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The classification of minimal sets is a central theme in 

abstract topological dynamics. Recently this work has been 

strengthened and extended by consideration of homomorphisms. 

Background material is presented in Chapter I. Given a 

flow on a compact Hausdorff space, the action extends natural

ly to the space of closed subsets, taken with the Hausdorff 

topology. These hyperspaces are discussed and used to give a 

new characterization of almost periodic homomorphisms. 

Regular minimal sets may be described as minimal subsets 

of enveloping semigroups. Regular homomorphisms are defined 

in Chapter II by extending this notion to homomorphisms with 

minimal range. Several characterizations are obtained. 

In Chapter III, some additional results on homomorphisms 

are obtained by relativizing enveloping semigroup notions. 

In Veech's paper on point distal flows, hyperspaces are 

used to associate an almost one-to-one homomorphism with a 

given homomorphism of metric minimal sets. In Chapter IV, a 

non-metric generalization of this construction is studied in 

detail using the new notion of a highly proximal homomorphism. 

An abstract characterization is obtained, involving only the 

abstract properties of homomorphisms. A strengthened version 

of the Veech Structure Theorem for point distal flows is 



proved. 

In Chapter V, the work in the earlier chapters is 

applied to the study of homomorphisms for which the almost 

periodic elements of the associated hyperspace are all 

finite. In the metric case, this is equivalent to having 

at least one fiber finite. Strong results are obtained by 

first assuming regularity, and then assuming that the rel

ative proximal relation is closed as well. 
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1. Preliminaries. 

CHAPTER I 

INTRODUCTION 

This section is primarily a review of some of the 

material in [7]. 

A transformation group, or flow, (X,T), will consist 

of a jointly continuous action of the topological group T 

on the compact Hausdorff space X. The group T, with 

identity e, is assumed to be topologically discrete and 

will remain fixed throughout this paper, so we may write X 

instead of (X,T). If T acts on X via the map 

F : X x T -+ T , we w i 11 write xt to denote F ( x , t ) . 

A point transitive fl ow, (X,x) consists of a flow X 

with a distinguished point x which has dense orbit, i.e., 

xT = X. A flow is said to be minima l if every point has 

dense orbit, or, equivalently, if it contains no proper 

closed invariant subset. Minimal flows are also referred 

to as minima l sets. Every flow contains minimal sets. 

A homomorphism, or extension, of flows is a continuous, 

equivariant map. A homomorphism of point transitive flows 

is a homomorphism which preserves the distinguished point. 

A homomorphism whose range is minimal is always onto, and a 

homomorphism whose domain is point transitive is determined 

by its value at a single point. 

A point x E X is said to be almost periodic if, given 

any neighborhood U of x, the set A = {t E T xt E U} 

is syndetic, i.e., there exists a compact set K c T such 

1 



2 

that AK = T. A point is almost periodic if and only if 

its orbit closure is minimal. 

The compact Hausdorff space X carries a natural 

uniformity whose indices are the neighborhoods of the 

diagonal in X x X. Two points x, x' E X are said to be 

proximal if, given any index a, there exists a t E T 

such that (x,x')t Ea. The set of proximal pairs in X 

is called the proximal relation. X is said to be distal 

if the proximal relation equals the diagonal and is said to 

be proximal if the proximal relation equals X x X. 

The points x,x' E x are said to be regionally 

proximal if there exist nets, (x) and (x') in X, 
n n 

a net (t > in T, and a point x" E x such that 
n 

x ----+ x x t ~ x If 
n n n 

x' ----+ x' x't ~ x" 
n n n 

The relation thus determined on X is called the regionally 

proximal relation. X is said to be (uniformly) almost 

periodic if the regionally proximal relation equals the 

diagonal. X is almost periodic if and only if T 

determines an equicontinuous family of homeomorphisms of 

x. 

A homomorphism rr: X ~ Y determines a closed, invariant, 

equivalence relation on X, called R where 
1l 

R 
1l 

= {(x,x') E XxX I rr(x) = rr(x')}. 

Conversely, a closed, invariant equivalenbe relation R on 
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X determines an epimorphism 11: X-+ X/R. Given 11: X-+ Y 

we define the relative (to 11) proximal relation on X to 

be the intersection of R with the proximal relation on X. 
11 

A pair of points (x,x') in X are said to be relatively 

regionally proximal, or to belong to the relative (to 11) 

regionally proximal relation if there exist nets (x) and 
n 

(x') in X, a net (t ) in T, and a point x" E X such 
n n 

that each (x ,x') ER and 
n n 11 

x ~x 
n 

x' ---+ x' 
n 

x t --+ x'' 
n n 

x't ~ x" 
n n 

Note that this is not the same as intersecting the regionally 

proximal relation with R 
11 

The homomorphism 11: X-r Y 

said to be distal if the relative proximal relation equals 

the diagonal, proximal if the relative proximal relation 

is 

equals R ' 11 
and almost periodic if the relative regionally 

proximal relation equals the diagonal. Note that these 

definitions correspond to our definitions for the absolute 

case when applied to the unique homomorphism 11: X-rl, where 

1 is the one-point transformation group. 

Given a family {X.} of flows we define the product 
l 

Tf. {X.} in the natural way; i.e., 
l l 

(x x • • • )t = 
l ' 2 ' 

transitive flows, we define its product to be the 

transitive flow ((x .) ,(x .)T) c TT. {X.}. Given a 
l l l l 

point 

family 

of homomorphisms { 11 • : X.-rY}, where y is fixed, we 
l l 

define the product lT. (rr.: X. -r Y) 
l l l 

to be the homomorphism 
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TT: X-+Y where X = {<x.> E lT.{Xi}j TT.(x.) the same for 
1 1 1 1 

all i} and TT is defined by TT ( <x .>) = y 
1 

if and only if 

TTi(xi) = y for each i. It is easy to see that X is a 

transformation group and that rr is a homomorphism. 

rr: X-+Y, as constructed, is also called the pullback of 

the family {rr.: x.~Y}. 
1 1 

These are all true products in 

the sense of category theory. 

Given a transformation group (X,T), we may regard T, 

or an appropriate quotient thereof, as a set of self-

homeomorphisms of X. We define E(X), the enveloping 

semigroup of X to be the closure of T in Xx, taken 

with the product topology. E(X) is at once a transformation 

group and a sub-semigroup of Xx. Viewing E(X) as a 

collection of functions, it has a natural action on X. We 

let xp denote the point in X thus obtained from x E X 

and p E E(X). Some important properties of E(X) are 

summarized in the following lemma. 

Lemma 1.1.1. Suppose E( X) is the envelop ing semigroup 

of X. Then 

(i) Left multip lication by an element of E(X) is 

continuous on E(X). 

(ii) Right multiplication by an element of T is 

continuous on E(X). 

(iii) The identity, e, in E(X) has dense orbit. 

(iv) The maps e: E(X)-X 
x 

are homomorphisms with range xT. 

de£ined by e (p) = x p 
x 
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( v) Given an e p imorphism rr: X-+ Y there exists a 

unique epimorphism rr: E ( X) - E ( Y) such that for each 

x E X, rr 0 e = e 0 rr. 
x rr (x) 

(vi) For any set I, E(X 1 ) , E(X), and E(E(X)) are 

all isomorphic, both as semi groups and as point trans itive 

transformation groups with base point e. 

If E is some enveloping semigroup, and there exists 

a homomorphism e: (E,e)- (E(X), e) we say that E is an 

enveloping semigroup for X. If such a homomorphism exists, 

it must be unique, and, given x E X and p E E we may 

write xp to mean xe(p) unambiguously. We make this 

definition to evade confusion concerning which enveloping 

semigroup we're talking about in $ituations where such a 

distinction is irrelevant. Loosely speaking, any enveloping 

semigroup for X acts on X in the same way that E(X) 

does. 

~~mma 1.1. ~ . If (X,x) and (Y,y) are point 

transitive flows, and E is an enveloping s emigroup f or 

both X and Y, there exists a (unique) homomorphism 

\jr: (X,x)- (Y ,y) if and only if xp = xq for p,q E E 

implies yp = yq. 

The minimal right ideals of E(X), considered as a 

semigroup, coincide with the minimal sets of E(X), 

considered as a transformation group. Given a minimal 

right ideal I in some enveloping semigroup, we will let 



6 

J(I) denote the set of idempotent elements in I. 

Lemma 1.1.3. Let E be an e nv e l o p ing semigroup for 

x, with minimal right i deals I' I' ' I" ' etc. Then 

(i) J(I) is n on- empty, for each minimal right ideal I. -

(ii) up = p whenever p E I and u E J (I). 

(iii) Iu is a group with identity u for each u E J(I). 

(iv) The collection {Iu \ u E J(I)} partitions I. 

( v) Given u E J(I), there exists a un i 9.ue u' E J(I') 

s uch that uu ' = u and u'u = u'. We~ that u and u' 

are -- eq u i va l e n t idempotents and the relation thus defined is 

actually an equivalence relation. 

(vi) If u and u' are equivalent idempotents in I 

and I', respectively, (I,u) and (I' ,u') are isomorphic 

as point-transitive transformation groups. 

(vii) Given x E X, the following conditions are 

equivalent: 

(a) x is an almost periodic poin t ; 

(b) xT = xI; 

(c) x = xu for some u E J(I); 

(viii) Given x E X and a minimal subset K of xT, 

there exists a minimal right ideal I' such that K = xI'. 

Given an enveloping semi-group, E, for X, and an 

element u E E we say that u is a minimal idempotent if 

u E J(I) for some minimal right ideal I in E. We have 
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the following characterization of the proximal relation: 

Lemma 1.1.4. Suppose E is an enveloping semigroup 

for x. Then for any points x,x' E x (i) and (ii) are 

equivalent: 

( i ) x and x' are proximal. - -

(ii) There exists a minimal right ideal I in E 

such that xp = x'p for every p E I. 

Moreover, if X is minimal, (i) and (ii) are 

equivalent to: 

(iii) There exists a minimal idempotent u such that 

x'u = x . 

It is also easy to see that if x,x' E X and the pair 

(x,x') is both proximal and almost periodic, then x = x'. 

Let ~T denote the Stone-Cech compactification of T. 

Since T is discrete, ~T may be regarded as the set of 

ultrafilters on T. ~T is a compact Hausdorff space with 

the discrete space T a dense subset and any map from T 

to a compact Hausdorff space extends uniquely to ~T. 

Regarding right multiplication by a fixed element of T as 

a map from T to ~T, we may extend that map to ~T. This 

defines a point-transitive action of T on ~T, with base 

point e. For p E ~T, L (t) = pt then defines another 
p 

map from T to ~T which we extend to ~T to get a left-

continuous semigroup structure on ~T. It may be shown 

that (~T,e) is the essentially unique universally repelling 
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object in the category of point-transitive transformation 

groups with acting group T. From this it follows that ~T 

is its own enveloping semigroup. Hence the minimal sets in 

~T are all isomorphic and any one of these may be regarded 

as a universal minimal set, i.e., as an essentially unique, 

universally repelling object in the category of minimal 

transformation groups. We will single out one of these 

minimal sets and call it M. It is also clear that ~T is 

an enveloping semigroup for X, whenever X is a 

transformation group with acting group T. 

The set of idempotent elements in M, regarding M 

as a semigroup, will be denoted by J. Given a point y 

in some transformation group Y, we will let J(y) denote 

{u E J I yu = y}. 

Given a compact Hausdorff space X, C(X) denotes the 

Banach algebra of real-valued continuous functions on X 

with the sup norm. Given two such spaces X and Y there 

is a bijective correspondence between the set of continuous 

surjections \jr: X-+Y and the set of monomorphisms 

\jr:':: C(Y)-rC(X) such that \jr:':(f)(x) = fo\jr(x) for each 

x EX and f E C(Y). This gives rise to a correspondence 

between point transitive flow and the so called 
~· 

T-subalgebras of ~T which we explicate below. 

Given f E C(~T) and t E T we define the function 

tf E C(~T) by (tf)(x) = f(xt) for all x E ~T. Given 

p E ~T we define fp E C(~T) by (fp)(x) = f(px) for 

all x E ~T. A subalgebra, Q of C(~T) is called a 
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T-subalgebra if it is norm closed and if tf E Q whenever 

f E Q, and t E T . 

Given a point transitive flow (X,x), there is a 

canonical homomorphism t: (~T,e)--+ (X,x). We define the 

T-subalgebra, Q, associated with (X,x) by Q, = f':(C(X)). 

Note that if (X,x) and (X' ,x') are isomorphic they give 

rise to the same associated T-subalgebra. 

Next we will see how to construct a point transitive 

flow ( IQI, elQ) from a given T-subalgebra Q in such a 

way that if Q is associated with (X,x), then (X,x) 

and ( IQI, ela) are isomorphic. 

If p E ~T we may define an endomorphism of C(~T), 

which we also call p, by p(f) = fp. Given a 

T-subalgebra Q, we let ICll = {p IQ: p E ~T} and define 

<PI Q) t = pt I Cl for t E T, where Pill denotes the 

restriction to Q of the endomorphism given by p, so that 

Pl Q = qlQ if f f p = f q for all f E Q. ICll gets its 

topology as a quotient of ~T. Using the Stone-Weierstrauss 

Theorem, it may be shown that (X,x) and ( IQI, elQ) are 

isomorphic. 

The following lemma is used to characterize minimality 

algebraically. 

Lemma 1.1.5. Suppose the algebra Q is associated 

with the point transitive transformation group (X,x) and 

suppose u E J. Then xu = u if and only if fu = f for 

all f E Q. 
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If is a family of T-subalgebras, 

itself a T-subalgebra, and U. 
1 

T-subalgebra, which we denote by 

{Qi} generates a 

v. {Q.}. 
1 1 

{ Q.} 
1 

is 

Lemma 1.1.6. Suppose we have a family of T-subalgebras 

Q
1
., associated with point transitive flows (X.,x.). Then 

1 1 

(i) There exists a homomorphism 1jr: (X.,x.)--+(X.,x.) 
1 1 J J 

Q. c a . . 
J 1 

(ii) v. { Q.} is associated with the product ex' (x .) ) ' 
1 1 1 

where X is the orbit closure of < x .) in lT. { X. } . 
1 1 1 

(iii) n . { Q, } is associated with the essentially 
1 i 

unique, universally repelling object in the category of all 

point-transitive transformation groups which are homomorphic 

images of all' the ~·~·' (X,x) is associated 

with n . { Q. } if and only if there exist homomorphisms 
1 1 

\jr.: (X.,x.)~ (X,x) and there exists~ homomorphism 
1 1 1 

\jr: (X,x)--+(X',x') whenever (X',x') shares this property. 

The following lemma takes care of change of basepoint. 

Lemma 1.1.7 . If the T-subalgebra Q is associated 

with (X,x) and p E ~T, then (X,xp) is associated with 

the T-subalgebra Qp, where Qp = {fp I f E Q}. 

2. Hyperspaces. 

Given a compact Hausdorff space X, the hyperspace 

2X is the space of all closed, non-empty subsets of X 

with the Hausdorff topology. This can be described as 
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follows: For each index a in the natural uniformity of X 

we define an index a' on 

a ' {(A,B) I a(a) n B .,. cf> and a(b) n A .,. cf> for each 

a E A and b E B}. 

The set of all such a' comprises a uniformity which yields 

a compact Hausdorff topology on 2x. If X is metrizable 

SO is Convergence in 2X may be described as follows: 

Suppose 

points 

A.--+A. 
l. 

x. E A. 
l. l. 

Then x E A if and only if there exist 

such that x ---+ x 
j 

for some subnet (x.) 
J 

of (x.). 
1 

If X is a flow (with acting group T) then so 

is 2x, where the action on 2X is given by 

At = {xt I x E A}. If rr: X - Y is a homomorphism we will 

also be interested in the sub-flow 2 rr ' where 2 rr = 

{A E 2x I A c rr-l(y) for some y E Y}. These flows were 

heavily used and systematically studied in [11]. 

x is naturally imbedded in 2x, so any enveloping 

semigroup for 2X is also an enveloping semigroup for X. 

If A E 2x and p is an element of an enveloping semigroup 

for x 2 we use the notation Aop to denote the action of 

p on A within 2X and the notation Ap to denote the 

set {xp I x E A}, which does not in general belong to 2x. 

These two sets are not generally the same. However, we have 

the following: 

Lemma 1. 2 . 1. Suppose A and B are elements of 2x, 

p ~an element of some enveloping semigroup for 2x, 

is a net in T such that t ----+ p' n 
and t E T. Then: 

<t > n 
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(i) A c B ~ Ap c Bp and Aop c Bop. 

(ii) x E Aop <=> x t --+ x' where (x ) is some net 
m m m - -

in A and /t > is some subnet of <t ). '- m n 

(iii) At = Aot. 

(iv) Ap c Aop. 

(v) If A is finite, Aop = Ap. 

Proof: (i) is entirely obvious. 

(ii) follows from our description of convergence in 

(iii) is just the definition of the action of T on 

(iv) Suppose x E A. Pick a net (t > in T with 

t --+ p, take x 
n 

that x t --+ xp. 
n n 

= x 
n 

n 

for all n and apply (ii) noting 

and suppose x E Aop. Then there exist nets < t ) in T 
m 

and in 

However, since 

subnet, <x .) ' 
J 

A such that t ~p 
m 

A is finite, (x) 
m 

with each x = x 
j i 

and X t --+X. 
m m 

must have a constant 

for some fixed i, 

2x . 

2x. 

1 s i s k. Thus x = lim x.t. 
j J J 

= lim x.t. = 
j l J 

x.p. 
l 

The ref ore 

x E Ap. 11 

We may use (ii) of the preceding lemma to define Aop 

when p E ~T and A is an arbitrary subset of X (not 

necessarily closed). The following lemma is clear . 

Lemma 1.2.2. Suppose Ac X and p E ~T. Then 

Aop = Aop. 
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The following facts will also prove useful: 

Lemma 1. 2. 3. Suppose rr : x~Y is a homomorphism, -

is an e nv e l o ping semig.roup for 2x and I is a minimal 
- -

in E. Then 

(i) rr(A)op = rr (Aop) for all A E 2x 
' p E E. 

(ii) rr- 1 (B)op c rr - l (Bop) for all B E 2y, p E E. 

(iii) rr- 1 (y)op c rr -1 ( yp) for all - --- y E Y. 

(iv) Sup pose y is an -- almost periodic point in Y, 

p E I' and r E I. Then rr - l ( y) o (pr) = rr -1 ( YP) or. 

Proof: (i) Suppose y E rr(A)op. Then there exists 

nets ( y n) in rr (A) and (t) in T such that t -+p 
n n 

and y t ---->- y. Choose a net <x ) in A such that 
n n n 

rr(xn) = yn for each n. Taking subnets if necessary we 

assume x t -+x, for some x E X. Then x E Aop and 
n n 

rr ( x) = y. 

E 

set 

Now suppose y E rr(Aop), so that y = rr(x) for some 

x E Aop. Choose 

t --+ p and x t 
· Il n 

nets 

---+ x. 
n 

(x) 
n 

then 

in A and ( t ) in T so 
n 

rr(x )t --+y, so y E rr(A)op. 
n n 

(ii) This follows immediately from (i). 

(iii) This follows from (ii) above and (v) of Lemma 

1.2.1. 

(iv) rr-1 (y)o(pr) = (rr-1 (y)op)or c rr- 1 (yp)or by (iii) 

and (i) of Lemma 1.2.1. By Lemma 1.1.3 we can find u E J(I) 

and q E I such that yu = y and pqu =qpu = u. Then 
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n - l ( YP) or = n~ 1 (yp)o(ur) = n - l ( YP) o ( qpu r) 

= n- 1 (yp)o (qupur) c n- 1 (ypqu)o (pur) 

(by (iii) and (i) of Lemma 1.2.1) 

= n -l ( yu) o ( pu r) = lT -l (y)o (pr). 

