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It is well known that solutions of classical initial–boundary problems for second

order parabolic equations depend continuously on the coefficients if the coefficients

converge to their limits in a strong enough topology.

In case of one spatial variable, we consider the question of the weakest pos-

sible topology providing convergence of the solutions. Convergence of solutions of

PDE’s is equivalent to weak convergence of corresponding diffusion processes. In

general, continuous Markov processes corresponding to the generalized second order

differential operators introduced by W. Feller can appear as limiting processes. In

other words, the infinitesimal generator of limiting processes need not be a classical

second order elliptic differential operator but instead can be a generalized in the

sense of W. Feller [7].

Following Freidlin and Wentzell’s paper [14], where processes in open inter-

vals were considered, we study the necessary and sufficient conditions for the weak

convergence of one dimensional Markov processes in closed intervals. We provide



conditions that guarantee the convergence of solutions of initial–boundary value

problems for parabolic equations. Furthermore, necessary and sufficient conditions

of weak convergence can be easily verified.

In a number of articles, it was proved that the solution of reaction diffusion

equations with a certain nonlinearity term is close for large t to a running wave

solution. However, in general, one cannot always give a simple formula for the

asymptotic speed as was done in the Kolmogorov, Petrovskii and Piskunov (KPP)

case in R1. We apply our results to wave front propagation in narrow, of width

ε ¿ 1, domains. Especially, we consider the wave front propagation problem in a

narrow periodic domain of width ε ¿ 1 with the reaction term of KPP type. We

focus on how a smooth or non–smooth periodic boundary of a narrow tube can affect

the asymptotic speed of wave front propagation. In particular, under a non–smooth

periodic boundary, the limit of solutions of initial–boundary problems is expected

to satisfy a parabolic equation with a generalized second order operator, instead of

a classical second order elliptic one.
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Chapter 1

Introduction

1.1 The convergence of solutions of initial–boundary value problems

for parabolic equations.

1.1.1 Statement of problem

For each second order elliptic differential operator

Lf(x) = a(x)
d2f

dx2
+ b(x)

df

dx
, a(x) > 0 (1.1)

with regular enough coefficients a(x) and b(x), there exists a diffusion process (Xt,

Px) in R1 such that the generator of this process on twice continuously differen-

tiable functions coincides with L. If a(x) ∈ C1(R1), a(x) > 0 (otherwise see [10]),

and b(x) ∈ C1(R1), the trajectories of Xt can be constructed as the solutions of

corresponding stochastic differential equations:

dXt =
√

2σ(Xt)dWt + b(Xt)dt, X0 = x (1.2)

Here σ(x) = (a(x))
1
2 and Wt is the standard Wiener process in R1. Roughly speak-

ing, this means that locally Xt behaves like a Wiener process multiplied by a factor.

In particular, Xt spends time zero at any given point x ∈ R1; the trajectory Xt exits

the interval [x− δ, x + δ] through both ends with asymptotically equal probabilities

as δ ↓ 0.
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Consider a sequence of processes X
(n)
t governed respectively by operators Ln:

Lnf = an(x)
d2f

dx2
+ bn(x)

df

dx
.

If σ2
n(x) = an(x) and bn(x) converge uniformly to a(x) and b(x) and they

satisfy a Lipschitz condition with the same constant K, it is simple to prove that

X
(n)
t converges in probability uniformly on any finite time interval to the process

Xt corresponding to L as n → ∞. This implies that the solutions of the Cauchy

problem for equations ∂fn/∂t = Lnfn with a bounded continuous initial function

converge to the solution of the corresponding problem for ∂f/∂t = Lf .

But if (an(x), bn(x)) converges to (a(x), b(x)) in a weaker sense, limn→∞ fn(x)

may not exist. Even if such a limit f(x) exists, f(x) may not be a solution to

∂f/∂t = Lf (for example, in the case of fast oscillating periodic coefficients, see

[9]). This is the situation we have studied.

In particular, we study necessary and sufficient conditions for prelimiting

processes X
(n)
t governed by a second order elliptic operator Ln with coefficients

(an(x), bn(x)) to converge weakly a limiting process Xt. The coefficients an(x) and

bn(x) are assumed to be smooth and grow no faster than linearly, and an(x) > α > 0.

It turns out that the limiting process Xt may not be governed by the standard sec-

ond order elliptic operator Lf = a(x)(d2f/dx2) + b(x)(df/dx). It was proven in [7]

that any Markov process Xt in R1 that is continuous with probability one, under

some minimal regularity conditions, is governed by a generalized elliptic operator

DvDu. Here u and v are strictly increasing functions such that u(x) is continuous

and v(x) is right continuous, and Du and Dv are operators of differentiation with
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respect to u(x) and v(x) respectively, which are defined later. Thus, the limiting

process can be characterized by the generalized second order differential operator

introduced by W. Feller ([7]). M. Freidlin and A. Wentzell in [14] considered the

problem in open intervals without boundary conditions, while boundary conditions

are considered in this thesis.

1.1.2 The W. Feller generalized second order differential operator

Before we give the definition and properties of the generalized second order

differential operators, we can see that every classical second order elliptic operator

L of the form (1.1) can be put into a succession of two differentiations in the form

DvDu via the following recipe:




dv(x) = (a(x))−1eB(x)dx, du(x) = e−B(x)dx

d/dv(x) = Dv, d/du(x) = Du

where B(x) =
∫ x

b(y)(a(y))−1dy.

Then we can write

L = a(x)
d2

dx2
+ b(x)

d

dx
= a(x)e−B(x) d

dx
(eB(x) d

dx
) = DvDu.

In fact, the operator L in the form DvDu is meaningful for an arbitrary strictly in-

creasing function v, not necessarily continuous or bounded, and an arbitrary strictly

continuous increasing function u. Moreover, the choices of the two functions u and

v are not unique. We can multiply one of these functions by some positive number,

and divide the other by the same number. We can also add some constant to either

of them.
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The infinitesimal operators for more general class of one–dimensional contin-

uous Markov processes were calculated by W. Feller in 1954–1955. Let B be the

Banach space of continuous functions on R1 with norm ‖f‖ = supx∈B |f(x)|. Let

Tt be a semigroup and A the infinitesimal operator of the process (Xt, Px). (More

details for definitions and properties can be found in [5]). A transition function

P (t, x, Γ) of a Markov process, which is homogeneous in time, is called Fellerian if

for any bounded continuous function f(x), Ttf(x) =
∫
Γ
f(y)P (t, x, dy) is continuous

and limt→0 Ttf = f for every f ∈ B. Here the semigroup Tt is associated with a

given transition function P (t, x, Γ) and the operator semigroup takes the space of

continuous bounded functions into itself. We will call this process a Feller process.

We consider here a Feller process in R1 with continuous trajectories. It was shown

in [4] that a Feller process with continuous trajectories must be a strong Markov

process. A Feller semigroup is a strongly continuous positive contraction semigroup.

Moreover it was proven in [7] (see also [8]) that an infinitesimal operator A of a Feller

process can be characterized by two increasing functions u(x) and v(x), where u(x)

is a strictly increasing continuous function and v(x) is a strictly increasing right

continuous function. Here u(x) is called a scale function and v(x) is called a speed

function. The infinitesimal operator A of a Feller process can be written in the form

of a DvDu–operator. We will call the DvDu–operator the generalized second order

differential operator. Every function f which belongs to the domain of the operator

DvDu (f ∈ D(DvDu)) is continuous, but not necessary differentiable.

The formal adjoint of the classical second order elliptic operator L in (1.1)

is given by L∗g = (d2/dx2)(a(x)g) − (d/dx)(b(x)g) if the coefficients a(x) and b(x)
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are sufficiently regular. Without this highly strong condition, no formal adjoint of

the form (1.1) exists. By contrast, no difficulties arise in connection with DvDu–

operator. Denote by Rλ the resolvent of the generator DvDu and Rλf = (λ −

DvDu)
−1f for all f ∈ B and λ > 0. Considered as a transformation from C to C, each

Rλ has an adjoint R∗
λ mapping from B into B. By using the notation (f, dξ) =

∫
fdξ

for inner products, the adjoint R∗
λ is defined by (Rλf, dπ) = (f, R∗

λdπ). From this,

DuDv appears as the formal adjoint of the differential operator DvDu. Here DuDv

is an operator on measures.

Definition 1 Du and Dv are operators of differentiation with respect to u(x) and

v(x) respectively, which are defined as follows:

• If the right derivative of f with respect to u exists, it is defined by

D+
u f(x) = lim

h↓0
f(x + h)− f(x)

u(x + h)− u(x)

The left derivative D−
u f(x) is defined similarly.

• Duf(x) exists if D+
u f(x) = D−

u f(x)

• If v is discontinuous at x0, we define

Dvf(x0) = lim
h↓0

f(x0 + h)− f(x0 − h)

v(x0 + h)− v(x0 − h)
=

f(x0+)− f(x0−)

v(x0+)− v(x0−)

When no confusion can arise, we shall occasionally simplify the notation by

inconsistently using the symbol Du in the meaning of either D+
u or D−

u even if

D+
u 6= D−

u or if only one is defined. The value of DvDuf is defined at each point where

the derivative exists and the definition of DvDu will be completed by specifying the
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domain. In connection with the space C of continuous functions in R we shall require

that DvDuf ∈ C.

1.1.3 Outline and Preparation

Let us consider the Cauchy problem:





∂fn(t,x)
∂t

= Lnfn(t, x) for x ∈ R, t > 0

fn(0, x) = g(x) for x ∈ R, t = 0

(1.3)

where Ln = an(x)d2/dx2+bn(x)d/dx; the coefficients an(x) and bn(x) are assumed to

be smooth and grow not faster than linearly and an(x) > 0. Let us denote the process

corresponding to Ln by X
(n)
t . Let T

(n)
t be the semigroup in C0T corresponding to

X
(n)
t governed by the operator Ln. It is known ([10], Theorem 2.5.2) that the

solution fn(t, x) of problem (1.3) can be represented in the form of the expectations

of appropriate functionals of the trajectories of the Markov family (X
(n),x
t , P ) :

fn(t, x) = Exg(X
(n)
t ), where Ex denotes the expectation with the initial point X

(n)
0 =

x.

We are interested in the weak limit of X
(n)
t , 0 ≤ t ≤ T < ∞, as n → ∞.

If such a limit Xt exists and is a diffusion process, its generator is the generalized

second order differential operator DvDu. Consider the Cauchy problem:





∂f(t,x)
∂t

= DvDuf(t, x) for x ∈ R, t > 0

f(0, x) = g(x) for x ∈ R, t = 0

(1.4)

Let Xt be the process that is governed by the DvDu–operator. Then, one can

check that f(t, x) = Exg(Xt) is the unique solution to problem (1.4). Hence the
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convergence of solutions of initial value problems follows from the weak convergence

of the processes X
(n)
t as n →∞ to a process Xt.

Now we will describe the construction of a diffusion process in the half–line

R1
+ with reflection at zero (More details can be found in [10]). Consider Lf =

a(x)(d2f/dx2)+b(x)(df/dx), which is defined for x ∈ R1
+. It is easy to see that there

exist two strictly increasing functions u(x) and v(x) in R1
+ such that Lf = DvDuf :

u(x) = u
′
(0)

∫ x

0
exp{−B(y)}dy and v(x) = v(0) + 1/u

′
(0)

∫ x

0
a(y)−1 exp{B(y)}dy,

where B(x) =
∫ x

0
b(y)/a(y)dy. Let a(x) = σ2(x) be positive and σ(x) and b(x)

be Lipschitz continuous. Let us extend σ(x) and b(x) onto the entire space R1 so

that, for x < 0, σ(x) = σ(−x) and b(x) = −b(−x). From these extensions it can

be derived that, for x < 0, u(x) = −u(−x) and v(x) = −v(−x). Consider the

stochastic differential equation with extended coefficients σ(x) and b(x) in R1:

dYt =
√

2σ(Yt)dWt + b(Yt)dt, Y0 = x.

Let φ be a symmetric mapping with respect to a point x = 0: φ(x) = −x. Then it has

the following property P (t, x, Γ) = P (t, φ(x), φ(Γ)). Here P (t, x, Γ) is a transition

function of (Y x
t , P ). Define Xx

t =| Y x
t | with measure Px for an initial point x ∈ R1

+.

Then the process (Xt, Px) is a Markov process in R1
+ with instantaneous reflection on

the boundary point. Furthermore, it was proven in [10] that the process (Xt, Px) is a

Feller process which also has a continuous trajectory. Therefore the process (Xt, Px)

is a strong Markov process [4]. One can verify that the infinitesimal operator A of

this process (Xt, Px) is defined for the smooth function f(x) satisfying the conditions

Duf(x) = 0 at x = 0 and Af(x) = DvDuf(x). In fact, these conditions are necessary
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and sufficient for f(x) ∈ D(A). To prove sufficiency, one should use the symmetric

property of the transition function P (t, x, Γ) ([2], Theorem 6.10.13). Assuming

that Duf(x) 6= 0 at x = 0, it can be derived that DvDuf(x) does not exist, so

f(x) 6∈ D(A). This implies necessity.

In Chapter 2 we will give necessary and sufficient conditions for weak con-

vergence of processes which have not only a reflection but also some delay at the

boundary point.

1.2 Reaction diffusion equations in narrow domains

1.2.1 Reaction diffusion equations in narrow tubes and asymptotic

speed of wave front propagation

Let Gδ, for δ > 0, be a set in R × Rn such that R × {0} ⊂ Gδ, and for

each x ∈ R, let the set Gδ
x = {y ∈ Rn : (x, y) ∈ Gδ} be a bounded connected

domain. Assume that the boundary ∂Gδ of Gδ is smooth enough and that the

inward unit normal γδ(x, y) to ∂Gδ at any point (x, y) ∈ ∂Gδ is not parallel to R.

Let Gε,δ = {(x, y) ∈ R1+n : (x, yε−1) ∈ Gδ} for 0 < ε ¿ 1. Denote by V δ(x) the

volume of Gδ
x in Rn.

Consider the problem:




∂wε,δ(t,x,y)
∂t

= 1
2
4wε,δ + f(x, y, wε,δ), if t > 0, (x, y) ∈ Gε,δ

∂wε,δ(t,x,y)
∂γε,δ

∣∣∣
t>0,(x,y)∈∂Gε,δ

= 0, wε,δ(0, x, y) = g(x),

(1.5)

where γε,δ is the inward unit normal vector to ∂Gε,δ. The functions f and g are

sufficiently regular and bounded. From the weak convergence of the first component
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Xε,δ
t in Gε,δ to Xt, whose generator is in the form of the W. Feller generalized second

order differential operator (see Theorem 7 in Section 2.2), one can ′′guess′′ that the

solution wε,δ converges as first ε ↓ 0 and then δ ↓ 0 to w, which is the solution to

the non–standard reaction diffusion equation:





∂w(t,x)
∂t

= DvDuw + f(x, 0, w), if t > 0, x ∈ R

w(0, x) = g(x),

(1.6)

where u(x) = limδ↓0
∫ x

0
(1/V δ(y))dy and v(x) = limδ↓0

∫ x

0
2(V δ(y))dy.

