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This dissertation focuses on computational methods for improving the 

accuracy of commonly used nucleic acid tests for pathogen detection and diagnostics. 

Three specific biomolecular techniques are addressed: polymerase chain reaction, 

microarray comparative genomic hybridization, and whole-genome sequencing. 

These methods are potentially the future of diagnostics, but each requires 

sophisticated computational design or analysis to operate effectively. This dissertation 

presents novel computational methods that unlock the potential of these diagnostics 

by efficiently analyzing whole-genome DNA sequences. Improvements in the 

accuracy and resolution of each of these diagnostic tests promises more effective 

diagnosis of illness and rapid detection of pathogens in the environment. 

For designing real-time detection assays, an efficient data structure and search 

algorithm are presented to identify the most distinguishing sequences of a pathogen 

that are absent from all other sequenced genomes. Results are presented that show 



  

these “signature” sequences can be used to detect pathogens in complex samples and 

differentiate them from their non-pathogenic, phylogenetic near neighbors. For 

microarray, novel pan-genomic design and analysis methods are presented for the 

characterization of unknown microbial isolates. To demonstrate the effectiveness of 

these methods, pan-genomic arrays are applied to the study of multiple strains of the 

foodborne pathogen, Listeria monocytogenes, revealing new insights into the 

diversity and evolution of the species. Finally, multiple methods are presented for the 

validation of whole-genome sequence assemblies, which are capable of identifying 

assembly errors in even finished genomes. These validated assemblies provide the 

ultimate nucleic acid diagnostic, revealing the entire sequence of a genome. 
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Chapter 1 

Introduction 

Pathogenic microbes, both natural and weaponized, pose significant dangers 

to human health and safety, yet they are virtually invisible.  To detect their presence, 

assess their threat, and direct treatment, these microbes and their genetic makeup 

must be revealed through diagnosis. Historical diagnostics have relied upon 

observation of symptoms and cellular culture. A familiar example is streptococcal 

infections, which are typically diagnosed from patient symptoms and then confirmed 

by culture. However, syndromic diagnosis is often inaccurate, leading to improper, 

missed, or over treatment; and cellular culture is only possible for a very small 

number of microorganisms. In addition, these methods cannot provide a detailed 

description of the pathogen, such as its genetic constitution, which is necessary for 

accurate threat assessment, forensics, or directed treatment. It is predicted that the 

introduction of improved point-of-care diagnostics could save millions of lives on an 

annual basis [1] by increasing the efficacy of directed treatment and preventing the 

over-treatment that breeds resistant microorganisms. 

Newly developed genomic approaches offer an alternative diagnostic strategy 

capable of both rapidly detecting and characterizing all microbes in any 
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environmental or clinical medium with high accuracy. Despite their diversity and 

adaptability, pathogenic microbes share a common reliance on a nucleic acid genome 

to survive and function, making it is possible to design tests that will rapidly detect 

and characterize pathogens based solely on their genomic DNA or RNA. Such tests 

have a wide range of applications, from diagnosing infections to detecting harmful 

microbes in the environment. Though relatively new, nucleic acid diagnostics have 

advanced significantly in the past decade, making them the preferred choice for many 

applications [2,3]. Future improvements in portability and cost will likely bring these 

diagnostics into clinical settings. However, due to the large scale of genomic data, 

and the uncertainties inherent in biochemical reactions, sophisticated computational 

methods are required to design and analyze these tests. 

In addition to clinical applications, pathogen detection and diagnostics have 

immediate applications to biodefense. For example, in response to the anthrax attacks 

of 2001, The Institute for Genomic Research was tasked with sequencing the Bacillus 

anthracis attack strain in order to identify its genomic characteristics and point of 

origin [4]. Shortly after, genotyping microarrays were developed for the rapid and 

accurate genotyping of B. anthracis isolates [5]. Additionally, the U.S. government 

deployed airborne pathogen monitoring stations at the Salt Lake City Olympic Games 

and other major metropolitan areas to serve as an early warning for biological attacks 

[6,7]. These state-of-the-art capabilities were only possible with the aid of advanced 

bioinformatics. 
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This dissertation explores computational approaches designed to complement 

three specific nucleic acid technologies: polymerase chain reaction (PCR), microarray 

comparative genomic hybridization (CGH), and whole-genome sequencing. 

Polymerase chain reaction exploits the ability of DNA polymerase to amplify a 

template DNA sequence into millions of copies. When the template sequence is 

unique to a particular organism, a successful PCR reaction can signal the presence of 

that organism’s DNA. Comparative genomic hybridization relies on the 

complementary pairing of DNA to simultaneously test for thousands of short 

oligonucleotide sequences. CGH requires more time and DNA than PCR, but is 

capable of characterizing a genome to the level of single nucleotide polymorphisms. 

Finally, whole-genome sequencing is capable of reading millions of short sequences 

directly from a genome, and, when combined with genome assembly algorithms, is 

capable of reconstructing the entire genome of an organism. While the most complete 

and accurate technique, whole-genome sequencing is currently the most expensive as 

well. However, rapidly declining sequencing costs will soon make sequencing an 

important and widely used diagnostic tool. 

These three diagnostic methods complement each other and are each 

applicable to different scenarios. Routine detection and surveillance can be carried 

out by rapid and portable PCR-based diagnostics, and the more costly and 

informative diagnostics can be applied only in the event of a detection. For example, 

a single PCR assay can detect the presence of a given species, but it cannot always 

determine the specific pathogenic or antibiotic factors present in a genome. 

Alternatively, for greater cost, microarrays can be designed to probe every known 
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gene of a species to better determine the genomic composition of a detected pathogen. 

However, all probe-based assays can only test for genomic material that has been 

included in the assay design. Genome sequencing is the most comprehensive 

diagnostic tool, capable of decoding the entire genome of a pathogen without any 

prior assumptions and potentially uncovering novel genes and function. 

1.1 Specific Contributions and Organization of the Dissertation 

The thesis of this dissertation is that the development and integration of new 

computational methods with state-of-the-art biotechnology can produce new and 

more accurate diagnostics for both the detection and characterization of pathogenic 

microbes. High-performance computing and efficient algorithms are utilized to align, 

compare, and analyze vast amounts of genomic data in order to design more effective 

diagnostics. Three types of molecular tests are considered—PCR, CGH, and whole-

genome sequencing—each providing a different tradeoff between speed, cost, and 

detail, and each with particular computational challenges. Chapters 2 and 3 cover 

methods developed for the design of real-time PCR detection assays. Chapters 4 and 

5 cover methods developed for the design and analysis of pan-genomic microarray 

comparative genomic hybridization experiments. And Chapter 6 covers whole-

genome sequence assembly and validation. The specific contributions of this 

dissertation, organized by chapter, follow: 
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Chapter 2. I present an efficient method for discovering and storing DNA 

signatures, which are sequences that distinguish a pathogen’s genome from all 

others. The cornerstone of this method is a novel data structure, called a match 

cover, which captures the essential information necessary to compute DNA 

signatures. I demonstrate how this data can be computed for all currently 

available genomes using high-performance computing, and how this structure 

can be used for rapid signature retrieval from a database using efficient 

interval set algorithms. I present laboratory validation results for Vibrio and 

Burkholderia species signatures, demonstrating the effectiveness of Insignia 

signatures, outlining a new assay design strategy, and providing a robust set of 

validated TaqMan PCR assays for the detection of select pathogens. 

Chapter 3. I present a Web application that integrates signature discovery, 

genome annotation, and PCR assay design. This is the first application to 

make comprehensive signature detection and assay design accessible to 

investigators lacking high-performance computing resources. 

Chapter 4. I introduce the concept of a Pan-genome Tiling Array for surveying 

the gene content of an unknown bacterial isolate using microarray 

comparative genomic hybridization, and present the PanArray algorithm for 

efficiently designing such arrays. These unique pan-genome tiling arrays are 

capable of fully tiling all genomes of a species on a single microarray chip, 

which provides maximum flexibility for CGH analysis. 

Chapter 5. I present a novel analysis method for pan-genomic microarrays with 

superior accuracy and flexibility. I describe a comparative analysis of the 
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species Listeria monocytogenes that integrates both genome sequences and 

microarrays to provide a complete picture of the phylogeny and genetic 

diversity of the species. To estimate the core genome of the species using both 

draft sequences and microarrays, I introduce a new mathematical model for 

core genome regression that better fits the data than prior models. This 

comparative analysis reveals new insight into the evolution and biology of this 

important foodborne pathogen. 

Chapter 6. I present a taxonomy of common assembly errors and present a suite 

of methods for validating whole-genome sequence assemblies. I demonstrate 

how the integrated use of these methods can be used to automatically assess 

assembly quality. Application of these methods to real assembly data reveals 

mis-assemblies even in “finished” genomes. These tools will ultimately lead 

to automated finishing protocols that could dramatically improve the quality 

of whole-genome assemblies. 
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Chapter 2 

Comprehensive DNA Signature Discovery and Validation† 

DNA signatures are nucleotide sequences that can be used to detect the 

presence of an organism and to distinguish that organism from all other species. This 

chapter describes Insignia, a new, comprehensive system for the rapid identification 

of signatures in the genomes of bacteria and viruses. With the availability of hundreds 

of complete bacterial and viral genome sequences, it is now possible to use 

computational methods to identify signature sequences in all of these species, and to 

use these signatures as the basis for diagnostic assays to detect and genotype 

microbes in both environmental and clinical samples. The success of such assays 

critically depends on the methods used to identify signatures that properly 

differentiate between the target genomes and the sample background. Insignia 

computes accurate signatures for most bacterial genomes and makes them available 

through a Web site. A sample of these signatures has been successfully tested on a set 

of 46 Vibrio cholerae strains and 12 Burkholderia spp. strains, and the results indicate 

that the signatures are highly sensitive for detection as well as specific for 

                                                
 
† This chapter includes previously published work with multiple authors. See Section 2.7 for details. 
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discrimination between the target strains and their near relatives. The Insignia 

method, whereby the entire genomic complement of organisms are compared to 

identify probe targets, is a promising method for diagnostic assay development, and 

provides assay designers with the flexibility to choose probes from the most relevant 

genes or genomic regions. The Insignia system is freely accessible via a Web 

interface at: http://insignia.cbcb.umd.edu. 

2.1 Background 

Modern health and security concerns have raised interest in the real-time 

detection and identification of pathogenic microbes. Bacterial and viral pathogens 

have always represented one of the greatest threats to human health, and in recent 

times this threat increased due to the possibility of engineered biological agents. For 

these and other reasons, the genome sequencing field has targeted and sequenced the 

complete genomes of hundreds of bacteria and thousands of viruses over the past 

decade, with many more sequences expected to appear in the near future. These 

sequences now make it possible to develop probe-based assays capable of identifying 

any of hundreds of organisms in environmental and clinical samples. Such assays rely 

on detecting a DNA sequence that distinguishes the target organism from all other 

known bacteria and viruses, and from background material, which could include 

DNA from humans, other animals, plants, or other species. A probe that accurately 

distinguishes between a target genome—or set of genomes—and all other background 

genomes is termed a signature sequence. 

By this definition, a signature sequence must be conserved among a set of 

target genomes and dissimilar to any sequence in the surrounding environment. To 
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detect a target with existing technology such as qPCR assays, signatures must be 

relatively short; however, if they are too short, they will not be unique. For example, 

because there are only 410 ≈  1 million 10 bp (base-pair) sequences, and a typical 

bacterial genome is more than 1 million bp in length, most 10-mers will be shared by 

many genomes and therefore make unsuitable signatures. Increasing the length, k, of 

the signature alleviates this problem, but if k is too large, it may not be possible to 

find a signature shared by a set of target genomes. Therefore, there is a tradeoff 

between signature sensitivity (the number of genomes that share the signature) and 

specificity (the number of genomes that do not possess the signature). For instance, a 

long signature may be highly specific to a particular strain or isolate, but it may not 

be sensitive enough to detect closely related strains that might cause the same disease 

or have other shared phenotypic characteristics. Because genomic sequence is 

nonrandom, and only a small sample of genomes has been sequenced, it is difficult to 

estimate an optimal signature length. In practice, signature length is usually 

determined by the constraints of the detection technology (e.g., ~20 bp for PCR 

primers). 

Current probe-based technologies are generally based on either PCR or 

microarray hybridization. These methods are beginning to replace traditional gel-

based fingerprinting because they can more effectively differentiate between closely 

related microbes [8]. Microarray methods are particularly promising because of their 

ability to multiplex many probes on a single chip [8,9,10], improving both the 

redundancy and capabilities of the diagnostic. PCR does not multiplex as nicely; 

however, it remains popular because of its robustness, speed, and low cost [11,12,13]. 



 

 
 

10 
 

Unlike restriction fingerprinting, both PCR and microarray methods require explicit 

knowledge of the underlying DNA sequence, therefore necessitating probe design. 

Traditional probe design strategies have focused on single genes or other loci 

that are determined a priori to be useful in distinguishing one target organism from 

another. Examples include genes that are associated with phylogenetic distance (e.g., 

16S rRNA genes) and variable number tandem repeats (VNTRs). In the former case, 

where the gene or locus is conserved among target and non-target organisms, gene 

sequence alignments would be used to aid in probe design. Probes would then be 

manually designed and screened for sensitivity and specificity to the target. Those 

assays failing to identify all target organisms, or producing false positives, would be 

invalidated and the design revised. This manual screening made diagnostic assay 

design expensive and only worth doing for a few select pathogens. Alternatively, 

variable number tandem repeats (VNTRs) have proven very useful in classifying and 

distinguishing many closely related strains of bacteria, such as Bacillus anthracis 

whose 16S rRNA sequences are identical [14,15]. Although these methods are 

effective, they only provide a limited number of signatures, which are not always 

sufficient to identify bacteria or viruses in a new sample; in particular, if the sample 

contains an unknown strain, it might contain genetic variability in precisely the region 

for which assays are designed. Thus, in general, one would like to have as many 

assays available as possible. Insignia addresses this by using the complete genome to 

generate all unique signatures, from which the assay designer can choose those that 

are best suited for a particular application. 
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Recent increases in the amount of available genomic sequence have made it 

possible to largely automate the design and screening of probes via computational 

search algorithms. Large-scale computational prediction of DNA signatures was first 

undertaken for the Biological Aerosol Sentry and Information System (BASIS), 

deployed at the Salt Lake City Olympic Games in 2002 [6,7]. The related BioWatch 

project operates by collecting and analyzing airborne microbial samples for known 

pathogens, using PCR probe-based detection methods. Newer aerosol detection 

systems, such as the Autonomous Pathogen Detection System (APDS) [16], automate 

the process, and can identify a known bioweapon in 0.5 to 1.5 hours [17]. Similar 

techniques are not limited to aerosols, and can be used in clinical or agricultural 

settings [18]. 

The success of these assays depends on both the available sequence databases 

and the computational methods used to identify signatures that differentiate the threat 

organisms from the background. Signature design for both the Biological Aerosol 

Sentry and Information System (BASIS) and BioWatch was handled by Lawrence 

Livermore National Laboratories (LLNL), and what began as a simple proof-of-

concept BLAST search at LLNL evolved into the sophisticated KPATH signature 

pipeline [19]. KPATH identifies sequences shared by a collection of target genomes, 

yet unique with respect to all other microbial genomes, and is notable for its ability to 

handle such a large search space. Other methods for probe selection more rigorously 

address hybridization efficiency (binding energy, self-hybridization, etc.), but do not 

scale well for large target and background sets [20,21,22,23]. Most notable are the 
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approaches that promise the scalability of KPATH combined with the hybridization 

considerations of the other methods [24,25]. 

Because of its history of use in real-world diagnostic systems, a more detailed 

description of KPATH is warranted. It consists of four major components. First, a 

whole-genome multi-alignment is performed on a set of target genomes. This 

produces a “consensus gestalt,” which represents the sequences that are conserved in 

all the target genomes. Next, this consensus is matched against a database of 

background sequences using Vmatch [26]. This step computes all exact matches 

between the target consensus and the background. Matching sequences are masked 

out to create a “uniqueness gestalt,” which represents all sequences that are shared 

between target genomes and unique with respect to the background. Third, signature 

sequences are supplied to the Primer3 program [27], which designs PCR assays based 

on those sequences. Primer3 produces a set of oligos suitable for testing by a TaqMan 

PCR assay: a forward primer, a reverse primer, and an intervening probe oligomer 

[28]. Finally, assay candidates are screened using BLAST [29] for near matches that 

might disrupt the hybridization process, and ranked according to their satisfaction of 

PCR experimental constraints. The result of this four-stage process is a set of ranked, 

prescreened assays, which are then subjected to rigorous laboratory validation. The 

transition to these computational methods from previously manual design methods 

has resulted in greatly increased design efficiency by limiting the number of assays 

that fail during laboratory validation. 

While highly innovative, the KPATH pipeline is not publicly available, and 

many of the sequences and signatures remain secret. In addition, KPATH requires 
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significant computing resources (hours of computing time on a 24-CPU server [19]), 

which are beyond the means of many investigators. In contrast, Insignia is a 

transparent, highly accessible signature pipeline, with the entire system being 

controlled by a Web interface and all supporting software released under an open 

source model. Additionally, Insignia dramatically accelerates the discovery process 

by pre-computing exact sequence matches for all genomes and storing this 

information in a specialized data structure for rapid retrieval. 

Using the Insignia Web interface, users select a desired signature length and a 

set of target genomes. After query submission, the system analyzes the stored match 

information, and identifies signature candidates in less than one minute. Candidates 

may then be further screened using experimental constraints (melting temperature, 

GC content, etc.), or using further computational criteria, such as the existence of 

near matches that may cause cross-hybridization. The integrated Gemina database 

(http://gemina.tigr.org), which includes detailed annotation and supplementary 

epidemiological information for major pathogens, provides further support for 

signature selection. This rich metadata allows the formulation of complex queries 

such as “find signatures shared by all enteric Escherichia coli,” and it allows the user 

to search for signatures in the context of the surrounding annotation. Insignia can 

compute signatures for any microbial genome in GenBank (both draft and complete), 

and screens signatures against a comprehensive background including all bacterial, 

archaeal, and viral sequences, plus additional eukaryotic sequences from National 

Center for Biotechnology Information (NCBI) RefSeq database [30]. The Insignia 
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Web interface is fully described in Chapter 3. The following sections describe the 

principal computational components and validation of the results. 

2.2 Signature Discovery Pipeline 

Given a set of target genomes, a set of background genomes, and a signature 

length k, Insignia identifies all k-mer signatures present in the target genomes. A k-

mer signature is a string of k nucleotides that is perfectly conserved in a set of target 

genomes, but does not occur exactly in any of the background genomes. A short k-

mer (e.g. 15–20 bp) is more likely to be shared by a group of target species, but is 

also more likely to appear in the background. When Insignia finds a series of k-mer 

signatures each overlapping by k-1 bases, it reports these longer chains as a single 

region, where every k-mer in the chain is guaranteed to be absent from the 

background. Occasional background k-mer matches will occur by chance, but long 

chains of k-mer signatures are likely to represent the sequences most dissimilar from 

the background. This can be thought of as the inverse of typical seed-and-extend 

alignment strategies such as BLAST [31]. Converse to assuming similarity exists in 

regions sharing exact matches, users of Insignia can assume that dissimilarity exists 

in regions devoid of exact matches. 

Signature chains are reported as an interval from the start of the first signature 

word to the end of the last signature word in the chain. The signature chain [s,e] 

contains exactly (e – s – k + 2) signature words of length k, completely covering the 

interval [s,e] in the target sequence. Signature words are, by definition, perfectly 

conserved in all target genomes, and contain at least a single difference from every 

background sequence. (Note that a signature may occur multiple times in a target 
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genome; it is not required to occur just once). Therefore, a signature chain will 

contain a difference from any background genome at least every k bases. For some 

types of detection assays, a difference every ~20 bp is not sufficient for 

discrimination. However, polymorphisms tend to be unevenly distributed, and similar 

sequences are likely to share at least one exact match over a long distance. In the 

validation studies, long signature chains (e.g. >100 bp) follow this tendency and are 

often quite dissimilar from the background. After identifying candidate signatures, a 

more sensitive BLAST search of the background can be performed to identify any 

similar but non-identical matching sequences. 

Signature chains have the benefit of being both long and specific. Thus, they 

make ideal targets for PCR-based detection assays such as TaqMan, which work well 

with an amplicon length of around 100 bp and specific primers and probes. For 

microarrays, signature chains can be tiled across their length with multiple probes to 

provide adequate redundancy. These two techniques can be combined to achieve a 

very high degree of accuracy. PCR primers can be designed at the boundaries of a 

long signature chain, and the interior of the chain can be tiled with microarray probes. 

The detection procedure could then consist of PCR amplification, followed by 

microarray hybridization or sequencing of the product. Alternative probe-based 

detection strategies, such as melting curve analysis [32], are also available that are 

sensitive to a single nucleotide difference in the probe sequence. 

Insignia provides real-time signature retrieval for an arbitrary set of target and 

background genomes. This requires the vast majority of computational work be done 

in advance and cached, so that a minimum amount of computation is necessary at the 
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time of the query. To accommodate this, Insignia is designed as two separate 

components: the match pipeline and the signature pipeline. This distinction separates 

the computationally intensive matching step from the much simpler signature 

generation step, and allows sequence matches to be recomputed offline as new 

genomes become available. While the matches may take days to compute, the 

signatures can be extracted from this cached information in seconds. From the 

website, users select a set of target genomes and a set of background genomes, and an 

exhaustive set of signatures is computed and displayed in seconds. 

2.2.1 Match Pipeline 

The function of the match pipeline is to identify exact matches between all 

pairs of target and background sequences in the database. The size of the Insignia 

sequence database is currently more than 100 billion nucleotides, and even with the 

linear-time algorithms described below, this is too large to search in real time. 

Limiting targets to microbial genomes saves some computational effort, but the 

process of matching all pairs of target and background genomes remains expensive. A 

schematic of the match pipeline is shown in Figure 2.1. 
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Figure 2.1: Schematic of the Insignia signature pipelines a) Exact matches are computed 
using MUMmer on a distributed cluster. Matches are converted to the reduced match cover 
format and stored in a database for quick retrieval. b) Users select a set of target and 
background genomes on the website, and match information for these genomes is retrieved 
from the Insignia database. Unique and shared k-mers are computed from the match cover 
data in parallel, and these results are intersected to identify signatures that are shared by the 
targets and absent from the background. 

 
2.2.1.1 Maximal Exact Matches 

To complete the matching phase within a reasonable amount of time, all 

maximal exact matches of 18 bp or longer are first identified between all pairs of 

database sequences. A maximal exact match (MEM) is a perfect match between two 

substrings than cannot be extended in either direction without encountering a 
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mismatch. These are efficiently computed using MUMmer [29–31], a linear time and 

space suffix tree matching algorithm. To expedite the process, MUMmer searches are 

partitioned across a 192-node Linux cluster. Even with the use of an efficient search 

algorithm, however, the size of the database and the high repeat content of many 

genomes cause the size of the output—the number of matches between all pairs of 

genomes—to reach unmanageable levels (e.g., the number of matches can be 

quadratic with respect to the size of the genomes). To combat this problem, matches 

are converted to a minimalized match cover data structure, described next. This 

structure saves space by scaling linearly and later provides a convenient mechanism 

for computing signatures. 

2.2.1.2 Match Cover Data Structure 
The match cover, Mtb, of a target genome t, with respect to some background 

genome b, is simply the list of intervals on t that are covered by contiguous, exact 

matches to genome b. To eliminate redundancy, all intervals contained within larger 

intervals are removed, but overlapping intervals are not merged. This assures that 

every subinterval matches contiguously to some portion of the background sequence, 

and every maximal match to the background is contained by a single interval (Figure 

2.2). After construction of the match cover, the intervals are sorted by their start 

position, and stored as a list of (start, length) pairs. Because this structure only stores 

the target “half” of the match data, space requirements are reduced by eliminating 

irrelevant background match coordinates. What remains is a minimal set of intervals 

on genome t that exactly match some part of genome b. 
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Figure 2.2: The match cover data structure (Mtb) is shown for the exact matches between a 
target (t) and background (b) genome. Mtb intervals (red boxes) represent regions of the 
target with a contiguous match to the background (gray boxes). 

 
By storing only the location of the matches on the target genome, the match 

cover also eliminates redundant information caused by repetitive sequences. Take for 

instance, two potential target genomes t and u. Because all target genomes are, by 

default, part of the background, two match covers will be created, Mtu and Mut. Now 

assume an identical repeat occurs x times in t, and x times in u. A list of exact 

matches (start t, start u, length) would require 3x2 integer values to represent the 

repeat, while the combined match covers would require only 4x values. Therefore, 

even when storing both halves of a match set (t → u and u → t), the match cover 

scales linearly, rather than quadratically, making it more efficient in dealing with 

repeats. This behavior was empirically tested for an all-versus-all comparison of ~300 

bacterial genomes, and the match cover reduced the match list from its original size 

of 78 GB to just 2 GB. This 39-fold space reduction demonstrates the prevalence of 

repetitive matches in real data and the utility of the match cover structure. 

Considering the match cover is simply a list of intervals, standard data compression 

could be applied to obtain further space savings. 

Mtb 

t 
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The match cover is not a lossless conversion, however, because it discards 

information about where a match occurred in the background. The remaining 

information is nonetheless sufficient for signature computation, where it suffices to 

know only which regions of a target are unique. Furthermore, because it scales 

linearly, large background databases can be accommodated without drastically 

increasing the match cover size, and draft quality genomic sequences can be 

incorporated without difficulty. As the next section will show, the match cover 

encapsulates all the necessary information for signature discovery and allows for the 

rapid construction of signatures for any set of target and background genomes in 

linear time. 

For perspective, it is worth mentioning that the match cover is an equivalent, 

interval representation of matching statistics [33,34]. Both formalizations represent 

the longest contiguous match beginning at any position of a sequence, but an interval 

representation is more space-efficient and easier to interpret in the context of 

signature discovery. Rahmann also leverages the properties of matching statistics in 

describing a “jump list” for the discovery of DNA probes [25], and it is interesting to 

note that although the match cover and jump list were arrived at independently, they 

are analogous given their shared utilization of matching statistics. 

2.2.2 Signature Pipeline 

The function of the signature pipeline is to generate valid signatures for any 

set of target and background genomes. Given a set of target genomes, a set of 

background genomes, and a signature length parameter k, Insignia identifies all k-mer 

signatures present in the target genomes. Because there are thousands of possible 
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targets and many more backgrounds, combinatorics rules out the pre-computation of 

all signatures; however, it is possible to generate signatures from the match 

information with minimal overhead. The pipeline for doing so is divided into two 

parallel stages, corresponding to the two primary criteria a valid signature must meet: 

1) a signature must be shared by all genomes in the target set; and 2) a signature must 

not exist in any genome in the background set. 

2.2.2.1 Shared Sequences 
To determine which k-mers are shared between a set of target genomes, one 

target is chosen as the reference r, and all match covers, Mrt, are intersected for each t 

in the target set using a plane sweep algorithm on the sorted interval lists. This 

intersection yields all matches shared by the target genomes relative to the sequence 

of the reference genome. Given the resulting match cover intersection Ir for a 

collection of targets, a k-mer in r is shared by all other target genomes if, and only if, 

it is entirely contained within a single interval of Ir (Figure 2.3). To avoid returning 

signatures containing ambiguous base codes, shared sequences are only permitted to 

contain the characters {A,C,G,T}. 

 

Figure 2.3: Computing shared sequences obtained from an intersection (Ir) of three match 
covers Mrs, Mrt, Mru. Ir intervals (red boxes) represent regions of the reference r shared with all 
other target genomes s, t, u as derived from the match covers between the reference and 
each target (gray boxes). 
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2.2.2.2 Unique Sequences 

A parallel stage of the signature pipeline computes a list of k-mers unique to a 

target genome with respect to some background. Once again, the match cover 

information is leveraged to efficiently identify these k-mers. Assuming the same 

target reference r, all match covers, Mrb, are merged for each b in the background set. 

