THESIS REPORT
Master’s Degree

Supported by the
National Science Foundation
Engineering Research Center

Program (NSFD CD 8803012),
Industry and the University

M.S. 90-3
Formerly TR 90-10

Wald Sequential Detection with
Non-Gaussian Pulsed Radar Data
Using the Zakai Equation

by: S.P. Rodriguez
Advisor: ].S. Baras



Wald Sequential Detection with Non-Gaussian Pulsed
Radar Data Using the Zakai Equation

by

Serafin Patrick Rodriguez

Thesis submitted te the-Faculty of The Graduate School
of The University Of Maryland in partial fulfillment
of the requirements for the degree of

Master of Science

1989
Advisory Committee:
Professor John S. Baras Advisor
Professor William Levine

Associate Professor Evaggelos Geraniotis






ABSTRACT
Title of Thesis: Wald Sequential Detection with Non-Gaussian
Pulsed Radar Data Using the Zakai Equation
“Name of Degree Candidate: Serafin Patrick Rodriguez

Degree and Year: Master of Science, 1989

Thesis directed by: John S. Baras
Professor

Electrical Engineering Department

The “optimal” Wald sequential hypothesis test for diffusion signals is pre-
sented. The result is a threshold test with explicitly computable thresholds.
Five possible schemes for a numerical implementation of the test are given. A
comparison of the different implementations and analysis of the detectors perfor-
mance is done for the radar problem of ship versus chaff target discrimination
using lognormal and Rayleigh models respectively. Parameter estimation for
the lognormal and Rayleigh cases is also studied. Finally, a signal estimation
scheme is presented utilizing the conditional expectation of the signal computed
from the conditional density of the underlying state, which is the solution to the

Zakail equation.
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Chapter 1

Introduction

This thesis implements an “optimal” Wald sequential hypothesis testing scheme

for the general diffusion model,

dx, = fi(x,)dt + g'(x;)dW, (1.1)
dy, = n'(x,)dt +~dV, (1.2)

where 7 = 0,1. Under hypothesis ¢;

X, is an n' dimensional state vector;

Wi is an m! dimensional Brownian motion vector;
y: 1s a p dimensional observation vector:

V., is a p dimensional Brownian motion vector;
identical under both hypothesis;

f', g, h¥ are known functions of the respective state vectors.

So fi(x¢) is an n' vector, ¢'(x,) is an n' x m! matrix, and hi(x,) is a p.vector.
Equation 1.1 is called the state equation and equation 1.2 is the observation
equation. When necessary, we will drop the time subscript and use subscripts
to denote elements in vectors or matrices.

Given observation data from one of the hypotheses, we wish to determine

from which hypothesis the data came. Quoting results from [LS78] we will



present an “optimal” sequential detection scheme and then formulate a solution
with several possible numerical implementations of the detector. We will give
some numerical results and compare several of these numerical schemes through
computer simulation.

To begin, let us review some results from chapter 17 of [LS78]. Consider

the following pair of stochastic differential equations

He = dy=dV,

H, o dyy=hMz)dt+dV, oy =0

These correspond to scalar observation equations for a single hypothesis versus
noise case. Let (2,7, P) be a given probability space with a nondecrcasing
family of a-élgebl'as Fi where t > 0 with 7y C F. Furthermore, let W =
(Wi, Fi) be a Wiener process. Assume Ni(z,) = (h(z,),F;) is an unobservable
process independent of W. We make the following definitions which describe

the sequential detection scheme.

Definition : A sequential hypothesis testing scheme is denoted by A = A(r,§).
7(y) signifies the decision time and 6(y) € {0,1} the decision with § = 1 signify-
ing the observed data came from the model corresponding to hypothesis 1 and

¢ = 0 from hypothesis 0.

Definition : We define an error of the first kind as a(A) = P (6(y) = 0)
which in radar terminology is called the probability of miss and denoted by Py;.
We define an error of the second kind as §(A) = Py(8(y) = 1) which in radar

terminology this is called the probability of false alarm and denoted by Pp.

Definition : We define A\, 4 as the class of schemes A = A(7,8) with a(A) < «

and J(A) < J where «a, J are constants with a + 3 < 1.
Definition : Define hy = By (h(z})]F¥)

We make the following assumptions required for the proof of the following

theorem.



Al EfMa)|] <o t<oo,1=0,1
A2 P{fhtds=co}=1 i=0,1
A3 Ei[f(ffods]<oo t<oo , 1=0,1

Theorem 1 Given assumptions Al to A3 then in the class Ao p there cxists

a scheme A = A(%,S) optimal in the sense that for any other scheme A =

.".\(T, (5) S L\aﬁ ) 7
| Ei[/rfzfdt]gEi[/Tﬁfdt] i=0,1
: Y 0
The scheme A = A(T, S)C(m be defined by the relationship
7(y) = infimum {t > 0: Ay(y) €(A, B)}

{ <A

1 Az (y)

where .
t. 1 ft.,
A(y) = exp {/ hsdys — 7/ h;ds}

0 2 Jo

and
« l—«
A= . B=
1-4 ¢

Ay is known as the likelihood ratio and In(A,) is the log likelihood ratio. In this

case

E, {/O%fzfdt} <oo i=0,1
Lemma 1 For the scheme A = A(T, 5),
Py(7(y) < o0) = Pi(7(y) < o0) =1
and o(A) = a 3(A) = 3.

The proofs for the above theorem and lemma are given in Chapter 17 of [LST7§]
for the scalar case.
The proofs for the equivalent theorem and lemma for the vector case are

given in [LaV86]. TFor the vector case assumptions Al through A3 become:

3



Bl Ei{||h(x)]]] <o t<oo,i=0,1
B2 P {f|hPds =0} =1 i=0,1
B3 Ei[fsllh?ds] <o t<oo , i=0,1

t. t .
Ai(y) = exp {/ hldy, — l/ Hthst}
0 2 Jo A

where T in hT denotes vector transpose.

and then

For the general hypothesis testing problem between two hypotheses, corre-

sponding to eqgs. ‘1.1 and 1.2, the likelihood ratio is given by

t o, . N t ” o
Ady) = exp {/0 (i = i0)" dy, - %/0 (R~ 11R9]2) ds}

With the a‘dditioﬁal assumption
P; {/ ||nY = 29||2ds = oo} =1 ¢=0,1
0

we guarantee a finite decision time;

In order to calculate A;(y) it is necessary to determine hi, the conditional
expectation of hi(x,) given the observation y, s < t. Under appropriate condi-
tions, the conditional density of x; conditioned on the observation dy,, which we
will denote as u;(x,t), satisfies the linear parabolic partial differential equation
known as the Zakai equation [BBHS83|. In the next chapter we present the Zakai
equation and the necessary conditions for existence of a unique solution which
in turn will yield A;(y). We also derive several approximation schemes which

are implemented and we make comparisons of the results.



Chapter 2

Solution and Numerical
Approximation of the Zakai

Equation

2.1 Solution of the Zakai equation

The Zakai equation is given by ( 2.1). When v (the observation noise scaling
factor) is equal to one the conditional density u{x,t) of the underlying state x
conditioned on the observations dy is known to satisfy the Zakai equation. We
will drop the hypothesis superscripts and the time subscripts, instead using sub-
scripts to denote vector and matrix elements. So the functions h(x,), I, v, and
x; will not have explicit time dependence. The following assumptions guarantee
existence and uniqueness of the solution to the Zakai equation [BBH83] and are
assumed to hold throughout the chapter.

C1 L~ is uniformly elliptic

C2 f(x),0(x),h(x), 7= (), 5201, (X), 5045 (%), 5 003 (%), g hi(x) L and

o2
(').l‘,'(')l‘j

he(x)ford,j =1,....nandk =1,... pare uniformly bounded and Lipschitz

continuous.



Then the unormalized conditional density u(x,t)satisfies ( 2.1),

Cdu(x,t) = Lu(x,t)dt — %”h“%(x,t)dt + Wl dyu(x, t) (2.1)
I t) = - 9° t ~ 90 . ) t)
U(X, ) - lélm [01,J<X)u(xv )] - ; ’5; [f,(X'lL(X, }
7(%) = 59(x)g" (x)

where 0 ;(x) is the i, j element of the the matrix o(x). To determine the partial
differential equation that u(x,t)satisfies for v # 1 it is simply neccesary to
renormalize the output equation, so h(x) becomes %h(x) and the observation
dy becomes %(ly.

We wish to solve ( 2.1) for u(x,t). We factor the term L*u(x,t) as A*u(x, t)+
C(x)u(x,t) where A™ contains the terms which have derivatives of the density
u(x,t). This is done based on numerical implementation considerations which

will be expanded upon later. Then ( 2.1) can be written as

du(x,t) = A*u(x,t)dt + [C’(x) - —;—l[hHQ] u(x,t)dt + hldyu(x,t) . (2.2)

Defining
1 .
we will use a Gauge Transformation with

r(x,t) = exp~?0¥t) y(x, t)

SO

u(x,t) = exp?*¥ p(x, )

Now u(x,t) must satisfy { 2.2) so
dr(x,t) exp® Pt = 470(x, 1) exp?®Y V) gt + (dé(x,y,1)) r(x, 1) exp? Xyt

exp? V) = dr(x, t) + r(x,t)d exp?V = A™r(x,t) exp?YD gy

+ (dp(x,y, ) r(x, 1) exp?*y)

6



dr(x,t) = exp™®XYD [ A"r(x,t) exp®™V V) dt 4 (do(x,y,t)) r(x,1) exp?*Y:0

—r(x,1) (d exp¢(x’y’t)) ]

dr(x,t) = exp ¢V [ A™r(x,t) exp®YD g 4 (dé(x,y,t)) r(x,t) exp?xy )
o ((l[¢(x7 Yy, t)) T'(X, t) exp¢(xvY~t) ]
dr(x,t) = exp™®P0 [A*T(X,t) ex1)¢(x’y”)] dt

or

dr(x,t) = exp~®Yt) A exp?CYD p(x, t)dt .