We will illus trate the power of hyperspace methods by 

characterizing almost periodicity of a homomorphism TI of 

minimal sets in terms o f the transformation group 2lT. 

A similar result was obtained earlier by Glasner, using 

different techniques. 

We will need the following well-known lemma. 

Lemma 1.2.4 . Sup pose rr: X--4- Y is ~ homomorph ism of 

mi nimal sets, s is a dense subset of R 
lT ' 

and x,x' ,x" E 

Then x and x' are relatively reg i onall y proximal if and 

only if there 

T s uch that 

exist nets 

each (x XI) 
n' n 

x --+ x 
n 

x'-x' 
n 

(x)' n 

E s 

(x') in 
n 

and 

X t ----+X 11 

n n 

x't --+x 11 

n n 

-
X, and (t) 

n 

Proof: The minimality allows us to specify x". A 

uniform space argument shows that we can take the pairs 

(x ,x') to be in S. 
n n 

G · th h h · X Y we let rr ·. 2lT ~ Y iven e omomorp ism TI: --+ , ~ 

be the homomorphism defined by n(A) = y <~>Ac n- 1 (y). 

We have the following lemma. 

in 

11 

x. 

11 
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Lemma 1.2.5. Suppose TI: X---+-Y is~ homomorphism with 

Y minimal and TI distal and we have x,x' E X, y E Y, 

p E ~T, and nets (x) 
n 

and (t ) 
n 

T such 

that x -x, t -p, and x t --+x'. Then x' = xp. 
n . n n n 

Proof: Let A = {x , 
n n 

n' ~ n} for each n. Pick 

u E J(y). Then Aou = A for each closed A c TI-l(y), 

since TI is distal, and, in particular, A ou = A ou = A 
n n n 

for each n. Also XU = u. Clearly, n {A } = {x} and n n 

x' E n {A op}. Pick q E M so q = qu and upq = qpu = n n 

u. Now 

{x} = n {A } = n {A o(upq)} 
n n 

n n 

= n {(A op)oq} :J (n {A op})oq :J {x'}oq = {x'q}. 
n n 

n n 

Therefore x = x'q. Pick v E J such that upv = up. Let 

y' = TI(x'). Then y' = TI(x') = TI(lim x t ) = lim(TI(X t )) = 
n n n n 

lim yt = yp = yup = yupv = y'v. We have x' = x'v also, 
n 

since TI is distal. Finally, x' = x'v = x'uv = x'qpuv = 
xpuv = xupv = xup = xp. 11 

Theorem 1.2.6. Suppose TI: X--+ Y is ~ homomorphism 

of minimal sets. Then the following conditions are 

equivalent: 

(i) TI is almost periodic. 

(ii) Each element of 2TI is almost periodic. 

(iii) TI is distal. 

<iv) TI is almost periodic. 
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Proof (iv) => (iii) ==> (ii) is clear. 

(i) =>(iv). Suppose A and A' are elements of 2n 

which are relatively regionally proximal (relative to rr). 

Then there 

2 n' <yn) 

rr<A,) = yn n 

exists B E 2n and nets (An) and 

in Y, and <t > in T such that 
n 

for each n 

A ----+ A 
n 

A' --..A' 
n 

and 

A t ------ B n n 

A't - B . n n 

(A~) in 

rr(A ) :: 
n 

We must show A = A'. Consider an arbitrary x E A. 

By synunetry, it will suffice to show x E A'. Taking 

subnets if necessary, there exists x E A , 
n n 

for each n, 

X t ->-X for such that x --+x. 
n 

Taking a subnet again, 
n n o 

some x E B. Taking subnets two more times, we can find 
0 

points x' E A' 
n n 

such that x't-x 
n n o 

and a point x' E A' 

such that x' --+-x'. We now have n(x ) = n(x') = y , for 
n n n n 

each n, and 

x ---+ x 
n 

x' ---+ x' 
n 

x t ----+ x 
n n o 

x't - x . n n o 

Since n is assumed almost periodic, we have x = x'. 

Therefore x E A' as required. 

(ii)=> (iii). Consider y E Y and u E J(y). Given 

A E 2n with rr(A) = y, it will suffice to show that Aou = 

A, since we'll then have that every pair of elements in 

;-1 (y) is almost periodic. 

Clearly, the element-wise almost periodicity of 2n 

implies that n is distal which in turn implies that Bw = B 
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whenever B c TI- 1 (y) and w E J(y). 

Thus 

A = Au c Aou. 

Since 2TI is element-wise almost periodic, we have 

Aov =A for some v E J(y). Therefore 

Aou = (Aou)v c (Aou)ov = Ao(uv) = Aov ~ A 

and we're done. 

(iii)~> (i). Suppose x and x 1 are relatively 

regionally proximal, with TI(x) = TI(x') = y. We must show 

x = x'. Now TI is distal since TI is, and TI can be 

obtained by restricting TI. Therefore TI is an open map 

[see 4]. Therefore, for every y' E Y, there exists a net 

(see Lemma 

4.1.1). As a result, the set (TI- 1 (y) x TI- 1 (y))T is dense 

in R . Applying Lemma 1.2.4 we see that there exists nets TI 

(x ) and (x') in TI-1 (y) and (t ) and ( s) in T 
n n n n 

such that 

(a) x t x 
n n 

(c) x't --+ x' 
n n 

Taking subnets, we can find points 

and elements p,r E ~T such that 

(e) xn--+ x1 

(b) x t s 
n n 

(d) x't s 
n n 

x and 
l 

t s ~p·, 
n n 

(f) x' 
n 

n 

n 

----+ x 

--+ x 

x' in 
l 

t ---'+r 
n 

x'. 
l 

TI-1 (y) 

and 

Applying Lemma 1.2.5 to (b) and (e), and (d) and (f) we get 

that x p = x = x'p. Also TI(x) = TI(x') = y and TI is 
1 l . 1 l 

distal so x = x'. Applying Lemma 1.2.5 to (a) and (e), 
1 1 



and (c) and (f) gives x = x r 
l 
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and x' = x 'r. 
l 

x = x r = x'r = x', completing the proof. 
l l 

Therefore 

11 



CHAPTER II 

REGULAR HOMOMORPHISMS 

Regular minimal sets were first studied by Auslander in 

[3]. A minimal set is said to be regular if it's isomorphic 

to a minimal right ideal in some enveloping semigroup. We 

call Z the regularizer of X if Z is isomorphic to the 

essentially unique minimal right ideal in the enveloping 

semigroup of X. 

We extend these notions to homomorphisms. 

1. Construction of the Regularizer. 

In this section we will work with a fixed homomorphism 

TT: X-----+ Y, where Y is minimal. We will cons-truct a minimal 

set N and a homomorphism 1l: N--,---+ Y which we call the 

regularizer of TT. 

Suppose y E Y. Then is a transformation 

group whose elements are functions from TT- 1 (y) to X. 

Definition 2.1.1 . Define z 
y 

for all x E TT- 1 (y). Let E(rr,y) 

z ' y 
i.e. , E(rr ,y) = z T c Xrr -l (y) . 

y 

E X rr -l ( y) by z (x) = x 
y 

be the orbit closure of 

Note that if Y is a singleton {y}, E(rr,y) is just 

the enveloping semigroup of X, considered as a transformation 

group. 

Definition 2.1.2. Let Tl' 
y 

homomorphism with ; < z ) = y . 
y y 
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E(rr ,y)~ Y be the unique 
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We will show that the minimal sets of E(n,y) are 

isomorphic and independent of the choice of y. N will be 

defined to be the essentially unique minimal set thus defined. 

Lemma 2.1.3. Suppose y E Y. Then E(X) is an 

enveloping semigroup for E(n,y). 

Proof: This follows from the fact that E(n,y) c Xn-i(y) 

and E(Xn -i (y)) ~ E(X). II 

Lemma 2.1.4. Suppose that y E Y and that N and 

N' are minimal subsets of E(n,y). Then there is an 

isomorphism cp: N--+ N' such that (n IN') 0 cp =;IN. 
y y 

Proof: By (viii) of Lemma 1.1.3 we can find minimal 

ideals I and I' in E(X) such that N = z I and y 

N' = z I I. We choose a minimal idempotent u in J(I) so 
y 

that yu = y. Let u' be an equivalent idempotent in I'. 

Then yu' = yuu' = yu = y. We wish to define a homomorphism 

cp: N--+N' with cp(z u) = z u'. 
y y 

By Lemma 1.1.2, we need only 

check that given elements p and q in E(X) with 

(z u)p = (z u)q, we also have (z u')p = (z u')q. Consider 
y y y y 

such p and q. Since z up = z uq, 
y y 

we have xup = xuq 

for all X E n -I ( y) , we have xu' 

also, since yu 1 = y. Thus xu'p = xu'up = xu'uq = xu'q 

for all x E n- 1 (y). Thus z u'p = z u'q and cp is well-
Y y 

defined. Reversing this argument, there exists t: N'-+N 

with t(z u 1
) = z u. Since a homomorphism of minimal sets 

y y 

is determined by its value at one point, this proves that cp 
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is an isomorphism. rr o<P(z u) = y = TT (z u') so 
y y . y y Crr IN')o<P = 

y 

Tr IN. 
y 

Lemma 2.1.5. For any two points y, y' E Y, there 

exist minimal sets N E E(TT,y) and N' E E(TT,y') and an 

isomorphism \jt: N '--+ N such that Crr IN)o\jr = TT , IN'. 
y y 

Proof: Let I be a minimal ideal in E(X) again 

11 

and pick minimal idempotents u,u' E J(I) such that yu = y 

and y'u' = y'. Since Y is minimal we can find p E I 

with yp = y'. 

Range (z ,). 
y 

Then Range (z p) = TT- 1 (y)p c TT- 1 (yp) = 
y 

Thus, given elements q,r E E(X) with 

z ,r, it follows that z pq = z pr. Therefore we can define 
y y y 

a homomorphism \jt: E (TT, y' ) --+ E (TT, y) with \jt(z ,) = z p. 
y y 

IT o\jt(z ) =IT (z p) = yp = y' = rr ,(z ,) so 
y y' y y y y 

We now let N' = z ,I and N = \jt(N'), 
y 

TT 0\jt =TT 1 • 
y y 

recalling that 

a homomorphic image of a minimal set is necessarily minimal. 

If we can show that "'IN' lS one-to-one we'll have the 

desired isomorphism. Suppose \jt(z ,r) = \jt(z ,s) for some 
y y 

r,s E I. Then z pr = z ps and we must show Z Ir = Z IS• y y y y 

In other words, we need xr = xs, for all x E TT-l(y'). We 

pick q E Iu so that q = qu and pq = qpu = u. Consider 

x E TT-l(y'). TT ( Xq) = y'q = ypq = yu = y. Thus xq E TT-l(y) 

and we have xqpr = xqps, since z pr = z ps. Finally, 
y y 

xr = xur = xqpur = xqpr = xqps = xqpus = xus = XS. 11 

Theorem 2.1.6. Suppose N and N' are minimal subsets 

of E(TT,y) · and E(TT,y') respectively . Then there exists an 

iso mor phism <P: N~N' such that (n, IN')o<P =Tl IN. 
y y 
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Proof: Just combine the preceding two lemmas. 

If '\f: W--+Z and 'Ir': W'--+Z are transformation group 

homomorphisms with the same range, we say that ~ and '\'' 

are isomorphic if there exists a transformation group 

isomorphism e: W'~W such that '\foe = '\''. Thus Theorem 

2.1.6 defines an essentially (up to isomorphism) unique 

homomorphism which we call 1l: N--+ Y. 

Definition 2.1.7. Given a homomorphism TT: X--+ Y, 

with Y minimal, we call the homomorphism il: N--+ Y the 

regularizer Of TT and we say that TT is a regular 

homomorphism. 

Thus a homomorphism is regular if and only if it's 

isomorphic to the regularizer of some homomorphism. 

2. Abstract Characterizations . 

In this section we obtain an abstract characterization 

of the regularizer from which other characterizations follow. 

In this section TT: X---+ Y is a fixed homomorphism with Y 

minimal once again and TT: N---+ Y is the regularizer of TT 

as constructed in the previous section. Recall that M is 

the universal minimal set. 
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Definition 2. 2 .1 . We say that a homomorphism \jr: Z ~ Y, 

z and y minimal, is regular with re spect to rr : x-Y if, -
given any pair of homomorphisms y: M- X and 0 : M-z 

with rro y = \jrO 0 there exists a homomorphism e: Z-+X with 

eo 6 = y and rro 8 = "'. 
M 

;/ 6 

x 9 z 
~A 

y 

It will turn out that rr: N--+ Y can be characterized 

as the unique "least" homomorphism which is regular with 

respect to rr: x- Y. To obtain this result we first make 

some observations about rr. To model rr, we choose y E Y 

and let N be some minimal subset of E(rr,y). We take 

rr = 1T jN. 
y 

We may vary the choice of y and N to suit our 

convenience since all choices are isomorphic. 

Lemma 2.2.2 . Suppose y and y' are homomorphisms 

from M into N with rroy = nay'. Then there exists an 

automorphism e: N-+N with Soy' = y and rroe = rr 

• 
Proof: 

represent N 

M 
~/ y ' ,r 

N"- 8 ~ 

Tr~ /rr 
y 

Regarding M as a minimal ideal in ~T we may 

by N = z M. 
y 

Let u be a minimal idempotent 

in J. We can find elements p and p' in M such that 



24 

z p = y(u) and z p' = y'(u) since N is minimal. Then 
y y 

z pu = y(u)u = y(uu) = y(u) = 
y 

z p. Similarly, z p'u = z p'. 
y y y 

Also yp = rr(z p) = rroy(u) = rroy'(u) = rr(z p') = n(z )p' = 
y y y 

yp'. We pick another minimal idempotent v E J(y) and 

pick q E Mv so q = qv and pq = qpv = v. Now we'll show 

that the functions z p and z p' have the same range. 
y y 

Consider x E Range(z ), 
y 

recalling that Range(z ) = rr- 1 (y). 
y 

Let x' = xp'q. Then we have rr(x') = rr(xp'q) = yp'q = 

ypq = yv = y, so x' E Range(z ) also. We have z p' = 
y y 

y I (U) = YI ( UU) = y' (u)u = z p'u and similarly z p = z pu. 
y y y 

Therefore xpu = xp and x'pu = x'p. Now xp' = xp'u = 

xp'vu = xp'qpvu = x'pvu = x'pu = x'p. Thus Range(z p') 
y 

Range( z p). 
y 

Similarly 

We define 8 so 

Range(z p) c Range(z p'). 
y y 

8(z p') = z p. It is clear from 
y y 

the above that z p'r = z p's~> z pr = z ps for any 
y y y y 

c 

r,s E ~T. Thus 8 is a well-defined homomorphism. We can 

reverse this to get e- 1 , so e is actually an automorphism. 

Finally 9oy'(u) = 8(z p') = z p = y(u), 
y y 

so 9° y I = y. 11 

It will soon be seen that the property ascribed to 

rr : N - Y in the preceding lemma characterizes regularity. 

The next lemma concerns factoring homomorphisms from M 

into X through N. 

Lemma 2.2.3 . Given a homomorphism y : M--+X, there 

exist homomorphisms x: M~N and f.: N~x such that 

f.o x = y , rr of. = n, and rr ox = rr o y 



.. 

Proof: 

x = y(u) and 
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M 

y~ 
X A. N 

~/TI 
y 

Pick some minimal idempotent u E J. Let 

y = rr(x). We model N by taking N = z M. 
y 

We now take x(u) = z u 
y 

and A.(z u) = x. 
y 

Consider p,q E ~T. 

If up = uq, then 

then xp = xq since 

If z up = z uq. 
y y 

x E Range(z u), 
y 

z up = z uq y y 

M and N are both 

minimal, so x and A. are well-defined homomorphisms, chosen 

to make the diagram commute. 11 

~oposit~on 2.2.4. rr is regular with respect to TI. 

Proof: Given homomorphisms y and o as shown in the 

diagram below we must find a homomorphism e to complete the 

diagram 

M 

y~ 
x~ 8 N 

11~ /. 
y 

We apply Lemma 2 . 2 . 3 to find homomorphisms x: M-+N 

and A.: N-+X such that A.ox = y, TI 0 A = TI ' and rr.ox = TIO y. 

We then apply Lemma 2 . 2 . 2 to obtain an automorphism (jl with 

cpoo = x and TIO(jl = TI • We then take e = AO <p and we're 

done. The complete picture lS shown below. 
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11 

Definition 2.2.5. Given a homomorphism ljr: W----+Z we 

say that 'ljr is coalescent if every endomorphism e: W----+ W 

with 'ljroe = 'ljr is actually an automorphism. 

This is a generalization of the notion of coalescence 

of transformation groups. 

Proposition 2. 2. 6. rr: N--+ Y is coalescent. 

Proof: This is an irrunediate consequence of Lerruna 2.2.2. 

We are now in a position to prove the main result of 

this section. 

Theorem 2. 2. 7. Suppose ~ homomorphism rr' : N 1 --+ Y is 

regular with respect to rr: X----+ Y. Then there exists a 

homomorphism 'ljr: N'---+N such that rro'ljr = rr'. Moreover, 

any other homomorphism onto Y which is regular with 

respect to rr and which has this additional prop erty is 

isomorphic to rr: N----+ Y. 

Proof: We repre.sent N by taking N = z M. 
y 

Pick 

11 

u E J(y). Define y: M---- N by y(u) = z u. 
y 

Pick an element 

r E rr' -i (y) c N' and define 6: M---. N' 

rr'o6(u) = rr'(ru) 

Consider any 

= yu = rr ( z u ) y 

x E rr- 1 (y). 

= rroy(u). 

We define 

by 6(u) = ru . Now 

Thus rr'o6 = rroy. 

e : N ----+ X by 
x 
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e (z u) = xu. This is well-defined since xu E Range(z u). 
x y y 

Now 

Thus 

T(O 9 oy(U) = 
x 

rro e ( z u) = rr ( xu) = y = rr' ( ru) = 
x y 

T(O ( e 0 y) 
x 

= n'o6. By the regularity of rr' 

rr'o6(u). 

with 

respect to n there exists a homomorphism cp : N'---+X 
x 

with cp 06 = (e oy) and rrocp = rr'. 
x x x 

The situation so far is shown by the following diagram. 

We still wish to construct t: N'---+N. 

M 

;Y~ 
N t N' 

~/{ 
x 

t 
y 

We'l'l now see that for any m,m' EM, 6(m) = o(m') => 

y(m) = y(m'). Observe that y(m) = y(rn') <=> z m = 
y 

z m' <==> xm = xm' for all x E rr- 1 (y). Consider an 
y 

arbitrary x E rr- 1 (y). We have 6(m) = 6(rn') ===> cp oo(m) = 
x 

cp o o ( m' ) => e o y ( m) = e o y ( m' ) => e ( z m) = e ( z m' ) => 
x x x x y x y 

xm = xm'. 

We now define t: N'--+N by t(ru) = z u. 
y 

Suppose 

rup = ruq for some p and q in ~T. Then 6(up) = 

rup = ruq = 6(uq). Thus z up= y(up) = y(uq) = z uq. 
y y 

Therefore t is well-defined. Also rr0 t(ru) = rr(z u) = 
y 

yu = n ' ( ru) so not = n ' . 

