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Chapter 1: Introduction

1.1 Motivation and Background

Reliability engineering has long been posed with pinoblem of predicting failures
using all data available. As modeling techniguasehbecome more sophisticated, so
have the data sources from which reliability engisecan draw conclusions. The loT
and cheap sensing technologies have ushered inwaempansive set of multi-
dimensional data which previous reliability engimeg modeling techniques are

unequipped to handle.

Diagnosis and prognosis of faults and RUL predidiwith this new data are of great
economic value as equipment customers are dematiokingbility of the assets to
diagnose faults and alert technicians when andevmaintenance is needed [1]. RUL
predictions, being the most difficult, are alsotleé most value for the asset owner.
They provide information for a state-of-the-art miahance plan which reduces

unscheduled maintenance costs by avoiding dowrdimlesafety issues.

This new stream of data is often too costly ancgtoonsuming to justify labeling all
of it. Therefore, taking advantage of unsuperviteatning-based methodologies
would have greatest economic benefit. Deep legrmias emerged as a strong
unsupervised feature extractor without the needofevious knowledge of relevant
features on a labeled data set [2]. If faultytesysstates are unavailable or a small

percentage of the fault data is labeled, deep gé@xmermodeling techniques have
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shown the ability to extract the underlying two-éimsional manifold capable of

diagnosing faults.

1.2 Research Objective

The overall objective of this research is to im@rogliagnostic and prognostic
capabilities for reliability engineers handling skemassive multi-dimensional sensor
data sets. This research has proven deep learrahijity to perform fault diagnostics
from a supervised (all data is labeled), semi-stiped (some data is labeled), and
unsupervised (all data is not labeled) fault diagies with two published papers.
Additionally, this research proposes a novel metthmgl and mathematical
formulation to accomplish non-Markovian unsuperdisand semi-supervised

remaining useful life prognostics of a turbofan ieeg

Specific Aim: To examine the feasibility of utiliay existing, and developing new,
deep learning-based algorithms to tackle the probieith these large datasets.
1) Investigate the direct application of existing désgrning objectives to multi-
dimensional big machinery data problems.
2) Perform supervised fault diagnostics on time fregyamages by proposing a
new CNN architecture.
3) Perform semi-supervised and unsupervised faulindistics with the same time
frequency images via a GAN based methodology.
4) Advance the studies of remaining useful life prédic and develop a

mathematical formulation and subsequent methoddiogymbine VAE and
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GANSs within a state space modeling framework taeahboth unsupervised

and semi-supervised remaining useful life estinmatio

1.3 Methodology

The research objectives mentioned above were adshrag with the methodologies
outlined in the following chapters of this disséda. Each of the subsequent chapters
are in the form of articles that have been, oiratke process of being, published. Two
chapters have been published in peer reviewediggalirnals, two chapters have been
published and presented in peer-reviewed intematioonferences, and one journal

paper is in review. These articles were publishigd the research objectives in mind.

The approach to this research was first to devalofrking understanding of various
deep learning algorithms as applied to reliabiéihgineering problems. Specifically,
CNNs were explored with the use of time frequemagges within a fully supervised

(labeled data) training algorithm.

From this, a semi-supervised, and unsupervised thagnostic methodology was
developed with the use of a GANs-based architectlie tackle the specific task of
bearing fault diagnostics, DCGAN and InfoGAN arebtures were developed and

achieved robust results.

Finally, diagnostic tasks are important and relévimn the assets streaming big

machinery data; however, remaining useful life reation with this data is still a
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difficult task. To address this problem, a novathematical formulation incorporating
variational Bayes, adversarial minimax game theary state space modeling to

predict the remaining useful life of a turbofan iereg

1.3.1 Investigate the Application of Deep Learniigorithms

This dissertation’s first objective was to developunderstanding of the current state
of deep learning-based fault diagnosis and remginuseful life prognosis
incorporating deep learning algorithms. The resaftthis research can be found in
the subsequent sections of this chapter. Eachselol paper explored the current state
of the research and proposed novel applications rapthodologies to perform

diagnosis and prognosis.

1.3.2 Deep Learning Enabled Supervised Fault Disiirs

The second objective was to develop a novel CNNicture for supervised fault
diagnostics. Additionally, this work was possiblethe use and application of novel
time-frequency images for input into the CNN arebitre. The detailed methodology
and results are documented in ChapteiD&ep Learning Enabled Fault Diagnosis
Using Time-Frequency Image Analysis of Rolling EletBearings.”The full text of
this chapter has been published in the joulabck and VibrationThe research
contributions are as follows:

* Development of an improved CNN-based model architec for time-

frequency image analysis for fault diagnosis olimglelement bearings.
* Transformation of two linear time-frequency as imagput to the CNN

architecture: STFT spectrogram and WT scalogram.
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* Examination and applications of a nonlinear nonmataic time-frequency
transformation: HHT scatterplot.

» Examination of the loss of information due to thalsg of images from 96x96
to 32x32 pixels. Image size has significant imparctthe CNN’s quantity of
learnable parameters. Training time is less ifiitiege size can be reduced, but

classification accuracy is negatively impacted.

1.3.3 Unsupervised Fault Diagnostics

The third objective of this research was to develapethodology absent the need of
labeled data. To accomplish unsupervised fautjrabatics the development of a GAN
based unsupervised fault diagnostic methodology wase. The results and
methodology are documented in chapt&dBsupervised deep generative adversarial
based methodology for automatic fault detectiorhe text of the chapter is published
in Safety and Reliability—Safe Societies in a Chandvayld and the results were
presented at the 2018 ESREL conference. The wseantributions are as follows:

* Development of a novel GANs based methodology agftin to unsupervised

fault diagnostics on scalogram image representtion
* Proposed unsupervised methodology external vatidatieasures purity, NMI,

and ARI to evaluate the quality of the clusters.

1.3.3 Semi-Supervised Fault Diagnostics

The fourth objective of this research is a contiimmaof the third objective, develop a
semi-supervised methodological approach for faiagmostics. To achieve this the
third objectives framework was expanded with thedusion of a percentage of labeled
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data. This has significant impact on the engir@ectitioner’s ability to achieve
superior fault diagnostic predictions based on @ngmall percentage of labeled data.
The results and methodology are documented in ehaptDeep semi-supervised
generative adversarial fault diagnostics of rollisement bearings.The text of the
chapter is published in the journ8tructural Health Monitoring The research
contributions are as follows:

* Development of a novel deep learning generativesdvial methodology for
a comprehensive approach to semi-supervised faalindstics on time-
frequency images.

* Application of both DCGAN and InfoGAN architectureghere, clustering is
done via spectral and kmeans++ clustering on thvenesampled activation
output of the discriminator.

* Improvement of the clustering results by including semi-supervised learning
as a second stage to the methodology with altéh@gost function to account

for data labels.

1.3.4 Advance the Studies of Unsupervised Remaidseful Life Prognostics.

The fifth objective is to advance the studies ahaeing useful life prediction. To
accomplish this a novel unsupervised generativeetirogl capability was developed.
The mathematical formulation and experimental tesaile documented in Chapter 5
“ A deep adversarial approach based on multi-sensoorf for remaining useful life
prognostics’ The text of the chapter is published in the prdoegs of the29th ESREL

2019 The research contributions are as follows:
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* Incorporating the first non-Markovian mathematié@meworks, variational
and adversarial training for unsupervised RUL pasgics. The novelty of this

method has vast applications for fault diagnosi @iognosis.

1.3.5 Advance the Studies of Semi-Supervised Renwaloseful Life Prognostics

The final objective of this dissertation is to adea RUL prediction capabilities by
allowing a percentage of labels to be incorporated training. The complete
mathematical formulation and complete experimemésdults are documented in
Chapter 6" A deep adversarial approach based on multi-senssiorf for semi-
supervised remaining useful life prognosticdhe text of this chapter has been
published with MDPI's Sensors Journal. The reseaotttributions are as follows:
* Development and application of the first non-Maikov mathematical
frameworks, variational and adversarial training s@mi-supervised RUL

prognostics.

Page 7 of 183



Chapter 2: Deep Learning Enabled Fault DiagnosisdJEime-
Frequency Image Analysis of Rolling Element Beasing

2.1 Abstract

Traditional feature extraction and selection igleor-intensive process requiring expert
knowledge of the relevant features pertinent to $igstem. This knowledge is
sometimes a luxury and could introduce added uaiceytand bias to the results. To
address this problem a deep learning enabled t#asisr methodology is proposed to
automatically learn the features of the data. Tireguency representations of the raw
data are used to generate image representatidhe cw signal, which are then fed
into a deep CNN architecture for classification &t diagnosis. This methodology
was applied to two public data sets of rolling etetnbearing vibration signals. Three
time-frequency analysis methods (short-time Fourarsform, wavelet transform, and
Hilbert-Huang transform) were explored for theipmesentation effectiveness. The
proposed CNN architecture achieves better resultslass learnable parameters than

similar architectures use for fault detection, uritthg cases with experimental noise.

2.2 Introduction

With the proliferation of inexpensive sensing tealogy and the advances in PHM
research, customers are no longer requiring thew asset investment be highly
reliable, instead they are requiring their assessess the capability to diagnose faults

and provide alerts when components need to becmgblarhese assets often have

1 This chapter is a reproduced version of the papblished in Verstraete, David, et
al. "Deep learning enabled fault diagnosis usimgetirequency image analysis of
rolling element bearingsShock and Vibratio2017 (2017).
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substantial sensor systems capable of generatiigmaiof data points a minute.
Handling this amount of data often involves carefahstruction and extraction of
features from the data to input into a predictivedel. Feature extraction relies on
some prior knowledge of the data. Choosing whidtues to include or exclude

within the model is a continuous area of researithout a set methodology to follow.

Feature extraction and selection has opened aohogiportunities for fault diagnosis.
The transformation of a raw signal into a featugetor allows the learning method to
separate classes and identify previously unknovtee within the data. This has had
wide ranging economic benefits for the owners @& #ssets and has opened new
possibilities of revenue by allowing OEMs to cowtran maintainability and
availability value. However, the state of currelignostics involves a laborious
process of creating a feature vector from the rigwad via feature extraction [1], [4],
[5]. For example, Seera et al. proposes a Fuzzy®War Classification and Regression
Tree (FMM-CART) model for diagnostics on Case Weste bearing data [6].
Traditional feature extraction was completed withath time and frequency domains.
An importance predictor-based feature selectionsmeawas used to enhance the
CART model. Multi-Layer Perceptron (MLP) was thepphed to the features for

prediction accuracies.

Once features are extracted, traditional learnieghiods are then applied to separate,
classify, and predict from learned patterns presghin the layers of the feature vector

[7], [8]. These layers of features are construdcigdiuman engineers; therefore, they
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are subject to uncertainty and biases of the domgderts creating these vectors. It is
becoming more common that this process is perforore@ set of massive multi-

dimensional data. Having prior knowledge of thetdess and representations within
such a dataset, relevant to the patterns of infasea challenge and is often only one

layer deep.

It is in this context that deep learning comesl&y pgndeed, deep learning encompasses
a set of representation learning methods with pleltiayers. The primary benefit is
the ability of the deep learning method to learn-tioear representations of the raw
signal to a higher level of abstraction and comipyagolated from the touch of human
engineers directing the learning [9]. For exampdehandle the complexity of image
classification, CNNs are the dominant method [{14], [12], [13], [14], [15]. In fact,
they are so dominant today that they rival humacuecies for the same tasks

[16],[17].

This is important from an engineering context beeatovariates often do not have a
linear effect on the outcome of the fault diagnosidditionally, there are situations
where a covariate is not directly measured confoundhat could be a direct effect
on the asset. The ability of deep learning-basethods to automatically construct
nonlinear representations given these situationsgseat value to the engineering and

fault diagnosis communities.
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Since 2015, deep learning methodologies have bexaied, with success, to
diagnostics or classification tasks of rolling elrmsignals [18], [19], [20], [21], [22],
[23], [24], [25], [26], [27], and [28]. [18] promed the use of wavelet scalogram
images as an input into a CNN to detect faults iwithset of vibration data. A series
of 32x32 images is used. [19] explored a corrupéedsignal and the effects of noise
on the training of a CNN. While not explicitly std, it appears minimal data
conditioning by means of a short-time Fourier tfama was completed and either
images or a vector of these outputs, independetimef were used as the input layer
to the CNN. [18] used Case Western’s bearing sktt¢6] and an adaptive deep CNN
to accomplish fault diagnosis and severity. [20¢dist CNN for structural damage
detection on a grandstand simulator. [21] incorfemtashallow CNNs with the
amplitudes of the discrete Fourier transform veabithe raw signal as an input.
Pooling, or subsampling, layers were not used. ] [@2d traditional feature
construction as a vector input to a CNN architectwonsisting of one convolutional
layer and one pooling layer for gearbox vibratiatad Although not dealing with
rolling elements, [23] used a deep learning mutjeotive deep belief network
ensemble method to estimate the remaining usé&ubtiNASA’s C-MAPSS data set.
[24] used restricted Boltzman machines (RBM’s) ateature extraction method,
otherwise known as transfer learning. Feature selewas completed from the RBM
output, followed by a health assessment via sgl&oizing maps (SOM’s). RUL was
then estimated on run-to-failure datasets. [25Hus®ages of two PHM competition
data sets (C-MAPSS and PHM 2008) as an input tdlid @rchitecture. While these

data sets did not involve rolling elements, théufemmaps were time-based, therefore
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allowing the piece-wise remaining useful life esitran. [26] incorporated traditional
feature construction and extraction techniquestaml fa stacked auto-encoder (SAE)
deep neural network. SAEs do not utilize convoludl and pooling layers. [27] used
fast Fourier transform on the Case Western beatatg set for a vector input into a
deep neural network (DNN) using 3, 4, and 5 hiddgers. DNNs do not incorporate
convolutional and pooling layers, only hidden laydR8] used spectrograms as input
vectors into sparse and stacked autoencoders wdhhidden layers. Liu’s results
indicate there was difficulty classifying outer eaf@ults versus the baseline. Previous
deep learning-based models and applications todeagnostics are usually limited by

their sensitivity to experimental noise or theiraiece on traditional feature extraction.

In this paper, we propose an improved CNN basedemartthitecture for time-
frequency image analysis for fault diagnosis ofimgl element bearings. Its main
element consists of a double layer CNN, i.e., twasecutive convolutional layers
without a pooling layer between them. Furthermdweo linear time-frequency
transformations are used as image input to the @NNitecture: Short-time Fourier
transform spectrogram and wavelet transform (WTalagram. One nonlinear
nonparametric time-frequency transformation is aklamined: Hilbert-Huang
transformation (HHT). HHT is chosen to complimeimé traditional time-frequency
analysis of STFT and WT due to its benefit of remjuiring the construction of a basis
to match the raw signal components. These threbadstwere chosen because they

give suitable outputs for the discovery of complexd high-dimensional
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representations without the need for additionaluieaextraction. Additionally, HHT

images have not been used as a basis for faulaltigs.

Beyond the CNN architecture and three time-frequearalysis methods, this paper
also examines the loss of information due to tladirsg of images from 96x96 to 32x32
pixels. Image size has significant impact on theNGNquantity of learnable

parameters. Training time is less if the image s@e be reduced, but classification
accuracy is negatively impacted. The methodologpislied to two public data sets:
1) the MFPT Society rolling element vibrationalalaet [38], and 2) CWR University’s

Bearing data set [6].

The rest of this paper is organized as followstiSe@ provides an overview of deep
learning and CNNs. Section 3 gives a brief overvawhe time-frequency domain
analysis incorporated into the image structurestferdeep learning algorithm to train.
Section 4 outlines the proposed CNN architectunesttacted to accomplish the
diagnostic task of fault detection. Sections 5 &ndpply the methodology to two
experimental data sets. Comparisons of the propGséd architecture against MLP,
linear SVM, and Gaussian SVM for both the raw data principal component
mapping data are presented. Additionally, compasgssith Wang's proposed CNN
architecture is presented. Section 7 examines #te set with traditional feature
learning. Section 8 explores the addition of Geumssoise to the signals. Section 9

concludes with discussion of the results.
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2.3 Deep Learning and CNN Background

Deep learning is representation learning; howenet,all representation learning is
deep learning. The most common form of deep lagrig supervised learning. That
is, the data is labeled prior to input into theoaithm. Classification or regression can

be run against these labels, and thus predictiande made from unlabeled inputs.

Within the computer vision community, there is oclear favorite type of deep,
feedforward network that outperformed others inggahizing and training networks
consisting of full connectivity across adjacentdies; the convolutional neural network
(CNN). A CNN's architecture is constructed as aeseof stages. Each stage has a
different role. Each role is completed automaticalithin the algorithm. Each
architecture within the CNN construct consists @dirf properties: multiple layers,

pooling/subsampling, shared weights, and local eonions.

As shown in Figure 2-1, the first stage of a CNNriade of two types of layers:
convolutional layers which organize the units iattee maps and pooling layers which
merge similar features into one feature. Within¢bavolutional layer’s feature map,
each unit is connected to a previous layer’s feamaps through a filter bank. This
filter consists of a set of weights and a corresiponlocal weighted sum. The weighted
sum is passed through to a nonlinear function ssch rectified linear unit (ReLU).
This is shown in Equation (1). ReLU is a half wagetifier, f (x) = max(x, 0) and is
like the Softplus activation function, i.e§oftplus (x) =1In (1+e*). RelLU

activations train faster than the previously usgcsid/tanh functions [9].

Page 14 of 183



C
X{"™ = ReLU (Z W X, + B,E"”) (1)

c=1
where,
*, represents the convolutional operator
X,(f_)l, Input of convolutional channel
wiem Filter weight matrix
B™, Bias weight matrix
ReLU Rectified Linear Unit
.----""—F_H‘_.r Feature Maps FEaiIE Meps O ) Output Layer
|I'|pl..|t Layer Hidden Layer
L J
\ ) \_[_! ]

Convolutional Layer Pooling Layer Fully Connected Layer
Figure 2-1:Generic CNN architecture.

An important aspect of the convolutional layersifoage analysis is that units within
the same feature map share the same filter banket#r, to handle the possibility that
a feature map’s location is not the same for ewmage, different feature maps use
different filter banks [9]. For image representaiaf vibration data this is important.
As features are extracted to characterize a gy af fault represented on the image,
it may be in different locations on subsequent iesagt is worth noting, feature
construction happens automatically within the cdatronal layer, independent of the

engineer constructing or selecting them. Which givise to the ternfeatureless
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learning.To be consistent with the terminology of the falitignosis community, one
could liken the convolutional layer to a featurestouction, or extraction, layer. If a
convolutional layer is similar in respects to feataonstruction, the pooling layer in a

CNN could be related to a feature selection layer.

The second stage of a CNN consists of a poolingrlay merge similar features into
one. This pooling, or subsampling, effectively uegls the dimensions of the

representation. Mathematically, the subsamplimgtionf is [29],

K = 1 (B omn(0"0) + 1) o
where,
down (), represents the subsampling function.
,Em), multiplicative bias.
b, additive bias.

After multiple stacks of these layers are completieel output can be fed into the final
stage of the CNN, a multi-layer perceptron (MLH)yfieonnected layer. An MLP is a
classification feedforward neural network. The at$pof the final pooling layer are
used as an input to map to labels provided fordduta. Therefore, the analysis and
prediction of vibration images is a series of reprgations of the raw signal. For
example, the raw signal can be represented irugaital form via STFT. STFT is then
represented graphically via a spectrogram, andlffimsaCNN learns and classifies the
spectrogram image features and representationbélapredict a classification based
on a label. Figure 2-2 outlines how deep learnimgpéed feature learning differs from

traditional feature learning.
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Traditional feature learning involves a processcohstructing features from the
existing signal, feature searching via optimum euristic methods, feature selection
of relevant and important features via filter orapper methods and feeding the
resulting selected features into a classificatitqordthm. Deep learning enabled
feature learning has the advantage of not requaif@pature construction, search, and
selection sequence. This is done automaticallgiwihe framework of the CNN. The
strength of a CNN in its image analysis capabditi€herefore, an image representation
of the data as an input into the framework is ideAl vector input of constructed
features misses the intent and power of the CNNversthat the CNN searches
spatially for features, the sequence of the vanfmut can affect the results. Within this
paper spectrograms, scalograms, and HHT plotssact as the image input to leverage

the strengths of a CNN as shown in Figure 2-2.
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Traditional Feature Learning

F F I lection . . . .
eaturq sature .Se ectio Diagnostic Model —» Evaluation Metrics
Construction (Optional)
- Mean Confusion Matrix
\— | Standard Deviation Optimum Multi-Layer Perceptron Accuracy
Kurtosis Heuristic Support Vector Machines Precision
i Neural Networks [P
Raw Signal Skewness Filter Methods Decision Trees Specificity
Crest Factor Wrapper Method Random Forests F-Measure
RMS Sensitivity

Deep Learning Enabled Feature Learning

Representapon Diagnostic Model —» Evaluation Metrics
- Construction
w STET Accuracy
Wavelets CNN Precision
Raw Signal HHT Specificity
7y F-Measure
Spectrograms Sensitivity
Scalograms
HHT Plots

Figure 2-2: Process of representations for timgtfemcy analysis.

