (y)op = n_l(yo) whenever y € Y and p € BT such that

YP = Y,-

Proof: => Consider y and p with yp = y,+ Surely

n l(y)op ¢ w i (yp) = ﬂ'l(yo). Consider x ¢ n-'(y, ). Pick
a net <ti>, in T such that ty—p. Then Yty —+ ¥,
Taking a subnet if necessary, we can find XD in X such
that X, X, and with each n(xi) = yti. Thus we have
(xit;)ti-—>x0 and each xitgl ¢ n '(y). Therefore
x, € n7'(y)op.

<== Suppose we have y, and a net <y£> in Y with
y; —Yy, and x ¢ nhl(yo). For each i we can find
p; € BT such that Yy = Y, Py Taking a subnet if necessary,
we can assume p,——p for some p ¢ BT. Then YoP =
lim y,P; = ¥, SO, by hypothesis, 1lim n”l(y0)°pi = n"(y0)°p=
n"l(yo). Thus, for each i, we can pick

~i -1
X, € (yo)opi c (yi) so that x,—x . Therefore

is open at X, |

It is clear from the proof that we can replace BT by

M in the above lemma. It is also clear that n 1s an open
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homomorphism if and only if w~!(y)ep = n~!(yp) for any
y €Y and p € BT.

The following lemma is also useful:

Lemma 4.1.2. Given a homomorphism w: X—Y with Y

minimal, the following are equivalent.

() w 1is open.

(¢2) For every y € Y and p € BT, w '(ydop = w~1(yp).

(¢22) Tor every y € Y and p € M, w7 l(y)op = n~-1(yp).

(iv) Tor some y € Y and every p € M, nu~l(y)op =

w1 (yp).

Proof: We only need show (Zv) ==> (4¢7). Suppose (zZv)
holds for some y € Y. Pick y' € Y and p € M arbitrarily.
We must show w !'(y')ep = n~!(y'p). Pick q € M such that
yqg = y' and v € J such that pv = p. Then w l(y'dop =
nl1(y'p)ov (by Lemma 1.2.3) = m~!(ygplov = (w1 (y)egplov (by

(Zv)) = uw-1(yqpv) (by (iv) again) = v ! (y'p). | ]

Suppose X and Y are eompact Hausdorff spaces. A

map ¢: Y— 2% is said to be upper semi-continuous if

{y € Y| 9Cy) € U} is open whenever U is an open subset
of X. The following proposition is often quoted without

proof. We provide a proof.

Proposition 4.1.3. Suppose Y is a compact Hausdorff

space, X 1s compact metric, and the map ¢: Y— 2% is

upper semi-continuous. Then ¢ is continuous on a dense,

G

5 subset of Y.
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Proof: Por each A & 2% and for each positive integer’
i, let Li(A) equal the minimum number of open balls of
radius 1/i required to cover A (A 1is always compact).

The following facts are easy to see:

(a) Suppose A,B ¢ X with A a proper subset of B. Then
Li(A) < Li(B) for some 1.

X

(b) Suppose we have a net <An> in 2% with A —A.

Then for each i, Li(An) < Li(A) for sufficiently large n.

Now suppose O is an open subset of Y. We'll show

that ¢ 1is continuous on a G5 subset of 0. We define a

sequence of sets

0 = @] > P > 0 > P D eee D0 DP‘D--.
0 0 1 1 i 1

as follows:

Let Oo = 0. Let Pi be a closed subset of Oi which

has non-empty interior and let 0409 ¥ {y € Int By |

L;(¢(y)) = m(i)} where m(i) = min {Li(w(y)) | v € Int P.}>

for each 1i.
To insure that everything is well-defined we must verify

that Oi open 1mplies Oi+1 open. Suppose Oi is open

and y € Oi+1' Then there exist open balls Bl""’Bm(i)’

each of radius 1/i such that ¢(y) ¢ B, U =2= U Bm(i)' By

the upper semi-continuity of ¢, y has an open neighborhood
3 ' L B '

Q with o¢(y') ¢ B, U U Bm(i) for all y' € Q. Then

Q N Int Pi is an open neighborhood of ¥y which is contained

in Oi+l' Thus Oi+l is open.

We have N {Oi} =N {Pi} # ¢ Dby compactness. We'll
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show ¢ to be continuous on 0N {Oi}. Consider vy € N {Oi}
and a net ‘<yﬁ> in Y with y,—Y and ¢(yn)——+A, for
some A € 2%. We must show that A = ¢(y). The upper
semi-continuity of ¢ directly implies A < ¢(y). In light
of (a), it then suffices to show Li(A) > Li(w(y)) for all

i. Consider some i > 0. For some N we have y_ € 0,
1 n iy g B

for all n = Nl, since Oi+1 is a neighborhood of y. By

(b), there exists an N, such that Li(w(yn)) < Li(A)

whenever n = Nz. Now pick an n = N, Nz. Then

Li(w(yn)) = Li(@(y)) = m(i) since both y and y  —are in

Oi+1' Finally, we have Li(A) > Li(m(yn)) = Li(w(y)) and

we're done. |

This proposition is the key to some of those results in
topological dynamics which hold for metric spaces only. We

will just use the following corollary.

Corollary 4.1.4. Suppose X and Y are compact metric

spaces and V: X—Y 1is a continuous map. Then V¥ 1is open

at all points of V¥7'(y) for a dense, G set of points

§)
y € Y.
Proof: 1V continuous implies V¥71': Y~—>2x upper semi-
continuous. For y € Y, V¥~! is continuous at y if and

only if ¥ 1is open at all points of V7 !(y). L

Proposition 4.1.5. Suppose mw: X—Y 1is a homomorphism

with Y minimal. Then the following are equivalent:

() All the almost periodic elements of 2" are

singletons.
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(27) For some y € Y and some net <t > in Ty

lim <n7'(y)t > 1is a singleton.

(227) TFor some y € Y and some p €BT, n~'(ylop 1is a

singleton.

Proof: (4¢) <=> (£4i) 1is obvious as is (7) => ({11)
since an element A ¢ 2" is almost periodic if and only if
Aou = A for some u € J. We show (£i7) ==> (7).

Suppose y € Y, p € BT such that wn !(y)op 1is a
singleton. Pick u € J(y). Consider an almost periodic
element A € 2". Pick y' € Y and u' € J such that
Aou' = A and A c n7l(y'). Pick q ¢ M so ypq = y'.

Using Lemma 1.2.3 we have

A

Aou' c w~l(y")ou' = w '(yupqlou'

m 1 (y)o(upqu') c (n"t(y)eplo(qu')

and this last set is a singleton; cornsequently A is also. ||

Definition 4.1.6. We say that a homomorphism w: X— Y,

with Y minimal is highly proximal if the three equivalent

conditions of Proposition 4.1.5 are satisfied.

A simple argument shows that a highly proximal extension
of a trivial minimal set is itself trivial. Suppose w: X— 1
is such an extension. Then Xou 1is a singleton for u ¢ J.
Pick a net <tn> in T with t —u. Then Xou = 1im th =

n

lim X = X, so X 1is a singleton. This means that the notion
n

of a highly proximal homomorphism is purely relative, being

devoid of content in the absolute case.
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A homomorphism is said to be almost one-to-one if some
fiber is a singleton. Next we see that highly proximal is

a non-metric generalization of almost one-to-one.

Proposition 4.1.7. Suppose w: X—Y 1is a homomorphism,

with Y minimal and X metrizable. Then = is highly

proximal if and only if n is almost one-to-one.

Proof: Almost one-to-one implies highly proximal in
any case. Assume that w 1is highly proximal. X metriz-
able implies Y metrizable, so Corollary 4.1.4 applies and
we can find y € Y with n open at all points of ¢~ ! (y).
Pick u € J(y). Then n~!(y) = w7l(y)ou, a singleton, by

Lemma 4.1.1. 'I

Certain results concerning almost one-to-one homo-
morphisms require a metrizability assumption which can be
removed by substituting "highly proximal" for "almost one-to-
one." Highly proximal is a nicer notion to work with since
it is homogeneous in the sense that it can be defined
without distinguishing a special set of points in the range
space.

Next we'll see that the class of highly proximal
homomorphisms is closed under composition and under certain
kinds of products and inverse limits. The corresponding
properties of almost one-to-one homomorphisms hold only if

we remain within the category of pointed minimal sets.



