
ABSTRACT

Title of Thesis: A COMBINATORIAL DESIGN OF A

PROTEIN-BINDING DNA MICROARRAY

Degree candidate: Aaron M. Qureshi

Degree and year: Master of Science, 2004

Thesis directed by: Dr. Brian R. Hunt

Department of Mathematics

The biological process of transcription creates from a template DNA strand

(i.e., the gene) copies of short-lived mRNA. The amount of mRNA produced de-

termines the gene’s expression in the cell, which affects the activity of the gene

at a given time. Transcription factors are proteins which bind to the DNA in the

neighborhood of the gene in order to regulate the location and rate of transcrip-

tion. An important biological question is therefore to find binding locations and

binding strengths for transcription factors.

This has traditionally been a laborious experimental process, but a new tech-

nology called a protein-binding microarray allows us to assay the binding affinities

of a given transcription factor for many different DNA sequences in parallel. This

thesis addresses a suitable combinatorial design for these microarrays that is both

effective and economical.

A COMBINATORIAL DESIGN OF A

PROTEIN-BINDING DNA MICROARRAY

by

Aaron M. Qureshi

Thesis submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Master of Science

2004

Advisory Committee:

Dr. Brian R. Hunt, Chairman/Advisor
Dr. Martha L. Bulyk
Dr. James A. Yorke

c© Copyright by

Aaron M. Qureshi

2004

ACKNOWLEDGEMENTS

I would like to thank Dr. Martha L. Bulyk of Harvard Medical School

for kindly hosting me in her lab in the spring of 2004. Dr. Brian Hunt

diligently supervised my thesis and made a great number of helpful

suggestions. Finally, my deepest gratitude to Anthony Philippakis

and Eirene Kontopoulos, without whose patience and love I would be

both thesis–less and hungry.

ii

TABLE OF CONTENTS

List of Tables iv

List of Figures v

1 Introduction 1

2 Description of the Problem 4

3 Verifying the Hamming Ball Property 7

4 Designing the Array 13

5 Recoverability 21

6 Discernibility 26

7 Conclusion 29

iii

LIST OF TABLES

3.1 Hamming ball sizes for various choices of k and r. On the hori-

zontal axis is the palindromicity of the center of the ball. 9

3.2 A summary of the Hamming ball data. 12

5.1 The expected number of balls that survive the sieving process

which do not contain the motif S. (By design, the correct ball

also survives.) Here we are assuming |ΓS| = 4 · |S|. 24

6.1 Average percentage of discernible elements for balls B(ṽ, r). . . . 27

iv

LIST OF FIGURES

1.1 DNA transcription. The RNA polymerase, moving to the right, is

transcribing a segment of DNA (a gene) and outputting an RNA

strand. Here, the transcription factors have bound to the DNA

upstream of the start of transcription. 2

4.1 The De Bruijn graph with A = {A, B} and k = 2. 14

4.2 A shift register of degree 4 over F2. 15

v

Chapter 1

Introduction

Many fundamental biological processes are governed by the action of transcrip-

tion, a series of events that occur at the level of DNA. To transcribe a strand

of DNA, an RNA polymerase attaches itself to the DNA, reads the sequence of

nucleotides for a certain length, and then produces a corresponding strand of

mRNA for use elsewhere (see Figure 1.1). The rate and location at which this

transcription is performed is regulated by one or more proteins known as tran-

scription factors, which bind themselves to the DNA in the neighborhood of the

section to be transcribed.

The exact correspondence between these transcription factors and the rate of

RNA synthesis is currently poorly understood. We have little information on the

binding affinity of these various proteins to the DNA. We do not know in general

where proteins bind on the DNA to affect the transcription process. We do not

know which proteins can potentially affect regulation in general, nor which affect

regulation in a particular case. Experiments which answer these questions can

be performed, but it is laborious to test the many possibilities.

Bulyk et al. [1] have proposed a technology with which we can answer the first

of these questions. The technique allows us to assay the binding affinities (i.e.,

the binding strengths) of a given transcription factor for many different DNA

strands in parallel. A wafer called a protein-binding microarray (PBM) can be

spotted with many different DNA strands, on sites spaced out across the wafer.

1

Transcription start

RNA strand

RNA
polymeraseTF TF TF

DNA
downstreamDNA upstream

Figure 1.1: DNA transcription. The RNA polymerase, moving to the right, is

transcribing a segment of DNA (a gene) and outputting an RNA strand. Here,

the transcription factors have bound to the DNA upstream of the start of tran-

scription.

The microarray is then exposed to our (known) transcription factor of interest.

The protein binds to DNA sequences for which it has an affinity. The wafer is

then probed with a laser, causing fluorescently-labelled antibodies attached to

the protein to fluoresce. The binding affinity of the transcription factor for each

particular DNA sequence can then be assessed by the intensity of the fluorescence

at that position in the microarray.

This paper concerns the combinatorial design of PBMs. How can we order

the DNA strands on the PBM so as to to test for as many potential binding

sites as possible? Ideally, for a given length k of a transcription factor’s DNA

binding site sequence, the spots on the PBM would contain all of the 4k possible

such sites, one per spot. After performing the experiment, we could simply read

off the binding affinities from each spot. Unfortunately, it is not economically

2

feasible to spot a PBM with all such sequences when k ≥ 8. Instead, we must

meld many different DNA sequences onto each spot without losing too much of

the experiment’s informative power.