It is well known that a classical solution to (1.5) exists and is unique under

some minimal regularity conditions [15]. On the other hand, the solution to (1.6)

may not be differentiable in x. In Section 3.1, we will introduce the generalized

solution of problem (1.6) and provide a uniqueness and an existence of solution to

the problem (1.6) with a KPP–type nonlinearity term, which will be introduced in

next subsection.

Consider the Wiener process (Xε,δ
t , Y ε,δ

t ) in Gε,δ with normal reflection on

∂Gε,δ. Its trajectories can be described by the stochastic differential equations:

dXε,δ
t = dW 1

t + γε,δ
1 (Xε,δ

t , Y ε,δ
t )dLε,δ

t ,

dY ε,δ
t = dW 2

t + γε,δ
2 (Xε,δ

t , Y ε,δ
t )dLε,δ

t .

(1.7)

where W 1
t and W 2

t are independent Wiener processes in R and Rn respectively;

γε,δ
1 (x, y) and γε,δ

2 (x, y) are projections of the unit inward normal vector to ∂Gε,δ on

R and Rn respectively. Moreover Lε,δ
t is the local time for the process (Xε,δ

t , Y ε,δ
t ) on

∂Gε,δ. In case of smooth enough boundary ∂Gε,δ for fixed δ > 0, one can expect, as

ε ↓ 0, to which process the component Xε,δ
t converges due to the following Theorem.
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Theorem 1 (M. Freidlin, [11] (see also [12])) The processes Xε,δ
t , 0 ≤ t ≤ T ,

converge weakly in the space of continuous functions on R as ε ↓ 0 to the diffusion

process Xδ
t governed by the operator

1

2

d2

dx2
+

1

2

d

dx
(ln V δ(x)) · d

dx
. (1.8)

One can expect that, under certain assumptions on the non–linear term f(x, y,

wε,δ) in (1.5), the solution wε,δ(t, x, y) can be approximated by a running–wave–type

solution. Corresponding results on the standard reaction diffusion equations allow

one to describe the asymptotic wave front propagation motion for wε,δ(t, x, y). In

particular, we will consider KPP-type nonlinearity in periodic tubes in Section 3.

In this case, we will study the behavior of the asymptotic speed of the wave front

propagation that corresponds to (1.5) as ε ↓ 0 for fixed δ > 0. We will prove in

Proposition 4 in Section 3.3 that it will converge to the asymptotic speed of the

wave front propagation for the equation:

∂wδ

∂t
= 1

2
∂2wδ

∂x2 + 1
2

∂
∂x

(ln V δ(x)) · ∂wδ

∂x
+ f(x, 0, wδ)

wδ(0, x) = g(x)

(1.9)

This can be done by considering the eigenvalues for corresponding problems. We

will prove that, for fixed δ > 0, corresponding principal eigenvalues λε,δ of the

problem (1.5) in periodic domains converge as ε ↓ 0 to a principal eigenvalue λδ of

the problem (1.9). This will guarantee the convergence of the asymptotic speed of

the wave front propagation as ε ↓ 0. In the case that the boundary ∂Gδ converges

as δ ↓ 0 to a non–smooth boundary, the asymptotic behavior of the wave front

propagation is still open and is left for future work.
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In next subsection we introduce KPP–type reaction diffusion equations and

the notion of asymptotic speed of the wave front propagation. We will also prove

that the solutions wε,δ of problem (1.5) of nonlinearity term KPP–type (defined

below) converge as first ε ↓ 0 and then δ ↓ 0 to the solution w of problem (1.6).

We conclude Section 1.2 with the action functional for finite dimensional random

vectors. We will use these results to find the asymptotic speed of wε,δ(t, x, y) and

wδ(t, x) in Section 3.

1.2.2 KPP–type reaction diffusion equations

The quasi–linear reaction diffusion equations and wavefront propagation have

been studied extensively since the 1930s. Diffusion equations with non–linear terms

are used for describing certain physical, chemical, or biological processes. In 1937

A.N.Kolmogorov, I.G.Petrovskii and N.S.Piskunov considered the following prob-

lem:

∂u(t,x)
∂t

= D
2

∂2u
∂x2 + f(u), t > 0, x ∈ R1

u(0, x) = χx<0(x) =





1, for x < 0

0, for x ≥ 0.

(1.10)

Here D > 0 and the nonlinear term f(u) = c(u) · u, where the function c(u) is

supposed to be Lipschitz continuous, positive for u < 1 and negative for u > 1, and

such that c = c(0) = max0≤u≤1 c(u). Let us denote the class of such functions f(u)

by F1 and call such a nonlinear term f(u) the KPP–type.

It was proved in [18] that the solution u(t, x) of (1.10) for large t will be close

to a running wave type solution v(x − αt). The speed of the wave is α =
√

2cD,
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and the shape v(z) is a solution of the problem

(D/2)v
′′
(z) + αv(z) + f(v(z)) = 0, −∞ < z < ∞

v(−∞) = 1, v(∞) = 0.

(1.11)

Problem (1.11) is solvable for α ≥ √
2cD, and the solution is unique. So the limiting

behavior of the solution of problem (1.10) can be characterized by the speed α and

by the shape v(z) of the running wave.

Using the Feynman–Kac formula, one can write the equation

u(t, x) = Eχx<0(x +
√

DWt) exp

{∫ t

0

c(u(t− s, x +
√

DWs))ds

}
, (1.12)

where Wt is the one–dimensional Wiener process starting at zero. One can introduce

the asymptotic speed independently of the shape. The number α∗ is called the

asymptotic speed as t →∞ for the problem (1.10) if for any h > 0

limt→∞ supx>(α∗+h)t u(t, x) = 0, limt→∞ infx<(α∗−h)t u(t, x) = 1. (1.13)

It follows from [18] that such α∗ exists and is equal to
√

2cD. The notion of asymp-

totic speed can be introduced in a more general situation, and the large deviation

approach allows us to calculate it. However, we cannot expect that some asymp-

totic speed will be established in the case of arbitrary diffusion coefficients and a

non–linear term f(x, u) without a certain hypotheses. So we will consider the peri-

odic media case in Chapter 3; the diffusion coefficients and the non–linear term are

functions periodic in the space variables. The generalized results on the KPP–type

reaction diffusion equations in a more general situation were given by M. Freidlin

[11].
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1.2.3 Action functional

When we study wave propagation for quasi–linear equations with small diffu-

sion, we usually use large deviations theorems in the space of continuous functions.

To calculate the asymptotic wave propagation velocity for the reaction diffusion

equations to be considered in Chapter 3, we will apply large deviations theorems for

some families of finite–dimensional random vectors, rather than for diffusion pro-

cesses with small parameter. Let us formulate the corresponding results to be used

in Chapter 3.

Let (Ωt
θ,F t

θ, P
t
θ) be a family of probability spaces, where t ∈ (0,∞) and the

parameter θ varies over an arbitrary non–empty set Θ. Consider a family of n–

dimensional random vectors ηt
θ defined on the corresponding measurable spaces

(Ωt
θ,F t

θ), t ∈ (0,∞) and θ ∈ Θ. Suppose that for some positive function ε(t),

such that ε(t) → 0 as t →∞, and for all z ∈ Rn,

G(z) = lim
t→∞

ε(t) ln

(
Et

θ exp

{
1

ε(t)
< z, ηt

θ >

})
. (1.14)

Here the limit (1.14) exists independently of θ ∈ Θ, uniformly in the parameter θ

and the limit G(z) may be the value +∞, not identically equal to +∞, assuming

its values in (−∞,∞]. The function G(z) is convex and lower semicontinuous. The

notation < ·, · > indicates a scalar product in the space Rn and Et
θ denotes the

expectation with respect to the probability measure P t
θ .

Let us introduce the action function S(y) : Rn → [0,∞] as the Legendre

transform of G(z), defined as

S(y) = sup
z∈Rn

[< y, z > −G(z)], y ∈ Rn. (1.15)
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It is easy to prove that the function S(y) is again a function of the same class as

G(z). That is, it is convex, lower semicontinuous , assumes values in (−∞,∞] and

is not identically equal to +∞. Let

D(G) = {5G(z) : the function G(z) is finite and differentiable, z ∈ Rn},

D(G) = {y ∈ Rn : ∃{yk} ⊂ D(G) such that yk → y and S(yk) → S(y)}
(1.16)

For any s ≥ 0, define

Φ(s) = {y ∈ Rn : S(y) ≤ s}. (1.17)

The sets Φ(x) are closed and convex. If G(0) is finite, it is easy to see that Φ(s),

s ≥ 0, are bounded. Denote by ρ(·, ·) the Euclidean metric in the space Rn. To

calculate the asymptotic wave front propagation velocity in Chapter 3, the following

two theorems (for the proofs of these theorems, see [13]) will be essential.

Theorem 2 (M. Freidlin and A. Wentzell, [13]) Suppose that, for some s ≥ 0, the

set Φ(s) is nonempty and bounded. Then for any δ > 0, h > 0, we can choose t0 > 0

such that the bound

P t
θ{ρ(ηt

θ, Φ(s)) > δ} ≤ exp

{
− 1

ε(t)
(s− h)

}
(1.18)

holds for t > t0 and all θ ∈ Θ.

Theorem 3 (M.Freidlin and A.Wentzell, [13]) For any δ > 0, h > 0, and for all

y ∈ D(G), a t0 > 0 exists such that

P t
θ{ρ(ηt

θ, y) < δ} ≥ exp

{
− 1

ε(t)
(S(y) + h)

}
(1.19)

for t > t0 and all θ ∈ Θ.
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Chapter 2

Necessary and sufficient conditions for weak convergence of one

dimensional Markov processes in closed intervals

2.1 Weak convergence of a DvDu–process

As was shown in [14], for each continuous Markov process (Xt, Px) on [r0,∞),

there exist a monotone increasing continuous function u(x), a monotone increasing

right continuous function v(x), and constants α and β, not both equal to zero, such

that the generator of (Xt, Px) is equal to a DvDu–operator, and the domain of this

generator is





f(x) : DvDuf(x) is well defined, continuous, and

Φ(f) = αDuf(r0) + βDvDuf(r0) = 0.





.

Here Px is a measure in the space C0T corresponding to Xt. We call such a process

(Xt, Px) a DvDu–process on [r0,∞). If β = 0, then the DvDu–process has an

instantaneous reflection at a boundary point r0. If α = 0, the DvDu–process is

trapped at r0. In other words, it will stay forever at a boundary point r0 once it

gets there. If α 6= 0 and β 6= 0, then the DvDu–process spends positive time at a

boundary point r0 and also reflects there.

Theorem 4 Let u(x) be a strictly increasing continuous function and let v(x) be a

strictly increasing right continuous function on [r0,∞) corresponding to a DvDu–
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process (Xt, Px). Let Px be the measure on C0T corresponding to the process Xt.

Assume that all functions in the domain of the generator of (Xt, Px) satisfy the

following boundary condition :

Φ(F ) = αDuF (r0) + βDvDuF (r0) = 0, for all F ∈ D(DvDu).

Let un(x) and vn(x) be a sequence of increasing functions on [r0,∞). Let (X
(n)
t , P

(n)
x )

be a DvnDun–process for each n. Let P
(n)
x be the measure on C0T corresponding

to the process X
(n)
t . Assume that all functions in the domain of the generator of

(X
(n)
t , P

(n)
x ) satisfy the boundary condition

Φ(n)(Fn) = αnDunFn(r0) + βnDvnDunFn(r0) = 0, for all Fn ∈ D(DvnDun).

For the weak convergence of measure P
(n)
x to Px as n →∞ for all x ∈ [r0,∞),

it is necessary after an appropriate choice of un(x) and vn(x), and sufficient that

un(x) → u(x) for all x ∈ [r0,∞), (2.1)

vn(x) → v(x) for all x ∈ [r0,∞) that are continuity points of v, (2.2)

αn → α, βn → β. (2.3)

Proof . (Necessity) Without loss of generality, we will assume that r0 = 0.

Assume that P
(n)
x converges weakly to Px as n →∞ for all x ∈ [0,∞). It was proven

by Freidlin and Wentzell [14] that (2.1) and (2.2) hold on open intervals. Here the

proof of (2.1) and (2.2) can be carried out in the same way, so we will sketch the

proof for these two conditions. For more details one may refer to [14].
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To prove un(x) → u(x) as n → ∞, consider the functional I{x2}(Xτ(x1,x2)
),

where I{x2} is the indicator function of the one–point set and τ(x1,x2) = min{t : Xt 6∈

(x1, x2)} for t ∈ [0,∞). By assumption of weak convergence of P
(n)
x to Px,

E
(n)
x [I{x2}(X

(n)
τ(x1,x2))] = P

(n)
x {(X(n)

τ(x1,x2) = x2)}

−→ Ex[I{x2}(Xτ(x1,x2)
)] = Px{(Xτ(x1,x2)

= x2)}
(2.4)

Moreover, these probabilities can be expressed in terms of functions un(x), u(x) as

follows:

P
(n)
x {X(n)

τ(x1,x2) = x2} = (un(x)− un(x1))/(un(x2)− un(x1)),

Px{Xτ(x1,x2)
= x2} = (u(x)− u(x1))/(u(x2)− u(x1)).

(2.5)

From the two relations (2.4) and (2.5), the convergence un(x) → u(x) can be proved.

For proving the condition (2.2), consider the functional I{x2}(Xτ(x1,x2)
)e−λτ(x1,x2) ,

where λ is a positive number. This functional is bounded and continuous almost

everywhere with respect to Px. By the weak convergence of P
(n)
x to Px, we can see

that

Fn(x) = E
(n)
x [I{x2}(X

(n)
τ(x1,x2)) exp{−λτ(x1,x2)}]

−→ F (x) = Ex[I{x2}(Xτ(x1,x2)
) exp{−λτ(x1,x2)}]

(2.6)

Here the functions Fn(x), F (x) are solutions of

DvnDunFn(x) = λFn(x), x ∈ (x1, x2), Fn(x1) = 0, Fn(x2) = 1,

DvDuF (x) = λF (x), x ∈ (x1, x2), F (x1) = 0, F (x2) = 1.