U

Lemma 4.1.8. Suppose we have homomorphisms of minimal

sets w: X—Y and ¢: Y—7Z. Then ¢om 1is highly proximal

if and only if both ~ and ¢ are highly proximal.

Proof: ===> Assume ¢on is highly proximal; pick 2z € Z
and u € J(z). Pick x so (n"'(p~i(z)))ou = {x} and let

y = w(x). Then

¢ '(z)ou

(nlnw~ (e (z))))ou = nw((w (e t(z)))ou)

n({x}) = {y}
so ¢ 1s highly proximal. Also
71 (y)ou ¢ (w1 (p~1(z)))ou = {x}

so m 1is highly proximal.
<== Assume both n and ¢ are highly proximal. Pick
z € Z and u € J(z). Take x ¢ X and y € Y so

e~ (z)ou = {y} and w7 !'(ylou = {x}. Let X\ = gom. Then
A (z)ou = (n7l(p !lz)))ou ¢ wl(ep~ (zZ)ou) = w l(y)
S0
A"l(z)ou = AT!(z)Suou ¢ m~l(ylou = {x}.

Thus X 1is highly proximal. |

Lemma 4.1.9. Highly proximal is an admissible property.

Proof: Consider a family my Xi——>Y of
highly proximal extensions of a fixed minimal set. Let W
be some minimal set in the product X = {<x> ¢ 77; {x;} |
ni(X{ﬁ the same for all i}. Let wn: W—Y be the natural

homomorphism. Suppose y € Y and u € J(y). There is an
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x4 in each X, such that {§i} & n{l(y)Ou. Suppose
(x> € n”'(y)ou. Then there is a net <t > in T with
t —u and an element <x!> ¢ W such that x!t -—x,

81 b B in L
and w.(x}) =y for each 1. Therefore x ¢ n;l(y)ou
for each i. Thus <> =<(§£>, and w”!(y)ou = {<§i>}.

Thus w 1is highly proximal. | |

Suppose  {(X,,x,) | i € I} is an inverse system of
point transitive flows with homomorphisms Tt (Xi,xi)——+(Xj,xj)
whenever 1 > j in the directed set I. Such a system has a

unique inverse limit (X_,x_) where x_ =<(x£> and X_ =

<x£>T = WT; {Xi}. Given an inverse system of flows {Xi}
with homomorphisms Ty without base points it is possible
to choose basepoints in a way that is consistent with the
homomorphisms Yij' This follows from the fact that the
inverse limit of an inverse system of compact Hausdorff

spaces and continuous maps is necessarily non-empty [5].

Definition 4.1.10. Suppose {Xi | i € I} is an inverse

system of minimal flows with homomorphisms Yij: Xi——*Xj
whenever i > j. Suppose (X_,x_J) is the inverse limit of
the point transitive system {(Xi,xi) | 1 € I} for some
choice of base points X, € Xi consistent with the

homomorphisms ... We then say that X is a pointed
1] o

inverse limit of the system ({X; | i € I}.
Thus an inverse system of minimal sets {Xi | i¢ I}
has at least one pointed inverse limit X_. In fact X_

can be chosen to be minimal; Jjust let a fixed u € J act
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on one choice of base points Xy € Xi to obtain an almost

periodic set of base points.

Lemma 4.1.11. Suppose {m.: X 6 —Y | 1 €I} is a

family of proximal homomorphisms of minimal sets. Let

X = Kxp ¢ TTi {X.} | "i(xi) the same for all 1i}. Then

X contains a unique minimal set.

Proof: Suppose <x€>, <x£> are almost periodic points
in X. Then there exist idempotents wu,u' € J such that
<xi> = <xiu> and <(x£> = <x£u'>. Fix a coordinate 3j € I.

We can pick p € M so p = upu' and xjp z x3 by the

minimality of Xj' Now we'll show xi = X,P for an arbitrary
coordinate i € I. We have u_ (x.p) = uw,(x.p) = n, (x!) =

i 1 J J J J
ﬂi(xi). Therefore (xip,xi) is a proximal pair since "y

is a proximal homomorphism. Also (xip,xi) is almost
S s 3 1 - 1 | - 1
periodic, since (Xip’xi) = (xip,xi)u - Thus =x,p = x;

and we have <:x;>.=<(x£>p. Therefore any two minimal sets

in X are the same. ||

Lemma 4.1.12. Suppose we have an inveérse system of

minimal sets {Xi | 1 € I} with homomorphisms Tij whenever

i > j in the directed set I. Suppose every Ty is highly

proximal and suppose the system has a least element Xo’ s0
that each Xi is an extension of X,+ Then the system has
a unigue minimal pointed inverse limit X_, and the canonical

projections Pt Xm——+Xi are all highly proximal.

Proof: Suppose X_  1is a minimal pointed inverse limit.
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Then X, ¢ x> ¢€ TT; {X,} | Yio(xi) the same for all i}.
Hence X_  must be the unique minimal subset of
{<xi> € TT; {X;} [ Yio(xi) the same for all i} by Lemma
4.1.11.

The projection P : Xm—-—+Xo is highly proximal by
Lemma 4.1.9 and the other projections Pi: Xm——+Xi are

highly proximal by Lemma 4.1.8. |

2. Construction and Basic Properties of X* and Y¥

For the next few pages n: X—Y will be a fixed
homomorphism with Y minimal. We'll show that there is a
unique minimal set contained in the orbit closure of a fiber
in 2“, and that this is independent of the fiber chosen.

Given a minimal set M in BT and y € Y we let

ota

YyM = w1 (y)oM.

Proposition 4.2.1. Given minimal sets M and M' in
BT and points y .y, € Y, Y’;O’M 2 Y’;I’M,.

Proof: First we show that Yio’M = Y?o,M,. Pick

equivalent idempotents wu ¢ M and u' € M' with y =
y,u = yu'. m 1 (y, Jou ¢ n‘l(yo) so n"l(yo)ou =
n‘l(y0)°(uu') = (ﬂ‘l(yO)Ou)Ou‘ & n“l(yo)°u'. Likewise

n=l(y,)ou' ¢ n7'(y,)ou and we have n7'(y dou = n~!'(y dou'

and Y¥ n y* , 1s non-empty. Since minimal subsets
yosM Yo ' M
are disjoint or equal, we have Y" = Y¥ .
J q b }’O’M yo’Ml
Next we show that Y¥ .= Y¥ .. Once again it will
Voo M y,-M

suffice to show that the two minimal sets have a point in
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common. Pick p € M' such that Y,p = ¥,- Pick a minimal

idempotent u € M' such that pu = p. Then, using Lemma

1.2.3,
n“(y0)°p = ﬂ‘l(yo)o(pu) = n“(yop)ou = n"‘(yl)ou.
We have n_l(yo)op € Yio,M' and n"l(yl)ou € Yzl’M,. | |
We've now shown that Y* is independent of the

y,>M

choice of y and M. We call the resulting unique minimal
set Y¥. We have a natural homomorphism +: Y*—Y where
for A € Y®, «y(A) =y if and only if A c w~'(y).

Next we obtain a more convenient description of Y".

Proposition 4.2.2. ¥ = {rY(ydou | y € Y and u € J(y)}.

Proof: If y ¢ Y and u € J(y), wn '(ydou ¢ Yi - and

Y g < v* by Proposition 4.2.1. Fix y € Y and u, € J(y)

and represent Y* as Yz y+ Consider an arbitrary y* e Y.
0’

Then y¥ = (n'l(yo)ouo)O(pv) for some p € M and v € J.

Let y = y,pv. Then we have g = (v "'y dou Jo(pv) =

=1 (y,)o(pv) = nl(y plov = n7l(ydov by Lemma 1.2.3. Thus

ta
w

y* € {n7M(ydou | y € Y and u € J(y)}. | |

Proposition 4.2.3. The homomorphism v: Y Y is

highly proximal.

Proof: Consider y € Y. We observe that the set
y~!(y) satisfies the hypothesis of Zorn's Lemma under
downward inclusion. Suppose {Ai | 1 € I} is a chain in

—1 — . -
v“'(y), and let A =10 {A, | 1 € I}. If we regard AP jer
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as a net directed by downward inclusion, we have l@m<(Ai> =
Ao’ so A € y~'(y) and A0 is the required lowerlbound.
Applying Zorn's Lemma, let B be a minimal element in
vy !(y). Pick p €M so B = w7 l(y)op.

