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This dissertation explores the hypothesis that language processing proceeds in 

“windows” that correspond to representational units, where sensory signals are 

integrated according to time-scales that correspond to the rate of the input.  To 

investigate universal mechanisms, a comparison of signed and spoken languages is 

necessary.  Underlying the seemingly effortless process of language comprehension is 

the perceiver’s knowledge about the rate at which linguistic form and meaning unfold 

in time and the ability to adapt to variations in the input. 

The vast body of work in this area has focused on speech perception, where 

the goal is to determine how linguistic information is recovered from acoustic signals.  

Testing some of these theories in the visual processing of American Sign Language 

(ASL) provides a unique opportunity to better understand how sign languages are 



  

processed and which aspects of speech perception models are in fact about language 

perception across modalities.    

The first part of the dissertation presents three psychophysical experiments 

investigating temporal integration windows in sign language perception by testing the 

intelligibility of locally time-reversed sentences.  The findings demonstrate the 

contribution of modality for the time-scales of these windows, where signing is 

successively integrated over longer durations (~ 250-300 ms) than in speech (~ 50-60 

ms), while also pointing to modality-independent mechanisms, where integration 

occurs in durations that correspond to the size of linguistic units.  The second part of 

the dissertation focuses on production rates in sentences taken from natural 

conversations of English, Korean, and ASL.  Data from word, sign, morpheme, and 

syllable rates suggest that while the rate of words and signs can vary from language to 

language, the relationship between the rate of syllables and morphemes is relatively 

consistent among these typologically diverse languages.  The results from rates in 

ASL also complement the findings in perception experiments by confirming that 

time-scales at which phonological units fluctuate in production match the temporal 

integration windows in perception.   

These results are consistent with the hypothesis that there are modality-

independent time pressures for language processing, and discussions provide a 

synthesis of converging findings from other domains of research and propose ideas 

for future investigations. 
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1 Introduction 
 

1.1 Overview  
 
 

The goal of this dissertation is to contribute to a better understanding of the 

universal temporal processing constraints in the perception and production of 

language and how they are manifested in particular sensori-motor channels.  This 

endeavor requires a cross-linguistic, and crucially, a cross-modal, study of the 

temporal dynamics in language processing.  Building upon a large body of previous 

work on spoken languages (Poeppel, 2003; Poeppel, Idsardi, & van Wassenhove, 

2008; van Wassenhove, Grant, & Poeppel, 2007; Viemeister & Wakefield, 1991; 

Yabe, Tervaniemi, Sinkkonen, Huotilainen, Ilmoniemi, & Näätänen, 1998; Ahissar, 

Nagarajan, Ahissar, Protopapas, Mahncke, & Merzenich, 2001; Saberi & Perrott, 

1999; Greenberg & Arai, 2001; Figueroa, 2009; Stilp, Kiefte, Alexander, & Kluender, 

2010), this dissertation is the first to investigate temporal integration windows and 

processing rates in American Sign Language (ASL).  A key aim of speech perception 

research is to determine how an acoustic signal is mapped onto meaningful linguistic 

representations.  However, the existence of sign languages demonstrates that visual 

signals can also be transformed into rich grammatical meaning.  Thus, to more 

broadly understand how linguistic information is extracted from a sensory signal, 

common mechanisms in spoken and signed languages must be identified.   

This dissertation’s focus on temporal aspects of language processing is 

inspired by two perspectives in language research.  Psychophysical investigations of 

speech reveal an intimate connection between the temporal properties of the acoustic 
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stimulus and corresponding behavioral and neural responses.  The biomechanics of 

the articulators in the vocal tract create a dynamic acoustic signal with rapidly 

changing spectro-temporal information, which is transmitted through the air and then 

through the auditory pathway. Work in theoretical linguistics and experimental 

neuroscience has suggested that the information in this signal is layered into levels 

that correspond to units of linguistic representations (phonemes and syllables) and 

that neural processes underlying speech perception also occur in multiple time scales 

(Poeppel, Idsardi, & van Wassenhove, 2008).  

One possibility is that all the time properties we observe in speech come from 

the particular properties of the oral articulators, coordination with breathing, and the 

auditory pathway, but sign language research suggests otherwise.  When comparing 

the rate of production in English and ASL, where the semantic content of the 

narratives were roughly matched, studies found that the propositional rate in these 

two languages is the same (Bellugi & Fischer, 1972).  Although differences in rates 

emerged when looking at the level of words and signs, where on average twice as 

many words are produced per second (~4-5 words per second) as compared to signs 

(~2 signs per second), the overall result implicates a modality-independent basis for 

the rates found in language.  The fact that words and signs are not always equivalent 

linguistic units and the emergence of simultaneous morphology and spatial grammar 

in sign languages (Bellugi & Fischer, 1972; Senghas & Coppola, 2001; Aronoff, 

Meir, Padden, & Sandler, 2004; Mathur & Rathmann, 2011) have been attributed as 

the key underlying factors in these findings.  Klima and Bellugi (1979: 194) write, “It 

is possible that the tendency toward compacting linguistic information in signs may 
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be a response to temporal pressure on language production.” When studying the 

propositional rate in signed English, which does not employ these strategies and 

notably is not a natural human language, the propositional rate is twice as slow as 

ASL (Klima & Bellugi, 1979). 

How language design allows for the interaction of core linguistic processes 

with two completely different sensori-motor systems, as well as other cognitive 

domains, remains a remarkable puzzle.  One of the goals of this dissertation is to 

show that slower temporal dynamics in sign production results in larger temporal 

integration windows in perception. I present evidence that these temporal integration 

windows come from mechanisms that are not just inherent to visual processing but 

from sensitivity to the time duration of linguistic units in sign language.  The 

methodology employed here is testing the intelligibility of locally time-reversed 

sentences as a function of reversal size. Although the time-scale of temporal 

integration windows in sign language differ from the findings in speech, the results 

point to universal patterns (integration according to durations of representational 

units).  A corpus-based study of rate of production in conversations taken from 

English, Korean, and ASL also provides greater insights on what are the relationships 

between time, form, and meaning in natural data. This research fits within the broader 

aims to disentangle properties that are inherent to core processes underlying language 

from those that are driven by modality. 
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1.2 Why sign language? 
 

 

A valid model for how humans process language requires coverage of 

typologically diverse languages, crucially including those that use different sensory 

channels and motor systems for communication.  Previous studies on temporal 

integration windows in language were limited to speech (Poeppel, 2003; Viemeister 

& Wakefield, 1991; Greenberg & Arai, 2001; Luo & Poeppel, 2007), making it 

difficult to determine whether ongoing processes were about auditory or more general 

mechanisms for analyzing linguistic input. 

One of the great discoveries of modern linguistic research has been the 

realization that sign languages are true languages with all of the fundamental 

properties shown by spoken languages (Stokoe, 1960; Klima & Bellugi, 1978; 

Emmorey, 2002).  A cross-modal approach to language research has been used 

productively to understand universal grammatical properties, the functional 

organization of language processing areas in the brain, and the developmental 

patterns seen in language acquisition. All languages have multiple levels of 

representation, including phonology, morphology, and syntax, with rules for how 

units in these domains combine (Sandler & Lillo-Martin, 2006).  Beneath the level of 

signs, sublexical phonological units combine in systematic and rule-constrained ways.  

Signs can vary in their degree of meaning complexity due to morphological 

processes.  In addition to having structural constituents, sign languages also show 

sensitivity to island constraints (Padden, 1988; Lillo-Martin, 1991; Ross, 1967).   
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Lesion and neuroimaging studies show that the same cortical areas support 

core language functions for both speakers and signers (Hickok, Bellugi & Klima 

1998; Emmorey, Mehta & Grabowski 2007; Petitto, Zatorre, Gauna, Nikelski, Dostle, 

& Evans, 2000).  Previously, speculations about the left-hemisphere dominance in 

spoken languages pointed to a specialization for processing rapidly changing 

temporal information (Tallal, Miller, & Fitch, 1993).  Moreover, the topographic 

location of Broca’s area near speech-production areas of the motor cortex and 

Wernicke’s area near speech-perception areas of the auditory cortex raised the 

possibility that both areas mainly support the function of spoken languages.  

However, neuroimaging studies among deaf signers show overlapping activation in 

these areas (Emmorey, Mehta & Grabowski 2007; Petitto, Zatorre, Gauna, Nikelski, 

Dostle, & Evans, 2000), and damage to those areas result in similar aphasic profiles 

(Hickok, Bellugi & Klima 1998).   

Although sign languages use manual articulators, the linguistic status of their 

movements is distinct from gesture (see Table 1 for a comparison of linguistic and 

non-linguistic gestures). Evidence for dissociations of sign language and non-

linguistic gesture has been found in lesion cases, where a patient’s production and 

comprehension of non-linguistic gestures remained intact while performance on sign 

language was impaired (Corina, Poizner, Bellugi, Feinberg, Dowd, & O’Grady-

Batch, 1992).  In development, at the age of 6 months, even hearing infants with no 

previous input to signing treat videos of signing and pantomime movements 

differently, which has been suggested as evidence that children are born with a 
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specific interest in linguistic signals, whether they are produced vocally or manually 

(Krentz & Corina, 2008). 

 Pantomime ASL 
Handshapes Few handshape types  

Simple handshapes: e.g. broad (open 
hand) and compact (closed hand) 
variants 

Multiple handshape types  
Complex handshapes: e.g. broad 
(open), compact (closed) and 
intermediate variants (‘V’ index and 
middle fingers open, ring and pinky 
fingers closed; ‘F’ index finger and 
thumbing touching, middle, ring and 
pinky finger open) 

Location Numerous on- and off-body locations 
(e.g. above head, below waist, behind 
body) 

Adherence to limits of defined signing 
space (head to waist, directly in front of 
signer) 

Movement More movement types  
More undefined movement types  
Frequent repetitions of movements 

Fewer movement types  
More defined movement types  
Limited number of repetitions 

Eyes and brows Eyes follow actions that model 
performs; eyes are not independent of 
actions 

More eye contact with camera; actions 
are independent of eyes 

Facial expression Expressivity based on actions 
performed (e.g. frustration at trying to 
fix hair, satisfaction in finishing a 
task) 

More rapid changes in mouth  
More varied movement in mouth 

 

Table 1. Adapted from Krentz & Corina (2008), this table lists some of 
the qualitative differences between pantomime and ASL. 

 
Parallels seen in the developmental course of young children, from babbling 

to putting words together, has contributed evidence for biological maturation of a 

modality-independent language faculty.  In the same study described above (Krentz & 

Corina, 2008), at 10 months of age, children no longer treated signing and pantomime 

movements differently.  This is convergent with studies on infant speech perception, 

where preference for native input is sharpened and sensitivity to distinctions in non-

native languages shows significant declines around 10 months (Werker, Gilbert, 

Humphrey, & Tees, 1981).  More broadly, similar linguistic milestones are observed 

among deaf and hearing children (Newport & Meier, 1985; Lillo-Martin, 1999). 

Word learning at around the first year of life (Bonvillian & Folven, 1993) is preceded 
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by babbling, which in of itself has numerous stages (de Boysson-Bardies, 1993; 

Meier & Willerman, 1995; Masataka, 2003). Early forms of manual babbling are 

attested among all infants, but only sign-exposed children develop complex 

handshape and movement patterns (Petitto & Marentette, 1991).  In addition, the class 

of utterances produced in babbling is predictive of the phonological features of first 

words in both modalities (Oller, Wieman, Dole, & Ross, 1976; Cheek, Cormier, 

Repp, & Meier, 2001).  

Other parallels include patterns in vocabulary growth, increases in 

grammatical complexity, and even similarities in errors during the acquisition 

process, which includes phonological errors (Conlin, Mirus, Mauk, Meier, 2000; 

Meier, 2006; Masataka, 2003), overgeneralization (Meier, 1987), and pronoun errors 

(Petitto 1987; Jackson, 1989; Meier & Newport, 1990).  However, this holds true 

only in cases where children are receiving signing input since birth. Because >95% of 

deaf individuals are born to hearing parents (Mitchell & Karchmer, 2004), age of 

exposure and acquisition of a sign language greatly vary, along with levels of ultimate 

attainment.  Comparison of early and late learners of ASL, as well as comparisons of 

late learners for whom ASL is either an L1 or L2, provide valuable insights on the 

impact of critical periods for language development.  Similar to the distinctness 

observations for L1 and L2 acquisition among spoken languages, later acquisition of 

sign languages is marked by different profiles in perception and production compared 

to native learners (Kantor 1978; Newport, 1990; Mayberry & Eichen, 1991; Morford 

& Mayberry, 2000). In the case of spoken languages, differences in L2 performance 

are confounded with L1 entrenchment, where deficits in L2 may be attributable to 
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interference effects from L1 (MacWinney, 2006).  Signers who are exposed to 

English as an L1 in early childhood and then later acquire ASL as an L2 outperform 

signers who receive little to no input in early childhood until exposure to ASL as an 

L1 in late childhood.  This suggests that entrenchment cannot be the main factor 

behind age-effects in acquisition.  Growing research from sign language research 

(Newport, 1990; Mayberry, 1993; Mayberry, del Giudice, & Lieberman, 2010; 

Wilbur, 2000; inter alia) continues to highlight the importance of early language 

exposure – whether spoken or signed – for full language development. 

Studying sign language users has been relevant to the research of bilingualism 

more broadly.  Signers fit many profiles in bilingualism.  As mentioned above, 

depending on the onset of hearing loss, degree of hearing loss, and type of early 

education, a spoken language is the first language for many deaf individuals.  For 

hearing individuals who are born to deaf parents, often referred to as “CODAs” 

(children of deaf adults), sign language is their first language, with acquisition of a 

spoken language from mainstream society.  Finally, deaf individuals who are born to 

deaf parents and grow up in signing environments both at home and school still have 

considerable experience using English in the United States through reading and 

writing.   

Growing evidence from bilinguals who use two spoken languages shows that 

both languages are active even when using only one of those languages (Marian & 

Spivey, 2003; Kroll, Bobb, & Wodniecka, 2006). One possibility is that these co-

activation effects are dependent on shared modality, but recent work on the bilingual 

activation of English and ASL among deaf signers suggests otherwise (Morford, 
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Wilkinson, Villwock, Piñar, & Kroll, 2011).  Here, the reaction time of deaf signers 

on making judgments about the semantic relatedness of a given pair of English words 

was slowed down or speeded up based on the phonological similarity of equivalent 

ASL signs, which were not presented at any point during the experiment. Such 

patterns were not found among a group of sign-naïve participants. 

Cases of bimodal bilingualism with hearing participants who are fluent in a 

spoken and signed language provide unique opportunities to study how bilingualism 

is manifested when two articulatory channels are available.  Unlike with two spoken 

languages, a spoken and signed language can be produced simultaneously, leading to 

common cases of code-blending (Pyers & Emmorey, 2008; Casey & Emmorey, 

2009).  Moreover, testing cognitive control on bimodal bilinguals allows for a better 

understanding of the “bilingual advantage” that is reported for unimodal bilinguals 

(Bialystok, 2001), specifically whether better cognitive control is caused by switching 

between any two languages or whether it requires switching within one modality 

(Emmorey, Luk, Pyers, & Bialystok, 2008).  Emmorey et al. (2008) found that 

bimodal bilinguals did not perform differently from monolinguals.  Despite the 

availability of two different channels, it is important to note that simultaneous 

production of both English and ASL is extremely difficult because of the large 

difference in their grammars and other processing constraints, leading performance in 

both languages to suffer (Wilbur & Petersen, 1998).  The degree to which both 

languages are activated among bimodal bilinguals and the extent to which cognitive 

control is exercised by bimodal bilinguals while sticking to one modality or code-

blending remains unclear.  Among deaf adults who are bilingual in ASL and written 
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English, better performance on higher-order attention tasks are found among those 

with high proficiency in both languages (Kushalnagar, Hannay, & Hernandez, 2010). 

Sign language research has also contributed insights on the interaction of 

sensory experience and language modality with other aspects of cognition.  Cortical 

reorganization following auditory deprivation results in differences in visual 

attention, where greater attention is allocated to peripheral areas (Bavelier, Dye, & 

Hauser, 2006). This is not true for bilingual hearing signers, who show the same 

profile of devoting greater attentional resources to central fields of vision as non-

signing hearing individuals (Bavelier, Dye, & Hauser, 2006).  However, experience 

with a sign language does transfer to differences in visual processing in some cases, 

in particular with tasks that involve mental imagery and rotation. When compared to 

non-signers, both deaf and hearing signers were found to have enhanced abilities in 

mental rotation tasks and in generating complex images (Emmorey, Klima, & 

Hickok, 1998; Emmorey & Kosslyn, 1996; Emmorey, Kosslyn, & Bellugi, 1993).  

Early signing exposure has also been associated with enhanced visuo-spatial working 

memory, as tested by Corsi block experiments (Milner, 1971), where the participant 

has to identify the sequence of locations that were indicated by the experimenter 

(Wilson, Bettger, Niculae, & Klima, 1997; Parasnis, Samar, Bettger, & Sathe, 1996).  

Only deaf children with early exposure to sign language had higher spans than 

hearing children in this spatial processing task.   

Much of past research has shown how spoken and signed languages are 

similar, but a newer challenge has been to also make sense of their differences. Meier, 

Cormier, and Quinto-Pozos (2002) provide a useful overview that focuses on these 
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issues.  A critical aspect of determining modality effects in language processing is 

understanding the physiological properties of the sensori-motor channels. However, it 

is also important to consider the differences in the diachronic history of these two 

types of languages, where most sign languages are relatively young and are 

frequently reinvented by its users, most of whom are not exposed to sign language 

since birth.  While acknowledging the status of sign languages as full-fledged, natural 

human languages, recognizing and understanding the differences between spoken and 

sign languages can lead to better targeted strategies to improve learning and education 

throughout development for each population. 

 

1.3 Temporal integration windows 
 

The experience of many perceptual phenomena, including language 

processing, feels seamless and continuous, but from a neurophysiological and 

computational perspective, sensory inputs are analyzed in chunks, or time windows, 

that lead to discrete units and combinatorial mechanisms.  Integration windows exist 

at more than one time-scale, and the process that occurs at each level may differ 

(Viemeister & Wakefield, 1991). In perceptual terms, temporal integration windows 

are considered to be time durations for the summation of the input. Under certain 

characterizations, the information about dynamics that occur at smaller time-scales 

may be lost, leading to limits in temporal resolution. Physiologically, the lower limits 

of temporal encoding may be tied to the duration of action potential spikes and 

subsequent refractory period, leading to upper limits of sampling rates, and the 
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properties of individual sensory pathways.  At the level of a neuron, the duration of 

all the processes that contribute to the spiking output is characterized as the 

integration window (Theunissen & Miller, 1995).  Psychophysically, the temporal 

resolution of the auditory system is ~2 ms and ~20 ms for the visual system.   These 

values refer to the smallest time gaps that can be detected between a sequence of 

inputs in each respective domain (Green 1971; Kohlrausch, Püschel, & Alphei,1992; 

Chase & Jenner, 1993).   

As Viemeister and Wakefield (1991) emphasize, however, it is important to 

distinguish the phenomenon from the process underlying integration.  In their model 

of auditory processing, integration windows that occur at larger time-scales (~200 

ms) arise from different mechanisms than those that set the temporal resolution of 

sensory processing (2-3 ms). The larger time window is mediated by short-term 

memory, where samplings of the processed input are stored and remain available for 

comparisons and further computations.  This “multiple looks” model is one way to 

account for the phenomena of smaller as well as larger temporal integration windows 

in auditory perception. 

A model for integration at multiple time scales is critical to understanding 

many aspects of cognition, including sensory processing, multi-sensory integration, 

and sensori-motor coordination (Pöppel, 1997).  Representations in language are 

organized into a hierarchy that includes units in phonology, morphology, and syntax.  

In on-line processing, these units unfold in different time scales.  Determining how 

acoustic information is mapped onto the building blocks for the representation of 

words is the focus of speech perception research.  One of these challenges includes 
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identifying the spectro-temporal characteristics of particular features or phonemes 

(Ladefoged, 2005). More broadly, temporal properties of speech contain correlated 

information about linguistic features (Rosen, 1992).  In particular, fine-structure 

information in smaller windows (20-40 ms) is critical to the identification of place-of-

articulation features of stop segments, and the amplitude-modulated envelopes in 

larger windows (150-300 ms) for the perception of syllables (Poeppel, 2003). 

Temporal integration windows roughly 150 ms in duration are reported in a 

study that tested facilitation to vowel identification via two types of primes that 

ranged in durations of 25 – 500 ms (Wallace & Blumstein, 2009).  Priming at short 

durations (25 – 500 ms) was only found when nonspeech tone complexes (which 

were matched to formant frequencies of the vowels) were used.  These facilitation 

effects were strongest up to prime durations of ~150 ms. Overall, facilitation effects 

were much more robust with vowel primes, where speeded reaction times peaked 

with prime durations in the range of 100 – 150 ms. These results are compatible with 

the multi-time scale model for processing speech proposed by Poeppel (2003). 

In the domain of audio-visual processing of speech, temporal integration 

windows also constrain how information from different sensory sources can be 

combined (van Wassenhove, Grant, & Poeppel, 2007).  The integration of audio-

visual information is evident in cases like the “McGurk effect,” where the percept of 

[ta] is neither the information in the acoustic [pa] nor the visual signal [ka] (McGurk 

& MacDonald, 1976).  Studies have investigated to what degree this phenomenon 

requires temporal alignment (Dixon & Spitz, 1980; Massaro, Cohen, & Smeele, 1996; 

McGrath & Summerfield, 1985; Pandey, Kunov, & Abel, 1986; Munhall, Gribble, 
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Sacco, & Ward, 1996; van Wassenhove, Grant, & Poeppel, 2007).  Among those for 

whom the fused percept is possible at all, approximately ~200 ms of audio lag can be 

tolerated for the fused percepts to be recognized in these audio-visual speech 

experiments.   

The study of temporal integration windows cover a broad range of processing 

in cognition, where the temporal resolution of sensory encoding is only one 

component.  Experimental materials also appear to influence the size of these 

windows in ways that cannot be solely attributable to the sensory process.  In contrast 

to these findings from audio-visual speech, a study that used non-speech stimuli 

(white noise and LED light) found smaller windows (~100 ms) within which 

simultaneous percept was possible with asynchronous input (Zampini, Guest, Shore, 

& Spence, 2005).  A possible explanation for the longer duration in the integration of 

speech-stimuli is associated with the average syllable duration across languages (van 

Wassenhove, Grant, & Poeppel, 2007; Arai & Greenberg, 1997; Whalen & Liberman, 

2000).  

The multi-time scale model for speech perception (Poeppel, Idsardi, & van 

Wassenhove, 2008) is inspired in part by theories on the multiple spatial resolution in 

vision, where information is analyzed both locally and globally, at various spatial 

frequencies to recover information (Merigan & Maunsell, 1993).  In vision, high and 

low spatial frequency information is processed by different populations of neurons in 

different parts of the visual cortex (Singer & Gray, 1995).  The fact that a coherent 

percept can result from more than one anatomical and functional organization is 

called the binding problem.  Singer and Gray propose that binding is achieved by the 
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time synchronization of neural activity, which is often associated with oscillatory 

firing patterns.  Poeppel et al. (2008:1076) write, “Whereas in the visual case the 

image can be fractionated into different spatial scales, in the auditory case both 

frequency and time can be thought of as dimensions along which one could 

fractionate the signal.” Nevertheless, no such approach has been used to determine 

temporal integration windows in the visual processing of sign language.  

Although this discussion has focused on the role of time windows as durations 

for integration, their existence may also entail a process of discretization, which 

remains poorly understood (Van Rullen & Koch, 2003).  In vision, the perception of 

continuous motion is understood to be only “apparent,” meaning that viewers 

construct the experience by piecing together a sequence of discrete images 

(Wertheimer 1912; Korte 1915). When reading, the discrete, saccadic movements of 

the eyes track blocks of linguistic constituents that are not marked by any special 

spacing or punctuation (Rayner, 1998).  Discretization of the input goes well beyond 

sensory processing to guidance from knowledge about the representational nature of 

the signal.  To distinguish between words like bear and pear, listeners are 

categorically tuned to the timing difference between the onset of laryngeal voicing and 

the onset of the stop release burst.  Even when presented with tokens that are varied 

continuously along this parameter, listeners process these sounds categorically (Lisker 

& Abramson, 1964; Lisker, 1975; Klatt, 1975). When attending to a continuous 

speech stream, listeners automatically extract a sequence of segments, syllables, 

words, and phrases, which is easy to take for granted until one is trying to 

communicate in a foreign language. Similarly, when non-signers view sentences of 
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ASL, accurately discerning the boundaries between the signs can be difficult, a 

process that is automatic for signers (Brentari, 2006). Thus, although many perceptual 

experiences appear holistic and continuous, research from a wide range of domains 

reveal underlying mechanisms that are discontinuous.   

Although temporal integration windows are not proposed here to account for 

all of these phenomena, they are listed here to demonstrate some of the challenges in 

understanding both the continuous and discrete aspects of perception. Van Rullen and 

Koch (2003) suggest that studies on the temporal dynamics of neural oscillations at 

different frequency bands may result in a more unified explanation of integration and 

discreteness in perception.  With this idea in mind, the following section summarizes 

work investigating the neural correlates of temporal integration windows in speech.  

A discussion of studies using locally time-reversed stimuli to study temporal 

integration windows, which is the primary methodology used in the perceptual 

experiments of this dissertation, will be provided in depth in Chapter 2. 

 

1.4 Neural correlates of temporal integration windows  
 

In speech perception, two particular time-scales, those that correspond to 

segments (~50 ms durations) and syllables (~200 ms durations), are especially 

interesting because of the convergence of findings about the time-scales of acoustic 

fluctuations in speech (Rosen, 1992) and neural oscillations (Poeppel, 2003).  Marked 

by high temporal resolution, electrophysiology is currently the best available 



17 

methodology for investigating the potential neural correlates of these temporally 

dynamic processes in speech.  Hypotheses about these neural correlates are based on 

the acoustic properties of speech, behavioral studies on listeners’ response to sounds 

where the fine-structure and temporal envelopes are manipulated (Shannon, Zeng, 

Kamath, Wygonski, & Ekelid, 1995; Zeng, Nie, Stickney, Kong, Vongphoe, 

Bhargave, Wei, & Cao, 2001), electrophysiological studies on temporal integration 

windows auditory processing (Yabe, Tervaniemi, Sinkkonen, Huotilainen, Ilmoniemi, 

& Näätänen, 1998), and electrophysiological studies on neural oscillations for 

integration and binding in cognition (Buzsáki & Draguhn, 2004; Engel, Fries, & 

Singer, 2001; Pöppel, 1997).   