This is a classic parabolic partial differential equation. Using results from semi-

group theory and differential equaﬁions the solution is given by
7(x,t) = exp ¥ expA™t exp?Yt) 4 (x, 0)
SO

u(x,t) = exp?C¥t)r(x, t) = exptexp?V ) u(x, 0)

= expAtoxph W3lAIPHHCOE u(x,0) . (2.3)

2.2 Calculation of Likelihood Ratio A

From the introduction we have for the single hypothesis versus noise case

o Lot
At(y):exp{/ thys——/ Hhsnzds}
0 2 Jo

4

and for the general hypothesis case

t . “ T 1 t n o
. 170 = 12 (7002Y 7.
A(y) = exp {/0 (il —i2)" dy, 2/0 (IR = 1R )(/5}

To calculate A, from the above formulas it is necessary to find 2}, the conditional
expectation of 1}, We will solve the Zakai equation for u;(x,t) the unnormalized

conditional density assuming hypothesis i, then taking the expectation of il with

=~1



respect to the normalized conditional density we can calculate A;. However, we

will show that

Mly) = [ wn(x,t)dx

nr

in the single hypothesis case and

_ e (%, t)dx

Mly) = S wo(x,t)dx

in the general hypothesis case. By using the above formulas to calculate A, we

avoid the additional approximation-in calculating ﬁ;

Lemma 2

2 Lt
Ay) = exp {/thdy.s - :’/ Hthst}
0. 2 Jo

(for the single hypothesis versus noise case) satisfies the stochastic differential

equation
dA(y) = At(Y)ileY

proof: Changing notation let A,(y) be denoted by A(y,t). We use’ to denote
differentiation and the corresponding subscripts will denote the wvariable with

respect to which the differentiation is performed. Let

‘. 1 7t .
:t:/lTls——/ B (12ds
(0= [ iay, - 5 [ i

then

dx(t) = W dy — %HﬁH?dt |

Using the fact

dy h(x)dt + dV

= h(x)dt +dV

where dV is a Brownian motion vector independant of dV but with the same

distribution and is obtained by taking expectations, we get
1 - S
dz(t) = Sh]|*dt + hTaV

8



So z(t)satisfies a stochastic differentail equation. Applying Ito’s formula to

we get

A(z(t),t) = exp {z(t)}

dA(z(t),t) = [A't(z(t),t)+%|{fz|l2A’z(z(t),t)+%—szﬁ,Agz(:(t),t) dt

+hT A (2(¢),t)dW
= EHAHQA(,Z(t),t) + -QI-H/}H?A(:(t),t)] dt + hTA(2(t), ) dW
= [|A|PA(z(t),t)dt + hTA(z(t), t)dW
= A((0),0) [|[hlPdt + BT dW]
= A(2(t),1) [A] hdt + BT dW]
= A(=(t), AT [hdt + dW]

Substituting dy back in for hdt + dW we get

dA(y,t) = ‘k(y,t)iszy i

Consider the inner product defined by

< g(x), h(x) >= /1 ) g(x)h(x)dx .

For the Zakai equation we have

. n 0‘2 n a ,
Lru(x,t) = i§1 v [o5(x)u(x, t)] — 2 oz, [fi(x)u(x,1)]
with adjoint operator L given by
Lu(x,t) = Zn: ;i (x)—~—a-2——— [u(x,t)] — Zn:fi(x) 0 [u(x,1)]
ij=1 7 01‘,‘01‘]' ’ =1 5):13,- '

So < L™g(x), h(x) >=< g(x), Lh(x) >.

3

From ( 2.1) we have

d < u(x,t),1 >=< L*u(x,t),1 > dt+ < u(x, )07, 1 > dy .

9



Then

d<u(x,t),1 > = <u(x,t),L1>dt+ <u(x,t)h’ 1> dy
| < u(x,t),hT >
<u(x,t),1 >

= <u(x,t),1>hTdy

<u(x,t),1 >dy

with < u(x,0),1 >= 1. So A, and < u(x,t),1 > satisfy the same stochastic

differential equation and are equal P-a.s. So -

A = <u(x,t),1>
= / u(x,t)dx .

For the genaral hypothesis case we get

< wux,t),1 >
< up(x,t),1 >
S v (x, t)dx
TRN ug(x, t)dx

At:

2.3 Numerical approximation of the Zakai equa-
tion
Discretizing ( 2.3) in time as
Ux,t) =[] exp? A exph” AViacalibFALCH0AL u(x,0) (2.4)

LaVignashows lima,—oU(x,t) — u(x,t). Similarly, he shows the approximation
vy
U(x,t) = H eXphTAy,m—§1|h||2At+C(x)Az epr*At u(x, 0) (2.5)
=0 ’
also converges to u(x,t) as At — 0.
We will discretize ( 2.4) and ( 2.5) in space (ie. with respect to the underlying
state x). We will replace the differential operator A* by matrix operations.
We will use boldface capital letters to denote matricies. We discretize the

density u(x,t) as a matrix

10



u(Xo,t) u(Xo + Axa,t) (X + kAxa,t)
u(Xo + Ax1,t)  u(xo + Axy + Axa,t) oo u(xg + Ax; + kAXy, 1)

lL(X() +jAX1,t) ‘IL(XO +jAX1 +A;X2,t) u(xo —§—ij1 +I\IAX2,t)
‘which we will denote by U(x, t) where xq is the left endpoint of the discretization

space.

Consider the first and second order approximations

u(z + Ax;, ) — u(x, t)

U, t —_
9 u(x,t) — u(z + Ax;, 1)
ar 0= T
829 ulxf) = u(z + Ax;,t) — 2u(x;t) +u(z — Ax;,t)
oz AT

where Az; is the discretization increment of the :** component of the state vector

and is scalar and Ax; is an n dimension vector with Az; in the i** position and
zero elsewhere. So %U(X,t)and %u(x,t)are the second and first derivatives of
" t

the density with respect to the :** component of the state. Define

—2At At 0
D,‘(X) = A:C;)‘ O',',i(X) ZE —-f,‘(X) + 2'871'0,",'(}()
UD,'(X) = "A—A;t?'ai,i(x) -+ Zé-;‘l' max [0, —fi(X) -+ 25?;;0'{’,‘()()}
At At 0 1
LD;(x) = —50::(x) - in |0, — f; 2505
(x) A:z;;’a’ (x) Ao min [O filx) + 28$i0, (X)J

where the functions max[,-| and min[-,-] take the maximum or minimum of

their respective arguments. We define the tridiagonal matrices A] and Aj
respectively by

Dl(Xo) “DI(XO)
LDi(Xo +AX1)  Di(Xo + AXy) UDy(Xo + AXy)

LDi(Xo +(j — 1)AX,) DiXo +(J — 1)AX1) UD((Xo +(j - DAX,)
=D (Xo +74Xy) Di(Xo + jAXy)

11



I Da(xo, 1) —D3(xq)
LDa(xe + AXxa) Da(xq + Ax2) UDa(xo + Ax2)

LDg(xo+(j—1)AX2) Dg(Xo+(j—1)AX2) UDQ(X() +(j—1)AX2)
—Da(x0 + jAx2) Da(xo + jAx2)

With the further assumption that f;(x) only depends on the ** component

of the state vector we can rewrite ( 2.4) and ( 2.5) as

lav ' : ,
U(x,t) = [] exp®12* [E(1At) ® U(x,1At)] exp”22! (2.6)
1=0
and
lacd ;
U(x,t) = [ E(1At) @ exp12t U(x, 1A¢) exp 28t (2.7)
1=0 :

respectively. The symbol ® is pointwise matrix multiplication and I is either an

j X 7 orak Xk identity matrix. E(t) is defined as

axe) a(xo + Axa) ‘e a(xg + kAxa)

T a(xg + Axy) a(xo + Axy + Ax2) - a(xge + AX1 + kAx72)
exp [h Ayt} ) .
a{xo + jAX1) aXe + jAx1 + Ax2) -+ a(xe + FAX1 + kAXx2)

where a(x,t) = exp [—%[]h“ZAt + C(X:)At}. Note that in discretizing the equa-

tions in space the operation A} for ¢ == 1 became matrix multiplication on the
left and for ¢ = 2 matrix multiplication on the right. If f;(x) is not assumed to
depend only on the i**component of the state vector then ( 2.4) and ( 2.5) can
still be implemented using matrices, however, A] changes for each column of
the discretized density and A3 changes for each row of the discretized density.
We know
A _ o= (AiAL)”

epri =>

L

!
= n!