2.4 Time Frequency Methods Definition and Discussio

Time frequency represents a signal in both the tamel frequency domains
simultaneously. The most common time-frequencyasgmtations are spectrograms
and scalograms. A spectrogram is a visual repragentn the time-frequency domain
of a signal using the STFT, and a scalogram use$\h. The main difference with
both techniques is that spectrograms have a foesglieéncy resolution that depends on
the windows size, whereas scalograms have a fregtagpendent frequency
resolution. For low frequencies, a long window sed, to observe enough of the slow
alternations in the signal and at higher frequeradyes a shorter window is used which
results in a higher time resolution and a poorjdiency resolution. On the other hand,

the HHT does not divide the signal at fixed freqeyeecomponents, but the frequency
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of the different components (IMFs) adapts to tig@eai. Therefore, there is no reduction
of the frequency resolution by dividing the datéoisections, which gives HHT a
higher time-frequency resolution than spectrogrant scalograms. In this paper, we
examine the representation effectiveness of tHeviadg three methods: STFT, WT,
and HHT. These representations will be graphicajresented as an image and fed

into the proposed CNN architecture in Section 4.

2.4.1 Spectrograms — Short-Time Fourier Transf@mHT)

Spectrograms are a visual representation of thel Siitere the x and y axis are time
and frequency, respectively, and the color scatb@fmage indicates the amplitude of
the frequency. The basis for the STFT represemtagia series of sinusoids. STFT is
the most straightforward frequency domain analyldiswever, it cannot adequately
model time-variant and transient signal. Spectnomgradd time to the analysis of FFT
allowing the localization of both time and frequendrigure 2-3 illustrates a

spectrogram for the baseline condition of a rollielgment bearing vibrational

response.
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Figure 2-3: STFT spectrogram of baseline raw signal

2.4.2 Scalograms — Wavelet Transform

Scalograms are a graphical image of the wavelasfoan (WT). WTs are a linear
time-frequency representation with a wavelet biasiead of sinusoidal functions. Due
to the addition of a scale variable along withtinge variable, the WT is effective for

non-stationary and transient signals.

For a wavelet transfornW T, (b, a), of a signal which is energy limited(t)eL?(R),

the basis for the transform can be set as,

WT,(b,a) = 1j+w ¢ (t_b)dt @3)
X ,a _ﬁ e x( )lrb a

where,

a scale parameter

b time parameter

Y Analyzing wavelet
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Figure 2-4 illustrates a scalogram with a Morletelat basis for the baseline condition
of a rolling element bearing vibrational respon3dere have been many studies into
the effectiveness of individual wavelets and tladitlity to match a signal. One could
choose between the Gaussian, Morlet, Shannon, Méygiace, Hermit, or the
Mexican Hat wavelets in both simple and complexcfioms. To date there is not a
defined methodology for identifying the proper wim¢g¢o use and remains an open
guestion within the research community [30]. Farpurposes of this paper, the Morlet
wavelet, W, (t), is chosen because of its similarity to the imputemponent of

symptomatic faults of many mechanical systems §it] is defined as,
1 1 .
W, (6) = com re 2 (e — K,) (4)
2 _ltz :
Y, (t) = comrez (el°-K,)where,

C Normalization constant

Ko Admissibility criterion

Wavelets have been extensively used for machirearl fliagnosis. For the sake of
brevity, those interested can refer to [32] foromprehensive review of the wavelet

transform’s use within condition monitoring and ltadiagnosis.
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Figure 2-4: Wavelet transform scalogram of baseiave signal.

2.4.3 Hilbert-Huang Transform (HHT)

Feng [30] refers to the time-frequency analysishoeét Hilbert-Huang transform
(HHT), as an adaptive non-parametric approach. SAfeiTWT are limited in the sense
that they are a representation of the raw signa pre-defined set of basis function.
HHT does not make pre-defined assumptions on lzdsise data but employs the
empirical mode decomposition (EMD) to decomposestgral into a set of elemental
signals called intrinsic mode functions (IMFs). THEIT methodology is depicted in

Figure 2-5.
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Figure 2-5: Overview of HHT adapted from [4].

The HHT is useful for nonlinear and nonstationametseries analysis which involves
two steps: EMD of the time series signal, and Htllspectrum construction. It is an
iterative numerical algorithm which approximatesl axtracts IMFs from the signal.
HHTs are particularly useful to localize the prdjeer of arbitrary signals. For details

of the complete HHT algorithm, the reader is dieddiowards [33].

Figure 2-6 shows an HHT image of the raw baseligeas used in Figure 2-3 and
Figure 2-4. It is not uncommon for the HHT instm#ous frequencies to return
negative values. This is because the HHT derivesristantaneous frequencies from
the local derivatives of the IMF phases. The phas®t restricted to monotonically
increasing and can therefore decrease for a tifieis results in a negative local
derivative. For further information regarding ttpsoperty of HHT, the reader is

directed to read [34].
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Figure 2-6: HHT image of baseline raw signal.

The EMD portion of the HHT algorithm suffers fromogsible mode mixing.
Intermittences in signal can cause this. Mode mgixwithin signals containing
instantaneous frequency trajectory crossings Matatgle. The results of mode mixing
can result in erratic or negative instantaneouguieacies [35]. This means for such
signals HHT does not outperform traditional timeguency analysis methods such as

STFT.

2.5 Proposed CNN Architecture for Fault ClassifioatBased on Vibration Signals

The primary element of the proposed architecturesists of a double layer CNN, i.e.,
two consecutive convolutional layers without a pogllayer between them. The
absence of a pooling layer reduces the learnabtanmders and increases the
expressivity of the features via an additional maedrity. However, a pooling layer is
inserted between two stacked double convolutiayars. This part of the architecture
makes up the automatic feature extraction prodesisis then followed by a fully-

connected layer to accomplish rolling element fdeliection.
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The first convolutional layer consists of 32 featunaps of 3x3 size and followed by
second convolutional layer of 32 feature maps 08 3kze. After this double
convolutional layer, there is a pooling layer off@ature maps of 2x2 size. This makes
up the first stage. The second stage consistsatonvolutional layers of 64 feature
maps each, of 3x3 size, and followed by subsampéipegr of 64 feature maps of 2x2
size. The third stage consists of two convolutidengers of 128 feature maps each, of
3x3 size, and followed by subsampling layer of fe&&8ure maps of 2x2 size. The last
two layers are fully connected layers of 100 fesgurFigure 7 depicts this architecture.
The intent of two stacked convolutional layers befa pooling layer is to get the
benefit of a large feature space via smaller festuiThis convolutional layer stacking
has two advantages: 1) reduces the number of pteesiibe training stage must learn,

and 2) increases the expressivity of the featuradaling an additional non-linearity.

100 100
[m] o o
32 Feature Maps 32 FMs 64 FMs 64 FMs 128 FMs 128 FMs ] O Classification

(FMs) E E 0
B B

o NDO o
308

o'’0 o
.

96x96 Image Convolution C Max C C Max C C Max g ] [m}
© Pooling Pooling Pooling E E
[m} [m}

Fully
Connected
(FC)

Figure 2-7: Proposed CNN architecture.

Table 2-1 provides an overview of CNN architectuitest have been used for fault
diagnosis, where C’s are convolutional layers @féspooling layers, and FC'’s are fully

connected layers. The number preceding the CndP F& indicates the number of
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feature maps used. The dimensions [3x3] and [2&x@ate the pixel size of the

features.

Table 2-1: Overview of CNN architectures used &ulff diagnosis.

Proposed Model CNN Architecture

Input[32x32] - 64C[3x3] - 64P[2x2] - 64C[4x4] - 6/ER2] -
128C[3x3] - 128P[2x2] - FC[512]

Architecture 2 [22] Input[32x32] - 16C[3x3] - 16B{2] - FC[10]

Input[32x32] - 32C[3x3] - 32C[3x3] - 32P[2x2] - 648X3] -
64C[3x3] - 64P[2x2] - 128C[3x3] - 128C[3x3] - 12&RP] -
FC[100] - FC[100]

Input[96x96] - 32C[3x3] - 32C[3x3] - 32P[2x2] - 648X3] -
64C[3x3] - 64P[2x2] - 128C[3x3] - 128C[3x3] - 128RP] -
FC[100] - FC[100]

Input[32x32] - 5C[5x5] - 5P[2x2] - 10C[5X5] - 10P42] -
10C[2x2] - 10P[2x2] - FC[100] - FC[50]

[20] Input[128 - 64C[41 - 64P[2 - 32C[41 - 32P[2 - FC[1C - 10]

Architecture 1 [4]

Proposed

Architecture

Proposed
Architecture

[18]

Training the CNN involves the learning of all oktiveights and biases present within
the architectures. These weights and biases tegea@ to as learnable parameters.
The quantity of learnable parameters for a CNN iggcture can radically improve or
degrade the time to train of the model. Therefdrés important to optimize the
learnable parameters by balancing training timew®prediction accuracy. Table 2-2
outlines the quantity of learnable parameterstfergroposed CNN architecture as well

as the a comparison to architectures 1 and 2 pextenTable 2-1.

Table 2-2: Overview of learnable parameters forGhNN architectures.

CNN Model 32x3z Image 96x9¢ Image
Architecture 2 41,16 368,85
Propose CNN 501,83¢ 2,140,23;
Architecture 1 1,190,72: 9,579,33.
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Beyond the learnable parameters, the CNN requueespecification and optimization
of the hyperparameters: dropout and learning tepout is an essential property of
CNNs. Dropout helps to prevent overfitting, redtregning error, and effectively thins
the network. The remaining connections are comgrigeall the units that survive the
dropout. For this architecture, dropout is seDt. For the other hyperparameter,
learning rate, the adapted moment estimation (ADA&orithm was used for
optimization. It has had success in the optimiziglearning rate for CNNs faster than
similar algorithms. Instead of hand-picking leagnates like similar algorithms, the

ADAM learning rate scale adapts through differeyelrs [36].

Part of the reason for deep learning’s recent |scbas been the use of graphics
processing unit (GPU) computing [9]. GPU computimgs used for this paper to
increase the speed and decrease the training tMuee specifically, the processing
system used for the analysis are as follows: CBt¢ @-6700K 4.2 GHz with 32 GB

ram and GPU Tesla K20.

2.6 Case Study 1: Machinery Failure Prevention Tedbgy (MFPT)

This data set was provided by the Machinery FaiRnevention Technology (MFPT)
Society [37], [38]. A test rig with a NICE bearirgathered acceleration data for
baseline conditions at 270Ilbs of load and a sampéte of 97,656 Hz for six seconds.
In total, ten outer-raceway and seven inner-racefaait conditions were tracked.
Three outer race faults included 270Ibs of load ars&mpling rate of 97,656 Hz for

six seconds. Seven additional outer race faulte wssessed at varying loads: 25, 50,
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100, 150, 200, 250 and 300 Ibs. The sample ratiaéofaults was 48,828 Hz for three
seconds. Seven inner race faults were analyzédwarlying loads of 0, 50, 100, 150,
200, 250 and 300 Ibs. The sample rate for theriraee faults was 48,848 Hz for three
seconds. Spectrogram, Scalogram, and HHT imagesgemerated from this data set
with the following classes: normal baseline (Npenrace fault (IR), and outer race
fault (OR). The raw data consisted of the follogvaata points: N with 1,757,808 data
points, IR with 1,025,388 data points, and OR Wifi82,196 data points. The total
images produced from the data set are as followsitiN3,423, IR with 1,981, and OR

with 5,404.

From MFPT, there was more data and informationhenduter race fault conditions,
therefore more images were generated. This wagletbdue to the similarities
between the baseline images and the outer radeifaades as shown in Tables 5 and
7. Itis important to note that functionally th&l8 looks at each pixel’s intensity value
to learn the features. Therefore, based on sideaantity, the 96x96 pixel and 32x32

pixel images result in 99,606,528 and 11,067,392 paints respectively.

Once the data images were generated, bilineapmitgion [39] was used to scale the
image down to the approriate size for training@N model. From this image data a
70/30 split was used for the training and test. sétsese images are outlined in Table

2-3, Table 2-4, and Table 2-5.
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Table 2-3: MFPT baseline images.

Image Size Spectrogram Scalogram HHT
(Pixels’
32x32 .
96x96

Table 2-4: MFPT inner race images.

Image Size Spectrogram Scalogram HHT
(Pixels
3432 = e B
o - . .

Table 2-5: MFPT outer race images.

Image Size Spectrogram Scalogram HHT
(Pixels’
32432 — L =
96x96
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Within the MFPT image data set, a few things stanot Although, the scalogram
images of the outer race faults versus the baseal@eimilar, the scalogram images
had the highest prediction accuracy from all thedeliog techniques employed in
Table 2-6 and Table 2-7. The information loss &f HHT images when reducing the
resolution from 96x96 to 32x32 pixels could be valg& because of the graphical

technique used to generate the images.

Depending upon the modeling technique used, thdigiren accuracies are higher or
lower in Table 2-6 and Table 2-7. The CNN modeliagl a significant shift between
96 and 32 image resolutions. Support vector mash{8&M) had a difficult time
predicting the faults for both the raw data (flakgb intensities) and principal

component analysis (PCA).

Table 2-6: Prediction accuracies for 32x32 pixehg®@ inputs.

Model Spectrograr  Scalograr HHT
MLP - Flai 703% 94.0% 49.2%
LSVM - Flai 63.6% 91.8% 50.0%
SVM - Flat 73.9% 92.7% 58.5%
MLP - PCA 62.3% 95.3% 56.7%
LSVM - PCA 48.8% 89.9% 45.8%
SVM - PCA 51.3% 92.5% 56.4%
Architecture 2 77.3% 92.4% 68.9%
Architecture 1 80.6% 99.8% 74.5%
Propose CNN Architecture 81.4% 99.7% 75.7%
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Table 2-7: Prediction accuracies for 96x96 pixehg®@ inputs.

Mode| Spectrograr  Scalograr HHT
MLP - Flai 80.1% 81.3% 56.8%
LSVM - Flai 77.1% 91.9% 52.8%
SVM - Flat 85.1% 93.3% 57.8%
MLP - PCA 81.5% 96.4% 69.2%
LSVM - PCA 74.1% 92.0% 51.4%
SVM - PCA 49.6% 70.0% 68.8%
Architecture 2 81.5% 97.0% 74.2%
Architecture 1 86.2% 99.9% 91.8%
Propose CNN Architecture 91.7% 99.9% 95.5%

Flat pixel data versus PCA of the pixel intensitiasied across different modeling and
image selection. Scalograms outperformed speanogyr and HHT. However, the
optimal modeling method using traditional techngjwaried. For both the HHT and
spectrogram images, SVM on the flat data was optir@a scalograms, MLP on the

PCA data was optimal.

Resolution loss from the reduction in image from®®to 32x32 influenced the fault
diagnosis accuracies. There was a slight droperstalogram accuracies between the
two images sizes except for SVM PCA modeling. cBpgrams suffered a little from
the resolution drop; however, HHT was most affectBais is due to the image creation
method. Scatter plots were used due to the pdatitnates of the instantaneous

frequencies and amplitudes.

With regards to the CNN architectures, the propasssep architecture outperformed
the shallow one. The shallow CNN architecture ertftprmed the traditional
classification methodologies in the 96x96 imagesiexcept for spectrograms. With

a 32x32 image size, the shallow CNN outperformedtaditional methods except for
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the scalogram images. The proposed CNN archiwegarformed better overall for

the four different image techniques and resolusiaes except for 32x32 scalograms.

To measure the similarity between the results @pttoposed CNN architecture versus
architectures 1 and 2, the model accuracies wenpared with a paired two tail t-test.

Table 2-8 outlines the p-values with a null hypstheof zero difference between the
accuracies. A p-value above 0.05 means the resdtstatistically the same. A p-

value less than 0.05 indicates the models aresttatiy distinct.

Table 2-8: MFPT paired two-tailed t-test p-values.
Architecture1 Architecture 1  Architectur¢2 Architecture 2

Image Type 32x3z 96x9¢ 32x32 96x9¢
Scalograr 0.08( 0.34¢ 0.04¢ 0.10¢
Spectrograt 0.011 0.03i 0.05¢ 0.001
HHT 0.031] 0.41( 0.00( 0.00(

From the results in Table 2-8, one can see thatptbposed architecture has the
advantage of outperforming or achieving statislyadientical accuracies with less than
half the amount of the learnable parameters. T2l8leutlines the confusion matrices
results for the MFPT data set on 96x96 and 32x3#logcams. The values are
horizontally normalized by class. From this, tbBdwing four metrics were derived:

precision, sensitivity, specificity, and F-meas{see [40] for details on these metrics).
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Table 2-9: Confusion matrices for MFPT (A) 96x9@14B) 32x32 scalograms for
the proposed architecture.

(A) (B)

Table 2-10: Precision for MFPT data set.

Proposed CNN

Model Archi Architecture 1 Architecture 2
rchitecture
Scalograr 32x32 99.7% 99.8% 91.9%
Scalograr 96x9¢ 99.9% 99.9% 95.8%
Spectrograr 32x3z 82.0% 814% 78.8%
Spectrograr 96x9¢ 91.3% 85.0% 81.7%
HHT 32x3z 75.9Y% 74.6% 71.0%
HHT 96x9¢ 92.9% 89.7% 74.1%
Table 2-11: Sensitivity for MFPT data set.
Model P;\opo_sed CNN Architecture 1 Architecture 2
rchitecture
Scalograr 32x32 99.7% 99.8% 89.6%
Scalograr 96x9¢ 99.9% 100.0% 96.5%
Spectrograr 32x3z 79.7% 77.8% 73.6%
Spectrograr 96x9¢ 90.8% 82.1% 74.8%
HHT 32x3z 76.2% 74.4% 68.0%
HHT 96x9¢ 95.3% 92.3% 67.7%
Table 2-12: Specificity for MFPT data set.
Model Propqsed CNN Architecture 1 Architecture 2
Architecture

Scalograr 32x3Z 99.8% 99.9% 94.9%
Scalograr 96x9¢ 95.7% 89.6% 85.3%
Spectrograr 32x3z 89.8% 89.0% 87.0%
Spectrograr 96x9¢ 100.0% 100.0% 97.6%
HHT 32x3z 89.3% 88.3¥ 85.1%
HHT 96x9¢ 97.9% 96.6% 83.5Y%

Page 33 of 183



Table 2-13: F-Measure for MFPT data set.
Proposed CNN

Model ; Architecture 1 Architecture 2
Architecture
Scalograr 32x3z 99.8% 99.8% 90.2%
Scalograr 96x9¢ 99.9% 99.9% 96.1%
Spectrograr 32x3z 80.3% 78.5% 74.2%
Spectroranm 96x9¢ 90.9% 81.5% 73.9%
HHT 32x3z 74.0% 71.9% 65.4%
HHT 96x9¢ 93.9% 90.1% 62.6%

From the results shown in Table 2-10, Table 2-11,

Table 2-12, and Table 2-13, the precision, sersitispecificity, and f-measures of the
proposed architecture outperforms the other two Gikitectures when dealing with
spectrograms and HHT images of both 96x96 and 32x82s and is statistically
identical to architecture 1 in case of scalografgecision assessments are beneficial
for diagnostics systems as it emphasizes falsdiyesi thus evaluating the model’'s
ability to predict actual faults. To measure thegmsion for the model, one must look
at each class used in the model. For the MFPTs#atahree classes were used. Table
2-10 outlines the average precision of the thresses for the three architectures.
Sensitivity is another effective measure for a dasiic system’s ability to classify
actual faults. However, sensitivity emphasizes tmagatives. Table 2-11 outlines the
average sensitivity of the three classes. Speifior true negative rate, emphasizes

false positives, and is therefore effective forrakang false alarm rates.

Table 2-12 outlines the average specificity. Tmegfasure metric assesses the balance

between precision and sensitivity. It does noetakie negatives into account and
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illustrates a diagnostic system’s ability to actelsa predict true faults. Table 2-13

outlines the average f-measure for the three dasse

Overall, the proposed architecture outperformssatatistically identical to the other
CNN architectures for diagnostic classification keaswith far fewer learnable

parameters. As shown from the images, the MFPa skt appears like it has more
noise in the measurements from the baseline aret cate fault conditions. Under
these conditions, the proposed architecture ouiped the other architectures due to
the two convolutional layers creating a more exgresnon-linear relationship from

the images. Additionally, the proposed CNN candvetlassify outer race faults versus

the baseline (normal) condition even with very samimages.

2.7 Case Study 2: Case Western Reserve (CWR) HitwBearing Data Center

The second experimental data set used in this pagemprovided by Case Western
Reserve (CWR) University Bearing Data Center [6]tw0 horsepower Reliance
electric motor was used in experiments for the esiipn of accelerometer data on
both the drive end and fan end bearings, as showigure 2-8. The bearings support
the motor shaft. Single point artificial faultsmeeseeded in the bearing’s inner raceway
(IR), outer raceway (OR), and rolling element (b&BF) with an electro-discharge
machining (EDM) operation. These faults rangediamgtter and location of the outer
raceway. The data includes a motor load of O kmi3epower. The accelerometers

were magnetically attached to the housing at the’diack position.
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Figure 2-8: Test stand for roller bearing accelermndata.

For the purposes of this paper, the speed anddindde motor were not included as a
classifier. Additionally, the fault sizes were gped together as predicting the size of
the fault was beyond the scope of this paper. BI8plit was used for the training
and test data. Spectrogram, Scalogram, and HHGamaere generated from this
data. The raw data consisted of the following getimts: N had 1,691,648, BF had
1,441,792, IR had 1,440,768, and OR had 1,443,228 points. The total images
produced from the data set are as follows: N 3,B642,816, IR 2,814, and OR 2,819.
From CWR, there was more balanced set of data leetwlee baseline and faults.
Again, based on size and quantity, the 96x96 ax@3#nages result in 108,315,648
and 12,035,072 data points respectively. This datesed by the CNN to learn the

features of the data.

