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Reliability engineering has long been proposed with the problem of predicting failures 

using all available data.  As modeling techniques have become more sophisticated, so 

too have the data sources from which reliability engineers can draw conclusions.  The 

Internet of Things (IoT) and cheap sensing technologies have ushered in a new 

expansive set of multi-dimensional big machinery data in which previous reliability 

engineering modeling techniques remain ill-equipped to handle.  Therefore, the 

objective of this dissertation is to develop and advance reliability engineering research 

by proposing four comprehensive deep learning methodologies to handle these big 

machinery data sets. In this dissertation, a supervised fault diagnostic deep learning 

approach with applications to the rolling element bearings incorporating a deep 

convolutional neural network on time-frequency images was developed. A semi-



 

 
 

supervised generative adversarial networks-based approach to fault diagnostics using 

the same time-frequency images was proposed.  The time-frequency images were used 

again in the development of an unsupervised generative adversarial network-based 

methodology for fault diagnostics.  Finally, to advance the studies of remaining useful 

life prediction, a mathematical formulation and subsequent methodology to combine 

variational autoencoders and generative adversarial networks within a state-space 

modeling framework to achieve both unsupervised and semi-supervised remaining 

useful life estimation was proposed. 

 

All four proposed contributions showed state of the art results for both fault diagnostics 

and remaining useful life estimation. While this research utilized publicly available 

rolling element bearings and turbofan engine data sets, this research is intended to be a 

comprehensive approach such that it can be applied to a data set of the engineer’s 

chosen field. This research highlights the potential for deep learning-based approaches 

within reliability engineering problems. 
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Chapter 1: Introduction 

1.1 Motivation and Background 

Reliability engineering has long been posed with the problem of predicting failures 

using all data available.  As modeling techniques have become more sophisticated, so 

have the data sources from which reliability engineers can draw conclusions.  The IoT 

and cheap sensing technologies have ushered in a new expansive set of multi-

dimensional data which previous reliability engineering modeling techniques are 

unequipped to handle.   

 

Diagnosis and prognosis of faults and RUL predictions with this new data are of great 

economic value as equipment customers are demanding the ability of the assets to 

diagnose faults and alert technicians when and where maintenance is needed [1].  RUL 

predictions, being the most difficult, are also of the most value for the asset owner. 

They provide information for a state-of-the-art maintenance plan which reduces 

unscheduled maintenance costs by avoiding downtime and safety issues.      

 

This new stream of data is often too costly and time consuming to justify labeling all 

of it.  Therefore, taking advantage of unsupervised learning-based methodologies 

would have greatest economic benefit.  Deep learning has emerged as a strong 

unsupervised feature extractor without the need for previous knowledge of relevant 

features on a labeled data set [2].   If faulty system states are unavailable or a small 

percentage of the fault data is labeled, deep generative modeling techniques have 
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shown the ability to extract the underlying two-dimensional manifold capable of 

diagnosing faults. 

 

1.2 Research Objective 

The overall objective of this research is to improve diagnostic and prognostic 

capabilities for reliability engineers handling these massive multi-dimensional sensor 

data sets. This research has proven deep learning’s ability to perform fault diagnostics 

from a supervised (all data is labeled), semi-supervised (some data is labeled), and 

unsupervised (all data is not labeled) fault diagnostics with two published papers.   

Additionally, this research proposes a novel methodology and mathematical 

formulation to accomplish non-Markovian unsupervised and semi-supervised 

remaining useful life prognostics of a turbofan engine.   

 

Specific Aim: To examine the feasibility of utilizing existing, and developing new, 

deep learning-based algorithms to tackle the problems with these large datasets. 

1) Investigate the direct application of existing deep learning objectives to multi-

dimensional big machinery data problems.   

2) Perform supervised fault diagnostics on time frequency images by proposing a 

new CNN architecture.   

3) Perform semi-supervised and unsupervised fault diagnostics with the same time 

frequency images via a GAN based methodology.   

4) Advance the studies of remaining useful life prediction and develop a 

mathematical formulation and subsequent methodology to combine  VAE and 
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GANs within a state space modeling framework to achieve both unsupervised 

and semi-supervised remaining useful life estimation.   

 

1.3 Methodology 

The research objectives mentioned above were accomplished with the methodologies 

outlined in the following chapters of this dissertation.  Each of the subsequent chapters 

are in the form of articles that have been, or are in the process of being, published.  Two 

chapters have been published in peer reviewed leading journals, two chapters have been 

published and presented in peer-reviewed international conferences, and one journal 

paper is in review.   These articles were published with the research objectives in mind.   

 

The approach to this research was first to develop a working understanding of various 

deep learning algorithms as applied to reliability engineering problems.  Specifically, 

CNNs were explored with the use of time frequency images within a fully supervised 

(labeled data) training algorithm.   

 

From this, a semi-supervised, and unsupervised fault diagnostic methodology was 

developed with the use of a GANs-based architecture.  To tackle the specific task of 

bearing fault diagnostics, DCGAN and InfoGAN architectures were developed and 

achieved robust results.   

 

Finally, diagnostic tasks are important and relevant for the assets streaming big 

machinery data; however, remaining useful life estimation with this data is still a 
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difficult task.  To address this problem, a novel mathematical formulation incorporating 

variational Bayes, adversarial minimax game theory, and state space modeling to 

predict the remaining useful life of a turbofan engine.   

1.3.1 Investigate the Application of Deep Learning Algorithms 

This dissertation’s first objective was to develop an understanding of the current state 

of deep learning-based fault diagnosis and remaining useful life prognosis 

incorporating deep learning algorithms.  The results of this research can be found in 

the subsequent sections of this chapter.  Each published paper explored the current state 

of the research and proposed novel applications and methodologies to perform 

diagnosis and prognosis. 

1.3.2 Deep Learning Enabled Supervised Fault Diagnostics 

The second objective was to develop a novel CNN architecture for supervised fault 

diagnostics.  Additionally, this work was possible by the use and application of novel 

time-frequency images for input into the CNN architecture. The detailed methodology 

and results are documented in Chapter 2, “Deep Learning Enabled Fault Diagnosis 

Using Time-Frequency Image Analysis of Rolling Element Bearings.” The full text of 

this chapter has been published in the journal Shock and Vibration. The research 

contributions are as follows: 

• Development of an improved CNN-based model architecture for time-

frequency image analysis for fault diagnosis of rolling element bearings.  

• Transformation of two linear time-frequency as image input to the CNN 

architecture: STFT spectrogram and WT scalogram.  
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• Examination and applications of a nonlinear nonparametric time-frequency 

transformation: HHT scatterplot.  

• Examination of the loss of information due to the scaling of images from 96x96 

to 32x32 pixels. Image size has significant impact on the CNN’s quantity of 

learnable parameters. Training time is less if the image size can be reduced, but 

classification accuracy is negatively impacted.  

 

1.3.3 Unsupervised Fault Diagnostics 

The third objective of this research was to develop a methodology absent the need of 

labeled data.  To accomplish unsupervised fault diagnostics the development of a GAN  

based unsupervised fault diagnostic methodology was done.  The results and 

methodology are documented in chapter 3 “Unsupervised deep generative adversarial 

based methodology for automatic fault detection.” The text of the chapter is published 

in Safety and Reliability–Safe Societies in a Changing World and the results were 

presented at the 2018 ESREL conference.  The research contributions are as follows: 

• Development of a novel GANs based methodology application to unsupervised 

fault diagnostics on scalogram image representations.  

• Proposed unsupervised methodology external validation measures purity, NMI, 

and ARI to evaluate the quality of the clusters. 

1.3.3 Semi-Supervised Fault Diagnostics 

The fourth objective of this research is a continuation of the third objective, develop a 

semi-supervised methodological approach for fault diagnostics.  To achieve this the 

third objectives framework was expanded with the inclusion of a percentage of labeled 
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data.  This has significant impact on the engineer practitioner’s ability to achieve 

superior fault diagnostic predictions based on only a small percentage of labeled data. 

The results and methodology are documented in chapter 4 “Deep semi-supervised 

generative adversarial fault diagnostics of rolling element bearings.” The text of the 

chapter is published in the journal Structural Health Monitoring.   The research 

contributions are as follows: 

• Development of a novel deep learning generative adversarial methodology for 

a comprehensive approach to semi-supervised fault diagnostics on time-

frequency images.   

• Application of both DCGAN and InfoGAN architectures, where, clustering is 

done via spectral and kmeans++ clustering on the down-sampled activation 

output of the discriminator.  

• Improvement of the clustering results by including the semi-supervised learning 

as a second stage to the methodology with altering the cost function to account 

for data labels.  

 

1.3.4 Advance the Studies of Unsupervised Remaining Useful Life Prognostics.  

The fifth objective is to advance the studies of remaining useful life prediction.  To 

accomplish this a novel unsupervised generative modeling capability was developed. 

The mathematical formulation and experimental results are documented in Chapter 5 

“ A deep adversarial approach based on multi-sensor fusion for remaining useful life 

prognostics.”  The text of the chapter is published in the proceedings of the 29th ESREL 

2019. The research contributions are as follows: 
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• Incorporating the first non-Markovian mathematical frameworks, variational 

and adversarial training for unsupervised RUL prognostics.  The novelty of this 

method has vast applications for fault diagnosis and prognosis.   

1.3.5 Advance the Studies of Semi-Supervised Remaining Useful Life Prognostics 

The final objective of this dissertation is to advance RUL prediction capabilities by 

allowing a percentage of labels to be incorporated into training.  The complete 

mathematical formulation and complete experimental results are documented in 

Chapter 6 “ A deep adversarial approach based on multi-sensor fusion for semi-

supervised remaining useful life prognostics.”  The text of this chapter has been 

published with MDPI’s Sensors Journal. The research contributions are as follows: 

• Development and application of the first non-Markovian mathematical 

frameworks, variational and adversarial training for semi-supervised RUL 

prognostics.   
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Chapter 2: Deep Learning Enabled Fault Diagnosis Using Time-
Frequency Image Analysis of Rolling Element Bearings1 
 

2.1 Abstract 

Traditional feature extraction and selection is a labor-intensive process requiring expert 

knowledge of the relevant features pertinent to the system. This knowledge is 

sometimes a luxury and could introduce added uncertainty and bias to the results. To 

address this problem a deep learning enabled featureless methodology is proposed to 

automatically learn the features of the data. Time-frequency representations of the raw 

data are used to generate image representations of the raw signal, which are then fed 

into a deep CNN architecture for classification and fault diagnosis. This methodology 

was applied to two public data sets of rolling element bearing vibration signals. Three 

time-frequency analysis methods (short-time Fourier transform, wavelet transform, and 

Hilbert-Huang transform) were explored for their representation effectiveness. The 

proposed CNN architecture achieves better results with less learnable parameters than 

similar architectures use for fault detection, including cases with experimental noise.  

2.2 Introduction 

With the proliferation of inexpensive sensing technology and the advances in PHM 

research, customers are no longer requiring their new asset investment be highly 

reliable, instead they are requiring their assets possess the capability to diagnose faults 

and provide alerts when components need to be replaced. These assets often have 

 
1 This chapter is a reproduced version of the paper published in Verstraete, David, et 
al. "Deep learning enabled fault diagnosis using time-frequency image analysis of 
rolling element bearings." Shock and Vibration 2017 (2017). 
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substantial sensor systems capable of generating millions of data points a minute.  

Handling this amount of data often involves careful construction and extraction of 

features from the data to input into a predictive model. Feature extraction relies on 

some prior knowledge of the data. Choosing which features to include or exclude 

within the model is a continuous area of research without a set methodology to follow.   

 

Feature extraction and selection has opened a host of opportunities for fault diagnosis. 

The transformation of a raw signal into a feature vector allows the learning method to 

separate classes and identify previously unknown patterns within the data. This has had 

wide ranging economic benefits for the owners of the assets and has opened new 

possibilities of revenue by allowing OEMs to contract in maintainability and 

availability value.  However, the state of current diagnostics involves a laborious 

process of creating a feature vector from the raw signal via feature extraction [1], [4], 

[5]. For example, Seera et al. proposes a Fuzzy-Min-Max Classification and Regression 

Tree (FMM-CART) model for diagnostics on Case Western’s bearing data [6]. 

Traditional feature extraction was completed within both time and frequency domains. 

An importance predictor-based feature selection measure was used to enhance the 

CART model. Multi-Layer Perceptron (MLP) was then applied to the features for 

prediction accuracies.  

 

Once features are extracted, traditional learning methods are then applied to separate, 

classify, and predict from learned patterns present within the layers of the feature vector 

[7], [8]. These layers of features are constructed by human engineers; therefore, they 
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are subject to uncertainty and biases of the domain experts creating these vectors. It is 

becoming more common that this process is performed on a set of massive multi-

dimensional data. Having prior knowledge of the features and representations within 

such a dataset, relevant to the patterns of interest, is a challenge and is often only one 

layer deep.   

 

It is in this context that deep learning comes to play. Indeed, deep learning encompasses 

a set of representation learning methods with multiple layers. The primary benefit is 

the ability of the deep learning method to learn non-linear representations of the raw 

signal to a higher level of abstraction and complexity isolated from the touch of human 

engineers directing the learning [9]. For example, to handle the complexity of image 

classification, CNNs are the dominant method [10], [11], [12], [13], [14], [15]. In fact, 

they are so dominant today that they rival human accuracies for the same tasks 

[16],[17].  

 

This is important from an engineering context because covariates often do not have a 

linear effect on the outcome of the fault diagnosis. Additionally, there are situations 

where a covariate is not directly measured confounding what could be a direct effect 

on the asset. The ability of deep learning-based methods to automatically construct 

nonlinear representations given these situations is of great value to the engineering and 

fault diagnosis communities. 
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Since 2015, deep learning methodologies have been applied, with success, to 

diagnostics or classification tasks of rolling element signals [18], [19], [20], [21], [22], 

[23], [24], [25], [26], [27], and [28].  [18] proposed the use of wavelet scalogram 

images as an input into a CNN to detect faults within a set of vibration data.  A series 

of 32x32 images is used. [19] explored a corrupted raw signal and the effects of noise 

on the training of a CNN.  While not explicitly stated, it appears minimal data 

conditioning by means of a short-time Fourier transform was completed and either 

images or a vector of these outputs, independent of time, were used as the input layer 

to the CNN.  [18] used Case Western’s bearing data set [6] and an adaptive deep CNN 

to accomplish fault diagnosis and severity. [20] used a CNN for structural damage 

detection on a grandstand simulator. [21] incorporated shallow CNNs with the 

amplitudes of the discrete Fourier transform vector of the raw signal as an input. 

Pooling, or subsampling, layers were not used.  [22] used traditional feature 

construction as a vector input to a CNN architecture consisting of one convolutional 

layer and one pooling layer for gearbox vibration data.  Although not dealing with 

rolling elements, [23] used a deep learning multi-objective deep belief network 

ensemble method to estimate the remaining useful life of NASA’s C-MAPSS data set. 

[24] used restricted Boltzman machines (RBM’s) as a feature extraction method, 

otherwise known as transfer learning. Feature selection was completed from the RBM 

output, followed by a health assessment via self-organizing maps (SOM’s). RUL was 

then estimated on run-to-failure datasets. [25] used images of two PHM competition 

data sets (C-MAPSS and PHM 2008) as an input to a CNN architecture. While these 

data sets did not involve rolling elements, the feature maps were time-based, therefore 
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allowing the piece-wise remaining useful life estimation. [26] incorporated traditional 

feature construction and extraction techniques to feed a stacked auto-encoder (SAE) 

deep neural network.  SAEs do not utilize convolutional and pooling layers.  [27] used 

fast Fourier transform on the Case Western bearing data set for a vector input into a 

deep neural network (DNN) using 3, 4, and 5 hidden layers.  DNNs do not incorporate 

convolutional and pooling layers, only hidden layers. [28] used spectrograms as input 

vectors into sparse and stacked autoencoders with two hidden layers.  Liu’s results 

indicate there was difficulty classifying outer race faults versus the baseline. Previous 

deep learning-based models and applications to fault diagnostics are usually limited by 

their sensitivity to experimental noise or their reliance on traditional feature extraction. 

 

In this paper, we propose an improved CNN based model architecture for time-

frequency image analysis for fault diagnosis of rolling element bearings. Its main 

element consists of a double layer CNN, i.e., two consecutive convolutional layers 

without a pooling layer between them. Furthermore, two linear time-frequency 

transformations are used as image input to the CNN architecture: Short-time Fourier 

transform spectrogram and wavelet transform (WT) scalogram. One nonlinear 

nonparametric time-frequency transformation is also examined: Hilbert-Huang 

transformation (HHT). HHT is chosen to compliment the traditional time-frequency 

analysis of STFT and WT due to its benefit of not requiring the construction of a basis 

to match the raw signal components. These three methods were chosen because they 

give suitable outputs for the discovery of complex and high-dimensional 
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representations without the need for additional feature extraction. Additionally, HHT 

images have not been used as a basis for fault diagnostics.  

 

Beyond the CNN architecture and three time-frequency analysis methods, this paper 

also examines the loss of information due to the scaling of images from 96x96 to 32x32 

pixels. Image size has significant impact on the CNN’s quantity of learnable 

parameters. Training time is less if the image size can be reduced, but classification 

accuracy is negatively impacted. The methodology is applied to two public data sets: 

1) the MFPT Society rolling element vibrational data set [38], and 2) CWR University’s 

Bearing data set [6]. 

 

The rest of this paper is organized as follows: Section 2 provides an overview of deep 

learning and CNNs. Section 3 gives a brief overview of the time-frequency domain 

analysis incorporated into the image structures for the deep learning algorithm to train. 

Section 4 outlines the proposed CNN architecture constructed to accomplish the 

diagnostic task of fault detection. Sections 5 and 6 apply the methodology to two 

experimental data sets. Comparisons of the proposed CNN architecture against MLP, 

linear SVM, and Gaussian SVM for both the raw data and principal component 

mapping data are presented. Additionally, comparisons with Wang’s proposed CNN 

architecture is presented. Section 7 examines the data set with traditional feature 

learning.  Section 8 explores the addition of Gaussian noise to the signals.  Section 9 

concludes with discussion of the results. 
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2.3 Deep Learning and CNN Background 

Deep learning is representation learning; however, not all representation learning is 

deep learning.  The most common form of deep learning is supervised learning.  That 

is, the data is labeled prior to input into the algorithm. Classification or regression can 

be run against these labels, and thus predictions can be made from unlabeled inputs.   

 

Within the computer vision community, there is one clear favorite type of deep, 

feedforward network that outperformed others in generalizing and training networks 

consisting of full connectivity across adjacent layers: the convolutional neural network 

(CNN).  A CNN’s architecture is constructed as a series of stages. Each stage has a 

different role. Each role is completed automatically within the algorithm. Each 

architecture within the CNN construct consists of four properties: multiple layers, 

pooling/subsampling, shared weights, and local connections. 

 

As shown in Figure 2-1, the first stage of a CNN is made of two types of layers: 

convolutional layers which organize the units in feature maps and pooling layers which 

merge similar features into one feature. Within the convolutional layer’s feature map, 

each unit is connected to a previous layer’s feature maps through a filter bank. This 

filter consists of a set of weights and a corresponding local weighted sum. The weighted 

sum is passed through to a nonlinear function such as a rectified linear unit (ReLU).  

This is shown in Equation (1). ReLU is a half wave rectifier, ���� = max��, 0� and is 

like the Softplus activation function, i.e., ���
���� ��� = ln �1 + ���. ReLU 

activations train faster than the previously used sigmoid/tanh functions [9].  



 Page 15 of 183 
 

 ����� = ���� � !��",�� ∗ ��$%�"� + &����'
"(% ) (1) 

where, 

*,  represents the convolutional operator 

��$%�"� ,  Input of convolutional channel c 

!��",�� , Filter weight matrix 

&����,  Bias weight matrix 

ReLU,   Rectified Linear Unit  

 

 
Figure 2-1:Generic CNN architecture. 

 
An important aspect of the convolutional layers for image analysis is that units within 

the same feature map share the same filter bank. However, to handle the possibility that 

a feature map’s location is not the same for every image, different feature maps use 

different filter banks [9]. For image representations of vibration data this is important. 

As features are extracted to characterize a given type of fault represented on the image, 

it may be in different locations on subsequent images. It is worth noting, feature 

construction happens automatically within the convolutional layer, independent of the 

engineer constructing or selecting them. Which gives rise to the term featureless 
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learning. To be consistent with the terminology of the fault diagnosis community, one 

could liken the convolutional layer to a feature construction, or extraction, layer.  If a 

convolutional layer is similar in respects to feature construction, the pooling layer in a 

CNN could be related to a feature selection layer.  

 

The second stage of a CNN consists of a pooling layer to merge similar features into 

one.  This pooling, or subsampling, effectively reduces the dimensions of the 

representation.  Mathematically, the subsampling function f is [29], 

 ����� = � *+����down*����$%�/ +  0����/ (2) 

where, 

down (•), represents the subsampling function. 

+����,  multiplicative bias. 

0����,  additive bias. 

 
After multiple stacks of these layers are completed, the output can be fed into the final 

stage of the CNN, a multi-layer perceptron (MLP) fully-connected layer. An MLP is a 

classification feedforward neural network. The outputs of the final pooling layer are 

used as an input to map to labels provided for the data. Therefore, the analysis and 

prediction of vibration images is a series of representations of the raw signal. For 

example, the raw signal can be represented in a sinusoidal form via STFT. STFT is then 

represented graphically via a spectrogram, and finally a CNN learns and classifies the 

spectrogram image features and representations that best predict a classification based 

on a label. Figure 2-2 outlines how deep learning enabled feature learning differs from 

traditional feature learning.   
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Traditional feature learning involves a process of constructing features from the 

existing signal, feature searching via optimum or heuristic methods, feature selection 

of relevant and important features via filter or wrapper methods and feeding the 

resulting selected features into a classification algorithm.  Deep learning enabled 

feature learning has the advantage of not requiring a feature construction, search, and 

selection sequence.  This is done automatically within the framework of the CNN.  The 

strength of a CNN in its image analysis capabilities.  Therefore, an image representation 

of the data as an input into the framework is ideal.  A vector input of constructed 

features misses the intent and power of the CNN.  Given that the CNN searches 

spatially for features, the sequence of the vector input can affect the results. Within this 

paper spectrograms, scalograms, and HHT plots are used as the image input to leverage 

the strengths of a CNN as shown in Figure 2-2.   
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Traditional Feature Learning 

 
 

Deep Learning Enabled Feature Learning 

 
Figure 2-2: Process of representations for time-frequency analysis. 