Because each interval list is sorted by position in r, this can be done efficiently by 

simply merging the sorted lists. This produces a consolidated set of matches to the 

reference from the background. Maximal matches smaller than k, and matches 

entirely contained by another interval, are irrelevant and can be removed. Given the 

resulting match cover union Ur for a collection of backgrounds, a k-mer in r is unique 

with respect to the background if, and only if, it is not entirely contained within a 

single interval of Ur (Figure 2.4). It is sufficient to compute unique k-mers with 

respect to a single target, because a sequence will only be reported as a signature if it 

is also shared by all target genomes. Thus, any single target is guaranteed to contain 

all of the ensuing signature sequences. 

 

Figure 2.4: Computing unique sequences obtained from a union (Ur) of three match covers 
Mra, Mrb, Mrc. Ur intervals (red boxes) represent regions of the reference r matching some 
background genome a, b, c as derived from the match covers between the reference and 
each background (gray boxes). 
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2.2.2.3 Signature Computation 
The interval set operations for processing match covers are extremely 

efficient. For MRT sorted reference-target match intervals and T target genomes, the 

time complexity for finding shared-mers is O(MRT log T), with the log component 

incurred by the plane-sweep’s priority queue of overlapping interval endpoints. In 

practice, the number of target genomes is few and the complexity is dominated by the 

size of the match list. The time complexity for computing unique-mers by merging 

the sorted interval sets is linear, O(MRB) for MRB reference-background intervals. The 

results of these two operations are then intersected again to identify sequence 

signatures, i.e. k-mers that are both shared by the targets and unique with respect to 

the background. Therefore, the complexity of extracting signatures from a match 

cover database is linear with regard to the number of reference match intervals. For a 

typical target and background set, this translates to under one minute of processing, 

given the current database size and processing speeds. 

2.2.3 Implementation 

The computational demanding components of Insignia are implemented in 

C++, with driver scripts written in Perl. The Insignia database uses indexed flat files. 

The Insignia code is freely released open-source at: http://insignia.cbcb.umd.edu. 

2.3 Vibrio cholerae TaqMan Validation Pilot Study 

As a pilot validation study, Insignia was used to develop assays for the 

identification of Vibrio cholerae at the species level using a TaqMan Real-Time 

qPCR format. The initial version of Insignia queried a database that was populated 

with ~300 bacterial genomes, including one strain of V. cholerae (O1 biovar El Tor 
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strain N16961), and four near neighbors in the family Vibrionaceae (three Vibrio and 

one Photobacterium species). Thus the question for Insignia was: among all available 

DNA sequences, what sequences are unique to V. cholerae? The Insignia Web 

interface was used to retrieve all 20-mers unique to V. cholerae, from which 50 

TaqMan assays were designed from 50 randomly selected signature chains of varying 

lengths. 

To test whether the signature assays were broadly inclusive of V. cholerae 

strains, the 50 assays were tested against a panel of 46 strains of V. cholerae 

comprising a global distribution of both clinical and environmental strains from all 

major serotypes. To test whether they excluded non-cholera vibrios, the assays were 

additionally tested against a panel of 22 nearest-neighbor species in the family 

Vibrionaceae, along with one Escherichia coli control. Figure 2.5 and Figure 2.6 

show example inclusive and exclusive qPCR results, respectively. 

 

Figure 2.5: Example inclusive TaqMan assay displaying increased fluorescence due to target 
amplification for all 46 V. cholerae strains tested, and no fluorescent activity among the E. coli 
negative controls. Relative florescence intensity (y-axis) for 40 PCR cycles (x-axis) is shown. 



 

 
 

25 
 

 

 

Figure 2.6: Example exclusive TaqMan assay displaying increased fluorescent activity for the 
reference strain of V. cholerae and no fluorescent activity among the 23 non-cholera strains. 
Relative florescence intensity (y-axis) for 40 PCR cycles (x-axis) is shown. 

 

2.3.1 Vibrio Assay Design and Validation 

The nucleotide sequences of the probes and primers for each TaqMan assay 

were selected from the signature set identified by Insignia for Vibrio cholerae O1 

biovar El Tor strain N16961. The probes and primers were designed outside of 

Insignia using commercially available design software (Allele ID, Premier Biosoft 

International, http://www.premierbiosoft.com). All assays were designed for PCR to 

run under the same conditions. 

All PCR assays were conducted in duplicate and Ct values were used to 

evaluate the extent to which each assay was inclusive of V. cholerae strains and/or 

excluded near neighbor strains. Ct values of ≤20 were considered strong positive, and 

Ct values between 20 and 50 were binned in increments of 4 (i.e., 21–24, 25–28, etc.) 

to simplify analysis of the relative efficiency of PCR across all assays and strains. 
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2.3.2 Vibrio Validation Results 

Figure 2.7 summarizes the validation results for the 50 assays, covering 69 

organisms, and totaling 3,450 experiments. Each square in Figure 2.7 represents one 

experiment, with color indicating the qPCR Ct value (the number of PCR cycles 

before amplification is detected). Green and yellow squares indicate relatively rapid 

amplification while orange and red indicate delayed or failed amplification. As the 

figure makes clear, most assays detected all V. cholerae strains, with approximately 

half of the assays providing strong detection capability for every one of these diverse 

strains. The effectiveness of some assays deteriorated slightly for the non-O1/O139 

serotypes, although they still provided positive results. This was to be expected, 

however, given that only a single V. cholerae strain (of serotype O1) was available to 

Insignia at the time of design. Additional genomic sequences from the other serotypes 

would have undoubtedly removed many of these less-efficient signatures from the 

Insignia output. Gardner et al. explore this phenomenon further in the context of viral 

signature development [35]. 
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Figure 2.7: Vibrio cholerae assay validation results for the 50 assay designs tested on 46 V. 
cholerae, 22 near neighbors, and one E. coli control. Organisms (columns) are grouped by 
serotype, and assays (rows) are sorted vertically by effectiveness. Each colored box 
represents the Ct value for one of the 3,450 validation experiments. For example, assays 1–5 
show strong amplification for all V. cholerae strains and heavily delayed or failed amplification 
for all other organisms. 
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In addition to successful detection of a wide variety of V. cholerae strains, all 

but one of the tested assays (98%) were able to successfully discriminate between V. 

cholerae and its near neighbors. Furthermore, 1,115 of the 1,150 exclusive tests 

(97%) had Ct values >50, indicating that all of the tested V. cholerae signatures are 

either absent or significantly divergent from the other members of Vibrionaceae. 

Assay signature sequences, inclusive and exclusive strain information, and detailed 

qPCR results for all validation experiments are available from the Insignia website. 

2.4 Burkholderia pseudomallei and B. mallei Discrimination Study 

For a more thorough analysis of signature performance, Insignia was used to 

develop 100 TaqMan PCR assays aimed at detecting Burkholderia pseudomallei 

and/or Burkholderia mallei in clinical and environmental samples. Unlike the 

traditional approach, which targets one or two specific Burkholderia genes, Insignia’s 

large-scale comparative genomics approach objectively identifies the most suitable 

assay designs. 10 of these assays were designed and validated for detecting B. 

pseudomallei, 10 for detecting B. mallei, and 80 for detecting either one. 

The validation results show that 88% of the computationally designed assays 

yield little or no false-positive signal for near-neighbor strains and have 100% 

sensitivity to a panel of target strains, with a detection limit of 1.5 to 15 equivalent 

genomes per PCR assay. Furthermore, all 20 species-specific assays were 100% 

sensitive and 100% specific among the strains tested. A duplex PCR assay for 

identifying and discriminating B. pseudomallei and B. mallei simultaneously was also 

developed and tested. The benefits of utilizing large-scale comparative genomics for 
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designing PCR detection assays are highlighted, and 88 new, validated, and robust 

Burkholderia detection assays are now available. 

2.4.1 Introduction to Burkholderia 

Burkholderia pseudomallei and Burkholderia mallei are the etiologic agents 

of melioidosis and glander [36,37,38,39], respectively, two severe infectious diseases 

in animals and humans. The two pathogens are listed as Category B select agents by 

the Center for Disease Control and Prevention, due to their ease of dissemination, 

high morbidity, and high mortality rates [40]. Although B. pseudomallei and B. mallei 

differ in physiology, ecology, and epidemiology, they are phylogenetically close 

[41,42]. Both species have two chromosomes [43,44], and their 16S rDNA sequences 

are almost identical [41]. It has been proposed that B. mallei be classified as a 

subspecies of B. pseudomallei. 

Rapid and accurate identification of these two pathogens—including 

discrimination from non-pathogenic Burkholderia species—is critical for early 

diagnosis and effective management of a potential bioterrorism attack. Previously, 

diagnostic tests for rapid detection, identification, and discrimination of these two 

pathogens and their non-pathogen neighbors have used a traditional approach that 

identifies, a priori, candidate genes for developing differentiating assays. Candidates 

include 16S rDNA [41,45,46], 23S rDNA [47], flagellin (fliP and fliC) [45,46,48], 

metalloprotease gene (mprA) [49], ribosomal protein subunit S21 (rpsU) [46], type III 

secretion systems (TTS1 and TTS2) [50,51], and locus P27 [52], locus 8653 and 9438 

[53]. These approaches requires either a prior understanding of the phylogenetic 
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relationship between the target pathogens and non-target organism or an 

understanding of the molecular mechanisms of pathogenesis of the target pathogens. 

Approaches targeting phylogenetically relevant loci are complicated by the fact 

that B. pseudomallei is relatively heterogeneous, with single nucleotide 

polymorphisms being common, even in highly conserved loci, such as 16S and 23S 

rDNA and other housekeeping genes [42]. In addition, B. pseudomallei and B. mallei 

share high sequence similarity with Burkholderia thailandensis [54] and other 

Burkholderia species. Therefore, it is difficult to find consensus sequences in 

phylogenetically relevant genes that are fully representative, yet not found in near 

neighbors. As a result, most assays reported in the literature require two or more 

individual assays to identify and discriminate B. pseudomallei and B. mallei, and their 

close neighbors. 

This section presents the Insignia strategy for identifying signature sequences, 

which examines entire genomes for suitable signatures and does not require 

knowledge of the phylogeny or molecular pathogenesis of the target pathogens. Using 

this approach, Insignia uncovered genomic signatures differentiating the two 

pathogens, B. pseudomallei and B. mallei, from all other known sequence, as well as 

signatures differentiating the two pathogens themselves. 

2.4.2 Burkholderia Assay Design and Validation 

The Insignia Web interface was used to generate all Burkholderia signatures. 

At the time of this study the list of available targets included 6 B. pseudomallei 

strains, 3 B. mallei strains, and 1 B. thailandensis strain. To identify B. pseudomallei 

specific signatures, the 6 B. pseudomallei strains were selected as the target and 
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compared with all other genome sequences as background. To identify B. mallei 

specific signatures, the 3 B. mallei strains were selected as the target. To identify 

signatures common to both B. pseudomallei and B. mallei, all 9 combined B. 

pseudomallei and B. mallei strains were selected as the target. The signature k-mer 

length was set to 20 bp for all queries, and the background was set to include all 

available sequenced genomes (both draft and finished). At the time of this study, the 

Insignia background contained 3,801 bacterial, archeal, and viral genomes, and all of 

the NCBI RefSeq genomic DNA, containing the genomes of human, animals, and 

plants (RefSeq release #23). In addition, the default Insignia result filters were used to 

remove signature chains whose average melting temperature (Tm) was lower than 45° 

C and average GC% was lower than 30%. 

Only those signature chains extending to 99 bp or longer were chosen for 

development of TaqMan assays. 100 TaqMan assays were developed from 100 

signature chains using Primer3 [27], of which 10 were B. pseudomallei specific, 10 

were B. mallei specific, and 80 were common to both B. pseudomallei and B. mallei. 

The PCR product size range was specified at 75 bp to 150 bp. The optimum melting 

temperature (Tm) of primer was set at 60 °C, and the optimum Tm of probe was set at 

70 °C. All primer and probe sequences were subjected to BLAST searches against the 

NCBI nr database to confirm their uniqueness to the target strains. 

A duplex TaqMan assay to distinguish B. pseudomallei from B. mallei was 

developed by combining a B. pseudomallei specific assay with a B. mallei specific 

assay, but with separate dyes. The 4 corresponding primers, 2 probes, and template 
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DNA were added into the TaqMan assay at the same final concentrations as in the 

single TaqMan PCR assays. 

2.4.3 Burkholderia Validation Results 

Insignia identified a total of 45,279 signatures chains unique to B. 

pseudomallei and 11,748 unique to B. mallei. A further 197,538 chains were 

identified as shared by both B. pseudomallei and B. mallei, but unique to these two 

species compared to background. Chains long enough to accommodate PCR targeting 

were less frequent, but were, nonetheless, frequent enough to provide at least 100 

candidates for assay design (Table 2.1). The physical positions of the 100 signatures 

that were used for TaqMan assay development on the chromosomes of B. 

pseudomallei K96243 and B. mallei ATCC23344 are shown in Figure 2.8. 

 

Table 2.1: Summary of identified Burkholderia signatures. 

 Number of signatures found for 
Signature 

chain length 
B. pseudomallei 

and B. mallei B. pseudomallei B. mallei 

20–98 196,297 44,626 11,723 
99–149 1,052 525 17 

150–198 131 98 3 
≥199 58 30 5 

Totals 197,538 45,279 11,748 
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Figure 2.8: Location of Burkholderia signature chains used for assay development on 
chromosome I and/or II of B. mallei (ATCC 23344) and B. pseudomallei (K96243).  Positions 
in black are signatures common to both, while positions in red are species-specific 
signatures. 

 
The results of the 100 TaqMan assays are summarized in Figure 2.9. The 10 

B. pseudomallei-specific assays (assays 81–90) showed low cycle threshold Ct values 

(15–19) for all 6 B. pseudomallei strains tested and no detectable signal with B. mallei 

or any other Burkholderia strains tested. The 10 B. mallei-specific assays (Assays 91–

100) showed low Ct values (15–19) for all 3 B. mallei strains and no detectable signal 

with B. pseudomallei or other near neighbors tested, except for one strain, B. 

pseudomallei K96243 (BEI NR-9320). NR-9320 showed a detectable signal at very 

high Ct values (between 30–34) for all 10 B. mallei specific assays. For the 80 assays 
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targeting for both B. pseudomallei and B. mallei, 68 assays identified all the target 

strains with very little or no cross reactions with their near neighbor strains, and the 

Ct values ranged from 15–21. Of the failed assays, ten failed to detect 1 or 2 target 

strains, and 2 assays cross-reacted with elevated Ct values with their closest neighbor 

strain B. thailandensis ATCC 700388. In summary, 88 out of 100 assays (88%) 

correctly differentiated all targets from their near neighbors, and for the 20 species-

specific assays both the sensitivity and specificity of detection was 100%. Assay 

signature sequences, inclusive and exclusive strain information, and detailed qPCR 

results for all validation experiments are available from the Insignia Web site. 

The detection limits for all 20 B. pseudomallei and B. mallei specific assays 

were in the range of 0.01 pg to 0.1 pg genomic DNA per reaction, equivalent to 

approximately 1.5 to 15 genomes per reaction, respectively. The presence of 15 ng 

competitor DNA in the TaqMan assay did not change the detection limits. 

The duplex PCR identified the target strain correctly at Ct values of 16–20 

with 15 ng template DNA per assay. No obvious interferences between the two assays 

were detected in the tests except for BEI NR-9320 (K96243), which cross-reacted 

with B. mallei assay at a Ct value of 38.0. The same Ct values were obtained while B. 

pseudomallei and B. mallei DNA were co-present at 15 ng for each in the assay. 
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Figure 2.9: Burkholderia assay validation results for 100 assays (rows) run using B. mallei, B. 
pseudomallei, and near neighbor strain DNA samples (columns). Again, Ct values are color-
coded to indicate the effectiveness of each assay, low Ct values in green and high in red. 
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2.4.4 Discussion of Burkholderia Detection Assays 

An ideal diagnostic assay should be able to recover the entire population of 

target isolates that might be encountered in either clinical or environmental samples, 

while discriminating between true targets and near neighbors. Insignia’s whole-

genome, comparative strategy is able to rapidly identify targets for genetic assay 

design that meet these criteria. Validation using pathogenic Burkholderia, as an 

example, shows this approach is also easily translated into new assays of defined 

specificity. 

In the validation experiments, 88 of the 100 signature assays achieved 100% 

sensitivity for the strains tested. Of the 12 assays that failed to achieve 100% 

sensitivity, 2 assays (assay 50 and 58) failed to identify B. mallei NR-2534, 7 assays 

(assays 6, 24, 42, 54, 55, 68, and 77) failed to identify B. pseudomallei NR-2536, and 

one assay (assay 75) failed to identify B. pseudomallei NR-2537 and NR-2538. All 

four of the strains that were not detected by these assays (NR-2534, NR-2536, NR-

2537, and NR-2538) have not yet been sequenced and, therefore, were absent from 

the Insignia database. Without genomic information for all strains, failed assays are to 

be expected, especially for strain NR-2536, perhaps the most phylogenetically distant 

of the 6 B. pseudomallei strains included in this study. Without genomic sequence 

data for all strains, validation employing a large panel of test strains is particularly 

important. 

2.4.4.1 Cross Reactivity 
Slight cross-reaction was observed for near neighbors of B. pseudomallei NR-

9320 (K96243) and B. thailandensis 700388 (E264). While still easily distinguishable 

from the target strains, NR-9320 showed a Ct value of 30–34 in all 10 B. mallei 
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specific assays and 700388 a Ct value of 26–30 in 2 assays (assays 31 and 35). To 

validate the original Insignia designs, the primer and probe sequences for these assays 

were queried against the genomes of B. pseudomallei K96243 and B. thailandensis 

700388 using Vmatch [26], allowing an edit distance of 4 for each oligo (mismatches 

and indels). For the cross-reacting NR-9320 assays, no potential products were 

detected where the primers and probe aligned within 20 Kbp of each other, in correct 

order and orientation, in the finished K96243 genome sequence. This search also 

failed for the raw sequencing reads of the K96243 project obtained from the NCBI 

Trace Archive (http://www.ncbi.nlm.nih.gov). 

Among the six B. pseudomallei strains tested, NR-9320 was the only one that 

showed slight cross-reaction with B. mallei specific assays. To test for possible B. 

mallei DNA contamination in the B. pseudomallei DNA preparation, fresh NR-9320 

DNA, with the same lot number, was prepared and tested, with identical results. 

Sequencing of the amplification product from two rounds of conventional PCR, using 

the assay primers and B. pseudomallei NR-9320 template DNA, revealed that the 134 

bp amplicon was identical to B. mallei 23344 sequence. This sequence match and the 

fact that all 10 of the B. mallei-specific assays cross reacted with B. pseudomallei 

NR-9320 at similar Ct values, taken together with the fact that both DNAs were 

prepared in the same facility, suggests low level contamination of the B. pseudomallei 

NR-9320 DNA preparation with B. mallei DNA. 

For assays that cross-reacted with B. thailandensis 700388 (assays 31 and 35), 

regions of similarity to B. mallei were found in the targeted loci. In all cases, 

however, Insignia properly identified regions of variability between the species, and 
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each primer and probe contained at least one SNP with regard to 700388. DNA 

sequence harboring the whole amplicon of 700388 of assay 42 was confirmed by 

DNA sequencing. Computational prediction and filtering of potentially cross-reacting 

probes is planned as a future improvement to Insignia. 

B. pseudomallei NR-2536 DNA also showed slight cross-reactivity (Ct 36–38) 

with B. mallei specific assay 91 and 95 in one of the duplicated tests, while the other 

test consistently yielded a negative result (Ct >50). Using the same amount of B. 

mallei DNA, the Ct values were 16–18. The large difference in Ct values (average 

difference of 20) between assays, using the known positives and those using B. 

pseudomallei NR-2536 indicates at least six orders of magnitude difference in 

sensitivity. Nonetheless, the cross-reactivity was repeatable, suggesting NR-2536 

DNA possesses corresponding sequences of assay 91 and 95, with variations at the 

site where primers and probe bind, resulting in poor amplification. 

2.4.4.2 Repetitive Signatures Improve Sensitivity 
Assays designed from repetitive sequences will have lower detections limits. 

For example, assay 75 was developed from a 192 bp signature chain contained in a 

gene encoding for ISBma2 transposase. It was later discovered that there are 46 

copies of this sequence in B. mallei ATCC 23344 (36 copies in chromosome I, and 10 

in chromosome II), and 5 copies in B. pseudomallei K96243 (4 copies in chromosome 

I, and 1 in chromosome II). 4 of the 6 B. pseudomallei validation strains and 3 of B. 

mallei validation strains possess this sequence. Genomes with this signature 

registered a lower Ct value of about 11–13 in B. mallei and 15–16 in B. pseudomallei, 

compared with the Ct value of 16–20 for the other assays. Given the assay detection 

limit of about 1.5 to 15 copies of genomic DNA per reaction, the assay targeting this 
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signature should be able to identify some B. mallei and B. pseudomallei strains from 

only a single copy of the genome. 

2.4.4.3 Effect of Newly Sequenced Draft Genomes 
The whole-genome comparative strategy depends on availability of genomic 

sequence for both target organisms and near neighbors. Burkholderia is well suited 

for this strategy because it is a genus with many sequences available. At the time of 

assay design, 13 fully sequenced genomes of the Burkholderia species were in the 

public domain and able to be queried by the Insignia pipeline. Shortly after the assay 

validation was finished, the number of sequenced Burkholderia increased to 50. To 

assess the effect the newly sequenced genomes would have on signature detection, 

the signature computations were run again, with the results compared with the 

original designs. With only 6 B. pseudomallei and 3 B. mallei genomes originally in 

the database, 1,241 signature chains ≥99 bp in length were identified for co-detection 

of B. pseudomallei and B. mallei. Targeting the same 9 genomes and, with the 

addition of 15 new near-neighbor genomes, this number was reduced to 750 chains 

≥99 bp. Currently, with 21 B. pseudomallei, 10 B. mallei, and 19 near-neighbor 

genomes in the database, Insignia returned no signature chains ≥99 bp. 

After investigating the sharp decline, it was determined that many of the new 

genomes were low quality draft sequences, which are missing large chunks of their 

genomes. These gaps make it impossible to find long stretches of perfectly conserved 

sequence between the targets. Of the 22 new B. pseudomallei and B. mallei genomes, 

10 had assemblies of 1,000 contigs or more. After removing these assemblies from 

the analysis and concentrating on the 21 higher quality genomes (11 B. pseudomallei, 

10 B. mallei), 438 signature chains ≥ 99 bp are identified, demonstrating the 
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importance of high quality sequences for identifying signatures. The largest reduction 

in signature candidates was not caused by addition of near-neighbor genomes, but by 

addition of low quality target genomes. The updated signature set, though smaller 

than in the original, will be sensitive to a more diverse set of target strains and more 

specific, because the search was against a much larger panel of near neighbors. 

The degree of conservation or divergence among the target strain population 

also will affect signature detection. The more homologous the target strains, the more 

reliable the resultant assays. For example, 10 B. pseudomallei specific signatures and 

10 B. mallei specific signatures were evaluated by aligning the sequences with 20 

newly sequenced B. pseudomallei and 10 B. mallei sequences. These data showed the 

B. mallei strains to be relatively homologous, while the B. pseudomallei strains were 

relatively heterogeneous, results consistent with previous studies [41,42]. 

Accordingly, B. mallei specific assays can be expected to be more inclusive than B. 

pseudomallei assays. Fortunately, the designs from this study were based on 6 B. 

pseudomallei genomes (as opposed to 3 for B. mallei), which helped the design 

process compensate for increased heterogeneity by locating the most conserved 

regions of the genome. In this study, multiple genomes were essential for success, 

whereas in the prior study of the more homogeneous Vibrio cholerae, only a single 

sequenced target genome was sufficient for a favorable design. 

2.5 Future of Insignia 

Insignia outputs signature candidates, rather than high confidence, laboratory-

validated signatures. However, the validation studies demonstrate that most of these 

candidates can work quite well as laboratory assays. Due to the limited availability of 
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genomic sequence in public databases (relative to the diversity of all organisms), and 

the possibility of near-match cross-hybridization, it is difficult to validate a genomic 

signature via purely computational methods. Instead, Insignia provides a 

computational screening regimen that eliminates many invalid signatures, so that 

laboratory validation may focus on the most likely candidates. Additional sequencing 

will help overcome the computational limitation, and future work on Insignia will be 

focused on improving the quality of the signatures produced. 

In addition to the computational restrictions, limitations of TaqMan PCR have 

been demonstrated for rapidly diverging target genomes, such as hepatitis and HIV 

viruses [35,55]. However, for typical bacterial targets, TaqMan assays remain one of 

the most rapid and sensitive methods for signature detection. In the case where 

TaqMan is inadequate, different detection technologies, such as chip hybridization, 

could be used to remove the TaqMan requirement for three adjacent probes and to 

provide greater signature redundancy. Insignia would easily support the design of 

such assays. 

Viruses pose significant challenges for all detection methods because of their 

small genomes and high mutation rates. The Insignia database contains thousands of 

viral genomes; however, for large target sets there are often no conserved signatures. 

To address highly divergent targets, future Insignia versions may include the ability 

to identify signatures with degenerate bases, for cases where no exact signature is 

shared between them. An alternative is to compute the minimum signature set, where 

each signature might not identify every target, but the set contains at least one 

identifying signature for each target. This requires clustering the target sequences by 
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similarity and then designing multiple, non-degenerate assays to target each 

individual cluster. This approach is particularly suited for chip assays where 

signatures can be multiplexed. A related approach selects combinations of non-unique 

probes, such that certain viral strains can be identified by their hybridization pattern 

[56]. 

Finally, the current version of Insignia can identify signature sequences with a 

mismatch every 18 bases to the background, but certain types of assays, such as 

microarrays, require a greater distance between the signature sequence and the 

background. Signatures containing at least 2 or 3 mismatches to the background may 

be downloaded from a separate interface for each species group, but are not provided 

for all combinations of target genomes like the 1-mismatch signatures. Work is 

planned to expand the current algorithms to identify these more divergent signatures 

for any combination of target genomes. A possible solution would reduce the search 

space by identifying all 1-mismatch signatures using the current algorithms, and then 

apply a more sensitive search algorithm to these candidate signatures to guarantee 

suitable uniqueness. 

2.6 Summary 

The validation results indicate that whole genome signature discovery, 

whereby the entire genomic complement of organisms are compared to identify probe 

targets, is a promising new tool for diagnostic assay development. A key difference 

between the comparative genomics approach and a more traditional genetic approach 

to assay design is that the latter is focused on finding signatures within well defined 

regions of the genome, while the former utilizes all of the genetic content of the target 
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organism. This provides more flexibility in choosing candidate assays for validation, 

does not require a priori knowledge of the role and function of the candidate loci, and 

increases the chances of designing a successful assay. Insignia also achieves 

unmatched scale by screening all microbial genomes against a comprehensive 

background, while maintaining rapid access to DNA signatures through its Web 

interface. 

To date, hundreds of the discovered signatures have been experimentally 

validated using TaqMan PCR assays for the detection of multiple pathogens, 

including Vibrio cholerae, Francisella tularensis, Burkholderia mallei, and 

Burkholderia pseudomallei. The validation studies have revealed that prioritizing the 

signature chains by length is an effective strategy, and the validated signatures have 

shown very little cross-reaction with near-neighbor species. Insignia signatures have 

also been used for microarray genotyping and detection assays. In all cases, the 

Insignia signatures were shown to be highly sensitive for detection as well as specific 

for discrimination between near relatives and environmental backgrounds. 