Now we'll show that vy '(y)op = {B}. Suppose
A € vy~ !(y)op. Then there exists nets <ti> in T and
<A> in vy~ 1(y) such that t;—p and A ,t,—A. Each
Ai c v 1(y) so A = 1lim Aiti c lim n‘l(y)ti = n~!(y)ep = B
and y(A) = y. Thus A = B by minimality.

Therefore ¥ is highly proximal. ||

Corollary 4.2.4. For A € Y*, y € Y, and u € J(y)

we have A ¢ n~'(y) and Aou = A => A = n~!'(y)ou.

Proof: If A ¢ w™!'(y) and Aou = A then A ¢ y !(y)ou.
Also, w7 '(ydou € ¥ !'(y)ou. Thus A = w~!'(y)ou, since ¥

is highly proximal. F

Ya

Next we define X* as a subset of X><Y*.

)
v

Definition 4.2.5. X* = {(xu,n"!(y)ow |y €Y,

x € m(y), and u € J(y)}; &: X*—X and n X%, y¥

are the projections.

For the rest of this section we assume both X and Y

to be minimal.

Proposition 4.2.6. X° is a minimal set.

Proof: Take a fixed y, 6 € Y, x, € n_l(yo), and

u, € J(y,). We'll show that X* = (xouo,ﬁ'l(yo)ouo)M.
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Consider p € M and let x~ (xouo,n'l(yo)ouo)p. Pick

u €J so pu = p. Then x*

"

(xopu,n‘l(yo)O(pu)) =

(x pu,m~'(y plou) and w(x p) = y p. Hence x" ¢ X".

Now consider an arbitrary x' ¢ X*. Then

x! = (xlul,n‘l(yl)oul) for some y €Y, u € J(y ), and
x, ¢ n'(y,). Pick p €M such that x, = x p. Then

%' = =

(XIUIﬂTJ(yl)OuI) (xopul,n'l(yop)oul) =

il
(x pu_ 5™ (yo)o(pul))

=1 m 1
6 (xouo,n (y,dou Jpu . Thus x' ¢

(% u ,w~'(y dou M. |

It is clear from our construction that X is the
unique minimal set in {(x,y*) l % € X, y* ¢ ¥  and
m(x) = v(y )}.

Proposition 4.2.7. The homomorphism &: X' —X is

highly proximal.

Proof: Take x € X and v € J(x). Let y = n(x).

Then

6 1 (x) = {(xu,mr '(y)ou) | u € J(x)}

{x}x {n~"1(y)ou | u € J(x)}.

Therefore

"

5§71 (x)ov ({x} x {m ¥ (y)ou | u € J(x)Nv

= {x}x ({7 (y)ou | u € J(x)}ov)

c{x}x ({m~'(ydou | u € J(y)}ov)
= {x} x (y T (y)ov).

This last set is a singleton, since vy 1is highly
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proximal. Therefore 6 1is highly proximal. ||

Proposition 4.2.8. The following statements are

equivalent.

(£) y: Y*~—Y 1is an isomorphism.

(i) y: Y*—Y and 6: X*—X are both isomorphisms.

(£22) m: X—Y 1is open.

Proof: The equivalence of (<) and (<7) is clear from
the definitions.
(i) =—> (4i<) Suppose v is an isomorphism and pick A ¢ Y*
and y € Y so ¥~ !(y) = {A}. Consider x ¢ n~l(y) and

u € J(x). Then yu =y so we have n~!(y)ou € y~i(y).

Therefore w~!(y)ou = A. Also x € w~'(y)ou, since xu = x.
Since x was an arbitrary element of n~!(y), we have

¥y 1(y) = {n7I(y)}. Now for arbitrary y € Y and p € M we
have w~l(y)op ¢ Y‘l(yp); Therefore n~'(yp) = n~l(ydop

and w 1is open by Lemma 4.1.1. |

(242) ==> (1) Suppose n 1is open and consider vy € Y.

Then, by Lemma 4.1.1, v~ '(y) = {n " (ydou | u € J(y)} =

{r"'(y)}. Thus v is one-to-one and hence an isomorphism. ||

We now have enough machinery to construct a diagram as
described in the beginning of the chapter by iteration. We

make the following remarks:

(Z) It is clear that an inverse system of diagrams of minimal
point-transitive transformation groups of.the type below has

an inverse limit which is a diagram of the same type.



(XyR) =3 (Y,yy)
i

(7Z7) We may produce an ordinal chain of such diagrams by
starting with w: X—Y, applying the X*, Y*  construction
at successor ordinal stages, and taking pointed inverse
limits at 1limit ordinal stages. It follows from Lemmas 4.1.8
and 4.1.12 that the homomorphisms 6 and Yy ob%ained at
each stage are uniquely defined and highly proximal.
Cardinality considerations imply that the procedure must

terminate and, when it does, the last "y obtained will be

open by Proposition 4.2.8.

(222) If we denote the last stage of this construction by
i =« and we define 7w _ = wo§ = y omw_, then n_: X —Y
is a point-transitive product of w: X—Y and «vy_: Y —Y

for an appropriate choice of base points.

McMahon and Wu carried out a construction of this type
in [13] without the notion of highly proximal.

Actually, such a construction is unnecessary as Glasner
has recently shown that the homomorphism n®*: X*— Y*,
obtained at the first stage, is always open. The argument
which follows is essentially his, but we isolate a lemma
concerning the structure of the fibers of 1w which may be
of independent interest.

Given a homomorphism of minimal sets w: X—Y and a

point y € Y we let J"(y) denote the set of minimal
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idempotents u € J(y) such that wn7!'(y)ou is an inclusion
minimal element of Y*. It follows from Zorn's Lemma that

J_ (y) 1is always non-empty and that, in fact, given A ¢ v
with A < n7!'(y) there exists a u ¢ Jn(y) such that

n~1(y)ou c A.

emma 4.2.9. Suppose y € Y and u ¢ Jﬁ(y). Then

77l ydou = U {nNydv | v € J(y) and w~'(ydov = mw~!(ydou}.

Proof: Let K = U {r7!'(y)v | v € J(y) and = '(ylov =
w 1(y)ou}. Suppose x € K. Then x € w ™ '(y)v for some
v € J(y) with wn~!'(y)ov = nw~!'(y)ou, and we have
a7l (y)v ¢ n i(y)ov = w~l(y)ou. Therefore K c w~!(y)ou.

Now suppose x € w~!(y)ou. Then there are nets <(x£>
in w7!'(y) and (ti> in T such that x,t,—x and
t,—u. Pick p; ¢ M such that X, = %Xpy for each 1.
Taking a subnet if necessary, we may assume that <pit£>
converges to some q € M. Then xpiti——>x, so
Xq = %x. For each 1i, ﬂ"l(y)o(piti) = (ﬂ—l(y)OPi)tiC
(ﬁ_l(ypi))ti = n‘l(y)ti. Taking limits, w7 '(y)oeq < n ! (y)ou.
Since u € J _(y) we then have n~'(y)oq = w7 (y)ou by
minimality. Now vyq =y, so we can find v € J(y) with
qv = q. By Lemma 1.2.3 we have n~'(y)ogq = n~!(yqlov =
n T (y)ov = w~l(y)ou. Finally, =X = xXq = XQV = XV SO

x € w7l (y)v. Therefore K > n !'(y)ou. | |

Proposition 4.2.10. The homomorphism =n": X"—Y" 1is
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Proof: By Lemma 4.1.2, it will suffice to find an
element y* € Y® such that for any p € M, " “1(y*)op > .
n*=1(y*p). To this end we pick an arbitrary y ¢ Y and an
idempotent u ¢ J"(y) and let y* = - *(ylen., Letting
K= U {n ¥ y)v | v ¢ J(y) and wn~l(ylov = n~l(y)ou} we
have n*"l(y*) = K><{y*} (by Definition 4.2.5) =
(m~t(y)ou) x{y*} (by Lemma 4.2.9). Now consider an arbitrary
P €M and pick v € J such that pv = p. We have y*p =

m~1(y)op = w '(yplov by Lemma 1.2.3. Thus

O, | (yz':p)

=

U (n"(yp)w | w € J(yp) and w7l(yp)ew = ml(yplov}x {y*p}

¢ (w1 (yplov) x {y*p}

(=1 (y)op) x {y*p}

(" (y)ouop) x {y*p}

H

((r ™t (ydou) x {y"})op

1]

—-1(y*)op

completing the proof. | |

3. An Abstract Characterization.

Given a homomorphism of minimal sets n: X— Y we have

constructed a diagram of minimal sets

X y*
X b

where ¥y and 6 are highly proximal and ¥ is open. Our

P
e

_—_;
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construction is unique in that no undetermined choices are
involved. In this section our goal is to obtain an abstract
characterization of this diagram, up to isomorphism of
diagrams in the obvious sense. By this we mean a descrip-

tion which uses only the "layout" of the diagram and the

abstract properties of the arrows, e.g., § and +y being
highly proximal and n* being open.
A first guess might be that given n, the diagram we've

constructed is the only such diagram with § and +y highly
proximal and - open. However a trivial example shows that
this won't work. Take X = Y and X¥ = Y* with Y¥ being
any highly proximal extension of Y and with « and n®
being the identity maps on Y and v* respectively. Then
by varying which highly proximal extension of Y we take i
to be, we get nonisomorphic diagrams.