A complete description of the problem is given in Chapter 2. In Chapter 3

we justify some of the assumptions from Chapter 2 and demonstrate that the

chosen parameters are reasonable. The design method is explained in Chapter 4.

In Chapters 5 and 6, we address concerns about the power of this design.

3

Chapter 2

Description of the Problem

A PBM is a glass slide on which can be printed a number of distinct spots, each of

which contains a copy (actually, many copies) of one particular DNA sequence.

Each spot must have the same length l, and for our problem, we were given

l = 44. Our rectangular wafer can contain 103 × 213 = 21939 such spots. We

must leave a small number of these (approximately 1000) as control spots for

experimental purposes.

One unknown parameter of the problem is the length k of the sites to which

the transcription factor will bind. Though k is not known a priori, experimental

evidence on a variety of transcription factors suggests that 5 ≤ k ≤ 15. For our

design, we assumed k ≤ 9; in Chapter 3 we will show that this is a reasonable

choice for many transcription factors.

Although different transcription factors bind with different affinities, we do

not know if the PBM experiment will be sensitive enough for us to distinguish

between different affinity magnitudes. We therefore adopt the simpler convention

that a transcription factor either binds or does not bind to a spot, with some

appropriate threshold between the two determined by the laboratory technician.

Let S be the set of binding sites, known as a motif. It is generally believed that

each transcription factor has its own unique motif. Each element of a particular

motif is of the same length k. We do not know a priori how many elements

the motif contains. Again, we will give evidence in Chapter 3 that for many

4

transcription factors, 10 ≤ |S| ≤ 40. One important aspect of S, however, is that

its elements are “close” to each other, in the following sense.

Consider the set of letters {A,C,G,T}, the nucleotides from which DNA is

constructed. Map this set in a natural way to F4
∼= F2×F2, the finite field of four

elements, identifying {A,C,G,T} with {00, 01, 10, 11}, respectively. This mapping

is somewhat arbitrary, although it is slightly more computationally convenient

to identify A and T with numbers which are binary complements of each other,

and similarly for C and G. We will not discuss the addition and multiplication

operations on F4, as they do not have biological relevance for our purposes.

Our sequence space of k–long DNA strands (or k-mers) can then be identified

with Fk
4. A natural metric for this space is the Hamming metric, which counts

the number of mismatches between two k-mers:

d : Fk
4 × Fk

4 −→ N

d(w, v) = |{1 ≤ i ≤ k : wi 6= vi}|,

where 0 ≤ d ≤ k.

However, because of the double-strandedness of DNA, a protein which binds

to a DNA strand v ∈ Fk
4 also binds to its reverse complement, v.

Definition Let v = (v1, . . . , vk) be a k-mer. Then the reverse complement of v

is v = (vk, . . . , v1), where A = T, C = G, G = C, and T = A.

For instance, if k = 6, then a protein that binds to v = AAGTCA also binds to

its reverse complement, v = TGACTT. Thus, in our space, we wish to identify

v and its reverse complement. Define a relation ∼ on the set Fk
4 such that for

5

w, v ∈ Fk
4, w ∼ v iff w ∈ {v, v}. It is easy to check that ∼ is an equivalence

relation. Write the set of equivalence classes as F̃
k

4, and for each class choose

its lexicographically lesser element as its representative element. We define a

modified Hamming metric for this set:

d̃ : F̃
k

4 × F̃
k

4 −→ N

d̃(w̃, ṽ) = min(d(w, v), d(w, v)).

Proposition 2.1 The function d̃ defines a metric on F̃
k

4.

Proof It is immediate that d̃ is symmetric and positive definite, since these

properties follow from d. We must show that the triangle inequality holds. For

ũ, ṽ, w̃ ∈ F̃
k

4,

d̃(w̃, ṽ) = min(d(w, v), d(w, v))

= min(d(w, v), d(w, v), d(w, v), d(w, v))

≤ min(d(w, u) + d(u, v), d(w, u) + d(u, v), d(w, u) + d(u, v), d(w, u) + d(u, v))

= min(d(w, u) + d(u, v), d(w, u) + d(u, v), d(w, u) + d(u, v), d(w, u) + d(u, v))

= min(d(w, u), d(w, u)) + min(d(u, v), d(u, v))

= d̃(w̃, ũ) + d̃(ũ, ṽ).

Experimental evidence suggests that our set S of binding sites are all clustered

in relatively near proximity in sequence space. We start with the assumption

that S is contained in some ball in F̃
k

4 of small radius (relative to k). Since this

assumption is of importance in our design, some justification is presented in the

next chapter.

6

Chapter 3

Verifying the Hamming Ball Property

A general consensus among computational biologists is that elements of a mo-

tif are “close” in sequence space, since a motif’s elements tend to look similar.

However, we are not familiar with any study which has explicitly confirmed this

assumption. We want first to define this notion of closeness and analyze existing

data sets for verification of this property.

Definition The Hamming ball with center ṽ ∈ F̃
k

4 and radius r ∈ N is defined

to be B(ṽ, r) = {w̃ ∈ F̃
k

4 : d̃(w̃, ṽ) ≤ r}.