We are interested in approximating the exponential of a matrix by a truncated
sum. If the elements of AjAt & 1, which we can guarantee by choosing At

small enough, then

expi®t & T+ AjAL



By using only first and second order approximations for the first and sccond
order derivativés of the density with respect to the state we have the row of A;
summing to zero. Additionally, choosing z_\.i such that the elements of A;At < 1
we have ensured the matrix I+ A;At is well conditioned and invertible. We can
implement several different schemes for ( 2.6) and ( 2.7). We can rewrite one

step of ( 2.6) as
U(x,t + At) = (I+ AtA]) [E(t) © U(x,t)] (I + AtA3) (2.8)

which we will denote as the explicit discretization. We can implement a two

step approximation of ( 2.6) by

(I-AtAT) U(x,t + At) = [E(t) @ U(x,t)] (I + AtA3) - (2.9)

U(x,t + 2At) (T — AtA}) = (T + AtAT) [B(t) ® Ulx, t)] (2.10)

which we will denote as the mixed scheme. Finally, we can implement the

approximation
(I - AtAT) U(x,t + At) (I — AtA3) = [E(t) ® U(x,1t)] (2.11)

which we denote as the implicit scheme. ( 2.8) is called explicit because the
density U(x, t+At) is explicitly defined interms of the density U(x,t). ( 2.11)is
called implicit because each point in the density U(x, t+At) is defined implicitly
by one or more points in the density U(x,t + At) as well as U(x,t) and a set
of simultancous equations must be solved to obtain U(x,t + At). The scheme
corresponding to ( 2.9) and ( 2.10) having components of both the explicit and
implicit schemes is denoted as the mixed scheme. For implementing ( 2.7) we
again get similar result with the pointwise multiplication by E(t) done after
matrix multiplication of I + AtA} and U(x,t).

Several approximations were tfsed, in arriving at a discretization scheme for
( 2.4) or ( 2.5), which warrant further discussion. Ve approximated the expo-

nential of a matrix by using only two terms of the Taylor expansion. In order
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for the approximation to be accurate it is necessary that the elements of the
matrix be small. The only term which is free to be set is At but making At
small requires more computations to process a fixed time block of data. Al-
ternately, a better approximation for the exponential can be used by including
more terms of the expansion but for each additional term the matrices A¥ have
an additional nonzero upper and lower diagonal which again increases computa-
tional complexify and A} can nolonger be guaranteed to be a well conditioned
matrix.” Another approximation used was the first and second order approxi-
mations for the first and second order deriva,tiyes of the density u(x,t). Higher
order approximations can be used but result in additional nonzero upper and
lower diagonals in A} which again increases computational complexity and the
matrix I + AjAt can not be guaranteed to be well conditioned. There is also
a question of which scheme to implement to approximate the conditional den-
sity u(x,t). The implicit schemes require more computations than the explicit
schemes but the implicit schemes exhibit better numerical properties as At be-
comes large. However, since we require At to be small the implicit, explicit and
mixed schemes are essentially equivalent with respect to numerical stability.
There is also the approximation of the conditional density u(x, )by the matrix
U(x,t). If the discretization is very coarse U(x,t) will be a poor approximation
of the density u(x,t)but the more fine it becomes the more calculations per step
in time are needed. Finally, there is a question as to which aproximation, ( 2.6)
or ( 2.7), is better to implement. Some of these considerations have been stud-
1ed for p'articula‘r cases of interest to the Navy. These cases impose additional
constraints on the implementation scheme used and are discussed in Chapter 3

and Chapter 4.
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2.4 Implementation

The discretized schemes were implemented using MACSYMA and FORTRAN.
MACSYMA is a symbolic math manipulation package written by the MIT Lab-
oratory for Computer Science. It is able to generate legal FORTRAN code
which was used to implement the actual numerical calculations. The use of
MACSYMA gave significant flexibility in entering models by allowing symbolic
calculations including differentiation required to implement the numerical :solﬁ—
tion. It also allowed for easy changes to the discretization of the state spac:é.
After specifying the models and state space discretization, FORTRAN code is
automatically generated which simulates the diffusion (using first order diﬁ'ef—
cuce equations) and solves the Zakai equation. The code makes use of routines
from LINPACK, a sct of FORTRAN subroutines for doing linear algebra. The
FORTRAN allows entry of any constant parameters at the time of execution.
Presently the MACSYMA code is running on a Texas Instruments Explorer
and the FORTRAN code is then transferred to a VMS or Unix machine and

executed.

2.5 Comparison of discretization schemes

We presented five possible discretization schemes for the solution to the Zakai
equation. For ( 2.4) there are the implicit, mixed, and explicit schemes. For
( 2.5) there are the mixed, and explicit schemes. Note that the implicit scheme
for ( 2.5) would be the same as for ( 2.4). This section gives results comparing
the numerical approximation of the Zakai equation by ( 2.6) or ( 2.7) and the use
of the implicit, mixed of explicit scheme. A comparison for one particular case
is shown in figures 2.1 to 2.8. These figures correspond to a lognormal model
versus a Rayleigh model with the Rayleigh decorrelation time one tenth thdt

of the lognormal, (reference tables 4.1 and 4.2). The use of these particular

models are discussed in Chapter 3. In figures 2.1 to 2.4 we show the log
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likelihood ratios given hypothesis 0 data and in figures 2.5 to 2.8 we show the
log likelihood ratio given hypofhesis 1 data for one particular set of parameters.
We see that in all cases the log likelihood ratios are very similar. Again, this
1s partly due to the small time discretization steps which was necessary for the
approxim'ation to the exponential of a matrix to be accurate. All the plots of the
log likelihood ratio are compared with the implicit discretization of ( 2.4) which
is given by ( 2.11). From Monte Carlo simulations presented in Chapter 5, using
the implicit discretization and the mixed discretization of ( 2.4), we conclude
that the results are nearly identical in the number 6f correct decisions and the
decision times which supports the conclusion suggested by figures 2.1 to 2.8

that for the given models the approximation scheme behave nearly identically.
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Chapter 3

Model Definition and

Parameter Estimation

3.1 Specification of model

We are interested in the performance of the detector for the previously described
discretization schemes and as such we need specific models. The Navy is inter-
ested in the application of the resulting detector to radar problems. Based on
these radar problems we choose specific signal and noise models. We will look
at the ship versus decoy problem.

One common decoy used is chaff. Chaff is the code name used during WW II
to refer to metallic dipoles (strips of light metal foil) dropped or launched into the
air to confuse enemy radar by presenting a large radar return. If these dipoles
are half the length of the radar wavelength they will resonate and give large
radar returns. Since the chaff cloud consists of a large number of scatterers
of which no single one dominates, the phase and amplitude variationé of the
individual scattering elements can be considered independent. By application of
the Central Limit theorem to the phasor summation of the RF voltages induced
in the receiving antenna by the reflection of the individual scatterers it leads to

the conclusion that the inphase and quadrature components have a Gaussian
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distribution.

The typical radar system is composed of an IF amplifier followed by a second
detector and a video amplifier. The second detector and the video amplifier form
an envelope detector. If the inphase and quadrature components of the signal
entering the second detector are independent and have a Gaussian distribution
then Rice has shown the density of the envelope to be Rayleigh (amplitude) and
the power will be distributed exponehtially (Rayleigh Power).

- The Rayleigh distribution has also been shown to model sea clutter when the
resolution cell (ie. the area illuminated by the radar pulse) is large relative to
the water wavelength. It has also been seen that sea clutter with high resolution
radar will often have heavier tails which can better be represented by a lognormal
density function.

In addition to the amplitude distribution of the chaff and clutter returns,
the power spectrum is also very important. It gives information as to the rate
at which the radar cross section changes. Early models of the spectrum were
assumed to be Gaussian which gives an autocovariance that is also Gaussian.
More recent measurements performed in the 1960’s and 1970’s showed power

spectrums of the form

to be more appropriate, where

A is the mean value of the power density
fc 1s the clutter spectrum half-power frequency
f 1s frequency

n 18 a positive real number.

According to Barton, the actual spectrum can generally be fitted with a “band-
limited white noise spectruin, extending from zero to infinity, but with steadily
decreasing amplitude above (a) given frequency” [Bar64,p.82], which we denote

by fe (the half-power frequency). Then the actual spectrum can be well approx-
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imated by
A

L+ (£)

The autocovariance function is given by
R(t) = Anf.exp {—2n f.|t|}

which results in exponential decorrelation with time constant 2—735

In the case of a ship the scattering e].emeﬁt's are much more complex and most
of the modelling has been based on empirical considerations. “The lognormal
distribution has been used to model scattering from highly directive reflectors
when viewed from random aspects” [Bla86,p.77], such as randomly oriented flat
plates, corner reflectors, and antennas. “It has become popular to use the lognor-
mal model to describe large metal objects of irregular shape, especially ocean
vessels with complex superstructures” [MM73,p.67]. We do not wish to imply,
however, that the lognormal distribution can model all RCS returns from ships.
In addition to the lognormal distribution, radar cross section {RCS) returns have
also been observed to be distributed Rayleigh power, Rayleigh amplitude, chi-
square with two and four degrees of freedom, and Rician. Lognormal statistics
tend to appear at major aspects of ships with dominant scatterers, especially
on the larger ships such as carriers and battleships.

As in the case of chaff and clutter, it has been observed “that the power
spectral density of the ship RCS fluctuation due to deterministic and random
azimuth(aspect), pitch, and roll motion can be very well approximated by a

power spectral density of the form” [Bar80,p.30]

A

72
1+ (fb)
which vields the autocovariance function
R(t) = Anfyexp {27 fi|t|}

1

5 It has been observed

which is exponential decorrelation with time constant

that the decorrelation time for a ship tends to be larger than for chaff or clutter
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which is supported by the fact that the individual scattering elements of a ship
are fixed relative to each other and the azimuth, pitch, and roll motion is slow
relative the orientation changes of the dipoles in the falling chaff or the sea
surface.