(2.7)

From the two relations (2.6) and (2.7), we can deduce the following:

∫ x2

x1

g(x)dvn(x) →
∫ x2

x1

g(x)dv(x), (2.8)

for every bounded continuous function g(x) on the interval (x1, x2). Therefore the

condition vn(x) → v(x) as n →∞ follows.
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The condition (2.3) is provided in the following.

First, if α = 0, there is nothing further to prove because the condition

DvDuF (0) = 0 implies P (t, 0, {0}) = 1 for t ≥ 0. Thus let us assume that α 6= 0

and αn 6= 0. Then we can rewrite the boundary conditions as follows :

DuF (0) = γDvDuF (0)

DunFn(0) = γnDvnDunFn(0).

Now, it is enough to prove that γn → γ. Let Xt be a DvDu–process on (−∞,∞)

where u(x) and v(x) are antisymmetric with respect to x = 0. (One can put

u(0) = 0 so that the extended function u(x) is continuous on R1.) Here Xt is a

one–dimensional continuous strong Markov Process which is regular on the interval

[c1, c2] [4]. This means that every interior point is accessible. It is well known [3] that

the infinitesimal operator A is equal to the restriction of the characteristic operator

U, which is defined by

Uf(x) = lim
a1↑x,a2↓x

Exf [Xτ(a1,a2)]− f(x)

Exτ(a1, a2)
, for c1 ≤ a1 ≤ x ≤ a2 ≤ c2, (2.9)

where τ(a1, a2) = inf{t : Xt 6∈ (a1, a2)}.

For c1 ≤ a1 ≤ x ≤ a2 ≤ c2, the function m(x) = Exτ(c1, c2) is the solution

of the equation DvDum(x) = −1 with boundary conditions m(c1) = m(c2) = 0,

where τ(c1, c2) = inf{t : Xt 6∈ (c1, c2)}. Let φi(x, a1, a2) = Px(Xτ(a1,a2) = ai) and

m(x, a, b) = Exτ(a, b), where x ∈ (a, b). Then

m(x) = m(x, a1, a2) + φ1(x, a1, a2)m(a1) + φ2(x, a1, a2)m(a2).

18



According to equation (2.9),

DvDuF (0) = lima1↑0,a2↓0
Ex=0F (Xτ(a1,a2))−F (0)

Ex=0τ(a1,a2)

= lima1↑0,a2↓0
P (Xτ=a1)F (a1)+P (Xτ=a2)F (a2)−F (0)

m(0,a1,a2)

= lima1↑0,a2↓0
P (Xτ=a1)F (a1)+P (Xτ=a2)F (a2)−F (0)
m(0)−P (Xτ=a1)m(a1)−P (Xτ=a2)m(a2)

.

(2.10)

The numerator of (2.10) is

P (Xτ = a1)F (a1) + P (Xτ = a2)F (a2)− F (0)

= u(a2)−u(0)
u(a2)−u(a1)

F (a1) + u(0)−u(a1)
u(a2)−u(a1)

F (a2)− F (0)

= 1
u(a2)−u(a1)

{(u(a2)− u(0))F (a1) + (u(0)− u(a1))F (a2)

−(u(a2)− u(a1))F (0) + F (0)u(0)− F (0)u(0)}

= 1
u(a2)−u(a1)

{(u(a2)− u(0))(F (a1)− F (0)) + (u(0)− u(a1))(F (a2)− F (0))}.

Similarly, the denominator of (2.10) is

m(0, a1, a2) = m(0)− P (Xτ = a1)m(a1)− P (Xτ = a2)m(a2)

= m(0)− u(a2)−u(0)
u(a2)−u(a1)

m(a1)− u(0)−u(a1)
u(a2)−u(a1)

m(a2)

= 1
u(a2)−u(a1)

{−(u(a2)− u(0))(m(a1)−m(0))

+(u(0)− u(a1))(m(0)−m(a2))}

So, by dividing both parts by (u(a2)−u(0))(u(0)−u(a1)), and since DvDum(x) =

−1, we have

(D+
u F (0)−D−

u F (0)) = (v(0)− v(0−))DvDuF (0).

From the fact that u(x) and v(x) are antisymmetric with respect to the point 0, it

is easy to check D+
u F (0) = −D−

u F (0). So the boundary condition is

D+
u F (0)− v(0)− v(0−)

2
DvDuF (0) = 0.
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Therefore γ is equal to (v(0) − v(0−))/2. Similarly, for each n, γn = (vn(0) −

vn(0−))/2, so γn → γ as n →∞. The proof of necessity is complete.

Let us prove the sufficiency of (2.1)–(2.3).

Assume that (2.1), (2.2), and (2.3) are satisfied. Let T
(n)
t and Tt be semigroups

associated with X
(n)
t and Xt respectively. One can verify that T

(n)
t (also Tt) is a

strongly continuous contraction semigroup through the Hille–Yosida theorem ([5],

Theorem 1.2.6). The weak convergence of the processes X
(n)
t as n → ∞ to a

continuous Markov process Xt with the Feller property is equivalent to

lim
n→∞

| T (n)
t f(x)− Ttf(x) |= 0, uniformly in t, t ≥ 0. (2.11)

for all bounded continuous functions f(x) ∈ B. According to the ′′Trotter–Kato′′

theorem, the following result implies (2.12) :

lim
n→∞

| (λ−DvnDun)−1f(x)− (λ−DvDu)
−1f(x) |= 0, (2.12)

for every bounded continuous function f(x) ∈ B vanishing at infinity and for all

λ > 0. Therefore we will prove (2.12), instead of (2.11).

Consider the following homogeneous and inhomogeneous equations.

λGn(x)−DvnDunGn(x) = 0, λFn(x)−DvnDunFn(x) = f(x) (2.13)

λG(x)−DvDuG(x) = 0, λF (x)−DvDuF (x) = f(x) (2.14)

where f(x) is a bounded continuous function and λ is a positive constant.

Under our assumptions, for each n, there exists the unique bounded solution

Fn(x) of the inhomogeneous differential equation in (2.13) given by

Fn(x) =

∫
G

(n)
λ (x, y)f(y)dvn(y) + cnĜ1n(x) + dnĜ2n(x) (2.15)
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where G
(n)
λ (x, y) is the Green function associated with the differential operator

DvnDun ([7]). Here each Ĝ1n(x) and Ĝ2n(x) are a decreasing and an increasing

solutions to the homogeneous equation in (2.14), and cn and dn are constants. Put

F̂n(x) =
∫

G
(n)
λ (x, y)f(y)dvn(y). Since the point 0 is the only accessible and regular

boundary point, dn is equal to zero and the general solution of the inhomogeneous

equation (2.13) is of the form

Fn(x) = F̂n(x) + cnĜ1n(x), (2.16)

where cn is a constant, λF̂n(x)−DvnDunF̂n(x) = f(x), and λĜ1n(x)−DvnDunĜ1n(x)

= 0. Here the inhomogeneous equation (2.13) will have a unique solution with

boundary condition Φ(n)(Fn) = 0. That is, the constant cn will be uniquely deter-

mined by the boundary condition DunFn(0)−γnDvnDunFn(0) = 0. It is known ([19])

that for λ > 0, Ĝ1n(x) is positive and strictly decreasing. Therefore DunĜ1n(0) −

γnDvnDunĜ1n(0) < 0 and cn can be uniquely determined

cn = − DunF̂n(0)− γnDvnDunF̂n(0)

DunĜ1n(0)− γnDvnDunĜ1n(0)
. (2.17)

Similarly the general solution of the inhomogeneous equation (2.14) is of the

form F (x) = F̂ (x) + cĜ1(x), where λF̂ (x) − DvDuF̂ (x) = f(x) and λĜ1(x) −

DvDuĜ1(x) = 0. Also, for λ > 0, Ĝ1(x) is positive and strictly decreasing. The

constant c can be found as before to be

c = −DuF̂ (0)− γDvDuF̂ (0)

DuĜ(0)− γDvDuĜ(0)
. (2.18)

Assuming (2.1) and (2.2), it was shown ([14]) that Ĝ1n(x) and F̂n(x) converge uni-

formly to Ĝ1(x) and F̂ (x) respectively. Furthermore, the uniform convergence of
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F̂n(x) to F̂ (x) and of Ĝ1n(x) to Ĝ1(x) as n → ∞, and assumptions (2.1), (2.2),

and (2.3) imply that cn converges uniformly to c as n →∞. Therefore, the general

solution Fn(x) = F̂n(x) + cnĜ1n(x) converges uniformly to F (x) = F̂ (x) + cĜ1(x).

That is, limn→∞ Fn(x) = F (x). So, from the inhomogeneous equations of (2.13)

and (2.14), limn→∞ DvnDunFn(x) = DvDuF (x). According to [5], Theorem 1.6.1,

the convergence of the infinitesimal operator is equivalent to the convergence of the

strongly continuous contraction semigroup T
(n)
t to the strongly continuous contrac-

tion semigroup Tt corresponding to the DvDu-operator of the limiting process Xt. It

is also known ([5], Theorem 4.2.5) that the convergence of the semigroup T
(n)
t f(x)

to the semigroup Ttf(x) implies the weak convergence of P
(n)
x to Px. 2

In the following theorem, the necessary and sufficient conditions for weak

convergence in the closed interval [r0, r1] will be shown, following the methodology

of Theorem 1.

Theorem 5 Let u(x) be a strictly increasing continuous function and let v(x) be a

strictly increasing right continuous function on [r0, r1] with the corresponding pro-

cess (Xt, Px). Let Px be the measure on C0T corresponding to Xt. Assume that

all functions F (x) in the domain of the generator of (Xt, Px) satisfy the following

boundary conditions :

Φ0(F ) = DuF (r0)− η1DvDuF (r0) = 0,

Φ1(F ) = DuF (r1) + η2DvDuF (r1) = 0,

(2.19)

where η1 and η2 are nonnegative.
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Let un(x) and vn(x) be a sequence of increasing functions on [r0, r1]. Let

(X
(n)
t , P

(n)
x ), for each n, be a DvnDun–process on [r0, r1]. Let P

(n)
x be the measure

on C0T corresponding to Xt. Assume that all functions Fn(x) in the domain of the

generator of (X
(n)
t , P

(n)
x ) satisfy the following boundary conditions at the boundary

points :

Φ
(n)
0 (Fn) = DunFn(r0)− η1

nDvnDunFn(r0) = 0,

Φ
(n)
1 (Fn) = DunFn(r1) + η2

nDvnDunFn(r1) = 0,

(2.20)

where η1
n and η2

n are nonnegative.

For the weak convergence of probability P
(n)
x to Px as n →∞ for all x ∈ [r0, r1],

it is necessary after an appropriate choice of un(x) and vn(x), and sufficient that

un(x) → u(x) for all x ∈ [r0, r1], (2.21)

vn(x) → v(x) for all x ∈ [r0, r1] that are continuity points of v, (2.22)

η1
n → η1, η2

n → η2. (2.23)

Proof . Most of the proof is similar to the proof of Theorem 1. Therefore we

will only outline the proof of sufficiency which differs from the proof of Theorem 1.

Assume that (2.21), (2.22), and (2.23) are true. Let

(λ−DvnDun)Fn(x) = f(x), (2.24)

(λ−DvDu)F (x) = f(x), (2.25)

where f(x) is a bounded continuous function. Then, for each n, the general solution

of (2.24) will be

Fn(x) = F̂n(x) + c1nĜ1n(x) + c2nĜ2n(x),
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where (λ−DvnDun)F̂n(x) = f(x), and both Ĝ1n(x) and Ĝ2n(x) are positive solutions

of the homogeneous equation (λ −DvnDun)Ĝin(x) = 0 for i = 1, 2. Here Ĝ1n(x) is

strictly decreasing and Ĝ2n(x) is strictly increasing, and −DunĜ1n(r0) > DunĜ2n(r0)

and DunĜ2n(r1) > −DunĜ1n(r1). (For details one may refer to [19]). Then one can

check | Φ
(n)
0 (Ĝ1n)Φ

(n)
1 (Ĝ2n) − Φ

(n)
0 (Ĝ2n)Φ

(n)
1 (Ĝ1n) |> 0. Similarly we can find the

general solution of (2.25) to be

F (x) = F̂ (x) + c1Ĝ1(x) + c2Ĝ2(x)

where (λ − DvDu)F̂ (x) = f(x), (λ − DvDu)Ĝi(x) = 0 for i = 1, 2. Here Ĝ1(x) is

positive and strictly decreasing, and Ĝ2(x) is positive and strictly increasing.

In the general solution Fn(x) and F (x), the constants c1n, c2n and c1, c2

are uniquely determined by the boundary conditions (2.19) and (2.20) respectively

([19]). Then it is not difficult to prove c1n → c1 and c2n → c2 as n →∞. Therefore,

the general solution Fn(x) converges to F (x) as n → ∞. So, the convergence of

DvnDunFn(x) to DvDuF (x) is complete which implies weak convergence. 2

Consider

Lnf = an(x)
d2f

dx2
+ bn(x)

df

dx
for f ∈ C2

o (R1), (2.26)

where an(x) and bn(x) are continuous functions in R1.
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Define the limits of an(x) and bn(x) as

limn→∞ an(x) = a(x) =





a+(x) x > 0,

a−(x) x < 0,

limn→∞ bn(x) = b(x) =





b+(x) x > 0,

b−(x) x < 0,

where a(x) and b(x) may be undefined or may be discontinuous at x = 0. For

simplicity we assume that there exists only one point x = 0 that is a singular point

in R1.

Define

Pr = limδ↓0 limn→∞ Px(X
(n)
τ = δ), Pl = limδ↓0 limn→∞ Px(X

(n)
τ = −δ)

Q = limδ↓0 limn→∞ 1
δ
Exτ

(n)(−δ, δ)

where τ (n)(−δ, δ) = inf{t : X
(n)
t 6∈ (−δ, δ)} and x ∈ (−δ, δ).

Define u(x) and v(x) as follows :

u(x) =





(1/Pr)
∫ x

0
exp{− ∫ y

0
(b(z)/a(z))dz}dy, x ≥ 0

(1/Pl)
∫ x

0
exp{− ∫ y

0
(b(z)/a(z))dz}dy, x < 0,

v(x) =





Q + Pr

∫ x

0
a+(y)−1 exp{∫ y

0
(b(z)/a(z))dz}dy, x ≥ 0

Pl

∫ x

0
a−(y)−1 exp{∫ y

0
(b(z)/a(z))dz}dy, x < 0.

(2.27)

Then DvDuf(x) is defined by

DvDuf(x) =





a+(x)(d2f/dx2) + b+(x)(df/dx), x > 0

a−(x)(d2f/dx2) + b−(x)(df/dx), x < 0

QDvDuf(x) = Prf
′
+(x)− Plf

′
−(x), x = 0

where DvDuf(0) = limx→0+(a+(x)d2f
dx2 + b+(x) df

dx
) = limx→0−(a−(x)d2f

dx2 + b−(x) df
dx

).
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• Assumption (A1): limits Pr, Pl, and Q exist.