Deep learning algorithms hold promise to unlockvymesly unforeseen relationship
within explanatory variables; however, it is im@ort to keep this in context. The value
of these algorithms is as much as they can outparfouch simpler fault diagnosis
techniques. If envelope analysis, MLP, SVM or otlraditional approaches can

achieve the same results, then there is no valsiganding the extra time and resources
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to develop a deep learning algorithm to performahalysis. Smith et al [35] outlines

this benchmark study for the case western reseate set for envelope analysis.
Appendix B within that paper outlines the potentieéas within the data set where a
more sophisticated analysis must be used to diagrertain faults. From these results,
analysis including the ball faults within the fadlagnosis requires more sophisticated
techniques. These include data sets 118 to 151tal888, 222, 224, and 225. These
data set are used within this paper; thereforereths potential value to the

computational expense of the methodology propostdnithis paper. These data sets
incorporated the small injected faults at 0.0074tédsets 118 to 121) to the larger

injected faults of 0.028” (data sets 3001 to 3004).

To be more explicit, the following data sets wesediwithin the analysis. For the
baseline, data set 97 to 100. For the inner ra@®td 108, 169 to 172, 209 to 212, and
3001 to 3004. For the ball faults, 118 to 121, 8588, 222 to 225, and 3005 to 3008.

For the outer race faults, 130 to 133, 197 to 234,to 237, and 144 to 147.
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Bilinear interpolation [39] was used to scale theage down to the approriate size
for training the CNN model. A 70/30 split was u$edthe training and test sets. These

images are outlined in Table 2-14, Table 2-15,

Table 2-16, and

Table 2-17.

Table 2-14: CWR baseline images.
Image Size Spectrogratr Scalograr HHT

—
96x96 %

Table 2-15: CWR inner race images.
Image Size Spectrogratr Scalograr HHT

32x32 =
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32x32

N
o | | . .

Table 2-16: CWR ball fault images.
Image Size Spectrogratr Scalograr HHT

Table 2-17: CWR outer race images.
Image Size Spectrograt Scalograr HHT

32x32

1

96x96

32x32

96x96

The CWR image data set is different than the MFRiBges. Even though the

scalogram images of the ball faults versus therimaee faults are similar, all four
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image sets look easier to classify. The scalograages had the highest prediction
accuracy for modeling techniques employed in Table8 and Table 2-19. The
information loss of the HHT images when reducingrissolution from 96x96 to 32x32
did not affect the predictions as much as the MBRf& had, possibly due to the lower
noise levels in the case of the CWR data set.

Table 2-18: Prediction accuracies for 32x32 imanpealis.

Mode| Spectrograr  Scalograr HHT
MLP - Flai 92.7% 83.6% 59.6%
LSVM - Flat 88.6% 80.8¥ 59.7%
SVM - Flat 97.3% 89.3% 72.5%
MLP - PCA 89.4% 94.7% 76.0%
LSVM - PCA 77.9% 69.3% 59.7%
SVM - PCA 74.4% 90.0% 80.0%
Architecture 2 95.9% 92.6% 78.0%
Architecture 1 98.4% 99.2% 88.9%
Propose CNN Architecture 98.1% 98.8% 86.5%

Table 2-19: Prediction accuracies for 96x96 imanpealis.

Model Spectrograr  Scalograr HHT
MLP - Flat 96.7% 91.7% 68.0%
LSVM - Flai 95.4% 84.4% 71.4%
SVM - Flat 98.7% 92.1% 69.0%
MLP - PCA 96.3% 97.6% 85.0%
LSVM - PCA 87.1% 74.5% 65.4%
SVM - PCA 28.6% 84.4% 93.1%
Architecture 2 96.0% 96.0% 79.5%
Architecture 1 99.7% 99.8% 97.4%
Propose CNN Architecture 99.5% 99.5% 97.6%

Overall, spectrograms performed much better olCiMR data set then the MFPT data
set. Flat pixel data versus PCA of the pixel ist@es varied across different modeling
and image selection. Spectrograms outperformeldgeans except for SVM PCA.
The optimal modeling method using traditional tegbes varied. HHT’s optimal was

SVM PCA, spectrograms were SVM flat, and for scedogs, MLP PCA was optimal.
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Like the MFPT results, resolution loss from theutn in image from 96x96 to

32x32 influenced the classification accuracieskelithe MFPT results, there was a
slight drop in the scalogram accuracies betweetvtbemages sizes except for SVM
PCA modeling. All methods suffered a little frahe resolution drop; however, HHT

again was the most affected.

The proposed architecture either outperformed drstatistically identical results with
the other architectures. Table 2-20 outlines ésailts of the t-test values for the CWR

data. The same hypothesis test as the MFPT dateasaised for comparison.

Table 2-20: CWR paired two-tailed t-test p-values.
Architectur¢ 1 Architectur¢1 Architecturc2 Architecture 2

Image Type 32x32 96x9¢€ 32x32 96x9¢€
Scalograr 0.001 0.00¢ 0.04( 0.221
Spectrograr 0.02z 0.00c 0.00c 0.211
HHT 0.00¢ 0.78¢ 0.00( 0.00(¢

Table 2-21 outlines the confusion matrix results ttee CWR data set on 96x96
scalograms. The values are horizontally normaliaediass. From this, the following
four tables of metrics were derived.

Table 2-21: Confusion matrix for CWR (A) 96x96 gi) 32x32 scalograms for
the proposed architecture

N BF IR OR BF

41




A
(A) R
N BF IR OR
OR
(B)

Table 2-22: Precision for CWR data set.

Proposed CNN

Model ; Architecture 1 Architecture 2
Architecture
Scalograr 32x32 98.6% 99.2% 93.0%
Scalograr 96x9¢ 99.4% 99.8% 96.7%
Spectrograr 32x3z 98.0% 98.4% 95.8%
Spectrograr 96x9¢ 99.5% 99.7% 96.7%
HHT 32x3z 84.1% 85.4Y% 74.5%
HHT 96x9¢ 97.0% 97.2% 82.5%
Table 2-23: Sensitivity for CWR data set.
Model Propqsed CNN Architecture 1 Architecture 2
Architecture
Scalograr 32x3Z 98.7% 99.2% 92.7%
Scalograr 96x9¢ 99.5% 90.8% 96.2%
Spectrograr 32x3z 98.0% 98.3% 95.8%
Spectrograr 96x9¢ 99.5% 99.7% 96.2%
HHT 32x3z 84.2% 85.5% 74.4Y%
HHT 96x9¢ 97.1% 97.3% 82.0%
Table 2-24: Specificity for CWR data set.

Model P;\?Eﬁ;:gtﬁz\m Architecture 1 Architecture 2
Scalograr 32x3Z 99.6% 99.7% 97.4%
Scalograr 96x9¢ 99.8% 99.9% 98.7%
Spectrograr 32x3z 99.3% 99.4Y% 98.6%
Spectrograr 96x9¢ 99.8% 99.9% 98.7%

HHT 32x3z 94.2% 94.7% 90.1%
HHT 96x9¢ 99.0% 99.0% 93.4%
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Table 2-25: F-Measure for CWR data set.
Proposed CNN

Image Type Architecture Architecture 1 Architecture 2
Scalograr 32x3z 98.7% 99.2% 92.8%
Scalograr 96x9¢ 99.5% 99.8% 96.4%
Spectrograr 32x3z 98.0% 98.4% 95.8%
Spectrograr 96x9¢ 99.5% 99.7% 96.4%

HHT 32x32 84.0% 85.4% 74.4%
HHT 96x9¢ 97.0% 97.2% 82.1%

From the results for accuracy (Table 2-18 and Tahbl®) and precision, sensitivity,

specificity and F-measure (Table 2-22,

Table 2-23, Table 2-24, and Table 2-25, respegtjvelne can say that, overall, the
proposed architecture outperforms or is compatiate the other CNN architectures
for diagnostic classification tasks with far fedearnable parameters. The benefits of
the additional non-linear expressivity provided the double layer approach in the
proposed architecture are still present, but theges show the CWR data set has an

overall better quality of measurement with far leegse.

2.8 Scalograms with Noise

To evaluate the robustness of the CNN architectwiese Gaussian noise was injected
into the signals to evaluate how the deep learframgework handles the noise within
a scalogram. Five and ten percent (20 and 10 Isigmaise ratio respectively - SNR)

Gaussian noise was used via the wgn() functionhenraw signal within Matlab.
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Additionally, the noisy images were randomly sardpl@ithout replacement to
generate a 50:50 mix with images of the raw sigpato noise). The MFPT data set
was chosen for this analysis as it had a highewuainaf noise in the baseline and outer

race images. Examples of those images can bers@able 2-26.

Table 2-26: MFPT 96x96 scalogram images with nigted.
Date Se Baselint 5% Noise 10% Noise

Normal

Inner Race

Outer Race

From these images the models were trained andsasse3 hose results can be found
in Table 2-27. Both architectures 1 and 2’s praaiicaccuracy suffered from the
injection of noise. This is due in part to onlywhmy one convolutional layer before
pooling, therefore limiting the richness of thetteas for the final predictions. The
inclusion of an additional convolutional layer witlthe proposed architecture prior to
the pooling layer results in a much richer featumd the increased non-linearity helps

the architecture handle noise better than the a@ttodritectures here examined.
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Table 2-27: Prediction accuracies for MFPT scalogravith injected noise.

Proposed CNN

Noisy Image Set Architecture 2 Architecture 1 ;
Architecture

96x9¢€ w/ 5% Noise 96.6% 99.9¥% 99.9¥%

96x9€ w/ 10% Noise 88.6% 91.8% 99.9%

2.9 Traditional Feature Extraction

To have a direct comparison with the standard f@aljnostic approach that relies on
manually extracted features, we now examine theofisgtracted features as an input
to the CNN architectures discussed in this papéne architectures were modified
slightly to accommodate the vector inputs; howetlee, double convolutional layer

followed by a pooling layer architecture was keyact.

2.9.1 Description of Features

The vibration signals were divided in bins of 1G#&nples each with an overlapping
of 512 samples. Each of these bins was furthergssex to extract the following
features from the original, derivative and integg@nals: maximum amplitude, root
mean square (RMS), peak-to-peak amplitude, cresdriaarithmetic mean, variance
(0?), skewness (normalized 3rd central moment), kigt@sormalized 4th central

moment) and fifth to eleventh normalized central meats. Additionally, the

arithmetic mean of the Fourier spectrum, divide@3rfrequency bands along with the
RMS of the first five IMFs (Empirical Mode Decomgitian) were used as features. In
total, seventy-five features per bin were computed each of the features was

normalized using the mean and standard deviatidhneofirst baseline condition.
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2.9.2 Application to CNN Architecture

To evaluate the full set of features, the architexbf the CNN was changed slightly
to incorporate all the features. The followingaétgon of the proposed architecture was
used: Input[75x15] - 32C[75x3] - 32C[1x3] - 32P[2x2 64C[1x3] - 64C[1x3] -
64P[2x2] - FC[100]. Three different scenarios wexamined: 1) twenty epochs with
early stopping and a stride of fifteen time stejith &n overlap of eight times steps, 2)
thirty epochs with no early stopping and striddiftéen time steps with an overlap of
eight times steps, and 3) twenty epochs with @estdf fifteen time steps with no

overlap.

Table 2-28 and Table 2-29 illustrate the difficedtithe CNN architectures had when
dealing with the manually constructed features:pitegliction accuracies considerably
dropped for all the CNN architectures for both MR CWR data sets. Additional
epochs without early stopping improved the reshitsyever, they are still well below
the results of the image representations. FOMRET data, early stopping and data
overlap helped the accuracies. For the CWR dat,opposite is true for early
stopping. The CWR data benefited from more epoblsyever, the MFPT data

suffered slightly from increased epochs.

Table 2-28: Prediction accuracies for CWR.

Model 20 Epochs 30 Epochs No No Overlap
Early Stoppin¢ Early Stopping
Architecture 2 75.2% 86.7% 67.2%
Architecture 1 90.4% 95.7% 87.2%
Propose CNN Architecture 83.1% 98.5% 93.6%
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Table 2-29: Prediction accuracies for MFPT.

Model 20 Epochs 30 Epochs No No Overlap
Eally Stoppin¢ Early Stopping

Architecture 2 79.1% 80.9% 75.2%

Architecture 1 82.9% 75.1% 75.1%

Propose CNN Architecture 96.4% 93.8% 87.3%

The CNN strength is images and it has spatial avess therefore, the ordering of the
features within the vector could influence the otifpredictions. It should be said that
the size of the vectors and filters were chosetherinput and convolutional layers to

minimize this effect.

CNNs are very good when the data passed throughithas close to the raw signal as
possible, as the strength of the convolutional padling are their ability to learn

features which are inherent representation of #ta.dIf one manipulates the data too
much by engineering features in the traditionaksethe CNNs do not perform as well.
As illustrated from the results in Table 2-28 arathlE 2-29, the CNN architectures had
difficulties in all scenarios. Moreover, even mstunfavorable scenario, the proposed
architecture outperformed the others. The stackedolutional layers, as in the case
with infused noise, result in more expressive fezdio better capture the non-linearity
of the data. Thus, one can argue that for CNNs$s ibptimal to use an image

representation of the raw signal instead of a vemftextracted features.

2.10 Concluding Remarks

Fault diagnosis of rolling element bearing is angigant issue in industry. Detecting

faults early to plan maintenance is of great ecanaalue. Prior applications of deep
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learning-based models tended to be limited by gemisitivity to experimental noise or
their reliance on traditional feature extractiamthis paper, a novel CNN architecture
was applied to the time-frequency and image reptatens of raw vibration signals

for use in rolling element bearing fault classifioa and diagnosis. This was done
absent the need for traditional feature extractiod selection and to exploit the deep

CNNs strength for fault diagnosis: automatic featextraction.

To determine the ability for the proposed CNN madehccurately diagnose a fault,
three time-frequency analysis methods (STFT, W@, lHT) were compared. Their
effectiveness as representations of the raw sigreae assessed. Additionally,
information loss due to image scaling was analyabich had little effect on the

scalogram images, a slight effect on the spectrogrand larger effect on the HHT

images. In total, 189,406 images were analyzed.

The proposed CNN architecture showed it is robusirst experimental noise.
Additionally, it showed featureless learning andoauatic learning of the data
representations were effective. The proposed t@atiore delivers the same accuracies
for scalogram images with lower computational cdsgsreducing the number of
learnable parameters. The architecture outperfamslar architectures for both
spectrograms and HHT images. The manual proce$satire extraction and the
delicate methods of feature selection can be sutesdiwith a deep learning framework
allowing automated feature learning, therefore rg@ng any confirmation biases
surrounding one’s prior experience. Overall, the NCiHansformed images with
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minimal manipulation of the signal and automaticalbmpleted the feature extraction

and learning resulting in a much-improved perforogan

Fault diagnosis is a continually evolving field theaas vast economic potential for
automotive, industrial, aerospace, and infrastmecassets. One way to eliminate the
bias and requirement of expert knowledge for feaxtraction and selection is to
implement deep learning methodologies which ledmsé features automatically.
Industries could benefit from this approach on getg with limited knowledge, like
innovative new systems.
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Chapter 3: Unsupervised Deep Generative Adversaaséd
Methodology for Automatic Fault Detectibn

3.1 Abstract

System health management is of upmost importante teday’s sensor integrated
systems where a constant stream of data feedsriafmn about a system’s health is
available. Traditional methods to assess this hdaltus on supervised learning of
these fault classes. This requires labeling sonsstimillions of points of data and is
often laborious to complete. Additionally, once tiaa is labeled, hand-crafted feature
extraction and selection methods are used to iigentiich are indicators of the fault
signals. This process requires expert knowledgecdmplete. An unsupervised
generative adversarial network-based methodologyprigposed to address this
problem. The proposed methodology comprises ofep amnvolutional generative
adversarial network (GAN) for automatic high-leveature learning as an input to
clustering algorithms to predict a system’s faaltyl baseline states. This methodology
was applied to a public data set of rolling elemeilration data from a rotary
equipment test rig. Wavelet transform representataf the raw vibration signal were
used as an input to the deep unsupervised gererativersarial network-based
methodology for fault classification. The result®w that the proposed methodology
is robust enough to predict the presence of faultsout any prior knowledge of their

signals.

2 The full-text of this chapter has been publisheédVarstraete, D. B., et al.
"Unsupervised deep generative adversarial basetoeh@bgy for automatic fault
detection."Safety and Reliability—Safe Societies in a Chandvayld. CRC Press,
2018. 1051-1056.
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3.2 Introduction

Much of fault diagnostics involves the use of l&getiata. This is challenging for new
assets outfitted with sensor suites capable of rgéng massive amounts of data.
Without knowledge of faults or their correspondsignals, engineers may not be able
to diagnose faults effectively. Traditional meteodclude feature extraction and

selection methods which attempt to use a spe@hture of the signal to diagnose the
faults. This method requires knowledge of whichttdiees are relevant for the task.
Moreover, if an engineer has some knowledge offdhé, that knowledge could be

biased or incomplete. Unsupervised fault diagosstttempts to fill in that knowledge.

Deep learning algorithms can perform automaticuieatearning to better understand
the underlying data features that most relevantis automatic feature learning
attempts to fill in the gaps of knowledge of reletveatures to the fault signals. There

are challenges with this automatic feature extoacind selection.

Unsupervised learning has been attempted for fliatinostics previously. Indeed,

Langone [42] took pre-stressed concrete bridgeralin@quency data and proposed an
unsupervised adaptive kernel spectral clustering damage events. Wang [43]

proposed unsupervised feature extraction via coatia sparse auto-encoders (SAE).
Once the SAEs extracted the features supervisedidgawas used on transformer
faults. Lei [44] proposed unsupervised sparseriiiitefeature learning. Faults were
then diagnosed with supervised softmax regressiang [45] proposed unsupervised

feature learning with SAEs for chemical sensor datzese features were fed into
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supervised softmax regression to diagnose faultis.[86] took induction motor fault
data and proposed the use of SAEs for unsuperfesgdre extraction. These features
were again followed by supervised learning for sifésation by neural networks (NN).
Of these approaches, only Langone et al could hsidered truly unsupervised. The
rest are restricted to unsupervised feature legrifialowed by supervised fault
diagnostics. Moreover, apart from the use of SAtese of these methods would be

considered deep.

In this paper, we propose a GANs based methoda@ppgiication to unsupervised fault
diagnostics on scalogram image representations. vabdate the proposed
methodology, the public Machinery Failure Prevemtieechnology (MFPT) Society
bearing data set [37], [38] is used. To evaluaggtioposed unsupervised methodology,
traditional supervised learning metrics cannot bedu A confusion matrix and its
associated measures are unable to evaluate chgsteohniques. Therefore, since the
ground truth is known, external validation measupesity, normalized mutual
information (NMI), and adjusted rand index (ARIearsed to evaluate the quality of
the clusters. The remainder of this paper is stnestas follows. Section 2 gives an
overview of GANs and the methodology. Sectionespnts results of the GANs based

methodology applied to the MFPT data set. Sectiprovides conclusions.

3.3 Generative Adversarial Networks

Generative adversarial networks (GANs) have atr tbeie a minimax game which

seeks to pit a forger, the generator network, agjaandetective, the discriminator
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network. The generator seeks to create fake datgalograms in this paper, to trick
the discriminator who must discriminate between réedl data and the fake data as
shown in Figure . Back propagation is performedtanweights and biases and the
process is repeated. The benefit to this trairgvghile the generator seeks to develop
an underlying distribution of the real data, th&diminator is feeding information back
to the generator, not on the real data, on thel®ignd biases of the learned features.

This helps to prevent overfitting of the data.

Z ~ N{u,0)

[T 1]
o

Generator

o

Real ImageX Fake ImageX'

o o

Discriminator

uolrefedold yoeg. _ _ _ _ _|

Fake or Real?
Figure 3-1: GAN Training
Within this minimax game, the objective functiomtaximize the value, V, to the point
where the discriminator and generator no longet fimecessary to make changes to
their weights and biases. While this is the gdabAN training, there is functionally
no mechanism with the training to control it. Téfere, there can be issues with

convergence. More formally in Eq. (5) from [47]:
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min max V (G, D)
G D

= ]Ex~Pdam(x) [log (D(x)] (S)
+ ]Ez~Pn0ise(z) [log (1 — D(G(2)))]

where,Paaax) 1S the data distributionPueisex) is the noise distribution)(x) is the

Discriminator objective function, an@z) is the generator objective function.

The GANs based methodology used in this paper eafolnd in Figure 3-2. The
methodology starts with developing a scalogram magpresentation of the raw data,
and then proceeds to training of the deep conwanatigenerative adversarial network
(DCGAN). Once the DCGAN training is completed andual inspection of the
generator output images is done, concatenatiorhefldst activation layer of the
discriminator is completed. Once the activatioress@ncatenated, kmeans++ is used
for clustering on the first two principal compongn¥isual inspection of the generator

output is still needed within GANSs training andaisrucial step within the training.
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Figure 3-2: Proposed Unsupervised GAN Methodology

There are two goals for the output of this methodg! 1) Separation of the baseline
healthy data with the fault data, and 2) Separaifdhe individual faults. When a new
sensor system comes online, the engineer need®to When the system drifts from
healthy signals to a signal with which to decideewto conduct planned maintenance.
Once the engineer has familiarity with the systemd aignals can be identified as
individual faults on the inner or outer racewayerthbetter predictions and a fully

supervised methodology can be used [48].