2.7 Author Contributions 

A version of this chapter appeared previously in published form: 

Phillippy AM, Mason JA, Ayanbule K, Sommer DD, Taviani E, Huq A, Colwell R, 
Knight T, Salzberg SL (2007) Comprehensive DNA signature discovery and 
validation. PLoS Comput Biol 3: e98. 

 
A version of the Burkholderia section is in preparation for publication: 

Cai M, Phillippy AM, McIver K, Huq A, Salzberg SL, Colwell R, Knight IT. 
Detection of Burkholderia pseudomallei and B. mallei using a large-scale, 
comparative genomics approach. In preparation. 
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Ivor Knight. Jacquline Mason and Main Cai performed the validation experiments. 
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mySQL database. Rita Colwell, Anwar Huq, Kevin McIver, and Elisa Taviani helped 

determine the validation strains and contributed the DNA samples. Lynn Schriml, 

Aaron Gussman, and Cesar Arze contributed genome sequence and annotation data. 

Steven Salzberg helped conceive the problem, guided the project, and edited the text. 
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Chapter 3 

Web Application for Signature Search and Assay Development† 

Insignia is made available as a Web application for the rapid identification of 

unique DNA signatures. These signatures can be used as the basis for diagnostic 

assays to detect and genotype microbes in both environmental and clinical samples. 

Insignia identifies an exhaustive set of accurate DNA signatures for any set of target 

genomes, and screens these signatures against a comprehensive background that 

includes all sequenced bacteria and viruses, the human genome, and many other 

animals and plants. Identified signatures may be browsed by genomic location or 

proximal genes, filtered by composition, viewed in a genome browser, or directly 

downloaded. Integrated PCR primer design is also provided for each signature. The 

Insignia website is free and open to all users (http://insignia.cbcb.umd.edu). 

3.1 Background 

Insignia provides a convenient Web interface for identifying genomic 

signatures from a database of all current bacterial and viral genomic sequences, which 

                                                
 
† This chapter includes previously published work with multiple authors. See Section 3.4 for details. 
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currently comprises nearly 14,000 distinct organisms. The input to Insignia is any set 

of target and background genomes selected from the online database, and the output 

is a list of signatures perfectly conserved by all target genomes and absent from all of 

the background genomes. Insignia is the only Web application capable of performing 

this whole-genome signature design, whereby entire genomes are screened against a 

comprehensive background. KPATH [19] and TOFI [57] perform similar 

computations, but must be run offline and require considerable computational 

resources. To quickly identify signatures for any combination of target and 

background genomes, and enable use over the Web, Insignia maintains a specialized 

database containing pre-computed matches between every pair of genomes. Using 

this match information, signatures are computed “on the fly” in a matter of seconds, 

using the efficient interval set operations described in the previous chapter. The 

following sections describe the associated Web application, which provides a 

convenient interface for signature search and assay design. 

3.2 Interface 

The Insignia home page provides a full listing of all target genomes currently 

in the database, organized alphabetically. The database mirrors the Gemina database, 

maintained by the Institute for Genome Sciences [58]. Currently, the Gemina 

database includes 13,928 distinct organisms, comprising 11,274 viruses and 2,653 

bacteria. This list includes multiple genomes for many well-known species. For 

instance, only a single Vibrio cholerae genome sequence existed in 2006, when the 

original validation study was performed, but the database now contains 21 V. 
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cholerae genomes. The database is updated routinely, and the accuracy of the 

predicted signatures will continue to increase as more genomes are added. 

General help information and examples are also linked from the home page. 

Links are provided to automatically run signature searches for some important 

pathogens. Additional links are provided in the “Recent Searches” box after custom 

searches are performed. This allows users to rerun a previous search with identical 

parameters. This is helpful for users who may return to the same results many times 

over the course of designing an assay. 

In addition to displaying the current database status and search links, the 

Insignia home page also hosts a collection of validated signatures. These signatures 

were predicted by Insignia and have undergone laboratory validation against a series 

of samples including phylogenetic and environmental neighbors. Validated signatures 

are currently available for Vibrio cholerae, Francisella tularensis, Burkholderia 

mallei, and Burkholderia pseudomallei. Additional validation studies for Brucella 

spp. and Yersinia pestis are planned. 

3.2.1 Search Page 

The Insignia Search page is available under the “Run Insignia” link on the 

home page. On the Search page, users are asked to select a reference genome, a set of 

target genomes, a background, and a signature word length. The reference genome is 

a member of the target set that provides the genome coordinates for purposes of 

reporting signatures, and that is used for displaying signatures along with genome 

annotation. Therefore, it is preferable to select a finished and annotated genome as the 

reference. The reference genome may be selected from a list of all genomes in the 
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database, or users may type the name of the genome in the search box and the list will 

be automatically filtered for genomes matching that name. Additional target genomes 

may be selected from a list in a similar way as the reference genome, or selected from 

a taxonomy tree of closely related organisms. Figure 3.1 shows a partial view of the 

target tree for a Vibrio cholerae reference. The tree view makes it easy to select all 

strains from a species or group of related species. 

 

Figure 3.1: Insignia taxonomic selection tree selector showing the order Vibrionales. Subtrees 
can be expanded or collapsed by clicking, and checkboxes are provided for adding specific 
genomes to the target set. 

 
After a reference and target have been selected, users may modify the 

background set if necessary. By default, the background includes all genomes in the 

database, except for the genomes that have been selected as targets. Buttons are 

available to exclude draft genomes from the background, or to exclude draft genomes 

in the same genus as the reference. Draft genomes may contain large gaps, and 

including them in the target set may have the unintended consequence that no shared 

signatures can be found; for this reason, it is best to ignore draft genomes unless they 

are known to be nearly complete. Genomes with >100 contigs may interfere with 
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signature computations and should probably be excluded from the target set and from 

the background if they are of the same species as the target. The interface provides a 

simple check box to allow the user to exclude all draft genomes from the background. 

Insignia is primarily designed for detecting bacterial signatures, but it can 

equally well design signatures for viruses. Viruses tend to have much smaller 

genomes and much higher mutation rates (especially RNA viruses), with the 

consequence that for a given viral species, there might not be any shared signatures 

among the sequenced isolates. However, if any signatures exist for a set of viruses, 

Insignia is guaranteed to find them. To simplify usage for bacterial assay design, all 

viral genomes can be hidden from view with a checkbox, but they will remain in the 

background unless specifically excluded. 

The final option on Search page is to select a signature word length. Insignia 

is capable of identifying k-mer signatures for any k ≥ 18, but as the size of the 

background continues to increase, many k-mers will hit the background simply by 

chance and reduce the length of the resulting signature chains. A small k is desirable 

because it increases the minimum frequency of differences between a signature chain 

and the background. For the current database size, k = 20 appears to be a reasonable 

compromise between long signature chains and small k. Insignia was tested with k = 

20 and a background including all of the NCBI RefSeq genomes [30], >100 billion 

nucleotides, and signature chains >100 bp were still identified for most bacterial 

species. In future versions of Insignia, if the signature chains are insufficiently long 

for a PCR product, users will have the ability to design assays across multiple, 

neighboring signatures. 
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Insignia also provides species-specific, e-unique signatures for most reference 

genomes. An e-unique signature is a k-mer signature that requires at least (e + 1) 

string edits (substitutions, insertions, deletions) to match the background of other 

species. These pre-computed signatures are specific to the reference genome, but are 

not necessarily conserved among other genomes of the same species. If they coincide 

with an exact-match signature for that species, than they are both e-unique and 

conserved throughout the species. As with the exact-match signatures, adjacent e-

unique signatures are displayed as chains. If e-unique signatures are available for the 

selected reference genome, a checkbox appears next to the selection box, giving users 

the option of including these signatures in the search results. 1- and 2-unique species-

specific signatures for word lengths 18 and 19 bp are currently available for most 

finished bacterial genomes via the Web interface, and 1-unique signatures for word 

lengths 20 through 25 are available upon request. 

In addition to the Search page, Insignia accepts query submission via URLs to 

support links from external sites. The URL format contains the requested signature 

word length, and the GenBank taxonomy identifiers (TaxID) of the target genomes. 

The first TaxID is taken as the reference genome, and everything else as the target. If 

the first TaxID is an internal taxonomy branch, all children are included as the target 

and the user will be requested to select a reference. For example, to find 20-mer 

signatures for all strains in the species Bacillus anthracis, the URL is 

(http://insignia.cbcb.umd.edu/results.php?len=20&taxid=1392), where “1392” is the 

GenBank taxonomy identifier for the species B. anthracis. Additional TaxIDs can be 

added as a comma separated list. 
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The Gemina website uses this URL interface to link to Insignia 

(http://gemina.igs.umaryland.edu). Gemina is a database of epidemiology metadata 

linked to the genomes of infectious pathogens. Through this website, users can search 

for pathogens via their associated metadata such as transmission method, hosts, 

symptoms, or geographical location. After a group of organisms with the desired 

traits are selected on the Gemina website, an Insignia search can be launched to 

identify genomic signatures for those organisms. 

3.2.2 Results Page 

Figure 3.2 shows the Results page of the Insignia website after a signature 

search has completed. The target of this signature search was all 17 strains of Vibrio 

cholerae, with all other genomes as the background. At this stage, all signatures can 

be downloaded in bulk for further analysis, or browsed on the Results page. The 

center of the page displays the resulting signature chains (hereafter referred to only as 

“signatures”). By default, a table of signatures is displayed with start and stop 

positions, and the signature sequence. The left of the page provides links to relevant 

websites, help information, and recent searches. The right of the page provides 

dynamic JavaScript controls for filtering the signatures. In the page displayed in 

Figure 3.2, 55,385 signatures have been identified but the filter has been set to show 

only those ≥ 100 bp in length, which left 1,503 for display. Using the bottom two 

checkboxes, annotation information was added to the table and the signatures were 

sorted in order of decreasing length. In addition, the graphical display has been 

enabled by choosing “View Graphical Output” from the Submit menu in the center of 

the page. 
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Figure 3.2: Insignia search results page, showing the graphical genome browser and table of 
signature sequences. In the genome browser, forward-strand genes are shown in red, 
reverse-strand genes in blue, and signatures in green. The top of the signature table is visible 
at the bottom of the page, showing start and end positions, signature sequences, and 
annotations. Dynamic signature filters are available in the right margin. 

 



 

 
 

53 
 

The JavaScript genome browser in the center of the page supports dynamic 

selection, zooming, and panning, and enables users to browse the selected signatures 

in the context of their surrounding annotation. In this view, forward-strand genes are 

shown in red, reverse-strand genes are shown in blue, and the signatures are shown in 

green. Selecting a signature in the genome browser displays its sequence and causes 

its table row to be highlighted in yellow, as shown at the bottom of the page. 

Selecting a gene displays its functional annotation and sequence. Further selecting the 

name or ID of the gene, links to the GenBank page describing the gene product. 

To provide responsive interaction, the signature table and genome browser are 

limited to displaying at most 2,000 signatures. Often, many more signatures are 

returned from the search and must be filtered to reduce the number. The easiest 

solution is to gradually increase the length filter until less than 2,000 signatures 

remain. Adjusting any of the filters on the right of the page dynamically updates the 

signatures displayed in the genome browser and signature table. Signatures can be 

filtered by gene name, gene function, sequence composition, GC content, melting 

temperature, length, and location. For example, clicking “Show corresponding gene 

info” and entering “toxin” in the “Gene Function” filter shows only genes with the 

word “toxin” in their functional annotation. Performing this filter on the results of the 

Vibrio cholerae query given on the Examples page returns a number of long 

signatures contained in a gene annotated as “toxin secretion ATP-binding protein.” 

With this functional filter, assays designers can target known virulence genes 

necessary for pathogenicity. Such signatures would be capable of detecting a virulent 

gene in any genomic context (e.g. within a genetically engineered bacterium). 
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After filtering the signatures to obtain a manageable number of candidates, 

users can search the signatures with BLAST and design PCR primers to target the 

signature. Users can select “Run BLAST Search“ from the Submit menu, to upload 

the selected signatures to the NCBI BLAST website to perform a more sensitive 

search and view any alignments to the background. Once the uniqueness is confirmed 

by BLAST, users can select “Design Primers” from the Submit menu to design 

suitable primers for the region using an integrated version of Primer3 [27]. Primer3 

can be run with default parameters, or with user-defined constraints for assay-specific 

experimental conditions. TaqMan assays, with a single probe between the primers, 

can also be designed with the integrated Primer3 software. 

3.2.3 Implementation 

The Insignia software is organized into two primary components: the Web 

interface and the computational pipeline. The computational pipeline is a standalone 

component, written in C++, that generates match data offline on a computational 

cluster and stores the results in indexed files. Signature queries can be transmitted to 

the pipeline, which retrieves and processes match data from the database files to 

compute signatures. The dynamic Web interface submits queries to the computational 

pipeline and displays the results. The Web interface is written in HTML, JavaScript, 

PHP, and Perl. The signature, sequence, and annotation data used by the Web 

interface are stored in a mySQL database using a Chado schema [59]. 



 

 
 

55 
 

3.3 Summary 

Insignia is a transparent, highly accessible signature pipeline and database that 

can be queried for signatures from a Web interface, making it accessible to users 

without access to high-performance computing resources. The Insignia Web 

application can indentify an exhaustive set of accurate DNA signatures for any set of 

target genomes—screening these signatures against a comprehensive background of 

over 100 billion nucleotides that includes all sequenced bacteria and viruses, the 

human genome, and many other animals and plants. To date, thousands of Insignia 

searches have been performed via the Web interface. 

3.4 Author Contributions 

A version of this chapter appeared previously in published form: 

Phillippy AM, Ayanbule K, Edwards NJ, Salzberg SL (2009) Insignia: a DNA 
signature search Web server for diagnostic assay development. Nucleic Acids 
Res 37: W229-234. 

 

I designed and implemented all computational methods, engineered a prototype 

Insignia interface, and wrote the text. Kunmi Ayanbule engineered the current 

Insignia interface and managed the Insignia mySQL database. Nathan Edwards 

provided the e-unique signatures and drafted their description. Steven Salzberg 

guided the project and edited the text. 
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Chapter 4 

Pan-genome Tiling Arrays† 

DNA signatures are capable of rapidly identifying a pathogen via PCR-based 

assays, but cannot provide a comprehensive picture of the detected genome. 

Alternatively, array comparative genomic hybridization is a fast and cost-effective 

method for detecting, genotyping, and comparing the genomic sequence of unknown 

bacterial isolates. This method, as with all microarray applications, requires adequate 

coverage of probes targeting the regions of interest. An unbiased tiling of probes 

across the entire length of the genome is the most flexible design approach. However, 

such a whole-genome tiling requires that the genome sequence is known in advance. 

For the accurate analysis of uncharacterized bacteria, an array must query a fully 

representative set of sequences from the species’ pan-genome. Prior microarrays have 

included only a single strain per array or the conserved sequences of gene families. 

These arrays omit potentially important genes and sequence variants from the pan-

genome. 

                                                
 
† This chapter includes previously published work with multiple authors. See Section 4.7 for details. 
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This chapter presents a new probe selection algorithm (PanArray) that can tile 

multiple whole genomes using a minimal number of probes. Unlike arrays built on 

clustered gene families, PanArray uses an unbiased, probe-centric approach that does 

not rely on annotations, gene clustering, or multi-alignments. Instead, probes are 

evenly tiled across all sequences of the pan-genome at a consistent level of coverage. 

To minimize the required number of probes, probes conserved across multiple strains 

in the pan-genome are selected first, and additional probes are used only where 

necessary to span polymorphic regions of the genome. The viability of the algorithm 

is demonstrated by array designs for seven different bacterial pan-genomes and, in 

particular, the design of a 385,000 probe array that fully tiles the genomes of 20 

different Listeria monocytogenes strains with overlapping probes at greater than 

twofold coverage. 

4.1 Background 

Microarrays are well known for their success in studying gene expression 

[60]. As one of their many other roles, DNA microarrays can also be used to 

characterize both large-scale and small-scale genetic variations. For instance, array 

comparative genomic hybridization (CGH) is commonly used in human cancer 

studies to genotype cell lines by detecting gene loss and copy number variations [61]. 

At a finer resolution, microarrays are also used to detect single nucleotide 

polymorphisms at targeted loci [62]. In addition to human screens, microarrays have 

been widely used for the detection and genotyping of microbial species. Notably, a 

viral genotyping microarray [9] was one of the methods used to etiologically link 

severe acute respiratory syndrome (SARS) to a novel coronavirus [63]. Arrays for the 
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detection and comparative analysis of bacterial genomes have also been developed, 

including arrays for Listeria monocytogenes [64,65,66,67,68], and many other 

bacterial species. However, these earlier, low-density arrays did not contain enough 

probes to target the entire genome of the bacterium, and were forced to probe only a 

small subset of the known genes. 

As the density of DNA microarrays increased in recent years, it has become 

possible to probe the entire genome of an organism in addition to only specific genes. 

An array providing unbiased coverage of probes across a genome is commonly 

referred to as a whole-genome tiling array. Such arrays have been very successful for 

genome-scale analysis, including the discovery of novel transcripts, splicing variants, 

protein binding sites, and polymorphisms [69]. Depending on the offset between 

adjacent probe locations, whole-genome tilings can be either gapped, end-to-end, or 

overlapping Figure 4.1a. 

 

 

Figure 4.1: Illustration of tiling array densities and pan-genome tiling. Genomes are 
represented as horizontal lines and probes as colored rectangles. The offset between probes 
is the distance between the start of one probe and the start of the next. a) Three different 
tiling densities are shown for genome A. The top figure illustrates a gapped tiling, the middle 
an end-to-end tiling, and the bottom an overlapping tiling. b) A pan-genome tiling is shown for 
two genomes. Genomes A and B are identical except for a small insertion in B, represented 
by vertical red bars. Solid blue probes are conserved in both genomes, and probes spanning 
the insertion event are colored by variant. Set H shows the non-redundant set of probes 
needed to tile the pan-genome including A and B. 
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In the human genome, tiling arrays are designed to probe the genome at 

evenly spaced intervals. To maximize the expected specificity of the array, repetitive 

probes must be avoided and experimental conditions, such as melting temperature, 

equalized. This creates an optimization problem in choosing which sequences should 

be included on the array [70,71]. In smaller microbial genomes, it is possible to target 

every position of the genome with overlapping probes, simplifying the design 

process. For example, extreme high-density arrays can now accommodate 2.1 million 

variable length probes on a single chip (Roche NimbleGen, Inc). For an average 2 Mb 

sized bacterial genome and 50 nt probe length, probes can be offset by only a single 

base pair and still span the entire genome, generating coverage of 50x. By tiling the 

entire genome, some suboptimal probes will be included on the array, but can be 

identified and corrected for in the analysis. These overlapping arrays are capable of 

identifying polymorphism at a much finer resolution than gapped arrays. 

Tiling arrays have traditionally been constructed based on the genome of a 

single reference strain and used to locate genomic differences contained in the 

experimental strains. However, single-genome arrays can only detect and analyze 

sequences similar to those included on the array, and cannot discover or analyze 

sequences absent in the reference strain. After the introduction of the pan-genome 

concept [72,73], it has become increasingly clear that some microbial species contain 

significant genetic diversity, and it is not suitable to compare against only a single 

reference strain. The pan-genome hypothesis states that any given species has two 

sets of genes. First, a set of core genes present in all strains that define the species; 

and second, a set of dispensable genes present in only one or a few of the strains that 
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presumably mediate adaptation. A single genome describes the genomic material for 

a particular strain, but the pan-genome describes the genomic makeup for an entire 

species. Single reference tiling arrays cannot survey this full diversity. Ideally, an 

array for analyzing new strains should cover the genomic diversity of the entire pan-

genome. 

With the explosion in microarray densities, it is now possible to design pan-

genome tiling arrays that contain all genomic sequence from the known pan-genome. 

The simplest strategy is to fully tile the genomes of each strain independently. 

However, due to similarities between the strains, some sequences would be tiled with 

excessive redundancy, and this approach would be cost ineffective. Instead, a pan-

genome array should aim to minimize costs by using the minimal probe set necessary 

to target every element of the pan-genome with adequate coverage. The typical 

approach for targeting multiple strains is to group individual genes into gene families 

and then probe only the conserved sequences of those families [74,75,76]. For 

example, Willenbrock et al. designed an innovative 32 strain Escherichia coli pan-

genome array by clustering homologous genes based on pairwise alignment similarity 

[74]. Homology was defined as gene alignments with an E-value < 10-5, a bitscore > 

55, and alignment coverage of at least 50% of the gene length. For each resulting 

gene group, a consensus sequence was generated via multiple alignment, and probes 

were designed to target the most conserved regions of the consensus. The resulting 

array comprised 224,805 probes, targeting 9,252 gene groups, with a median 

coverage of 27 probes per gene group. 
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Targeting only the conserved sequence of gene families is an effective and 

efficient method for detecting—at a low resolution—the presence and absence of 

gene families; however, for studies that require a finer resolution, this method omits 

many potentially significant sequences from the array. Firstly, a slight variation in a 

gene (e.g. a partial deletion) can be responsible for a significantly different 

phenotype. By only targeting the conserved portion of gene families, the variable 

regions responsible for these differences will not be included on the array. Secondly, 

a gene-centric design includes only coding sequences. Therefore, these designs 

cannot be used to detect differences in intergenic regions, which may include 

regulatory elements, or used for studies that require a whole-genome tiling, such as 

transcriptome mapping or chromatin-immunoprecipitation-chip (ChIP-chip) studies. 

Finally, gene-centric design models depend on an accurate annotation of the genome. 

If genes have been mis-annotated or omitted from the annotation, such genes cannot 

be properly represented on the array. This is particularly troublesome for many draft-

quality genomes that have highly fragmented sequence assemblies and lack accurate 

annotations. For these reasons, a whole-genome tiling is preferable for applications 

that require more flexibility or an unbiased tiling of the genome. However, no 

methods have been described for efficiently tiling multiple whole-genome sequences. 

This chapter describes a method for pan-genome tiling array design that both 

minimizes the number of probes required and guarantees that all sequences in the 

pan-genome are fully tiled by the array. The prior gene-centric approaches are 

abandoned in favor of a more concrete, probe-centric approach that relies only on the 

genomic sequences and not the annotation. To summarize the new approach, let the 
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pan-genome G be the set of all genomes from a species, and let P be the non-

redundant set of all length k substrings from G. Due to sequence conservation 

between genomes, a single probe may match to multiple locations (genomes) of the 

pan-genome. Call these matches the probe targets. The Pan-Tiling problem is to find 

a minimum cardinality subset H⊆P such that all sequences of G are targeted by 

probes in H and no target is offset more than maxoff from the preceding target or 

sequence start. 

Constructing a full tiling of the pan-genome seems like it would require a 

large number of probes, but by leveraging the similarities between strains, a 

reasonably sized probe set can be constructed that fully covers a large pan-genome 

with adequate redundancy. The key to the strategy is choosing probes that will 

hybridize to as many of the strains as possible, while using only a necessary amount 

of probes to cover polymorphisms (insertions, deletions, variants). For example, 

Figure 4.1b shows a pan-genome tiling for two miniature genomes, with a maxoff of 

one-third the probe length. Genomes A and B are identical except for a small insertion 

in the middle of B. Fully tiling both genomes requires a total of 19 probe targets (9 for 

A and 10 for B), but probe set H illustrates that these 19 targets can be tiled with just 

12 probes. Conserved probes are used to tile the left and right of both genomes, and 

distinct probes are used to tile the two polymorphism variants. This is obviously a 

simplified example. The problem becomes more difficult as the number of genomes 

and complexity of polymorphisms increases. 

The methods presented in this chapter were developed to aid the design of a 

pan-genome CGH tiling array for Listeria monocytogenes—the causative agent of 
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listeriosis and a NIAID category B biodefense agent that is of significant food safety 

and public health concern [77]. The species of L. monocytogenes is composed of 

three primary genetic lineages (named I, II, and III) that display different capabilities 

of environmental survival and pathogenic potential to cause human infectious disease 

[78]. In order to both characterize new strains based on genetic content, and detect 

polymorphism at a higher resolution in small RNAs (sRNAs) and intergenic 

sequences, the array was required to cover all pan-genomic sequences with a high 

density of probes. This bacterial species is particularly well suited for pan-genome 

array design because there are a remarkable number of strains that have been 

sequenced. At the time of array design, a total of 20 L. monocytogenes complete or 

draft genome sequences were available, totaling 57.9 Mbp (Table 4.1). Genomic 

sequences and annotations were obtained from The National Microbial Pathogen 

Database Resource (NMPDR) [79]. The sequence conservation for the sequenced 

strains was computed with Nucmer [80], and ranges between 92% and 99% in 

nucleotide identity versus the completed EGD-e reference strain.  Even with such 

substantial diversity within the species, the PanArray algorithm is able to design a 

pan-genome tiling covering each genome at more than twofold coverage using only 

385,000 50-mer probes. A similar density tiling for a single L. monocytogenes strain 

would require 125,000 probes, meaning the PanArray design covers 20x more 

genomes using only 3x more probes. A description of this design, along with array 

designs for six other bacterial pan-genomes, is presented after the methods. 
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Table 4.1: Listeria monocytogenes sequences included on the array. 

Strain Lineage Serotype Bases  Contigs Genes2 

EGD-e II 1/2a 2,944,528 1 3,002 

LO28 II 1/2c 2,910,810 529 5,078 
FSL F2-515 II 1/2a 2,586,267 1,415 NA 
FSL J2-003 II 1/2a 2,878,206 406 4,686 
1/2a F6854 II 1/2a 2,950,285 133 3,028 
FSL N3-165 II 1/2a 2,886,689 33 2,963 

J2818 II 1/2a 2,971,223 38 3,270 
F6900 II 1/2a 2,958,319 35 3,333 
J0161 II 1/2a 3,051,828 51 3,252 
10403S II 1/2a 2,866,709 32 2,944 
FSL J2-064 I 1/2b 2,899,431 327 3,914 
4b H7858 I 4b 2,972,254 181 3,187 

FSL J1-175 I 1/2b 2,902,346 357 4,559 
FSL N1-0171 I 4b 2,857,865 77 3,465 
HPB2262 I 4b 3,006,068 75 3,319 
FSL J1-194 I 1/2b 2,986,227 44 3,792 
4b F2365 I 4b 2,905,187 1 2,987 
FSL R2-503 I 1/2b 3,001,696 54 4,863 

FSL J2-0711 IIIA 4c 3,149,923 46 3,789 
FSL J1-208 IIIB 4a 2,260,760 1,494 NA 
All sequences and annotations were obtained from NMPDR. 
1These genomes were later identified as being mislabeled. 
2Number of annotated protein coding genes and RNAs reported by NMPDR at the time of the array design. 
 

4.2 Array Design Algorithm 

The general strategy of the PanArray design algorithm is best summarized by 

analogy to the well-known Minimum Hitting Set problem in computer science 

[81,82]. Let P be a set of n points and F = {P1, P2, …, Pm} be a family of m subsets of 

P. Minimum Hitting Set is the problem of selecting the minimum cardinality subset 

H⊆P such that H contains at least one element from each subset in F. Although 

finding a minimum hitting set is known to be NP hard, it is a well studied problem 

and efficient approximation algorithms are known. 

To see the similarities between the Pan-Tiling and Minimum Hitting Set 

problems, let the sequence G be a concatenation of all the genomes from a species, 
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and let W = {w1, w2, …, wm} be the set of m intervals that results from segmenting G 

into non-overlapping, end-to-end, length l windows. Let P be the non-redundant set 

of length k substrings from G. A probe candidate p∈P is said to hit a window w∈W if 

a match between p and a substring of G begins in the interval w. Let Pi⊆P be the 

subset of probes that hit the window wi, and F = {P1, P2, …, Pm} for the m windows 

of W. A minimum hitting set H of F is a minimum cardinality subset of probes H⊆P 

such that every window of the pan-genome is hit by at least one probe in H. 