• Assumption (A2): limn→∞ Λn(x) = limn→∞ exp{− ∫ x

0
(bn(z)/an(z))dz} exists

for x ∈ R1.

However, we would like to point out that limn→∞ Λn(x) is not always equal to

Λ(x) = exp{− ∫ x

0
(b(z)/a(z))dz} since there exists a singular point at x = 0. That

is, an(x) and bn(x) do not converge uniformly to a(x) and b(x) respectively. For

ε > 0, define u
′
+(0) and u

′
−(0) respectively as

u
′
+(0) = lim

ε→0
lim

n→∞
u
′
n(ε), u

′
−(0) = lim

ε→0
lim

n→∞
u
′
n(−ε),

where un(x) and vn(x) are sequences of increasing functions such that Lnf =

DvnDunf . If limn→∞ Λn(x) exists, then u
′
+(0) and u

′
−(0) exist even though u

′
+(0)

may not be equal to u
′
−(0). If limn→∞ Λn(x) does not exist, then the problem is

more challenging.

Theorem 6 With assumptions (A1) and (A2), let P
(n)
x be the measure in the space

C0T corresponding to X
(n)
t governed by Anf = Lnf , for f ∈ D(An). Let Px be the

measure on the space C0T corresponding to a process Xt governed by the DvDu–

operator where v(x) and u(x) are defined by (2.27). Then P
(n)
x converges weakly in

C0T to Px as n →∞.

Proof . From DvnDunf = an(x)(d2f/dx2)+bn(x)(df/dx) for f ∈ C2
o (R), un(x)

and vn(x) are written as

un(x) =
∫ x

0
exp{− ∫ y

0
(bn(z)/an(z))dz}dy,

vn(x) =
∫ x

0
an(y)−1 exp{∫ y

0
(bn(z)/an(z))dz}dy.
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According to [14], it is enough to show that un(x) and vn(x) converge uniformly to

u(x) and v(x) respectively. From the definition of the DvDu-operator, we have

lim
δ→0

(v(δ)− v(−δ))DvDuf(0) = D+
u f(0)−D−

u f(0).

For f ∈ D(DvDu), the gluing condition is given at x = 0 as

QDvDuf(0) = Prf
′
+(0)− Plf

′
−(0).

Since Pl

Pr
=

u
′
+(0)

u
′
−(0)

, we have the following ratio

limδ↓0{v(δ)− v(−δ)}
Q

=
1

Pru
′
+(0)

=
1

Plu
′
−(0)

= K,

where K is a positive constant. As mentioned before, even though we multiply one

of functions u(x) and v(x) by some positive number, and divide the other by the

same number, the operator DvDu is still same. So, we multiply v(x) by K and

divide u(x) by K. Therefore u(x) and v(x) are rewritten as follows

u(x) =





u
′
+(0)

∫ x

0
exp{− ∫ y

0
(b(z)/a(z))dz}dy, x ≥ 0

u
′
−(0)

∫ x

0
exp{− ∫ y

0
(b(z)/a(z))dz}dy, x < 0,

v(x) =





v(0) + (1/u
′
+(0))

∫ x

0
(a+(y))−1 exp{∫ y

0
(b(z)/a(z))dz}dy, x ≥ 0

(1/u
′
−(0))

∫ x

0
(a−(y))−1 exp{∫ y

0
(b(z)/a(z))dz}dy, x < 0.

Then, for x > 0 and δ > 0

limn→∞ | un(x)− u(x) |

= limn→∞ | ∫ x

0
e−

∫ y
0

bn(z)
an(z)

dzdy − u
′
+(0)

∫ x

0
e−

∫ y
0

b(z)
a(z)

dzdy |

= limn→∞ | e−
∫ δ
0

bn(z)
an(z)

∫ x

0
e−

∫ y
δ

bn(z)
an(z)

dzdy − u
′
+(0)

∫ x

0
e−

∫ y
0

b(z)
a(z)

dzdy |

= limδ→0 limn→∞ | u′n(δ)
∫ x

0
e−

∫ y
δ

bn(z)
an(z)

dzdy − u
′
+(0)

∫ x

0
e−

∫ y
0

b(z)
a(z)

dzdy |= 0.
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The last equality is true because an(x) and bn(x) converge uniformly to a(x) and

b(x) respectively for x ∈ (−∞,−δ] and x ∈ [δ,∞) for δ > 0. Hence un(x) converges

uniformly to u(x). Similarly it can be proven that limn→∞ | vn(x)− v(x) |= 0. 2

It is well known that the uniform convergence of an(x) and bn(x) immediately

implies the uniform convergence of un(x) and vn(x) at continuous points of v(x).

Then, from the main theorem in [14], the weak convergence of P
(n)
x to Px follows.

We want to emphasize that this theorem is meaningful even though an(x) and bn(x)

do not converge uniformly to a(x) and b(x) respectively under our assumptions.

Lastly, let us consider the following Cauchy problems.





∂fn(t,x)
∂t

= Lnfn + cn(x)fn

fn(0, x) = g(x),

(2.28)

where DvnDunfn = Lnfn = 1
2
an(x)∂2fn

∂x2 +bn(x)∂fn

∂x
, and cn(x) is a bounded continuous

function on R. For a bounded continuous function g(x), the solution of the problem

(2.28) can be written in the form

fn(t, x) = Ex

(
g(X

(n)
t ) exp

{∫ t

0

cn(X(n)
s )ds

})
. (2.29)

If cn(x) converges uniformly to c(x), and an(x) and bn(x) satisfy assumptions of

Theorem 6, then it is easy to see that the limit of fn(t, x) converges to the solution

of the following problem:





∂f(t,x)
∂t

= DvDuf + c(x)f

f(0, x) = g(x),

(2.30)
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where u(x) = limn→∞ un(x) and v(x) = limn→∞ vn(x). However, if cn(x) converges

to c(x) in a weaker sense, it cannot be guarantee that solutions fn(t, x) converge to

f(t, x). So, we will finish this subsection with a counterexample for this case. For

simplicity, assume that diffusion coefficients an(x) and a(x) are equal to 1 and a

drift coefficient b(x) is given by the following picture.

Figure 2.1: Functions b(x) and bn(x).

Then, for each n, we can construct continuous functions bn(x) throughout the

interval [−1, 1], which converge pointwise to a function b(x) as n →∞. From (2.28),

the first derivative of the function vn(x) is v
′
n(x) = 2 exp

{∫ x

−1
bn(z)dz

}
. Thus we

can see that the first derivative of function vn(x) at x = 0 with a function bn(x)

converges to a delta function as n → ∞. That is, the processes X
(n)
t have some

delay proportional to the difference of the change of the function vn(x) near the

point x = 0. Let us choose functions cn(x) which converge pointwise to a function
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c(x) as follows :

cn(x) = (1− | x |)n, for each n,

c(x) =





0 if x 6= 0

1 if x = 0.

(2.31)

Then
∫ t

0
cn(X

(n)
s )ds = τn

0 is a strictly positive value, where τn
0 indicates the exit

time of the neighborhood of a point x = 0 and
∫ t

0
cn(X

(n)
s )ds does not converge to

∫ t

0
c(Xs)ds = 0 as n →∞. So, even thought we have the weak convergence of P

(n)
x

to Px, the solutions fn(t, x) of problem (2.28) does not converge to a solution f(t, x)

of problem (2.30) unless cn(x) converges uniformly to c(x).

2.2 Some applications of weak convergence of DvDu–processes.

Let hδ(x) and kδ(x), for any δ > 0, be smooth positive functions in R1 as

shown in Figure 1 and define the strip Gε,δ in R2 as follows

Gε,δ = {(x, y) ∈ R2 : −εkδ(x) ≤ y ≤ εhδ(x)}, for ε, δ > 0.

Figure 2.2: The strip Gε,δ.

Let εlδ(x) be the width of the cross–section of the strip Gε,δ at x, that is,

lδ(x) = hδ(x) + kδ(x).
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Let (Xε,δ
t , Y ε,δ

t ) be the Wiener process in Gε,δ with a normal reflection on

the boundary. The process (Xε,δ
t , Y ε,δ

t ) is a solution to the stochastic differential

equations

dXε,δ
t = dW 1

t + γε,δ
1 (Xε,δ

t , Y ε,δ
t )dLε,δ

t ,

dY ε,δ
t = dW 2

t + γε,δ
2 (Xε,δ

t , Y ε,δ
t )dLε,δ

t ,

(2.32)

where W 1
t and W 2

t are independent Wiener processes in R1, and γε,δ = (γε,δ
1 (x, y),

γε,δ
2 (x, y)) is the unit inward normal to ∂Gε,δ. That is, γε,δ

1 and γε,δ
2 are projections

of the unit inward normal vector to ∂Gε,δ on corresponding axes. Moreover Lε,δ
t is

the local time for the process (Xε,δ
t , Y ε,δ

t ) on ∂Gε,δ. The local time is a continuous,

non–decreasing process which increases only when the process (Xε,δ
t , Y ε,δ

t ) touches

the boundary of Gε,δ ([16]). As ε ↓ 0, the component Xε,δ
t becomes a slow motion

and the component Y ε,δ
t becomes a fast motion in Gε,δ.

Theorem 7 Assume that strictly increasing functions u(x) and v(x) exist, u(x) is

continuous and v(x) is right continuous such that uδ(x) =
∫ x

0
(1/lδ(y))dy converges

to u(x) as δ ↓ 0 for each x, and vδ(x) =
∫ x

0
2(lδ(y))dy converges to v(x) as δ ↓ 0 at

each continuity point of v(x). Let Xt be the process governed by the DvDu–operator.

Then the component Xε,δ
t converges weakly to Xt as first ε ↓ 0 and then δ ↓ 0.

Proof . The process (Xε,δ
t , Y ε,δ

t ) is a solution to the stochastic differential

equation (2.32) with

γε,δ(x, y) =





1√
1+(εh′δ(x))2

(εh′δ(x),−1), for y = εhδ(x)

1√
1+(εk′δ(x))2

(εk′δ(x), 1), for y = −εkδ(x).
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It was proven ([11]) (see also [12]) that, as ε ↓ 0, the component Xε,δ
t con-

verges to the diffusion process Xδ
t which satisfies the following stochastic differential

equation

dXδ
t = dW 1

t + bδ(Xδ
t )dt, bδ(x) =

1

2

d

dx
ln(lδ(x)). (2.33)

Here the generator of Xδ
t is equal to a DvδDuδ–operator, where uδ(x) =

∫ x

0
(1/lδ(y))dy

and vδ(x) =
∫ x

0
2(lδ(y))dy. According to [14], since limδ↓0 | vδ(x) − v(x) |= 0 at

each continuity point of v(x) and limδ↓0 | uδ(x) − u(x) |= 0 at each point x, Xδ
t

converges weakly to Xt, whose generator is a DvDu–operator, as δ ↓ 0 and the proof

of Theorem 4 is complete. 2

Lastly we will show some examples of Theorem 4. In these following examples

three different strips Gε,δ will be considered (in the second and third case, we have

one more small parameter ε1. So in these cases we denote the strip by Gε,δ,ε1 instead

of Gε,δ).

Examples (1). Let Gε,δ = {(x, y) ∈ R2 : −εkδ(x) ≤ y ≤ εhδ(x)}, for ε, δ > 0.

Assume that, as δ ↓ 0, the smooth positive functions hδ(x) and kδ(x) have following

properties, respectively, (see Figure 2-(1))

(hδ(x)/δ) −→





K1, x < 0

K3, x > 0,

(kδ(x)/δ) −→





K2, x < 0

K4, x > 0,

where K1, K2, K3, K4 are positive constants. Let (Xε,δ
t , Y ε,δ

t ) be the Wiener process

in Gε,δ with normal reflection on the boundary.

Let Xt be governed by the infinitesimal operator Af = (1/2)f
′′
, for f ∈ D(A)
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with

D(A) =





f ∈ Co(R) : f
′
and f

′′
exist and are continuous except at zero ,

limx→0+(K3 + K4)f
′
+(x) = limx→0−(K1 + K2)f

′
−(x),

and limx→0+ f
′′
+(x) = limx→0− f

′′
−(x)





.

Then Xε,δ
t converges weakly to Xt as first ε ↓ 0 and then δ ↓ 0.

Figure 2.3: (hδ(x)/δ), (kδ(x)/δ), (hδ,ε1(x)/δ), and (kδ,ε1(x)/δ) as δ ↓ 0.

(2). Let Gε,δ,ε1 = {(x, y) ∈ R+ × R : 0 ≤ y ≤ εhδ,ε1(x)}, where, as δ ↓ 0, the

smooth positive function hδ,ε1(x) has the following property (see Figure 2-(2)) :

(hδ,ε1(x)/δ) −→





(K1/ε1), 0 ≤ x ≤ ε1

K2, x > ε1,
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where K1 and K2 are positive constants and ε1 > 0. The process (Xε,δ,ε1
t , Y ε,δ,ε1

t ) is

the Wiener process in Gε,δ,ε1 with normal reflection on the boundary.

Let Xt be governed by the infinitesimal operator Af = (1/2)f
′′
, for f ∈ D(A)

with

D(A) =





f ∈ Co(R) : f
′
and f

′′
exist and are continuous except at zero ,

limx→0+ K2f
′
+(x) = limx→0+ K1f

′′
+(x)

and limx→0+ f
′′
+(x) = limx→0− f

′′
−(x)





.

Then Xε,δ,ε1
t converges weakly to Xt as first ε ↓ 0 and then δ ↓ 0, ε1 ↓ 0.

(3). Let Gε,δ,ε1 = {(x, y) ∈ R2 : −εkδ,ε1(x) ≤ y ≤ εhδ,ε1(x)}, where, as δ ↓ 0,

smooth positive functions hδ,ε1(x) and kδ,ε1(x) have following properties (see Figure

2-(3)) :

(hδ,ε1(x)/δ) −→





K1, | x |> ε1

(K3/ε1), | x |≤ ε1,

(kδ,ε1(x)/δ) −→





K2, | x |> ε1

(K4/ε1), | x |≤ ε1,

where K1, K2, K3, and K4 are positive constants. The process (Xε,δ,ε1
t , Y ε,δ,ε1

t ) is the

Wiener process in Gε,δ,ε1 with normal reflection on the boundary.