The GAN architecture used in this paper incorpardtee guidelines proposed in
Radford [49]; however, adjustments to that papanthitecture were made for handling
the MFPT data set. Radford et al provides the Wahg five GANs architecture

guidelines: 1) generator and discriminator netwpdoling layer replacement with
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strided convolutions, 2) Batch normalization (Baljyequired for both the discriminator
and generator networks, 3) Fully connected hiddgark should be removed for deep
architectures, 4) Rectified Linear Unit (ReLU) aation use in all layers of the
generator except the output should use Tanh, ahddXy RelLU activation use on all
layers for the discriminator. DCGANSs are usechis paper as a baseline to implement
GANs. The combination of these five guidelines cosgs what is defined as deep

convolutional generative adversarial networks (DQGA

3.3.1 Strided Convolutions

The relationship between a convolutional operasomput shape,jj, and the
operation’s output shapej, of a convolutional layer along axisare related to three
factors: 1) kernel siz&, 2) stride §), and 3) paddingp(). Convolutional strides are

generally set tg; = 1 for most operations; however, for GANs stridedvadations
of s; > 1 are used in place of pooling layers. This isliaggfor the discriminator to

learn its own downsampling, and for the generaidearn its own upsampling.

3.3.2 Batch Normalization

Batch normalization (BN) is an important additianthe architecture between each
convolutional layer [50]. As the data moves throtlghconvolutional layers the weight
and bias values are adjusted. This has the pake¢atiead to the data increasing or
decreasing to unrealistic values. Batch normatimgbrevents this from becoming an
issue with the training by normalizing the datatmean of zero and a variance of one
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learned parameteysandp, {y; = BN, z(x;)}. The min-batch mean igs « %Z?;l X;,

the mini-batch variance u;? « %Zﬁl(xi — uﬁ)z, they are then normalized wifh «

Xi—HUp

,0123+e

, and scale and shifted with, < y%; + 8 = BN, z(x;).

3.3.3 Activation Layers

The following activation functions are used throoghthe architecture. For the
generator two activations functions are used: LtiRed Linear Unit (ReLU)f(x) =

{Oforx <0

<forx > 0 and 2) Hyperbolic tangent (tanh). Within the gaba network RelLU is

used between every layer except tanh activatiarsésl after the last layer. For the
discriminator, Leaky RelLU is used on every layexaky RelLU differs from ReLU in

values less than 0.

3.3.4 Neural Network Architectures

The neural network architectures used in the pregpasethodology incorporate the
guidelines as proposed by Radford et al. Two nétsvarere developed to account for
the data set presented in this chapter. The gemaratwork, as shown in Figure 3-3,
takes the vector of noise and through deconvolut®M and activation functions

creates an image. In this case the output if ®#®&xage of a scalogram of a signal.
To do this, a 100x1 vector is projected and resthapedeconvolve into a 6x6x512
feature space. This space is then deconvolved 18xa2x256, then 24x24x128,

48x48x64, and finally a 96x96x3 image.
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Figure 3-3: Generator Network
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Figure 3-4: Discriminator Network
The discriminator network, as shown in Figure 3h&n takes that generated image
and judges whether the image is real or fakeodsdhis by taking the real images and
automatically learning the feature subspace. Rera6x96 images this results in a
network of convolutional layers consisting of a 48x64 layer, 24x24x128,
12x12x256, and 6x6x512 layers. The output of tag activation holds a lot of

information about the feature space and is usefuliisupervised fault diagnostics.

3.4 Propose Methodology Application

The MFPT data set is a good test of any algoritertha outer race fault and baseline
conditions are difficult to separate. NICE beasingere used within an experimental
test rig. Accelerometer data was gathered on ttoeditions. First, at a sampling rate
of 97,656 Hz, a baseline condition at 270Ilbs oflleas captured. Second, a total of
ten faults on the outer-raceway were gatheredthédsame sampling rate and loading

condition as the baseline, three outer race favdi® tested, and the remaining seven
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outer race faults had the following load cases:5th,100, 150, 200, 250 and 300
Ibs. These seven load cases had a sampling rd&8#8 Hz. Third, with a sampling
rate again of 48,848 Hz, seven inner race faule laading of 0, 50, 100, 150, 200,
250 and 300 Ibs were gathered. From these rawalsigrscalogram image
representations were created with the followingehrlasses as shown in

Table 3-: normal baseline (N), inner race fault)(l&d outer race fault (OR). In total
10,808 scalogram images were generated with 3,488line, 1,981 inner race, and
5,404 outer race images. The training, validatéorg test sets used were fifty percent,
twenty five percent, and twenty five percent of thk data set respectively. Bilinear
interpolation [39] aided in reducing the originadages to down to a trainable size for
the GAN architecture.

Table 3-1: 96x96 pixel MFPT scalogram images.
Baselint Innel Race Outel Rack

The first step once the GANSs training is complaesedsual inspection of the generator
image outputs. These can be seen in Figure 338. different fault conditions can be
identified within the images. This step is a kagicator for identification of mode
collapse, vanishing gradients, non-convergenceheckerboarding artifacts. With
this completed the last activation layer of thecdminator network can be

concatenated and clustering can be done.
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Figure 3-5: Output images of DCGAN generator tragni

Kmeans++ is used for clustering within the papatdmonstrate how robust the GANs
training can be towards a simple clustering alpamit Kmeans++ only differs from
traditional kmeans in the beginning cluster iniiat Kmeans++ initializes one cluster
center first and then searches for the other cenighereas, traditional kmeans
initializes all centers and then updates the cerasrthe algorithm progresses. Figure
3-6 shows the resultant clustering predictionseflast first two principal components
of the last activation layer of the discriminaterdacolored by the predicted labels.
There is overlap in the outer and inner race ptextis, but the GANSs training plus
kmeans++ does an excellent job separating the ibassignals from the fault

conditions.
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Figure 3-6: DCGAN PCA KMeans ++ predicted.
Figure 3-7 shows the first two principal componeuitshe last activation layer color
coded by the real labels. It appears the GAN inginvith kmeans++ had the most
difficulty with separating the fault conditions. dustering algorithm more capable of
handling the non-convex nature of the outer racdt faould potentially increase the

evaluation metrics but is beyond the scope ofghjser.
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Figure 3-7: DCGAN PCA Kmeans ++ real.
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Since the labels to the data are known, evaluatietrics like purity [51], normalized
mutual information (NMI) [52], and adjusted RANDdiex (ARI) [53] can be used to
validate the architecture. Table 3-2 has the aeervof these metrics for this

methodology.
Table 3-2: MFPT 96x96 generator output, DCGAN, Kns=at.

ARI Purity NMI
0.5C 0.7¢ 0.62

Overall these number could be improved; however fitlst goal of this methodology
is to separate the baseline healthy system sté#idhvat of the faults. This methodology
proves it can handle that. More work can be daneriprove these numbers and
provide better information to the engineer regagdivhich individual fault case the

signal is presenting itself as.

3.5 Conclusions

Generative adversarial networks and deep learrsrafield stand to unlock numerous
potential applications within the field of enginiegy research. This application is the

first of its kind and shows great promise.

The proposed architecture demonstrates its abiktieh automatic feature learning to
a level with which a simple clustering algorithmncseparate the healthy baseline
signals with the fault data. An engineer can gasiake an engineering decision on

maintenance without the need for any knowledgd@efindividual signals.

The practical application of this paper has farch#@g possibilities into many

engineering fields and is not limited to rollingerlent bearings. Aerospace,
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automotive, oil & gas, and many other industries cdilize this unsupervised

methodology.
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Chapter 4: Deep Semi-Supervised Generative Adviat$aault
Diagnostics of Rolling Element Bearings.

4.1 Abstract

With the availability of cheaper multi-sensor sgjtene has access to massive and
multi-dimensional datasets that can and shouldsee for fault diagnosis. However,
from a time, resource, engineering, and computatiperspective, it is often cost
prohibitive to label all the data streaming intediabase in the context of big machinery
data, i.e., massive multidimensional data. Theegfthis paper proposes both a fully
unsupervised and semi-supervised deep learninglezhajenerative adversarial
network-based methodology for fault diagnostics.oTpublic data sets of vibration
data from rolling element bearings are used touatalthe performance of the proposed
methodology for fault diagnostics. The results agatie that the proposed methodology

is a promising approach for both unsupervised anag-supervised fault diagnostics.

4.2 Introduction

Condition health monitoring systems are becomingtandard specification for
customers purchasing large capital assets. Withptbéferation of cheap sensing
technology, these assets are now streaming maspiemtities of data at an
unprecedented rate. The fields of structural healtonitoring (SHM) and fault

diagnostics have grown from the need to make sefshis data. The primary

3 The full-text of this chapter has been publisheWerstraete, David Benjamin, et al.
"Deep semi-supervised generative adversarial faiagnostics of rolling element
bearings.'Structural Health Monitorind2019): 1475921719850576.
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drawback to fault diagnostics within these systasnghe requirement of labeling
millions, and potentially billions, of data poinfo label a data set of this magnitude
is resource intensive, costly, computationally egdee, and subject to confirmational
data biases of the engineers interpreting the ddtas, labeling the output of an
extensive sensor system data output requires gignifinvestment. Moreover, there is
a strong assumption within supervised fault diagntsat everything is known about
a preset class of faults. This restricts the gbilf the supervised model to generalize.
If the model only knows what the engineer knowsisireasonable to assume the
model’s knowledge of the system could be incompliterefore, traditional feature

learning would have a fundamental generalizatiaibiam.

The general problem within unsupervised learningxigacting information or value
from unlabeled data. Unsupervised learning is dfposed problem because
appropriate downstream tasks are unknown at the tih training. Therefore,
unsupervised learning should disentangle the ratawaknown tasks which are helpful
for the problem. For instance, a useful disenshgkpresentation for a dataset of
cracks in a concrete structure would be dimensfonsrack length, crack width,
neighboring cracks, or the presence of the cradkrsections [68]. These
representations may be relevant for natural tales damage evaluation or crack
propagation. For irrelevant tasks, like the peraga of white pixels, this
representation would be extraneous. Thereforeseful unsupervised learning
algorithm must guess the likely set of subsequiastdication tasks correctly without

knowledge of what the tasks are. This is a chghetheep learning attempts to solve.
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Deep learning makes up much of the recent unsuget\viault diagnostic research,
[42], [43], [44], [69], [70], [71], [72], [73], and74]. All these approaches, except
Langone [42], are restricted to unsupervised fealearning followed by supervised
fault diagnostics. Moreover, none of these mettattisnpt unsupervised learning with

an image representation of the data.

Most recently, Generative Adversarial Networks (GANave been developed within
the computer vision community [47]. Training thisegp generative modeling is done
using a minimax game. The goal of training isdarh a generator distribution that
fools the discriminator into classifying it as frotime true data distribution. Unlike
variational autoencoders (VAE), which tries to gagirobability to every data point in
the data distribution [66], a GAN learns a genaratdwork which transforms a noise
variable in a sample by generating samples fromstraple distribution. With a
sharper image from GANSs, one gets more preciseaneafures. However, currently
there are no agreed upon methods to assess thiadraf, or comparison of, a GAN
without visually inspecting the images. This iffidult to accomplish without an
image of the signal. A vector of data would noffisef Therefore, GANs provides a

better foundation for fault diagnostics based oh nmages of signals.

In this paper we propose a novel deep learningrgéme adversarial methodology for
a comprehensive approach to fault diagnosticsma-frequency images. This paper
explores both deep convolutional GANs (DCGAN) anfibGAN architectures. From

the proposed architectures for these two typesAifi&snetworks, clustering is done

66



via spectral and kmeans++ clustering on the dowmg$zd activation output of the
discriminator. To improve clustering results, sempervised learning is included as a
second stage to the methodology by altering thefaastion to account for data labels.
Additionally, both 32x32 pixel and 96x96 pixel inesyare explored as inputs to
methodology. This methodology is then evaluatedwidth the Machinery Failure
Prevention Technology (MFPT) Society [37] and C&8estern Reserve (CWR)
University Bearing Data Center [6] bearing datass&he proposed methodology’s
results are then compared to unsupervised leam@gutoencoders (AE) and VAE.
To evaluate the proposed unsupervised methodotoayitional supervised learning
metrics are inappropriate. A confusion matrix &sdassociated metrics are unable to
evaluate clustering techniques. The ground trutkniewn; therefore, purity [51],
normalized mutual information (NMI) [52], and adjed rand index (ARI) [53] are

used to evaluate the quality of the clusters.

The rest of this paper is organized as followstiSe@ provides an overview of GANSs.
Section 3 outlines the proposed unsupervised anu-sgervised methodology
constructed to aid the diagnostic task of faultedgdn. Section 4 applies the
methodology to both the MFPT and CWR experimend#h dets. Section 5 compares
these results to unsupervised AE and VAE. Secti@inihes with some concluding

remarks.
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4.3 Background on Adversarial Training

Generative adversarial networks were first propdse@oodfellow et al [47]. GANs
consist of a generator network and a discriminatodel network. Generative models
seek to learn the underlying joint probability distition P(x,y) of the random variables
to categorize a signal. Discriminative models,tlom other hand, disregard how the
data was generated and simply categorize the datdspbased on a conditional
probability distributionp(y|x) [80]. Within the context of fault diagnostics, geative
models attempt to learn every potential fault tentrclassify the faults, whereas
discriminative models attempt to determine faultedences absent of learning every
fault. GANs seek to utilize both model’s strengti$he generator attempts to create a
synthetic data seX’, that matches the real da¥g,that only the discriminator can see
and classify as shown in Figure . The generatomptesrfrom a noise distributio,
(e.g. normal) and the discriminator determines twethe sampled data (e.g., an

image) is real or fake.

YA Fake ImageX'

Discriminator
Network

Network bO9

P Generator

Z ~ N(u,0)

Real ImageX

Figure 4-1: GAN overview.
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Functionally, GANs train two convolutional neuratworks at the same time. The
generator, which is depicted in Figure , utilizesahvolutional layers to take the noisy
input Z and creates the specified size image. The paeametZ is then updated

continuously throughout the training of the networkis image is then fed into the
discriminator network to judge whether the genefdteage is real or fake. The
discriminator is a convolutional neural networkwtionvolutional layers, pooling, and
non-linear activations. This is all done in a féeadvard operation where the weights,
biases, and errors are set throughout. To updmeenétworks and adjust these
hyperparameters, backpropagation is used to serettbrs back through the networks
to update the weights and biases. This processvesnredundant, uninteresting

features.

To accomplish this, the fundamental foundationh&f GANs algorithm is the two-

player minimax game. The generative network mapsise source to an input space
to generate a fake image. The discriminative ndtweceives the generators input (a
fake image) and classifies it as real or fake.sEmounts to a two-player game with

the two networks competing against each other(@&@d47]:

min max V (G, D)
G D

= ]EX~Pdata(x) [IOg (D (X)] (6)
+ ]Ez~Pn0ise(z) [log (1 — D(G(2)))]

Where,
Paatax) Data distribution
Proise(x) Noise distribution
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D(x) Discriminator objective function

G(z) Generator objective function

For each generator parameter update the discriamimatrained to optimality. The
minimization of the value function leads to the miization of the Jensen-Shannon
(JS) divergence between the real data and theettaimodel distributions or. This
minimization frequently results in vanishing gradias the discriminator saturates.
While the ideal training results in optimality, imost practical applications this is not
necessarily the case. At the moment the trainff@ANs requires visual inspection

of the output images; therefore, an image reprasientof the signal is needed.

There has been, and there continues to be, adangent of research surrounding the
architectures and training of a GAN. For this papeth DCGAN and InfoGAN are

used. Fundamentally, these two GAN are identida#lined to the proposed method
by Goodfellow [47]. However, their architecturesdacost functions are modified to
account for the applied data sets and unsuperwsedemi-supervised objective

functions.

4.3.1 Clustering

This paper examines two primary clustering algonghHor classification (k-means++
and spectral) and PCA for visualization. K-meanstas chosen to explore the
robustness of the methodology to simple clustedhyprithms. K-means++ differs

from the traditional k-means algorithm by first dsong the initial cluster center
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uniformly at random and then choosing each subsegqoenter with probability

proportional to the square of its proximity to thearest center [75].

Algorithm 1 K-means++ algorithm
Initialize k-means++ algorithm

» Take one centet,, chosen uniformly at random from data poiixs,
2
 Take a new centek;, choosingx € X with probabilityZL’;)(x)z,
x€X
denotes the shortest distance from a data pothetolosest center already chosen.

* Repeat previous step until all k centers are taken.
* Proceed with standard k-means algorithm.

where D (x)

Spectral clustering on the other hand is a grapsteting technique where eigenvectors
of the data matrices are used. Data is mappedow-dimensional space for spectral
clustering. This dimensionality reduction is momenputationally expensive than the

k-means++ algorithm; however, it can achieve spedsults [76].

Algorithm 2 Spectral clustering algorithm

Input: Similarity matrixS € R™*", numbelrk of clusters to construct

» Construct a similarity graph. L&Y be its weighted adjacency matrix.

» Compute the unnormalized Laplacian

» Compute the firsk eigenvectors;, ..., v, of the generalized eigenprobldm =
ADv.

« LetV € R™ be the matrix containing the vectars..., v, as columns.
« Fori=1,...,n, lety; € R¥ be the vector corresponding to thi& row of V.

.....

Cy,..., Cp.
Output: Clusterdl,,..., A, with 4; = {jly; € C;}.

4.4 Proposed Generative Adversarial Fault Diagno#iethodology

A two-stage fault diagnostic methodology is progbsgathin this paper. Stage one
consists of fully unsupervised generative adveasdault diagnostics, and stage two
semi-supervised generative adversarial fault diafyem In practice, sensor signals are

gathered, and stage one can be used at the stssdgs the baseline of the system
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when labels for the data are unavailable. As kndgdeof the system signals improve,
fault signals can be identified, labeled, and therorporated into stage two. The
intention is that unsupervised clustering, opegatin the automatic identified features
by the GAN, identifies fault clusters away from thaseline. Once labeled data is
available it can be added to the model to imprdserhaintenance decision making.
Upon completion, the engineer can then visually ioorthe system via principal

components analysis (PCA) to begin labeling sonmbaesignals being gathered. This
labeled data can then be input into the GANs mettogy, with a modification to the

cost function, to further improve the clusteringuies until a predefined criterion of

performance is met. Once the system signals moeeftlly supervised labeled data
set, the engineer can then transition the modétng fully supervised deep learning

framework (for example, see [48]).

The discriminator network provides the ability taim itself against generated images
as an adversary within both DCGAN and InfoGAN atetiures. Since the
discriminator is trained to predict the fake frame real dataset, it can provide a robust
feature set of the real data. To accomplish tthis, GAN discriminator training
automatically generates a high-level feature repredion of the data from the input
image to an output vector. The goal of the GANming is then to take this high-level
representation feature set as an input to clugtatgorithms. This allows the generator
to avoid overfitting on the raw data by only havamgess to the gradients. Two GAN
architectures explored in this paper are not aicgisn on the methodology; these were

two architectures chosen because of their strosigjteein other tasks, such as image
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generation. To use the InfoGAN, the encoder dineensiust be given as the number
of system health states believed to exist, whetfgass not a requirement for training
the DCGAN. For instance, to validate the proposeethomdology the encoder
dimension was set to three. The DCGAN trainingthenother hand, does not require

the encoder dimension.

The DCGAN architecture developed for this paperoiporates the guidelines
proposed in Radford [49]; however, some adjustmeete made to the architecture to
handle the data sets used in this paper and tbuglprsuperior results for unsupervised
fault diagnostics. DCGANs were the first major aav@ment on the original GAN
architecture [49]. Through exhaustive model exglora this work resulted in the
following five GANs architecture guidelines: 1) Riog layer replacement with strided
convolutions for both the discriminator and the eator networks, 2) Batch
normalization (BN) is required for both the discmaitor and generator networks, 3)
Fully connected hidden layers should be removediéap architectures, 4) Rectified
Linear Unit (ReLU) activation use in all layerstbé generator except the output should
use Tanh, and 5) Leaky RelLU activation use on ajlels for the discriminator.
DCGANSs are the main baseline to implement GANs; éwav, as stated in Radford
[49], model instability still exists within the irang of the model. The longer the model
trains, the higher the risk of mode collapse. Tuesurs when a filter subset collapses

to a single oscillating mode.
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There have been many studies on the effectiverfesalividual wavelets and their
ability to match a signal. One could choose betwbenGaussian, Morlet, Shannon,
Meyer, Laplace, Hermit, or the Mexican Hat waveletdoth simple and complex
functions. To date there is not a defined methaglpfor identifying the proper wavelet
to be used and this remains an open question witleimesearch community [30]. For
the purposes of this paper, the Morlet wavelehissen because of its similarity to the

impulse component of symptomatic faults of many Ima@ical systems [31].

As shown in Figure 4-2, the proposed methodologgtswith the training of a GAN
with the unlabeled dataset. This will train two eolutional neural networks (CNNSs),
one discriminator and one generator. The discritbmaeeds to learn distribution of
the real vibration fault dataset to be able to rilisinate between the generated fake
samples and the real samples. The generator ademmptick the discriminator by
learning the underlying distribution of the genetatlata. The last activation layer of
the training is then concatenated and visuallyeotgd via PCA to evaluate the ability
of the GAN to separate the data. At this pointeghgineer will be looking for a robust
representation of the baseline signals from thetadsrom there, the engineer weighs

the value of labeling the incoming data versuscthst to label.
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Figure 4-2: Proposed generative adversarial faagribstic methodology.

