
ABSTRACT

Title of dissertation: PROTEIN-PROTEIN DOCKING USING
LONG RANGE NUCLEAR MAGNETIC
RESONANCE CONSTRAINTS

Konstantin Berlin, Doctor of Philosophy, 2010

Dissertation directed by: Dianne P. O’Leary
Department of Computer Science
David Fushman
Department of Chemistry and Biochemistry

One of the main methods for experimentally determining protein structure

is nuclear magnetic resonance (NMR) spectroscopy. The advantage of using NMR

compared to other methods is that the molecule may be studied in its natural

state and environment. However, NMR is limited in its facility to analyze multi-

domain molecules because of the scarcity of inter-atomic NMR constraints between

the domains. In those cases it might be possible to dock the domains based on long

range NMR constraints that are related to the molecule’s overall structure.

We present two computational methods for rigid docking based on long range

NMR constraints. The first docking method is based on the overall alignment tensor

of the complex. The docking algorithm is based on the minimization of the differ-

ence between the predicted and experimental alignment tensor. In order to efficiently

dock the complex we introduce a new, computationally efficient method called PATI

for predicting the molecular alignment tensor based on the three-dimensional struc-

ture of the molecule. The increase in speed compared to the currently best-known



method (PALES) is achieved by re-expressing the problem as one of numerical inte-

gration, rather than a simple uniform sampling (as in the PALES method), and by

using a convex hull rather than a detailed representation of the surface of a molecule.

Using PATI, we derive a method called PATIDOCK for efficiently docking a two-

domain complex based solely on the novel idea of using the difference between the

experimental alignment tensor and the predicted alignment tensor computed by

PATI. We show that the alignment tensor fundamentally contains enough informa-

tion to accurately dock a two-domain complex, and that we can very quickly dock

the two domains by pre-computing the right set of data.

A second new docking method is based on a similar concept but using the

rotational diffusion tensor. We derive a minimization algorithm for this docking

method by separating the problem into two simpler minimization problems and

approximating our energy function by a quadratic equation.

These methods provide two new efficient procedures for protein docking com-

putations.
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Chapter 1

Introduction

1.1 Background

The fundamental mechanism of any system is determined by the way in which

components of that system come together and interact. The fundamental component

that allows inanimate molecules to function as a living system is DNA (deoxyribonu-

cleic acid). DNA contains the instructions for the production of proteins, which in

turn are the machinery that run the cells in a living organism.

Proteins are large molecules made up of amino acids, and they are responsible

for all functionality of a living organism. For example, structural proteins provide

support in bones and connective tissues. Protein enzymes act as catalysts for chem-

ical reactions in the body. Hemoglobin proteins transport oxygen, and Rhodopsin

proteins absorb photons in order to facilitate vision. Proteins are also used for

signaling and communication, among other functions [40].

The synthesis of proteins is a multi-step process: Genes encoded in the DNA

are transcribed into mRNA, which are then used by ribosomes to assemble a se-

quence of amino acids. The assembled sequence of amino acids then folds into a

globular form that we call a protein. A specific protein’s functionality is partially

determined by the structure that it folds into, which is dependent on its physical

environment as well as its amino acid sequence.
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There are two primary ways of studying the functionality of proteins. We can

look at the sequences of DNA and how they correlate with physically observable

behavior, or we can observe protein behavior directly. Until recently, it was not

possible to data mine DNA sequences for protein functionality due to lack of com-

puter power and DNA sequencing data. With the tremendous growth of computing

power over the past few decades and improvement in DNA sequencing techniques,

it has finally become feasible to start analyzing DNA for clues about how living

organisms function.

In DNA analysis, DNA is examined in hopes of finding relationships between

sequences and the overall behavior of the system. DNA analysis has generated large

amounts of data over the years, but has run into difficulty predicting which proteins

are present in a living organism, and their functionalities [40]. The difficulty with

predicting protein functionality from a DNA sequence is that DNA contains only

the instruction for the amino acid sequence; it does not contain information on what

structure that amino acid sequence will fold into, or information on how that protein

will interact with other proteins – which determines the protein’s functionality.

Only in the past few years has computer power developed to the point of

allowing for direct analysis of protein behavior, rather than the indirect analysis

of DNA. The key to understanding the functionality of a protein is to find how it

interacts with other parts of an organism. One of the most common interactions with

other proteins is through binding. Understanding how proteins bind to one other is

especially critical to successful drug design. The orientation and positioning of the

bound proteins relative to one another is referred to as “domain positioning”, and
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is a fundamental topic in structural biology.

A molecule that results from multiple proteins binding to one another is re-

ferred to as a “complex” or a “multi-domain protein”, where “domain” refers to

the individual protein.1 Ideally, one would determine the complete structure of a

multi-domain protein to ascertain how the domains bind to one another.

There are two primary methods for experimentally determining protein struc-

ture. Both of these methods are limited in their ability to determine structure for a

large multi-domain protein.

The first method is X-ray crystallography. In X-ray crystallography, a crys-

tal of the protein is grown and then exposed to a beam of X-ray radiation which

produces a diffraction pattern. Using specialized software in conjunction with other

constraint information, it becomes possible to analyze the diffraction pattern and de-

termine the three-dimensional structure of the protein [40]. One of the fundamental

drawbacks of X-ray crystallography is that the crystal structure may not represent

the actual conformation of the molecule due to packing forces exerted during crystal-

lization, and due to the fact that motion is almost completely restricted in crystals.

Additionally, getting proteins to crystallize is a notoriously frustrating process that

may not end with success.

The second method for experimentally determining protein structure is nuclear

magnetic resonance (NMR) spectroscopy. This method involves placing the molecule

1Multi-domain protein could also refer to one single amino acid sequence whose different parts

fold separately and then bind to each other. This is the reason why we refer to the protein as

“multi-domain” rather than “multi-protein”.
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in a static magnetic field, exposing it to a second oscillating magnetic field, and then

collecting and analyzing the resulting data. The device that houses and controls the

magnets is called an NMR Spectrometer. In order to produce meaningful data the

magnets must to be controlled by a very specific series of instructions, referred to as

a pulse sequence. One of the properties that an NMR experiment measures is the

Nuclear Overhauser Effect (NOE). NOE gives constraints on the distances between

two atoms in a molecule. As in X-ray crystallography, the resulting data is used

as constraints in a software package that computes the three-dimensional structure.

The advantage of using NMR over X-ray crystallography is that the molecule may

be studied in its natural state and environment. However, NMR is limited in its

facility to analyze multi-domain proteins because of the scarcity of NOEs between

inter-domain atoms. Even if NOEs are observed, the high rate of motion between

the domains may make the data uninterpretable.

Even though there is scarce information between the multiple domains of a

complex, usually there is significant NMR data between atoms that are inside the

individual domains, which makes it possible to determine the structure of the in-

dividual domain but not the position of the domains relative to each other. To

determine how the domains are positioned relative to each other, we can use global

molecular properties. For example it has been shown that global NMR properties

like the molecular alignment tensor [61, 4] and the diffusion tensor [13], and non-

NMR data from Small-angle X-ray scattering [66, 17] are dependent on the shape of

the molecule, which is directly dependent on the relative positions of the domains.

The proper positioning of domains in a multi-domain protein is referred to
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as protein-protein docking. In rigid protein-protein docking it is assumed that the

structure of the individual domains is known while in flexible protein-protein docking

movement of atoms inside the domain and interacting regions is allowed. To solve

the rigid docking problem, an energy function is created that rates the feasibility

of a particular domain positioning. The more feasible the docking, the lower the

energy function value. Global minimization is performed on this energy function to

find the domain positioning that provides the lowest energy value.

A number of methods exist that perform two-domain docking ab initio (see

e.g., [65, 54, 18]). The energy functions that these programs use are based on heuris-

tics derived from evaluation of the surface complementarities, electrostatic interac-

tions, van der Waals repulsion, etc.. The resulting energy functions are extremely

complex, computationally expensive, and not convex, requiring the use of algorithms

such as simulated annealing or genetic algorithms to search the entire space. The

results are unreliable because of the stochastic nature of the algorithms, the diffi-

culty in accurately ranking the multitude of possible solutions that those programs

return, and the fact that the results are not backed by any observed experimental

data.

To overcome the potential problems with ab initio docking, other docking

methods have been developed that rely on experimental information instead of

heuristics [26, 74, 75]. Those methods prove effective in determining structure when

enough inter-domain constraints are available. Unfortunately, it might be difficult or

impossible to measure inter-domain constraints for a large number of multi-domain

proteins, due to weak interactions or movement between the domains.
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In order to dock multi-domain proteins in the absence of inter-domain con-

straints we look at the molecule’s global NMR properties. Since change in different

parts of the molecule can affect its overall global properties, we can think of a

molecule’s global properties as “long range NMR constraints”. One such global

property is the (molecular) alignment tensor. The alignment tensor can be observed

in an NMR experiment by introducing barriers into a solution, therefore biasing cer-

tain orientations of the molecule relative to others. The alignment tensor is a long

range NMR constraint since bias in orientations depends on the molecule’s overall

shape. Another global property is the rotational diffusion tensor. The rotational

diffusion tensor is a reflection of how fast a molecule is re-orientating around its

axes in a solvent. Since the rate of re-orientation is related to the molecule’s overall

shape, the rotational diffusion tensor is also a long range NMR constraint.

In this thesis we develop and analyze two separate but similar methods for

docking two-domain proteins based on long range NMR constraints. In the rest

of this chapter we outline our contribution and introduce the computational con-

cepts used in our methods. In Chapter 2, we describe and analyze PATI, a new

computationally efficient method we developed for predicting the alignment tensor

based on molecular shape. In Chapter 3, we describe PATIDOCK, a new com-

putationally efficient method of docking based solely on the difference between the

experimental alignment tensor derived from NMR data and the predicted alignment

tensor computed by PATI. In Chapter 4, we present an improvement on ROTDIF,

a method for computing the experimental rotational diffusion tensor, and present

an improved docking method, ELMDOCK, that uses the difference between the
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experimental rotational diffusion tensor computed by ROTDIF and the predicted

rotational diffusion tensor to dock two-domain proteins. Finally, in Chapter 5 we

sum up our work, and discuss possible future directions.

1.2 Contribution

The thesis contains three major contributions in the field of protein structure

determination.

The first main contribution is presented in Chapter 2 and includes the follow-

ing:

• We develop a new, computationally efficient method called PATI for comput-

ing the molecular alignment tensor based on the molecular shape.

– We introduce and derive the formulas and methods for using numerical

integration to reduce the dimensionality of the computation, improve the

speed, and better control the accuracy of the result.

– We introduce and develop the concept of using a convex hull instead

of molecular shape to improve the speed of the method by significantly

reducing the number of sample points that are used to represent molecular

shape.

• We compare the accuracy of our method to that of the best known methods

for computing the molecular alignment.

• We extensively analyze the types of errors in those methods and show that
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the accuracy of PATI is equivalent to or better than all other methods.

The second major contribution is presented in Chapter 3 and includes the

following:

• We introduce the novel idea of docking a two-domain complex based on the

overall alignment tensor.

• We show that it is fundamentally possible to accurately dock a wide vari-

ety of proteins in an experimental setting, assuming perfect prediction of the

alignment tensor.

• We develop a computationally efficient method called PATIDOCK for docking

two-domain molecules based on the experimental alignment tensor and our

developed method PATI for predicting the alignment tensor.

– We introduce a way of combining and precomputing information to effi-

ciently recompute the energy function under translational motion of the

second domain.

– We analytically derive the Jacobian of the energy function in order to

efficiently minimize the energy function.

• We show that PATIDOCK is able to handle experimental errors.

• We analyze the accuracy of PATIDOCK on real experimental data, and com-

bine PATIDOCK with additional experimental constraints to improve results.

The third major contribution is presented in Chapter 4 and includes the fol-

lowing:
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• We computationally improve upon ROTDIF, a method for computing the

experimental diffusion tensor.

• We develop a computationally efficient method, ELMDOCK, for docking two-

domain molecules based on the experimental diffusion tensor.

– We break the docking problem down into two components that are indi-

vidually much faster to solve than the full problem.

– We derive a method for efficiently computing the steps and the initial

guess in the minimization of our energy function.

– We derive a method for efficiently approximating our energy function,

further speeding up the minimization.

• We analyze how robust ELMDOCK is to common experimental errors.

• We analyze the accuracy of ELMDOCK on real experimental data.

1.3 Numerical Background

In this section we review key numerical concepts that are used in our methods.

Section 1.3.1 describes matrix properties, and Section 1.3.2 describes methods for

deriving a simplified representation of a molecule. We heavily reference both of these

sections when deriving our PATI, PATIDOCK, and ELMDOCK methods. Addi-

tional standard numerical methods are presented in the Appendix, which surveys

numerical algorithms for minimization (Appendix A) and integration (Appendix B).
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1.3.1 Properties of Symmetric Matrices

In this section we define and present properties of symmetric matrices that

are used throughout the thesis. This section is fundamental to understanding the

properties of both the diffusion and the alignment tensors, as both are expressed as

symmetric matrices.

Definition 1.1 (Cardinality). If S is a set of n elements then |S| = n is the

cardinality of the set.

Definition 1.2 (Frobenius-norm). If A is an m×n matrix, then the Frobenius-norm

of A is

‖A‖F ≡
√√√√

m∑
i=1

n∑
j=1

A2
ij. (1.1)

We use the Frobenius-norm as the main method of quantifying the size of a

matrix or the difference between two matrices.

Definition 1.3 (Symmetric Matrix). A is a symmetric matrix if and only if A =

AT .

Both the alignment tensor and the diffusion tensor are 3 × 3 symmetric ma-

trices, and therefore by definition have at most six degrees of freedom.

In order to efficiently use and analyze the alignment and diffusion tensors it

is necessary to separate the tensor (alignment or diffusion) into orientational and

magnitudinal components.

Definition 1.4 (Orthogonal Matrix). V is an orthogonal matrix if

VTV = VVT = I. (1.2)
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If V is a special orthogonal matrix then also detV = 1.

Definition 1.5 (Sorted Eigendecomposition). Let A be a 3× 3 symmetric matrix.

Then the sorted eigendecomposition of A is

A = VΛVT =

[
V1 V2 V3

]




λ1 0 0

0 λ2 0

0 0 λ3




[
V1 V2 V3

]T
, (1.3)

where λ1 ≤ λ2 ≤ λ3 are the principal values (eigenvalues), V is a special orthogonal

matrix, and V1, V2, V3 (each of dimension 3× 1) are the associated directions of the

principal components (eigenvectors).

Using eigendecomposition we are able to separate the orientation (eigenvec-

tors) from the magnitude (eigenvalues) in the alignment and diffusion tensors. Ob-

serve that we still have six degrees of freedom, with three parameters describing

orientation (as we will explain in Definition 1.9), and three parameters describing

magnitude of the tensors.

Eigendecompositions are not unique and can cause ambiguity when comparing

orientation of multiple symmetric matrices.

Definition 1.6 (Four-Fold Ambiguity). Let A be a 3 × 3 symmetric matrix with

a eigendecomposition A = VΛVT where no two eigenvalues are equal. Since the

eigendecomposition of A is insensitive to the eigenvectors being pointed in the oppo-

site direction, there are eight different sorted eigendecompositions of A. If we only

look at the sorted eigendecompositions where V is a special orthogonal matrix then
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there are four equivalent sorted eigendecompistions of A:

A =

[
V1 V2 V3

]
Λ

[
V1 V2 V3

]T
,

=

[
−V1 V2 −V3

]
Λ

[
−V1 V2 −V3

]T
,

=

[
V1 −V2 −V3

]
Λ

[
V1 −V2 −V3

]T
,

=

[
−V1 −V2 V3

]
Λ

[
−V1 −V2 V3

]T
.

(1.4)

We refer to the fact that there are four equivalent eigendecompositions as four-

fold ambiguity.

The alignment tensor, in addition to being a symmetric matrix, is also a

traceless matrix.

Definition 1.7 (Trace). The trace of a matrix is the sum of its eigenvalues. If the

trace is zero, the matrix is said to be traceless.

The alignment tensor has five degrees of freedom, three in the orientation and

two in the magnitude.

The diffusion tensor, unlike the alignment tensor, has a trace but its eigenval-

ues have to be positive, and therefore is a positive definite symmetric matrix.

Definition 1.8 (Positive Definite Matrix). A is a positive definite symmetric 3× 3

matrix if and only if the eigenvalues λ1, λ2, and λ3 are positive.

In some cases it is useful to represent the orientation of a symmetric matrix

by a set of angles instead of an orthonormal matrix.
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Definition 1.9 (Euler Representation). If V is an orthogonal 3× 3 matrix, then V

can alternatively be represented by the three Euler angles α,β, and γ that define the

Euler rotation R, such that

V = R(α, β, γ)

≡




cosα cos β cos γ − sinα sin γ − cosα cos β sin γ − sinα cos γ cosα sin β

sinα cos β cos γ + cosα sin γ − sinα cos β sin γ + cosα cos γ sinα sin β

− sin β cos γ sin β sin γ cos β



.

(1.5)

Note that there are multiple ways to define an Euler rotation matrix. We use

this definition in ELMDOCK (see Section 4.2), but present an alternative definition

in PATI (see Section 2.2.2).

Alternatively, any rotation can also be represented by an axis-angle represen-

tation. An axis-angle representation of a rotation parameterizes the rotation by

two values: A unit vector indicating the orientation of the axis, u, and an angle, θ,

describing the magnitude of the rotation about that axis. The direction of rotation

around the axis u is determined by the right-hand rule. One advantage of the axis-

angle representation over Euler angles representation is that one can easily quantify

the magnitude of the rotation by the size of the rotation angle θ.

Definition 1.10 (Angle of Axis-Angle Representation). Given a rotation matrix R,

the angle of the axis-angle representation θ is computed as

θ = arccos(
1

2
(R11 +R22 +R33 − 1)). (1.6)
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1.3.2 Simplified Representations of a Molecule

A central theme in this thesis is the construction of a simplified representation

of a molecule. Here we present four different methods, where the first three methods

are based on finding an ellipsoidal representation of a molecule, and the last one is

based on the convex hull of a molecule.

1.3.2.1 Minimum Volume Ellipsoid

The first method for finding an equivalent ellipsoid around a molecule is to

find the minimum volume ellipsoid containing all of its atoms.

Definition 1.11 (Ellipsoid). An ellipsoid E in R3 is defined as

E(A, c) =
{
x | (x− c)TA(x− c) = 1

}
,

where A is an 3× 3 symmetric positive definite matrix that defines the shape of the

ellipsoid, and c ∈ R3 is its center.

The ellipsoid’s principal semi-axes can be derived by a sorted eigendecompo-

sition of A, such that

A = VΛVT =

[
V1V2V3

]




λ1 0 0

0 λ2 0

0 0 λ3




[
V1V2V3

]T
, (1.7)

where lengths of the principal semi-axes are

`1 = 1/
√

λ1, `2 = 1/
√

λ2, `3 =
√

λ3, (1.8)

14



and V1, V2, V3 are their associated directions. If `2 = `3 then the ellipsoid is

referred to as a prolate ellipsoid.

Definition 1.12 (MVE). The minimum volume ellipsoid (MVE) around a set of

points P ⊂ R3, is an ellipsoid with the smallest volume that contains all points in

P .

The MVE has applications in wide variety of fields, including computational

geometry, clustering, and statistics. Methods for deriving a MVE have been exten-

sively studied and multiple methods for its computation have been proposed (see

Introduction in [68]). The most intuitive method is to express the problem as a

minimization problem [77]. The volume of an ellipsoid E is equal to

V ol(E) = π3/2

Γ(3/2 + 1)

1√
|detA| , (1.9)

where Γ(·) is the Gamma function. Therefore, solving the minimization problem:

argmin
A,c

log
(
detA− 1

2

)

s.t. (x− c)TA(x− c) ≤ 1 ∀x ∈ P,

(1.10)

yields a solution for A and c.

Another approach to computing the MVE is a randomized algorithm that

incrementally grows the ellipsoid by adding points [83].

1.3.2.2 Gyration Ellipsoid

The second method for constructing an equivalent ellipsoid is based on the

gyration tensor of the molecule. This method has been suggested in Fernandes et

al. [30].
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Definition 1.13 (GE). Given a set of N points P ⊂ R3 where pm is the m-th point

in the set, the center of the gyration ellipsoid is c = [c1, c2, c3], where

ci =
1

N

N∑
m=1

pmi , (1.11)

the gyration tensor is

Gij =
1

N

N∑
m=1

(pmi − ci)(p
m
j − cj), i, j = 1, 2, 3, (1.12)

and the matrix that defines the shape of the ellipsoid is

A = V




1/(5λ1) 0 0

0 1/(5λ2) 0

0 0 1/(5λ3)



VT , (1.13)

where λ1, λ2, λ3 are the eigenvalues of G and V is the matrix of the associated

eigenvectors. The gyration ellipsoid (GE) of P is E(A, c).

1.3.2.3 Principal Component Analysis Ellipsoid

A third method for finding an equivalent ellipsoid for an arbitrary molecule

is based on the principal component analysis of the surface points of the molecule.

First we observe that the correct representation of the surface of an object depends

on what the object is interacting with. For example, a fly net is a solid surface to a

fly, but to an air molecule, it is extremely porous. The protein’s surface represen-

tation therefore depends on the type of solvent it is in. The larger the molecules

of the solvent, the smoother the protein’s surface. This concept was formulated by

Richards in [55].
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Definition 1.14 (Richards’ smooth molecular surface). The Richards’ smooth molec-

ular surface of a molecule is the surface which an exterior probe-sphere touches as

it is rolled over the spherical atoms of that molecule.

Figure 1.1 shows the Cyanovirin-N molecule and its Richards’ smooth molec-

ular surface.

(A) (B)

Figure 1.1: Visual representations of Cyanovirin-N. (A) Van der Waals surface of Cyanovirin-N.

(B) Richards’ smooth molecular surface of Cyanovirin-N in water.

To calculate the Richards’ smooth molecular surface, we use the program

designed by Varshney et al. [80, 79]. We refer to this program as SURF. SURF’s

usage and parameters are further discussed in Ryabov et al. [58].

To find a principal component analysis ellipsoid (PCAE), E∗, of a molecule,

we look for an ellipsoid that has the same covariance matrix as the triangulation

points from the Richards’ smooth molecular surface of the molecule. This method

was first presented in Ryabov et al. [58].

17



A covariance matrix of the surface can be thought of as a simple description

of the surface’s shape. If the covariances are small, then the points are close to the

center of the molecule, and the molecule is small. The larger the elements of the

covariance matrix, the larger the molecule.

Define S to be a finite set of sample points from the Richards’ smooth molec-

ular surface2 of the molecule M , where |S| = n is the number of points in S, and

sk ∈ S is the kth point.

The mean of S is

µi =

∑n
v=1 s

v
i

n
, for i = 1, 2, 3, (1.14)

the covariance matrix is

Ci,j =

∑n
v=1 s

v
i s

v
j

n
− µiµj, for i, j = 1, 2, 3, (1.15)

and the sorted eigendecomposition of the covariance matrix is

C = V




λ̂1 0 0

0 λ̂2 0

0 0 λ̂3



VT . (1.16)

By Theorem (C.1), the PCAE ellipsoid (an ellipsoid that has the same covari-

2We take the vertices from the surface mesh computed by Varshney et al.. [80, 79] as our surface

points. The methods of sampling the surface is not limited to this particular method, and one

could use more advanced techniques to get a set of surface points that could lead to more accurate

computation of the diffusion tensor.
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ance matrix) of S is

E∗ = E



V




1/(3λ̂1) 0 0

0 1/(3λ̂2) 0

0 0 1/(3λ̂3)



VT , µ




. (1.17)

To compensate for the fact that water can attach to a molecule and form a

hydration layer, Ryabov et al. [58] introduced the “Hydration Layer Thickness”

(HLT) parameter. The parameter increases the radii of the atoms to simulate the

attachment of water. The increase or decrease in the radii directly manipulates the

equivalent ellipsoid. Figure 1.2 presents the Richard’s molecular surface of ubiq-

uitin/UBA complex [85] with no Hydration Layer Thickness (Figure 1.2A) and a

Hydration Layer Thickness of 2.8Å (Figure 1.2B).

(A) (B)

Figure 1.2: Richards’ molecular surface of the ubiquitin/UBA complex [85] (PDB code 2JY6) in

water. Domain A is drawn in green and domain B is drawn in red. (A) The surface with HLT=0Å.

(B) The surface with HLT=2.8Å.
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1.3.2.4 Convex Hull

The last method for simplifying the representation of the molecule is to com-

pute the convex hull of the centers of the molecule’s atoms.

Definition 1.15 (Convex Hull). The convex hull of a set of points S ∈ R3 is the

boundary of the minimal convex set containing S.

Intuitively, a convex hull in three dimension can be visualized as the surface

of a plastic bag that has been tightly wrapped around a set of points in space. See

Berg [22] for details on how to compute the convex hull. We compute the convex

hull of molecules in PATI (Chapter 2) and PATIDOCK (Chapter 3).

Figure 1.3 shows the four simplified representations of a molecule for the spe-

cific case of the Cyanovirin-N molecule.
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(A) (B)

(C) (D)

Figure 1.3: Convex hull and equivalent ellipsoids for the Cyanovirin-N molecule drawn on top of

its van der Waals surface. (A) The convex hull around the molecule. (B) The GE representation.