Language comprehension requires successful integration of the sensory signal. 

One study (Ahissar, Nagarajan, Ahissar, Protopapas, Mahncke, & Merzenich, 2001) 

builds upon previous findings that intelligibility of sentences decreases as a function 

of the rate of compression (Foulke & Sticht, 1969). Speech compression algorithms 

that preserve the spectral and pitch content were applied (Portnoff, 1981). In this 

study, magnetoencephalography (MEG) was used to measure the degree to which 

cortical signals followed the speech signal modulation. It was found that the 

frequency of the evoked cortical signals and the temporal envelopes of the stimuli 

only matched at lower compression ratios (where sentences remained somewhat 

intelligible). These conditions also showed phase-locking between the speech 

envelope and MEG signal recorded from the auditory cortex, reflecting entrainment 

of the neural activity to speech signals and sensitivity to the temporal characteristics 

of speech.  Similar findings are reported by Luo and Poeppel (2007), where 
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intelligibility of sentences was modulated by creating “auditory chimaeras,” where 

the envelope of one sound is combined with the fine structure of another sound 

(Smith, Delgutte, & Oxenham, 2002). Also using MEG, Luo and Poeppel report 

cortical activity that is correlated with speech intelligibility, more specifically, in the 

phase patterns of endogenous brain rhythms in the theta band (4-8 Hz), where period 

durations correspond to the average size of syllables in speech (~ 200 ms).  These 

findings implicate that an important aspect of processing speech is continuous 

segmentation and integration of the input in ~200 ms temporal windows (Poeppel, 

Idsardi, & van Wassenhove, 2008). 

Temporal integration windows in such time-scales converge with results from 

other electrophysiological studies on auditory processing (Yabe, Tervaniemi, 

Sinkkonen, Huotilainen, Ilmoniemi, & Näätänen, 1998).  Using MEG, Yabe et al. 

(1998) varied stimulus-onset asynchronies (SOAs) of pure tones and tested the 

elicitation of the magnetic counterpart to the mismatch negativity (MMN) in 

electroencephalography (EEG).  The MMN is taken to be an index of change 

detection, whether caused by a change in stimuli or by an omission, which is thought 

to be implemented via a comparison to a neural memory trace of a repetitive sound 

(Cowan 1995; Näätänen, 1992). Shorter SOAs improve the chances that a stimulus is 

in the same temporal window of integration as the previous item.  Results showed 

that MMNs were only elicited at SOAs shorter than 175 ms, supporting a temporal 

integration window of 150-175ms in auditory processing. This time window and 

model for MMN effects are compatible with the “multiple looks” theory of 
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Viemeister and Wakefield (1991), where integration windows at these larger time-

scales are mediated by short-term memory. 

Processing speech in ~200 ms time windows for syllables, as well as smaller 

~50 ms windows for segments, requires neural substrates that are sensitive to 

temporal information that fluctuates at those intervals.  Such evidence comes from a 

functional imaging study using fMRI (Boemio, Fromm, Braun, & Poeppel, 2005), as 

well as a simultaneous EEG-fMRI study (Giraud, Kleinschmidt, Poeppel, Lund, 

Frackowiak, & Laufs, 2007).  In addition to activations that are sensitive to these time 

windows, both studies report hemispheric asymmetries in these sensitivities.  Boemio 

et al. (2005) used non-speech stimuli with varying spectro-temporal properties, with 

modulations in segment length and frequency sweep patterns.  Among three regions 

of interest (superior temporal gyrus (STG), superior temporal sulcus (STS), and 

transverse temporal gyrus (TTG)) in auditory cortical areas, activity in STG was 

sensitive to the local spectro-temporal structure, where effects were greatest at 45 ms 

SOAs, a time scale that is important for extracting information about segment 

boundaries.  Activity in STS was not sensitive to segment type but showed 

hemispheric asymmetry to segment duration (or stimulus rate) and the greatest 

response was to those with durations >85 ms.  Giraud et al. (2007) demonstrate that 

spontaneous EEG rhythms in the gamma range (30-50 Hz), where periods correspond 

to the duration of phonemes, and theta range (4-7 Hz), where periods correspond to 

the duration of syllables, show similar hemispheric asymmetries in the auditory 

cortex (convergent with the model proposed by Poeppel (2003)), and suggest that 
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these endogenous oscillations serve as important precursors that support the function 

of speech processing. 

To what degree this multi-time resolution model of speech processing, 

subserved by gamma and theta band activity, can be applied to visual processing of 

language remains unknown.  Nevertheless, similar temporal integration windows (see 

Holcombe (2009) for a discussion of multi-time resolution model of vision) and 

neural activity in these frequency bands have also been implicated in visual cognition.  

The phase of EEG oscillations in the theta and alpha range is reported to be closely 

tied to a viewer’s ability to detect flashes of light, suggesting that visual detection 

thresholds fluctuate at these frequencies (Busch, Bubois, & Van Rullen, 2009).  A 

study using an MMN paradigm with visual stimuli found temporal windows of 150-

170 ms in duration (Czigler, Winkler, Pató, Várnagy, Weisz, & Balázs, 2006) like the 

auditory studies.  Drawing upon broader literature on the temporal organization of 

information (Warren, 1999; Yost & Popper, 1993), Poeppel (2003) points to the 

prevalence of windows that are ~50 ms and ~ 200 ms in duration across many sensory 

systems.  The implication of gamma-band oscillation during attentional selection of 

sensory information and theta (and alpha) range oscillation in top-down effects in 

processing (Engel, Fries, & Singer, 2001) potentially make periods of theses 

frequencies privileged time-scales that are relevant to all language processing, and 

even more broadly to core cognitive functions, not just speech. 
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1.5 Oscillation of sub-lexical units in language 
 

As described above, research on brain rhythms reveals new insights on the 

basis for oscillatory patterns in speech processing.  However, the most prominent 

theory on the periodic basis of language production focuses on the motor frame of the 

mandible (MacNeilage, 1998; MacNeilage & Davis, 2001).  When its closing and 

opening are coupled with vocalization, consonant-vowel syllables emerge.  In early 

stages of language acquisition, babbling is marked by its rhythmic qualities.  When 

the oscillatory property of language is attributed to biomechanics that are unique to 

the jaw, it is predicted that other forms of language production, such as sign language, 

should not have similar cyclic characteristics. 

Those who are familiar with sign language are sensitive to rhythmic qualities 

in signing, but perhaps the discovery of manual babbling among children exposed to 

sign language has provided the most powerful counterevidence to claims that rhythms 

in language come from the biomechanics of the jaw (Petitto & Marentette, 1991; 

Meier & Willerman, 1995). Manual babbling is marked by repetitive qualities, 

involvement of possible sign language handshapes, syllabic organization, and 

production without reference, and is distinct from ordinary gestures.  Such 

movements have also been attested among deaf and hearing babies born to deaf 

parents and exposed to signing (Petitto, Holowka, Sergio, & Ostry, 2001).  When the 

temporal dynamics of these movements were studied using opto-electronic position-

tracking equipment, manual babbling was marked by a slower rhythm (~ 1 Hz) than 

ordinary gestures (~2.5 Hz) and the manual movements of babies who were not 



22 

exposed to sign language input (~ 3 Hz) (Petitto, Solowka, Sergio, Levy, & Ostry, 

2004) (see Figure 1).  Moreover, low-frequency manual babbling was restricted to a 

smaller linguistic signing space.  Because this babbling is quantitatively and 

qualitatively different from the manual gestures of hearing babies who were not 

exposed to sign language, it cannot be simply attributed to general motor 

development. 

 

Figure 1. Reproduced from Petitto, Solowka, Sergio, Levy, & Ostry 
(2004), this figure shows the distribution of the frequencies (in Hz) of 
the manual movements among sign-exposed and speech-exposed 
babies.  Sign-exposed babies had movements that were at two 
different frequencies, where manual babbling in the signing space 
was marked by a slower rhythm (~1 Hz) than ordinary gestures 
outside the signing space (~2.5 Hz), whereas speech-exposed babies 
had movements at a higher frequency (~3 Hz).  

 
Although numerous studies have studied the qualitative aspects of vocal 

babbling (de Boysson-Bardies, 1999; Locke, 1983; Oller & Eilers, 1988; Jusczyk, 
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1997; Elbers, 1982; Vihman, 1996), few have investigated its frequency 

characteristics (Dolata, Davis, & MacNeilage, 2008; Levitt & Wang, 1991).  In the 

analysis of infants learning French and English, an average syllable duration of ~300 

ms (~ 3.4 Hz) is reported by Levitt and Wang (1991), and similar values were found 

by Dolata et al. (2008).  When compared to the rates found in adults, where syllables 

are ~200 ms in duration (~ 5 Hz) (Arai & Greenberg, 1997), these frequencies for 

vocal babbling in infants is notably lower.  While these differences suggest 

developmental constraints in the maturation of rhythm and repetitive production, 

studies on infant-directed language also reveal the possible role of input.  Masataka 

(1992) found that infant-directed signs (“motherese”) among users of Japanese Sign 

Language were produced at a mean rate of 1.3 per second, which approximately 

matches the manual babbling rate reported by Petitto et al. (2004).  Nevertheless, 

since Masataka’s report of 1.5 signs per second in adult-directed production is 

considerably slower than what is reported in American Sign Language (Bellugi & 

Fischer, 1972), it is difficult to draw conclusions about the reliability of this 

connection.  

Although sign language production does not have one main oscillator like the 

mandible in speech, rhythmic patterns underlie many biological systems (Ghez & 

Krauker, 2002; Fenélon, Casasnovas, Simmers, & Meyrand, 1998), not just speech.  

Thus, it should be no surprise that these findings from babbling provide evidence for 

the role of oscillatory patterns in linguistic processing regardless of modality.  

Although modality seems to have a key effect on the frequency of these oscillations, 

rhythmic production is a universal precursor to language development (and perhaps 
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development more broadly), and it may also play an integral role in perceptual 

processes as well.  If frequencies in babbling, where manual babbling is slower than 

vocal babbling, have any parallels for processing at maturity, it is possible that sign 

language processing involves larger temporal integration windows than in speech.  

However, because these windows are posited to occur at multiple time-scales, it is 

also possible that the size of these windows converge at longer time-scales.  

 

1.6 Rates of processing in language 
 

Bellugi & Fischer (1972) examine the rates of natural production in English 

and ASL and demonstrate that the rates converge at the overall propositional (or 

sentential) level although they are different at the word and sign level.  This 

comparison was made by studying three bilingual CODAs who narrate the same story 

in both languages.  To ensure that the rates in ASL were not attributable to the 

hearing status of the signers, a rate analysis was also conducted on three deaf native 

signers, which resulted in similar findings (Klima & Bellugi, 1979).  Making sense of 

the differences in rates for words in English and signs in ASL despite the similarities 

in the global rates requires an understanding of sign language grammar, which 

employs a signing space, the obligatory use of which cannot be found in any spoken 

language.  Contrary to common myth, ASL is not a manual form of spoken English.  

Signing systems that are artificially created to help teach deaf individuals learn 

English, referred to as Manually Coded English, cannot be learned naturally, and 

when taught, often get reduced to forms that more closely resemble ASL (Supalla, 
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1991).  The fact that production in such signing systems is twice as slow as ASL 

(Klima & Bellugi, 1979) suggests that natural sign languages follow critical time 

pressures, and that only the grammar of natural sign languages are compatible with 

these constraints at the manual-visual interface.  Natural language processing seems 

to require a specific range of rates for informational flow.   

As discussed in the previous sections, a prominent theory for the basis of rates 

in syllables focuses on the motor constraints of the mandible (MacNeilage, 1998), 

which converge with findings implicating endogenous theta band oscillations in 

speech perception (Giraud, Kleinschmidt, Poeppel, Lund, Frackowiak, & Laufs, 

2007; Luo & Poeppel, 2007).  Since syllables provide a frame for speech content, 

including units of meanings, it is logically possible that syllable rate determines the 

overall rate of information transfer.  However, the evidence for similarity in rates 

across modalities suggests that temporal constraints in language processing go 

beyond bottlenecks at particular motor interfaces.  Sign languages are phonologically 

encoded through handshape, location, movement, orientation, and non-manual 

features, with the dominant hand as the primary articulator.  Because the articulators 

are physically larger in signing than in speech and must overcome greater inertia, it is 

theoretically possible that signing could be slower than speech.  In contrast, the 

availability of two hands and a potentially richer set of phonological features may 

also permit signing to result in overall faster rates than speech.  Given two very 

different motor systems, it is puzzling that rates in signing and speech converge the 

way they do. 
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Perceptual studies on rate-compressed sentences, where artificially accelerated 

input remains intelligible (to a certain limit) (Foulke & Sticht, 1969; Foulke, 1971; 

Ahissar, Nagarajan, Ahissar, Protopapas, Mahncke, & Merzenich, 2001; Fischer, 

Delhorne, & Reed, 1999) demonstrate that the production system does impose a 

bottleneck in processing to some degree.  Artificially accelerated inputs remain 

intelligible at rates that are above what the motor system is capable of producing.  

Although the similarity in rates in English and ASL suggests that this bottleneck is 

not particular to an individual motor system, parallel bottlenecks are also found in 

perception across the two modalities.  In studies of speech, intelligibility of sentences 

declines dramatically as a function of the compression rate, where intelligibility is 

measured as the fraction of correct words in a sentence that the participants are able 

to produce back.  Although compression by a factor of 2 remains almost perfectly 

intelligible and shows only a slight dip in performance, compression by a factor of 3 

results in a steeper decline (to 50% intelligibility) (Ahissar, Nagarajan, Ahissar, 

Protopapas, Mahncke, & Merzenich, 2001; Ghitza & Greenberg, 2009), and further 

compressions quickly reach zero levels of intelligibility.   

In the first study to investigate the effect of compression in sign language 

perception, Heiman and Tweney (1981) used compression only by a factor of 2.  

Using sentences in narratives, intelligibility was measured by performance on a 

comprehension test rather than by requiring the participants to produce the sentences 

back and measuring accuracy.  They find that comprehension decreased ~ 20% as a 

result of the compression.  To test whether this should be attributed to signal 

degradation or to an overload of short-term memory, they also tested stimuli where 
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black, blank films were inserted between “semantically unitary statements” in the 

compressed versions so that the length of the narratives was equivalent to the 

noncompressed versions.  With these blank film insertions, comprehension scores 

were similar to (and slight lower than) the compressed condition.  This result does not 

converge with similar experiments in speech that were conducted later by others, 

where silences in prosodic boundaries improve the intelligibility of compressed 

speech (Wingfield, Lombardi, & Sokol, 1984; Ghitza & Greenberg, 2009).  It is 

important to recognize that silences in speech are not equivalent to blank films in 

ASL, where the repetition of a still image of a signer may have been a fairer 

comparison. Nevertheless, Heiman and Tweney (1981) conclude that memory 

constraints do not underlie poorer comprehension in compression.  When testing the 

intelligibility of single signs, comparing the control condition to whether they were 

also compressed by a factor of 2, they find similar decreases in performance as with 

sentences.  When interpreting the results as a whole, Heiman and Tweney (1981:12) 

conclude that “decrements in comprehension may be due to cumulative decrements in 

intelligibility.”   

Fischer, Delhorne, and Reed (1999) test intelligibility of ASL sentences and 

single signs as a function of several compression rates in ASL.  Intelligibility was 

measured by taking the percent accuracy of correctly identified signs for each 

condition.  According to their summary, similar patterns in speech and sign, where 

compression by a factor of 3 results in a steep decline in the intelligibility of 

sentences (see Figure 2), suggest that even in the perceptual interface, time 
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constraints for processing are modality-independent at the sentence level.  At the 

level of words and signs, however, different patterns emerged (see Figure 2).   

Sentences Single Signs 

  

Figure 2. Reproduced from Fischer, Delhorne, & Reed (1999), these 
figures show the intelligibility of stimuli as a function of playback rates 
for 14 participants.  Error bars represent plus or minus one standard 
deviation of the mean.  With sentences, a sharp drop in intelligibility is 
found at compressions by a factor of 3. 

 
In the findings from speech, the intelligibility of single (monosyllablic) words is more 

sensitive to compressions (Beasley, Schwimmer, & Rintelmann, 1972), which is 

attributed to the benefit of having sentential context (Miller, & Heise, & Lichten, 

1951).  In contrast, Fischer et al. (1999) find that individual signs are more resistant to 

compressions than sentences, where same compression factors result in higher 

intelligibility scores.  This result is attributed to the fact that signs in isolation take 

longer to produce than when produced inside a sentence.  An analysis of the number 

of video frames revealed that signs in isolation took twice the number of frames.  The 

additional frames included those that show a sign in the “final hold” (Liddell, 1984), 

which involves holding a hand configuration in place or a repetition movement.  They 

report that extra frames contain enough information to reveal the identity of the sign.  



29 

Although a follow-up experiment that controls for these factors would be useful, 

where single signs are extracted from sentences rather than produced in isolation, the 

overall pattern seems to be that tokens that take longer to produce are more resistant 

to compression.  Similar findings are found in speech, when compression is achieved 

by time sampling. Vowels are longer in duration than consonants, and they are also 

more resistant to compressions than consonants (Kurtzrock, 1957).  Overall, words 

that have higher number of phonemes are more resistant to compressions than shorter 

words (Henry, 1966).  

Ghitza and Greenberg (2009) test the intelligibility of sentences through the 

combination of compression and insertions of silence.  Unlike Heiman and Tweney 

(1981), who selectively inserted blank “silent” films at phrasal boundaries, these 

silences were inserted either periodically (silences of fixed duration) or aperiodically 

(silences with randomized duration within a range).   
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Figure 3. Reproduced from Ghitza & Greenberg (2009), this graph 
shows the percent error in an intelligibility experiment, where 
sentences were compressed by a factor of 3 and silences were 
inserted periodically or aperiodically.  Error bars represent the 
standard deviation of the mean.   

 

As shown in Figure 3, in cases with time compressions by a factor of 3 and no 

insertions of silence, the intelligibility of the sentences are 50% (error rate ~ 50%).  

As silences are inserted periodically, intelligibility improves significantly, peaking to 

80% (error rate ~ 20%) where 80 ms silences are inserted in between 40 ms of speech 

material.  This alternation creates sentence durations that match the original 

uncompressed sentences.  These results suggest that perhaps only 20% of the 50% 

drop in intelligibility of sentences compressed by a factor of 3 should be attributed to 

sensory loss of information.  Ghitza and Greenberg use these findings to argue for the 

importance of endogenous rhythms, specifically in the theta frequency range, for 

speech decoding.  
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As Foulke and Sticht (1969:60) emphasize, there is a point at which “a factor 

in addition to signal degradation begins to determine the loss of comprehension,” in 

sentences. In their review, there are cases where performance on the identification of 

words is lower than overall comprehension of sentences, and where it is also higher.  

The point at which processing full sentences becomes compromised by fast rates in 

English seems to be 275 words per minute.  In addition to identifying words, sentence 

processing requires temporarily storing and performing operations with those words.  

Beyond the issues of recovering an input from a degraded signal, there seems to be a 

channel capacity for processing the flow of linguistic information.  The results from 

ASL in production (Bellugi & Fischer, 1972; Klima & Bellugi, 1979) and perception 

(Fischer, Delhorne, & Reed, 1999) provide support for a model in which this channel 

capacity is modality-independent.  In addition to better understanding channel 

capacities, determining the time-windows of integrating information that flows 

through a channel and determining if these windows are dependent on a sensory 

modality will lead to an improved model of language processing. 

 

1.7 Outline of the dissertation 
 

Thus far, I have provided background information that motivates the studies 

that follow.  Studying languages that use different sensori-motor systems are essential 

for understanding core language properties.  An important aspect of language 

processing is its temporal dynamics in on-line perception and production.   
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Chapter 2 focuses on temporal integration windows in the visual processing of 

ASL.  As outlined in sections 1.3 and 1.4, evidence from temporal integration 

windows come from a wide range of methodologies and domains.  Experiments 1, 2, 

and 3, tests the intelligibility of ASL sentences as a function of the size of local-

reversals, a methodology that is motivated by previous work in speech perception 

(Saberi & Perrott, 1999; Greenberg & Arai, 2001; Figueroa, 2009; Stilp, Kiefte, 

Alexander, & Kluender, 2010). Through these experiments, it will be shown that 

time-scales of temporal integration arise from 1) modality, 2) size of linguistic units, 

and 3) developmental factors. 

Chapter 3 focuses on the rates of natural production in English, ASL, and 

Korean, where rates of words, signs, morphemes, and syllables are reported.  

Previous studies of English and ASL have attributed differences in word and sign 

rates to both modality and grammar.  By also including an analysis of Korean, which 

has relevant grammatical properties similar to ASL, a better understanding of the role 

of modality and grammar in language rates is possible.  As will be demonstrated in 

Chapter 2, an understanding of rates in natural production is a fundamental part of 

building models for temporal integration windows in language. 

Chapter 4 concludes with a synthesis of all the results and a discussion of 

implications for future research.  
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2 Temporal integration windows in sign language 
 

2.1 Introduction 
 

Linguistic structures are processed in time, whether listening to acoustic 

speech or viewing the visual input of sign language.  The goal of the three 

experiments presented in this chapter is to investigate factors that affect the temporal 

integration windows in language perception.  Temporal integration windows are 

chunks of times during which information is collected and integrated and refer to 

durations among many phenomena, from the level of the neuron, where output spikes 

are dependent on the sum of activities (Theunissen & Miller, 1995), to the 

psychophysical level, where sensory stimuli can be detected and compared to 

previous inputs (Viemeister & Wakefield, 1991; Näätänen, 1992), to the level of 

higher cognition, where information is consolidated in memory (Wilson & 

McNaughton, 1994; Buzsáki & Draguhn, 2004; Furman, Dorfman, Hasson, Davachi, 

& Dudai, 2007).  In studies of speech perception, temporal integration windows refer 

to durations of time over which the sensory signal are mapped to units of linguistic 

representations – such as phonemes and syllables (Poeppel, Idsardi, & van 

Wassenhove, 2008).  In audio-visual studies, it has also been used to describe the 

durations for multi-sensory integration (van Wassenhove, Grant, Poeppel, 2007).  

Beyond levels of pure sensory processing, some differences between studies that use 

speech-like and non-speech-like stimuli, where longer lags are tolerated with speech-

like stimuli, suggest that the nature of linguistic information in the input also 

influences the duration of these windows. 
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The importance of temporal direction in processing can be demonstrated by 

the simple scenario of playing backwards a spoken sentence that is about 2 seconds in 

duration – it is utterly unintelligible.  In contrast, a sentence that is locally reversed in 

20 ms increments is perfectly intelligible (Saberi & Perrott, 1999; Greenberg & Arai, 

2001).  The mechanisms underlying the mapping of the acoustic signal to meaningful 

linguistic representations cannot handle distortions over longer time-scales like 2 

seconds.  Speech is somewhat robust to a variety of adverse conditions, such as noise 

(Sumby & Pollack, 1954), compression (Foulke & Sticht, 1969), and interruptions 

(Miller & Licklider, 1950).  In these cases, portions of the signal is either masked or 

deleted, but in the case of backwards speech, all of the input is intact.  The 

unintelligibility of backwards speech is probably a result of several factors, from at 

the sensory level to higher levels of linguistic processing.  For example, simply 

reversing the order of words in a string (global reversal with local integrity) results in 

an ungrammatical sentence (sentence ungrammatical an in results string a in words 

of order the reversing simply), and one that can be extremely hard to understand or 

repeat back.  Nevertheless, it would still be possible to pick out a few words from the 

reversed sentence, which feels like a random list of words.  At another level, a 

sentence can be difficult to understand because no words can be recognized from an 

acoustic stream (for example, lacitammargnu  ecnetnes for ungrammatical sentence).  

These examples demonstrate the importance of temporal direction in language 

processing. 

Backwards speech is the most drastic form of temporal order distortion 

(Saberi & Perrott, 1999).  Gradually increasing the degree of this distortion can lead 
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to a better understanding of the temporal constraints for the construction of linguistic 

representations from the sensory input.  The use of local-reversals has already 

provided insights to mechanisms for processing the acoustic signal through time and 

the duration of temporal integration windows in speech.  However, without a 

comparison to languages that use a different modality, it is impossible to determine 

whether such mechanisms are specific to auditory processing or more generalizable to 

all sensory processing in language.  Experiment 1 is designed to determine temporal 

integration windows in the visual processing of language through locally time-

reversed sentences.  It serves as the basis for two follow-up studies, where the 

duration of temporal integration windows are tested as a function of rate in 

Experiment 2 and as a function of age-of-acquisition in Experiment 3. The next three 

sections motivate each of these experiments in turn.   

 

2.2 Cognitive restoration of locally time-reversed 
sentences 

 

As mentioned above, backwards, or globally reversed, speech is utterly 

unintelligible, but locally reversed speech demonstrates a different phenomenon 

(Saberi & Perrott, 1999).  The creation of locally-reversed stimuli is like rotating the 

orientation of slats in Venetian blinds.  First, a sound waveform is subdivided into 

intervals of fixed duration, then each interval is reversed, such that only the temporal 

order of the input within the interval is altered, not the global order of the entire 
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speech stream (see Figure 4).  In these studies, the intelligibility of the sentences 

drops as a function of the size of the reversals.   

 

Figure 4. Reproduced from Greenberg & Arai (2001), this figure 
demonstrates how locally-reversed speech stimuli are created.  Here, 
each 80 ms segment is played backwards, but the original order of the 
segments is maintained. 