Finally, suppose rr": N"--+ Y is another homomorphism 

which is regular with respect to rr: X-+ Y and which has 

the property just established for rr: N ~ Y. We wish to 
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find an isomorphism a: N" - N with rro a = rr". Since both 

rr and rr" are regular with respect to rr and both have 

the property shown above we can find homomorphisms a: N"--+ N 

and ~: N--+N" such that rrou = rr" and rr"o~ = rr. Since rr 

is coalescent, ao~ is an automorphism of N. Therefore a 

is one-to-one and hence an isomorphism. 11 

Using the language of category theory, we can describe 

rr: N---->- Y as the unique universally attracting object in the 

category of homomorphisms which are regular with respect to 

rr: x___..y, 

In [3], Auslander obtained several different 

characterizations of regular minimal sets. These extend to 

homomorphisms. 

Pr~position 2.2.8 . Given ~ homomorphism rr: x- Y 

with X and Y minimal, the following statements are 

equivalent: 

(i) rr is regular. 

(ii) rr is regular with respect to itself. 

(iii) rr is its own regularizer. 

(iv) For any two points x,x' EX with rr(x) = rr(x') 

there exists an endomorphism e: X->- X such that e (x) and 

x' are proximal and rroe = e. 

(v) For any two points x,x' EX with (x,x') almost 

periodic and rr(x) = rr(x') there exists an endomorphism 

e: X--+X such that e(x) = x' and rroe = e . 



Proof: ( i) => ( v). 

we can find an idempotent 
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Since 

u E J 

(x,x') 

with 

almost periodic, 

(x,x')u = (x,x'). 

We define homomorphisms y: M--+ X and y ' : M-+ X by 

y(u) = x and y'(u) = x'. Applying Lemma 2.2.2 then yields 

the required 8: X---+ X. 

(v) =>(ii). Given homomorphisms y: M-+X and o: M-+X 

with rroy = rroo we must find 8: X-1.+-X with 905 = y and 

rro8 = 8. Pick u E J. Let x = y(u) and x' = o(u). Then 

(x,x')u = (x,x') so (x,x') is almost periodic. Applying 

(v) yields the necessary homomorphism. 

(ii) => (iii). Suppose TT ' : X '~ Y is some other 

homomorphism which is regular with respect to TT. Pick an 

arbitrary y E Y and u E J(y). Pick x E TT-1 (y) and 

x' E TT 1 
-

1 (y) arbitrarily. We can define homomorphisms 

y: M-X and 6: M---+X' with rr'o5 = rroy by y(u) = xu 

and o(u) = x'u. By regularity of rr' with respect to X 

we can find a homomorphism 8: X 1---+ X such that no 8 = 11' 

and 905 = y. Thus TT attracts any other homomorphism which 

is regular with respect to TT. Therefore, by Theorem 2.2.7, 

TT is its own regularizer. 

(iii) => (i). By definition. 

(iv)=> (v). If a pair of points is both proximal and 

almost periodic, the two points are identical. 

(v) ~~> (iv). Suppose x,x' E X and TT (x) = rr (x'). Pick 

u E J(x). Let x" = x'u. Then x"u = (x'u)u = x'u so x" 

and x' are proximal. (x,x")u = (x,x") so (x,x") is 

almost periodic. Applying (v) then yields the required 

endomorphism. 11 
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Since regular homomorphisms are coalescent, "endomorphism" 

may be replaced by "automorphism" in (iv) and (v). 

A subset of a transformation group is called "almost 

periodic" if it's the range of an almost periodic element in 

an appropriate product space. This is not the same as being 

an almost periodic element in a hyperspace. Condition (v) of 

Proposition 2.2.8 tells us that the fibers of regular 

homomorphisms are partitioned by their maximal almost periodic 

subsets, which are of the form n- 1 (y)u where y E Y and 

u E J(y). 

_C oroll~ry 2 . 2 . 9. Suppose TI: X--+- Y is a regular 

homomorphi s m and I is a minima l right ideal in some 

enveloping semigroup for X. Suppose y E Y. Then the 

collection of sets P :: {TI -i ( y) u I u E J (I) and yu = y} 

partitions n- 1 (y). 

Proof: We'll say that two points in n- 1 (y) are 

?-related if they belong to some common member of P. We 

must show that this is an equivalence relation. Reflexivity 

follows from the fact that all points in X are almost 

periodic, X being minimal. Symmetry is obvious. Suppose 

(x,x') and (x',x") are ?-related. Then (x,x') and 

(x',x") are almost periodic pairs in n- 1 (y). By (v) of 

Proposition 2.2.8, we can find automorphisms a and ~ 

such that a(x) = x', ~ ( x' ) = x" , no a = TI , and no~ = TI • 

Then a 0 ~ is an automorphism also with (a 0 ~)(x) = x" and 

TI o ( ao ~ ) = TI • Pick an idempotent u E I such that xu = x. 
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"'I'hen yu = y and x"u = (ao~)(x)u = (ao~)(xu) = (ao~)(x) = 

= x". Thus (x,x") is a P-related pair also and the P 

relation is transitive. 11 

We can draw some additional conclusions from Proposition 

2. 2. 8. Given a homomorphism '1r: Z--+ W, we define Aut \jr = 

{8 8 an automorphism of Z and \jroe = t}. We say that \jr 

is a group extension if whenever z, z' E Z and . \jr( z) = \jr( z'), 

there exists 8 E Aut \jr such that e(z) = z'. 

Corollary 2 . 2 .10. ~homomorphism of. minimal sets is a 

group extension if and only if it's distal and regular. 

Proof: This follows from condition (v) ·of Proposition 

2.2.8 and the fact that a homomorphism of minimal sets is 

distal if and only if the fibers are almost periodic sets 

[see 4]. II 

Co~olla..RY_2 . ~ . ll . A p roximal homomorphism of minimal 

sets is always regular. 

Proof: If a pair of points is both proximal and almost 

periodic, the two points are the same. Thus the identity 

automorphism connects any almost periodic pair in a common 

fiber and condition (v) of Proposition 2.2.8 applies. I I 

Proposition 2. 2 . 1 2. Suppose n: X--+ Y is ~ homomorphism 

of minimal sets. Then n is regular and almost periodic if 

and only if n is a group extension and Aut n admits a 

compact Hausdorff topology making it ~topological group and 

making its action on X jointly continuous. 
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"' Proof:<==We've already shown that group extensions are 

always regular, so we just need to show that TI is almost 

periodic. 

proximal 

(x') in 
n 

each n 

Suppose (x,x') 

pair 

x 

and: 

in x. Then 

and (t ) 
n 

X ---+X 
n 

x' ---+ x' 
n 

in 

is a relatively regionally 

there exist nets (x) 
n 

and 

T such that TI(X ) = TI(x') 

Xt ---+X 
n n 

x't ---+ x. 
n n 

n n 
for 

Since is a group extension, each x' = a (x ) for some 

a E Aut TI. Thus we have 
n 

(a) x ---+ x 
n 

n n n 

(c) x t ---+ x 
n n 

(b) a (x )--+ x' 
n n 

(d) a (x t ) ---+ x 
n n n 

Taking subnets if necessary, we can assume a ~a for 
n 

some a E Aut TI, since Aut TI is assumed compact Hausdorff. 

Applying the joint continuity to (a) and (b) gives a(x) = x' 

and (c) and (d) give a(x) = x. Thus x = x' and TI is 

almost periodic. 

~we know we have a group extension by Corollary 2.2.10. 

By the Ellis Joint Continuity Theorem [see 6] it will suffice 

to show that the action on X and the multiplication on 

Aut TI are separately continuous. 

First we'll show that given elements x,x' EX and a 

net (a ) in Aut TI and a E Aut TI we have 
n 

a (x)---+- a(x) <~=> a (x')---+ a(x'). 
n n 

Assume a (x)--+a(x). 
n 

It will suffice to show that some 
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subnet of <a ( x 1 
)) converges to CI( XI) so we may assume n 

that (a (x' )'-n / converges. Pick p E ~T with xp = x' and 

a net (t > in T with t -P· Then 
rn rn 

lim (a (x')) = lim ( 1 im ( an ( x ) t rn) ) = lim (a. (x)t .) . n J J n n rn j 

for some subnets <a.) of (a ) and (t .) of <t ). 
J n J rn 

almost periodicity of TI implies that lim (a.(x)t.) = 
j J J 

a(x)p = a(x') by Theorem 1.2.6 and Lemma 1.2.5. Thus 

a (x')--+-a(x') as required. 
n 

The 

Next we fix x E X 
0 

and y
0 

E Y with TI(x ) = y . 
0 0 

a f-+-a(x) 
0 

is a bijection from Aut rr We use 

this to topologize Aut TI with the subspace topology of 

TI- 1 (y) in X which is compact Hausdorff. We then have 
0 

a ---+ a <~> a (x ) ---+ x 
n n o o 

If x --+ x in X and a E Aut rr we surely have 
n 

a(x ) - a(x). If a ~a in Aut rr and x E X we have 
n n 

a - a =~=> a ( x )--+ a(x ) => a (x) ~ a(x). Thus the action 
n n o o n 

is separately continuous. 

Suppose ~ - ~ E Aut TI n 
and a E Aut TI. Then A ~A 

t-'n I-' 

==> ~ (x )-~<x) => ~ (a(x ))--+-~(a(x) => ~ oa-~oa. no o no o n 

Also ~ ~~ => ~ (x )~~ex)=> a(~ (x })-a(~(x )) 
n no o no o 

=> ao ~ - ao ~. Thus the multiplication in Aut rr is 
n 

separately continuous. 

3. Automorphism Groups. 

We let G be the automorphism group of the universal 

minimal set M. Given a homomorphism y: M ~ X we may 

11 
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define a subgroup G(X,y) = {a E G J yoa = y}. Varying y 

while keeping X fixed yields conjugate subgroups. These 

groups and their quotients contain considerable information 

about minimal sets. They have been studied extensively by 

Ellis [7] and Auslander [4]. In particular, it's known 

that the normal subgroups of G correspond to regular 

minimal sets, up to proximal homomorphisms. We'll see that 

this extends to regular homomorphisms. 

In this section, Tl: X ~ Y is a fixed homomorphism 

of minimal sets and y is a fixed point in Y. We'll 

consider only those homomorphisms y: M-+ X such that 

rroy(m) = ym for all m E M. Thus rroy is independent of 

the choice of y and we may write G(Y) instead of G(Y,rroy). 

We will also write G(X) instead of G(X,y) when the choice 

of y is irrelevant. 

The following lemmas are from [4]: 

Lemma 2. 3 .1. Given homomorphisms y: M-+ X and 

y' : M-+ X with X minimal, there exists an automorphism ~ 

of M such that y'o~ = y. 

Lemma 2.3.2. Suppose X and Y are minimal and we 

have homomorphisms y: M--+ X and Tl: X--+ Y. Then Tl is a 

proximal homomorphism if and only if G(X,y) = G(Y,rroy). 

Proposition 2.3.3. If TI is regular, then G(X) is 

a normal subgroup of G(Y) and Aut(n) is naturally 

isomorphic to G(Y)/G(X). 
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Proof: Choose some y: M--+ X as indicated before and 

let G(X) = G(X,y). Suppose a E G(X,y) and ~ E G(Y). We 

must show that ~- 1 a~ E G(X,y). By Proposition 2.2.8, there's 

a unique ~ E Aut(n) such that <Poyo~ = y. Therefore 

yo(~- 1 a~) = <Poyo~o(~- 1 a~) = <Poyoao~ = <Poyo~ = y. Thus we 

have ~- 1 a~ E G(X,y) proving that G(X,y) is a normal 

subgroup. 

As noted above, given ~ E G(Y) there exists a unique 

<P E Aut n such that <Poyo~ = y. Define F: G(Y)~Aut(n) 

by F(~) = <P- 1
• We'll show that F is a group epimorphism 

and that ker F = G(X,y). Consider R t-' 1 
and R t-'2 in G(Y). 

Let ~ 3 = ~ 1 o~ 2 and let F(~i) = <Pi for i = 1,2, and 3. 

Now <P 2 o<P 1 oyo~ 1 o~ 2 = <P 2 oyo~ 2 = y so we must have <P 2o<P
1 

= 

<P . 
3 

Therefore Ll - -1 -1 
<P3 - <Pl <P2 and 

F(~ )of(~ ). Therefore F is a homomorphism. 
1 2 

Consider ~ E G(Y). F(~) =identity<~> identityoyo~ = y 

<=> yo~= y <=> ~ E G(X,y). Thus ker F = G(X,y). Finally, consider 

<P E Aut n. By Lemma 2.3.1, there is an automorphism ~ of 

M such that <P - i o yo~ = y. Also so 

~ E G(Y). Thus F(~) = (<P- 1 )- 1 = <P· Therefore F is onto. I I 

To prove a partial converse we need the following 

technical lemma: 

Lemma 2.3.4. Suppose we have homomorphisms of minimal 

sets y: M-+X and n: X-Y. Suppose u E J, x = Y ( u) ' 
0 

and y = n(x ) . We represent the regularizer of n Qy 
0 -- -

taking N = z M. We define a homomorphism P: N---+X by 
y -
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P(z u) = x u . 
y 0 

Suppose ~ E Aut TI and Poto~ = Pot for 

e v ery t E Aut rr. Then ~ is the identity automorphism on 

N. 

Proof: It will suffice to show that ~(z u) = z u. 
y y 

Pick r E M such that ~(z u) = z r. Let r' = uru. Then 
y y 

~(z u) = ~(z u)u = z ru = z uru = z r' also. Range(z ) = 
y y y y y y 

rr -l (y), so we must show that xr' = xu for all x E rr- 1 (y). 

Consider such an x. Pick p E M so that x = xop. We 

wish to define t E Aut(n) by t(z u) = z pu. Suppose 
y y 

x' E Range( z p). Then x' = x"p for some x" E rr-1(y). 
y 

Therefore rr(x') = rr(x"p) = yp = rr(x )p = rr(x) = y. 
0 

Range(z ) = rr- 1 (y). Thus Range(z p) c Range(z ) and t is 
y y y 

well-defined. Also n°t(z u) = n(z pu) = ypu = y = n(z u) 
y y y 

so t E Aut(n) . 

Finally, we see that 

Pot(z u) ==> Pot(z r') = 
y y 

Poto~ = Pot ==> Poto~(z u) = 
y 

Pot(z u) ==> P(z pr') = P(z pu) 
y y y 

=> 

P(z upr') = P(z upu) ===> x upr' = x upu ~> x pr' = x pu ~~> 
y y 0 0 0 0 

xr' = xu and we're done. 11 

We can now prove the following partial converse to 

Proposition 2.3. 3 . 

Proposition 2 . 3 . 5 . Suppose rr: N - Y i s the regularizer 

of the homomorphism of minimal s e ts rr: x- Y. If G(X) is 

a normal subgroup of G(Y) there is a p roximal homomorphism 

P : N - X with rro p = rr . 

Proo f : Pick an idempot e nt u E J, a h omomorphism 
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y: M---+X, and x E X such that y(u) = x and rr(x ) = y. 
0 0 0 

Represent N by N = z M. 
y 

Define a homomorphism 6: M-+-N 

by 6(u) = z u. 
y 

Define P: N-+X by P(z u) = x u = x . 
y 0 0 

We then have the following commutative diagram: 

It will suffice to show G(N,6) = G(X,y), by Lemma 

2.3.2. It's clear that G(N,6) c G(X,y). We'll show that 

G(X,y) c G(N,6). Consider a E G(X,y). We must show that 

a E G(N,6), i.e., that 6oa = 6. We have rro5oa = rroyoa = 

rro6 so there exists an automorphism ~ E Aut(i) with 

~06 = 6oa, by the regularity of rr and Proposition 2.2.8. 

If we can show that ~ is the identity we'll have 6oa = 6 

and we'll be done. 

Consider any ~ E Aut(i). By Lemma 2.3.1, we can find 

~ E G such that too = 60~. This implies that t- 1 06 = 00~- 1 

as well. Also, rro50~ = rrotoo = rroo ==> rroyo~ = rroy so 

~ E G(Y). Now ~oao~- 1 E G(X,y) by normality. Thus 

yo~oao~-l = y = Po6. Since 6 is onto, we have Poto~ot- 1 = 

P which implies Poto~ = Pot. Applying Lemma 2.3.4, we see 

that ~ is the identity and we're done. 11 

We conclude this section by computing the group 

associated with the regularizer of a homomorphism of minimal 
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sets. This turns out to be the largest subgroup of G(X) 

which is normal in G(Y). 

Propo s ition 2.3. 6 . Suppose ~: X--+Y is a homomorphism 

of minimal sets, with regularizer TI: N -4- Y. Then G ( N) = 

n {~G(X)~- 1 I ~ E G(Y)}. 

Proof: We choose y: M----+- X, 6: M -4- N, and P: N-+ X 

as in the proof of the preceding proposition. We regard G(X) 

as G(X,y) and G(N) as 

G(Y) and we have G(N,6) 

G(N,6). Clearly G(N,6) c G(X,y) c 

a normal subgroup of G(Y) by 

Proposition 2.3.3. Therefore G(N,6) c ~G(X,y)~-l for each 

~ E G(Y). We still must show n {~G(X,y)~- 1 I ~ E G(Y)} c 

G(N,6). Consider a En {~G(X,y)~-l I ~ E G(Y)}. We wish to 

show a E G(N,6). Let F: G(Y)-+Aut( rr ) be the group 

homomorphism defined in the proof of Proposition 2.3.3. By 

definition, F(a)- 1 o6oa = 6 so F(a)o6 = Boa. Since F is 

onto, every element of Aut(n) can be represented as F(e), 

for some e E G(Y). Consider an arbitrary F(e) E Aut(rr). 

We have F(e)o5 = 608 and F(e)- 1 06 = 6oe- 1 • Since 

a En {~G(X,y)~-l I ~ E G(Y)} and e E G(Y), there exists 

A. E G(X,y) such that a= e - 1 oA.oe. Thus aoe- 1 = e- 1 oA.. 

We then have PoF(e)of(a)of(e)- 1 05 = PoF(8)0F(a)o6oe- 1 = 

PoF(e)o5oaoe- 1 = Po608oaoe- 1 = yo8oaoe- 1 = yoeoe- 1 0A. = yoA. = 

y = Po6. 

P, i.e., 

that F(a) 

6 is onto, so we've shown that Pof(e)of(a)oF(e)- 1 = 

PoF(e)of(a) = Pof(e). Applying Lemma 2.3.4, we get 

is the identity. Thus a E ker F = G (N, 6). 11 
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4. An Algebraic Characterization. 

In this section we fix an idempotent u E J and consider 

only point-transitive transformation groups whose base point 

is left fixed by u. Such transformation groups are necessarily 

minimal. There is a natural isomorphism between G, the 

automorphism group of M, and the group Mu, with the 

element a E G going into the element a(u) in Mu. We 

will use this isomorphism in deliberately confusing the two 

groups. We will write G(X,x) to mean G(X,y) where 

y: M~x is defined by y(u) = x. 

Suppose we have a homomorphism rr: (X,x)-l- (Y ,y). 

Recall that we can represent the regularizer as 

rr: (N,z u)~ (Y,y) where z E Xrr-l (y) and z (x) = x for 
y y y 

all x E rr- 1 (y). The following proposition describes N 

algebraically. 

Propositi9 n 2.4.1 . Suppose the T-subalebras Q and 

~ are associated with (X,x) and (Y,y) re spectively. 

Then (N,z u) is associated with the 
y 

V {Qa I a E G(Y,y)}. 

T-subalgebra 

Proof: We first observe that rr- 1 (y)u = {xa I a E G(Y,y)}. 

We have y: M-X with y(u) = x and G(Y,y) = G(Y,rroy). 