(C) The MVE representation. (D) The PCAE representation with HLT=0Å.
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Chapter 2

Prediction of Alignment Tensor using Integration (PATI)

The work presented in this chapter is taken from Berlin et al. [6]. In this chap-

ter we describe a new, computationally efficient method for computing the molecular

alignment tensor based on the molecular shape. The increase in speed is achieved

by re-expressing the problem as one of numerical integration, rather than a simple

uniform sampling (as in the PALES method), and by using a convex hull rather than

a detailed representation of the surface of a molecule. This method is applicable to

bicelles, PEG/hexanol, and other alignment media that can be modeled by steric

restrictions introduced by a planar barrier. This method is used to further explore

and compare various representations of protein shape by an equivalent ellipsoid. We

also examine the accuracy of the alignment tensor and residual dipolar couplings

(RDC) prediction using various ab initio methods. We separately quantify the in-

accuracy in RDC prediction caused by the inaccuracy in the orientation and in the

magnitude of the alignment tensor, concluding that orientation accuracy is much

more important in accurate prediction of RDCs.

2.1 Introduction

Knowledge of protein structure plays a critical role in our understanding of the

molecular mechanisms underlying biological processes. One of the main methods for
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obtaining structural information at atomic-level resolution is the use of nuclear mag-

netic resonance (NMR) spectroscopy for determining structural constraints. The

NMR-derived constraints, such as NOEs, hydrogen bonds, and torsion angles, are

intrinsically local or short-range and could be insufficient for accurate structure de-

termination of biological macromolecules and their complexes due to the scarcity

of long-distance structural information. Residual dipolar couplings (RDCs), re-

sulting from partial alignment of solute molecules relative to the magnetic field,

provide valuable structural information in terms of global, long-range orientational

constraints [4]. A commonly used method for aligning molecules in solution takes

advantage of the anisotropy of molecular shape by imposing steric restrictions on

the allowed orientations of the molecule (e.g. by means of bicelles [67], stretched

gels [70, 60], or PEG/hexanol-based media [56]). Such steric alignment can often be

modeled as caused by planar obstacles, and we will refer to this simplified model of

molecular alignment as the barrier model. The alignment of a rigid molecule can be

described by the so-called molecular alignment tensor. Accurate prediction of the

molecular alignment tensor, and with it of the RDCs, is important for NMR-based

structure determination and validation as well as applications to dynamic and dis-

ordered systems (see e.g., [9, 82, 11, 2, 8, 49]). The sensitivity of the alignment

tensor to molecular shape has the potential for improving structure characteriza-

tion, especially in multi-domain systems and macromolecular complexes (e.g., [57]),

by fully integrating RDC prediction into structure refinement protocols to directly

drive structure optimization. Future progress in this direction critically depends on

the efficiency and accuracy of the alignment tensor prediction.
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Several methods for computing the molecular alignment tensor ab initio, i.e.

based solely on the three-dimensional shape of the molecule, have recently been pro-

posed. In the method by Zweckstetter and Bax [87, 86], implemented in a program

called PALES, the alignment tensor is computed by uniformly sampling all orienta-

tions of a molecule (see e.g., [29]) at various distances away from a planar barrier,

and averaging over only those orientations in which the molecule’s surface does not

collide with the barrier. The computational efficiency of this method is limited due

to the fact that it must compute collisions between an arbitrary shape and a plane

for every sample in the four-dimensional problem space.

Simpler methods based on the barrier model, but representing the shape of

the molecule by an equivalent ellipsoid, have also been proposed. In Fernandes et

al. [30], the alignment tensor was computed by approximating the molecule as an

axially-symmetric prolate ellipsoid and analytically solving the barrier model for

the alignment tensor. In Almond and Axelsen [1] and Azurmendi and Bush [3] the

barrier method is also used, but the formulae are derived empirically.

Here we describe a new, computationally efficient method for computing the

molecular alignment tensor based on the barrier model. The increase in speed

is achieved by re-expressing the problem as one of numerical integration, rather

than one of simple uniform sampling.1 This formulation allowed us to simplify

the problem by reducing its dimensionality from four to two. In addition to the

reduction in computational complexity, numerical integration has the advantage of

(i) allowing control over the size of numerical error, and (ii) allowing a more efficient

1See Appendix B for background on numerical integration.
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sampling of the problem space [76]. Computational geometry techniques are used

to increase the computational speed further. We will refer to our method as PATI

(Prediction of Alignment Tensor using Integration). PATI can also be used with

an equivalent ellipsoid of the molecule instead of the full surface. We will refer

to this simplification as PATI-E. This simplified method is used to explore and

compare various representations of protein shape by a (fully anisotropic) equivalent

ellipsoid: based on the gyration tensor [30], the actual molecular surface [58], or the

minimum-volume ellipsoid.

Finally, we examine the accuracy of the proposed methods (PATI and PATI-

E) and the existing ab initio methods for RDC prediction. This analysis separately

quantifies the effect of inaccuracy in the predicted RDCs caused by the inaccuracy

in the orientation or in the magnitude of the alignment tensor. The results obtained

for several proteins show that (i) the predicted RDCs and their agreement with

experimental data are very sensitive to errors in orientation of the alignment tensor,

and (ii) all ab initio prediction methods tested here give a rather crude estimate of

the RDCs.

2.2 Theory

For a rigid molecule, the molecular alignment tensor A with respect to the

magnetic field B is described by a 3× 3 symmetric traceless matrix [87], sometimes

referred to as the Saupe matrix [61], with the following elements (i, j = 1, 2, 3):

Aij =
1

2
< F ′

ij >, F ′
ij = 3 cos θi cos θj − δij, (2.1)
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where θi is the angle between molecular axis i and the magnetic field B, < ... > is

the average over all possible orientations of the molecule in solution, and δ is the

Kronecker delta.

The RDC value DPQ for a specific bond PQ is related to the alignment ten-

sor and the bond’s orientation relative to the molecule’s coordinate frame by the

following equation:

DPQ = CPQ

∑
i,j

Aij cosφi cosφj,

CPQ = −SLS
µ0γPγQ~
4π2r3PQ

,

(2.2)

where φi is the angle between the PQ bond and the molecular axis i, SLS is the

Lipari-Szabo generalized order parameter, µ0 is the permeability of free space, γP

and γQ are the gyromagnetic ratios of the corresponding nuclei, ~ is the reduced

Planck’s constant, and rPQ is the length of the bond. PQ can represent bonds such

as NH, CαHα, CαC
′, and C ′N . See Cavanagh et al. [16] for the values of constants

in equation (2.2).

2.2.1 The Model for the Alignment Tensor

Given the three-dimensional structure of an arbitrary molecule, we will focus

on the computation of its alignment tensor A, defined in equation (2.1). We model

the planar barrier causing steric alignment2 of the molecule as a set of two infinite

planes with the surface normals in the z direction, positioned at a distance 2h from

each other. The molecule is centered around some point m (e.g., its center of mass),

2Alignment that is caused by the spatial constraints introduced by the barriers.
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Figure 2.1: Planar barrier model for molecular alignment.

which lies somewhere inside the convex hull of the molecule’s surface. The direction

of the magnetic field is given by a unit vector B, where

B =




b1

b2

b3



, b21 + b22 + b23 = 1. (2.3)

Figure 2.1 shows a schematic representation of the planar barrier model. Note

that due to the symmetry of the system, the possible orientations of the molecule

positioned between 0 and h along the z-axis are mirror images (over the x − y

plane) of the possible orientations when the molecule is between h and 2h. Thus we

can simplify the model by considering only the bottom plane and positioning the

molecule’s center at a height from 0 to h above this plane.

The orientation of the molecule’s coordinate frame relative to the Cartesian

coordinate system in Figure 2.1 can be defined by three Euler angles α, β, and γ,

which determine the rotation matrix R(α, β, γ). (See Section 1.3.1.)
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For a specific molecule, we define S to be a finite set of sample points from

its molecular surface (e.g. van der Waals surface or Richards molecular surface),

and the center m of the molecule to be some point inside the convex hull of this

molecular surface. Referring to Figure 2.1, to characterize the vertical extent of the

molecule under the rotation R(α, β, γ) around its center m, we define η(α, β, γ),

to be the difference between the z-coordinate of the center of the molecule and the

minimum z-coordinate value of all the rotated points in S:

η(α, β, γ) = −min
sk∈S

{(R(α, β, γ)(sk −m) ) ·
[
0 0 1

]
}, (2.4)

where sk gives the coordinates of the k-th point in S. Note that η(α, β, γ) sets the

lower limit on the height of the center of the molecule at a given orientation.

We rewrite F , from equation (2.1), in terms of a general rotation matrix R

and the magnetic field (2.3),

F ′
ij(α, β, γ) = 3(R1ib1 +R2ib2 +R3ib3)(R1jb1 +R2jb2 +R3jb3)− δij, (2.5)

and average the F ′ values at height a with the mirror cases of 2h − a into one

equation

F̄ij(α, β, γ) =
3

2
(R1ib1 +R2ib2 +R3ib3)(R1jb1 +R2jb2 +R3jb3)

+
3

2
(R1ib1 +R2ib2 −R3ib3)(R1jb1 +R2jb2 −R3jb3)− δij,

= 3(R1ib1 +R2ib2)(R1jb1 +R2jb2) + 3R3iR3jb
2
3 − δij.

(2.6)

Due to the symmetry of the system, F̄ can be used instead of F′ to simplify our

model to just one plane and a height from 0 to h.

For any rotation R(α, β, γ), the center of the molecule cannot be located at a

height between 0 and η(α, β, γ). Therefore, the range of interest is from η(α, β, γ)
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to h. The alignment tensor A is then computed by summing F̄ weighted by the

probability of the current height and orientation, for all allowed orientations and

heights from η(α, β, γ) to h.

We assume equal a priori probabilities of all orientations at all heights, and

write the analytical expression for Aij from equation (2.1). To obtain a uniform

distribution of the Euler angles we multiply our integrand by the Jacobian J =

sin β/(8π2) [50] to obtain

Aij =
1

2N

∫ γ1

γ0

∫ β1

β0

∫ α1

α0

∫ h

η(α,β,γ)

F̄ijJ dz dα dβ dγ, (2.7)

where N is the normalization factor

N =

∫ γ1

γ0

∫ β1

β0

∫ α1

α0

∫ h

η(α,β,γ)

J dz dα dβ dγ, (2.8)

and [α0, α1], [β0, β1], [γ0, γ1] are the ranges in which α,β,γ are defined.

We observe that the approach taken in PALES is equivalent to solving equation

2.7 using uniform sampling. Uniform sampling is an inefficient method for solving

equation (2.7), as compared to adaptive integration, since it requires a greater num-

ber of function evaluations and does not provide a way to control the error of the

computation. See Appendix B for information on adaptive integration.

From a physical point of view, we should be able to eliminate two of the four

integrals because the height of the molecule is insensitive to the rotation around the

z-axis and the RDCs are constant in relation to molecule’s translation. In the next

section we reduce the four-dimensional problem in PALES to a two-dimensional

problem.
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2.2.2 Computation of the Alignment Tensor: General Case

In this section we show, using the Euler z-y-z rotation, that the expression

for the alignment tensor A of an arbitrary molecule can be simplified from the

quadruple integral to a double integral.

Define the Euler z-y-z rotation matrix as R(α, β γ) = Rz(γ)Ry(β)Rz(α),

where

Rz(α) =




cosα − sinα 0

sinα cosα 0

0 0 1



,

Ry(β) =




cos β 0 sin β

0 1 0

− sin β 0 cos β



,

Rz(γ) =




cos γ − sin γ 0

sin γ cos γ 0

0 0 1



.

(2.9)

Multiplying the three matrices yields the full expression

R(α, β, γ) =




cos γ cos β cosα− sin γ sinα − cos γ cos β sinα− sin γ cosα cos γ sin β

sin γ cos β cosα+ cos γ sinα − sin γ cos β sinα + cos γ cosα sin γ sin β

− sin β cosα sin β sinα cos β



.

(2.10)

We now write the equations for A11, A22, A33, A21, A31, A32, and N , recalling
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that the Jacobian is J = sin β/(8π2):

A11 =
1

16Nπ2

∫ 2π

0

∫ π

0

∫ 2π

0

∫ h

η(α,β,γ)

F̄11 sin β dz dα dβ dγ,

A22 =
1

16Nπ2

∫ 2π

0

∫ π

0

∫ 2π

0

∫ h

η(α,β,γ)

F̄22 sin β dz dα dβ dγ,

A33 =
1

16Nπ2

∫ 2π

0

∫ π

0

∫ 2π

0

∫ h

η(α,β,γ)

F̄33 sin β dz dα dβ dγ,

A21 =
1

16Nπ2

∫ 2π

0

∫ π

0

∫ 2π

0

∫ h

η(α,β,γ)

F̄21 sin β dz dα dβ dγ,

A31 =
1

16Nπ2

∫ 2π

0

∫ π

0

∫ 2π

0

∫ h

η(α,β,γ)

F̄31 sin β dz dα dβ dγ,

A32 =
1

16Nπ2

∫ 2π

0

∫ π

0

∫ 2π

0

∫ h

η(α,β,γ)

F̄32 sin β dz dα dβ dγ,

N =
1

8π2

∫ 2π

0

∫ π

0

∫ 2π

0

∫ h

η(α,β,γ,γ)

sin(β) dz dα dβ dγ.

(2.11)

We observe that γ does not contribute to the vertical size of the molecule, and

redefine η(α, β, γ) as η(α, β). Integrating by γ and z first gives us

A11 =
Sc

16Nπ

∫ 2π

0

∫ π

0

(3 cos2 α cos2 β − 3 cosα + 1)(h− η(α, β)) sin β dβ dα,

A22 =
Sc

16Nπ

∫ 2π

0

∫ π

0

−(3 cos2 α cos2 β − 3 cos2 α− 3 cos2 β + 2)

× (h− η(α, β)) sin β dβ dα,

A33 =
Sc

16Nπ

∫ 2π

0

∫ π

0

−(3 cos2 β − 1)(h− η(α, β)) sin β dβ dα,

A21 =
Sc

16Nπ

∫ 2π

0

∫ π

0

3 cosα sinα sin2 β(h− η(α, β)) sin β dβ dα,

A31 =
Sc

16Nπ

∫ 2π

0

∫ π

0

3 cosα sin β cos β(h− η(α, β)) sin β dβ dα,

A32 =
Sc

16Nπ

∫ 2π

0

∫ π

0

−3 sinα sin β cosα(h− η(α, β)) sin β dβ dα,

(2.12)

where

N =
1

4π

∫ 2π

0

∫ π

0

(h− η(α, β)) sin β dβ dα,

Sc = 1− 3b23.

(2.13)
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We perform a change of variable, u = cos β, obtaining

A11 =
Sc

16Nπ

∫ 2π

0

∫ 1

−1

(3u2 cos2 α− 3 cos2 α+ 1)(h− η(α, arccos u)) du dα,

A22 =
Sc

16Nπ

∫ 2π

0

∫ 1

−1

(3u2 cos2 α + 3 cos2 α− 2)(h− η(α, arccos u)) du dα,

A33 =
Sc

16Nπ

∫ 2π

0

∫ 1

−1

(1− 3u2)(h− η(α, arccos u)) du dα,

A21 =
3Sc

16Nπ

∫ 2π

0

∫ 1

−1

sinα cosα(1− u2)(h− η(α, arccos u)) du dα,

A31 =
3Sc

16Nπ

∫ 2π

0

∫ 1

−1

u cosα
√
1− u2(h− η(α, arccos u)) du dα,

A32 =
3Sc

16Nπ

∫ 2π

0

∫ 1

−1

−u sinα
√
1− u2(h− η(α, arccosu)) du dα,

N =
1

4π

∫ 2π

0

∫ 1

−1

h− η(α, arccosu) du dα,

Sc = 1− 3b23.

(2.14)

Integrating the terms that do not involve η finally gives us:

Aij =
1

N

∫ 2π

0

∫ 1

−1

Fij(α, u)η(α, arccosu) du dα, i, j = 1, 2, 3,

N = h− 1

4π

∫ 2π

0

∫ 1

−1

η(α, arccosu) du dα,

(2.15)

where

F11(α, u) =
Sc

16π
[3(1− u2) cos2 α− 1],

F22(α, u) =
Sc

16π
[3(1− u2) sin2 α− 1],

F33(α, u) =
Sc

16π
(3u2 − 1),

F21(α, u) = −3
Sc

16π
(1− u2) sinα cosα,

F31(α, u) = −3
Sc

16π
u
√
1− u2 cosα,

F32(α, u) = 3
Sc

16π
u
√
1− u2 sinα,

Sc = 1− 3b23.

(2.16)

32



Because A is a traceless symmetric tensor [87], only A11 and A22, A21, A31,

and A32 need to be computed, while A33 = −(A11 + A22), A12 = A21, A13 = A31,

and A23 = A32. One can multiply the alignment tensor by −0.8 to account for the

incomplete bicelle alignment, and to match the sign returned by PALES. The height

h can be determined by the formula d/(2Vf ), where d is the barrier thickness (≈ 40Å

for DMPC/DHPC bicelles) and Vf (¿ 1) is the sample volume fraction occupied

by the barriers (see [87, 86]).

Thus, all one needs to know in order to compute the alignment tensor is

η(α, β), defined in equation (2.4). Being an intrinsic geometric property of the

molecule, η(α, β) can be computed separately, regardless of the barrier.

2.2.2.1 Computing η

In the PALES approach [87, 86], A is estimated based on forming a mesh

of the molecular surface and then rotating all the mesh triangles of this surface to

check if any part of the mesh is below the barrier. Observe that the complexity of

each rotation is proportional to the number of triangles in the mesh. It is possible to

reduce the computation using mesh simplification (see [43, 44]); however even this is

overly complex. An infinite planar barrier is not sensitive to cavities on the surface

of the molecule; therefore, a convex hull of the molecule is a sufficient representation

of the molecule’s surface. Additional mesh simplifications could be performed on

the convex hull to further reduce the number of points.

To compute η for an arbitrary molecule under a rotation R, we simply com-
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pute the convex hull of the atom positions of the molecule and consider the vertices

of the convex hull as the set S in equation (2.4). We add the van der Waals ra-

dius of the atom associated with the minimum z-value to equation (2.4) to form

η for the rotation R. Figure 1.3A shows the convex hull around the Cyanovirin-N

molecule. The number of points used to represent the molecule drops dramatically,

from 40708 in the molecular surface representation (see [80, 79]), to just 57 in the

convex hull representation. For any rotation R, the relative error in η between the

two representations is less than 5% and the absolute error is less than 0.5Å. Also

the alignment tensors and the RDCs predicted by PATI (our method) and PALES

are almost identical, as shown below.

2.2.3 Special Case of an Ellipsoid

A potential simplification for computing the alignment tensor is to represent

a molecule by an equivalent ellipsoid. In this section we derive the analytical ex-

pression for η for an arbitrary ellipsoid. Due to the symmetry of the ellipsoid we

consider only one octant in our analysis, expressing all points p on the ellipsoid in

that octant as

p(x, y) = (x, y, z(x, y)), (2.17)

where

z(x, y) = c

√(
1− x2

a2
− y2

b2

)
, (2.18)

for x ∈ [0, a] and y ∈ [0, b
√

(1− x2/a2)].

A rotation of the ellipsoid by R(α, β, γ) transforms the coordinates of these
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points into

x′ = R11(α, β, γ)x+R12(α, β, γ)y +R13(α, β, γ)z(x, y),

y′ = R21(α, β, γ)x+R22(α, β, γ)y +R23(α, β, γ)z(x, y),

z′ = R31(α, β, γ)x+R32(α, β, γ)y +R33(α, β, γ)z(x, y).

(2.19)

We observe that

η(α, β, γ) = z′(x∗, y∗), (2.20)

where x∗(α, β, γ) and y∗(α, β, γ) minimize z′.

To find the minimum/maximum value of our rotated ellipsoid, we solve∇z′(x, y) =

0:

∂z′(x, y)
∂x

= R31 −R33
cx

a2
√(

1− x2

a2
− y2

b2

) = 0, (2.21)

∂z′(x, y)
∂y

= R32 −R33
cy

b2
√(

1− x2

a2
− y2

b2

) = 0. (2.22)

Let

x∗ =
R31a

2

√
R2

31a
2 +R2

32b
2 +R2

33c
2
, (2.23)

y∗ =
R32b

2

√
R2

31a
2 +R2

32b
2 +R2

33c
2
. (2.24)
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It is easy to verify that x∗ and y∗ solve equations (2.21) and (2.22):

∂z′(x∗, y∗)
∂x

= R31 −R33
cx∗

a2
√(

1− x2∗
a2

− y2∗
b2

)

= R31 −R33

cR31a2√
R2

31a
2+R2

32b
2+R2

33c
2

a2R33c√
R2

31a
2+R2

32b
2+R2

33c
2

= 0, (2.25)

∂z′(x∗, y∗)
∂y

= R32 −R33
cy∗

b2
√(

1− x2∗
a2

− y2∗
b2

)

= R32 −R33

cR32b2√
R2

31a
2+R2

32b
2+R2

33c
2

b2R33c√
R2

31a
2+R2

32b
2+R2

33c
2

= 0. (2.26)

Therefore, x∗, y∗ minimizes z′, and the optimal value of z is

z∗ =
R33c

2

√
R2

31a
2 +R2

32b
2 +R2

33c
2
, (2.27)

since R2
31+R2

32+R2
33 = 1. Therefore, from equations (2.20) and (2.19), our solution

is

η(α, β, γ) = R31(α, β, γ)x∗ +R32(α, β, γ)y∗ +R33(α, β, γ)z∗

=
√

R2
31a

2 +R2
32b

2 +R2
33c

2,

(2.28)

where γ is arbitrary for the Euler rotation defined in equation (2.9).

2.3 Results

In this section we present a comprehensive comparison of several methods for

computing RDCs ab initio. All the RDC data analyzed here are for the backbone

NH bonds located in structurally well-defined regions of proteins, i.e. the α-helices

and β-sheets. The RDC data were retrieved from the BMRB repository using the
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PDB code of the molecule. Only the RDC values measured using the neutral bicelle

alignment medium (or, in the case of the B3 domain of protein G, the PEG/hexanol-

based medium) are used. The 9 proteins and their codes in the Protein Data Bank

are listed in Table 2.1.

We assess the quality of our results by computing the quality factor between

the vector of experimental RDCs, Dexp, and our predicted RDCs for those same

bonds, Dpred, as [19]:

Q =
‖Dexp −Dpred‖F

‖Dexp‖F . (2.29)

Note that the predicted magnitude of the RDC values depends on the exper-

imental conditions (which determine the barrier height h) and selection of values

for equation constants, e.g. CPQ. These factors affect all RDCs approximately uni-

formly, and hence can be represented by a scaling factor. Therefore, in order to

make our analysis less sensitive to possible errors in experimental conditions and

imperfect selection of values for constants, we also introduce the scaled quality fac-

tor to quantify the agreement between the experimental and predicted data with an

unknown scaling factor. We define the scaled quality factor as

Qs = min
ρ

‖Dexp − ρDpred‖F
‖Dexp‖F , (2.30)

where the scalar ρ can be computed by linear least squares. (Note that both PATI

and PALES can predict the magnitude of RDC values with reasonable accuracy.

See Table D.1 for the values of ρ.)

First, we present theQ values for the experimental alignment tensor. We define

the experimental alignment tensor, Ã, as the alignment tensor that optimally fits
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the data, i.e. gives the lowest Q value between the experimental and back-calculated

RDC data. This quality factor allows us to examine whether the experimental data

are well approximated by the theoretical equation for RDCs. We derive Ã by solving

a linear least-squares problem of the form

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,

(2.31)

where vi = [vi1, v
i
2, v

i
3] is the normalized vector representing the orientation of the

ith bond relative to the molecular coordinate frame, n is the number of bonds, and

CNH is the value of CPQ in equation (2.2) for a NH bond. The linear least-squares

problem can be solved by standard methods; see, e.g., [45].

Note that Ã can be decomposed into the experimental rotation (eigenvectors)

Ṽ and experimental magnitudes (eigenvalues) Ã1, Ã2, Ã3, where

Ã = ṼΛ̃ṼT =

[
Ṽ1 Ṽ2 Ṽ3

]




Ã1 0 0

0 Ã2 0

0 0 Ã3




[
Ṽ1 Ṽ2 Ṽ3

]T
. (2.32)

The Q values for the experimental alignment tensor derived using equation

(2.31) are presented in Column 3 (“LS”) in Table 2.1. The corresponding Q values

for the best-fit alignment tensor derived from PALES are presented in Column 4,

labeled PALES-LS. Naturally, Qs = Q for both methods. It is worth emphasizing
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here that this quality factor measures the actual quality of the experimental data

(i.e. how well they fit the theoretical equation for RDCs) and therefore provides

the baseline Q value for subsequent evaluation of the prediction methods. Note

also that the values in the parentheses, the relative error in the alignment tensor,

confirm that equation (2.31) gives the same experimental alignment tensor Ã as the

alignment tensor derived using PALES’s best-fit algorithm.

Table 2.1 shows that the experimental RDC data are of high quality and con-

sistent with the theoretical formulation of the RDC (equations (2.1–2.2)). This

is not surprising given that these RDCs were used as constraints in the calcula-

tion/refinement of the corresponding protein structures. The quality of the agree-

ment is illustrated in Figure 2.2A for Cyanovirin-N. (See also Figures D.1A–D.8A

in the Appendix).)