In the following sections, we discuss and detaad pnoposed methodology for fault

diagnostics. The next sections include discussiegarding the architectures for the
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DCGAN and InfoGAN models underpinning the methodgléollowed by a detailed

discussion on the proposed methodology steps.
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Figure 4-3: Generator Network

Functionally, the training of the DCGAN involvesiing the parameters on two CNNSs.
In the generator architecture in Figure 4-3, these@, is used to generate a vector of
data. This is then used to project and reshap&2®%6 features. From these features,
256 12x12 features are deconvolved. Following2® 24x24 features, then 64 48x48
features, and finally 3 96x96 images are generdethveen each of these layers, batch

normalization (BN) and ReLU are used, and finadlgtt is used for the last layer.

The discriminator CNN in Figure 4-4 shows the raaucfrom the image into smaller

features. The discriminator takes the 96x96 imawpk convolutes the image into 64
feature maps of 48x48 size. The 64 feature mapghen again convoluted to 128
feature maps of size 24x24, then 256 feature mapaxd 2 size, and finally 512 feature

maps of 6x6 size. Between each of these layeesddlta is passed through BN and
Leaky ReLU. The final activation layer of 512 6x@&afure maps results in features
automatically learned from the data and maps tcsthesequent step in the proposed

methodology discussed in Section 3.
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Figure 4-4: Discriminator Network

This comprises both networks for the DCGANS tragninTo update both networks
through each step, a cross-entropy back propagetiaeed. This back propagation
allows the updating of the weights and biases tjimout the network to optimize
towards the intended outputs. This is done wighgtadients out of the discriminator

to help avoid overfitting on the raw data.

Information Maximizing GANs (InfoGANS) take the unservised objective function
into account as a mutual information variable mitiput of the generator network [78].
This input now consists afandc vectors. The latter is used in the mutual infororat
term to represent some latent variable in the datae InfoGANs objective remains
the same as the GAN objective function; howevenoiiv makes use of the data set

descriptive latent variablesandz, as shown in Eq. (7):
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mGin max Vinfocan(G,D,Q) =V (G,D) — AL;(c; G(z,c)) (7)

where,

Q Auxiliary distribution to approximate the postetio
G Generator.

D Discriminator.

c Latent code.

z Incompressible noise.

G(z,c) Generator network in ternzsandc.

L Variation lower bound of mutual informatidn

The hyperparameter is introduced within the InfoGAN optimization t@mtrol the
scale of the GANSs objective function. }Aset to 1 suffices for discrete latent codes,

and a smallek is useful for continuous variables to ensure ttadesremains the same.
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Figure 4-5: InfoGANSs discriminator network.

Figure 4-5 shows the proposed architecture foirtf@SAN discriminator. Note that
this discriminator network, more specifically thdly-connected (FC) encoder layer
within InfoGAN, is the only difference versus DCGAN The distributiorQ(c | X) is
the posterior approximation of the true posteR¢r | X). The approximate posterior,

Q, is parameterized as a neural network.
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The benefit to using the INfoGAN algorithm is thmligy to extract meaningful features
of the data created by the generator encoder vels means, for a fault diagnostic
problem,c encodes the semantic features (fault classesbasgline, inner race fault,
outer race fault) of the data distribution andncodes the unstructured noise of the
distribution (e.g., width of the impulse, backgrdumoise of the signal). Even with the
mutual information objective function there is neagantee that the latent variables
found by the trained InfoGAN will be the desiredusture in the data. Therefore,
InfoGANSs still require visual inspection of the geator images to assess its image

guality. In the following sections, we discuss gheps in the proposed methodology.

4.4.1 Read Raw Signal and Image Representationtatien

Prior to GAN initialization, it is necessary to geate images of the accelerometer data
streaming from the rolling element bearing. Scedag images contain time and
frequency on the axis and the color depicts thenitiage. Once the images are
generated, the entire data set is subdivided ihteet groups: training, test, and
validation. It is common to have the bulk of tineages in the training set, with the
remainder used as a test set to evaluate the rsadslity to predict the system’s health

classes.

4.4.2 Unsupervised GAN Initialization

Once the scalogram images are generated, AlgoBtbatlines the process as a means

for a feed forward pipeline for fault diagnosislofzal average pooling is used to reduce
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the last convolutional layer filters kovectors of 1x1. This is then concatenated to form

a 1 xk vector and fed into a clustering algorithm.

Algorithm 3 Unsupervised feed forward pipeline for images,

Train GAN Architecture to data dependent, conteegahdent epoch count.

for i imagesdo

* Feed forward pass through the discriminator.

» Global Average Pooling for k filters out of lastramlutional layer to output 1x1
filters.

» Concatenate last convolutional layer activationgh(\@ncoder for the InfoGAN)
from each imageas a 1 X vector.

* Normalize this vector with L2 Norm (Euclidean Diste):

end for

« Vector is labeled A vectorfor DCGAN.

« Vector is labeled A+encoder vectofor INfoGAN.

« The resulting vector is fed into a clustering aitjon (k-means++, Spectral) to
obtain labels for images.

Once the GAN model is trained (DCGAN or InfoGANyya additional steps are
needed to evaluate the model. The first step igsaall inspection of the trained
generator network to evaluate the quality of theegated images. Visual inspection of
the output images of the generator network is aikdicator to how well the GAN
architecture is training and whether any of thevkmarawbacks are surfacing, such as
mode collapse [77], vanishing gradients [78], nonwergence [79], and
checkerboarding artifacts [81]. The second stepsistsrof sampling images from a
random uniform input vector between 0-1. For thi@®AN, thec input vector is a
random one hot encoded categorical vector. Thip stecovers problems in the
convergence of the network, mode collapse to afspkmd of image, or the inability

of the model to generate similar images to the amése original dataset.
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4.4.3 Concatenation, Normalization, and Clustering

To extract the discriminator information after tiaig, a feed forward pass is done with
each imagei] in the dataset to obtain each last convolutidengr activation. These
activations are pooled via global average poolorgefach filter K). This means that,
givenk filters in the last layer, the outputksl x 1 vectors for each scalogram. After
global average pooling, these vectors are concmeénato a 1 xk vector and
normalized with Euclidean L2 normalization. Fronsthoint, the vector output of the
DCGAN is referred to as the last layer activatigastor, orLA vector Moreover, the
output of the InfoGAN includes the encoder outguterefore, from this point, this
encoder concatenated with thA vector output of the InfoGAN is referred to as the

LA+encodervector.

The last step is to use thi#& vectoror LA+encodervector C or Cen, respectively) as
an input into clustering algorithms. For the pugs®f this paper, k-means++ and
spectral clustering are examined. Again, this isan@striction on the methodology; it
is a means to display the robustness of the metbgygto two common straightforward

clustering algorithms.

4.4.4 Unsupervised Visual Evaluation — PCA

Once the output of unsupervised clustering is cetepla method to assess the
clustering results without the real labels is neledeor the proposed methodology, one
could evaluate the clustering output of th# or LA+ vector’svisually to choose the

appropriate number of clusters to proceed withréin@ainder of the methodology. Note
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that the GANSs training creates a suitable undeglyimanifold representation of the data
that can be used in a two-dimensional visual inspecEngineering knowledge can

then be utilized to provide meaning to the evatrabf the visual results of PCA.

4.45 Label Data

One of the strengths of the proposed methodologyhés ability to feed in an

incrementally increasing amount of labeled data the training data set of the GANs
algorithm to increase fault class identificatiosuks from the clustering. This has
practical importance because, when a new assetsconime, initially there may be

little knowledge of the system faults and theirpexgive raw signals. As more
knowledge is gained, labeled data can be incoredratto the model. The results
section of this paper validates the methodologh wietrics for increasing percentages
of labeled data (for validation purposes, it isuased that labels are known) within the

training data set for semi-supervised fault diagjoes

4.4.6 Semi-Supervised GAN Initialization

Semi-supervised GAN initialization involves traigiof the chosen GAN architecture
with an incrementally increasing set of labeledadafhis is an important aspect to
explore because as the engineer gains more knogviglgut a new system, one can
label small sets of data which are known to bet$atd increase the system'’s health
state identification via clustering. This approautiproves the quality of the clustering
results via a semi-supervised cost function (E@sajescribed in Salimans [79]. In the

unsupervised training, the discriminator learnstuiess to avoid classifying the
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generated data as real data, but these featurés maigbe the best representation given
the implicit labels the problem has. One way tghéle discriminator get improved
and more meaningful features for these labels is&othe discriminator as a classifier
for these classes. This is possible with a minangle to the proposed GAN pipeline
outlined in the first step of Algorithm 1. Indedbe loss functionl,, is modified to Eq.

(8), as follows:

L= Lsupervised + Lunsupervised (8)

Where,
Lsupervised = _Ex,y~pdam(x,y) log Pmodel (ylx, y< K+ 1)
Lunsupervised = _{[Ex~pdam(x) log [1 — Pmoaer (v = K + 1|x)]

+Ex-6log [Pmoder(y = K + 1|x)]}

This cost function adds a cross entropy loss ferfittst k discriminator outputs. The
unsupervised cost is the same as the original GZJ\(6). However, there is a slight
change as now+1 corresponds to the probability of the sample bdalge. The
discriminator is used as a competent classifiezge& subset of the dataset. In this case,
the discriminator will be used as a feature extmagiven a subset of the dataset to
improve the system’s health state identificaticsutes based on clustering. Labels are
used as clues for the structure of the data with &im of creating an improved
discriminator. This assumes that images generatthdsemi-supervised learning have
better quality than the ones generated in an umgisee manner. However, notice that

the main objective of a GAN is to generate datafgoor images that resemble the
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training dataset and not to predict any systemathestates. Thus, if we use a few

labeled data points and generated data we arerpanip a semi-supervised training.

4.4.7 Semi-Supervised Stop Criteria

For a qualitative analysis, the GAN'’s last actigatlayer outputs are used to generate
a two component PCA plot. The ideal result wouldabdear separation between the
heath states (classes). If there is not a clearagpn, then adding labeled data would
help aid in the separation and provide better gystealth state diagnosis. It is at this
point the engineer, now with a small number of laloé the fault conditions, can begin
using metrics to evaluate whether the model isgoering suitably to cease labeling
additional data. Eventually the quantity of laletiata reaches a point at which the
decision can be made to explore a deep learningleshaully-supervised fault

diagnostic methodology.

5.0 Examples of Application

In this section, the proposed methodology is adpte both the MFPT and CWR
bearing data sets. To validate the proposed melbggloknown labels are available.
Therefore, metrics like purity, NMI, and ARI can bsed. GPU computing was
utilized throughout this paper using a system witdvidia GPU Titan XP, CPU Core

i7-6700K 4.2 GHz, 32 GB RAM, Tensorflow 1.0, cuDNINL, and Cuda 8.0.

5.1 Machinery Failure Prevention Technology Data Se

This data set was provided by the Machinery FaiRnevention Technology (MFPT)

Society [37]. An experimental test rig with a NIGEBaring gathered accelerometer data
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for three conditions. First, a baseline conditieas measured at 270Ibs of load and a
sampling rate of 97,656 Hz. Second, ten total rensteeway faults were
tracked. Three outer race faults were loaded ithibs with a sampling rate of 97,656
Hz, and seven outer race faults were assessedyatgydoads: 25, 50, 100, 150, 200,
250 and 300 Ibs. The sampling rate for the faulis 48,828 Hz. Third, seven inner
race faults were analyzed with varying loads o060, 100, 150, 200, 250 and 300
Ibs. The sampling rate for the inner race faults w8,848 Hz. Scalogram images, as
shown in Table 4-1, were generated from the rawaigvith the following classes:
normal baseline, inner race fault, and outer raa#.fThe total scalograms images used
for each class was 3,423, 1,981, and 5,404 respéctWith 10,808 total images, the
training set size used was fifty percent. Bilinedgerpolation [39] was used to scale the
images down to a manageable size for the trainifige MFPT data set is a good test
for any algorithm’s ability to separate the baselealthy data with the outer race fault
condition. This can be seen in the similarityrd taw signals in Figure 4-6 and Figure

4-8 respectively. Figure 4-7 shows the inner facét condition.

AR ot i OH%H

Figure 4-6: Baseline signal. Figure 4-7: Inner race fault signal.
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Figure 4-8: Outer race fault signal.

Table 4-1: 96x96 pixel MFPT scalogram images (ddiz&).
Baselint Innel Race Outel Ract

Within the scalograms of the MFPT data set theeeadiew areas of notice. The noise

level within the baseline and outer race data agpta be higher than the inner
race. This is confirmed from the plots of the isignals. The baseline and outer race
faults look similar, hence the potential difficulty the conducting fault diagnosis on

this data set.

Although labels are available for this dataset,résilts presented in this section were
obtained with fully unsupervised training on bot6 GAN and InfoGAN architectures,
with complete datasets and without labels. Visnapéection of the output images of
the generator network, as shown in Figure 4-9 agdr€é 4-10, is a key indicator to
how well the GAN architecture is training and whesthmode collapse, vanishing

gradients, non-convergence, or checkerboarding faetdi is occurring.
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Checkerboarding artifacts occur when the stridgtlems not directly divisible by the
convolutional filter size. The output images orstbata set show that the generator
performed well in converging to the distributiontbe data. It is clear which images
are the inner race fault images, and there isghtsliariation in the images generated

for the baseline and outer race conditions.

Figure 4-9: t mes of D gerator tragnnodel.

Figure 4-10: Otput ie f InG enerato'rnlimg model.

Following the proposed methodology in Section 3 (B&gure 4-2), the alternative

models can be qualitatively evaluated based otwbeomponent PCA. Thus, Figure
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4-11 shows the PCA results for the best model spmeding to the spectral clustering
based on the InfoGAN LA vector with an output imagfe32x32 pixels. Indeed,

Appendix A contains the results for the two companBCA based on both the
InfoGAN and DCGAN data representations. For theesakbrevity, only the results

for the best performing clustering method, spectialstering, are shown. Both
Appendix A and Figure 4-11 compare the predictélmwith the real labels. Note
that, from the results in Appendix A, the InfoGAM lvector with an output image of
32x32 pixels provides the best separation and iftsatton of the system’s health
states. This model is closely followed by the InfdG LA+ vector with an output

image of 32x32 pixels that, when contrasted toréda labels, shows some difficulty

in separating the baseline health state.

This qualitative evaluation is important within theoposed methodology because for
unsupervised fault diagnostics, the first step tfos data representation is a clear
separation between the baseline healthy data anthalty unhealthy data. The faults
themselves do not necessarily need to be sepdratadeach other at this stage as the
goal of this step is to separate healthy from ulhga Isolating faults between each
other can be assessed in a later stage of the ggdpuoethodology as the engineer
begins to label data and has further knowledgethrgaground truth of the signals. As
it can be seen from Figure 4-11 for the best mddébGAN LA vector with image
output of 32x32 pixels, the baseline is separatelll finom the rest of the fault signal

data.
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Figure 4-11: Spectral clustering PCA, InfoGAN LAtput image 32x32 pixels.

The last convolutional layer activation of the GANjenerator allows the visualization
of the manifold the GAN developed during trainirfglee underlying gradient basis of
the raw data. This layer holds valuable informa@out the underlying distribution

of the data.

The effectiveness of the proposed methodology eaevaluated with the following
metrics: Adjusted RAND Index (ARI), Normalized Muadulnformation (NMI), and
Purity. ARI and NMI are well known evaluation mesj however, purity is somewhat
new but used often. Purity, simply put, is theordietween the dominant class in the

cluster and the size of the cluster. More formallyrity is the following Eq. (9),

Purity(w;) = niimr?x(nij) jEC (9)
where,
w clusters
n members
C number of classes
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The three metrics used for evaluation all measiiferent aspects of the effectiveness
of unsupervised learning algorithms. Purity valteesge from zero (poor clustering)
to one (perfect clustering). A high purity wolld easy to achieve if the selected
number of clusters is high. For instance, if evéeature from the proposed
methodology had its own cluster, the purity woudddme. Therefore, purity cannot be
used to evaluate the number of clusters. NMI alowre to evaluate the tradeoffs of
the number of clusters. However, NMI has the sdrmw/back as purity does where if
there are one-image clusters, NMI has a value ef drhe last metric used to evaluate
the clustering output is ARI. ARI, simply put, tise accuracy of the clustering and
measures the percentage of correct decisions. ghRk equal weight to the false
positives and false negatives. This accountshfershort comings of purity and NMI
where, at times, ARI can perform worse when sepayaimilar data points than
clustering dissimilar data points. From the conglt of results shown in Appendix
B, Tables B.1, B.2, B.3, and B.4, the proposed itectures for the DCGAN and
InfoGAN provide a robust underlying manifold repeatation of the data and they have
solid performance for unsupervised fault diagnastithe InfoGAN LA vector with
32x32 output images and with spectral clusteringhes one that achieves the best
results: ARI of 0.89, purity equal to 0.96 and N&10.88 as shown in in Table 4-2.
This indicates the proposed methodology is creapnge clusters, the number of
clusters is generating a high NMI, and the ARI aacy of 0.89 is high for

unsupervised learning.

90



Table 4-2: Fully unsupervised 32x32 generator aiipioGAN LA output and
spectral clustering.
Percent Labeled Data AR Purity NMI

0% 0.8¢ 0.9¢ 0.8¢

Moreover, the INfoGAN architecture with the 32x3hgrator output outperformed the
96x96 output. This could be explained by the snties between the baseline and the
outer race fault condition. With increased generegsolution potentially blurring the
images, the GANs models could therefore have aghdirde classifying them. Based
on the ARI, NMI, and purity results, there is nadefinitive optimal image resolution
for both architectures. Spectral clustering outpened k-means++ across the
board. The ability of spectral clustering to mamtlower dimensional space allowed
for better predictions. Therefore, for the MFPTadsét, the InfoGAN outperformed
the DCGAN. Given the noise the MFPT data set hakinviwo of the classes, the

InfoGAN did a better job of encoding the experinaminise into the vector.

The next step would be to monitor the system aslip&sdata is collected. As faults
arise, inspection and knowledge of faults must bmpeted to ensure the fault
diagnostic system improves. These results indigai#ong value proposition for the
proposed methodology. The proceeding section explimcreasing the percentage of

labeled data within this methodology.

As the results of the unsupervised learning araionetl, semi-supervised learning may
be required if some of the results do not meet wuequirements for prediction

capability. Even though the fully unsuperviseditssfor this dataset are satisfactory,
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with best purity scores of 0.96 and 0.82 for thie@AN and DCGAN, respectively,
and good separation on the PCA plot for the idigatifon of health states, the semi-
supervised case is explored to see how good thiigesan be with an investment in
resources to label the data. This is a time comsyand expensive process, SO we
analyze different cases that incrementally addl$atzethe dataset. The percentage of
the labeled data is dependent on knowledge of #ilaré process, degradation,
application, quality of the data, feeling/experotedge, and associated costs. For the
sake of brevity, in this section, we focus on thehdecture with the best performance
in the unsupervised stage discussed in the presexi®n, i.e., the INfoGAN LA vector
with 32x32 generator output. Note also that the efedre trained with only a small

portion of the dataset that is labeled.

The top results are reported in Table 4-3 whichfaréhe InfoGAN architecture with
LA output image 32x32 pixels using spectral clustgrTo evaluate effectiveness of
the semi-supervised fault identification pipelinke actual labels are compared to
predicted clusters (predicted health states).

Table 4-3: 32x32 generator output, INfoGAN output and spectral clustering.
Percent Labeled Amount of

Date Labele( Date ARI Purity NMI
0% 0 0.8¢ 0.9¢ 0.8¢
1% 54 0.37 0.77 0.4t
2% 10¢ 0.4¢€ 0.7¢ 0.5¢
4% 21€ 0.82 0.94 0.81
8% 432 0.8¢ 0.9¢ 0.87
10% 541 0.9C 0.9¢ 0.8¢
20% 1,081 0.9¢ 0.9¢ 0.9¢€

Something peculiar in the results is the fact that metrics performance decreases

initially with the addition of labeled data. Thgsbecause the semi-supervised models
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are trained with labels on a very small portioniha full data set. The most important
part of these validation metric results is the paihwhich the semi-supervised case
begins outperforming the unsupervised case. Tdppéns at eight percent. The semi-
supervised case is able to match the unsupeneésedts with only four percent labeled
data and surpass it with eight percent. This gitiesengineer a decision point with
which to make an economic decision to start lalgetiata. Compared to the fully
unsupervised, the semi-supervised results showtterbgeparation overall of the

baseline versus the fault data.

In summary, at a 0.94 purity from the spectral teltisg results out of the InNfoGAN ¢
vector, it is worth exploring this unsupervised ggeh for this dataset before spending
engineering resources on labeling the vast amotimtata for similar systems in
industry. Also, with the addition of the labeledtalathere are few points worth
commenting. First, spectral clustering still oufpenmed kmeans++. The results for
the low percentage labeled data show almost eqer&bmqmance compared with the
unsupervised results, as shown in Appendix B, &aBld, B.2, B.3 and B.4. This is
not surprising as the unsupervised results weeadjr high. These results indicate the

unsupervised results can be achieved with a safaléd subset.

5.2 Case Western Reserve University Bearing Ddta Se

The second experimental data set was provided 3¢ @éestern Reserve (CWR)
University Bearing Data Center [6]. A Reliance &liecmotor, two horsepower, was

used with ball bearings in experiments for the &itjon of vibration accelerometer
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data on both the drive end and fan end bearingsh@sn in Figure 4-12. The signal
is generated from the bearings supporting the nsttaft. Single point artificial faults
were seeded in the bearing with an electro-dis@arachining. Location and diameter
of the faults varied for the outer raceway. Aduhtlly, O to 3 horsepower motor loads
were included within the experimental data. Acamieeters were attached via magnets

to the housing on the twelve o’clock location.

Figure 4-12: CWR experimental test stand for rdbiearing.