We will show that the diagram we constructed is, up to
isomorphism, the unique, universally attracting object in the

category of all such diagrams with y and & highly proximal

ofa
and " open.

Definition 4.3.1. A diagram of minimal sets

L

—_— Y

X
1 i
ki
X - Y
2 2

—_—

is said to be proper if, for some y, € Y , ‘the pair
. g y X
(1 (Bly 0, a(n{l(yl))) is proximal in 2 2. We note that

this condition is equivalent to requiring that there exist
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some minimal right ideal I in BT such that for any p € I
(n, ' (BCy)))op = (alni'(y,)))op.

Our next lemma says that given a proper diagram, the

pair (a,B) connecting the homomorphisms m, and W, may

)

be lifted across the X*, Y* construction to connect nf

ofe . . . 1
and n7. Our definition of "proper" was chosen to provide

a sufficient condition for the next lemma.

Lemma 4.3.2. Suppose we have a proper diagram
consisting of homomorphisms L Xl——+Y1, M, X2~—+Y2,
6 X —X, and f¢ ¥,—+Y,.* The X*, Y* construction is

applied to obtain additional homomorphisms ni: Xi-»yj,

Yi——+Yi, for 1 = 1,2. Then there exist

Si: Xi——+Xi, PR

. % b e & % % .
homomorphisms a”: X|—X, and B": Y]— Y, which make the

following diagram commute:

& T’( 1 it
Xl '>Yl N
;}\\ﬁ o ﬂ; \\\Eu P
5 Xz "Yz
i Y,
m
X 5, » Y, Y,
\E\\& E\\\_L
XZ it >Y2

Proof: Pick y, € Y, and a minimal right ideal I in’
BT such that (w;'(B(y )))ep = (alu '(y )))ep for all
p € I. Pick x, € n'(y,) and pick a minimal idempotent
u € T such that =x,u =x,. Let x, = al(x,), y, = w, (%),

and y, = p(yl) = nz(xz). Also, let y? = nfl(yl)Oua
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o,

y; = n;l(yz)ou, xf = (xl,yf) and xz % (xz,yz). We'll

show that there exist homomorphisms p*: Y? -+Yi and

% kS g % S £ b b
a’: X, —X, such that B "(y]) =y, and a"(x]) = x,.

Checking @* first, we need only show that for

p-q € BT,

y,p = ya==yDp % ¥74q

Assume yfp = yfq. Then

<

N3
o
"

(w ' (y,oudep = (n '(B(y,)))ouop

= (since the diagram is proper) (a(n;l(yl)))Oqu
= (by Lemma 1.2.3) a(n;l(yl)ouOP)

=  (by hypothesis) a(n;l(yl)Oqu)

= (retracing our steps) (n;'(y,)oulegq

= yzq as required.

2

Next we check a". Again, we need only show that for

pP,q € BT,

Assuming xp = XTq we have x p = x,q and Y. p = y?q.

Thus

ofs

X,p = (xzp,yip) = (a(xl)p,B“(yT)p)

"

(alx p),p* (x¥p))
= (a(x,q),p"(y"q))
= (retracing our steps) (qu,yjq)

= X ds
o4

Clearly everything commutes. ||
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The next lemma shows that the notion of a proper diagram

is not too strong for our purposes.

Lemma 4.3.3. Suppose that 8 is highly proximal in the

diagram of minimal sets.

Then the diagram is proper.

Proof: Pick y, € Y1 and a minimal idempotent u € M

with y,u = y,. It will suffice to show that

(n71(B(y,)))ou (aln 7 (y )))ou

Suppose x, € a(ﬁf*(yl)). Then there exists an ¥ B X

with a(x ) = x, and "1(X1) =y, . Thus nz(xz) = nz(a(xl))=

plm, (x,)) = p(y,) and x, ¢ n;l(B(yl)). Therefore

aln 7 (y,)) ¢ w1 (p(y,) and consequently (a(mi(y ))dou ¢
(m;1(B(y,)))ou.
Obviously a™'(mn;'(y)) = nt (7! (y)) for all y €Y,

Also B is highly proximal and y,u =y, so

(a7 (w1 (B (y,)))ou

= 7 @ THBy, ) ou € nItBTNB(y, Mow) = wl(y).

Thus
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]

(n71(B(y,)))ou (aCa™ (n 1By ))))ou

(by Lemma 1.2.3) ala™'(w;'(B(y,)))ou)

€ a(n;l(yl))

Finally we get from this
(HEI(B(yl)))Ou = (((ﬂgd(B(yl)))ou)ou C (a(ﬁ;l(yl)))Ou
completing the proof. ||

Given two diagrams

i kit
Xl 1 Yl XZ - YZ
A = and A =
' 51l 131 ’ 621 lﬁz
Rummm—— ¥ X ————Y

with the same lower arrow we say that A, attracts 4, if
there exist homomorphisms A: X, — X, and ¢: Y —Y  such

that everything commutes.

Theorem 4.3.4. The diagram of minimal sets

may be characterized, up to isomorphism, as the unique,

universally attracting, proper diagram with mn: X—Y as

the lower arrow and with the upper arrow open.

Proof: We've already seen that & and ¥ are highly

wfe

proximal and ©° is open. A 1s proper by Lemma 4.3.3.

Suppose we have another proper diagram
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TT'
Xl > Y !

A = aL lB

X——mY
T

with w' open. We apply Lemma 4.3.2 to construct the diagram

X‘* > Y'h'
s \ b
a?\ oo "" \K P
Xl\ “rYib
6' .Y.!
' 1B A
X! w A
\\\\Q\\\l \\\\\E\
X - >y
However, since n' 1is open, &' and y' are isomor-

phisms, by Proposition 4.2.8. Thus, defining A: Rl B
and ¢: Y'—Y¥ by A = a¥s'"! and ¢ = pYoy'"! we see
that A attracts A'.

Now suppose we have another universally attracting
proper diagram

g

1
b = o4 By

R

M) X

1
e
w

Then we have homomorphisms A: X{—>X*, @ Yl——*Y*’

xl: X*——+X1, and ¢, " Y*——»Y1 such that aloxl =6, B,op, =¥,
ok = a,;, and yop = B,. 6 and y are coalescent (highly proxi-
mal ==> proximal ==> regular =—> coalescent), 8°o(X\oX;) = §, and

YO(QOQI) = yv. Thus XOXI and ®°¢, are automorphisms of

x* and Y* respectively which implies that X, and o,

are isomorphisms. This proves the uniqueness. . | |



81

Corollary 4.3.5. The diagram

s
" i
——

X' Y':
J| Jr
X ——Y

is the unique (up to isomorphism), universally attracting

object in the category of all such diagrams with 6 and ¥

highly proximal and n" open.

Proof: All such diagrams are proper, by Lemma 4.3.3. ||

This is the result that was promised at the beginning

of the section.

4, Non-Metric Veech Structure Theorem.