The results of our ab initio calculations are presented in Table 2.2, for PATI,

PALES, and for the ellipsoidal approximation methods using the MVE model. The

MVE data are used in this table, as this model provides on average a slightly more

accurate estimation of the alignment tensor compared to the other two equivalent

ellipsoid models considered in this study.3 Surprisingly, the scaled quality factor Qs

was rather high for all prediction methods, indicating a generally marginal agreement

with experimental data, as illustrated in Figure 2.2D and Appendix Figures D.1D–

D.8D. PATI and PALES calculations gave on average a slightly better agreement

with the data compared to the other methods. It should be emphasized here that

PATI gives almost identical results to PALES, as evident from Figure 2.3. In order

3The results for GE and PCAE are presented in Table D.2 and Table D.3
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Table 2.1: Quality Factors Q = Qs for the Experimental Data

Protein PDBa LSb,c PALES-LSb,c,d

Cellular factor BAF[14] 2ezx 0.03 0.03 (0.00)

B1 domain of protein G[41] 3gb1 0.05 0.05 (0.00)

B3 domain of protein G[71] 2oed 0.04 0.04 (0.00)

Rat apo-S100B[28] 1b4c 0.11 0.11 (0.00)

Cyanovirin-N[10] 2ezm 0.04 0.04 (0.00)

Gα interacting protein[21] 1cmz 0.08 0.08 (0.00)

Ubiquitin[19] 1d3z 0.04 0.04 (0.00)

Hen lysozyme[62] 1e8l 0.06 0.06 (0.00)

Oxidized putidaredoxin[39] 1yjj 0.08 0.08 (0.00)

Mean 0.06 0.06 (0.00)

a The RCSB Protein Data Bank code for protein coordinates. First model

from the ensemble of NMR structures was used for all calculations.

b Values represent the quality factor Q between the predicted and

experimental data.

c Values represent the scaled quality factor Qs between the predicted and

experimental data.

d Values in parentheses represent the relative error between Ã and the

experimental alignment tensor derived using PALES-LS.

to understand the reasons for the observed inaccuracy in our predictions, we now

break down the contributions to the errors into those due to the eigenvalue of the
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Figure 2.2: Comparison of the predicted vs. experimental 1H15N RDC values for the backbone

amides in Cyanovirin-N, using various versions of the molecular alignment tensor derived from

PATI. (A) The experimental alignment tensor was derived directly from the experimental data

using least squares. (B) The alignment tensor was constructed using the magnitude (eigenvalues)

of the experimental alignment tensor and the tensor orientation predicted using PATI program.

(C) The alignment tensor was constructed using the orientation (eigenvectors) of the experimental

alignment tensor but PATI-predicted magnitude (eigenvalues) of the tensor. (D) The alignment

tensor was fully predicted from PATI simulation. The values of the squared Pearson’s correlation

coefficient, r2, and the scale-insensitive quality factor, Qs, are indicated. Similar graphs for the

rest of the molecules studied here can be found in Appendix D.

predicted alignment tensor and those due to inaccuracy in its orientation.

In Table 2.3 we compare the Qs values for “synthetic” alignment tensors that
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Table 2.2: Quality factors Qs from RDC Prediction for ab initio Methods

PDBa PATIb,c PALESb,c,e PATI-Eb,c,d Almondb,c,d PROLFITb,c,d

2ezx 0.26 (0.94) 0.27 (0.94) 0.19 (0.96) 0.20 (0.96) 0.12 (0.99)

3gb1 0.14 (0.99) 0.11 (0.99) 0.27 (0.96) 0.29 (0.95) 0.20 (0.97)

2oed 0.24 (0.98) 0.19 (0.98) 0.18 (0.98) 0.17 (0.98) 0.29 (0.97)

1b4c 0.22 (0.93) 0.22 (0.93) 0.43 (0.74) 0.42 (0.75) 0.55 (0.58)

2ezm 0.46 (0.66) 0.47 (0.66) 0.53 (0.56) 0.54 (0.54) 0.49 (0.61)

1cmz 0.32 (0.90) 0.30 (0.92) 0.38 (0.86) 0.39 (0.85) 0.37 (0.88)

1d3z 0.20 (0.93) 0.23 (0.91) 0.37 (0.81) 0.41 (0.77) 0.20 (0.91)

1e8l 0.31 (0.92) 0.31 (0.91) 0.42 (0.88) 0.43 (0.87) 0.26 (0.95)

1yjj 0.52 (0.75) 0.60 (0.67) 0.56 (0.76) 0.56 (0.75) 0.86 (0.34)

Mean 0.30 (0.89) 0.30 (0.88) 0.37 (0.84) 0.38 (0.83) 0.37 (0.80)

a The RCSB Protein Data Bank code for protein coordinates. First model from the ensemble

of NMR structures was used for the calculations. See Table 2.1 for the names of the proteins.

b Values represent the scaled quality factor Qs between the predicted and experimental data.

c Values in the parentheses represent the squared Pearson’s correlation coefficient, r2 (also

known as coefficient of determination).

d MVE ellipsoidal representation was used.

e All PALES prediction calculations were run with options “-bic -H -dGrid 0.5 -rA 3.1”.

have the same orientation as the ab initio calculated tensors but the correct (ex-

perimental) eigenvalues. We constructed these tensors by combining the rotation

matrix V determined from our five models, GE, PCAE, MVE, PATI, and PALES,
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Figure 2.3: The agreement between RDC values predicted using PATI and those from PALES

prediction. Shown are the 1H15N RDCs for all backbone amides for all molecules studied here.

The (unscaled) quality factor Q between the two sets of RDC values is 0.05, the RMSD is 0.6 Hz,

and the maximum deviation is 1.7 Hz.

with the experimental eigenvalues Ã1, Ã2, Ã3 of the alignment tensor derived from

Ã. Such a comparison is expected to rank the methods based on the accuracy of

prediction of the tensor’s orientation. Since the orientation of V for the equivalent-

ellipsoid-based methods is derived directly from the orientation of the ellipsoid, this

table also provides a direct comparison of the ellipsoid models. Note that there are

six different combinations for V, since it is unknown a priori which Ãi is associated

with which Vj. The smallest of the six Qs values is shown. Naturally, Qs = Q in

this case.

As evident from Table 2.3, correcting the eigenvalues of the alignment tensor

while keeping its predicted orientation did not improve the agreement with experi-

mental data. (See also Figure 2.2B.) There are large variations among the various

models in the accuracy of the predicted orientation of the alignment tensor. Of the

three ellipsoid models tested here, MVE gave on average a somewhat better ori-

entation (as documented in the Supplementary Material), while PATI and PALES

43



Table 2.3: Quality of Prediction for the Orientation of Alignment Tensor

PDBa,d PATIb,c,d PALESb,c,d GEb,c,d MVEb,c,d PCAEb,c,d ,

2ezx 0.27 (10◦) 0.28 (11◦) 0.13 (5◦) 0.11 (4◦) 0.15 (5◦)

3gb1 0.15 (17◦) 0.12 (10◦) 0.21 (12◦) 0.21 (28◦) 0.10 (14◦)

2oed 0.23 (15◦) 0.19 (13◦) 0.33 (20◦) 0.19 (14◦) 0.25 (14◦)

1b4c 0.25 (11◦) 0.25 (11◦) 0.68 (43◦) 0.32 (15◦) 0.62 (31◦)

2ezm 0.37 (37◦) 0.37 (39◦) 0.45 (26◦) 0.55 (33◦) 0.41 (33◦)

1cmz 0.31 (25◦) 0.29 (23◦) 0.33 (36◦) 0.33 (24◦) 0.36 (37◦)

1d3z 0.19 (16◦) 0.21 (16◦) 0.42 (23◦) 0.20 (29◦) 0.29 (23◦)

1e8l 0.38 (42◦) 0.37 (41◦) 0.33 (27◦) 0.18 (16◦) 0.33 (26◦)

1yjj 0.53 (25◦) 0.61 (30◦) 0.87 (48◦) 0.59 (26◦) 0.85 (48◦)

Mean 0.30 (22◦) 0.30 (22◦) 0.42 (27◦) 0.30 (21◦) 0.37 (26◦)

a The RCSB Protein Data Bank code for protein coordinates. First model from the

ensemble of NMR structures was used for the calculations. See Table 2.1 for the

names of the proteins.

b Values represent the quality factor Q between the predicted and experimental data.

c Values represent the scaled quality factor Qs between the predicted and experimental

data.

d Values in the parentheses represent the angle difference between the orientation of the

experimental and predicted tensors. (The angle was derived using the axis-angle

representation of rotation. See Definition 1.10 for details.)
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Table 2.4: Quality of Prediction for the Magnitude of Alignment Tensor

PDBa PATIb,c PALESb,c PATI-Eb,c,d Almondb,c,d PROLFITb,c,d

2ezx 0.04 (1.00) 0.04 (1.00) 0.04 (1.00) 0.03 (1.00) 0.12 (0.99)

3gb1 0.06 (1.00) 0.05 (1.00) 0.09 (0.99) 0.11 (0.99) 0.20 (0.96)

2oed 0.04 (1.00) 0.04 (1.00) 0.04 (1.00) 0.04 (1.00) 0.16 (0.99)

1b4c 0.12 (0.98) 0.12 (0.98) 0.19 (0.96) 0.19 (0.96) 0.33 (0.88)

2ezm 0.09 (0.99) 0.08 (0.99) 0.08 (0.99) 0.05 (1.00) 0.25 (0.90)

1cmz 0.08 (0.99) 0.08 (0.99) 0.12 (0.98) 0.14 (0.98) 0.16 (0.98)

1d3z 0.06 (0.99) 0.08 (0.99) 0.19 (0.93) 0.23 (0.90) 0.17 (0.93)

1e8l 0.11 (0.99) 0.10 (0.99) 0.06 (1.00) 0.06 (1.00) 0.20 (0.97)

1yjj 0.29 (0.92) 0.31 (0.90) 0.31 (0.90) 0.29 (0.91) 0.20 (0.96)

Mean 0.10 (0.98) 0.10 (0.98) 0.12 (0.97) 0.13 (0.97) 0.20 (0.95)

a The RCSB Protein Data Bank code for protein coordinates. First model from the ensemble

of NMR structures was used for the calculations. See Table 2.1 for the names of the proteins.

b Values represent the scaled quality factor Qs between the predicted and experimental data.

The smallest of the six possible values is shown.

c Values in the parentheses represent the squared Pearson’s correlation coefficient, r2.

d MVE ellipsoidal representation was used.

yielded generally similar results.

We then constructed “synthetic” alignment tensors that have the correct ori-

entation (i.e. the Ṽ matrices derived from the experimental tensors Ã) but the

same eigenvalues (A1, A2, A3) as the ab initio calculated tensors. Table 2.4 dis-
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plays the Qs values for five prediction methods, PATI, PALES, PATI-E, Almond,

and PROLFIT. From this table, it is clear that using the correct orientation of

the tensor dramatically improved the agreement with experimental data (cf. Table

2.2). This improvement is illustrated in Figure 2.2C for Cyanovirin-N and in the

Supplementary Material for the other molecules.

Note that Column 3 (“PATI-E”) and Column 5 (“PROLFIT”) in Table 2.4

show that an additional degree of freedom provided by a fully anisotropic ellipsoid

versus an axially-symmetric prolate ellipsoid approximation gives an improvement

in the Qs.

Thus, the analysis presented above demonstrates that accurate prediction of

the orientation of the alignment tensor is critical for the agreement with experi-

mental data. Accurate prediction of the eigenvalues of the tensor is important, too.

However, when experimental RDCs are available, one can make an educated guess,

based on the observed histogram/distribution of the data, about the magnitude of

the tensor components (e.g., as described in [5]) and scale the predicted alignment

tensor appropriately, whereas there is no obvious way to predict the orientation of

the tensor.

2.4 Conclusions

We have reformulated the planar barrier model as a numerical integration

problem and implemented it in a program called PATI. Our method has accuracy

similar to PALES but is computationally more efficient and allows for finer control
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over numerical error. In addition, the convex hull provides a simpler representation

of the surface, thus further increasing the computational efficiency of the proposed

method. This could allow PATI-based RDC prediction to be incorporated into

the existing structure determination/refinement protocols. Because the molecular

alignment tensor (and hence the RDC) is sensitive to the overall size and shape of the

molecule, this would provide additional structural constraints that could potentially

improve the accuracy of structure determination by NMR.

We compared several methods (old and new) for the computation of an equiv-

alent ellipsoid of a molecule. We examined the accuracy of these equivalent ellipsoid

models in predicting the alignment tensor and showed that the minimal volume

ellipsoid gives on average a slightly better prediction of the alignment tensor orien-

tation.

Finally, we compared all these methods against an extensive set of experi-

mental RDC data. The analysis of the discrepancy between the experimental and

predicted values emphasized the importance of the accurate prediction of the orien-

tation of the alignment tensor. Possible sources of inaccuracy in ab initio alignment

tensor prediction are the dynamic nature (structural flexibility) of protein molecules,

not accounted for in the current prediction models, as well as the fact that the simple

steric barrier model might not fully allow the correct alignment of all the molecules.

The increased efficiency in computation of the alignment tensor relative to

PALES is not significant for a single computation, but will be very important when

the computation is repeated a large number of times, as in the next chapter, where

we use PATI to develop a molecular docking method based on the alignment tensor.
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Chapter 3

Docking Based on the Alignment Tensor (PATIDOCK)

The work presented in this chapter is taken from Berlin et al. [7]. In this

chapter we present and evaluate a rigid-body molecular docking method, called

PATIDOCK, that relies solely on the three-dimensional structure of the individual

components and the experimentally derived residual dipolar couplings (RDC) for

the complex. We show that, given an accurate ab initio predictor of the alignment

tensor from a protein structure, it is possible to accurately assemble a protein-

protein complex by utilizing the RDC’s sensitivity to molecular shape to guide the

docking. The proposed docking method is robust against experimental errors in the

RDCs and computationally efficient. We analyze the accuracy and efficiency of this

method using experimental or synthetic RDC data for several proteins, as well as

synthetic data for a large variety of protein-protein complexes. We also test our

method on two protein systems for which the structure of the complex and steric-

alignment data are available (Lys48-linked diubiquitin and a complex of ubiquitin

and a ubiquitin-associated domain) and analyze the effect of flexible unstructured

tails on the outcome of docking. The results demonstrate that it is fundamentally

possible to assemble a protein-protein complex based solely on experimental RDC

data and the prediction of the alignment tensor from three-dimensional structures.

Additionally we show a method for combining RDCs with other experimental data,
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such as ambiguous constraints from interface mapping, to further improve structure

characterization of the protein complexes.

3.1 Introduction

Detailed understanding of molecular mechanisms underlying biological func-

tion requires knowledge of the three-dimensional structure of biomacromolecules

and their complexes. Nuclear magnetic resonance (NMR) spectroscopy is one of

the main methods for obtaining information on molecular structure and interac-

tions at atomic-level resolution [16]. A major challenge in using NMR for accurate

structure determination of multidomain systems and macromolecular complexes is

the limited amount of long-distance structural information. Intermolecular Nuclear

Overhauser Effect (NOE) contacts are often scarce, difficult to detect, and could

be affected by intermolecular motions. Chemical shift perturbation (CSP) mapping

is another powerful method for general identification of the interface. However, its

informational content is highly ambiguous because CSPs do not identify pair-wise

contacts and should be used with caution, since a perturbation of the local elec-

tronic environment of a nucleus does not necessarily indicate direct involvement of

the corresponding atom in the interactions. Moreover, both NOEs and CSPs are

limited to the contact area and could be insufficient for accurate spatial arrange-

ment of the interacting partners. Residual dipolar couplings (RDCs), resulting from

partial molecular alignment in a magnetic field [69, 67], could supplement the scarce

interdomain data, because they contain valuable structural information in terms of
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global, long-range orientational constraints (reviewed in [4]). In addition, RDCs

also inevitably reflect (hence are sensitive to) the physical properties of the solute

molecule responsible for its alignment. Thus, a commonly used method for aligning

proteins in solution takes advantage of the anisotropy of molecular shape by im-

posing steric restrictions on the allowed orientations of the molecule. Such steric

alignment can often be modeled as caused by planar obstacles (see e.g., [67, 87]); we

will refer to this simplified model of molecular alignment as the barrier model (See

Section 2.2.1).

The alignment of a rigid molecule can be characterized by the so-called align-

ment tensor. Several methods have been developed in [87, 30, 1, 3], and in Chapter

2, to use the barrier model for predicting the alignment tensor (and with it the

RDCs) either directly from the 3D shape of the molecule or indirectly, using an

ellipsoid representation. The RDCs’ sensitivity to molecular shape has the poten-

tial for improving structure characterization, especially in multi-domain systems

and macromolecular complexes, by fully integrating RDC prediction into structure

refinement protocols to directly drive structure optimization. In fact, RDCs have

been used to orient domains and bonds relative to each other either directly, using

rigid-body rotation [31, 64, 27, 78, 36], or by incorporating RDCs as orientational

restraints into protein docking [73] (see e.g., the reviews [12, 38]). However, none

of these methods has used the information on the shape of the molecule (including

not only the intervector/interdomain orientation but also the actual positioning of

the individual domains) embedded in the measured RDCs.

Another physical property sensitive to molecular shape is the overall rotational
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diffusion tensor, characterizing the rates and anisotropy of the overall tumbling of

a molecule in solution. Interestingly, although they reflect distinct physical phe-

nomena (rotation versus orientation) the diffusion and the alignment tensors are

oriented similarly, provided the alignment is caused by neutral planar obstacles

[20]. As demonstrated recently by Ryabov and Fushman [57], the sensitivity of

the overall rotational diffusion tensor to molecular shape can be utilized to guide

molecular docking. One would expect that the alignment tensor could be used sim-

ilarly. Given that accurate RDC measurements for a wide variety of bond vectors

are readily available, the use of the alignment tensor to guide molecular assembly

could be of significant value for a broad range of macromolecular systems. However,

to our knowledge, the ability to dock molecules using the alignment tensor has not

been demonstrated, and RDCs have never been used to completely drive molecular

docking, i.e. not only orient but also properly position molecules/domains relative

to each other in a complex.

In this chapter we demonstrate that it is possible to determine the structure

of a complex by utilizing the sensitivity of RDCs to molecular shape, provided that

the structures of the individual components of the complex are available. We de-

scribe a method for rigid-body molecular docking based solely on the orientation-

and shape-related information embedded in the experimental RDCs/alignment ten-

sor of the complex. This method, called PATIDOCK, uses PATI, the method de-

scribed in Chapter 2, for ab initio prediction of the alignment tensor from the

three-dimensional shape of a molecule. We demonstrate that PATIDOCK can de-

terministically and efficiently perform rigid-body docking based on the alignment

51



tensor. In addition, we analyze the robustness of PATIDOCK under certain types

of experimental errors, examine its performance in applications to real experimental

data, and discuss challenges and various ways of refining the results by including

other available experimental restraints and integrating our method into more so-

phisticated docking approaches.

3.2 Methods

Here we present a method, called PATIDOCK, for rigid-body assembly of a

molecule made up of two distinct sets of atoms (hereafter called domains) whose

structures are known, by using experimental RDC values exclusively. The method

is based on first rotating/aligning the two domains using the corresponding subsets

of the RDC values (see e.g., [31, 27, 36]) and then translating/positioning them

relative to each other in order to minimize the difference between the predicted A

and the experimental Ã alignment tensors. A is computed for the complex using

the barrier-model-based algorithm PATI, while Ã is derived directly from the RDC

values, measured for the whole molecule, using a linear least squares approach (see

e.g., Chapter 2, [45]) and the (already aligned) 3D structures of the individual

domains. As discussed in Chapter 2, PATI predicts RDCs with the same accuracy

as the program PALES [87], while its computational efficiency is achieved by using

numerical integration and a convex hull representation of the molecular surface.

Note that while some parts of the docking algorithm are specific to the use of PATI,

the general algorithm and key concepts can be applied to any current or future
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method for alignment tensor prediction.

3.2.1 Formulation

We formulate the docking algorithm as a minimization problem. The algo-

rithm is based on minimizing the difference between the predicted alignment tensor

A, computed based on the structure/shape of the molecule, and the experimental

alignment tensor Ã, derived directly from the experimental RDC values.

Let the set S of atoms of a molecule be subdivided into two distinct sets

(domains), S1 and S2, such that S1 ∩ S2 = ∅, S1 ∪ S2 = S, no RDC-active bond

is shared between the two sets, and each set contains enough bond vectors/RDCs

associated with it to provide a proper sampling of the orientational space required

for accurate determination of the alignment tensors [34]. We define A(Rc,x) as the

predicted alignment tensor of S, where the coordinates of atoms in S1 remain static

and the coordinates of atoms in S2 are rotated by some rotation matrix Rc and

then translated by x = [x1, x2, x3]. Our goal is to first properly orient the two sets

by finding the optimal rotation matrix, R∗, and then to find the optimal translation

vector x∗ that minimizes the difference between A(R∗,x) and Ã. The separation

of orientation from translation is possible because inter-domain orientation can be

obtained directly from the experimental RDCs and bond vectors for each set [31,

27, 36], regardless of their relative position.

To solve for R∗ we simply align S1 and S2 relative to each other using experi-

mental RDC data, as described in [31, 27, 36]. We first compute the experimental
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alignment tensors, A1 and A2, of S1 and S2, respectively. The alignment tensors

have eigendecompositions A1 = R1D1R
T
1 and A2 = R2D2R

T
2 , where R1, R2 are

rotation matrices (orthogonal matrices with determinant of 1) and D1, D2 are the

diagonal matrices of principal components of the corresponding alignment tensors.

Therefore, R∗ can be derived by solving the equation R∗R2 = R1:

R∗ = R1R
T
2 . (3.1)

Note that due to orientational degeneracy of the alignment tensor there is a four-

fold ambiguity in the relative alignment of domains, hence four possible solutions for

R∗[36]. One can find these possible solutions by computing an eigendecomposition

of A2, determining the four assignments of signs to the columns of R2 that make

det(R2) = 1, and using equation (3.1) for each one.

Knowing the optimal rotation matrix R∗, we find the optimal translation

vector x∗ by solving a nonlinear least squares problem. Since R∗ is derived directly

from the experimental RDC data independent of x∗, in the rest of the chapter (except

for the last sections) we assume that the two subsets are already properly aligned and

simplify the notation from A(Rc,x) to A(x). Our nonlinear least squares problem

is then formulated as:

x∗ = argmin
x

χ2(x), (3.2)

where the target function is defined as

χ2(x) =
3∑

i,j=1

(
Aij(x)− Ãij

)2

. (3.3)

and the computation of A(x) is described in the next section.
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3.2.2 Efficient Computation of the Alignment Tensor

In this section we reformulate PATI, from the formulae presented in equation

(2.15), to one that can be efficiently recomputed multiple times on S under different

translations of S2.

Since the molecule consists of two domains with an unknown translation x∗

between them, η will depend on translation x, α, and u. (This implies that A and

N also depend on x.) Therefore, we modify our Chapter 2 notation from η(α, β) to

η(x, α, u), where x is the vector of translation of the coordinates of all atoms of S2.

Without loss of generality, let the center of S1 be at 0, and the center of S2

be at m̂, both of which are inside their associate convex hulls. We compute η for

S1 and S2 separately, and call them η1(α, u) and η2(α, u). Note that η1(α, u) and

η2(α, u) do not depend on x. The combined η(x, α, u) of the two sets (domains) is

the largest of the two η, where η2 is adjusted to reflect that S2 is centered at m̂+x,

and is computed as

η(x, α, u) =





η1(α, u) if η1(α, u) ≥ η2(α, u)−Υ(x),

η2(α, u)−Υ(x) otherwise,

(3.4)

where

Υ(x) =
3∑

i=1

R3i(α, arccos u, 0)(m̂i + xi). (3.5)

Precomputing F (α, u) (equation (2.16)), η1(α, u), η2(α, u), andR(α, arccos u, 0)

for a fine enough set of [α, u] allows us to quickly compute A(x) for multiple values

of x.
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3.2.3 Algorithm

In this section we describe how to solve the minimization problem posed in

equation (3.2). We use a nonlinear least squares solver, specifically the Levenberg-

Marquardt algorithm [46], due to the limited number of local minima, local con-

vexity, and smoothness of our target function. The Levenberg-Marquardt method

allows us to find the solution with many fewer function evaluations than direct

search algorithms like simulated annealing because we can efficiently compute a

good descent direction for our problem.

An efficient nonlinear least squares solver requires a Jacobian to be computed,

or approximated using finite differences. Fortunately in this case, the Jacobian

elements can be computed analytically:

∂Aij(x)

∂xk

=
1

N(x)

∫ 2π

0

∫ 1

−1

Fij(α, u)
∂η(x, α, u)

∂xk

du dα

+
Aij(x)

4πN(x)

∫ 2π

0

∫ 1

−1

∂η(x, α, u)

∂xk

du dα,

(3.6)

where

∂η(x, α, u)

∂xk

=





0 if η1(α, u) ≥ η2(α, u)−Υ(x),

−R3k(α, arccosu, 0) otherwise,

(3.7)

and i, j, k = 1, 2, 3.

Due to translational symmetry of the problem, there can be two significant

local minimizers of our target function: the actual minimizer, and the incorrect

minimizer where domain S2 is located on the opposite side of domain S1 (see e.g.,

Figure 3.4 in the Results section). In addition, if the convex hull of S2 is fully inside

S1 then our target function has derivatives of 0, and the minimization algorithm
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might become trapped on a plateau. Therefore, picking the right set of initial

guesses is important.