 

2.4 Time Frequency Methods Definition and Discussion 

Time frequency represents a signal in both the time and frequency domains 

simultaneously. The most common time-frequency representations are spectrograms 

and scalograms. A spectrogram is a visual representation in the time-frequency domain 

of a signal using the STFT, and a scalogram uses the WT. The main difference with 

both techniques is that spectrograms have a fixed frequency resolution that depends on 

the windows size, whereas scalograms have a frequency-dependent frequency 

resolution. For low frequencies, a long window is used, to observe enough of the slow 

alternations in the signal and at higher frequency values a shorter window is used which 

results in a higher time resolution and a poorer frequency resolution. On the other hand, 

the HHT does not divide the signal at fixed frequency components, but the frequency 
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of the different components (IMFs) adapts to the signal. Therefore, there is no reduction 

of the frequency resolution by dividing the data into sections, which gives HHT a 

higher time-frequency resolution than spectrograms and scalograms. In this paper, we 

examine the representation effectiveness of the following three methods: STFT, WT, 

and HHT.  These representations will be graphically represented as an image and fed 

into the proposed CNN architecture in Section 4. 

 

2.4.1 Spectrograms – Short-Time Fourier Transform (STFT) 

Spectrograms are a visual representation of the STFT where the x and y axis are time 

and frequency, respectively, and the color scale of the image indicates the amplitude of 

the frequency. The basis for the STFT representation is a series of sinusoids.  STFT is 

the most straightforward frequency domain analysis. However, it cannot adequately 

model time-variant and transient signal. Spectrograms add time to the analysis of FFT 

allowing the localization of both time and frequency. Figure 2-3 illustrates a 

spectrogram for the baseline condition of a rolling element bearing vibrational 

response.   
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Figure 2-3: STFT spectrogram of baseline raw signal. 

2.4.2 Scalograms – Wavelet Transform 

Scalograms are a graphical image of the wavelet transform (WT). WTs are a linear 

time-frequency representation with a wavelet basis instead of sinusoidal functions. Due 

to the addition of a scale variable along with the time variable, the WT is effective for 

non-stationary and transient signals. 

 

For a wavelet transform, 12��0, 3�, of a signal which is energy limited ��
�4�5���, 

the basis for the transform can be set as, 

 12��0, 3� = 1√3 7 ��
�89:
$: ;
 − 03 = >
 (3) 

where, 

a   scale parameter 

b   time parameter 

8  Analyzing wavelet 
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Figure 2-4 illustrates a scalogram with a Morlet wavelet basis for the baseline condition 

of a rolling element bearing vibrational response.  There have been many studies into 

the effectiveness of individual wavelets and their ability to match a signal.  One could 

choose between the Gaussian, Morlet, Shannon, Meyer, Laplace, Hermit, or the 

Mexican Hat wavelets in both simple and complex functions.  To date there is not a 

defined methodology for identifying the proper wavelet to use and remains an open 

question within the research community [30].  For the purposes of this paper, the Morlet 

wavelet, Ψ@�
�, is chosen because of its similarity to the impulse component of 

symptomatic faults of many mechanical systems [31] and is defined as, 

 Ψ@�
� = A@B$%C�$%5DE��F@D − G@� (4) 

ΨH�t� = cHπ-MNe-MEPE�eQHP-KH�where, 

c  Normalization constant 

Kσ  Admissibility criterion 

Wavelets have been extensively used for machinery fault diagnosis.  For the sake of 

brevity, those interested can refer to [32] for a comprehensive review of the wavelet 

transform’s use within condition monitoring and fault diagnosis. 
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Figure 2-4: Wavelet transform scalogram of baseline raw signal.

 

2.4.3 Hilbert-Huang Transform (HHT) 

Feng [30] refers to the time-frequency analysis method, Hilbert-Huang transform 

(HHT), as an adaptive non-parametric approach. STFT and WT are limited in the sense 

that they are a representation of the raw signal on a pre-defined set of basis function.  

HHT does not make pre-defined assumptions on basis of the data but employs the 

empirical mode decomposition (EMD) to decompose the signal into a set of elemental 

signals called intrinsic mode functions (IMFs). The HHT methodology is depicted in 

Figure 2-5. 
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Figure 2-5: Overview of HHT adapted from [4]. 

 

The HHT is useful for nonlinear and nonstationary time series analysis which involves 

two steps: EMD of the time series signal, and Hilbert spectrum construction.  It is an 

iterative numerical algorithm which approximates and extracts IMFs from the signal.  

HHTs are particularly useful to localize the properties of arbitrary signals.  For details 

of the complete HHT algorithm, the reader is directed towards [33]. 

 

Figure 2-6 shows an HHT image of the raw baseline signal used in Figure 2-3 and 

Figure 2-4.  It is not uncommon for the HHT instantaneous frequencies to return 

negative values.  This is because the HHT derives the instantaneous frequencies from 

the local derivatives of the IMF phases.  The phase is not restricted to monotonically 

increasing and can therefore decrease for a time.  This results in a negative local 

derivative. For further information regarding this property of HHT, the reader is 

directed to read [34].   
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Figure 2-6: HHT image of baseline raw signal. 

 
The EMD portion of the HHT algorithm suffers from possible mode mixing.  

Intermittences in signal can cause this.  Mode mixing within signals containing 

instantaneous frequency trajectory crossings is inevitable.  The results of mode mixing 

can result in erratic or negative instantaneous frequencies [35].  This means for such 

signals HHT does not outperform traditional time-frequency analysis methods such as 

STFT.   

 

2.5 Proposed CNN Architecture for Fault Classification Based on Vibration Signals 

The primary element of the proposed architecture consists of a double layer CNN, i.e., 

two consecutive convolutional layers without a pooling layer between them.  The 

absence of a pooling layer reduces the learnable parameters and increases the 

expressivity of the features via an additional nonlinearity. However, a pooling layer is 

inserted between two stacked double convolutional layers. This part of the architecture 

makes up the automatic feature extraction process that is then followed by a fully-

connected layer to accomplish rolling element fault detection. 
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The first convolutional layer consists of 32 feature maps of 3x3 size and followed by 

second convolutional layer of 32 feature maps of 3x3 size.  After this double 

convolutional layer, there is a pooling layer of 32 feature maps of 2x2 size.  This makes 

up the first stage.  The second stage consists of two convolutional layers of 64 feature 

maps each, of 3x3 size, and followed by subsampling layer of 64 feature maps of 2x2 

size.  The third stage consists of two convolutional layers of 128 feature maps each, of 

3x3 size, and followed by subsampling layer of 128 feature maps of 2x2 size.  The last 

two layers are fully connected layers of 100 features.  Figure 7 depicts this architecture. 

The intent of two stacked convolutional layers before a pooling layer is to get the 

benefit of a large feature space via smaller features.  This convolutional layer stacking 

has two advantages: 1) reduces the number of parameters the training stage must learn, 

and 2) increases the expressivity of the feature by adding an additional non-linearity. 

 

 
Figure 2-7: Proposed CNN architecture. 

 
Table 2-1 provides an overview of CNN architectures that have been used for fault 

diagnosis, where C’s are convolutional layers, P’s are pooling layers, and FC’s are fully 

connected layers.  The number preceding the C, P, and FC indicates the number of 
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feature maps used.  The dimensions [3x3] and [2x2] indicate the pixel size of the 

features.  

 
Table 2-1: Overview of CNN architectures used for fault diagnosis. 

Proposed Model CNN Architecture 

Architecture 1 [4] 
Input[32×32] - 64C[3×3] - 64P[2×2] - 64C[4×4] - 64P[2×2] - 
128C[3×3] - 128P[2×2] - FC[512] 

Architecture 2 [22] Input[32x32] - 16C[3x3] - 16P[2x2] - FC[10] 

Proposed 
Architecture 

Input[32x32] - 32C[3x3] - 32C[3x3] - 32P[2x2] - 64C[3x3] - 
64C[3x3] - 64P[2x2] - 128C[3x3] - 128C[3x3] - 128P[2x2] - 
FC[100] - FC[100] 

Proposed 
Architecture 

Input[96x96] - 32C[3x3] - 32C[3x3] - 32P[2x2] - 64C[3x3] - 
64C[3x3] - 64P[2x2] - 128C[3x3] - 128C[3x3] - 128P[2x2] - 
FC[100] - FC[100] 

[18] 
Input[32×32] - 5C[5×5] - 5P[2×2] - 10C[5×5] - 10P[2×2] - 
10C[2×2] - 10P[2×2] - FC[100] - FC[50] 

[20] Input[128] - 64C[41] - 64P[2] - 32C[41] - 32P[2] - FC[10 - 10] 
 

Training the CNN involves the learning of all of the weights and biases present within 

the architectures.  These weights and biases are referred to as learnable parameters.  

The quantity of learnable parameters for a CNN architecture can radically improve or 

degrade the time to train of the model.  Therefore, it is important to optimize the 

learnable parameters by balancing training time versus prediction accuracy.  Table 2-2 

outlines the quantity of learnable parameters for the proposed CNN architecture as well 

as the a comparison to architectures 1 and 2 presented in Table 2-1.  

 
Table 2-2: Overview of learnable parameters for the CNN architectures. 
CNN Model 32x32 Image 96x96 Image 
Architecture 2 41,163 368,854 
Proposed CNN 501,836 2,140,236 
Architecture 1 1,190,723 9,579,331 
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Beyond the learnable parameters, the CNN requires the specification and optimization 

of the hyperparameters: dropout and learning rate. Dropout is an essential property of 

CNNs. Dropout helps to prevent overfitting, reduce training error, and effectively thins 

the network. The remaining connections are comprised of all the units that survive the 

dropout.  For this architecture, dropout is set to 0.5. For the other hyperparameter, 

learning rate, the adapted moment estimation (ADAM) algorithm was used for 

optimization. It has had success in the optimizing the learning rate for CNNs faster than 

similar algorithms. Instead of hand-picking learning rates like similar algorithms, the 

ADAM learning rate scale adapts through different layers [36]. 

Part of the reason for deep learning’s recent success has been the use of graphics 

processing unit (GPU) computing [9].  GPU computing was used for this paper to 

increase the speed and decrease the training time.  More specifically, the processing 

system used for the analysis are as follows:  CPU Core i7-6700K 4.2 GHz with 32 GB 

ram and GPU Tesla K20. 

 

2.6 Case Study 1: Machinery Failure Prevention Technology (MFPT) 

This data set was provided by the Machinery Failure Prevention Technology (MFPT) 

Society [37], [38]. A test rig with a NICE bearing gathered acceleration data for 

baseline conditions at 270lbs of load and a sampling rate of 97,656 Hz for six seconds.  

In total, ten outer-raceway and seven inner-raceway fault conditions were tracked.  

Three outer race faults included 270lbs of load and a sampling rate of 97,656 Hz for 

six seconds.  Seven additional outer race faults were assessed at varying loads: 25, 50, 
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100, 150, 200, 250 and 300 lbs.  The sample rate for the faults was 48,828 Hz for three 

seconds.  Seven inner race faults were analyzed with varying loads of 0, 50, 100, 150, 

200, 250 and 300 lbs.  The sample rate for the inner race faults was 48,848 Hz for three 

seconds.  Spectrogram, Scalogram, and HHT images were generated from this data set 

with the following classes: normal baseline (N), inner race fault (IR), and outer race 

fault (OR).  The raw data consisted of the following data points: N with 1,757,808 data 

points, IR with 1,025,388 data points, and OR with 2,782,196 data points.  The total 

images produced from the data set are as follows: N with 3,423, IR with 1,981, and OR 

with 5,404.   

 

From MFPT, there was more data and information on the outer race fault conditions, 

therefore more images were generated.  This was decided due to the similarities 

between the baseline images and the outer race fault images as shown in Tables 5 and 

7.  It is important to note that functionally the CNN looks at each pixel’s intensity value 

to learn the features.  Therefore, based on size and quantity, the 96x96 pixel and 32x32 

pixel images result in 99,606,528 and 11,067,392 data points respectively.  

 

Once the data images were generated, bilinear interpolation [39] was used to scale the 

image down to the approriate size for training the CNN model. From this image data a 

70/30 split was used for the training and test sets.  These images are outlined in Table 

2-3, Table 2-4, and Table 2-5. 
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Table 2-3: MFPT baseline images. 
Image Size 

(Pixels) 
Spectrogram Scalogram HHT 

32x32 
   

96x96 

   
 

Table 2-4: MFPT inner race images. 
Image Size 

(Pixels) 
Spectrogram Scalogram HHT 

32x32 
   

96x96 

   
 

Table 2-5: MFPT outer race images. 
Image Size 

(Pixels) 
Spectrogram Scalogram HHT 

32x32 
   

96x96 
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Within the MFPT image data set, a few things stand out. Although, the scalogram 

images of the outer race faults versus the baseline are similar, the scalogram images 

had the highest prediction accuracy from all the modeling techniques employed in 

Table 2-6 and Table 2-7. The information loss of the HHT images when reducing the 

resolution from 96x96 to 32x32 pixels could be relevant because of the graphical 

technique used to generate the images.  

 

Depending upon the modeling technique used, the prediction accuracies are higher or 

lower in Table 2-6 and Table 2-7. The CNN modeling had a significant shift between 

96 and 32 image resolutions. Support vector machines (SVM) had a difficult time 

predicting the faults for both the raw data (flat pixel intensities) and principal 

component analysis (PCA).  

 
Table 2-6: Prediction accuracies for 32x32 pixel image inputs. 

Model Spectrogram Scalogram HHT 
MLP – Flat 70.3% 94.0% 49.2% 
LSVM – Flat 63.6% 91.8% 50.0% 
SVM – Flat  73.9% 92.7% 58.5% 
MLP – PCA 62.3% 95.3% 56.7% 
LSVM – PCA 48.8% 89.9% 45.8% 
SVM – PCA  51.3% 92.5% 56.4% 
Architecture 2 77.3% 92.4% 68.9% 
Architecture 1 80.6% 99.8% 74.5% 
Proposed CNN Architecture  81.4% 99.7% 75.7% 
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Table 2-7: Prediction accuracies for 96x96 pixel image inputs. 
Model Spectrogram Scalogram HHT 

MLP – Flat 80.1% 81.3% 56.8% 
LSVM – Flat 77.1% 91.9% 52.8% 
SVM – Flat  85.1% 93.3% 57.8% 
MLP – PCA 81.5% 96.4% 69.2% 
LSVM – PCA 74.1% 92.0% 51.4% 
SVM – PCA  49.6% 70.0% 68.8% 
Architecture 2 81.5% 97.0% 74.2% 
Architecture 1 86.2% 99.9% 91.8% 
Proposed CNN Architecture  91.7% 99.9% 95.5% 

 
Flat pixel data versus PCA of the pixel intensities varied across different modeling and 

image selection.  Scalograms outperformed spectrograms, and HHT. However, the 

optimal modeling method using traditional techniques varied.  For both the HHT and 

spectrogram images, SVM on the flat data was optimal. For scalograms, MLP on the 

PCA data was optimal.    

  

Resolution loss from the reduction in image from 96x96 to 32x32 influenced the fault 

diagnosis accuracies.  There was a slight drop in the scalogram accuracies between the 

two images sizes except for SVM PCA modeling.   Spectrograms suffered a little from 

the resolution drop; however, HHT was most affected.  This is due to the image creation 

method.  Scatter plots were used due to the point estimates of the instantaneous 

frequencies and amplitudes. 

 

With regards to the CNN architectures, the proposed deep architecture outperformed 

the shallow one.  The shallow CNN architecture outperformed the traditional 

classification methodologies in the 96x96 image sizes except for spectrograms.  With 

a 32x32 image size, the shallow CNN outperformed the traditional methods except for 
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the scalogram images.  The proposed CNN architecture performed better overall for 

the four different image techniques and resolution sizes except for 32x32 scalograms.   

 

To measure the similarity between the results of the proposed CNN architecture versus 

architectures 1 and 2, the model accuracies were compared with a paired two tail t-test.  

Table 2-8 outlines the p-values with a null hypothesis of zero difference between the 

accuracies.  A p-value above 0.05 means the results are statistically the same.  A p-

value less than 0.05 indicates the models are statistically distinct.  

 
Table 2-8: MFPT paired two-tailed t-test p-values. 

 Architecture 1 Architecture 1 Architecture 2 Architecture 2 
Image Type 32x32 96x96 32x32 96x96 
Scalogram 0.080 0.344 0.049 0.108 
Spectrogram 0.011 0.037 0.058 0.001 
HHT 0.031 0.410 0.000 0.000 

 
From the results in Table 2-8, one can see that the proposed architecture has the 

advantage of outperforming or achieving statistically identical accuracies with less than 

half the amount of the learnable parameters. Table 2-9 outlines the confusion matrices 

results for the MFPT data set on 96x96 and 32x32 scalograms. The values are 

horizontally normalized by class.  From this, the following four metrics were derived: 

precision, sensitivity, specificity, and F-measure (see [40] for details on these metrics).  
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Table 2-9: Confusion matrices for MFPT (A) 96x96 and (B) 32x32 scalograms for 
the proposed architecture. 

 
N IR OR 

N 99.9% 0.0% 0.1% 

IR 0.0% 100% 0.0% 

OR 0.1% 0.0% 99.9% 

(A) 

 N IR OR 

N 99.6% 0.1% 0.3% 

IR 0.0% 100% 0.0% 

OR 0.5% 0.0% 99.5% 

(B) 
 

Table 2-10: Precision for MFPT data set. 

Model 
Proposed CNN 
Architecture  

Architecture 1 Architecture 2 

Scalogram 32x32 99.7% 99.8% 91.9% 
Scalogram 96x96 99.9% 99.9% 95.8% 
Spectrogram 32x32 82.0% 81.4% 78.8% 
Spectrogram 96x96 91.3% 85.0% 81.7% 
HHT 32x32 75.9% 74.6% 71.0% 
HHT 96x96  92.9% 89.7% 74.1% 

 
Table 2-11: Sensitivity for MFPT data set. 

Model 
Proposed CNN 
Architecture  

Architecture 1 Architecture 2 

Scalogram 32x32 99.7% 99.8% 89.6% 
Scalogram 96x96 99.9% 100.0% 96.5% 
Spectrogram 32x32 79.7% 77.8% 73.6% 
Spectrogram 96x96 90.8% 82.1% 74.8% 
HHT 32x32 76.2% 74.4% 68.0% 
HHT 96x96  95.3% 92.3% 67.7% 

 
Table 2-12: Specificity for MFPT data set. 

Model 
Proposed CNN 
Architecture  

Architecture 1 Architecture 2 

Scalogram 32x32 99.8% 99.9% 94.9% 
Scalogram 96x96 95.7% 89.6% 85.3% 
Spectrogram 32x32 89.8% 89.0% 87.0% 
Spectrogram 96x96 100.0% 100.0% 97.6% 
HHT 32x32 89.3% 88.3% 85.1% 
HHT 96x96  97.9% 96.6% 83.5% 
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Table 2-13: F-Measure for MFPT data set. 

Model 
Proposed CNN 
Architecture  

Architecture 1 Architecture 2 

Scalogram 32x32 99.8% 99.8% 90.2% 
Scalogram 96x96 99.9% 99.9% 96.1% 
Spectrogram 32x32 80.3% 78.5% 74.2% 
Spectrogram 96x96 90.9% 81.5% 73.9% 
HHT 32x32 74.0% 71.9% 65.4% 
HHT 96x96  93.9% 90.1% 62.6% 

 
From the results shown in Table 2-10, Table 2-11,  

Table 2-12, and Table 2-13, the precision, sensitivity, specificity, and f-measures of the 

proposed architecture outperforms the other two CNN architectures when dealing with 

spectrograms and HHT images of both 96x96 and 32x32 sizes and is statistically 

identical to architecture 1 in case of scalograms.  Precision assessments are beneficial 

for diagnostics systems as it emphasizes false positives, thus evaluating the model’s 

ability to predict actual faults.  To measure the precision for the model, one must look 

at each class used in the model.  For the MFPT data set, three classes were used.  Table 

2-10 outlines the average precision of the three classes for the three architectures. 

Sensitivity is another effective measure for a diagnostic system’s ability to classify 

actual faults.  However, sensitivity emphasizes true negatives. Table 2-11 outlines the 

average sensitivity of the three classes. Specificity, or true negative rate, emphasizes 

false positives, and is therefore effective for examining false alarm rates. 

 

Table 2-12 outlines the average specificity. The f-measure metric assesses the balance 

between precision and sensitivity.  It does not take true negatives into account and 
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illustrates a diagnostic system’s ability to accurately predict true faults. Table 2-13 

outlines the average f-measure for the three classes.   

 

Overall, the proposed architecture outperforms or is statistically identical to the other 

CNN architectures for diagnostic classification tasks with far fewer learnable 

parameters.  As shown from the images, the MFPT data set appears like it has more 

noise in the measurements from the baseline and outer race fault conditions.  Under 

these conditions, the proposed architecture outperforms the other architectures due to 

the two convolutional layers creating a more expressive non-linear relationship from 

the images.  Additionally, the proposed CNN can better classify outer race faults versus 

the baseline (normal) condition even with very similar images.   

 

2.7 Case Study 2: Case Western Reserve (CWR) University Bearing Data Center 

The second experimental data set used in this paper was provided by Case Western 

Reserve (CWR) University Bearing Data Center [6]. A two horsepower Reliance 

electric motor was used in experiments for the acquisition of accelerometer data on 

both the drive end and fan end bearings, as shown in Figure 2-8.   The bearings support 

the motor shaft.  Single point artificial faults were seeded in the bearing’s inner raceway 

(IR), outer raceway (OR), and rolling element (ball) (BF) with an electro-discharge 

machining (EDM) operation. These faults ranged in diameter and location of the outer 

raceway.  The data includes a motor load of 0 to 3 horsepower.  The accelerometers 

were magnetically attached to the housing at the 12 o’clock position. 
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Figure 2-8: Test stand for roller bearing accelerometer data. 

 
For the purposes of this paper, the speed and load on the motor were not included as a 

classifier.  Additionally, the fault sizes were grouped together as predicting the size of 

the fault was beyond the scope of this paper.  A 70/30 split was used for the training 

and test data.  Spectrogram, Scalogram, and HHT images were generated from this 

data.  The raw data consisted of the following data points: N had 1,691,648, BF had 

1,441,792, IR had 1,440,768, and OR had 1,443,328 data points.  The total images 

produced from the data set are as follows: N 3,304, BF 2,816, IR 2,814, and OR 2,819. 