A homomorphism of minimal flows w: X—Y 1is said to be

point-distal with distal point x if =x ¢ X and x is

proximal to no other point in its fiber. The minimal flow X
is said to be point-distal with distal point x € X 1if the
trivial homomorphism X-— 1 has that property. Veech [16]
showed that if X 1is metric and has a residual set of distal
points it has an almost one-to-one extension which can be
built up from the trivial flow by isometric (almost periodic)
and almost one-to-one extensions. Ellis [8] extended this
result to homomorphisms and showed that it is sufficient to
assume a single distal point rather than a residual set. He
also showed that the metrizability assumption could be
replaced by the weaker condition of quasi-separability if
proximal extensions were used instead of almost one-to-one

extensions. Here we strengthen the second Ellis result by
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replacing his proximal extensions by highly proximal extensions.
Since highly proximal and almost one-to-one extensions are the
same in the metric case, this result includes the earlier ones.
We build a tower of highly proximal and almost periodic
extensions in essentially the same way as was done by Veech
and Ellis using Lemma 4.1.12, Proposition 4.2.10, and, most
importantly, Lemma 7.4 of [8].
Given T-subalgebras ® and S with ® < §, Ellis

defines 8 +to be a quasi-separable extension of ® if there

exists a subset X ¢ § such that § = [ U R] and such that
[f] is separable for each f €& (the brackets denote "T-
subalgebra generated by"). If the point-transitive flows
(X,x) and (Y,y) are associated with 8§ and R, respec-
tively, this is equivalent to the existence of a family of
metrizable point-transitive flows (Wi,wi) such that (X,x)
is isomorphic to the orbit closure of the point (y,(wi>) in
the product Y><WT; {Wi}. This follows from Lemma 1.1.6 and
the fact that metrizable transformation groups correspond to
separable T-subalgebras. Thus the definition which follows

is equivalent to that of Ellis.

Definition 4.4.1. A homomorphism of minimal sets

n: X—Y 1is quasi-separable if there exists x € X, y €Y,

and a family (Wi,wi) of metrizable point-transitive flows
such that w(x) =y and X is isomorphic to (y,(wi>)T in
Yx TT, (W, }.

Clearly, since X 1is minimal in the above definition,
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the base point x € X can be chosen at will.

We have

Lemma 4.4.2. I n: X—Y 1is a quasi-separable, point-

distal, open homomorphism of minimal sets then w .has a non-

trivial almost periodic factor, i.e., there exists a minimal

set 72 and homomorphisms V: X— 72 and ¢: Z-—Y such that

m = 9oy and ¢ 1is non-trivial and almost periodic.

Proof: This is Lemma 7.4 of [8], modulo the correspond-

ence between point-transitive flows and T-subalgebras. |
We will need the lemma which follows several times.

Lemma 4.4.3. Suppose we have a diagram of point-

transitive flows

(X',x') — " (Y ,yh)

al JY

with ® gquasi-separable and (X',x') isomorphic to

(X,y‘)T in XxY'. Then w' 1is quasi-separable.

Proof: By hypothesis, there exists a family of

metrizable point-transitive flows (Wi,wi) such that
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(a)  (X,%) & ((y,<w>)T, (y,<w,>)) € Yx 11 W,.
Since we have a homomorphism vy: (Y',y')— (Y,y),
(b)  (Y',y") =~ ((¥y',y)T, (y',y)) ¢ Y'xY,

and by hypothesis

(c¢) (X',x') o (?;:§T§E, (x,y')) € Xx¥'.,

Therefore, by (c¢) and (a)

(X',%") = ((y,Kw>,y"IT, (y,{w>,y")) ¢ YxIT W, xY!'
i

and by (b)

(X',x") = ((y',<w >)T, (y',qw>)) < Y xTTw,
i

Thus w' 1is quasi-separable. ||

Lemma 4.4.4. Suppose we have a diagram of minimal sets

X'.__ﬂl__+yt
o I
X ——— =Y

w

where n is point distal and X', 6§, and w' may be

obtained by taking X' a minimal subset of the product

{(x,y") | m(x) = y(y")} c XxY' and & and n' the

projections. Then w' is point distal.

Proof: Suppose x, € X 1s a distal point for 1.
Pick y; € ¥ so (x,,y;) € X' and let x;, = (x,,y;). Then
G(X;) =X and we'll show that xé is a distal point for

m'. Suppose x; € X', x; and x; proximal, and w'(x|) =

1 ! - 1
n (xo). Then x; = (xl,yo) for some X, € X. x  and X,
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are proximal, since x, = &(x]), and X, = 6(xy). Also,

m(x,) = mos(x}) = yourtixi) = Y(yg) = n{x,}. Therefore X, =

X since X, is a distal point for n and we have x; a

0 9

distal point for n' as needed.

Theorem 4.4.5. Suppose mw: X—Y 1is a point-distal,

quasi-separable homomorphism. Then there exists an ordinal

sequence of minimal sets {Ya | @ = v} such that

(¢2) Y, 1is a highly proximal extension of X.

(£42) Y _,, 4is either an almost periodic or a highly
proximal extension of Ya’ for each successor ordinal
a¥l = v

(¢v) Y, 4is a uniquely determined pointed inverse limit

of the system {Y_ | a« < A} for each limit ordinal X = v.

ua’B: Ya~-—+YB for ordinals

a > B are the homomorphisms implicitly defined by () - (Zv),

(v) If n : YV——+X, and

— v

then ren,, = uv,O'

Proof: The proof is by transfinite induction. At each

ordinal stage B = v we'll get a diagram

b4 —"L—»Y
B lB
nB l
Y
1
L !
X =X ——=Y =Y
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such that YB is as promised, nB is highly proximal, and
nB is point-distal and quasi-separable. The procedure stops

when is almost periodic.

B

We'll call an ordinal odd if it's of the form A+n
where A 1s a 1limit ordinal or 0, and n 1is an odd natural
number. We proceed as follows.

(a) Take X, =X, Y, =Y, and mw, = u.
(b) Suppose we are at stage atl, with atl an odd
successor ordinal, having completed all stages through stage

a. If w_ is almost periodic we stop, taking v = atl and

YV = Xa‘ Otherwise, we construct the diagram

ofs
“

a
—

x* y
a a
Y
%
1s)
X Y

v

¥

as follows. First we obtain "Z as usual. Then nz is open
(Proposition 4.2.10), ¥ and & are highly proximal, and ﬁz
is point-distal and quasi-separable (Lemmas 4.4.3 and 4.4h.u4).

By Lemma 4.4%.2, w°

e * . . -
; has a non-trivial almost periodic factor,

which we take to be ¢: Z——+Y§. Clearly since ﬁz is point-
distal, so is ¥: XZ——*Z. An argument like that for Lemma

4.4.3 shows that V¥ 1is quasi-separable, since nz is. We

now take Ya+1 = Ya’ Ya+2 = Z, X = X = X", =

s,
o

m", and Moto = ¥. We now have

Q
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T
Xa+2___(£t2__—m“+Ya+2
identity
v n
Xaf1 = Yo
8| highly proximal
i

X & > Y

a +a

n, i
1

| i
X0 g ‘Y0

0
and everything is as needed, taking Y
This gets us up to the next odd successor

(c) Suppose we're at stage A, where X

We take "inverse limits" in the following

Let XX

limit of the system ({X_ | a < A}

be the unique (by Lemma 4.1.

and let

¢ almost periodic

v highly proximal

T Magen T](106'
ordinal.
is a limit ordinal.
way:
12) pointed inverse
P ¢ X be
a

X__>Xa

the projections which are highly proximal by Lemma 4.1.12.

Define a homomorphism

QT {X, | < M——TT{Y_| a<}

by Q(<xa>) = <na0Pa(xa)>. Let

d = :
and let m, POIXK LN

YK = Q(XK)’

let w, = QIXX’

is point-distal and quasi-separable by

Lemmas 4.4.3 and 4.4.4 and everything is as needed.

D — D 00 e
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In the foregoing, the definition of the maps
v Y —Y has been left to context.
a,Bp’ Ta B
By cardinality considerations and the coalescence of
the universal minimal set, the procedure must terminate at

some stage of (b). This proves the theorem. ||

The original Veech theorem has a valid converse, i.e.,
any minimal flow which can be built up in the way specified
in the conclusion of the theorem must necessarily be point-
distal. This does not appear to be the case with our
theorem, unless point-distal is replaced by some weaker
condition. Such a condition should be sufficient for our
theorem, equivalent to point-distal in the metric case, and
valid for any quasi-separable extension which can be built
from almost periodic and highly proximal extensions in the
manner described. The determination of such a condition

appears to be a difficult problem.