To assure that the convex hull of S2 is not inside S1 we place any initial starting

point xi
0 at a distance d = maxα,u η1(α, u) from the center of S1. We pick a set of six

initial positions, [d, 0, 0], [−d, 0, 0], [0, d, 0], [0,−d, 0], [0, 0, d], and [0, 0,−d], to make

sure that during the minimization we approach S1 from different directions and

therefore are likely to find all the minimizers. We refer to this method for finding

the optimal translation between two domains as PATIDOCK-t. Additionally, we

refer to the method that first aligns the two domains using equation (3.1) and then

finds the optimal translation using PATIDOCK-t as PATIDOCK.

3.2.4 Additional Constraints

As demonstrated in Chapter 2, there is inaccuracy in barrier model-based

prediction of the alignment tensor of a molecule. This inaccuracy would contribute

to errors in the docking solution if we just minimized the target function χ2(x)

(equation (3.3)). In order to mimic a real situation, when additional experimental

data are available, we examine whether the RDC-based docking could be improved

by introducing additional restraints to enforce intermolecular distance constraints

and avoid steric clashes.

Obviously, introduction of specific intermolecular distance constraints (e.g.

from NOEs) would significantly improve docking by positioning the corresponding

atoms (hence the domains carrying them) at the proper distance from each other.
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However, intermolecular NOEs are often unavailable or averaged out by molecular

motions such as domain dynamics, on/off rates, etc. Therefore, we analyze the effect

of adding “milder”, ambiguous restraints, often used for molecular docking based on

interface mapping [25, 24] using chemical shift perturbations (CSPs). CSPs quantify

NMR signal shifts in the presence of a binding partner, and their observation repre-

sents the basic and perhaps the simplest way to monitor intermolecular interactions

by NMR. The CSPs provide a general qualitative map of atoms/residues involved

in the interface, without any specific information about pair-wise contacts. Thus,

we construct a “CSP-like” energy function based on ambiguous information of in-

termolecular contacts. To prove the concept of including additional constraints into

RDC-guided docking, we forgo the complicated modeling and data refinement of the

actual CSPs. Instead we simply label an atom as being “CSP-active” if the CSP

for it is significantly high. For the molecules for which we do not have CSP data,

for simple testing purposes we generate a synthetic CSP-active list by selecting all

the atoms in one domain that are within a certain distance, dΩ, of any atom in the

other domain, and would therefore potentially experience a CSP in an experimental

setting. We define the subsets of atoms from S1 and S2 that are CSP-active as I1

and I2 respectively.

Let Dij(x) be the distance between two atoms, si ∈ S1 and sj ∈ S2, when the

atoms in S2 are translated by x. To generate the energy function for the CSP-like

constraints we weigh an atom in the CSP-active set as 0 if it is currently interacting

with atoms in the other domain; otherwise we assign some penalizing value as the

atom’s weight. To handle outliers we stop the growth of the penalty at a cutoff
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distance dcutΩ . Specifically, the CSP-active weights for the two domains are

Ωi
1(x) =





0 if min
j

Dij(x) ≤ dΩ or si /∈ I1,

min
j

Dij(x)− dΩ if dΩ < min
j

Dij(x) ≤ dcutΩ and si ∈ I1,

dcutΩ − dΩ otherwise,

(3.8)

and

Ωj
2(x) =





0 if min
i

Dij(x) ≤ dΩ or sj /∈ I2,

min
i

Dij(x)− dΩ if dΩ < min
i

Dij(x) ≤ dcutΩ and sj ∈ I2,

dcutΩ − dΩ otherwise.

(3.9)

We sum the average weights to form the target function for the CSP-like interactions:

χ2
Ω(x) =

∑
i

[Ωi
1(x)]

2

|I1| +
∑
j

[Ωj
2(x)]

2

|I2| , (3.10)

where |·| is the cardinality of the set.

To prevent physically impossible overlap (steric clash) of the domains we assign

a penalizing value to atoms that are closer than a given distance dΨ to atoms in the

opposing domain. The weights

Ψi
1(x) =





dΨ −min
j

Dij(x) if min
j

Dij(x) < dΨ,

0 otherwise,

(3.11)

Ψj
2(x) =





dΨ −min
i

Dij(x) if min
i

Dij(x) < dΨ,

0 otherwise,

(3.12)

form the target function for the domain-overlapping constraints:

χ2
Ψ(x) =

∑
i

[Ψi
1(x)]

2 +
∑
j

[Ψj
2(x)]

2. (3.13)

59



We now combine the alignment tensor, CSP-like, and domain-overlapping con-

straints into one energy function

χ2
F (x) = κχ2(x) + χ2

Ω(x) + 100χ2
Ψ(x). (3.14)

In our experiments, dΩ = 4Å, dΨ = 0.9Å, dcutΩ = 10Å. The weight of 100 for χ2
Ψ

was chosen as just a very large value that would penalize even minimal overlap

significantly more than any violation of a CSP-like interaction. We set the value of

κ in Section 3.3.7.

We reformulate equation (3.2) to use χ2
F instead of χ2, and solve this problem

to improve the minimizer from PATIDOCK. We refer to this method as PATI-

DOCK+. The new target function cannot be solved using local minimization.

Therefore, we use a branch and bound method [42] to deterministically solve equa-

tion (3.14) for the global minimizer.

3.3 Results and Discussion

In order to examine the feasibility of molecular docking guided by RDCs, we

applied PATIDOCK-t, PATIDOCK, and PATIDOCK+ to several protein systems.

Potential sources of inaccuracy in our docking approach are errors in the experimen-

tal data (RDCs) and the inaccuracy in the barrier model prediction of molecular

alignment. To separate and quantify these errors we tested our method on two

distinct datasets as well as two protein-protein systems. The first dataset, which

we refer to as COMPLEX, is a set of 84 protein-protein complexes described in

Mintseris et al. [48]. This dataset provides a wide variety of interprotein contacts
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and molecular shapes, but it contains no experimental RDC data. We used this

dataset to generate synthetic RDC data and examine the validity of our docking

method and its sensitivity to common measurement errors due to experimental im-

precision. This allowed us to test our method under “ideal experimental conditions”,

i.e. when the simple barrier model (see Section 2.2.1) is an adequate physical model

for molecular alignment, and the only errors in the data originate from (random)

experimental noise in the measurements.

The second dataset, which we refer to as SINGLE, consists of 7 monomeric

proteins for which experimental RDC data (in bicelles- or PEG/hexanol-based me-

dia) are available in the BMRB database [72]. We utilized this dataset to test PATI

predictions in Chapter 2. These experimental RDC data are used here to gauge the

accuracy of our docking method under real experimental conditions and the inac-

curacies inherent to the barrier model’s prediction of the alignment tensor. Similar

to the COMPLEX dataset we also generated synthetic RDC data for this set of

proteins, as a control. Since these are single-domain proteins, to use this dataset for

testing docking, we artificially created a molecular “complex” using a plane to arbi-

trarily bisect each protein molecule into two distinct sets of atoms. See Figure 3.1A

and Figure 3.1B for an illustration of how Cyanovirin-N is cut into two domains by

a plane.

Finally we applied our method to two protein-protein systems for which we

have experimental RDC and CSP data: ubiquitin/UBA complex [85] (PDB code

2JY6) and lysine-48-linked di-Ubiqutin [73] (PDB code 2BGF). These complexes

allow us to present a “real world” practical application for PATIDOCK. We show
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(A) (B)

Figure 3.1: Illustration of the bisection of Cyanovirin-N (PDB code 2EZM). (A) Van der Waals

surface of Cyanovirin-N. (B) Illustration of how the protein is split into two domains with approx-

imately equal number of atoms by a plane. The first domain is colored green, the second domain

is red.

that it is possible to quickly get a good solution for a complex using only the

alignment tensor. In addition we show that combining our method with a more

complicated energy function that accounts for additional factors such as van der

Waals interactions and CSPs can yield an accurate solution in practice.

We implemented PATIDOCK in MATLAB 7.8.0 and performed all calcula-

tions and timing on a single 1.7 GHz Pentium M processor with 1.5 GB RAM,

running Windows XP. The set of [α, u] values for which we precompute F, η1, η2,

and R was determined by the adaptive numerical integration of equation (2.15) with

an absolute error of 0.05 (using MATLAB’s quad function, see e.g., [76]). The latter

value was determined empirically based on the highest tolerance value which still

gave docking solutions accurate to within 0.2Å for synthetic RDCs for all complexes
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in the COMPLEX (excluding one outlier) and SINGLE datasets. Note that the

more accurate numerical integration is, the more [α, u] values are needed to com-

pute the integral, hence the slower is the overall docking process. Precomputing F,

η1, η2, and R functions for the specific [α, u] set allows us to quickly recompute the

integrals for different translations of the second domain without having to reevaluate

these computationally expensive functions.

Due to the four-fold ambiguity of the relative orientation of domain S2 with

respect to S1 and the existence of multiple local minimizers (with regard to transla-

tion) for each orientation, we expect to have at least eight potential solutions. The

solutions can be ranked by the RMSD between the experimental structure of S2 and

the predicted one, where the atom positions in S2 are adjusted by R∗ and x∗ (recall

that S1 is fixed in space). Since R∗ can be directly computed from the experimental

RDC data independent of our model, we first focus our analysis on the minimizers

that come from the correct orientation of the two domains. We then present the

results for the complete docking method that also includes automatic alignment of

the two domains, in addition to their positioning relative to each other.

3.3.1 Docking Using Ideal Synthetic Data

In order to demonstrate the feasibility of structural assembly of molecular

complexes based solely on RDC data, we first applied PATIDOCK-t to synthetic

data generated for proteins from the COMPLEX and SINGLE datasets.

To test our ability to find the correct minimizer under ideal conditions, for
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each complex we generated a synthetic alignment tensor Ãsyn using PATI predic-

tion. From this and the three-dimensional structure of the complex we calculated

RDCs for all amide NH bonds, which we call synthetic RDCs, assuming that there

is no noise in experimental measurements. The synthetic RDCs along with the

three-dimensional structures of the two domains comprise the input to our mini-

mization algorithm. We will rate our results based on the “Best Displacement”,

the smallest Euclidean norm between all the computed translations and the known

correct translation. The results for PATIDOCK-t, using Ãsyn as the experimen-

tal alignment tensor, are presented in Table 3.1 (columns “0 Hz”, “Time(s)”, and

“#Sol.”) for the SINGLE dataset. The results for the COMPLEX dataset under

ideal conditions (labeled “0 Hz” in Figure 3.2) are very similar (also see Support-

ing Information). These results clearly demonstrate that it is possible, under ideal

conditions, to accurately and efficiently assemble molecular complexes based solely

on RDC data.

3.3.2 Robustness of RDC-Guided Docking to Experimental Noise

In reality, RDC values always contain measurement errors, which are usually

below 1 Hz. To assess the effect of such errors on the RDC-guided docking we

added to the synthetic RDCs normally distributed noise with standard deviation

of 1 Hz or 3 Hz. This allowed us to test whether it is possible to accurately dock

a complex based solely on the alignment tensor in the presence of considerable (1

Hz) or extreme (3 Hz) noise in the data. Figure 3.2 shows errors in the docking
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solutions for the COMPLEX dataset in the presence or absence of random noise in

the generated RDC values. Very similar results were obtained using synthetic RDC

data (with noise) generated for the SINGLE dataset; see Table 3.1, columns “1 Hz”

and “3 Hz”.
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Figure 3.2: PATIDOCK-t docking results for the 84 complexes in the COMPLEX dataset using

synthetic RDC values with no noise (0 Hz, red circles) or in the presence of a Gaussian noise with

the standard deviation of 1 Hz (green squares) or 3 Hz (blue diamonds). In the case of noisy data,

docking of each complex was performed six times, with individual RDC errors randomly selected

from a normal distribution. All six results for each complex with RDC errors are plotted. For

the purposes of visualization a few outliers for complexes 41, 53, and 74 that have a very small

number of NH bonds are not displayed. Note that the deviation from the dataset average for

some complexes is due to a small size of one of the domains relative to the other, which reduces

the sensitivity of the molecular shape and the alignment tensor to interdomain translations.

From these results (Figure 3.2 and Table 3.1) we conclude that PATIDOCK-t

is able to find correct docking solutions for a wide variety of proteins even under

heavy (3 Hz) experimental noise. These results validate the concept of molecular

docking based exclusively on the alignment tensor.

PATIDOCK-t is also extremely fast, as it takes only seconds to dock two do-
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Table 3.1: The results of RDC-guided docking using PATIDOCK-t for the SINGLE dataset based on

synthetic RDC data with added experimental noise.

Protein 0 Hza 1 Hza,b 3 Hza,b Timec #d

B1 domain of protein G[41] 0.07 [0.07] 0.28 [0.25] 0.79 [0.78] 1.21 2

B3 domain of protein G[71] 0.09 [0.05] 0.30 [0.19] 1.25 [0.72] 1.36 2

Cyanovirin-N [10] 0.02 [0.02] 0.27 [0.16] 0.75 [0.43] 2.57 3

Gα interacting protein[21] 0.03 [0.02] 0.24 [0.13] 0.91 [0.46] 2.47 2

Ubiquitin[19] 0.02 [0.02] 0.23 [0.18] 0.67 [0.57] 1.86 2

Hen lysozyme[62] 0.05 [0.04] 0.16 [0.13] 0.53 [0.43] 1.94 2

Oxidized putidaredoxin[39] 0.06 [0.05] 0.22 [0.18] 0.62 [0.51] 1.97 2

Mean 0.05 [0.04] 0.24 [0.17] 0.79 [0.56] 1.91 2.14

a Best Displacement (in Å), computed as the smallest Euclidean norm between all the computed

translations (solutions) and the known correct translation. The values in brackets represent the

RMSD (in Hz) between the synthetic RDCs and the predicted RDCs at the solution. The column

labels represent the size of the standard deviation of the normally distributed noise added to

synthetic RDCs. “0 Hz” corresponds to no noise added to synthetic RDCs.

b The values represent an average of twelve independent runs.

c The average elapsed time (in seconds) required for docking the total of twenty five runs for “0

Hz”, “1 Hz”, and “3 Hz”.

d The number of possible solutions, all of which have a very similar predicted alignment tensor.

mains on a slow laptop. This speed makes it feasible to perform RDC-based docking

at each iteration step of a more complicated flexible docking algorithm, for example

by analyzing docking of multiple conformers (models) at each minimization itera-
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tion. Another potential consequence of the speed is that it opens up the possibility

of extending the docking algorithm to three or more molecules. Since we are able to

accurately dock molecules given perfect prediction of the alignment tensor, the accu-

racy of the results in practice will depend on how well we can predict the alignment

tensor in an experimental setting.

3.3.3 Docking using Experimental RDC Data

Having established the ability to accurately assemble molecular complexes

using synthetic data, we next test our method on the alignment tensors derived

from actual experimental data, in order to understand how errors in prediction

of the alignment tensor affect the overall accuracy of docking. We use for this

purpose the 7 proteins of the SINGLE dataset. The alignment tensor prediction

and the limitations of the barrier model for these proteins were addressed in detail

in Chapter 2. Since the errors in the experimental RDC data for these proteins are

about or smaller than 1 Hz, based on our results with synthetic data (Table 3.1) we

expected to get a good solution provided that the barrier model is a good predictor

of the alignment tensor. The results for PATIDOCK-t are shown in Table 3.2.

Surprisingly, these solutions are worse than one would expect based just on

the errors in the experimental data. Given that with synthetic RDC data these

proteins were docked properly (see Table 3.1) this suggests that the alignment ten-

sor predicted using a simple barrier model differs from the actual tensor, and this

discrepancy could translate into an error (about 4.3Å) in the docking solution. In
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Table 3.2: The results of RDC-guided docking using PATIDOCK-t for the SINGLE dataset

based on experimental RDC data.

Protein PDBa Disp.b Timec RMSDRDC
d #e

B1 domain of protein G 3gb1 2.01 1.43 1.18 2

B3 domain of protein G 2oed 4.17 1.57 1.33 2

Cyanovirin-N 2ezm 5.01 1.98 3.89 2

Gα interacting protein 1cmz 6.21 1.84 1.32 2

Ubiquitin 1d3z 3.90 1.62 1.34 2

Hen lysozyme 1e8l 3.44 3.51 7.23 2

Oxidized putidaredoxin 1yjj 5.18 2.47 4.45 2

Mean 4.27 2.06 2.96 2.00

a The RCSB Protein Data Bank code for protein coordinates. First model from the

ensemble of NMR structures was used for all calculations.

b Best Displacement (in Å), computed as the smallest Euclidean norm between all the

computed translations (solutions) and the known correct translation.

c The elapsed time (in seconds) required for docking.

d The RMSD (in Hz) between the experimental and the predicted RDC values at the

best predicted minimizer.

e The number of possible solutions, all of which have a very similar predicted alignment

tensor.

fact, as shown in Section 2.3, the inaccuracy in alignment tensor prediction can be

separated into an error in the magnitude (scaling) of the tensor and an error in its

orientation. On the positive side, however, the results in Table 3.2 show that by
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using only RDC data we are able to place the second domain on average within a

radius of 4.3Å of its proper position.

3.3.4 Docking Using Experimental RDC Data: Combining Align-

ment and Translation

The docking efforts presented above focused on domain translation, while keep-

ing interdomain orientation the same as in the original structure. We now combine

our method for determining the correct translation with the method for aligning

the two domains based on the orientations of the alignment tensor of the complex

“reported” by each individual domain [31, 27, 36]. This is the complete method,

PATIDOCK, that takes two domains with arbitrary positions and orientations, and

the associated experimental RDC values, and assembles their complex automatically

with no human intervention at any step.

We first align the two domains by extracting (from the experimental RDC data

for the complex) the alignment tensors “seen” by each domain and using equation

(3.1) to properly orient the second domain relative to the first one. We then use

PATIDOCK to compute the proper translation between the now aligned domains.

Due to the four-fold ambiguity in alignment we expect the number of solutions and

the computation time to increase by a factor of four. The results for PATIDOCK

with all potential solutions are shown in Table 3.3. Note that no domain alignment

was performed in the docking shown in Table 3.2, so the values in “Disp.” column

are also “RMSD2” values as defined in Table 3.3.
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Table 3.3: The results of RDC-guided docking using PATIDOCK for the SINGLE dataset based

on experimental RDC data.

Protein RMSDa RMSD2
b Timec RMSDRDC

d #e

B1 domain of protein G 1.02 2.23 6.42 1.45 8

B3 domain of protein G 1.80 4.49 4.83 1.09 8

Cyanovirin-N 2.35 5.76 5.10 4.45 8

Gα interacting protein 2.59 6.50 6.03 1.69 8

Ubiquitin 1.83 3.93 9.09 1.68 9

Hen lysozyme 1.65 3.35 8.29 7.27 10

Oxidized putidaredoxin 2.62 5.61 8.19 4.58 9

Mean 1.98 4.55 6.85 3.17 8.57

a The RMSD (in Å) between the original complex structure and the predicted complex. The

structures are optimally rotated and centered using the center of mass [47].

b The RMSD (in Å) between the coordinates of atoms of the second domain for the original

and the predicted complex.

c The elapsed time (in seconds) required for docking of all four orientations.

d The RMSD (in Hz) between the experimental and the predicted RDC values at the best

predicted minimizer.

e The number of possible solutions, all of which have a very similar predicted alignment

tensor.

The increase in RMSD2 values from the fixed-orientation assembly in Table

3.2 (values are in the “Disp.” column) to the align-and-translate assembly in Table

3.3 is small, showing that alignment of domains by using experimental RDC values
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is an extremely accurate technique and is not a significant contributor of error to

structure assembly. As expected, there is a four-fold increase in the number of

possible solutions and the running time, but the combined algorithm still completes

in less than 10 seconds.

3.3.5 Application to a Real System: Ubiquitin/UBA Complex

We now test our method on a protein complex for which experimental RDC

and CSP data are available: the complex of human ubiquitin (Ub) with the UBA

domain of ubiquilin-1[85] (PDB code 2JY6). Using the experimental CSP data we

defined as CSP-active residues L8, T9, G10, K48, E51, R54, Q62, H68, L71, and L73

in Ub, and M557, G558, L560, I570, A571, N577, E581, R582, L584 in UBA. See

Figure 3.3 for the mapping of the CSP-active residues onto the Ub/UBA complex.

In this section we will only use the RDC data, while the CSP data will be included

in a later section.

A potential complication for the rigid-body docking approach arises in the

case of the Ub/UBA complex from the fact that both proteins have extended un-

structured and highly flexible tails. In fact, residues 73-76 in Ub and 536-544 in

the UBA construct used in the experimental study experience large-amplitude mo-

tions [85] on a ps-ns time scale, which is many orders of magnitude faster than the

time scale (~100 ms) of a NMR experiment. These motions are also present in the

Ub/UBA complex, reflecting the fact that the tails do not participate in the binding

[85]. Naturally, such tails present a significant challenge for shape-sensitive compu-
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tations like those in the current study, because no single structure can represent the

ensemble/motion-averaged molecular shape relevant for a particular experiment.

This raises important questions that have not been addressed in the literature so

far: could flexible tails simply be neglected (clipped off) in such calculations or

should they be represented by a structural ensemble, and how large does the latter

need to be? In order to address these questions, we performed docking for both the

structural ensembles and the clipped (tailless) structures. Because the RDC data

were measured in the PEG/hexanol medium [78], the actual inter-barrier distance

was unknown and had to be estimated. We set h = 400Å, a value that gives the cor-

rect scaling between the predicted and experimentally determined alignment tensor

at the known solution.

To sample various orientations of the tails (not present in the original PDB

structure of the complex), we extracted 10 representative orientations of Ub’s C-

terminus from the NMR ensemble of Ub monomer (PDB code 1D3Z [19]) and 10

possible orientations of the N-terminus of the UBA domain from its NMR ensemble

in the monomeric state (PDB code 2JY5[85]). These conformations of the tails were

superimposed onto the corresponding domains in the complex structure (2JY6), thus

creating an ensemble of 100 possible models for the Ub/UBA complex (shown in

Figure 3.3). We refer to this Ub/UBA complex as Structure 2jy6-I. From the 100

models of Structure 2jy6-I we were able to estimate the variance in the docking

solutions that the two tails introduce. The results are presented in Table 3.4.

Because averaging by fast reorientations of the tails is expected to diminish

the tails’ effect on the alignment tensor, we clipped off the two tails from the struc-
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Figure 3.3: A cartoon representation of the ensemble of 100 possible models for the Ub/UBA

complex (Structure 2jy6-I). Ub is colored green, UBA is in red, the flexible tails are colored blue,

and the CSP-active residues are represented by spheres around their Cα atoms.

tures of the corresponding proteins and then docked the two tailless molecules using

PATIDOCK-t and PATIDOCK. We refer to the tailless Ub/UBA complex as Struc-

ture 2jy6-II ; the results are presented in Table 3.4. Figure 3.4 shows the isosurface

plot of the energy function χ2 for the tailless Ub/UBA complex and the visualization

of the two solutions from PATIDOCK-t. The isosurface plot clearly demonstrates

that there are two distinct minima in the energy function, both of which were found

by our program. As can be seen from Figure 3.4C and Figure 3.4D, the reason for

the two minima is that both solutions have very similar convex hulls due to the

geometric symmetry inherent in the problem.

As evident from Table 3.4, the conformation(s) of the tail can have a profound

effect on the results of docking. The solution varies on average by 2Å over all

the possible combinations of tail orientations, whereas removing the tails improves

the results significantly. This suggests that a potential solution for dealing with
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Table 3.4: The results of docking the Ubiquitin/UBA complex using PATIDOCK-t and PATIDOCK.

Struct.a Methodb RMSDc RMSD2
d Time RMSDRDC

e #f

2jy6-I PATIDOCK-t 3.37g (1.05)h 8.72g (1.97)h 2.02g (0.44)h 4.33g (1.16)h 2.01g

2jy6-I PATIDOCK 3.43g (1.07)h 8.71g (2.03)h 6.00g (1.19)h 4.42g (1.17)h 8.31g

2jy6-II PATIDOCK-t 1.32 4.23 1.87 4.13 2

2jy6-II PATIDOCK 1.25 3.72 4.95 4.23 8

a 2jy6-I is the ensemble of 100 structures representing various conformations of Ub and UBA tails (see

text), whereas in 2jy6-II the tails were clipped off.

b The method that was used to dock the complex.

c The RMSD (in Å) between the original complex structure and the predicted complex. The structures

are optimally rotated and centered using the center of mass [47].

d The RMSD (in Å) between the coordinates of atoms of the second domain for the original and

predicted complex.

e The RMSD (in Hz) between the experimental and the predicted RDC values at the best predicted

minimizer.

f The number of possible solutions, all of which have a very similar overall alignment tensor.

g Values are the means of the individual values for the best solution of each of the 100 models.

h Values in the parentheses are the standard deviations of the individual values for the best solution of

each of the 100 models.

flexible tails in RDC-guided docking is to clip them off rather than using a specific

conformation or trying to deduce the “averaged” conformation of the tail. Without

the tails, using PATIDOCK, we get an RMSD2 of about 3.7Å, which is somewhat

smaller than but close to the expected value of 4.5Å (see above).
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3.3.6 Application to a Real Dual-Domain System: Lys48-linked di-

Ubiquitin

Finally, we tested our method on a dual-domain system for which both exper-

imental RDC and CSP data are available: the Lys48-linked di-Ubiquitin [78, 36, 73]

(PDB code 2BGF). Using the experimental CSP data we define hydrophobic-patch

residues L8, I44, and L70 on both of the domains to be CSP-active. See Figure 3.5

for the mapping of the CSP-active residues onto the di-Ubiquitin (Ub2) structure.