Note that in our definition we are using the term “Hamming” somewhat

loosely: these are balls under the modified Hamming metric d̃ rather than the

normal Hamming metric d. We expect our motif to be contained in some ball

of small radius under d̃. The first question to address is how many elements a

Hamming ball in our space F̃
k

4 contains, for not all such balls are of the same

size. Recall that each element w̃ ∈ F̃
k

4 is an equivalence class {w, w} of elements

from Fk
4. The number of elements of F̃

k

4 in B(ṽ, r) is thus at most the number

of elements of Fk
4 in B(v, r). Since there are 3i

(
k
i

)
elements with distance i from

v, the largest a ball can be is
∑r

i=0 3i
(

k
i

)
. However, if our center is a palindrome,

this sum double-counts many elements and our ball is of considerably smaller

size.

Definition Let v ∈ Fk
4. Then v is a palindrome if v = v. More generally, v is

7

p–palindromic if

p =
⌊k/2⌋∑

i=1

δ(vi = vk+1−i),

where δ(·) is the Kronecker δ-function. If p = k
2
, then we say p is (completely)

palindromic.

In fact, for a given k and r, the sizes of various Hamming balls vary according

to the palindromicity of their centers. The intuition here is that we are counting

the number of elements of a ball B ⊂ Fk
4 and of its complement B, then halving

the total due to our equivalence class relation corresponding to F̃
k

4. But as the

palindromicity of the center of B increases, the set B∩B increases in size, and we

are wrongly double-counting these elements in B ∩ B which are not themselves

palindromes (i.e., whose equivalence classes have a size of 1). More formally,

|B(ṽ, r)| =
r∑

i=0

3i

(
k

i

)
−

|{v ∈ B(v, r) : v ∈ B(v, r)}| − |{v ∈ B(v, r) : v = v}|

2
.

Example We seek the order of B(ṽ, 2) ⊂ F̃
k

4, for v = AAAATT. The palin-

dromicity of v is 2. We must find all the non-palindromic w ∈ B(v, 2) such that

w ∈ B(v, 2). We can change the center two (non-palindromic) As to any letter,

since AAMNTT = AANMTT ∈ B(v, 2) for any M, N ∈ {A, C, G, T}. This gives 42 ele-

ments, but 4 of these yield complete palindromes. Also, we can change one of

the middle two letters to a T, and one of the other letters to any different letter.

This gives us an additional
(

2
1

)(
4
1

)
· 3 elements, of which none are palindromes.

The formula above yields

|B(ṽ, 2)| =
2∑

i=0

3i

(
6

i

)
−

1

2

(
42 − 4 +

(
2

1

)(
4

1

)
· 3

)
= 136.

8

(k, r) p = 0 p = 1 p = 2 p = 3 p = 4

(4, 1) 13 13 7

(4, 2) 66 55 37

(5, 1) 16 16 14

(5, 2) 106 97 80

(6, 1) 19 19 19 10

(6, 2) 154 153 136 82

(7, 1) 22 22 22 20

(7, 2) 211 211 202 173

(8, 1) 25 25 25 25 13

(8, 2) 277 277 276 253 145

(8, 3) 1789 1783 1704 1513 901

(9, 1) 28 28 28 28 26

(9, 2) 352 352 352 343 302

(9, 3) 2620 2620 2580 2426 2066

Table 3.1: Hamming ball sizes for various choices of k and r. On the horizontal

axis is the palindromicity of the center of the ball.

9

Similar calculations as in this example yield Table 3.1.

Calculating the number of balls of each of these sizes is equivalent to calcu-

lating the number of elements of Fk
4 of a given palindromicity. Fortunately this

does not prove to be difficult. If k is even, for a given palindromicity p, we are

free to choose k − p letters but have restrictions on the remaining p letters. If k

is even, for 0 ≤ p ≤ k
2
,

|{v ∈ Fk
4 : v has palindromicity p}| = 4

k
2

(
k
2

p

)
3

k
2
−p.

If k is odd, the formula is nearly the same:

|{v ∈ Fk
4 : v has palindromicity p}| = 4

k+1

2

(
k−1
2

p

)
3

k−1

2
−p.

Since we know the size of each type of Hamming ball, and the number of balls

of that type, given r, we can calculate an expected ball size E[|B(ṽ, r)|] for a

randomly chosen center ṽ ∈ F̃
k

4. We will need this in Chapter 5.

Our assumption is that the set of binding sites S ⊆ B(ṽ, r) for some v and

some r ≤ 3. We also assume 10 ≤ |S| ≤ 40, so for k ≥ 5 the proportion of

elements of the Hamming ball that are binding sites may be quite small.

To justify these assumptions, we use the well known Transfac [3] and

Jaspar [6] databases, which contain many transcription factors’ DNA binding

site motifs. Transfac contains 111 data sets suitable for our analysis, and

Jaspar contains 76. These databases record not just the sequence of a binding

site, but also a (variable) number of surrounding nucleotides. Therefore, to pre-

pare our data, we first need to align the sequences and remove the extraneous

nucleotides.

10

We use the motif-finding program AlignACE [5] to align the sequences into

sets of possible motifs, varying the required number of conserved (i.e., constant)

columns from 5 to 14. Then, for each motif, for each column j we calculate the

monographic distribution Pj = (pjA, pjC, pjG, pjT) on the four letters. Reasoning

that in the case of a spurious motif generated by AlignACE, this distribution will

not differ significantly from the generic distribution Q = (0.28, 0.22, 0.22, 0.28)

found across all genome data, we calculate the relative entropy between P j and Q.