 
In the first study of this kind, Saberi and Perrott (1999) find that intelligibility 

of a single sentence, as measured by subjective reports, drops to 50% at 130 ms 

reversals, falling to 0% around 200 ms (Figure 5). Thus, the ability to cognitively 

restore locally-reversed sentences up to ~100 ms was presented as further evidence 

for temporal integration windows of these durations.  They note that reversals of short 

durations are less likely to disrupt the temporal envelopes of speech, which have been 

proposed to be important cues to intelligibility (Greenberg & Arai, 1998).   
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Figure 5. Reproduced from Saberi & Perrott (1999), this figure shows 
subjective intelligibility ratings by 7 participants on a single sentence 
that was repeated for all conditions. 

 
However, Saberi and Perrot’s (1999) conclusion that “a detailed auditory 

analysis of the short-term acoustic spectrum is not essential to the speech code” is 

oversimplified. It is clear from examples like wolf and flow that the direction of 

information within a temporal envelope provide critical cues for correct word 

recognition.   As emphasized in the multi-time resolution model of speech perception 

(Poeppel, 2003; Poeppel, Idsardi, van Wassenhove, 2008), windows that are short and 

long in duration are important for information processing at different hierarchies.  

Whether or not Saberi and Perrot’s (1999) result support integration at shorter or 

longer time scales is hard to determine without having data on the stimulus that they 

used, such as information on the average size of segments and syllables in the 

sentence.  Notably, they tested only a single sentence, which was repeated for all the 

conditions.  As they report, repetition of the sentence, even with larger reversal sizes, 

improves its intelligibility, reflecting “cognitive recalibration” and learning.  

Greenberg and Arai’s (2001) replication of the study produced different 

results, where intelligibility fell quite sharply at smaller time scales, reaching 50% at 
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60 ms (Figure 6).  They argue that information about syllable segmentation as well as 

fine structure with phonetic details are important for speech perception.  In their 

study, intelligibility was measured quantitatively by scoring the number of words in a 

sentence that were identified correctly.  

 

Figure 6. Reproduced from Greenberg & Arai (2001), this figure 
demonstrates 1) the spectrogram of locally reversed sentences, 2) the 
intelligibility curve as a function of reversal sizes, and 3) the complex 
modulation spectrum of the sentences.  Intelligibility results are from 
27 participants tested on 40 sentences.  Intelligibility of sentences falls 
drastically between 40 and 50 ms reversals, falling to 50% at 60 ms 
reversals, and reaches ~0% by 100 ms reversals.     

 
40 sentences from the TIMIT corpus were chosen for their low semantic 

predictability and diversity of speakers.  Because this minimizes the influence of 

context effects in guessing words or adjusting to the acoustics of a single speaker, the 

study targets sensory processing in sentence comprehension.  Moreover, an analysis 

was conducted on all the stimuli to better understand spectro-temporal consequences 

of local reversals.  Greenberg and Arai (2001) tested the relationship between the size 

of the reversals and the amplitude component of the modulation spectrum alone, as 

well as the complex modulation spectrum, which is calculated by taking information 

about amplitude and phase components of the modulation spectrum at various 
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frequency bands.   The inclusion of phase information, which was referenced with 

respect to the phase of the control condition, was critical to finding a correlation 

between the modulation spectrum and intelligibility.  This should not be too 

surprising given that with reversals in duration of syllables, the temporal envelope of 

the speech stream is almost entirely preserved, yet sentences are utterly unintelligible 

at reversals of 100 ms, which is smaller than the duration of average syllables, and 

stay unintelligible with larger reversals.  As the size of the reversals are increased, the 

phases between the original and reversed stimuli become increasingly dispersed.  

Greenberg and Arai attribute the difficulty in processing sentences with local 

reversals to the distortion of information that is critical for identifying phonetic 

information.   

Greenberg, Hollenback, and Ellis (1996) find that the median duration for 

most segments is 60-100 ms (shorter for stops and longer for diphthongs) in natural 

speech (Switchboard corpus).  In a different study using sentences from the TIMIT 

corpus, Arai and Greenberg (1998) report that the mean duration of a phonetic 

segment is 72 ms.  The sharp decline of speech intelligibility at local reversals >50 

ms and falling to 50% at 60 ms, suggests that acoustic signals must be integrated in 

short time windows to recover phonetic information (Greenberg & Arai, 2001).  

Reversals in shorter durations preserve not only the relative order of the phonetic 

segments within words but may also capture the fine-structures within a phonetic 

segment for recognition in word contexts. 

Experiments on the perception of interrupted speech have shown that speech 

can be almost entirely intelligible under certain conditions where 50% of the speech 
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material is deleted (Miller & Licklider, 1950) (see Figure 7).  Intelligibility of 

sentences varies as a non-monotonic function of the frequency of the 

interruptions/deletions.  Interruptions at low frequencies occur at longer durations per 

interruptions, causing certain words to be either entirely captured or missed.  At 

higher frequencies, parts of words get interrupted, and intelligibility is relatively high 

in cases where some information about every phoneme in the word is preserved.  

They write, “It appears that one glimpse per phoneme is sufficient [for intelligibility]” 

(Miller & Licklider, 1950: 168).  Taken together with these findings, results from the 

local-reversal of speech suggests that “looks” to each phoneme and the order of these 

looks are important for intelligibility, but that the temporal direction within each look 

is more flexible. 

 

Figure 7. Reproduced from Miller & Licklider (1950), this figure 
demonstrates the intelligibility of English sentences as a function of 
frequency of interruption and speech-time fraction (where the duration 
of interruptions were dependent on the frequency of the interruptions 
and speech-time fractions and were spaced regularly). 
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Beyond sensory integration, it is likely that additional factors play an 

important role in findings from the local reversal of speech.  The intelligibility curve 

is likely to shift rightward (more intelligible with more severe distortions) with the 

semantic predictability of the sentences (Miller & Isard, 1963).  Moreover, the curve 

is likely to shift leftward (less intelligible with less severe distortions) if a word-list 

was used rather than sentences (Miller, 1951).  As Ghitza and Greenberg (2009) 

conclude based on evidence where the periodic insertion of silences in time-

compressed sentences significantly improved intelligibility, “Intelligibility is not 

simply a matter of decoding the spectro-temporal pattern.”  Listening comprehension 

and word intelligibility can be dissociated in compression studies (Foulke & Sticht, 

1969; French & Steinberg, 1947), and similar patterns may emerge in the case of 

local-reversals, although this has yet to be tested.   

In summary, the ability to detect, integrate, and decode rapid acoustic signals 

in the speech stream is essential for auditory speech perception.  One of the 

implications from the intelligibility of locally time-reversed speech is that the 

acoustic signals are not integrated continuously but in a discrete manner.  Although 

the ability to cognitively restore time-reversed stimuli is limited, listeners’ tolerance 

for local reversals is still remarkable. By manipulating stimuli so that it is chunked in 

larger sizes, Saberi and Perrott (1999) and Greenberg and Arai (2001) determine 

perceptual and cognitive limitations for integrating the signal.  Findings from 

Greenberg and Arai (2001) suggests that one important time-window for integrating 

the speech signal lies somewhere below ~60 ms.  Reversals that go beyond these 
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perceptual integration windows cannot be cognitively restored and no linguistic 

representations can be recovered.   

 

2.3 Flexibility of perceptual parameters to rates 
 

Speech perception requires flexible mechanisms that can accommodate a wide 

variety of conditions, created by individual speakers (age, gender, accents/dialect, 

emotional state, speaking rate, etc.) and environments (noise).  Within the speech 

stream of one individual, one can find phonetic segments that vary in duration (stop 

consonants are shorter than fricatives, for example), and a given segment may have 

different phonetic realizations depending on context (whether occurring in word 

initial or final positions, or in stressed or unstressed syllables, for example).  On 

average, phonemes and syllables are produced at relatively consistent rates 

(Greenberg, Hollenback, & Ellis, 1996; Arai & Greenberg, 1998), but each unit has 

its own range of variability.  A pattern that underlies rate uniformity is that shorter 

syllables are flanked by longer syllables, and vice versa (Greenberg, 1999).  Since 

speech is not perfectly periodic, the temporal integration process in speech must be 

flexible. 

The ability to adjust perceptual parameters to a variety of contexts is referred 

to as perceptual normalization.  One area where the effect of speaking rate has been 

tested (by varying the duration of syllables) is in categorical perception, where 

perceptual boundaries are found within a continuously varying parameter.  For 

example, a key acoustic cue to distinguish between [b] and [w] is in the duration of 
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the formant transition at stimulus onset, which is longer for [w].  The transition 

durations at which the perceptual response changes from [b] to [w] has been shown to 

shift depending on whether the onset was produced within a long or short syllable 

(Miller & Liberman, 1979).  Another example comes from voiced and voiceless stop 

onsets, where the timing difference between the onset of laryngeal voicing and the 

onset of the stop release burst (Voice Onset Time, VOT) is a prominent cue for 

distinguishing between them (Lisker & Abramson, 1964; Lisker, 1975; Klatt, 1975). 

Moreover, there is an interaction between VOT and place of articulation, where the 

boundary between voiced and voiceless stops shifts towards longer VOTs as the 

closure for the stop is made further back in the mouth. The categorical boundary 

between a particular set of voiced and voiceless stop onsets is not absolute, however.  

The boundaries shift towards longer VOTs when the syllable is lengthened either by 

acoustic or visual cues (Summerfield, 1981; Green & Miller, 1985) (Figure 8).   

 

Figure 8. Reproduced from Green & Miller (1985), this figure 
demonstrates that perceptual boundary, reflected by the percentage 
of voiced responses for [bi]-[pi] continuum, varies depending on 
durations. 
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Greenberg and Arai’s (2001) finding that intelligibility falls sharply at 

reversals >50 ms, reaching 50% at ~ 60 ms reversals, and the measurement of 

phonetic segment durations with similar materials in a separate study (where 

phonemes were 72 ms long on average) (Arai & Greenberg, 1998) suggests a link 

between temporal integration windows and the duration of linguistic units in speech, 

as has been proposed by Poeppel (2003).  Under this hypothesis, temporal integration 

windows, as revealed through local reversals, should be variable depending on the 

distribution of phonetic segments and overall rates of speech.  Moreover, it has the 

potential to be generalized as a fundamental language processing mechanism, 

applying also to sign languages.  With the same technique, the intelligibility of signed 

sentences may also be dependent on the size of locally reversed video segments and 

rates, albeit at different time-scales.  However, another possibility is that temporal 

integration windows of such time-scales are important to general auditory processing 

and somewhat independent of the linguistic nature of the acoustic signal.  Yet a third 

possibility is that ~ 60 ms integration windows are important for all language 

processing, regardless of modality, and not linked to the auditory channel.  The 

discrepancy between the findings in Saberi and Perrot’s (1999) and Greenberg and 

Arai’s (2001) studies already suggests that ~ 60 ms is not a perceptual primitive but a 

result of a combination of factors.    

To investigate the relationship between temporal integration windows and 

duration of linguistic units, Figueroa (2009) (also Figueroa, Howard, Idsardi, & 

Poeppel, 2009) used a novel combination of compression and local-reversals (see 

Figure 9 for results).  Stimuli consisted of TIMIT sentences, which were presented in 
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10 conditions, where the reversal sizes ranged from 0 to 100 ms, lengthened in 10 ms 

increments.  At the normal rate of speech, a sharp drop in intelligibility to 50% was 

found around 60-70 ms reversals, replicating the results of Greenberg and Arai 

(2001).  In addition, intelligibility was tested on conditions where the sentences were 

either compressed by a factor of 2 or dilated by a factor of 1.5.  With the faster rate, 

intelligibility fell to 50% around 30-40 ms reversals, revealing time windows that are 

half the durations found in normal speech.  In the case of the dilated condition, 

performance on the intelligibility task was close to ceiling even at 70 ms reversals, 

falling to 50% around 80-90 ms.   

 

Figure 9. Reproduced from Figueroa (2009), this figure shows the 
intelligibility of English sentences as a function of compression and 
reversal size. 

 
Similar findings are reported in a study using synthetic speech, even though 

the sentences selected from the HINT corpus (Hearing In Noise Test, Nilsson, Soli, & 
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Sullivan, 1994) were reported to be semantically more predictable and easier than 

TIMIT sentences  (Stilp, Kiefte, Alexander, & Kluender, 2010).  The sentences were 

synthesized to produce 2.5, 5.0 or 10.0 syllables per second, where the average 

duration of sentences was 2.6, 1.4, or 0.8 s, respectively.  Five reversal conditions 

were used (0, 20, 40, 80, and 160 ms reversals).  Across the three rate conditions 

(slow, medium, and fast), intelligibility reached relative minimum levels when the 

reversals were roughly the durations of one syllable, suggesting that tolerance for 

temporal distortions do not arise through absolute perceptual limits for durations but 

are proportionally relative to the amount of distortion.  A visual inspection of the 

graph shown in Figure 10 indicates that intelligibility falls to 50% at ~30 ms at the 

slow rate, ~60 ms at the medium rate, and ~120 ms at the fast rate. 

 

Figure 10. Reproduced from Stilp, Kiefte, Alexander, & Kluender (2010), 
this graph shows intelligibility curves of English sentences as a 
function of the size of local-reversals (segment durations in ms) and 
speech rates (in syllables per second: slow = 2.5, medium = 5.0, fast 
= 10). 
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Although these findings demonstrate the flexibility of perceptual processes, to 

adjust to rate changes as well as directional distortions, they may also reveal 

limitations.  For example, Figueroa (2009), who used 10 conditions of reversal sizes, 

notes that when doing equivalent time window comparisons, the intelligibility curve 

does not shift directly in proportion to the rate in the dilated sentences, where 

performances fall slightly sooner (that is, at smaller reversals than predicted).  This is 

attributed to the possibility that the perceptual system has inherent properties that 

constrain its ability to adjust to distortions beyond a certain range.  This limit (80-90 

ms) for temporal integration may be reached even before the stimuli properties are 

predicted to induce processing difficulty.  In the same vein, if speech processing 

relies upon temporal integration windows that adjust to all speech rates, it is predicted 

that a wider range of temporal integration windows can be found in this specific 

processing task.  Testing the intelligibility of locally reversed sentences that are 

further compressed and dilated in gradual steps may reveal that the curves do not shift 

beyond certain points. 

 

2.4 Perspectives from development and bilingualism 
 

An important part of development is learning the same perceptual tuning 

process that is present in adults.  Some of the abilities underlying perceptual 

normalization are present at early ages.  Using the continuum between [b] and [w], 

Eimas and Miller (1980) found that infants as early as at the age of 2 – 4 months 

perceive these sounds categorically.  Moreover, they report that perceptual boundaries 
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shift in relation to the duration of the syllable, as found among adults (Miller & 

Liberman, 1979).   

Although infants are born with high sensitivity to potentially phonemic 

contrasts found among the world’s languages, their capacity to discriminate non-

native contrasts declines by the age of 10 months (Werker & Tees, 1984).  However, 

this sensitivity is not lost forever, as demonstrated by the native acquisition of a 

second language through exposure during sensitive periods (Werker & Tees, 2005).  

An examination of the conditions under which sensitivity to non-native phonemic 

contrasts can be recovered reveals the important role interpersonal interaction during 

exposure (Kuhl, Tsao, & Liu, 2003).  It is reported that 9-month old American infants 

do not show the ability to discriminate the alveolo-palatal affricate and fricative of 

Mandarin Chinese.  These infants who were exposed to Mandarin Chinese either 

through audio-only or audio-visual recordings through experimental sessions did not 

show sensitivity to differences among these sounds, whereas those who were exposed 

to the language input through interpersonal interaction showed a recovery of these 

phonemic contrasts.   

Although children develop sensitivity to native contrasts at early stages, the 

maturation of perceptual abilities through a variety of speech conditions takes longer 

periods of time through physiological changes. Studies have shown that children have 

poorer temporal resolution than adults (Abel, 1972; Wrightman, Allen, Dolan Kistler, 

Jamieson, 1989), reaching adult performance levels around age 8 (Davis & 

McCroskey, 1980). The ability to discriminate small changes in frequency may not 

reach adult-level acuity until about 6 years of age (Olsho, Schoon, Sakai, Turpin, & 
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Sperduto, 1982; Jensen, Neff, & callaghan, 1987). Children have more difficulty than 

adults in perceiving speech in noise (Mills, 1975; Elliott, 1979; Nittrouer & 

Boothroyd, 1990; Fallon, Trehub, & Schneider, 2000).  This is attributed to age-

related differences in auditory sensitivity, where children have higher auditory 

thresholds than adults in especially low frequency ranges, and these thresholds may 

not reach adult levels until around the age of 10 (Elliott & Katz, 1980). Fallon et al. 

(2000) report that children even at 11 years of age require higher signal-to-noise 

ratios than young adults to perform comparably in word identification tasks where 

sentences are embedded in multitalker babble.  

For both children and adults, the amount of exposure to a language plays an 

important role in speech processing.  Familiar words generally require less acoustic 

information for identification (Rosenwieg & Postman, 1957).  Part of children’s 

poorer performance with word detection in noise is associated with their limited 

language experience (Elliott, 1979; Nittrouer & Boothroyd, 1990).  Similarly, non-

native listeners are more adversely affected by noise than native listeners (Buus, 

Florentine, Scharf, & Canévet, 1986; Mayo, Florentine, & Buus, 1997).  In tasks 

where natives and non-natives may perform similarly in quiet conditions, differences 

emerge with the introduction of noise.  Mayo et al. (1997) investigate the effect of 

age-of-acquisition on English L2 performance in different degrees of noise.  The task 

for participants, whose first language was Spanish, was to identify the target word at 

the end of an English sentence, where sentences were either high or low in 

predictability.  Those who learned English before the age of 6 were more resilient to 

noise (in other words, had higher accuracy with similar noise-levels) than those who 
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learned English after the age of 14.  In addition, late learners did not show a 

difference in performance between sentences with low and high predictability, unlike 

the early learners.  Because the subjects were all similar in age, late learners overall 

had shorter duration of exposure than the early learners.  Nevertheless, statistical 

analysis taking into account exposure duration demonstrated that it is not as strong of 

a predictor as age-of-onset in these results.  When exposure duration was matched 

with the early learners, late learners still showed a significantly poorer performance.   

All together, these findings suggest that factors underlying difficulty in speech 

processing among children and non-native adults differ.  While children undergo 

developmental changes in their auditory processing abilities and can benefit from 

increasing exposure to their language, late learners seem limited by constraints that 

are more permanent.  Another example of the difference between the developmental 

constraints underlying children and adult late-learners comes from the differences in 

performances to conversational and clear speech.  Clear speech, which is marked by 

enunciation and corresponding acoustic-phonetic markers, benefits adults with 

normal hearing, impaired hearing, as well as children (Picheny, Durlach, & Braida, 

1985; Bradlow, Kraus, & Hayes, 2003).  However, a comparison of performance 

while processing conversational and clear speech among non-native adult listeners 

did not show the same degree of benefit from clear speech (Bradlow & Bent, 2002).  

This suggests that benefits from clear speech are derived from rich experience with a 

language, and it appears that this experience must be gained in early ages of 

development. 
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The difference between early and late bilinguals in the study conducted by 

Mayo et al. (1997) demonstrates the role of input during sensitive periods for 

developing the flexibility to adjust to a wider range of perceptual environments.  

However, the difference between monolinguals and early bilinguals in the same study 

also point to the effect of bilingualism itself on perceptual capacity.  Although the 

performance among monolinguals and early bilinguals (as well as late bilinguals) 

were very similar in quiet conditions, monolinguals performed better than both 

groups in noisy conditions.  Similar patterns are replicated in another study that tested 

bilinguals whose first language is Italian (Meador, Flege, & Mackay, 2000).  Because 

accent and proficiency of English was not assessed in Mayo et al.’s (1997) study, and 

because speakers even in the early bilingual group were reported to have a noticeable 

foreign accent in Meador et al’s (2000) study, Rogers et al. (2006) focus their 

comparison on monolinguals and early bilinguals, whose abilities in English and 

Spanish were assessed through questionnaires, interviews, and recordings (Rogers, 

Lister, Febo, Besing, & Abrams, 2006).  Only monolingual and bilingual participants 

that were rated by monolingual speech-language pathology trainees as having little or 

no regional or foreign accent in English were included for the full study. Among the 

bilinguals, language assessments suggested that some degree of language attrition in 

Spanish was present among more than half the participants.  To extend the findings of 

previous work, Rogers et al. included noise conditions with reverberations. 

Reverberations refer to the persistence of a sound, which is common in enclosed 

spaces.  Noise and reverberations often occur simultaneously, and their combination 

is more detrimental for speech perception than the sum of the individual components 
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(Nabelek, 1988).  Comparing the consequences of these distortions, which are present 

in typical environments, among monolinguals and bilinguals contributes to a better 

understanding of the factors underlying perceptual adaptability.    

Roger et al. (2006) replicate previous pattern of results, where both 

monolinguals and early bilinguals have perfect performance in a word recognition 

task in quiet conditions, and moreover, the performance of bilinguals decreases more 

dramatically to the noisy conditions.  The findings suggest that in addition to age-of 

acquisition factors, acoustic degradations more adversely affect bilinguals than 

monolinguals.  One potential explanation for these results is that bilinguals have a 

larger number of target phonemes with two languages, forcing them to have more 

fine-tuned perceptual abilities that are consequently less robust in noise.  Another 

possibility is that language processing for bilinguals requires more cognitive 

resources to suppress the other language.  Because the baseline performance of 

bilinguals is thought to be already attentionally demanding, less resource may be 

available to them in adverse conditions. While constant experience with more than 

one language has been shown to have beneficial effects in the domain-general aspects 

cognitive control (Bialystok, 2001), these findings suggest that reduced perceptual 

adaptability to noise is a cost. 

Although this summary has focused on studies where differences among 

native and non-native participants only emerge in adverse listening conditions, age of 

acquisition has consequences for many areas of language processing, including 

phonology (Oyama, 1976; Flege, MacKay, Meador, 1999) and morphosyntax (Klein 

& Dittmar, 1979; Johnson & Newport, 1989; Beck, 1998; DeKeyser, 2000; 
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DeKeyser, Ravid, Alfi-Shabtay, 2005).  Evidence from sign language research 

demonstrates that age-effects in language acquisition are not specific to auditory 

perception or vocal production (Newport, 1990; Mayberry, 1993).  Late-learners of 

sign language show “accents” in their production (Cicourel & Boese, 1972; Kantor, 

1978; Mirus, Rathmann, & Meier, 2001; Rosen, 2004; Chen Pichler, 2006; Boyes-

Braem, 1999).  Some features that reveal non-nativeness include handshapes, facial 

expressions, rhythm, and movements.  Accents also exist for those who are native 

signers in one sign language and learning another (Budding, Hoopers, Mueller, & 

Scarcello, 1995).  

In perception, native signers and late learners differ in judgments about what 

phonological aspects of signs are most salient (Corina & Hildebrandt, 2002).  An eye-

tracking study has also shown that native signers and beginning signers fixate on 

different locations in the signing space (Emmorey, Thompson, & Colvin, 2009).  In 

the perception of handshapes, which sometimes show categorical perception among 

native signers (Emmorey, McCullough, & Brentari, 2003; Baker, Idsardi, Golinkoff, 

& Petitto, 2005), late learners show different profiles (Best, Mathur, Miranda, & 

Lillo-Martin, 2010).  In particular, performance of deaf late-learners reflect more 

attention to fine-grained phonetic properties of signs than deaf native signers and 

hearing late signers (Best, Mathur, Miranda, & Lillo-Martin, 2010).  This converges 

with previous studies that suggest that deaf late-learners experience “phonological 

bottlenecks” that have consequences for many other aspects of processing (Mayberry 

& Fischer, 1989; Mayberry, 2007). Late-learners take longer to identify ASL signs in 

gating tasks, requiring more phonetic or phonological information than native signers 
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(Emmorey & Corina, 1990).  When testing sentence recall among signers who first 

acquired ASL at ages ranging from birth to 13, later ages of acquisition were linked to 

lower performance, due to increasing phonological errors and inefficient sign 

recognition (Mayberry & Fischer, 1989), even when length of signing experience was 

comparable (Mayberry & Eichen, 1991).  Furthermore, phonological errors were 

correlated with poorer comprehension. In a probe recognition task, where the 

participant has to accurately respond whether or not a target sign was present in a 

sentence, late signers were slower to reject phonologically similar substitutes 

(Emmorey, Corina, and Bellugi, 1995).  In contrast, native signers were only affected 

by semantic substitutes.   

Later ages of acquisition result in difficulty with grammatical aspects as well.  

In tasks testing morphological processing, late learners show variable use of 

morphology (where obligatory morphemes are omitted) as well as inappropriate use 

of whole-word signs that reflected incorrect representation of the morphological 

structure (Newport, 1990).  Grammatical judgment accuracy of sentences decreases 

with delays in exposure to a first language, (Mayberry, 2003; Boudreault & 

Mayberry, 2006; Mayberry & Lock, 2003).  In cases where late learners have 

comparable levels of performance on an off-line grammaticality judgment tasks, 

differences emerged in on-line tasks (Emmorey, Bellugi, Friederici, & Horn, 1995; 

Emmorey, 1995).   

When sign language skills were tested in a sentence shadowing task, where 

participants simultaneously watch and produced sign language narratives, better 

performance among native signers also reflected better comprehension (Mayberry & 
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Fischer, 1989).  In this study, performance in good and poor viewing conditions were 

also compared, where the poor conditions were created by adding visual noise of 

randomized black and white dots, which looked like video “snow.”  Although this 

reduced shadowing accuracy overall, the effect was similar for both native and non-

native signers.  As mentioned previously in spoken language studies, late bilinguals 

were more adversely affected by auditory noise than monolinguals or early bilinguals 

(Buus, Florentine, Scharf, & Canévet, 1986; Mayo, Florentine, & Buus, 1997).  

Although more studies on the effect of visual disruptions in sign language processing 

is necessary, if these patterns persist, it would suggest that some aspects of perceptual 

adaptability to adverse conditions are modality dependent. 