The CSP data will be used in Section 3.3.7. Because the RDC data were measured

in the PEG/hexanol medium [78], the actual inter-barrier distance was unknown

and had to be estimated. We set h = 550Å, a value that gives the correct scal-

ing between the predicted and experimentally determined alignment tensor at the

known solution.

As in the case of the Ub/UBA complex, a potential complication for the rigid-

body docking approach arises from the unstructured and highly flexible C-terminal

tails comprising residues 73-76 of each domain [36], though the tail in Ubiquitin

is much shorter than that of UBA. We therefore performed a similar analysis to

that in the previous section. However, instead of superimposing the tails onto

the Ub2 complex, we simply took the ensemble of the 10 models from the Ub2

structure 2BGF (shown in Figure 3.3). We refer to this ensemble as Structure 2bgf-

I. Similarly, we created Structure 2bgf-II by taking the first model in 2BGF and

clipping off residues 73-76 of both domains. The results for the ensemble and the

clipped (tailless) structures are presented in Table 3.5.
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Table 3.5: The results of docking Lys48-linked di-Ubiquitin using PATIDOCK-t and PATIDOCK.

Struct.a Methodb RMSDc RMSD2
d Time RMSDRDC

e #f

2bgf-I PATIDOCK-t 1.35g (0.35)h 3.96g (1.10)h 2.35g (0.44)h 3.56g (0.37)h 2.00g

2bgf-I PATIDOCK 1.49g (0.30)h 4.33g (0.67)h 7.05g (0.68)h 3.48g (0.34)h 8.10g

2bgf-II PATIDOCK-t 1.07 3.53 2.80 3.45 2

2bgf-II PATIDOCK 1.19 3.69 6.56 3.45 8

a 2bgf-I is the ensemble of 10 structures representing various conformations of the C-terminal tails of

both Ubiquitin domains (see text), whereas in 2bgf-II the tails were clipped off.

b The method that was used to dock the complex.

c The RMSD (in Å) between the original complex structure and the predicted complex. The structures

are optimally rotated and centered using the center of mass [47].

d The RMSD (in Å) between the coordinates of atoms of the second domain for the original and the

predicted complex.

e The RMSD (in Hz) between the experimental and the predicted RDC values at the best predicted

minimizer.

f The number of possible solutions, all of which have a very similar overall alignment tensor.

g Values are the means of the individual values for the best solution of each of the 10 models.

h Values in the parentheses are the standard deviations of the individual values for the best solution of

each of the 10 models.

As above, the conformation of the tail has noticeable effect on the results of

docking, although significantly less than in the Ub/UBA complex. The solution

varies on average by 1Å among all the possible tails’ conformations, and removing

the tails improves the results slightly. These results further support the conclusion
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that the potential solution for dealing with flexible tails in RDC-guided docking is

to clip off the tails. Without the tails, using PATIDOCK, we get an RMSD2 of

3.7Å, which is somewhat smaller than but close to the expected value of 4.5Å (see

above).

3.3.7 Docking Using Experimental RDC Data Combined with Am-

biguous Interface-Related Restraints

The results in previous sections using real experimental data give a good hint at

the errors that one can expect when using the barrier model as the alignment tensor

predictor. Thus, we expect that in practice the error in domain positioning using

PATIDOCK would be about 4.3Å. The fact that the results are a relatively short

distance from the actual solution demonstrates that the alignment-tensor-based χ2

is a useful constraint.

We now seek to improve upon the previous results by combining CSP-like con-

straints along with the alignment tensor constraints by minimizing χ2
F (see equation

(3.14)). The combination of constraints should lead to a better and more reliable

overall solution.

To properly set κ we analyzed at the known solution the values of the three

target functions that make up χ2
F . We seek a value of κ that will weigh the errors

from the CSP-like constraints and the alignment tensor constraint equally at the

known solution. The errors are presented in Table 3.6.

We took the ratio χ2
Ω/χ

2 for 2bgf-II (1.23×105) as the value of κ for the target
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Table 3.6: The values of the energy functions at the known solution.

Structurea χ2
Ω χ2

Ψ χ2 χ2
Ω/χ

2

3gb1 0 0 9.01× 10−8 N/A

2oed 0 0 1.72× 10−7 N/A

2ezm 0 0 4.78× 10−7 N/A

1cmz 0 0 1.50× 10−7 N/A

1d3z 0 0 2.08× 10−7 N/A

1e8l 0 0 7.35× 10−7 N/A

1yjj 0 0 6.40× 10−7 N/A

2jy6-II 1.78× 10−1 0 4.46× 10−7 4.00× 105

2bgf-II 4.46× 10−2 0 3.64× 10−7 1.23× 105

a See Results section in the main text for structure references.

function χ2
F . We believe that the value for 2bgf-II is the best estimate we have for κ

because of the large number of outliers in the list of CSP-active residues for 2jy6-II.

The results of applying PATIDOCK+ to the SINGLE dataset, Ub/UBA, and

Ub2 are presented in Table 3.7. Note that we are now able to select the correct

structure out of all possible solutions by picking the one with the lowest χ2
F value.

The cartoon representations of the solutions for the two protein-protein systems are

presented in Figure 3.6.

As evident from Table 3.7, the addition of ambiguous, CSP-like restraints sig-

nificantly improved the solution for all proteins, compared to the results in Table
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Table 3.7: The results for PATIDOCK+ using a combination of CSP-like and alignment tensor con-

straints.

Protein Structurea RMSDb RMSD2
c RMSDRDC

d #Sol.e

B1 domain of protein G 3gb1 0.92 1.93 1.44 1

B3 domain of protein G 2oed 1.23 3.29 1.55 1

Cyanovirin-N 2ezm 1.52 3.94 3.92 1

Gα interacting protein 1cmz 1.20 3.53 2.67 1

Ubiquitin 1d3z 1.01 2.45 2.33 1

Hen lysozyme 1e8l 0.91 1.96 7.41 1

Oxidized putidaredoxin 1yjj 1.36 3.18 4.35 1

Ubiquitin/UBA 2jy6-II 0.56 1.37 5.00 1

di-Ubiquitin 2bgf-II 0.77 1.72 4.30 1

Mean 1.05 2.60 3.66 1.00

a See previous tables and Results section for structure references.

b The RMSD (in Å) between the original complex structure and the predicted complex. The

structures are optimally rotated and centered using the center of mass [47].

c The RMSD (in Å) between the coordinates of atoms of the second domain for the original and

predicted complex.

d The RMSD (in Hz) between the experimental and the predicted RDC values at the best predicted

minimizer.

e The number of possible solutions, all of which have a very similar χ2
F .

79



3.3, Table 3.4, and Table 3.5. The docked solutions for the two “real” complexes

(Ub/UBA and Ub2) based entirely on experimental RDC and CSP data have RMSD2

below 2Å. This indicates that combining RDCs with other experimental intermolec-

ular constraints in a real situation could be a powerful method for quickly yielding

good docking solutions. The additional benefit of using CSP-like restraints is that

we now are able to correctly identify the best solution from the eight or more possible

symmetry-related solutions based just on the χ2
F values.

3.4 Conclusion

In this chapter we demonstrated that it is fundamentally possible to assemble

a protein-protein complex based solely on experimental RDC data and the predic-

tion of the alignment tensor from three-dimensional structures, provided that the

structures of the individual components are available. The PATIDOCK method

described here is robust with respect to large experimental errors in RDC data.

Accuracy can be increased, at the expense of time, by changing the tolerance to

the numerical integration routine in PATI. However, the improvement in accuracy

is limited by the inherent inability of the barrier model to fully model the physical

conditions. When applied to real experimental data, it gives on average a 4Å er-

ror in the relative positioning of the molecules. We determined that the resulting

structure could be further refined by including other available experimental data

(PATIDOCK+). Moreover, the presence of extended unstructured/flexible parts

(e.g. tails) in a molecule can potentially affect the solution by more than 2Å,
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depending on which structure/conformation of such parts is chosen. We propose

removal of the flexible tails as a potential solution to this problem.

The PATIDOCK methods are extremely fast, and therefore we do not foresee

a need for a faster, but less accurate, method for prediction of the alignment tensor

than PATI. Potential improvements in the prediction of the alignment tensor will

most likely involve (i) representing individual molecular components as structural

ensembles rather than single structures and (ii) using a weight function inside the

integrals in equation (2.15), to account for possible non-steric interactions with

the aligning medium. For example, such a function could weigh η differently, or

introduce charge potentials in case of non-neutral alignment media (see e.g., [86]).

We foresee such an addition as being easily adapted into our docking method.

The PATIDOCK approach presented in this chapter can potentially be used in

several ways. First, it provides a quick rigid-body docking method whose solutions

can be utilized to significantly limit the search space of a more complicated flexible-

docking algorithm. For example, we know that using PATIDOCK we are able to

place the second domain to within 10Å or less of its actual position. We can then

constrain the search of a flexible-docking algorithm (e.g., HADDOCK [26], XPLOR-

NIH [63]) to within that radius.

Second, our energy functions can be included as an additional term into a

more general energy function that utilizes more complicated constraints such as

geometric/structural restraints, electrostatic and van der Waals potentials, etc. We

have partially done this in this chapter by combining alignment tensor with CSP-like

constraints. In a similar manner our energy function can be combined with a more
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complicated energy function in HADDOCK and other programs.

Third, PATIDOCK can be used as the main method for driving molecular

docking in the situation where there is a lack of unambiguous inter-domain structural

information, like NOEs. This last application will become more practical as methods

for prediction of the alignment tensor improve. The computational efficiency of

our approach makes it feasible to perform RDC-based docking at each iteration

step of a more complicated flexible docking algorithm, for example by analyzing

docking of multiple conformers at each minimization iteration. Note also that the

energy function designed here could potentially be used to evaluate and refine protein

structures, including those for single-domain proteins, based on how well the 3D

shape of the molecule agrees with experimental RDC data.

The fact that our docking method is extremely fast for two-domain complexes

opens up the possibility of extending the PATIDOCK approach to three or more

domains. Even though each additional domain gives rise to an exponential increase

in complexity and time, it is still possible to quickly evaluate our energy function

for several domains.
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(A) (B)

(C) (D)

Figure 3.4: The results of RDC-guided docking for the tailless Ub/UBA complex (2jy6-II) using

PATIDOCK-t. Shown are (A-B) isosurface plots of the χ2(x) function and (C-D) the associated

van der Waals surfaces (wrapped by their convex hulls) of the two solutions corresponding to

the two local minima of χ2(x). The isosurfaces correspond to (A) minx χ
2(x) + 0.1σ and (B)

minx χ
2(x) + 0.6σ, for all x inside the grid, where σ is the standard deviation of the values of χ2

in the grid. The isosurface data were collected on a 100 × 100 × 100 Å grid around 0. (C) The

best (closest) solution with the UBA domain positioned to the right of Ub, with χ2 = 2.01× 10−7

at the solution. (D) The incorrect solution where the UBA domain is to the left of Ub, with

χ2 = 1.24 × 10−7 at the solution. In these van der Waals surface plots Ub is colored green and

UBA is red. Both solutions have a very similar convex hull, hence similar predicted alignment

tensor. The camera angle relative to Ub’s orientation is the same in both figures. Note that the

best solution has a higher χ2 value.
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Figure 3.5: A cartoon representation of the ensemble of 10 models for the di-Ubiquitin complex

(Structure 2bgf-I). Proximal domain is colored green, distal domain is in red, the flexible tails are

colored blue, and the CSP-active residues are represented by spheres around their Cα atoms.

(A) (B)

Figure 3.6: A cartoon representation of the actual structure (green) vs. the docked structure

(red) for the (A) Ub/UBA complex and (B) Ub2 molecule based on minimization of χ2
F . Only

the adjusted domain (S2) is shown for the docked structures, the other domain (S1) superimposes

exactly with the corresponding domain in the actual structure.
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Chapter 4

Docking Based on the Diffusion Tensor (ELMDOCK)

In this Chapter we present and evaluate ELMDOCK, a rigid molecular dock-

ing method for a two-domain complex. ELMDOCK relies solely on the three-

dimensional structure of the individual components and the experimentally derived

diffusion tensor that is derived directly from NMR relaxation data. We show that,

given an accurate ab initio predictor of the diffusion tensor from protein structure,

it is possible to accurately assemble a protein-protein complex by leveraging the

NMR relaxation data’s sensitivity to molecular shape in our docking method. The

proposed docking method is robust against experimental errors in the NMR relax-

ation data and is computationally efficient. We analyze the accuracy and efficiency

of this method using synthetic data for a large variety of protein-protein complexes

as well as actual experimental data for three protein systems for which the structure

of the complex and diffusion data is available. Additionally, we analyze the effect of

flexible unstructured tails on the outcome of docking for a complex of ubiquitin and

a ubiquitin-associated domain. The results demonstrate that it is possible to quickly

assemble a protein-protein complex based solely on experimental NMR relaxation

data for a wide variety of complexes.
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4.1 Introduction

In Chapter 3 we introduced PATIDOCK, a method for using the alignment

tensor as a global constraint for rigid docking of multi-domain proteins. However,

PATIDOCK is limited by the physical ability to study a molecule of interest in

a solution filled with an alignment medium for which we are able to predict an

alignment tensor (bicelles, PEG/hexanol, and other alignment media that can be

modeled by steric restrictions introduced by a planar barrier). For a variety of

molecules, measuring a molecule in that type of medium might not be physically

possible.

In this chapter we introduce ELMDOCK, a rigid docking method that is anal-

ogous to PATIDOCK, but that uses the diffusion tensor [13] instead of the alignment

tensor for docking. ELMDOCK is named for the ELlipsoidal Model it uses to ap-

proximate the shape of a domain. ELMDOCK has an advantage over PATIDOCK

in that it does not require any alignment medium, and therefore can be applied to

a larger variety of complexes. ELMDOCK utilizes the sensitivity of the rotational

diffusion tensor to molecular shape to dock a two-domain complex based solely on

the three-dimensional structure of each domain and the experimental diffusion ten-

sor of the complex. This idea of using the diffusion tensor as a primary guide for

rigid docking of multi-domain proteins was introduced in Ryabov et al. [57] and

further explored in Ryabov et al. [59]. Similar to PATIDOCK, ELMDOCK uses

the difference between the experimental and the predicted diffusion tensors to find

the proper positioning of the second domain of the complex relative to the first.
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Docking using the diffusion tensor requires three components. The first com-

ponent is a method that will determine the experimental diffusion tensor from the

NMR relaxation data. The equivalent method for the alignment tensor was simple:

a linear least squares problem involving the RDCs (see kbequation (2.31)). In the

case of the diffusion tensor the method is significantly more complex. We describe

such a method, called ROTDIF [33, 37, 81], for the computation of the experimental

diffusion tensor from the NMR relaxation data in Section 4.2. We also introduce an

improvement to the algorithm for ROTDIF which results in an order of magnitude

speedup of the method.

The second required component for ELMDOCK is a method for predicting

the diffusion tensor given a three-dimensional structure of a molecule. The two

known methods are HYDRONMR [15, 23] and ELM [58]. We present both of these

methods in Section 4.3, but will use only ELM in ELMDOCK.

The final required component for ELMDOCK is a method that will efficiently

find the optimal positioning of the second domain relative to the first based on the

difference between the experimental diffusion tensor (computed by ROTDIF) and

the predicted diffusion tensor (computed by ELM). We present this docking method

in Section 4.4.

Having fully described all components of ELMDOCK in Sections 4.2, 4.3,

and 4.4, in Section 4.5 we demonstrate that ELMDOCK can deterministically and

efficiently perform rigid-body docking based on the diffusion tensor, analyze the

robustness of ELMDOCK under certain types of experimental errors, and examine

its performance in applications to real experimental data.
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4.2 Computing Experimental Diffusion Tensor (ROTDIF)

In this section we present ROTDIF [33, 37, 81], a method for determining the

experimental diffusion tensor Dexp from NMR relaxation data.

The (rotational) diffusion tensorD is a symmetric positive definite 3×3 matrix

that represents the anisotropic overall tumbling of a molecule [13]. Tumbling refers

to the random reorientation of a molecule around its axes in a solvent. Anisotropy

refers to the case when the tumbling rates around each axis are different. We label

the sorted eigenvalues of D as Dx ≤ Dy ≤ Dz.

We can visualize the diffusion tensor as a set of three orthogonal vectors ori-

ented in the molecule’s coordinate space. The orientation of the vectors (the eigen-

vectors of the diffusion tensor) describes the axes around which the molecule is ro-

tating. The length of each vector (the eigenvalues of the diffusion tensor) describes

the rate of rotation around the associated axis. See Section 1.3.1 for mathematical

properties of the matrix D.

To compute the experimental diffusion tensor from the experimentally mea-

sured NMR relaxation data, nonlinear least squares is used to find the diffusion

tensor that minimizes the difference between the experimentally measured NMR

relaxation data and the NMR relaxation data predicted by a physical model. The

physical model predicts the NMR relaxation data given a diffusion tensor and a set

of unit vectors of the complex’s NH bonds (normalized vector between the positions

of the N and H atoms). The algorithm for finding the experimental diffusion tensor
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can be expressed as

Dexp = argmin
D

χ2
R(v,D), (4.1)

where

χ2
R(v,D) =

n∑
i=1

[
ρexpi − ρpredi (vi,D)

]2
, (4.2)

n is the number of NH bonds in the molecule, vi = [vix, v
i
y, v

i
z] is the unit vector

between the N and H atoms in the i-th NH bond, ρexpi is the ratio of experimentally

measured transverse and longitudinal relaxation rates for bond i, and ρpredi (vi,D)

is the predicted ratio of transverse and longitudinal relaxation rates for bond i.

Given the longitudinal relaxation rate r1i, the transverse relaxation rate r2i,

and the steady state NOE r3i for ith NH bond, the experimental ratio ρexpi (adjusted

for high frequency components) was derived in [35, 32] and is computed as

ρexpi =
4r′1i

6r2i − 3r1i − 13.624Hi

, (4.3)

where

r′1i = r1i − 6.246Hi, (4.4)

Hi = −r1i
γN
5γH

(1− r3i), (4.5)

and γN ,γH are the gyromagnetic ratios of N and H. See Cavanagh et al. [16] for

the values of the gyromagnetic ratios.

To compute ρpredi (vi,D) three different physical models can be used depending

on how similar we expect the eigenvalues of the experimental diffusion tensor to

be. In Section 4.2.1 we present the three diffusion tensor models for the cases

when none, two, or all of the eigenvalues are equal. Then, in Section 4.2.2 we
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present the associated algorithms that deterministically solve all three models for

the experimental diffusion tensor, and are faster than the algorithms proposed in

Walker et al. [81].

4.2.1 Experimental Diffusion Tensor Models

There are three diffusion tensor models that can be used to model ρpred.

The most general (and the most complicated) diffusion tensor model is the fully

anisotropic model, where all three eigenvalues of the experimental diffusion tensor

are assumed to be different. We describe this model in Section 4.2.1.1. In the case

when two eigenvalues of the experimental diffusion tensor are assumed to be equal,

we can simplify the fully anisotropic model to an axially symmetric model, which

we describe in Section 4.2.1.2. Finally, in the simplest case, when all three eigenval-

ues are assumed to be equal, a simple isotropic model is used, and is presented in

Section 4.2.1.3.

4.2.1.1 Fully Anisotropic Diffusion Tensor Model

We start with the most general, fully anisotropic, diffusion tensor model, when

all three eigenvalues of the experimental diffusion tensor are assumed to be different.

The eigenvalues do not have to be sorted. Then for the i-th bond, ρpredi for the fully

anisotropic diffusion model, derived in Woessner [84] and slightly reformulated in

Ghose et al. [37], is computed as

ρpredi (vi,D) =
J(vi, ωN ,D)

J(vi, 0,D)
, (4.6)
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where ωN is the resonance frequency of the 15N spin (which is dependent on the

spectrometer that is used for the experiment),

J(vi, ω,D) =
2

5

5∑

k=1

dk(D)ak(v
i,D)

d2k(D) + ω2
, (4.7)

the components independent of the NH bonds are

d1(D) = 4Dx +Dy +Dz,

d2(D) = Dx + 4Dy +Dz,

d3(D) = Dx +Dy + 4Dz,

d4(D) = 6e3 + 2e4,

d5(D) = 6e3 − 2e4,

e1 = Dy −Dx,

e2 = Dz −Dx,

e3 = (Dx +Dy +Dz)/3,

e4 =
√

e21 − e1e2 + e22,

(4.8)
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the components dependent on the NH bonds are

a1(v
i,D) = 3v̄22 v̄

2
3,

a2(v
i,D) = 3v̄21 v̄

2
3,

a3(v
i,D) = 3v̄21 v̄

2
2,

a4(v
i,D) = p1 − p2,

a5(v
i,D) = p1 + p2,

p1 =
1

4
[3(v̄41 + v̄42 + v̄43)− 1],

p2 =
1

12
[δ1(3v̄

4
1 + 2a1 − 1) + δ2(3v̄

4
2 + 2a2 − 1) + δ3(3v̄

4
3 + 2a3 − 1)],

v̄ = VTvi,

(4.9)

and the shared components are

δ1 = (−e1 − e2)/e4,

δ2 = (2e1 − e2)/e4,

δ3 = (2e2 − e1)/e4,

(4.10)

Note that we reformulated how d4 and d5 are calculated in Ghose et al. [37] to

increase numerical stability.

4.2.1.2 Axially Symmetric Diffusion Tensor Model

If two eigenvalues of Dexp are assumed to be equal, then an axially symmetric

diffusion tensor model can be used for the computation of Dexp. We label the two

equal eigenvalues as D⊥, and the unique eigenvalue as D‖. The expression ρexpi can

be simplified greatly from the case of fully anisotropic diffusion model and is given

in [84, 37].
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Without loss of generality, we simplify the fully anisotropic model for the case

when D⊥ = Dx = Dy and D‖ = Dz. Observe that e1 = 0, e2 = e4 = D‖ − D⊥,

d1 = d2 = 5D⊥ +D‖, d3 = d4 = 2D⊥ + 4D‖, and d5 = 6D⊥. Equation 4.7 simplifies

to:

J(vi, ω,D) =
2

5

3∑

k=1

d̂k(D)âk(v
i,D)

d̂2k(D) + ω2
, (4.11)

where d̂1 = 5D⊥ +D‖, d̂2 = 2D⊥ + 4D‖, d̂3 = 6D⊥, â1 = a1 + a2, â2 = a3 + a4, and

â3 = a5.

Since v̄ is normalized, we simplify â2:

â1 = a1 + a2 = 3v̄22 v̄
2
3 + 3v̄21 v̄

2
3 = 3v̄23(1− v̄23). (4.12)

We observe that:

δ1 = (−e2)/e4 = −1,

δ2 = (−e2)/e4 = −1,

δ3 = (2e2)/e4 = 2.

(4.13)

We now simplify p2:

p2 =
1

12
[δ1(3v̄

4
1 + 2a1 − 1) + δ2(3v̄

4
2 + 2a2 − 1) + δ3(3v̄

4
3 + 2a3 − 1)],

=
1

12
[−3v̄41 − 3v̄42 + 6v̄43 + 2(−a1 − a2 + 2a3)],

=
1

12
[−3v̄41 − 3v̄42 + 6v̄43 − 6v̄22 v̄

2
3 − 6v̄21 v̄

2
3 + 12v̄21 v̄

2
2],

=
1

4
[−v̄41 − v̄42 + 2v̄43 − 2v̄22 v̄

2
3 − 2v̄21 v̄

2
3 + 4v̄21 v̄

2
2].

(4.14)
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Using the simplification of p2 in (4.14), we simplify â2:

â2 = a3 + a4 = p1 − p2 + 3v̄21 v̄
2
2

=
1

4
[3v̄41 + 3v̄42 + 3v̄43 − 1 + v̄41 + v̄42 − 2v̄43 + 2v̄22 v̄

2
3 + 2v̄21 v̄

2
3

− 4v̄21 v̄
2
2 + 12v̄21 v̄

2
2]

=
1

4
[4v̄41 + 4v̄42 + v̄43 − 1 + 2v̄22 v̄

2
3 + 2v̄21 v̄

2
3 + 8v̄21 v̄

2
2]

=
1

4
[4(v̄21 + v̄22)

2 + v̄43 − 1 + 2v̄22 v̄
2
3 + 2v̄21 v̄

2
3]

=
1

4
[4(1− v̄23)

2 − v̄43 − 1 + 2(1− v̄23)v̄
2
3]

=
1

4
[4− 8v̄23 + 3v̄43 − 1 + 2v̄23 − 2v̄43]

=
1

4
[3− 6v̄23 + v̄43]

=
3

4
(1− v̄23)

2.