Let Xt be governed by the infinitesimal operator Af = (1/2)f
′′
, for f ∈ D(A)

with

D(A) =





f ∈ Co(R) : f
′
and f

′′
exist and are continuous except at zero ,

limx→0+(K1 + K2)f
′
+(x)− limx→0−(K1 + K2)f

′
−(x)

= limx→0 2(K3 + K4)f
′′
(x),

and limx→0+ f
′′
+(x) = limx→0− f

′′
−(x)





.
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Then Xε,δ,ε1
t converges weakly to Xt as first ε ↓ 0 and then δ ↓ 0, ε1 ↓ 0.

Proof (1). From the infinitesimal operator A and the gluing condition, v(x)

and u(x) are determined as follows

v(x) =





2(K3 + K4)x, x ≥ 0

2(K1 + K2)x, x < 0,

u(x) =





1
K3+K4

x, x ≥ 0

1
K1+K2

x, x < 0.

For x < 0,

limδ↓0 | vδ(x)− v(x) |

= limδ↓0 | δ−1
∫ x

0
2(hδ(y) + kδ(y))dy − 2(K1 + K2)x |= 0.

and it is easy to check that limδ↓0 | uδ(x) − u(x) |= 0. Similarly, for x ≥ 0, it can

be proven that limδ↓0 | vδ(x) − v(x) |= 0 and limδ↓0 | uδ(x) − u(x) |= 0. Therefore

these results imply that Xε,δ
t converges weakly to Xt.

(2). From the infinitesimal operator A and the gluing condition, v(x) and u(x)

are determined as follows

v(x) = 2K1 + 2K2x, u(x) = x/K2 for x > 0.

Let (X̃ε,δ,ε1
t , Ỹ ε,δ,ε1

t ) be a solution to the stochastic differential equation (2.32)

with

γε,δ,ε1(x, y) =





1√
1+ε2h̃′δ,ε1(x)2

(εh̃′δ,ε1(x),−1), for y = εh̃δ,ε1(x)

(0, 1), for y = 0

where h̃δ,ε1(x) = hδ,ε1(x), for x ≥ 0 and h̃δ,ε1(x) = hδ,ε1(−x), for x < 0. For

the component Xε,δ,ε1
t defined on the half–line R+ = {x ≥ 0} with instantaneous

reflection at zero, it is known (see [10], Ch.1.6) that Xε,δ,ε1
t is | X̃ε,δ,ε1

t | in law.
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Let X̃t be governed by the DṽDũ–operator where for x < 0, ṽ(x) = −v(−x)

and ũ(x) = −u(−x), and for x ≥ 0, ṽ(x) = v(x) and ũ(x) = u(x). Then Xt is also

| X̃t | in law.

Therefore this problem is equivalent to proving that X̃ε,δ,ε1
t converges weakly

to X̃t as first ε ↓ 0 and then δ ↓ 0 and ε1 ↓ 0.

As ε ↓ 0, the component X̃ε,δ,ε1
t converges to the diffusion process X̃δ,ε1

t gov-

erned by the Dṽδ,ε1Dũδ,ε1–operator, where Dṽδ,ε1Dũδ,ε1f = 1
2
f
′′
(x)+1

2
(d ln(h̃δ,ε1(x))/dx)

×f
′
(x) for δ > 0 and ε1 > 0. Here ṽδ,ε1(x) =

∫ x

0
(2(h̃δ,ε1(y))/δ)dy for x ≥ 0

and ṽδ,ε1(x) =
∫ x

0
(2(h̃δ,ε1(y))/δ)dy for x < 0, and ũδ,ε1(x) =

∫ x

0
(δ/h̃δ,ε1(y))dy for

x ∈ R1. One can check that ṽδ,ε1(x) and ũδ,ε1(x) are antisymmetric with respect to

zero. Lastly it is not difficult to show that limε1↓0 limδ↓0 | ṽδ,ε1(x) − ṽ(x) |= 0 and

limε1↓0 limδ↓0 | ũδ,ε1(x)− ũ(x) |= 0. Therefore X̃δ,ε1
t converges weakly to X̃t as δ ↓ 0

and then ε1 ↓ 0. The proof is completed in this case.

(3). From the infinitesimal operator A and the gluing condition, v(x) and u(x)

are determined as follows

v(x) =





4(K3 + K4) + 2(K1 + K2)x, x ≥ 0

2(K1 + K2)x, x < 0,

u(x) = 1
K1+K2

x.

The proof can be complete in the same way as (1) and (2). 2
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Chapter 3

KPP-Type Reaction Diffusion Equations in Narrow Domains

3.1 Generalized solution of Cauchy problem

For each x ∈ R1 and δ > 0, suppose that Gδ
x is a bounded domain in Rn with

a smooth boundary ∂Gδ
x. Consider the domain Gδ = {(x, y) : x ∈ R1, y ∈ Gδ

x} ⊂

R × Rn. Assume that the boundary ∂Gδ of Gδ is smooth enough and denote by

γδ(x, y) the inward unit normal to ∂Gδ. Consider a narrow tube Gε,δ = {(x, y) : x ∈

R1, εy ∈ Gδ
x} for 0 < ε ¿ 1 and the following problem in Gε,δ:





∂wε,δ(t,x,y)
∂t

= 1
2
4wε,δ + f(x, y, wε,δ), if t > 0, (x, y) ∈ Gε,δ

∂wε,δ(t,x,y)
∂γε,δ

∣∣∣
t>0,(x,y)∈∂Gε,δ

= 0, wε,δ(0, x, y) = g(x),

(3.1)

where γε,δ is the inward unit normal to ∂Gε,δ and 4 is the Laplacian in x and y.

Here, the nonlinear term f(x, y, wε,δ) is assumed to be bounded and nonnegative. We

consider the nonlinearity of Kolmogorov, Petrovskii and Piskunov (KPP) type, that

is, f(x, y, 0) = f(x, y, 1) = 0, f(x, y, wε,δ) > 0 for wε,δ ∈ (0, 1), and f(x, y, wε,δ) < 0

for wε,δ 6∈ [0, 1]. Let f(x, y, wε,δ) = c(x, y, wε,δ)wε,δ for wε,δ > 0 and c(x, y) =

c(x, y, 0) = max0≤wε,δ≤1c(x, y, wε,δ). Assume that the function c(x, y, wε,δ) for wε,δ ∈

[0,∞) is continuous and satisfies a Lipschitz condition in wε,δ.

Consider the Markov process (Xε,δ
t , Y ε,δ

t ) in Gε,δ with a normal reflection on

the boundary. The process (Xε,δ
t , Y ε,δ

t ) is a solution to the stochastic differential
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equation:

dXε,δ
t = dW 1

t + γε,δ
1 (Xε,δ

t , Y ε,δ
t )dLε,δ

t ,

dY ε,δ
t = dW 2

t + γε,δ
2 (Xε,δ

t , Y ε,δ
t )dLε,δ

t ,

(3.2)

where W 1
t and W 2

t are independent Wiener processes in R1 and Rn, respectively,

and γε,δ = (γε,δ
1 (x, y), γε,δ

2 (x, y)) is the unit inward normal to ∂Gε,δ. That is, γε,δ
1 and

γε,δ
2 are projections of the unit inward normal vector to ∂Gε,δ on the corresponding

axes. Moreover, Lε,δ
t is the local time for the process (Xε,δ

t , Y ε,δ
t ) on ∂Gε,δ. The local

time is a continuous, non–decreasing process which increases only when the process

(Xε,δ
t , Y ε,δ

t ) touches the boundary of Gε,δ. Then, using the Feynman–Kac formula,

wε,δ(t, x, y) is the unique bounded solution of problem (3.1):

wε,δ(t, x, y) = Eε,δ
x,y

[
g(Xε,δ

t ) exp

{∫ t

0

c(Xε,δ
s , Y ε,δ

s , wε,δ(t− s,Xε,δ
s , Y ε,δ

s ))ds

}]
.

(3.3)

As has been shown in [11] and [12], as ε ↓ 0 and for fixed δ > 0, the component

Xε,δ
t , 0 ≤ t ≤ T , converges weakly in the space of continuous functions on R to

the one–dimensional diffusion process Xδ
t which satisfies the following stochastic

differential equation:

dXδ
t = dW 1

t + b(Xδ
t )dt, b(x) = (1/2)(d ln(V δ(x))/dx), (3.4)

where V δ(x) is the volume of Gδ
x in Rn. Furthermore, this implies that, for fixed

δ > 0, wε,δ(t, x, y) converges as ε ↓ 0 to the solution wδ(t, x) of the problem:



∂wδ(t,x)
∂t

= 1
2
wδ

xx + 1
2
(d ln(V δ(x))/dx)wδ

x + c(x, 0, wδ)wδ, if t > 0, x ∈ R

wδ(0, x) = g(x), if x ∈ R.

(3.5)

Using the Feynman–Kac Formula, we can write the solution wδ(t, x) of (3.5) in

the form of the expectation of a functional of the trajectories of the corresponding
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process:

wδ(t, x) = Eδ
x

[
g(Xδ

t ) exp

{∫ t

0

c(Xδ
s , 0, w

δ(t− s, Xδ
s ))ds

}]
. (3.6)

It is worthy of note that the classical solution of problem (3.5), if it exists,

satisfies the system of equations (3.4) and (3.6). The function wδ(t, x) is called the

generalized solution of problem (3.5) provided it satisfies the system of equations

(3.4) and (3.6). According to Theorem 7, we expect that the solution wδ converges

as δ ↓ 0 to w, which is the solution to the non–standard reaction diffusion equation:





∂w(t,x)
∂t

= DvDuw + f(x, 0, w), if t > 0, x ∈ R

w(0, x) = g(x),

(3.7)

where u(x) = limδ↓0
∫ x

0
(1/V δ(y))dy and v(x) = limδ↓0

∫ x

0
2(V δ(y))dy. Here we will

consider the generalized solution of problem (3.7). For the operator Ã given by

Ãw = −dw

dt
+ Aw + c(x, 0, w)w = −dw

dt
+ DvDuw + c(x, 0, w)w, (3.8)

there exists a corresponding Markov family and a corresponding process Ys = (t −

s,Xs) which is homogeneous in time in the state space (−∞, T ]×R, T > 0. Define

w(t, x) = g(x) for t ≤ 0. Using the Feynman–Kac formula, the solution of problem

(3.7) may be written in the form

w(t, x) = Exg(Xt) exp

{∫ t

0

c(Xs, 0, w(t− s,Xs))ds

}
. (3.9)

where the process Xt is governed by the generator DvDu. Since c(x, 0, w) is Lips-

chitz continuous in w, we can derive from (3.9) the existence and uniqueness of the

generalized solution of problem (3.7) via the method of successive approximation.
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Theorem 8 There exists a unique generalized solution for the problem (3.7).

Proof . First, let us prove the existence of the generalized solution to (3.7).

Let us put



wn+1(t, x) = Exg(Xt) exp
{∫ t

0
c(Xs, 0, wn(t− s,Xs))ds

}
,

w1(t, x) = g(x),

(3.10)

where the process Xt is governed by the generator DvDu.

Set δn(t) = supx | wn(t, x)− wn−1(t, x) | for 0 ≤ t ≤ T . Then,

|wn+1(t, x)− wn(t, x)|

=
∣∣∣Exg(Xt)

(
exp

{∫ t

0
c(Xs, 0, wn(t− s,Xs))ds

}

− exp
{∫ t

0
c(Xs, 0, wn−1(t− s,Xs))ds

})∣∣∣

≤ Ex

∣∣∣g(Xt) exp
{∫ t

0
c(Xs)ds

}(∫ t

0
c(Xs, 0, wn(t− s,Xs))

− c(Xs, 0, wn−1(t− s,Xs))ds
)∣∣∣

≤ Ex |g(Xt)| exp
{∫ t

0
c(Xs)ds

} ∫ t

0
Kc |wn(t− s,Xs)− wn−1(t− s,Xs)| ds

≤ KcEx

∣∣∣g(Xt) exp
{∫ t

0
c(Xs)ds

}∣∣∣
∫ t

0
δn(u)du

≤ K
∫ t

0
δn(u)du,

(3.11)

where Kc is a Lipschitz constant of the function c(x, 0, w) in w. Here a constant

K can be properly chosen since the initial function g(x) and the function c(x) are

bounded. Moreover, K is independent of t and n. That is, there exists a constant

K such that δn+1(t) ≤ K
∫ t

0
δn(u)du. Thus we can induce

δn+1(t) ≤ (KT )n

n!
‖ g ‖ for each n (3.12)

where ‖ g ‖= supx | g(x) |. Since wn(t, x) ≤‖ g ‖ ∑n−1
k=1

(KT )k

k!
, the limit wn(t, x)

exists as n →∞ and this convergence is uniform on the set {x ∈ R, 0 ≤ t ≤ T}.
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Let us prove the uniqueness by using successive approximation again.

Set l(t) = max0≤s≤t,x∈R | u(s, x)− v(s, x) | for 0 ≤ t ≤ T . Then,

| u(s, x)− v(s, x) |

=
∣∣Exg(Xs)

(
exp

{∫ s

0
c(Xr, 0, u(s− r,Xr))dr

}

− exp
{∫ s

0
c(Xr, 0, v(s− r,Xr))dr

})∣∣

≤ Ex

∣∣g(Xs) exp
{∫ s

0
c(Xr)dr

} (∫ s

0
c(Xr, 0, u(s− r,Xr))

−c(Xr, 0, v(s− r,Xr))dr
)∣∣

≤ KcEx

∣∣g(Xs) exp
{∫ s

0
c(Xr)dr

}∣∣ ∫ s

0
l(z)dz.

(3.13)

where Kc is a Lipschitz constant of the function c(x, 0, w) in w. Since the initial

function g(x) and the function c(x) are bounded, and for 0 ≤ z ≤ t, l(z) ≤ l(t), by

the definition, there exists a constant C such that

l(t) ≤ (Ct)l(t), for 0 ≤ t ≤ T. (3.14)

If t < 1/C, then l(t) is equal to zero. Since the constant C does not depend on t,

one can conclude that u(t, x) = v(t, x) for 0 ≤ t ≤ T . 2

Proposition 1 If w(t, x) is Lipschitz continuous in x and 0 < t ≤ T , then w(t, x)

is Hölder continuous in t with exponent 0.5.