However, in order not to bias this information in favor of motifs with more

columns, for each j we need to subtract off the mean information µ of a ran-

dom distribution P ′. Thus our score is

I =
∑

j

∑

i∈{A,C,G,T}

(pji log(pji/qi) − µ) .

We take as our putative S that motif with the highest I.

Out of the 187 data sets, 42 have motifs whose best scoring length is k ≤ 9.

For each of these, we then proceed to calculate the smallest Hamming ball that

contains all the elements of the motif. A summary of this experiment is in

Table 3.2. From the table, we see of the 42 motifs with k ≤ 9, all but 5 had r ≤ 3.

Thus, this restriction on r seems reasonable. The assumption that 10 ≤ |S| is

only somewhat supported by the data. However, the data sets are not necessarily

comprehensive, so at least for larger k and r, this lower bound seems roughly

correct.

11

TF Identifier k r |S|
JASPAR

Broad 4 8 2 4
c-myb all sites 8 3 22

c-myb single sites 8 3 16
eN-1 8 3 5
gfi1 8 2 4
Snail 8 2 9

arh-arnt 9 3 21
arnt homo 9 3 13
caat-box 9 3 34

dorsal nogaps 9 2 6
e4bp4 9 1 3
Hox15 9 4 6
Nkx 9 2 5
TRANSFAC

I-UBX-01 5 0 1
V-AREB6-01 5 0 1
V-HOXA3-01 6 1 4
V-NCX-01 6 2 5
V-SPZ1-01 6 3 13

I-SN-01 7 1 6
P-Alfin1-Q2 7 1 2

V-AHRARNT-01 7 2 7
V-CIZ-01 7 2 6

V-MRF2-01 7 2 7
V-TBP-01 7 2 9
F-ADR1-01 7 3 14

P-GAMYB-01 7 3 14
V-ZIC2-01 7 3 11
V-ZIC3-01 7 3 20

V-RREB1-01 7 4 13
V-ATF6-01 8 1 2
P-DOF3-01 8 2 5
V-ERR1-Q2 8 2 3
V-NKX25-01 8 2 7
V-NKX3A-01 8 2 7

V-SRY-01 8 3 9
V-ZF5-B 8 4 15

V-HFH1-01 9 2 9
V-ARNT-01 9 3 13

V-E2F1DP2-01 9 3 12
V-FOXJ2-01 9 3 18
V-MSX1-01 9 4 11
V-ZIC1-01 9 4 18

Table 3.2: A summary of the Hamming ball data.

12

Chapter 4

Designing the Array

We turn now to the design of the array, i.e., the makeup of the 20,000 spots on

the array. If we had no restriction on the number of the spots, we would simply

put each of the 4k k–mers on a spot by itself. After running the experiment, the

set of binding sites S would be the set of the “lit” spots. But for k ≥ 8, this

proves to be impossible given the size of the array.

We instead must put many k–mers on each spot. For the moment, consider

k = 9, and note that a spot of 44 consecutive nucleotides contains 36 overlapping

9–mers. If we could pack 36 distinct 9–mers onto each spot, never repeating a

9–mer, we would need only about
49

36
spots rather than 49. Of course, recovering

S will not be so trivial: a lit spot could indicate transcription factor affinity for

any of the 36 9–mers on the spot, or even for more than one. We will address

this issue later.

For now, we would like to place every k-mer onto the array an equal number

of times in these “packed” spots. Fortunately, the mathematical object known

as a De Bruijn sequence can help us here.

Definition Let A be a finite alphabet, and fix a k ∈ N. A De Bruijn graph is

a graph whose vertices are k–long words over A, with directed edge from word

a = (a1, a2, . . . , ak) to word b = (b1, b2, . . . , bk) whenever a2 = b1, a3 = b2, . . . , ak =

bk−1. A De Bruijn sequence is a circuit along the edges of a De Bruijn graph which

traverses each vertex exactly once.

13

AA

BB

ABBA

Figure 4.1: The De Bruijn graph with A = {A, B} and k = 2.

Figure 4.1 gives a simple example of a De Bruijn graph. A De Bruijn sequence

here would be AA, AB, BB, BA. More compactly, we can write the sequence as AABB,

understanding that we must “wrap around” at the end.

Our approach is first to find a De Bruijn sequence on the De Bruijn graph

whose nodes are in Fk
4. If the length of a spot is l, we can subdivide this sequence

into l–long subsequences. Note that we must repeat the last k − 1 letters on a

spot when we begin a new spot.

Example Let A = {0, 1, 2, 3}, and let k = 2, so that we are interested in 2–long

words over A. A De Bruijn sequence over the graph is 0021223301031132. All

2–long words are represented exactly once in this sequence. If l = 5, we can

define our spots as:

{00212, 22330, 01031, 11320}

Note we start a spot by repeating the last character from the previous spot.

It is natural to ask how many De Bruijn sequences exist for a given k (if

indeed there are any at all). This question is answered in [4]:

14

3 2 01

Figure 4.2: A shift register of degree 4 over F2.

Theorem 4.1 The number of De Bruijn sequences on words of length k over an

alphabet of size a is (a!)ak−1

/ak.

Thus we are guaranteed for 5 ≤ k ≤ 9 that in fact a great number of De Bruijn

sequences exist. There are a number of algorithms to generate De Bruijn se-

quences. We chose one algorithm which has been well studied and is known to

exhibit desirable randomness properties. It is based on a construct from alge-

braic coding theory known as a linear shift register. An extensive theory has

been developed behind shift registers, and a theoretical treatment is given in [2].