Therefore, finding H effectively tiles the entire pan-genome using a small number of 

probes. This forms the inspiration for the PanArray algorithm. 

4.2.1 Window and Probe Indexing 

Windowing the genome simplifies the Pan-Tiling problem by casting it terms 

of the familiar Minimum Hitting Set problem, and at the same time enforces the 

maxoff constraint. Because each window is forced to contain at least one target, any 

two adjacent targets cannot be separated by more than twice the window length. 

Therefore, the window length is equal to one half maxoff. For example, given a 

maximum offset of 2l, windows are marked off every l bases of the pan-genome—

with the first window w1 covering the interval [1, l], and the second window w2 

covering [l+1, 2l], and so on. Assuming one target is chosen per window, and the 

target locations are evenly distributed within windows, the average distance between 

adjacent targets is expected to be equal to the window length. For a window length l, 

equal to the probe length k, the resulting depth of coverage averages one, because the 

probes are spaced k bases apart on average. For any other window length l, the 
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resulting depth of coverage c is expected to be c ≈ k / l. The extreme case being l = 1, 

which results in exactly k-fold coverage because a probe must hit every position in G. 

To identify a hitting set, once the pan-genome is discretized into a set of 

windows, each window must be mapped to the set of probe hits it contains. As before, 

a probe p hits a window if a match between p and G begins within the window’s 

interval. Thus far exact matches have been assumed, but a match can be defined by 

any criteria necessary for efficient hybridization. To help reduce probe redundancy, 

the PanArray implementation can optionally use inexact matches containing a single 

mismatch. Any suitable k-mer indexing algorithm can be utilized for this phase, but 

allowing for mismatches can be computationally expensive. The implementation uses 

a fast, but memory intensive, compressed keyword tree for indexing all probe hits. 

Alternatively, a slower, but memory efficient, hashing scheme would also work. To 

index the 1-mismatch hits, each probe’s 3k possible 1-mismatch permutations are 

added to the index as well. The result of the indexing is a list of positions and 

windows for all k-mers of the pan-genome (the probe candidates). At this stage, the 

final list of probe candidates may be manually filtered based on typical criteria such 

as melting temperature, GC content, secondary structure, etc. For ungapped tilings, it 

is impossible to avoid suboptimal probes. However, highly repetitive probes can be 

identified by the number of genomic positions they map to, and should be discarded if 

they threaten to confound the array analysis (e.g. by affecting normalization). 

Alternatively, the input sequences may be masked prior to k-mer indexing to avoid 

repetitive or unwanted sequence altogether. 
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For CGH arrays, each probe is considered equivalent to its reverse 

complement, but for expression or transcriptome arrays, forward and reverse strand 

probes must be considered independently. Probe matches are listed on the strand on 

which they appear, so for single-stranded samples, the sequence to be synthesized for 

the array will need to be reversed complemented. For DNA tiling arrays it is helpful 

to assume the sample will be double-stranded so that genomic inversions in one or 

more of the strains do not have to be tiled separately. 

4.2.2 Probe Selection 

As described above, finding the minimum hitting set of P effectively tiles the 

entire pan-genome using a small number of probes. As before, W is the windowed 

pan-genome. Let Wp be the subset of windows hit by probe p, and U be the set of 

currently uncovered windows. Let a window hit by at least one probe be termed as 

covered, and the coverage of a probe be the number of windows it hits |Wp|. A naive 

algorithm for finding a small hitting set H is to choose, for each uncovered window, a 

probe hitting the window that also hits the most other windows. The idea being that 

choosing probes with the highest coverage will minimize the total number of probes 

necessary to cover all windows. However, this approach does not properly account 

for the probe coverages. Only a single probe is needed to cover a window, so after 

selecting a probe p, all other probes that hit a window in Wp will see their effective 

coverage reduced. Take for instance two probes p and q that hit the exact same set of 

windows. Choosing p reduces the effective coverage of q to zero, because all of q’s 

windows have already been covered by p. Let the residual coverage rp of a probe be 
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the effective coverage after some other set of probes have already been chosen (rp = 

|Wp ∩ U|). 

A greedy algorithm first suggested by Johnson [83] improves on the naive 

approach by allowing to reconsider the residual coverage of probes after each 

iteration. This algorithm has since been shown to be essentially a best-possible 

approximation for the Minimum Hitting Set problem [84]. When adapted for the 

current problem, the algorithm chooses, while uncovered windows remain, the probe 

that hits the most currently uncovered windows. The Greedy PanArray Algorithm is: 

Greedy PanArray Algorithm 

H = Ø 

U = W 

while U ≠ Ø 

   select 

€ 

argmax
p∈P

Wp ∩U  

    U ← U – Wp 

    H ← H ∪ {p} 

return H 

The algorithm itself is straightforward, but it must be carefully implemented 

to run efficiently. It is infeasible to recompute the residual coverage |Wp ∩ U| for all 

Wp during each iteration, because both P and W can be on the order of millions for a 

large pan-genome. To avoid this complexity, the PanArray implementation exploits a 

property of the residual coverages that allows it to recompute only a few values at 

each iteration. Note that for any p, its residual coverage rp can never increase. A 

probe’s coverage either remains the same, or decreases because one of its windows 

was hit by the prior iteration. Therefore, instead of recomputing all residuals after 
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each iteration, it is sufficient to maintain a priority queue of residual coverages and 

only update stale values at the front of the queue. 

At the start of the algorithm, all initial coverages are inserted into the queue. 

To maintain the priority queue after a new probe is chosen, all residual coverages are 

considered invalid. During the next iteration, a new rp value is computed for the front 

of the queue, marked as valid, and reinserted into the queue. This process is repeated 

until a valid residual returns to the front of the queue. Often, newly computed 

residuals will return quickly to the head of the queue before the others have been 

updated. At this point it is unnecessary to update any other residuals because their 

new values cannot be greater than their current value. Therefore, the head of the 

queue must be the updated maximum. This lazy evaluation of the residuals avoids 

many unnecessary computations and drastically improves the performance of the 

algorithm. The greedy algorithm without this speedup takes days to complete, but 

with the speedup runs in a matter of seconds. 

4.2.3 Probe Annotation 

The flexibility of the PanArray design algorithm is a result of its probe-centric 

approach. Because it does not require any identification or clustering of genes, the 

design is independent of any genome annotation. Therefore, instead of building the 

annotation into the design of the array, the annotation can be mapped onto the array 

after the design. Most importantly, this strategy allows for intergenic sequence and 

unannotated genomes to be included on the array, and annotation updates to be 

incorporated as they become available. For example, after the L. monocytogenes array 

had been designed, over 40 new sRNAs were discovered in Listeria [85]. 
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Conveniently, the sequences of each had already been tiled by the array design, and 

the updated annotation was easily remapped onto the array. As another example, the 

gene counts provided by NMPDR in Table 4.1 are inconsistent and vary between 

3,000 and 5,000 genes per genome, suggesting considerable annotation error. 

Uncoupling the array design from the annotations removes any possibility that 

annotation errors will affect the design. 

Included with the final probe set H is the list of locations on the pan-genome 

that each probe matches. If the genome sequence is updated, the location information 

can be easily recovered by remapping the probes to the genome using a matching tool 

such as MUMmer [80] or Vmatch [26]. To annotate the array, probes are mapped to 

all annotation features with a coinciding location. The result is a many-to-many 

mapping with each feature being targeted by multiple probes, and a single probe 

possibly targeting multiple features (e.g. conserved genes between strains). With this 

mapping, all probes targeting a specific gene in the pan-genome can be quickly 

recovered. 

4.2.4 Implementation 

The PanArray algorithm was implemented in C++, and the source code is 

freely available at (http://www.cbcb.umd.edu/software/panarray). The Listeria 

monocytogenes array design described above is available from the Gene Expression 

Omnibus [86] under GEO accession number GPL8942. 
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4.3 Listeria monocytogenes Pan-genome Array 

As suggested earlier, L. monocytogenes is a good candidate for constructing a 

pan-genome tiling array because the species has been widely sequenced, with 20 

complete or draft genome sequences available. To confirm that the sequenced 

genomes contain the majority of L. monocytogenes genetic diversity, the pan-genome 

size was estimated using the methods of Tettelin et al. [73] as implemented in the 

Ergatis package (http://ergatis.sourceforge.net). Seventeen of the eighteen L. 

monocytogenes genomes listed as annotated by NMPDR in Table 4.1 were used in the 

analysis (strain 1/2a F6854 was unavailable at the time). According to the cited 

method, the addition of an Nth genome was simulated by searching the annotated 

genes of each genome against all possible permutations of N–1 other genomes. Genes 

without a match over 50% protein similarity for at least 50% of their length were 

recorded as “new”. The number of new genes n expected to be discovered in the Nth 

sequenced genome was modeled by the power law 

€ 

n =κN −α , and the parameters κ and 

α were estimated from the data via non-linear least squares regression on the means 

using the R function nls [87]. A power law model was found to fit the L. 

monocytogenes data better than the originally proposed exponential model. This 

agrees with a recent suggestion that a power law is a more appropriate model of the 

pan-genome phenomenon [88]. 

The estimated number of undiscovered genes is shown in Figure 4.2. The 

power law exponent α was found to be 1.38±0.002, suggesting that the L. 

monocytogenes pan-genome is closed (i.e. has a finite number of genes), and the 

sequencing of more genomes would eventually sample the entire set of dispensable 



 

 
 

72 
 

genes. Therefore, it appears the vast majority of L. monocytogenes genes have been 

sequenced and are included on the array. This model predicts that the addition of a 

21st genome would yield less than 7 new genes. However, only a single lineage III 

genome was included in this analysis, so this prediction might be artificially low for a 

new lineage III strain. The sole lineage III strain analyzed (FSL J2-071) contains 31 

genes absent in any of the lineage I and II strains. 

 
Figure 4.2: Listeria monocytogenes new genes regression. The number of new genes n 
predicted to be discovered with the addition of an Nth Listeria monocytogenes genome 
sequence. A power law fit to the simulated data is given by the solid curve. The circles 
represent the mean value for each N, and error bars show the 90% confidence intervals. 

 
To capture the full diversity of L. monocytogenes, all 20 genomes listed in 

Table 4.1 were included in the design, with a combined sequence length of 

57,946,621 bp and a total of 65,431 annotated genes. To avoid tiling low quality or 

contaminant sequence, contigs less than 2 Kbp in length were discarded—reducing 

the tiled sequence length to 54,810,759 bp. The design was constrained to a 385,000 
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feature NimbleGen array with a probe length of 50 nt. Because hybridization of a 50-

mer probe will tolerate a few mismatches, probes differing by a single mismatch were 

considered equivalent during the design phase. The window length was set to 24 bp, 

enforcing a maximum target offset of 48, an expected depth of coverage of about 50 / 

24 = 2.08x, and resulting in approximately 2.3 million windows. These parameters 

guarantee that every base pair of the pan-genome will be covered by at least one 

probe, since the maximum offset is less than the probe length. 

To cover each window, the PanArray algorithm selected 373,389 distinct 

probes mapping to 2,893,387 positions in the pan-genome. On average, each probe in 

the design targets about 8 different positions in the pan-genome. Rather than being 

repeated sequences within the same genome, these different locations most often refer 

to a conserved locus in multiple strains Figure 4.3. Interestingly, the degree of probe 

reuse corresponds well with the known evolutionary relationship of the strains. 

Included on the chip are 8 genomes from lineage I, 10 from lineage II, and 2 from 

lineage III. This would suggest that the peak at Genomes = 1 in Figure 4.3 is for 

strain-specific probes; the peaks around 2 and 9 are for lineage-specific probes; and 

the peak around 20 is for species-specific probes that are conserved in all 20 L. 

monocytogenes genomes. 
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Figure 4.3: PanArray probe reuse histogram for Listeria monocytogenes. The number of 
genomes targeted by each 50-mer probe is given on the horizontal axis. Targets may contain 
up to one mismatch to the probe. 

 
Because this is a dense tiling of the entire genome, it was unnecessary to 

optimize probes for uniqueness, as is done in standard expression arrays with only a 

few probes per gene. Probes were screened for repetitive sequences, but the L. 

monocytogenes strains were found to contain few repeats. The most repetitive 15-mer 

occurs only 28 times per genome, and the most repetitive 50-mer probe used in the 

design targets a “cell wall surface anchor protein” family and occurs a maximum of 

16 times per genome. Altogether, 99.2% of the probes target at most one location per 

genome. 

To augment the original PanArray design, an additional 228 negative control 

probes were added to the array, chosen from Bacillus spp., which is a known 

cohabitant of Listeria. The negative control probes were chosen to be specific to 
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Bacillus spp. using Insignia. The remaining 11,838 features on the array were filled 

by selecting individual probes to supplement the lowest coverage regions of the 

design. All probes were checked to conform to NimbleGen design specifications, and 

a few probes were trimmed to meet synthesis cycle limits. The resulting L. 

monocytogenes pan-genome array has an average depth-of-coverage of 2.65x, with a 

median probe offset of 21 bp, and a modal offset equal to the window length of 24 bp. 

The full distribution of probe offsets is given in Figure 4.4. As expected, the average 

offset is equal to the window length (24 bp). The uneven distribution and pronounced 

mode is the caused by non-random tie breaking. In the case of a conserved sequence, 

where every probe hits the same number of genomes, the first probe of the window is 

always chosen. Also, the heavy left tail indicates that many windows are covered by 

more than one probe and the solution that is slightly denser than expected (2.65x 

actual vs. 2.08x expected). This may be a consequence of the sequence composition, 

or may indicate a non-optimal solution. Finally, the majority of targeted sequences 

exactly match their probe (75%) and the remainder match with a single mismatch 

(25%). 
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Figure 4.4: PanArray probe offset histogram for Listeria monocytogenes. The offset between 
two adjacent probe targets is given on the horizontal axis. Targets may contain up to one 
mismatch to the probe. 

 
The performance gain of PanArray over more naive methods is significant. 

For instance, selecting a single probe from each window requires roughly 2.3 million 

probes. The slightly more principled naive algorithm, that does not recompute 

residual coverages, chooses 1,739,242 probes, but is still well over the 385,000 probe 

limit. The Greedy PanArray algorithm meets this limit and vastly outperforms the 

other methods—requiring only 373,389 probes to cover the entire pan-genome. With 

the lazy evaluation speedup, the PanArray algorithm is also comparable in runtime to 

the naive algorithms. On a single 2.4 GHz processor, the naive algorithm took 29 

seconds; the greedy algorithm without lazy evaluation was terminated without 

completing after a few days; and the Greedy PanArray algorithm with lazy evaluation 

took only 130 seconds. The runtime for the final design process was dominated by 
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building the k-mer index, which required 84 minutes using a custom implemented 

compressed keyword tree. 

4.4 Array Requirements for Bacterial Pan-genomes 

Using PanArray, additional arrays were designed for a total of seven bacterial 

pan-genomes, for which a large number of genomes have been sequenced. The 

additional species include: Francisella tularensis, Staphylococcus aureus, Bacillus 

anthracis, Vibrio cholerae, Burkholderia pseudomallei, Escherichia coli, and Shigella 

spp. Due to their high similarity, E. coli and Shigella spp. were considered as a single 

pan-genome. To facilitate easy comparison, all designs were created with a window 

length of 25 bp, a probe length of 50 nt, and allowing for probes to contain a single 

mismatch to their target. As with the L. monocytogenes design above, draft genomes 

were included, but contigs less than 2 Kbp were discarded. The results are given in 

Table 4.2. Probe “reuse” is measured in the average number of targets per probe. It is 

rare for a 50-mer probe to match to more than one location per genome, so the 

number of targets per probe is roughly equivalent to the average number of genomes 

that a probe matches. 

Table 4.2: Summary of PanArray probe requirements for various species. 

Species Strains Avg. Length1 
(Mbp) 

Pan Length2 
(Mbp) Targets3 Probes Reuse4 

F. tularensis 14 1.88 26.29 1,355,504 121,312 11.2 (0.80) 
S. aureus 14 2.88 40.38 2,006,144 200,999 10.0 (0.71) 
B. anthracis 9 5.48 49.29 2,230,870 246,947 9.0 (0.99) 
L. monocytogenes 20 2.74 54.81 2,832,489 358,688 7.9 (0.39) 
V. cholerae 15 3.87 58.09 3,017,198 346,447 8.7 (0.58) 
B. pseudomallei 20 6.72 134.31 6,755,234 491,231 13.8 (0.69) 
E. coli / Shigella 29 4.96 143.72 8,210,679 674,697 12.2 (0.42) 
1The average genome length for a species. 
2The sum of all genome lengths for a species. 
3The total number of locations targeted by the probes. A single probe may target multiple genomes in the species. 
4The average number of targets per probe. In parentheses, the reuse divided by the number of genomes. 
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The highly conserved species of B. anthracis exhibits near perfect probe 

reuse. Almost every B. anthracis probe matches all of the included strains; therefore, 

the number of probes required to tile the nine sequenced strains is nearly the same as 

is required to tile one strain. This is because the pan-genome of B. anthracis is closed 

and the strains are highly conserved at the nucleotide level (usually containing only a 

few SNPs per strain). Adding successive B. anthracis strains to the array would 

increase the required number of probes very gradually. 

In contrast, L. monocytogenes has the lowest  degree of probe reuse, with each 

probe targeting on average only 39% of the included strains. This is a reflection of the 

diversity of strains that have been sequenced and the low level of nucleotide 

conservation between strains, with some strains averaging a single nucleotide 

polymorphism rate as high as 8%. Any SNP rate of higher than 2% (1 per 50 bp) 

exceeds the 1 mismatch threshold per probe and requires additional probes to target 

the divergent sequence. However, as more variants are added to the array, the 

addition of each successive genome requires fewer new probes than the last, on 

average. Figure 4.5 shows this relationship for the L. monocytogenes strains. 

Successive strains are added by order of lineage, from the bottom of Table 4.1 to the 

top, and the design is recomputed at each step. There are pronounced jumps in the 

number of probes required when the first of a new lineage is added, but the number of 

probes needed to tile the rest of the lineage quickly levels off. 
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Figure 4.5: PanArray probe requirements for Listeria monocytogenes. The number of probes 
required by PanArray to tile the L. monocytogenes pan-genome with the successive addition 
of each genome. Genomes are added by order of lineage and the design recomputed after 
each addition. 

 
Escherichia coli and Shigella spp. form the largest pan-genome currently 

sequenced, totaling over 144 Mbp of genomic sequence. Even for a pan-genome of 

this size and diversity, PanArray effectively tiles all sequences at an average of 2x 

coverage using only 674,697 probes—well below the maximum number of probes 

available on current arrays. The B. pseudomallei pan-genome is roughly equivalent in 

total number of pan-genome bases, but requires considerably fewer probes because of 

higher probe reuse. Due to the large number of sequenced genomes and relatively 

high similarity between strains, the B. pseudomallei design exhibits the highest probe 

reuse factor of all the designs (13.8x). Creating a 2x coverage tiling by choosing one 

probe every 25 bp would require roughly 5.4 million probes for the B. pseudomallei 

pan-genome, but PanArray was able to create a 2.5x tiling of the same pan-genome 

with only 491,231 probes. 
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4.5 Discussion 

The PanArray algorithm described above is ideal for high-density tilings of 

overlapping or closely spaced probes. The results have shown that this algorithm is 

applicable for all currently available bacterial pan-genomes. However, if the 

maximum number of probes is limited, or the genome size is extremely large, it may 

be necessary to design a tiling with gaps between the probe targets (i.e. a maximum 

offset greater than the probe length). In this case, it is necessary to choose unique 

probes that avoid unwanted cross hybridization between repetitive sequences within 

the genome. To achieve this, repetitive probes can be filtered, or the coverage scores 

used in the PanArray algorithm can be weighted to penalize repetitive probes. For 

example, probe coverage can be redefined as the number of genomes a probe targets, 

rather than the number of windows, and probes targeting multiple windows in the 

same genome can be appropriately down-weighted. In many cases, probes within the 

same window will share the same coverage score, and rules can be applied for 

breaking the tie and choosing the most reliable probe. Similar schemes could be 

devised to favor probes with any other desirable criteria. 

Array analysis of CGH experiments is typically conducted on signal ratios 

between a reference and experimental hybridization. Duplications or deletions in the 

experimental samples are evident as non-zero values of the log ratio of the two 

normalized signals. So-called segmentation algorithms examine this log ratio across 

multiple positions in reference sequence to determine the boundaries of the variations 

[89,90]. The most accurate methods consider not just individual probes, but a context 

of probes around a genomic location, and can identify even small polymorphisms 
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between the strains. These analyses require both a reference signal and a reference 

coordinate system on which the probes are tiled. Usually a whole-genome tiling is 

constructed for a single reference strain, but because PanArray provides a whole-

genome tiling for every reference strain included in the array, the same array design 

can be used to perform segmentation analysis against any reference strain on the 

array. 

In addition to segmentation analysis versus a reference genome, a pan-genome 

array makes it possible to analyze uncharacterized strains in the context of the entire 

pan-genome. In some cases, it is preferable to use a multi-strain control [91], but 

depending on the number of genomes, it can be impractical to co-hybridize all 

reference strains included on the chip. In these cases, traditional segmentation or log-

ratio analysis must be replaced by a method that does not require a reference 

hybridization signal. For gene-level analysis, direct analysis of the individual probe 

intensities provides comparable sensitivity and specificity versus segmentation 

analysis [74], and various methods have been developed that operate independently of 

a signal ratio [74,92,93]. A probe-based approach provides the most flexibility for 

pan-genome array analysis, because each probe can be individually scored based on 

its own intensity, and the genes can be classified based on the aggregated scores of 

the individual probe scores without the need for a control hybridization. A new 

analysis method designed in this spirit is described in the next chapter. 

Pan-genome tiling arrays have all the applications of single-strain tiling arrays, 

but with enhanced flexibility and the ability to analyze previously uncharacterized 

strains. Pan-genome CGH offers an economical alterative to sequencing for 
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determining the genomic makeup of uncharacterized strains in a species and 

explaining the causative factors of phenotypic differences between strains. Probe 

based methods, like microarray, are especially well suited for situations where 

sequencing is inefficient because there is a low abundance of target DNA and a high 

abundance of background DNA intermixed. For example, applications such as real-

time pathogen detection, surveillance, and diagnostics require a known sequence of 

DNA to be targeted from a vast environment [19,24,94]. A pan-genome array could 

be used for the detection and genotyping of pathogens from a large environment, 

without needing to isolate the individual cells. Pan-genome arrays could also be used 

to capture all species- or locus-specific genomic material from an environment, which 

could then be directly processed or sequenced separately from the metagenome. 

Microarray based genomic capture has already been applied to targeted human 

resequencing as an efficient means of enriching for desired sequencing templates 

[95,96,97]. 

4.6 Summary 

Without the need for sequencing additional genomes of the same species, pan-

genomic CGH has become an increasingly popular and cost-effective approach to 

compare and characterize genomic contents of unknown bacterial isolates. Prior 

multi-strain arrays have targeted the conserved sequences of gene families, or a 

selected group of polymorphisms; therefore, providing only partial coverage of the 

pan-genome. PanArray is a probe selection algorithm capable designing a tiling array 

that fully covers all genomes of a species using a minimal number of probes. The 

viability of this method is demonstrated by array designs for seven different bacterial 
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pan-genomes, each of which can fit on a single microarray slide. By constructing an 

unbiased tiling of all known sequences, these unique pan-genome tiling arrays 

provide maximum flexibility for the analysis, detection, or capture of genomic 

material for entire species. 

4.7 Author Contributions 

A version of this chapter appeared previously in published form: 

Phillippy AM, Deng X, Zhang W, Salzberg SL (2009) Efficient oligonucleotide probe 
selection for pan-genomic tiling arrays. BMC Bioinformatics 10: 293. 

 

I designed and implemented all computational methods, performed the analysis, and 

wrote the text. Wei Zhang, Xiangyu Deng, and Steven Salzberg motivated the 

problem and contributed edits to the text. 
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Chapter 5 

Probing the Pan-genome of Listeria monocytogenes† 

Listeria monocytogenes is a foodborne bacterial pathogen widely known for 

its adaptability to diverse habitats and host niches, and its high fatality rate among 

infected, immunocompromised individuals. At least three major genetic lineages have 

been defined within this species. Although all three lineages are considered to be 

pathogenic to human, it is intriguing that only two lineages (LI and LII) account for 

the vast majority of sporadic and epidemic cases of human listeriosis, whereas the 

third lineage (LIII) is rarely implicated in human infections for unknown reasons. 

This chapter probes the genomic diversity of 26 L. monocytogenes strains by 

employing the unique pan-genomic DNA array described in the previous chapter. 

Comparative genomic hybridization of 9 lineage III strains on this array uncovered 86 

protein-coding genes and 8 small regulatory RNAs that are highly specific to the 

predominant listeriosis-associated lineages, which potentially contribute to bacterial 

stress adaptation, host niche fitness and pathogenicity. Exponential regression 

analysis predicts that L. monocytogenes has a core genome of between 2,330 to 2,456 

                                                
 
† This chapter includes work in preparation with multiple authors. See Section 5.10 for details. 
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genes (80% of each individual genome) and a pan-genome repertoire of over 4,052 

unique genes. Comparison of all lineage strains reveals high genomic synteny with 

moderate sequence drift associated with lysogenic bacteriophages. Phylogenomic 

reconstructions based on 3,560 homologous groups suggest a polyphyletic population 

infrastructure and gradual loss of metabolic genes as this saprophytic species 

diversified into the rare and probably defective lineage III. 

5.1 Background 

Listeria monocytogenes is a Gram-positive foodborne bacterial pathogen and 

the causative agent of the human and animal infectious disease, listeriosis. L. 

monocytogenes can thrive in diverse environmental reservoirs (e.g. soil, water, and 

sewage) and proliferate under unfavorable conditions (e.g. high osmolarity, low pH, 

and refrigeration temperature) that other bacterial pathogens cannot endure 

[98,99,100,101]. Its robust physiological characteristics, coupled with its ubiquity in 

food processing, distribution, and retail environments, have made L. monocytogenes 

difficult to manage in food manufacturing, particularly for ready-to-eat food products. 

L. monocytogenes causes the highest rates of hospitalization (about 92%) and 

mortality (about 20%) among all foodborne bacterial pathogens in the United States 

[102], making the control of this bacterium in foods a high priority for both food 

safety and public health. Yet, the versatile lifestyle of L. monocytogenes both inside 

and outside its host, and its unique capability to invade and replicate in different host 

cell types (e.g. macrophages and nonprofessional phagocytes), have made this 

opportunistic pathogen a paradigm for studying host-pathogen interactions, 

pathophysiology, gene regulation, and stress adaptation [103,104]. 
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Previous molecular subtyping studies have collectively suggested that the 

species of L. monocytogenes is composed of at least three major evolutionary or 

genetic lineages that notably differ in their prevalence in causing human and animal 

diseases [65,78,105,106,107,108,109,110]. Specifically, lineage I (or LI) and lineage 

II (or LII) of L. monocytogenes are frequently isolated from foods and implicated in 

the vast majority (>95%) of both sporadic cases and epidemic outbreaks of human 

listeriosis [100]. Genetic lineage III (or LIII) strains are rarely reported in cases of 

human infections, but are sometimes associated with animal disease cases 

[100,109,111]. The mechanisms underlying the biased predominance of certain L. 

monocytogenes genetic lineages in human listeriosis remain largely unknown. Several 

recent studies have revealed elevated levels of genetic diversity among LIII isolates 

[107,110]. Multilocus sequence typing analysis on the basis of partial sigB and actA 

gene sequences have also suggested that LIII is polyphyletic, with the co-existence of 

at least three distinct subgroups (i.e. LIIIA, LIIIB, LIIIC) [109]. Atypical phenotypes 

of LIII isolates, such as deficiency in rhamnose fermentation [109], attenuated 

virulence potential [111], reduced resistance to heat and cold stresses [112], and 

lowered biofilm productivity [113], have indicated that LIII may have followed a 

distinct evolutionary path from other L. monocytogenes lineages. 