(4.15)

Again, using the simplification of p2 in (4.14), we simplify â3:

â3 = a5 = p1 + p2

=
1

4
[3v̄41 + 3v̄42 + 3v̄43 − 1− v̄41 − v̄42 + 2v̄43 − 2v̄22 v̄

2
3 − 2v̄21 v̄

2
3 + 4v̄21 v̄

2
2]

=
1

4
[2v̄41 + 2v̄42 + 5v̄43 − 1− 2v̄22 v̄

2
3 − 2v̄21 v̄

2
3 + 4v̄21 v̄

2
2]

=
1

4
[2v̄41 + 2v̄42 + 5v̄43 − 1− 2(1− v̄23)v̄

2
3 + 4v̄21 v̄

2
2]

=
1

4
[2v̄41 + 4v̄21 v̄

2
2 + 2v̄42 + 5v̄43 − 1− 2v̄23 + 2v̄43]

=
1

4
[2(v̄21 + v̄22)

2 + 7v̄43 − 2v̄23 − 1]

=
1

4
[2(1− v̄23)(1− v̄23) + 7v̄43 − 2v̄23 − 1]

=
1

4
[1− 6v̄23 + 9v̄43]

=
1

4
(3v̄23 − 1)2.

(4.16)
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The axially symmetric diffusion model is therefore:

ρpredi (vi,D) =
J(vi, ωN ,D)

J(vi, 0,D)
, (4.17)

where ωN is the resonance frequency of the 15N spin,

J(vi, ω,D) =
2

5

3∑

k=1

d̂k(D)âk(v
i,D)

d̂2k(D) + ω2
, (4.18)

the components independent of the NH bonds are

d̂1(D) = 5D⊥ +D‖,

d̂2(D) = 2D⊥ + 4D‖,

d̂3(D) = 6D⊥,

(4.19)

the components dependent on the NH bonds are

â1(vi,D) = 3v̄23(1− v̄23),

â2(vi,D) =
3

4
(1− v̄23)

2,

â3(vi,D) =
1

4
(3v̄23 − 1)2,

v̄ = VTvi,

(4.20)

and V is an orthonormal matrix of the eigenvectors of D.

4.2.1.3 Isotropic Diffusion Tensor Model

If all three eigenvalues of the experimental diffusion tensor are assumed to

be equal then a simple isotropic diffusion tensor model can be used. We label the

eigenvalue as Dc.
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Observe that now d̂1 = d̂2 = d̂3 = 6Dc. From equation (4.17) we have:

ρpredi (vi,D) =
J(vi, ωN ,D)

J(vi, 0,D)

=

6Dc(â1 + â2 + â3)

36D2
c + ω2

N

â1 + â2 + â3

6Dc

=
36D2

c

36D2
c + ω2

N

.

(4.21)

The isotropic model is therefore:

ρpredi (D) =
1

1 + (ωNτc)
2 ,

τc = 1/(6Dc),

(4.22)

where ωN is resonance frequency of the 15N spin. Note that the isotropic model

does not dependent on the orientation of the NH bonds.

We can solve equation (4.22) for Dc, which gives:

Dc =

∣∣∣∣∣
ωn

6

√
ρpredi

1− ρpredi

∣∣∣∣∣ . (4.23)

4.2.2 Algorithms for Solving the Three Diffusion Models

In this section we present three minimization algorithms that solve for the

experimental diffusion tensor Dexp for each of the three models. We first solve for

the diffusion tensor model in the isotropic case, and then use the solution as the

initial guess for the other two models. Note that our algorithms use a nonlinear
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least squares function “lsqnonlin” that we define in Section A.3.2, and which solves

the problem

x∗ = argmin
x

‖f(x)‖2, (4.24)

where x∗ is a local minimizer of f .

In Algorithm 4.1 we give the algorithm for computing Dexp for the isotropic

diffusion tensor model. The algorithm first uses (4.23) to get an initial estimate for

Dx, and then uses a nonlinear least squares solver to fully solve (4.1).

Algorithm 4.1 rotdifIso

Input: ρexp – defined in equation (4.3).

Output: Dexp – the experimental diffusion tensor.

1: for all bonds do

2: di ←
∣∣∣ωN

6

√
ρexpi

1−ρexpi

∣∣∣

3: end for

4: x0 ←< d > {< d > is the mean of d.}

5: Dexp ←




x0 0 0

0 x0 0

0 0 x0




6: Dexp ← lsqnonlin(χ2
R(∅,x),Dexp) {∅ represents the fact that the first parameter

v to χ2
R in (4.2) is not used in the isotropic model.}

7: return Dexp

We now proceed to describe an algorithm for solving the axially symmetric

model for Dexp using the solution from the isotropic model as our initial guess.

Recall from Definition 1.9 that we can express V, the orthogonal matrix of the
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eigenvectors of the diffusion tensor, using three Euler angles α, β, and γ. Since

two of the eigenvalues are equal in the case of the axially symmetric model, the

orientation of the diffusion tensor can be described by the orientation of the unique

eigenvalue D‖. Therefore, we can express the orientation using only α and β angles

and set γ = 0.

Due to the eight-fold ambiguity of an eigendecomposition, equation (4.17) is

π periodic in the two Euler angles. We take a similar approach to minimizing our

equation as Walker et al. [81], but rather than randomly sampling a large number

of angles for initial guesses to the nonlinear least squares solver, we only make four

initial guesses for α and β: [0, 0], [0, π/2], [π/2, 0], and [π/2, π/2]. Additionally,

we alternate between the last and the first two eigenvalues being equal to handle

the prolate and oblate case. We therefore perform nonlinear least squares for eight

initial guesses. The complete algorithm is shown in Algorithm 4.2. Applying the

algorithm to real and randomly generated synthetic data empirically confirms that

we are able to correctly find the minimizer every time.
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Algorithm 4.2 rotdifAxi

Input: ρexp – defined in equation (4.3), v – array of the normalized NH vectors,

where vi is associated with ρexpi .

Output: Dexp, the experimental diffusion tensor.

1: Diso ← rotdifIso(ρexp)

2: D̂ ← Diso

3: Dexp ← Diso

4: for j = 1, 2 do

5: D̂jj ← .5D̂jj {To switch between the prolate and oblate cases. The first

eigenvalue changes from being D‖ to D⊥.}

6: for α = 0, π/2 do

7: for β = 0, π/2 do

8: x0 ← R(α, β, 0)D̂RT (α, β, 0)

9: x∗ ← lsqnonlin(χ2
R(v,x),x0)

10: if ‖ρpred(v,x∗)− ρexp‖ < ‖ρpred(v,Dexp)− ρexp‖ then

11: Dexp ← x∗

12: end if

13: end for

14: end for

15: end for

16: return Dexp

Finally, we describe the algorithm for solving the fully anisotropic diffusion
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model for Dexp. Again, we use the solution from the isotropic model as our initial

guess for the solution. We make an observation similar to that for the axially sym-

metric case, that equation (4.17) is π/2 periodic for α, β, and γ. We therefore take

eight initial guesses for the Euler angles: [0, 0, 0], [0, 0, π/4], [0, π/4, 0], [0, π/4, π/4],

[π/4, π/4, 0], and [π/4, π/4, π/4]. The complete algorithm is shown in Algorithm 4.3.

Applying the algorithm to real and randomly generated synthetic data empirically

confirms that we are able to correctly find the minimizer every time.
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Algorithm 4.3 rotdifAni

Input: ρexp – defined in equation (4.3), v – array of the normalized NH vectors,

where vi is associated with ρexpi .

Output: Dexp, the experimental diffusion tensor.

1: Diso ← rotdifIso(ρexp)

2: D̂ ← Diso

3: Dexp ← Diso

4: D̂11 ← .5D̂11, D̂33 ← 1.5D̂33 {Move away from the isotropic case, which causes

division by 0.}

5: for α = 0, π/4 do

6: for β = 0, π/4 do

7: for γ = 0, π/4 do

8: x0 ← R(α, β, γ)D̂RT (α, β, γ)

9: x∗ ← lsqnonlin(χ2
R(v,x),x0)

10: if ‖ρpred(v,x∗)− ρexp‖ < ‖ρpred(v,Dexp)− ρexp‖ then

11: Dexp ← x∗

12: end if

13: end for

14: end for

15: end for

16: return Dexp
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4.3 Predicting the Diffusion Tensor from Three-dimensional Struc-

ture

Having described methods for computing the experimental diffusion tensor we

now present two different methods for predicting the diffusion tensor ab initio from

the three-dimensional structure of a molecule.

Physically, the diffusion tensor represents how fast an object re-orients in a

solvent. There are several forces that act upon the molecule in a solvent that affect

its rotation. By far the most dominant force is the frictional force of the molecule

as it grinds against the solvent during rotation. Therefore, the diffusion tensor is

heavily related to how the surface of the object interacts with the solvent. As a

consequence, the internal mass distribution can be ignored for the purposes of the

calculation [15].

4.3.1 HYDRONMR

HYDRONMR is a well known method for computing the diffusion tensor from

a three-dimensional structure of a molecule [15, 23]. HYDRONMR computes the

diffusion tensor by modeling the molecule with spheres (beads) along its surface.

Figure 4.1B shows the beads representation of the lysozyme molecule. The hydro-

dynamic properties of the beads can then be computed using the theoretical method

described in Carrasco and Garcia de la Torre [15].

HYDRONMR requires that the interaction between each individual pair of

beads be computed. Assuming that we have N beads, the computation is O(N3)
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(A) (B)

Figure 4.1: (A) Primary hydrodynamic model of lysozyme. (B) HYDRONMR shell model with

bead radius σ = 0.8. [23]

for HYDRONMR. For a newer version of HYDRONMR, called FAST-HYDRONMR

[15], which uses approximations to speed up the calculation, computation drops to

O(N2) . The smaller the radii of the beads the more accurate the representation of

the molecule’s shape; however more beads are then required to represent the shape

of the molecule. This means that computing the diffusion tensor more accurately

requires additional computation time. To overcome the expense of the computation,

HYDRONMR starts out with beads of large radius σ, decreasing the radius several

times, and then extrapolates the results to σ → 0.

4.3.2 Equivalent Ellipsoid Method

An alternative method for computing the diffusion tensor is to represent the

arbitrarily shaped molecule by a simpler shape for which the diffusion tensor can be
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computed using known equations. We choose the shape to be an ellipsoid, since it

is a simple geometric shape that can also be represented by a 3× 3 positive definite

symmetric matrix, just like the diffusion tensor.

Computing the diffusion tensor for a molecule is a two-step process: We first

find an equivalent ellipsoid for the molecule; then we use the known equations to

compute the diffusion tensor from the equivalent ellipsoid.

We tried two approaches for finding an equivalent ellipsoid. In the first ap-

proach we used the MVE (see Section 1.3.2.1) of a molecule. We found that this

method gave inaccurate results for non-elliptically shaped molecules. In the second

approach we used the PCAE (see Section 1.3.2.3) of the molecule. We found that

this method produced better results and is the only method used in the rest of the

Chapter.1

Having shown how to compute an equivalent ellipsoid E(A, c) of a molecule, we

now present Perrin’s equations for computing the diffusion tensor from the computed

equivalent ellipsoid [53].

Intuitively, Perrin’s equations express the idea that molecules re-orients faster

around the longer axis of an ellipsoid than around shorter axes. This physical

behavior is similar to the behavior of a log of wood that rotates in water: The log

rotates much easier around its length than in any other direction. Perrin’s equations

also show that the orientation of the principal axes (eigenvectors) of the diffusion

tensor and the ellipsoid are the same.

Given the lengths of the equivalent ellipsoid’s principal semi-axes, `1, `2, and

1During the computation of all the PCAE in this chapter we set HLT=2.8Å.
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`3, and the ellipsoid’s orientation matrix V, the predicted diffusion tensor of the

ellipsoid is:

Dpred = V




D1 0 0

0 D2 0

0 0 D3



VT , (4.25)

where

D1(`1, `2, `3) =
kbt

I1
,

D2(`1, `2, `3) =
kbt

I2
,

D3(`1, `2, `3) =
kbt

I3
,

(4.26)

t is the temperature (◦ Kelvin), kb is the Boltzmann constant,

I1 =
16πυ(`22 + `23)

`22Q2 + `23Q3

,

I2 =
16πυ(`21 + `23)

`21Q1 + `23Q3

,

I3 =
16πυ(`21 + `22)

`21Q1 + `22Q2

,

(4.27)

υ is the solvent viscosity, and

Q1 =

∫ ∞

0

ds√
(`21 + s)3(`22 + s)(`23 + s)

,

Q2 =

∫ ∞

0

ds√
(`22 + s)3(`21 + s)(`23 + s)

,

Q3 =

∫ ∞

0

ds√
(`23 + s)3(`21 + s)(`22 + s)

.

(4.28)

Thus, given a molecule the steps to predicting its diffusion tensor are: Com-

pute the molecule’s PCAE; compute the eigendecomposition of the PCAE; find the

lengths of PCAE’s axes using equation (1.8); and finally, predict the diffusion tensor

using Perrin’s equations.
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4.4 Docking Method

Having derived the methods for computing the experimental diffusion tensor

and predicting the diffusion tensor of a molecule, we now present ELMDOCK, our

docking method for determining domain position of a molecule made up of two

domains for which the individual three-dimensional structure and the associated

experimental diffusion tensors are known.

Just like in PATIDOCK, we first need to align the two domains based on their

experimental diffusion tensor. Let M be a molecule made up of two domains, A

and B, with experimentally measured ratio of transverse and longitudinal relaxation

rates ρexp, and the associated experimental diffusion tensors DA and DB (computed

by ROTDIF using the fully anisotropic model). The sorted eigendecompositions of

the experimental diffusion tensors for A and B are

DA = VD̂AV
T , (4.29)

DB = VD̂BV
T . (4.30)

We assume that the diffusion tensors have unique principal components and

so there are only four possible sorted eigendecompositions for DA and DB. We also

assume that A and B tumble together in a solution. When the two domains tumble

as one unit, DA ≈ DB [36]. Similar to the procedure in PATIDOCK, we align the

two domains based on their diffusion tensors and recompute the overall experimental

diffusion tensor Dexp for this newly aligned structure M using ROTDIF.2 We refer

2See Section 3.2.1 on how to align two domains using their alignment tensors. The procedure

for the diffusion tensor is identical.

106



to the newly computed overall experimental diffusion tensors as Dexp.

Note that there is still a four-fold ambiguity in the alignment of the two do-

mains, and that our docking algorithm should be repeated for each of the four align-

ments, and another method should be used to evaluate which of the four possible

orientations is correct.

Having just given the procedure for aligning M using the individual diffusion

tensors, in the rest of the section we will assume that A and B, and hence M , are

already properly aligned. We refer to the method for finding the optimal translation

between two domains when they are already aligned as ELMDOCK-t.

Let B + x represent a shift in the position of each atom of B by a vector

x ∈ R3. We define M(x) to be the positions of all the atoms from A and B + x.

The goal of ELMDOCK is to find a shift x∗ in the position of the B molecule so

that the combined moleculeM(x∗) has the same diffusion tensor as the experimental

diffusion tensor Dexp. Specifically, we find x∗ such that

x∗ = argmin
x

χ2
D(x), (4.31)

χ2
D(x) =

3∑
i=1

3∑
j=1

[Fij(M(x))− (Dexp)ij]
2, (4.32)

where F(M) is a function that predicts the diffusion tensor of a molecule M . For

example F(M) could be HYDRONMR [23] or ELM [58].

Solving equation (4.31) directly will be slow for two reasons: First, the diffusion

tensor needs to be recalculated for each iteration of the minimization. Since com-

puting the diffusion tensor involves computation of the Richards’ smooth molecular

surface, this computation is expensive. Second, a nonlinear least squares method
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will be slow because of the need to approximate the Jacobian for F(M) using finite

differences. The finite differences approximation leads to further problems since we

expect the function to not be perfectly smooth due to the sudden changes in the

surface points as the two domains collide. In addition, finite differences will require

us to compute M(x) three additional times for each minimization iteration.

To explain how we solve equation (4.31) in a more efficient way we dissect the

ELM method. Recall from Section 4.3.2 that the steps for computing the predicted

diffusion tensor using ELM for any molecule M are

M(X)
SURF−−−→ S

PCA−−→ C −→ E Perrin’s equations−−−−−−−−−−→ Dpred, (4.33)

where S is the set of sample points from Richards’ smooth surface for molecule M ,

C is the covariance matrix of S, and E is the associated PCAE. When X = x∗ we

expect that Dpred ≈ Dexp.

The goal of our docking algorithm is to reverse these steps in an efficient

manner so that given Dexp, we find the best fitting molecule M(x∗), and hence x∗.

We accomplish this in two separate steps:

Dexp
1−→ C∗ 2−→ M(x∗). (4.34)

Since we are given Dexp for our input, we set Dpred = Dexp. If our problem is well

conditioned, small errors in the prediction of the diffusion tensor or Dexp will result

in a small difference between the true solution and x∗. We test if ELMDOCK is

well conditioned in Section 4.5.2.
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In step 1 we find C∗ by solving the equation

C∗ = argmin
C

χ2
C(x), (4.35)

where

χ2
C(x) =

3∑
i=1

3∑
j=1

(Lij(C)− (Dexp)ij)
2, (4.36)

and L(C) is the function that returns the diffusion tensor of a covariance matrix C.

L computes the diffusion tensor by first computing the ellipsoid using Theorem C.1,

and then uses Perrin’s equations to compute the diffusion tensor of this ellipsoid.

We present a detailed description of step 1 in Section 4.4.1.

In step 2 we efficiently find x∗ by solving the equation

x∗ = argmin
x

χ2
G(x), (4.37)

where

χ2
G(x) =

3∑
i=1

3∑
j=1

(Gij(x)− C∗
ij)

2, (4.38)

and G(x) is a function, described in Section 1.3.2.3, that returns the covariance

matrix of the surface of a molecule M(x). In order to describe the minimization

method for χ2
G, we first present two methods for approximating G(x) in Section

4.4.2. We then use these approximation methods to efficiently minimize χ2
G in

Section 4.4.3.

We present the outline of our complete docking method in Algorithm 4.4. The

relevant references are presented in the comment section of each line, and are ex-

plained in detail in the rest of the chapter.
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Algorithm 4.4 Docking Algorithm

Input: Dexp – three-dimensional structure of A and B that are already aligned,

G(x) – a function that computes the covariance matrix of M(x).

Output: x∗ – the translation of B that yields the best docking solution as measured

by our energy function.

1: Compute the covariance matrix C∗ from Dexp {See Section 4.4.1.}

2: x∗ ← ∞

3: for every initial guess x0 {See Section 4.4.3.1.} do

4: k ← 0

5: xk ← x0

6: while stopping condition not reached {See Section 4.4.3.3}. do

7: Compute a descent direction p ∈ R3 for χ2
G(xk) {See Section 4.4.3.2}.

8: Set xk+1 ← xk + p

9: Set k ← k + 1

10: end while

11: if χ2
G(xk) < χ2

G(x
∗) then

12: x∗ ← xk

13: end if

14: end for

15: return x∗
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4.4.1 Step 1: Diffusion Tensor to Covariance Matrix

In this section we describe step 1 of our docking method, where we solve

equation (4.35) by finding a covariance matrix of an ellipsoid that has the diffusion

tensor value Dexp. Then, given the covariance matrix it is much easier to find x∗

since the covariance matrix is directly proportional to the surface points of the

domain, while the relationship between x∗ and the diffusion tensor is much harder

to quantify.

Recall from Section 4.3.2 that the orientation of the diffusion tensor Dexp

and of the associated covariance matrix C∗ is the same. That means that the

eigendecompositions of Dexp and C∗ are

Dexp = V




D1 0 0

0 D2 0

0 0 D3



VT , (4.39)

and

C∗ = V




λ1 0 0

0 λ2 0

0 0 λ3



VT . (4.40)

By performing an eigendecomposition onDexp, we get the values forV,Dx,Dy,

and Dz. Given Dx, Dy, and Dz, we now solve equation (4.26) (Perrin’s equations)

for the lengths of the ellipsoid’s principal semi-axes `1, `2, and `3 that yield the

diffusion tensor values Dx, Dy, and Dz.

Once we have gotten the lengths of the ellipsoid’s principal semi-axes [`1, `2, `3],

and its orientation V, by equation (1.8) and Theorem C.1, the covariance matrix
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C∗ of the ellipsoid is:

C∗ = V




`21/3 0 0

0 `22/3 0

0 0 `23/3



VT . (4.41)

We observe that we can compute the Jacobian of equation (4.26), and solve

for [`1, `2, `3] by using nonlinear least squares method given a proper initial guess for

the values. We need to be careful when selecting the initial guess, since the solution

for [`1, `2, `3] is not necessarily unique.

In Figure 4.2 we show the mapping of lengths of ellipsoid’s principal semi-axes

[`1, `2, `3], where 0 < `1 ≤ `2 ≤ `3, sampled at 2Å intervals, into the diffusion tensor

space using Perrin’s equations. To better visually spread out the points we adjust

each eigenvalue of the diffusion tensor using the function T , where

T (Di) = log(log(log(log(log(Di + 1) + 1) + 1) + 1) + 1), (4.42)

for i = x, y, z.

Observe that the color gradient in Figure 4.2 is fairly smooth. This implies that

in Perrin’s equations, neighboring values in the domain map into neighboring values

in the range. To confirm this observation, we split the cube of the diffusion tensor

space (from 0 to max(T )) into 20× 20× 20 cubes, and for each cube observe which

triples of [`1, `2, `3] are mapped into that cube. We performed hierarchical clustering

on the triples based on their Euclidean distances and recorded the number of clus-

ters.3 This shows how many disconnected parts of the domain are being mapped

3We measure the distance between two clusters as the Euclidean distance between the two
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Figure 4.2: A sample of all possible triples of the principal semi-axes lengths `1 ≤ `2 ≤ `3 of

an ellipsoid from 1Å to 50Å sampled at 2Å intervals mapped into the diffusion tensor principal

components using Perrin’s equations. The colors represent the value `1 + `2 + `3 of each sample

point.

into a connected range (the cube). The maximum number of clusters in any cube

was two, and the majority of the occupied cubes contain only one cluster. There-

fore, we expect at most two distinct triplets of [`1, `2, `3] to have the same diffusion

tensor. Since there are only two solutions, we can try to find both of the solu-

tions by simply trying eight different starting points, [1, 1, 1], [1, 1, 1000], [1, 1000, 1],

[1, 1000, 1000], [1000, 1, 1], [1000, 1, 1000], [1000, 1000, 1], and [1000, 1000, 1000] in

the nonlinear least squares algorithm. In practice, we are able to eliminate all but

closest points of the clusters. We set the cluster cutoff at 3.7Å, a value that is smaller than 4Å,

the shortest possible distance between two non-adjacent sample points.
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one of the solutions by simply checking if the computed lengths make sense given

the known shape of the domains.

Having gotten the ellipsoid’s principal semi-axes lengths [`1, `2, `3], we compute

covariance matrix C∗ by (4.41).

We have now solved equation (4.35), and can therefore move to step 2 of our

docking method.

4.4.2 Estimating the Covariance Matrix of a Molecule

Before we can present step 2 of our docking method, we need to describe two

methods for approximating G(x), a function that computes the covariance matrix

of M(x). Since each iteration of a Newton-like minimization requires an evaluation

of the target function and a computation of a descent step (see Appendix A), we

first derive two algorithms that provide fast approximations to the function G(x),

and by extension an approximation for a descent step.

The first algorithm allows us to quickly compute the descent step for our min-

imization algorithm by finding a quadratic approximation of the covariance matrix

around the current value x. The minimizer of this quadratic function can be ef-

ficiently computed by a Newton-like method. We can express the approximation

as

G(x+ p) ≈ G(x) +Q(p), (4.43)

where

Qij(p) = κpipj +Kijpi +Kjipj, (4.44)
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i, j = 1, 2, 3, p ∈ R3, κ is a constant, and K is a constant 3 × 3 matrix. We derive

the formulae for the constants in Section 4.4.2.1.

The second algorithm, Gfast, is a more accurate method for approximating

G(x) but is computationally slower. It provides a method for estimating the co-

variance matrix of a molecule by only computing the Richards’ molecular surface

initially, and quickly adjusting it for different values of x. We describe Gfast in

Section 4.4.2.2.

4.4.2.1 Quadratic Approximation of a Molecule’s Covariance Matrix

In this section we derive the quadratic approximation Q of the function G

around a point x. The approximation will allow us to quickly approximate the

descent step for our minimization of χ2
G.

Let a1, . . . , ana be the surface points for M(x) that come from domain A and

let b1, . . . ,bnb be the surface points for M(x) that come from domain B. Observe

that the set of surface points does not change much as the position of B is perturbed

by p. The majority of the change in the covariance matrix comes from the fact that

bi points are shifted and not from the actual change in the surface points. The

larger ‖p‖ is, the more we expect the set of the surface points to change, but at the

same time the translation of points that remain on the surface also contributes a

greater weight. Thus, we expect that we can estimate the covariance matrix well at

x+p by simply adjusting the points b by p and recomputing the covariance matrix.

We now write out the equation for approximating Gij(x+ p) by simply com-
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puting the covariance matrix of set a and the adjusted set b using the equation

(1.15):

Gij(x+ p) ≈
∑na

v=1 a
v
i a

v
j +

∑nb

v=1 (b
v
i + pi)(b

v
j + pj)
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(4.45)

where

Qij(p) = κpipj +Kijpi +Kjipj, (4.46)

and

κ =
nanb

(na + nb)2
, (4.47)

Kij =
(na + nb)

∑nb

v=1 b
v
j − nb(

∑na

k=1 a
v
j +

∑nb

v=1 b
v
j )

(na + nb)2
, (4.48)

for i, j = 1, 2, 3.