The Rayleigh and lognormal radar returns can be modeled using diffusions

which are given by

Cdx, = fx)dt + g'(x;)dW!
dy, = h’i<xll)dt+7dvt

We will drop the time subscript and use subscripts to denote elements in vectors

or matrices. Under hypothesis 0 we will assume that

04 b0
g(X)——{O b}

R(x) = [e(z? + 23)F ],

then h%(z) has Rayleigh amplitude statistics. As for hypothesis 1, we assume

that
FHx) = [qz1]

hi(x) = [sexp{a1}],
then hl(x) is distributed according to a lognormal density. The parameters «,
b, ¢, q ,r, s, and 7y are constants. The term ydV, models thermal noise in the
receiver. The constant v must be nonzero or else the likelihood ratio A; becomes
undefined which results in numerical problems in the discretization.
We will wish to test the detector with known parameter values aud with
estimated values. The parameters we need to estimate are the constants «, b, ¢,

~ in the Rayleigh case and ¢, r, s, v in the lognormal case. In the case v #1,
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as explained earlier, the term  becomes a renormalizing term. When « and b
(¢ and r) are independent of time the underlying state is a correlated Gaussiaﬁ
path. For'the discretized version of the differential equation the parameters a
and b (¢ and r) can then. be related to the parameters ps the correlation and

o stationary variance of the underlying Gaussian (appendix D) by

_Pc— 1
At

b:'JG»<1-(1+aAt)2>

13

At

—At

o ) and tg is the decorrelation time constant for the under-

where pg = exp (

lying Gaussian.

3.2 Parameter estimation: lognormal

One very common estimator is the maximum likelihood estimator (MLE). To
calculate the MLE of the parameters for the discretized version of the solution
to the Zakai equation we need to find the distribution of the output data‘.‘ To
generate the lognormal or Rayleigh distribution given the form of the models we
first look at the distribution for the underlying Gaussian. With the requirement
that i% < a < 0 (or q respectively), where At is the time discretization used,
then the underlying Gaussian has a stationary distribution with zero mean,
variance denoted ¢Z, and exponential decorrelation ie. R(k)= e.\'p:‘_kc;éi = pg.
We can write the distribution for the underlying Gaussian in closed form for
both the lognormal and the Rayleigh caséé, refer to appendix A.ﬁ

For the lognormal case h!(x) is an invertible transformation, so we.can use
the Jacobian change of variables formula to determine the distribution for 2!(x).
Denote y; = h'(x;) th‘en we can write the distibution for y = [y1,y2, ..., Y] as

¥

1
fly) = oy
(2m) W/ Dod(1 — p2) NI s
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1
where
(] =1In (”i) = pu=1In(y;) — (In(s) + p) .

To calculate the distribution of the observation (h*(x) plus additive noise)
in closed form is not possible so one cannot find the MLE, however, if the signal
to noise ration (SNR) is very lafge the ML estimator derived assuming nounoise
may be a good estimator. The ML éstimators ,assuming no noise,for 0% and
In(s) — p with respect to pg are given by 7

Ins) — o = ) +1n(y) + (1 ~ pe) Ty Iny:)
" 2+ (n—2)(1 - po)

n—1

aé= Z[z —2PGZ[z][z+1]+pGZ
where
i] = In(ys) ~ (n(s) + 1) -

The ML estimator for ps cannot be solved for explicitly, however, we are
only interested in solutions in the interval (—1,1) and can casily implement an
algorithm to find the roots of the derivative of the density with respect to pg
in this interval. Differentiating the lognormal density with respect to pg and

setting it equal to zero we get

0=(n—1)0%pc(l - pg) = re [Tl —2pcTs + PQGTs] + (1= pg) (T2 — pT3] (3.1)

with

T = Zln (1;) —‘len +7l/t

n—1

T, = Z In(y;) In(yi) — 7 Z In(y:) Zln(yi) (n - D

n-— 1
T3 = Zhl Vi) —ZNZln(u, )+ (n —2)@°
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which depend on pg thru @, the ML estimate for In(s) + u for a particular value
of pi. By finding the root of ( 3.1) we obtain an estimate for pg and in turn an
estimate for In(s) +  and o%. Note that the ML estimator for o can also be
written as

9 1

2= ———— [Ty = 2p6Ts + p&Ts] .
Lofe 'n(l—pg)[ 1 = 2pcTa + pgls

These estimates are not very good when any significant amount of additive
white noise in the output equation is présent, particularly for po. As will be
seen later the detector becomes numerically unstable if the SNR is too large,
ie. small noise power relative to signal power, so the ML estimates assuming no
noise are not useful in this case. An alternate estimation scheme would be to
estimate pg and then use the ML estimator for correlated lognormal data or the

ML estimators for independent data which are
1 n
In(s) + p = - > In(y:)
=1

0% = %Zln (v;) ln (s)+p)

We can estimate pg from the covariance function of the output data. If the
underlying state is Gaussian with an exponential covariance function then the
lognormal sample path has a covariance function which is approximately expo-
nential [Bar80]. Assuming an exponential covariance function for the lognormal
signal we match an exponential to Ro(k) ,& > 0(o denoting observation data).
From this we get an estimate for the decorrelation time of the lognormal data
which we will denote as ¢;. Then we use the approximation

.1 {ln(aé) —In [ln (1 + w)p

ta 4 exp(1) J
from [Bar80] to get an estimate for tg and thus pg. We justify the estimate
for ¢; by the fact that the lognormal data without additive white noise has a
covariance function which is approximately exponential | the white noise covari-

ance function is a Delta function, and since the lognormal data and the white
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noise are independent the covariance function of the observation is the sum of
the covariance function of the lognormal signal and the covariance function of
the noise. Figures 3.1, 3.3 and 3.5 are plots of lognormal model sample paths
without noise and with additive noise for SNR of 20, 5 and 2. Figures 3.2, 3.4
and 3.6 are plots of the normalized covariance functions of the signal without
noise (solid), the signal plus noise (short and long dash) R,(k),k > 0, signal
plus noise with the first term removed(short dash) R,(k), & > 0, and an expo-
nential function (long dash). In figures 3.10 to 3.15 we have similar plots for
the Rayleigh model for SNR=5 and decorrelation times t, = 1—‘0‘5, {’5, t;. We see
that the covariance function does exhibit the desired behavior of a ¢ function
at zero for the additive noise plus an approximately exponential function for
Ro(k),k > 0. An additional observation is that as the SNR becomes smaller
(more noise) the exponential behavior of the covariance function, R,(k), .k > 0,
becomes more corrupted due to the noise covariance function not being a true
§ function, especially for the lognormal case where the stationary variance is
smaller than for the Rayleigh case and the signal begins to look like a mean
which 1s removed by the covariance function.

Another possible estimator for In(s)+ ¢ and 0% would be the mean to median
ratio of 1.1.d. data (reference appendix B). If we assume the underlying state
has zero mean then

mean o&

———— = ¢exp
median 2

median = sexp it = §

Finally, from Huber we have a robust estimator for independent identically
distributed Gaussian data known as the Median Absolute Deviation (MAD)
estimator [Hub81]. By taking the logarithm of independent noisy data values
(rejecting any necgative observations) we have corrupted 1id Gaussian data. Let
z; = Iny; then

In(s) 4+ ¢ = median{z}

z; — median{z; }| }]2

0% = [median{
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We again cstimate pg from the covariance function.

3.3 Parameter estimation: Rayleigh

For the Rayleigh case if we set y; = h%(x;) we have the distribution of y =

(W1, Y2y o Un) @S

Hy'l—1 Y; i 2 nl
Y) = =55 — eXp a;y; 1o [BYiyis]
O.énCZn(lA__ pQG)(n 1) , ; E L
where
(12
(4ee) = 2,.,n—1

o = 202.c2(1-pg;)

-1
2082 (1-p%;) 1=1n

- ____ré
=)

and /[y is the modified zero order Bessel function. It is not possible to estimate
¢ and og independently since ¢ and og alwIay appear together. We can only
estimate the product cog. Since we can only estimate the product of ¢ and og
we arbitrarily set the stationary variance of the Rayleigh model to the stationary
variance of the lognormal model when we implement the detector.

The ML cstimator for cog and pg 1s the solution to the cquations

n—1

i=2
n-1 L (zm%%;jyiyi+1>
G G
+pe Z Yilit1
i1 Io (;zg—é%f;g;yiyiH)

and

2

=2

n—1
0= 2= =)= (s + ok 2 2 e

, ol I <g,;%%;5yiyi+1)
+(1+p¢) D vivin
i=1 Iy <——£J———cgdé(f_p«é)yiyi+1>

where [ is the modified first order Bessel function. Because of the poor results

for the ML estimator for the lognormal case when noise is present and the fact
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that the detector becomes numerically unstable for large SNR (ic. small additive
noise power) this estimator was not implemented.

An alternate method of estimating the Rayleigh parameters is to estimate
pc from the covariance function of the output data similar to what we did in
the lognormal case. If y; is correlated Rayleigh (amplitude) data and we define
z = y? then z; is corrclated Rayleigh power data. If the underlying state is
Gaussian with exponential deéorrelation and time constant tg then z; will have
exponential decorrelation with time constant ¢, = t—g [Bar80]. Figures 3.7 to
3.9 show the normalized cova,riran'ce functions of a Rayleigh amplitude signal, the
square of the Rayleigh amplitude signal and a matched exponential function. We
see that the decorrelation time ¢, = t.. We note that as the decorrelation time
increases,pi; — 1, and the covariance function does not go smoothly to zero. The
oscillatory behavior is due to numerical instabilities in the discretization scheme
as pg — 1 and is known as ringing. Figures 3.10, 3.12 and 3.14 are plots of
Rayleigh (amplitude) model sample paths without noise and with additive noise
for SNR 5. Figures 3.11, 3.13 and 3.1}5 are plots of the normalized covariance
functions of the signal without noise, the signal plus noise R,(k),k > 0, signal
plus noise with the first term removed R,(k), &k > 0, and an exponential function.
As noted carlier we have the desired behavior that the covariance function of
the observation is approximately the sum of an exponential function, due to the
signal, and a ¢ function due to the additive noise.