A diagram of a shift register is given in Figure 4.2.

For now, let us consider De Bruijn sequences over F2. A shift register is

associated with a polynomial f(x) ∈ F2[x] by constructing a series of delay boxes

of length deg(f) and letting the tap (i.e., output line) on the jth box represent

the coefficient of the term xj for 0 ≤ j < deg(f). For instance, in Figure 4.2,

the associated polynomial is f(x) = x4 + x + 1. The coefficients of f are 1 for

j = 0, 1, and 0 for j = 2, 3. Thus, there are taps on boxes 0 and 1, and no taps on

15

boxes 2 and 3. To generate a sequence, the boxes are filled with elements in F2,

then the register is stepped. To step the register, the sum (in F2) of the tapped

elements is computed, then all the other elements are shifted to the right by one.

The rightmost element “falls off” the register and is discarded. The computed

sum is entered in the leftmost box and is also recorded as the next element in

the sequence. This can be repeated as many times as necessary to generate a

sequence of the desired length.

It is clear that if the register contains the same elements at time t′ that it

did at step t, the output sequence will start to repeat. We might wonder, for

different arrangements of taps, how long the output sequence will go before it

repeats. Clearly, no non-repeating sequence can be longer than the length of the

De Bruijn sequence, 2k. One consequence of the theory behind shift registers is

found in [2] :

Theorem 4.2 A shift register of degree k generates a non-repeating sequence of

length 2k − 1 if and only if its associated polynomial f(x) ∈ F2[x] is primitive of

degree k.

Recall that primitive polynomials are polynomials whose every root generates

the entire field F[x]/(p(x)) ∼= F
deg p(x)
2 . For each value of k in our range of interest,

there are numerous known primitive polynomials of degree 2k, a fact that we shall

use shortly.

Thus we can associate any degree k primitive polynomial in F2[x] with a

sequence of length 2k−1. We might call this a “nearly De Bruijn” sequence. The

missing element is the k–long 0 vector. To make our sequence truly a De Bruijn

16

sequence, we need only to insert a single 0 into the sequence immediately before

the (k − 1)–long run of zeroes.

Example We use the register described in Figure 4.2 to generate the table below.

Note that the polynomial x4 + x + 1 is a primitive polynomial over F2.

Time Contents Recorded Sequence

t0 1111 — —

t1 0111 0 0

t2 0011 0 00

t3 0001 0 000

t4 1000 1 0001

t5 0100 0 00010

t6 0010 0 000100

t7 1001 1 0001001

t8 1100 1 00010011

t9 0110 0 000100110

t10 1011 1 0001001101

t11 0101 0 00010011010

t12 1010 1 000100110101

t13 1101 1 0001001101011

t14 1110 1 00010011010111

t15 1111 1 000100110101111

To the 15–long output sequence 000100110101111 we prepend a 0 before the 3–

long run of 0s to get 0000100110101111. We can see that this sequence contains

all 4–long elements exactly once, wrapping around at the end. Note that the

17

initial content of the register was chosen arbitrarily; any fill except the all zeroes

fill would generate such a sequence.

For our purposes, however, we need not a 2k–long sequence over F2, but rather

a 4k–long sequence over F4. One way to generate such a sequence is to generalize

the idea of the shift register from F2 to an arbitrary finite field. However, since

4 is a power of 2, it is easier to use a trick to generate a De Bruijn sequence over

F4 using a polynomial in F2[x].

Proposition 4.3 Let p(x) ∈ F2[x] be a primitive polynomial of degree 2k. Double–

step a shift register driven by p(x), and map the 2–long recorded output under any

bijective mapping M : F2 ×F2 −→ F4. Then double-stepping the register 22k − 1

times generates a (4k − 1)–long sequence in F4 under M , with no k–long repeats

in F4.

Proof Since we have double–stepped the register 22k − 1 times, and M gives

us one element of F4 at each double–step, clearly the length of the sequence is

4k − 1. We must show that the sequence has no k–long F4 repeats.

Our F2 sequence has length 2 · (2k − 1); it is simply two complete concate-

nated cycles of the nearly De Bruijn sequence for 2k–long words over F2, using

Theorem 4.2 and the fact that p is primitive. Assume that a k–long repeat over

F4 occurs. This means that a 2k–long repeat over F2 occurred, since M is one–

to–one. Since the F2 cycles have period 22k − 1, the distance between the two

occurrences of this repeat must be 22k − 1 elements of F2 apart. Therefore, the

first occurrence is contained wholly within the first 22k − 1 elements, and the

second occurrence is wholly within the second 22k − 1 elements. Assume the first

18

occurrence starts at index i; then the second begins at index 22k−1+ i. Since the

k–long F4 sequences start at these elements, we must have that i and 22k − 1 + i

have the same parity. This is a contradiction; therefore no such F4 repeat can

occur.

Note again that the element 0 ∈ F4 is again missing from our sequence, so

we need to insert it at an appropriate place. Using this algorithm we can easily

generate a great number of De Bruijn sequences over Fk
4 by picking any primitive

polynomial in F2[x] of degree 2k, stepping its shift register 2 · (22k −1) times and

applying M to the output.