If a E G(Y,y), rr(xa) = rroyoa(u) = rroy(u) = y and xau = xa 

so xa E rr- 1 (y)u. Suppose x' E rr- 1 (y)u. Since (X,x) is 

point-transitive, xp = x' for some p E ~T. Since xu = x 

and x'u = x' we ~ave xupu = x'. We can take a = upu 

and we have a E G(Y,y) as required. 
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Since z u consists of the elements of TI- 1 (y)u, 
y 

"strung out" in a product space and N is the orbit closure 

of z u in that product space, the result follows by applying 
y 

(ii) of Lemma 1.1.6 and Lemma 1.1.7. II 

Corol lary 2 . 4. 2 . Suppose again that the T-subalgebras 

Q and ffi are associated with (X,x) and (Y,y) respectively. 

Then TI: ( X, x) -t- ( Y, y) i s r e gular if and only if Qa c Ou 

for all a E G(Y,y). 

Proof: Since a homomorphism is regular if and only if 

it is its own regularizer, Proposition 2.4.1 tells us that TI 

is regular if and only if Ou= V {Qa I a E G(Y,y)}. However, 

Slnce We 1 re assuming XU = X, We always have Q = Qu C 

V {Qa I a E G(Y,y)}. The result follows. I I 

In [7], occasional mention and use is made of algebras 

like those discussed here. Much of the development in this 

chapter could be carried out in the algebraic context, and 

certain arguments would simplify. However, this would have 

several disadvantages. Firstly, in discussing TI: X-t- Y, 

we would have to assume both X and Y minimal, while 

really it's only the minimality of Y which is essential. 

Secondly, we'd have to carry unwanted base points and we'd 

have to repeatedly re-prove that the choice of base point 

doesn't matter. Finally, such an approach would be less 

intuitive. 
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5. Products and Admissible Properties. 

In this section we establish a result connecting 

regularizers and products of homomorphisms and use it to show 

that the regularizer depends only on the minimal sets involved. 

Admissible properties were studied in [3] where it is shown 

that the class of regular minimal sets coincides with the 

class of ?-universal minimal sets for admissible properties 

P. We extend this result to homomorphisms. 

Given a homomorphism rr: X---+- Y, with Y minimal, we 

let K(rr) denote the class of homomorphisms which are regular 

with respect to rr. We have seen that the regularizer of rr 

is the essentially unique universally attracting object in 

K(rr). 

We'll consider a family of homomorphisms rr.: X.--+-Y, 
1. 1-

with Y minimal. Let iT. : N.----+ Y be the regularizer of 
1- 1-

rr . : X . --+ Y, for each i . 
1- 1-

Let rr: N - Y be the product of 

the homomorphisms Tl i: Ni--+Y so N = {(ni) I n. E N and 
1-

ni(ni) 
"-' 

the same for all i}. Let N be a minimal set in 

"-' restriction 
"-' 

N and Tl be the of Tl to N. 

"-' 

Proposition 2.5.1. rr: N-+Y is the essentially unique, 

universally attracting object in Also "-' 
Tl is 

regular. 

Proof: First we observe that rr E K(rr.) for any given 
1-

i. Suppose we have homomorphisms y : M--+ X . and 6 : M - N 
1-

with rroo = rr,oy. 
1-

diagram 

"-' 

We must find e: N---+- X. completing the 
1-
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rv 

Letting P.: N--->- N. be the projection we have a diagram 
1. 1. 

where ~ is the homomorphism whose existence is guaranteed 

by the regularity of Tii with respect to Tii. We just take 

e = ~op i. 

Now suppose TI 1
: N'-Y is also in ni K(Tii). 

point y E Y and an idempotent u E J(y). Pick n 

n' E N' such that TI 1 (n') = n(n) = y, rv rv 
nu = n, and 

Pick a 
rv 

E N and 

n'u = n. 

It will suffice to show that, given p and q in ~T, 

n'p = n'q ===> np rv = nq as this will insure the existence of a 

homomorphism a: N'-+-N such that a(n') = n. Now we can 

write 
rv 

(n.) where E N. for each and n = n. i, n.u = n. 
1. 1. 1. 1. 1. 

n.(n.) = y. Thus we need only show n.p = n.q for each l. 
1. 1. 1. 1. 

We define zi: TI ~l (y)-+- X. by z. (x) = x for all x E TI:--l(y). 
1. 1. 1. 1. 

Then we may represent N. as z .M 
1. 

and, by regularity, there 
1. 

exists an automorphism ~i of N. 
1. 

such that ~.(z.u) = n., 
1. 1. 1. 

for each i. Therefore it suffices to show that ziup = 
XE TI~ 1 (y). z. uq, i.e. , 

1. 
that xup = xuq for all 

1. 
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Given x E rri 1 (y), we can define homomorphisms x: M-Xi 

and "-: M --+ N ' such that x(u) = xu, and \(u) = n'. We 

have a diagram 

M 

y ~ 
x ~ NI 

i e/n rr . rr 1 
1 

y 

since rr' E K(rr.) implies the existence of e. Thus xup = 
1 

8(n'p) = 8(n'q) = xuq. 

Next we see that TI is regular. Suppose (n,n') is an 

almost periodic pair in TI -l (y) with n = <n .) and n' = 
1 

<n~). 
]_ 

Then is an almost periodic pair in - l ) rr:-Cy, 
]_ 

for each i, and we can use the regularity of the 

homomorphisms rr. to get the necessary automorphism. 
]_ 

Since 
rv 
rr : is regular, it is also coalescent. 

Thus, if there is another universally attracting object in 

n. K(rr.), 
]_ ]_ 

it must be isomorphic to rr. 11 

Next we see that the regularizer of rr: X - Y, where X 

is not necesarily minimal, depends only on the restrictions 

of rr to minimal subsets of X. 

Given rr: X--+Y, with Y minimal, let {W 1 } be the 

collection of minimal subsets of X and let rr =rrlW., i ]_ 

for each i. Let rr: N~ Y be the regularizer of rr and 
rv 

let rr: N--+ Y be the universally attracting object in 
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Proposition 2.5.2. "' rr and rr are isomorphic; ~·~·, 

"' there exists an isomorphism 8: N-+ N such that rro 8 ::: Tl. 

Proof: Since rr is the essentially unique universally 

attracting object in K(rr) it suffices to show that 

E n. K(rr.) and 
,...., 

E K(rr). Tf Tf 
l. l. 

Suppose we're given a: M-+W. and ~: N-Y such that 
l. 

Tro ~ = rr
1
oa. To show Tf E K( rr i) we must find 'Y: N-+W, 

l. 

completing the diagram below 

M 

a/ ~ 
W "'"' N 

i '( / 

~ / rr 
y 

However, the existence of y is guaranteed since Wi c X, 

rr. = rrlW., and rr E K(rr). Similarly, given o: M-+X and 
l. l. 

rv rv ,...., 

A.: M-+ N with rro 6 = rro A. we must find <P: N---+- X completing 

the diagram 

M VA 
X N 

~<P/u 
y 

,...., 
to show NE K(rr). We can do this, since o(M) must be one 

and Tl E K(rr.). 
l. 11 

Definition 2.5.3 . Given a property P of homomorphisms 

and a minimal set Y, we say that P is Y-admissible if 

(i) Y has a P-extension. 
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(ii) Given a family of _ P-extensions TI
1

: x 1~Y, the 

homomorphisms obtained by restricting the product TI: X-+ Y 

to minimal subsets of X also have property P (here 

X = {(x.) J TI.(x.) the same for all i}). We say that P 
l l l 

is admissible if it is Y-admissible for every minimal set Y. 

Definition 2.5.4. If P is a property of homomorphisms, 

we say that TI: X-+ Y is a P-universal extension of Y if 

it is universally repelling in the category of P-extensions 

of Y. 

Proposition 2.5.5. A homomorphism TI: X-Y, with Y 

minimal, is regular if and only if it's a P-universal 

extension, for some Y-admissible property P . 

Proof: =>Define a homomorphism t: Z---+ Y to have 

property P if and only if there exists a homomorphism 

6 : X - Z with ljro 6 = TI . TI is P-universal by construction, 

but we still must show that P is Y-admissible. Suppose 

we have families of homomorphisms ti: W i-+ Y and 6.: X-+ w._ 
l l 

and suppose w = <w .) 
l 

Let 1jr: w~ Y be the product 

is an almost periodic point in W. It 

will suffice to find a homomorphism y: X---+ W such that 

y(x') = w for some x' E TI-1 (y) and ljroy =TI. Let y =ljr(w) 

and pick an idempotent u E J(w). Pick x' E TI - 1 ( y) so 

x'u = x'. For each i, pick x. E 6-;- 1 (w.) 
l l l 

so X '.u - x 
l - i 0 

is an almost periodic pair, for 

each i, so there exist automorphisms e. on X 
l 

such that 

e.(x') = x .. Define 
l l 

y: x-w by "( (XI ) = (_ 6 . 0 8 . (XI )) , 
l l 
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Then y ( x' ) = w. 

<~=Let {rr.: X.-rY} be the family of P-extensions of Y 
l l 
rv 

and let Tl: N--+ Y be the essentially unique, universally 

attracting object in n. K(rr.). 
l l 

Then the Y-admissibility 

of p and the method of construction of 
rv 
T( implies that 

rv 
T( 

is a P-extension. The construction also tells us that, for 

each 

T( • 0 6 
l 

i, 

= T( 

there exists a homomorphism 

rv 
SO Tl is P-universal, rv 

T( 

6.: N-*X. with 
l l 

is regular, hence 

coalescent, and this implies that it is isomorphic to any 

other P-universal extension of Y. 

Corollary 2.5.6. If P is a Y-admissible property 

and Y is minimal, there exists an essentially unique P-

universal extension of Y. 

11 

Proof: Let { rr. : X. -r Y} be the family of P-extensions 
l l 

of y and let 
rv rv 

rr: N---+Y again be the essentially unique, 

universally attracting object in K(rr.). 
l 

Then 
rv 
T( is the 

desired object, by the proof of the preceding proposition. I I 

Next we show that distal, almost periodic, and proximal 

are all admissible properties of homomorphisms. Since the 

identity homomorphism is always distal, almost periodic, and 

proximal it will suffice to show that condition (ii) of 

Definition 2.5.3 is satisfied in each case. 

Proposition 2.5.7. Distal and almost periodic are 

admissible properties of homomorphisms. 

Proof: Assume we have a family of distal (almost periodic) 
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homomorphisms TT i: Xi__. Y with product TT: X---+ Y and 

· t' P X X Then i'f (x,x') proJ ec ions i: --+ i. is a relatively 

proximal (regionally proximal) pair in X each 

(P.(x), P.(x')) is relatively proximal (regionally proximal) 
l- l-

in X. and the result follows. 
l-

The universal distal and almost periodic extensions of 

minimal sets are used extensively in [7]. 

Lemma 2. 5. 8. Supp ose TT: X---+ Y is a h omomorph ism of 

minimal sets. Then TT is proximal if and only if TT- 1 (y)u 

is a singleton whenever y E Y and u E J(y). 

Proof: ==> Suppose we have y E Y, u E J(y) and 

TT(x) = TT(x') = y. Then the pair (xu,x'u) is proximal and 

almost periodic. Therefore xu = xu'. 

11 

<==Obvious. I I 

Proposition 2.5.9. Proximal is an admissible property 

of homomorphisms. 

Proof: Suppose Y is minimal and we have a family 

TT.: X --+Y of proximal homomorphisms and suppose Z is a 
l- i 

minimal subset of the product TT: X--+ Y. Let Pi: Z---+ Xi 

denote the projections and let W. = P.(Z), a minimal set. 
l- l-

Suppose x and x' are in Z and TT(x) = TT(x') = y. Pick 

a minimal idempotent u E J(y). By the preceding lemma, we 

just need xu = x'u. Let x = (x.) and x' = (x~). Applying 
l- l-

the lemma to the homomorphisms TT. IW. we get x.u = x~u 
l- l l- l-

for 

each i, completing the proof. 11 
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We will also show that a homomorphism of minimal sets 

is distal (almost periodic) if and only if its regularizer 

is. The next two lemmas are well-known. 

Lemma 2.5.10. Given a diagram of minimal sets, 

TI Xl~ 
~ 

y 

TI is distal if and only if both A and ~ are distal. 

Proof: It is clear from the definition that A and ~ 

distal implies TI distal and that TI distal implies A 

distal. Proposition 5.22 of [7] says that, since X and 

W are both minimal, A carries the proximal relation on 

X onto the proximal relation on W. From this it follow~ 

that TI distal implies A distal. 

Lemma 2.5.11. If we have a diagram of minimal sets 

x 

TI 1~W 
~ 

y 

with TI almost periodic, then ~ is almost p e r i odic. 

Proof: By Theorem 1.2.6, 2TI is element-wise almost 

11 

periodic and it will suffice to show that 2~ is element-wise 

almost periodic. Suppose A E 2~. Then A- 1 (A) E 2TI and 
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A.- 1 (A)::: (A.-1 (A))ou for some u E J. Then 

and A is an almost periodic element. 

Eropo s i t i on ? . 5 .12 . A homomorphi sm~! minimal sets is 

distal (almos t per i odic ) if and only if its regularizer is. 

11 

Proof: Given rr: X--->-Y, with X and Y minimal and 

rr distal (almost periodic) the regularizer is also, by its 

method of construction, since distal (almost periodic) is an 

admissible property. 

If 'TI: N ~ Y is the regularizer of rr: X ~ Y and rr 

is distal (almost periodic) then so is rr by Lemmas 2.10 

and 2.11, since rr factors through rr. 

Remark. The notion of a "universal object" used here 

and elsewhere in the literature of topological dynamics 

differs from standard usage. Generally an object Y in a 

category K is called "universally attracting" if, given 

any object X in K, there exists a unique morphism from 

X to Y. Such objects are automatically unique in the 

sense that given two such there is a unique isomorphism 

between them. 

II 

We call the object Y in the category K universally 

attracting if, given an object X in K, there exists some 

(not necessarily unique) homomorphism from X to Y. The 

uniqueness of a universal object in this sense remains to be 

proved. We generally do this by using a "coalescence" 
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property (every endomorphism is an automorphism). 



CHAPTER III 

RELATIVE ENVELOPING SEMIGROUPS 

The enveloping semi-group E(X) of a transformation 

group, X, is at once both a semigroup and a transfor-

mation group. Both of these structures carry important 

dynamical information about X. Given a homomorphism 

ll: X--+- Y, with Y minimal, we have constructed 

transformation groups E(11,y), for each y E Y which in 

some ways generalize the transformation group structure of 

E(X). This analogy is pursued further in this chapter. 

However, E(11,y) has no semigroup structure. We will 

define another object associated with the homomorphism ll, 

called 8(11,y), for each y E Y, which is a semigroup. 

Some of the information in the semigroup structure of E(X) 

will generalize to S(11,y). Generally, the properties of 

E(X) split in two directions when relativized, with the 

transformation group properties going to E(11,y) and the 

semigroup properties going to 8(11,y). 

Once again, in this chapter we'll be dealing with a 

fixed homomorphism ll: X--+ Y, with Y minimal. 

Let P11 (y) = {(x,x') I x,x' proximal in X and 

ll(x) = ll(x') = y}, for each y E Y. The following theorem 

generalizes a result of Ellis [7]. 

Theorem 3. 1. Let y E Y. Then P (y) ll is an equivalence 

relation if and only if E(11,y) contains just one minimal set. 

51 
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Proof: ~> Suppose we have y E Y with p (y) 
1T 

an 

equivalence relation. 

E(n,y) is of the form 

I in E (X). Suppose 

Recall that each minimal set in 

z I, 
y 

I and 

for some minimal right ideal 

I' are minimal right ideals 

in E(X); we'll show that z I = z I I. Pick equivalent 
y y 

idempotents u and u' in J(I) and J (I I) respectively, 

such that yu = y = YU I• Consider x E n-1(y); it will 

suffice to show that xu = xu'. We have (x,xu) E P
11

(y) 

and (x,xu') E p (y). 
1T 

Therefore (XU, XU 1 ) E P ( y) 
1T 

by 

hypothesis. Since xu and xu' are proximal, there exists 

an idempotent u" in some minimal right ideal I" in E(X) 

such that u" is equivalent to u and u' and xuu" = 

xu'u". We have xu = xuu" = xu'u" = xu'. 

<~Suppose E(n,y) contains just one minimal set. Consider 

points x, x', x" in X such that ( x, x' ) E P ( y) and 
1T 

(x',x") 

and I' 

E P ( y). Then there exist minimal right ideals 
TT 

in E(X) such that xp = x'p for all p E I 

x'q = x"q for all q E I'. By hypothesis z I = z I' y y 

I 

and 

so 

we can pick p E I and q E I' so z p = z q. Then xq = 
y y 

xp = x'p = x'q = x"q. Thus x and x" are proximal .and 

(x,x") E P (y). P (y) 
TT TT 

is obviously reflexive and symmetric 

and we've shown P (y) transitive so we have that P (y) is 
TT 1T 

an equivalence relation. 

Corollary 3.2. The relative (to 11) proximal relation 

is an equivalence relation if and only if E(n,y) contains 

just one minimal set, for all y E Y. 

II 
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Examples of Markley [14] show that there are 

homomorphisms rr: X -Y such that P (y) rr is an equivalence 

relation for some points y E Y and not for others. Let C 

be a minimal subset of the circle under the action of an 

intransitive homeomorphism without periodic points. Then C 

is a Cantor set and there exists a homomorphism tp: C - Y, 

where Y is a circle with an irrational rotation, such that 

each fiber is either a singleton or a doubly asymptotic pair 

of endpoints of an interval excluded from C. A distal 

homomorphism 'Ir: X - C is obtained by taking a "finite skew 

product" of C and the discrete space {l,···,n} under the 

action of the permutation group s . 
n 

Take TT = tpo'!r. Then if 

y E Y is the image of a doubly asymptotic pair in C, p (y) 
rr 

will not generally be an equivalence relation but if tp- 1 (y) 

is a singleton, then p (y) 
rr is the diagonal. 

Some further consequences of Theorem 3.1 will be useful 

later. 

Proposition 3.3. If the relative (to rr) proximal 

relation is closed it ~ also an equivalence relation. 

Proof: Take y E Y. We need only show that E(rr,y) 

contains just one minimal set. Consider such minimal sets 

z I and z I' where I and I' are minimal right ideals 
y y 

in E(X). Pick equivalent idempotents u and u' in J(I) 

and J(I'), respectively, such that yu = yu' = y. Consider 

x E rr-1(y) and pick a net < t > in T such that t -u'. n n 

We have x and XU relatively proximal; hence xt and 
n 
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xut are relatively proximal for each n; hence xu' and 
n 

xuu' are relatively proximal, since that relation is closed. 

However, (xu', xuu') is an almost periodic pair. Therefore 

XU 1 = XUU 1 = XU, Since x was an arbitrary point in rr- 1 (y), 

we have z u = z u'. The.ref ore z I = z I' . 
y y y y 

Proposit ion 3 . 4 . If both X and Y are minimal then 

the relative proximal relation is closed for rr: X--+ Y if 

and only if rr = yoA where A is a proximal homomorphism 

and y is a distal homomorphism. 

Proof: ~> Let P denote the relative proximal 
rr 

relation. P is certainly invariant, hence it is a closed 
rr 

invariant equivalence relation and P c R • 
rr rr Letting 

W = XI P we have uniquely defined homomorphisms A: X--+ W 
rr 

11 

and y: W --* Y such that yo A = rr. Clearly A is proximal. 

Proposition 5.22 of [7] says that since X and W are 

minimal, A carries the proximal relation on X onto the 

proximal relation on W. Suppose w and w' are proximal 

and y(w) = y(w'). Then there exist x,x~ EX which are 

proximal and such that A(x) = w and A(x') = w'. We have 

TT ( X) = yo A. ( X ) = y ( w) = y ( w 1 
) = yo A ( X 1 

) = TT ( x 1 
) so (x,x') 

is in the relative (to TT) proximal relation. Therefore 

A(x) = A.(x') and w = w'. Therefore y is a distal 

homomorphism. 