Proof . We want to prove that there exists a constant C such that, for h > 0,

| w(t+h, x)−w(t, x) |≤ C
√

h. Assume that | w(t, x)−w(t, y) |≤ C1 | x−y |, where

C1 is a Lipschitz constant. From (3.9) and the Markov property of the process Xt,

it follows that, for h > 0,

w(t + h, x) = E

[
w(t,Xh) exp

{∫ h

0

c(Xs, 0, w(t + h− s,Xs))ds

}]
. (3.15)
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Then, we can deduce that

| w(t + h, x)− w(t, x) |

≤ E |w(t,Xh)− w(t, x)| exp
{∫ h

0
c(Xs, 0, w(t + h− s,Xs))ds

}

+ ‖ w(t, x) ‖ E
∣∣∣exp

{∫ h

0
c(Xs, 0, w(t + h− s,Xs))ds

}
− 1

∣∣∣

≤ K1E |Xh − x|+ K2E
∣∣∣
∫ h

0
c(Xs, 0, w(t + h− s, Xs))ds

∣∣∣

(3.16)

where ‖ w(t, x) ‖= supt,x | w(t, x) |, and K1 and K2 are constants. Here if we can

show that E | Xh− x |2≤ K3h with a constant K3, then our proof can be done. We

are going to use a successive approximation method to prove this. Set




Ψn(x) =
∫ x

c

∫ y

c
Ψn−1(z)du(z)du(y)

Ψ0(x) = 1,

(3.17)

where c is a constant. Then, it is easy to see that DvDuΨn(x) = Ψn−1(x) for all n.

Let us define a function Φn(t):

Φn(t) = Ψn(Xt)−
∫ t

0

Ψn−1(Xs)ds (3.18)

Since f(Xt) −
∫ t

0
DvDuf(Xs)ds is a martingale, for any f ∈ D(DvDu) ([5], Ch.4),

Φn(t) is a martingale. It follows that Ex=c(Φn(t)) = 0 and Φ1(t) = Ψ1(Xt)−t. Then

Ex=c(Ψ1(Xt)) = t, Ex=c(Ψ2(Xt)) = 1
2
t2. (3.19)

Since both u(x) and v(x) are strictly increasing functions, there exist positive con-

stants a1 and a2 such that du(x) ≥ a1dx and dv(x) ≥ a2dx for all x. Choose

b = min(a1, a2). Then, for b > 0,

Ψ1(x) =
∫ x

c

∫ y

c
Ψ0(z)dv(z)du(y) ≥ ∫ x

c

∫ y

c
b2dzdy = b2

2
(x− c)2,

Ψ2(x) =
∫ x

c

∫ y

c
Ψ1(z)dv(z)du(y) ≥ b4

4!
(x− c)4.

(3.20)
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So E((Xt − X0)
4b4/4!) ≤ E(Ψ2(Xt)) = 1/2t2. We have E((Xt − X0)

4) ≤ 12/b4t2.

Finally, from equation (3.16), using Lyapunov’s Inequality, we can conclude that

| w(t + h, x)− w(t, x) | ≤ K1E(| Xh − x |2)1/2 + K2 ‖ c ‖ h

≤ K1

√
K3h + K2 ‖ c ‖ h ≤ K4

√
h

(3.21)

where K3 =
√

12/b2 and K4 can be chosen as a positive constant. Therefore, the

proof is complete. 2

Lastly, we can see that the generalized solutions wε,δ of the system (3.2) and

(3.3) in narrow domains converge, as first ε ↓ 0 and then δ ↓ 0, to the generalized

solution w of the problem (3.9) as follows.

Proposition 2 The solutions wε,δ in (3.1) converge to the solution w in (3.7) as

first ε ↓ 0 and then δ ↓ 0.

Proof . From the bounded continuous function wε,δ in (3.3) and the Ascoli–Arzela

theorem, there exists a subsequence of {wε,δ} for fixed δ > 0 and wδ such that

wε,δ −→ wδ, as ε → 0, uniformly in compacts.

For convenience, we denote a subsequence of {wε,δ} by {wε,δ} again. Then, using

the weak convergence of processes Xε,δ
t to a process Xδ

t as ε ↓ 0,

sup
0≤t≤T

E

∣∣∣∣
∫ t

0

c(Xε,δ
s , Y ε,δ

s , wε,δ)− c(Xδ
s , 0, w

δ)ds

∣∣∣∣ → 0, as ε ↓ 0. (3.22)

Therefore, we can see that wδ actually satisfies (3.6) which implies that wδ satisfies

the problem (3.5) as follows:

∣∣∣wε,δ(t, x, y)− Exg(Xδ
t ) exp

{∫ t

0
c(Xδ

s , 0, w
δ)ds

}∣∣∣

≤ K1Ex

∣∣∣g(Xε,δ
t )− g(Xδ

t )
∣∣∣ + K2Ex

∫ t

0

∣∣c(Xε,δ
s , Y ε,δ

s , wε,δ)− c(Xδ
s , 0, w

δ)
∣∣ ds

(3.23)

43



where K1 is a constant determined by the bounded function c(x, y), and K2 is also

a constant determined by the bounded functions g(x) and c(x, y). Thus, by the

definition of weak convergence and (3.22), all terms on the right side in (3.23) go

to zero as ε ↓ 0. Therefore, the convergence of wε,δ(t, x, y) to wδ(t, x) is completed.

In the same way, using Theorem 8, it is easy to prove the convergence of wδ(t, x) to

w(t, x) in (3.9) as δ ↓ 0. 2

3.2 Wave front propagation in periodic media

Assume that the boundary ∂Gδ of Gδ is of period one in x. We will use

equations of the type of (3.3) and (3.6) in periodic media for studying asymptotic

properties of the solutions as t →∞.

Figure 3.1: The periodic domain Gε,δ.

Since the medium Gε,δ is periodic in the component x with period one, it

is worthy of note that, for each x ∈ R and an integer z1, the distribution in the

path space of the process (Xε,δ
t , Y ε,δ

t , P ε,δ
x,y) with respect to the probability measure

P ε,δ
(x+z1,y) coincides with the distribution of the process (Xε,δ

t + z1, Y
ε,δ
t ) with respect
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to P ε,δ
x,y . Let Cε,δ

π be the Banach space of all functions continuous in R × Rn and

periodic in x ∈ R with period one with the uniform norm.

Figure 3.2: One period Gε,δ
1 of the narrow domain Gε,δ.

Define the function Hε,δ(x, y) by

Hε,δ(x, y) = sup
z=(z1,0)∈R×Rn

[
< (x, y), z > −λε,δ(z)

]
, (x, y) ∈ Gε,δ, (3.24)

where λε,δ(z) is a simple eigenvalue for the differential operator Lz,ε,δ,

Lz,ε,δ =
1

2
4− < z,5 > +c(x, y) +

1

2
< z, z >, (3.25)

in the space Cε,δ
π corresponding to a positive eigenfunction, which also satisfies the

boundary conditions of problem (3.1). Here < ·, · > denotes an inner product.

First, we formulate the main theorem in the periodic narrow domain with

smooth boundary.

Theorem 9 (i) For any closed set F ⊂ {
(x, y) ∈ Gε,δ : Hε,δ(x, y) > 0

}
,

lim
t→∞,(tx,y)∈Gε,δ

wε,δ(t, tx, y) = 0, uniformly in (x, y) ∈ F. (3.26)
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(ii) For any compact set K ⊂ {
(x, y) ∈ Gε,δ : Hε,δ(x, y) < 0

}
,

lim
t→∞,(tx,y)∈Gε,δ

wε,δ(t, tx, y) = 1, unifromly in (x, y) ∈ K. (3.27)

and the set t · {(x, y) ∈ Gε,δ : Hε,δ(x, y) = 0} may be interpreted as the wave front

propagation.

Let Cδ
π be the Banach space of all periodic continuous functions of period one

in R with the uniform norm. Similarly, for the problem (3.5), define the function

Hδ(x) as given by

Hδ(x) = sup
z∈R

[
xz − λδ(z)

]
, x ∈ R, (3.28)

where λδ(z) is a simple eigenvalue for the differential operator Lz,δ,

Lz,δ =
1

2

d2

dx2
+

(
1

2

d

dx
(ln(V δ(x)))− z

)
d

dx
+

(
c(x)− z

2

d

dx
(ln(V δ(x))) +

z2

2

)
,

(3.29)

in the space Cδ
π corresponding to a positive eigenfunction, which also satisfies the

boundary conditions of problem (3.5). We formulate the following Theorem for a

solution of the problem (3.5).

Theorem 10 (i) For any closed set F ⊂ {
x ∈ R : Hδ(x) > 0

}
,

lim
t→∞,tx∈R

wδ(t, tx) = 0, uniformly in x ∈ F. (3.30)

(ii) For any compact set K ⊂ {
y ∈ R : Hδ(x) < 0

}
,

lim
t→∞,tx∈R

wδ(t, tx) = 1, uniformly in x ∈ K. (3.31)

and the set t ·{x ∈ R : Hδ(x) = 0} may be interpreted as the wave front propagation.
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In the following section, we will calculate the large deviations for the family

of random vectors

ηε,δ,t
x,y =

1

t
(x−Xε,δ

t +

∫ t

0

γ1(X
ε,δ
s , Y ε,δ

s )dLε,δ
s , t(y − Y ε,δ

t +

∫ t

0

γ2(X
ε,δ
s , Y ε,δ

s )dLε,δ
s ))

(3.32)

defined on the probability spaces (Ωε,δ,F ε,δ, P ε,δ,t
x,y ), t > 0, x ∈ R and y ∈ Rn. Here

the family of probability measures P ε,δ,t
x,y is defined by

P ε,δ,t
x,y (A) =

Eε,δ
x,y

[
exp

{∫ t

0
c(Xε,δ

s , Y ε,δ
s )ds

}
χA(Xε,δ

t , Y ε,δ
t )

]

Eε,δ
x,y

[
exp

{∫ t

0
c(Xε,δ

s , Y ε,δ
s )ds

}] , (3.33)

where χA is an indicator function of A. The exponential bounds of Theorem 2 and

Theorem 3 are valid for all s ≥ 0, all (x, y) ∈ Gε,δ with ε(t) = 1/t. The sets Φ(s)

are compact and the action function has the form: Sε,δ(x, y) = Hε,δ(x, y) + λε,δ(0),

where Hε,δ(x, y) is defined in (3.24) as the Legendre transform of λε,δ(z). In the

same way, we will use the corresponding notations without ”ε” for the problem

(3.5) unless there is no confusion. This approach follows Mark Freidlin’s work in

[10].

3.3 Calculation of the action functional and the proof of Theorem 9.

Lemma 1 For any z = (z1, 0) ∈ R×Rn and an integer z1,

lim
t→∞

1

t
ln Eε,δ,t

x,y exp
{
t < z, ηε,δ,t

x,y >
}

= λε,δ(z)− λε,δ(0) (3.34)

exists uniformly in (x, y) ∈ Gε,δ. Here λε,δ(z) is a simple eigenvalue of the operator

Lz,ε,δ in (3.25) corresponding to a positive eigenfunction meeting the mixed boundary

condition in (3.1). The function λε,δ(z) is differentiable.
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Proof . Consider a Markov process (Xε,δ
t (z), Y ε,δ

t (z), P z,ε,δ
x,y ) in Gε,δ ⊂ R × Rn

which is a solution of the following stochastic differential equations:

dXε,δ
t (z) = dW 1

t − z1dt + γε,δ
1 (Xε,δ

t (z), Y ε,δ
t (z))dLε,δ

t , Xε,δ
0 (z) = x,

dY ε,δ
t (z) = dW 2

t + γε,δ
2 (Xε,δ

t (z), Y ε,δ
t (z))dLε,δ

t , Y ε,δ
0 (z) = y,

(3.35)

where W 1
t and W 2

t are independent Wiener processes in R and Rn respectively, (x, y)

is a point inside Gε,δ, and γε,δ = (γε,δ
1 (x, y), γε,δ

2 (x, y)) is the unit inward normal to

∂Gε,δ. The operator (Qz,ε,δ
t ψ)(x, y), which is given by

(Qz,ε,δ
t ψ)(x, y) =

Ez,ε,δ
x,y

[
ψ(Xε,δ

t (z), Y ε,δ
t (z)) exp

{∫ t

0
c(Xε,δ

s (z), Y ε,δ
s (z)) + 1

2
< z, z > ds

}]
,

(3.36)

defines a continuous semigroup of linear bounded operators depending on the param-

eters z, ε and δ in Cε,δ
π . Denote by c(x, y) the restriction of the periodic function

c(x, y) (periodic in x) to the set Gε,δ
1 with finite Lebesgue measure. The process

(X̄ε,δ
t , Y ε,δ

t ) indicates a diffusion process over Gε,δ
1 with reflection at the boundary

Γδ
2 and zero boundary condition at the boundary Γδ

1. We denote by (Q̄z,ε,δ
t ψ̄)(x, y)

the semigroup of linear bounded operators:

(Q̄z,ε,δ
t ψ̄)(x, y) =

Ez,ε,δ
x,y

[
ψ̄(X̄ε,δ

t (z), Y ε,δ
t (z)) exp

{∫ t

0
c̄(X̄ε,δ

s (z), Y ε,δ
s (z)) + 1

2
< z, z > ds

}]
,

(3.37)

where (x, y) ∈ Gε,δ
1 and ψ̄ ∈ CGε,δ

1
. Here CGε,δ

1
denotes a space of continuous functions

in Gε,δ
1 . Since the Doeblin condition is satisfied for a non–degenerate diffusion pro-

cess on any compact smooth manifold, it was proven in [20] that there exists a simple

eigenvalue exp{tλε,δ(z)} of the operator Q̄z,ε,δ
t with a positive eigenfunction ūz,ε,δ in-
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dependent of t. Then exp{tλε,δ(z)} is also an eigenvalue of the operator Qz,ε,δ
t with

a strictly positive eigenfunction uz,ε,δ ∈ Cε,δ
π , which corresponds to ūz,ε,δ ∈ CGε,δ

1
.

By the definition of the infinitesimal operator of the corresponding semigroup, it is

easy to see that λε,δ(z) is the eigenvalue of the operator Lz,ε,δ in Cε,δ
π corresponding

to a strictly positive eigenfunction uz,ε,δ.