Example To continue the example from above, we concatenate two copies of

the nearly De Bruijn sequence and read off the numbers in pairs. We use the

bijective map from F2 × F2 to F4 mentioned in Chapter 2.

00︸︷︷︸
0

01︸︷︷︸
1

00︸︷︷︸
0

11︸︷︷︸
3

01︸︷︷︸
1

01︸︷︷︸
1

11︸︷︷︸
3

10︸︷︷︸
2

00︸︷︷︸
0

10︸︷︷︸
2

01︸︷︷︸
1

10︸︷︷︸
2

10︸︷︷︸
2

11︸︷︷︸
3

11︸︷︷︸
3

Prepending a 0 yields the sequence 0010311320212233. Note that this sequence

contains every 2–long sequence over F4 exactly once.

We thus have a method for generating De Bruijn sequences for any given k.

Due to the size restrictions on our microarray, the largest value we could choose

was k = 9, and we were given a spot length of 44. The first k − 1 = 8 letters of

any spot are repeated from the last 8 letters of the previous spot. The number

of spots needed is ⌈49/(44 − 8)⌉ = 7282 for this register. (We simply continue

generating elements with the shift register to fill out the last spot.)

19

Note that we have not yet accounted for the reverse complement bindings; we

have been working in Fk
4 rather than F̃

k

4. The transcription factor will bind at

two places on our array, where v ∈ S occurs and where the reverse complement

v occurs. So we have built some redundancy into our array: usually two spots

will light up for each binding site. (Rarely, when a single spot contains both v

and v or when v = v, only a single spot will be lit.) This is desirable, given the

vagaries of the experimental data.

Since we have about 20,000 spots to work with, we will include two De Bruijn

sequences over 9-long strings, using two different generating primitive polyno-

mials. We also include two sequences over 8-long strings, each of which take

⌈48/(44 − 8)⌉ = 1821 spots. (The remaining spots will be left as experimental

controls and to run side experiments with.) So in fact, a 9-long binding site will

generally light up the array in 4 to 8 distinct spots.1

1If our binding site is shorter, it will light up even more spots. For instance, if the binding

site is 8 characters, it could light up as many as 20 spots. If our binding site is longer, there is

still a chance that our array contains at least one copy of the string. For instance, if the binding

site is 10 characters, there is approximately an 85.9% chance that the array has at least one

spot that contains the binding site.

20

Chapter 5

Recoverability

Our strategy for recovering the motif S is first to recover the Hamming ball

B(ṽ, 3) ⊃ S, and then to determine the elements of B(ṽ, 3) that comprise the

elements of S. But will our proposed array allow us to do this?

For now, let us ignore the effect of reverse complements, as they tend to make

computation difficult. So we will work in Fk
4 rather than in F̃

k

4. In the first

step, we would like to use the pattern of lit spots to determine which Hamming

ball contains S. But clearly different Hamming balls have regions of overlap;

moreover, since each spot has multiple k-mers, elements from disjoint Hamming

balls can be contained on the same spot in the array. We would like to know

what the chance is that the pattern of lit spots does not allow us to distinguish

between two Hamming balls, B and B′.

Let us first establish some notation. Let λi ⊂ Fk
4 be the set of k–mers on the

ith spot. Represent the entire array by Λ = {λi}
m
i=1, where m is the number of

spots. For a set A ⊂ Fk
4, let ΓA = {λi ∈ Λ : λi ∋ a for some a ∈ A} be the set of

spots which are lit by matches to A, and let |A| = n and |ΓA| = g. We continue

to use S ⊂ Fk
4 to denote the motif for our transcription factor. Thus ΓS is the

set of spots lit by our motif elements.

Given ΓA for an arbitrary set of k–mers A, we can use a straightfoward al-

gorithm to attempt to find a ball B which contains A (if any exist at all). For

λ1 ∈ ΓA, mark any ball containing at least one k–mer in λ1. Then rule out any

21

ball not marked in this way. Continue this sieving process on the set of all (k, r)

balls for i = 1, . . . , |ΓA|. Denote the set of remaining balls which are never ruled

out by this algorithm B(ΓA).

Definition A ball B is recoverable with respect to a set A ⊂ Fk
4 if B ∈ B(ΓA).

If our motif S is drawn from B, note that B will always be recoverable with

respect to S. It is possible that another ball B′ also survives the sieving process.

If S ⊂ B∩B′, then this is unavoidable. But it is not problematic to our ultimate

goal: we can claim either S ⊂ B or S ⊂ B′ and move on to identifying S, since

our choice of the two balls is inconsequential.

But what if S 6⊂ B′? This indicates that we have lost some information

due to our particular packing of the k–mers on the spots. Though we have no

information allowing us to discriminate between B and B′, it matters very much

which one we choose. We would like for this situation to occur very rarely, if at

all. More generally, we would like S ⊂
⋂

i Bi for Bi ∈ B(ΓS).

Let us approximate the probability that a spurious ball, i.e., one not con-

taining S, lies in B(ΓS). Consider the expected number of balls in B(ΓA) for an

arbitrary set A. When this expected number of survivors is small compared to 1,

the probability of a spurious ball surviving the sieve should also be small.

We first approximate how many spurious balls we expect to survive the sieve

for a given λ ∈ ΓA (i.e., for one stage of the sieve). For simplicity, for now let us

consider an array which contains every k–mer exactly once.