From CWR, there was more balanced set of data between the baseline and faults.  

Again, based on size and quantity, the 96x96 and 32x32 images result in 108,315,648 

and 12,035,072 data points respectively. This data is used by the CNN to learn the 

features of the data.  

 

Deep learning algorithms hold promise to unlock previously unforeseen relationship 

within explanatory variables; however, it is important to keep this in context. The value 

of these algorithms is as much as they can outperform much simpler fault diagnosis 

techniques.  If envelope analysis, MLP, SVM or other traditional approaches can 

achieve the same results, then there is no value in spending the extra time and resources 



 

37 
 

to develop a deep learning algorithm to perform the analysis. Smith et al [35] outlines 

this benchmark study for the case western reserve data set for envelope analysis.  

Appendix B within that paper outlines the potential areas within the data set where a 

more sophisticated analysis must be used to diagnose certain faults.  From these results, 

analysis including the ball faults within the fault diagnosis requires more sophisticated 

techniques.  These include data sets 118 to 121, 185 to 188, 222, 224, and 225.  These 

data set are used within this paper; therefore, there is potential value to the 

computational expense of the methodology proposed within this paper.  These data sets 

incorporated the small injected faults at 0.007” (data sets 118 to 121) to the larger 

injected faults of 0.028” (data sets 3001 to 3004).  

 

To be more explicit, the following data sets were used within the analysis.  For the 

baseline, data set 97 to 100. For the inner race, 105 to 108, 169 to 172, 209 to 212, and 

3001 to 3004. For the ball faults, 118 to 121, 185 to 188, 222 to 225, and 3005 to 3008. 

For the outer race faults, 130 to 133, 197 to 200, 234 to 237, and 144 to 147. 
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Bilinear interpolation [39] was used to scale the image down to the approriate size 

for training the CNN model. A 70/30 split was used for the training and test sets.  These 

images are outlined in Table 2-14, Table 2-15,  

Table 2-16, and  

 

 

Table 2-17. 

 

 

 

 

Table 2-14: CWR baseline images. 
Image Size Spectrogram Scalogram HHT 

32x32 
   

96x96 

   
 

Table 2-15: CWR inner race images. 
Image Size Spectrogram Scalogram HHT 
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32x32 
   

96x96 

   
 

Table 2-16: CWR ball fault images. 
Image Size Spectrogram Scalogram HHT 

32x32 
   

96x96 

   
 

 
 
 

Table 2-17: CWR outer race images. 
Image Size Spectrogram Scalogram HHT 

32x32 
   

96x96 

   
 

The CWR image data set is different than the MFPT images. Even though the 

scalogram images of the ball faults versus the inner race faults are similar, all four 
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image sets look easier to classify. The scalogram images had the highest prediction 

accuracy for modeling techniques employed in Table 2-18 and Table 2-19. The 

information loss of the HHT images when reducing the resolution from 96x96 to 32x32 

did not affect the predictions as much as the MFPT data had, possibly due to the lower 

noise levels in the case of the CWR data set. 

Table 2-18: Prediction accuracies for 32x32 image inputs. 
Model Spectrogram Scalogram HHT 

MLP – Flat 92.7% 83.6% 59.6% 
LSVM – Flat 88.6% 80.8% 59.7% 
SVM – Flat  97.3% 89.3% 72.5% 
MLP – PCA 89.4% 94.7% 76.0% 
LSVM – PCA 77.9% 69.3% 59.7% 
SVM – PCA  74.4% 90.0% 80.0% 
Architecture 2 95.9% 92.6% 78.0% 
Architecture 1 98.4% 99.2% 88.9% 
Proposed CNN Architecture  98.1% 98.8% 86.5% 

 
 
 

Table 2-19: Prediction accuracies for 96x96 image inputs. 
Model Spectrogram Scalogram HHT 

MLP – Flat 96.7% 91.7% 68.0% 
LSVM – Flat 95.4% 84.4% 71.4% 
SVM – Flat  98.7% 92.1% 69.0% 
MLP – PCA 96.3% 97.6% 85.0% 
LSVM – PCA 87.1% 74.5% 65.4% 
SVM – PCA  28.6% 84.4% 93.1% 
Architecture 2 96.0% 96.0% 79.5% 
Architecture 1 99.7% 99.8% 97.4% 
Proposed CNN Architecture  99.5% 99.5% 97.6% 

 
Overall, spectrograms performed much better on the CWR data set then the MFPT data 

set.  Flat pixel data versus PCA of the pixel intensities varied across different modeling 

and image selection.  Spectrograms outperformed scalograms except for SVM PCA. 

The optimal modeling method using traditional techniques varied.  HHT’s optimal was 

SVM PCA, spectrograms were SVM flat, and for scalograms, MLP PCA was optimal.     
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Like the MFPT results, resolution loss from the reduction in image from 96x96 to 

32x32 influenced the classification accuracies.  Like the MFPT results, there was a 

slight drop in the scalogram accuracies between the two images sizes except for SVM 

PCA modeling.   All methods suffered a little from the resolution drop; however, HHT 

again was the most affected.   

 

The proposed architecture either outperformed or had statistically identical results with 

the other architectures.  Table 2-20 outlines the results of the t-test values for the CWR 

data.  The same hypothesis test as the MFPT data set was used for comparison. 

 

 

Table 2-20: CWR paired two-tailed t-test p-values. 
 Architecture 1 Architecture 1 Architecture 2 Architecture 2 
Image Type 32x32 96x96 32x32 96x96 
Scalogram 0.001 0.004 0.040 0.221 
Spectrogram 0.022 0.000 0.000 0.211 
HHT 0.005 0.784 0.000 0.000 

 
Table 2-21 outlines the confusion matrix results for the CWR data set on 96x96 

scalograms. The values are horizontally normalized by class.  From this, the following 

four tables of metrics were derived. 

 
Table 2-21: Confusion matrix for CWR (A) 96x96 and (B) 32x32 scalograms for 

the proposed architecture

 N BF IR OR 

N 98.4% 0.6% 0.0% 1.0% 

BF 0.0% 99.8% 0.0% 0.2% 

IR 0.0% 0.0% 100% 0.0% 
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OR 0.2% 0.0% 0.0% 99.7% 

(A) 

 N BF IR OR 

N 97.0% 2.0% 0.0% 1.0% 

BF 0.5% 99.1% 0.0% 0.3% 

IR 0.0% 0.0% 100% 0.0% 

OR 0.6% 0.6% 0.0% 98.8% 

(B) 
 

Table 2-22: Precision for CWR data set. 

Model 
Proposed CNN 
Architecture  

Architecture 1 Architecture 2 

Scalogram 32x32 98.6% 99.2% 93.0% 
Scalogram 96x96 99.4% 99.8% 96.7% 
Spectrogram 32x32 98.0% 98.4% 95.8% 
Spectrogram 96x96 99.5% 99.7% 96.7% 
HHT 32x32 84.1% 85.4% 74.5% 
HHT 96x96  97.0% 97.2% 82.5% 

 
 
 
 
 

Table 2-23: Sensitivity for CWR data set. 

Model 
Proposed CNN 
Architecture  

Architecture 1 Architecture 2 

Scalogram 32x32 98.7% 99.2% 92.7% 
Scalogram 96x96 99.5% 99.8% 96.2% 
Spectrogram 32x32 98.0% 98.3% 95.8% 
Spectrogram 96x96 99.5% 99.7% 96.2% 
HHT 32x32 84.2% 85.5% 74.4% 
HHT 96x96  97.1% 97.3% 82.0% 

 
Table 2-24: Specificity for CWR data set. 

Model 
Proposed CNN 
Architecture  

Architecture 1 Architecture 2 

Scalogram 32x32 99.6% 99.7% 97.4% 
Scalogram 96x96 99.8% 99.9% 98.7% 
Spectrogram 32x32 99.3% 99.4% 98.6% 
Spectrogram 96x96 99.8% 99.9% 98.7% 
HHT 32x32 94.2% 94.7% 90.1% 
HHT 96x96  99.0% 99.0% 93.4% 
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Table 2-25: F-Measure for CWR data set. 

Image Type 
Proposed CNN 
Architecture  

Architecture 1 Architecture 2 

Scalogram 32x32 98.7% 99.2% 92.8% 
Scalogram 96x96 99.5% 99.8% 96.4% 
Spectrogram 32x32 98.0% 98.4% 95.8% 
Spectrogram 96x96 99.5% 99.7% 96.4% 
HHT 32x32 84.0% 85.4% 74.4% 
HHT 96x96  97.0% 97.2% 82.1% 

 
 

From the results for accuracy (Table 2-18 and Table 2-19) and precision, sensitivity, 

specificity and F-measure (Table 2-22,  

 

 

 
 
Table 2-23, Table 2-24, and Table 2-25, respectively), one can say that, overall, the 

proposed architecture outperforms or is compatible with the other CNN architectures 

for diagnostic classification tasks with far fewer learnable parameters.  The benefits of 

the additional non-linear expressivity provided by the double layer approach in the 

proposed architecture are still present, but the images show the CWR data set has an 

overall better quality of measurement with far less noise.   

2.8 Scalograms with Noise 

To evaluate the robustness of the CNN architectures, white Gaussian noise was injected 

into the signals to evaluate how the deep learning framework handles the noise within 

a scalogram.  Five and ten percent (20 and 10 signal to noise ratio respectively - SNR) 

Gaussian noise was used via the wgn() function on the raw signal within Matlab.  
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Additionally, the noisy images were randomly sampled without replacement to 

generate a 50:50 mix with images of the raw signal (zero noise). The MFPT data set 

was chosen for this analysis as it had a higher amount of noise in the baseline and outer 

race images.  Examples of those images can be seen in Table 2-26. 

 
 

Table 2-26: MFPT 96x96 scalogram images with noise injected. 
Data Set Baseline 5% Noise 10% Noise 

Normal 

   

Inner Race 

   

Outer Race 

   
 

From these images the models were trained and assessed.  Those results can be found 

in Table 2-27.  Both architectures 1 and 2’s prediction accuracy suffered from the 

injection of noise.  This is due in part to only having one convolutional layer before 

pooling, therefore limiting the richness of the features for the final predictions.   The 

inclusion of an additional convolutional layer within the proposed architecture prior to 

the pooling layer results in a much richer feature and the increased non-linearity helps 

the architecture handle noise better than the other architectures here examined. 
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Table 2-27: Prediction accuracies for MFPT scalograms with injected noise. 

Noisy Image Set Architecture 2 Architecture 1 
Proposed CNN 
Architecture  

96x96 w/ 5% Noise 96.6% 99.9% 99.9% 
96x96 w/ 10% Noise 88.6% 91.8% 99.9% 
 

2.9 Traditional Feature Extraction 

To have a direct comparison with the standard fault diagnostic approach that relies on 

manually extracted features, we now examine the use of extracted features as an input 

to the CNN architectures discussed in this paper.  The architectures were modified 

slightly to accommodate the vector inputs; however, the double convolutional layer 

followed by a pooling layer architecture was kept intact.   

 

2.9.1 Description of Features 

The vibration signals were divided in bins of 1024 samples each with an overlapping 

of 512 samples. Each of these bins was further processed to extract the following 

features from the original, derivative and integral signals: maximum amplitude, root 

mean square (RMS), peak-to-peak amplitude, crest factor, arithmetic mean, variance 

(σ2), skewness (normalized 3rd central moment), kurtosis (normalized 4th central 

moment) and fifth to eleventh normalized central moments. Additionally, the 

arithmetic mean of the Fourier spectrum, divided in 25 frequency bands along with the 

RMS of the first five IMFs (Empirical Mode Decomposition) were used as features.  In 

total, seventy-five features per bin were computed and each of the features was 

normalized using the mean and standard deviation of the first baseline condition.  
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2.9.2 Application to CNN Architecture 

To evaluate the full set of features, the architecture of the CNN was changed slightly 

to incorporate all the features.  The following iteration of the proposed architecture was 

used: Input[75x15] - 32C[75x3] - 32C[1x3] - 32P[2x2] - 64C[1x3] - 64C[1x3] - 

64P[2x2] - FC[100]. Three different scenarios were examined: 1) twenty epochs with 

early stopping and a stride of fifteen time steps with an overlap of eight times steps, 2) 

thirty epochs with no early stopping and stride of fifteen time steps with an overlap of 

eight times steps, and 3) twenty epochs with a stride of fifteen time steps with no 

overlap.  

 

Table 2-28 and Table 2-29 illustrate the difficulties the CNN architectures had when 

dealing with the manually constructed features: the prediction accuracies considerably 

dropped for all the CNN architectures for both MFPT and CWR data sets.  Additional 

epochs without early stopping improved the results; however, they are still well below 

the results of the image representations.  For the MFPT data, early stopping and data 

overlap helped the accuracies.  For the CWR data, the opposite is true for early 

stopping.  The CWR data benefited from more epochs; however, the MFPT data 

suffered slightly from increased epochs.   

 
Table 2-28: Prediction accuracies for CWR. 

Model 20 Epochs 
Early Stopping 

30 Epochs No 
Early Stopping 

No Overlap 

Architecture 2 75.2% 86.7% 67.2% 
Architecture 1 90.4% 95.7% 87.2% 
Proposed CNN Architecture  83.1% 98.5% 93.6% 
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Table 2-29: Prediction accuracies for MFPT. 
Model 20 Epochs 

Early Stopping 
30 Epochs No 
Early Stopping 

No Overlap 

Architecture 2 79.1% 80.9% 75.2% 
Architecture 1 82.9% 75.1% 75.1% 
Proposed CNN Architecture  96.4% 93.8% 87.3% 

 
 

The CNN strength is images and it has spatial awareness; therefore, the ordering of the 

features within the vector could influence the output predictions.  It should be said that 

the size of the vectors and filters were chosen on the input and convolutional layers to 

minimize this effect.  

 

CNNs are very good when the data passed through them is as close to the raw signal as 

possible, as the strength of the convolutional and pooling are their ability to learn 

features which are inherent representation of the data.  If one manipulates the data too 

much by engineering features in the traditional sense, the CNNs do not perform as well.  

As illustrated from the results in Table 2-28 and Table 2-29, the CNN architectures had 

difficulties in all scenarios.  Moreover, even in this unfavorable scenario, the proposed 

architecture outperformed the others.  The stacked convolutional layers, as in the case 

with infused noise, result in more expressive features to better capture the non-linearity 

of the data.  Thus, one can argue that for CNNs, it is optimal to use an image 

representation of the raw signal instead of a vector of extracted features. 

 

2.10 Concluding Remarks 

Fault diagnosis of rolling element bearing is a significant issue in industry. Detecting 

faults early to plan maintenance is of great economic value. Prior applications of deep 
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learning-based models tended to be limited by their sensitivity to experimental noise or 

their reliance on traditional feature extraction. In this paper, a novel CNN architecture 

was applied to the time-frequency and image representations of raw vibration signals 

for use in rolling element bearing fault classification and diagnosis.  This was done 

absent the need for traditional feature extraction and selection and to exploit the deep 

CNNs strength for fault diagnosis: automatic feature extraction. 

 

To determine the ability for the proposed CNN model to accurately diagnose a fault, 

three time-frequency analysis methods (STFT, WT, and HHT) were compared.  Their 

effectiveness as representations of the raw signal were assessed.  Additionally, 

information loss due to image scaling was analyzed which had little effect on the 

scalogram images, a slight effect on the spectrograms, and larger effect on the HHT 

images.  In total, 189,406 images were analyzed. 

 

The proposed CNN architecture showed it is robust against experimental noise.  

Additionally, it showed featureless learning and automatic learning of the data 

representations were effective.  The proposed architecture delivers the same accuracies 

for scalogram images with lower computational costs by reducing the number of 

learnable parameters.  The architecture outperforms similar architectures for both 

spectrograms and HHT images.  The manual process of feature extraction and the 

delicate methods of feature selection can be substituted with a deep learning framework 

allowing automated feature learning, therefore removing any confirmation biases 

surrounding one’s prior experience. Overall, the CNN transformed images with 
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minimal manipulation of the signal and automatically completed the feature extraction 

and learning resulting in a much-improved performance. 

 

Fault diagnosis is a continually evolving field that has vast economic potential for 

automotive, industrial, aerospace, and infrastructure assets. One way to eliminate the 

bias and requirement of expert knowledge for feature extraction and selection is to 

implement deep learning methodologies which learn these features automatically. 

Industries could benefit from this approach on projects with limited knowledge, like 

innovative new systems. 
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Chapter 3: Unsupervised Deep Generative Adversarial Based 
Methodology for Automatic Fault Detection2 
 

3.1 Abstract 

System health management is of upmost importance with today’s sensor integrated 

systems where a constant stream of data feeds information about a system’s health is 

available. Traditional methods to assess this health focus on supervised learning of 

these fault classes. This requires labeling sometimes millions of points of data and is 

often laborious to complete. Additionally, once the data is labeled, hand-crafted feature 

extraction and selection methods are used to identify which are indicators of the fault 

signals. This process requires expert knowledge to complete. An unsupervised 

generative adversarial network-based methodology is proposed to address this 

problem. The proposed methodology comprises of a deep convolutional generative 

adversarial network (GAN) for automatic high-level feature learning as an input to 

clustering algorithms to predict a system’s faulty and baseline states. This methodology 

was applied to a public data set of rolling element vibration data from a rotary 

equipment test rig. Wavelet transform representations of the raw vibration signal were 

used as an input to the deep unsupervised generative adversarial network-based 

methodology for fault classification. The results show that the proposed methodology 

is robust enough to predict the presence of faults without any prior knowledge of their 

signals. 

 
2 The full-text of this chapter has been published at Verstraete, D. B., et al. 
"Unsupervised deep generative adversarial based methodology for automatic fault 
detection." Safety and Reliability–Safe Societies in a Changing World. CRC Press, 
2018. 1051-1056. 
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3.2 Introduction 

Much of fault diagnostics involves the use of labeled data.  This is challenging for new 

assets outfitted with sensor suites capable of generating massive amounts of data.  

Without knowledge of faults or their corresponding signals, engineers may not be able 

to diagnose faults effectively.  Traditional methods include feature extraction and 

selection methods which attempt to use a specific feature of the signal to diagnose the 

faults.  This method requires knowledge of which features are relevant for the task.  

Moreover, if an engineer has some knowledge of the fault, that knowledge could be 

biased or incomplete.  Unsupervised fault diagnostics attempts to fill in that knowledge.  

 

Deep learning algorithms can perform automatic feature learning to better understand 

the underlying data features that most relevant.  This automatic feature learning 

attempts to fill in the gaps of knowledge of relevant features to the fault signals.  There 

are challenges with this automatic feature extraction and selection.   

 

Unsupervised learning has been attempted for fault diagnostics previously. Indeed, 

Langone [42] took pre-stressed concrete bridge natural frequency data and proposed an 

unsupervised adaptive kernel spectral clustering for damage events. Wang [43] 

proposed unsupervised feature extraction via continuous sparse auto-encoders (SAE).  

Once the SAEs extracted the features supervised learning was used on transformer 

faults. Lei [44] proposed unsupervised sparse filtering feature learning.  Faults were 

then diagnosed with supervised softmax regression. Jiang [45] proposed unsupervised 

feature learning with SAEs for chemical sensor data. These features were fed into 
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supervised softmax regression to diagnose faults. Sun [46] took induction motor fault 

data and proposed the use of SAEs for unsupervised feature extraction. These features 

were again followed by supervised learning for classification by neural networks (NN). 

Of these approaches, only Langone et al could be considered truly unsupervised. The 

rest are restricted to unsupervised feature learning followed by supervised fault 

diagnostics. Moreover, apart from the use of SAEs, none of these methods would be 

considered deep. 

 

In this paper, we propose a GANs based methodology application to unsupervised fault 

diagnostics on scalogram image representations. To validate the proposed 

methodology, the public Machinery Failure Prevention Technology (MFPT) Society 

bearing data set [37], [38] is used. To evaluate the proposed unsupervised methodology, 

traditional supervised learning metrics cannot be used.  A confusion matrix and its 

associated measures are unable to evaluate clustering techniques. Therefore, since the 

ground truth is known, external validation measures purity, normalized mutual 

information (NMI), and adjusted rand index (ARI) are used to evaluate the quality of 

the clusters. The remainder of this paper is structures as follows. Section 2 gives an 

overview of GANs and the methodology.  Section 3 presents results of the GANs based 

methodology applied to the MFPT data set.  Section 4 provides conclusions. 

 

3.3 Generative Adversarial Networks 

Generative adversarial networks (GANs) have at their core a minimax game which 

seeks to pit a forger, the generator network, against a detective, the discriminator 



 

53 
 

network.  The generator seeks to create fake data, or scalograms in this paper, to trick 

the discriminator who must discriminate between the real data and the fake data as 

shown in Figure . Back propagation is performed on the weights and biases and the 

process is repeated.  The benefit to this training is while the generator seeks to develop 

an underlying distribution of the real data, the discriminator is feeding information back 

to the generator, not on the real data, on the weights and biases of the learned features.  

This helps to prevent overfitting of the data. 

 
Z ~ N(μ,σ) 

Fake Images X' Real Images X

Generator

Discriminator

B
a

ck P
rop

a
g

ation

**Insert 

Fake Images 

here**

Fake or Real?  
Figure 3-1: GAN Training 

 
Within this minimax game, the objective function to maximize the value, V, to the point 

where the discriminator and generator no longer find it necessary to make changes to 

their weights and biases.  While this is the goal of GAN training, there is functionally 

no mechanism with the training to control it.  Therefore, there can be issues with 

convergence. More formally in Eq. (5) from [47]: 
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minT  max U V�W, X�= YZ~\]^_^�Z�`log �X�x�b+ Yc~\defgh�c�`log �1 − X�W�z���b (5) 

 

where, Pdata�x�  is the  data distribution, Pnoise�x� is the noise distribution, D�x� is the 
Discriminator objective function, and G�z� is the generator objective function. 

 

The GANs based methodology used in this paper can be found in Figure 3-2. The 

methodology starts with developing a scalogram image representation of the raw data, 

and then proceeds to training of the deep convolutional generative adversarial network 

(DCGAN). Once the DCGAN training is completed and visual inspection of the 

generator output images is done, concatenation of the last activation layer of the 

discriminator is completed.  Once the activations are concatenated, kmeans++ is used 

for clustering on the first two principal components.  Visual inspection of the generator 

output is still needed within GANs training and is a crucial step within the training.   
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GANs Unsupervised Learning

GANs Discriminator

Raw Signal Start
Scalogram Representation

End

Real Images X

GANs Generator

Z ~ N(μ,σ) 

Fake Images X’

Back Propagation

DCGAN

Concatenate Last Convolutional Activations

PCA/
Kmeans++

 
Figure 3-2: Proposed Unsupervised GAN Methodology 

 
There are two goals for the output of this methodology: 1) Separation of the baseline 

healthy data with the fault data, and 2) Separation of the individual faults.  When a new 

sensor system comes online, the engineer needs to know when the system drifts from 

healthy signals to a signal with which to decide when to conduct planned maintenance.  