Compared to fairly extensive studies on LI and LII strains, little is known 

about LIII. Although it is documented that most listerial virulence factors such as the 

positive regulatory factor (or PrfA) are well conserved across the entire L. 

monocytogenes species, LIII strains are underrepresented in both food contamination 

and human listeriosis. This suggests the existence of additional, yet-to-be-identified 
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genetic factors in the predominant disease-causing L. monocytogenes lineages LI and 

LII that may mediate listerial niche adaptation, resistance to extra- and intracellular 

stresses, and pathogenicity. These unknown genetic factors may have been lost, 

mutated, or decayed in LIII as the genomes evolved, resulting in a defective 

phenotype for LIII isolates in certain ecological and host niches. To test this 

hypothesis, this chapter combines in silico comparative genomic analyses with an 

array-based comparative genomic hybridization (CGH) approach to probe the 

genomic diversity of L. monocytogenes and to identify genomic features common in 

LI and LII but absent in LIII. Array CGH is a powerful yet cost-effective approach 

for genotyping and detecting intraspecies genomic diversity for many bacteria. 

Previous efforts on comparative genomic analyses underscore the usefulness of CGH 

in resolving genetic lineages and identifying strain- or lineage-specific genes in L. 

monocytogenes [64,65,66,67,68]. However, most of these studies targeted only a 

number of selected genes or partial listerial genomes, making an accurate assessment 

of intraspecies genomic diversity difficult. 

It is recognized that a few sequenced genomes may not fully represent the 

entire genetic repertoire of a given organism [72,73,88,114,115]. For this reason, the 

pan-genome concept has triggered new investigations on genomic diversity for 

several bacterial species, including Streptococcus spp. [73,116,117], Haemophilus 

influenzae [118], Neisseria meningitides [119], Escherichia coli [74,120,121], and 

Lactococcus lactis [122]. Pan-genome refers to the total genetic repertoire of a given 

species, which is typically composed of “core” genes plus some “dispensable” or 

“accessory” genes [115,123]. Pan-genomic DNA arrays, that probe this full 
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repertoire, have recently gained increasing popularity for the systematic survey of 

diversity in prokaryotic species [74,124,125]. 

The availability of more than 20 sequenced L. monocytogenes full and draft 

genomes has made this pathogen an ideal candidate for pan-genomic study (Table 

5.1). Initial comparative analysis of 17 L. monocytogenes genomes in Chapter 4 

indicated a “closed” pan-genome for this bacterial species. Species with a closed pan-

genome typically share highly syntenic genomes with less frequent horizontal gene 

transfers and genomic rearrangements. Therefore, the entire gene pool can be fully 

sampled by sequencing a small set of representative isolates, and the number of new 

genes to be discovered by sequencing additional genomes will quickly approach zero. 

This prompted the design of a pan-genome CGH array that, in theory, accommodates 

the total genomic diversity of the L. monocytogenes species on a single DNA chip. 

Compared to several previous pan-genome microarrays that targeted either the 

conserved sequence of gene families with low probe density or no coverage of the 

intergenic regions, PanArray designed a pan-genome tiling array that incorporates the 

full genomes of 20 available L. monocytogenes strains [126], providing unbiased 

coverage of the pan-genome and superior accuracy and resolution for data analysis. 

Using integrated data obtained from both in silico whole-genome comparisons 

and pan-genome CGH analyses, this chapter aims to (1) explore the intraspecific 

genetic diversity of L. monocytogenes with a focus on the largely unexplored genetic 

lineage III; (2) estimate the core and pan-genome that define the L. monocytogenes 

species; (3) identify unique protein-coding genes and regulatory RNAs in the 

predominant disease-causing lineages, as they may relate to niche adaptation and 
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pathogenicity; and (4) reconstruct an accurate phylogeny for different L. 

monocytogenes lineages and strains based on pan-genome characteristics. 

Table 5.1: Comparatively analyzed L. monocytogenes genomes. 

Strain Lineage Serotype Size (bp) Contigs1 Genes2 % Identity3 Note4 
EGD-e II 1/2a 2,944,528 Closed 2931 100 Array design, CGH 
R2-561 II 1/2c 2,945,851 37 2993 99.78 Array design 
LO28 II 1/2c 2,675,580 1150 3030 99.6 Array design 
Finland 1988 II 3a 2,834,040 49 2740 98.49 Data analysis 
10403S II 1/2a 2,873,541 21 2905 98.48 Array design 
F2-515 II 1/2a 1,815,995 1728 2710 98.47 Array design 
N3-165 II 1/2a 2,884,080 39 2885 98.39 Array design 
J2-003 II 1/2a 2,741,640 795 2972 98.32 Array design 
F6900 II 1/2a 2,968,620 23 3007 98.28 Array design 
F6854 II 1/2a 2,950,285 133 2967 98.26 Array design 
J2818 II 1/2a 2,973,040 24 3020 98.24 Array design 
J0161 II 1/2a 3,062,582 25 3114 98.23 Array design 
J1-175 I 1/2b 2,866,484 457 3178 94.39 Array design 
J2-064 I 1/2b 2,828,700 545 2968 94.37 Array design 
R2-503 I 1/2b 2,991,493 55 2968 94.28 Data analysis 
J1-194 I 1/2b 2,989,818 30 3040 94.27 Array design 
N1-017  I 4b 3,142,060 79 3253 94.2 Array design5 
Clip 80459 I 4b 2,912,690 Closed 2972 94.17 Data analysis 
F2365 I 4b 2,905,187 Closed 2907 94.14 Array design 
H7858 I 4b 2,972,254 181 3195 94.08 Array design 
HPB2262 I 4b 2,991,120 79 3067 93.98 Array design 
HCC23 III 4a 2,976,212 Closed 3059 92.38 Data analysis 
F2-524 IIIA 4a - - - - CGH 
F2-501 IIIA 4b - - - - CGH 
J2-071  IIIA 4c 2,851,800 53 2778 92.6 Array design, CGH5 
J1-208 IIIB 4a 1,963,740 1660 2809 91.8 Array design, CGH 
M1-002 IIIB 4b - - - - CGH 
W1-111 IIIB 4c - - - - CGH 
F2-208 IIIC 4a - - - - CGH 
F2-569  IIIC 4b - - - - CGH 
W1-110 IIIC 4c - - - - CGH 

1Number of contigs based on GenBank at the time of the study; strains with >200 contigs were excluded from 
analyses due to high risk of sequencing, assembly and annotation errors. 
2Number of annotated protein coding genes and RNAs based on GenBank. 
3Nucleotide sequence identity in reference to strain EGD-e as computed by Nucmer. 
4Strains used for array design; comparative genomic hybridizations; data analysis in this study.  
5Strains N1-017 and J2-071 were found to be mislabeled in GenBank; this has since been fixed. 
-Information not available. 
 

5.2 Pan-genomic Array Completeness 

Initial power-law regression analysis of 17 fully sequenced L. monocytogenes 

genomes suggested that this bacterial species exhibits a nearly closed pan-genome, 

which would yield rapidly diminishing returns of less than 7 novel genes per 
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additional genome sequenced. Therefore, a single array could presumably query the 

full genetic repertoire of the species, and be used to completely genotype currently 

unsequenced strains. For this purpose a pan-genomic array comprising 385,000 50-

mer in situ synthesized oligonucleotide probes was designed that fully tiles the 

sequences of 20 L. monocytogenes genomes, with no gaps, at greater than 2-fold 

coverage of each genome. 

Shortly after completion of the chip design, four additional L. monocytogenes 

genomes were sequenced to closure, including strain Clip 80459 (LI), strain Finland 

1988 (LII), strain R2-561 (LII) and strain HCC23 (LIII). These new L. 

monocytogenes genomes enabled evaluation of the genomic coverage of the PanArray 

design by individually mapping each of the 385,000 oligonucleotide probes to 

annotated genes in the four genomes. A 50-mer probe was mapped to a particular 

gene if it perfectly matched the gene sequence or contained only a single nucleotide 

mismatch. For each annotated gene, the probe coverage was calculated as the 

percentage of the gene length covered by mapped probes Table 5.2. These results 

suggest that the array adequately represents the intra-species diversity of L. 

monocytogenes, particularly for LI and LII genomes. However, due to the limited 

number of fully sequenced LIII genomes available at the time of design, the coverage 

for LIII specific genes is less optimal, as indicated by HCC23. 
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Table 5.2: Probe coverage for newly sequenced genomes. 

  Probe coverage 

Genome Lineage 100%  90%  80% 

R2-561 II 0.95  0.98  0.98 

Clip 80459 I 0.91  0.99  0.99 

Finland 1988 I 0.80  0.96  0.98 

HCC23 III 0.30  0.80  0.89 
Proportion of genes from four newly sequenced strains with probe coverage meeting a minimum percentage of the 
gene length (100%, 90%, 80%) for probes containing at most one SNP. 
 

5.3 Accuracy of the Array 

Genomic DNAs for nine LIII strains were each co-hybridized on the pan-

genomic arrays with that of EGD-e as an internal reference. The nine LIII strains 

were carefully selected from a strain collection to represent 3 different serotypes (4a, 

4b, and 3c) as well as 3 different subgroups (IIIA, IIIB, and IIIC) of L. 

monocytogenes LIII. Individual probes were designated as present or absent in the 

sample based on statistical analysis of the normalized signal intensities (see section 

5.7.2 Pan-genomic Array Analysis). Since the position of each probe is known for all 

sequenced L. monocytogenes genomes, genes were scored by the fraction of targeting 

probes with a positive signal, otherwise known as the positive fraction (PF). This 

yields a very flexible scoring scheme that can be readily applied to any intragenic or 

intergenic feature of the genome targeted by a sufficient number of probes. A high PF 

indicates a gene is likely present in the hybridized genome. Circular maps of all PF 

values for the nine LIII genomes in reference to a LI strain F2365 and a LII strain 

EGD-e are shown in Figure 5.1. 
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Figure 5.1: Listeria monocytogenes circular gene maps compare the genomes of nine LIII 
strains with that of a LII reference strain EGD-e (A) and a LI reference strain F2365 (B). The 
inner most circle is the reference genome. Core genes in the reference genome are shown 
blue and accessory genes are shown in yellow. From inside out, the second to the tenth 
circles represent the nine LIII genomes, including J2-071 (LIIIA), F2-501 (LIIIA), F2-504 
(LIIIA), J1-208 (LIIIB), M1-002 (LIIIB), W1-111 (LIIIB), F2-208 (LIIIC), F2-569 (LIIIC), and W1-
110 (LIIIC), respectively. Genes in LIII genomes are color-coded based on the PF values 
(see the reference bar). Green indicates a gene is absent (PF=0) in a LIII genome; red 
indicates a gene is conserved (PF=1) in a LIII genome at the corresponding location in the 
reference genome. The eleventh circle gives color-coded gene annotations in the reference 
genome based Clusters of Orthologous Groups of proteins (see the color codes at the 
bottom).  The outer most circle provides relative genomic coordinates. Eight DDG clusters 
associated with carbohydrate transport and metabolism and absent in LIII strains at similar 
genomic locations in EGD-e and F2365 are marked with letters A through H. Specifically: A, 
lmo0037-0041 (or lmof2365_0045-0050); B, lmo0357-0360 (or lmof2365_0377-0381); C, 
lmo0631-0633 (or lmof2365_0660-0662); D, lmo1030-1036 (or lmof2365_1051-1057); E, 
lmo2133-2138; F, lmo2732-2736 (or lmof2365_2719-2723); G, lmo2771-2773 (or 
lmof2365_2761-2763); and H, lmo2846-2851 (or lmof2365_2836-2841), respectively. The LII-
specific comK prophage integration region was marked in the EGD-e genome (I). 

 
To select an appropriate PF threshold and test the accuracy of gene calls based 

on PF values, true-positive and false-positive rates were computed for the PF criterion 

on 51,814 annotated L. monocytogenes genes, compared against genomes for which 

there was both sequence and microarray data. True gene “presence” was determined 

by a tblastn search of the 51,814 predicted proteins against a six frame translation of 

the genome [31], requiring a minimum of 50% amino acid similarity and an E-value 

≤ 10-5. Figure 5.2 shows the ROC curves for the PF criterion measured against the 

tblastn standard for two L. monocytogenes strains, EGD-e and J2-071. The PF 

measure is remarkably robust, as there appear to be very few genes near the 

classification threshold. For example, Figure 5.3 shows a density estimation of PF 

values for both present and absent genes, showing that the vast majority of present 

genes have PF > 0.9 and absent genes PF < 0.1. Based on the ROC analysis, a PF 

cutoff of 0.6 was chosen to best match the tblastn results and minimize the expected 

error rate. The seemingly higher false-positive rate for J2-071, in comparison to the 

closed EGD-e genome, is partially due to tblastn false-negatives incurred from the 78 
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gaps in the J2-071 draft genome. In these cases, a gene that is truly present, but 

overlapping a sequencing gap, is falsely reported as absent by the tblastn method, 

which artificially increases the measured false-positive rate of the CGH array method. 

 

 

Figure 5.2: PanArray receiver operating characteristic curves.  ROC curves compare true-
positive rates with false-positive rates of different PF cutoffs for prediction of the presence or 
absence of individual gene variants and homologous groups. Error rates are shown for genes 
(dotted lines) and homologous groups (solid lines), computed from EGD-e (red) and J2-071 
(black) control hybridizations. Circles indicate the chosen PF cutoff of 0.6 for classifying gene 
variants. Triangles indicate the chosen PF cutoff of 0.6 for classifying homologous groups. 
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Figure 5.3: PanArray positive fraction probability densities for known present and absent 
genes, demonstrating the vast majority of truly present genes have PF score greater than 0.9 
and the vast majority of truly absent genes have PF less than 0.1. Green bars show the 
density of PF scores for genes found present by a tblastn search, and black bars show the 
density of PF scores for genes found absent by a tblastn search. PF labels give the minimum 
of each left-closed interval. For example, PF=0.5 bars show the densities for the bucket 
PF=[0.5,0.6). 

 
Accuracy statistics for the chosen 0.6 PF cutoff versus the 50% alignment 

similarity cutoff are given in Table 5.3. They array has perfect sensitivity for 

detecting the EGD-e and J2-071 control genes. Accuracy was estimated for detecting 

both individual gene variants from all other strains and for detecting homologous 

gene groups (HGs). Orthologous gene groups are typically preferred; however, the 

inability of CGH to accurately determine sequence identity and gene order makes it 

impractical to discriminate between highly similar paralogs. Alternatively, 3,560 

strongly homologous gene groups, identified by clustering proteins with higher than 

50% amino acid similarity, were tested for presence or absence. A gene group was 
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marked as present in a genome if any gene from that group exceeded the BLAST or 

PF threshold. Figure 5.2 displays the true- and false-positive rates of homologous 

group detection alongside the original ROC curves. In comparison to detecting 

individual gene variants, HG detection significantly increases the sensitivity of the 

array without increasing the false-positive rate, significantly increasing the area under 

the ROC curve. When analyzing only a single gene variant on the chip, high 

polymorphism in the sample genome can disrupt hybridization and lead to false-

negatives. However, by considering an entire gene group, a sample need only 

hybridize with its nearest variant, thereby increasing the sensitivity [122]. To 

demonstrate the sensitivity of the array at detecting HGs in unsequenced strains, 

Table 5.3 lists accuracy statistics for EGD-e and J2-071 when the probes specific to 

those genomes are removed from the analysis. This simulates the accuracy of the 

array at calling genes in an unsequenced LII and LIII strain. The sensitivity of the 

array is only slightly affected, with a 0.2% true-positive rate drop for EGD-e and a 

1.3% drop for J2-071. The drop is more pronounced for J2-071 because it is one of 

only two linage III genomes included on the array, so ignoring the J2-071 specific 

probes more dramatically affects the sensitivity of calling HGs from that lineage. 

Table 5.3: PanArray accuracy for detecting genes and homologous groups. 

Chip Data Test Data Present Absent ACC1 TPR2 FPR3 FDR4 

EGD-e EGD-e genes only 2846 0 1.000±0.000 1.000±0.000 N/A N/A 
EGD-e All gene variants 49068 2746 0.973±0.002 0.973±0.003 0.020±0.009 0.001±0.000 
EGD-e Gene groups 2642 918 0.989±0.002 0.993±0.001 0.024±0.007 0.008±0.003 
EGD-e(-) Gene groups 2627 918 0.987±0.002 0.991±0.001 0.024±0.007 0.008±0.003 
J2-071 J2-071 genes only 2694 0 1.000 1.000 N/A N/A 
J2-071 All gene variants 47411 4403 0.964 0.970 0.090 0.009 
J2-071 Gene groups 2543 1017 0.978 0.995 0.063 0.025 
J2-071(-) Gene groups 2468 1016 0.969 0.982 0.062 0.025 
Present/Absent are the number of genes present/absent based on a tblastn search. For EGD-e, the mean of 9 data 
sets are given, along with their standard deviation to illustrate array reproducibility. 
1Accuracy. (TP+TN) / (P+N). 2True-positive rate. TP / P. 
3False-positive rate. FP / N. 4False discovery rate. FP / (FP+TP). 
(-)Excludes all probes directly targeting the test strain from the analysis to simulate accuracy for an unknown strain. 
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5.4 Core and Pan-genome Estimates 

The expected number of new genes to be discovered by sequencing additional 

L. monocytogenes strains, and the sizes of the core and pan-genomes, were estimated 

using methods adapted from Tettelin et al. [73]. However, frequent gaps and 

sequencing errors in low-quality genome assemblies were found to cause many 

missed protein alignments, which affected the core genome estimation. For example, 

only 683 EGD-e proteins meet the alignment threshold in all 24 draft L. 

monocytogenes genomes, an unreasonably low number. Additionally, fragmented 

annotations in the low quality genomes artificially inflate the pan-genome size 

estimate. To avoid these artifacts, only 18 “high quality” L. monocytogenes genomes, 

consisting of fewer than 200 contigs each, were used for the new genes and pan-

genome estimation. Array CGH results for the 8 additional LIII genomes were 

included in the core gene estimate. 

5.4.1 Core Genome Estimate 

To estimate the L. monocytogenes core genome, the number of shared genes 

was computed for many random permutations of N genomes (1≤N≤26), and the mean 

number of shared genes was computed for each N. The number of core genes for the 

species was estimated by fitting an exponential decay function to the means. For the 

high-quality sequenced genomes, this analysis yielded an estimated horizontal 

asymptote of 2,467 ± 7 core genes. However, the sequenced genomes include only 

two LIII genomes. Repeating the analysis for all 26 genomes, including CGH results 

for the 8 additional LIII genomes, reduced the estimate by over 100 genes to 2,330 ± 
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5, emphasizing the importance of a balanced sample of diversity for estimating core 

genome size. Figure 5.4a displays the result of the 26 genome analysis including a 

smoothed density plot of the shared gene count distributions, the mean value for each 

N, and the best-fit exponential decay. 

Imperfect detection sensitivity due to sequencing gaps makes it impossible to 

achieve convergence for real data, so an exact core genome cannot be determined. 

Any non-zero false-positive rate for detecting core genes will artificially shrink the 

core genome with each additional genome, violating the horizontal asymptote of an 

exponential decay. This is evident in the almost linearly decreasing means towards 

the tail of Figure 5.4a. To account for these false-negatives, an additional parameter 

was introduced to the core genes model that adds a constant number of false-

negatives upon the addition of each genome (see section 5.7.3 Pan-genomic Sequence 

Analysis). The revised model is a much closer fit to the data (residual standard error 

of 2.98 versus 10.68), accounts for noisy draft and CGH data, and yields an increased 

core genes estimate of 2,456 ± 4 (Figure 5.4a). This likely represents an upper bound 

on the core genome size. Considering results from both models, and the uncertainty 

caused by the draft genomes and CGH data, the core genome of L. monocytogenes is 

estimated to be between 2,350 to 2,450 genes (approximately 80% of a typical L. 

monocytogenes genome). 



 

 
 

99 
 

Figure 5.4: Listeria monocytogenes core, new, and pan gene regressions. a) Exponential 
regression analysis that predicts the number of core genes in N sequenced genomes. The 
sampled distribution is represented by a smoothed color density plot obtained through kernel 
density estimation. Yellow indicates the lowest density and purple indicates the highest 
density. For each N, black circles indicate the mean value and whiskers indicate the 5th and 
the 95th percentiles of the distribution. An exponential decay fit to the means is given by a 
solid red curve. A modified exponential decay is given by a solid black curve, which better fits 
the observed data by accounting for false-negative gene calls. b) Power law regression 
analysis predicts the number of new genes that will be discovered by sequencing additional 
L. monocytogenes genomes. The LIII genomes are the outliers that pull the means higher, 
indicating that LIII diversity has not yet been fully sequenced. c) Power law regression 
analysis predicts the number of L. monocytogenes pan genes accumulated from genome 
sequencing is currently 4,052 and growing with diminishing returns. 
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5.4.2 Pan-genome Estimate 

A major limitation of array CGH is that this method cannot detect novel genes 

contained in the LIII genomes. For this reason, the pan-genome estimation was 

performed only for the high-quality sequenced genomes, of which two are from LIII. 

Again, the number of new genes identified by sequencing each additional genome 

was computed for many random permutations of N genomes. The number of new 

genes identified for each N was modeled by the power law function 

€ 

n =κN−α  [88]. 

Using the median values, the power law exponent α was estimated to be 1.12 ± 0.02. 

This is slightly lower than the previous estimate of 1.38 due to the recent sequencing 

of four additional genomes, an updated annotation, and a stricter similarity threshold. 

In both cases, an exponent α > 1 indicates a closed pan-genome, meaning the size of 

the pan-genome is a bounded function of the number of sequenced genomes. 

However, fitting a power law to the mean values of these distributions yields α = 0.85 

± 0.01, suggesting an open pan-genome (Figure 5.4b). This difference is caused 

largely by the diverse strains N1-017, HCC23, and J2-071, which contain many 

strain-specific genes and pull the mean values higher than the medians. For example, 

strain HCC23 contains 122 strain-specific genes not found in any of the other 17 

strains. Removal of these three genomes from the analysis results in an α slightly 

greater than one for both the mean and median analyses. Two of these strains are the 

only two high-quality LIII strains available, indicating that additional sequencing of 

LIII strains may reduce the exponent further and reveal novel and significant diversity 

in this previously overlooked lineage. This regression analysis suggests L. 

monocytogenes has a significantly diverse gene reservoir, and additional sequencing 
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of LIII genomes is necessary to resolve the exact size and nature of the L. 

monocytogenes pan-genome. 

The estimated growth of the L. monocytogenes pan-genome with additional 

sequencing was also simulated using many random permutations of genomes. For 

open pan-genomes, the cumulative number of unique genes discovered with the 

sequencing of additional genomes can be modeled by Heap’s law using the power 

law function 

€ 

n =κN γ  [88]. This regression is illustrated by Figure 5.4c and γ was 

estimated as 0.12 ± 0.001. Since the growth of an open pan-genome is equivalent to 

the number of new genes added after sequencing each successive genome, the 

derivative of the pan genes function should be equal to the new genes function. That 

is 

€ 

N γ −1∝N−α  and 

€ 

α =1− γ  for α < 1. Although simulated separately, the pan and 

new gene functions do follow this property for the mean value regressions, with α = 

0.85 and γ = 0.12 being in good agreement, and the derivative of the pan genes 

function nearly equal to the new genes function. For N = 18, the mean estimated pan-

genome size is 4,052 and continues to grow, with diminishing returns, for larger N. 

This above method is useful for estimating the size of the pan-genome, but 

because it depends on the order of the genomes analyzed, it does not yield a single 

representative set of pan genes for the analyzed strains. An alternative that does not 

depend on the order of genomes is to measure the number of gene groups identified 

by a similarity clustering method such as OrthoMCL [127]. To be consistent with the 

other analyses, this method was adapted to cluster strong homologs rather than 

orthologs. From a graph of 52,776 proteins with >50% similar proteins connected by 

edges, 3,744 HGs were identified using the MCL graph clustering algorithm [128]. 
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This provides a relative lower bound for the size of the currently sequenced L. 

monocytogenes pan-genome. 

5.5 Lineage-specific and Disparately Distributed Genes 

Lineage-specific genes refer to those exclusively present in a single L. 

monocytogenes genetic lineage based on the above defined similarity threshold. 

Annotated genes in three representative genomes, F2365 (LI), EGD-e (LII), and J2-

071 (LIII), were screened for lineage specificity (Table 5.4). To maintain a stringent 

specificity criterion, a gene was not considered to be lineage-specific if any member 

from its homologous group was present in other lineages. Using this criterion, only 5 

of 21 LII-specific genes previously identified by Doumith et al. [129] passed the 

threshold. 

Table 5.4: Lineage specific genes identified in L. monocytogenes. 

Gene  Genome Annotation 
Lineage I specific    
LMOf2365_0409 F2365 Hypothetical protein 
LMOf2365_1251 F2365 Hypothetical protein 
LMOf2365_1252 F2365 Hypothetical protein 
LMOf2365_2638 F2365 Similar to cell surface anchor family protein 
Lineage II specific    
lmo0525 EGD-e Hypothetical protein 
lmo0737 EGD-e Hypothetical protein 
lmo1061 EGD-e Similar to two-component sensor histidine kinase 
lmo1968 EGD-e Similar to creatinine amidohydrolases 
lmo1969 EGD-e Similar to 2-keto-3-deoxygluconate-6-phosphate aldolase 
Lineage III specific   
LmonocytogFSL_030100000415 J2-071 Hypothetical protein 
LmonocytogFSL_030100003416 J2-071 Hypothetical protein 
LmonocytogFSL_030100004481 J2-071 Hypothetical protein 
LmonocytogFSL_030100010091 J2-071 Similar to ADP-ribose 1''-phosphate domain protein  
LmonocytogFSL_030100010130 J2-071 Hypothetical protein 
LmonocytogFSL_030100011357 J2-071 Hypothetical protein 
LmonocytogFSL_030100012027 J2-071 Hypothetical protein 
Lineage specificity is based on comparative analysis of 26 genomes in this study, including 7 LI strains (F2365, 
H7858, Clip 80459,  N1-017, R2-503, HPB2262 and J1-194), 9 LII strains (EGD-e, R2-561, Finland 1988, 10403S, 
N3-165, F6900, F6854, J2818 and J0161) and 10 LIII genomes (HCC23, J2-071, F2-501, F2-524, J1-208, M1-002, 
W1-111, F2-208, F2-569 and W1-110). Gene ID is designated based on a respective reference genome. 
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In addition to lineage-specific genes, 86 disparately distributed genes (DDGs) 

were identified that are highly conserved in the common disease-causing LI and LII 

strains (PF>0.6) but largely absent or divergent in the rare LIII strains (PF<0.6). 

DDGs are of particular interest because the biased distribution and conservation of 

these genes in LI and LII genomes likely correlate to the enhanced ecological fitness 

and pathogenicity of L. monocytogenes in the host. The largest functional group of 

DDGs (41%) is associated with carbohydrate transport and metabolism. Figure 5.1 

illustrates their distribution. L. monocytogenes harbors one of the largest bacterial 

carbohydrate phosphotransferase system (PTS) genes [130,131]. The abundance and 

diversity of the PTS system allows this soil saprophyte to utilize different carbon 

sources associated with the ecosystems it inhabits such as soil, silage and sediments. 