For the purposes of this paper four classes wesd: Umseline, inner raceway, outer
raceway, and rolling element (ball). In total, theages generated for each class was
3,304, IR 2,814, OR 2,819, BF 2,816 respectivelyesk classes were assembled by
combining the fault sizes, motor speed, and mataa.| The training set size again was
set to fifty percent of the 11,753 total images.o @&nsure the images were a
computationally efficient size, bilinear interpatat [39] was used to scale the images
down to a manageable size for the training. For GWéR data set, any analysis

incorporating the rolling element (ball fault) dataquires more sophisticated

algorithms than envelope analysis [41]. Visuallye@an see from Figure 4-13, Figure
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4-14, Figure 4-15, and Figure 4-16 that this wolibdd true. The ball fault signal

(Figure 4-16) appears to mimic parts of both basedind outer race fault signals.

i) (-

Figuré 4-13: Baseline raw si'gnal. Figure 4-15: Outer race fault raw
signal.
Figuré 4-14: Inner race fault raw . . . .
signal. Figure 4-16: Ball fault raw signal.

From the raw signals, the following scalograms wgmeerated based on the procedure
presented in Section 2. Bilinear interpolation wasd to scale the image down to a
usable size (96x96 and 32x32 pixels) for trainimg GAN. Samples of these images
are shown in Table 4-4. One can see the ball femdges may mimic the higher
frequency outputs of the outer race faults, andldkesr frequency response of the
baseline signals. Also note that, overall, thes@on this data set appears to be less

than that of the MFPT data set.
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Table 4-4: 96x96 pixel CWR scalogram images offéusts.
Baselint Innel Race Outel Race Ball Feult

After training both proposed architectures for DOQGANnd InfoGAN, the output

images on this data set, as shown in Figure 4-tl#/g&yure 4-18, appear to show that

the generator performed well in converging to tisgrithution of the data.

Figure 4-17: Output images of DCGAN generator frajrmodel.
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Figure 4-18: Output images of INfoGAN generatomiragy model.
The PCA of the first two components of thA vector (DCGAN) and LA+ vector

(DCGAN and InfoGAN) representations are comparduk predicted and real labels
are shown in the Appendix B for all the models blase the best performing clustering
method. For the CWR dataset, this is kmeans++th@lDCGAN LA vector on 96x96

generator images as shown in Figure 4-19. Howewee, can observe that PCA
operating on the DCGAN and InfoGAN training hadidiflties with the baseline data

separation. It appears the ball fault data resultso sets of clusters in the PCA which
is difficult for the clustering methods that do rotploy a higher dimensional space to

separate.

@ Bl Fault
@ Gassine

® hner Race
® Outer Race

Real Predicted

Figure 4-19: K-means++ PCA, DCGAN LA output imadx96 pixels.
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The ARI, purity, and NMI metrics are again useglabidate the proposed methodology
on this data set. The complete set of results eafotnd in Table C.1, C.2, C.3, and
C.4. For the CWR dataset, it is the 96x96 generatitput on the DCGAN utilizing
kmeans++ clustering that delivers the best resulis ARI, purity and NMI scores
equal to 0.69, 0.82, and 0.78, respectively, angvalin Table 4-5. Note that these are
much lower than the unsupervised results of the Mé#ta set.

Table 4-5: CWR 96x96 generator output, DCGAN kmeandustering.
Percent Labeled Data ARI Purity NMI

0% 0.6¢ 0.82 0.7¢

The unsupervised results for the CWR data sebar@ahd appear as though they could
benefit from the addition of labeled data to tlz@ning. Based on these results, the next
section explores increasing the percentage oféalialages within the GANSs training.
Semi-supervised learning of the fault detectionusthdbe explored given the lower

results of the unsupervised learning.

Again, once the first model is trained, the datasetcrementally labeled. NMI, purity,
and ARI were again used to evaluate the model shedabels are known. As in the
previous section, we restrict our discussion toRDRESAN architecture as it achieved
the best fault diagnosis results in the fully uresused stage. Thus, the results are
reported in Table 4-6 from the 96x96 generator atpsing the DCGAN architecture,

and kmeans++ clustering to separate the systerthtetates.
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Table 4-6: CWR 96x96 generator output, DCGAN kmeandustering.

Percent Amount of
Labele(Date Labele(Date ARI Purity NMI
0% 0 0.6¢ 0.82 0.7¢
1% 117 0.4( 0.62 0.4z
2% 23¢ 0.47 0.71 0.5¢
4% 47C 0.51 0.6¢ 0.61
8% 94( 0.51 0.7C 0.5t
10% 1,17¢ 0.8¢ 0.9t 0.8¢
20% 2,35( 0.9t 0.9¢ 0.94

The first evaluation of the results also indicatesssame pattern the MFPT results had.
The metric performance decreased as labels weredaiddsmaller quantities. The
point with which the semi-supervised results outgened the unsupervised results for
this data set is between eight and ten percentCWiR data set benefited greatly from

the addition of the labels.

Kmeans++ operating on the representation from 8&BN for this dataset had better
system state separation with labeling a portiorthed data set. The purity is much
improved with the top model achieving 0.98 purityha20% labeled data, whereas the
unsupervised case was only 0.82. The CWR datassmt easily separable data set
using the baseline data, inner race, and outerfeades. With the addition of the ball
fault data, however, one must use more sophisticatethods to perform fault
diagnosis. The CWR data set, in general, hasi@ss throughout the scalograms than
the MFPT data set. Even without the informatiamfithe latent space of the InfoGAN,
the DCGAN architecture provided a better represemtdor this data, which benefited

greatly from the addition of labeled data.
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In summary, the CWR predictions performed worse tha MFPT data set predictions
as found in the Appendix C for unsupervised trainin Kmeans++ outperformed
spectral clustering but not always. A 32x32 getwerautput versus a 96x96 generator
output was less clear. For the DCGAN and kmean#¥e+96x96 output performed
better. However, for spectral clustering, both outpsizes performed
poorly. Kmeans++ with a DCGAN architecture andéx®b pixel generator output

had the highest purity measure.

6.0 Comparison with AE and VAE

To evaluate the proposed methodology, a baselia@stgAE and VAE was completed
on the same set of scalogram images. The sammalxttustering evaluation metrics
are used to assess the methodology. The featwextaacted from the encoder output

for the autoencoder architecture and from the zmoegput in the VAE case.

For the AE two architectures are considered: orsedban fully connected layers
(MLP-AE) and another with convolutional layers (WelE). At least two layers are
used for the encoder / decoder (thus using at feésters given symmetric encoder-
decoder) to allow the AE to generate complex enofegtiures. Given this base
architecture, layers or hidden units are added th#ifollowing qualitative criteria is
met: after 10,000 iterations we reconstruct tengesaand decide based on image
quality if the decoder generated is a good recanstm. The loss function is the mean

square error between reconstruction and input image
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Based on the procedure established by the propus#tbdology, Figure 4-20, Figure
4-21, and Figure 4-22 show the PCA visualizatiomselol on the results obtained from
the MLP-AE, Conv-AE and Conv-VAE architectures,pestively. Note that all PCAs

have an explained variance near 90% so the vistii@is are a good approximation of

the general structure of the data.

In the MLP-AE results, the structure of the feasuienot so clear given the overlap
and the spread of the data structure. An explamdtiothis behavior is the nature of
MLP when they are used on images: the spatialnmétion is hard to encode, so more
complex transformations are required. This hypashes supported comparing this
with the structure found by the Conv-AE where & habon structure is found. From
the results reported in Table 4-7 (MFPT) and Tabk (CWR), we get consistently
high results in most of the metrics for Conv-VAEwE consider only purity, the Conv-
VAE is marginally outperformed by MLP-AE for bothé MFT and CWR datasets but,
in terms of representation, the Conv-VAE is preigas shown in Figure 4-22 (MFPT)
and Figure 25 (CWR). The Conv-VAE architecture lls best baseline signal
separation of the three models. Despite thesetseftad the MLP and VAE based
approaches, the proposed GAN based methodologgdoitms all models, as it can
be substantiated by comparing the results in T&blgMFPT) and Table 4-8(CWR)

with Table 4-2 (MFPT) and Table 4-5 (CWR).
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Table 4-7: MFPT Unsupervised AE and VAE results.

Model ARI Purity NMI
MLP AE k-means++ 0.44 0.7¢ 0.4¢
MLP AE Spectral 0.61 0.82 0.7¢
Conv AE k-means++ (3¢ 0.7¢ 0.4¢
Conv AE Spectral 0.5C 0.81 0.5
Conv VAE k-means++ (.51 0.81 0.67
Conv VAE Spectral 0.5¢ 0.81 0.6¢
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Figure 4-20: MFPT AE MLP architecture.
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Figure 4-21: MFPT AE convolutional architecture.

103




PCA real PCA predicted
25-
® Outer_Fault [ ] 204 [}
e Baseline fo ©° :
2.0 - °
® Inner_Fault °
s 1.5~
10- 1.0-
0.5 - 0.5 -
0.0 - 0.0 -
-0.5
-0.5
-1.0
~1.0 -
-2 -1 0 0 1 2
PCA real PCA predicted
25-
® Outer_Fault ° 2 °
e Baseline do oo 0
2.0- °
® Inner_Fault °
s 15+
1.0 - 1.0-
0.5 - 0.5 -
0.0 - S
-0.5
-0.5
-1.0
-1.0

-2 -1 0

Figure 4-22: MFPT VAE convolutional architecture.
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Figure 4-23: CWR AE MLP architecture.
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Figure 4-25: CWR VAE convolutional architecture.

Table 4-8: CWR Unsupervised AE and VAE results.

Model ARI Purity NMI
MLP AE k-means++ 0.4¢ 0.6¢ 0.5t
MLP AE Spectral 0.3t 0.6( 0.5¢
Conv AE k-means++ (.21 0.52 0.27
Conv AE Spectral 0.3¢ 0.6€ 0.57
Conv VAE k-means++ 0.5( 0.6¢ 0.61
Conv VAE Spectral 0.1¢ 0.5t 0.3¢4

These results indicate a limitation of the proposed methodology where the available
clustering evaluation metrics only measure the clustering of a representation, not the
representation itself. However, the representations do exhibit a consistent intrinsic

structure between them. The convolutional VAE and AE together with the GAN
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representation result in similar structures. Thénndéference seems to be the ease of
the clustering algorithm to separate this structiitee results indicate that complex
models tend to ease this process with higher ARI|,lMnd purity scores. For example,
in the case of the MFPT dataset, if we comparesthesults with the top GAN results,
the best non-GAN model ranks fifth best (see Tdbl2 and Appendix B). This
indicates that a leer computational cost methodology can achieve reasonable results;
however, to increase ARI, NMI, and purity score®asiderably more complex model

is required.

7.0 Concluding Remarks

Unsupervised fault diagnostics is a critical are@search with applications into many
industries. The ability to detect faults when ghisralmost zero ground truth, with little
to no labeled data, and from big multi-dimensiamalkchinery data has vast economic
benefits. In this paper, a novel deep generativeraarial multi-stage methodology is
proposed for fault diagnostics. This methodologhieved superior unsupervised
prediction results over both AE’s and VAE's. Thessults are then further improved

with the addition of a subset of labeled data.

To achieve the results presented in this paperotitguts of the activation layers in
both DCGANs and InfoGANs were examined within twaditional clustering

algorithms: 1) k-means++ and 2) spectral. These tWstering algorithms were
chosen to prove the robustness and flexibilitthhef@AN-based methodology to simple

clustering techniques. The InfoGAN encoder veatas tested as an additional feature
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for clustering; however, the addition of the encodérmation had mixed results. It
appears the InfoGAN architecture outperforms theGAE on noisier data like the
MFPT set. Both architectures’ performance bengfitem labeling even a small

portion of the data.

While these initial results showed promise, ther lanitations and research is in
process to address them. The MFPT data set idessiempugh for envelope analysis
classification if the signals are known; howeviee CWR data set cannot be diagnosed
with envelope analysis alone. The MFPT data skindiude varied loads and multiple
sampling frequencies which were not explored is tiork. The amount of data within
each of those data sets was insufficient for thiénaumlogy and resulted in overfitting.
Varied rotational speeds were also not exploreth@slata sets did not contain them.
It is widely known that training a GAN architectwan be challenging. To complete
the work in this study, the training was done npldtitimes to ensure the GAN
converged towards the Nash equilibrium without mamdlapse and vanishing

gradients occurring.

Generative adversarial fault diagnostics pairechwhte automatic feature learning
inherent with deep learning has great potentiaebenfor many industries as more
adopt a predictive maintenance program. Generatlversarial networks as a research
topic is still, relatively speaking, in its infancylt has been accelerating and
proliferating through other research communities st pace since 2014. This is the

first paper to incorporate it into fault diagnostidhe proposed methodology proves
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that it is flexible enough to incorporate enginegrexpertise as that expertise grows.
In fact, the proposed methodology demonstrates éaajnostics are strengthened by
the meaning engineering expertise can give togtiakbd GAN feature representations.
DCGANSs prove their ability to diagnose faults wairo information on the real classes
within the data set. Moreover, InfoGANs show thveith slight knowledge into how
many potential driving failure modes the rollingmlents may have, the diagnostics
results may be improved with little economic inwesht. With integrated
unsupervised and semi-supervised fault diagnostidastries such as aerospace, wind
power, oil and gas, and automotive are poised knckmew potentials for diagnostic

and structural health management systems.
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9.0 Appendix B

MFEPT Results: 0% (Unsupervised)

ARI Purity NMI
LA KMeans++ 0.5¢ 0.8C 0.6z
LA Spectral Clustering 0.8¢ 0.9¢ 0.8¢
LA+ KMeans++ 0.57 0.8z 0.64
LA+ Spectral Clustering 0.8t 0.9t 0.8¢

Table B. 4-1: 32x32 generator output, INfoGAN.

ARI Purity NMI
LA KMeans++ 0.5C 0.81 0.5¢
LA Spectral Clustering 0.61 0.82 0.72
LA+ KMeans++ 0.4z 0.7¢ 0.5¢
LA+ Spectral Clustering 0.8 0.94 0.82

Table B. 4-2: 96x96 generator output, INfoGAN.

ARI Purity NMI
LA KMeans++ 0.3¢ 0.7z 0.47
LA Spectral Clustering 0.3¢ 0.72 0.48

Table B. 4-3: 32x32 generator output, DCGAN.

ARI Purity NMI
LA KMeans++ 0.5C 0.7¢ 0.6z
LA Spectral Clustering 0.5¢ 0.82 0.72

Table B. 4-4: 96x96 generator output, DCGAN.
*: Indicates best results for clustering.
*: Indicates best results for 96x96 or 32x32 output.
. Indicates best results for ARI, Purity, and NMI.
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10.0 Appendix C

CWR Results: 0% (Unsupervised)

ARI Purity NMI
LA KMeans++ 0.56¢ 0.75¢ 0.647
LA Spectral Clustering 0.35¢ 0.60¢ 0.572
LA+ KMeans++ 0.56¢ 0.76( 0.647
LA+ Spectral Clustering 0.30¢ 0.64( 0.517%

Table C. 4-1: CWR 32x32 output, InfoGAN.

ARI Purity NMI
LA KMeans++ 0.50(¢ 0.76¢ 0.57¢
LA Spectral Clustering 0.38:2 0.73: 0.51(C
LA+ KMeans++ 0.46% 0.657 0.49¢
LA+ Spectral Clustering 0.35¢ 0.71% 0.59¢

Table C. 4-2: CWR 96x96 output, InfoGAN.

ARI Purity NMI
LA KMeans++ 0.52¢ 0.72¢ 0.57¢
LA Spectral Clustering 0.347 0.59¢ 0.59¢

Table C. 4-3: CWR 32x32 output, DCGAN.

ARI Purity NMI
LA KMeans++# 0.68¢ 0.81¢ 0.781
LA Spectral Clustering 0.241 0.6C0 0.467

Table C. 4-4: CWR 96x96 output, DCGAN.
*: Indicates best results for clustering.
. Indicates best results for ARI, Purity, and NMI.

Acknowledgments

The authors acknowledge the partial financial suppicthe Chilean National Fund

for Scientific and Technological Development (Forydeander Grant No. 1160494.

114



Chapter 5: A Deep Adversarial Approach Based oftiMu
Sensor Fusion for Remaining Useful Life Prognoétics

5.1 Abstract

Multi-sensor systems are proliferating the assetagament industry and by proxy,
the structural health management community. Amsetagers are beginning to require
a prognostics and health management system tocpradd assess maintenance
decisions. These systems handle big machinery aladamulti-sensor fusion and
integrate remaining useful life prognostic capakes. We introduce a deep adversarial
learning approach to damage prognostics. A norkMaan variational inference-
based model incorporating an adversarial trainiggradhm framework was developed.
The proposed framework was applied to a public irseihsor data set of turbofan
engines to demonstrate its ability to predict renimg useful life. We find that using
the deep adversarial based approach results iethpgrforming remaining useful life

predictions.

5.2 Introduction

Reliability engineering has long been posed withgloblem of predicting failures by
using all data available. As modeling techniquagehbecome more sophisticated, so

too have the data sources from which reliabilitgieaers can draw conclusions. The

4 The full-text of this chapter has been publishe¥erstraete, D. B., et al. " A deep
adversarial approach based on multi-sensor fusion rémaining useful life
prognostics."29th European Safety and Reliability Conference RES 2019).
Reseach Publishing Services, 2019. ISBN: 978-981-11-2324
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Internet of Things (loT) and cheap sensing techyiek have ushered in a new
expansive set of multi-dimensional data which poasi reliability engineering

modeling techniques are unequipped to handle.

Diagnosis and prognosis of faults and remainindulisiée (RUL) predictions with this
new data are of great economic value as equipnustimers are demanding the ability
of the assets to diagnose faults and alert tec@mscivhen and where maintenance is
needed [1]. This new stream of data is often tugilg and time consuming to justify
labeling all of it. RUL predictions, being the masfficult, are also of the most value
for the asset owner. They provide informationdatate-of-the-art maintenance plan
which reduces unscheduled maintenance costs bgliagalowntime and safety issues.
Therefore, taking advantage of unsupervised legrbased methodologies would
have the greatest economic benefit. Deep leatmisgemerged as a strong technique
without the need for previous knowledge of relevi@atures on a labeled data set [1].
If faulty system states are unavailable or a spwitentage of the fault data is labeled,
deep generative modeling techniques have showahitiey to extract the underlying

two-dimensional manifold capable of diagnosing t&ul

Deep learning has been employed with success tainamy useful life estimation
(RUL). [54] employed a recurrent neural networltN(® for RUL estimation. [55],
[56], [57], [58], [59], [60], and [61] all employohg short-term memory (LSTM)

networks to estimate RUL. [62] incorporates featex&raction coupled with a deep
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neural network for RUL estimation. [63] uses conNnal neural networks (CNN)

and time-windowing to estimate RUL.

These previous works into RUL estimation do natrafit to develop an understanding
of the underlying generative or inference modelordbver, they used datasets which
were fully labeled. Generative modeling providies possibility to accomplish this
without having to label what could be massive rdithensional noisy sensor data.
Labeling this data would be costly and difficuld valuable methodology would
provide the flexibility to include a small percegéaof labeled data as it becomes

available.

To address these problems, this paper proposdsghalgorithm which incorporates
both variational and adversarial training for RUtognostics. The novelty of this
method has vast applications for fault diagnost @ognosis. Furthermore, it can be

incorporated for both new and existing system asset

5.3 Background

5.3.1 Generative Adversarial Networks

Generative Adversarial networks (GANSs) are a ct#dsgenerative models where the
density is learned implicitly via minimax game [47This game’s objective is to learn
a generator distributioR; (x) identical to the real data distributid),:,(x). When

one does not necessarily want to explicitly ob&minference model to diagnose a
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system fault and assign probability to every data the distribution, GANs are a
viable alternative. To accomplish this, the getwré&rains a neural network (NN)
capable of generating the distributiBg(x) by transforming a vector of random noise
variables, P, (z). The generator’'s objectivé(z), is trained byplayingagainst an
adversarial discriminator network parameterizecalseparate neural network whose
objective, D(x), is to classify the data as real or fake. Thanogit discriminator
D(x) = Pygta (X)/[Paata(X) + Pz (x)] would ideally converge to the Nash Equilibrium
[64]; however, there is no mechanism to contrdd.tHrormally, this value function is
Eq. (10):

min max V(G, D)
G D

= IEx~Pdam(x) [log (D (x)] (10)

+ [Ez~Pn0ise(z) [log (1 — D(G(2)))].

where,Pgatax) IS the data distributiorPnois¢x) is the noise distributionD(x) is the

Discriminator objective function, ar@(z) is the generator objective function.

5.3.2 Variational Autoencoders

Variational autoencoders (VAES) are a class ofieigenerative models which yields
both inference and generative models [66]. VAHEsnapt to learn a moded(x|z), of
latent variablesz, which generates the observed data, Commonlyp(x|z) =
pe(x|z) is parameterized by a neural network with parareéte For most cases the

posterior distributionp(z|x) is intractable. However, an approximate posterior
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distribution, g (z|x), can be used to maximize the evidence lower b¢Eh&0) on

the marginal data log-likelihood. Formally, thisexpressed as Eq. (11),

logp() = | E . llogps (x12)] ~ KL(45 z1x)IP(2)) (11)

From this, the objective is equivalent to minimginhe Kullbeck-Liebler (KL)
divergence betweeqy, (z|x) andp(z|x). Note thaig,(z|x) is usually parameterized

by a neural network with parameters VAEs have been successfully applied to fault

diagnosis problems in the recent past [65].