We use Table 3.1 to determine an expected Hamming ball size E[|B|] for

B ⊂ Fk
4. For v ∈ λ, we can therefore estimate Pr(B ∋ v) ≈ E[|B|]

4k . If there are l

22

elements in λ, assuming independence among them, we obtain

Pr(B ∋ vi for some vi ∈ λ) ≈ 1 −

(
1 −

E[|B|]

4k

)l

.

Again, making the assumption that the probability of a ball surviving one step of

the sieve is independent of it surviving the other steps, we find that the expected

number of spurious balls which survive the g steps of the sieving process is

E[|B(ΓS)|] ≈ 4k(1 − (1 −
E[|B|]

4k
)l)g,

where g = |ΓA|. We would now like to obtain an estimate for g.

Recall that m = |Λ| is the number of spots, and n = |A| is the size of our

arbitrary set. For k sufficiently large, m, n ≪ 4k. Then we will show

Pr(|ΓA| = x) ≈

(
m
x

) ∑

n1,...,nx

n!

n1! · · ·nx!

mn
,

where
∑x

i=1 ni = n and ni > 0 for all i.

To see this, let the random variable Yi be the spot index for the k–mer vi ∈ A,

with 1 ≤ Yi ≤ m. Since the spots are all the same size, Pr(Yi = j) = 1
m

for

1 ≤ i ≤ n and 1 ≤ j ≤ m. Since m ≪ 4k, our spots are large, and since

n ≪ 4k, there are not too many elements of A on a given spot. So we can say

Pr(Yi = j | Yi′ = j) ≈ Pr(Yi = j) for i′ 6= i, or the Yi are independent.

Let Zj =
∑n

i=1 δ(j = Yi) be the number of elements of A on spot j. Since

the Yi are independent trials with the uniform distribution, the Zj have the joint

multinomial distribution:

Pr(Z1 = n1, . . . , Zm = nm) =
n!

n1! · · ·nm!

(
1

m

)n

,

23

(k, r) |S| = 5 |S| = 10

(7, 2) 8.96 × 10−5 4.89 × 10−13

(8, 3) 7.01 7.51 × 10−4

(9, 3) 1.01 × 10−5 3.91 × 10−16

Table 5.1: The expected number of balls that survive the sieving process which

do not contain the motif S. (By design, the correct ball also survives.) Here we

are assuming |ΓS| = 4 · |S|.

where
∑m

j=1 nj = n. Finally, our random variable |ΓA| =
∑m

j=1 δ(Zj > 0). If

|ΓA| = x, we have
(

m
x

)
ways of choosing our lit spots. For each such choice, we

can have any partition (n1, . . . , nx) of n into x non-zero elements. The condition

on the sum above expresses exactly this.

With these results in hand, we can now estimate how many random balls we

expect to survive the sieve. In our case, we have an array which contains two

De Bruijn sequences over 9-mers (as well as two over 8-mers). Including reverse

complements, we are guaranteed that a given transcription factor will bind to

at least four locations on the array. We see from our previous result that, for

|Λ| = 18, 206 (the number of spots on our array) and a spot length of 44 (the

length of our spots), the number of lit spots |ΓS| will be equal or nearly equal

to 4 · |S|. For instance, when |S| = 5, Pr(|ΓS| = 20) = 0.990. When |S| = 10,

Pr(|ΓS| = 40) = 0.958. If we proceed under the assumption that |ΓS| = 4 · |S|,

we obtain Table 5.1. (The numbers are similar when |ΓS| is not much smaller

than 4 · |S|.)

Having developed this theory for general subsets of Fk
4, we must turn now to

24

our actual problem. There are two complicating factors. One is that A = B(v, r)

is now not a random subset of Fk
4, but rather a subset of a Hamming ball. This

is relevant, for instance, when we consider B(AAAAAAAA, 1), which contains the

element AAAAAAAC. These two elements are more likely to be contained on the

same spot than two random elements. Still, this effect seems intuitively to be

negligible; we will soon verify this computationally. The second, of course, is that

we need to be working in F̃k
4, and so we must account for the effect of reverse

complements. The problem is sufficiently complex that a Monte Carlo approach

seems justified.

For a given k and r, we created B(ṽ, r) for a random ṽ ∈ F̃k
4. We took as

our motif S a random subset S ⊂ B, with |S|
|B|

= 1
4
. We then checked against our

array of spots Λ to find B(ΓS). In our tests, running 1000 iterations each time,

we found no instance when |B(ΓS)| > 1, for k = 6, 7, 8, 9 and r = 1, 2, 3. This

seems to agree well with our theoretical results.

We can therefore be reasonably sure that for k and r in this range, our ball

B will be the only element of B(ΓS). We now must identify S itself, the set of

binding sites within B.

25

Chapter 6

Discernibility

After recovering the Hamming ball, our second step is to identify which elements

of the ball comprise S, the set of binding sites. Having identified the ball B, we

look at the set ΓS of lit spots on the array. For each λ ∈ ΓS, the set λ∩B should

be a non-empty set containing at least one element of S. However, if |λ∩B| > 1,

any or all of the elements of the intersection could be elements of S. This leads

to the following definition.

Definition Let B be a Hamming ball. A binding site v ∈ S is discernible with

respect to B if there exists a spot λ such that λ ∩ B = {v}.

Thus, if S consists entirely of discernible elements, we should be able to recover

all the elements. If some elements are not discernible, we can only suggest that

those elements may be in S if every spot on which they occur is lit. We can

definitively exclude elements from S if spots they are on are not lit.