No studies have investigated the effect of late language acquisition on 

temporal integration windows in processing.  Understanding the effects of late 

learning is particularly important in sign language processing because >95% of deaf 

individuals are born to hearing parents and do not receive exposure to language from 

birth (Mitchell & Karchmer, 2004).  Because the experiments presented here examine 

temporal integration windows through locally time-reversed sentences, understanding 

the consequences of processing imperfect input among native and non-native users of 

a language are relevant factors to consider. 
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2.5 Experiment 1 – Effect of modality on temporal 
integration windows: evidence from local-reversals of 
ASL sentences 

 

Building upon studies on the cognitive restoration of locally time-reversed 

speech (Saberi & Perrott, 1999; Greenberg & Arai, 2001), the aim of Experiment 1 is 

to better understand the universal constraints for temporal direction and integration by 

testing the visual processing of language.  The ability to detect and integrate rapid 

acoustic signals in the speech stream is essential for auditory speech perception.  The 

intelligibility of temporally distorted sentences suggests that one important time-

window for integrating the speech signal lies somewhere below ~ 50 ms (Greenberg 

& Arai, 2001).   Sentences with local-reversals within this window can be cognitively 

restored successfully, whereas sentences with reversals in sizes that go beyond these 

perceptual integration windows cannot.  What happens in a language that is processed 

visually?  Anecdotal accounts suggest that globally reversed ASL is somewhat more 

intelligible than backwards English, but not entirely so. To what degree the spatial 

encoding and the temporal properties of ASL affect time window of integrating 

linguistic information in the visual modality remains unknown.   

If previous findings from the perception of locally-reversed speech can be 

extended to the processing of ASL, this would suggest that 50 ms time-windows are 

modality-independent.  Given that <50 ms time windows were attributed to the 

analysis of fine-structures in speech (Greenberg & Arai, 2001), this prediction is 

unlikely.  For ASL, time-windows at longer time-scales would point to differences in 

processing due to the sensory channel of communication.  Finding a different 
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psychophysical profile for a sign language would point to unique temporal integration 

windows for the visual interface for language perception, but it does not necessarily 

rule out the possibility that these windows are dependent on the linguistic nature of 

the signal.  Communication through a different sensori-motor system affects 

linguistic properties of the language.  For example, although the vast majority of 

spoken languages employ sequential morphology to increase the complexity of 

words, all sign languages use simultaneous or non-concatenative forms by using 

spatial modulation and non-manual markers for grammatical inflection.  This means 

that for spoken languages, the addition of each new unit of meaning often takes 

longer to produce, but this is not necessarily the case in sign languages.  What could 

be the cause of such differences?  Simultaneous strategies may be favored in sign 

languages not only because spatial encoding allows for layered units of information 

but also because of the time pressures for natural language processing. 

Although using ASL involves manual articulators that are massive compared 

to the organs of the vocal tract in speech, the global rate of naturally produced 

utterances, as measured by the number of propositions in a given amount of time, is 

similar to spoken English (Bellugi & Fischer, 1972; Klima & Bellugi, 1979; 

Grosjean, 1979).  When comparing smaller units such as words and signs, however, 

the rate of signs is half the rate of words in the equivalent measure of time.  Similar to 

English, ASL constructs linguistics structures incrementally over time.  One 

hypothesis is that each step contains more linguistic information and takes longer to 

produce than an incremental step in English.  Although these larger steps take longer 

to produce, because information is encoded simultaneously in ASL, overall they may 
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contain similar amounts of linguistic information that is sequentially presented in the 

same amount of time in speech.  Artificially created systems that force sequential 

grammar on a signing system, such as various forms of Manually Coded English, 

may not be learned naturally like ASL because even in highly skilled usage, 

communication is too slow.  These findings reveal an intimate connection between 

modality and linguistic properties.   

Moreover, since phonological features of signs such as handshape and 

location are spatially encoded, is ASL more resistant to the temporal distortion of 

time-compression? Findings similar to speech indicate that there is a modality-

independent upper limit to language processing (Fischer, Delhorne & Reed 1999; 

Foulke & Sticht 1969), suggesting that the channel capacity for language is not 

unique to a particular sensory system.   

In addition to providing to way to learn about time scales for processing 

sucessive input, local-reversals also test a more general ability to tolerate distorted 

signals.  Intuitively, spatial encoding of phonological features is predicted to make 

sign languages more robust to temporal distortions, but according to Fischer et al.’s 

(1999) conclusion about their results seen in time-compressed studies, this is not 

always the case.  However, the greater resistance of ASL to temporal distortions of 

disruptions in the signal created by repetitive temporal interruptions, as compared to 

English (see Figure 11), has been indeed attributed to properties of the visual 

modality (Tweney, Heiman & Hoemann, 1977).   
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Figure 11. Reproduced from Tweney, Heiman & Hoemann (1977), this 
figure shows the intelligibility of ASL and English sentences as a 
function of temporal disruption frequency and signing/speech-time 
fractions.  These results demonstrate that sign language is more 
resistant to temporal disruptions than speech.  

 
Thus, although spatial encoding of phonological features in ASL may result in 

higher accuracies overall for local-reversals, its effect on the size of the time-

windows is less clear.  Based on the hypothesis that there is an intimate connection 

between modality and the rate at which linguistic units are incrementally presented 

over time, it is predicted that ASL sentences are integrated over larger-time windows 

than English. 

Materials 

40 sentences of ASL were constructed by sign language linguists.  These 

sentences were designed to be natural sentences of ASL, using a diverse range of 
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phonological parameters, but low in semantic predictability to force the participants 

to pay close attention to the input rather than guess the sentences from identifying few 

key signs.  These criteria are similar to the ones that are reported for sentences of 

English in the TIMIT corpus.  Although the ideas for semantic content of the 

sentences were taken from TIMIT sentences, the sentences constructed here were not 

direct translations but rather followed ASL grammar.  Two examples of stimulus 

sentences translated into English are, “The girl tends to visit the frog on Wednesdays” 

and “Heavy snow and strong winds make it hard to see the outline of the mountains.” 

The mean average duration of these sentences was 3.53 s (standard deviation ± 0.94 

s).  Since there is currently no large ASL corpus that contains frequency measures for 

signs (although see Morford and MacFarlane (2003), the first to describe frequency 

characteristics of ASL), effort was taken to incorporate signs of varying lexical 

frequency based on intuition.  These sentences also incorporated non-manual features 

that are appropriate to standard use of ASL.  Based on the estimate that fingerspelled 

words appear as frequently as 7%-10% in the overall vocabulary in everyday signing 

(Padden, 1991), a few fingerspelled words were incorporated into these sentences as 

well.  These words were either lexicalized signs (e.g., B-N-K for ‘bank’) or common 

proper names (e.g., N-A-N-C-Y for ‘Nancy’).   

A female native signer modeled 40 experimental sentences and 8 practice 

sentences facing the camera.  All sentences started and ended with a “neutral” 

position, which was defined here as a relaxed position with hands crossed below the 

waist.  The best tokens of each sentence produced by the model were then trimmed to 

768 x 576 pixel frames (29.97 fps, or 33 ms per frame). Frame sequences in 
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uncompressed AVI files were locally reversed at increments of 4, 8, 12, 16, 20, 24, 

and 28 frames (133 – 934 ms) with a control condition without any reversal 

manipulation (0 ms) (see Figure 12 for an example).  This resulted in a total of 320 

sentences so that 40 sentences could be randomly assigned to 8 different conditions, 

with 5 examples per condition, for each participant.  All videos were processed with 

Cinepak codec for stimuli presentation. 

 

Figure 12. Demonstration of how locally time-reversed stimuli were 
created for sentences of ASL. This specific example shows reversals 
133 ms in duration (reversals by 4 frames). 

 
Procedure 

Fourteen deaf participants (11 female, 23 mean age) who all grew up using 

ASL before one year of age participated in this study at Gallaudet University campus.  

Participants were compensated $15/hour for the study.  All instructions for the 

experiment, as well as informed-consent for participation in the experiment and 

video-recording of responses, were given to the participants both in ASL and written 

English, following the protocols of the Institutional Review Boards at Gallaudet 

University and University of Maryland, College Park.  Participants were told that they 

would be viewing videos of sentences of ASL that had been modified by various 

degrees.  They were instructed to sign to the camera whatever they could understand, 

trying to sign back the original sentence as much as possible.  Unlike previous 

experiments from spoken English, where responses were type-written by the 
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participants, here the responses were signed and video-recorded.  Participants were 

allowed to view a sentence up to four times before continuing onto the next sentence, 

moving at their own pace (following Greenberg and Arai (2001)).  After the 

experiment, these responses were coded and analyzed for accuracy in comparison to 

the original sentences.  Accuracy of the responses was calculated by determining how 

many of the manual signs, facial features for grammatical inflection, and spatial 

modulation were correctly reproduced by the participants.  Signs were scored as 

being correct only when they matched all target parameters (handshape, location, and 

movement) and were produced in the original order.  Data were analyzed to 

determine the intelligibility of the sentences as a function of the reversal size.   

Results 

Results for Experiment 1 are presented in Figure 13, where intelligibility is 

plotted as a function of reversal size.  A one-way, repeated measures ANOVA (using 

R 2.8.1, R Development Core Team (2005)), revealed that intelligibility varies with 

the duration of the reversals (F7,104 = 22.924, p < 0.001).  A remarkable difference 

from the patterns seen in the local reversal of speech is that intelligibility in ASL 

levels off to ~50% for even the most degraded stimuli.  Tukey’s Honestly Significant 

Difference (HSD) pair-wise post-hoc tests were conducted to check for differences in 

accuracy among the reversal conditions.  In ASL, reversals 133 ms in duration only 

resulted in a small decrease in accuracy that was not significantly different from the 

control condition.  A significant decrease in intelligibility is found between reversals 

133 ms and 267 ms in duration.  Intelligibility continues to fall until reversals of 533 

ms, and no differences were found among larger reversals (533 ms – 933 ms).  
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Figure 13. Results from Experiment 1 from 14 participants, demonstrating 
the intelligibility curve of ASL sentences as a function of reversal size, 
which implicates ~300 ms temporal integrations windows.  50% 
intelligibility of even the most degraded stimuli is attributed to spatial-
encoding in sign language. Error bars represent plus or minus one 
standard error of the mean. 

 
Discussion 

In speech studies, temporal integration windows have been approximated by 

looking for the reversal size at which intelligibility falls to 50%, or ~60 ms for normal 

speech rates, where reversal sizes where increased in 10 ms increments (Greenberg & 

Arai, 2001).  However, it is not possible to use this criterion in these results from a 
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sign language because even the most degraded sentences remain approximately 50% 

intelligible.  Moreover, in this study, reversal sizes were increased in much larger 

increments (133 ms).  Perhaps one way to compare the results across the modalities is 

to determine the reversal size for the half-way point between the highest and lowest 

accuracy scores, approximately 60 ms in speech and 300 ms in ASL.  Alternatively, 

the first experimental condition at which intelligibility falls sharply can be compared 

across the modalities, 50 ms in speech and 267 ms in ASL.  These estimates are not 

presented as absolute values but as approximations for time scales at which temporal 

integration occurs. 

These results support the hypothesis that ASL sentences are integrated over 

longer time windows than English.  The important differences across the modalities 

are as follows.  In speech, 100+ ms reversal durations leads to intelligibility that is 

close to 0% (Greenberg & Arai, 2001).  In sign language, reversals must be 500+ ms 

in duration to reach lowest accuracy scores.  Even the most degraded sentences 

remain approximately 50% intelligible. Although 100+ ms reversals result in 

unintelligibility in speech, 133 ms reversals do not result in performance that is 

significantly different from the control condition (no reversals) in sign language.  

This should be contrasted with speech, where reversals do not result in drastic 

reduction of intelligibility as long as they are 40 ms or less.  At 50 ms reversals of 

speech, intelligibility falls sharply, reaching 50% by 60 ms.   In sign language, 267 

ms reversals result in a significant decline in intelligibility.  

In speech, accuracy in performance ranges from 100% at the control condition 

to 0% at the most degraded stimuli.  Noticeably in this experiment with ASL, the 
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percent accuracy without local-reversals was at 90%.  This is similar to the findings 

by Fischer et al. (1999), who tested the intelligibility of time-compressed ASL 

sentences, where percent accuracy was also around 90% for sentences played at the 

control/normal rate.  Also in a sentence-shadowing task (Mayberry & Fischer, 1989), 

the upper boundary in percentage of ASL sentences that were signed back without 

any error in good viewing conditions for native signers was 76% in one experiment 

and 88% in another.  The percentage of native signers who made no mistakes 

shadowing ASL sentences was 91%.   

One reason why accuracy scores were ~90% for even temporally intact 

sentences could be attributed to task differences between this study and speech 

experiments (Greenberg & Arai, 2001).  In speech, participants were asked to type 

their responses, which suggests that they had a workspace where they could reference 

and revise their answers while listening to the sentences.  If hearing participants are 

asked to speak back the sentences in the same way that sentences were signed back in 

this experiment, it is possible that accuracy could be less than 100%.  If, however, 

better controlling how responses are given and collected still results in significant 

differences at ceiling levels of performance, it may suggest that modality contributes 

to differences in the working memory for sentence processing. 

Fischer et al. provide some speculations on why accuracy was overall higher 

for speech even with normal sentences in their compression study.  They suggest the 

possibility that the sentences they used were not completely natural in ASL since they 

were translations of English sentences.  Moreover, they attribute the unnaturalness of 

some of their sentences to the fact that isolated sentences with verb agreement and 
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topicalization are awkward in ASL because they are discourse-dependent (Lillo-

Martin, 1991).  If discourse-dependence of a language has a significant effect on the 

ceiling performance in sentence intelligibility tasks, it is predicted that other spoken 

languages that are described as being more discourse-dependent than English (such as 

Chinese, Korean, and Japanese (Lillo-Martin, 1991) will show similar patterns as 

ASL. 

A review of the errors that occurred in the control condition in Experiment 1 

indicates that participants did not sign certain pronouns.  Because ASL is a pro-drop 

language, such omissions do not often change the meaning of sentences in 

conversations, but these were scored as errors in the experiment.  Other errors 

included changes in sign order, selection of different variant handshapes, or selection 

of different signs that did not affect the meaning of the sentences.  For example, one 

participant substituted WITH for HAVE in a control condition. 

The mean average intelligibility of the conditions where performance levels 

off at its lowest point (533 ms, 667 ms, 800 ms, and 933 ms reversals) is 47%, which 

is notably higher than 0% found in speech.  This is most likely attributable to the 

spatial encoding of phonological features in ASL. Information on handshape, 

location, and orientation of the signs, along with facial features, can be extracted from 

a single frame of a sign.  Brentari (2002) compares signs without movement 

information to words without vowels, where consonants are more informative. 

Nevertheless, all signs have movement, and signs can exist as minimal pairs 

just through the difference of movement.  Moreover, native signers consider 

movement to be the most salient component of a sign (Corina & Hildebrandt, 2000).  
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Reversing the temporal order of the movement sequence can result in complete 

differences in meaning.  Because of the spatial modulation in the verb GIVE, “I-

GIVE-YOU” played backwards results in “YOU-GIVE-ME” (see Figure 14).   

 

Figure 14. Reproduced from Liddell (2000), this illustration represents the 
sign for GIVE, where the direction of movement can mean I-GIVE-
YOU but the reverse would result in the opposite meaning YOU-
GIVE-ME. 

 
Some movements also involve changes in handshapes.  For example, TAKE 

played backwards results in DROP, and SEND played backwards results in SHUT-

UP (Brentari, 1998).  Another example of the importance of temporal order is in 

fingerspelling.  However, there are many cases where movements are not as sensitive 

to temporal direction.  Trilled movements have also been called local movement or 

oscillations (Liddell, 1990). For example, it is possible to accurately identify the sign 

for tree, which involves trilled radial-ulnar movement, whether it is played forwards 

or backwards.  Finally, there are many signs that would not mean anything if they 

were played backwards, such as CHINA. 

When examining the errors that participants make, some signs seem more 

sensitive or robust to the local time-reversals.  In one sentence, REDUCE was 
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replaced by the opposite sign INCREASE.  Even though the verb ASK involves both 

a change in movement and hand-orientation, one participant substituted ASK-YOU 

for ASK-ME even though ASK-ME played backwards has the wrong hand-

orientation.  A similar example is the substitution of the one-handed sign TELL-ME 

for the two-handed sign ANNOUNCE.  These cases suggest that even in cases where 

the backwards version of a sign does not perfectly match up to a real sign, the 

saliency of the movement helps the viewer perceive approximates, which is consistent 

with Corina & Hildebrandts’s (2002) results.  Another participant interpreted the sign 

for PULL-APART, as in peeling an orange, as representing the shape of the orange, 

where the hands come together rather than apart. For many other signs, the decrease 

in accuracy scores was simply a result of omissions rather than wrong substitutions. 

Although fingerspelled words were recognized as fingerspellings, accuracy was low 

for these signs.  The trilled signs DIRTY (wriggling movement) and ORANGE 

(closing movement) were always identified correctly. 

Further analysis that is planned for the future includes studying the error types 

by determining what percent of errors were due to misses (no guesses) or mis-

guesses.  None of the previous studies on locally-reversed speech (Saberi & Perrott, 

1999; Greenberg & Arai, 2001; Figueroa, 2009; Stilp, Kiefte, Alexander, & Kluender, 

2010) report error types, but a comparison across the English and ASL may indicate 

modality-effects for error types.  Because of the kinds of errors listed above, where 

playing a sign backwards can result in a close approximation to another sign, one 

prediction is that ASL will have a higher proportion of errors that are due to mis-
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guesses than English, which is predicted to have a higher proportion of misses than 

ASL. 

 The fact that even the most degraded sentences in ASL are still  ~50% 

intelligible reveals a modality effect in temporal integration, presumably due to the 

spatial encoding of phonological features in sign language.  This result is similar to 

findings of Fischer et al. (1999), who tested intelligibility of ASL sentences that were 

compressed at different rates.  Although they do not discuss this aspect of their data, 

figures show that even in the most accelerated condition (compression by a factor of 

6), sentences are  ~20% intelligible and individual signs are ~40% intelligible.  As 

compared to the findings from English by Miller and Licklider (1950), Tweney et al. 

(1977) also find that ASL is more resistant to temporal disruptions.  Even at the most 

disruptive condition of frequency of interruptions and speech-time fractions, ASL 

was found to be ~35% intelligible (versus 5% in speech).  Like the findings from 

speech, intelligibility of a sequence of words is affected by whether they are 

presented in a random list or grammatical sentences.  In both cases, ASL is more 

resistant to temporal disruptions than English.  Tweney et al. (1977: 255) speculate 

“whether [resistance to disruption] derives from the linguistic structure of the signs or 

from the redundancy that would be possessed by any dynamic visual display.”  

Findings from the local-reversal of ASL and an examination of errors suggest that 

both factors are involved in the results.  While ASL sentences are more resistant to 

local-reversals overall, the phonological/grammatical or prosodic features of some 

signs make them more robust than others. 
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Nevertheless, the sharp decline in intelligibility at 267 ms reversals suggests 

that reversals in such durations impose a significantly greater processing difficulty 

than conditions with reversals of shorter durations.  In speech, acoustic signals in the 

speech stream fluctuate over smaller time-scales, and 50 ms reversals cause a 

significant decrease in intelligibility.  This value is mostly likely attributable to the 

duration of fine-structures in speech, particularly consonants.  Linguistic units in ASL 

have been reported to fluctuate over longer time-scales (Bellugi & Fischer, 1972; 

Wilbur & Nolen, 1986).  Temporal integration windows in the time-scale of 250 – 

300 ms may correspond to the average duration of syllables in ASL (Wilbur & Nolen, 

1986).  A comparison of English and ASL in the cognitive restoration of locally-

reversed sentences suggest that temporal processing locks to different linguistic units 

across modalities (segments in speech and syllables in ASL).  Nevertheless, although 

the values at which intelligibility falls drastically may differ between a signed and 

spoken language, they both implicate temporal integration windows that are 

dependent on the duration of linguistic units.   

 

2.6 Experiment 2 – Effect of modality-independent 
mechanisms on temporal integration windows: 
evidence from compression and local-reversals of ASL 
sentences 

 

In Experiment 1, intelligibility as a function of reversal size implicate 

temporal integration windows that are ~ 250 – 300 ms in duration.  Experiment 2 is 

designed to test whether these results are linked to the size of linguistic units in ASL 
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or should be attributed to more general visual processing mechanisms.  One way to 

test this is to manipulate the rate of the sentences, where compressions by a factor of 

2 reduces the average duration of the articulations by half.  Two studies in speech 

have used the combination of compression and local-reversals and demonstrated that 

the point at which intelligibility falls drastically is dependent on speech rates 

(Figueroa, 2009; Stilp, Kiefte, Alexander, & Kluender, 2010).  Whereas intelligibility 

falls to ~50% at ~60 ms reversals at normal rates of speech, it falls the same amount 

at ~30 ms reversals at 2x rates, proportional to the reduction of sentence durations.  

These findings from speech, as well as the findings from Experiment 1, suggest that 

although durations of temporal integration may vary within and across languages, the 

mechanism of integrating the sensory input according to windows that track the 

fluctuation of linguistic units is universal.   

Materials 

The same 40 sentences of ASL from Experiment 1 were used again.  The 

sentences were compressed by a factor of 2 by deleting every other frame from the 

original videos.  The resulting videos were then locally reversed at increments of 4 – 

28 frames (133 – 934 ms) with a control condition without any reversal manipulation 

(0 ms).  This resulted in a total of 320 sentences so that 40 compressed sentences 

could be randomly assigned to 8 different conditions, with 5 examples per condition, 

for each participant.  All videos were processed with Cinepak codec for stimuli 

presentation. 
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Procedure 

Fourteen deaf participants (10 female, 21 mean age) who all started learning 

ASL before one year of age were recruited for this study on Gallaudet University 

campus.  The procedure for the experiments were identical to Experiment 1 except 

the videos of compressed sentences were played.  Participants were compensated 

$15/hour for the study.  

Results 

Results for Experiment 2 are given below, superimposed with the results from 

Experiment 1, where intelligibility is plotted as a function of reversal size (Figure 15).  

A two-way repeated measures ANOVA (using R 2.8.1, R Development Core Team 

(2005)) indicated that intelligibility varies significantly by rate (F1,208 = 23.33, p < 

0.001) and by reversal size (F7,208 = 55.74, p < 0.001), and that there is an interaction 

between rate and reversal size (F7,208 = 2.41, p < 0.05), most likely due to similar 

floor-effects of ~50% in both rate conditions.  A one-way repeated measures 

ANOVA for the compressed sentences showed that intelligibility varies with the 

duration of the reversals (F7,104 = 39.34, p < 0.001).  Tukey’s Honestly Significant 

Difference (HSD) pair-wise post-hoc tests were conducted to check for differences in 

accuracy among all the reversal conditions for the compressed sentences. A sharp 

decrease in intelligibility is found between the control condition and 133 ms reversals 

(p<0.001), and additionally between 133 ms and 267 ms reversals (p<0.001).  No 

differences were found among larger reversals (400 ms - 933 ms).  Tukey’s HSD 

post-hoc tests comparing normal and 2x rates at each condition indicate that there 

were no differences in conditions without any reversals, a significant difference at 
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133 ms reversals (p < 0.05), marginally significant difference at 267 ms and 400 ms 

reversals ( p ~ 0.10), and no significant difference among larger reversals (533 – 933 

ms).   

 

Figure 15. Results from Experiment 1 and 2 (14 participants in each 
experiment), demonstrating the intelligibility curve of ASL sentences 
as a function of reversal size and compression by a factor of 2, where 
temporal integration windows are proportional to the input rate 
(indicated by a sharp drop in intelligibility at ~267 ms reversals at the 
normal rate and ~133 ms reversals at the 2x rate).  These results 
suggest that temporal integration windows in sign language are 
determined by the rate and durations of linguistic units. Error bars 
represent plus or minus one standard error of the mean. 
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Discussion 

These findings support the assumption that local time-reversals of the sensory 

input provide insights about temporal integration windows of linguistic units.  The 

results from Experiment 2 suggest that ASL sentences are integrated over time 

windows that scale to the duration of linguistic units.  The key difference between 

Experiment 2, where sentences were presented at double the normal rate, from 

Experiment 1, is that intelligibility falls drastically earlier at 133 ms (compared to 267 

ms). Moreover, intelligibility of compressed sentences plateaus sooner at 400 ms 

(compared to 533 ms in normal rate sentences). 

These results are similar to the findings from speech (Figueroa 2009, Stilp, 

Kiefte, Alexander, & Kluender, 2010), where the implication of ~60 ms temporal 

integration windows from local reversals of sentences played at normal rates does not 

seem to be inherent to auditory processing since windows decrease in duration as the 

linguistic units also decrease in duration with compression.  In the same way, the 

results from Experiment 1 (~ 250 – 300 ms temporal integration windows) are 

indicative of both visual and linguistic aspects of integration.  Experiment 2 provides 

evidence that a universal, modality-independent mechanism in sensory processing for 

language is to integrate the input in time-scales that scale to the fluctuation of 

representational units.   

In speech, findings from local-reversals provide evidence for temporal 

integration windows that correspond to the sizes of phonemes.  The temporal order of 

phonemes is crucial for word identification.  Based on previous reports of sign and 

syllable rates (Bellugi & Fischer, 1972; Wilbur & Nolen, 1986), it is possible that ~ 
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250 – 300 ms temporal integration windows correspond to the average duration of 

syllables in ASL.  Chapter 3 explores in greater depth the average rate of signs, 

morphemes, and syllables among native signers of ASL.  However, an analysis of 

signing rate for the 40 sentences used in these experiments indicated an average 

period of ~500 ms per grammatical component (manual sign, facial features for 

grammatical inflection, and spatial inflections), and longer for individual signs. In 

Experiment 1, intelligibility dropped sharply at 267 ms reversals.  Wilbur and Nolen 

(1986) report that syllables are on average 250 ms in duration.  Although segment 

analogies have been made in signs (Liddell, 1984), and reversing the temporal order 

of these segments can result change in meaning, these results suggest that sign 

languages can tolerate changes in temporal direction to a greater degree than in 

spoken languages, suggesting that the nature of how segments are encoded in signing 

and speech are quite different (Brentari, 1998; Wilbur & Allen, 1991).  In addition to 

simultaneous encodings, repetitions that are possible in sign without producing 

lexical differences (Channon, 2002) make sign language much more robust to 

reversals in temporal direction than speech.   