Observe that if the two sets of points do not change during the translation p

(i.e. the two domains never collide, either before or after) our approximation yields
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an exact value, and that the analytical formula for the Jacobian of Q is trivially

computed.

4.4.2.2 Geometric Approximation of a Molecule’s Covariance Matrix

Computing the approximation Q around x requires that we first compute

G(x). RecomputingG is computationally expensive, and we would like to avoid it as

much as possible. In this section we derive a method, calledGfast, for approximating

G that is more accurate than the quadratic approximation derived in Section 4.4.2.1,

but computationally slower, because it redetermines the set of surface points.

Recall from Section 1.3.2.3 the steps to computing the covariance matrix of

a molecule. The method has been shown to be relatively fast when calculating

covariance matrices for different molecules. However, in the case of rigid docking,

the shape of the domains does not change, so it is computationally wasteful to fully

recompute the surface of the domains every time we want to evaluate G(x).

Since we assumed that the three-dimensional structure of the domains does

not change as the molecules come closer together, we compute the surfaces of the

two molecules initially and figure out how to adjust their surfaces as the molecules

move closer and start colliding. We label the set of surface points of molecule A as

SA, and the surface points of B as SB. The surface points of B + x are therefore

written as SB + x, representing the fact that the surface points of B are shifted by

x. The goal is to determine which surface points in SA and SB remain as part of the

overall surface of the combined molecule, and which are no longer on the surface.
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To figure out what surface points disappear in a collision we need to use a

collision detection algorithm. Figure 4.3 shows how as two domains come closer

together the surface points of one domain start colliding with the PCA ellipsoid

of the second domain, thus no longer participating in the definition the combined

surface. We approximate the surfaces of our two domains by ellipsoids, find which

points are colliding, and then remove these points from our calculation.

First, we find ellipsoids that provide a good representation of the surfaces of

the A and B molecules. We have been using the PCAE to describe the surface for

the diffusion tensor computation and we use it here, too. Let the PCAE for molecule

A be EA, and for molecule B + x be Ex
B. We find all points in Sa that do not collide

with Ex
B and all points in SB + x that do not collide with EA4, and compute the

covariance matrix of these points.

Let a1, . . . , ana be the set of points in SA that do not collide with Ex
B, and let

b1, . . . ,bnb be the set of points in SB+x that do not collide with EA. Using equation

(1.15), the covariance matrix for the set a and b is computed as

Gfast
i,j (x) =

∑na

v=1 a
v
i a

v
j +

∑nb

v=1 b
v
i b

v
j

na + nb

− (
∑na
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v
i +

∑nb

v=1 b
v
i )
(∑na

v=1 a
v
j +

∑nb

v=1 b
v
j

)

(na + nb)2
,

(4.49)

for i, j = 1, 2, 3.

The major source of error in Gfast, comes from the fact that the collisions are

approximately computed. If the shape of the domain is not approximated well by

4We simply check each surface point to see if it is inside or outside the ellipsoid. Note that

this is not equivalent to recomputing Richards’ smooth molecular surface on M(x), unless the two

domains do not intersect when B is shifted by x.
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(A) (B)

Figure 4.3: Two domains of Ub/UBA complex coming closer together, with the individual PCAE

drawn around the surface points computed with HLT=2.8Å. (A) The domains are apart so all the

surface points contribute to the overall PCAE. (B) The domains come closer together, and some

of the previously surface points no longer contribute to the overall PCAE (colored red).

an ellipsoid, we expect Gfast to not be very accurate. We analyze the accuracy of

using this approximation in Section 4.5.

4.4.3 Step 2: Equivalent Ellipsoid to Domain Position

Having discussed computation of the covariance matrix C∗ in Section 4.4.2,

we now describe step 2, where we find x∗ such that the covariance matrix of the

surface points of M(x∗) is equal to C∗.

We use a Newton-like method to minimize χ2
G. In Section 4.4.3.1 we describe

how we choose an initial starting point x0; in Section 4.4.3.2 we show how to compute

a good descent direction; and in Section 4.4.3.3 we give the stopping conditions. See

Algorithm 4.4 for an outline of our Newton-like method.
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4.4.3.1 Computing the Initial Starting Point

Recall that every Newton-like minimization method starts out with the initial

starting point of x0. Choosing the initial starting position x0 is important because

due to the symmetry inherent in the covariance matrix, just like in PATIDOCK,

there are multiple local minimizers of χ2
G. Figure 4.4 shows two local minimizers for

Ub/UBA complex; both have similar covariance matrices of the surface points.

(A) (B)

Figure 4.4: Two equivalent docking solutions for the Ub/UBA complex; both have similar covari-

ance matrices of the surface points. The surface of the complex with HLT=2.8Å is drawn along

with the equivalent PCAE for the specific solution. Domain A is drawn in green and domain B is

drawn in red. (A) The solution with the correct positioning of the second domain. (B) The solution

with a similar covariance matrix to the first solution, but with an incorrect domain placement.

In order to solve for the global solution using the method described in Algo-

rithm A.2, we need to choose starting points x0 close to each of the local minimizers

in order to make sure that we find the correct overall minimizer. To compute such

a set of x0, we replace the minimization problem given in equation (4.38) by an
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approximation where we only look at the diagonal elements:

χ2
g(x) =

3∑
i=1

(Gii(x)− C∗
ii)

2. (4.50)

Minimizing this new target function should yield a good initial guess, since if we

have good model then

χ2
G(x) ≈ 0 ⇔ χ2

g(x) ≈ 0. (4.51)

χ2
g is too complicated to easily be solved analytically. We therefore approxi-

mate it using equation (4.43) and (4.44).

χ2
g(x) ≈

3∑
i=1

(Gii(0) +Qii(x)− C∗
ii)

2

= (κx2
1 + 2K11x1 + ν1)

2+

(κx2
2 + 2K22x2 + ν2)

2+

(κx2
3 + 2K33x3 + ν3)

2,

(4.52)

where

νi = Gii(0)− C∗
ii. (4.53)

We now analytically minimize equation (4.52). Since minimization of this

equation is a minimization of three independent quadratic equations, each equation

can be solved separately for its minimizer. The minimization of each of the three

quadratic equations gives a maximum of eight initial guesses for x0. Therefore,

x0 =




x0
1

x0
2

x0
3



, (4.54)
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where

x0
i =





−2Kii±
√

4K2
ii−4κνi

2κ
if K2

ii − 4κνi > 0,

−Kii

κ
otherwise.

(4.55)

In practice we only end up with two initial values for x0.

4.4.3.2 Approximating the Descent Step

Having computed the initial guess x0 in Section 4.4.3.1, we now show how to

efficiently guide our iterative minimization. Recall from Appendix A that the most

important step in a minimization is finding a descent step.

At each step k, we would like to find the value for p such that xk+p minimizes

χ2
G:

xk+1 = xk + argmin
p

χ2
G(xk + p). (4.56)

However, finding the true minimizer of χ2
G directly is too complicated.

We can approximate χ2
G(xk+p) by using our quadratic function approximation

derived in Section 4.4.2.1:

χ2
G(xk + p) ≈ χ̃2

G(p) =
3∑

i=1

3∑
j=1

(Gij(xk) +Qij(p)− C∗
ij)

2. (4.57)

Observe that the Jacobian of Q can be trivially computed, and we can very quickly

solve for the value of p that minimizes χ̃G.

Therefore, the equation for our next step in each iteration becomes

xk+1 = xk + argmin
p

χ̃2
G(p). (4.58)

We now iteratively converge to the true minimizer of χ2
G.
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To evaluate equation (4.58) we need to evaluate G(xk). We speedup the

minimization by using Gfast(xk) (equation (4.49)) instead of G(xk) in the first

few iterations of the minimization, and then switch to the computationally more

expensive G(xk) when our step length drops below 0.5Å.

4.4.3.3 Stopping Conditions

There are three conditions which terminate our algorithm: The first case is

when we are close enough to the solution

‖Gfast(xk)−C∗‖2F < ε1. (4.59)

The second case is when we are not making enough progress:

‖Gfast(xk)−Gfast(xk−1)‖2F < ε2. (4.60)

And the last case is when the step size is small enough:

‖xk − xk−1‖2F < ε3. (4.61)

4.5 Results

In this section we present the results for ELMDOCK. Due to the four-fold

ambiguity of relative orientation of S2 relative to S1 and the existence of two sym-

metrical local minimizers for each orientation, there usually will be at least eight

potential solutions. Similar to the analysis of PATIDOCK in Section 3.3, we mea-

sure the distance between the correct minimizer x̃, and the best predicted minimizer
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x∗. The experimental setup is identical to PATIDOCK, and the overall approach is

almost identical to the Results section in PATIDOCK.

We implemented ELMDOCK in MATLAB 7.8.0 and performed all calculations

and timing on a single 1.7 GHz Pentium M processor with 1.5 GB RAM, running

Windows XP. In the current implementation we use only the last stopping condition,

ε3 = .2Å, and set ε1 = ε2 = 0.

We run the algorithms on two distinct datasets. The first dataset, which

we refer to as COMPLEX, is a set of 765 protein-protein complexes described in

Mintseris et al. [48]. The COMPLEX dataset provides a wide variety of protein-

protein complexes, but it contains no experimental diffusion tensor data. For each

complex we generate a synthetic diffusion tensor Dsyn by predicting the diffusion

tensor on the already known complex structure using ELM. This allows us to test

our method under ideal experimental conditions, when we are able to accurately

predict the diffusion tensor for an arbitrary molecule.

The second dataset is made of three proteins for which we have experimental

diffusion tensor data: HIV-1 protease; Maltose-binding protein; and Ubiquitin/UBA

complex. We use this dataset to measure the accuracy of the algorithm under real

experimental conditions and the inaccuracies inherent in ELM’s prediction of the

diffusion tensor.

5Due to technical issues with SURF [80, 79] we removed eight complexes from the original set

of 84.
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4.5.1 Docking Using Ideal Synthetic Data

We first demonstrate the feasibility of docking based solely on the diffusion

tensor by docking the COMPLEX dataset based on the synthetic diffusion tensor.

For each complex we generate the synthetic diffusion tensor Dsyn using ELM. We

then dock the complex using ELMDOCK-t, where we use Dsyn instead of Dexp. The

detailed results for the docking algorithm using the synthetic diffusion tensor are

presented in Figure 4.5.
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Figure 4.5: Docking results for the 76 complexes with no errors in ρsyn. Circles denote results

using Gfast approximation at each iteration, and the squares denote results of the full algorithm

that uses Gfast and then G.

From Figure 4.5 we can conclude that we are able to effectively dock two do-

mains together given that we have a good prediction of the diffusion tensor. For most

proteins just using the fast approximation Gfast yields a solution accurate to within

1.5Å. Further refinement using full computation of G yields a completely accurate

solution. These results further support that it is possible, under ideal conditions,
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to accurately assemble a molecular complex based solely on its diffusion tensor. In

addition, we have shown that our approach of minimizing using a quadratic approx-

imation (Newton’s method), presented in equation (4.57), can be used to efficiently

minimize χ2
G.

4.5.2 Robustness of Diffusion Tensor Docking to Experimental Noise

In an experimental setting, ρ values usually have experimental error around

2 − 5%. To simulate the effects of these errors on the quality of the solution, we

added normally distributed noise to ρsyn with a standard deviation of 2.5% or 5%.

Using the NH vectors of the complex and ρsyn we computed the synthetic diffusion

tensor Dsyn using ROTDIF, and docked the complex. Figure 4.6 shows the docking

results with the described errors in ρsyn.

From Figure 4.6 we can see that in most cases, even with the errors in ρexp

values, we are still able to converge a correct solution within 1Å. The large errors

for some complexes are due to the fact that one domain is larger than the other; as

a result the larger number of surface points in the larger domain makes the overall

computation of the covariance matrix insensitive to small variations in the position

of the smaller domain.

4.5.3 Application to Real Dual-Domain Systems

Finally, we test our method on two-domain complexes for which we have

an overall experimental diffusion tensor: HIV-1 protease, Structure 1bvg ; Maltose-
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Figure 4.6: Docking results for the 76 complexes with 2.5% and 5% normal errors in ρsyn that uses

Gfast and then G is presented. Docking of each complex was performed six times, with individual

errors in ρexpi randomly selected from the normal distribution. For the purposes of visualization

a few outliers for complex #41 are not shown. The large error in the solution for a few of the

complexes is due to the significant difference in size of the two domains.

binding protein, Structure 1ezp; and Ubiquitin/UBA complex, Structure 2jy6. The

cartoon representation of HIV-1 protease is shown in Figure 4.7A and Maltose-

binding protein is shown in Figure 4.7B. For the Ubiquitin/UBA we have complete

relaxation data and therefore use the complete method ELMDOCK, where the two

domains are first aligned and then optimally translated relative to each other. Iden-

tical to Section 3.3.6, we create Structures 2jy6-I and 2jy6-II, the modified structures

of 2jy6, to test the effect of the tails on our docking results. In our current imple-

mentation we did not recalculate the experimental diffusion tensor after alignment,

but simply took the diffusion tensor of the Ubiquitin domain as the value for the

overall experimental diffusion tensor of the complex. We compare our method to
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the one proposed in Ryabov and Fushman [57]. Since in Ryabov and Fushman no

initial guess was specified for the minimization, we will use the method derived in

Section 4.4.3.1. The results for the three proteins are presented in Table 4.1.

(A) (B)

Figure 4.7: A cartoon representation of the HIV-1 protease and the Maltose-binding protein. (A)

HIV-1 protease homodimer, with the first domain colored red and the scond domain green. (B)

The first model of the Maltose-binding protein with the C domain colored in green and the N

domain colored in red.

We see from Table 4.1 that ELMDOCK-t gives about 5Å error in displace-

ment. The HIV-1 protease is a very rigid structure and as expected gives the best

results. For a structure with large tails like the Ubiquitin/UBA complex the so-

lution on average can change by around 2.4Å depending on which tail is chosen,

therefore picking the right tail orientation, just like for the alignment tensor dock-

ing, is important. Removing the tails increased the RMSD2 from 6.30Å to 10Å. This

suggests that removing the tail might not be an effective strategy for the diffusion

tensor although it was for the alignment tensor. The tail contributes to the overall

tumbling of the individual molecule, and it is very plausible that its effect does not

average out in the solution. The alignment of two domains based on their diffusion
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Table 4.1: The results of diffusion-tensor-guided docking using ELMDOCK-t and ELMDOCK for

the Ubiquitin/UBA Complex.

Struct. Methoda RMSDb RMSD2
c Timed Ryabove #f

1bvg ELMDOCK-t 0.84 2.47 29 1275 2

1ezp ELMDOCK-t 1.52 4.53 43 2010 2

2jy6-I ELMDOCK-t 2.47g [1.02]h 6.30g [2.39]h 22g [2.31]h - 2g

2jy6-II ELMDOCK-t 4.59 7.71 27 935 2

2jy6-II ELMDOCK 4.10 9.61 84 4220 8

a The method that was used to dock the complex.

b The RMSD (in Å) between the original complex structure and the predicted complex. The

structures are optimally rotated and centered using the center of mass [47].

c The RMSD (in Å) between the coordinates of atoms of the second domain for the original and

predicted complex.

d The elapsed time (in seconds) required for docking.

e The elapsed time (in seconds) for the method proposed in Ryabov and Fushman [57], with the

initial guess provided by the algorithm developed in Section 4.4.3.1.

f The number of possible solutions, all of which have a very similar overall alignment tensor.

g Values are the means of the individual values for the best solution of each of the 100 models.

h Values in the brackets are the standard deviations of the individual values for the best

solution of each of the 100 models.

tensor does not significantly affect the RMSD2 of the optimal solution, suggesting

that just as in the case of the alignment tensor, it is not a significant contributor of

error. Overall, ELMDOCK is about forty times faster than the method proposed in
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Ryabov and Fushman [57].

4.6 Conclusion

In this chapter we presented an efficient minimization method for docking

two-domain complexes based on their diffusion tensor. We first improved the per-

formance of ROTDIF, a method for computing experimental diffusion tensor, by

introducing a faster, non-stochastic, algorithm. We then combined the new ROT-

DIF algorithm with a novel two step minimization method that provides the first

complete deterministic method for docking two-domain proteins based on the ex-

perimental NMR relaxation data and three-dimensional structure of the individual

domains. This is the first method developed that gives a formula for quickly deter-

mining the initial guess for a convex minimization method. Given an initial guess,

our method finds the solution about forty times faster than the method developed

in Ryabov and Fushman [57] (which provides no method for determining the initial

guess) and is significantly more computationally efficient than the simulated anneal-

ing method developed in Ryabov et al. [59] (which is not guaranteed to converge to

the correct solution and has no clear stopping condition).

We show that we are able to correctly dock a large variety of two-domain

proteins using a synthetic experimental diffusion tensor, with or without expected

experimental errors. Using a real experimental diffusion tensor we are able to dock

within about 5Å.

We foresee the same type of integration with other docking methods for ELM-
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DOCK as for PATIDOCK. See Section 3.4 for the variety of ways that PATIDOCK

can be combined with other docking methods. In particular, ELMDOCK can be

used to produce an initial guess for a more expensive docking algorithm.
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Chapter 5

Conclusion

In this thesis we have presented three main contributions in the field of protein

structure determination. The first main contribution is an ab initio method called

PATI for efficient prediction of the alignment tensor of a molecule. We developed

formulas and methods for using numerical integration to reduce the dimensionality of

the problem from four to two, improved the speed, and introduced a way to control

the trade-off between speed and accuracy of the computation. Additionally, we

introduced and developed the novel idea of using a convex hull instead of molecular

shape to further reduce the complexity of the computation. We compared our

method to three other methods and showed that our method is just as accurate or

more accurate than other methods for prediction. We further analyzed the errors

in all the prediction methods and showed that inaccurate prediction of orientation

is the major cause of error in all the methods.

Building upon PATI, we introduced a novel idea for docking a two-domain

complex based on its overall alignment tensor. This new docking method, PATI-

DOCK, uses the PATI method as one of its main components. We expanded on

PATI by showing how it can be adapted to quickly recalculate the alignment tensor

of a two-domain complex, where the second domain is experiencing translational

motion. We then used this new method in a docking method PATIDOCK, which is
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able to dock a two-domain molecule in seconds. Based on extensive benchmarking,

we determine that we are able to dock two domains under heavy experimental error,

assuming accurate prediction of the alignment tensor. Using real experimental data

we expect to align the two domains and dock the two domains to within 4.3Å. To

further improve the docking results we introduced a new method that combines the

alignment tensor results with additional experimental data (in the form of CSPs).

Finally, similar to PATIDOCK, we developed a docking method called ELM-

DOCK based on the overall diffusion tensor of a molecule. Computational efficiency

is achieved by separating the problem into two distinct steps and then approximat-

ing the covariance matrix. We analyzed and showed how robust ELMDOCK is to

common experimental errors. Using real experimental data we expect to align and

dock the two domains to within 4.3Å.

5.1 Future Work

Moving forward, we would like to integrate our methods into a more complete

docking software package such as HADDOCK [25]. In PATIDOCK we started to-

ward that goal by adding additional constraints like CSPs. However, we feel that

it is better to integrate our energy function into an already established software

package rather than to try to build a software package from the ground up.

Meanwhile some further improvements can be added to the current algorithms.

Currently, in ELMDOCK we recalculate the surface of the molecule at each iteration

of the optimization. If this method is integrated in a more general docking method
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the current implementation of ELM might be too slow. Instead of recomputing

ELM we could attempt to readjust the value of the covariance matrix by adjusting

only the affected surface points.

Fundamentally, the accuracy of our docking methods is limited by our pre-

diction methods, PATI and ELM. We would like to see if it is possible to further

improve the accuracy of these methods by basing them on more complicated phys-

ical models. Specifically in the case of ELM, we would like to move away from

the ellipsoidal approximation of a molecule, to a model that uses the shape of the

molecule directly.
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Appendix A

Minimization

Here we describe basic algorithms for solving minimization problems. For

further review on minimization see Nash and Sofer [51].

Minimization is a process for finding the minimum value of a function.

Definition A.1 (Global Minimizer). x∗ ∈ Rn is the global minimizer of the function

f(x) ∈ R if

f(x∗) ≤ f(x), ∀x ∈ Ψ,

where Ψ ⊆ Rn is the region on which f is defined. We say that f(x∗) is the global

minimum (minimum value) of f .

Local minimization is a process for finding the minimum value in a neighbor-

hood of the domain of a function.

Definition A.2 (Local Minimizer). x∗
loc ∈ Rn is a local minimizer of the function

f(x) ∈ R if there exists an ε such that

f(x∗
loc) ≤ f(x),

when ‖x∗
loc − x‖ < ε. We say that f(x∗

loc) is the local minimum (local minimum

value) of f .

We observe that if the function is strictly convex then it only has one local

minimum that is also the global minimum.

135



A.1 General Local Minimization

The basic principle behind most local minimization method is to continue

stepping to lower function values until one hits a local minimum. The key to finding

a lower value is to figure out in what direction the function decreases (a descent

direction) and to make sure your step size in that direction is large enough to

decrease the function value f(x), but not too large that it would jump over x∗
loc.

Algorithm A.1 outlines the general minimization algorithm.

Algorithm A.1 Calculating the local minimum x∗
loc

1: k ← 0

2: xk ← initial guess for x∗
loc

3: while Stopping condition not reached do

4: Compute a descent direction p ∈ Rn

5: Compute a step size αk ∈ R

6: Set xk+1 ← xk + αkp

7: Set k ← k + 1

8: end while

9: return xk

A.1.1 Newton Step

Because f(x) is complicated, it might be difficult to directly solve for the opti-

mal descent direction and step size. Therefore we approximate f(x) by a quadratic
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Taylor series expansion around our current value xk;

f(xk + p) ≈ f(xk) + pTg(xk) +
1

2
pTH(xk)p = f̃(xk + p), (A.1)

where g(x) is the gradient of f̃(x), and H(x) is the Hessian of f(x).

f̃(xk + p) is a fairly accurate approximation to f(xk + p) if ‖p‖ is small, and

can be minimized by setting the gradient of f(xk + p) equal to 0:

∇f̃(xk + p) = g(xk) +H(xk)p = 0. (A.2)

We then solve directly for the minimizing solution:

p = −H(xk)
−1g(xk). (A.3)

This is known as the Newton step, and is the basis for most minimization

methods where the gradient and the Hessian are known or can be estimated.

A.1.2 Step Length

Since the Newton step p is based on a quadratic approximation of f(x) it will

be a bad estimate unless the step size remains small. The simplest way to keep

the step size small is to perform a line search. In a line search, the Newton step is

probed along p in order to ensure that one does not overstep the minimum value.

An alternative method is to constrain the length of p while computing the

minimizer of f̃(xk+p), thus keeping p small enough so that f̃(xk+p) ≈ f(xk+p).

This is referred to as a creation of a trust region in which f̃(xk + p) is believed to

be a good estimate of f(xk + p).
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A.1.3 Alternatives to Newton’s Method

In cases when the function is complicated, it is not feasible to compute its

gradient and Hessian. However in some cases, it is possible to calculate a good

estimate of the function with a simpler function whose gradient and Hessian can

be computed. This estimated gradient and Hessian can be used to compute an

approximation to the actual Newton step. We will use this idea to construct an

approximation to our energy function, from which we will obtain a step in our

minimization of the original function.

A.2 Global Minimization

Following the direction of descent with appropriate choice of step length will

lead to a local minimum value. However this value is not necessarily the global

minimum if the function is not convex. Since most energy functions, including the

energy function we will use, are not convex we need a method to find the global

minimizer of a non-convex function.

While finding a global minimum of a general f(x) is an area of open research,

the problem can sometimes be efficiently solved for a specific f(x) given some insight

into how it behaves. If the approximate locations of the local minimizers can be

determined, one can solve the global optimization problem. The search space is split

into regions, such that it becomes feasible to find the local minimizer in each region.

The smallest of the local minimizers then becomes the global minimizer. Algorithm

A.2 presents an outline of this global minimization method.
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Algorithm A.2 Global Minimization

1: Choose x∗ ∈ Ψ arbitrarily.

2: Split Ψ into m regions, {Ψ1, · · · ,Ψm}.

3: for i = 1 to i = m do

4: x̂∗
i ← argminx∈Ψi

f(x)

5: if f(x̂∗
i ) < f(x∗

i ) then

6: x∗ ← x̂∗
i

7: end if

8: end for

9: return x∗

A.3 Least Squares Problems

Least squares is a specific type of local minimization problem where x∗
loc is

a value that minimizes the sum of squares of a set of functions f(x). The global

minimizer is usually close to 0, since the parameters x determine the fit of a model

to data, and the fit is poor unless f(x∗
loc) is small.

Definition A.3 (Least squares). Given fi(x) ∈ R for i = 1, . . . ,m, least squares is

a process for finding x∗
loc ∈ Ψ such that

x∗
loc = argmin

x∈Ψ

m∑
i=1

fi(x)
2. (A.4)

Observe that this problem can be restated as

x∗
loc = argmin

x∈Ψ
‖f(x)‖2. (A.5)
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A.3.1 Linear Least Squares

If f(x) is a linear function such that

f1(x) = x1φ1(t1) + . . .+ xiφi(t1) + . . .+ xnφn(t1)− b1,

. . .

fm(x) = x1φ1(tm) + . . .+ xiφi(tm) + . . .+ xnφn(tm)− bm.