CHAPTER V
GENERALIZED ALMOST FINITE HOMOMORPHISMS

The regular homomorphisms discussed in Chapter II are
objects of a very general nature. The general properties
obtained are very similar to those which arise in the
absolute case, i.e., the properties of regular minimal sets.
It is therefore natural to look for restrictive conditions
which make further classification possible. Restricting
ourselves to situations in which the fibers are in some
sense "small" has the additional advantange of eliminating
the absolute case, since regular minimal sets are generally
quite big. Thus we are led to considering finiteness
conditions on the fibers.

The notion of generalized almost finiteness which we study
here is so named because, in the metric case, it coincides
with the property of having at least one fiber finite. ' When
combined with regularity, the consequences of this condition

are quite powerful.

1. Definition and Basic Properties.

Once again, we'll work with a fixed homomorphism
m: X—Y, with Y assumed minimal. Recall that the minimal
set Y* consists of the elements of 2" of the form

mn " '(y)ou, where u is a minimal idempotent with yu = y.

89
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Proposition 5.1.1. The following conditions are

equivalent:

(2) 1lim <ﬂ'1(y)tn> is finite, for some y € Y and some

net <tn> in T

(2Z7) There exists a least positive integer N such that

for any y €Y there exists p € M with card(n”!(y)op) = N.

(22727) There exists a least positive integer N such that

card(A) = N whenever A 1is an almost periodic element in

21‘[

(Zv) There exists a finite integer N such that each

element of Y* has cardinality N.

Moreover, the numbers N in (2¢), (24Z2), and (Zv) are the

same.

Proof: (Z) ==> (4i) Suppose n‘l(y)td——+{x1,---,xk}.

Consider y' € Y. Taking a subnet if necessary, we can find
q € BT such that t —q. Pick » € M so y'r = y. Let

p = rq. Then p € M aﬁd v 1 (y')op = wl(y"dolrq) ¢

n 1 (y'rlog = 1w l(y)eq = {x ,***,%x }. Thus card(n"!(y'op) = k.
We take N to be the least positive integer such that

card(lim ﬂ'l(y)tn) = N for some y € Y and some net (tn>

in T.
(22) ==> (Z27) Suppose A 1is an almost periodic element in
2". We can pick y € Y and u € J such that A c n~!(y),

Aou = A, and yu = y. By (ZZ), there exists a p € M and

points x in X such that w~!(y)op = {x 500 ,x
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We pick q € M such that pq = u. Then A = Aou € w~!(y)ou =
=1 (y)o(pq) = {xl,'°-,xn}oq & {qu,---,qu}. Thus card A <

N.

(222) ==> (Zv) (Z24%Z) clearly implies that some inclusion
maximal almost periodic element of 2" has cardinality N,
and such elements always belong to Y*. Thus we can find
y €Y and u € J(y) such that card(w~!'(y)ou) = N.
Consider some other element of Y¥, say w~!(y'dou' where
y' € Y and u' € J(y'). We can find p ¢ M such that
pu' = p and yp = y'. Since w !(y)ou 1is finite, we have
(n ' (ydoulu = (w~l(y)ou)ou = mw l(y)ou. We can pick q € M
so pq = u. Thus u '(y)ou = (n~!'(y)ou)pg. Therefore
card(nw ! (y)oulp = card(n'l(y)Ou) = N. Now (n~!'(y)ouw)p =
(n~'(ydow)ep = n~l(y)op = (w~l(yleplou' = n~!(yp)ou' =
mn !(y')ou'. Thus card(n~!(y'dou') = card(w " !(y)ou)p = N.
By (2i4), card(w~!(y')ou') = N. Therefore card(x~l(y')ou') =
N.
(Zv) ==> (Z) Obvious.

It is also obvious that the number N which satisfies

(Zv) will also satisfy (Z%) and (27%). ||

Definition 5.1.2. We say that a homomorphism with minimal

range is generalized almost finite, or generalized almost N

to one, if it satisfies conditions (Z) - (Zv) of Proposition

bigl.ls.

Lemma 5.1.3. If m: X-—Y is generalized almost finite,

y € Y, and u € J(y), then w~!(y)ou = n 1(y)u.
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Proof: We have w~'(y)u ¢ mw~!(y)ou always. Since w is

generalized almost finite, w !(y)ou is finite and we have

n~1(y)ou = (n M (ydou)ou = (mw~M(ydowlu c v~ (y)u. | |

Proposition 5.1.4. Suppose the homomorphism m: X —Y

is generalized almost N to one. Then, for each point

y € Y, the following statements are equivalent:

(£) w is open at all points of w~!(y).

(1) card(w~(y)) = N.

(#22) mn~'(y) is an almost periodic set.

(iv) w-l(y) € Y*.

Proof: (2) => (Zv). Pick wu ¢ J(y). By Lemma 4.1.1,
we have w '(y) = v~ (y)ou so n~l(y) € Y*.
(Zv) => () Suppose y' € Y and p € M with y'p = y. By
Lemma 4.1.1, we need only show that w !(y')op = n~1(y).
Certainly w~!'(y')op ¢ n~!(y) and n~!(y')op ¢ Y. By (Zv),
rl(y) € Y® also. Since w~!(y')ep and w7 '(y) have
the same finite cardinality, they are equal.
(tw) —>» (472) Obvious.
(22) => (iv) We have w7 '(y) > n~'(y)ou, for u € J(y).
By (Z%) both sets are of the same finite cardinality and
therefore equal.
(Zv) ==> (127) If (Zv) holds, we have w~!(y) = w~1(y)ou
for some wu € J(y) and w~!(y)u = n~!(y)ou by Lemma 5.1.3.

Thus n~!(y) 1is an almost periodic set.
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(£11) ==> (Zv) If (Zii) holds, we have w7 '(y) = w~'(y)u
for some u € J(y). We have w~'(y) = w='(ylu = n~(ydou

by Lemma 5.1.3. Thus n '(y) € Y*. | ]

Next we see that, in the metric case, the notion of a
generalized almost finite homomorphism reduces to something

simpler.

Proposition 5.1.5. Suppose we have a homomorphism

m: X—Y with both X and Y metric and Y minimal.

Then the following conditions are equivalent.

(¢) n 1is generalized almost N to one (N finite).

(¢Z7) w has at least one fiber of finite cardinality N,

and no fibers of cardinality less than N,

(122) card(m~!(y)) = N for a dense, G5 set of points

y € Y and no fiber has cardinality less than N (N finite).

Proof: Corollary 4.1.4, Proposition 5.1.1, and

Proposition 5.1.4. ||

The relationship between the general and metric cases
with generalized almost finite homomorphisms is the same as
with highly proximal homomorphisms. The condition of
generalized almost finiteness is homogeneous, in that it
is defined without reference to any distinguished points in
Y. However, distinguished points appear in the metric case

just as they do with highly proximal homomorphisms. It is
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clear that a homomorphism is highly proximal if and only if
it is generalized almost N to one, with N = 1, and that,
in the metric case, the notions of an almost one-to-one and

generalized almost one-to-one homomorphisms coincide.

2. Regular Generalized Almost Finite Homomorphisms.

In this section we see that if a homomorphism is both
regular and generalized almost finite, its structure is
very simple. In fact such a homomorphism may always be
uniquely represented as the composition of a highly proximal

extension and a finite group extension.

Propositicn 5.2.1. Suppose w: X—Y 1is a regular

generalized almost finite homomorphism of minimal sets.

Then there exists a homomorphism : X —Y* such that v

is a group extension and w = yoy, where vy 1is the

canonical homomorphism from Y~ to Y.

Proof: We have w '(y)eu = n”'(y)u for all y €Y
and u € J(y), Dby Lemma 5.1.3.

The regularity of n implies that the sets of the form
n 1 (y)u, for idempotents u € J(y), partition w !'(y),
for each y € Y (Corollary 2.2.9). Thus the elements of Y¥
actually partition X and we can define a function V: X—s Y*
by V¥(x) = A <=> x ¢ A, Clearly V¥ 1is equivariant and
= yoy.

To verify that ++ is a homomorphism we check continuity.