 

2.7 Experiment 3 – Effect of developmental factors on 
temporal processing: evidence from late-learners of 
ASL  

 

An important aspect of language acquisition is to recognize – and match in 

both perception and production – the temporal dynamics of the target language.  

Here, preliminary results are presented with deaf late L2-learners of ASL who self-
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report English as their first language.  Acquiring a language later in life often has 

consequences for properly learning the temporal parameters that distinguish different 

representations and processing a rapid sequence of input in on-line processing.  The 

goal of Experiment 3 is to explore the effect of developmental factors on temporal 

processing by comparing the native signers of Experiment 1 with late-learners of 

ASL.  Studying this group will also lead to a better understanding of whether the 

mechanism of temporally integrating the sensory signal according to the size of 

linguistic units in the language is universally present among all users of a language or 

only the native users.  If this aspect of language processing is universally present even 

among late-signers, it is predicted that intelligibility of sentences would fall 

drastically at 267 ms reversals and level off at 533 ms.  In contrast, if the 

phonological bottlenecks that late learners experience is due to having temporal 

integration windows that do not match the time scale at which the sensory 

information generated, then it expected that intelligibility will fall drastically at 133 

ms reversals and level off around 400 ms.  Another logical possibility is that 

intelligibility will fall drastically and level off at larger reversals, but together with 

previous work on spoken languages, where late learners are more sensitive to 

distortions in the input (Rogers, Lister, Febo, Besing, & Abrams, 2006), and pilot 

trials testing the experimental materials on late signers before Experiment 1 was 

conducted,  it is predicted that late-learners are less tolerant to distortions than native 

signers.  This is in contrast to the opposite prediction from the assumption that late 

learners are more tolerant of variability since they have less robust representations. 
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Processing locally time-reversed sentences requires perceptual flexibility.  

Perceptual flexibility may come from more efficient processing, where efficient 

processing is dependent on the coupling of perceptual processes to the signal that has 

to be analyzed.  Previous work on bilinguals of spoken languages suggests that the 

ability to adapt to noisy listening conditions is weaker than monolinguals, and that 

late bilinguals face the greatest degree of difficulty in their second language (Mayo, 

Florentine, & Buus, 1997).  Local-reversals create disruption that is akin to noise.  

Moreover, since studies on late learners of ASL have shown that they may use finer-

grained phonological processing (Best, Mathur, Miranda, & Lillo-Martin, 2010), 

resulting in “phonological bottlenecks” that affect other aspects of processing 

(Mayberry & Fischer, 1989; Mayberry, 2007), it is possible that such results can be 

attributed to temporal integration windows in time-scales that are smaller than those 

that are characteristic of native signers.  The longer temporal integration windows 

that more precisely match the duration of linguistic units may require language 

exposure at early stages of development.  Experiments on non-linguistic stimuli 

(using flashes of light) have shown that visual processing can operate in smaller time-

scales around ~150 ms (Busch, Bubois, & Van Rullen, 2009; Perrett, Rolls, & Caan, 

1982).  However, it is also possible that the nature of signing rates present in the input 

may still require late-learners to integrate over appropriate durations that map to 

representational units.   

Materials 

The same materials from Experiment 1 were used in Experiment 3.   
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Procedure 

8 deaf participants (7 female, 31 mean age) who all started learning ASL as an 

L2 after age 10 were recruited for this study at Gallaudet University campus. Based 

on the finding that L2 learners of ASL have distinct profiles from late L1 learners 

(Mayberry, 1993), it was decided that investigations on late learners should progress 

in at least two stages.  This preliminary experiment tests the group that is assumed to 

have stronger language skills, so that age of acquisition is not confounded with 

additional factors associated with late L1 acquisition, although language skill 

assessment pre-tests were not included in the experiments.  Moreover, because visual 

processing among deaf and hearing are known to be different due to different sensory 

experiences (Bavelier, Dye, & Hauser, 2006), it was decided that hearing late learners 

of ASL should not be included at this early stage of the project.   

Here, only participants who reported profound hearing loss before the age of 

two years old and listed English as an L1 were included in the study.  Participants 

were also required to have at least 5 years of ASL signing experience to be eligible.  

The average number of years of signing experience was 15. The procedure for the 

experiments was identical to Experiment 1.  Participants were compensated $15/hour 

for the study.  

Results 

Results from Experiment 3 are shown in Figure 16, presented together with 

the results from Experiment 1, where intelligibility is plotted as a function of reversal 

size.  Because of the difference in sample sizes thus far (although plans are made to 

continue the study to full sample size to match Experiment 1), differences were not 
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tested statistically.  However, the overall patterns indicate that performance among 

late-signers is lower than early-signers by ~10%.  Late-signers also show a drastic 

decrease in performance at 133 ms reversals.  Moreover, their performance levels off 

at two different time scales, first at 267-400 ms reversals, which is followed by 

another sharp decrease at 533 ms, after which intelligibility scores do not change 

significantly. 

 

Figure 16. Results from Experiment 1 and 3, demonstrating the effects of 
age-of-acquisition in processing time-distorted stimuli. Note: n=14 in 
Experiment 1 and n=8 in Experiment 3.  Late learners demonstrate 
greater sensitivity to time distortions in the input, but performance 
among the early and late learners plateau at similar distortion scales. 
Error bars represent plus or minus one standard error of the mean. 
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Discussion 

These findings point to differences in temporal processing due to acquiring a 

language later in life.  Experiment 3 tested two hypotheses: 1) temporal integration 

windows for late signers are the same as native signers if the size of linguistic units 

determines the duration of these windows, and 2) temporal integration windows for 

late signers are shorter in duration than early signers because the development of 

longer windows requires early exposure to signing.  The current resuls partially 

support both hypotheses.  The performance of early- and late-signers are similar in 

that intelligibility plateaus at similar reversal durations (533 – 933 ms).  In contrast, 

Experiment 2 showed that shorter temporal integration windows result in earlier 

reaches to lowest levels of performance.  However, performance among late-learners 

fell drastically at 133 ms reversals, similar to the findings from Experiment 2.  Based 

on the shape of the intelligibility curve, it is likely that this was not simply due to an 

overall lower performance due to late acquisition.  Although the task is generally 

more difficult for late-signers, they are also more sensitive to temporal distortions.  

Processing difficulty at smaller reversals implicate shorter temporal integration 

windows.  Reversals that go beyond these windows become much more difficult to 

integrate and map to linguistic representations.  Nevertheless, knowledge about the 

fluctuation and duration of linguistic units from signing experience may help late-

signers recover information from reversals that exceed these windows. 

More data is needed before conclusions can be made about whether late L2-

learners processing normal rate sentences pattern more like early-learners processing 

normal rate sentences or compressed sentences, or whether they have their own 
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unique profiles as a group, as they seem thus far.  Moreover, to better understand 

what processing of locally reversed stimuli tell us about supporting language skills 

and other cognitive factors, such as working memory, it would be worthwhile to 

conduct the experiments with language and cognitive assessments in the future, not 

only among late learners but all participants in experiments studying the cognitive 

restoration of time-distorted stimuli.  

 

2.8 Conclusion 
 

The three experiments presented in this chapter are the first to investigate the 

impact of modality on temporal integration windows in language processing.  Locally 

time-reversing the sensory signals in a sentence provides insights on the mechanisms 

for recovering linguistic representations.  Stimuli with reversal durations that go 

beyond certain limits cannot be integrated properly and cause problems for 

comprehension.   

Experiment 1 demonstrates two effects that are driven by modality in 

language processing.  Temporal integration windows are much longer in duration in 

the visual processing of language (approximately 250 – 300 ms) than in speech 

(approximately 50 – 60 ms).  Moreover, spatial encoding in a visual language makes 

ASL much more resistant to temporal distortions, resulting in ~ 50% intelligibility for 

even the most degraded sentences (compared to 0% in speech).  In speech, distorting 

the temporal direction of the input reveals smaller temporal integration that scale with 

the duration of segments.  In sign language, locally-reversing sentences tap into the 
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processing and integration of larger syllabic units (Wilbur & Nolen, 1986).  These 

differences have implications about the impact of modality on the temporal 

organization of representational units in languages, in addition to structural 

hierarchies (Brentari, 1998), and when temporal processing converges. 

Despite these differences, spoken and signed languages seem to share the 

characteristic of having temporal integration windows that scale with the size of 

representational units in the languages.  This modality-independent property was 

confirmed by the results of Experiment 2, where the duration of temporal integration 

windows were reduced to ~133 ms, in proportion to compression rate. 

Results from late-signers in Experiment 3 offer a unique developmental 

perspective to temporal integration windows that has never been studied before, even 

in speech research.  The findings suggest that longer temporal integration windows 

found in ASL processing is partially dependent on early exposure to a language 

where phonological units fluctuate at those time-scales.  Early exposure to the target 

language gives earlier signers the advantage of being less sensitive to temporal 

distortions, perhaps due to longer integration windows.  Moreover, having temporal 

integration windows that better match the size of linguistic units in the language may 

lead to more efficient processing.  Although late-signers show indications of being 

sensitive to the duration of linguistic units, they also seem to be integrating the visual 

input at shorter time-scales.  Testing late signers on compressed and locally-reversed 

sentences in the future will lead to a better understanding of how sensitive they are to 

time-scales of the input.   
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Like other studies (Mayberry, 1993; Mayberry & Fischer, 1989), Experiment 

3 shows that late L2 signers have overall lower levels of performance on sentence 

repetition tasks.  Many factors seem to contribute to this effect, including difficulty in 

grammatical processing, phonological processing, and working memory.  Experiment 

3 also indicates that late L2 signers are more sensitive to distortions in the input than 

early signers.   

A comparison between late L2 deaf signers and late L1 deaf signers has yet to 

be tested.  Performing the intelligibility tasks, where a distorted sentence must be 

repeated back, is assumed to require strong language skills from early language 

exposure (Mayberry & Fischer, 1989).  Based on previous studies that compare these 

two types of late learners, where late learners of a first language perform more poorly 

on language and cognitive assessment compared to their early learning counterparts, 

(Mayberry, 2003; Boudreault & Mayberry, 2006; Mayberry & Lock, 2003), it is 

predicted that late L1 deaf signers will overall have lower accuracy with normal and 

locally-reversed sentences.  If resilience to disruptions in the input is dependent on 

robustness of representations associated with early L1 acquisition, it is also predicted 

that late L1 signers will show a sharper drop in performance accuracy with local-

reversals.    

Based on the findings from bilinguals of spoken languages, it is possible that 

the present results from late L2 signers is due to late-learning or having ASL as 

another language.  Another potential explanation is that having English as an L1 – a 

spoken language with much shorter temporal integration of segments – impacts 

temporal integration of ASL.  A way to tease apart these explanations is to test 
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bilingual CODAs, for whom ASL is often the L1 and English an L2.  If CODAs also 

show more sensitivity to noise in the input caused by temporal distortions than deaf 

native signers, it would suggest that bilingualism reduces perceptual flexibility across 

modalities.  Such a finding would support the hypothesis that greater sensitivity to 

noise or other distortions in the input among bilinguals is due to the use of greater 

cognitive resources for language processing associated with suppressing the unused 

language.   

On the other hand, if greater sensitivity to input distortions is due to sharing of 

phonological space by two languages, such effects should not be found across 

modalities, where phonological spaces do not overlap to such degrees.  However, 

results from CODAs that show greater sensitivity to shorter reversals would be 

confounded with experience with spoken English, experience with which might bias 

shorter integration windows.  Thus, it would be valuable to test late-signers for whom 

ASL is an L1.  If this group is equally sensitive to temporal distortions as late-signers 

for whom ASL is an L2, then late-learning may be the best explanation for the results 

found in Experiment 3.  Finally, it would be valuable to test late-learners of a spoken 

language (for example, English L2 bilinguals) to better understand the effects of age-

of-acquisition and bilingualism on the integration of sensory signals for language 

processing.  Comparing unimodal and bimodal bilinguals would be particularly 

interesting because time-scales in languages within a modality are much more similar 

than two languages in different modalities.   

The difference in time-scales of temporal integrations windows in sign 

language (~ 250 – 300 ms) and speech (~ 50 – 60 ms) is attributed to locking to units 
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of different time-scales.   However, another reason that distortions over larger time-

scales are tolerated in ASL is that visually represented information may be encoded 

with greater temporal flexibility than auditory/speech-based representations.  In 

working memory experiments, signers have been found to have spans in ranges that 

are shorter than hearing individuals (Wilson, Bettger, Niculae, & Klima, 1997; 

Boutla, Supalla, Newport, & Bavelier, 2004).  Nevertheless, native signers are 

reported to have an equally easy time recalling a list of items forwards or backwards 

(Wilson, Bettger, Niculae, & Klima, 1997).  Although Boutla et al. (2004) report that 

hearing bilingual signers have shorter spans on sign language tasks compared to 

speech tasks, order flexibility is not mentioned.  In a non-linguistic task, Kimura et al. 

(2010) provide evidence that sequential regularities are automatically encoded in the 

visual system.  Thus, the flexibility for order found among signers may be attributed 

more specifically to visual working memory or the prosodic features of ASL rather 

than visual encoding.  A promising area of future research is to study the relationship 

among temporal integration windows, sensory encoding, and working memory, for 

both linguistic and non-linguistic functions. 

Viewing locally-reversed videos and cognitively restoring the movements that 

encode the original linguistic message requires discrimination between movements 

actually produced by the signer and apparent motion created by discontinuous video 

frames.  In studies that tested viewer’s ability to re-create Chinese pseudocharacters 

from dynamic point light displays, those who had sign language experience (deaf and 

hearing signers) were able to determine the underlying discrete stroke movement 

patterns better than non-signers, although neither group was familiar with Chinese  
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(Klima, Tzeng, Fok, Bellugi, Corina, & Bettger, 1995; Bettger, 1992).  One question 

that arises is how much experience with signing results in this enhanced ability to 

analyze movement, and how late signers compare with native signers in these skills. 

Results from Experiment 2 suggest that ~ 250 – 300 ms windows in 

Experiment 1 are not absolute values in the visual processing of language but rather 

are relative to the size of linguistic units in the sentences at different rates of signing. 

Temporal integration windows in sign language perception may also converge with 

findings from reading.  The average duration of eye fixations in reading is 200-300 

ms (Rayner, 1998).  One can also consider the possibility that language processing 

takes advantage of these time-scales that exist also for non-linguistic visual 

processing.  In a study that tested viewer’s ability to detect flashes of light, visual 

detection thresholds corresponded to the phase of EEG oscillations in the theta (4-8 

Hz) and alpha (8-12 Hz) range (Busch, Bubois, & VanRullen, 2009).  Experiments on 

non-human primates have shown that some neurons do not respond to complex visual 

stimuli until 100-150 ms after stimulus onset (Perrett, Rolls, & Caan, 1982).  One 

way to examine whether time-scales ~ 250 – 300 ms in duration are privileged 

windows for other aspects of visual processing is to test the local reversals of non-

linguistic gestural movements.  Anecdotal accounts of viewing videos while 

rewinding suggests that non-linguistic gestures are overall more tolerant of temporal 

reversals than ASL sentences but testing this more systematically through different 

degrees of temporal reversals may also reveal a sharp decline in intelligibility at 

similar time-scales.   
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In addition to learning how integration windows are linked to the sensory 

channel and the rate at which information is transmitted in language, a better 

understanding of the neural mechanisms for language processing may provide 

insights into its temporal dynamics.  Oscillatory neuronal activity are known to be the 

underlying basis for temporal integration in a wide variety of domains (Buzsaki & 

Draguhn 2004), including speech perception (Poeppel, 2003).  Specifically, activity in 

the frequency of gamma (~40 Hz) and theta (~5 Hz) bands has been proposed to 

correspond to integration of segments and syllables of a speech stream, which are on 

average 50-80 ms and 150-300 ms in duration, respectively (Boemio, Fromm, Braun, 

& Poeppel, 2005; Luo & Poeppel 2007).  How such a model of a multi-time 

resolution process and neural oscillations, and in particular these frequency bands for 

integration and comprehension, extends to sign languages has never been 

investigated. 

In addition to entraining to the physical characteristics of the sensory signal, 

endogenous brain rhythms also subserve other neurocognitive processes. For 

example, synchronization of neuronal firing with gamma-frequency oscillations is 

associated with feature binding and attention (Singer & Gray 1995; Fries, Nikolic, & 

Singer, 2007; Schroeder & Lakatos 2008).  Among others, activity in the theta band 

has been implicated in working memory tasks and also attention (Jensen & Lisman 

2005; Deiber, Missonnier, Bertrand, Gold, Fazio-Costa, Ibañez, & Giannakopoulos, 

2007).  What remains unclear, however, is the nature of the relationship between the 

neuronal oscillations that subserve language-independent functions and those that 

entrain to the sensory input in language processing.  A better understanding of the 
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temporal dynamics of sign languages and delineating the similarities and differences 

with spoken languages will be an asset in these investigations. 
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3 Temporal Dynamics in Natural Production 
 

3.1 Introduction 
 

Understanding the time properties of perceptual processes in language 

requires information about the temporal dynamics in natural production.  In this 

chapter, I provide a review of previous studies that have examined the rate at which 

information unfolds in spoken and signed languages.  Then I provide new insights 

from comparisons of word, sign, morpheme, and syllable rates in English, Korean, 

and ASL, where data is taken from corpora of natural conversations.  In Chapter 2, I 

demonstrated that perceptual mechanisms for analyzing the sensory signal depend on 

rate in sign language as well as speech.  The goal of this chapter is to replicate and 

extend the findings from Bellugi and Fischer (1972) by investigating the relationship 

between linguistic primitives, the time durations over which they are phonologically 

instantiated, and the grammatical properties of particular languages.   

Whether on the perception or production end of communication, one must 

track how linguistic information unfolds over time.  Mismatches between these two 

interfaces have the potential to overwhelm working memory capacities and create 

serious information bottlenecks.  In this section, I explain how the research program 

advanced by Poeppel, Idsardi, and van Wassenhove (2008) – with computational, 

algorithmic, and implementational levels for speech perception – may also be 

extended to a visual-gestural language.  Interestingly, this way of approaching speech 

perception research with three different levels of analyses is inspired in part by 

Marr’s (1982) model for visual perception, making its application especially relevant 
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here.  In the following sections, I also provide a background on what is currently 

known about the dynamics of sign language production and representations of 

linguistic units.   

Theories of language processing require models which specify several details:  

what are the representational units that enter into language-specific computations, 

how those representational units are recovered from or transformed into sensory 

signals, and what are the neural bases for these processes. The consideration of 

lexical and phonological representations are sometimes lacking in other approaches to 

speech perception that focus on auditory neuroscience. Poeppel et al. (2008: 1017) 

write: 

Speech perception consists of a set of computations that take 
continuously varying acoustic waveforms as input and generate 
discrete representations that make contact with the lexical 
representations stored in long-term memory as output. Because the 
perceptual objects that are recognized by the speech perception enter 
into subsequent linguistic computation, the format that is used for 
lexical representation and processing fundamentally constrains the 
speech perceptual processes. 

 

In the same way, sign language perception consists of the generation of discrete 

representations, which compose to form lexical representations, from continuously 

varying visual light waves.  Thus, the assumption adopted here is that processes 

underlying sign language perception require recognition of perceptual objects that 

enter into linguistic computations and are constrained by the format that is used for 

sign representations and processing.  Understanding sign language perception 

undoubtedly also requires principles from visual neuroscience, including knowledge 

about shape perception, change detection, and the processing of biological, human 
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motion.  In the same way, psycholinguistic studies of speech draw upon auditory 

theories of spectro-temporal processing, pitch extraction, and object recognition.  

However, assuming the existence of linguistic representations, there are two possible 

models in how sensory signals and language-specific representations interrelate.  

Poeppel et al. (2008: 1074) write: 

If one is disinclined to invoke linguistically motivated representations 
early in the processing stream, then one owes a statement of linking 
hypotheses that connect the different formats (unless one does not, 
categorically, believe in any internal abstract representations for 
language processing). Alternatively, perhaps the representations of 
speech that are motivated by linguistic considerations are in fact 
active in the analysis process itself and therefore active throughout the 
subroutines that make up the speech perception process. 

 

I also assume that the linguistic nature of the information encoded in visual-

gestural signals must play a critical role in sensory processing.  The effect of 

linguistic knowledge on visual processing can be found when comparing signers and 

sign-naïve individuals.  Using ASL, Emmorey et al. (2003) report that images of 

phonemically contrastive handshapes that are varied continuously are perceived 

categorically by signers, marked by non-linear identification and peak in 

discrimination around the categorical boundary.  No categorical effects were found 

among hearing non-signers, who showed non-linear identification patterns but not 

peaks in discrimination around the categorical boundary.  Baker et al. (2005) extend 

these results to other handshapes in ASL, finding again that only ASL signers 

exhibited linguistic categorical perception and supporting the hypothesis that these 

effects are based on linguistic categorization rather than purely perceptual 

categorization (Baker, Idsardi, Golinkoff, & Petitto, 2005).  Campbell et al. (1999) 
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tested whether facial expressions that are used in Yes/No and Wh- questions in 

British Sign Language (BSL) can be perceived categorically, and how the processing 

of linguistic facial expressions compare with emotional facial expressions (Campbell, 

Woll, Benson, & Wallace, 1999). They found that both deaf signers and hearing non-

signers showed categorical perception to emotional expressions, but only deaf signers 

showed categorical perception to the grammatical expressions when identified as a 

question marker.   

Evidence for the role of linguistic knowledge in visual processing can also be 

found in the perception of apparent motion.  Previous studies on the perceptual 

construction of motion have shown that viewers interpret the shortest possible path in 

apparent motion (Wertheimer, 1912; Korte, 1915).  However, stimuli involving 

biological motion can cause viewers to interpret the apparent motion as involving 

biologically plausible motion, even when it is not the shortest path, under specific 

time-windows that would permit such movements (Shiffrar & Freyd, 1990).  Building 

upon these studies, Wilson (2001) tested viewers’ perception of apparent motion 

using signs that involve movement in ASL. Two-touch signs that involve indirect 

‘hopping’ motion and one-touch signs that involve direct ‘sliding’ motion were 

chosen as stimuli (see Figure 17).  When presented with two images in rapid 

sequences, viewers perceived apparent motion. Although hearing non-signers 

interpreted all signs as involving sliding motion, which involves the shortest 

biological plausible path of movement, deaf signers of ASL interpreted hopping 

motion when the motion resulted in a lexical item in ASL.   
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Figure 17. Examples of signs used by Wilson (2001), with images from 
www.aslpro.com (top) and www.signingsavvy.com (bottom).  The top 
row shows images taken from a video recording of BRIDGE, a two-
contact sign that involves hopping motion from the wrist to the elbow.  
The bottom row shows images from a video recording of CREDIT-
CARD, a one-contact sign that involves sliding motion from the palm 
and outward across the hand. 

 

When adopting a view of sensory processing where linguistic representations 

play an active role, an explicit theory about the format of these representations is 

necessary.  At the computational level, Poeppel et al. (2008) support a view where 

words consist of a series of segments, “each of which is a bundle of distinctive 

features that indicate the articulatory configuration underlying the phonological 

segment,” as well as syllable-level representations (Stevens, 2002; Halle, 2002; Lahiri 

& Reetz, 2002; Féry & van de Vijver, 2004; Archangeli & Pulleyblank, 1994; Kabak 

& Idsardi, 2007).  Sign languages also have sublexical units that are organized in a 

hierarchical way.  Parameters of signs include handshapes, locations, movements, 

orientations, and non-manual features.  Bundles of these features combine to form 
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signs, with internal structure based on features, segments, and syllables (Liddell & 

Johnson, 1989; Perlmutter 1992; Brentari, 1998), although modality impacts how this 

set of primitives can be fractionated by time.  While theses analyses on sign language 

differ on the structural organization of the sublexical features, they all agree that signs 

have sublexical structure. 

The hierarchical organization of linguistic representations motivates a multi-

time resolution implementation for sensory processing, where analyses in short and 

long time-scales occur in parallel.  This model relies on the concept of temporal 

integration windows, as has been described by previous sections.  In speech, this 

approach is supported by evidence from psychophysics, electrophysiology, and 

functional imaging.  Describing what determines temporal integration windows, 

Schroeder et al. (2008:109) write: “Because neuronal oscillations cover a wide 

frequency spectrum, from well below 1 Hz to well over 200 Hz, they enable the 

integration of inputs on many biologically relevant time scales.”   
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Figure 18. Reproduced from Schroeder, Lakatos, Kajikawa, Partan, & 
Puce (2008), this figure illustrates the hierarchical coupling of neural 
oscillations.   

 
In speech, time-scales approximately 20 – 80 ms and 150 – 300 ms 

correspond to the duration of segments and syllables, which may be reflected by 

activity in gamma and theta bands.  The concurrent analysis of segments and syllables 

may be possible by the phase-amplitude coupling of oscillations in these two 

frequencies, which are prominent rhythms in the primary auditory cortex (Lakatos, 

Shah, Knuth, Ulbert, Karmos, & Schroeder, 2005).  The involvement of delta (1 – 3 

Hz) oscillations in this hierarchical coupling may be tied to the rhythms of prosodic 

intonations in speech (Munhall, Jones, Callan, Kuratate, & Vatikiotis-Bateson, 2004).  

Functionally, processing of these temporal signals has been shown to be subserved by 

the superior temporal gyrus (STG) for high frequency fluctuations and the superior 

temporal sulcus (STS), with right hemispheric bias, for longer-duration signals 

(Boemio, Fromm, Braun, & Poeppel, 2005).   

At the algorithmic level of description, which specifies the procedure for 

mapping sensory signals to linguistic representations, Poeppel et al. (2008) adopt an 
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analysis-by-synthesis model, where perception is driven by internal guesses about the 

upcoming representations (Halle & Stevens, 1959, 1962; Stevens & Halle, 1967; 

Yuille, & Kersten, 2006).  In this view, the perceptual system does not simply wait 

for the input to be completed before trying to map the signals to representations.  