<= Suppose we have a net < (X , XI)) in x2 with each 
n n 

(x ,x') relatively proximal and (x,x') E x2 such that 
n n 

(x ,x')--+(x,x'). Then, for each n, A. ( x ) and A(X I) 
n n n n 
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are proximal, by Proposition 5.22 of [7] and yo A.(x ) = 
n 

yo A.(x'). 
n 

Since y is distal, we have A.(x) = A.(x') for 
n n 

each n. Therefore A.(x) = A.(x') and x and x' are 

relatively proximal since A. is a proximal homomorphism. J I 
Next we define the semigroups S(n,y) associated with 

a homomorphism n: X--+ Y. For y E Y, let E = {p E ~T I y 

yp = y} and define an equivalence relation on E by 
y 

p ~ q if and only if xp = xq for all x E n- 1 (y). For 

p,q,r,s E E , we have that 
y 

pr ~ qs. Thus the quotient 

structure. 

p ~ q and r ~ s implies 

E I~ carries a semigroup 
y 

Definition 3. 5. Given a hC?momorphism TT: X--+ Y and 

y E Y, the semigroup S(n,y) is defined by S(n;y) = E /rv. 
y 

Proposition 3. 6. Suppose n: X--->-Y is a homomorphism 

of minimal sets. Then n is distal if and only if S(rr,y) 

is ~group, for each y E Y. Moreover, in this case, each 

S(rr ,y) is isomorphic to Aut n, where Tl: N--+ Y is the 

regularizer of rr. 

Proof: Given an element p E E , for some y, we'll 
y 

"" let p denote the equivalence class of p in S(n,y). 

Suppose S(n,y) is a group, x,x' E TT-1 (y), and x and x' 

are proximal. Then there exists a minimal idempotent u E ~T 

such that x = xu = x'u. 

hypothesis, we can find 

Then 

p E E 
y 

u E,E and u E S(n,y). 
y 

such that p = ~ -1 Then 

By 

x' = x'up = xup = x. Thus, if each S(rr,y) is a group, n 

must be distal. 
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Now suppose n is distal. Consider y E Y and 

u E J(y). We have n- 1 (y) = n- 1 (y)u so we may represent 

n : N----+- Y by taking 

F : E ~ Au t n by 
y 

N = z uT = z T. Define a function 
y y 

F(p) = a if and only if a(z ) = z p. 
y y 

F is well-defined since endomorphisms of minimal sets are 

-determined by their value at one point and since Aut n 

is transitive on the fibers of n. F is onto, since 

z T = N. 
y 

Also, for p,q E E 
y 

we have 

F(p) = F(q) <~> z p = z q <~> p "' q. 
y y 

"' Thus F induces a bijection F: S(n ,y)-+Aut rr. Consider 

p E E and suppose F(p) = a. There exists an automorphism 
y 

L : M ~ M defined by 
up 

L (m) = upm for 
up 

m E M. We can 

define a homomorphism A.: M---+-N by A.(u) = z . Then noA. = 
y 

n oA.oL and, by the regularity of n, there exists an 
up 

a' E Aut n such that a 1 oA. = A.oL Now a'(z) = a'oA.(u) = 

A.oL (u) = A.(upu) = z pu = z p 
up y y 

up y 

= a(z ). Thus a' = a and 
y 

Now consider q E Ey and suppose F(q) = ~· 

Then F(pq)(z ) = F(upuq)(z ) = F ( upuq) o A. ( u) = A.o L (u) = 
y y upuq 

A.o L oL (u) = ao A.o L (u) = ao~oA.(u) = a 0 ~ ( z ) . Thus 
up uq uq y 

r<'P'q > = F(pq) = ao ~ .when rep> = a and rccr> = ~ . Thus 

"' F is an isomorphism and S(n,y) is a group. 11 



CHAPTER IV 

x* AND y* 

Given a homomorphism rr: x~Y of metric minimal sets, 

Veech, in [16] constructed a diagram 
A 

rr" 
y* 

ly 
x y 

rr 

where the homomorphism * is open and the homomorphisms 

and y are almost one-to-one. He used this to obtain his 

well-known structure theorem for point distal minimal sets. 

Ellis used a similar, but different construction to extend 

Veech's theorem to point-distal, quasi-separable 

homomorphisms in [8]. McMahon and Wu studied a non-metric 

version of the original Veech construction in [13], obtaining 

a partial generalization. 

Here we obtain a complete generalization of this 

construction in the non-metric case. The notion of a "highly-

proximal" homomorphism, recently formulated by Auslander, is 

essential and is studied in some detail. Certain uniqueness 

results are obtained. Our results are applied to strengthen 

Ellis' version of the Veech Structure Theorem. These results 

are also applied to almost finite extensions in Chapter V. 

1. Open and Highly Proximal Homomorphisms. 

We call a homomorphism open if it's an open map. Since 

we always work with compact Hausdorff spaces we may formulate 

57 
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openness quite easily in terms of nets. Thus a homomorphism 

rr: X--+ Y is open at a point x E X if given any net <Y·> 1 

in Y with y 1~rr(x) there exists a net ( x .) in X with 
J 

x. -+ x and <rr (x. )) a subnet of (Y
1
.). The following lemma 

J J 

puts this in terms of the enveloping semigroup action on 2rr. 

Lemma 4.1.1. Sup pose Y minimal and y
0 

E Y. Then 

rr: x~ Y is open at all points of 

whenever y E Y and p E ~T such that 

YP = Y 0 • 

Proof: ==>Consider y and p with yp = y
0

• Surely 

rr- 1 (y)op c rr- 1 (yp) = rr- 1 (y
0
). Consider x

0 
E rr- 1 (y

0
). Pick 

,,, > . a net , ti . in T such that t.--+p. 
1 

Then yt.-+ y . 
1 0 

Taking a subnet if necessary, we can find (x.) 
1 

in x 

that x ~x 
i 0 

(x. t-.1)t. -+ x 
1 1 1 0 

x
0 

E Tl -l (y)op. 

<~~ Suppose we 

Yi ~Yo and x 

and with each rr(x.) = yt . . Thus we have 
1 1 

and each x. t :-1 E rr - 1 ( y) . Therefore 
1 1 

have Yo and a net (yi) in y with 

E rr~1(y ). For each i we can find 
0 0 

such 

pi E ~T such that Yi = y p .. Taking a subnet if necessary, 
0 1 

we can assume p --+ p 
i 

for some p E ~T. Then y
0

p = 
lim y

0
p

1 
= y

0 
so, by hypothesis, lim rr- 1 (y

0
)op

1 
= 

rr- 1 (y ). Thus, for each i, we can pick 
0 

is open at x . 
0 

so that x ~x 
i 0 

Therefore Tl 

It is clear from the proof that we can replace ~T by 

11 

M in the above lemma. It is also clear that rr is an open 
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homomorphism if and only if TT- 1 (y)op :: TT- 1 (yp) for any 

y E Y and p E ~T. 

The following lemma is also useful: 

Lemma 4 .1. 2. Given a homomorphism TT : X-+Y with y 

minimal, the following are equivalent. 

( i) TT is open. 

(ii) For every y E y and p E ~T' TT- 1 (y)op :: TT -1 ( YP) . 

(iii) For every y E y and p E M, TT- 1 (y)op :: TT - l ( YP) • 

(iv) For some y E Y and every p EM, TT- 1 (y)op :: 

TT - 1 ( YP) • 

Proof: We only need show (iv)~> (iii). Suppose (iv) 

holds for some y E Y. Pick y' E Y and p E M arbitrarily. 

We must show TT- 1 (y')op:: TT- 1 (y'p). Pick q EM such that 

yq:: y' and v E J such that pv:: p. Then TT- 1 (y')op:: 

TT - 1 ( y ' p) o v (by Lemma 1 . 2 . 3 ) :: TT - 1 ( yqp) o v :: (TT - 1 ( y) o qp) o v (by 

(iv)) ::·TT- 1 (yqpv) (by (iv) again):: TT- 1 (y'p). 

Suppose X and Y are ~ompact Hausdorff spaces. A 

map <p: Y--+ 2X is said to be upper semi-continuous if 

{y E Y I <p(y) c U} is open whenever U is an open subset 

of X. The following proposition is often quoted without 

proof. We provide a proof. 

Proposition 4.1.3. Suppose Y is a compact Hausdorff 

space, x is compact metric, and the map x 
<p: Y-+2 lS 

upper semi-continuous. Then <p is continuous on a dense, 

G
0

, subset of Y. 

11 



60 

Proof: For each A E 2X and for each positive integer· 

i, let L.(A) equal the minimum number of open balls of 
1 

radius l/i required to cover A (A is always compact). 

The following facts are easy to see: 

(a) Suppose A,B E 2X with A a proper subset of B. Then 

L.(A) < L.(B) for some i. 
1 1 

(b) Suppose we have a net (A) 
n 

in with A -->-A. 
n 

Then for each i, L. (A ) ~ L. (A) 
1 n 1 

for sufficiently large n. 

Now suppose 0 is an open subset of Y. We'll show 

that ~ is continuous on a G6 subset of 0. We define a 

sequence of sets 

0 = ~ ••• J 0 ~ p ~ ••• 
i i 

as follows: 

Let 0
0 

= O. Let P. be a closed subset of 0 . which 
1 1 

has non-empty interior and let Oi+l = {y E Int Pi 

L.(~(y)) = m(i)} where m(i) =min {L.(~(y)) I y E Int P.}, 
1 1 1 

for each i. 

To insure that everything is well-defined we must verify 

that o. open implies 0 i+l open. Suppose o. is open 
1 1 

and y E 0 i+1· Then there exist open balls 8
1'

000

'

8m(i)' 

each of radius l/i such that ~(y) c B1 u . . . u B m ( i) ' By 

the upper semi-continuity of ~' y has an open neighborhood 

Q with ~(y') c B
1 

U • • • U Bm(i) for all y' E Q. Then 

Q n Int Pi is an open neighborhood of y which is contained 

in Oi+l· Thus Oi+l is open. 

We have n {O.} = n {P.} t ¢ by compactness. We'll 
1 1 
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show cp to be continuous on n {O.}. Consider y E n {O . } 
]_ ]_ 

and a net <Y;> in y with y _,,.y and cp(y ) -A, for n n 

some A E 2x. We must show that A = cp(y). The upper 

semi-continuity of cp directly implies Ac cp(y). In light 

of (a), it then suffices to show L.(A) ::: L.(cp(y)) 
]_ ]_ 

for all 

i. Consider some i > O. For some N we have y E 0 
l n i+l 

for all n::: N
1

, since Oi+l is a neighborhood of y. By 

(b), there exists an N
2 

such that L.(cp(y )) ~ L.(A) 
i n i 

L.(cp(y )) = L.(cp(y)) = m(i) since both y and yn are in 
i n i 

0 i+1 · Finally, we have L.(A)::: L.(cp(y )) = L.(cp(y)) 
i 1 n 1 

and 

we're done. 11 

This proposition is the key to some of those results in 

topological dynamics which hold for metric spaces only. We 

will just use the following corollary. 

Corollary 4.1.4. Suppose X and Y are compact metric 

spaces and 'Ir: X-+ Y is a continuous map. Then 'Ir is open 

at all po ints of t- 1 (y) for a dense, G
0 

set of points 

y E Y. 

Proof: continuous implies upper semi-

continuous. For y E Y, 'l!r- 1 is continuous at y if and 

only if 'Ir is open at all points of 'l!r- 1 (y). 11 

_Prioposi t ion L~ .1. 5 . Suppose rr: X--. Y is ~ homomorphism 

with Y minimal. Then the following are equivalent: 

(i) All the almost periodic elements of 2rr are 

singletons. 
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(ii) For some y E y and some net 

lim (rr- 1 (y)t) is ~ singleton . 
n 

(t ) 
n 

in T, 

(iii) For some y E Y and some p E ~T, rr - 1 (y)op is a 

singleton. 

Proof: (ii) <=> (iii) is obvious as is ( i) => (iii) 

since an element A E 2 Tl is almost periodic if and only if 

Aou = A for some u E J. We show (iii) => ( i) . 

Suppose y E Y, p E ~T such that rr -l (y)op is a 

singleton. Pick u E J(y). Consider an almost periodic 

element A E 2rr. Pick y' E Y and u' E J such that 

Aou' =A and Ac rr- 1 (y'). Pick q EM so ypq = y'. 

Using Lemma 1.2.3 we have 

A = Aou' c rr- 1 (y')ou' = rr- 1 (yupq)ou' 

= rr- 1 (y)o(upqu') c (rr- 1 (y)op)o(qu') 

and this last set is a singleton; consequently A is also. I I 

Def ini ti on 4 .1. 6. We say that a homomorphism rr: X--+ Y, 

with Y minimal is highly proximal if the three equivalent 

conditions of Proposition 4.1.5 are satisfied. 

A simple argument shows that a highly proximal extension 

of a trivial minimal set is itself trivial. Suppose rr: X--+l 

is such an extension. Then Xou is a singleton for u E J. 

Pick a net (t ) 
n 

in T with t --+U. 
n 

Then Xou = lim 
n 

Xt 
n 

lim X = X, so X is a singleton. This means that the notion 
n 

of a highly proximal homomorphism is purely relative, being 

devoid of content in the absolute case. 

= 
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A homomorphism is said to be almost one-to-one if some 

fiber is a singleton. Next we see that highly proximal is 

a non-metric generalization of almost one-to-one. 

Proposit i on 4.1 . 7 . Suppose rr: X--+ Y is ~ h omomorph ism, 

with Y minimal and X metrizable. Then rr is highly 

proximal if and only if rr is almost one-to-one. 

Proof: Almost one-to-one implies highly proximal in 

any case. Assume that rr is highly proximal. X metriz-

able implies Y metrizable, so Corollary 4.1.4 applies and 

we can find y E Y with rr open at all points of ~- 1 (y). 

Pick u E J(y). Then rr- 1 (y) = rr - 1 (y)ou, a singleton, by 

Lerruna 4.1.1. 

Certain results concerning almost one-to-one homo-

morphisms require a metrizability assumption which can be 

11 

removed by substituting "highly proximal" for "almost one-to-

one." Highly proximal is a nicer notion to work with since 

it is homogeneous in the sense that it can be defined 

without distinguishing a special set of points in the range 

space. 

Next we'll see that the class of highly proximal 

homomorphisms is closed under composition and under certain 

kinds of products and inverse limits. The corresponding 

properties of almost one-to-one homomorphisms hold only if 

we remain within the category of pointed minimal sets. 
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~mma 4.1.8 . Suppose we hav e homomorphisms of minimal 

sets rr: X--+ Y and <p: Y--+ Z. Then <po rr is highly proximal 

if and only if both rr and <p are highly proxima l. 

Proof: ==> Assume <porr is highly proximal; pick z E Z 

and u E J(z). Pick x so (rr- 1 (<p- 1 (z)))ou = {x} and let 

y = rr ( x) . Then 

= rr({x}) = {y} 

so <p is highly proximal. Also 

so Tf lS highly proximal. 

<= Assume both Tf and <j) are highly proximal. Pick 

z E z and u E J ( z). Take x E x and y E y so 

<p- 1 (z)ou = {y} and rr -l (y)ou = {x}. Let A. = <pO Tf • Then 

A.- 1 (z)ou = (rr -l (<p- 1 (z)) )ou c rr- 1 (<p- 1 (z)ou) = rr-1 (y) 

so 

Thus A. is highly proximal. 11 

Lemma 4. 1 . 9 . Highly prox imal is an admissible property . 

Proof: Consider a family rr . : X . ---+ Y of 
]_ ]_ 

highly proximal extensions of a fixed minimal set. Let W 

be some minimal set in the product X = {(x.) E lT. {X.} 
]_ ]_ ]_ 

rr. (x / ) the same for all i}. Let rr: W --4- Y be the natural 
]_ ]_ 

homomorphism. Suppose y E Y and u E J(y). There is an 
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x . in each X. such that {x.} = n~ 1 (y)ou. Suppose 
1 1 1 1 

(x_;> E n- 1 (y)ou. Then there is a net (t ) in T with 
n 

t --+U and an element (x~) E W such that x~t -x. 
n 1 1 n 1 

and ni(x~) = y for each i. Therefore xi E ni 1 (y)ou 

for each i. Thus (x.) = (x.), and n- 1 (y)ou = {(x.)}. 
1 1 1 

Thus TI is highly proximal. 

i E I} is an inverse system of 

11 

point transitive flows with homomorphisms y .. : (X.,x.)--+(X.,x. ) 
1] 1 1 J J 

whenever i > J in the directed set I. Such a system has a 

unique inverse limit ( X , x ) where x = ( x .) and X = 
00 00 00 1 00 

(x .)T c IT. {X.}. Given an inverse system of flows {X.} 
1 1 1 1 

with homomorphisms yij without base points it is possible 

to choose basepoints in a way that is consistent with the 

homomorphisms y ... This follows from the fact that the 
1] 

inverse limit of an inverse system of compact Hausdorff 

spaces and continuous maps is necessarily non-empty [5]. 

Definition 4.1.10. Suppose {X. I i E I} is an inverse 
1 

system of minimal flows with homomorphisms y .. : x. ~x . 
1] 1 J 

whenever i > J· Suppose ex , x ) 
00 00 

is the inverse limit of 

the point transitive system {(X.,x.) I i E I} for some 
1 1 

choice of base points x. E x. consistent with the 
1 1 

homomorphisms y ... We then say that x is a pointed 
1] 00 

inverse limit of the system {X. I i E I}. 
1 

Thus an inverse system of minimal sets {X. I i E I} 
1 

has at least one pointed inverse limit x . 
00 

In fact x 
00 

can be chosen to be minimal; just let a fixed u E J act 
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on one choice of base points x. EX. to obtain an almost 
]. ]. 

periodic set of base points. 

Lemma 4.1.11 . Suppose {rr. : X. ---""y Ii EI} is a 
]. ]. 

family of proximal homomorphisms of minimal sets. Let 

X ={(xi.) E IT. {X.} I rr.(x,) the same for all i}. Then 
]. ]. ]. ]. 

X contains ~ ~que minimal set. 

Proof: Suppose (x .) ' 
l 

(x') 
i 

are almost periodic points 

in X. Then there exist idempotents u,u' E J such that 

(x.) = (x. u) and < x '.) = < x '. u '). Fix a coordinate J E I . 
]. ]. ]. ]. 

We can pick p E M so p = upu' and x.p = x' by the 
J J 

minimality of x .. Now we'll show x'. = x.p for an arbitrary 
J ]. ]. 

coordinate i E I. We have TT,(X,p) = TT,(x.p) = TT,(x'.) = ]. ]. J J J J 

TT,(x'.). Therefore (x.p,x'.) is a proximal pair since TT , 
]. ]. ]. ]. ]. 

is a proximal homomorphism. Also (x.p,x'.) 
]. ]. 

is almost 

periodic, since (x.p,x'.) = (x.p,x'.)u'. 
]. ]. ]. ]. 

Thus x.p = x'. 
]. ]. 

and we have (x'.> = (x.)p. Therefore any two minimal sets 
]. 1: 

in X are the same. 
11 

,Lemma 4 .A, .12. Suppose we have an inverse system of 

minimal sets {X. 
]. 

i E I} with homomorphisms yij whenever 

. . 
i > J in the directed set I. Suppose every yij is highly 

proximal and suppose the system has~ least element X
0

, so 

that each X. 
]. 

is an extension of Then the system has 

a unique minimal pointed inverse limit x ' 00 
and the canonical 

projections P. : X ---->- X. are all highly proximal . 
]. 00 1 

Proof: Suppose x 
00 

is a minimal pointed inverse limit. 
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Then X
00 

c {(xi) E lTi {Xi} I yi 0 Cxi) the same for all i}. 