We can estimate cog from the ML estimator for 620% for 1.1.d. observations

1 n
foh = -3
2n i

Alternately, we could use the power to median or the power to mecan ratios for

which 1s given by

i.i.d. observations given by (reference appendix C)

power 2
X = co¢g
median In(4)
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power 8
= —CO0@G
mean T

3.4 Estimation of noise scaling v

We will estimate v from the covariance function of the observations. The noise
i the output equation is white zero mean Gaussian so its covariance function
is a & function. Since the noise is independent of the signal i(x) the covariance
fLUlCﬁiOll of the observation data is the sum of the covariance functions of the
noise and the signal. We use R(E) to denote the covariance function, with
subscripts s,n,0 to denote signal, noise, and observation respectively. Under
the ﬁlodel assumptions made the signal covariance function is approximately
exponential so ,(0) is approximately R (1) provided the decorrelation time
constant of the signal is not on the order of the time discretization At. With

the noise covariance function assumed to be a § R,(1) =~ R,(1). So we have

oy
o]
T~
[en]
o

Il

R,(0) + R,(0)

or

So I1(0) = R,(1) and substituting we get
Rn(o) ~ Ro(o) - Ro(l)

In figures 3.11 to 3.15 as the decorrelation time approaches the time discretiza-
tion step size At the ¢ function, due to the noise, becomes less distinct because
the covariance function of the signal is approaching a § function \\r‘ith. respect
to the time step size A, Additionally, if the signal to noisc ratio is large, ic.
the noise covariance function has a ¢ function with magnitude on the order of
R(0)—=R(1), then 17,(0) = R,(0)—R,(1) is clearly a poor approximation which

could cause significant numerical problems and errors since the observations are
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renormalized by % where R,(0) = -’5 after discretizing. Again, for the models
we use, figures 3.11, 3.13 and 3.15 exhibit the desired behavior of a ¢ function
plus an exponential function. This estimate could be improved by extrapolating
back to R,(0) after matching the exponential to R,(k) & > 0. This would help
remove variations of R,(k) from R,(k) for £ > 0 due to the additive noise not

being an exact é function as seen most significantly in figures 3.2, 3.4,and 3.6.



Chapter 4

Results

4.1 Model specification

We choose the Rayleigh and lognormal models based on NRL data. Tables 4.1
and 4.2 summarize the parameter values chosen to test the detectors perfor-
mance. Results from Chapter 3 and the appendices were used to determine
parameter values and signal and noise statistics. The Rayleigh model with pa-
rameters A = —24.06,8 = 1.038 and C' = .2117 corresponds to the Chaff/decoy.
We will denote the hypothesis test between this particular Rayleigh model and
the lognormal model as the ship versus decoy case. The other sets of parame-
ters are to test the effect of different characteristics of the signal and noise on
the detector performance. The decorrelation time and the stationary mean are
investigated. The second set of five parameters for the Rayleigh have the sta-

tionary mean shifted by 5 percent and the powers moved closer. In addition to

Lognormal parameters | stationary statistics
Q R S 0%, W o} power | a2t

-4.800 4646 .03935 | .02251 .03980 .00003605 .001620 | .2066C

Table 4.1: Lognormal model parameters
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Rayleigh parameters stationary statistics
A B C | d& [ o? power | =t,
-.04840 .04668 .2117 |.02251 .03980 .0004330 .002018 | 100t¢
-.2420 1044 2117 | .02251 .03980 .0004330 .002018 | 10tq
-2.419 3299 2117 | .02251 .03980 .0004330 .002018 te
-24.06 1.038 2117 | .02251 .03980 .0004330 .002018 | tc;/10
-227.9 3111 2117 | .02251 .03980 .0004330 .002018 | tc;/100

-.04840 .04668 .2011 | .02251 .03781 .0004330 .001821 | 100t¢
-.2420 1044 2011 | .02251 .03781 .()004330 001821 | 10t¢
-2.419 3299 2011 | .02251 .03781 .0004330 001821 iy
-24.06  1.038 2011 |.02251 .03781 .0004330 .001821 te/10
-227.9  3.111 2011 | .02251 .03781 .0004330 .001821 | t¢;/100

Table 4.2: Rayleigh model parameters

looking at different values for a, b, ¢, ¢, r and s we also investigate the detec-
tors behavior for different SNR. Table 4.3 summarizes the values of v and the
corresponding SNR. We also tested the detectors behavior for different values
of Pr and Py though for most simulations Pr = Py = .001 . We made a more
indepth comparison of the implicit and the mixed schemes implementing ( 2.4)

than it was done in Chapter 1. The probability of detection, the probability of

0% power SNR w.r.t stationary

Lognormal power

.0006364 .000810 2
0004025 .000324 )
00020125 .000081 20

Table 4.3: Noise scale
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miss and the average detection time are calculated from 1000 siimulation runs.

4.2 Simulations

The following section summarizes results of simulations for the models specified
in tables 4.1 and 4.2 for the SNR given in table 4.3. For these simulations
Pr = P, = .001. Effects of the decorrelation time, SNR, stationary mean and
implicit versus mixed scheme on the percentage of correct decisions and average
decision time are given. The results are based on 1000 1‘uﬁs. Figures 4.1 to 4.8
give results for the percentage of correct decisions versus;the decorrelation time
(of the Rayleigh relative to the lognormal) under hypothesis 0 and 1. The plots
are for SNR of 20, 5 and 2, with the (stationary) means matched and shifted by
5 percent, and for the implicit and mixed scheme implementing { 2.4). Figures
4.9 to 4.16 give the corresponding plots for the average detection time versus

decorrelation time. These plots correspond to tables E.1 to E.G in appendix E.

4.2.1 Effects of decorrelation time, SNNR, mean, and

scheme on percentage of correct decisions

Under hypothesis 1 (lognormal) the detector performs well with respect to the
percentage of correct decisions except for the case ¢, & ¢,/100 . In this case
the detector performs best for SNR=20, and progressively worse for SNR=5
and 2. One possible reason for this behavior has already been mentioned in
chapter 3; that is as the SNR decreases (more noise) the covariance function of
the observation for the lognormal tends toward a ¢ function with the lognormal
signal behaving like a mean for the noise and being removed. In the cases ¢, ~
t;/100 and ¢,;/10 the theoretical decorrelation time of the Rayleigh is approaching
the time step size At and the covariance function of the signal is becoming a 6
function. So we sce that the covariance function of the lognormal plus noise is

approaching the covariance function of the Rayleigh. This behavior is shown in
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figures 3.1 to 3.6 and figures 3.10 to 3.15.

Under hypothesis 0, since this is a binary hypothesis test, as expected we see
the detector works well for ¢, =~ t;/100 and ¢;/10 and does poorly for ¢, ~ #,,10¢,
and 100¢,. We also have the SNR effecting the percentage of correct decisions
opposite its effect under hypothesis 1. This may be due to the fact that for a
higher SNR (less noise, smaller v) the observations, which are renormalized by
%, are weighted more in the solution to the Zakai equation and cause a quicker
decision but for these longer decorrelation times fewer uncorrelated blocks of
data are observed. The smaller SNR allows a longer observation.

Under both hypothesis we see that shifting the mean had only a small effect.
Under hypothesis 1 there was a decrease in performance with respect to the
percentage of correct decisions while under hypothesis 0 there was a slightly
more significant increase in performance. Several runs were made when the
means were significantly different (a factor of 10) and one could easily distinguish
the two hypothesis. In this case the detector made correct decisions very quickly.
However, when the means are so different these cases are not of interest since
much simpler detectors could be implemented. With regards to the two scheme
implemented, the implicit and mixed, for ( 2.4), we see that the percentage of

correct decisions is nearly identical.

4.2.2 Effects of decorrelation time, SNR, mean, and

scheme on average detection time

Under both hypothesis 1 and hypothesis 0 we see that for small SNR (more
noise) the detector takes longer to make a decision which one would expect.
This is due to the renormalization of the observations by l{ As vy increases
(smaller SNR, more noise) the observations are weighted less in the solution to
the Zakal equation.

We also sce that the mean has a small effect on the average detection time.

Under both hypothesis the shifted mean usually increase detection time slightly.
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Figure 4.17: Average decision time for different values of Pr and Py

Again, the implicit and mixed scherﬁe give nearly identical results.

It is the decorrelation time that has the most significant effect on the average
detection time. Under hypothesis 1 for ¢, =~ ¢;/100 we had no detections for
SNIRR=5 and 2 so no average detection times are plotted. Except for hypothesis
1 with SNR=2 we see the detection time is peaked at ¢, = ¢; and decreases as t,
increases or decreases. This iiplies the decorrelation time is a very significant
feature of the signal for the detector. When the decorrelation times are matched
the detector takes the longest to reach a decision. We also see that for the
“symmetric” cases, ie. t. & t;/100 and t, =~ 100¢; or ¢, = #;/10 and t, = 10¢t,

that the detection time for the longer decorrelation times is longer.