Based on the previous segment or a minimal amount of the current signal, the system 

may form predictions about the possible inputs that follow, which is a point of 

comparison to the input signal.  In particular, phonological knowledge about how 

sounds sequence in a given language may be one basis for making such predictions 

(Hwang, Monahan, & Idsardi, 2010).  I will assume that knowledge about the rate at 

which linguistic representations are generated and the constraints for how those 

representations are constructed is an important foundation for both speech and sign 

language perception, and that this is a modality-independent aspect of language 

processing. 

These three levels of analysis (computational, algorithmic, and 

implementational) for speech perception are thus more broadly applicable to sign 

language processing.  This approach to language research underscores the importance 

of integrating knowledge about the representations of linguistic units, how they 

combine, the time-scales at which these representations unfold, and the temporal 

constraints for supporting perceptual processes at the cognitive and neural levels. 
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3.2 Bellugi & Fischer (1972) revisited: Beyond the rate of 
signs 

 

Convergence of the rate of propositions (sentences) in English and ASL 

despite the discrepancy in the rate of words and signs (Bellugi & Fischer, 1972) 

presents an interesting puzzle that raises questions about the rate of language-internal 

computations and what grammatical properties arise due to modality and temporal 

processing constraints.  In the first comparison of rates in sign language and spoken 

language, Bellugi and Fischer had three hearing bilingual CODAs narrate a story that 

they knew well.  Before starting the rate analysis, the researchers subtracted the times 

taken for pauses.  When the story was told in English, the mean duration of 

propositions was 1.27 s, and on average 4.7 words were produced per second.  When 

the story was told in ASL, the mean duration of propositions was 1.47 s, and on 

average 2.36 signs were produced per second.  This means that signs are produced on 

average at 423-ms cycles.  Although no statistical tests could be made with only 3 

participants, the comparison of these rough numbers suggest no difference in 

magnitude for propositions but that the ratio of words to signs is 2:1 .   

Propositions may be considered simple sentences or clauses, and they were 

measured in Bellugi and Fischer’s study by counting all main verbs or predicates that 

had overt or covert subjects.  From the description of the methodology, it appears that 

words were counted according to orthographic convention, and contractions like 

don’t  and it’s were each counted as one word.  It appears that signs were counted 

according to intuitions about what counts as whole signs for native signers.  Signs are 

regarded as complete bundles of features, including handshape, orientation, location, 
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and movement.  For example, the basic sign for LOOK can be varied to mean ‘YOU-

LOOK-AT-ME’, ‘EVERYONE-IS-LOOKING-AT-ME’, ‘THEY-LOOK-AT-EACH-

OTHER’, and ‘GAZE-AT-ONE-ANOTHER-LIKE LOVERS’ depending on the 

number of hands, the orientation of the hands, the movement of the hands, and non-

manual features.  Even though these constructions convey complex meaning, each 

was counted as a single sign. 

These criteria already suggest that words and signs are not equivalent units in 

sentential context and that one sign of ASL may be equivalent to several words in 

English.  Bellugi and Fischer discuss three possible reasons for why the propositional 

rates in these two modalities converge despite the apparent differences in the rates of 

words and signs: 1) doing without, 2) incorporation, and 3) body movements and 

facial expression.  Sentences in ASL can convey unambiguous meaning with fewer 

items than English.  They note that ASL uses “denser constructions,” which is 

illustrated by examples below. 

English ASL 

and I went back into the kitchen (7) RETURN TO KITCHEN (3) 

So they came in (4) ENTER (1) 

I turned on the gas (5) ME TURN-ON G-A-S (3) 

I pulled open the drawer (5) I PULL-OUT-DRAWER (2) 

And I struck the match (5) AND STRIKE-MATCH (2) 

Until I finally decided to go through the 
gate. (9) 

UNTIL DECIDE GO-THROUGH GATE 
(4) 

OK, so they got off the streetcar (7) AND ARRIVE GET-OFF TRAIN (4) 

Table 2. Examples are adapted from Bellugi & Fischer (1972).  These 
pairs of sentences demonstrate differences between English and ASL 
constructions. 
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Bellugi and Fischer remark that ASL lacks redundancy because elements that are not 

essential to convey the message are deleted.  In English, it is possible to reduce 

redundancy by replacing proper names with pronouns.  In ASL because information is 

preserved by reference to points in signing space, these nouns can often be 

eliminated.  Because signs can incorporate location, number, manner, and shape/size 

features, a single sign can involve many layers of information.  Through non-manual 

features, it is possible to layer information across a sequence of signs, so that 

equivalents for ‘I understand’ and ‘I don’t understand’ take the same amount of time, 

where a head shake during ‘UNDERSTAND’ changes the meaning to negation.  

Thus, the grammatical property of ASL plays a key role in its temporal properties.  

Bellugi and Fischer (1972:199) write, “It seems to us that (this) condensation [in 

ASL] may be a response to pressure when the rate of articulation of the language is so 

different from speech... [ASL] has special ways of compacting and incorporating 

linguistic information that, because of its nature, are different from spoken language.”  

Bellugi and Fischer entertain the possibility that propositional rate in English and 

ASL were the same in their study because the participants were hearing bilinguals.  

However, in a different study with native deaf signers, Klima and Bellugi (1979) 

found that the rates of signs and propositions were overall similar to the ASL findings 

from CODAs.   

A form of communication that uses the visual-gestural modality while 

following the grammar of English offers a unique perspective on the interaction of 

grammar and modality.  These systems are referred to as Manually Coded English 

(MCE), which were developed to make English visible for deaf children (Ramsey, 
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1989).  However, findings that MCE cannot be learned naturally suggest that 

processing difficulties occur when grammatical structure based on a spoken language 

is imposed upon sign language (Supalla & McKee, 2002).  One form of MCE called 

Signing Exact English (SEE 2) adapts ASL signs, which serve as roots.  Invented and 

borrowed signs are added as functional morphemes or words, most of which are 

added linearly as in English.  88% of affixes in SEE 2 have full sign formational 

structure by having movement and thus are “sign-like.”  In ASL, IMPROVING and 

IMPROVEMENT involve a modification of the sign for IMPROVE, where all three 

are single signs.  In IMPROVING and IMPROVEMENT, the inflections overlap with 

the root.  In SEE 2, IMPROVING and IMPROVEMENT involve the sequence of two 

signs, IMPROVE plus an affix.  In cases where a sequence like KNOW and -ING can 

be assimilated, so that there is only one movement, the duration of the form is cut in 

half compared to the unassimilated form.  However, the resulting form is not a 

possible sign because of the relationship of the handshapes in KNOW (with B-

handshape) and -ING (with the I-handshape) (Battison, 1978).  In many cases, “MCE 

morphology does not meet the constraints on sign structure” (Supalla & McKee, 

2002:156).  Giving into time pressures can lead to phonological-ill formedness, which 

leads to other aspects of processing difficulty or unnaturalness.  In terms of rate, 

Klima and Bellugi (1979) report that the average length of propositions signed in 

MCE is 2.8 seconds, which is almost double the duration found in ASL and English.  

Thus, it appears that the temporal properties of MCE also violate more general 

constraints on language processing than just grammar. 
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Grosjean (1979) compared the rates of English and ASL, where participants 

were asked to speak or sign at different subject rates.  At the normal rate, signers 

produced on average 1.94 signs per second and speakers produced 4.57 words per 

second, similar to the findings from Bellugi and Fischer (1972).  Wilbur (2009) also 

reports that signers produced an average of 1.95 signs per second in normal 

conditions and 2.43 signs per second in fast conditions.  Taking into consideration the 

amount of pauses in natural production, both studies also report that signers spend 

more time articulating than speakers.  In other words, a higher percentage of the time 

spent narrating a story was filled with pauses for speaking than signing.  In a different 

experiment, Klima and Bellugi (1979) had signers and speakers produce a list of 

monomorphemic signs or words at a rate of one per second.  They found that twice 

the amount of time during the one-second intervals is taken for signing than in 

speaking. Klima and Bellugi (1979:186) point out, “One might imagine, therefore, 

that signed sentences and their underlying propositions might normally be stretched 

out in time periods longer than comparable propositions in spoken language.”  

However, because of the structural and discourse properties of ASL, as outlined by 

Bellugi and Fischer (1972), large mismatches are avoided. 

Although the average duration of signs reported in these studies is ~400 – 500 

ms, it can depend greatly on context.  As previously described, Fischer et al. (1999) 

test the intelligibility of rate-compressed ASL sentences and single signs.  They 

compare the duration of five signs (ROOM, MOUNTAIN, APPLE, TELEPHONE, 

and FATHER) that occurred both in sentential and isolated context.  The average 

duration of these signs were 313 ms in sentences and 553 ms in isolation, 167 ms of 
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which was attributed to “final hold” (Liddell, 1984).  Liddell (1978) analyzed the 

duration of same signs that appear in different sentence positions and syntactic 

functions.  The duration of signs are shortest in medial position (reaching as low as 

233 ms) and highest for topic signs in initial position (reaching as high as 600 ms).  

Moreover, Friedman (1974) compared the average duration of unstressed signs (367 

ms on average) and stressed signs (835 ms on average), where the longer duration of 

stressed syllables was attributed to longer “holds,” similar to the findings of Fischer et 

al. (1999).  Measuring sign durations by taking the beginning and end of sign 

boundaries or by taking the length of an utterance and dividing it by the number of 

signs can also result in considerably different figures.  The reason is that there are 

transition times between the signs (see Figure 19).   

 

Figure 19. Reproduced from Brentari, Poizner, & Kegl (1995) (and 
Brentari (1998)), this figure demonstrates sign-internal and sign-
external transitions in an ASL sentence.  The above sentence is 
WORD BLOW-BY-EYES MISS SORRY (‘The word went by too 
quickly. I missed it, sorry’). 
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Wilbur and Nolen (1986) analyze the rate of syllables in ASL, which are 

phonological units that are composed of movements (M) and holds (H) (akin to 

vowels and consonants, respectively, in spoken languages1), following Liddell (1984) 

(see also Perlmutter (1992) for an account with movements (M) and positions (P)).  

As outlined by Sandler and Lillo-Martin (2006:218), the argument for syllables in 

ASL is as follows: “1) There is a prosodic unit that organizes the timing of phonetic 

gestures, 2) there are constraints on the content of this unit, 3) it is referred to by 

rules, and 4) there is distributional evidence for the following saliency hierarchy: path 

movement > internal movement > location.” 

It has been proposed that most signs in ASL are monosyllabic (Coulter, 1982) 

and have the following configurations: HMH, MH, HM, or M, where movements are 

considered to be the nucleus of syllables (Perlmutter, 1992).  However, when signs 

are connected in sentences, transitional movements also occur between the signs.  

Some of these inter-sign transitional movements occur between lexical signs that 

have their own internal (intra-sign) movements or provide movements to signs like 

MOTHER and NOON that do not have their own lexical movements.  Taking these 

factors into account, Wilbur and Nolen (1986) provide a thorough analysis of 

syllables in ASL taken from natural conversations and prompted sentences.   

In conversational data where 889 syllables were measured among 3 signers, 

the mean duration of syllables was 250 ms.  This figure reflects the duration of 

syllables when inter-sign transitional movements were counted.  Surprisingly, the 

                                                
1 Consider also the opposite view, where vowels are understood to be steady states 
(= holds) and consonants as transition states (= movements). 
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range of syllable durations was 33 – 1300 ms, and the total standard deviation was 

162 ms.  The shortest syllables were those with only movements (mean duration 195 

ms, standard deviation of 128 ms), and these occurred most frequently in the data.  

Overall, there was a negative correlation between syllable length and frequency, as 

found in spoken languages (Zipf, 1935).  Compared to initial holds, which were 74 

ms in duration on average, final holds were 156 ms long.   

Wilbur and Nolen (1986) note that the average duration of 250 ms for 

syllables in their study converges with Liddell’s (1978) findings that monosyllabic 

signs taken from sentential contexts are 233 – 450 ms long.  However, Bellugi and 

Fischer (1972), Klima and Bellugi (1979), and Grosjean (1979) report that 

approximately 2 signs are produced per second, but they are careful to not make the 

claim that the average sign is 500 ms in duration, although generally it can be 

assumed that length (duration) of units correspond to the periods at which they are 

produced. Perhaps one way to reconcile these findings is to assume some 

combination of the possibility that many signs are multisyllabic or that many syllables 

are not part of the signs.  Coulter (1982) has argued that most signs in ASL are 

monosyllabic, which Wilson and Nolen acknowledge.  Wilbur (1986) has also argued 

that multisyllabic signs exist as bidirectional signs, which have two movements.  A 

sequence of movements is highly constrained, however, such that the second 

movement must be opposite of the first or a 90-degree rotation of the first (Supalla & 

Newport, 1978).  Other cases include reduplicated forms and some compounds.  

Although many compounds consisting of two signs fuse to become monosyllabic 
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(Liddell, 1984; Liddell & Johnson, 1986), others retain the syllable from each of the 

signs.   

As mentioned previously, Wilbur and Nolen (1986) take into account 

transitions between signs into their measurement of syllables. They observe, “Signing 

differs from speech, where the sound stream may be discontinued while the 

articulators are in transition.  The hands cannot be made invisible while they make 

transition movement” (1986:273).  Among 889 syllables that they measured, 114 

syllables consisted of only transitions, where the mean duration of these transitions 

was 203 ms.  When examining syllables with both transitional movement and lexical 

movement (255 cases), it was found that the ratio of the movements was 1:1. Some 

transitional movements provide movements to signs that do not have their own lexical 

movements, and these occurred in 50 cases.  Overall, the total number of syllables 

with inter-sign transitional movements was 419, almost half of all the syllables. 

Whether the faster rate of syllables over signs comes from multisyllabic signs 

or syllables that do not have lexical content, these findings suggest that the ratio of 

syllables to signs is 2:1.  However, it may not be appropriate to draw this conclusion 

since sign rates were not analyzed by Wilson and Nolen.   

In a different experiment, when examining the duration of syllables of elicited 

sentences with phrasal or compound variants of signs, they found that the syllable rate 

is slightly slower (where the average syllable duration was 292 ms), which is 

attributed to the fact that these were not taken from natural conversations.  An 

example of a phrasal sign is FACE CLEAN which can have the literal meaning 

“clean face” as in “He has a clean face.”  The same sequence can be used as a 
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compound, notated FACE-CLEAN, where the meaning is “handsome” as in “He is 

handsome.”  The ratio of sign to syllable was measured for conditions where these 

forms were produced in isolation.  In other words, inter-sign transitional movements 

were not relevant for this analysis.  The ratios were 3.13 syllables per sign for a 

combination of simple lexical items and 3.92 syllables per sign for compounds 

Wilbur and Nolen remark that a rate of 4 syllables per second is similar to 

syllable rates found in English (239 ms for unstressed syllables and 301 ms for 

stressed syllables), taking data from Adams (1979).  However, a more recent analysis 

of English from natural conversations (Switchboard corpus) reveals fasters rates 

where the mean duration of English syllables is 190 ms (Arai & Greenberg, 1998; 

Greenberg, Hollenback, & Ellis, 1996).  Other studies report that monosyllabic 

English words are approximately half the duration of monosyllabic ASL signs 

(Emmorey & Corina, 1993; Corina & Knapp, 2006; Capek, Grossi, Newman, 

McBurney, Corina, Roeder, & Neville, 2009). 

These syllables in adult sentence production can also be compared to the rates 

found for babbling during infancy, which is considered an important stage for 

phonological development.  As discussed in Chapter 1, the average syllable duration 

was found to be ~300 ms in speech babbling (Levitt & Wang, 1991; Dolata, Davis, & 

MacNeilage, 2008) and ~1000 ms in sign babbling (Petitto, Solowka, Sergio, Levy, & 

Ostry, 2004).  Petitto et al. (2004) found that non-linguistic gestures of sign-exposed 

babies move at a frequency of ~2.5 Hz and that the gestures of children who were not 

exposed to sign language input move at ~ 3 Hz.  If frequencies in babbling have any 
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parallels in adult production, they suggest that the rhythmic properties across 

modalities are notably different.   

Although this provides a good overview of the phonological temporal 

dynamics of ASL in addition to the rates of signs and propositions provided by earlier 

studies, no systematic patterns emerge except that the global rate across the 

modalities is the same.  Although the rate of words is double the rate of signs, since 

signs and words are not equivalent linguistic units, it is difficult to interpret the 

meaning of these results.  One possibility is that signs in ASL contain double the 

amount of information as words in English on average.  Individual signs can 

incorporate layers of information using nonconcatenative strategies, and additional 

information can be layered across phrases.  However, some of these nonconcatenative 

strategies, such as reduplication to show aspect on verbs, do lengthen the duration of 

signs.  Examples described earlier in this section demonstrate that certain signs may 

be much richer in morphology than single words of English.  However, without a 

systematic study of morpheme rates across sentences in both languages, it is difficult 

to determine to what degree simultaneous strategies make up for differences in word-

sign rates quantitatively.  Moreover, Bellugi and Fischer (1972) note that ASL 

sentences can “do with less” and may be less redundant than English.  Thus, despite 

the simultaneous strategies of ASL grammar, the existence of other tactics may 

suggest that layering information does not sufficiently meet time pressures in 

language processing. 

An analysis of morphemes (units of meaning) as well as an analysis of 

syllables (units of form) would be helpful in better understanding where and how 
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rates converge across modalities.  In the only study that I am aware of that reports the 

rate of morphemes in a sign language, Senghas and Coppola (2001) investigate the 

evolution of Nicaraguan Sign Language (NSL).  They describe the emergence of 

systematic spatial modulations in signing among individuals who were exposed to 

Nicaraguan Sign Language at different ages and also those who entered signing 

communities at different stages in the evolution of the language.  Overall, the first 

cohort (the generation that entered the signing deaf community before 1983) showed 

significantly less spatial modulation per verb in their natural production.  The second 

cohort showed almost double the number of spatial modulations, but only among 

those who entered the signing deaf community before the age of 10.  They also tested 

whether there was a link between the use of spatial modulations and overall fluency, 

which they measured as signing rate.  Signers from the second cohort who entered the 

communities before the age of 6 had the highest fluency rate of ~ 350 morphemes per 

minute (or 5 – 6 morphemes per second).  Late learners in both cohorts had the lowest 

fluency, where morpheme rates were half in comparison.   

One conjecture is that spatial modulation emerges as a result of reaching some 

sort of upper limit of processing without simultaneous layering of information, a limit 

that is not rapid enough for full-fledged language processing. It is also possible that 

overall fluency and grammaticalization that leads to aspects of structure like spatial 

modulation develop together but not in a cause-effect relationship.  Insights from 

Abu-Shara Bedouin Sign Language (ABSL), another new sign language that is still 

continuing to develop, give indications that verbal agreement through spatial 

modulations takes time to mature and become grammaticalized (Aronoff, Meir, 
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Padden, & Sandler, 2004).  Aronoff et al. (2004:35) write, “The lesson from ABSL is 

therefore that even the motivated morphology that we find in all established sign 

languages requires social interaction over time to crystallize.” It is surprising that 

with the availability of the visuo-spatial modality, such aspects of sign languages still 

require time to develop rather than being exploited immediately.  Although some 

aspects of verb agreement are found in rudimentary home sign (the first stage of 

language creation among deaf children who grow up without exposure to any 

accessible language input) (Goldin-Meadow, 1993) and even the older generation of 

NSL users, they lack the systematic and extensive use found among all mature and 

stable sign languages.   

Although the development of simultaneous strategies that do not exist in 

spoken languages is the focus here, it is important to note that it is not true that early-

exposed young generation signers avoid all sequential strategies.  In a different study, 

Senghas et al. (2004) describe how only young-generation native signers discretize 

manner and path features of movement (e.g., ‘rolling down’) in natural production, 

whereas others use the more gestural form of expressing these features 

simultaneously (Senghas, Kita, & Özyürek, 2004).  Since this aspect of segmentation 

and linearization were not present among older generations of signers, it serves as 

another example of language creation without rich input.   

 Although the focus of the study by Senghas and Coppola (2001) is on spatial 

modulation in NSL grammar, the analysis of fluency based on morpheme rates 

provides a unique insight about their possible interaction.  Unfortunately, information 

about the rate of signs, propositions, and syllables are not reported in the study.  What 
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remains unknown is the average rate of morphemes in a spoken language, and the 

relationship between morpheme and syllable rates in sign language and in speech.  

The underlying assumption about the temporal dynamics of signing has been 

that they are slow compared to the rapid movements of oral articulators and the fine 

structures of acoustic signals in speech. Meier (2002:8) summarizes this argument as: 

 To date, the articulatory factor that has received the most attention in 
the sign literature involves the relative size of the articulators in sign 
and speech.  In contrast to the oral articulators, the manual 
articulators are massive.  Large muscle groups are required to 
overcome inertia and to move the hands through space, much larger 
muscles than those required to move the tongue tip.  
 

However, a look at quantificational measures of velocities in sign and speech 

production demonstrates that the relationship between speed of the articulators and 

the grammatical differences is not straightforward.  Ostry and Munhall (1984) report 

that the average maximum velocity of tongue dorsum movements is in the order of 10 

cm/s .  In contrast, Wilbur (1999) reports that the peak velocity of signs are measured 

in the order of 300-400 cm/s when measured from diodes placed on the thumb and 

index finger recorded by cameras.  When comparing 2- and 3- dimensional traces of 

signing motion, Bosworth et al. (2010) find that 2D traces yield slightly slower 

figures for velocity (see Figure 20) (Bosworth, Dobkins, & Wright, 2010).  In their 

study, the mean velocity of movements was ~ 50 cm/s and the maximum speeds were 

~ 150 cm/s in sentence production.  The differences in the measurements between 

Wilbur and Bosworth et al. may be attributed to differences in equipment and 

distance to recording devices (WATSMART and Virtual Reality InterSense, 
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respectively) or individual variation.  In Bosworth et al. (2010), the maximum 

velocity of one signer was as high as ~ 300 cm/s.   

 

Figure 20. Reproduced from Bosworth, Dobkins, & Wright (2010), this 
figure demonstrates the 2D movement trace for an elicited sentence 
containing the sign KNOW. 

 
The maximum amount of displacement in tongue dorsum raising and falling is 

about 1 cm (Ostry & Munhall,1984).  In signing, Wilbur (2009) reports that the 

average amount of displacement is about 20-30 cm.  However, in the study conducted 

by Bosworth et al. (2010), a visual inspection of figures reveals displacements 

ranging 20 – 150 cm, but mean values are not reported.  In speech, there is a reliable 

correlation between the amplitude (maximum distance) of the tongue dorsum 

movement and its maximum velocity.  Bosworth et al. report that since duration and 

displacement of movements vary linearly, relative speed of movements are kept 

constant.  It is not clear from these figures how to characterize and compare the 

speeds in production.  Although manual movements are executed at higher velocities, 

they also move greater distances.  Given the average peak velocity and distances of 
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movements in each modality, it would be useful better understand and compare how 

long an average movement takes in each modality. 

Although sign languages have rhythmic properties, they do not have a single 

predominant oscillator like the mandible in speech.  The movements of the mandible 

are relatively simpler, consisting only of raising and lowering.  In signing, multiple 

joints on the hands and arms can contribute to a wide range of motions, including 

extensions and rotations.  Although the timing of these movements associated with 

syllable units is rhythmic, they do not have the same cyclic property like the syllables 

in speech, except for rotations, trilled movement, and repeated movements.   

The use of non-manual features, such as mouthing and eye-brow movements, 

contribute to meaning and also display rhythmic properties (Baker & Padden, 1978; 

Wilbur, 2009).  When mouthing and signs co-occur, oral units entrain to sign 

syllables (Sandler & Lillo-Martin, 2006).  In many sign languages, these oral features 

are not optional but obligatory (Boyes-Braem & Sutton-Spence, 2001).  Lexically 

specified movements are synchronized with sign movements, but they do not co-

occur with transition movements between signs.  In ASL, mouthings borrowed from 

English can co-occur with signs.  Meier (2008) report that in cases where the English 

word and ASL do not match in syllable count, the English word is restructured.  One 

example is the reduction of the mouthing for finish to fish because the sign FINISH 

has a single outward twist of the forearm.  Woll (2001) also describes the 

phenomenon of echo phonology in British Sign Language, where movement of the 

mouth and hands are synchronized and the manner of movements is matched.  
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Finally, the rate of letters in fingerspelling may provide some insights to the 

speed of fine-motor changes.  Quinto-Pozos et al. (2010) report that approximately 

7.5 letters can be produced per second (or 133 ms per letter) by a native signer.  

Although this may seem rather fast, the degree of coarticulation that takes place in 

fluent fingerspelling and dropping of letters in signs (for example, B-N-K for bank 

and M-P-H-E for morpheme) suggest that these articulation rates are subject to further 

time pressures.  Phonological reduction may be constrained by the average duration 

of signs and the transition time required between signs. 

 

3.3 Perspectives from information theory 
 

If the rate of signs per second is twice as slow as the rate of words in the 

equivalent measure of time but the overall propositional rate is the same, this suggests 

that an incremental sign contains more linguistic information than an incremental 

word in English.  Although these larger units take longer to produce, because 

information can be encoded simultaneously in ASL, each sign may contain similar 

amounts of linguistic information that is sequentially presented in the same amount of 

time (i.e., multiple words) in speech. 

In information theory (Shannon, 1951), information is described in terms of 

entropy, which is a measure of the uncertainly associated with a random variable and 

can be quantified by taking into account the number of values within a set and the 

probability of those values.  For example, calculating the information bit of a letter in 

English text takes into account that there are 27 characters (26 letters plus space) and 
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the probability of each letter.  Entropy is used to describe the average uncertainty of 

an information source, where the maximum entropy is achieved in the scenario where 

all letters occur with equal probability.  In contrast, redundancy quantifies the 

predictability of the language. Empirically, letters in English are rather predictable 

because of the differences in frequencies of the letters and the sequence of letters that 

are possible.  The entropy rate of English text is estimated to be 0.6 to 1.3 bits per 

letter (Shannon, 1951), and similar figures are reported in estimates of phonemes in 

speech (van de Laar, Kleijn, & Deprettere, 1997).  This is well below its maximum 

entropy, which is estimated to be 3-3.5 bits higher (Chong, Sankar, & Poor, 2009).   