Suppose <xi> is a net in X and x;—> %, for some x € X.
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We must show that W(Xi)——+¢(x0). Taking a subnet if
necessary, assume that W(Xi)-*A, for some A ¢ 2X.
Certainly A € Y¥, since Y* 1is a closed subset of 5,
We have x € A since W(xi)——*A, x; € W(Xi) for each 1i,
and x,—x_ . Thus V(xo) = A as required.

Finally we show that V 1is a group extension. Suppose
v(x) = y(x') for x,x' € X. Then w(x) = n(x') = y. Also
we have V(x) = y(x') = n”'(y)u for u € J(y). Therefore
(x,x")u = (x,x') and (%x,x') 1s an almost periodic pair.

Thus, by Proposition 2.2.8, there is an automorphism

8: X— X such that 6(x) = x'. Therefore V¥ 1s a group
extension. ||
Proposition 5.2.2. The group of automorphisms associated

with the group extension V¥ in the preceding proposition is

of cardinality N, assuming that = is almost N to one.

Proof: This follows immediately from the fact that this
group acts freely and transitively on the fibers of . These

fibers are elements of Y© and hence of cardinality N. | |

The next lemma shows that the representation of a
regular generalized almost finite homomorphism as the
composition of a finite group extension and a highly proximal

homomorphism is unique.

Lemma 5.2.3. Suppose we have the diagram of minimal

sets



where WI and Wz are group extensions and Xl and Kz

are proximal. Then there exists an isomorphism 6: ZZ——+Zl

such that Xloe = XZ.

Proof: Let Gi = {0 | ¢ an automorphism of X and
Wioc = wi} for 1 = 1,2. Since V¥, and V¥, are group
extensions, it suffices to show that G1 =G, . Consider

c € G . Pick x € X and u € J(x). Let y = X oy (x).
Then also y = Aoy (x) = X oy 2o(x) = X o} oo(x). Since
xu = x we have also y,(x) = y,(x)u and ¥,00(x) =
(y,°0(x))u. Therefore ¥ (x) and ¢ oo(x) are both in

A M(ydu  and, since A, is proximal, ¥,(x) = ¥, co(x).
Thus o € G2 and we've shown G1 c Gz. The same argument

shows G, ¢ G_. - |
2 1

Theorem 5.2.4. I w: X —Y 1s a homomorphism of

minimal sets, the following conditions are equivalent:

() m is regular and generalized almost finite.

(Z2) m can be represented-as a composition +yoy, where

v 1is highly proximal and V¢ 1is a finite group extension.

Moreover the representation in (Z<) is unigue.

Proof: We've already proved everything except (1) —>
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(Z). Suppose we have a finite group extension V: X—W

and a highly proximal extension vy: W—Y such that «yoy =
w. Suppose (x,x') 1s an almost periodic pair in X with
m(x) = n(x') =y and u € J(y) such that (x,x')u = (x,x').

Then Y(x), ¥(x') € A"!(ydou and (x) = ¥(x'), since

is highly proximal. Since V¥ 1s regular, there exists an
automorphism taking x into x'. Thus = is regular. Also
n 7 (ydou = (yTI(y 1 (y))dou < ¥y My r(ydou)

¥ (w) for some w (since y is

is highly proximal)

a finite set.

Thus = 1is generalized almost finite. |

The Ellis two-circle minimal set (Example 5.29 of [7])
with irrational rotation 1 is an example of a homomorphism
which is highly proximal but not almost one-to-one. Here Y
is the unit circle, Z 1is Yx {1,2} with a special topology,
T is the integers, and t rotates each circle by t
radians counterclockwise. y: Z— Y 1is defined by «y(y,i) = y
If I 4is a minimal right ideal in E(Z), then I has
exactly two idempotents wu, and u, and (y,j)ui = ¥y for
each 1,j. A finite group extension V: X— 7 1is most easily
constructed by taking X to have the same phase space as Z
but with an irrational rotation of 1/N, N finite, and
defining V¢((y,1)) = (Ny,i). Defining w: X—Y by w = yoy

we have n generalized almost finite and regular. We observe



98

that m could also have been constructed by first taking a
finite group extension of Y and then taking a highly
proximal extension. We shall see that this is possible
under fairly general circumstances.

Recall that if ™o Xl——+Y and "t XZ——>Y are
homomorphisms, with Y minimal, we have a naturally defined
product m: X—7Y, where X = {(x ,x,) I mo(x ) o= ow (%)},
Thus, given some other transformation group 7Z and
homomorphisms Vo Z——+X2 and v, Z-—+X2 with Mmooy, =

1

m,o¥, we have a canonical diagram

where P, and P, are the projections and ¥ 1s uniquely

determined. If ¥ 1s always onto for any choice of Z, ¥,
and V,, we say that =,  and n,6 are disjoint [see 10 and
15]. It is easy to see that, when X1 and X2 are also
minimal, m, and w, are disjoint if and only if X is
minimal.

The following lemma is well-known.

Lemma 5.2.5. Suppose ™ot X1—~+Y and "o X2——+Y are
homomorphisms of minimal sets with = proximal and w,
distal. Then w2 and w, are disjoint.
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Proof: We must show that X is minimal, where
X = {(x,,x,) | m (x) = n (x,)}. Consider two points x =
(x,,x,) and x' = (x],x}). Pick an idempotent u' €M so
xiu' = x;. Letting y' = m(x'), we have y'u' = y' and
hence x;u‘ = X;, since ™, is distal. Pick p € M so
pu' = p and X,p = x;. 7w (x,p) = n,(x,p) =y' = w (x])
and (x,p,x]Ju' = (x p,x}). Since w  is proximal, we have

X p = x;. Therefore xp = x' and x' ¢ xT. Thus X is

minimal. | |

Lemma 5.2.6. If ﬁ1: Xl——+Y and nz: X2——+Y are

homomorphisms of minimal sets with " highly proximal and

T, a finite group extension, then the product w: X—Y is

generalized almost finite and regular and may also be

represented as the composition of a highly proximal extension

followed by a finite group extension. Moreover, the

cardinalities of both finite groups are the same.

Proof: Looking at the diagram

X
1,
N

where P and P2 are the projections, we show that P1 is
a finite group extension and b= is highly proximal. For

each automorphism 6: X — X, with 06 = ¥ we define

2 bl



100

§: X—X by 8(x,,x,) = (x,,68(x,)). Then & is an

P_. Clearly, since is a

automorphism and P10§ i E

group extension, this defines a group of automorphisms of
X, connecting all pairs of points in the same fiber of P,
and this group has the same cardinality as {6: R—+X, |
58 = 8} which is finite.

Consider x, € X, and an idempotent u € M with
x,u = x, . Let y = ﬁz(xz). Since U is highly proximal
and yu =y, we have w '(y)ou = {x } for some x, €X, .

We'll show that P;l(xz)ou = {(x,,%,)} from which we

conclude that P, is highly proximal. Suppose (x{,x;) €

P;l(xz)ou. Then there exist nets <X1ﬂ> in ﬂ;l(y), and

# L ! !

\tﬁ> in T such that (xlntn, xztn)——+(xl,xz) and tn——+u.
Clearly x; = %, = %, and x{ € nfl(y)ou; hence X; =%,

Since X is minimal, by Lemma 5.2.5, this completes

the proof. N

Theorem 5.2.7. Suppose n: X—Y 1is a regular

generalized almost finite homomorphism. Then the following

conditions are equivalent:

() The relative proximal relation on X is closed.

(Z2) m can be represented as a composition of a highly

proximal extension followed by a finite group extension.

(ZZ2) 1w may be represented as the product (pullback) of

a highly proximal extension and a finite group extension.

Proof: (Z227) =—> (Z7) Lemma 5.2.6.
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({7¢) =—> ({) TFollows from Proposition 3.u4.
({) —> (4£7) Suppose the relative proximal relation on X
is closed. Applying Proposition 5.2.1 and Proposition 3.4

we get a diagram of minimal sets

where «+ 1s highly proximal, y is a finite group extension,
a 1is proximal, and B 1is distal. We still must show that
¢ 1is highly proximal and B 1is a finite group extension.

Consider w € W and an idempotent u € J(w). Let vy =

B(w). We have a '(w)ou ¢ mw7'(ydou and n~'(ylou is a
finite set. Thus a 1s generalized almost finite and
a '(w)ou = a'(w)u which is a singleton, since a is proximal

(Lemma 2.5.8). Thus a is highly proximal.