Hence X must be the unique minimal subset of 
00 

{(x-1) E TT. {X.} I y. 
0
(x.) the same for all i} by Lemma 

... l. l. l. l. 

4 .1. 11. 

The projection P : X ->-X 
0 00 0 

is highly proximal by 

Lemma 4.1.9 and the other projections P . : X -+ X . are 
l. 00 l. 

highly proximal by Lemma 4.1.8. 

2. Construction and Basic Properties of x* and y* 

For the next few pages TT: X-+ Y will be a fixed 

homomorphism with Y minimal. We'll show that there is a 

11 

unique minimal set contained in the orbit closure of a fiber 

in 2n, and that this is independent of the fiber chosen. 

Given a minimal set M in ~T and y E Y we let 

yi': = n-1 (y)oM. 
y,M 

Proposition 4.2.1. Given minimal sets M and M' in 

~T and points E Y, 

Proof: First we show that ·'· y" 
yo' M 

equivalent idempotents u E M and u' 

yu=yu'. 
0 . 0 

TT- 1 (y )ou c n- 1 (y) 
0 0 

so 

= y; o , M' • 

E M' with 

Tl -l ( y ) 0 u = 
0 

Pick 

y = 0 

n- 1 (y )o(uu') = (n- 1 (y )ou)ou' c n- 1 (y
0
)ou'. Likewise 

0 0 

n- 1 (y
0

)ou' c n- 1 (y 0 )ou and we have n - 1 (y )ou = n- 1 (y )ou' 
0 0 

and yi': n 
yo' M 

y~'( 

yo' M' 
is non-empty. Since minimal subsets 

are disjoint or equal, we have ·'· y" 
yo' M = y~ o 'M' . 

·'· ·'· Next we show that Y" , = Y" , . Once again it will 
Yo,M Y1,M 

suffice to show that the two minimal sets have a point in 
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corrunon. Pick p EM' such that y
0

p = y
1

• Pick a minimal 

idempotent u E M' such that pu = p. Then, using Lerruna 

1.2.3, 

We have rr-l(y )op E 
0 

y~': 

Y M' 0 , 
and ·'· Y .. M'. y l , 

We've now shown that y* is independent of the 
y,M 

choice of y and M. We call the resulting unique minimal 

·'· ·'· set Y'". We have a natural homomorphism y: Y"-Y where 

for A E ·'· Y" ' y(A) = y if and only if A c rr -1 ( y) . 

·'· Next we obtain a more convenient description of Y'". 

11 

·'· Proposition 4.2.2. Y" = {rr- 1 (y)ou I y E Y and u E J(y)}. 

Proof: If y E y and u E J(y), rr- 1 (y)ou E 

y* = y* by Proposition 4.2.1. Fix y E Y and 
y,M o 

yi': 
y,M 

u 
0 

·'· ' and represent Y" as Y" . Consider an arbitrary 
yo, M 

y 

Then y* = (rr- 1 (y )ou )o(pv) for some p EM and 
0 0 

v E 

Let y = y
0
pv. Then we have y* = (rr- 1 (y )ou )o(pv) = 

0 0 

a·nd 

E J(y) 

~·: ·'· E Y". 

J. 

rr - 1 ( y 
0 

) o ( pv) = rr-1 ( y 
0 

p) o v = rr - 1 ( y) o v by Lemma 1. 2. 3 . Thus 

y 1
': E { rr - 1 ( y) o u I y E Y and u E J ( y) } . 

Proposi tio r::i 4. 2. 3. The homomorphism y: yi':--* Y is 

highly proximal. 

Proof: Consider y E Y. We observe that the set 

y- 1 (y) satisfies the hypothesis of Zorn's Lerruna under 

downward inclusion. Suppose {A. I i E I} 
l. 

is a chain in 

11 

y- 1 (y), and let A
0 

= n {Ai I i EI}. If we regard <AJ?iEI 
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as a net directed by downward inclusion, we have lim(A.) = 
i 1. 

A
0

, so A E y- 1 (y) and A
0 

is the required lower bound. 

Applying Zorn's Lemma, let B be a minimal element in 

y- 1 (y). Pick p EM so B = rr - 1 (y)op. 

Now we'll show that y- 1 (y)op = {B}. Suppose 

A E y- 1 (y)op. Then there exists nets (t.) in T and 
1. 

(A.) in y-1 (y) such that t.--+p and A.t.--+A. Each 
1. 1. 1. 1. 

A . c rr - 1 ( y) so A = 1 im A . t . c 1 im rr - 1 ( y ) t . = rr -l ( y) o p = B 
1. 1 1 1 

and y(A) = y. Thus A = B by minimality. 

Therefore y is highly proximal. 11 

Cor qllar y 4 . 2 .4. For A E Y*, y E Y, and u E J(y) 

we have Ac rr- 1 (y) and Aou =A~> A= rr- 1 (y)ou. 

Proof: If Ac rr- 1 (y) and Aou =A then A E y-1 (y)ou. 

Also, rr- 1 (y)ou E y-1 (y)ou. Thus A = rr- 1 (y)ou, since y 

is highly proximal. 

Next we define 
... 

X" as a subset of x x y-:: . 

Definition 4 . 2 . 5 . Xi': = { ( x u , rr - 1 ( y ) o u) I y E Y , 

x E rr- 1 (y), and u E J(y)}; 6: xi':- X and ni':: xi': - y:': 

are the projections. 

For the rest of this section we assume both X and Y 

to be minimal. 

froposition 4.2.6. x* is a minimal set. 

Proof: Take a fixed y
0 

E Y, x
0 

E rr- 1 (y
0
), and 

u
0 

E J(y
0

). We'll show that X:': = (x
0

u
0

,rr- 1 (y
0

)ou
0

)M. 

11 
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u E J so pu = p. 

(x pu,TT- 1 (y p)ou) 

Then xi': = (x pu,TT- 1 (y )o(pu)) = 
0 0 

0 0 
and Hence 

~': ·'~ 
x E X". 

Now consider an arbitrary x' Ex*. Then 

x' = (x u ,TT- 1 (y )ou ) for some y
1 

E Y, u
1 

E J(y
1
), and 

1 1 1 1 

Pick p E M such that Then 

X 1 = ( X U , TT -I ( y ) 0 U ) ( X pu , TT - I ( y p) OU ) = 
l I l l 0 l 0 1 

(x ou ,TT- 1 (y )o(pu )) = (x u ,TT- 1 (y )ou )pu. Thus x' E 
O"" l 0 1 0 0 0 0 l 

(x u ,TT- 1 (y )ou )M. 
0 0 0 0 

It is clear from our construction that x* is the 

unique minimal set in {(x,yi':) I x E X, y~·= E y~·= and 

TT(X) = y(/:)}. 

_Proposit i on 4. 2. 7. The homomorphism 6: X i': - X is 

highly proximal . 

Proof: Take x E X and v E J(x). Let y = TT(x). 

Then 

6 - l ( X) = { (XU , TT - l ( y) o U) u E J(x)} 

= {x} x {TT- 1 (y)ou u .E J(x)}. 

The ref ore 

6 -l (x)ov = ( {x} x {TT -l (y)ou u E J(x) })v 

= {x} x ({TT- 1 (y)ou u E J(x)}ov) 

11 

c{x} x ({TT- 1 (y)ou I u E J(y)}ov) 

= { x} x ( y -l ( y) 0 v) . 

This last set is a singleton, since y is highly 



71 

proximal. Therefore 6 is highly proximal. 

? roposition 4.2.8. The following statements are 

equivalent. 

( i) y: y~':--+ Y is an isomorphism. 

(ii) y: Y 1:--+Y and 6: x~·=--+x are both isomorphisms. 

(iii) rr: X--+Y is open. 

Proof: The equivalence of (i) and (ii) is clear from 

the definitions. 

(i) => (iii) Suppose y lS an isomorphism and pick A E 

and y E y so y -1 ( y) = {A}. Consider x E rr-l(y) and 

u E J(x). Then yu = y so we have rr- 1 (y)ou E y-l(y). 

The ref ore rr- 1 (y)ou = A. Also x E rr- 1 (y)ou, since XU = 

11 

y~·~ 

x. 

Since x was an arbitrary element of rr- 1 (y), we have 

y-1 (y) = {rr-1 (y)}. Now for arbitrary y EY and p EM we 

have rr -l (y)op E y- 1 (yp). Therefore rr - 1 (yp) = rr- 1 (y)op 

and rr is open by Lerruna 4.1.1. 

(iii) ~> (i) Suppose rr is open and consider y E Y. 

Then, by Lerruna 4.1.1, y- 1 (y) = {rr- 1 (y)ou I u E J(y)} = 

{rr - 1 (y)}. Thus y is one-to-one and hence an isomorphism. 11 

We now have enough machinery to construct a diagram as 

described in the beginning of the chapter by iteration. We 

make the following remarks: 

(i) It is clear that an inverse system of diagrams of minimal 

point-transitive transformation groups of .the type below has 

an inverse limit which is a diagram of the same type. 
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TT 

(ii) We may produce an ordinal chain of such diagrams by 

starting with TT: X-+Y, applying the x':.': y':.': 
' construction 

at successor ordinal stages, and taking pointed inverse 

limits at limit ordinal stages. It follows from Lerrunas 4.1.8 

and 4.1.12 that the homomorphisms B. and 
l 

obtained at 

each stage are uniquely defined and highly proximal. 

Cardinality considerations imply that the procedure must 

terminate and, when it does, the last TT. obtained will be 
l 

open by Proposition 4.2.8. 

(iii) If we denote the last stage of this construction by 

and we define then n : X --+Y 
00 00 

is a point-transitive product of TT: X-+ Y and 'Y : y -->-Y 
00 00 

for an appropriate choice of base points. 

McMahon and Wu carried out a construction of this type 

in [13] without the notion of highly proximal. 

Actually, such a construction is unnecessary as Glasner 

has recently shown that the homomorphism TTi•,: xi''--+- yi'i, 

obtained at the first stage, is always open. The argument 

which follows is essentially his, but we isolate a lerruna 

concerning the structure of the fibers of TT which may be 

of independent interest. 

Given a: homomorphism of minimal sets TT: X-->- Y and a 

point y E Y we let J (y) 
TT 

denote the set of minimal 
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idempotents u E J(y) such that TI- 1 (y)ou is an inclusion 

·'· minimal element of Y". It follows from Zorn's Lemma that 

J (y) is always non-empty and that, in fact, given A E y* 
TI 

with Ac TI- 1 (y) 

TI-l (y)ou c A. 

Lemma 4.2.9. 

there exists a u E J (y) 
TI 

such that 

Suppose y E Y and u E J (y). 
TI 

Then 

TI -l (y)ou :: U {TI -l (y)v v E J ( y) and TI -l ( y) 0 v :: TI - l ( y) 0 u } . 

Proof: Let K :: U {TI- 1 (y)v I v E J(y) and TI -l (y)ov .:: 

TI -:...
1 (y)ou}. Suppose x EK. Then x E TI-1 (y)v for some 

v E J(y) with TI- 1 (y)ov = TI- 1 (y)ou, and we have 

TI- 1 (y)v c TI- 1 (y)ov = TI- 1 (y)ou. Therefore Kc TI- 1 (y)ou. 

Now suppose x E TI- 1 (y)ou. Then there are nets ( x .) 
1 

in TI- 1 (y) and ( t.) in T such that x. t. ~ x and 
1 1 1 

t.-u. Pick p. EM such that x.:: xp. for each i. 
]_ ]_ ]_ ]_ 

Taking a subnet if necessary, we may assume that (pit;> 

converges to some q E M. Then xp . t . --+ x, 
]_ ]_ 

so 

xq = x. For each i' TI- 1 (y)o(p.t.) = (TI -l (y)op. )t. c 
]_ ]_ ]_ ]_ 

( TI - l ( yp . ) ) t . = TI -l (y)t .. Taking limits, TI -1 (y)oq c TI -l ( y) OU. 
]_ ]_ ]_ 

Since u E J (y) we then have TI -l (y)oq = TI -l (y)ou by 
TI 

minimality. Now yq :: y, so we can find v E J(y) with 

qv = q. By Lemma 1.2.3 we have TI- 1 (y)oq:: TI- 1 (yq)ov = 

TI~ 1 (y)ov = TI- 1 (y)ou. Finally, x = xq = xqv =xv so 

x E TI- 1 (y)v. Therefore K ::) TI- 1 (y)ou. 

Proposition 4.2.10. The homomorphism TI:':: X:':--+y:': is 

open. 

11 
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Proof: By Lerruna 4.1.2, it will suffice to find an 

element y* E y* such that for any p EM, n*- 1 cy*)op ~ 

n*- 1 (y*p). To this end we pick an arbitrary y E Y and an 

idempotent u E J (y) and let y* = TT- 1 (y)ou. Letting n 

K = U {n -l (y)v v E J(y) and TT - 1 (y)ov = TT-1 (y)ou} we 

have = K x {/:} (by Definition 4.2.5) = 

(n- 1 (y)ou) x {y~':} (by Lerruna 4. 2.9). Now consider an arbitrary 
... 

p E M and pick v E J such that pv = p. We have y"p = 

rr-1 (y)op = n- 1 (yp)ov by Lemma 1.2.3. Thus 

= U {n- 1 (yp)w J w E J(yp) and TT - 1 (yp)ow = TT- 1 (yp)ov} x {y~':p} 

c (TT -l ( YP) 0 v) x { /: p} 

= (n -l (y)op) x {/:p} 

= ( (n -l (y)ou) x {y~·: })op 

completing the proof. 11 

3. An Abstract Characterization. 

Given a homomorphism of minimal sets TT: X-+ Y we have 

constructed a diagram of minimal sets 

x~'~ ·'· ~ Y"" 

6! 
·'· n" ly 

x y 
TT 

where y and 6 are highly proximal and TT ~·~ lS open. Our 
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construction is unique in that no undetermined choices are 

involved. In this section our goal is to obtain an abstract 

characterization of this diagram, up to isomorphism of 

diagrams in the obvious sense. By this we mean a descrip-

tion which uses only the "layout" of the diagram and the 

abstract properties of the arrows, e.g., 6 and y being 

highly proximal and 1l being open. 

A first guess might be that given 11, the diagram we've 

constructed is the only such diagram with 6 and y highly 

proximal and. 1l open. However a trivial example shows that 

this won't work. Take X = Y and x* = Y* with y* being 

any highly proximal extension of Y and with 11 and 1l 

being the identity maps on Y and y* respectively. Then 

·'· by varying which highly proximal extension of Y we take y" 

to be, we get nonisomorphic diagrams. 

We will show that the diagram we constructed is, up to 

isomorphism, the unique, universally attracting object in the 

category of all such diagrams with y and 6 highly proximal 

and 1l open. 

Definition 4.3.1. A diagram of minimal sets 

rr I 

1l 2 x ___ _,_y 
2 2 

is said to be proper if, for some y
1 

E Y
1

, the pair 

x2 is proximal in 2 . We note that 

this condition is equivalent to requiring that there exist 
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some minimal right ideal I in ~T such that for any p E I 

Our next lemma says that given a proper diagram, the 

pair (a,~) connecting the homomorphisms rr 1 and rr 2 may 

be lifted across the ·'· ·'· X 0 

, Y" .. construction to connect 

and ·'· ,.,. " 
"2. Our definition of "proper" was chosen to provide 

a sufficient condition for the next lemma. 

Lemma 4.3.2. Suppose we have~ proper diagram 

and The construction is 

applied to obtain additional homomorphisms rr ;'~ . x;': ~ y~': 
i' i i' 

6. : x 1:--+- X., y.: Y1
''. ___. Y., for l = 1, 2. Then there exist 

1 1 1 1 1 1 

homomorphisms 
.... ·'· .... "· X" ___. X" a · i 2 and 

... ·'· 
Y"'*~Y" .. 

l 2 
which make the 

following diagram commute: 

Proof: Pick y 1 E Y1 and a minimal right ideal I in 

~T such that (rr; 1 (~(y 1 )))op = (a(rr;1 (y 1 )))op for all 

p E I. Pick x1 E rr~1(y1) and pick a minimal idempotent 

u E I such that x 1u = x1 . Let x2 = a(x 1 ), Y1 = rr1<x1), 

and ~ ( y l ) 11 2<x2). Also, let 
-.': 

rr; 1 (y 1 )ou, Y2 = = Y1 = 
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show that there exist homomorphisms 

·'· a" .. : ·'· ~'· X" .. ___.. X" .. 
l 2 

such that ~ ;'c ( Y;~ ) = Y~ 

~ ;': : yi': -+ yi': and 
l 2 

and ·'· = x". 
2 

Checking ~* first, we need only show that for 

p,q E ~T, 

= 

Assume Then 

= (rr -i (y )ou)op 
2 2 

= 

= (since the diagram is proper) (a(rr- 1 (y )))ouop 
1 1 

= (by Lemma 1.2.3) a(rr- 1 (y )ouop) 
1 l 

= (by hypothesis) a(rr- 1 (y )ouoq) 
1 1 

= (retracing our steps) (rr~ 1 (y 2 )ou)oq 

= ~·: 
Y q as required. 

2 

Next we check Again, we need only show that for 

p,q E ~T, 

·'· ·'· = x"q => x"p = 1 2 

Assuming x~~ p = x"':q 
1 1 

we have x p = x lq l 

Thus 

:: = 

= 

= (retracing our steps) (x 2 q,y~q) 

= 

Clearly everything commutes. 

x;': q. 
2 

and 

= 

·'· = y"q. 
1 

11 
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The next lemma shows that the notion of a proper diagram 

is not too strong for our purposes. 

Lemma 4.3.3. Suppose that ~ is highly proximal in the 

diagram of minimal sets. 

Tl 1 
x - - ------>- y 1 

a( 1~ 
x2 - - ---+ Y2 

Tl' 2 

Then the diagram is proper. 

Proof: Pick y
1 

E Y
1 

and a minimal idempotent u E M 

with y 
1 

u = y
1

• It will suffice to show that 

= (a(11- 1 (y )))ou 
1 1 

Suppose Then there exists an x E X 

and 11 (x ) = y . 
1 l l 

Thus 

a (,,. 1-1 ( y 1 ) ) c Tl' ;1 ( ~ ( y 1 ) 

(11 ; 1 (~ (y
1

)) )ou. 

and consequently 

Obviously a- 1 <11; 1 (y)) = 11; 1 c~- 1 (y)) 

1 1 

11 (x ) = 11 (a(x )) = 
2 2 2 1 

(a(11- 1 (y ) ) )ou c 
l 1 

for all y E Y 2. 

Also is highly proximal and y u = y so 
l 1 

(a -1 (,,. -1 ( ~ ( y ) ) ) o u 
2 1 

Thus 
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(TT; 1 C~Cy 1 )))ou = 

= (by Lemma 1.2.3) a(a- 1 (TT; 1 C~Cy 1 )))ou) 

C a(TT- 1 (y )) 
l l 

Finally we get from this 

( ( ( TT -l ( ~ ( y ) ) ) o U) o U C ( a (TT - 1 ( y ) ) ) o U 
2 l l l 

completing the proof. 

Given two diagrams 

TT l TT 2 
xi yl x2 y2 

/j l = 61l l~l and /j = 6 2l i~2 2 

x y x y 
TT TT 

11 

with the same lower arrow we say that /J
1 

attracts /J
2 

if 

there exist homomorphisms A.: X 
2
--+ X 

1 
and <P: Y 

2
--+ Y 

1 
such 

that everything commutes. 