(A.6)

then the least squares problem can be stated as

x∗
loc = argmin

x∈Ψ
‖b−Ax‖2. (A.7)

where

A =




φ1(t1) . . . φn(t1)

...
...

φ1(tm) . . . φn(tm)



, (A.8)

and x∗
loc is also the global solution x∗. For the purposes of our thesis, the rank of A

is assumed to be n.

Let

A = QR =

[
Q1 Q2

]


R1

0


 (A.9)

be the QR decomposition ofA, whereQ1 ism×nmatrix with orthonormal columns,

Q2 is m× (m−n) matrix with orthonormal columns, QTQ = I, and R1 is an upper

triangular n× n matrix. Then

‖b−Ax‖2 = ‖QT
1 b−R1x‖2 + ‖QT

2 b‖2. (A.10)

Since only the first norm is dependent on x, we now present a simple algorithm

to solve linear least squares using QR decomposition.
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Algorithm A.3 QR Linear Least Squares

1: Compute QR decomposition A =

[
Q1 Q2

]


R1

0




2: Solve R1x = QT
1 b for x using back-substitution

Alternatively, the SVD decomposition can be used to solve linear least squares,

which is slower than QR but more numerically stable.[52]

A.3.2 Nonlinear Least Squares

In the case when f(x) is nonlinear, the problem is a nonlinear least squares

problem. When solving a nonlinear least squares problem the Hessian matrix H

can often be efficiently approximated, and a good nonlinear least squares solver will

take advantage of that. In the most popular least squares algorithm, Levenberg-

Marquardt, the Hessian is approximated by

H(x) = J(x)TJ(x) + λI, (A.11)

where λ is a damping factor that is adjusted at each iteration of the algorithm, I is

the identity matrix, and J(x) is the Jacobian of f(x):

J(x)ij =
∂fi(x)

∂xj

. (A.12)

In cases when J is too difficult to analytically compute it can be approximated using

finite differences.

We define the syntax “x∗ = lsqnonlin(fun(x),x0)” as a function that returns

the local minimizer of the function “fun(x)”.
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Appendix B

Numerical Integration

Here we present some techniques for numerically integrating a function. We

provide only a cursory overview of the topic. For more in depth discussion see [76].

Let f(x) be a smooth function on the interval [a, b]. Then the integral of f(x)

can be approximated using Simpson’s rule such that

∫ b

a

f(x)dx ≈ b− a

6

[
f(a) + 4f(

a+ b

2
) + f(b)

]
. (B.1)

Furthermore, if c ∈ (a, b) then we expect
∫ b

a

f(x)dx =

∫ c

a

f(x)dx+

∫ b

c

f(x)dx ≈c− a

6

[
f(a) + 4f(

a+ c

2
) + f(c)

]

+
b− c

6

[
f(c) + 4f(

c+ b

2
) + f(b)

]

(B.2)

to be even a better approximation of the integral. The intervals [a, c] and [c, b] can

be recursively subdivided further until we get an approximation that is good enough.

Note that Simpson’s rule is just one of many possible ways of approximating

the integral. Depending on the type of function that is being integrated other

approximations could work better.

B.1 Adaptive Integration

Adaptive Integration is a method for efficient recursive subdivision of the in-

tegration region. Since integrals over regions in which f is well-approximated by
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a quadratic polynomial are better approximated by Simpson’s rule than regions in

which its behavior is highly nonlinear, it is more efficient to approximate smooth

regions using a smaller number of function evaluations. The recursive subdivision

method for integration that does this is referred to as adaptive integration. A basic

adaptive integration algorithm is presented in Algorithm B.1.

Algorithm B.1 adaptivelyIntegrate

Input: f(x)- a smooth function, [a, b]- an interval on which f(x) is integrated. ε-

the bound on the absolute error in the result of the integration.

Output: Q, the value of the integral.

1: c ← a−b
2

2: Q ← b−a
6

[
f(a) + 4f(a+b

2
) + f(b)

]

3: Q1 ← c−a
6

[
f(a) + 4f(a+c

2
) + f(c)

]

4: Q2 ← b−c
6

[
f(c) + 4f( c+b

2
) + f(b)

]

5: if |Q−Q1 −Q2| < ε then

6: return Q1 +Q2

7: else

8: Q1 ← adaptivelyIntegrate(f, [a, c], ε/2)

9: Q2 ← adaptivelyIntegrate(f, [c, b], ε/2)

10: return Q1 +Q2

11: end if

The advantage of adaptive integration is that we can tune the desired error

tolerance of the integration vs. number of function evaluations, and efficiently dis-

tribute the function evaluations on the interval such that it gives the best accuracy
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for the number of evaluations.

B.2 Improper Numerical Integration

In one part of ELMDOCK we have to numerically integrate an improper in-

tegral such as
∫ ∞

0

f(x)dx. (B.3)

We can numerically evaluate this integral by performing a change of variable

u = 1
1+x

. Our integration problem now becomes

∫ 1

0

f(
1− u

u
)
1

u2
du, (B.4)

which can be numerically integrated using adaptive integration.
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Appendix C

Covariance of an Ellipsoid

In this section we derive a formula for the covariance matrix of an ellipsoid.

We use the formula for the covariance matrix of an ellipsoid to derive a method for

finding an equivalent ellipsoid representation of a molecule in Section 1.3.2.3.

Let X be a three-dimensional random variable; then the covariance matrix C

for X is defined as

C =




Cov(X1, X1) Cov(X1, X2) Cov(X1, X3)

Cov(X2, X1) Cov(X2, X2) Cov(X2, X3)

Cov(X3, X1) Cov(X3, X2) Cov(X3, X3)



, (C.1)

where

Cov(Xi, Xj) = E((Xi − E(Xi))(Xj − E(Xj)))

= E(Xi ·Xj)− E(Xi)E(Xj),

(C.2)

and

Cov(Xi, Xi) = Var(Xi) = E(X2
i )− E(Xi)

2. (C.3)

We now derive the formula for the covariance matrix of an ellipsoid using

integration.
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Theorem C.1. Given the ellipsoid E(A, c), and the sorted eigendecomposition

A = V




λ1 0 0

0 λ2 0

0 0 λ3



VT ,

the covariance matrix of E is

CE = V




1/(3λ1) 0 0

0 1/(3λ2) 0

0 0 1/(3λ3)



VT .

Proof. Let E(A, c) be an ellipsoid and

A = VΛVT = V




λ1 0 0

0 λ2 0

0 0 λ3



VT .

Since the covariance matrix is independent of the position of the ellipsoid we let

c = 0.

Changing into the coordinate space of A, the ellipsoid can be rewritten using

the Cartesian axes x, y, z:

λ1x
2 + λ2y

2 + λ3z
2 = 1. (C.4)

Due to the symmetry of the ellipsoid along the coordinate space axes, Cov(Ei, Ej) =

0 when i 6= j. Therefore the covariance matrix of E is



Var(Ex) 0 0

0 Var(Ey) 0

0 0 Var(Ez)



, (C.5)
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where Var(Ex) is the variance along the x axis, Var(Ey) is the variance along the y

axis, and Var(Ez) is the variance along the z axis.

The variance along the z axis is

Var(Ez) =
∫
E z

2 dx dy dz∫
E dx dy dz

. (C.6)

Performing the change of variables into

x =
1√
λ1

sinφ cos θ,

y =
1√
λ2

sinφ sin θ,

z =
1√
λ3

cosφ,

(C.7)

where θ is the azimuthal angle, φ is the polar angle, and the Jacobian determinant

is

|J| = (λ1λ2λ3)
−1/2 sinφ, (C.8)

we get

Var(Ez) =
∫ 2π

0

∫ π

0
(λ

−1/2
3 cosφ)2 |J| dφ dθ∫ 2π

0

∫ π

0
|J | dφ dθ

=
4/3λ−1

3 π(λ1λ2λ3)
−1/2

4π(λ1λ2λ3)−1/2

=
1

3λ3

.

(C.9)

Similarly, Var(Ex) = 1/(3λ1), and V ar(Ey) = 1/(3λ2).

Changing back to the original coordinate system,

CE = V




1/(3λ1) 0 0

0 1/(3λ2) 0

0 0 1/(3λ3)



VT . (C.10)
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Figure D.1: Comparison of the predicted vs. experimental 1H15N RDC values for the backbone

amides in the Cellular factor BAF, using various versions of the molecular alignment tensor derived

from PATI. (A) The experimental alignment tensor was derived directly from the experimental data

using least squares. (B) The alignment tensor was constructed using the magnitude (eigenvalues)

of the experimental alignment tensor and the tensor orientation predicted using PATI program.

(C) The alignment tensor was constructed using the orientation (eigenvectors) of the experimental

alignment tensor but PATI-predicted magnitude (eigenvalues) of the tensor. (D) The alignment

tensor was fully predicted from PATI simulation. The values of the squared Pearson’s correlation

coefficient, r2, and the scale-insensitive quality factor, Qs, are indicated.
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Table D.1: Unscaled Quality Factors and the Scaling for ab

initio Methods

PDBa PATIb,c PALESb,c PATI-Eb,c,d

2ezx 0.64 (0.62) 0.70 (0.60) 1.55 (0.39)

3gb1 0.21 (1.19) 0.14 (1.08) 0.29 (1.11)

2oed 0.25 (1.09) 0.21 (1.10) 0.35 (0.77)

1b4c 0.47 (1.72) 0.48 (1.77) 0.65 (2.20)

2ezm 0.47 (0.90) 0.48 (0.90) 0.69 (0.65)

1cmz 0.32 (0.98) 0.30 (1.05) 0.38 (0.96)

1d3z 0.32 (0.80) 0.33 (0.81) 0.53 (0.71)

1e8le 0.47 (1.60) 0.46 (1.55) 0.47 (1.33)

1yjje 0.66 (1.87) 0.69 (1.73) 0.61 (1.43)

Mean 0.42 (1.20) 0.42 (1.18) 0.61 (1.06)

a The RCSB Protein Data Bank code for protein

coordinates. First model from the ensemble of NMR

structures was used for the calculations. See Table 2.1 for

the names of the proteins.

b Values represent the (unscaled) quality factor Q between

the predicted and experimental data.

c MVE was used.

d Values in the parentheses represent the scaling constant ρ

defined in Equation (2.30).

e The experimental values were multiplied by −1 to make

the sign of experimental data consistent.
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Table D.2: Quality of RDC Prediction for ab initio Methods

using GE Model

PDBa PATI-Eb,c Almondb,c PROLFITb,c

2ezx 0.13 (0.99) 0.13 (0.99) 0.14 (0.98)

3gb1 0.21 (0.99) 0.21 (0.99) 0.28 (0.98)

2oed 0.32 (0.97) 0.31 (0.96) 0.41 (0.96)

1b4c 0.56 (0.77) 0.56 (0.78) 0.99 (0.09)

2ezm 0.54 (0.54) 0.55 (0.52) 0.49 (0.61)

1cmz 0.30 (0.91) 0.31 (0.90) 0.28 (0.93)

1d3z 0.48 (0.72) 0.49 (0.71) 0.42 (0.70)

1e8l 0.28 (0.92) 0.28 (0.92) 0.30 (0.91)

1yjj 0.87 (0.29) 0.87 (0.29) 0.94 (0.23)

Mean 0.41 (0.79) 0.41 (0.78) 0.47 (0.71)

a The RCSB Protein Data Bank code for protein

coordinates. First model from the ensemble of NMR

structures was used for the calculations. See Table 2.1 for

the names of the proteins.

b Values represent the scaled quality factor Qs between the

predicted and experimental data.

c Values in the parentheses represent squared Pearson’s

correlation coefficient (r2).
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Table D.3: Quality of RDC Prediction for ab initio Methods

using PCAE Model

PDBa PATI-Eb,c Almondb,c PROLFITb,c

2ezx 0.14 (0.98) 0.15 (0.98) 0.15 (0.98)

3gb1 0.11 (0.99) 0.10 (0.99) 0.23 (0.98)

2oed 0.26 (0.98) 0.25 (0.98) 0.35 (0.97)

1b4c 0.45 (0.82) 0.45 (0.83) 0.84 (0.26)

2ezm 0.50 (0.60) 0.51 (0.58) 0.45 (0.67)

1cmz 0.33 (0.89) 0.34 (0.88) 0.33 (0.90)

1d3z 0.34 (0.83) 0.36 (0.82) 0.31 (0.80)

1e8l 0.28 (0.92) 0.28 (0.92) 0.30 (0.92)

1yjj 0.86 (0.30) 0.86 (0.30) 0.96 (0.19)

Mean 0.37 (0.81) 0.37 (0.81) 0.43 (0.74)

a The RCSB Protein Data Bank code for protein

coordinates. First model from the ensemble of NMR

structures was used for the calculations. See Table 2.1 for

the names of the proteins.

b Values represent the scaled quality factor Qs between the

predicted and experimental data.

c Values in the parentheses represent squared Pearson’s

correlation coefficient (r2).
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Figure D.2: Comparison of the predicted vs. experimental 1H15N RDC values for the backbone

amides in the B1 domain of protein G, using various versions of the molecular alignment tensor

derived from PATI. (A) The experimental alignment tensor was derived directly from the experi-

mental data using least squares. (B) The alignment tensor was constructed using the magnitude

(eigenvalues) of the experimental alignment tensor and the tensor orientation predicted using PATI

program. (C) The alignment tensor was constructed using the orientation (eigenvectors) of the

experimental alignment tensor but PATI-predicted magnitude (eigenvalues) of the tensor. (D) The

alignment tensor was fully predicted from PATI simulation. The values of the squared Pearson’s

correlation coefficient, r2, and the scale-insensitive quality factor, Qs, are indicated.
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Figure D.3: Comparison of the predicted vs. experimental 1H15N RDC values for the backbone

amides in the B3 domain of protein G, using various versions of the molecular alignment tensor

derived from PATI. (A) The experimental alignment tensor was derived directly from the experi-

mental data using least squares. (B) The alignment tensor was constructed using the magnitude

(eigenvalues) of the experimental alignment tensor and the tensor orientation predicted using PATI

program. (C) The alignment tensor was constructed using the orientation (eigenvectors) of the

experimental alignment tensor but PATI-predicted magnitude (eigenvalues) of the tensor. (D) The

alignment tensor was fully predicted from PATI simulation. The values of the squared Pearson’s

correlation coefficient, r2, and the scale-insensitive quality factor, Qs, are indicated.
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Figure D.4: Comparison of the predicted vs. experimental 1H15N RDC values for the backbone

amides in the rat apo-S100B protein, using various versions of the molecular alignment tensor

derived from PATI. (A) The experimental alignment tensor was derived directly from the experi-

mental data using least squares. (B) The alignment tensor was constructed using the magnitude

(eigenvalues) of the experimental alignment tensor and the tensor orientation predicted using PATI

program. (C) The alignment tensor was constructed using the orientation (eigenvectors) of the

experimental alignment tensor but PATI-predicted magnitude (eigenvalues) of the tensor. (D) The

alignment tensor was fully predicted from PATI simulation. The values of the squared Pearson’s

correlation coefficient, r2, and the scale-insensitive quality factor, Qs, are indicated.
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Figure D.5: Comparison of the predicted vs. experimental 1H15N RDC values for the backbone

amides in the Gα interacting protein, using various versions of the molecular alignment tensor

derived from PATI. (A) The experimental alignment tensor was derived directly from the experi-

mental data using least squares. (B) The alignment tensor was constructed using the magnitude

(eigenvalues) of the experimental alignment tensor and the tensor orientation predicted using PATI

program. (C) The alignment tensor was constructed using the orientation (eigenvectors) of the

experimental alignment tensor but PATI-predicted magnitude (eigenvalues) of the tensor. (D) The

alignment tensor was fully predicted from PATI simulation. The values of the squared Pearson’s

correlation coefficient, r2, and the scale-insensitive quality factor, Qs, are indicated.
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Figure D.6: Comparison of the predicted vs. experimental 1H15N RDC values for the backbone

amides in Ubiquitin, using various versions of the molecular alignment tensor derived from PATI.

(A) The experimental alignment tensor was derived directly from the experimental data using

least squares. (B) The alignment tensor was constructed using the magnitude (eigenvalues) of

the experimental alignment tensor and the tensor orientation predicted using PATI program. (C)

The alignment tensor was constructed using the orientation (eigenvectors) of the experimental

alignment tensor but PATI-predicted magnitude (eigenvalues) of the tensor. (D) The alignment

tensor was fully predicted from PATI simulation. The values of the squared Pearson’s correlation

coefficient, r2, and the scale-insensitive quality factor, Qs, are indicated.
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Figure D.7: Comparison of the predicted vs. experimental 1H15N RDC values for the backbone

amides in hen Lysozyme, using various versions of the molecular alignment tensor derived from

PATI. (A) The experimental alignment tensor was derived directly from the experimental data

using least squares. (B) The alignment tensor was constructed using the magnitude (eigenvalues)

of the experimental alignment tensor and the tensor orientation predicted using PATI program.

(C) The alignment tensor was constructed using the orientation (eigenvectors) of the experimental

alignment tensor but PATI-predicted magnitude (eigenvalues) of the tensor. (D) The alignment

tensor was fully predicted from PATI simulation. The values of the squared Pearson’s correlation

coefficient, r2, and the scale-insensitive quality factor, Qs, are indicated. The negative slope in

panels (C) and (D) reflects the fact that the reported experimental RDCs and the corresponding

predicted values are of opposite sign.
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Figure D.8: Comparison of the predicted vs. experimental 1H15N RDC values for the backbone

amides in the oxidized Putidaredoxin, using various versions of the molecular alignment tensor

derived from PATI. (A) The experimental alignment tensor was derived directly from the experi-

mental data using least squares. (B) The alignment tensor was constructed using the magnitude

(eigenvalues) of the experimental alignment tensor and the tensor orientation predicted using PATI

program. (C) The alignment tensor was constructed using the orientation (eigenvectors) of the

experimental alignment tensor but PATI-predicted magnitude (eigenvalues) of the tensor. (D) The

alignment tensor was fully predicted from PATI simulation. The values of the squared Pearson’s

correlation coefficient, r2, and the scale-insensitive quality factor, Qs, are indicated. The nega-

tive slope in panels (C) and (D) reflects the fact that the reported experimental RDCs and the

corresponding predicted values are of opposite sign.
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Appendix E

PATIDOCK: Supplementary Information

The complete synthetic RDC results for the COMPLEX dataset for 0Hz, 1Hz,

and 3Hz errors are presented in Table E.1.
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Table E.1: Docking results for COMPLEX dataset using synthetic RDCs.

Namea #b 0 Hzc 1 Hzc,d 3 Hzc,d

1A2K 1 0.02 0.09 0.28

1ACB 2 0.05 0.10 0.28

1AHW 3 0.03 0.11 0.17

1AK4 4 0.05 0.09 0.29

1AKJ 5 0.01 0.07 0.29

1ATN 6 0.00 0.06 0.19

1AVX 7 0.07 0.11 0.30

1AY7 8 0.07 0.16 0.37

1B6C 9 0.05 0.11 0.27

1BGX 10 0.02 0.06 0.09

a The first 4 letters of the file name. Bound versions of the domains were

used in docking.

b Index of the complex.

c Best Displacement (in Å), computed as the smallest Euclidean norm

between all the computed translations (solutions) and the known correct

translation. The values in brackets represent the RMSD (in Hz) between

the synthetic RDCs and the predicted RDCs at the solution. The column

labels represent the size of the standard deviation of the normally

distributed noise added to synthetic RDCs. “0 Hz” corresponds to no

noise added to synthetic RDCs.

d The values represent an average of six independent runs.
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Table E.1: Docking results for COMPLEX dataset using synthetic RDCs.

(continued)

Name # 0 Hz 1 Hz 3 Hz

1BJ1 11 0.02 0.08 0.31

1BUH 12 0.03 0.09 0.22

1BVK 13 0.03 0.12 0.37

1BVN 14 0.03 0.09 0.21

1CGI 15 0.03 0.12 0.34

1D6R 16 0.02 0.10 0.29

1DE4 17 0.01 0.06 0.14

1DFJ 18 0.09 0.12 0.19

1DQJ 19 0.05 0.12 0.24

1E6E 20 0.02 0.18 0.42

1E6J 21 0.05 0.09 0.20

1E96 22 0.02 0.06 0.26

1EAW 23 0.07 0.13 0.33

1EER 24 0.21 0.23 0.89

1EWY 25 0.07 0.16 0.41
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Table E.1: Docking results for COMPLEX dataset using synthetic RDCs.

(continued)

Name # 0 Hz 1 Hz 3 Hz

1EZU 26 0.05 0.11 0.20

1F34 27 0.01 0.10 0.29

1F51 28 0.01 0.11 0.34

1FAK 29 0.03 0.12 0.34

1FC2 30 0.14 0.16 0.35

1FQ1 31 0.02 0.08 0.34

1FQJ 32 0.02 0.10 0.23

1FSK 33 0.01 0.11 0.20

1GCQ 34 0.05 0.13 0.59

1GHQ 35 0.03 0.07 0.21

1GP2 36 0.03 0.07 0.18

1GRN 37 0.05 0.14 0.35

1H1V 38 0.02 0.06 0.26

1HE1 39 0.02 0.11 0.28

e Values in the parentheses are standard deviations of the values in the

column.
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Table E.1: Docking results for COMPLEX dataset using synthetic RDCs.

(continued)

Name # 0 Hz 1 Hz 3 Hz

1HE8 40 0.03 4.65 7.68

1HIA 41 0.10 0.11 0.35

1I2M 42 0.05 0.07 0.25

1I4D 43 0.04 0.73 1.09

1I9R 44 0.03 0.09 0.27

1IB1 45 0.05 0.15 0.52

1IBR 46 0.16 0.61 0.84

1IJK 47 0.05 0.10 0.21

1IQD 48 0.01 0.09 0.23

1JPS 49 0.04 0.07 0.21

1K4C 50 0.00 0.08 0.20

1K5D 51 0.02 0.09 0.24

1KAC 52 0.10 0.09 0.30

1KKL 53 0.02 0.73 0.57

1KLU 54 0.02 0.05 0.24

e Values in the parentheses are standard deviations of the values in the

column.

164



Table E.1: Docking results for COMPLEX dataset using synthetic RDCs.

(continued)

Name # 0 Hz 1 Hz 3 Hz

1KTZ 55 0.01 0.07 0.43

1KXP 56 0.02 0.06 0.17

1KXQ 57 0.01 0.06 0.25

1M10 58 0.06 0.09 0.23

1MAH 59 0.02 0.11 0.34

1ML0 60 2.13 1.82 1.28

1MLC 61 0.20 0.16 0.31

1N2C 62 0.08 0.11 0.15

1NCA 63 0.01 0.09 0.19

1NSN 64 0.02 0.07 0.22

1PPE 65 0.03 0.25 0.53

1QA9 66 0.01 0.09 0.41

1QFW 67 0.03 0.13 0.43

1RLB 68 0.02 0.08 0.26

1SBB 69 0.02 0.07 0.30

e Values in the parentheses are standard deviations of the values in the

column.
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Table E.1: Docking results for COMPLEX dataset using synthetic RDCs.

(continued)

Name # 0 Hz 1 Hz 3 Hz

1TMQ 70 0.02 0.06 0.24

1UDI 71 0.02 0.14 0.32

1VFB 72 0.05 0.13 0.37

1WEJ 73 0.00 1.73 3.69

1WQ1 74 0.03 0.11 0.21

2BTF 75 0.02 0.07 0.18

2HMI 76 0.03 0.07 0.19

2JEL 77 0.04 0.10 0.29

2MTA 78 0.02 0.10 0.25

2PCC 79 0.02 0.11 0.20

2QFW 80 0.01 0.07 0.28

2SIC 81 0.01 0.09 0.34

2SNI 82 0.02 0.08 0.37

2VIS 83 0.01 0.08 0.19

7CEI 84 0.05 0.10 0.33

Mean 0.06 (0.23)e 0.22 (0.56)e 0.45 (0.90)e

e Values in the parentheses are standard deviations of the values in the

column.

166



Bibliography

[1] A. Almond and J. Axelsen. Physical interpretation of residual dipolar cou-
plings in neutral aligned media. Journal of the American Chemical Society,
124(34):9986–9987, 2002.

[2] H. Azurmendi, M. Martin-Pastor, and C. Bush. Conformational studies of
Lewis X and Lewis A trisaccharides using NMR residual dipolar couplings.
Biopolymers, 63(2):89–98, 2002.

[3] H. F. Azurmendi and C. A. Bush. Conformational studies of blood group
A and blood group B oligosaccharides using NMR residual dipolar couplings.
Carbohydrate Research, 337(10):905–915, 2002.

[4] A. Bax. Weak alignment offers new NMR opportunities to study protein struc-
ture and dynamics. Protein Science, 12(1):1–16, 2003.

[5] A. Bax, G. Kontaxis, and N. Tjandra. Dipolar couplings in macromolecular
structure determination. In V. D. Thomas L. James and U. Schmitz, editors,
Part B: Nuclear Magnetic Resonance of Biological Macromolecules, volume 339
of Methods in Enzymology, pages 127–174. Academic Press, 2001.

[6] K. Berlin, D. P. O’Leary, and D. Fushman. Improvement and analysis of com-
putational methods for prediction of residual dipolar couplings. Journal of
Magnetic Resonance, 201(1):25–33, 2009.

[7] K. Berlin, D. P. O’Leary, and D. Fushman. Structural assembly of molecular
complexes based on residual dipolar couplings. preprint (2010), 2010.
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