Once the engineer has familiarity with the system and signals can be identified as 

individual faults on the inner or outer raceway, then better predictions and a fully 

supervised methodology can be used [48]. 

 

The GAN architecture used in this paper incorporates the guidelines proposed in 

Radford [49]; however, adjustments to that paper’s architecture were made for handling 

the MFPT data set. Radford et al provides the following five GANs architecture 

guidelines: 1) generator and discriminator network pooling layer replacement with 
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strided convolutions, 2) Batch normalization (BN) is required for both the discriminator 

and generator networks, 3) Fully connected hidden layers should be removed for deep 

architectures, 4) Rectified Linear Unit (ReLU) activation use in all layers of the 

generator except the output should use Tanh, and 5) Leaky ReLU activation use on all 

layers for the discriminator.  DCGANs are used in this paper as a baseline to implement 

GANs. The combination of these five guidelines composes what is defined as deep 

convolutional generative adversarial networks (DCGANs). 

 

3.3.1 Strided Convolutions 

The relationship between a convolutional operation’s input shape, i j, and the 

operation’s output shape, oj, of a convolutional layer along axis j are related to three 

factors: 1) kernel size (kj), 2) stride (sj), and 3) padding (pj). Convolutional strides are 

generally set to �o  =  1 for most operations; however, for GANs strided convolutions 

of �o > 1  are used in place of pooling layers.  This is applied for the discriminator to 

learn its own downsampling, and for the generator to learn its own upsampling. 

 

3.3.2 Batch Normalization 

Batch normalization (BN) is an important addition to the architecture between each 

convolutional layer [50]. As the data moves through the convolutional layers the weight 

and bias values are adjusted.  This has the potential to lead to the data increasing or 

decreasing to unrealistic values.  Batch normalization prevents this from becoming an 

issue with the training by normalizing the data to a mean of zero and a variance of one 

for each data batch. Setting values of x over a mini-batch: + = q�%…..�t to output the 
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learned parameters γ and β, uvF = BNy,z��F�{. The min-batch mean is  |z ← %� ∑ �F�F(% , 

the mini-batch variance is �z5 ← %� ∑ ��F − |z�5�F(% , they are then normalized with ��F ←
�f$���@�E9�, and scale and shifted with, vF ← ���F + + ≡ ��y,z��F�. 

 

3.3.3 Activation Layers 

The following activation functions are used throughout the architecture. For the 

generator two activations functions are used: 1) Rectified Linear Unit (ReLU), f�x� =
�0forx < 0xforx ≥ 0 and 2) Hyperbolic tangent (tanh).  Within the generator network ReLU is 

used between every layer except tanh activation is used after the last layer. For the 

discriminator, Leaky ReLU is used on every layer. Leaky ReLU differs from ReLU in 

values less than 0.   

 

3.3.4 Neural Network Architectures 

The neural network architectures used in the proposed methodology incorporate the 

guidelines as proposed by Radford et al. Two networks were developed to account for 

the data set presented in this chapter. The generator network, as shown in Figure 3-3, 

takes the vector of noise and through deconvolution, BN and activation functions 

creates an image.  In this case the output if a 96x96 image of a scalogram of a signal.  

To do this, a 100x1 vector is projected and reshaped to deconvolve into a 6x6x512 

feature space.  This space is then deconvolved to a 12x12x256, then 24x24x128, 

48x48x64, and finally a 96x96x3 image.   
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Figure 3-3: Generator Network 
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Figure 3-4: Discriminator Network 

The discriminator network, as shown in Figure 3-4, then takes that generated image 

and judges whether the image is real or fake.  It does this by taking the real images and 

automatically learning the feature subspace.  For the 96x96 images this results in a 

network of convolutional layers consisting of a 48x48x64 layer, 24x24x128, 

12x12x256, and 6x6x512 layers.  The output of this last activation holds a lot of 

information about the feature space and is useful for unsupervised fault diagnostics.   

3.4 Propose Methodology Application 

The MFPT data set is a good test of any algorithm as the outer race fault and baseline 

conditions are difficult to separate.  NICE bearings were used within an experimental 

test rig.  Accelerometer data was gathered on three conditions.  First, at a sampling rate 

of 97,656 Hz, a baseline condition at 270lbs of load was captured.  Second, a total of 

ten faults on the outer-raceway were gathered.  At the same sampling rate and loading 

condition as the baseline, three outer race faults were tested, and the remaining seven 
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outer race faults had the following load cases: 25, 50, 100, 150, 200, 250 and 300 

lbs.  These seven load cases had a sampling rate of 48,828 Hz.  Third, with a sampling 

rate again of 48,848 Hz, seven inner race faults at a loading of 0, 50, 100, 150, 200, 

250 and 300 lbs were gathered.  From these raw signals, scalogram image 

representations were created with the following three classes as shown in 

Table 3-: normal baseline (N), inner race fault (IR), and outer race fault (OR). In total 

10,808 scalogram images were generated with 3,423 baseline, 1,981 inner race, and 

5,404 outer race images. The training, validation, and test sets used were fifty percent, 

twenty five percent, and twenty five percent of the full data set respectively. Bilinear 

interpolation [39] aided in reducing the original images to down to a trainable size for 

the GAN architecture.  

Table 3-1: 96x96 pixel MFPT scalogram images. 
Baseline Inner Race Outer Race 

   

The first step once the GANs training is completed is visual inspection of the generator 

image outputs.  These can be seen in Figure 3-5.  The different fault conditions can be 

identified within the images.  This step is a key indicator for identification of mode 

collapse, vanishing gradients, non-convergence, or checkerboarding artifacts.  With 

this completed the last activation layer of the discriminator network can be 

concatenated and clustering can be done.  
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Figure 3-5: Output images of DCGAN generator training. 

 

Kmeans++ is used for clustering within the paper to demonstrate how robust the GANs 

training can be towards a simple clustering algorithm. Kmeans++ only differs from 

traditional kmeans in the beginning cluster initiation. Kmeans++ initializes one cluster 

center first and then searches for the other centers; whereas, traditional kmeans 

initializes all centers and then updates the centers as the algorithm progresses. Figure 

3-6 shows the resultant clustering predictions of the last first two principal components 

of the last activation layer of the discriminator and colored by the predicted labels.  

There is overlap in the outer and inner race predictions, but the GANs training plus 

kmeans++ does an excellent job separating the baseline signals from the fault 

conditions.   
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Figure 3-6: DCGAN PCA KMeans ++ predicted. 

 
Figure 3-7 shows the first two principal components of the last activation layer color 

coded by the real labels.  It appears the GAN training with kmeans++ had the most 

difficulty with separating the fault conditions.  A clustering algorithm more capable of 

handling the non-convex nature of the outer race fault could potentially increase the 

evaluation metrics but is beyond the scope of this paper.   

 

 
Figure 3-7: DCGAN PCA Kmeans ++ real. 
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Since the labels to the data are known, evaluation metrics like purity [51], normalized 

mutual information (NMI) [52], and adjusted RAND index (ARI) [53] can be used to 

validate the architecture.  Table 3-2 has the overview of these metrics for this 

methodology.   

 
Table 3-2: MFPT 96x96 generator output, DCGAN, Kmeans++. 

ARI Purity NMI 
0.50 0.79 0.62 

 
Overall these number could be improved; however, the first goal of this methodology 

is to separate the baseline healthy system state with that of the faults.  This methodology 

proves it can handle that.  More work can be done to improve these numbers and 

provide better information to the engineer regarding which individual fault case the 

signal is presenting itself as. 

3.5 Conclusions 

Generative adversarial networks and deep learning as a field stand to unlock numerous 

potential applications within the field of engineering research.  This application is the 

first of its kind and shows great promise.   

 
The proposed architecture demonstrates its abilities with automatic feature learning to 

a level with which a simple clustering algorithm can separate the healthy baseline 

signals with the fault data.  An engineer can easily make an engineering decision on 

maintenance without the need for any knowledge of the individual signals.   

 

The practical application of this paper has far reaching possibilities into many 

engineering fields and is not limited to rolling element bearings.  Aerospace, 
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automotive, oil & gas, and many other industries can utilize this unsupervised 

methodology.   
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Chapter 4: Deep Semi-Supervised Generative Adversarial Fault 
Diagnostics of Rolling Element Bearings.3 
 

4.1 Abstract 

With the availability of cheaper multi-sensor suites, one has access to massive and 

multi-dimensional datasets that can and should be used for fault diagnosis. However, 

from a time, resource, engineering, and computational perspective, it is often cost 

prohibitive to label all the data streaming into a database in the context of big machinery 

data, i.e., massive multidimensional data. Therefore, this paper proposes both a fully 

unsupervised and semi-supervised deep learning enabled generative adversarial 

network-based methodology for fault diagnostics. Two public data sets of vibration 

data from rolling element bearings are used to evaluate the performance of the proposed 

methodology for fault diagnostics. The results indicate that the proposed methodology 

is a promising approach for both unsupervised and semi-supervised fault diagnostics. 

 

4.2 Introduction 

Condition health monitoring systems are becoming a standard specification for 

customers purchasing large capital assets. With the proliferation of cheap sensing 

technology, these assets are now streaming massive quantities of data at an 

unprecedented rate.  The fields of structural health monitoring (SHM) and fault 

diagnostics have grown from the need to make sense of this data. The primary 

 
3 The full-text of this chapter has been published at Verstraete, David Benjamin, et al. 
"Deep semi-supervised generative adversarial fault diagnostics of rolling element 
bearings." Structural Health Monitoring (2019): 1475921719850576. 
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drawback to fault diagnostics within these systems is the requirement of labeling 

millions, and potentially billions, of data points. To label a data set of this magnitude 

is resource intensive, costly, computationally expensive, and subject to confirmational 

data biases of the engineers interpreting the data. Thus, labeling the output of an 

extensive sensor system data output requires significant investment. Moreover, there is 

a strong assumption within supervised fault diagnosis that everything is known about 

a preset class of faults.  This restricts the ability of the supervised model to generalize. 

If the model only knows what the engineer knows, it is reasonable to assume the 

model’s knowledge of the system could be incomplete; therefore, traditional feature 

learning would have a fundamental generalization problem.   

 

The general problem within unsupervised learning is extracting information or value 

from unlabeled data. Unsupervised learning is an ill-posed problem because 

appropriate downstream tasks are unknown at the time of training. Therefore, 

unsupervised learning should disentangle the relevant unknown tasks which are helpful 

for the problem.  For instance, a useful disentangled representation for a dataset of 

cracks in a concrete structure would be dimensions for crack length, crack width, 

neighboring cracks, or the presence of the crack intersections [68].  These 

representations may be relevant for natural tasks like damage evaluation or crack 

propagation.  For irrelevant tasks, like the percentage of white pixels, this 

representation would be extraneous.  Therefore, a useful unsupervised learning 

algorithm must guess the likely set of subsequent classification tasks correctly without 

knowledge of what the tasks are.  This is a challenge deep learning attempts to solve. 
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Deep learning makes up much of the recent unsupervised fault diagnostic research, 

[42], [43], [44], [69], [70], [71], [72], [73], and [74]. All these approaches, except 

Langone [42], are restricted to unsupervised feature learning followed by supervised 

fault diagnostics. Moreover, none of these methods attempt unsupervised learning with 

an image representation of the data. 

 

Most recently, Generative Adversarial Networks (GANs) have been developed within 

the computer vision community [47]. Training this deep generative modeling is done 

using a minimax game.  The goal of training is to learn a generator distribution that 

fools the discriminator into classifying it as from the true data distribution.  Unlike 

variational autoencoders (VAE), which tries to assign probability to every data point in 

the data distribution [66], a GAN learns a generator network which transforms a noise 

variable in a sample by generating samples from the sample distribution.  With a 

sharper image from GANs, one gets more precise image features. However, currently 

there are no agreed upon methods to assess the training of, or comparison of, a GAN 

without visually inspecting the images.  This is difficult to accomplish without an 

image of the signal. A vector of data would not suffice. Therefore, GANs provides a 

better foundation for fault diagnostics based on rich images of signals.   

 

In this paper we propose a novel deep learning generative adversarial methodology for 

a comprehensive approach to fault diagnostics on time-frequency images.  This paper 

explores both deep convolutional GANs (DCGAN) and InfoGAN architectures. From 

the proposed architectures for these two types of GANs networks, clustering is done 
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via spectral and kmeans++ clustering on the down-sampled activation output of the 

discriminator. To improve clustering results, semi-supervised learning is included as a 

second stage to the methodology by altering the cost function to account for data labels. 

Additionally, both 32x32 pixel and 96x96 pixel images are explored as inputs to 

methodology. This methodology is then evaluated with both the Machinery Failure 

Prevention Technology (MFPT) Society [37] and Case Western Reserve (CWR) 

University Bearing Data Center [6] bearing data sets. The proposed methodology’s 

results are then compared to unsupervised learning via autoencoders (AE) and VAE. 

To evaluate the proposed unsupervised methodology, traditional supervised learning 

metrics are inappropriate.  A confusion matrix and its associated metrics are unable to 

evaluate clustering techniques. The ground truth is known; therefore, purity [51], 

normalized mutual information (NMI) [52], and adjusted rand index (ARI) [53] are 

used to evaluate the quality of the clusters. 

 

The rest of this paper is organized as follows, Section 2 provides an overview of GANs. 

Section 3 outlines the proposed unsupervised and semi-supervised methodology 

constructed to aid the diagnostic task of fault detection. Section 4 applies the 

methodology to both the MFPT and CWR experimental data sets. Section 5 compares 

these results to unsupervised AE and VAE. Section 6 finishes with some concluding 

remarks. 

 



 

68 
 

4.3 Background on Adversarial Training 

Generative adversarial networks were first proposed by Goodfellow et al [47].  GANs 

consist of a generator network and a discriminator model network.  Generative models 

seek to learn the underlying joint probability distribution P(x,y) of the random variables 

to categorize  a signal. Discriminative models, on the other hand, disregard how the 

data was generated and simply categorize the data points based on a conditional 

probability distribution p(y|x) [80]. Within the context of fault diagnostics, generative 

models attempt to learn every potential fault to then classify the faults, whereas 

discriminative models attempt to determine fault differences absent of learning every 

fault. GANs seek to utilize both model’s strengths.  The generator attempts to create a 

synthetic data set, X’, that matches the real data, X, that only the discriminator can see 

and classify as shown in Figure . The generator samples from a noise distribution, Z 

(e.g. normal) and the discriminator determines whether the sampled data (e.g., an 

image) is real or fake. 

 
Z

Z ~ N(μ,σ) 

Fake Images X' 

Real Images X

Generator 
Network

Discriminator 
Network

D(X)

 
Figure 4-1: GAN overview. 
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Functionally, GANs train two convolutional neural networks at the same time.  The 

generator, which is depicted in Figure , utilizes deconvolutional layers to take the noisy 

input Z and creates the specified size image.  The parameters in Z is then updated 

continuously throughout the training of the network. This image is then fed into the 

discriminator network to judge whether the generated image is real or fake.  The 

discriminator is a convolutional neural network with convolutional layers, pooling, and 

non-linear activations.  This is all done in a feed forward operation where the weights, 

biases, and errors are set throughout.  To update the networks and adjust these 

hyperparameters, backpropagation is used to send the errors back through the networks 

to update the weights and biases.  This process removes redundant, uninteresting 

features.   

 

To accomplish this, the fundamental foundation of the GANs algorithm is the two-

player minimax game.  The generative network maps a noise source to an input space 

to generate a fake image.  The discriminative network receives the generators input (a 

fake image) and classifies it as real or fake.  This amounts to a two-player game with 

the two networks competing against each other, Eq. (6) [47]: 

 

 

minT  max U V�W, X�= YZ~\]^_^�Z�`log �X�x�b+ Yc~\defgh�c�`log �1 − X�W�z���b (6) 

Where, Pdata�x�   Data distribution Pnoise�x�  Noise distribution 
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D�x�  Discriminator objective function G�z�  Generator objective function 

 
For each generator parameter update the discriminator is trained to optimality.  The 

minimization of the value function leads to the minimization of the Jensen-Shannon 

(JS) divergence between the real data and the trained model distributions on x. This 

minimization frequently results in vanishing gradients as the discriminator saturates.  

While the ideal training results in optimality, in most practical applications this is not 

necessarily the case.  At the moment the training of GANs requires visual inspection 

of the output images; therefore, an image representation of the signal is needed.   

 

There has been, and there continues to be, a large amount of research surrounding the 

architectures and training of a GAN.  For this paper both DCGAN and InfoGAN are 

used.  Fundamentally, these two GAN are identically trained to the proposed method 

by Goodfellow [47].  However, their architectures and cost functions are modified to 

account for the applied data sets and unsupervised vs semi-supervised objective 

functions. 

 

4.3.1 Clustering 

This paper examines two primary clustering algorithms for classification (k-means++ 

and spectral) and PCA for visualization.  K-means++ was chosen to explore the 

robustness of the methodology to simple clustering algorithms. K-means++ differs 

from the traditional k-means algorithm by first choosing the initial cluster center 
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uniformly at random and then choosing each subsequent center with probability 

proportional to the square of its proximity to the nearest center [75].  

 
Algorithm 1 K-means++ algorithm  
Initialize k-means++ algorithm 
• Take one center, A%, chosen uniformly at random from data points, X. 

• Take a new center, AF, choosing � ∈ � with probability 
U���E∑ U���E�∈� , where X��� 

denotes the shortest distance from a data point to the closest center already chosen. 
• Repeat previous step until all k centers are taken. 
• Proceed with standard k-means algorithm. 
 
 
Spectral clustering on the other hand is a graph clustering technique where eigenvectors 

of the data matrices are used.  Data is mapped to a low-dimensional space for spectral 

clustering. This dimensionality reduction is more computationally expensive than the 

k-means++ algorithm; however, it can achieve superior results [76]. 

Algorithm 2 Spectral clustering algorithm  
Input: Similarity matrix � ∈ ℝ�×�, number k of clusters to construct 
• Construct a similarity graph. Let W be its weighted adjacency matrix. 
• Compute the unnormalized Laplacian L. 
• Compute the first k eigenvectors �%, . . . , �� of the generalized eigenproblem �� =�X�. 
• Let V ∈ ℝ�×� be the matrix containing the vectors �%, . . . ,  �� as columns. 
• For � =  1, . . . , �, let vF ∈ ℝ� be the vector corresponding to the i-th row of V. 
• Cluster the points �vF�F(%,...,� in ℝ� with the k-means algorithm into clusters �%, . . . , ��. 
Output: Clusters �%, . . . , �� with �F = q�|vo ∈ �Ft. 
 

4.4 Proposed Generative Adversarial Fault Diagnostic Methodology 

A two-stage fault diagnostic methodology is proposed within this paper. Stage one 

consists of fully unsupervised generative adversarial fault diagnostics, and stage two 

semi-supervised generative adversarial fault diagnostics.  In practice, sensor signals are 

gathered, and stage one can be used at the start to assess the baseline of the system 
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when labels for the data are unavailable. As knowledge of the system signals improve, 

fault signals can be identified, labeled, and then incorporated into stage two.  The 

intention is that unsupervised clustering, operating on the automatic identified features 

by the GAN, identifies fault clusters away from the baseline. Once labeled data is 

available it can be added to the model to improve the maintenance decision making.  

Upon completion, the engineer can then visually monitor the system via principal 

components analysis (PCA) to begin labeling some of the signals being gathered.  This 

labeled data can then be input into the GANs methodology, with a modification to the 

cost function, to further improve the clustering results until a predefined criterion of 

performance is met.  Once the system signals move to a fully supervised labeled data 

set, the engineer can then transition the modeling to a fully supervised deep learning 

framework (for example, see [48]).  

 

The discriminator network provides the ability to train itself against generated images 

as an adversary within both DCGAN and InfoGAN architectures. Since the 

discriminator is trained to predict the fake from the real dataset, it can provide a robust 

feature set of the real data.  To accomplish this, the GAN discriminator training 

automatically generates a high-level feature representation of the data from the input 

image to an output vector. The goal of the GANs training is then to take this high-level 

representation feature set as an input to clustering algorithms. This allows the generator 

to avoid overfitting on the raw data by only having access to the gradients.  Two GAN 

architectures explored in this paper are not a restriction on the methodology; these were 

two architectures chosen because of their strong results in other tasks, such as image 
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generation.  To use the InfoGAN, the encoder dimension must be given as the number 

of system health states believed to exist, whereas this is not a requirement for training 

the DCGAN. For instance, to validate the proposed methodology the encoder 

dimension was set to three.  The DCGAN training, on the other hand, does not require 

the encoder dimension.  

 

The DCGAN architecture developed for this paper incorporates the guidelines 

proposed in Radford [49]; however, some adjustments were made to the architecture to 

handle the data sets used in this paper and thus provide superior results for unsupervised 

fault diagnostics. DCGANs were the first major advancement on the original GAN 

architecture [49]. Through exhaustive model exploration, this work resulted in the 

following five GANs architecture guidelines: 1) Pooling layer replacement with strided 

convolutions for both the discriminator and the generator networks, 2) Batch 

normalization (BN) is required for both the discriminator and generator networks, 3) 

Fully connected hidden layers should be removed for deep architectures, 4) Rectified 

Linear Unit (ReLU) activation use in all layers of the generator except the output should 

use Tanh, and 5) Leaky ReLU activation use on all layers for the discriminator.  

DCGANs are the main baseline to implement GANs; however, as stated in Radford 

[49], model instability still exists within the training of the model. The longer the model 

trains, the higher the risk of mode collapse.  This occurs when a filter subset collapses 

to a single oscillating mode. 

 



 

74 
 

There have been many studies on the effectiveness of individual wavelets and their 

ability to match a signal. One could choose between the Gaussian, Morlet, Shannon, 

Meyer, Laplace, Hermit, or the Mexican Hat wavelets in both simple and complex 

functions. To date there is not a defined methodology for identifying the proper wavelet 

to be used and this remains an open question within the research community [30]. For 

the purposes of this paper, the Morlet wavelet is chosen because of its similarity to the 

impulse component of symptomatic faults of many mechanical systems [31]. 