4.3 Performance varying Pr and Py

In figure 4.17 we have a plot of the average detection time for different values
of Pp and Py for the ship versus decoy case with the SNR=5. The figure

corresponds to tables ‘E.7 and E.8 in appendix E. We see that as the Pp or
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Lognormal (Hypothesis 1)
q r 5 g
actual -4.80 4646 .03935 .000403
estimated | -6.06 4181 .03933 .000403

Rayleigh (Hypothesis 0)
a b ¢ v

actual |-24.06 1.038 .2117 .000403
estimated | -24.06 2.098 .1203 .000410

Table 4.4: Estimated parameters for the ship versus decoy case, SNR=5

the Py increases, for fixed Py; and Pp respectivly, the detection time decreases.
This is as one would expect since increasing Pr or Py allows greater error. We
see in tables E.7 and E.8 that the actual percentage of correct decisions is
usually better than the theoretical values used to set the thresholds. For the
cases where Pp = .0001 and P, = .0001 the percentage of correct decisions is
not significant since it is base on only 1000 runs, however, the average detection

time still is.

4.4 Performance with estimated parameters

In chapter 3 we gave some justification for the models we chose to study the
detector, as well as some techniquéNs for estimating the parameters for these
models. We applied some of these techniques to the ship versus decoy case
and ran the detector with estimated parameters to determine what degfadation
would occur. For a better comparison of the results, the sample paths of the
runs were the same as those used for the ship versus decoy case with SNR=5

and implicit scheme.

To estimate the parameters for the lognormal case we generated a correlated
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Hypothesis 0
avg. det. avg. det. avg. det.
% correct % wrong
time correct time wrong time
known 100.0 68.2 0 - 68.2
estimated | 100.0 75.8 0 - 75.8
Hypothesis 1
avg. det. avg. det. avg. det.
% correct % wrong
time correct 7 time wrong time
known - 99.5 393.0 0.5 164.4 391.9
estimated 99.6 294.1 0.4 159.5 293.5

Table 4.5: Comparison of ship versus decoy case with known and estimated

parameters for the implicit scheme, SNR=5

sample path with SNR=5. We match an exponential function to the covari-
ance function of the observation, R,(k) &k > 0, and estimated the lognormal
decorrelation time constant to be .16 seconds. We used the approximation
1.1 [ln(ag,) —In [ln <1 + _______ﬁexp(a%) — 1\”
tec  t exp(l) /
to cstimate the decorrelation time of the underlying Gaussian. We related the
decorrelation time constant of the underlying gaussian to the diffusion parameter
q using results from Appendix D to arrive at the estimate ¢ = —06.06. From
independent identically distributed data we used the median to estimate the
scale parameter s to be .03933 . Using the mean to median ratio we estimated
0% to be .01444 wheil we related to the parameter r, using results in appendix
D, to get the estimate .4181 for r.
To estimate the Rayleigh parameters we again generate a correlated sample
path with SNR=5. We matched an exponential function to the covariance fune-
tion of the observation, R,(k) &k > 0, and estimated the Rayleigh decorrelation

time constant to be .019 seconds. So the underlying Gaussian has an approx-



imate decorrelation time constant of .038 scconds. Using appendix D we got
an estimate of -24.056 for a. From independent identically distributed data we
used the average of the power to mean ratio which yielded an estimated cos of
.03773 and the power to median ratio which resulted in an estimate of .03645
to arrive at the estimate cog = .03709. As noted in chdpter 3 since ¢ and og
always appear together in the density we can only estimate there product so we
arbitrarily set 02 for the Rayleigh model equal to that of the lognormal model..
Thus using appendix D we estimated b to be 2.098 and the scale parameter ¢
to be .1202. To get a better ideca of the performance of the estimates for the
Rayleigh model if we set the scale parameter ¢ to its actual value of .2117 then
the estimated value of b becomes 1.2122 which appears to be a much better csti-
mate. Clearly, since cog appears together in the correlated Rayleigh density the
signal statistics are unchanged regardless of how one assigns the values of ¢ and
o¢ provided their product remains the same. Clearly the conditional density
u(x,t)which is the solution to the Zakai equation would be different though the
statistics of the signal are theoretically the same. However, due to the number
of different approximations used to implement a numerical solution it may be
there is an advantageous way of assigning ¢ and o¢ so as to minimize numerical
errors. The effects of different values of ¢ and ¢ were not studied in this thesis.
To estimate the noise scaling parameter v we used the approximation

,«/2
R,(0) — R,(1) =~ =
From the lognormal sample path v was estimated to be .000403 and from the
Rayleigh sample path .000410 which we averaged (.000407) to estimate .

We see from table 4.5 that the percentage of correct decisions are nearly
identical for the detector with correct parameter values and for the detector
with estimated parameter values. Under hypothesis 1 there is a slight increase
for the average detection time of 11 percent while under hypotliesis 0 there is
a decrease 1 detection time of 25 percent for the estimated parameter values

compared with the solution with correct parameter values.
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4.5 Additional observations of the Zakai de-
tector

In addition to the results already presented, we give some observations made
in implémenting this detector which one should be aware of. ‘\Ve have already
commented on the fact that one must be careful in the choice of the time dis-
cretization step size At but one must also take care in the choice of the space
(stdte) discretization. Numerical instabilities can occur for explicit schemes if
the state discretization step size is to small relative to the time discetization
size. Additionally, the computational complexity increases as the space dis-
cretization becomes more fine. However, if the discretization is too coarse then
the discretized density cannot adequately represent the actual conditional den-
sity. As well as the necessity for appropriate choices of the space discretization
and time discretization, the range over which the density is discretized must be
chosen. If the range is too small the density will be truncated. If the range is
too large then for a reasonable number of points in the discretization the den-
sity will again be too coarse. In figure 4.18 we have the plot of a signal and
the conditional expectation of the signal generated from a discretization that
was to course. One can see that the conditional density could not adequately
represent the conditional density and the conditional expectation of the signal
tended to have distinct values around which it fluctuated. In figure 4.19 we see
the actual signal and the conditional expectation of the signal with a density
discretized over too small a range. Note how the conditional expectation of
the signal cannot track the signal beyond a certain point. This is because the
discretization range truncated the density, not allowing nonzero values for the
conditional density outside of the discretized range. The initialization of
the underlying Gaussian state densities 1s another factor one should be aware
of. In our simulations the densitics are set to Gaussian distributions using the

stationary variance and mean (which is zero). However, the actual saunple path
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need not begin at the expected value and it may take several iterations before
the conditional expectation of the signal yields a conditional expectation of the
signal which approximates the actual signal as seen in figure 4.20. This can
also cause initial errors in the log likelihood ratio as seen in figure 4.21 | where
hypothesis 1 was initialized incorrectly. We see a géneral downward trend for
.01 seconds (20 sample points) which corresponds to the approximate time it
takes for the conditional density to yield a conditional expecfation of the signal

which tracks the signal.

4.6 The signal estimation problem

The detection and estimation problem are often related. In this case we are
solving the Zakal equation for the unnormalized conditional density under two
hypothesis conditioned on observation data. From the densities we can generate
the log likelihood ratio and implement the sequential Wald formulation which 1s
optimal in the previously defined sense. However, given the conditional densities
an obvious estimator for the signaf is the conditional expectation of the signal
conditioned on the observations. In figure 4.22 to 4.25 we give the conditional
expectation of the Rayleigh and lognormal signals under both hypothesis for
the implicit scheme and SNR=5. We see that the Rayleigh model, which has
a larger stationary variance, is better able to follow the more rapid variations
of the signal while the lognormal model is slower and has more of a smoothing
effect. We sce that the'solution of the Zakai equation not only yiclds a sequential
detection scheme but a signal estimation scheme as well. We do not, however,

make any evaluation of the performance of this estimator here.

61



5

Figure 4.22: Expectation of Rayleigh signal given the Rayleigh, SNR

=5

Figure 4.23: Expectation of lognormal signal given the Rayleigh, SNR
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Chapter 5
Conclusions

We have presented an “optimal” sequential detector for the Wald formulation
for diffusion processes for binary hypothesis testing. We gave several numerical
schiemes for implementing the detector for underlying states of dimension one
and two which were studied to varying degrees. Different characteristics of the
signal and discretization scheme were studied to determine their effects on the
detector performance. It is clear that the performance varies significantly, de-
pending on many factors including the relative decorrelation time of the éigxlamls,
the SNR, the time discretization, and space discretization though not exclusively
these factors. Because of the significant range of performance and the numerous
parameters that gave rise to this range of performance, it is obvious that one

“

must be an “expert” in order to make the detector useful. Also, the diffusion
model represents_a very large class of signals beyond the lognormal and Ravleigh
models studied herce“for which the detector has not been tested. Additionally.
the effect of many features of the signal where only partially studied. Clearly,
much more work could be done in evaluating the detector’s pcrfornm.ncc. In
order to get a scheme that is computationally reasonable and performs well |
which may not be possible, there will be a need for a number of simulations
with different parameters. These facts point to a need for antomating the gen-

eration of the detector with “expert” supervision for those not familiar in the

()]
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theory behind the Zakai detector. The MACSYMA code is an initial step in
automating the process. The software system DEsign Laboratory for Process-
ing Hidden Information (DELPHI) is under development which combines an Al
cugine, symbolic algebra, and numerical schemes as an “expert” system that not
only generates and implements the Zakai detector but other detection schemes
and model verification capabilities as well.

We also noted that the Zakai detector for hypothesis testing suggests a signal
estimation scheme, namely the conditional expectation of the signal conditioned
on the observations. We presented some results pertaining to signal estimation,
however, no performance measure or comparison to other estimation schemes

was performed.
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Appendix A

This appendix contails derivation of correlated lognormal and correlated Rayleigh
densities.