The orem 4 . 3 . 4 . The diagram of minimal sets -
~': 

xi'' TT y'i'( 

/j :: 6t Jy 
x y 

TT 

may be - characterized, ~to isornoq~hi srn , as the unique, 

universally attracting, proper d i agr am with TT: x- Y as 

the lower arrow and with the upper arrow open. 

Proof: We've already seen that 6 and y are highly 

proximal and is open. is proper by Lemma 4.3.3. 

Suppose we have another proper diagram 
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TI I 

X' Y' 
/).I :: al l ~ 

X----+Y rr 

with n' open. We apply Lerruna 4.3.2 to construct the diagram 

' ~·~ 
X ' i'_: -a-~: ___ TT __ •• ---- TT-+" y~ o " ' 

x·-·-----+---~--+ Y~: 
6' y' 

y 
TT I 

X~--a.---1X----+ ~ y 

TT 

However, since rr' is open, 6' and y' are isomor-

phisms' by Proposition 4. 2. 8. Thus' defining A: x I---+ xi': 

and <Jl : Y'---+ Y
1
: by and ·'· l - P."o r-<jl - t-' y we see 

that b. attracts b. 1
• 

Now suppose we have another universally attracting 

proper diagram 

x1 
rr 1 

/). 1 :: ail 
--~ Yi 

l~l 
x ___ _..y 

rr 

·'· y ----+ y i': ' Then we have homomorphisms t..: x ~x .. , <jl: 
l l 

xi·:~ x , ... 
t.. . and <jl : Y"--+- y such that a oA_ :: 

6 ' ~ l 0 <jl l :: y' l • 1 l l 1 l 

60 t.. :: 
al ' 

and yo<jl :: ~ l • 6 and y are coalescent (highly pro xi-

mal => proximal=> regular=> coalescent), o o ( A.o A. 1 ) :: 6, and 

Thus A_oA_ 
l and <Jlo<Jl 1 

are automorphisms of 

x* and y* respectively which implies that A.
1 and <Jl 1 

are isomorphisms. This proves the uniqueness. 1 1 
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Corollary 4. 3 . 5 . The diagram 

·'· ·'· 1l .• ·'· X" Y" 

ol 
1l 

ly 
x y 

is the unique (~to i somorphism), universally attracting 

object in the category of all such diagrams with 6 and y 

highly prox i ma l and ·'· ll" open. 

Proof: All such diagrams are proper, by Lemma 4. 3. 3. I I 

This is the result that was promised at the beginning 

of the section. 

4. Non-Metric Veech Structure Theorem. 

A homomorphism of minimal flows 1l: X--+ Y is said to be 

point-distal with distal point x if x E X and x is 

proximal to no other point in its fiber. The minimal flow X 

is said to be point-distal with distal point x E X if the 

trivial homomorphism X--+ 1 has that property. Veech [16] 

showed that if X is metric and has a residual set of distal 

points it has an almost one-to-one extension which can be 

built up from the trivial flow by isometric (almost periodic) 

and almost one-to-one extensions. Ellis [8] extended this 

result to homomorphisms and showed that it is sufficient to 

assume a single distal, point rather than a residual set. He 

also showed that the metrizability assumption could be 

replaced by the weaker condition of quasi-separability if 

proximal extensions were used instead of almost one-to-one 

extensions. Here we strengthen the second Ellis result by 
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replacing his proximal extensions by highly proximal extensions. 

Since highly proximal and almost one-to-one extensions are the 

same in the metric case, this result includes the earlier ones. 

We build a tower of highly proximal and almost periodic 

extensions in essentially the same way as was done by Veech 

and Ellis using Lemma 4.1.12, Proposition 4.2.10, and, most 

importantly, Lemma 7.4 of [8]. 

Given T-subalgebras ~ and S with ~ c 3, Ellis 

defines 3 to be a quasi-separ able extension of ~ if there 

exists a subset X c .S such that .S = [;:;( U ~] and such that 

[f] is separable for each f E ;;t. (the brackets denote "T-

subalgebra generated by"). If the point-transitive flows 

(X,x) and (Y,y) are associated with 3 and ~' respec-

tively, this is equivalent to the existence of a family of 

metrizable point-transitive flows (W.,w.) such that (X,x) 
1. 1. 

is isomorphic to the orbit closure of the point in 

the product YxlT. {W.}. This follows from Lemma 1.1.6 and 
1. 1. 

the fact that metrizable transformation groups correspond to 

separable T-subalgebras. Thus the definition which follows 

is equivalent to that of Ellis. 

Definition 4.4.1. A homomorphism of minimal sets 

11: X---+ Y is quasi- separab l e if there exists x E X, y E Y, 

and a family (W. ,w.) of metrizable point-transitive flows 
1. 1. 

such that 11(x) = y and X is isomorphic to (y,(w.))T in 
1. 

Y x IT. {W.} . 
1. 1. 

Clearly, since X is minimal in the above definition, 
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the base point x E X can be chosen at will. 

We have 

Lerruna 4.4.2. If TT: X--+ Y is ~ quasi- separable , point-

distal, open homomorphism of minimal sets then TT • has a non-

trivial almost periodic factor, i·~·, there exists a minimal 

set Z and homomorphisms t: x~ Z and <.p: Z-+ Y such that 

TT = <.pO\jr and <.p is non-trivial and almost periodic. 

Proof: This is Lerruna 7.4 of [8], modulo the correspond-

ence between point-transitive flows and T-subalgebras. I I 

We will need the lerruna which follows several times. 

Lerruna 4. 4. 3. Suppose we have a d i agram of point--
transitive flows 

(X',x') 
TT I 

(Y',y') 

6 l l y 

(X,x) 
TT 

(Y,y) 

with TT quasi-separable and (X' ,x') isomorphic to 

(x,y')T in XxY'. Then TT 1 is quasi-separable. 

Proof: By hypothesis, there exists a family of 

metrizable point-transitive flows (Wi,wi) such that 
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(a) (X,x) ~ ((y,(wi))T, (y,(w.))) c Y x lT. W •• 
1 1 1 

Since we have a homomorphism y: (Y' ,y 1 )---+ (Y,y), 

(b) (Y',y') ~ ((y',y)T, (y',y)) c Y' xY, 

and by hypothesis 

(c) (X',x') ~ ((x,y')T, (x,y')) c XxY'. 

Therefore, by (c) and (a) 

(X',x') ~ ((y,(w.) ,y')T, (y,(w.),y')) c YxTI W. xY' 
I 1 i 1 

and by (b) 

(X' ,x') ~ ((y' ,(w.))T, (y' ,(w.>)) c Y' xTI W. 
1 ~ i 1 

Thus rr' is quasi-separable. 11 

Lemma 4.4.4. Suppose we have a d iagram of minimal sets 

fr I 
---~Y' 

ly 
---- Y rr 

where rr is point distal and X', 6, and rr' may be 

o b tained by taking X' a minimal subset of the product 

{ ( x, y' ) I rr ( x) = y ( y 1 
) } c X x Y' and 6 and rr ' the 

projections. Then rr' is point distal. 

Proof: Suppose XO E x lS a distal point for rr • 

Pick y~ E y so (xo,y~) E X' and let x' = (xo,y~). Then 
0 

0 (XI) = x and' we'll show 
0 0 

fr I • Suppose 

rr'(x'). 
0 

Then 

x' 
1 E X' ' x' 

1 

x' = (x y') 
l 1 ' 0 

that x' 
0 

and x' 
0 

for some 

is a distal point for 

proximal, and rr'(x') 
l 

x E X. 
l 

x and x 
1 

= 

0 
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are proximal, since x
1 

= o(x~), and x
0 

= o(x~). Also, 

rr(x ) = rroo(x') = yorr'(x') = y(y') = rr(x ). Therefore x
1 

= 
1 1 1 0 0 

since x 
0 

is a distal point for rr and we have x' 
0 

distal point for rr' as needed. 

Theorem 4. 4. 5 . Suppose 1T: X ~ Y is ~ point-distal, 

quasi-separable homomorphism . Then there exists an ordinal 

sequence of minimal sets 

(i) Y
0 

= Y. 

{Y I a s v} such that 
a 

(ii) Y is a highly proximal extension of X. 
v 

(iii) Ya+l is either an almost periodic or ~ highly 

proximal extension of 

a+l S v . 

y ' a 
for each successor ordinal 

a 

(iv) YA is a uniquely determined pointed inverse limit 

of the system {Y I a< A} for each limit ordinal A s v. a -- ---

(v) If riv: Yv~x, and µa,~: Ya~Y~ for ordinals 

a>~ are the homomorphisms imp licitly de fi n e d Q.Y. (i) - (iv), 

then TfOYJ = µ Q' 
v v' 

Proof: The proof is by transfinite induction. At each 

ordinal stage ~ s v we'll get a diagram 

TI§ 
x ~----'---~ r ~ 

. 
i 
yl 

t 
X = X - - --Y = Y o rr=rr o 

0 
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such that is as promised, is highly proximal, and 

n~ is point-distal and quasi-separable. The procedure stops 

when is almost periodic. 

We' 11 call an ordinal odd if it's of the form A.+ n 

where A. is a limit ordinal or O, and n is an odd natural 

number. We proceed as follows. 

(a) Take X 0 = X , Y 0 = Y , and n 0 = n . 

(b) Suppose we are at stage a+l, with a+l an odd 

successor ordinal, having completed all stages through stage 

a. If n is almost periodic we stop, taking v = a+l and 
a 

y = x 
v a Otherwise, we construct the diagram 

x y 
n 

a 

':J': ·'· follows. First obtain Then as we n as usual. n .. lS open 
a a 

(Proposition 4.2.10), and 6 highly proximal, and ':J': 
'Y are n 

a 

is point-distal and quasi-separable (Lemmas 4.4.3 and 4.4.4). 

By Lerruna 4.4.2, ':J': n has a non-trivial almost periodic factor, 
a 

which we take to be 

distal, so is 

4. 4. 3 shows that t lS 

·'· now take y = Y" y 
a+l a' 

n :t': 
a' 

and n \jr. We = a+2 

Clearly since ':J': n a is point-

An argument like that for Lemma 

quasi-separable, ':J': is. We since n 
a 

·'· = z' x = x = X" n = a+2 a+l a+2 a' a+l 

now have 
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Tl' a+2 
xa+2 ya+2 

identity l l ~ almost periodic 
rr a+l 

X ------Y 
a+i a+i 

ol highl: proximal ly highly proximal 

X a y 
a +a 

Tl' 0 

and everything is as needed, taking ~ - ~ - ~ 05 ''a+l - ''a+2 - ''a · 

This gets us up to the next odd successor ordinal. 

(c) Suppose we're at stage A, where A is a limit ordinal. 

We take "inverse limits" in the following way: 

Let XA be the unique (by Lemma 4.1.12) pointed inverse 

limit of the system {X I a < A.} and let P : X,----+- X be a a ~ a 

the projections which are highly proximal by Lemma 4.1.12. 

Define a homomorphism 

Q:lf{X I a< A}--+lT{Y I a< A} a a 

by Q((xa)) = (rraoP a(xa)). Let YA = Q(XA), let rrA = QjXA, 

and let Y)A. = P 
0 
I XA. rr A. is point-distal and quasi-separable by 

Lemmas 4.4.3 and 4.4.4 and everything is as needed. 

XA 
Tl' A. 

YA 

. . 
Y)A. i Tl' 1 ~ 

x1 yl 

t t 
x ~Y 

0 Tl' 0 0 
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In the foregoing, the definition of the maps 

µ r:i.: y --+Yr:i. 
a.,t-' a. t-' 

has been left to context. 

By cardinality considerations and the coalescence of 

the universal minimal set, the procedure must terminate at 

some stage of (b). This proves the theorem. 11 

The original Veech theorem has a valid converse, i.e., 

any minimal flow which can be built up in the way specified 

in the conclusion of the theorem must necessarily be point-

distal. This does not appear to be the case with our 

theorem, unless point-distal is replaced by some weaker 

condition. Such a condition should be sufficient for our 

theorem, equivalent to point-distal in the metric case, and 

valid for any quasi-separable extension which can be built 

from almost periodic and highly proximal extensions in the 

manner described. The determination of such a condition 

appears to be a difficult problem. 



CHAPTER V 

GENERALIZED ALMOST FINITE HOMOMORPHISMS 

The regular homomorphisms discussed in Chapter II are 

objects of a very general nature. The general properties 

obtained are very similar to those which arise in the 

absolute case, i.e., the properties of regular minimal sets. 

It is therefore natural to look for restrictive conditions 

which make further classification possible. Restricting 

ourselves to situations in which the fibers are in some 

sense "smallrr has the additional advantange of eliminating 

the absolute case, since regular minimal sets are generally 

quite big. Thus we are led to considering finiteness 

conditions on the fibers. 

The notion of generalized almost finiteness which we study 

here is so named because, in the metric case, it coincides 

with the property of having at least one fiber finite. · When 

combined with regularity, the consequences of this condition 

are quite powerful. 

1. Definition and Basic Properties. 

Once again, we'll work with a fixed homomorphism 

rr: X-+Y, with Y assumed minimal. Recall that the minimal 

set y* consists of the elements of 2rr of the form 

rr- 1 (y)ou, where u is a minimal idempotent with yu = y. 

89 
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Proposition 5 l l. The followin g conditions are 

equivalent: 

(i) lim (n- 1 (y)t) is finite, for some y E Y and some 
n 

net (t ) in T. 
n 

(ii) There exists ~ least positive integer N such that 

for any y E Y there exists p EM with card(n- 1 (y)op) = N. 

(iii) There exists a least positive integer N such that 

card(A) s N whenever A is an almost periodic element in 

2". 

(iv) There exists a finite integer N such that each 

element of y* has cardinality N. 

Moreover, the numbers N in (ii), (iii), and (iv) are the 

same. 

Proof: (i) => (ii) Suppose rr- 1 (y)t-+ {x • • • x }. 
n i ' ' k 

Consider y' E Y. Taking a subnet if necessary, we can find 

q E ~T such that t --+ q. 
n 

Pick r E M so y'r = y. 

p = rq. Then p EM and n- 1 (y')op = rr- 1 (y')o(rq) c 

= {x ,···,x }. 
l k 

Thus 

We take N to be the least positive integer such that 

Let 

card(lim n -l (y)t ) = N 
n 

for some y E y and some net (t ) 
n 

in T. 

(ii) ~> (iii) Suppose A is an almost periodic element in 

2rr. We can pick y E Y and u E J such that Ac n- 1 (y), 

Aou =A, and yu = y. By (ii), there exists a p EM and 

points x • • • x 
l ' ' N 

in X such that TI -
1 

( y) op = { X 
1 

, • • • , XN} • 
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We pick q EM such that pq = u. Then A = Aou c TI- 1 (y)ou = 

TI- 1 (y)o(pq) = {x
1
,···,xn}oq = {x

1
q,···,xNq}. Thus card A :5 

N. ~ 

(iii) ~> (iv) (iii) clearly implies that some inclusion 

maximal almost periodic element of 2TI has cardinality N, 

and such elements always belong to Y*. Thus we can find 

y E Y and u E J(y) such that card(TI- 1 (y)ou) = N. 

Consider some other element of y~': 

' say where 

y' E Y and u' E J(y'). We can find p EM such that 

pu' = p and yp = y'. Since TI- 1 (y)ou is finite, we have 

(TI- 1 (y)ou)u = (TI- 1 (y)ou)ou = TI- 1 (y)ou. We can pick q EM 

so pq = u. Thus TI - 1 (y)ou = (TI- 1 (y) 0 u)pq. Therefore 

card(TI- 1 (y)ou)p ~ card(TI- 1 (y)ou) = N. Now (TI- 1 (y)ou)p = 

(TI- 1 (y)ou)op = TI- 1 (y)op = (TI- 1 (y)op)ou' = TI- 1 (yp)ou' = 

TI- 1 (y')ou'. Thus card(TI- 1 (y')ou') = card(TI- 1 (y)ou)p ~ N. 

By (iii), card(TI- 1 (y')ou')::: N. Therefore card(TI- 1 (y')ou') = 

N. 

(iv) ~> (i) Obvious. 

It is also obvious that the number N which satisfies 

(iv) will also satisfy (ii) and (iii). 11 

Definition 5.1.2. We say that a homomorphism with minimal 

range is generalized almost finite, or generalized almost N 

to one, if it satisfies conditions (i) - (iv) of Proposition 

5.1.1. 

Lemma 5 .1. 3. If TI: X-+ Y is generalized almost finite, 

y E Y, and u E J(y), then TI- 1 (y)ou = TI- 1 (y)u. 
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Proof: We have TT- 1 (y)u c TT- 1 (y)ou always. Since TT is 

generalized almost finite, rr- 1(y)ou is finite and we have 

rr- 1 (y)ou = (TT- 1(y)ou)ou = (TT- 1(y)ou)u c TT- 1(y)u. 11 

Proposition 5 .1. 4 . Suppose the homomorphism TT: X-->- Y 

is generalized almost N to one. Then, for each point 

y E Y, the following statements are equivalent: 

(i) TT is open at all points of TT- 1 (y). 

(ii) card(TT- 1 (y)) = N. 

(iii) TT- 1 (y) is an almost periodic set. 

Proof: (i) =>(iv). Pick u E J(y). By Lemma 4.1.1, 

we have TT -l (y) = TT- 1 (y)ou so TT- 1 (y) E yi':. 

(iv) => (i) Suppose y' E y and p E M with y'p = y. By 

Lemma 4.1.1, we need only show that rr- 1 (y')op = rr-l(y). 

·'· Certainly rr- 1 (y 1 )op c TT-1 (y) and TT-l (y 1 )op E Y" . By (iv) , 

rr-1 (y) 
... 

Since rr- 1 (y' )op rr-l(y) E Y" also. and have 

the same finite cardinality, they are equal. 

(iv) ~> (ii) Obvious. 

(ii)=> (iv) We have TT- 1 (y) ::> rr- 1 (y)ou, for u E J(y). 

By (ii) both sets are of the same finite cardinality and 

therefore equal. 

(iv)~> (iii) If (iv) holds, we have rr- 1 (y) = rr- 1 (y)ou 

for some u E J(y) and TT- 1 (y)u = rr- 1 (y)ou by Lemma 5.1.3. 

Thus rr- 1 (y) is an almost periodic set. 
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(iii)==> (iv) If (iii) holds, we have rr- 1 (y) = rr- 1 (y)u 

for some u E J(y). We have rr - 1 (y) = rr- 1 (y)u = rr - 1 (y)ou 

by Lemma 5.1.3. Thus rr- 1 (y) E Y*. 

Next we see that, in the metric case, the notion of a 

generalized almost finite homomorphism reduces to something 

simpler. 

Proposition 5 .1 . S . Suppose we have ~ homomorphism 

rr: X----+ Y with both X and Y metric and Y minimal. 

Then the following conditions are equivalent. 

(i) rr is generalized almost N to one (N finite). 

11 

(ii) rr has at least one fiber of finite cardinality N, 

and no fibers of cardinality less than N. 

(iii) card ( rr -l ( y) ) = N for a dense, set of points 

y E Y and no fiber has cardinality less than N (N finite). 

Proof: Corollary 4.1.4, Proposition 5.1.1, and 

Proposition 5.1.4. 11 

The relationship between the general and metric cases 

with generalized almost finite homomorphisms is the same as 

with highly proximal homomorphisms. The condition of 

generalized almost finiteness is homogeneous, in that it 

is defined without reference to any distinguished points in 

Y. However, distinguished points appear in the metric case 

just as they do with highly proximal homomorphisms. It is 
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clear that a homomorphism is highly proximal if and only if 

it is generali~ed almost N to one, with N = 1, and that, 

in the metric case, the notions of an almost one-to-one and 

generalized almost one-to-one homomorphisms coincide. 