 

As shown in Figure 4-2, the proposed methodology starts with the training of a GAN 

with the unlabeled dataset. This will train two convolutional neural networks (CNNs), 

one discriminator and one generator. The discriminator needs to learn distribution of 

the real vibration fault dataset to be able to discriminate between the generated fake 

samples and the real samples. The generator attempts to trick the discriminator by 

learning the underlying distribution of the generated data. The last activation layer of 

the training is then concatenated and visually inspected via PCA to evaluate the ability 

of the GAN to separate the data.  At this point the engineer will be looking for a robust 

representation of the baseline signals from the asset.  From there, the engineer weighs 

the value of labeling the incoming data versus the cost to label.   
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Figure 4-2: Proposed generative adversarial fault diagnostic methodology. 

 
 
In the following sections, we discuss and detail the proposed methodology for fault 

diagnostics. The next sections include discussions regarding the architectures for the 
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DCGAN and InfoGAN models underpinning the methodology followed by a detailed 

discussion on the proposed methodology steps.  
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Figure 4-3: Generator Network 

 
Functionally, the training of the DCGAN involves tuning the parameters on two CNNs. 

In the generator architecture in Figure 4-3, the noise, Z, is used to generate a vector of 

data. This is then used to project and reshape to 512 6x6 features.  From these features, 

256 12x12 features are deconvolved.  Following to 128 24x24 features, then 64 48x48 

features, and finally 3 96x96 images are generated.  Between each of these layers, batch 

normalization (BN) and ReLU are used, and finally tanh is used for the last layer. 

 

The discriminator CNN in Figure 4-4 shows the reduction from the image into smaller 

features.   The discriminator takes the 96x96 image and convolutes the image into 64 

feature maps of 48x48 size.  The 64 feature maps are then again convoluted to 128 

feature maps of size 24x24, then 256 feature maps of 12x12 size, and finally 512 feature 

maps of 6x6 size.  Between each of these layers, the data is passed through BN and 

Leaky ReLU. The final activation layer of 512 6x6 feature maps results in features 

automatically learned from the data and maps to the subsequent step in the proposed 

methodology discussed in Section 3.   
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Figure 4-4: Discriminator Network 

 
This comprises both networks for the DCGANs training.  To update both networks 

through each step, a cross-entropy back propagation is used.  This back propagation 

allows the updating of the weights and biases throughout the network to optimize 

towards the intended outputs.  This is done with the gradients out of the discriminator 

to help avoid overfitting on the raw data. 

 

Information Maximizing GANs (InfoGANs) take the unsupervised objective function 

into account as a mutual information variable in the input of the generator network [78]. 

This input now consists of z and c vectors. The latter is used in the mutual information 

term to represent some latent variable in the data.  The InfoGANs objective remains 

the same as the GAN objective function; however, it now makes use of the data set 

descriptive latent variables c and z, as shown in Eq. (7):  
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 minT maxU V�� ¡T¢£�W, X, ¤� = V�W, X� − λ���A; W�§, A�� (7) 

where,  

Q  Auxiliary distribution to approximate the posterior. 

G  Generator. 

D  Discriminator. 

c  Latent code. 

z  Incompressible noise. 

G(z,c)  Generator network in terms z, and c. 

LI  Variation lower bound of mutual information I. 

 
The hyperparameter λ is introduced within the InfoGAN optimization to control the 

scale of the GANs objective function.  A λ set to 1 suffices for discrete latent codes, 

and a smaller λ is useful for continuous variables to ensure the scale remains the same. 

 
Figure 4-5: InfoGANs discriminator network. 

 
Figure 4-5 shows the proposed architecture for the InfoGAN discriminator.  Note that 

this discriminator network, more specifically the fully-connected (FC) encoder layer 

within InfoGAN, is the only difference versus DCGANs.  The distribution Q(c | x) is 

the posterior approximation of the true posterior P(c | x).  The approximate posterior, 

Q, is parameterized as a neural network.   
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The benefit to using the InfoGAN algorithm is the ability to extract meaningful features 

of the data created by the generator encoder vector. This means, for a fault diagnostic 

problem, c encodes the semantic features (fault classes, e.g., baseline, inner race fault, 

outer race fault) of the data distribution and z encodes the unstructured noise of the 

distribution (e.g., width of the impulse, background noise of the signal). Even with the 

mutual information objective function there is no guarantee that the latent variables 

found by the trained InfoGAN will be the desired structure in the data. Therefore, 

InfoGANs still require visual inspection of the generator images to assess its image 

quality. In the following sections, we discuss the steps in the proposed methodology. 

 

4.4.1 Read Raw Signal and Image Representation Construction 

Prior to GAN initialization, it is necessary to generate images of the accelerometer data 

streaming from the rolling element bearing.  Scalogram images contain time and 

frequency on the axis and the color depicts the magnitude.  Once the images are 

generated, the entire data set is subdivided into three groups: training, test, and 

validation.  It is common to have the bulk of the images in the training set, with the 

remainder used as a test set to evaluate the model’s ability to predict the system’s health 

classes. 

 

4.4.2 Unsupervised GAN Initialization 

Once the scalogram images are generated, Algorithm 3 outlines the process as a means 

for a feed forward pipeline for fault diagnosis.  Global average pooling is used to reduce 
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the last convolutional layer filters to k vectors of 1x1.  This is then concatenated to form 

a 1 x k vector and fed into a clustering algorithm. 

Algorithm 3 Unsupervised feed forward pipeline for images, i. 
Train GAN Architecture to data dependent, context dependent epoch count. 
for i images do 
• Feed forward pass through the discriminator. 
• Global Average Pooling for k filters out of last convolutional layer to output k 1x1 

filters. 
• Concatenate last convolutional layer activations (with encoder for the InfoGAN) 

from each image i as a 1 x k vector. 
• Normalize this vector with L2 Norm (Euclidean Distance): 

|¨| = © |��|5�
�(% . 

end for 
• Vector is labeled LA vector for DCGAN. 
• Vector is labeled LA+encoder vector for InfoGAN. 
• The resulting vector is fed into a clustering algorithm (k-means++, Spectral) to 

obtain labels for images. 
 
 
Once the GAN model is trained (DCGAN or InfoGAN), two additional steps are 

needed to evaluate the model. The first step is a visual inspection of the trained 

generator network to evaluate the quality of the generated images. Visual inspection of 

the output images of the generator network is a key indicator to how well the GAN 

architecture is training and whether any of the known drawbacks are surfacing, such as 

mode collapse [77], vanishing gradients [78], non-convergence [79], and 

checkerboarding artifacts [81]. The second step consists of sampling images from a 

random uniform input vector between 0-1. For the InfoGAN, the c input vector is a 

random one hot encoded categorical vector. This step uncovers problems in the 

convergence of the network, mode collapse to a specific kind of image, or the inability 

of the model to generate similar images to the ones in the original dataset. 
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4.4.3 Concatenation, Normalization, and Clustering  

To extract the discriminator information after training, a feed forward pass is done with 

each image (i) in the dataset to obtain each last convolutional layer activation. These 

activations are pooled via global average pooling for each filter (k). This means that, 

given k filters in the last layer, the output is k 1 x 1 vectors for each scalogram. After 

global average pooling, these vectors are concatenated into a 1 x k vector and 

normalized with Euclidean L2 normalization. From this point, the vector output of the 

DCGAN is referred to as the last layer activations vector, or LA vector. Moreover, the 

output of the InfoGAN includes the encoder output. Therefore, from this point, this 

encoder concatenated with the LA vector output of the InfoGAN is referred to as the 

LA+encoder vector. 

 

The last step is to use this LA vector or LA+encoder vector (C or Cen, respectively) as 

an input into clustering algorithms. For the purposes of this paper, k-means++ and 

spectral clustering are examined. Again, this is not a restriction on the methodology; it 

is a means to display the robustness of the methodology to two common straightforward 

clustering algorithms.  

 

4.4.4 Unsupervised Visual Evaluation – PCA 

Once the output of unsupervised clustering is complete, a method to assess the 

clustering results without the real labels is needed.  For the proposed methodology, one 

could evaluate the clustering output of the LA or LA+ vector’s visually to choose the 

appropriate number of clusters to proceed with the remainder of the methodology. Note 
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that the GANs training creates a suitable underlying manifold representation of the data 

that can be used in a two-dimensional visual inspection. Engineering knowledge can 

then be utilized to provide meaning to the evaluation of the visual results of PCA. 

 

4.4.5 Label Data 

One of the strengths of the proposed methodology is the ability to feed in an 

incrementally increasing amount of labeled data into the training data set of the GANs 

algorithm to increase fault class identification results from the clustering.  This has 

practical importance because, when a new asset comes online, initially there may be 

little knowledge of the system faults and their respective raw signals.  As more 

knowledge is gained, labeled data can be incorporated into the model. The results 

section of this paper validates the methodology with metrics for increasing percentages 

of labeled data (for validation purposes, it is assumed that labels are known) within the 

training data set for semi-supervised fault diagnostics. 

 

4.4.6 Semi-Supervised GAN Initialization 

Semi-supervised GAN initialization involves training of the chosen GAN architecture 

with an incrementally increasing set of labeled data.  This is an important aspect to 

explore because as the engineer gains more knowledge about a new system, one can 

label small sets of data which are known to be faults to increase the system’s health 

state identification via clustering. This approach improves the quality of the clustering 

results via a semi-supervised cost function (Eq. 6) as described in Salimans [79]. In the 

unsupervised training, the discriminator learns features to avoid classifying the 
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generated data as real data, but these features might not be the best representation given 

the implicit labels the problem has. One way to help the discriminator get improved 

and more meaningful features for these labels is to use the discriminator as a classifier 

for these classes. This is possible with a minor change to the proposed GAN pipeline 

outlined in the first step of Algorithm 1. Indeed, the loss function, L, is modified to Eq. 

(8), as follows: 

 � = �ª«¬­®¯Fª­° + �«�ª«¬­®¯Fª­° (8) 

  
Where, 

�ª«¬­®¯Fª­° = −Y�,±~¬]^_^��,±� log ��¡°­² �v|�, v < G + 1� 

�«�ª«¬­®¯Fª­° = −qY�~¬]^_^��� log `1 − ��¡°­² �v = G + 1|��b 
           +Y�~Tlog `��¡°­²�v = G + 1|��bt 

 
This cost function adds a cross entropy loss for the first k discriminator outputs. The 

unsupervised cost is the same as the original GAN, Eq. (6). However, there is a slight 

change as now K+1 corresponds to the probability of the sample being false.  The 

discriminator is used as a competent classifier given a subset of the dataset. In this case, 

the discriminator will be used as a feature extractor given a subset of the dataset to 

improve the system’s health state identification results based on clustering. Labels are 

used as clues for the structure of the data with the aim of creating an improved 

discriminator. This assumes that images generated with semi-supervised learning have 

better quality than the ones generated in an unsupervised manner. However, notice that 

the main objective of a GAN is to generate data points or images that resemble the 



 

84 
 

training dataset and not to predict any system’s health states. Thus, if we use a few 

labeled data points and generated data we are performing a semi-supervised training. 

 

4.4.7 Semi-Supervised Stop Criteria 

For a qualitative analysis, the GAN’s last activation layer outputs are used to generate 

a two component PCA plot. The ideal result would be a clear separation between the 

heath states (classes). If there is not a clear separation, then adding labeled data would 

help aid in the separation and provide better system health state diagnosis. It is at this 

point the engineer, now with a small number of labels of the fault conditions, can begin 

using metrics to evaluate whether the model is performing suitably to cease labeling 

additional data.  Eventually the quantity of labeled data reaches a point at which the 

decision can be made to explore a deep learning enabled fully-supervised fault 

diagnostic methodology.    

5.0 Examples of Application 

In this section, the proposed methodology is applied to both the MFPT and CWR 

bearing data sets. To validate the proposed methodology, known labels are available.  

Therefore, metrics like purity, NMI, and ARI can be used.  GPU computing was 

utilized throughout this paper using a system with a Nvidia GPU Titan XP, CPU Core 

i7-6700K 4.2 GHz, 32 GB RAM, Tensorflow 1.0, cuDNN 5.1, and Cuda 8.0.    

 

5.1 Machinery Failure Prevention Technology Data Set 

This data set was provided by the Machinery Failure Prevention Technology (MFPT) 

Society [37]. An experimental test rig with a NICE bearing gathered accelerometer data 
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for three conditions.  First, a baseline condition was measured at 270lbs of load and a 

sampling rate of 97,656 Hz.  Second, ten total outer-raceway faults were 

tracked.  Three outer race faults were loaded with 270lbs with a sampling rate of 97,656 

Hz, and seven outer race faults were assessed at varying loads: 25, 50, 100, 150, 200, 

250 and 300 lbs.  The sampling rate for the faults was 48,828 Hz.  Third, seven inner 

race faults were analyzed with varying loads of 0, 50, 100, 150, 200, 250 and 300 

lbs.  The sampling rate for the inner race faults was 48,848 Hz.  Scalogram images, as 

shown in Table 4-1, were generated from the raw signal with the following classes: 

normal baseline, inner race fault, and outer race fault. The total scalograms images used 

for each class was 3,423, 1,981, and 5,404 respectively. With 10,808 total images, the 

training set size used was fifty percent. Bilinear interpolation [39] was used to scale the 

images down to a manageable size for the training.  The MFPT data set is a good test 

for any algorithm’s ability to separate the baseline healthy data with the outer race fault 

condition.  This can be seen in the similarity of the raw signals in Figure 4-6 and Figure 

4-8 respectively.  Figure 4-7 shows the inner race fault condition. 

 
Figure 4-6: Baseline signal. 

 
Figure 4-7: Inner race fault signal. 
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Figure 4-8: Outer race fault signal. 

 
Table 4-1: 96x96 pixel MFPT scalogram images (actual size). 

Baseline Inner Race Outer Race 

   
 
Within the scalograms of the MFPT data set there are a few areas of notice.  The noise 

level within the baseline and outer race data appears to be higher than the inner 

race.  This is confirmed from the plots of the raw signals.  The baseline and outer race 

faults look similar, hence the potential difficulty in the conducting fault diagnosis on 

this data set.   

 

Although labels are available for this dataset, the results presented in this section were 

obtained with fully unsupervised training on both DCGAN and InfoGAN architectures, 

with complete datasets and without labels. Visual inspection of the output images of 

the generator network, as shown in Figure 4-9 and Figure 4-10, is a key indicator to 

how well the GAN architecture is training and whether mode collapse, vanishing 

gradients, non-convergence, or checkerboarding artifacts is occurring. 
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Checkerboarding artifacts occur when the stride length is not directly divisible by the 

convolutional filter size. The output images on this data set show that the generator 

performed well in converging to the distribution of the data. It is clear which images 

are the inner race fault images, and there is a slight variation in the images generated 

for the baseline and outer race conditions.    

 

 
Figure 4-9: Output images of DCGAN generator training model. 

 

 
Figure 4-10: Output images of InfoGAN generator training model. 

 

Following the proposed methodology in Section 3 (see Figure 4-2), the alternative 

models can be qualitatively evaluated based on the two component PCA. Thus, Figure 
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4-11 shows the PCA results for the best model corresponding to the spectral clustering 

based on the InfoGAN LA vector with an output image of 32x32 pixels. Indeed, 

Appendix A contains the results for the two component PCA based on both the 

InfoGAN and DCGAN data representations. For the sake of brevity, only the results 

for the best performing clustering method, spectral clustering, are shown. Both 

Appendix A and Figure 4-11 compare the predicted labels with the real labels. Note 

that, from the results in Appendix A, the InfoGAN LA vector with an output image of 

32x32 pixels provides the best separation and identification of the system’s health 

states. This model is closely followed by the InfoGAN LA+ vector with an output 

image of 32x32 pixels that, when contrasted to the real labels, shows some difficulty 

in separating the baseline health state. 

 

This qualitative evaluation is important within the proposed methodology because for 

unsupervised fault diagnostics, the first step for this data representation is a clear 

separation between the baseline healthy data and any faulty unhealthy data.  The faults 

themselves do not necessarily need to be separated from each other at this stage as the 

goal of this step is to separate healthy from unhealthy.  Isolating faults between each 

other can be assessed in a later stage of the proposed methodology as the engineer 

begins to label data and has further knowledge into the ground truth of the signals.  As 

it can be seen from Figure 4-11 for the best model, InfoGAN LA vector with image 

output of 32x32 pixels, the baseline is separated well from the rest of the fault signal 

data.  
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Real Labels 

 

Predicted Labels 

Figure 4-11: Spectral clustering PCA, InfoGAN LA output image 32x32 pixels. 

 

The last convolutional layer activation of the GAN’s generator allows the visualization 

of the manifold the GAN developed during training of the underlying gradient basis of 

the raw data. This layer holds valuable information about the underlying distribution 

of the data.  

 

The effectiveness of the proposed methodology can be evaluated with the following 

metrics: Adjusted RAND Index (ARI), Normalized Mutual Information (NMI), and 

Purity. ARI and NMI are well known evaluation metrics; however, purity is somewhat 

new but used often.  Purity, simply put, is the ratio between the dominant class in the 

cluster and the size of the cluster. More formally, purity is the following Eq. (9), 

 Purity�µF� = 1�F max� ��Fo�     � ∈ � (9) 

where, 

w     clusters 

n     members 

C     number of classes 
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The three metrics used for evaluation all measure different aspects of the effectiveness 

of unsupervised learning algorithms.  Purity values range from zero (poor clustering) 

to one (perfect clustering).   A high purity would be easy to achieve if the selected 

number of clusters is high.  For instance, if every feature from the proposed 

methodology had its own cluster, the purity would be one.  Therefore, purity cannot be 

used to evaluate the number of clusters.  NMI allows one to evaluate the tradeoffs of 

the number of clusters.  However, NMI has the same drawback as purity does where if 

there are one-image clusters, NMI has a value of one.  The last metric used to evaluate 

the clustering output is ARI.  ARI, simply put, is the accuracy of the clustering and 

measures the percentage of correct decisions.  ARI gives equal weight to the false 

positives and false negatives.  This accounts for the short comings of purity and NMI 

where, at times, ARI can perform worse when separating similar data points than 

clustering dissimilar data points. From the complete set of results shown in Appendix 

B, Tables B.1, B.2, B.3, and B.4, the proposed architectures for the DCGAN and 

InfoGAN provide a robust underlying manifold representation of the data and they have 

solid performance for unsupervised fault diagnostics. The InfoGAN LA vector with 

32x32 output images and with spectral clustering is the one that achieves the best 

results: ARI of 0.89, purity equal to 0.96 and NMI of 0.88 as shown in in Table 4-2. 

This indicates the proposed methodology is creating pure clusters, the number of 

clusters is generating a high NMI, and the ARI accuracy of 0.89 is high for 

unsupervised learning.    
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Table 4-2: Fully unsupervised 32x32 generator output, InfoGAN LA output and 
spectral clustering. 

Percent Labeled Data ARI Purity NMI 
0% 0.89 0.96 0.88 

 
 
Moreover, the InfoGAN architecture with the 32x32 generator output outperformed the 

96x96 output.  This could be explained by the similarities between the baseline and the 

outer race fault condition. With increased generator resolution potentially blurring the 

images, the GANs models could therefore have a harder time classifying them.  Based 

on the ARI, NMI, and purity results, there is not a definitive optimal image resolution 

for both architectures. Spectral clustering outperformed k-means++ across the 

board.  The ability of spectral clustering to map to a lower dimensional space allowed 

for better predictions. Therefore, for the MFPT data set, the InfoGAN outperformed 

the DCGAN. Given the noise the MFPT data set has within two of the classes, the 

InfoGAN did a better job of encoding the experimental noise into the z vector.   

 

The next step would be to monitor the system as baseline data is collected.  As faults 

arise, inspection and knowledge of faults must be completed to ensure the fault 

diagnostic system improves.  These results indicate a strong value proposition for the 

proposed methodology.  The proceeding section explores increasing the percentage of 

labeled data within this methodology.  

 

As the results of the unsupervised learning are obtained, semi-supervised learning may 

be required if some of the results do not meet user requirements for prediction 

capability.  Even though the fully unsupervised results for this dataset are satisfactory, 
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with best purity scores of 0.96 and 0.82 for the InfoGAN and DCGAN, respectively, 

and good separation on the PCA plot for the identification of health states, the semi-

supervised case is explored to see how good the results can be with an investment in 

resources to label the data.  This is a time consuming and expensive process, so we 

analyze different cases that incrementally add labels to the dataset. The percentage of 

the labeled data is dependent on knowledge of the failure process, degradation, 

application, quality of the data, feeling/expert knowledge, and associated costs. For the 

sake of brevity, in this section, we focus on the architecture with the best performance 

in the unsupervised stage discussed in the previous section, i.e., the InfoGAN LA vector 

with 32x32 generator output. Note also that the models are trained with only a small 

portion of the dataset that is labeled. 

The top results are reported in Table 4-3 which are for the InfoGAN architecture with 

LA output image 32x32 pixels using spectral clustering. To evaluate effectiveness of 

the semi-supervised fault identification pipeline, the actual labels are compared to 

predicted clusters (predicted health states).  

 
Table 4-3: 32x32 generator output, InfoGAN LA output and spectral clustering. 

Percent Labeled 
Data 

Amount of 
Labeled Data ARI Purity NMI 

0% 0 0.89 0.96 0.88 
1% 54 0.37 0.73 0.45 
2% 108 0.46 0.79 0.59 
4% 216 0.82 0.94 0.81 
8% 432 0.88 0.96 0.87 
10% 541 0.90 0.96 0.88 
20% 1,081 0.98 0.99 0.96 

 
Something peculiar in the results is the fact that the metrics performance decreases 

initially with the addition of labeled data.  This is because the semi-supervised models 
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are trained with labels on a very small portion of the full data set. The most important 

part of these validation metric results is the point at which the semi-supervised case 

begins outperforming the unsupervised case.  This happens at eight percent.  The semi-

supervised case is able to match the unsupervised results with only four percent labeled 

data and surpass it with eight percent.  This gives the engineer a decision point with 

which to make an economic decision to start labeling data. Compared to the fully 

unsupervised, the semi-supervised results show a better separation overall of the 

baseline versus the fault data.  