Cousider tlie vector

[1‘11 R 1’1m] [3721 Tog c - 1‘2m1 [l‘n1 Tp2 - -’lfnm]

where wx;; are independent with respect to j and have exponential decorrelation

with respect to ¢ ie. E [242ia04] = R (k) = 02p*. Then the covariance matrix
1 JLitk,j P

is symmetric with constant diagonals and m — 1 zero diagonals between each

nonzero one. The covariance matrix is given by

r -

10 - 0p 0 - 0 -ovnn- pn L

Then Q71 is symmetric and tridiagonal with m — 1 zero diagonals between the
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main diagonal and the off diagonals and m — 1 ones on each end

diagonal, and is given by

of the main

—p

1

This result was obtained using MACSYMA, More general results are given in

[GL89] Finally, the determinant of Q is

IQI — J‘an(l _ p‘l)m(n—l)
So for the lognormal case we have
(1) ]
Q1= o’
p
I 1
1 —=p
—p 1+ p?
1
—-1
= EI)
L+p* —p
—p 1
’Ql| — O_'Zn<1 /)‘2)(71—1)

67




and for the Rayleigh we have

1 0 p - pn—-—l
627',:‘02 P
1
- -
10 —p
0 1 0
1 —p 0 1+4+p°
Q7' ==
o=(1=p) .
1+p2 0 —p
0 1 0
-p 0 1

)

_ dn 212(n~1
Qx| = o™(1 = pP)H D
The distribution for jointly Gaussian random variables is given by

Po(x) = — o expF 0T p

(20)% [Q

2

Lognormal:

Now in the lognormal case we have
x=|[zu] [rar] - [za]

and the 1 to 1 transformation y; = sexp(x;;). Applying the Jacobian change of

~

variables formula we get
1

H?:1 Yi

I =
S0
Py(ysi=1....n) = Po(ln(y—i);i =1,...,n)J|
s
/ 1
(27()(”/2)0’”(1 — /)'3)(_”;_” Hzlzl Yi

_1 n n U Uy i
exp {T S a4k [In(%) - /Lj] [ln('—/}) - //k]

4 j=1k=1
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th

where q; is the j&™ clement of Q7! which can be rewritten as

1

(2m)on(1 = ) EFH I, b
n—1 n-—1

CXP[ZUQ e L};[] —ZPZ l+l]+p2;[i]g

Py(ysi=1....,n) =

——

where
b - (2
= In(y;) = (In(s) + p) .

‘Rayleigh:

Now for the Rayleigh case we have
[ [211 Tio] [zar waa] - [Tn1 Ta2)

. . {) N <
and the transformation y; = ¢y/2% + z%. Then we have

Py(Yi<wyipi=1,..,n :/ Py(x)dx
l ' ’ c\/I?l+z?2<y,;i::1,...,n ( )
mftroducing the variable § and using the transformation
xip = yicos(0;)
Ty = y;sin(6;)
Then the Jacobian is given by
n
Yi
7=1(5)
i=1 V¢
Defining the vector v as
[(Lcos(0) “sin(0)] [Zcos(fy) Lsin(ha)] .- [L2cos(f,) “sin(f,)]

then

Pr(Y,<ysi=1,...,n) = / <ypo<o<zn Poln H <~v> d¥Yd0,

i=1l,..n i=1
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Assuming yt = 0, expanding the exponent and using the identity cos(d,) cos(6,)+

l
sin(6 ) sin(6,) = cos(f, — 6y) we get
® Y
2, - , —_ LN - . ) . 1=] o2
Pr(¥i <ysi=1,..n) /‘721(3«7):.,( (27()(”/2)0-2n(1 — p?)n=D)
n n—1 n
exp {Z a,-Yf Z BY;Yiycos(8; — 0;41) H dY;do;
i=1 i=1 i=1
where
‘ ~(1+p°) _ .
o = STy b= 2,...,n—1
-1 _
20%c?(1—p?) L In
_ P
b= = )

Using the identity

1
/ exp [A cos(8 — 8y)] df = Io(A)
0<o0<2x

27

Iy the modified zero order Bessel function. Then we get

Pr(Yi <yii=1,..,n) / [T, Y5

Ay <ysr=1,...,n) = : a

} / Yi<yii=l,..n 02"62"(1 — p*)(n—l)
n

n n—1
exp [Z aﬁff} 11 L (BY: Y] [T aY;
=1 i=1 =1
and so

i v
O—‘.ch‘2n(1 — /»)2)(71—-1)

Py (yi;1=1,..n)

n n—1
exp {Z Giy?} I o Byavie]
=1 =1



Appendix B

Mean, median, power, and variance of marginal lognormal and Rayleigh densi-
t1cs.

Lognormal:

y = sexp(z) ; &~ N(u,0°)

2
1 1 ) =1
Y) = expy ———————— 7 ; y€l0, 00
fy) 5oy P 57 ye[0, o]
mean
)
o 1 {ln(”) - ;L]
E 7 = / X _...___.._‘i....____ l
i 0 V2no =P 20° “
o2
= sexp /,L+—0—
median

V2roy 202 ~o0 210

2
T ‘)

| [Z“(‘If) - H] m(2) 1 [v— 1

——CXp{ ——————— 3 dy = / exp § — : dv = =

Jo 20 2
The sccond i-llf‘Cgl'ﬂl looks like a Gaussian distribution and the median occurs at

the mean so /n (’—) =
median = s exp{u}

power

9

‘ o In(4y —
) 1 s
Ely] = /0 ;7(0' exp ~L———2;2—J— dy

= sTexp {Q(,u. + 02)}

71



variance

Rayleigh:

mean

median

power

variauce

E|(y-EW)’] = Ep?-Ep?

= sexp {QN + 02} [exp{az} - 1]

2 2
% 2
exp{ — dy=1—exp{—
! { ‘26202} Y e\p{ 20252

median = y/In(4)co

. % g3
Ely’] = /0 Jl )

Il
)
o
[3%]
Q

E (v - Ep))’]

~1

(S}

}:

bO |



Appendix C

Determination of stationary distribution of the underlying state equation
dx = Axdt 4 BdW
where 4 and D are constants. After discretizing we have
X1 = (1 + AAE) %, + BAW, ; AW, iid N(0, At)
Denote A = 1 + AAt then
N n—1 i » .
Xp = A"xg + Y A" BAW; 5 x¢ ~ N(0,0?)
i=0

Considering the scalar case which easily extends to the vector case for diagonal

niatrices we have

E[x,) =0

Denoting

yi = A" BAW,
then

i~ N(0, A2 B2 Ay

and

:’1”;17’0 ~ N(0, ;’12”02)
SO

Ly~ ./\/Y(O’ A 2”02 + ‘AQ(H_I—i)BQAt)

73



Now, for a stationary distribution to exist A2ng2 4 A20-1-DB2A¢ must con-
verge. So —1 < Ad<1lor ;—% < A < 0. If we wish 2y to be initialized to the
stationary distribution then

‘4‘211 n}-_—: :& (n—1- zB At TS n—00 ‘_) :
=0

Assuming cquality in the limit then

B At "= 1
2n—1- z)__
1~A2"ZA -

or
B At "= 1 ,

Z 47m: 2

)
‘{ “n =0

With the prior restriction —1 < 4 < 1 the sum converges to and A"

1
1—-A2
couverges to zero, so

,  B2At B2At

Tl A T T-(1+ ANy

So the diffusion equation has a stationary distribution of N(0

B2At )
' T(15AAL?

provided :\—f <A <0.



Appendix D

We relate the underlying stationary distribution to underlying state diffusion

parameters for the stochastic differential equation
dx = Axdt + BdW

where 4 and D are constants. After discretizing we have

Xns1 = (1 + AAL) X, + BAW, ; AW, iid N(0, At)

Denoting A = 1+ AA¢ then

n—1
X, = A"xo + Y A"TITIBAW,  xg ~ N(0,0%)

=0

From Appendic C we have Elx,] = 0 so for the scalar case

k—1
R(k) = E[Xupexa] = AN+ ABAW, 141 X,
j=0
= A'E[]
= kg2

If we set A = exp {v%} then x, has exponcutial decorrelation with time con-

stant f,. and

At -
N = exp {—f_} =A=1-AAt
or :
exp {-7;5} -1
o At



and from Appendix C

_ , 2
Bza\/l (1+ AAL)
At



Appendix E

The following tables summarize the simulation results predominantly discussed

in Chapter 4. Where unspecified Pp = Py — 001.