Fifteen PTS genes were identified as DDGs; most are associated with fructose-

specific PTS enzyme II components (lmo0357–0358, lmo0631–0633, lmo2135–2137, 

and lmo2733). The distribution of 978 annotated PTS genes and their homologs in all 

26 L. monocytogenes genomes was surveyed, and 965 (99%) PTS genes were found 

conserved in all LI and LII genomes and 7 (0.7%) were found specific to LI. In 

contrast, 137 (14%) PTS genes are absent or divergent in LIII genomes. Diversity in 

PTS content is most noticeable among the three LIII subgroups, where 48 (4.8%), 137 

(14%), and 136 (13.9%) PTS genes are absent in LIIIA, LIIIB and LIIIC, 

respectively. An interesting distinction among 3 subgroups is that LIIIA strains are 

capable of fermenting rhamnose, whereas LIIIB and LIIIC strains are deficient in 

rhamnose utilization [109]. Interestingly, a cluster of six genes (lmo2846–2851), 

which is likely to mediate rhamnose utilization, is missing from all LIIIB and LIIIC 
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genomes. Five genes in this cluster [85] share protein similarities to the rhamnose 

catabolic pathway in Escherichia coli [132,133] and other Gram-positive bacteria 

such as Bacillus subtilius. 

The second-largest functional group of DDGs consists of 12 putative 

transcription factors representing 7 different regulatory gene families. Six are 

adjacent to PTS genes and possibly involved in regulating carbohydrate metabolism. 

Four are absent from the non-pathogenic L. innocua [130], L. welshimeri [134] and L. 

seeligeri [135], suggesting roles in virulence and pathogenicity. One Crp/Fnr (cyclic 

AMP receptor protein—fumarate and nitrate reduction regulator) family gene 

lmo0753 was found to be highly specific to LI and LII but absent in LIII. This 

Crp/Fnr factor is adjacent to a bile resistance gene btlB and shares high amino acid 

sequence homology to prfA. 

Multiple DDGs area associated with gastrointestinal (GI) tract adaptation. 

Two bile-associated genes btlB (lmo0754) and pva (lmo0446) are absent in LIII. Both 

genes help L. monocytogenes resist the antimicrobial effects imposed by bile salts 

during its passage through human GI tract [136]. Loss of these genes lowered 

tolerance to bile and reduced persistence in murine GI tract [137]. The glutamate 

decarboxylase (GAD) system mediates the acid resistance in bacteria [138,139,140]. 

In L. monocytogenes gadD1 (lmo0447) is responsible for growth at mild acidic 

conditions (pH=5.1) and gadD2 (lmo2363) primarily mediates the resistance to severe 

acidic stress (pH=2.8) [141]. gadD2 is conserved in all lineages, whereas gadD1 and 

its coupled glutamate: γ-aminobutyrate antiporter gadT1 (lmo0448) are absent in most 

LIII strains except for J2-071 and HCC23. An arginine deiminase (ADI) system 
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(lmo0036–0041) was recently characterized in L. monocytogenes [142]. The ADI 

system plays a role in listerial acid tolerance and may contribute to the enhanced 

adaptation to acidic conditions in the stomach. It was previously reported that this 

gene cluster is present in LI and LII but absent from LIII and non-pathogenic L. 

innocua and L. welshimeri [142]. The CGH results, however, showed that the ADI 

gene cluster is also highly conserved in LIIIB. An additional seventeen DDGs have 

no homolog in the genome of L. innocua, including three putative genes encoding 

LPXTG surface proteins (lmo0333, lmo1666 and lmo2085) and sepA, a putative 

virulence factor co-regulated by PrfA and σB [143,144]. 

Complete tiling of the L. monocytogenes pan-genome allowed a survey of 100 

non-coding small regulatory RNAs with specified 5’ and 3’ positions [85] in 9 LIII 

genomes. The majority (87%) of these sRNAs are conserved in LIII genomes, and 

only eight were found to be absent or divergent in LIII (PF<0.6) (Table 5.5). 

Noticeably, all eight sRNAs are also absent from L. innocua, and five were 

differentially expressed in intestinal lumen or blood, suggesting roles in host niche 

adaptation. For example, ril38 contributes to listerial survival in human blood [85]. 

 

Table 5.5: Small regulatory RNAs absent or divergent in LIII genomes. 

  Distribution in lineage III 2 
  IIIA IIIB IIIC 
RNA  Regulation1 J2-071 F2-501 F2-524 J1-208 W1-111 M1-002 F2-569 F2-208 W1-110 
rli62 n/a - - - - - + - - - 
rliG n/a - - - - - - - + - 
rli38 ↑ in broth & blood + - - - - - - - + 
rli48 ↑in intestine  - - - - - + - + - 
rli26 ↑in blood + + + - - - - - - 
rli29 ↑in intestine & blood - - - + - + + - - 
rli49 n/a - - - - - - - - - 
rliC ↓in blood + + + - - - - - + 
1Up-regulated “↑”, or down-regulated “↓” in vivo [85]; n/a, information not available.  
2Gene is either present “+” or absent “-” in a lineage III genome. 
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5.6 Phylogenomic Reconstruction 

5.6.1 Neighbor-net Split Network 

To reconstruct the phylogeny of L. monocytogenes, split networks were 

generated for the 26 L. monocytogenes strains based on the binary distributions (i.e. 

presence or absence) of 2,846 EGD-e protein-coding genes and 3,560 homologous 

groups (HGs). A maximum-likelihood method was used to compute gene content 

distance between all pairs of genomes [145], and the Neighbor-net algorithm [146] 

was used to generate the split networks (Figure 5.5). Split networks do not enforce a 

tree topology, and are therefore able to show incompatible phylogenetic signals due 

to horizontal gene transfers and/or recombination, evident as parallel edges in the 

network. Although Neighbor-net does not reveal the full recombination history, it 

generates a planar estimate that can be aesthetically displayed. The split networks 

generated by both EGD-e genes and homologous groups clearly separated the three 

major lineages of L. monocytogenes. However, the split network based only on EGD-

e genes distorted the network topology and placed some LIII genomes in 

unreasonably long branches (Figure 5.5b), indicative of an inherent bias caused by a 

restricted set of loci used for phylogenetic reconstruction [147]. 

Of note in LI, the serotype 4b strain N1-017 contains considerably more 

strain-specific genes (i.e. 112 non-phage genes and 16 prophage genes) than any other 

strain analyzed in this study. N1-071 appears to be closely related to serotype 1/2b 

strains in the LI cluster, and is likely to represent an evolutionary intermediate 

between the split of serotype 4b and serotype 1/2b [65]. Of note in LII, four strains 
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F6900, F6854, J2818 and J0161 were previously traced back to a single food 

processing facility over a time span of 12 years [148]. F6900 (a human isolate) and 

F6854 (a food isolate) were associated with a case of sporadic listeriosis in 1988; 

J0161 (a human isolate) and J2818 (a food isolate) were implicated in a listeriosis 

outbreak in 2000. These four isolates are clustered closely on a single branch, 

indicative of a recent common ancestry. 

 

Figure 5.5: Split network of 26 L. monocytogenes genomes. a) Split network based on the 
presence or absence of 3,560 HGs in 7 LI, 9 LII and 10 LIII genomes. EGD-e and J2-071 
were analyzed by both BLAST and CGH data. Two splits that caused the wide parallel edges 
at the root of LI and LII clusters are highlighted with blue and red dashed lines. Strains that 
carry the A118-like prophage in the comK gene are marked with *. b) Split network based on 
the presence or absence of 2,855 EGD-e core genes. c) Comparison of network topology 
before and after excluding the HGs largely responsible for the red and blue splits. 
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Although a Neighbor-net is a very limited estimate of the recombination 

history [146], it is an informative visual aid that highlights areas of the network most 

affected by incompatibilities. Parallel paths that reflect incompatible phylogenetic 

signals are most obvious at the base of branches leading to the split of LI and LII. 

These network-like structures are indicative of horizontal transfer (HGT) or parallel 

genetic loss—events that cause genetic convergence. The wide stem at the root of LI 

(indicated by arrows in Figure 5.5c) contains two primary splits. Each split grouped 

some LI strains with LII (dashed lines, Figure 5.5a), implying possible HGT or 

parallel gene loss between LI and LII. By sequentially excluding HGs with the largest 

differential abundance across each split, the splits could be removed while preserving 

the overall network topology (Figure 5.5c). This heuristic procedure narrowed the 

root of LI, mirroring the clonal structure of phylogenetic analysis based on house-

keeping genes [149]. Genes responsible for the major splits are likely to be the source 

of the observed homoplasy (or convergent evolution). This possibility is further 

evidenced by an overrepresentation (38%) of prophage associated genes in the 124 

HGs, compared to an average of 2% prophage genes in a typical L. monocytogenes 

genome. 

To further explore the impact of lysogenic phages on the topology of the split 

network, we surveyed the distribution of all prophage regions in 26 L. monocytogenes 

genomes. A known A118-like prophage inserted in the comK gene [150] was 

common in five LI (R2-503, J1-194, N1-017, H7858 and HPB2262) and ten LII 

(EGD-e, R2-561, LO28, 10403S, F2-525, J2-003, F6900, F6854, J2818 and J0161) 

genomes. Insertion of this prophage caused the formation of a major split (indicated 
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by blue dashed line) in Figure 5.5a, which separates strains with the comK prophage 

(indicated by a star sign) from those without it. 

5.6.2 Neighbor-joining Tree 

For a whole-genome analysis, traditional tree topologies can also accurately 

depict the consensus phylogenetic signal. Because all genes in the genome are 

considered, incompatibilities caused by horizontal transfer are drowned out by the 

much greater number of vertically inherited genes. Figure 5.6 shows a neighbor-

joining (NJ) [151] tree for the 26 L. monocytogenes strains based again on the 

maximum-likelihood gene content distances. The NJ tree clearly delineates the three 

major lineages and the three subgroups in LIII. To test the compatibility between the 

CGH and tblastn datasets, both types of data for EGD-e and J2-071 were included in 

the analysis. The two data types for the same strain always clustered tightly together 

on a single branch, suggesting that the different data types are compatible for 

phylogenetic reconstruction. 
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Figure 5.6: Neighbor-joining tree of 26 L. monocytogenes genomes. This tree was built based 
on the presence or absence of 3,560 HGs using the maximum-likelihood gene content 
method for 26 L. monocytogenes genomes. This tree was assessed by bootstrap analysis of 
1,000 replicates. Braches with a bootstrap value lower than 70% are highlighted in red. 

 

5.6.3 Elevated Diversity in Evolutionary Lineage III 

Figure 5.7 shows a rooted NJ tree for the three LIII subgroups, using EGD-e 

as outgroup. HCC23 appears to be most closely related to LIIIA. Further evidence 

that links HCC23 to LIIIA is the rhamnose utilization gene cluster. This gene cluster 
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is conserved in LIIIA and HCC23 but absent in LIIIB and LIIIC. The rooted NJ tree 

also suggests that LIII is paraphyletic and HCC23 possibly resembles an ancestral 

state of LIII. The emergence of 3 LIII subgroups is likely to be concomitant with 

stepwise genome reduction as observed in some non-pathogenic Listeria species, 

including L. welshimeri [134] and L. seeligeri [135]. 

A total of 206 genes, which are highly conserved in LI and LII, are 

phylogenetically informative for LIII (i.e. present or absent in at least one LIII strain). 

Figure 5.7c shows a heat map of the presence (red) or absence (black) of these genes 

in the ten LIII strains. Interestingly, sequential gene loss was observed in the order of 

LIIIA, LIIIC and LIIIB. Loss of LI and LII core genes was most significant in LIIIB. 

This LIII subgroup forms a deep branch in a split network (Figure 5.7b). It should be 

noted that the contribution of novel LIII genes to the phylogenetic reconstruction is 

likely to be underestimated due to the limited number of fully sequenced LIII 

genomes available at the time of this study.  
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Figure 5.7: Phylogenetic analysis of the three LIII subgroups. a) A rooted tree shows the 
phylogenetic relatedness of the 9 LIII strains analyzed by CGH and 1 sequenced LIII strain 
HCC23. The tree was rooted by EGD-e and reconstructed based on the presence or absence 
of 3,560 HGs using the maximum-likelihood gene content method. Two branches with 
bootstrap values lower than 70% (1,000 replicates) are highlighted in red. b) Neighbor-net 
split network shows the phylogenetic relatedness of 10 LIII strains. c) A heat map shows the 
binary distribution of 206 LI and LII core genes in 10 LIII strains. Red color indicates a gene is 
present in a LIII genome; black color indicates a gene is absent. 

To access the intra-lineage diversity from a gene content perspective, the 

accessory genes from F2365 (LI), EGD-e (LII), and J2-071 (LIII) were identified and 

their distributions in the three lineages were surveyed. Minimum spanning trees were 

used to visualize and compare the different distribution patterns of accessory genes in 

all three genetic lineages of L. monocytogenes (Figure 5.8). Accessory genes display 

similar distributions in most LI and LII strains. However, more complex and 

branched distributions were observed in LIII strains, clearly demonstrating an 

elevated genomic diversity in this rare L. monocytogenes lineage. 
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Figure 5.8: Accessory gene distribution in Listeria monocytogenes visualized with minimum 
spanning trees. A total of 576, 521 and 489 accessory genes were identified from F2365 (LI), 
EGD-e (LII), and J2-071 (LIII), respectively.  The binary distribution of these accessory genes 
was surveyed in 28 L. monocytogenes genomes, including 4 newly sequenced strains. Each 
circle represents a group of accessory genes in F2365 (A, D, G), EGD-e (B, E, H), or J2-071 
(C, F, I) that share a unique binary distribution (i.e. “1” for presence or “0” for absence) in all 
strains belonging to a specific lineage (i.e. I, II, or III). The size of each circle is proportional to 
the total number of genes that share the same binary distribution. Each circle is color-coded 
based on the number of L. monocytogenes strains (from 0 to 10, see color bar) that share the 
same distribution. This figure provides an overview of the genomic diversity of the three 
genetic lineages from a perspective of accessory gene presence or absence, in which LIII 
displays the most diversified gene content. 

 

5.7 Analysis Methods 

5.7.1 Bacterial Isolates and Hybridization 

Table 5.1 lists the 26 L. monocytogenes strains analyzed in this study. As of 

November 2008, 20 sequenced L. monocytogenes strains were available and used for 
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the pan-genomic array design. Array CGH was performed for 9 LIII strains 

representing 3 serotypes (4a, 4b, and 4c) and 3 subgroups (IIIA, IIIB, and IIIC). 4 

additional isolates that were recently sequenced were incorporated in the pan-

genomic and phylogenetic analysis. Bacterial strains were grown overnight in brain 

heart infusion (BHI) broth at 30°C. Genomic DNA was extracted and purified using 

MasterPure Gram positive DNA purification kit (EPICENTRE Biotechnologies, 

Madison, WI). Genomic DNA was labeled with Cy3 or Cy5 dyes prior to array 

hybridization. 

Genomic DNA of each LIII strain was co-hybridized with that of EGD-e on a 

Roche NimbleGen 385K custom CGH array. Two dye-swap replicates were 

performed for each LIII strain/EGD-e pair to eliminate dye bias and test the array 

reproducibility. Genomic DNA labeling and array hybridization were performed at 

Roche NimbleGen, Inc. (Madison, WI). Hybridization results are available from GEO 

under accession number GSE20367. 

5.7.2 Pan-genomic Array Analysis 

To analyze this complex pan-genomic array, a new probe-based intensity 

classification scheme was devised that permits any locus to be classified based on the 

aggregated scores of its individual probes, without reference to control hybridization. 

Specifically, all raw signal intensities were first transformed to log values, then log 

intensities for replicate hybridizations were normalized using quantile normalization 

[152]. Replicates were combined at the probe level by taking the average of the 

normalized log intensities for each probe. Quantile normalization assumes similar 
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intensity distributions, so to avoid cross-sample normalization bias, each strain was 

normalized and processed independently. 

Because there was no one single reference to operate on, and to preserve 

sensitivity for small polymorphisms, intensity data was not smoothed or segmented. 

Instead, individual probes were each classified as present or absent using a minimum 

kernel density (MKD) method. MKD methods have performed well for the binary 

classification of both genes and segments [74,153], and here the idea is extended to 

the classification of individual probes. Because the array contains the full genetic 

diversity of L. monocytogenes and 4,300 random control probes, there is expected to 

be a significant fraction of both present and absent probe intensities for any L. 

monocytogenes sample. Therefore, the distribution of probe intensities is generally 

bimodal, and the minima between the present and absent peaks can be used as an 

effective threshold for binary classification. For each sample, the probability density 

function of the observed intensities was estimated using kernel density estimation and 

the central minima of this function identified as the optimal cutoff (Figure 5.9). This 

method was preferred because it is non-parametric, there is no potential normalization 

bias, it requires no training, and each sample can be processed independently without 

affecting the accuracy. It is also extremely flexible, in that a classification for any 

gene can be generated by aggregating the classifications of the probes targeting that 

gene. For this purpose, genes were scored by collecting all probes known to target a 

specific gene and computing the fraction of probes classified as present, the positive 

fraction (PF). A PF threshold of 0.6 was chosen by analysis of ROC curves for the 

EGD-e and J2-071 controls to minimize the total error rate (false-positive rate + false-
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negative rate) versus the tblastn 50% protein similarity threshold. PF was favored 

because it does not depend on cross-sample normalization, as would be necessary for 

an intensity threshold, and additional genomes can be analyzed independently without 

affecting accuracy. This makes it ideal for rapid and economical genotyping of novel 

isolates. 

 

 

Figure 5.9: Probe intensity histogram overlaid with kernel density estimation (red) for sample 
J1-208, showing an optimal intensity cutoff of 8.82 at the minimum between the present and 
absent modes. Displayed distribution is for the mean intensities of the two quantile 
normalized replicates for strain J1-208. 

 

5.7.3 Pan-genomic Sequence Analysis 

Pan-genome analysis was performed using the methods introduced by Tettelin 

et al. [73], with modifications on the conservation threshold and permutation 

sampling. Annotated proteins for each genome were aligned to the six frame 
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translations of all other genomes using tblastn. Query proteins were marked as 

present in a subject genome if the corresponding amino acid sequences aligned at 

≥50% similarity with an E-value ≤10 -5, where “similarity” was defined as the 

number of positively scored residues divided by the length of the protein sequence. 

This threshold is more stringent than originally proposed in [73], but less stringent 

than those used in other studies (e.g. [120]). The 50% threshold was empirically 

selected as a compromise between tolerating draft genomes with fragmented 

annotations and avoiding false positive detections due to conserved domains and 

distant paralogs. A PF threshold of 0.6 was consequently chosen as an analogous 

threshold for the CGH results, as described above. Only genomes with fewer than 200 

contigs were considered for the analysis. 

The addition of an Nth genome was simulated by examining ordered 

combinations of N genomes. Due to the large number of available genomes, it was 

not feasible to consider all possible permutations as originally suggested. Instead, a 

randomly selected subset of 100,000 permutations was considered for the addition of 

each N, and the mean (or median) values were computed from this subset. For each 

permutation, the number of new genes found in the Nth genome GN was computed as 

the number of proteins of GN not present in any genomes Gi for i={1,...,N–1}. The 

number of core genes was computed as the number of proteins of GN present in all 

genomes Gi for i={1,...,N}. Because gene sequences for the CGH strains are not 

known, EGD-e was set to be GN for all permutations. The number of pan genes in a 

permutation of N genomes was computed by examining the genomes Gi in order from 
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1 to N. A gene in Gi was identified as a pan-gene if it was not present in any of the 

genomes Gj for all j < i. 

The Gauss–Newton method implemented by the R function nls [87] was used 

to perform non-linear least squares regression on the mean and medians of the core 

genes, new genes, and pan genes distributions. According to [88], the number of new 

genes n expected to be discovered by sequencing an Nth genome was modeled by the 

power law function 

€ 

n =κN−α , and the number of pan genes also by a power law 

€ 

n =κN γ . According to [73], the number of core genes was modeled by the 

exponential decay function 

€ 

n =κe−N τ +Ω, where Ω describes the horizontal 

asymptote and therefore the core genes estimate. In all cases, the functions were fit to 

the mean or median values for all N > 1. 

To accommodate false-negative errors introduced by sequencing gaps and 

weak hybridization signal, the originally proposed exponential decay function was 

modified with the addition of a fourth parameter to model the effect of a constant 

number of false-negatives with the addition of each genome, yielding: 

€ 

n =κe−N τ +Ω− Nβ  

where the linear parameter β represents the number of core genes lost to false-

negative errors for each N. Core gene loss due to false-negatives is not a truly linear 

phenomenon (e.g. sequencing gaps are not independent and the core genome can 

never be negative), but for a large core genome and a modest N it is a reasonable 

approximation that is easy to fit. To assure convergence of the optimization 

algorithm, β was first estimated via linear regression for N≥15, and this was used as 

the start estimate of β for the full model regression. The augmented model is useful in 
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that the observed core genome size may be linearly decreasing (as is expected for 

draft genomes), but an estimate of the true core genome size Ω may still be 

recovered. 

5.7.4 Homologous Group Identification 

Homologous groups (HGs) were used for phylogenetic reconstruction and 

core genome estimation. HGs were identified by clustering a graph of protein 

similarity for all annotated protein-coding genes from the 18 high-quality L. 

monocytogenes genomes. A node was added to the graph for each one of the 52,776 

annotated proteins. Edges were added between any two proteins with an alignment 

above the 50% similarity threshold. Unlike OrthoMCL, no orthology constraint was 

applied. Edges between any two similar proteins were added, including edges 

between proteins in the same genome. This was necessary due to the inability of CGH 

to accurately determine orthology. The MCL clustering algorithm was applied to this 

graph using an inflation parameter of 2.0. From this clustering, 3,744 HGs were 

identified, including strain-specific genes represented as singleton clusters. Some 

HGs, mostly singletons, were not represented on the array because additional 

genomes had been sequenced after the array design. A total of 3,560 HGs, 

represented on the array by at least one member gene, were used for the phylogenetic 

analysis. 

For sequenced genomes, an HG was called present if at least one member 

protein of the HG aligned above the 50% similarity threshold. For CGH genomes, an 

HG was called present if at least one member gene of the HG hybridized with PF ≥ 

0.6. Results based on this threshold were converted to a unified binary table 
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indicating gene presence or absence for all HGs in all genomes analyzed in this study. 

These binary vectors were used for measuring evolutionary distance using the 

maximum-likelihood measure of [145], and Neighbor-net split networks [146] and 

neighbor-joining trees [151] were built using the SplitsTree program [154]. 

Alternative parsimony methods failed to build reasonable trees, most likely due to the 

large number of incompatible splits caused by both horizontal gene transfer and errors 

in the data. 

5.8 Discussion 

5.8.1 Pan-genomic Comparative Genomic Hybridization 

Pan-genome CGH was used in this study to compare L. monocytogenes 

genomes in pursuit of novel genes that potentially promote the fitness and virulence 

of LI and LII strains in human, as these strains are predominantly associated with 

human listeriosis. Phylogenomic concepts [155] guided the search for DDGs and to 

inferred the phylogeny for the species. Array CGH is ideal to serve the purpose of this 

study because it is cost-effective, accurate and highly reproducible. Compared to low-

coverage sequencing, which often produces draft genomes with many gaps, CGH 

provides more rapid turnaround and more reliable inference of gene content. This was 

evident in the analysis, in that genomes with highly fragmented assemblies (e.g. F2-

515 and J1-208) resulted in inaccurate core genome estimations and extremely long 

phylogenetic branch lengths, due to false-negative gene calls. The CGH approach 

circumvented such problems. Importantly, the pan-genome array design sampled the 

entire genetic repertoire of the species, thereby minimizing potential phylogenetic 

bias. 
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A particular challenge in this study was to unify the analysis of both genome 

sequence and CGH array data. The sensitivity of the two methods is fundamentally 

different. BLAST searches are capable of precisely measuring amino acid similarity 

and can identify orthologs and detect distant homologies. In contrast, DNA array 

hybridizations measure nucleotide conservation and are only capable of detecting 

highly conserved DNA sequences. In addition, hybridization gives no positional 

information and is non-specific, making it difficult to discriminate between paralogs. 

For this reason, homologous groups were used for gene content comparison, and 

permitted variant sequences to hybridize to their nearest neighbor in a group, rather 

than a single selected variant. Prior to implementing this method, there was 

tremendous detection bias in the CGH data. The HG method greatly increased the 

agreement between the array and BLAST detection strategies, which was critical for 

the phylogenetic analysis of the combined data. 

5.8.2 Genes and sRNAs Associated with Niche-specific Fitness 

The low frequency of LIII in human listeriosis can be partially explained by 

lack of or defective mutation in virulence factors. For instance, a novel streptolysin S-

like hemolytic and cytotoxic virulence factor, listeriolysin S, was recently found to be 

exclusively present in LI strains [156]. This factor contributes to virulence of the 

pathogen in murine and human polymorphonuclear neutrophil-based assays [156]. 

Other studies also reported that premature stop codons are common in inlA in LIII 

strains [157,158,159,160]. Point mutations in inlA are presumably caused by localized 

recombination and lead to a truncated InlA protein and consequently a reduced 

invasion phenotype in human intestinal epithelial cells [157,158,159,160]. This pan-
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genome study uncovered 86 DDGs and 8 non-coding small RNAs that are absent or 

mutated in the largely uncharacterized LIII genomes. Most of these genes fall into the 

functional categories of cell wall structure, transcription regulation, and carbohydrate 

metabolism and transport. Such functions are likely to play critical roles in ecological 

fitness of L. monocytogenes in different environment and host niches. Genes involved 

in carbohydrate metabolism and transport stand out as the largest functional group of 

DDGs, implying that the capability of utilizing different carbon sources in the 

transmission and infection cycle contribute most to the predominance of LI and LII 

strains in human infections. In particular, PTS systems that are likely to confer niche-

specific metabolic advantages are conserved in LI and LII but decayed or lost in LIII. 

For example, the fructose-like PTS components (lmo2133–lmo2137) are conserved in 

all LI and LII genomes but completely lost in LIIIB and LIIIC. This operon was 

postulated to have been acquired by L. monocytogenes through HGT from 

Enterobacteriaceae that cohabitate the GI tract of mammalian host [161]. A recent 

study of its homolog in extraintestinal pathogenic E. coli suggested that this operon 

promotes bacterial fitness against the stress in host serum and gut, and also enhances 

bacterial invasion in eukaryotic cells [162]—both are integral parts of listerial 

pathogenesis. 

L. monocytogenes possess extraordinary capabilities for sustaining harsh 

conditions during its residency in the environment (e.g. it can utilize limited carbon 

source), in foods (e.g. it can resist salts and grow at refrigeration temperatures), and in 

parasitized hosts (e.g. it can escape from immune defense). During its passage 

through the human GI tract, L. monocytogenes is able to resist the antimicrobial 
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effects imposed by gastric contents. Multiple genes involved in combating GI tract-

related stresses, primarily gastric acid (gadD1, gadT1 and the ADI system) and bile 

salts (btlB and pva), are missing in LIII. Lost of these genes may result in a defective 

phenotype in surviving the GI tract prior to invasive infection [136]. Also absent in 

most LIII genomes are a number of small regulatory RNAs (e.g. rli29 and rli48) and 

transcription factors (e.g. lmo2138 and lmo2851) that appear to be up-regulated in the 

human intestine [85]. It is reasonable to speculate that the human GI tract may act as 

a major barrier to prevent LIII strains from causing systematic infections. 