 

In summary, at a 0.94 purity from the spectral clustering results out of the InfoGAN c 

vector, it is worth exploring this unsupervised approach for this dataset before spending 

engineering resources on labeling the vast amount of data for similar systems in 

industry. Also, with the addition of the labeled data, there are few points worth 

commenting.  First, spectral clustering still outperformed kmeans++.  The results for 

the low percentage labeled data show almost equal performance compared with the 

unsupervised results, as shown in Appendix B, Tables B.1, B.2, B.3 and B.4.  This is 

not surprising as the unsupervised results were already high. These results indicate the 

unsupervised results can be achieved with a small labeled subset. 

 

5.2 Case Western Reserve University Bearing Data Set 

The second experimental data set was provided by Case Western Reserve (CWR) 

University Bearing Data Center [6]. A Reliance electric motor, two horsepower, was 

used with ball bearings in experiments for the acquisition of vibration accelerometer 



 

94 
 

data on both the drive end and fan end bearings, as shown in Figure 4-12.  The signal 

is generated from the bearings supporting the motor shaft.  Single point artificial faults 

were seeded in the bearing with an electro-discharge machining. Location and diameter 

of the faults varied for the outer raceway.  Additionally, 0 to 3 horsepower motor loads 

were included within the experimental data.  Accelerometers were attached via magnets 

to the housing on the twelve o’clock location. 

 

 
Figure 4-12: CWR experimental test stand for roller bearing. 

 

For the purposes of this paper four classes were used: baseline, inner raceway, outer 

raceway, and rolling element (ball). In total, the images generated for each class was 

3,304, IR 2,814, OR 2,819, BF 2,816 respectively. These classes were assembled by 

combining the fault sizes, motor speed, and motor load.  The training set size again was 

set to fifty percent of the 11,753 total images.  To ensure the images were a 

computationally efficient size, bilinear interpolation [39] was used to scale the images 

down to a manageable size for the training. For the CWR data set, any analysis 

incorporating the rolling element (ball fault) data requires more sophisticated 

algorithms than envelope analysis [41]. Visually, one can see from Figure 4-13, Figure 
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4-14, Figure 4-15, and Figure 4-16 that this would hold true.  The ball fault signal 

(Figure 4-16) appears to mimic parts of both baseline and outer race fault signals.  

 

 
Figure 4-13: Baseline raw signal. 

 
Figure 4-14: Inner race fault raw 

signal. 

 
Figure 4-15: Outer race fault raw 

signal. 

 
Figure 4-16: Ball fault raw signal. 

 

From the raw signals, the following scalograms were generated based on the procedure 

presented in Section 2. Bilinear interpolation was used to scale the image down to a 

usable size (96x96 and 32x32 pixels) for training the GAN. Samples of these images 

are shown in Table 4-4.  One can see the ball fault images may mimic the higher 

frequency outputs of the outer race faults, and the lower frequency response of the 

baseline signals.  Also note that, overall, the noise in this data set appears to be less 

than that of the MFPT data set. 
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Table 4-4: 96x96 pixel CWR scalogram images of the faults. 
Baseline Inner Race Outer Race Ball Fault 

    
 

After training both proposed architectures for DCGAN and InfoGAN, the output 

images on this data set, as shown in Figure 4-17 and Figure 4-18, appear to show that 

the generator performed well in converging to the distribution of the data.   

 
Figure 4-17: Output images of DCGAN generator training model. 
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Figure 4-18: Output images of InfoGAN generator training model. 

The PCA of the first two components of the LA vector (DCGAN) and LA+ vector 

(DCGAN and InfoGAN) representations are compared. The predicted and real labels 

are shown in the Appendix B for all the models based on the best performing clustering 

method. For the CWR dataset, this is kmeans++ with the DCGAN LA vector on 96x96 

generator images as shown in Figure 4-19. However, one can observe that PCA 

operating on the DCGAN and InfoGAN training had difficulties with the baseline data 

separation. It appears the ball fault data results in two sets of clusters in the PCA which 

is difficult for the clustering methods that do not employ a higher dimensional space to 

separate.   

 
Real 

 
Predicted 

Figure 4-19: K-means++ PCA, DCGAN LA output image 96x96 pixels. 
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The ARI, purity, and NMI metrics are again used to validate the proposed methodology 

on this data set. The complete set of results can be found in Table C.1, C.2, C.3, and 

C.4. For the CWR dataset, it is the 96x96 generator output on the DCGAN utilizing 

kmeans++ clustering that delivers the best results with ARI, purity and NMI scores 

equal to 0.69, 0.82, and 0.78, respectively, and shown in Table 4-5.  Note that these are 

much lower than the unsupervised results of the MFPT data set. 

 
Table 4-5: CWR 96x96 generator output, DCGAN kmeans++ clustering. 

Percent Labeled Data ARI Purity NMI 
0% 0.69 0.82 0.78 

 

The unsupervised results for the CWR data set are low and appear as though they could 

benefit from the addition of labeled data to the training. Based on these results, the next 

section explores increasing the percentage of labeled images within the GANs training.  

Semi-supervised learning of the fault detection should be explored given the lower 

results of the unsupervised learning. 

 

Again, once the first model is trained, the dataset is incrementally labeled. NMI, purity, 

and ARI were again used to evaluate the model since the labels are known. As in the 

previous section, we restrict our discussion to the DCGAN architecture as it achieved 

the best fault diagnosis results in the fully unsupervised stage. Thus, the results are 

reported in Table 4-6 from the 96x96 generator output, using the DCGAN architecture, 

and kmeans++ clustering to separate the system health states. 
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Table 4-6: CWR 96x96 generator output, DCGAN kmeans++ clustering. 
Percent 

Labeled Data 
Amount of 

Labeled Data ARI Purity NMI 
0% 0 0.69 0.82 0.78 
1% 117 0.40 0.62 0.42 
2% 235 0.47 0.71 0.59 
4% 470 0.51 0.69 0.61 
8% 940 0.51 0.70 0.55 
10% 1,175 0.88 0.95 0.88 
20% 2,350 0.95 0.98 0.94 

 
The first evaluation of the results also indicates the same pattern the MFPT results had.  

The metric performance decreased as labels were added in smaller quantities.  The 

point with which the semi-supervised results outperformed the unsupervised results for 

this data set is between eight and ten percent. The CWR data set benefited greatly from 

the addition of the labels. 

 

Kmeans++ operating on the representation from the DCGAN for this dataset had better 

system state separation with labeling a portion of this data set. The purity is much 

improved with the top model achieving 0.98 purity with 20% labeled data, whereas the 

unsupervised case was only 0.82. The CWR data set is an easily separable data set 

using the baseline data, inner race, and outer race faults. With the addition of the ball 

fault data, however, one must use more sophisticated methods to perform fault 

diagnosis.  The CWR data set, in general, has less noise throughout the scalograms than 

the MFPT data set.  Even without the information from the latent space of the InfoGAN, 

the DCGAN architecture provided a better representation for this data, which benefited 

greatly from the addition of labeled data. 
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In summary, the CWR predictions performed worse than the MFPT data set predictions 

as found in the Appendix C for unsupervised training.   Kmeans++ outperformed 

spectral clustering but not always.  A 32x32 generator output versus a 96x96 generator 

output was less clear.  For the DCGAN and kmeans++, the 96x96 output performed 

better. However, for spectral clustering, both output sizes performed 

poorly.  Kmeans++ with a DCGAN architecture and a 96x96 pixel generator output 

had the highest purity measure. 

 

6.0 Comparison with AE and VAE 

To evaluate the proposed methodology, a baseline against AE and VAE was completed 

on the same set of scalogram images.  The same external clustering evaluation metrics 

are used to assess the methodology. The features are extracted from the encoder output 

for the autoencoder architecture and from the z-mean output in the VAE case.  

 

For the AE two architectures are considered: one based on fully connected layers 

(MLP-AE) and another with convolutional layers (Conv-AE).  At least two layers are 

used for the encoder / decoder (thus using at least 4 layers given symmetric encoder-

decoder) to allow the AE to generate complex enough features. Given this base 

architecture, layers or hidden units are added until the following qualitative criteria is 

met: after 10,000 iterations we reconstruct ten images and decide based on image 

quality if the decoder generated is a good reconstruction. The loss function is the mean 

square error between reconstruction and input image. 
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Based on the procedure established by the proposed methodology, Figure 4-20, Figure 

4-21, and Figure 4-22 show the PCA visualizations based on the results obtained from 

the MLP-AE, Conv-AE and Conv-VAE architectures, respectively. Note that all PCAs 

have an explained variance near 90% so the visualizations are a good approximation of 

the general structure of the data. 

 

In the MLP-AE results, the structure of the features is not so clear given the overlap 

and the spread of the data structure. An explanation for this behavior is the nature of 

MLP when they are used on images: the spatial information is hard to encode, so more 

complex transformations are required. This hypothesis is supported comparing this 

with the structure found by the Conv-AE where a half moon structure is found. From 

the results reported in Table 4-7 (MFPT) and Table 4-8 (CWR), we get consistently 

high results in most of the metrics for Conv-VAE. If we consider only purity, the Conv-

VAE is marginally outperformed by MLP-AE for both the MFT and CWR datasets but, 

in terms of representation, the Conv-VAE is preferable as shown in Figure 4-22 (MFPT) 

and Figure 25 (CWR). The Conv-VAE architecture has the best baseline signal 

separation of the three models. Despite these results for the MLP and VAE based 

approaches, the proposed GAN based methodology outperforms all models, as it can 

be substantiated by comparing the results in Table 4-7 (MFPT) and Table 4-8(CWR) 

with Table 4-2 (MFPT) and Table 4-5 (CWR).  

 
 
 
 
 
 



 

102 
 

Table 4-7: MFPT Unsupervised AE and VAE results. 
Model ARI Purity NMI 

MLP AE k-means++ 0.44 0.76 0.49 
MLP AE Spectral 0.61 0.82 0.73 
Conv AE k-means++ 0.38 0.73 0.49 
Conv AE Spectral 0.50 0.81 0.53 
Conv VAE k-means++ 0.51 0.81 0.67 
Conv VAE Spectral 0.54 0.81 0.69 

 
 

  

  

Figure 4-20: MFPT AE MLP architecture. 
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Figure 4-21: MFPT AE convolutional architecture. 
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Figure 4-22: MFPT VAE convolutional architecture. 
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Figure 4-23: CWR AE MLP architecture. 
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Figure 4-24: CWR AE convolutional architecture. 
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Figure 4-25: CWR VAE convolutional architecture. 

 
Table 4-8: CWR Unsupervised AE and VAE results. 

Model ARI Purity NMI 
MLP AE k-means++ 0.49 0.69 0.55 
MLP AE Spectral 0.35 0.60 0.59 
Conv AE k-means++ 0.21 0.53 0.27 
Conv AE Spectral 0.38 0.66 0.57 
Conv VAE k-means++ 0.50 0.68 0.61 
Conv VAE Spectral 0.19 0.55 0.34 

 
These results indicate a limitation of the proposed methodology where the available 

clustering evaluation metrics only measure the clustering of a representation, not the 

representation itself.  However, the representations do exhibit a consistent intrinsic 

structure between them. The convolutional VAE and AE together with the GAN 
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representation result in similar structures. The main difference seems to be the ease of 

the clustering algorithm to separate this structure. The results indicate that complex 

models tend to ease this process with higher ARI, NMI, and purity scores. For example, 

in the case of the MFPT dataset, if we compare these results with the top GAN results, 

the best non-GAN model ranks fifth best (see Table B.2 and Appendix B). This 

indicates that a lower computational cost methodology can achieve reasonable results; 

however, to increase ARI, NMI, and purity scores a considerably more complex model 

is required. 

 

7.0 Concluding Remarks 

Unsupervised fault diagnostics is a critical area of research with applications into many 

industries.  The ability to detect faults when there is almost zero ground truth, with little 

to no labeled data, and from big multi-dimensional machinery data has vast economic 

benefits. In this paper, a novel deep generative adversarial multi-stage methodology is 

proposed for fault diagnostics.  This methodology achieved superior unsupervised 

prediction results over both AE’s and VAE’s. These results are then further improved 

with the addition of a subset of labeled data. 

 

To achieve the results presented in this paper, the outputs of the activation layers in 

both DCGANs and InfoGANs were examined within two traditional clustering 

algorithms: 1) k-means++ and 2) spectral.  These two clustering algorithms were 

chosen to prove the robustness and flexibility of the GAN-based methodology to simple 

clustering techniques.  The InfoGAN encoder vector was tested as an additional feature 
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for clustering; however, the addition of the encoder information had mixed results. It 

appears the InfoGAN architecture outperforms the DCGAN on noisier data like the 

MFPT set.  Both architectures’ performance benefited from labeling even a small 

portion of the data.   

 

While these initial results showed promise, there are limitations and research is in 

process to address them.  The MFPT data set is simple enough for envelope analysis 

classification if the signals are known; however, the CWR data set cannot be diagnosed 

with envelope analysis alone.  The MFPT data set did include varied loads and multiple 

sampling frequencies which were not explored in this work.  The amount of data within 

each of those data sets was insufficient for the methodology and resulted in overfitting.  

Varied rotational speeds were also not explored as the data sets did not contain them. 

It is widely known that training a GAN architecture can be challenging.  To complete 

the work in this study, the training was done multiple times to ensure the GAN 

converged towards the Nash equilibrium without mode collapse and vanishing 

gradients occurring. 

 

Generative adversarial fault diagnostics paired with the automatic feature learning 

inherent with deep learning has great potential benefits for many industries as more 

adopt a predictive maintenance program. Generative adversarial networks as a research 

topic is still, relatively speaking, in its infancy.  It has been accelerating and 

proliferating through other research communities at a fast pace since 2014.  This is the 

first paper to incorporate it into fault diagnostics. The proposed methodology proves 
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that it is flexible enough to incorporate engineering expertise as that expertise grows. 

In fact, the proposed methodology demonstrates fault diagnostics are strengthened by 

the meaning engineering expertise can give to the learned GAN feature representations.  

DCGANs prove their ability to diagnose faults with zero information on the real classes 

within the data set. Moreover, InfoGANs show that, with slight knowledge into how 

many potential driving failure modes the rolling elements may have, the diagnostics 

results may be improved with little economic investment.  With integrated 

unsupervised and semi-supervised fault diagnostics, industries such as aerospace, wind 

power, oil and gas, and automotive are poised to unlock new potentials for diagnostic 

and structural health management systems. 
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8.0 Appendix A 

Model Predicted Real 
32x32 

InfoGAN LA 

 
 

32x32 
InfoGAN LA+ 

 
32x32 

DCGAN LA 
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96x96 
InfoGAN LA 

 
96x96 

InfoGAN LA+ 

 
96x96 

DCGAN LA 
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9.0 Appendix B 

MFPT Results: 0% (Unsupervised) 
  
ARI Purity NMI 

LA KMeans++ 0.53 0.80 0.62 
LA Spectral Clustering *  0.89*  0.96*  0.88*  
LA+ KMeans++ 0.57 0.83 0.64 
LA+ Spectral Clustering *  0.85 0.95 0.86 

Table B. 4-1: 32x32*  generator output, InfoGAN. 
 

 ARI Purity NMI 
LA KMeans++ 0.50 0.81 0.58 
LA Spectral Clustering *  0.61 0.82 0.72 
LA+ KMeans++ 0.42 0.75 0.53 
LA+ Spectral Clustering *  0.84 0.94 0.82 

Table B. 4-2: 96x96 generator output, InfoGAN. 

 ARI Purity NMI 
LA KMeans++ 0.34 0.72 0.47 
LA Spectral Clustering *  0.34 0.72 0.48 

Table B. 4-3: 32x32 generator output, DCGAN. 
 

 ARI Purity NMI 
LA KMeans++ 0.50 0.79 0.62 
LA Spectral Clustering *  0.59 0.82 0.72 

Table B. 4-4: 96x96*  generator output, DCGAN. 
* : Indicates best results for clustering.   
* : Indicates best results for 96x96 or 32x32 output.   
* : Indicates best results for ARI, Purity, and NMI.  
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10.0 Appendix C 

CWR Results: 0% (Unsupervised) 

 ARI Purity NMI 
LA KMeans++*  0.565 0.758 0.647 
LA Spectral Clustering  0.353 0.604 0.572 
LA+ KMeans++*  0.568 0.760 0.647 
LA+ Spectral Clustering  0.309 0.640 0.517 

Table C. 4-1: CWR 32x32 output, InfoGAN. 
 

 ARI Purity NMI 
LA KMeans++*  0.500 0.766 0.578 
LA Spectral Clustering  0.382 0.733 0.510 
LA+ KMeans++ 0.463*  0.657 0.495 
LA+ Spectral Clustering  0.358 0.715*  0.598*  

Table C. 4-2: CWR 96x96 output, InfoGAN. 

 ARI Purity NMI 
LA KMeans++*  0.523 0.728 0.579 
LA Spectral Clustering  0.347 0.594 0.595 

Table C. 4-3: CWR 32x32 output, DCGAN. 
 

 ARI Purity NMI 
LA KMeans++*  0.686*  0.816*  0.781*  
LA Spectral Clustering  0.241 0.600 0.467 

Table C. 4-4: CWR 96x96 output, DCGAN. 
* : Indicates best results for clustering.   
* : Indicates best results for ARI, Purity, and NMI.   
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Chapter 5:  A Deep Adversarial Approach Based on Multi-
Sensor Fusion for Remaining Useful Life Prognostics4 
 

5.1 Abstract 

Multi-sensor systems are proliferating the asset management industry and by proxy, 

the structural health management community.  Asset managers are beginning to require 

a prognostics and health management system to predict and assess maintenance 

decisions.  These systems handle big machinery data and multi-sensor fusion and 

integrate remaining useful life prognostic capabilities.  We introduce a deep adversarial 

learning approach to damage prognostics.  A non-Markovian variational inference-

based model incorporating an adversarial training algorithm framework was developed.  

The proposed framework was applied to a public multi-sensor data set of turbofan 

engines to demonstrate its ability to predict remaining useful life.  We find that using 

the deep adversarial based approach results in higher performing remaining useful life 

predictions. 

 

5.2 Introduction 

Reliability engineering has long been posed with the problem of predicting failures by 

using all data available.  As modeling techniques have become more sophisticated, so 

too have the data sources from which reliability engineers can draw conclusions.  The 

 
4 The full-text of this chapter has been published at Verstraete, D. B., et al. " A deep 
adversarial approach based on multi-sensor fusion for remaining useful life 
prognostics." 29th European Safety and Reliability Conference (ESREL 2019). 
Research Publishing Services, 2019. ISBN: 978-981-11-2724-3. 
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Internet of Things (IoT) and cheap sensing technologies have ushered in a new 

expansive set of multi-dimensional data which previous reliability engineering 

modeling techniques are unequipped to handle.   

 

Diagnosis and prognosis of faults and remaining useful life (RUL) predictions with this 

new data are of great economic value as equipment customers are demanding the ability 

of the assets to diagnose faults and alert technicians when and where maintenance is 

needed [1].  This new stream of data is often too costly and time consuming to justify 

labeling all of it. RUL predictions, being the most difficult, are also of the most value 

for the asset owner.  They provide information for a state-of-the-art maintenance plan 

which reduces unscheduled maintenance costs by avoiding downtime and safety issues.  

Therefore, taking advantage of unsupervised learning-based methodologies would 

have the greatest economic benefit.  Deep learning has emerged as a strong technique 

without the need for previous knowledge of relevant features on a labeled data set [1].  

If faulty system states are unavailable or a small percentage of the fault data is labeled, 

deep generative modeling techniques have shown the ability to extract the underlying 

two-dimensional manifold capable of diagnosing faults. 

 

Deep learning has been employed with success to remaining useful life estimation 

(RUL).  [54] employed a recurrent neural network (RNN) for RUL estimation. [55], 

[56], [57], [58], [59], [60], and [61] all employ long short-term memory (LSTM) 

networks to estimate RUL. [62] incorporates feature extraction coupled with a deep 
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neural network for RUL estimation. [63] uses convolutional neural networks (CNN) 

and time-windowing to estimate RUL. 

 

These previous works into RUL estimation do not attempt to develop an understanding 

of the underlying generative or inference model.  Moreover, they used datasets which 

were fully labeled.  Generative modeling provides the possibility to accomplish this 

without having to label what could be massive multi-dimensional noisy sensor data.  

Labeling this data would be costly and difficult.  A valuable methodology would 

provide the flexibility to include a small percentage of labeled data as it becomes 

available.   

 

To address these problems, this paper proposes the first algorithm which incorporates 

both variational and adversarial training for RUL prognostics.  The novelty of this 

method has vast applications for fault diagnosis and prognosis.  Furthermore, it can be 

incorporated for both new and existing system assets. 

 

5.3 Background 

5.3.1 Generative Adversarial Networks 

Generative Adversarial networks (GANs) are a class of generative models where the 

density is learned implicitly via minimax game [47].  This game’s objective is to learn 

a generator distribution ¶T��� identical to the real data distribution ¶°·D·���.  When 

one does not necessarily want to explicitly obtain an inference model to diagnose a 
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system fault and assign probability to every data � in the distribution, GANs are a 

viable alternative.  To accomplish this, the generator trains a neural network (NN) 

capable of generating the distribution ¶T��� by transforming a vector of random noise 

variables,  ¶�¡Fª­�z�.  The generator’s objective, W�z�, is trained by playing against an 

adversarial discriminator network parameterized by a separate neural network whose 

objective, X�x�, is to classify the data as real or fake.  The optimal discriminator 

X��� = ¶°·D·�x� `¶°·D·�x� + ¶T���b⁄  would ideally converge to the Nash Equilibrium 

[64]; however, there is no mechanism to control this.  Formally, this value function is 

Eq. (10): 

 

minT  max U V�W, X�
= YZ~\]^_^�Z�`log �X�x�b
+ Yc~\defgh�c�`log �1 − X�W�z���b.  

(10) 

where, Pdata(x)  is the  data distribution, Pnoise(x) is the noise distribution, D(x) is the 

Discriminator objective function, and G(z) is the generator objective function. 

 

5.3.2 Variational Autoencoders 

Variational autoencoders (VAEs) are a class of explicit generative models which yields 

both inference and generative models [66].  VAEs attempt to learn a model, ���|§�, of 

latent variables, §, which generates the observed data, �.  Commonly ���|§� ≡
�¹��|§� is parameterized by a neural network with parameters º.  For most cases the 

posterior distribution ��§|�� is intractable.  However, an approximate posterior 
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distribution, »¼�§|��, can be used to maximize the evidence lower bound (ELBO) on 

the marginal data log-likelihood.  Formally, this is expressed as Eq. (11), 

 log��x� ≥ Y½¾�§|��`log�¹��|§�b − KL�»¼�§|��||��§�� (11) 

From this, the objective is equivalent to minimizing the Kullbeck-Liebler (KL) 

divergence between »¼�§|�� and ��§|��.  Note that »¼�§|�� is usually parameterized 

by a neural network with parameters À.  VAEs have been successfully applied to fault 

diagnosis problems in the recent past [65]. 