Hypothesis 0

b | % correct avg. det. % wrong avg. det. avg. det.

time correct time wrong time

stat. 100t 63.4 1980.7 36.6 1341.3 611.4
means  10# 31.5 327.0 68.5 1129.6 877.2
match 94.9 761.1 5.1 994.1 773.0
rt1/10 100.0 114.2 0 - 114.2

t1/100 100.0 29.9 0 - 29.9

100t 74.9 284.8 25.1 1341.8 549.9

10 36.8 430.8 63.2 1301.4 981.4

t 96.8 781.2 3.2 1099.6 791.5

/10 100.0 123.9 0 - 123.9

t;/100 100.0 30.2 0 - 30.2

Hypothesis 1
~t | % corect .avg. det. % wrong avg. det. avg. det.

time correct time wrong time

stat. 100t 100.0 700.4 0 - 700.4
means 10t 100.0 780.9 0 - 780.9
match t 100.0 936.9 0 - 36.9
t1/10 96.4 1317.2 3.6 788.6 1298.4

t;/100 0 - 100.0 48.8 48.8

100t 100.0 776.4 0 - 776.4

10t, 100.0 915.0 0- - 915.0
t 100.0 1091.2 0 - 1091.2
/10 93.7 1616.4 6.3 1241.2 1592.7

t;/100 0 - 100.0 47.8 47.8

Table E.1: Iniplicit scheme, SNR=2 P, = Pp = .001




Hypothesis 0

~t | % correct avg. det. % wrong avg. det. avg. det.
time correct time wrong time
stat. 100t 63.4 190.7 36.6 1341.7 611.6
means  10%; 31.4 320.3 68.6 1135.6 880.0
match % 95.5 762.8 5.5 981.8 774.8
' /10 | 100.0 113.0 0 - 113.0
t;/100 100.0 29.1 0 - 29.1
100t 79.4 284.7 25.1 1342.3 549.9
10 37.2 434.7 62.8 1302.5 979.7
t 96.7 800.3 3.3 1088.2 809.8
/10 100.0 122.4 0 - 122.4
/100 | 100.0 29.4 0 - 29.4
Hypothesis 1
~t | % correct 'a.vg. det. % wrong avg. det. avg. det.
time correct time wrong time
stat. 100t 100.0 699.3 0 - 699.3
means  10%; 100.0 781.9 0 - 781.9
match 4] 100.0 932.1 0 - 932.1
/10 96.3 1263.6 3.7 758.7 1244.7
t;/100 0 - 100.0 48.3 48.3
100t 100.0 775.0 0 - 775.0
10 | 100.0 915.7 0 i 915.7
t 100.0 1085.0 0 - 1085.0
/10 94.0 1574.6 6.0 1185.9 1551.4
t1/100 0 - 100.0 47.0 47.0

Table E.2: Nixed scheme, SNR=2 Py, = Pr = .001




Hypothesis 0

~t. | % correct avg. det. % wrong avg. det. avg. det.
time correct time wrong time
stat. 100¢; 63.0 72.7 37.0 658.6 289.7
means  10% 25.5 113.3 74.5 576.6 458.5
match % 79.5 487.2 205 664.7 523.5
t1/10 100.0 68.2 0 - 68.2
t;/100 100.0 22.4 0 - 22.4
100t 70.1 75.8 29.9 824.3 299.3
10t 35.6 133.9 64.4 637.0 457.9
t 83.3 493.7 16.7 741.4 535.1
t;/10 100.0 72.2 0 - 72.0
t;/100 100.0 21.4 0 - 21.4
Hypothesis 1
~t. | % correct avg. det. % wrong avg. det. avg. det.
time correct time wrong time
stat. 100¢; 100.0 419.7 0 - 419.7
means 10¢; 100.0 408.9 0 - 468.9
mastch i 100.0 500.6 0 - 500.6
t;/10 99.5 393.0 0.5 164.4 391.9
t1/100 0 - 100.0 78.5 78.5
100¢; 100.0 488.5 0 - 488.5
10t 100.0 508.0 0 - 508.0
t 100.0 597.0 0 - 597.0
t1/10 99.8 456.1 0.2 400.0 456.0
t1/100 0 - 100.0 73.9 73.9

Table E.3: Implicit Scheme, SNR=5 Py, = Pp = .001
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Hypothesis 0

~t | % corvect avg. det. % wrong avg. det. avg. det.
time correct time wrong time
stat. = 100¢ 63.0 2.7 37.0 658.6 289.7
means 104 |  25.8 117.0 74.2 576.4 457.9
match ] 79.3 498.5 "20.7 681.2 536.4
t;/10 100.0 67.0 0 - 67.0
#/100 | 100.0 92.1 0 - 29.1
100¢, 70.1 75.8 29.9 8324.3 299.3
10¢, 35.2 135.5 64.3 637.6 461.0
4] 83.9 502.6 16.1 731.8 539.4
/10 100.0 71.2 0 - 71.2
t1/100 100.0 21.0 0 - 21.0
Hypothesis 1
~t. | % correct .avg. det. % wrong avg. det. avg. det.
time correct time wrong time
stat. 100t 100.0 419.3 0 - 419.3
means  10¢; 100.0 468.6 0 - 468.6
match t 100.0 499.4 0 - 499.4
t1/10 99.6 380.0 0.4 153.0 380.0
t;/100 0 - 100.0 84.7 84.7
- 100, 100.0 489.1 0 - 489.1
10t 100.0 508.1 0 - 508.1
t 99.9 595.1 0.1 341.0 ?94.9
t;/10 99.9 439.5 0.1 309.0 439.4
£1/100 0 - 100.0 79.2 79.2

Table E.1: Mixed scheme, SNR=5 P,; = Pp = .001
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Hypothesis 0

~t. | % correct avg. det. % wrong avg. det. avg. det.
time correct time wrong time
stat. 1OOt17 CT2.7 16.3 27.3 219.2 71.7
means 10¢, 31.8 22.7 (8.2 209.5 150.1
match t 40.6 94.6 59.4 207.0 161.3
t/10 | 99.1 28.4 0.9 52.0 28.6
t1/100 100.0 10.1 0 - 10.1
100¢; 91.3 15.0 8.7 431.0 91.2
10¢ 44.6 17.3 55.4 240.9 141.1
t 50.0 71.7 50.0 238.0 154.8
t1/10 99.5 36.3 0.5 43.5 36.4
¢/100 | 100.0 10.9 0 - 10.9
Hypothesis 1
~t. | % correct avg. det. % wrong avg. det. avg. det.
) time correct time wrong time
stat. 100¢, 99.8 180.6 0.2 584.0 180.4
means  10¢ 100.0 199.9 0 - 199.9
match ] 100.0 233.5 0 - 233.5
t;/10 100.0 144.9 0 - 144.9
t1/100 92.5 132.6 7.5 85.0 129.1
100¢, 100.0 206.7 0 - 206.7
10¢, 100.0 224.7 0 - 224.7
1 100.0 237.5 0 - 237.5
t;/10 100.0 181.0 0 - 181.0
t;/100 91.7 224.8 8.3 248.0 226.8

Table E.2: Implicit scheme, SNR=20 Py; = Pr = .001
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Hypothesis 0

~t | % coroct avg. det. % wrong avg. det. avg. det.
time correct time wrong time
stat. 1004 | 727 116.3 27.3 210.2 717
means 10t, 32.1 25.6 67.9 217.3 155.8
match 413 93.9 58.7 204.2 158.7
’ /10 99.1 - 27.9 0.9 52.0 28.1
#/100 | 100.0 9.9 0 ; 9.9
100t 99.1 14.7 8.1 518.8 55.5
10¢; 44.6 17.3 99.4 240.9 141.1
t 50.0 72.0 50.0 237.8 154.9
t;/10 99.5 35.9 0.5 43.5 35.9
#/100 {  100.0 10.8 0 - 10.8

Hypothesis 1

<t | % corvect avg. det. % wrong avg. det. avg. det.
time correct time wrong time
stat. 1004, 99.8 180.5 0.2 584.0 181.3
means 10¢; 100.0 203.3 0 - 203.3
match t 100.0 233.3 0 - 233.3
/10 100.0 136.9 0 - 136.9
t;/100 95.5 87.6 4.5 56.7 36.2
100¢, 100.0 202.0 - 0 - 202.7
104 100.0 224.7 0 - 224.7
t 100.0 274.2 0 - 274.2
/10 100.0 175.0 0 - 175.0
t1/100 98.6 118.7 1.4 37.0 117.5

Table E.3: Mixed scheme, SNR=20 Py; = Pp = .001
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Hypothesis 0

P, P | % correct avg. det. % wrong avg. det. avg. det.
time correct time wrong time
.001  .0001 100.0 85.5 0 - 85.5
001 .001 100.0 68.2 0 - (3.2
001 .01 100.0 49.4 0 - 49.4
.001 1 100.0 26.3 0 - 26.3
.001 5 100.0 14.9 0 - 14.9
001 .75 100.0 9.8~ 0 - 9.8
Hypothesis 1
P, P | % corvéct .avg. det. % wrong avg. det. avg. det.
time correct time wrong time
001 .0001 100.0 392.9 0 - 392.9
001 .001 99.5 393.0 .5 164.4 391.9
001 .01 98.0 371.6 2.0 137.5 367.0
.001 1 88.8 357.8 11.2 101.0 329.0
.001 9 53.1 281.1 46.9 34.7 165.6
001 .75 41.0 226.1 59.0 22.1 105.7

Table E.7: Implicit scheme, SNR=3, varying the probability of a miss




Hypothesis 0

P P | % correct avg. det. % wrong avg. det. avg. det.
time correct ‘ time wrong time
.0001  .001 100.0 69.9 0 - 69.9
001 .001 100.0 68.2 0 - 068.2
01 .001 100.0 66.1 0 - 66.1
1 001 98.1 66.0 1.9 51.4 65.7
5 .001 63.9 47.8 36.1 10.8 34.5
a5 .00 36.4 38.8 63.6 3.6 16.4
Hypothesis 1
P, P | % corvect .avg. det. % wrong avg. det. avg. det.
time correct time wrong time
0001 .001 99.8 506.2 2 332.0 505.8
001 .001 99.5 393.0 .5 164.4 391.9
01 .001 99.7 264.4 3 109.3 263.9
1 001 99.9 129.4 1 222.0 129.5
5 001 99.9 26.2 1 370.0 26.5
a5 .001 99.8 6.8 2 86.5 7.0

Table E.8: Implicit scheme, SNR=35, varying the probability of false alarm
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