Since the process (Xε,δ
t (z), Y ε,δ

t (z), P z,ε,δ
x,y ) differs from the process (Xε,δ

t , Y ε,δ
t , P ε,δ

x,y)

only by a drift in the first component with a non–degenerate diffusion coefficient, by

the Girsanov theorem, the law of the process (Xε,δ
t (z), Y ε,δ

t (z)) is absolutely continu-

ous with respect to the law of the original process (Xε,δ
t , Y ε,δ

t ); that is, the density of

the measure P z,ε,δ
x,y with respect to the density of the original measure P ε,δ

x,y is written

as follows:

dP z,ε,δ
x,y

dP ε,δ
x,y

(Xε,δ
. ) = exp

{
−z1W

1
t −

1

2
z2
1t

}
, (3.38)

where Wt = (W 1
t , W 2

t ) is a Wiener process in R×Rn. So, the operator (Qz,ε,δ
t ψ)(x, y)

can be rewritten as follows:

(Qz,ε,δ
t ψ)(x, y)

= Ez,ε,δ
x,y

[
ψ(Xε,δ

t (z), Y ε,δ
t (z)) exp

{∫ t

0
c(Xε,δ

s (z), Y ε,δ
s (z)) + 1

2
z2
1ds

}]

=
∫

ψ(Xε,δ
t , Y ε,δ

t ) exp
{∫ t

0
c(Xε,δ

s , Y ε,δ
s )ds+ < tηε,δ,t

x,y , z >
}

dP ε,δ
x,y

= Eε,δ
x,y

[
ψ(Xε,δ

t , Y ε,δ
t ) exp

{∫ t

0
c(Xε,δ

s , Y ε,δ
s )ds+ < tηε,δ,t

x,y , z >
}]

(3.39)

Since the eigenfunction uz,ε,δ corresponding to the eigenvalue λε,δ(z) is strictly pos-

itive, we can deduce the following:

limt→∞ 1
t
ln

(
Eε,δ

x,y exp
{∫ t

0
c(Xε,δ

s , Y ε,δ
s )ds+ < tηε,δ,t

x,y , z >
}

1
)

= limt→∞ 1
t
ln(Qz,ε,δ

t 1)(x, y) = λε,δ(z)

(3.40)
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This convergence is uniform in (x, y) ∈ R × Rn. From the definition of P ε,δ,t
x,y (A),

the first part can be completed. Lastly, from the fact that the operator function

z → Qz,ε,δ
t is differentiable, this implies the differentiability of the eigenvalue λε,δ(z)

due to the perturbation theory of linear operator in [17]. 2

Lemma 2 For any closed set F ⊂ {
(x, y) ∈ Gε,δ : Hε,δ(x, y) > 0

}
,

lim
t→∞

1

t
ln

(
sup

(x,y)∈F,(tx,y)∈Gε,δ

wε,δ(t, tx, y)

)
≤ − min

(x,y)∈F
Hε,δ(x, y). (3.41)

Proof . For 0 < s < min(x,y)∈F Hε,δ(x, y), there exists a positive number

δ1 such that 2δ1 = d(F, Ψ(s)), where d(·, ·) is the distance between two sets and

Ψ(s) = {(x, y) ∈ Gε,δ : Hε,δ(x, y) ≤ s}, because a closed set F does not intersect

the compact set Ψ(s). For t sufficiently large, the support of the initial function

g is contained in Uδ1t(0), a δ1t–neighborhood of the point 0. Then the solution

wε,δ(t, tx, y) of problem (3.1) implies the following bound by using definitions ηε,δ,t
x,y

and P ε,δ,t
x,y :

sup(x,y)∈F wε,δ(t, tx, y)

≤ ‖ g ‖ Eε,δ
tx,y exp

{∫ t

0
c(Xε,δ

s , Y ε,δ
s )ds

}
χU(δ1t,δ1)(0)(X

ε,δ
t , Y ε,δ

t )

≤ ‖ g ‖ sup(x,y)∈F P ε,δ,t
tx,y {ρ(ηε,δ,t

tx,y , (x, y)) < δ1}Eε,δ
tx,y exp

{∫ t

0
c(Xε,δ

s , Y ε,δ
s )ds

}

≤ ‖ g ‖ sup(x,y)∈Gε,δ P ε,δ,t
x,y {ρ(ηε,δ,t

x,y , Ψ(s)) > δ1}

× sup(x,y)∈Gε,δ Eε,δ
x,y exp

{∫ t

0
c(Xε,δ

s , Y ε,δ
s )ds

}
.

where ‖ g ‖= sup(x,y)∈Gε,δ | g(x) |, U(δ1t,δ1)(0) is a δ1t–neighborhood of the first

component 0 and a δ1–neighborhood of remaining components 0.

Using Theorem 2 and the relation (3.40), since Ψ(s) = Φ(s+λε,δ(0)), we can deduce
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the following for an arbitrary value h > 0 :

lim
t→∞

1

t
ln

(
sup

(x,y)∈F

wε,δ(t, tx, y)

)
≤ −(s + λε,δ(0)) + h + λε,δ(0) ≤ −s. (3.42)

Here s can be chosen arbitrarily close to min(x,y)∈F Hε,δ(x, y). So the proof is com-

plete. 2

Lemma 3 For all (x, y) ∈ Gε,δ with Hε,δ(x, y) > 0,

lim
t→∞

1

t
ln

(
inf

(x̃,ỹ)∈Uδ1
(x,y)

wε,δ(t, tx̃, ỹ)

)
(3.43)

≥ lim
t→∞

1

t
ln

(
inf

(p,q)∈Gε,δ
1 ,(x̃,ỹ)∈U2δ1

(x,y)

Eε,δ
x,y exp

{∫ t

0

c(Xε,δ
s , Y ε,δ

s )ds

}

×χ(Xε,δ
t ,Y ε,δ

t )∈Uδ1
(p−tx̃,q−ỹ)

)

provided δ1 is small enough. Here Uδ1(x, y) is the δ1–neighborhood of a point (x, y)

in Gε,δ.

Proof . Let

l = lim
t→∞

1

t
ln

(
inf

(x̃,ỹ)∈Uδ1
(x,y)

wε,δ(t, tx̃, ỹ)

)
. (3.44)

First, we will prove that l is bounded below, that is, l > −∞, by using the Markov

property of the process (Xε,δ
t , Y ε,δ

t ). For any (x̃, ỹ) ∈ Gε,δ,

Eε,δ
tx̃,ỹg(Xε,δ

t ) ≥ ∏[t]−1
k=1 inf(x,y)∈Uδ1

((t−k+1)x̃,ỹ) P ε,δ
x,y{(Xε,δ

1 , Y ε,δ
1 ) ∈ Uδ1((t− k)x̃, ỹ)}

× inf(x,y)∈Uδ1
((t−[t]+1)x̃,ỹ) Eε,δ

x,yg(Xε,δ
t−[t]+1),

(3.45)

where [t] is the integer part of t. Since the process (Xε,δ
t , Y ε,δ

t ) is in Gε,δ, which is
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periodic in x,

inf(x̃,ỹ)∈Uδ1
(x,y) Eε,δ

tx̃,ỹg(Xε,δ
t )

≥
(
inf(p,q)∈Gε,δ

1 ,(x̃,ỹ)∈U2δ1
(x,y) P ε,δ

p,q {(Xε
1 , Y

ε
1 ) ∈ Uδ(p− x̃, q − ỹ)}

)[t]−1

× inf{(p,q)∈U2|(x,y)|+3δ1
(0),1≤s≤2} Eε,δ

p,qg(Xε,δ
s ) > 0.

(3.46)

Thus we can see the lower bound for l :

l = limt→∞
1
t
ln inf(x̃,ỹ)∈Uδ1

(x,y) wε,δ(t, tx̃, ỹ)

≥ limt→∞
{

1
t
ln inf(x̃,ỹ)∈Uδ1

(x,y) Eε,δ
tx̃,ỹg(Xε,δ

t ) + max0≤s≤t c(X
ε,δ
s , Y ε,δ

s )
}

> −∞.

(3.47)

For each (a, b) ∈ Gε,δ, η > 0, and t, let us define the Markov times:

ση(t) = min{s ≥ 0 :| (Xε,δ
s − (t− s)x, Y ε,δ

s − y) |≥ ηt},

τ(a,b),η(t) = min{s ≥ 0 :| (Xε,δ
s − a + sx, Y ε,δ

s − b) |≥ ηt}.
(3.48)

Choose ε > 0 so that U2ε(x, y) ⊂ {(x, y) : Hε,δ(x, y) > 0}, δ1 ∈ (0, ε/3), and

h ∈ (0, 1). By using Lemma 2, if σε(t) > t, wε,δ(t − s,Xε,δ
s , Y ε,δ

s ) ≤ h from some

time on because Hε,δ(x, y) is strictly positive. Let ch(x, y) = infwε,δ∈[0,h] c(x, y, wε,δ).

Then it is easy to see that c(Xε,δ
s , Y ε,δ

s , wε,δ(t − s,Xε,δ
s , Y ε,δ

s )) ≥ ch(X
ε,δ
s , Y ε,δ

s ) for

s ∈ [0, t/2]. Using the Markov property again, we can see that, for any κ ∈ (0, 1/2),

inf(x̃,ỹ)∈Uδ1
(x,y) wε,δ(t, tx̃, ỹ)

≥ inf(x̃,ỹ)∈Uδ1
(x,y) Eε,δ

tx̃,ỹ

(
exp

{∫ κt

0
ch(X

ε,δ
s , Y ε,δ

s )ds
}

χA

)

× inf(x̃,ỹ)∈Uδ1
(x,y) wε,δ((1− κ)t, (1− κ)tx̃, (1− κ)ỹ)

≥ inf(p,q)∈Gε,δ
1 ,(x̂,ŷ)∈U2δ1

(x,y) Eε,δ
p,q

(
exp

{∫ κt

0
ch(X

ε,δ
s , Y ε,δ

s )ds
}

χB

)

× inf(x̃,ỹ)∈Uδ1
(x,y) wε,δ((1− κ)t, (1− κ)tx̃, (1− κ)ỹ).

(3.49)
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where χA and χB are indicator functions:

χA = χ{σε(t)>κt,(Xκt,Yκt)∈U(1−κ)δ1
(t((1−κ)tx),(1−κ)y))},

χB = χ{τ(p,q),δ1/κ(κt)>κt,(Xε,δ
κt ,Y ε,δ

κt )∈Uκδ1
(t(p−κtx̂),q−κŷ)}.

The second inequality comes from the periodicity of the process (Xε,δ
t , Y ε,δ

t ) and the

following relations:

Uε(t(p− sx− t(x̃− x)), q − y − (ỹ − y)) ⊃ Uδ1(t(p− sx), q − y),

U(1−κ)δ1(t(p− tx̃ + (1− κ)tx), q − ỹ + (1− κ)y) ⊃ Uκδ1(t(p− κtx̂), q − κŷ)

(3.50)

where p and q are the fractional parts of tx̃ and ỹ, respectively, and (x̂, ŷ) = (x, y)+

2(x̃−x, ỹ−y). Since l is bounded below, we see the following inequality from (3.49):

l ≥ limt→∞
1
t
ln inf(p,q)∈Gε,δ

1 ,(x̃,ỹ)∈U2δ1
((x,y)) Eε,δ

p,q exp
{∫ t

0
ch(X

ε,δ
s , Y ε,δ

s )ds
}

×χτ(p,q),η(t)>t,(Xε,δ
t ,Y ε,δ

t )∈Uδ1
(t(p−tx̃),q−ỹ).

(3.51)

If we denote the right side in (3.51) by limt→∞(ph,δ1κ−1(t))/t, the function ph,η(t) is

semi–additive, i.e, ph,η(s+ t) ≥ ph,η(s)+ph,η(t), for s, t > 0 due to the Markov prop-

erty and the periodicity of the process (Xε,δ
t , Y ε,δ

t ), and ph,η(t) ≤ t max(x,y) c(x, y)

for t > 0. Thus, limt→∞ ph,η(t)/t exists and it is equal to supt>0 ph,η(t)/t due to the

semi–additive and the upper bound. Then, from (3.51), l ≥ supt>0 ph,δ1κ−1(t)/t. Let

us define a function p(t) as follows:

p(t) = ln inf(p,q)∈Gε,δ
1 ,(x̃,ỹ)∈U2δ1

(x,y) Eε,δ
p,q

(
exp

{∫ t

0
c(Xε,δ

s , Y ε,δ
s )ds

}

×χ(Xε,δ
t ,Y ε,δ

t )∈Uδ1
(t(p−tx̃),q−tỹ)

)
.

(3.52)

Since ch(x, y) ↑ c(x, y) as h ↓ 0 and, by Fatou’s lemma, ph,η(t) ↑ p(t) as h ↓ 0 and

η ↑ ∞, we have

l ≥ supt>0(p(t)/t), as h ↓ 0, κ ↓ 0. (3.53)
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Therefore, the proof is complete.2

Lemma 4 For any compact K ⊂ {
(x, y) ∈ Gε,δ : Hε,δ(x, y) < 0

}
,

lim
t→∞

1

t
ln

(
inf

(x,y)∈K,(tx,y)∈Gε,δ
wε,δ(t, tx, y)

)
≥ − max

(x,y)∈K
Hε,δ(x, y) (3.54)

Proof . For any compact set K, it is sufficient to prove that, for any (x, y) ∈

Gε,δ, Hε,δ(x, y) > 0, and ε > 0, there exists a δ1 > 0 such that

lim inft→∞ 1
t
ln

(
inf(x̃,ỹ)∈Uδ1

(x,y),(tx̃,ỹ)∈Gε,δ wε,δ(t, tx̃, ỹ)
)

≥ lim inft→∞ 1
t
ln inf(p,q)∈Gε,δ

1 ,(x̃,ỹ)∈U2δ1
(x,y) Eε,δ

p,q exp
{∫ t

0
c(Xε,δ

s , Y ε,δ
s )ds

}
χA

≥ − sup(x̃,ỹ)∈U2δ1
(x,y) Hε,δ(x̃, ỹ).

(3.55)

where χA = χ(Xε,δ
t ,Y ε,δ

t )∈Uδ1
(t(p−tx̃),q−ỹ). The first inequality above was proved in

Lemma 3. To show the second inequality in (3.55), due to the definitions of the

measures P ε,δ,t
x,y and random vectors ηε,δ,t

x,y ,

inf(p,q)∈Gε,δ
1 ,(x̃,ỹ)∈U2δ1

(x,y) Eε,δ
p,q exp

{∫ t

0
c(Xε,δ

s , Y ε,δ
s )ds

}
χA

≥ inf(x̃,ỹ)∈U2δ1
(x,y) inf(p,q)∈Gε,δ

1
P ε,δ,t

p,q {ηε,δ,t
p,q ∈ Uδ1(x̃, ỹ)}

× inf(p,q)∈Gε,δ
1

Eε,δ
p,q exp

{∫ t

0
c(Xε,δ

s , Y ε,δ
s )ds

}
.

(3.56)

From Theorem 3, we can see that, for any h > 0,

lim inft→∞ 1
t
ln

(
inf(x̃,ỹ)∈Uδ1

(x,y),(tx̃,ỹ)∈Gε,δ wε,δ(t, tx̃, ỹ)
)

≥ −(Sε,δ(x, y) + h) + λε,δ(0) = −Hε,δ(x, y)− h.