 

5.4 Proposed Framework 

In this work, we propose a mathematical framework that encapsulates the following 

features: non-Markovian transitions for state space modeling (i.e., it is not assumed that 

all information regarding past observation is contained within the last system state), 

adversarial training mechanism on the training of the recognition »¼�§D|§%:D$%, �%:D�, 
variational Bayes for the inference and predictive model �¹��D|�%:D$%, §%:D�, and 

adversarial variational filtering algorithm.  We set �D as the observed sensor data, §D as 

the latent system state, ÀD is the recognition model parameters, ºD is the inference 

model parameters, and vD is the target domain relevant to the adversarial training v ∈
0,1, … , ���. 

We denote the latent sequence zD ∈ Â ⊂ ℝ�Ä as a set of real numbers �Å.   We denote 

observations xD ∈ Æ ⊂ ℝ�� dependent on inputs uD ∈ � ⊂ ℝ�Ç.  Where Æ is 

potentially, but not limited to, a multi-dimensional data set consisting of multiple 

sensors from a physical asset. The observations themselves are not constrained to a 
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Markovian transition assumption.  Therefore, these transitions can be complex non-

Markovian.  This is often the case for engineering problems like crack growth and 

environmental effects on RUL.  We are interested in the probabilistic function sequence 

���D|§%:D$%� generated by the discrete sequences �D = ��%, �5, … , �D� and §%:D$% =
�§%, §5, … , §D$%�, as shown in Eq. (12). 

 ���D|�%:D$%� = 7 ���D|�%:D$%, §%:D���§%:D|§%:D$%�>§%:D (12) 

z%:D$%, zD ∈ Â ⊂ ℝ�Ä denotes the latent sequence.  The underlying latent dynamical 

system is assumed to have a generative model basis with emission model 

���D|�%:D$%, §%:D� and transition model ��§D|§%:D$%�.  Two assumptions, Eq.’s (13) and 

(14) are classically imposed on emission and transition models to obtain the state space 

model,  

 ���D|�%:D$%, §%:D� = È ���D|§D�D
F(%  (13) 

 

 ��§D|§%:D$%� = È ��§D9%|§D�D$%
F(É  (14) 

It is assumed that the current state §D contains complete information for both the 

observations �D, and the next state §D9%.  These assumptions are insufficient for 

complex non-Markovian transitions on noisy multi-dimensional sensor data.  

Therefore, we propose the objective function as shown in Eq. (15) which gives us an 

expressive approximate inference model »¼�§D|�D�.  The mathematical formulation 

characterizes the state space model without assumptions as outlined in Eq.’s (11) and 
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(12), and we also have both a generative and inference model of the system state to 

perform diagnostics and prognostics on the remaining useful life of the system. 

 
Ê��¹  Ê3�  ¼ YU���Y½¾�§%:DË�%:D ��`��Ì�¹��%:D|§%:D�b− G�Í»¼�§%:D|�%:D�Î��§%:D�Ï� 

(15) 

This methodology is aided by GPU processing.  Since this method does not include 

the Markov property, having to back propagate the biases and weights through each 

timestep is computationally expensive.   

 

5.5 Experimental Results 

To evaluate the proposed methodology the Commercial Modular Aero-Propulsion 

System Simulation (C-MAPPS) data set was used. CMAPPS is a tool developed and 

coded in MATLAB and Simulink environment for the simulation of commercial 

turbofan engines [67].  The model takes an input parameter of an engine component 

degradation level or health indicator and outputs corresponding sensor signal values.  

Operational profile, closed-loop controllers and environmental conditions can all be 

adjusted to suit the specific problem the user is trying to solve.  The 90,000-pound 

thrust class engine and the simulation package’s flexibility allows operations at 1) 

altitudes ranging from sea level to 40,000 feet, 2) Mach numbers from 0 to 0.90, and 

3) sea-level temperatures from -60 to 103 oF.  The main elements of the engine are 

shown in Figure 5-. 
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Figure 5-1: Simplified diagram of engine simulated in C-MAPPS [67]. 

Specifically, for this paper, FD001 of the PHM 2008 competition data set using 

CMAPPS is used for this analysis and application.   

 

Figure 5-2: FD001 RMSE results vs training step for 50 iterations with the lowest 
result (14.69) marked. 

The results from training fifty iterations and RUL estimations are a mean of 16.91 

RMSE and a standard deviation of 1.48.  The lowest result from the training was an 

RMSE of 14.69 as shown in Figure 5-2.  These results are very good and near the state-

of-the-art results for this data set.  The output of the framework also includes a 

generative model that gives the engineer the ability to potentially generate more data.  

Moreover, these results are fully unsupervised learning, whereas similar results are 

fully supervised estimations [69].  Further research will address these gaps and refine 

the results on a real-world application. 
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5.6 Conclusions 

In this paper we have proposed a deep learning enabled adversarial-variational 

mathematical framework for remaining useful life estimation.  Unsupervised RUL 

estimation is a critical area of structural health monitoring research. It has many 

applications into numerous industries.  This mathematical formulation is the first 

application of its kind and shows great promise. 

 

The proposed mathematical framework demonstrates a solid ability to predict the 

remaining useful life of the asset.  An engineer can decide whether to plan for 

maintenance before a failure occurs and make the necessary arrangements.  The 

application of the mathematical framework is not only limited to turbo-fan engines.  

Oil and gas, wind turbine farms, automotive, and aero-space can all benefit from this 

research. 
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Chapter 6:  A Deep Adversarial Approach Based on Multi-Sensor 
Fusion for Semi-Supervised Remaining Useful Life Prognostics5 
 

6.1 Abstract 

Multi-sensor systems are proliferating in the asset management industry.  Industry 4.0, 

combined with the Internet of Things, has ushered in the requirements of prognostics 

and health management systems to predict the system’s reliability and assess 

maintenance decisions.  State of the art systems now generate big machinery data and 

require multi-sensor fusion for integrated remaining useful life prognostic capabilities.  

To address this challenge, this paper proposes a deep adversarial approach to remaining 

useful life prediction in which a non-Markovian variational inference-based model 

incorporating an adversarial methodology is developed.  The evaluate the proposed 

approach a public multi-sensor data set for turbofan engines is used for remaining 

useful life prediction.  The proposed approach is then compared against similar deep 

learning models. 

 

6.2 Introduction 

Reliability is defined as the ability of a product or system to perform its required 

functions without failure for a specified time and when used under specified conditions. 

Therefore, reliability engineering has long been tasked with predicting the remaining 

useful life of systems by incorporating all available data.  Reliability engineering has 

 
5 This chapter has been published at Verstraete, D.; Droguett, E.; Modarres, M. A Deep 
Adversarial Approach Based on Multi-Sensor Fusion for Semi-Supervised Remaining 
Useful Life Prognostics. Sensors 2020, 20, 176. 
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been given technologies incorporating cheap sensing with the Internet of Things (IoT) 

generating multi-dimensional data sets through Industry 4.0 [1].  With this new data at 

the engineer’s fingertips, more sophisticated methodologies to handle this data have 

been developed and expanded the prognostics and health management (PHM) field.  

 

These data sets are often costly and time-consuming to label [2]. The engineer therefore 

must make an economic decision on how much data to label. Therefore, the greatest 

economic benefit would be to take advantage of unsupervised learning-based 

methodologies.  To understand relevant system health states without labeling, deep 

learning methodologies have been shown to be a technique employed without the need 

for previous knowledge of degradation processes [65].   

 

Most recently, remaining useful life (RUL) research focused on fully supervised deep 

learning methodologies has had success RUL prediction [69]-[85].  These models 

depend on the analyst having access to a fully labeled dataset. Therefore, these RUL 

prediction accuracies require the use of accurate training data labels. Moreover, this 

previous research does not attempt to develop the underlying generative or inference 

model. A reliability engineer does not always have the resources to label all the data 

necessary to train a deep learning model. A valuable methodology would provide the 

flexibility to include a small percentage of labeled data as it becomes available and 

resources allow. Generative modeling is a class of modeling techniques which provides 

the ability to predict RUL without having to label what could be massive multi-

dimensional sensor data.  
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There have been recent efforts in generative modeling research, although it has yet to 

be adapted and applied to reliability and machine health prognostics.  Indeed, [86] and 

[87] both employed the variational autoencoder (VAE) principles to times series 

observations. [88] encodes the state space assumptions from within their proposed 

structure inference deep Kalman filter-based methodology. [89] proposes a VAE 

principled state-space filtering methodology in which the latent space is forced to fit 

the transition. [90] present VAEs based on adversarial training, and they achieve the 

flexibility to represent families of conditional distributions over latent variables. [91] 

combine GANs with VAE by proposing a new interpretation of adversarial domain 

adaptation (ADA) and a unifying generative modeling framework named through 

comparisons with the wake sleep algorithm [92]. These methods, while suited for their 

applications in computer science, lack the requirements for RUL predictions, such as 

time series applications.  The Markovian assumption is also utilized, where it is 

assumed that all information of past observations is contained within the last system 

state; however, for prognostics and health management (PHM), this is insufficient.  

Multiple operating conditions increase the degradation complexity of the RUL 

predictions, and some degradation paths are inherently non-Markovian (e.g., crack 

growth). VAE on their struggle with low probability events, like curb strike events 

inherent in large systems [36]. Additionally, for PHM applications with unsupervised 

RUL, these methods lack the VAE combined with the adversarial training of a GAN 

on time-series data to provide predictions.   
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To address these problems, this paper proposes a deep generative state-space modeling 

methodology for the remaining useful life prognostics of physical assets.  The 

mathematical framework underpinning the proposed methodology delivers the 

following novel contributions for RUL predictions: (i) Non-Markovian transitions from 

multi-dimensional sensor data by generalizing a deep generative filtering approach for 

remaining useful life estimation of the system; (ii) a modeling approach that 

incorporates both variational and adversarial mechanisms; (iii) flexibility to handle 

both unsupervised and semi-supervised learning for the estimation of the remaining 

useful life. This method has vast applications for RUL predictions on both new and 

existing system assets. 

 

The rest of the paper is organized as follows. Section 2 provides a brief overview of 

GAN, VAE, and state-space modeling.  Section 3 presents the proposed methodology 

and the underlying mathematical framework. Section 4 overviews the experimental 

results.  Section 5 concludes with discussions and future work. 

6.3 Background 

The generative modeling research as mentioned above, [86-92], all aim to tackle 

the problem of both a generative manifold space and inference modeling for prediction. 

There are slight differences between generative and inference modeling, but 

fundamentally they aim to solve the same problem: black-box neural transformations 

for implicit distribution modeling between the latent and visible spaces.  For RUL 

estimation, reliability and PHM, this is equivalent to modeling the underlying 

degradation space, z, that is a result of the acquired observed sensor data set, x.  
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Data Distribution
z ~ pdata�z�

x ~ pdata�x�

x ~ f’black-box�z�

z ~ f’black-box�x�

 

Figure 6-3: Generative and inference modeling similarities (Adapted from [91]). 

 

Traditional generative modeling approaches tend to distinguish between latent and 

visible variables clearly and treat them differently. However, a key aspect in generative 

modeling is that a clear boundary between the latent and visible variables (as well as 

generation and inference) is not necessary.  Instead, viewing generative modeling as a 

symmetric pair helps in modeling and understanding as shown in Figure 6-3. 

 

6.3.1 Generative Adversarial Networks 

Generative Adversarial Networks (GANs) are a class of generative modeling 

techniques where two neural networks compete via a minimax game [64].  This game’s 

objective is to develop/learn a generator distribution ¶T��� able to generate fake data 

identical to the real data distribution ¶°·D·���.  However, the generator does not 

directly have access to the real data.  Instead, the generator distribution, ¶T���, 

transforms a vector of random noise,  ¶Å�z�, with objective function, W�z�. The 

generator is then trained against an adversarial discriminator network parameterized by 

a separate neural network whose objective, X�x�, is to classify the data as real or fake, 

as shown in Figure 6-4.   



 

129 
 

Real Data

Fake Data
z~pz(z)

x~pdata(x)

Generator
G(z)

Discriminator
D(x)

 

Figure 6-4: Generative Adversarial Networks 

There is no mechanism within the GAN training to constrain and control the Nash 

Equilibrium point; however, the optimal discriminator X��� =
¶°·D·�x� `¶°·D·�x� + ¶T���b⁄  should converge to equilibrium [64].  Formally, this 

value function is shown in Eq. (16): 

 

minT  max U V�W, X�
= YZ~\]^_^�Z�`log �X�x�b
+ Yc~\defgh�c�`log �1 − X�W�z���b.  

(16) 

where, G(z) is the generator objective function, D(x) is the discriminator objective 

function, Pdata(x) is the data distribution, and Pz(x) is the noise distribution. 

 

6.3.2 Variational Autoencoders 

Variational autoencoders (VAEs) are a class of generative models which develops both 

an inference and a generative model [66].  VAEs attempt to develop a model of latent 

variables, §, which can generate the observed data, �. Formally, this is expressed as: 
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 ���� = 7 ���, §�>§ = 7 ���|§���§�>§ (17) 

It is common for ���|§� ≡ �¹��|§� to be developed and parameterized by a neural 

network with parameters º. For most cases, the posterior distribution ��§|�� is 

intractable. However, an approximate posterior distribution, »¼�§|��, can be used to 

maximize the evidence lower bound (ELBO) on the marginal data log-likelihood: 

 log��x� ≥ Y½¾�§|��`log�¹��|§�b − KL�»¼�§Ë��|Ë��§��b (18) 

From this, the objective is equivalent to minimizing the Kullback-Liebler (KL) 

divergence between »¼�§|�� and �¹��|§�. Note that �¹��|§� and »¼�§|�� are usually 

parameterized by two neural networks with parameters À and θ  as shown in Figure 6-

5. 

Encoder Decoder

Input

Hidden

Outputqϕ �z|x� pθ  �x|z�
 

Figure 6-5: Variational autoencoder 

The training of a VAE involves the training of two neural networks, the encoder, 

»¼�§|�� sometimes referred to as the recognition model, and the decoder, �¹�§|�� 

sometimes referred to as the generative model. The encoder learns the relevant features 
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of the input data and compresses the information to the latent hidden space.  The 

decoder then attempts to generate signals (e.g., images) identical to the input data and 

the reconstruction error is then minimized.   

 

Within the computer vision community, VAEs tend to produce blurred images that are 

not as sharp as those produced by other generative models.  Within an engineering 

context, VAEs on their own can result in a common issue with particle filtering 

algorithms: without a fully expressive generative model capable of handling extremely 

low probability events or sensor reading interactions, the resulting prognosis model 

may not have considered these non-Markovian events. 

 

6.4 Proposed Methodology 

Given the complexities and associated uncertainty of the fault diagnostic and 

prognostic problem, a proposed methodology would be one that is flexible enough to 

include new sets of information as they become available.  Expert opinion, black swan 

events, abnormal operating conditions, knowledge of the underlying failure modes, 

physics of failure models, and partially relevant information can all be included within 

the remaining useful life estimation.  While this information can be valuable, the 

methodology should also adequately generalize this data.  For example, extracting 

relevant features, which may be known, may not be able to account for noisy sensor 

signals or operating conditions outside the norm. With this end, we propose the 

methodology shown in Figure 6-6. 
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Figure 6-6: Proposed deep generative methodology for remaining useful life 
estimation. 

The methodology has two distinct phases: 1) Unsupervised learning assessment of 

RUL, 2) Semi-supervised learning assessment of RUL.  It starts with the raw data signal 

fed into the unsupervised variational adversarial filter.  Without knowledge of labeling 

(e.g., the system health states) at the start of operation of the system, this stage of 

development requires the use of unsupervised remaining useful life estimation. Once 

the system has had operational time, the engineer is able to start labeling data in a semi-

supervised iterative loop, i.e., identify the system’s health states with corresponding 

input sensor data patterns.  As it may not be feasible (time and cost wise) to do so for 

all the available data, experiments have shown that semi-supervised methodologies 

with only a few percentages of the data set labeled can substantially improve the 
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unsupervised methods [65].  Therefore, as the engineer labels data, the framework is 

robust enough to handle this percentage of labeled data, as it shall be demonstrated later 

in Section 6.5.   

 

6.4.1 Unsupervised Remaining Useful Life Formulation 

In this work, we propose a mathematical formulation that encapsulates the following 

features: both unsupervised and semi-supervised feature learning, adversarial-

variational state-space modeling with non-Markovian transitions (i.e., it is not assumed 

that all information regarding past observation is contained within the last system state), 

adversarial training mechanism on the training of the recognition »¼�§D|�%:D�, and 

variational Bayes for the inference and generative model �¹��D|§%:D�.  As shown in 

Figure 6-7 and Figure 6-8, where we set �D as the observed sensor data, §D as the latent 

system health state (e.g., crack length, degradation), and vD is the target domain relevant 

to the adversarial training v ∈ 0,1, … , ���. Blue lines represent adversarial 

mechanism, dashed lines indicate inference processes, and solid lines indicate a 

generative process.  The transition parameters, ºD, are inferred via a neural network. 

Past observations are directly included in the inferential model output.  The proposed 

mathematical framework does not assume that all the information relevant to ÀD is 

encoded within §D. 
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Figure 6-7: Forward graphical model for the proposed mathematical framework. 

ϕ t

xt+1

...z1 z2 zT zt

 

Figure 6-8: Inference training model. 

To establish the training optimization, we denote the latent sequence zD ∈ Â ⊂ ℝ�Ä as 

a set of real numbers �Å and observations as xD ∈ Æ ⊂ ℝ��. Æ can be, but is not limited 

to, a multi-dimensional sensor data set from a large asset. The observations, xD, are not 

constrained to a Markovian transition assumption.  For engineering problems (eg., 

crack growth and environmental effects on RUL) these transitions can be complex non-

Markovian.  Therefore, the degradation sequence ���D|§%:D$%� generated by the discrete 
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multi-dimensional sensor data sequences �D = ��%, �5, … , �D� and §%:D$% =
�§%, §5, … , §D$%� are of interest to the engineer, as shown in Eq. (19): 

 ���D|�%:D$%� = 7 ���D|�%:D$%, §%:D���§%:D|§%:D$%�>§%:D (19) 

where, z%:D$%, zD ∈ Â ⊂ ℝ�Ä denotes the latent sequence.  The basis of the latent 

dynamical system is assumed to have an emission model ���D|�%:D$%, §%:D� and 

transition model ��§D|§%:D$%�.  Two assumptions are classically imposed on the 

emission and transition models models as shown in Eq.’s (13) and (14),   

 ���D|�%:D$%, §%:D� = È ���D|§D�D
F(%  (20) 

 ��§D|§%:D$%� = È ��§D9%|§D�D$%
F(É  (21) 

These equations capture the assumption that the current state, §D, holds complete 

information for the observations �D, and the subsequent state §D9%.  For noisy multi-

dimensional sensor data sets with complex non-Markovian transition this assumption 

is insufficient. The proposed mathematical formulation characterizes the state-space 

model without these assumptions. 

 

Therefore, to derive the proposed mathematical framework of the proposed 

methodology, we first put forward the variational lower bound objective function from 

Eq. (19) given that we do not make the Markov assumption from Eq. (20) and (21). 

Thus, we have: 
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 G� *»¼�§%:D|�%:D �||��§%:D|�%:D �/ = − 7 »¼�§%:D|�%:D � ×��Ì Ø ��§%:D|�%:D �»¼�§%:D|�%:D �ÙÚ (22) 

As we know that, 

 ��§%:D|�%:D� = ���%:D, §%:D����%:D�  (23) 

  = − 7 »¼�§%:D|�%:D� Û��Ì Ü ���%:D, §%:D����%:D�»¼�§%:D|�%:D�ÝÞ (24) 

  = − 7 »¼�§%:D|�%:D� ×��Ì Ø ���%:D, §%:D�»¼�§%:D|�%:D� ∗ 1���%:D�ÙÚ (25) 

 = − 7 »¼�§%:D|�%:D� ×��Ì ���%:D, §%:D�»¼�§%:D|�%:D� + ��Ì 1���%:D�Ú (26) 

 = − 7 »¼�§%:D|�%:D� ×log ���%:D, §%:D�»¼�§%:D|�%:D� − log ���%:D�Ú (27) 

 

= − 7 »¼�§%:D|�%:D� ×��Ì ���%:D, §%:D�»¼�§%:D|�%:D�Ú
+ 7 »¼�§%:D|�%:D�Å ��Ì ���%:D� (28) 

However, 

 ��Ì ���%:D� 7 »¼�§%:D|�%:D�Å = 1 (29) 

Therefore, we have, 
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��Ì���%:D�
= G�Í»¼�§%:D|�%:D �||��§%:D|�%:D�Ï + 7 »¼�§%:D|�%:D� ×��Ì ���%:D, §%:D�»¼�§%:D|�%:D �Ú (30) 

where we simultaneously want to minimize the Kullback-Liebler (KL) divergence and 

maximize the variational (evidence) lower bound (ELBO), ℒ�º, À; �%:D�, as shown in 

Equation (31): 

 ℒ�º, À; �%:D� = 7 »¼�§%:D|�%:D � ×��Ì ���%:D, §%:D�»¼�§%:D|�%:D�Ú (31) 

Now, rearranging Equation (31), we have the non-Markovian variational lower bound 

derived for time series data in Equation (32): 

 

ℒ�º, À; �%:D� = Y½¾�§%:DË�%:D �`��Ì�¹��%:D |§%:D�b
− G�Í»¼�§%:D|�%:D�Î��§%:D�Ï (32) 

To add in adversarial training, we follow [47] and we rewrite the optimization function 

from Equation (32) to Equation (33) as follows: 

 

Ê��¹  Ê3�  ¼ YU���Y½¾�§%:DË�%:D ��`��Ì�¹��%:D|§%:D�b
− G�Í»¼�§%:D|�%:D�Î��§%:D�Ï� 

(33) 

 

We now have an objective function which gives us an expressive »¼�§D|�D, §%:D$%�, that 

is, we have a mathematical framework the characterizes the state space model without 

the restrictive assumptions outlined in Equations (20) and (21).  Additionally, this 

mathematical framework contains both a generative and inference models of the system 
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state that allows us to perform fault diagnostics and prognostics as well as remaining 

useful life of the system assessment. 