Chong et al. (2009) apply a similar approach to sign language by analyzing 

handshapes of ASL.  Their list consisted of 45 different handshapes, 29 that have 

alphanumeric correspondence and 16 additional ones that are using in signing.  Data 

were collected from video logs (vlogs) found on the Internet and natural 

conversations that were videorecorded at a deaf school.  The frequencies of the 45 

handshapes were then computed in order to determine the empirical entropy of the 

handshapes and to compare them to the maximum entropy.  They report that the 

average entropy of a handshape is approximately 5 bits, which is not very different 

from a maximum possible entropy of 5.49 bits.  They write, “Our findings suggest 

that a slow rate of sign production in ASL may be compensated for, at least in part, 

by a low redundancy of handshapes.”  Chong et al. speculate that speech requires 

higher redundancy (it is estimated that approximately half of the text in English can 

be predicted) because the auditory channel is noisier than the visual channel, but the 

basis for this assumption is not explained.   
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This conclusion suggests that ASL should be more sensitive to noise since it is 

less redundant.  However, at least three studies now suggest that ASL is more robust 

to temporal distortions than spoken languages.  Tweney et al. (1977) report that ASL 

is much more resistant to temporal disruptions compared to speech (Miller & 

Licklider, 1950).  Fischer et al.’s (1999) results show that even with compressions by 

a factor of 6, 20-40% of signs remain intelligible.  In Chapter 2, I demonstrated that 

ASL is much more resistant to local time-reversals than speech (Greenberg & Arai, 

2001). 

Chong et al. consider the possibility that although English is more redundant 

in the sequence of phonemes, ASL achieves redundancy by holding a handshape for 

longer periods of time.  One way to test whether these forms of redundancy are 

equivalent is to calculate information transfer rates, which is what I describe here.  In 

speech, it has been estimated that 10-15 segments are produced per second 

(Liberman, 1996).  This converges with findings that phonetic segments are on 

average 72 ms long (Arai & Greenberg, 1998), that there are on average 2.5 segments 

per syllable in English (Greenberg, Hollenback, & Ellis, 1996), and that syllables in 

English are on average ~200 ms long.  If each phoneme contains 1 bit of information 

on average, the information transfer rate is approximately 10-15 bits per second.  In 

ASL, each sign has at least one handshape and a maximum of 2 handshapes.  Bellugi 

and Fischer (1972) and Grosjean (1979) report that approximately 2 signs are 

produced per second.  If each handshape contains 5 bits of information on average, 

the information transfer rate is approximately 10-20 bits per second in regular 

signing.  Quinto-Pozos et al. (2010) find that 7.5 letters are produced per second on 
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average.  Since fingerspelled letters include only a subset of the 45 handshapes 

analyzed by Chong et al. (2009), the estimates for the information content of 

handshapes in only fingerspelling contexts would be lower than the estimate of 5 bits. 

Excepting fingerspelled words, the information transfer rate of English and ASL 

might be comparable based on a phonetic analysis.  Although Reed and Durlach 

(1998) estimate the information transfer rate differently, they reach the same 

conclusions about the equivalence of information transfer rates in spoken English and 

signed ASL. 

Chong et al. acknowledge that their analysis of entropy in ASL is incomplete 

because it does not take into account other phonological features that are essential to 

the identification of signs, such as location, orientation, movement and non-manual 

features.  Methodologically, it is more difficult to incorporate these features.  They 

explain that orientation has too few variations and that movement has too many.  In a 

study of categorical perception, Emmorey et al. (2003) find that phonemically distinct 

handshapes are perceived categorically but that phonemically distinct locations are 

not.  The categorical/discrete versus continuous/analogical aspects of signing is still 

not well understood (Liddell, 2003). Chong et al. also speculate that when 

combinations of handshapes and motions between the dominant and non-dominant 

hand are accounted for, greater redundancy would be found in ASL.  Depictive 

gestures in natural signing and the manipulation of classifier handshapes (Liddell, 

2003) pose extra challenges for determining what is the set of phonetic features in 

sign languages.  Nevertheless, the development of sign language corpora with 

annotations for phonological features will be essential to these investigations.   
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Entropy has also been applied to understand the amount of information 

contained in whole words in sentences (see Figure 21).  Given a sequence of words 

already encountered in a sentence, the following word is more informative if it is less 

predictable.  Sentence processing is highly sensitive to frequency effects, both at the 

lexical level and structural level (Hale, 2001).   

 

Figure 21. Reproduced from Hale (2001), this figure demonstrates how 
entropy (or “surprisal”) fluctuates over the course of a sentence. 

 
Words that are the more frequent overall and more predictable in context have shorter 

phonological forms (Zipf, 1935; Manin, 2006).  Given the correlation between length 

of a form and information content, it is possible that this link applies cross-modally.  

Since signs on average take twice as long to produce than spoken words, they are 

expected to carry more information.  One proposal for sentence processing is that 

speakers are sensitive to the amount of information per unit (“information density”) 

comprising an utterance and try to maintain uniform information density across the 

utterance (Levy & Jaeger, 2007; Jaeger, 2010).  This hypothesis is motivated by a 
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principle in information theory that sending information at a constant rate is most 

efficient in noisy channels (Shannon, 1948; Genzel & Charniak, 2002).  When the 

error rate is minimal, it is assumed that information transfer close to the channel’s 

capacity is optimal.  Findings by Chong et al.’s (2009) may suggest that sign 

language processing is more efficient than speech. Across a sentence, some words 

have more information than others, such that there are “peaks” and “troughs” in 

information density.  These peaks and troughs are modulated to some degree by 

closed-class words that are highly frequent, are short in length, and make the 

categories of subsequent words more predictable.  In the future, it would be 

informative to compare information density patterns across different modalities since 

sign languages involve more simultaneous layering of information.   

In summary, understanding rates in natural language processing requires 

knowledge about the rate at which phonetic units are produced, the rate at which 

lexical units are produced, and the information content of each unit.  The kinematics 

of oral and manual articulators as well as the sensory pathways in audition and vision 

reveal considerable differences between the communication systems.  The entropy 

analysis by Chong et al. (2009) suggests that phonetic units in signing have much 

more information than units in speech, but an extension of their analysis to the 

duration of the signals suggests that overall information transfer rates may be 

comparable.  Although speech segments are more redundant than sign handshapes, 

sign handshapes may be as redundant over time.  An analysis of spoken sentence 

production shows that listeners are sensitive to the predictability of upcoming words 

and that speakers make phonological, lexical, and syntactic decisions based on the 
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information profile of the utterance (Hale, 2001; Levy & Jaeger, 2007).  

Psycholinguistic experiments show that signers are also sensitive to predictability in 

sentences and show similar neural correlates found in spoken languages, such as the 

N400 effect in electrophysiology (Neville, Mills, & Lawson, 1992; Capek, Grossi, 

Newman, McBurney, Corina, Roeder, & Neville, 2009).  From an information 

theoretic point of view, it remains unknown whether information density fluctuations 

in spoken sentence production (Figure 21) are similar in profile in signed utterances. 

Highly frequent closed-class words of English do not have direct phonological 

analogs in ASL. Peaks and troughs seen in sentences of English caused by these 

shorter words may also emerge in ASL as some parts of signs are more informative 

than others.  Alternatively, the differences between sequential and simultaneous flow 

of information across the modalities may reveal unique distributions of information 

density. 

 

3.4 Words, signs, morphemes, and syllables 
 

Since the findings of Bellugi and Fischer (1972), many questions still remain 

about the convergence of rates across languages and divergence of time properties 

based on modality and grammatical features.  The difference in word and sign rates is 

difficult to interpret because they may not be equivalent linguistic units.  Within 

spoken languages, the degree of complexity in words is represented by the analytic-

synthetic continuum, where analytic languages have little to no morphological 

inflections on words (e.g., modern Chinese) whereas synthetic languages (e.g., West 
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Greenlandic) are known for their morphological complexity.  Modern English is 

considered to be closer to the analytic end of the spectrum.  Meier (2002) notes that a 

polysynthetic language like Navajo produces fewer words per minute than English.  

Thus, the rate of words in English should not be generalized as a property of all 

spoken languages.   

What has never been reported in these studies is the rate of morphemes in 

languages.  Even though fewer words were produced per minute in Navaho than in 

English, how do they compare in terms of morpheme rates?  How do the morpheme 

rates in these two spoken languages compare with ASL?  Brentari (2002) argues that 

the typological trend among sign languages is that signs are monosyllabic and 

polymorphemic (Table 3).  She also argues that polymorphemic and monomorphemic 

signs are typically not different in length.   

 Monosyllabic Polysyllabic 

Monomorphemic Chinese English 

Polymorphemic Sign languages West Greenlandic 

Table 3. Adapted from Brentari (2002), who describes the typological 
distribution of canonical word shapes. These assumptions are 
reexamined throughout the current discussion in Chapter 3 because 
they require an examination of syllable and morpheme rates and the 
ratio of these rates for languages.   

 
This does not appear to be true in spoken languages, where morphologically complex 

words tend to have more syllables and thus are longer than morphologically simpler 

words (for example, morphologically can be analyzed as having 4 morphemes and 4 

syllables, whereas simpler can be analyzed as having 2 morphemes and 2 syllables).   
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A universal property of all mature sign languages is the use of spatial 

modulations to mark agreement and the use of classifier constructions.  These forms 

result in great complexity of meaning but can phonologically resemble 

morphologically simpler signs (Brentari, 1995).  Other constructions where semantic 

information can be layered nonconcatenatively include numeral incorporation, 

aspectual modulations, nominal and verbal number, and adverbial modifications 

(Rathmann & Mathur, 2010).   

 

Figure 22. Adapted from Mathur & Rathmann (2011), this figure 
demonstrates an example of numeral incorporation in ASL. 
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Figure 23. Reproduced from Mathur & Rathmann (2011), this figure 
demonstrates the grammatical form for TEN DAY and the 
ungrammatical form TEN+DAY that would result with numeral 
incorporation.  The latter is believed to be not possible due to 
phonological constraints against complex movement. 

 

Rathmann and Mathur explain that although these cases are not universal and more 

flexible to change, they also contribute to increased semantic complexity of 

constructions.  The availability of space in sign language articulation does not blindly 

allow forms to be combined nonconcatenatively but rather are constrained by 

phonological and phonetic restrictions.  Finally, Napoli and Sutton-Spence (2010) 

attribute the limitation of 4 propositions that can be articulated simultaneously in sign 

languages to cognitive limitations, in particular visual short-term memory.   

When languages are described as being analytic or synthetic, this usually 

refers to morpheme:word ratios, where analytic languages are 1:1 and synthetic 

languages are several:1 .  Brentari (2002) classifies sign languages as being 

polysynthetic like West Greenlandic but argues that having the property of both 

monosyllabicity and polysynthecism is unique to sign languages (Table 3).  A better 
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understanding of these relationships requires a typological investigation of the ratio of 

syllables to morphemes. 

Bellugi and Fischer (1972) speculate that in addition to incorporation, body 

movements, and facial expression, which all involve how information is layered 

without sequential strategies, a possible explanation for the discrepancy in word and 

sign rates is that ASL can “do without.” For example, a sentence in English like ‘I ate 

an apple’ would be translated in ASL to ‘EAT APPLE’.  ASL (and all sign 

languages) allow pro-drop especially when arguments can be understood from 

context.  Moreover, ASL does not have phonologically expressed function words like 

‘an’.  Finally, the past-tense information can also usually be understood from the 

context.  In this example, the equivalent of 4 words and 5 morphemes in English can 

be expressed with 2 signs.  This discrepancy cannot be attributed to the fact that ASL 

has more ‘synthetic’ qualities in this sentence than English.    

Taking into account previous work and the theoretical issues that arise, I have 

chosen to analyze the rates of words/signs, morphemes, and syllables in English, 

ASL, and Korean.  In addition to replicating an analysis of words/signs in English and 

ASL, an analysis of morpheme rate will lead to a better understanding of to what 

degree the combination of nonconcatenative morphology and “doing without” leads 

to true discrepancies in the rate of lexical units in the languages.  Given that English 

and ASL are distinct in more ways than one, it is difficult to assess whether the 

differences in rates are attributable to modality or grammatical differences. I have 

chosen to include Korean in this analysis because it is also a pro-drop language and 

lacks some of the small functional words that exist in English.  A perfect comparison 
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would be between two natural languages that differ in modality but essentially 

identical in grammar, but this is impossible given that typological distinctions in 

grammar do seem to be divided by modality.  Although Manually Coded English was 

created to have these features, the fact that it cannot be learned naturally and is 

globally much slower than ASL suggests that grammatical properties of sign 

languages are essential for their realization in the visuo-spatial modality.  

Another point of interest is the syllable rate in these three languages to 

compare units of form to units of meaning.  The syllable rate has been measured for 

English by numerous studies but morpheme rates have never been calculated using 

the same data.  A comparison with syllable and morpheme rates in Korean contributes 

to a better understanding of what trends emerge by looking at typologically distinct 

spoken languages.  Korean is more synthetic than English, it is expected to have a 

lower word rate than English but to have more morphemes per word than English.  

Finally, this analysis of ASL builds upon the work of Bellugi and Fischer (1972) and 

Wilbur and Nolen (1986).  Wilbur and Nolen have provided the most thorough report 

of syllable production in ASL, describing the frequencies of different types of 

syllables and their lengths, and including sign-external transitions.  As a point of 

comparison, the analysis provided in this present work only counts syllables based 

intra-sign movements. 
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3.5 Rates in spoken languages: English and Korean 
 

Studies on the speed of speech have largely focused on the rate of words, 

syllables, or segments.  Here, the goal is to gain a better understanding of the rate of 

words, morphemes, and syllables for cross-linguistic comparison.  The first step in 

analyzing the rate of linguistic units in speech and sign language production was 

identifying appropriate materials.  With large bodies of data developed for automatic 

speech recognition, English had the most options, but it was important to also 

consider if comparable material was accessible for Korean and ASL.  Data from each 

of the three languages was collected from natural conversations.  When looking for 

English materials, one question that arose was whether it would make a difference in 

the results for rates to use a corpus with prompted sentences (TIMIT) (Garofolo, 

Lamel, Fisher, Fiscus, Pallet, & Dahlgren, 1993), which were already transcribed and 

phonetically annotated, or to use a corpus of natural telephone conversations 

(CALLFRIEND, Canavan & Zipperlen, 1996a) without any annotations.  Both 

corpora were accessed through the Linguistics Data Consortium (LDC) at the 

University of Pennsylvania. 

Whereas speech files in TIMIT comprise of individual sentences that are 

uttered in isolation, the speech files in CALLFRIEND comprise of full 30-minute 

telephone conversations between two individuals.  Before doing a rate analysis for 

CALLFRIEND (American English, corpus containing non-Southern dialects only), a 

set of 363 sentences were extracted from the telephone conversations, 3 sentences 

from 121 individuals from 60 conversations) for their 1) propositional completeness, 
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2) lack of long pauses/breaks, and 3) lack of errors and corrections mid-sentence.  

The boundaries of the sentences were determined by looking at the acoustic 

waveforms and spectrograms and measured for overall duration.  For TIMIT 

sentences, rather than blindly taking the duration of the speech files, sentences were 

also analyzed in a similar way by looking at the onset of the first phoneme and the 

conclusion of the last phoneme because the sentences were preceded and followed by 

a short period of silence.  188 unique sentences were chosen from the TIMIT corpus 

from 188 speakers of a non-Southern dialect (to better closely match the dialects 

found in CALLFRIEND).   

Words have been described as “the free-standing unit that unifies form and 

meaning” (Sandler & Lillo-Martin, 2006:21), but as discussed previously, languages 

vary in their definitions of words, which range in complexity.  Due to the lack of 

consistent and linguistically well-motivated definition of words, here words were 

taken to be units marked by spaces in orthography.  As in Bellugi and Fischer (1972), 

contracted forms (don’t, it’s, wanna) were counted as single words.   

Morphemes are considered to be the smallest unit of meaning in language, but 

making judgments about morphemes is not always straightforward.  Debates about 

the decomposability of words have a long history (see Fiorentino (2006) for an 

extensive discussion).  I adopt the assumption that the lexicon involves structured 

representations and that morphological parsing is an early process of word 

recognition (Fiorentino & Poeppel, 2007).  Psycholinguistic experiments demonstrate 

different levels of analysis exist in word processing (Lehtonen, Monahan, & Poeppel, 

2011).  For example, a word like corner contains two morphemes in English – corn 
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and -er – but because they do not compose the meaning of the word, the word is 

considered to be made up of just one morpheme.  In on-line processing, evidence 

suggests that responses to semantically opaque words like corn and corner show 

differences to semantically transparent words like teach and teacher (Lehtonen, 

Monahan, & Poeppel, 2011).  Lehtonen et al. also show that although –er  in corner  

is not a morpheme, because it is a possible morpheme in words like teacher, corn and 

corner are processed differently from pairs like broth and brothel, which only involve 

an orthographic overlap and no possible morphological decomposition.  This three-

way separation of the data demonstrates the complexity of morphological processing.  

Although a word like corner may trigger morphological decomposition but which is 

rejected by subsequent analysis, unlike brothel, it is not analyzed in the same way as 

a word like teacher.  Corner and teacher share a decompositional stage of analysis, 

which succeeds for teacher and fails for corner. 

Although methodologies like priming studies provide a way to probe the 

psychological reality of a word’s subparts, it is not practical to apply them to every 

single word in a corpus.  Understanding the morphological structure of a word may 

also involve some knowledge about its etymology.  For example, could, would, and 

should are etymologically connected to can, will, and shall, but it is not clear whether 

native speakers decompose these words as having two parts (where –ld was 

historically linked to a suppletive form for the past tense).  Another example is a word 

like height, the noun form of the adjective high (where –t(h) is linked historically to a 

Germanic abstract noun suffix).  Because judgments about words such as these were 

not easy, both “conservative” and “liberal” judgments were made about morpheme 
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counts. Abbreviations like ESL were counted with 3 morphemes by the liberal count 

and 1 morpheme by the conservative count. 

Cases of irregular/suppletive forms were judged as being morphologically 

complex.  A word like didn’t was counted as having 3 morphemes: do-

+past+negation.  The word been was counted as having 2 morphems: be+-en.  

Possessive pronouns like our was counted as having two morphemes: 

we/us+possessive.  This decision was made based on the pattern that -’s is a 

productive morpheme that is used with nouns.  When her was used as a possessive 

pronoun, it was counted as having 2 morphemes, but when it was used as an 

object/accusative pronoun, it was counted as having 1 morpheme.  This decision was 

made based on the pattern in English that case-marking is not productive and only 

used among pronouns.  

Syllables in words were also measured with two estimates for similar reasons, 

although making syllable counts were relatively easier than morpheme counts.  Few 

examples that posed some difficulty include interesting – which was perceivable as 

having 3 or 4 syllables, actually – which was perceivable as having 3 or 4 syllables, 

several – which was perceivable as having 2 or 3 syllables, and you’re – which was 

perceivable as having 1 or 2 syllables. 

Two researchers coded the data from English, where each researcher coded 

approximately 50% of the sentences from each corpus.  These two researchers 

worked together with frequent discussions to support consistency, but at this current 

time, inter-rater reliability has not been assessed. 



129 

In all of the following figures (from English, Korean, and ASL), results are 

shown in density plots (using R 2.8.1, R Development Core Team (2005)), which 

estimates the probability density function of the underlying variable.  The kernels in 

these density plots represent the data (length, syllables per second, etc.) from each 

sentence.  

 

Figure 24. Estimated probability density functions for the length in 
seconds of sentences in two corpora of English: TIMIT (prompted) 
and CALLFRIEND (conversational).  

 
A comparison of sentences from TIMIT and CALLFRIEND for English show 

that rates are significantly different in prompted speech and natural conversational 

speech.  The following figures include “conservative” measures of morphemes and 

syllables. 
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Figure 25. Estimated probability density functions for words rates (words 
per second) of sentences in two corpora of English: TIMIT (prompted) 
and CALLFRIEND (conversational).  
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Figure 26. Estimated probability density functions for syllable rates 
(syllables per second) of sentences in two corpora of English: TIMIT 
(prompted) and CALLFRIEND (conversational).  

 



132 

 

Figure 27. Estimated probability density functions for morpheme rates 
(morphemes per second) of sentences in two corpora of English: 
TIMIT (prompted) and CALLFRIEND (conversational).  

 

As may be expected, rates were overall much faster in the natural 

conversational speech than prompted speech (Figures 25, 26, and 27). A calculation 

of the mean average syllable rate (on conservative-liberal estimates) reveals a slower 

articulation in TIMIT (~5.0-5.1 syllables per second) than CALLFRIEND (~6.1-6.2 

syllables per second).  In addition to the inherent difference between producing self-

generated sentences with a communicative partner and reading unfamiliar sentences, 

other reasons for these differences could be attributed to 1) the oddness of the 

semantic content of TIMIT sentences and 2) the presence of more low-frequency 

words in TIMIT.  In CALLFRIEND sentences, words were produced approximately 
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4.7 words per second (mean average), which is similar to the results of Bellugi and 

Fischer (1972), where stories were narrated by 3 individuals and pauses were 

excluded from analysis.  In contrast, the rate in TIMIT is 3.1 words per second. An 

examination of the ratio of syllables to words reveals that TIMIT contained words 

that had longer phonological forms (mean average ~1.6 syllables per word in TIMIT 

compared to ~1.3 syllables per word in CALLFRIEND).  Although a frequency 

analysis was not conducted for words in TIMIT and CALLFRIEND, the trend that 

more frequent words have shorter phonological forms (Zipf, 1935; Manin, 2006) 

suggests that the words in CALLFRIEND are more highly frequent.   

Morpheme rates were also overall slower in TIMIT than in CALLFRIEND.  

The mean average (on conservative-liberal estimates) was 4.4-4.8 morphemes per 

second in TIMIT and 6.1-6.4 morphemes per second in CALLFRIEND.  An 

examination of the ratio of morphemes to words reveals that TIMIT (1.4-1.6 

morphemes per word) contained words that were more morphologically complex than 

CALLFRIEND (1.3-1.4 morphemes per word).   

Finally, in both corpora there is approximately a ratio of 1:1 between 

morphemes and syllables.  In TIMIT, which presumably contains lower frequency 

lexemes (a word-like unit that are used to represent all variations of the word in 

usage) and each morpheme contains more phonological content, the ratio is slightly 

lower than 1:1, and in CALLFRIEND, the ratio is slightly higher than 1:1. 

The mean average duration of the sentences taken from CALLFRIEND was 

2.37 s.  The mean duration of syllables was calculated by dividing the duration of the 

sentences by the number of syllables in the sentences.  The mean duration of syllables 
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was approximately 162 ms.  This is somewhat faster than 190 ms reported by 

Greenberg et al. (1996).  This could be attributed to at least two reasons: 1) a 

difference in the corpora used (CALLFRIEND versus Switchboard, where two 

individuals discuss a specific topic for several minutes) and 2) this study only chose a 

small subset of the most fluent sentences in CALLFRIEND for analysis, whereas 

Greenberg et al. used data from full conversations that contained filled pauses and 

misarticulations.   

As explained previously, Korean was chosen for analysis because it is a 

spoken language that is typologically different from English by being 

morphologically more complex, being a pro-drop language, and having fewer small 

functional words (like a and the) and thereby being grammatically more similar to 

ASL.  A Korean version of the CALLFRIEND corpus (Canavan & Zipperlen, 1996b) 

with Yale Romanized transcription is also available through the LDC.  378 sentences 

were extracted from 128 speakers following the same criteria as used for English 

(fluency, lack of errors and corrections mid-sentence, and lack of long pauses/breaks).  

Again, words were counted based on orthography.  In other words, words were 

equivalent to eojeols, which are the spacing units in Korean orthography.  The 

Romanization used periods (.) to mark syllable boundaries and spaces to mark word 

boundaries.  Similar to English, words in Korean are taken to be free-standing units 

that can vary in morphological complexity.  Conservative and liberal estimates of 

morpheme and syllable counts were measured for each word.  For example, the topic 

form of the second person pronoun is ne.nun (‘you-TOPIC’) with 2 syllables but it is 

often reduced to nen and perceivable as 1 syllable in fast speech.  Case markers were 
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always counted as morphemes.  Examples of words that had different conservative 

and liberal morpheme counts were hak.kyo (‘school’), which was counted as 

consisting of either 1 or 2 morphemes, and pi.ngwus.ta (‘to mock’), which was 

counted as consisting of either 2 or 3 morphemes.   

The data from Korean was coded by one researcher, and at this current time, 

inter-rater reliability has not been assessed. 

The results from Korean (as compared to conversational data of English) are 

as follows.  The sentences that were extracted from the two corpora were similar in 

length (Figure 28). 

 

Figure 28. Estimated probability density functions for length in seconds of 
sentences from conversational data in English and Korean. 
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Figure 29. Estimated probability density functions for word rates (words 
per second) of sentences from conversational data in English (a more 
analytic language) and Korean (a more synthetic language). 

 
As predicted, Korean had a lower rate of words per second because Korean is 

more synthetic than English (Figure 29).  The results show that the mean average rate 

is 3.1 words per second (compared to 4.7 words per second in English).  However, 

this does not mean that Korean is slower than English.  The mean syllable rate was 

7.2-7.3 (conservative-liberal) per second, which is slightly higher than English (6.1-

6.2 syllables per second) (see Figure 30).  The mean duration of Korean syllables was 

approximately 138 ms (compared to ~162 ms in English). This may be attributed to 

the fact that English allows consonant cluster onsets and codas, whereas syllables in 

Korean are simpler.  For example, a long syllable in English like script (CCCVCC), 

would have to be pronounced with 4 syllables ([sɯkɯrɪptɯ] = CVCVCVCCV) with 
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epenthesized vowels in Korean.  Japanese, like Korean, has simpler syllable 

phonotactics than English, and Arai and Greenberg (1998) show that the mean 

average of syllables in Japanese are slightly shorter than in English. 

 

Figure 30. Estimated probability density functions for syllable rate 
(syllables per second) of sentences from conversational data in 
English and Korean. 
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Figure 31. Estimated probability density functions for morpheme rates 
(morphemes per second) of sentences from conversational data in 
English and Korean. 