5.4 Proposed Framework

In this work, we propose a mathematical framewdbi £ncapsulates the following
features: non-Markovian transitions for state spaodeling (i.e., it is not assumed that
all information regarding past observation is corgd within the last system state),
adversarial training mechanism on the traininghef tecognitiongy (z;|z;..—1, X1.¢),
variational Bayes for the inference and predictmedel pg(x;|x1.t-1,21.+), and
adversarial variational filtering algorithm. We sg as the observed sensor dataas
the latent system statg, is the recognition model parametefls,is the inference
model parameters, ang is the target domain relevant to the adversamahingy €

0,1,..,RUL.

We denote the latent sequenges Z c R"z as a set of real numbets. We denote
observationsx; € X c R™ dependent on inputsi, € U c R™., Where X is
potentially, but not limited to, a multi-dimensidndata set consisting of multiple

sensors from a physical asset. The observatiomssitlges are not constrained to a
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Markovian transition assumption. Therefore, thgaasitions can be complex non-
Markovian. This is often the case for engineenmgblems like crack growth and
environmental effects on RUL. We are interestati@probabilistic function sequence
p(x:|z1..—1) generated by the discrete sequences: (xq, x5, ...,x;) and z;.,_; =

(24,25, ..., Zs—1), @s shown in EqQ. (12).

p(xelxye—1) = fp(xtlxl:t—llZl:t)p(zl:tlzl:t—l)dzl:t (12)

Z1.¢t-1,Zt € Z € R™ denotes the latent sequence. The underlyingtlalgmamical
system is assumed to have a generative model haigis emission model
p(x¢lxq.t-1, 21.¢) and transition modei(z;|z;..—,). Two assumptions, Eq.’s (13) and

(14) are classically imposed on emission and tt@msmodels to obtain the state space

model,
t
prltie sz = | [ pCrlz) (13)
i=1
t—-1
pGelzie) = | [Ptz (14)
i=0

It is assumed that the current statecontains complete information for both the
observationsx;, and the next state,,;. These assumptions are insufficient for
complex non-Markovian transitions on noisy multir@nsional sensor data.
Therefore, we propose the objective function asvshim Eq. (15) which gives us an

expressive approximate inference modglz.|x,). The mathematical formulation

characterizes the state space model without asgumsps outlined in Eq.’s (11) and
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(12), and we also have both a generative and iméerenodel of the system state to

perform diagnostics and prognostics on the remgingeful life of the system.

mgin chblx ]ED(x)]Eq¢(Zl:t|x1:t )([logpe(xl:t|21:t)]
- KL[q¢(Z1:t|x1:t)||p(Z1:t)])

This methodology is aided by GPU processing. Sihisemethod does not include

(15)

the Markov property, having to back propagate thsds and weights through each

timestep is computationally expensive.

5.5 Experimental Results

To evaluate the proposed methodology the CommeMadular Aero-Propulsion
System Simulation (C-MAPPS) data set was used. CRBAR a tool developed and
coded in MATLAB and Simulink environment for themsilation of commercial
turbofan engines [67]. The model takes an inpuarpater of an engine component
degradation level or health indicator and outpatsesponding sensor signal values.
Operational profile, closed-loop controllers andiisnmental conditions can all be
adjusted to suit the specific problem the usernymg to solve. The 90,000-pound
thrust class engine and the simulation packageshility allows operations at 1)
altitudes ranging from sea level to 40,000 feetyiach numbers from O to 0.90, and
3) sea-level temperatures from -60 to 263 The main elements of the engine are

shown in Figure 5-.
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Figure 5-1: Simplified diagram of engine simulatedC-MAPPS [67].
Specifically, for this paper, FD0OO1 of the PHM 2068mpetition data set using

CMAPPS is used for this analysis and application.
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Figure 5-2: FDO01 RMSE results vs training stepS@iterations with the lowest
result (14.69) marked.

The results from training fifty iterations and Rldistimations are a mean of 16.91
RMSE and a standard deviation of 1.48. The loweslt from the training was an

RMSE of 14.69 as shown in Figure 5-2. These resu# very good and near the state-
of-the-art results for this data set. The outpUthe framework also includes a

generative model that gives the engineer the ghdipotentially generate more data.
Moreover, these results are fully unsupervisedniegr whereas similar results are
fully supervised estimations [69]. Further resbanill address these gaps and refine

the results on a real-world application.
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5.6 Conclusions

In this paper we have proposed a deep learningleshaddversarial-variational
mathematical framework for remaining useful lifdimation. Unsupervised RUL
estimation is a critical area of structural heattonitoring research. It has many
applications into numerous industries. This matiigeal formulation is the first

application of its kind and shows great promise.

The proposed mathematical framework demonstratsslid ability to predict the
remaining useful life of the asset. An engineen cecide whether to plan for
maintenance before a failure occurs and make tloessary arrangements. The
application of the mathematical framework is nolydimited to turbo-fan engines.
Oil and gas, wind turbine farms, automotive, ancbapace can all benefit from this

research.
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Chapter 6: A Deep Adversarial Approach Based ottiNensor
Fusion for Semi-Supervised Remaining Useful LifedProstics

6.1 Abstract

Multi-sensor systems are proliferating in the ass@bagement industry. Industry 4.0,
combined with the Internet of Things, has usherethé requirements of prognostics
and health management systems to predict the s¥steghability and assess

maintenance decisions. State of the art systemvggeoerate big machinery data and
require multi-sensor fusion for integrated remagnuiseful life prognostic capabllities.

To address this challenge, this paper proposesmatbrsersarial approach to remaining
useful life prediction in which amon-Markovian variational inference-based model
incorporating an adversarial methodology is dewetop The evaluate the proposed
approach a public multi-sensor data set for tunbaagines is used for remaining

useful life prediction. The proposed approachhentcompared against similar deep

learning models.

6.2 Introduction

Reliability is defined as the ability of a produmt system to perform its required
functions without failure for a specified time anben used under specified conditions.
Therefore, reliability engineering has long beeskéal with predicting the remaining

useful life of systems by incorporating all avalabata. Reliability engineering has

5This chapter has been published at Verstraetdioguett, E.; Modarres, M. A Deep
Adversarial Approach Based on Multi-Sensor FusmmSemi-Supervised Remaining
Useful Life PrognosticsSensorf020, 20, 176.
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been given technologies incorporating cheap sensitiigthe Internet of Things (loT)
generating multi-dimensional data sets through $tgu4.0 [1]. With this new data at
the engineer’s fingertips, more sophisticated madhagies to handle this data have

been developed and expanded the prognostics aiiti hemagement (PHM) field.

These data sets are often costly and time-consutmiadel [2]. The engineer therefore
must make an economic decision on how much dalabel. Therefore, the greatest
economic benefit would be to take advantage of pesised learning-based
methodologies. To understand relevant system hasdttes without labeling, deep
learning methodologies have been shown to be aigah employed without the need

for previous knowledge of degradation processek [65

Most recently, remaining useful life (RUL) reseafobused on fully supervised deep
learning methodologies has had success RUL predi¢69]-[85]. These models
depend on the analyst having access to a fulljlddbeéataset. Therefore, these RUL
prediction accuracies require the use of accuraieing data labels. Moreover, this
previous research does not attempt to developriderlying generative or inference
model.A reliability engineer does not always have theueses to label all the data
necessary to train a deep learning model. A vakuai#thodology would provide the
flexibility to include a small percentage of laketldata as it becomes available and
resources allow. Generative modeling is a classarfeling techniques which provides
the ability to predict RUL without having to labelhat could be massive multi-

dimensional sensor data.
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There have been recent efforts in generative mogleésearch, although it has yet to
be adapted and applied to reliability and macheath prognostics. Indeed, [86] and
[87] both employed the variational autoencoder (YAfinciples to times series
observations. [88] encodes the state space assamagftiom within their proposed
structure inference deep Kalman filter-based medlomy. [89] proposes a VAE
principled state-space filtering methodology in evhihe latent space is forced to fit
the transition. [90] present VAEs based on adveistaaining, and they achieve the
flexibility to represent families of conditionalgdributions over latent variables. [91]
combine GANs with VAE by proposing a new interptieta of adversarial domain
adaptation (ADA) and a unifying generative modeliingmework named through
comparisons with the wake sleep algorithm [92].SEhmethods, while suited for their
applications in computer science, lack the requinets for RUL predictions, such as
time series applications. The Markovian assumptmlso utilized, where it is
assumed that all information of past observatiensontained within the last system
state; however, for prognostics and health manage®HM), this is insufficient.
Multiple operating conditions increase the degradatcomplexity of the RUL
predictions, and some degradation paths are intigrean-Markovian (e.g., crack
growth). VAE on their struggle with low probabiligvents, like curb strike events
inherent in large systems [36]. Additionally, faf® applications with unsupervised
RUL, these methods lack the VAE combined with ttbeeasarial training of a GAN

on time-series data to provide predictions.
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To address these problems, this paper proposespagéaerative state-space modeling
methodology for the remaining useful life progneostiof physical assets. The
mathematical framework underpinning the proposedhaoumlogy delivers the
following novel contributions for RUL prediction§) Non-Markovian transitions from
multi-dimensional sensor data by generalizing gpdgmerative filtering approach for
remaining useful life estimation of the system;) (@ modeling approach that
incorporates both variational and adversarial meisias; (iii) flexibility to handle
both unsupervised and semi-supervised learninghirestimation of the remaining
useful life. This method has vast applications RJL predictions on both new and

existing system assets.

The rest of the paper is organized as follows. i8e@ provides a brief overview of
GAN, VAE, and state-space modeling. Section 3eessthe proposed methodology
and the underlying mathematical framework. Seclooverviews the experimental

results. Section 5 concludes with discussionsfafue work.

6.3 Background

The generative modeling research as mentioned af@&®2], all aim to tackle
the problem of both a generative manifold spacefedence modeling for prediction.
There are slight differences between generative sridrence modeling, but
fundamentally they aim to solve the same probleiacksbox neural transformations
for implicit distribution modeling between the lateand visible spaces. For RUL
estimation, reliability and PHM, this is equivaletd modeling the underlying

degradation spagce that is a result of the acquired observed serstar sEtx.
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Figure 6-3: Generative and inference modeling sirities (Adapted from [91]).

Inference Model

Traditional generative modeling approaches tendistinguish between latent and
visible variables clearly and treat them differgndowever, a key aspect in generative
modeling is that a clear boundary between the taad visible variables (as well as
generation and inference) is not necessary. ldsteéewing generative modeling as a

symmetric pair helps in modeling and understandmghown in Figure 6-3.

6.3.1 Generative Adversarial Networks

Generative Adversarial Networks (GANs) are a clagsgenerative modeling
techniques where two neural networks compete maanax game [64]. This game’s
objective is to develop/learn a generator distiduP; (x) able to generate fake data
identical to the real data distributid®y,;,(x). However, the generator does not
directly have access to the real data. Insteaal,gémerator distribution?;(x),
transforms a vector of random noisd,(z), with objective function,G(z). The
generator is then trained against an adversasafichinator network parameterized by
a separate neural network whose objectiMg), is to classify the data as real or fake,

as shown in Figure 6-4.
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Figure 6-4: Generative Adversarial Networks

There is no mechanism within the GAN training to&twain and control the Nash
Equilibrium point; however, the optimal discrimioat D(x) =
Piata (X)/[Paata X) + Ps(x)] should converge to equilibrium [64]. Formallyjsth
value function is shown in Eq. (16):

min max V (G, D)
G D

= IIE':X~Pda,5a(x) [lOg (D (X)] (16)

+ IIE':Z~an-5e(z) [log (1 - D(G(Z)))]

where,G(z) is the generator objective functidd(x) is the discriminator objective

function, Pyatax) IS the data distribution, ariy) is the noise distribution.

6.3.2 Variational Autoencoders

Variational autoencoders (VAES) are a class of ggive models which develops both
an inference and a generative model [66]. VAEsnapt to develop a model of latent

variablesz, which can generate the observed dat&ormally, this is expressed as:
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p(x) = j p(x,2)dz = j p(x|2)p(2)dz (17)

It is common forp(x|z) = pe(x|z) to be developed and parameterized by a neural
network with parameterg®. For most cases, the posterior distributjpfx|x) is
intractable. However, an approximate posteriorrihistion, g4 (z|x), can be used to

maximize the evidence lower bound (ELBO) on thegmal data log-likelihood:

logp() = E_ llogps (x12)] = KL(4|0)llp)] (1)

From this, the objective is equivalent to minimginhe Kullback-Liebler (KL)
divergence betweedy, (z|x) andpg(x|z). Note thatpg (x|z) andqy(z|x) are usually
parameterized by two neural networks with paramsgieandé as shown in Figure 6-

5.

Encoder Decoder

Output

9 (/%) Do (X/z)

Figure 6-5: Variational autoencoder

The training of a VAE involves the training of twaeural networks, the encoder,
q4(z|x) sometimes referred to as the recognition moded, tae decoderpy (z|x)

sometimes referred to as the generative modelembeder learns the relevant features
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of the input data and compresses the informatiothéolatent hidden space. The
decoder then attempts to generate signals (e.gges) identical to the input data and

the reconstruction error is then minimized.

Within the computer vision community, VAEs tendpi@duce blurred images that are
not as sharp as those produced by other genemawdels. Within an engineering
context, VAEs on their own can result in a commesue with particle filtering

algorithms: without a fully expressive generativedal capable of handling extremely
low probability events or sensor reading interawicthe resulting prognosis model

may not have considered these non-Markovian events.

6.4 Proposed Methodology

Given the complexities and associated uncertairftythe fault diagnostic and
prognostic problem, a proposed methodology wouldreethat is flexible enough to
include new sets of information as they becomelabia. Expert opiniorhlack swan

events, abnormal operating conditions, knowledgéhefunderlying failure modes,
physics of failure models, and partially relevarfbrmation can all be included within
the remaining useful life estimation. While thigarmation can be valuable, the
methodology should also adequately generalize dhta. For example, extracting
relevant features, which may be known, may notlide 8 account for noisy sensor
signals or operating conditions outside the normthWhis end, we propose the

methodology shown in Figure 6-6.
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Figure 6-6: Proposed deep generative methodolagyefoaining useful life
estimation.

The methodology has two distinct phases: 1) Unsugent learning assessment of

RUL, 2) Semi-supervised learning assessment of RtMtarts with the raw data signal

fed into the unsupervised variational adversaiiirf Without knowledge of labeling

(e.g., the system health states) at the start efabipn of the system, this stage of

development requires the use of unsupervised rengairseful life estimation. Once

the system has had operational time, the engieedialé to start labeling data in a semi-

supervised iterative loop, i.e., identify the syste health states with corresponding

input sensor data patterns. As it may not be lidagiime and cost wise) to do so for

all the available data, experiments have shown gbati-supervised methodologies

with only a few percentages of the data set labeksu substantially improve the
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unsupervised methods [65]. Therefore, as the eegilabels data, the framework is
robust enough to handle this percentage of lalméa as it shall be demonstrated later

in Section 6.5.

6.4.1 Unsupervised Remaining Useful Life Formulatio

In this work, we propose a mathematical formulatioait encapsulates the following
features: both unsupervised and semi-superviseturéeaearning, adversarial-
variational state-space modeling with non-Markoamsitions (i.e., it is not assumed
that all information regarding past observatiocastained within the last system state),
adversarial training mechanism on the training haf tecognitiongy (z;|x;..), and
variational Bayes for the inference and generativael py(x;|z,.1). As shown in
Figure 6-7 and Figure 6-8, where we seas the observed sensor dataas the latent
system health state (e.g., crack length, degratgatody; is the target domain relevant
to the adversarial trainingy €0,1,...,RUL. Blue lines represent adversarial
mechanism, dashed lines indicate inference prosessel solid lines indicate a
generative process. The transition parametgrsare inferred via a neural network.
Past observations are directly included in thererfeal model output. The proposed
mathematical framework does not assume that alinfiemation relevant tap, is

encoded withirg,.
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Figure 6-8: Inference training model.

To establish the training optimization, we dendie latent sequencg € Z c R™z as

a set of real numbers, andobservations as, € X < R™x. X can be, but is not limited
to, a multi-dimensional sensor data set from agl@gset. The observatioss, are not
constrained to a Markovian transition assumptidfor engineering problems (eg.,
crack growth and environmental effects on RUL) &teansitions can be complex non-

Markovian. Therefore, the degradation sequexigg|z;.._,) generated by the discrete
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multi-dimensional sensor data sequences= (x{,X,...,%;) and z;;_; =

(24,25, ..., 2Z;—1) are of interest to the engineer, as shown in E9). (

p(xelx1e—1) = fp(xtlxl:t—llZl:t)p(zl:tlzl:t—l)dzl:t (19)

where, z,.._1,Z; € Z € R denotes the latent sequence. The basis of teatlat
dynamical system is assumed to have an emissiorelmo@,|x;.c—1,2:.;) and
transition modelp(z;|z,..—;). Two assumptions are classically imposed on the

emission and transition models models as showmits E13) and (14),

pCrltre sz = | [pCrelz (20)
i=1
pCrlze ) = | [Ptz @y
i=0

These equations capture the assumption that thentustate,z;, holds complete
information for the observationg, and the subsequent statg,. For noisy multi-
dimensional sensor data sets with complex non-Maakotransition this assumption
is insufficient. The proposed mathematical formolatcharacterizes the state-space

model without these assumptions.

Therefore, to derive the proposed mathematical déwonk of the proposed
methodology, we first put forward the variationalver bound objective function from
Eq. (19) given that we do not make the Markov aggion from Eq. (20) and (21).

Thus, we have:
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P(Z1.tlx1 )
KL (Q¢(Z1:t|x1:t NP (Z1:el %1 )) == f Q¢(Z1:t|x1:t) [log <m>] (22)

As we know that,

P (X1.t) Z1:¢)

P (o) (23)

p(Z1¢lx1t) =

P(X1:t, Z1:¢)
p(x1:t) (24)

= - (Z1:tlx1:0) [log | ————
fCIq; L g Q¢(Z1:t|x1:t)

= _fq (Z1:¢1x1:6) [109<p(x1:t’ #1t) * ! >l (25)
¢ . . Q¢(Zl:t|x1:t) p(xl:t)
_ p(xl:tle:t) 1
B .]. qd)(Zl:tlx”) [log q¢ (Z1.tlx1:¢) *log P(M:t)l (26)
= —fq (Zy:¢l%1:¢) llogw—logp(x : )l (27)
oAt Q¢(Zl:t|x1:t) Lt
_ p(xl:tle:t)
- j q¢(Z1:t|x1:t) [log CI¢ (Zl:tlxl:t)
(28)
+ f Q¢(Z1:t|x1:t) log p(x1.¢)
However,
lOg p(xl:t) f q¢(Z1:t|x1:t) =1 (29)

Therefore, we have,
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logp(x1.t)

p(xl:t' Zl:t) (30)

= KL[qyGaelxre) (Z;|x;)+j (Z;|x;)[zo
[Q¢> 1elX1:e )P (21 1t] Ap\Z1:¢1X1:t gCI¢(Z1;t|x1;t)

where we simultaneously want to minimize the Kutkdiebler (KL) divergence and
maximize the variational (evidence) lower bound BEY), L(6, ¢; x,.;), as shown in
Equation (31):

P (X1:t) Z1:¢)

q¢ (Zl:tlxl:t) (31)

LB, ;x1.) = f qu(Zl:tlxl:t ) ll()g

Now, rearranging Equation (31), we have the nonKdaan variational lower bound
derived for time series data in Equation (32):
L6, p; x1.) = ]Eq¢(21:t|x1:t )[logpe(xl:t |21.0)]
(32)
- KL[Q¢(Zl:t|x1:t)”P(Zl:t)]
To add in adversarial training, we follow [47] and rewrite the optimization function
from Equation (32) to Equation (33) as follows:

mein mgx ]ED(x)]Eq¢(Z1;t|x1;t )([logpg Ce1elz1.0)]
(33)

- KL[% (Z1:¢]%1:¢) ”P(Zl:t)])

We now have an objective function which gives usxressiveyy (z.|x¢, z,..—1), that

is, we have a mathematical framework the charaeeithe state space model without
the restrictive assumptions outlined in Equatio?8) (and (21). Additionally, this

mathematical framework contains both a generatiddreference models of the system
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state that allows us to perform fault diagnostied prognostics as well as remaining

useful life of the system assessment.

6.4.2 Semi-Supervised Loss Function

Semi-supervised initialization involves trainingtbé chosen model’s architecture with
an incrementally increasing set of labeled dathis i an important aspect to explore
because as the engineer gains more knowledge albew system, one can label small
sets of data which are known to be system deg@adagrsus healthy operation to
increase the system'’s health state prediction. djysoach can improve the quality of

the results via a semi-supervised cost functioemgias given by Eq. (34):

L= Lsupervised + Lunsupervised (34)

In the context of the proposed adversarial framé&wduring the unsupervised training,
the discriminator learns features to avoid clagsifyhe generated data as real data, but
these features might not be the best representalionmprove the discriminator and
develop more meaningful features for the systera@th states over time, labels are
used. This is possible by writing the loss functidn within training to some

predetermined number of epochs as follows:

Lsupervised = _IEX1:t,}’1:t~Pdata(x1:t.y1:t) lOg Pmodel (yl:tlxlzt' Vit <K+ 1) (35)

Lunsupervised = _{Ex~pdata(x1:t) log [1 — Pmodel (yl:t

(36)
=K + 1]x1.0)] + Ex—glog [Pmodet V1:e = K + 1x1.0)]}

This cost function adds a cross-entropy loss ferfitst K discriminator outputs. The
unsupervised cost is the same as the original G Eq. (16)(10)). However, there

is a slight change as now K+1 corresponds to thbahility of the sample being false
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[79]. The discriminator is used as a competerdsifier given a subset of the dataset.
In the context of the proposed mathematical framrgptbe discriminator will be used
as a feature extractor given a subset of the datagsaprove the system’s health state

identification results.