 

6.4.2 Semi-Supervised Loss Function 

Semi-supervised initialization involves training of the chosen model’s architecture with 

an incrementally increasing set of labeled data.  This is an important aspect to explore 

because as the engineer gains more knowledge about a new system, one can label small 

sets of data which are known to be system degradation versus healthy operation to 

increase the system’s health state prediction. This approach can improve the quality of 

the results via a semi-supervised cost function given as given by Eq. (34): 

 � = �ª«¬­®¯Fª­° + �«�ª«¬­®¯Fª­° (34) 

In the context of the proposed adversarial framework, during the unsupervised training, 

the discriminator learns features to avoid classifying the generated data as real data, but 

these features might not be the best representation.  To improve the discriminator and 

develop more meaningful features for the system’s health states over time, labels are 

used. This is possible by writing the loss function, L, within training to some 

predetermined number of epochs as follows: 

 �ª«¬­®¯Fª­° = −Y�M:_,±M:_~¬]^_^��M:_,±M:_� log ��¡°­² �v%:D|�%:D , v%:D < G + 1� (35) 

 
�«�ª«¬­®¯Fª­° = −qY�~¬]^_^��M:_� log `1 − ��¡°­² �v%:D

= G + 1|�%:D�b + Y�~Tlog `��¡°­²�v%:D = G + 1|�%:D�bt (36) 

This cost function adds a cross-entropy loss for the first K discriminator outputs. The 

unsupervised cost is the same as the original GAN (see Eq. (16)(10)). However, there 

is a slight change as now K+1 corresponds to the probability of the sample being false 
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[79].  The discriminator is used as a competent classifier given a subset of the dataset. 

In the context of the proposed mathematical framework, the discriminator will be used 

as a feature extractor given a subset of the dataset to improve the system’s health state 

identification results. 

 
 

6.5 Experimental Results 

To evaluate the proposed methodology, the Commercial Modular Aero-Propulsion 

System Simulation (C-MAPSS) data set was used. CMAPSS is a tool developed and 

coded in MATLAB and Simulink environment for the simulation of commercial 

turbofan engines [67].  The model takes an input parameter of an engine component 

degradation level or health indicator and outputs corresponding sensor signal values.  

Operational profile, closed-loop controllers and environmental conditions can all be 

adjusted to suit the specific problem the user is trying to solve.  The 90,000-pound 

thrust class engine and the simulation package’s flexibility allows operations at 1) 

altitudes ranging from sea level to 40,000 feet, 2) Mach numbers from 0 to 0.90, and 

3) sea-level temperatures from -60 to 103 oF.  The main elements of the engine are 

shown in Figure 6-9. 
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Figure 6-9: Simplified diagram of engine simulated in C-MAPSS [67]. 

Specifically, for this paper, the PHM 2008 competition data set using CMAPSS is used 

for this analysis and application [67].  Four data sets, FD001 through FD004 are 

available and have the properties shown in Table 6-. 

 

Table 6-1: CMAPSS Data Overview 
Data Set Train 

Trajectories 
Test 

Trajectories 
Conditions Fault Modes 

FD001 100 100 1 (Sea Level) 1 (HPC) 
FD002 260 259 6 1 (HPC) 
FD003 100 100 1 (Sea Level) 2 (HPC, and Fan) 
FD004 248 249 6 2 (HPC, and Fan) 

 

The four data sets have a combination of two fault conditions: high pressure compressor 

(HPC) degradation and fan degradation.  The data set is separated into training and test 

sets consisting of 26 sensor measurements, three conditions of operation, engine 

quantities, and the cycle time. Each of the engines within the dataset initiate with 

different levels of manufacturing variation and initial degradation.  This information is 

hidden from the engineer and is not considered a fault condition.  The three operational 

settings do have a substantial effect on the engine performance.  These settings are 

known.  Finally, the sensor data is contaminated with noise. To avoid unnecessary 

repetitions, the following sections use FD001 and FD004 for the sake brevity. 
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6.5.1 CMAPSS Results 

To evaluate the proposed semi-supervised methodology, two types of labeling were 

used: 1) fixed interval and 2) random interval. The fixed interval consists of labeling 

one out of every x number of labels, (i.e., 5% equals labeling 1 out of every 20 data 

points.) Random interval labeling consisted of taking a random sample of the complete 

data set for labeling (i.e., 5% of 15,680 data points equals 784 randomly labeled data 

points). This was done because, as the time interval between labels is decreasing, the 

RUL estimation error improvements reduce. As one will notice in the rest of this 

section, this did have an effect on RUL prognostics.   

 

To evaluate the effects of adding a small subset of labeled data to the training 

procedure, semi-supervised learning was also conducted on the CMAPSS dataset. 

There are two parts of the algorithm to evaluate this effect of labeling on the results: 

1) feature learning and 2) regression.  When it is stated “semi-supervised feature 

learning” it implies that percentage of labels were fed into the feature learning phase 

of the model.  When results are reported as “unsupervised feature learning”, zero labels 

were used in the feature learning portion of the model. 

 

The proposed methodology is evaluated against the true RUL via root mean square 

error (RMSE). To not sway these results in a more positive light, the authors chose to 

train the model ten times and take the average results from all ten.   
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First FD001 is evaluated from one percent to one hundred percent labels.  The RMSE 

results can be found in Table 6-2 and Table 6-3.  As one can see from the results, there 

is an effect on the RUL prognostics with both types of labeling (fixed vs random) and 

adding labels to both parts of the model.  This can also be viewed in Figure 6-10.  There 

are two observations to note when looking at the results: 1) adding labels to feature 

learning improves the RUL prediction, and 2) as more labels are added to the feature 

learning and regression parts of the modeling the prediction performance (in terms of 

RMSE) improvement tends to taper off after twenty percent. The increase in prediction 

performance from adding labels to the feature learning portion of the model shows that 

feeding labels to the generative model help extract more degradation related features 

present in the data. The appropriate percentage of labeling could be inferred or 

determined based on the evolution of the RMSE according to Figure 6-10. In this case, 

the RMSE marginally improves for FD001 beyond twenty percent labeling (1.5% 

improvement for 50% labeling and 2.7% improvement for 100% labeling).  This is 

important because labeling data is expensive and time consuming.  Therefore, 

increasing the prediction performance (i.e., reducing RMSE) beyond twenty percent 

labels becomes increasingly more expensive for a smaller benefit.  

Table 6-2: FD001 RMSE Unsupervised feature learning with semi-supervised 
regression 

Labeling 1% 5% 10% 20% 50% 100% 

Fixed 23.33 19.34 18.26 17.66 17.39 16.91 
Random 24.54 19.66 19.17 18.50 17.96 17.57 
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Table 6-3: FD001 RMSE Semi-supervised feature learning with semi-supervised 
regression 

Labeling 1% 5% 10% 20% 50% 100% 

Fixed 20.50 18.50 17.47 16.37 15.82 15.44 
Random 21.20 18.33 16.50 16.06 15.54 15.27 

 

 

Figure 6-10: FD001 RMSE versus percent labeled (%). 

To evaluate the effects and differences of modeling operating conditions and additional 

fault modes, FD004 was also examined. This data set is more applicable for cases that 

include fleets of vehicles operating in different conditions. Base on the results reported 

in Figure 6-11, Table 6-4, and Table 6-5,  this data set had a larger improvement in 

results by adding labels into both feature learning and regression parts of the model.  

This is because of the non-homogeneity of the data resulting from the inclusion of 

additional operating conditions and fault modes. 
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Table 6-4: FD004 RMSE Unsupervised feature learning with semi-supervised 
regression 

Labeling 1% 5% 10% 20% 50% 100% 

Fixed 53.19 49.85 47.79 46.66 46.54 46.40 
Random 54.82 50.30 49.90 48.22 47.39 47.09 

 

Table 6-5: FD004 RMSE Semi-supervised feature learning with semi-supervised 
regression 

Labeling 1% 5% 10% 20% 50% 100% 

Fixed 45.76 41.36 39.90 38.76 38.56 38.18 
Random 46.80 40.73 39.46 37.98 36.93 36.26 

 

 

Figure 6-11: FD004 RMSE versus percent labeled (%). 

Note that FD004 needed an increased percentage of labels given the inherent non-

homogeneity of the data set. With six operating conditions and two failure modes, there 

is a higher degree of uncertainty and therefore the model performance benefits from an 

increasing percentage of labels. Compared to the FD001 results in Figure 6-10, there is 

still a noticeable reduction of RMSE up to 100% labeling. This reflects the model 
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taking advantage of the increased knowledge of the RUL evolution granted by the 

known labels during the training stage.  

 

Moreover, both FD001 and FD004 RUL prediction benefited from random interval 

labeling during semi-supervised feature learning.  This is can be attributed to the 

proposed model’s ability to better generalize the underlying generative model or lower-

dimensional manifold space. The output of the proposed framework also includes a 

semi-supervised model that gives the engineer the ability to continuously add labels as 

more information about the degradation process becomes available. From a practical 

point of view, this is an important characteristic of the model: the engineer can weigh 

the economic impacts of the labeling more data.   

6.5.2 Ablation Study Results 

An ablation study was conducted on the FD001 data set to understand the effects and 

advantages of integrating variational inference with an adversarial approach, as it is 

done in the proposed mathematical framework.  To this end, both VAEs and GANs 

were applied separately to the FD001 and RUL estimates were performed.  

Unsupervised feature learning with semi-supervised regression was performed to 

evaluate the effects of the generative modeling without labels for feature learning. 

These results can be seen in Table 6-6, Table 6-7, Figure 6-12, and Figure 6-13.  

Table 6-6: FD001 RMSE Unsupervised Feature Learning – Fixed Labeling 
Intervals 

Model 1% 5% 10% 20% 50% 100% 

Proposed 23.33 19.34 18.26 17.66 17.39 17.09 
GAN 28.77 24.38 22.90 22.16 21.80 21.73 
VAE 34.54 33.39 33.18 33.10 32.73 32.01 
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Table 6-7: FD001 RMSE Unsupervised Feature Learning – Random Labeling 

Intervals 

Model 1% 5% 10% 20% 50% 100% 

Proposed 24.54 19.66 19.17 18.50 17.96 17.57 
GAN 25.89 23.16 20.50 19.22 19.01 18.59 
VAE 34.82 33.58 33.37 33.38 32.84 32.44 

 

These results allow one to see the effects of the variational and adversarial approach of 

the proposed methodology.  Even though the VAE and GAN models provide 

acceptable results, the proposed methodology outperformed both on their own. The 

VAE model’s RUL prediction performance in terms of RMSE was slightly better with 

fixed interval labeling, while the GAN model’s performance was better with random 

intervals for the labeling.  VAE did not perform as well as the GAN and the proposed 

methodology. The VAE model also did not benefit from labeling more data after adding 

10% labels.  The authors suspect the VAE model did not perform as well due to the 

possibility of modeling the Gaussian priors of the VAE model sequentially in the 

training portion of the model as outlined in [96].  These results show the value of the 

combination of the non-Markovian adversarial and variational capabilities within the 

proposed methodology. 
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Figure 6-12: FD001 Unsupervised Feature Learning, Random Labeling Intervals 

 

 

Figure 6-13: FD001 Unsupervised Feature Learning, Random Labeling Intervals 

Additionally, the proposed methodology and corresponding mathematical framework 

was assessed against the deep generative modeling technique outlined in [88].  This 

14

19

24

29

34

39

0 10 20 30 40 50 60 70 80 90 100

R
M

S
E

Percent Labeled (%)

Proposed Model VAE GAN

14

19

24

29

34

39

0 10 20 30 40 50 60 70 80 90 100

R
M

S
E

Percent Labeled (%)

Proposed Model VAE GAN



 

148 
 

modeling technique incorporates a Deep Markov Model (DMM) state-space system 

utilizing structured inference architecture without an adversarial mechanism.  

Additionally, this methodology was not developed for, or applied to, the PHM context.  

It is, however, a state-of-the-art deep generative modeling technique on time series 

data.  For this paper, it was applied to the CMAPSS FD001 and FD004 data sets as a 

comparison method. These results can be found in Table 6-8. 

Table 6-8: Unsupervised RMSE average results for the C-MAPSS test set  
 Proposed Krishnan et al. 

Data Set Mean Std. Dev. Mean Std. 
Dev. 

FD001 16.91 0.39 17.32 1.91 
FD004 46.40 0.53 54.15 0.54 

     
 

As shown in Table 6-8, the proposed methodology provides superior results when 

compared with DMM. Additionally, the DMM is restricted to unsupervised learning 

and does not provide a mechanism for semi-supervised learning and labeling. This 

further demonstrates the benefits of the proposed methodology for RUL assessment. 

6.5.3 FEMTO Bearing Results 

The following results were not published within the journal article, but further enhance 

the benefits of the proposed methodology. For an additional point of experimental 

validation, this dissertation uses the PHM 2012 Challenge dataset incorporating the 

PRONOSTIA platform for accelerated aging, as shown in Figure 6-14. 
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Figure 6-14: Overview of PRONOSTIA [97] 

The platform’s goal is to provide a sensor data output that characterizes the realistic 

degradation processes of rolling element bearings throughout their life.  This data set 

consists of a run to failure data set for seventeen bearings at different load cases and 

rotational speeds.    The information for each bearing is outlined in Table 6-9. 

 

Table 6-9: FEMTO Dataset Information 

Condition Load Speed Bearings    

1 4000 1800 1-1 1-2 1-3 1-4 
   1-5 1-6 1-7  
2 4200 1650 2-1 2-2 2-3 2-4 
   2-5 2-6 2-7  
3 5000 1500 3-1 3-2 3-3  

 

To evaluate this data set, sixteen of the seventeen bearings were used as the training 

set, while the seventeenth bearing is used as the test set. Data normalization in the form 
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of spectrogram images was done to ensure a consistent signal and degradation path. 

Due to the nature of this data set, only fixed interval labeling was used.  Random 

interval labeling was explored; however, it had mixed results.  The results of the 

FEMTO data set within the proposed methodology show good performance against 

similar research [98], where the published RMSE results for bearings 1-3, 2-4, and 3-1 

are 9.0, 8.9, and 24.2, respectively.  As shown in Table 6-10, the proposed methodology 

outperformed these results. 

 

Table 6-10: FEMTO RMSE Results – Semi-supervised Feature Learning with 
Semi-Supervised regression. 

Bearing 1% 5% 10% 20% 50% 100% 

1-3 11.32 11.10 10.96 10.36 7.50 6.59 
2-4 10.13 9.92 8.65 7.28 6.77 6.42 
3-1 31.90 27.42 23.73 20.08 15.02 11.51 

 

The results show the robust ability of the proposed methodology to generalize the 

underlying generative function. 

6.6 Conclusions 

Industry 4.0 has ushered in a broadening of the structural health monitoring research 

field and unsupervised RUL estimation is a critical area in this context. Many industries 

are poised to benefit from this research and its ability to predict machine downtime for 

planned maintenance.  Many times, the data streaming from these new systems is too 

difficult, time consuming, labor intensive and, therefore, costly to label.  Thus, the 

ability to predict remaining useful life without labels is of great economic benefit.  
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In this paper, a deep learning enabled adversarial-variational methodology, and 

corresponding mathematical framework, for remaining useful life estimation was 

proposed.  The proposed methodology achieved superior RUL prediction performance 

in terms of RMSE metric and demonstrated its ability to predict the RUL even with a 

small percentage of labeled data.  This methodology helps informs an engineer about 

the RUL of the asset, therefore, giving them the ability to predict future maintenance 

requirements before a failure occurs and make the necessary arrangements.   

 

Within the ablation study, the proposed framework provided higher RUL prediction 

performance (i.e., smaller RMSE) with a combined generative modeling methodology.  

The prediction performance was further enhanced with the addition of labels to the 

data set. Additionally, the type of labeling was explored and uncovered that the method 

with which one labels time series can have an effect.  Fixed interval labeling versus 

random interval labeling will enhance or detract from one’s results.      

 

The application of the proposed methodology is not only limited to turbo-fan engines.  

Oil and gas, wind turbine farms, automotive, and aerospace can potentially benefit 

from this research.  While significant work was done on the neural network 

architectures within this research, we believe further progress can be made by a deeper 

investigation of these architectures.     
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Chapter 7:  Conclusions, Contributions, and Future Research 
Recommendations 
 

7.1 Conclusions 

Three approaches were developed in this dissertation to address the growing need for 

modeling multi-dimensional big machinery data for making maintenance decisions.  

These three approaches are interrelated as a continuous process of understanding the 

data and seek to answer the following research questions.  If you have a large set of 

labeled machinery data, can you predict a machine’s health state?  If you have a large 

set of unlabeled or partially labeled machinery data, can you predict a machine’s health 

state?  If you have a large set of unlabeled and partially labeled multi-sensor time-series 

machinery degradation data, can you predict the remaining useful life? 

To answer the first question, this dissertation sought to extend deep learning-based 

approaches to supervised fault diagnostics. This was done with the development of a 

novel deep learning framework for applications to fault diagnostics of rolling element 

bearings.  Within this framework, the use of time-frequency image representations of 

rolling element bearings within a deep neural network architecture was pioneered. 

Additionally, the proposed CNN architecture for fault diagnostics achieved superior 

results while reducing the model’s learnable parameters, thus increasing the speed of 

training.   

Through this work, it was demonstrated that time-frequency image representations of 

raw vibration signals are effective for identifying rolling element bearing fault 

classification and diagnosis.  The manual process of feature extraction and the delicate 
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methods of feature selection can be substituted with a deep learning framework 

allowing automated feature learning for fault diagnostics.  STFT, WT, and HHT images 

are all shown to be effective representations of a raw signal with scalograms provided 

the best diagnostic prediction accuracies. Information loss due to image scaling had 

little effect on scalogram image prediction accuracies, a slight effect on the 

spectrograms, and a more significant effect on the HHT images.  The proposed CNN 

architecture showed it is robust against injected experimental noise.  Finally, the 

proposed architecture delivers the same accuracies for scalogram images with lower 

computational costs by reducing the number of learnable parameters.  

To answer the second question, this dissertation extended semi-supervised and 

unsupervised fault diagnostics with time-frequency scalogram images via a GAN-

based methodology.  This work consisted of the development of a novel GANs based 

framework for unsupervised and semi-supervised fault diagnostics of rolling element 

bearing time-frequency scalogram image representations of the raw signal.  This 

included proposing neural network architectures for unsupervised and semi-supervised 

fault diagnostics on the CWR and MFPT data sets within DCGAN and InfoGAN 

architectures. 

Through this research, it was learned GANs and deep learning-based approaches are 

better able to generalize the underlying manifold space of machine health states to a 

level with which a clustering algorithm can separate the healthy baseline signals with 

the fault data.  Both DCGAN and InfoGAN architectures are effective tools for 

unsupervised fault diagnostics. Prediction accuracy results are then further improved 
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with the addition of a subset of labeled data via semi-supervised fault diagnostics. The 

InfoGAN encoder vector was tested as an additional feature for clustering; however, 

the addition of the encoder information had mixed results. The InfoGAN architecture 

outperforms the DCGAN on noisier data like the MFPT set.  DCGANs proved their 

ability to diagnose faults with zero information on the real classes within the data set. 

InfoGANs showed that, with slight knowledge into how many potential driving failure 

modes the rolling elements may have, the diagnostics results may be efficiently 

improved.   

Within the published experimental results, the presented diagnostic methodologies 

perform well on the two public data sets.  The data sets used to evaluate this research 

are limited specifically to fault classification problems.  This does not evaluate how the 

fault degrades to failure.  This could be generalizable across multiple fault diagnosis 

data sets; however, due to the computational costs of the research, one must understand 

if a more sophisticated method is necessary to perform the classification task at hand. 

(Each chapter went into detail with regards to computational expense.) The research 

works for specific maintenance programs where, once a fault is identified, the bearing 

will be replaced.  This could be generalized to further classification tasks but was 

beyond the scope of this research.  

To answer the final research question, this dissertation sought to advance generative 

modeling research and propose a novel approach to the study of the remaining useful 

life prediction. This included the development of unsupervised and semi-supervised 

frameworks for RUL prediction by proposing a novel non-Markovian mathematical 
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formulation combining the generative modeling strengths of both variational Bayes 

and adversarial training within a state-space modeling framework.  The aim was to 

achieve both unsupervised and semi-supervised RUL estimation.  This work concluded 

a non-Markovian deep learning enabled adversarial-variational mathematical 

framework is very effective in predicting the RUL of large multi-sensor assets. 

Within this research, the presented prognostic methodology performs well on the two 

public data sets.  The data sets used to evaluate this research are limited specifically to 

monotonic degradation tasks.  This could be generalizable across multiple degradation- 

based data sets; however, due to the computational costs of the research, one must 

understand if a more sophisticated method is necessary to perform the RUL predictions. 

The research works for specific maintenance programs where sensor data is tied 

directly to how the asset degrades over time.   

7.2 Future Research Recommendations 

A limitation of the proposed methodology is inherent when trying to quantify the 

variability while not specifically calculating the uncertainty.  This is a potential 

drawback to the presented model contributions supporting PHM risk decision making. 

Therefore, a recommended future research would be to expand the three proposed 

methods in terms of a Bayesian framework, so the uncertainty on fault prediction and 

RUL can be explicitly calculated.  This approach would be useful with the implication 

of a quantifiable uncertainty metric where an objective function could find a relation 

between the percentage of labeling and the uncertainty on RUL. From this, one could 
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then find an optimal labeling percentage for a given physical asset’s dataset based on 

the risk surrounding a failed prediction versus the engineering cost to label more data.   

 

For time-based prediction methodologies, there are a few standard evaluation metrics 

recognized by the research community.  This research did not explore the limitations 

of the metrics, nor did it propose a new one.  Further research should be done in the 

future around development of more appropriate evaluation metrics for time-based 

prediction methodologies.    

 

Another limitation of this work is encoded within the basis of time series predictions 

for deep learning-based methodologies.  Time series data must arrive at constant 

intervals in order to predict future health states.  This limits the use of these 

methodologies to continuous data; therefore, it eliminates the ability to incorporate 

transient signal prediction capabilities (e.g., acoustic emission-based).  Therefore, 

another future research suggestion would be to expand the three proposed 

methodologies to include ordinary differential equations, which have recently emerged 

as a possible solution to this problem and show great promise for intermittent signals.   

 

Finally, the dissertation was limited to modeling methods which did not incorporate 

physics directly into the modeling and would be another drawback in supporting PHM-

based risk decision making.  Thus, it would be advantageous to add a framework into 

this research for the remaining useful life estimation through a physics-informed 

framework. 
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