For a given Hamming ball in B(v, r) ⊂ Fk
4 with radius r, what proportion of

its elements are discernible? We can certainly suppose that as r increases, fewer

and fewer elements are discernible, since a given spot λ ∈ Λ is more likely to

contain multiple elements of B(v, r). For 5 ≤ k ≤ 9, as k increases, discernibility

should diminish, since fewer spots contain a given k-mer (and hence there are

fewer chances for that k-mer to be discernible). Matters become more compli-

cated when we move into F̃k
4 to account for the effect of reverse complements.

26

(k, r) Discernible
(6, 1) 100.00%
(6, 2) 99.59%
(7, 1) 100.00%
(7, 2) 99.75%
(8, 1) 100.00%
(8, 2) 99.88%
(8, 3) 96.93%
(9, 1) 99.95%
(9, 2) 99.53%
(9, 3) 91.06%

Table 6.1: Average percentage of discernible elements for balls B(ṽ, r).

For instance, if v = v, then B(v, r) is about half of its “normal” size, and so

discernibility should increase.

Because of the complexity of these various parameters, we decided to estimate

the discernibility rate via a Monte Carlo simulation. For a random center ṽ ∈ F̃k
4,

we generated the ball of radius r around ṽ. We then checked our array of spots,

containing two 9-mer and two 8-mer De Bruijn sequences, to see what percentage

of elements of B(ṽ, r) were discernible. Performing 1000 iterations of this routine

gave us the results in Table 6.1.

In light of Theorem 4.1, we might wonder whether there would be a significant

diffence between various De Bruijn sequences we might generate. To answer this

question, we picked 500 primitive polynomials of degree 18 in F2[x]. For each

polynomial, we generated corresponding the array of spots Λ, consisting only of

this single De Bruijn sequence. For all B(8, 3), we found how many times each

27

v ∈ B was discernible. We took as our score for the polynomial the sum

Score(p(x)) =

∑
B

∑
v∈B

dv,B

1+dv,B

|B|

number of balls
,

where dv,B is the number of spots where v was discernible with respect to B. The

number of balls is just |F̃
k

4|. This score reflects the fact that we would like for v

to be discernible at least once, but additional discernible spots are diminishingly

helpful. We compute this average for each ball, then average over the averages.

The result is a score between 0 and 1.

As a frame of reference, we give an maximum for the score above. Since v ∈ F8
4

and p(x) is of degree 9, each v appears on at most 4 spots. Thus
dv,B

1+dv,B
≤ 4

5
, and

likewise, Score(p(x)) ≤ 4
5
.

Over our 500 tests, we obtained a mean of 0.4022 and a standard deviation

of 0.0014. Our scores ranged from 0.3910 to 0.4043. This seemed like a small

enough range for us to assert that the choice of polynomial was not significant.

Since we are to use not one but two De Bruijn sequences on our PBM, we also

wanted to check that discernibility using a second polynomial is not affected by

our choice for the first. Excluding the case where the two polynomials were the

same (in which case we obtained a discernibility of 0.4899), the scores’ mean was

0.5775 with standard deviation 0.0006 and range from 0.5727 to 0.5784. Again,

our choice of the second polynomial given the first did not seem to matter.

28

Chapter 7

Conclusion

We thus have an overall strategy for recovering the motif from the pattern of lit

spots on our array. Having constructed the array with a combination of various

De Bruijn shift register sequences, we first run the experiment on the transcrip-

tion factor of interest, whose binding motif lies in some Hamming ball of small

radius. We showed in Chapter 5 that we have a high probability of recovering

this Hamming ball, or one that is equally as good. By the discernibility calcula-

tions shown in Chapter 6, we again have an excellent chance of identifying the

elements of the Hamming ball which make up the motif.

29

BIBLIOGRAPHY

[1] Bulyk ML, Huang XH, Choo Y, Church GM. Exploring the DNA-binding

specificities of zinc fingers with DNA microarrays. Proc. Natl. Acad. Sci.

U.S.A. 2001 Jun 12; 98(13): 7158-7163.

[2] Golomb, Solomon W. Shift Register Sequences, 2nd edition. Aegean Park

Press. 1982.

[3] Heinemeyer T, Wingender E, Reuter I, Hermjakob H, Kel AE, Kel OV,

Ignatieva, EV, Ananko, EA, Podkolodnaya, OA, Kolpakov, FA, Podkolodny

NL, Kolchanov, NA. Databases on Transcriptional Regulation: Transfac,

Trrd, and Compel. Nucleic Acids Res. 1998; 26: 364-370.

[4] Hurlbert, Glenn H. On Spanning Trees of Certain Graphs. Unpub-

lished [Colloquium, University of California, Santa Barbara, CA]. 1993.

http://math.la.asu.edu/~hurlbert/papers/STCG.ps.

[5] Roth FP, Hughes JD, Estep PW, Church GM. Finding DNA regulatory mo-

tifs within unaligned noncoding sequences clustered by whole-genome mRNA

quantitation. Nat Biotechnol. 1998 Oct; 16(10): 939-45.

30

[6] Sandelin A, Wynand A, Engstrom P, Wasserman W, Lenhard B. Jaspar:

an open access database for eukaryotic transcription factor binding profiles.

Nucleic Acids Res. 2004 Jan; 32(1) Database Issue.

31