Epidemiological studies seem to support this speculation by collectively showing that 

gastroenteritis, rather than more severe listeriosis symptoms, is predominant among 

infected individuals [163,164,165]. Although intracellular strategies have been the 

primary focus in numerous studies of listerial pathogenesis, a few recent studies 

demonstrated that the GI passage has a fundamental impact on listerial pathogenicity 

[166,167]. Considering that most LIII strains possess virulence factors related to its 

intracellular lifestyle and are cytopathogenic [109], the inability to survive in the GI 

tract becomes a more reasonable explanation for the overall rarity of LIII in human 

listeriosis. 

5.8.3 Core and Pan-genomes of Listeria monocytogenes 

L. monocytogenes core-genome consists of approximately 2,330 to 2,456 

genes and the pan-genome encompasses over 4,052 genes. Compared to several other 

bacterial species, L. monocytogenes has relatively higher proportions (about 80%) of 

core genes shared by individual genomes (Table 5.6), which in turn reflects lower 

intraspecies genomic variability. This is consistent with the low rates of 
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recombination in this bacterial species [157]. Despite the perceived high genomic 

synteny, L. monocytogenes possesses considerably diverse pan gene reservoir and 

displays biased distribution of accessory genes across major evolutionary lineages. 

Table 5.6: Summary of other pan-genomic studies. 

Species No.  
Genomes1 

Pan 
genome2 

No. core 
genes 

No. pan 
genes  

Avg. no. 
genes 

% Core 
genes Cutoff3 Ref 

Escherichia coli 
& Shigella    20 Open 1976 >17838 4700 42% 80/80 [121] 

Escherichia 
coli 17 Open 2200 >13000 5020 44% 0.8 

BSR [120] 

Escherichia 
coli  32 Open 1563 >9433 4537 34% 50/50 [74] 

Haemophilus 
influenzae 13 Finite 1461 4425–

6052 1970 74% 70/70 [118] 

Listeria 
monocytogenes 26 Open 2350–

2450 >4000 2978 80% 0.5 
SSR - 

Neisseria 
meningitidis 7 Open 1333 >3290 1963 68% 50/50 [119] 

Streptococcus 
agalactiae 8 Open 1806 >2750 2245 80% 50/50 [73] 

Streptococcus 
agalactiae 8 *Open 1472 *>2800 2198 67% 1e-5 

E-value [116] 

Streptococcus 
pneumoniae 17 Finite 1380 5100 2438 57% 70/70 [117] 

Streptococcus 
pyrogenes 11 *Closed 1376 *2500 1878 73% 1e-5 

E-value [116] 

All numbers are estimates in this table.  
1 Only studies including more than five strains are shown.  
2 Pan-genome growth behaviors as described by the authors. *Estimated from figures, but not explicitly stated. 
3 Cutoff values and methods for defining core and pan genes vary widely across the different studies. This column 
only gives a rough summary of the similarity cutoff. Cutoffs of the form I/L indicate a minimum BLAST hit of I% 
similarity over L% of the protein length. BSR is Blast Score Ratio [32]. SSR is the similarity score ratio used in this 
study, similar to BSR. 
 

5.8.4 Implications for Niche Adaptation 

The extensive and high-resolution coverage afforded by the pan-genome 

approach allowed both robust phylogenetic reconstruction and systematic 

examination of specific genomic features associated with individual strains and 

lineages. Some incompatible phylogenetic signals confounding the genealogy of LI 

and LII strains were traced back to prophage genes. The comK prophage regions in 

different L. monocytogenes genomes display significant sequence variations (Figure 

5.10). Such variations may be a result of prophage decay, recombination that have 

accumulated in the remnants of common prophage ancestor(s), or multiple 
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lysogenization of different bacteriophages at the same genomic location. Temperate 

listerial phages generally have strict host specificity as defined by bacterial surface 

receptors, and do not cross infect between two serogroups (serotypes 1/2 and 3 in one 

group; serotypes 4, 5 and 6 in the other). For example, Listeria phage A118 has been 

shown to be specific to serotype 1/2 or LII [168,169]. The presence of A118-like 

prophage in serotype 4b or LI strains (N1-017, H7858, and HPB2262) can be 

reasonably interpreted by the integration of A118-like phages into the ancestral 

strain(s) prior to the divergence of contemporary lineages. L. innocua also harbors a 

comK prophage, suggesting that the phage integration may even have preceded the 

speciation split between L. monocytogenes and L. innocua. Phages have been well 

recognized as the major contributors of important biological properties (e.g. virulence 

factors) in many bacterial species [170,171]. The functional impact of bacteriophages 

on the biology of L. monocytogenes, if any, has yet to be determined. 
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Figure 5.10: Alignment of A118-like prophage in different L. monocytogenes lineages. The x-
axis gives the location on the EGD-e chromosome, and for each strain, windowed alignment 
identity is given on a scale of 50–100% identity on the y-axis. Strains that show no homology 
to the EGD-e A118-like prophage are struck through in blue. Strains which do show 
homology to the prophage, but the prophage is inserted somewhere other than comK, are 
struck through in red (N1-017, HCC23). This plot illustrates some interesting phylogenetic 
incompatibilities. For example, based on whole-genome analysis, the nearest phylogenetic 
neighbor to EGD-e is R2-561. Yet the comK prophage in nearly all other strains appears 
more similar to EGD-e than does the prophage in R2-561, which has identity <50% for most 
of its length. 

 

5.9 Summary 

Intraspecific variations in host preference, ecological fitness and virulence 

potential are common in many pathogenic species. This study used a pan-genomic 

approach that combines in silico comparative genomic analysis and high-density 

CGH arrays to explore the genomic diversity of L. monocytogenes. Based on our 

results, one L. monocytogenes strain carries about 75% of the pan genes of this 

species. That said, experiments based on a single reference strain may not adequately 



 

 
 

127 
 

sample the total genetic repertoire and not fully interpret the versatile biology of L. 

monocytogenes. A defined species core genome may supplement a new genomic 

criterion for taxonomic classification of L. monocytogenes, as some traditional 

methods are often inconclusive and controversial. Genes and regulatory RNAs 

identified from this study may help elucidate the predominant association of L. 

monocytogenes LI and LII with human listeriosis. The pan-genomic approach 

described here can also be used to explore the genomic diversity in other pathogenic 

species, as such information would help better understand the intraspecific variations 

in virulence, and the ecology, epidemiology and evolution of microbial pathogens. 
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Chapter 6 

Whole-genome Assembly Validation† 

When PCR and microarray based methods do not provide suitable accuracy or 

detail, whole-genome sequencing is the comprehensive diagnostic capable of 

decoding every nucleotide of a genome. However, it has been increasingly common 

to sequence genomes only to draft quality, bypassing the critical stages of manual 

validation and genome closure. For diagnostic and forensic purposes, the accuracy of 

these sequences is critical. 

This chapter presents a collection of tools aimed at automated genome 

assembly validation, formalizes several mechanisms for detecting mis-assemblies, 

and describes their implementation in an automated validation pipeline. The 

application of this pipeline is demonstrated in both bacterial and eukaryotic genome 

assemblies, which highlights several assembly errors in both draft and finished 

genomes. The software described is compatible with common assembly formats and 

is released open-source (http://amos.sourceforge.net). 

                                                
 
† This chapter includes previously published work with multiple authors. See Section 6.6 for details. 
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6.1 Background 

Sequence assembly errors exist in both draft and finished genomes. Since the 

initial “draft” sequence of the human genome was released in 2001 [172,173], great 

effort has been spent validating and finishing the official sequence. During this 

process, it became clear that the original draft sequences were not entirely accurate 

reconstructions of the genome [174,175,176,177]. It was also reported in 2004 that 

“finished” human bacterial artificial chromosome (BAC) sequences contained a 

single base-pair error per every 73 Kbp of sequence and more significant mis-

assemblies every 2.6 Mbp [174]. Some errors had left large stretches of sequence 

omitted, rearranged, or otherwise deformed. After five more years, the human 

genome was nearly complete, however the validation and finishing was a largely 

manual, and expensive, process requiring additional laboratory work and sequencing. 

For many other genomes, cost prohibits manual sequence validation, and the 

genomes are often left as draft assemblies. Such sequences likely contain many 

errors, and recent calls for caution have been made regarding assembly quality [178]. 

Too often, assembly quality is judged only by contig size, with larger contigs being 

preferred. However, large contigs can be the result of haphazard assembly and are not 

a good measure of quality. It has been difficult to gauge assembly quality by other 

means, because no automated validation tools exist. The following sections catalog 

the identifiable anomalies that result from incorrect reconstructions of a genome, and 

describe a software pipeline for validating the output of assembly programs. 
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6.1.1 Double-barreled Shotgun Assembly 

Shotgun sequencing, the most widely used DNA sequencing technique to 

date, involves three major steps: (i) the DNA is randomly sheared into fragments 

(shotgun step); (ii) the ends of each fragment are sequenced, resulting in two reads 

per fragment (double-barreled sequencing step); and (iii) the original DNA sequence 

is reconstructed from the reads (assembly step). Newly emerging sequencing 

technologies also follow this general model, albeit with different strategies for each 

step. The first two steps are highly automated, however the assembly step remains a 

difficult challenge for any sequencing technology. Assembly would be a trivial 

process if each read had a unique placement, however all but the simplest organisms 

contain duplicated sequences (repeats) throughout their genome. These repeats 

confuse the assembly process, since reads originating from distinct copies of the 

repeat appear identical to the assembler. Additionally, for near-identical repeats, it is 

difficult to differentiate sequencing error from the polymorphism between repeat 

copies. This may cause an assembler to incorrectly place repetitive reads, resulting in 

mis-assembly. The pairing of reads sequenced from opposite ends of a same DNA 

fragment (mate-pairs, or paired ends) helps to disambiguate read placements within 

and around repeats, as show in Figure 6.1a where ambiguous placements can be 

resolved by reads whose mates are anchored in unique sequence. 

In a correct assembly, the layout of the reads, and implicitly, the layout of the 

original DNA fragments, must be consistent with the characteristics of the shotgun 

sequencing process used to generate the data. In general, a correct assembly must 

satisfy the following constraints: 
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1. The sequences of overlapping read must agree. Exceptions: sequencing errors, 

polyploid organisms, and the assembly of mixed samples such as non-clonal 

or out-bred organisms. 

2. The distance between mated reads must be consistent with the size of the 

fragments generated from the random shearing process. Exceptions: chimeric 

DNA fragments. 

3. Mated reads must be oriented towards each other, i.e. they must come from 

opposite strands of the sequenced DNA. Exceptions: chimeric DNA 

fragments, and alternative pairing methods (e.g. transposon libraries). 

4. The placement of reads throughout the assembly must be consistent with a 

random shearing process, represented mathematically as a Poisson process 

[179]. Exceptions: cloning or sequencing biases. 

5. All reads provided to the assembler must be consistent with the resulting 

assembly, i.e. every read must perfectly match at least one location in the 

reconstructed genome. Exceptions: sequencing errors, incomplete trimming of 

the sequencing vector, and the presence of contaminants. 

All five of these constraints are subject to some degree of inaccuracy, as evidenced by 

the exceptions indicated above. A single violation is, therefore, not usually conclusive 

of mis-assembly. Instead, multiple, coinciding constraint violations need to be 

observed in order to infer the presence of an error in assembly. The following section 

describes the primary types of mis-assemblies and the pattern of constraint violations 

they exhibit. 
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Figure 6.1: Mis-assembled sequencing reads caused by the two copy repeat R and leading to 
(a) unsatisfied mate-pairs and (b) correlated SNPs. Unique sequence is shown in white and 
repetitive sequence in gray. Example mate-pairs are drawn as connected arrowheads. 
Properly oriented mates point towards each other, and properly sized pairs are connected 
with a solid line. All mates can be satisfied and the correlated SNP removed if the bottom two 
reads in R1 are moved to R2. 

 

6.1.2 Mis-assembly Signatures 

The majority of mis-assemblies fall into two generalized categories: (i) repeat 

collapse and expansion; and (ii) sequence rearrangement and inversion. Each type has 

distinct mechanisms for mis-assembly and result in different signatures. The first type 

of mis-assembly results from incorrectly gauging the number of repeat copies in a 

genome and including too few or too many copies. Differences in copy numbers of 

certain repeats are known to cause phenotypic differences between organisms (e.g. 

Huntington’s disease [180]), therefore a correct assembly of such regions is essential. 

The second type of mis-assembly results from shuffling the order of multiple repeat 

copies, thereby rearranging the unique sequence in between. This type of mis-

assembly, if uncaught, could be misinterpreted as a biological rearrangement event. 

There is a chance such false conclusions have already been drawn due to mis-
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assembled genomes, and therefore the mechanisms and signatures of these mis-

assemblies need to be examined in more detail. 

In both collapse and rearrangement events, reads may be placed in the wrong 

copy of a repeat. Small differences between repeat copies, often single nucleotide 

polymorphisms (SNPs) caused by mutations that arose in the different copies 

independently, are useful indicators of collapsed or otherwise mis-assembled repeats. 

While disagreements due to sequencing errors tend to occur at random, the 

differences caused by mis-assemblies can be identified by their correlated location 

across multiple reads (Figure 6.1). Some correlated SNPs may also occur due to 

heterogeneous sequencing samples or sequence-specific lab errors, and therefore 

correlated SNPs by themselves are not always sufficient evidence of mis-assembly. 

6.1.2.1 Repeat Collapse and Expansion 
In the case of a repeat collapse, the assembler incorrectly joins reads 

originating from distinct repeat copies into a single unit (Figure 6.2). The opposite 

occurs in an expansion, where extra copies of a repeat are included in the assembly. 

These often result in a greater (or lesser) density of reads than is expected from the 

random shotgun process. A missing repeat copy causes reads to “pile up” in the 

remaining copies, thereby increasing read density. For example, in a genome sampled 

at 8-fold coverage with reads of 800 bp in length, the reads are expected to be placed 

at approximately 100 bp increments throughout the genome. The collapse of a two 

copy repeat results in an even denser packing of the reads in the single remaining 

copy—within the collapsed repeat the reads are spaced by roughly 50 bp and the 

depth of coverage (number of reads spanning a specific location) is increased to about 
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16-fold. The reverse is true for an expansion mis-assembly, where the read density 

drops below normal coverage. 

In the case where two repeat copies are adjacent to each other, i.e. a tandem 

repeat, the reads that span the boundary between the two copies cannot be placed in 

the collapsed assembly. These reads only partially align to the assembly and exhibit 

an identifiable mis-assembly signature where they appear to wrap-around the 

boundary of the repeat. In addition, mate-pairs spanning the boundary between the 

two copies, but internal to the tandem, also appear to wrap around and mates 

spanning the tandem are shorter than expected (Figure 6.2b). For expansions, 

spanning mates appear stretched. When two repeat copies are separated by a unique 

region, a collapse forces the intervening section of DNA out of the assembly, leading 

to the creation of two separate contigs. Any mate-pairs that were spanning one of the 

repeat copies now link from the excised contig to the middle of the collapsed contig 

(Figure 6.2d). An insertion results in a similar signature, with mates spanning the 

insertion boundary linking to separate contigs. In general, any non-overlapping 

placement of two contigs with respect to each other results in the violation of mate-

pair constraints, indicating the presence of a mis-assembly. 
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Figure 6.2: Mate-pair signatures for collapse mis-assemblies. (a) Two copy tandem repeat R 
shown with properly sized and oriented mate-pairs. (b) Collapsed tandem repeat shown with 
compressed and mis-oriented mate-pairs. (c) Two copy repeat R, bounding unique sequence 
B, shown with properly sized and oriented mate-pairs. (d) Collapsed repeat shown with 
compressed and mis-linked mate-pairs. 

 
6.1.2.2 Rearrangements and Inversions 

Even when an assembler correctly gauges the number of repeat copies, 

thereby avoiding the situations described above, mis-assemblies are still possible. 

Such a situation is shown in Figure 6.3, where, by incorrectly redistributing reads 

between the three copies of repeat R, the regions B and C of the genome have been 

swapped. Inversions are a special case of rearrangement, occurring when two repeat 

copies are oriented in opposite directions, thereby allowing the intervening region to 

be inverted (Figure 6.4). These “inverted” repeats can easily confuse the assembler, 

and can also result in genomic rearrangements in vivo, such as those detected within 

the plasmids of Bacillus anthracis Ames [4]. In the case of mis-assembly, 

heterogeneities may result within the mis-assembled repeat copies, due to mis-placed 

reads, unless the repeat copies are identical. In addition, mate-pair constraints are 
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violated for any mate-pairs spanning the repeat unit. If the repeat is not spanned by 

mate-pairs, this class of mis-assembly is harder to detect, and it is sometimes possible 

to mis-assemble the genome without violating a single mate-pair constraint. While a 

random placement of the reads among repeat copies would result in violations, 

assembly programs often place the reads such that the constraints are satisfied, 

thereby obscuring the mis-assembly. 

 

Figure 6.3: Mate-pair signatures for rearrangement mis-assemblies. (a) Three copy repeat R, 
with interspersed unique sequences B and C, shown with properly sized and oriented mates. 
(b) Mis-assembled repeat shown with mis-oriented and expanded mate-pairs. The mis-
assembly is caused by co-assembled reads from different repeat copies, illustrated by the 
stacked repeat blocks. 

 
 

 
Figure 6.4: Mate-pair signatures for inversion mis-assemblies. (a) Two copy, inverted repeat 
R, bounding unique sequence B, shown with properly sized and oriented mate-pairs. (b) Mis-
assembled repeat shown with mis-oriented mate-pairs. 
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6.1.3 Prior Work 

Gene Myers’ original formulation of the assembly problem stated that an 

assembly of a genome must match (in terms of the Kolmogorov-Smirnoff test 

statistic) the statistical characteristics of the process used to generate the data [181]. 

This is the first formulation of the assembly problem that explicitly takes into account 

the presence of repeats in genomes. Furthermore, this formulation provides a 

theoretical framework for developing assembly validation tools. A simple version of 

this approach, the arrival-rate statistic (A-statistic), is used within Celera Assembler 

to identify collapsed repeats [182]. 

The validation of genome assemblies was originally done manually, in 

conjunction with genome finishing efforts aimed at generating the complete sequence 

of organisms. Validation software was generally provided as an add-on to assembly 

editors like Consed [183], Staden package [184], or TIGR Editor (in-house software 

used at The Institute for Genomic Research). New interest in developing tools for 

assessing the quality of assemblies was spurred by the race to finish the human 

genome, in particular by the competition between the publicly led effort [172] and the 

private challenger Celera Genomics [173]. The ensuing controversy and flurry of 

papers comparing the two assemblies underscored the absence of objective and 

reliable tools for assembly validation. Eventually, the human assemblies were verified 

through comparisons to a collection of independently generated data such as finished 

BAC clones [185], gene content [186,187], and (at a lower resolution) genomic 

physical maps [172,173,188]. 
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Such comparative validation methods have limited applicability. First, they 

rely on the availability of a “gold standard” provided by independently generated and 

often manually curated data. Second, these methods can only detect mis-assemblies 

covered by the sparse curated data. A more general approach utilizes just the 

assembly data itself, such as the constraints imposed by the mate-pairs, whose 

placement within the assembly must be consistent with the characteristics of the 

shotgun process. For example, a visual display of mate-pairs, the clone-middle-plot, 

was used to compare the two different assemblies of the human genome [189], and 

the popular assembly viewer/editor Consed [183] includes the means to explore the 

placement of paired reads along the genome as a tool for identifying mis-assemblies. 

An assembly viewer I co-developed, Hawkeye [190], presents the assembly as a tiling 

of paired reads, and provides several visualization options aimed at highlighting 

possible assembly problems. An integrated analysis of mate-pairs is built into the 

quality control module of the Arachne assembler [191,192]. The Arachne approach 

detects clusters of unsatisfied mate-pairs and low quality bases to estimate the 

probability of mis-assembly for each region of the assembly. In addition, two 

standalone programs are available for mate-pair based evaluations: BACCardI [193] 

allows the user to visualize the placement of mate-pairs along the genome and 

highlights those mate-pairs that are incorrectly placed with respect to each other, and 

TAMPA [194] uses a computational geometry algorithm to identify clusters of mis-

mated reads that are characteristic of a mis-assembly. 

Despite its many benefits, mate-pair based validation may produce many false 

positives due to the inherent inaccuracy in the experimental protocols. For example, 
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in a correct assembly many mate-pairs would be characterized as incorrect, 

specifically those representing the tails of the mate-pair size distribution. This 

problem can be alleviated using statistical hypothesis testing, an approach used by the 

compression-expansion (CE) statistic [195]. In short, for every position in the 

genome, the CE statistic represents the deviation—in number of standard errors—of 

the observed mean mate-pair size from the mean size of the shotgun library (the 

statistical Z-test). A CE value near zero indicates the local distribution of sizes is in 

agreement with the global distribution, while large (e.g. greater than three) negative 

(positive) values indicate the presence of a compression (expansion) in the assembly. 

This statistic is less sensitive to the variance of mate-pair sizes, and therefore much 

more sensitive in identifying true errors. 

An alternative approach to mis-assembly detection and resolution is taken by 

DNPTrapper [196]. This tool focuses on the heterogeneities between co-assembled 

reads to detect collapsed repeats, and provides an interface for manually separating 

the individual copies, using the Defined Nucleotide Position framework of Tammi et 

al. [197]. Another sequence based approach introduced by Kim et al. examines the 

distribution of sequences within all reads to identify repetitive, and therefore difficult 

to assemble, regions [198]. 

Despite their utility, none of the tools described above take into account more 

than one measure of assembly correctness. The next section describes amosvalidate, 

the first integrated pipeline for assembly validation that combines multiple 

observations and validation techniques to more accurately detect mis-assemblies. This 

comprehensive approach increases the sensitivity and specificity of mis-assembly 
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detection, and focuses validation on the most probable mis-assemblies. Regions 

identified as mis-assembled are output in AMOS message format, thereby enabling 

the integration with other validation pipelines, as well as manual inspection with the 

Hawkeye assembly visualization tool. 

6.2 Assembly Validation Methods 

Violations of the five basic rules described in the Introduction are most 

commonly caused not by mis-assemblies, but by statistical variation or errors in the 

underlying data provided to the assembler. The high-throughput biochemical 

processes used to sequence genomes are error-prone, leading to non-random coverage 

across the genome, sequencing errors, and mis-paired reads. Furthermore, 

experimental measurements (e.g. mate-pair sizes) are inherently noisy. Separating 

such experimental artifacts from errors introduced by mis-assemblies is one of the 

main requirements of a robust validation pipeline. To reduce the effect of these errors 

on the analysis, multiple sources of evidence must be combined to increase the 

specificity of mis-assembly detection. In addition, certain types of mis-assembly can 

only be detected by specific methods, while the sequencing strategy employed may 

restrict the types of information that can be used for validation (e.g. many emerging 

sequencing technologies do not yet generate mate-pair information). The remainder 

of this section will describe validation techniques based on several measures of 

assembly consistency and how these measures can be integrated to reveal assembly 

errors. 
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6.2.1 Mate-pairs 

The mate-pair validation component of the pipeline separately identifies the 

four types of mis-mated reads: (i) mates too close to each other; (ii) mates too far 

from each other; (iii) mates with the same orientation; and (iv) mates pointing away 

from each other. Reads with mates not present in the assembly or whose mates are 

present in a different contig are also reported. In order to reduce the impact of noise 

in the underlying data, multiple mate-pair violations must co-occur at a specific 

location in the assembly before reporting the presence of an error. In addition, the CE 

statistic described in the Introduction aids in the identification of clusters of 

compressed or expanded mate-pairs. 

The actual size of shotgun libraries is sometimes mis-estimated by sequencing 

centers; therefore, a mechanism to re-estimate the library parameters on the basis of 

mate-pairs that are co-assembled within a contig is required. Reads that occur too 

close to the end of a contig may bias the distribution in favor of short mate-pairs (the 

mate-pairs at the upper end of the distribution would fall beyond the end of the contig 

and therefore not contribute to the calculations) and are therefore ignored. 

Specifically, reads are ignored if they are closer than µ + 3σ from the end of the 

contig when re-estimating the parameters of a library with mean µ and standard 

deviation σ. It is often necessary to iterate this process a few times until convergence. 

The size of a library is re-estimated only if the size of a sufficient number of mate-

pairs can be estimated and only if either the mean or the standard deviation change 

significantly from the original estimate. 
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In addition to mate-pair violations, regions of inadequate depth of coverage 

are identified, as well as regions that are not spanned by any valid mate-pair (i.e. zero 

fragment coverage). The latter may represent situations where non-adjacent regions 

of the genome were co-assembled across a repeat. When computing fragment 

coverage the reads sequenced from each fragment are excluded from consideration. 

This is necessary in order to make the distinction between read and fragment 

coverage at a specific location. By this definition, the read coverage cannot drop 

below one within a contig, but the fragment coverage can be as low as zero, 

indicating the absence of long-range support for this region of the contig. At the 

typical depths of read coverage used in sequencing, each location in the genome is 

generally well covered by mate-pairs. 

6.2.2 Repeat Statistics 

Most mis-assemblies are caused by repeats, therefore, understanding the 

repeat structure of a genome can aid in the validation of its assembly. Some repeats 

can be found by aligning the assembled contigs against each other and identifying 

duplicated regions. Tools like Vmatch [26] and Tandem Repeat Finder [199] can be 

used for the de novo identification of repetitive regions in the assembly, which can 

then be examined for correctness. This approach, however, is not appropriate for all 

types of mis-assemblies. For example, the complete collapse of a two copy tandem 

repeat into a single copy cannot be detected by comparative means. 

For validation purposes it is not sufficient to simply locate the repeats, rather 

it is more essential to identify those repeats that have been assembled incorrectly, 

especially those repeats that cannot be identified through comparative analysis. 
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Specifically, amosvalidate identifies regions of the genome that are over-represented 

in the set of reads, yet appear unique when examining the consensus sequence 

generated by the assembler. This is achieved by comparing the frequencies of k-mers 

(k-length words) computed within the set of reads (KR) with those computed solely on 

the basis of the consensus sequence (KC). KR is the frequency of all k-mers inside the 

clear range of all reads; and KC is the frequency of all k-mers across the consensus 

sequence of the assembled contigs. The forward and reverse complement of each k-

mer are combined into a single frequency. The normalized k-mer frequency 

€ 

K* = KR KC  is computed for each k-mer in the consensus, where a deviation from 

the expected K* (in a correctly assembled region, K* should approximately equal the 

average depth of coverage) reveals those repeats likely to be mis-assembled. For 

example, KR measured across a two-copy repeat is 2c regardless of whether the 

assembly is correct or not. If the repeat is correctly assembled into 2 distinct copies 

KC = 2 and therefore K* = c. If instead the repeat is collapsed, then KC = 1 and K* = 

2c indicating the presence of a mis-assembly. This approach is particularly powerful 

when used in conjunction with the technique described below for identifying dense 

clusters of SNPs because the two methods are complementary. SNP based detection 

will find collapsed, heterogeneous repeats, while K* will reveal collapsed, identical 

repeats. 

6.2.3 Coverage Statistics 

As described in the introduction, the collapse of a repeat results in an increase 

in the depth of coverage. This characteristic signature can therefore be used to detect 

the presence of mis-assemblies. For short repeats with low copy number (e.g. 2-copy 
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repeats), this effect cannot be distinguished from the variation in coverage caused by 

the randomness of the shotgun sequencing process, limiting the applicability of this 

method to repeats that occur in many copies throughout the genome, or to relatively 

long stretches of repetitive DNA (sustained deviations from the average depth of 

coverage are unlikely to occur by chance). The significance of observing a certain 

level of over-representation, given the parameters of the shotgun process, can be 

calculated through statistical means (see the A-statistic used by Celera Assembler 

[182]). 