Consider y € Y and an idempotent u € J(y). Clearly
a(a ' (A)u) = Au for any subset A < W. Also, since w is
generalized almost finite we have wn !(y)ou = w~!'(y)u. Since
B is distal, we have B !(y) = B ' (y)u = ala (B My))w =
a(n~!(y)u) which is of the same finite cardinality as
n 1 (y)u since a is proximal and = '(y)u is an almost
periodic set. Thus for arbitrary points w, ~and w, in
B71(y) we need only show that there exists an endomorphism
6 with 6(w1) = w,. To establish this it will suffice to

show that given p,q € BT with w,p = w,q we also have

w,p = w,q. Pick x, ¢ a_l(wl) and x, ¢ a—l(wz) such that
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(x,,%x,)u = (x,,%,). Then (W(xl),W(xz)) = (Y(x ), ¥(x,))u

and yoy(x ) = yoy(x,) = y. Since y is proximal, we have
V(x,) = ¥(x,). Thus since ¢ is a group extension, there
exists an automorphism 8: X— X such that e(xl) = Ry
Let y' = yp and pick an idempotent u' € J(y'). Then

yp = yq = y' = y'u'. Since B(w,p) = B(w,q) = y' =

y'u' and B 1is distal we have (wzp,wzq)u' = (wzp,wzq).
Now (x pu',x,qu') 1is an almost periodic pair, alx pu') =
a(x,qu'), and a is proximal. Therefore x pu' = x qu'.
Thus w,p = w,pu' = a(x,pu') = aoe(xlpu’) = a2 8(x qu') =

1 - 1 - 1 -
a(e(xl)qu ) = a(x,qu ) = w,qu' = w,q.
(22) => (22¢) If (4¢) is satisfied, we have a diagram

X

7 X
A

where  and B are finite group extensions and a and vy
are highly proximal. Letting w: X— Y denote the product

of ¥ and B we get a diagram

AN
NS

|

where P, and P, are the projections and 6 1is defined

in the natural way. We also have that X is minimal
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(Lemma 5.2.5), that P, is a finite group extension, .
is highly proximal, and that the fibers of B and P, have
the same finite cardinality (Lemma 5.2.6). Thus, if we can
show that the fibers of ¢ and B have the same cardinality,
this will prove that 6 1is one-to-one and hence an
isomorphism.

Take y €Y, u € J(y), and y* ¢ Y*  with y* =
7='(y)ou. Then V- '(y*) = y* = n -l (y)ou = nw I (y)u by
construction. «a|m~'(y)u is one-to-one, since a is proximal,
and B !(y) = B ' (y)u, since B is distal. It's easy to
see that B Mylu = alvw"'(y)u). Thus afw "ylu is a
bijection from Vv (y*) to B~!(y) and the proof is

finished. ||

Next we show how to construct examples of homomorphisms
which are highly proximal but which have all fibers infinite.
Suppose we have a homomorphism of minimal sets m: X—Y
which is almost one-to-one but which has an infinite fiber
also, and suppose Y 1is distal regular. Let {ei} be the
set of automorphisms of Y and let LI eion. Let

m: N—Y be the product TT; {n X +Y}, so that N =

i:

{<x > I x; € X and w,(x,) the same for all i}, and let

~o

: N—Y be the restriction of 7 +to a minimal subset.
Then T%: N~—Y 1is essentially independent of the choice
made, by Proposition 2.5.1, and we have the following

proposition.
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Proposition 5.2.8. T ﬁ——*Y, as described above, is

highly proximal and has all fibers infinite.

Proof: ¥ is highly proximal since n 1is and since
highly proximal is an admissible property. Pick y, €Y so
n_l(yo) is infinite. For an arbitrary y; € Y, there exists
an automorphism 6, such that ei<y°) =¥y since Y 1is

distal and regular. Take <‘§i> ¢ N cN, sowe have N =

~ _

<:§£>T. We'll show that 1(yj) is infinite for all
73

€ Y. We have

2
N
<
1
~
x
N
O
O
m

BT and ni(xiq) Yy for all i}

¥}

= Kxpaq | @ € BT and ﬁj(qu) j

= Kxpq | @ € BT and ejon(qu) = y,}

= Kxpaq | q €pT and n(§jq) B ¥l

which is infinite, since X is minimal and w7!'(y,) is

infinite. II

The Floyd minimal set [see 1], taken as an extension of
the triadic group provides an example of the type needed.
The fibers are line segments and points and the triadic
group is distal regular since it's a monothetic group.

In the case of an arbitrary generalized almost finite
homomorphism w: X— Y there is a connection between y#

and the regularizer.

Proposition 5.2.9. Suppose w: X—Y 1is a generalized

almost finite homomorphism, m: N—Y is its regularizer,
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v, ofs
e o

and x" € X . Then we have a diagram

where P 1is a finite group extension and ex* can be chosen

s A

so ex*(z) = x* whenever P(z) = n*(x*). Furthermore Y*

is the same minimal set (up to isomorphism) as would be

obtained from applying the Y* construction to m: N—Y.

ofa
o

Finally, P is the regularizer of

Proof: Pick y € Y, u € J(y) and represent N as

zyuT. We'll show that w is generalized almost finite.

Now w~l(y)u = {zyupu | p € BT and yp = y}. Consider
pP»q € BT such that yp = yq = y. Then zyupu = zyuqu <=>
xpu = xqu for all x € mw~!(y)u. Thus the cardinality of
m!(y)u is not greater than the number of functions from

n 1(y)u into itself, which is finite. Now for =z € N, we
have
z € Tl (ydou
=—> there exists <pﬁ> in BT, <tn> in T such that
YP, =Y and

zyupntn——>z
=> (z_ up_ t )(x)—z(x) for all x € n~'(y)

y n n

= 1 = 1 : -1
> (taking X (zyupn)(x)) there exists <xn> in w7l (y)

such that xntn——>z(x) for all x € n~'(y)
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=> z(x) € w l(ydou for all x € m~!(y)
=—> z(x) € n My)u for all x € n (y)
=> 7z € 1 ' (y)u.

Thus 1w !(y)ou ¢ W !'(y)u which is finite, so we have T
generalized almost finite.

We define P: N—Y* by P(z) = Range(z). If =z

2, Up
Range(z) = Range(zy)up = 0~ {yiup = (i Myleulp =

(n"I(y)ou)op ¢ Y*, so P is well-defined. P is easily

seen to be a homomorphism. If P(z) = P(z'), then (z,z")
is almost periodic and w(z) = w(z') so we can find an
automorphism taking =z dinto z' by the regularity of w.

Hence P 1s a group extension.

We now have that w 1is the composition of a finite
group extension followed by a highly proximal extension, and
it follows from Proposition 5.2.3 that an isomorphic decompo-
sition would be obtained from applying the Y*® construction
to .

Suppose z € N, P(z) = Range(z) = ¥ (x*) = n~(y)u,

x" = (x,m ' (ydu) and x € w '(y)u. Then for p,q € BT,
zp = zq —> x"p = x¥q and we can construct © . as
promised. It now follows that P is regular with respect
to n* according to Definition 2.2.1; the homomorphisms
Gx*: N — X" being exactly what's required. An argument

like the proof of Theorem 2.2.7 shows that P attracts any

other homomorphism which is regular with respect to w" and

it follows that P is the regularizer of n™. |
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Starting with a generalized almost finite mw: X—Y
we have shown that m and its regularizer yield the same
Y* and that the regularizers of n and n° have the same
domain. One might ask what, if any, portion of this remains
true without the generalized almost finiteness assumption or
with some weaker assumption. Conditions of the form Au =
Aou for certain sets A € 2" and idempotents u € J
appear crucial.

We have the following corollary:

Corollary 5.2.10. If w: X— Y 1is a generalized almost

finite homomorphism of minimal sets, then 7*  (constructed

in the usual way) is almost periodic.

Proof: Referring to the diagram in Proposition 5.2.9,

we see that P is a finite group extension. Aut P 1is
finite, so the discrete topology makes Aut P compact
Hausdorff and makes its action on N Jointly continuous.
Hence P is almost periodic, by Proposition 2.2.12, and =¥

is almost periodic, by Proposition 2.5.12, since P 1is its

regularizer. ||
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