6.5 Experimental Results

To evaluate the proposed methodology, the Comniekbimiular Aero-Propulsion
System Simulation (C-MAPSS) data set was used. CBB\R a tool developed and
coded in MATLAB and Simulink environment for themsilation of commercial
turbofan engines [67]. The model takes an inpuampater of an engine component
degradation level or health indicator and outpatsesponding sensor signal values.
Operational profile, closed-loop controllers andiesnmental conditions can all be
adjusted to suit the specific problem the useryi;g to solve. The 90,000-pound
thrust class engine and the simulation package’shility allows operations at 1)
altitudes ranging from sea level to 40,000 feetyiach numbers from 0 to 0.90, and
3) sea-level temperatures from -60 to 263 The main elements of the engine are

shown in Figure 6-9.
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Figure 6-9: Simplified diagram of engine simulatedC-MAPSS [67].

Specifically, for this paper, the PHM 2008 competitdata set using CMAPSS is used

for this analysis and application [67]. Four dats, FDOO1 through FDO04 are

available and have the properties shown in Table 6-

Table 6-1: CMAPSS Data Overview

Data Set Train Test Conditions Fault Modes
Trajectorie  Trajectorie

FDO0O1 100 100 1 (Sea Level) 1 (HPC)

FDOOZ 26( 25¢ 6 1 (HPC

FD003 100 100 1 (SealLevel) 2 (HPC, and Fan)

FD004 248 249 6 2 (HPC, and Fan)

The four data sets have a combination of two faarditions: high pressure compressor

(HPC) degradation and fan degradation. The data separated into training and test

sets consisting of 26 sensor measurements, thneditioms of operation, engine

guantities, and the cycle time. Each of the engingkin the dataset initiate with

different levels of manufacturing variation andielidegradation. This information is

hidden from the engineer and is not consideredla¢andition. The three operational

settings do have a substantial effect on the engamormance. These settings are

known. Finally, the sensor data is contaminatetth woise. To avoid unnecessary

repetitions, the following sections use FD001 aB@®4 for the sake brevity.
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6.5.1 CMAPSS Results

To evaluate the proposed semi-supervised methogotag types of labeling were
used: 1) fixed interval and 2) random interval. Tixed interval consists of labeling
one out of everx number of labels, (i.e., 5% equals labeling 1 @futvery 20 data
points.) Random interval labeling consisted ofrigka random sample of the complete
data set for labeling (i.e., 5% of 15,680 data fequals 784 randomly labeled data
points). This was done because, as the time iftbataveen labels is decreasing, the
RUL estimation error improvements reduce. As onk matice in the rest of this

section, this did have an effect on RUL prognostics

To evaluate the effects of adding a small subselabéled data to the training
procedure, semi-supervised learning was also cdéeduon the CMAPSS dataset.
There are two parts of the algorithm to evaluaie éffect of labeling on the results:
1) feature learning and 2) regression. When iste&ged “semi-supervised feature
learning” it implies that percentage of labels wkz@ into the feature learning phase
of the model. When results are reported as “unsigesl feature learning”, zero labels

were used in the feature learning portion of theleho

The proposed methodology is evaluated againstrtleeRUL via root mean square

error (RMSE). To not sway these results in a mastwe light, the authors chose to

train the model ten times and take the averagdtsefsom all ten.
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First FDOOL1 is evaluated from one percent to onedhed percent labels. The RMSE
results can be found in Table 6-2 and Table 6-8.0Ae can see from the results, there
is an effect on the RUL prognostics with both typéfabeling (fixed vs random) and
adding labels to both parts of the model. Thisalaa be viewed in Figure 6-10. There
are two observations to note when looking at tlseilts: 1) adding labels to feature
learning improves the RUL prediction, and 2) aserlabels are added to the feature
learning and regression parts of the modeling tediption performance (in terms of
RMSE) improvement tends to taper off after twergycent. The increase in prediction
performance from adding labels to the feature legrportion of the model shows that
feeding labels to the generative model help extnramte degradation related features
present in the data. The appropriate percentagkbafing could be inferred or
determined based on the evolution of the RMSE aiegrto Figure 6-10. In this case,
the RMSE marginally improves for FDOO1 beyond twepercent labeling (1.5%
improvement for 50% labeling and 2.7% improvememt f00% labeling). This is
important because labeling data is expensive am@ ttonsuming. Therefore,
increasing the prediction performance (i.e., redgdRMSE) beyond twenty percent

labels becomes increasingly more expensive forallenbenefit.

Table 6-2: FD001 RMSE Unsupervised feature learmiitly semi-supervised

regression
Labeling 1% 5% 10% 20% 50% 100%
Fixed 23.3¢ 19.3¢ 18.2¢ 17.6¢ 17.3¢ 16.91
Random 24.5¢ 19.6¢€ 19.17 18.5( 17.9¢ 17.57
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Table 6-3: FD001 RMSE Semi-supervised feature Iegrwith semi-supervised

regression
Labeling 1% 5% 10% 20% 50% 100%
Fixed 20.5( 18.5( 17.47 16.31 15.8: 15.4¢
Random 21.2( 18.3¢ 16.5( 16.0¢ 15.5¢ 15.27

26

0 10 20 30 40 50 60 70 80 90 100
Percent Labeled (%)

——— Semi-Supervised Feature Learning - Random Interset4 --- Unsupervised Feature Learning - Random Interval

— @— — Semi-Supervised Feature Learning - Fixed Interval— ®— Unsupervised Feature Learning - Fixed Interval

Figure 6-10: FDOO1 RMSE versus percent labeled (%5).

To evaluate the effects and differences of modaperating conditions and additional

fault modes, FD0O04 was also examined. This dates sebre applicable for cases that
include fleets of vehicles operating in differeanditions. Base on the results reported
in Figure 6-11, Table 6-4, and Table 6-5, thisadsdt had a larger improvement in

results by adding labels into both feature learrang regression parts of the model.
This is because of the non-homogeneity of the degalting from the inclusion of

additional operating conditions and fault modes.
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Table 6-4: FD004 RMSE Unsupervised feature learmiitly semi-supervised

regression
Labeling 1% 5% 10% 20% 50% 100%
Fixed 53.1¢ 49.8¢ 47.7¢ 46.6¢ 46.5¢ 46.4(
Random 54.8: 50.3( 49.9( 48.2: 47.3¢ 47.0¢

Table 6-5: FDO04 RMSE Semi-supervised feature legrwith semi-supervised

regression
Labeling 1% 5% 10% 20% 50% 100%
Fixed 45.7¢ 41.3¢ 39.9( 38.7¢ 38.5¢ 38.1¢
Random 46.8( 40.7¢ 39.4¢ 37.9¢ 36.9¢ 36.2¢
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Figure 6-11: FD0O04 RMSE versus percent labeled (%).

Note that FD004 needed an increased percentagabels| given the inherent non-
homogeneity of the data set. With six operatingddoons and two failure modes, there
is a higher degree of uncertainty and thereforertbdel performance benefits from an
increasing percentage of labels. Compared to tH@EDesults in Figure 6-10, there is

still a noticeable reduction of RMSE up to 100%elatg. This reflects the model
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taking advantage of the increased knowledge ofRbi& evolution granted by the

known labels during the training stage.

Moreover, both FDO0O1 and FD004 RUL prediction baedffrom random interval

labeling during semi-supervised feature learninthis is can be attributed to the
proposed model’s ability to better generalize thearlying generative model or lower-
dimensional manifold space. The output of the pseploframework also includes a
semi-supervised model that gives the engineerlilliédyao continuously add labels as
more information about the degradation processrnescavailable. From a practical
point of view, this is an important characterisifdhe model: the engineer can weigh

the economic impacts of the labeling more data.

6.5.2 Ablation Study Results

An ablation study was conducted on the FDOO1 dattéosunderstand the effects and
advantages of integrating variational inferencehveih adversarial approach, as it is
done in the proposed mathematical framework. T®¢hd, both VAEs and GANs
were applied separately to the FD0OO1 and RUL estisnavere performed.
Unsupervised feature learning with semi-supervisegression was performed to
evaluate the effects of the generative modelinghaut labels for feature learning.

These results can be seen in Table 6-6, TableFgdre 6-12, and Figure 6-13.

Table 6-6: FD0O01 RMSE Unsupervised Feature LearniRged Labeling

Intervals
Model 1% 5% 10% 20% 50% 100%
Proposed  23.3: 19.3¢ 18.2¢ 17.6¢ 17.3¢ 17.0¢
GAN 28.77 24.3¢ 22.9( 22.1¢ 21.8( 21.7¢
VAE 34.5¢ 33.3¢ 33.1¢ 33.1( 32.7: 32.0]
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Table 6-7: FDO01 RMSE Unsupervised Feature LearniRgindom Labeling

Intervals
Model 1% 5% 10% 20% 50% 100%
Proposed  24.5¢ 19.6¢ 19.17 18.5( 17.9¢ 17.57
GAN 25.8¢ 23.1¢ 20.5( 19.2: 19.01 18.5¢
VAE 34.8: 33.5¢ 33.3] 33.3¢ 32.8¢ 32.4¢

These results allow one to see the effects of éawonal and adversarial approach of
the proposed methodology. Even though the VAE &#A&N models provide
acceptable results, the proposed methodology dotpsed both on their own. The
VAE model’'s RUL prediction performance in termsRIYISE was slightly better with
fixed interval labeling, while the GAN model's permance was better with random
intervals for the labeling. VAE did not performasll as the GAN and the proposed
methodology. The VAE model also did not benefinirabeling more data after adding
10% labels. The authors suspect the VAE modehdidperform as well due to the
possibility of modeling the Gaussian priors of MAE model sequentially in the
training portion of the model as outlined in [96[hese results show the value of the
combination of the non-Markovian adversarial andatenal capabilities within the

proposed methodology.

146



39

3 N e e
— e O e — Y
W 29
)
>
[a'd
""""""""""" e
14 T T T T T T T T T 1
0 10 20 30 40 50 60 70 80 90 100

Percent Labeled (%)

—e— Proposed Model — e— VAE  ---#--- GAN

Figure 6-12:FD001 Unsupervised Feature Learning, Random Lajpétitervals

39
[\
34 e — e — . O ¢ — s —
____________ °
L
n
=
14
---------------------- S P
14 T T T T T T T T T 1
0 10 20 30 40 50 60 70 80 90 100

Percent Labeled (%)

—e— Proposed Model — e— VAE ---#---GAN
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Additionally, the proposed methodology and corresipeg mathematical framework

was assessed against the deep generative modatimgidue outlined in [88]. This
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modeling technique incorporates a Deep Markov M¢D&llM) state-space system
utilizing structured inference architecture withoan adversarial mechanism.
Additionally, this methodology was not developed fir applied to, the PHM context.
It is, however, a state-of-the-art deep generatinagleling technique on time series
data. For this paper, it was applied to the CMAFS®01 and FD004 data sets as a
comparison method. These results can be foundbieTas8.

Table 6-8: Unsupervised RMSE average results ®CHMAPSS test set

Propose Krishnar et al.
Data Set Mean Std. Dev. Mean Std.
Dev.

FDO01 16.9] 0.3¢ 17.32 1.91
FD0OO4 46.4( 0.5¢ 54.1¢  0.54

As shown in Table 6-8, the proposed methodologwides superior results when
compared with DMM. Additionally, the DMM is restted to unsupervised learning
and does not provide a mechanism for semi-supehlesning and labeling. This

further demonstrates the benefits of the proposetthadlology for RUL assessment.

6.5.3 FEMTO Bearing Results

The following results were not published within jbarnal article, but further enhance
the benefits of the proposed methodology. For alitiadal point of experimental
validation, this dissertation uses the PHM 2012Illeéhge dataset incorporating the

PRONOSTIA platform for accelerated aging, as showiigure 6-14.
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Figure 6-14: Overview of PRONOSTIA [97]

The platform’s goal is to provide a sensor datgpwouthat characterizes the realistic
degradation processes of rolling element bearinggighout their life. This data set
consists of a run to failure data set for seventezarings at different load cases and

rotational speeds. The information for each ingas outlined in Table 6-9.

Table 6-9: FEMTOQO Dataset Information

Condition Load Speed Bearings

1 400( 180( 1-1 1-2 1-3 1-4
1-5 1-6 1-7

2 420( 165( 2-1 2-2 2-3 2-4
2-5 2-6 2-7

3 500( 150( 3-1 3-2 3-3

To evaluate this data set, sixteen of the severttearings were used as the training

set, while the seventeenth bearing is used agshset. Data normalization in the form
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of spectrogram images was done to ensure a camsgtgal and degradation path.
Due to the nature of this data set, only fixed rve labeling was used. Random
interval labeling was explored; however, it had edixresults. The results of the
FEMTO data set within the proposed methodology sigoad performance against
similar research [98], where the published RMSHiltedor bearings 1-3, 2-4, and 3-1
are 9.0, 8.9, and 24.2, respectively. As showlrainle 6-10, the proposed methodology

outperformed these results.

Table 6-10: FEMTO RMSE Results — Semi-superviseatufe Learning with
Semi-Supervised regression.

Bearing 1% 5% 10% 20% 50% 100%
1-3 11.3- 11.1¢ 10.9¢ 10.3¢ 7.5C 6.5¢
2-4 10.1: 9.92 8.6 7.2¢ 6.71 6.4z
3-1 31.9( 27.4% 23.7: 20.0¢ 15.02 11.5]

The results show the robust ability of the proposezthodology to generalize the

underlying generative function.

6.6 Conclusions

Industry 4.0 has ushered in a broadening of thectstral health monitoring research
field and unsupervised RUL estimation is a criteada in this context. Many industries
are poised to benefit from this research and itgyato predict machine downtime for

planned maintenance. Many times, the data strepfrom these new systems is too
difficult, time consuming, labor intensive and, réfere, costly to label. Thus, the

ability to predict remaining useful life withoutdals is of great economic benefit.
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In this paper, a deep learning enabled adversaaightional methodology, and
corresponding mathematical framework, for remainusgful life estimation was
proposed. The proposed methodology achieved sugeUL prediction performance
in terms of RMSE metric and demonstrated its gbibtpredict the RUL even with a
small percentage of labeled data. This methodolaiys informs an engineer about
the RUL of the asset, therefore, giving them thiéitglio predict future maintenance

requirements before a failure occurs and make ¢lgsessary arrangements.

Within the ablation study, the proposed framewarkvjged higher RUL prediction
performance (i.e., smaller RMSE) with a combinexdegative modeling methodology.
The prediction performance was further enhancetl tié addition of labels to the
data set. Additionally, the type of labeling waplexed and uncovered that the method
with which one labels time series can have an eff€ixed interval labeling versus

random interval labeling will enhance or detraonfrone’s results.

The application of the proposed methodology isamdy limited to turbo-fan engines.
Oil and gas, wind turbine farms, automotive, antbggace can potentially benefit
from this research. While significant work was doon the neural network
architectures within this research, we believehrjprogress can be made by a deeper

investigation of these architectures.
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Chapter 7. Conclusions, Contributions, and FuResearch
Recommendations

7.1 Conclusions

Three approaches were developed in this dissentadi@address the growing need for
modeling multi-dimensional big machinery data foaking maintenance decisions.
These three approaches are interrelated as a gonsirprocess of understanding the
data and seek to answer the following researchtignes If you have a large set of
labeled machinery data, can you predict a machimegdth state? If you have a large
set of unlabeled or partially labeled machineryadaan you predict a machine’s health
state? If you have a large set of unlabeled arthfig labeled multi-sensor time-series

machinery degradation data, can you predict their@nyg useful life?

To answer the first question, this dissertationgbduo extend deep learning-based
approaches to supervised fault diagnostics. This dese with the development of a
novel deep learning framework for applicationsaolf diagnostics of rolling element

bearings. Within this framework, the use of timeguency image representations of
rolling element bearings within a deep neural nekwarchitecture was pioneered.

Additionally, the proposed CNN architecture for [fadiagnostics achieved superior
results while reducing the model’s learnable patamsethus increasing the speed of

training.

Through this work, it was demonstrated that tinestérency image representations of
raw vibration signals are effective for identifyinglling element bearing fault

classification and diagnosis. The manual procé&sature extraction and the delicate
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methods of feature selection can be substituteth witdeep learning framework
allowing automated feature learning for fault diagtics. STFT, WT, and HHT images
are all shown to be effective representations rafnasignal with scalograms provided
the best diagnostic prediction accuracies. Infolwnaloss due to image scaling had
little effect on scalogram image prediction accigsc a slight effect on the
spectrograms, and a more significant effect ontHH&@ images. The proposed CNN
architecture showed it is robust against injectgdeemental noise. Finally, the
proposed architecture delivers the same accurémiexalogram images with lower

computational costs by reducing the number of alenparameters.

To answer the second question, this dissertaticieneed semi-supervised and
unsupervised fault diagnostics with time-frequescalogram images via a GAN-

based methodology. This work consisted of the ldgweent of a novel GANs based

framework for unsupervised and semi-supervised ffiagnostics of rolling element

bearing time-frequency scalogram image representtdf the raw signal. This

included proposing neural network architecturesuftsupervised and semi-supervised
fault diagnostics on the CWR and MFPT data setfiwiDCGAN and InfoGAN

architectures.

Through this research, it was learned GANs and desming-based approaches are
better able to generalize the underlying manifgdce of machine health states to a
level with which a clustering algorithm can separthie healthy baseline signals with
the fault data. Both DCGAN and InfoGAN architeesirare effective tools for

unsupervised fault diagnostics. Prediction accurasylts are then further improved
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with the addition of a subset of labeled data eiaissupervised fault diagnostics. The
INfoGAN encoder vector was tested as an addititeetlure for clustering; however,
the addition of the encoder information had mixesuits. The InfoGAN architecture
outperforms the DCGAN on noisier data like the MFEL. DCGANS proved their
ability to diagnose faults with zero information the real classes within the data set.
InfoGANs showed that, with slight knowledge intoshmany potential driving failure
modes the rolling elements may have, the diagrosesults may be efficiently

improved.

Within the published experimental results, the @nésd diagnostic methodologies
perform well on the two public data sets. The d&ts used to evaluate this research
are limited specifically to fault classificationgiiems. This does not evaluate how the
fault degrades to failure. This could be geneadlie across multiple fault diagnosis
data sets; however, due to the computational cbste research, one must understand
if a more sophisticated method is necessary taparthe classification task at hand.
(Each chapter went into detail with regards to cotaponal expense.) The research
works for specific maintenance programs where, @nfailt is identified, the bearing
will be replaced. This could be generalized taHer classification tasks but was

beyond the scope of this research.

To answer the final research question, this dia8ert sought to advance generative
modeling research and propose a novel approadtetstudy of the remaining useful
life prediction. This included the development oisupervised and semi-supervised

frameworks for RUL prediction by proposing a nomeh-Markovian mathematical
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formulation combining the generative modeling sgtes of both variational Bayes
and adversarial training within a state-space moddramework. The aim was to
achieve both unsupervised and semi-supervised Rtiation. This work concluded
a non-Markovian deep learning enabled adversaaaktional mathematical

framework is very effective in predicting the RUflarge multi-sensor assets.

Within this research, the presented prognostic otgitogy performs well on the two
public data sets. The data sets used to evaluateesearch are limited specifically to
monotonic degradation tasks. This could be gezakde across multiple degradation-
based data sets; however, due to the computatomsaé of the research, one must
understand if a more sophisticated method is nacgss perform the RUL predictions.
The research works for specific maintenance prograrhere sensor data is tied

directly to how the asset degrades over time.

7.2 Future Research Recommendations

A limitation of the proposed methodology is inhdrevhen trying to quantify the
variability while not specifically calculating thencertainty. This is a potential
drawback to the presented model contributions suipygoPHM risk decision making.
Therefore, a recommended future research wouldbbexpand the three proposed
methods in terms of a Bayesian framework, so tleenainty on fault prediction and
RUL can be explicitly calculated. This approachulddbe useful with the implication
of a quantifiable uncertainty metric where an obyecfunction could find a relation

between the percentage of labeling and the unogrtan RUL. From this, one could
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then find an optimal labeling percentage for a gipéysical asset’s dataset based on

the risk surrounding a failed prediction versuseéhgineering cost to label more data.

For time-based prediction methodologies, theread®v standard evaluation metrics
recognized by the research community. This rebkedict not explore the limitations
of the metrics, nor did it propose a new one. lrtresearch should be done in the
future around development of more appropriate etaln metrics for time-based

prediction methodologies.

Another limitation of this work is encoded withihet basis of time series predictions
for deep learning-based methodologies. Time sat@a must arrive at constant
intervals in order to predict future health state3his limits the use of these
methodologies to continuous data; therefore, miglates the ability to incorporate
transient signal prediction capabilities (e.g., ustit emission-based). Therefore,
another future research suggestion would be to rekptne three proposed
methodologies to include ordinary differential ejias, which have recently emerged

as a possible solution to this problem and showatgyeomise for intermittent signals.

Finally, the dissertation was limited to modelingthods which did not incorporate
physics directly into the modeling and would betaeodrawback in supporting PHM-
based risk decision making. Thus, it would be atageous to add a framework into
this research for the remaining useful life estioratthrough a physics-informed

framework.
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