6.2.4 Identifying Micro-heterogeneities 

Under the assumption of a random distribution of sequencing errors, and an 

independent random sampling of the genome during the shotgun process, it is 

unlikely that any two overlapping reads have sequencing errors at the same consensus 

position. While there are several examples of sequence-dependent sequencing errors 

that invalidate the assumption of independence between errors occurring in different 

reads, these assumptions are true for the vast majority of sequencing errors. Also, the 

following discussion assumes the genome being sequenced represents a single clonal 

organism. The assembly of non-clonal bacterial populations or heterozygous 

eukaryotes is characterized by frequent heterogeneities between co-assembled reads. 

Such situations are often known a priori and the validation pipeline can be adjusted 

accordingly. 

As described in the introduction, mis-assemblies often result in the presence 

of micro-heterogeneities (SNPs) that are correlated across multiple overlapping reads. 

Identifying such polymorphisms can, therefore, indicate potential errors in the 
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assembly. To identify mis-assembly induced SNPs, and distinguish them from simple 

sequencing errors, this technique leverages the base quality values provided by the 

sequencing software. The phred quality values [200] for example, represent the log-

probability of error at every base in the sequence. Under the assumption of 

independence of errors across reads, these values may be summed to estimate the 

probability of observing multiple correlated errors at a specific location in the 

assembly, and mark as polymorphism those locations where this probability exceeds a 

specific threshold. For example, the probability of error for two reads reporting the 

same base, each with a quality value of 20, is equivalent to the probability of error for 

a single base with a quality value of 40 [P(error) = 1/10,000]. This is, in essence, the 

same approach used by genome assembly software in assigning quality values for the 

consensus sequence [201]. For each heterogeneous column of the multi-alignment, 

reads are grouped into “alleles” by which nucleotide they report. The quality values 

for each read in an allele are summed, and if two or more alleles have a quality value 

of 40 or greater (by default) the difference is marked as a SNP. For a concrete 

example, if two reads report a ‘C’ each with quality 25, and three reads report a ‘G’ 

each with quality 20, the qualities of the alleles are 50 and 60 respectively, and the 

difference is marked as a C/G SNP. If, however, the quality of either allele is below 

40, the difference is not marked as a SNP. In addition, amosvalidate evaluates the 

proximity of SNPs to further increase the confidence in the predictions; clusters of 

SNPs that occur within a small range in the assembly are likely indicative of a mis-

assembly. By default, this is defined as regions containing at least 2 high quality 

SNPs occurring within a 500 bp window. 
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Note that this technique for mis-assembly detection can also be applied in 

heterogeneous genomes, for example, by identifying regions with a significantly 

higher SNP density than the background rate. In such genomes, however, a much 

higher false-positive rate, due to localized regions of heterogeneity, requires 

combining this method with other validation measures. 

6.2.5 Read Breakpoints 

The reads provided to an assembler must be consistent with the resulting 

assembly. Thus, examining how the un-assembled reads (also called singletons, or 

shrapnel) disagree with the assembly can reveal potential mis-assemblies. The 

Nucmer [80,202] alignment program is used to compare un-assembled reads to a 

consensus, allowing fragmented alignments to the consensus. For instance, a mapping 

that aligns the first half of a read to a different region than the second half, but at 

100% identity, is preferable to a mapping that aligns the read contiguously at 80% 

identity. The fragmented, high identity alignment is more likely because the read 

sequence should be nearly identical to the consensus sequence, modulo sequencing 

errors. From among all alignments of a read to the genome, the placement is chosen 

that maximizes the sum of len(Ai) * idy(Ai) over all alignment segments Ai, where 

len(Ai) and idy(Ai) are the length and percent identity of the ith segment of alignment 

A, and len(Ai) is adjusted where necessary to avoid scoring the overlap between 

adjacent segments twice. This scoring function estimates the number of non-

redundant bases matching the consensus, and the Nucmer utility delta-filter computes 

an optimal alignment using this function and a modified version of the Longest 

Increasing Subsequence (LIS) algorithm [34]. Most mappings consist of a single 
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alignment that covers the entire read, while the fragmented mappings indicate either 

incorrect trimming of the read or the presence of a mis-assembly. 

For fragmented alignments, the locations where the alignment breaks—

boundaries of alignment fragments that do not coincide with the ends of the read—are 

called “breakpoints”. Under the assumption that all reads map perfectly to the 

assembly, breakpoints indicate the presence of errors, either in the assembly, or in the 

reads themselves (e.g. incomplete trimming, or chimeric fragments). Breakpoints 

supported by a single read are rarely cause for concern, and can often be explained by 

errors in the reads themselves. However, multiple reads that share a common 

breakpoint often indicate assembly problems. These multiply supported breakpoints 

are identified, after the alignment process described in the previous section, by sorting 

the boundaries of fragmented alignments by their location in the consensus, and 

reporting those that occur in multiple reads. In addition, each read is annotated with a 

vector of coordinates encoding all breakpoints in the alignment of the read to the 

genome. This vector helps determine not only if two reads share common 

breakpoints, but also if they have similar mappings to the consensus. For each 

breakpoint, the cluster of reads with similar alignment signatures are examined to 

characterize different classes of mis-assemblies in much the same way mate-pairs are 

used to characterize collapse, inversion, etc. But while mate-pair and coverage 

methods can only bound a mis-assembly to a certain region, breakpoints can identify 

the precise position in the consensus at which the error occurs. 
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6.2.6 Integrative Validation 

The amosvalidate pipeline executes the analyses described above to tag 

regions that appear mis-assembled. Independently, each analysis method may report 

many false-positives that reflect violations of the data constraints, but that do not 

necessarily represent mis-assemblies or incorrect consensus sequence. A common 

example is clusters of overlapping stretched or compressed mate-pairs caused by a 

wide variance in fragment sizes rather than mis-assembly. Combining multiple mis-

assembly signatures increases the likelihood that the tagged regions identify true 

errors in the assembly. For example, a region with a largely negative CE value is 

more likely to indicate the presence of a collapsed repeat if an unusually high density 

of correlated SNPs is also present. This particular combination is especially strong, 

since mate-pair and sequence data are independent sources. 

Since some types of signatures do not necessarily tag the exact location of a 

mis-assembly, combining mis-assembly signatures requires considering not only 

overlapping signatures, but also those that occur in close proximity. To combine mis-

assembly signatures, the pipeline identifies regions in the assembly where multiple 

signatures co-occur within a small window (2 Kbp by default). If multiple signatures 

of at least two different evidence types occur within this window, the region is 

flagged as “suspicious”. Each such region is reported along with detailed information 

about the individual signatures, and forms the initial focus for subsequent validation 

and correction efforts. For manual analysis, these regions, along with the individual 

mis-assembly features, can be viewed alongside the assembly data in the AMOS 

assembly viewer, Hawkeye. 



 

 
 

149 
 

6.2.7 Visualization 

Cognitive psychologist and computer science researcher Herbert Simon 

stated, “Solving a problem simply means representing it so that the solution is 

obvious” [203]. In this spirit, Hawkeye strives to provide a visual, manipulable 

interface to help finishers understand and reason about complex assembly data. In 

addition to providing a useful interface for the examination of assembly data, 

Hawkeye further supports the analytical process by providing statistical and 

computational data analysis, enabling users both to reduce data complexity and to 

form accurate judgments. 

Hawkeye addresses the issues of scale and complexity by guiding users to the 

most likely areas of mis-assembly, and adhering to the visual-information-seeking 

mantra of: overview first, zoom and filter, then details-on-demand [204]. The main 

application window, or “Launch Pad”, acts as a global overview by displaying 

summary assembly statistics, along with graphs and sortable tables of assembly 

information. The ranking component of this display encourages users to inspect 

regions of the assembly in order of importance—largest to smallest and low quality to 

high quality. The more detailed “Scaffold View” is capable of displaying an entire 

contig or scaffold and its underlying reads on a single screen for scaffolds spanning 

>10 Mbp of sequence and >100,000 reads (Figure 6.6). Alternatively, users can zoom 

in and filter the display to focus on particular regions of interest. Finally, the lowest 

level assembly information is displayed in the coordinated “Contig View”, displaying 

the consensus sequence, read-tiling, base-calls, and supporting data. Coordination 

among these three views—Launch Pad, Scaffold View, and Contig View—allows for 
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very efficient top-down analysis of even the largest assemblies, and leads the user to a 

natural analytic progression: discern high-level quality from statistics and features; 

examine a poorly scoring scaffold for mis-assembly at the clone-insert level, looking 

for uneven insert distribution and improperly sized or mis-oriented mate-pairs; 

examine possible mis-assemblies in more detail at the base-call and raw data level, 

looking for correlated discrepancies supported by the raw data; and finally, confirm 

or refute the mis-assembly hypothesis. 

6.2.8 Implementation 

The validation modules of amosvalidate are implemented in C++ and included 

as part of the AMOS assembly package (http://amos.sourceforge.net). AMOS is a 

modular, open-source framework for genome assembly research and development, 

which provides integration between software modules through a centralized data store 

and a well defined API. This framework allows developers to focus on a particular 

area of interest, e.g. scaffolding, without needing to develop a complete assembly 

infrastructure. Furthermore, AMOS can import data from common assembly 

programs and formats—ACE, NCBI Assembly/Trace Archives [205], Arachne 

[206,207], Celera Assembler [182], PCAP [208], Phrap [209], Phusion [210] and 

Newbler [211], allowing for the integration of AMOS modules into existing assembly 

pipelines. 
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6.3 Validation Examples 

6.3.1 Tandem Repeat Collapse in Bacillus anthracis 

The impetus for much of this work was a mis-assembly detected in the parent 

strain of Bacillus anthracis Ames Ancestor (RefSeq ID: NC_007530). As shown in 

Figure 6.5, an alignment breakpoint analysis detected four unassembled reads which 

only partially matched the assembly. The partial matches ended at the same locations 

in all reads, specifically at coordinates 144,337 and 146,944 in the assembled main 

chromosome of B. anthracis. This pattern is consistent with the collapse of a tandem 

repeat consisting of two copies of the sequence between these two coordinates. The 

four unassembled reads span the boundary between the two copies of the repeat, 

leading to the observed alignment in the incorrect assembly. Increased depth of 

coverage was also observed in the assembly, supporting the collapse hypothesis. This 

observation was confirmed by a close inspection of the assembly in this region, and 

the finishing team at TIGR was able to correct the assembly. 

It is important to note that this genome had been finished at The Institute for 

Genomic Research (TIGR) and had already been deposited into GenBank at the time 

when this mis-assembly was identified. The mis-assembly had thus escaped detection 

despite the extremely stringent manual curation performed by the finishing teams at 

TIGR. Since finishing is primarily aimed at closing gaps, rather than fixing mis-

assemblies, it is not that surprising that errors persist even in finished data. Examples 

like this reinforce recent calls for caution when dealing with all assemblies, not just 

those of draft quality [178]. 
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Figure 6.5: Bacillus anthracis mis-assembly exhibiting a tandem-collapse breakpoint 
signature. The alignments of the four reads to the assembly indicate the collapse of a tandem 
repeat consisting of two copies of the section of the assembly between coordinates 144,337 
and 146,944. Note how the alignment signature resembles the mate signature shown in 
Figure 6.2b. 

 

6.3.2 Mis-assemblies in Drosophila virilis 

To test the scalability of amosvalidate, the pipeline was run on an assembly of 

the fruit fly Drosophila virilis. The genome was sequenced with the whole-genome 

shotgun method to ~8x coverage by Agencourt Bioscience Corporation, and 

assembled with both Celera Assembler and Arachne. The best assembly at the time, 

Comparative Analysis Freeze 1 (CAF1), comprised 13,530 scaffolds containing 

18,402 contigs with a total length of ~189 Mbp. This assembly represents a 

reconciliation of both the Celera Assembler and Arachne results [195]. Because the 

read multi-alignment was not provided with the reconciled assembly, this section 

describes the analysis of a small region of the Celera Assembler assembly. Due to the 

absence of a finished reference, it is impractical to evaluate the analysis on a larger 

scale. 

In a 556 Kbp contig of the Celera Assembler assembly, amosvalidate 

predicted 56 mis-assembly signatures and 6 suspicious regions. Two of the suspicious 
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regions are at the extreme ends of the contig, and correctly identify the low quality 

sequence present at the ends of the contig. Two more regions are weakly supported 

by CE stretch and missing mate signatures, but do not appear to be egregious mis-

assemblies. The remaining two regions, however, reflect obvious mis-assembly. The 

left-hand region (Figure 6.6), positioned at 78,088–84,132, is supported by alignment 

breakpoint, missing mate, and correlated SNP signatures. In addition, the cluster of 

yellow, compressed mates at the bottom of Figure 6.6 correspond exactly with the 

position of the correlated SNPs. Examination of the multi-alignment at this position 

reveals two distinct sets of co-assembled reads. This evidence taken together points to 

a collapse style mis-assembly. The right-hand region (Figure 6.6b), positioned at 

89,408–98,979, is more subtle and supported only by CE expansion and SNP 

signatures. However, the overwhelming severity of the CE expansion caused by the 

cluster of blue, expanded mates at the bottom of Figure 6.6 suggest that additional 

sequence has been incorrectly inserted into this region. 

The official, reconciled CAF1 assembly does not contain either of these mis-

assemblies, independently confirming the amosvalidate analysis. Instead, the 

suspicious region is broken into multiple contigs, with the left half mapping to 

contig_16268 of the CAF1 assembly and the right half to contig_16269. 
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Figure 6.6: Example Drosophila virilis mis-assembly shown by Hawkeye. Sequencing reads 
are represented as thick boxes connected to their mate by thin lines. Correctly sized (happy) 
mates are shown in green, stretched in blue, and compressed in yellow. A CE statistic plot is 
given at the top, with mis-assembly signatures plotted directly below as intervals. Left 
highlight shows amosvalidate region (a), which appears to be a compression mis-assembly. 
Right highlight shows amosvalidate region (b), which appears to be an expansion mis-
assembly. 

 

6.4 Systematic Evaluation of Bacterial Assemblies 

To supplement the anecdotal results presented above, amosvalidate was used 

to conduct a systematic evaluation of assemblies. Sequencing data for 16 bacterial 

genomes was collected and assembled with Phrap v0.990329 using the 

phrap.manyreads program with default parameters. Phrap was chosen because of its 

popularity, simplicity, and tendency to mis-assemble repetitive genomes. Similar 

experiments were attempted with Celera Assembler, but not enough mis-assemblies 

were produced to allow adequate validation. In larger genomes, Celera Assembler, 

and virtually all other assemblers, produce many errors; however, there are not 

enough fully finished eukaryotic genomes to allow comprehensive testing of 

a) 78k–84k b) 89k–99k 
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automated methods. For extensive and objective testing, bacteria were chosen as the 

assembly targets because many complete, finished genomes are available, thus 

providing a proper reference that can be used to identify true mis-assemblies. 

The Phrap assemblies were aligned against the reference sequences using the 

MUMmer utilities nucmer and dnadiff to collect regions of mis-assembly 

(http://mummer.sourceforget.net). dnadiff performs a whole-genome alignment and 

compactly summarizes the location and characteristics of differences between two 

contig sets. For aligning contigs to a reference genome, this process is identical to the 

read mapping discussed in the Read breakpoint analysis section. Using the same 

algorithm, the contig set is mapped to the reference genome using Nucmer, and the 

optimal mapping for each contig is identified. The alignment information is then 

parsed, and all alignment breakpoints are identified. By default, Nucmer creates a 

contiguous alignment as long as the average nucleotide identity is greater than 70% 

for a 200 bp window; therefore, any stretch of greater than ~60 mis-matches will 

force the alignment to break. After alignment, the breakpoints are classified as 

insertions, deletions, rearrangements, or inversions based on their surrounding 

context. For example, a breakpoint between a forward-strand and negative-strand 

alignment on the same contig is classified as an inversion. For the Phrap contigs, only 

alignment differences that produced a breakpoint were considered as mis-assemblies. 

Small differences such as consensus SNPs, short indels (< ~60 bp), and breakpoints 

occurring within the first 10 bp of a contig were ignored. All contigs less than 5,000 

bp were also ignored because of their generally low quality. 
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amosvalidate was then run on all 16 Phrap assemblies to determine if the mis-

assembled regions were correctly identified. Table 6.1 gives a summary of the Phrap 

induced mis-assemblies, along with statistics detailing the performance of 

amosvalidate. Table 6.2 gives specific details on the types of mis-assemblies 

introduced by Phrap, and the size characteristics of the amosvalidate features. Mis-

joins (rearrangements) where the most prevalent type of mis-assembly reported by 

dnadiff. 

In summary, the sensitivity of the methods is quite good. 96.9% of known 

mis-assemblies are identified by one or more amosvalidate signatures, and 92.6% are 

identified by one or more amosvalidate suspicious regions. However, the apparent 

specificity appears quite low. The over-prediction of mis-assembly signatures can be 

mostly ignored, because each signature represents a true violation of the five rules 

listed in the introduction. These are meant to highlight inconsistencies in the 

assembly, and do not always correspond to actual mis-assemblies. The over-

prediction of suspicious regions appears to indicate a limitation of automated 

methods. In this case, it is mostly due to the nature of the Phrap algorithm. Because 

the version of Phrap used in this analysis disregards mate-pair information, many 

reads are placed in incorrect repeat copies. This leads to both correlated SNPs in the 

read multi-alignment and unsatisfied mate-pairs. In some cases, misplacing repetitive 

reads is benign and the resulting consensus sequence is correct. However, 

amosvalidate identifies the SNPs and unsatisfied mates as a signature of mis-

assembly and reports the region as suspicious. This is arguably the correct behavior, 

and for the false-positives that were manually investigated, this was indeed the case. 
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This is also the reason for such a large fraction of some assemblies being marked as 

suspicious (as high as 50% in some cases, see Table 6.2). Acceptable specificity of 

the method for more sophisticated assemblers is evidenced by the previous D. virilis 

example, where analysis of the 556 Kbp Celera Assembler contig revealed only 6 

suspicious regions that covered 4% of the total sequence. 

As would be expected, the wide variance of mis-assemblies found in the 

Phrap assemblies roughly correlates with genome repeat content, with no mis-

assemblies being found in the small, non-repetitive assembly of Neorickettsia 

sennetsu, and 151 being found in the complex assembly of Xanthomonas oryzae, 

which contains many highly repetitive insertion sequence (IS) elements. The quality 

of these two assemblies is clearly reflected in the percentage of the genome marked as 

suspicious (3.5% and 55.1% respectively). Also interesting are the 3 mis-assemblies 

identified in the Mycoplasma capricolum assembly, none of which were identified by 

amosvalidate. Manual inspection of the reference alignment shows tandem repeat 

expansions of lengths 42, 240, and 654 bp. However, the assembly appears sound at 

these points with no fluctuation in CE statistic, good coverage, and few unsatisfied 

mates. Closure teams generally spend extra effort to properly handle repetitive 

regions, but if these repeats went unidentified during the closure process, it is possible 

that the reference sequence was mis-assembled. Unfortunately, the original assembly 

is not available for this genome, and only experimental validation could confirm the 

exact length and copy number of these repeats. 

 
 
 
 



 

 
 

158 
 

Table 6.1: Accuracy of amosvalidate mis-assembly detection signatures and suspicious 
regions summarized for 16 bacterial genomes assembled with Phrap. 

 Mis-assembly 
Signatures 

Suspicious 
Regions 

Species1 Len2 Ctgs3 Errs4 Num5 Valid6 Sens7 Num Valid Sens 

B. anthracis 5.2 87 2 1336 21 100.0 127 2 100.0 
B. suis 3.4 120 10 1047 30 80.0 158 9 90.0 

C. burnetii 2.0 55 22 1375 70 100.0 124 19 100.0 
C. caviae 1.4 270 12 625 16 83.3 50 8 66.7 

C. jejuni 1.8 53 5 290 11 80.0 61 3 60.0 
D. ethenogenes 1.8 632 12 688 22 91.7 88 9 100.0 
F. succinogenes 4.0 455 21 1670 27 95.2 266 14 66.7 

L. monocytogenes 2.9 172 1 1381 5 100.0 201 1 100.0 
M. capricolum 1.0 17 3 83 0 0.0 16 0 0.0 

N. sennetsu 0.9 16 0 91 0 NA 13 0 NA 
P. intermedia 2.7 243 21 1655 57 100.0 201 20 100.0 

P. syringae 6.4 274 64 2841 200 98.4 366 55 98.4 
S. agalactiae 2.1 127 21 687 53 95.2 112 18 85.7 

S. aureus 2.8 824 41 1850 69 97.6 227 18 75.6 
W. pipientis 3.3 2017 31 761 92 100.0 132 30 100.0 

X. oryzae 5.0 50 151 2569 379 100.0 100 69 100.0 

Totals 46.8 5412 417 18949 1052 96.9 2242 275 92.6 
1Species name, 2genome length, 3number of assembled contigs, and 4alignment inferred mis-assemblies. 
The 5total count, 6number coinciding with a known mis-assembly, and 7percentage of known mis-assemblies 
identified are given for both mis-assembly signatures and suspicious regions. A signature or region is deemed 
“validated” if its location interval overlaps a mis-assembled region identified by dnadiff. 
 
Table 6.2: Types of detected mis-assemblies and feature characteristics for the results 
presented in Table 6.1. 

 
Mis-assembly types 

Mis-assembly 
Signatures 

Suspicious 
Regions 

Species Len Ins1 Del2 Join3 Inv4 Num5 aLen6 %Len7 Num aLen  %Len 
B. anthracis 5.2 0 0 2 0 1336 831 21.5 127 5546 13.6 

B. suis 3.4 0 0 7 3 1047 1354 42.2 158 7575 35.6 
C. burnetii 2.0 0 0 13 9 1375 1106 74.3 124 11455 69.4 
C. caviae 1.4 0 0 11 1 625 320 14.1 50 3896 13.7 

C. jejuni 1.8 1 0 3 1 290 613 10.0 61 1981 6.8 
D. ethenogenes 1.8 0 0 8 4 688 691 26.5 88 4116 20.2 
F. succinogenes 4.0 0 1 19 1 1670 1387 57.5 266 7396 48.8 

L. monocytogenes 2.9 0 0 1 0 1381 873 42.1 201 5254 36.9 
M. capricolum 1.0 3 0 0 0 83 835 6.8 16 3005 4.7 

N. sennetsu 0.9 0 0 0 0 91 512 5.4 13 2328 3.5 
P. intermedia 2.7 0 0 19 2 1655 727 44.5 201 6263 46.5 

P. syringae 6.4 0 1 43 20 2841 782 34.4 366 5725 32.4 
S. agalactiae 2.1 0 0 16 5 687 793 25.6 112 4082 21.5 

S. aureus 2.8 1 0 34 6 1850 740 49.0 227 5582 45.4 
W. pipientis 3.3 0 0 17 14 761 1206 28.1 132 6395 25.8 

X. oryzae 5.0 1 0 74 76 2569 1551 79.0 100 27771 55.1 

Totals 46.8 6 2 267 142 18949 895 35.1 2242 6773 30.0 
1Tandem insertion, 2tandem collapse, 3mis-join, and 4inversion mis-assemblies. 
The 5total count, 6average length, and 7total length as a percentage of genome are given for both mis-assembly 
signatures and suspicious regions. 
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6.5 Discussion 

Due to the high cost of genome finishing, an increasing number of genomes, 

both prokaryotic and eukaryotic, are sequenced to only a draft level. Efforts at 

providing quality standards for draft genomes (e.g. the comparative-grade standard 

[212]) have not yet addressed the issue of large-scale mis-assemblies, leading to the 

likely possibility that such mis-assemblies are present in the data deposited (at an ever 

increasing rate) in public databases. In addition, this chapter has shown that mis-

assemblies can persist even in “finished” genomes. This situation is particularly 

troubling as scientists move away from the “gene by gene” paradigm and attempt to 

understand the global organization of genomes. Without a clear understanding of the 

errors present in the data, such studies may draw incorrect conclusions. The 

validation capabilities provided by amosvalidate provide a first step towards a robust 

set of measures of assembly quality that go beyond the simple base-level measures 

commonly used. Future work could explore methods for converting mis-assembly 

features into a type of assembly quality score representing the probability of mis-

assembly at any location. The tools presented here, combined with tools designed to 

correct assemblies, will ultimately lead to automated finishing protocols that could 

dramatically improve the quality of draft-level assemblies. 

6.6 Author Contributions 

A version of this chapter appeared previously in published form: 

Phillippy AM, Schatz MC, Pop M (2008) Genome assembly forensics: finding the 
elusive mis-assembly. Genome Biol 9: R55. 
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This text was coauthored with Michael Schatz and Mihai Pop. I developed the AMOS 

infrastructure, breakpoint validation, and feature combiner; performed the analysis 

and generated the results; and drafted the corresponding sections of the text and the 

introduction. Michael Schatz developed the methods for repeat validation, micro-

heterogeneity detection, and visualization; and drafted the corresponding sections of 

the text. Mihai Pop directed the project; developed the mate-pair validation; 

performed the B. anthracis validation; and drafted the corresponding sections of the 

text. 
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Chapter 7 

Conclusion 

The computational methods and tools presented in this dissertation integrate 

with advanced biotechnology techniques to create more effective methods for real-

time pathogen detection using PCR, comparative genomic analysis using microarrays, 

and whole-genome sequence assembly. I have contributed novel computational 

methods enabling more effective design or analysis in each of these three areas. 

Together they form a comprehensive diagnostic suite capable of both rapidly 

detecting a pathogen and characterizing its genomic composition at the single 

nucleotide level. As biotechnology advances, nucleic acid tests will continue to 

improve in accuracy, cost, and portability. The power and versatility of these tests 

promise to revolutionize modern diagnostics, leading to more effective pathogen 

screening and diagnosis, and improving the lives of millions. 

In addition, the computational advances in this dissertation are broadly 

applicable to many other areas of bioinformatics and genome biology. For example, 

the Insignia database fundamentally represents a distance, in the number and size of 

matches, between all pairs of sequenced genomes. Because it is quick to compute, 

relative to other distance metrics, this method could be used for future phylogenetic 
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studies of many whole genomes. Additionally, investigating the nature and function 

of “signature genes” may help explain what it means to be a bacterial species. To 

survey environmental diversity, the new pan-genome microarrays introduced here are 

applicable to metagenomics, and could be used to minimally tile multiple 

phylogenetic markers for either sequence capture or enrichment from an 

environmental sample. Finally, improvements in genome assembly and validation not 

only benefit diagnostics and forensics, but all sequence based analyses. I am in the 

process of extending these assembly techniques to problematic assembly data sets, 

such as polyploid eukaryotes and metagenomic samples. 

Bioinformatics is a data-driven science, intertwined with rapidly advancing 

biological experiments that, as this dissertation has shown, are impossible without 

sophisticated computational support. Advances in technology are leading to data 

surpluses that must be managed by corresponding advances in bioinformatics. 

Analyzing this data requires continued contributions from computer scientists in 

many areas, including algorithms, databases, machine learning, and systems. This 

dissertation has benefitted greatly from the cross-fertilization between computer 

science and high-throughput biology, and I plan to continue straddling these areas in 

order to adapt and invent practical methods that keep advancing genomics and 

modern diagnostics. 
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 Abbreviations 

BAC  bacterial artificial chromosome 

bp  base pair (of DNA) 

CE-stat compression-expansion statistic 

CGH  comparative genomic hybridization 

Ct  threshold cycle 

DNA  deoxyribonucleic acid 

HG  homologous groups 

Kbp  kilo base pairs 

LI  Listeria monocytogenes lineage I 

LII   Listeria monocytogenes lineage II 

LIII   Listeria monocytogenes lineage III 

Mbp  mega base pairs 

MEM  maximal exact match 

PCR  polymerase chain reaction 

qPCR  quantitative PCR 

ROC  receiver operating characteristic 

RNA  ribonucleic acid 

SNP  single nucleotide polymorphism 

spp.  species 

TIGR  The Institute for Genomic Research 

VNTR  variable number tandem repeat 
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