2. Regular Generalized Almost Finite Homomorphisms. 

In this section we see that if a homomorphism is both 

regular and generalized almost finite, its structure is 

very simple. In fact such a homomorphism may always be 

uniquely represented as the composition of a highly proximal 

extension and a finite group extension. 

Proposition 5.2.1. Suppose TT: X--+ Y is a regular 

generaliz·ed almost finite homomorphis m of minimal sets . 

Then there exists ~ homomorphism \jr: X--. Y~' such that t 

is a group extension and where y is the 
... 

canonical homomorphism from Y" to Y. 

Proof: We have TT- 1 (y)ou ~ TT- 1 (y)u for all y E Y 

and u E J(y), by Lemma 5.1.3. 

The regularity of TT implies that the sets of the form 

TT- 1 (y)u, for idempotents u E J(y), partition TT- 1 (y), 

·'· for each y E Y (Corollary 2.2.9). Thus the elements of Y" 

actually partition X and we can define a function \jr: X--r yi': 

by \jr(x) = A <~> x E A. Clearly \jr is equivariant and 

rr = yo \jr • 

To verify that \jr is a homomorphism we check continuity. 

Suppose (x.) 
l 

is a net -in x and x --+ x 
i 0 

for some x E X. 
0 
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We must show that \j.r (xi)- \j.r (x
0
). Taking a subnet if 

necessary, assume that \j.r(xi)--)-A, for some A E 2x. 

Certainly A E Y*, since y* is a closed subset of 2x. 

We have x
0 

E A 

and x. ~ x 
l. 0 

since \j.r(x.)--)-A, 
l. 

x. E \j.r(x.) 
l. l. 

Thus \j.r(x ) = A as required. 
0 

for each i' 

Finally we show that \j.r is a group e x tension. Suppose 

\j.r(x) = \j.r(x') for x,x' EX. Then rr(x) = rr(x') = y. Also 

we have \j.r(x) = \j.r(x') = rr- 1 (y)u for u E J(y). Therefore 

(x,x' )u = ·cx,x') and (x,x') is an almost periodic pair. 

Thus, by Proposition 2.2.8, there is an automorphism 

e: x - x such that e (x) = x I. Therefore "' is a group 

extension. J J 

Proposition 5.2.2. The group of automorphisms associated 

with the group extension \j.r in the preceding proposition is 

of cardinality N, assuming that TT is almost N to one. 

Proof: This follows immediately from the fact that this 

group acts freely and transitively on the fibers of \j.r. These 

fibers are elements of y* and hence of cardinality N. J J 

The next lemma shows that the representation of a 

regular generalized almost finite homomorphism as the 

composition of a finite group extension and a highly proximal 

homomorphism is unique. 

Lemma 5.2.3. Suppose we have the diagram of minimal 

sets 
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where and are group extensions and A. 
1 

and A. 
2 

are proximal. Then there exists an isomorphism 8 : Z -->-Z 
2 

Proof: Let G. = { (J I (J an automorphism of x and 
l. 

\jt,O(J = \jti} for i = 1, 2. Since 
"' 1 

and 
"'2 

are group 
l. 

extensions, it suffices to show that G = G Consider 
1 2 

(J E G Pick x E x and u E J(x). Let y = A. ot (x). 
1 l l 

Then also y = A. 0 \jr (x) = A. o\jr ocr(x) = A.o\jrocr(x). Since 
2 2 l 1 2 2 

xu = x we have also \jr
2

(x) = \jr
2
(x)u and \jr

2
ocr(x) = 

(\jr ocr(x))u. Therefore \jr (x) and \jr
2
ocr(x) are both in 

2 2 

A.; 1 (y)u and, since A.
2 

is proximal, \jr
2

(x) = \jr
2
ocr(x). 

Thus cr E G
2 

and we've shown G c G 
1 2 

The same argument 

shows G
2 

c G
1 

Theorem 5. 2. 4 . If rt: X ~ Y is ~ homomorphism of 

minimal sets, the following conditions are equivalent: 

(i) rt is regular and generalized almost finite. 

11 

(ii) rt can be represented-as~ composition yo\jr, where 

y is highly proximal and \jt is a finite group extension. 

Moreover the representation in (ii) is unique . 

Proof: We've already proved everything except (ii) ~> 
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(i). Suppose we have a finite group extension 'ljr: X-+W 

and a highly proximal extension y: W-+ Y such that yo t = 

n. Suppose (x,x') is an almost periodic pair in X with 

n(x) = n(x') = y and u E J(y) such that (x,x')u = (x,x'). 

Then 'ljr(x), 'ljr(x') E A.- 1 (y)ou and 'ljr(x) = 'ljr(x'), since A. 

is highly proximal. Since t is regular, there exists an 

automorphism taking x into x'. Thus n is regular. Also 

= · 'ljr-l(w) for some w (since y is 

is highly proximal) 

= a finite set. 

Thus n is generalized almost finite. 11 

The Ellis two-circle minimal set (Example 5.29 of [7]) 

with irrational rotation 1 is an example of a homomorphism 

which is highly proximal but not almost one-to-one. Here Y 

is the unit circle, Z is Y x { 1, 2} with a special topology, 

T is the integers, and t rotates each circle by t 

radians counterclockwise. y: z__,,.y is defined by y(y,i) = y 

If I is a minimal right ideal in E(Z), then I has 

exactly two idempotents u
1 

and u
2 

and (y,j)u. = y, for 
1. 1. 

each i, J. A finite group extension t: X-+ Z is most easily 

constructed by taking X to have the same phase space as Z 

but with an irrational rotation of l/N, N finite, and 

defining 'ljr((y,i)) = (Ny,i). Defining n: X-+Y by n = yo'ljr 

we have n generalized almost finite and regular. We observe 
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that Tl could also have been constructed by first taking a 

finite group extension of Y and then taking a highly 

proximal extension. We shall see that this is possible 

under fairly general circumstances. 

Recall that if Tl : X ---+ Y and Tl : X --i- Y are 
l l 2 2 

homomorphisms, with Y minimal, we have a naturally defined 

product n: x~Y, where X = {(x
1

,x
2

) I n
1

(x
1

) = rr
2
(x

2
)}. 

Thus, given some other transformation group Z and 

homomorphisms t : Z ~ X and t : Z -->- X with Tl o t = 
l 2 2 2 l l 

Tl o\jr we have a canonical diagram 
2 2 

where P
1 

and P
2 

are the projections and t is uniquely 

determined. If t is always onto for any choice of Z, \j/
1

, 

and ,i, 
'f 2 ' 

we say that n
1 

and rr
2 

are disjoint [see 10 and 

15]. It is easy to see that, when X
1 

and X are also 
2 

minimal, n
1 

and n
2 

are disjoint if and only if X is 

minimal. 

The following lemma is well-known. 

Lemma 5.2.5. Suppose Tl: X-+Y 
l l 

homomorphisms of minimal sets with n
1 

and n : X --+Y 
2 2 

proximal and Tl 

distal. Then n
1 

and rr
2 

are disjoint. 

2 

are 
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Proof: We must show that x lS minimal, where 

x = {(x ,x ) I ,,. ( x ) = ,,. (x )}. Consider two points x = 
l 2 l l 2 2 

(x1 ,x2) and x' = (XI XI)• 
l ' 2 Pick an idempotent u' E M so 

x'u' = x' Letting y' = rr(x'), we have y'u' = y' and 
l l . 

hence x'u' = I since ,,. 2 2 x 2' lS distal. Pick p E M so 

pu' = p and x2p = x' 2. 11 1<x1p) = 11 2 (x2p) = y' = rrl(x~ ) 

and Since 11 is proximal, we have 
l . 

- x' - l • The ref ore xp = x' and x' E xT. Thus x lS 

minimal. 11 

Lemma 5.2.6. If 11 : X ~ Y and 11 : X --+ Y are 
l l 2 2 

homomorphisms of minimal sets with 11
1 

highly proximal and 

11 
2 

~ finite group extension, then the product 11: X ~ Y is 

generalized almost finite and regular and may also be 

represented as the composition of ~ highly proximal extension 

followed .ey a finite group extension . Moreover, the 

cardinalities of both finite groups are the same. 

Proof: 

where P 
l 

Looking at the diagram 

and P 
2 

are the projections, we show that 

a finite group extension and p 
2 

is highly proximal. 

p 
l 

For 

each automorphism with ,,. 09 :: ,,. 
2 2 ) we define 

is 
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e: x-+ x by e ( x l 'x 2) = ( x l ' e ( x 2) ) • 
" Then e is an 

au tomorphi.sm and p oe = p . 
l l 

Clearly, since Tf 
2 

is a 

group extension, this defines a group of automorphisms of 

X, connecting all pairs of points in the same fiber of P
1

, 

and this group has the same cardinality as {9: x -x 
2 2 

rr 09 = 9} which is finite. 
2 

Consider x
2 

E X
2 

and an idempotent u E M with 

x
2
u=x

2
• Let 

and yu = y, 

y = rr
2

(x
2
). Since rr

1 

we have rr -i (y)ou = {x } 
l l 

is highly proximal 

for some x
1 

E X
1

• 

We'll show that P;1 (x
2

)ou = {(x
1

,x
2

)} from which we 

conclude that P
2 

is highly proximal. Suppose (x~ ,x~) E 

Then there exist nets ( x 
1

) in and 

,,t ) in T such that '- n and t -u. 
n 

Clearly XI = 
2 

and x' E rr- 1 (y)ou· 
l l ' 

hence XI = X , 
l l 

Since X is minimal, by Lemma 5.2.5, this completes 

the proof. 11 

Theorem 5.2.7. Suppose rr: X-+ Y is ~ regular 

generalized almost finite homomorphism. Then the fo l lowing 

conditions are equivalent: 

(i) The relative proximal relation on X is closed. 

(ii) rr can be represen t ed as a composition of~ highly 

proximal extension followed by~ finite group exten sion, 

(iii) rr may be represented as the product (pullback) of 

a highly proximal extension and a finite group extension. 

Proof: (iii) ~> (ii) Lemma 5.2.6. 
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(ii) ==> (i) Follows from Proposition 3.4. 

(i) ==> (ii) Suppose the relative proximal relation on X 

is closed. Applying Proposition 5.2.1 and Proposition 3.4 

we get a diagram of minimal sets 

where y is highly proximal, ~ lS a finite group extension, 

a lS proximal, and ~ lS distal. We still must show that 

a is highly proximal and ~ ls a finite group extension. 

Consider w E W and an idempotent u E J(w). Let y = 

~(w). We have a- 1 (w)ou c TT -l (y)ou and TT- 1 (y)ou lS a 

finite set. Thus a is generalized almost finite and 

a- 1 (w)ou = a-1 (w)u which is a singleton, since a is proximal 

(Lemma 2.5.8). Thus a ls highly proximal. 

Consider y E Y and an idempotent u E J(y). Clearly 

a(a- 1 (A)u) =Au for any subset Ac W. Also, since TT is 

generalized almost finite we have TT- 1 (y)ou = TT- 1 (y)u. Since 

a(TT- 1 (y)u) which is of the same finite cardinality as 

n- 1 (y)u since a is proximal and TT- 1 (y)u lS an almost 

periodic set. Thus for arbitrary points w 
1 

and w 
2 

in 

~- 1 (y) we need only show that there exists an endomorphism 

" " e with 8(w
1

) = w
2

• To establish this it will suffice to 

show that given p,q E ~T with w
1
p = w

1
q we also have 
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(x
1

,x
2

)u = (x
1

,x
2
). Then ("1jr(x

1
),\jr(x

2
)) = (\jr(x

1
),\jr(x

2
))u 

and yo\jr(x
1

) = yo\jr(x
2

) = y. Since y is proximal, we have 

\jr(x
1

) = "ljr(x
2
). Thus since \jr is a group extension, there 

exists an automorphism e: X--+X such that 9(x
1

) = x
2

• 

Let y' = yp and pick an idempotent u' E J(y'). Then 

YP = yq = y I = y I u I • 

y'u' and ~ is distal we have (w
2
p,w

2
q)u' = (w

2
p,w

2
q). 

Now (x
1
pu' ,x

1
qu') is an almost periodic pair, a(x

1
pu') = 

Thus 

and a is proximal. The ref ore 

= w pu' 
2 

= a ( X pU I ) = QO 9 ( X pU I ) = 
2 l 

a(9(x
1
)qu') = a(x

2
qu') = w

2
qu' = w

2
q. 

x pu' = x qu'. 
1 1 

aoe(x qu') = 
l 

(ii) ==> (iii) If (ii) is satisfied, we have a diagram 

where \jr and ~ are finite group extensions and a and y 

are highly proximal. Letting 11: X----+ Y denote the product 

of y and ~ we get a diagram 

where P
1 

and P
2 

are the projections and 6 is defined 

in the natural way. We also have that X is minimal 
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(Lemma 5.2.5), that P
1 

is a finite group extension, P
2 

is highly proximal, and that the fibers of ~ and P
1 

have 

the same finite cardinality (Lemma 5.2.6). Thus, if we can 

show that the fibers of t and ~ have the same cardinality, 

this will prove that 6 is one-to-one and hence an 

isomorphism. 

Take y E Y, u E J(y), and y~': E Y~·: 
.•. 

with y" = 
TT- 1 (y)ou. Then y- 1 (/:) = y:': = TT- 1 (y)ou = TT-1 (y)u by 

construction. aJrr- 1 (y)u is one-to-one, since a is proximal, 

and ~- 1 (y) = ~- 1 (y)u, since ~ is distal. It's easy to 

see that ~ -i (y)u = a(TT- 1 (y)u). Thus a Irr -l (y)u is a 

bijection from t- 1 (y*) to ~- 1 (y) and the proof is 

finished. 11 

Next we show how to construct examples of homomorphisms 

which are highly proximal but which have all fibers infinite. 

Suppose we have a homomorphism of minimal sets rr: X--+Y 

which is almost one-to-one but which has an infinite fiber 

also, and suppose Y is distal regular. Let {8.} be the 
1 

set of automorphisms of Y and let TTi = 8ioTT. Let 

il: N-+- Y be the product lTi {TT i: X -+ Y}, so that N = 

{(xi) I xi EX and TTi(xi) the same for all i}, and let 
rv rv 

TT: N --+ Y be the restriction of TT to a minimal subset. 

Then 'il: N-+ Y is essentially independent of the choice 

made, by Proposition 2.5.1, and we have the following 

proposition. 
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rv rv 

Proposition 5. 2. 8. rr: N-+ Y, as described above, is 

highly proximal and has all fibers infinite. 

Proof: 
rv 
rr is highly proximal since rr is and since 

highly proximal is an admissible property. Pick Ya E Y so 

rr- 1(ya) is infinite. For an arbitrary yi E Y, there exists 

an automorphism e. such that ei(ya) = y i' since y 
1 

< x.> 
rv rv 

distal and regular. Take E N c N, so we have N 
1 

(x)T. We'll show that ;:(-l(y,) is infinite for all 
1 J 

yj E Y. We have 

rr--1(y.) = Kx.>q q E ~T and rr.(x.q) = yj for all 
J I 1 1 

= {( Xf/ q q E ~T and rr.(x.q) = y j} 
J J 

= {(x.)q q E ~T and e .orr(x.q) = yj} 
I J J 

= Kx:(q I q E ~T and rr(x.q) = Ya} 
J 

which is infinite, since X is minimal and rr- 1 (ya) is 

infinite. 

is 

= 

i} 

11 

The Floyd minimal set [see l], taken as an extension of 

the triadic group provides aµ example of the type needed. 

The fibers are line segments and points and the triadic 

group is distal regular since it's a monothetic group. 

In the case of an arbitrary generalized almost finite 

homomorphism rr: x- Y there is a connection between 
.•. 

Y" 

and the regularizer. 

Proposition 5 . 2 . 9. · Suppose rr: X-+ Y is ~ generalized 

almost finite homomorphism, rr: N--+ Y is its regularizer, 
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and 
.•. 

E X" • Then we have a diagram 

where p is a finite group exte nsion and ex-:: can be chosen 

so e ~Cz) = x* whenever P(z) = n*<x*). 
x" 

Furthermore Y~·: 

is the same minimal set (~ to isomorphism) as would be 

obtained from applying the Y~·: construction to rr: N---+ Y. 

Finally, P ~ the r egular izer o f 

Proof: Pick y E Y, u E J(y) and represent N as 

z uT. We'll show that n is generalized almost finite. 
y 

Now :;r-1 (y)u = {z upu 
y p E ~T and yp = y}. Consider 

p,q E ~T such that yp = yq = y. 

xpu = xqu for all x E n- 1 (y)u. 

Then z upu = z uqu <==> 
y y 

Thus the cardinality of 

:rr- 1 (y)u is not greater than the number of functions from 

n- 1 (y)u into itself, which is finite. Now for z EN, we 

have 

z E :;r-1 (y)ou 

=> there exists < p ) 
n 

in ~T, <t > in T such that 

yp = y and 
n 

z up t -->- z 
y n n 

n 

==> (zupt)(x)--.z(x) for all xE11- 1 (y) 
y n n 

=> (taking x = (z up )(x)) 
n y n 

there exists < x ) 
n 

such that x t - z (x) for all x E 11 - 1 (y) 
n n 

in Tl-l(y) 
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=> z(x) E TT- 1 (y)ou for all x E TT- 1 (y) 

=> z(x) E TT- 1 (y)u for all x E TT- 1 (y) 

=> z E TI"- 1 (y)u. 

Thus TI"- 1 (y)ou c TI"- 1 (y)u which is finite, so we have TT 

generalized almost finite .. 

We define P: N---rY~·: by P(z) = Range(z). If z = z up, 
y 

Range(z) = Range(z )up = TT- 1 (y)up = (TT- 1 (y)ou)p = 
y 

(TT- 1 (y)ou)op E Y*, so P is well-defined. P is easily 

seen to be a homomorphism. If P(z) = P(z'), then (z,z') 

is almost periodic and TI(z) = n(z') so we can find an 

automorphism taking z into z' by the regularity of TT. 

Hence P is a group extension. 

-We now have that TT is the composition of a finite 

group extension followed by a highly proximal extension, and 

it follows from Proposition 5.2.3 that an isomorphic decompo-

sition would be obtained from applying the ·'· Y" construction 

to TT. 

Suppose z EN, P(z) = Range(z) = TT*(x*) = TT- 1 (y)u, 

x* = (x,TT- 1 (y)u) and x E TT- 1 (y)u. Then for p,q E ~T, 

'I': ·'· zp = zq => x p = x"q and we can construct e ·'· as X" 

promised. It now follows that P is regular with respect 

to according to Definition 2.2.1; the homomorphisms 

e N ---+- x~·, 
·'·: x" 

being exactly what's required. An argument 

like the proof of Theorem 2.2.7 shows that P attracts any 

other homomorphism which is regular with respect to 'i': rr and 

it follows that p is the regularizer of 11 
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Starting with a generalized almost finite TI: X--+ Y 

we have shown that TI and its regularizer yield the same 

·'· Y" and that the regularizers of TI and have the same 

domain. One might ask what, if any, portion of this remains 

true without the generalized almost finiteness assumption or 

with some weaker assumption. Conditions of the form Au = 

Aou for certain sets A E 2rr and idempotents u E J 

appear crucial. 

We have the following corollary: 

Corollary 5 . 2 . 10 . If TI: X-+ Y is a general ized almost 

finite homomorphism of minimal sets, then (constructed 

in the usual way) is almost ~er iodic . 

Proof: Referring to the diagram in Proposition 5.2.9, 

we see that P is a finite group extension. Aut P is 

finite, so the discrete topology makes Aut P compact 

Hausdorff and makes its action on N jointly continuous. 

Hence p is almost periodic, by Proposition 2.2.12, and 

is almost periodic, by Proposition 2.5.12, since P is its 

regularizer. 11 
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