(3.57)

Because of the compactness of K, the proof is complete.2

Now we will prove Theorem 9 in Section 3.2.
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Proof of Theorem 9. Part(i) follows from Lemma 2. So we will prove part

(ii). Define the following sets:

Υ(s) = {(x, y) ∈ Gε,δ
1 : Hε,δ(x, y) = s}

Υ̂(s) = {(x, y) ∈ Gε,δ
1 : Hε,δ(x, y) ≤ s}

(3.58)

Also, for any δ1 > 0 and T > 1,

ΓT = [{1} × Υ̂(δ1)] ∪ [∪1≤t≤T{t} × (tΥ(δ1))]. (3.59)

From equation (3.3) and Lemma 4, it is easy to see that wε,δ(1, x, y) > 0 for all

(x, y) ∈ Gε,δ and, for sufficiently large t and all (s, x, y) ∈ ΓT , wε,δ(s, x, y) ≥ e−2δ1t.

We introduce the Markov times, for t > 0, ς > 0, and h ∈ (0, 1):

σε,δ
Γ (t) = min{s ≥ 0 : (t− s,Xε,δ

s , Y ε,δ
s ) ∈ Γt},

σε,δ
h (t) = min{s ≥ 0 : wε,δ(t− s,Xε,δ

s , Y ε,δ
s ) ≥ h},

τ ε,δ
ς (t) = min{s ≥ 0 :| Xε,δ

s − x |> ςt}.

(3.60)

If wε,δ(t − s,Xε,δ
s , Y ε,δ

s ) < h for all s ∈ [0, t], then we will take σε,δ
h (t) = +∞. In

general, using the Ito’s equation, w(t, x, y) = Px,y{τD > t} satisfies the problem:

∂w
∂t

= Lw, t > 0, (x, y) ∈ D

w(0, x, y) = 1, w(t, x, y)|(x,y)∈∂D = 0.

(3.61)

where τD = min{t : (Xt, Yt) 6∈ ∂D}. From this, one can prove that for any ς > 0,

as t →∞,

sup
(x,y)∈Gε,δ

P ε,δ
x,y{τ ε,δ

ς (t) ≤ t} → 0. (3.62)

Choose ς so that the distance between the ς–neighborhood of the set K and the set

{(x, y) ∈ Gε,δ : Hε,δ(x, y) > 0} is positive. Then there exists a number κ ∈ (0, 1)
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such that for all (x, y) ∈ K,

κt < σε,δ
Γ (t) ≤ t− 1, if τ ε,δ

ς (t) > t. (3.63)

Here, if τ ε,δ
ς (t) > t, then the process (Xε,δ

t , Y ε,δ
t ) is still in the ς–neighborhood of the

set K. By the strong Markov property of the process (Xε,δ
t , Y ε,δ

t ), for any Markov

time τ ε,δ and (x, y) ∈ Gε,δ,

wε,δ(t, x, y) = Eε,δ
x,y exp

{∫ τε,δ∧t

0
c(Xε,δ

s , Y ε,δ
s , wε,δ(t− s,Xε,δ

s , Y ε,δ
s ))ds

}

×wε,δ(t− (τ ε,δ ∧ t), Xε,δ
τε,δ∧t

, Y ε,δ
τε,δ∧t

).

(3.64)

If we put τ ε,δ = σε,δ
h , since 0 < wε,δ(t − s,Xε,δ

s , Y ε,δ
s ) < h for 0 ≤ s ≤ σε,δ

h , we can

have the following lower bound:

wε,δ(t, x, y) = Eε,δ
x,y exp

{∫ σε,δ
h

0
c(Xε,δ

s , Y ε,δ
s , wε,δ(t− s,Xε,δ

s , Y ε,δ
s ))ds

}

×wε,δ(t− σε,δ
h , Xε,δ

σε,δ
h

, Y ε,δ

σε,δ
h

) · χ{σε,δ
h ≤t}

≥ Eε,δ
x,y

(
exp

{∫ σε,δ
h

0
c(Xε,δ

s , Y ε,δ
s , wε,δ(t− s,Xε,δ

s , Y ε,δ
s ))ds

}
· h · χ{σε,δ

h ≤t}

)

≥ hP ε,δ
x,y{σε,δ

h ≤ t}.
(3.65)

From the definition of the Markov time σε,δ
h , the second inequality can be true and

the last inequality follows from c(Xε,δ
s , Y ε,δ

s , wε,δ) > 0.

Since limt→∞ sup(x,y)∈Gε,δ wε,δ(t, x, y) ≤ 1 and (3.65), if we can prove that for

any h ∈ (0.1),

P ε,δ
tx,y{σε,δ

h (t) ≥ t, τ ε,δ
ς (t) ≥ t} → 0 uniformly in (x, y) ∈ K as t →∞ (3.66)
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then our proof for the part (ii) of Theorem 9 can be completed.

P ε,δ
tx,y{σε,δ

h (t) > t, τ ε,δ
ς (t) > t} ≤ P ε,δ

tx,y{κt < σε,δ
Γ (t) ≤ σε,δ

h (t)}

≤ Eε,δ
tx,y exp

{
δ1t + 1

2

∫ σε,δ
Γ (t)

0
c(Xε,δ

s , Y ε,δ
s , wε,δ(t− s,Xε,δ

s , Y ε,δ
s ))ds

}

×(wε,δ(t− σε,δ
Γ (t), Xε,δ

σε,δ
Γ (t)

, Y ε,δ

σε,δ
Γ (t)

))1/2

× exp
{
−1

2

∫ σε,δ
Γ (t)

0
c(Xε,δ

s , Y ε,δ
s , wε,δ(t− s,Xε,δ

s , Y ε,δ
s ))ds

}
× χ{κt<σε,δ

Γ (t)≤σε,δ
h (t)}

≤ Eε,δ
tx,y exp

{
δ1t + 1

2

∫ σε,δ
Γ (t)

0
c(Xε,δ

s , Y ε,δ
s , wε,δ(t− s,Xε,δ

s , Y ε,δ
s ))ds

}

(wε,δ(t− σε,δ
Γ (t), Xε,δ

σε,δ
Γ (t)

, Y ε,δ

σε,δ
Γ (t)

))1/2 × exp
{
−1

2

∫ κt

0
ch(X

ε,δ
s , Y ε,δ

s )ds
}

,

(3.67)

where ch(x, y) = infwε,δ∈[0,h] c(x, y, wε,δ). Here second inequality follows from the

Hölder inequality and all (s, x, y) ∈ ΓT , wε,δ(s, x, y) ≥ e−2δ1t. With τ ε,δ = σε,δ
Γ (t) in

(3.64), we can induce that

P ε,δ
tx,y{σε,δ

h (t) > t, τ ε,δ
ς (t) > t}

≤ eδ1t(wε,δ(t, tx, y))1/2
(
Eε,δ

tx,y exp
{
− ∫ κt

0
ch(X

ε,δ
s , Y ε,δ

s )ds
})1/2

(3.68)

Since the function ch(x, y) is non–negative and not identically equal to zero,

lim
t→∞

1

t
ln sup

(x,y)∈Gε,δ

Eε,δ
x,y exp

{
−

∫ t

0

ch(X
ε,δ
s , Y ε,δ

s )ds

}
= λε,δ

h < 0. (3.69)

From (3.40), λε,δ
h is the eigenvalue of the operator Lε,δ − ch(x, y) in Gε,δ

1 such that

the corresponding eigenfunction is positive. If we choose δ1 < (κ | λε,δ
h |)/2, then

P ε,δ
tx,y{σε,δ

h (t) > t, τ ε,δ
ς (t) > t}

≤ eδ1t(wε,δ(t, tx, y))1/2
(
Eε,δ

tx,y exp
{
−1

2

∫ κt

0
ch(X

ε,δ
s , Y ε,δ

s )ds
})1/2

≤ e(δ1−κ|λε,δ
h |/2)t(wε,δ(t, tx, y))1/2 → 0 as t →∞,

(3.70)

where wε,δ(t, tx, y) is bounded. This implies (3.66), so the proof is completed. 2
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Since we can prove the Theorem 10 in the same way, we will not repeat the

proof here. In the following section, we will prove the convergence of the asymptotic

wave propagation velocity as ε ↓ 0.

3.4 Convergence of asymptotic speed of wave front propagation

According to Theorem 9, the wave front propagation for wε,δ in periodic do-

main Gε,δ is associated with a simple eigenvalue corresponding to the differential

operator Lz,ε,δ in (3.25). In this section, we will investigate the convergence of the

asymptotic speed of the wave front propagation as ε ↓ 0 for fixed δ > 0.

First, consider the eigenvalue problem for a nonsymmetric elliptic operator

L + c :

(L + c)w = −
n∑

i,j=1

aijwxixj
+

n∑
i=1

biwxi
+ cw = λw, in a domain G (3.71)

with w subject to the mixed boundary conditions




w = 0 on Γ1,

∂w
∂ν

= 0 on Γ2.

(3.72)

Here G is bounded, Γ1∪Γ2 = ∂G, and ∂/∂ν is a directional derivative in a direction

outward from G. Let us assume that the matrix aij is symmetric and positive defi-

nite, and the coefficients aij and bi are uniformly bounded. Let λ1 be the principal

eigenvalue of the nonsymmetric elliptic operator L + c in (3.71). Since the operator

L + c is not equal to its formal adjoint, in general, L + c will have complex eigen-

values and eigenfunctions. However it was proven in [22] that at least the principal

eigenvalue λ1 for the nonsymmetric elliptic operator L + c, taken with the mixed
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boundary condition, in (3.71) is real and corresponding to a positive eigenfunction

w1 within G. Furthermore, if λ is any other eigenvalue, we have Reλ ≥ λ1. The

principal eigenvalue λ1 is simple, that is, if u is another corresponding eigenfunction

for λ1, then u is a multiple of w1. If the boundary condition in (3.72) is simply a

zero boundary, the same conclusion holds for the principal eigenvalue for the non-

symmetric elliptic operator L + c.

Thus, the principal eigenvalue λε,δ
1 for the nonsymmetric elliptic operator Lz,ε,δ,

taken with the mixed boundary conditions, in (3.25) is real, simple and correspond-

ing to a positive eigenfunction. It is explicitly given by

λε,δ
1 (z) = sup

w
inf
(x,y)

[ 1
2
4 w(x, y)− (z,5w(x, y)) + (c(x, y) + 1

2
(z, z))w(x, y)

w(x, y)

]
(3.73)

where the ”sup” taken over functions w ∈ C∞(Ḡε,δ) with w > 0 in Gε,δ, taken the

mixed conditions (3.1) on ∂Gε,δ, and the ”inf” taken over points (x, y) ∈ Gε,δ.

Similarly, the principal eigenvalue λδ
1(z) of the operator Lz,δ in (3.29) is given

by

λδ
1(z) = sup

w
inf
x




1
2

d2w
dx2 +

(
1
2

d(ln(V δ(x)))
dx

− z
)

dw
dx

+
(
c(x)− z

2
d(ln(V δ(x)))

dx
+ z2

2

)
w

w




(3.74)

where the ”sup” taken over functions w ∈ C∞(Ḡδ) with w > 0 in Gδ, taken the

initial condition (3.5) on ∂Gδ, and the ”inf” taken over points x ∈ Gδ.

Proposition 3 For any 1 + n–dimensional vector z = (z1, 0) ∈ R × Rn with an

integer z1, the principal eigenvalue λε,δ
1 (z) for the operator Lz,ε,δ in (3.25) converges

as ε ↓ 0 to λδ
1(z1), which is the principal eigenvalue for the operator Lz,δ with a

corresponding positive eigenfunction meeting the boundary condition in (3.5).
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Proof . The processes (Xε,δ
t (z), Y ε,δ

t (z)) in (3.35) differ from the processes

(Xε,δ
t , Y ε,δ

t ) in (3.2) only by a drift z = (z1, 0). Since the processes Xε,δ
t , 0 ≤ t ≤ T ,

converge weakly in the space of continuous functions on R as ε ↓ 0 for fixed δ > 0

to the diffusion process Xδ
t by Theorem 1, this implies the weak convergence of

the processes Xε,δ
t (z) to the process Xδ

t (z1), which is the solution to the stochastic

differential equation, for δ > 0,

dXδ
t (z1) = dW 1

t +
(
b(Xδ

t (z1))− z1

)
dt, b(x) =

1

2

d

dx
ln(V δ(x)), (3.75)

where V δ(x) is the volume of Gδ
x in Rn. According to the paper [1], the principal

eigenvalue λε,δ
1 (z) for the operator Lz,ε,δ, taken with the mixed boundary condition

in (3.1) is given by

λε,δ
1 (z) = lim

t→∞
1

t
log sup

x∈Gε,δ
1

∫

Gε,δ
1

P ε,δ(t, x, dy), (3.76)

where x = (x1, xY ) ∈ R×Rn and Lz,ε,δ is the infinitesimal generator of a semigroup

T ε,δ
t given by a measure P ε,δ(t, x, dy). Similarly the principal λδ

1(z) for the operator

Lz,δ meeting with the boundary condition in (3.5) can be expressed in terms of a

corresponding measure P δ(t, x, dy). Therefore, due to the weak convergence of P ε,δ

to P δ, this proof can be completed. 2

If minz=(z1,zY )∈R×Rn λε,δ(z) > 0, due to the definition of the function Hε,δ,

Hε,δ(0, 0) is negative and the equation Hε,δ(νε,δe) = 0 has a unique positive solution

νε,δ = νε,δ(e) given by:

νε,δ(e) = inf
z:(e,z)>0

λε,δ
1 (z)

(e, z)
(3.77)

Here, νε,δ(e) is the asymptotic wave propagation velocity in the direction of the

vector e, which is a unit vector in R×Rn.
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Similarly, the asymptotic wave propagation velocity νδ for the solution wδ(t, tx)

of the problem (3.5) is given by

νδ = inf
z1

λδ
1(z1)

z1

, (3.78)

where the infimum is taken over all positive integer z1 ∈ R+.

Proposition 4 The asymptotic wave propagation velocity νε,δ(e1) in the direction

of the vector e1 = (1, 0) ∈ R×Rn converges as ε ↓ 0 to νδ.

The proof for Proposition 4 follows from Proposition 3 by the definition of the

asymptotice wave propagation velocity.

As a future work, we will investigate all these procedures for the problem (3.7)

to examine the asymptotic behavior of the function w as t → ∞. According to

the paper [1], since the limiting process is still a Feller process, we expect that the

corresponding principal eigenvalue for the problem (3.7) in periodic domains could

be expressed with the corresponding measure P of a limiting process Xt. Then, as

we have been seen the weak convergence of P δ
x to Px in Theorem 7, it will not be

difficult to see the convergence of asymptotic speed of wave propagation of νδ to ν

as δ ↓ 0, where ν is the asymptotic wave propagation speed for the solution w(t, tx)

of the problem (3.7).
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