 
The mean morpheme rate was 5.8-6.0 per second in Korean (compared to 6.1-

6.4 per second in English) (see Figure 31).  As a language that is more synthetic than 

English, Korean was expected to have a higher ratio of morphemes to words than 

English.  Results show that on average, there are 1.9 morphemes per word in Korean 

(compared to 1.3-1.4 morphemes per word in English).  An examination of the ratio 

of syllables to words (~2.3 syllables per word) reveals that Korean has words 

containing more syllables (compared to 1.3 syllables per word in English).  Finally, 

the ratio of morphemes to syllables is 1:1.2, which is slightly lower than the 1:1 ratio 

found in English.   
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Although English and Korean are typologically distant languages, similar 

trends emerge.  The main difference between the languages is in the word rate.  

However, when looking at the smallest unit of meaning, both show rates of 

approximately 6 morphemes per second.  Although the syllable rate is slightly faster 

in Korean and the morpheme to syllable ratio is slightly lower in Korean, this is most 

likely due to the simpler syllable structure in Korean.  Although Korean does not 

have small functional words like a and the in English, it has case markers on nouns 

and also richer morphology on verbs, resulting in the morpheme rates to closely 

converge.  Overall, the ratio of morphemes to syllables in both languages is 

approximately 1:1. 

 

3.6 Rates in sign language: ASL revisited 
 

The goal of this study was to replicate previous work that have examined the 

rate of signs in natural ASL production and extend the analysis to morphemes and 

syllables within the signs.  Sentences that matched the fluency criteria used for 

English and Korean were taken from natural conversations of ASL collected by Ceil 

Lucas and colleagues.  Lucas’s corpus was filmed in the 1990s to study 

sociolinguistic variations of ASL across the United States.  The videos involve free 

conversations among deaf participants who already know each other and interview 

sessions with a researcher.  The free conversation sessions were recorded without the 

presence of any researcher.  In the interviewed segments, a deaf African-American 

researcher moderated groups composed of deaf African-American participants.  For 
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the purposes of this study, 179 sentences were taken from 21 participants who are 

native ASL users.   

Sign language linguistics students identified a set of full, fluent sentences 

within the conversations, which were labeled using ELAN software.  These research 

assistants were instructed to use their intuition about the beginning and end of 

sentences by doing a frame-by-frame analysis on the first and last signs.  Group 

discussions and viewing of the videos supported consistency in the data, but at this 

current time, inter-rater reliability has not been assessed. 

Each sign in a sentence was first given an English gloss, and sign rates were 

calculated based on these glosses.  For each sign, annotation tiers were then created 

so that the number of morphemes and syllables could be counted.  Morphemes were 

counted in two ways – with a “conservative” or “liberal” estimate.  Before starting the 

annotation process, it was decided that plain/uninflected verbs like LIKE and HAVE 

would be counted as having 1 morpheme, agreement/indicating verbs such as SHOW 

and ASK would be counted as having 2 morphemes (one for the root and one for 

agreement), and that spatial/locative verbs such as PUT and DRIVE would be 

counted as having 2 morphemes (one for the root and one for movement).  On these 

verbs, aspectual marking was counted as one morpheme, and aspectual marking that 

showed number was counted as having an addition morpheme.  Depiction verbs were 

counted as having 2 morphemes, one for the classifier handshape and one for 

movement.  Although these criteria were decided before the annotation process, the 

vast majority of the verbs found in this set of sentences were plain and uninflected. 
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Possessive pronouns were counted as having 2 morphemes, one for the palm 

orientation for indexation and one for the open handshape marking possession.  Facial 

inflections that were used in questions were counted as one morpheme.  An 

expression with noun incorporation such as TWO-MONTHS was counted as having 2 

morphemes.  The sign for TWO-OF-US was counted as having 2 morphemes.  The 

sign for AGE-THREE was counted as having 2 morphemes.  The sign for EVERY-

FRIDAY, where the sign for FRIDAY is held in downward movement, was counted 

as 2 morphemes.  There were two cases when the researchers could not identify the 

sign of short gestures, and these gestures were labeled ‘gesture’ and counted as one 

morpheme each.   

Liberal versus conservative estimates were used in cases where the etymology 

of a sign was known to be a compound.  For example, the sign for HOME evolved 

from the combination of the sign for EAT (contact at the chin) and BED (contact at 

the cheek).  HOME was counted as 2 morphemes in the liberal estimate and 1 

morpheme in the conservative estimate.  The sign for WIFE was counted as 2 

morphemes (WOMAN+MARRY) in the liberal estimate and 1 morpheme in the 

conservative estimate.  The sign for TEACHER is traditionally considered to consist 

of 2 morphemes, one for TEACH and one for an ‘-er’-like affix that is linked with the 

sign for PERSON.  In natural signing, TEACHER is signed with one fluid motion 

where separate components for TEACH and PERSON become hard to distinguish.  

Thus, TEACHER was counted as having 2 morphemes in the liberal estimate and 1 

morpheme in the conservative estimate.  The sign for PARENT is the combination of 

the signs for MOTHER and FATHER.  PARENT was counted as having 2 
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morphemes in the liberal estimate and 1 morpheme in the conservative estimate.  

Fingerspelled words consist of a sequence of letters, each of which represents the 

letter but as a whole also represents a word.  The sign for HIGHSCHOOL, which is a 

sequence of H and S, was counted as having 2 morphemes in the liberal estimate and 

1 in the conservative estimate.  For all fingerspelled words, the liberal estimate was 

the number of letters and the conservative estimate was 1.   

Syllables were counted based on the number of movements that occurred 

within the sign and were based on how they were produced in the video, not citation 

forms.  For example, SCHOOL was sometimes produced with 1 or 2 movements (1 

or 2 syllables).  Each token was labeled the way it was produced. In another case, the 

sign for HERE was signed with 1 syllable in one sentence, and when it was 

emphasized, it was signed with 3 syllables.  As has been discussed in the sign 

language literature, the majority of signs in these sentences were monosyllabic.  

Examples of disyllabic signs that occurred in this set of sentences included CANCEL 

and NEVER.  In ASL, nominalization of verbs can be achieved through 

reduplication.  As an example, the sign for AIRPORT was the reduplicated version of 

FLY and was produced with 2 syllables.  In cases where a sign involved more than 

one syllable, it was usually through repetition of a movement, such as in 

SOMETIMES, VACATION, WORK, FEEL, YOUNG, and TECHNOLOGY.  These 

reduplicated movements are usually produced in a restrained manner.  The sign for 

SIGN was produced with 2 syllables in some cases, and there was one token when it 

was produced with 4 syllables.  When the W handshape was waved three times for 

WEDNESDAY, it was counted as 3 syllables, and when the M handshape was waved 
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two times for MONDAY, it was counted as 2 syllables.  Syllables in fingerspelled 

words were generally counted by the number of transitions between the letters but 

were sometimes lower because of coarticulation of letters.  A gesture that was used to 

indicate ‘HEART-POUNDING’ was produced with 8 syllables.   

The results from ASL are presented together with English and Korean in the 

following discussion and figures (Figures 32, 33, and 34). The results show that ~2.3 

signs are produced per second, replicating the findings from Bellugi and Fischer 

(1972), Grosjean (1979), and Klima & Bellugi (1979) for ASL (see Figure 33).  The 

main reason word rates are compared here is that previous studies have given much 

attention to differences between English and ASL at this level.  However, languages 

have different definitions for what a word is as a unit, and here, word rates do not tell 

us much about modality-based differences.  As discussed earlier for English and 

Korean data, two spoken languages also show significant differences in their word 

rates.  An analysis of a more synthetic spoken language, such as Navajo or West 

Greenlandic, is predicted to show more similar rates to ASL.   
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Figure 32. Estimated probability density functions for length in seconds of 
sentences from conversational data in English, Korean, and ASL. 
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Figure 33. Estimated probability density functions for word/sign rates 
(words or signs per second) of sentences from conversational data in 
English, Korean, and ASL.  This comparison word and sign rates 
replicate the findings from Bellugi & Fischer (1972) for English and 
ASL.  A comparison with Korean demonstrates that word rates 
depend on grammatical properties of the language.
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Figure 34. Estimated probability density functions for syllable rates (syllables per 
second) of sentences from conversational data in English, Korean, and ASL. 
Syllables rates in ASL may be the basis for the temporal integration window 
of ~250-300 ms found in Experiment 1 in Chapter 2. 
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Figure 35. Estimated probability density functions for morpheme rates 
(morphemes per second) of sentences from conversational data in 
English, Korean, and ASL.  This figure demonstrates that English and 
Korean, two spoken language with distinct grammars, have the same 
morpheme rate (~6 per second), in contrast with the morpheme rate 
in ASL (~3 per second). 

 

The difference between faster English word and slower ASL sign rates have now 

been discussed widely in the literature, along with speculations on how simultaneous 

encoding of information (through greater morphological complexity) of ASL signs 

and more condensed ways of expressing meaning (through “doing without”) may 

contribute to similar propositional rates.  However, in order to test these assumptions, 

analysis of morpheme rates in these languages is necessary. 

By liberal counting methods, morphemes were produced at ~3.0 per second, 

and by conservative counting methods, morphemes were produced at ~2.5 per 
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second. These results were surprising given that the rates in English and Korean were 

both approximately 6 morphemes per second, and Senghas and Coppola’s (2001) 

analysis of rates in Nicaraguan Sign Languages, where 5 – 6 morphemes per second 

are reported among native signers.  A detailed discussion about the theoretic and 

methodological considerations for why morpheme rate estimates are considerably 

lower is given in the following conclusion section.  However, the present results 

suggest that strategies for “doing without” may play a bigger role than simultaneous 

morphology to reach the same propositional rates across modalities.   

To test Brentari’s (2002) assumptions presented in Table 3, when comparing 

the ratio of morphemes to words, there are approximately 1.3-1.4 morphemes per sign 

in ASL.  This is the same ratio that was found in English (also 1.3-1.4 morphemes per 

word) and slightly lower than 1.9 morphemes per word found in Korean.  

As explained by Wilbur and Nolen (1986), the articulators in signing cannot 

be hidden while in transition from one sign to another.  Since Wilbur and Nolen 

already provide a thorough analysis of syllables from an articulatory point of view 

where all types of movements were measured, here, only intra-sign movements were 

counted to provided syllable rate estimates.  Thus, the mean average number of 

syllables per second was predicted to be lower than that reported by Wilbur and 

Nolen (~ 4 syllables per second).  In this study, approximately 3.1 syllables were 

produced per second.  Thus suggests that approximately 25% of the movements 

during sentence production do not contribute to the articulation of signs.   

Similar to the time-scales seen in morpheme rates, among these three 

languages ASL has a significantly slower syllable rate than English or Korean. These 
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results are consistent with other studies that report that monosyllabic English words 

are approximately half the duration of monosyllabic ASL signs (Emmorey & Corina, 

1993; Corina & Knapp, 2006; Capek, Grossi, Newman, McBurney, Corina, Roeder, 

& Neville, 2009). 

When examining the ratio of syllables to signs, it was found that there are 

approximately 1.4 syllables per sign.  When examining the mean average of the ratio 

of morphemes to syllables, a liberal morpheme count resulted in an average estimate 

of 0.96 morphemes per syllable and a conservative morpheme count resulted in an 

average estimate of 0.81 morphemes per syllable.  In other words, these mean average 

ratios are very similar in range to the values found for English and Korean. 
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Figure 36. The comparison of morpheme:syllable ratios in English, 
Korean, and ASL suggests that the globally, morphemes and syllables 
are processed at approximately the same rate.  However, the results 
from ASL are different from spoken languages in that the ratios reveal 
a trimodal distribution.  This may be attributed to properties unique to 
sign languages, such as productive use of reduplication (resulting in 
ratios lower than 1:1) and productive use of spatial modulations 
(resulting in ratios higher than 1:1), in addition to simple signs.   
 

However, as seen in Figure 36, the ratio in ASL shows a unique tri-modal 

distribution for sentences where sometimes the rate is lower than 1:1 and other times 

when the ratios are higher.  Sign languages differ from spoken languages by having 

productive use of reduplication, where a sign can be repeated multiple times, and 

allowing more compacting of information through simultaneous strategies.  Despite 
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these varied options, the ASL follows the pattern of English and Korean where global 

rates of morphemes and syllables are approximately the same.  

The need for expanding the sample size of ASL sentences and assessing the 

inter-rater reliability of morpheme and syllable estimates presents some 

methodological challenges before adopting these findings conclusively.  Moreover, 

this area investigation trying to understand the temporal dynamics of linguistic 

processes in production and perception requires a better theoretical consensus on how 

to count all of these units (words/signs, morphemes, and syllables) and compare 

them.  Nevertheless, the emerging trend from this first attempt to study all of these 

rates together suggests that units of form (syllables) and meaning (morpheme) unfold 

at approximately the same time scales in all languages.  

 

3.7 Conclusion 
 

By examining the rates of words, signs, morphemes, and syllables, this study 

provides new insights on the universal time properties of language production and 

also differences that arise due to grammar and modality.  The results from English 

and ASL converge with previous studies that have examined word, sign, and syllables 

in these languages (Bellugi & Fischer, 1972; Grosjean, 1979; Wilson & Nolen, 1986; 

Emmorey & Corina, 1993; Corina & Knapp, 2006).  The results from Korean 

syllables confirm models of speech production based on other spoken languages 

(Greenberg, Hollenback, & Ellis, 1996; Arai & Greenberg, 1998).  The unique 

contribution of this present work is the demonstration of the relationship between the 
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physical dynamics of language production and representational units of meaning.  

Taken all together, these findings reveal consistent patterns in language processing 

although the particular rates may differ. 

Bellugi and Fischer’s (1972) original work comparing the rate of a spoken 

language (English) and signed language (ASL) concluded that at the word/sign level, 

signed languages are twice as slow as spoken languages but that at the 

propositional/sentence level, the rates across the modalities are the same.  They 

speculated that the convergence of global rates despite the discrepancy of local rates 

is due to the differences in the grammatical properties of the two languages.  Later 

work (Klima & Bellugi, 1979) examining a signing system that maintains a similar 

grammatical structure to English verified that without the special grammatical 

properties of a true sign language, a manual communication system is significantly 

slower.   

The present results demonstrate that the word-sign comparison is not very 

meaningful when considering that even among spoken languages, the amount of 

linguistic information within a word can vary greatly, which is traditionally 

represented by the analytic-synthetic continuum.  A comparison of word rates in 

English (~ 5 words per second) and Korean (~ 3 words per second) reveals that word 

rates are not indicative of major differences due to modality but grammar and how 

word boundaries are determined in languages.  Nevertheless, an analysis of 

morpheme rates in English, Korean, and ASL indicates that Bellugi and Fischer’s 

conclusion about rate differences due to modality, where spoken languages are twice 

as fast as signed languages, still presents a deep puzzle.  Morpheme rates are ~ 6 
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morphemes per second in English and Korean and ~ 3 morphemes per second in 

ASL.   

Moreover, this work goes beyond Bellugi and Fischer’s study by analyzing 

the rate of syllables among three languages.  It also complements Wilbur and Nolen’s 

(1986) study focusing on syllable rates of ASL but differs from their work by 

focusing on intra-sign movements (or syllable nuclei) that are involved in the 

articulation of signs, whereas they also included inter-sign transitional movements.  

Syllable rates reveal the physical dynamics in production and also serve as units for 

sensory integration in perception.  In phonological theory, syllables serve as 

sublexical units to which constraints and rules apply.  Similar to the notion of 

syllables in spoken languages, syllables in sign languages organize the timing of 

phonetic segments and arrange them into a sonority/saliency hierarchy.  Wilbur and 

Nolen have speculated that syllable rates are the same across spoken and signed 

languages.  However, the results presented here suggest that time-scales of syllables 

across the modalities are different – ~6-7 syllables per second in English and Korean, 

and ~3 syllables per second in ASL (or ~4 syllables per second according to Wilbur 

and Nolen).  These rate differences are consistent with the differences in the 

frequency of syllables found in babbling, where vocal babbling is faster than manual 

babbling. 

Nevertheless, a consistent pattern that emerges is that the ratio of morphemes 

to syllables is approximately 1:1 in both modalities.  In English, there are certainly 

polysyllabic and monomorphemic words, such as apple and kitchen.  However, there 

are also numerous highly frequent monosyllabic and multimorphemic words, such as 
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went and men.  The same pattern holds in Korean.  As Brentari (2002) has described, 

in some ways ASL can be described as a language that is monosyllabic and 

polymorphemic because it has a rich system of simultaneous morphology that 

exploits the use of space.  However, it also has an inventory of bisyllabic signs (like 

CANCEL and NEVER) and cases in normal usage where monosyllabic signs are 

reduplicated to polysyllabic forms.  Among all these languages, many morphemes are 

monosyllabic, and monomorphemic-polysyllabic cases are balanced with 

polymorphemic-monosyllabic cases. 

Bellugi and Fischer (1972) listed three reasons for how propositions/sentences 

in ASL can contain similar amounts of semantic information despite having fewer 

signs/words than English: 1) doing without, 2) incorporation, and 3) body movements 

and facial expression.  Based on the results of the present study, which took into 

account the incorporated information in signs by measuring morpheme rates, the 

factor that seems to play the biggest role in the convergence of rates in spoken and 

signed languages appears to be the idea of “doing without,” which Bellugi and 

Fischer characterize as a way of reducing redundancy and increasing information 

density.   

In doing a morpheme rate analysis, this study was not able to replicate the 

findings from Senghas and Coppola (2001), who measured morpheme rates as an 

indicator of fluency.  Among the group who used the full-fledged version of 

Nicaraguan Sign Language, the average rate was 350 morphemes per minute, or ~6 

morphemes per second.  Because the study focused on the use of spatial modulations 

in the grammar and did not elaborate on the details of the rate analysis, it is not 



155 

possible to determine whether these differences in results are due to the difference 

between ASL and NSL or a difference in methodologies on how morphemes were 

counted.   

In addition to assessing inter-rater reliability for all these data, future analyses 

on the coded data will benefit from considering alternative ways of counting 

morphemes, especially in ASL.  Determining how to count morphemes presents 

challenges in both spoken and signed languages.  Theories of syntax and morphology 

in generative grammar posit the presence of phonetically null elements that serve 

functional roles in derivations (Embick & Noyer, 2007; Baker, 1996).  Here, only 

morphemes that were phonetically realized in some way were counted.  For example, 

men was counted as having 2 morphemes even though the regular plural suffix is not 

attached because of a phonetic change to the root.   The same approach was taken 

when analyzing ASL, with most attention given to the manual gestures and where 

facial features were taken into account in question-marked constructions.  It is 

possible that different criteria could have resulted in a higher estimate of morpheme 

counts.  For example, it was decided that agreeing and spatial verbs would be counted 

with 2 morphemes, 1 for the root and 1 for the agreement or spatial feature.  Another 

approach would have been to count these as having at least three morphemes, the 

verb root, and subject and object for agreement verbs, and the source and goal 

locations in spatial verbs.  However, the vast majority of the verbs found in the 

sentences (that were selected before the annotation process) were plain/uninflecting, 

and it is predicted that this revision would not significantly change the results.  de 

Beuzeville, Johnston, & Schembri (2009) report similar patterns for plain verbs in 
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Australian Sign Language.  Perhaps one way to increase the number of constructions 

involving morphologically richer verbs would be to have participants view videos 

with actions involving many of these verbs and then discuss them with other 

participants.  

Another potential way of increasing morpheme counts in ASL is to take into 

greater consideration the derivational processes described by Padden and Perlmutter 

(1987) that change the movement of a sign. Repeated circular movements can change 

regular adjectives to mean ‘characteristically ___’.  Small, quick movements that are 

reduplicated forms activity nouns from verbs, as in pairs such as SIT-CHAIR. 

Although it seems relatively simple to systematically count signs like CHAIR as 

consisting of 2 morphemes (SIT+NOUN), it becomes a tricky issue for nouns like 

CHURCH and NURSE that phonologically have reduplicated noun forms without 

corresponding verbs.   

  

Figure 37. Reproduced from Padden & Perlmutter (1987), where 
reduplicating circular movement turns the adjective QUIET to mean 
‘characteristically quiet’, or taciturn. 
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Figure 38. Reproduced from Aronoff, Meir, & Sandler (2005), 
demonstrating a complex ASL classifier construction: ‘A person walks 
forward, (dragging) a dog squirming behind.” 
 

Perhaps classifier constructions present the greatest challenge in 

understanding how many units of meaning can be captured in visual imagery.  Liddell 

(2003) provides a useful discussion of these issues.  DeMatteo (1977) and others 

argue that classifier constructions (or “classifier predicates”) are analogical rather 

than discrete, and that morphemic representations of these constructions are not 

appropriate.  In contrast, Supalla (1982) has proposed that these constructions can be 

analyzed as being a highly complex, productive, multimorphemic system.  Liddell 

himself has argued for a hybrid of these models where handshapes have lexical status 

but the use of these handshapes are gradient/analogical.  Liddell cautions against 

attributing morpheme status to metaphorically expressed, depicting movements.  For 

example, he points out that [rl] is not considered a morpheme in English although 

there are words like curl, swirl, whirl, twirl, furl, and gnarl, which all have meanings 

related to round, twisted shapes.  Dudis (2011) explains that these issues that make 

depicting verbs hard to analyze morphologically also apply to agreement/indicating 

verbs since they utilize correspondences in space.    
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Iconic aspects of signs are highlighted as one of the key modality effects in 

language and poses interesting challenges in understanding how meaning is 

composed.  For example, mental verbs and nouns tend to involve articulations near 

the forehead, for example, THINK, KNOW, and DREAM.  One possibility is to 

assume a morpheme for MIND, but it is impossible to distinguish whether such 

morphemes are computed compositionally or whether the forehead is exploited as an 

iconic place of articulation in phonology.  Signs like BELIEVE and AGREE have 

been described as originating from compounds: THINK-MARRY and THINK-

SAME, respectively.  In the case of THINK-MARRY, there is a change from the “1”-

handshape for THINK to the “C”-handshape for MARRY.  It is now common to see 

uses of BELIEVE involving handshape assimilation where the “C”-handshape starts 

near the forehead.  Understanding the etymology of this sign motivates a 

bimorphemic analysis, but there may become a point where this compositional aspect 

gets lost in on-line processing. 

Finally, any future work examining the morpheme rate in a sign language 

should provide a more careful analysis to non-manual features, which in addition to 

eye-brow raising/lower includes, eye-gaze, body-shifts, and mouthing.  Facial 

articulations can provide lexical information that adds to the meaning of a sentence.  

For example, when mouthed at the same time as the verb, the ‘TH’ expression 

(tongue between the teeth) means ‘carelessly’ and ‘MM’ expression (protrusion of the 

lips) means ‘with relaxation and enjoyment’ (Corina, Bellugi, & Reilly, 1999).  Eye-

gaze and body shifts may have provided a phonetic cue of pronouns in cases where 
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the argument was assumed to be ‘null’.  In order to catch these subtleties that may 

have been lost in these annotations, a corpus with high video quality is necessary. 

Taking all these factors into account may show that ASL also displays >6 

morphemes per second, suggesting that morphemes rates are universal.  If so, the 

ratio of morphemes to syllables may be >1:1, which may be a unique property of sign 

languages.  However, if transitional movements between signs are also factored in, as 

proposed by Jantunen (2010), ratios may still remain consistent. 

Another way to compare rates of spoken and signed languages in the future 

may be to compare only open-class/lexical (where lexical is contrasted with 

functional) morphemes.  For example, in a sentence like ‘I ate an apple,’ although 

there are 5 morphemes total (I-eat-past-an-apple), it only contains 2 lexical 

morphemes (eat-apple), like the ASL sign EAT-APPLE.  It is possible that ASL may 

have more phonetically null morphemes than English or Korean.  As discussed by 

Lillo-Martin (1991) and Fischer et al. (1999), ASL may be more discourse-dependent 

than English, where the meaning of individual sentences is harder to recover in 

isolation.  Because Korean is a pro-drop language, it may be considered more 

discourse-dependent than English, but morpheme rates were in the same time-scale as 

English.  Although Lillo-Martin (1991) has suggested that ASL is discourse-

dependent like Chinese, Japanese, and Korean, more significant differences in the 

degree of discourse-dependence may be determined by modality.   

The present study did not conduct an analysis of propositional rate for the 

following reasons: 1) the materials used for the three languages were not matched for 

semantic content, and 2) the high likelihood that propositional rates across English 
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and ASL are comparably equal given the task of simultaneous interpreting by 

professionals.  Although discrepancies may exist for particular constructions, the 

global rates are generally assumed to be the same.  Padden (2000:179) summarizes 

this view by saying, “Languages of different modalities organize timing, prosody and 

syllable structure differently even if linguistic content is similar.  However, over a 

span of time, the amount of information in any language, signed or spoken, is roughly 

equivalent.”  The slowness of artificially created signing systems adds further support 

to the idea that natural language processing occurs within a certain range of time 

constraints.   

An analysis of the rate of signing or speech in highly-skilled interpreting and 

comparison with the rate of the original production may be a useful way to study how 

global rates become equivalent across the modalities.  It is expected that some short 

constructions in ASL require long English translations, and vice versa.  However, to 

more accurately capture these patterns and fully understand universal time properties, 

an examination of more sign languages, especially those with different grammatical 

properties, is needed.  For example, Japanese Sign Language is reported to have 

gender marking on verbs, and Taiwan Sign Language is reported to have auxiliary 

verbs (Padden, 2000).   

Aside from words/signs and propositions, languages also have phrasal units, 

which are intermediate levels of structure.  Due to time constraints, it was not 

possible to look at phrasal units at the time of the study.  Nevertheless, I can speculate 

about how spoken and sign languages compare at intermediate time scales.  Nespor 

and Sandler (1999) describe how similar principles of dividing sentences into 
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prosodic and intonational phrases applies to spoken and signed languages. Although 

there are debates about the degree to which this isomorphism holds, it has been 

shown that there are phonological constituents that correspond to syntactic 

constituents (Nespor & Vogel, 1986; Selkirk, 1984).  In sign language production, 

eyeblinks have been recognized as occurring at syntactic boundaries and discourse 

transitions (Baker & Padden, 1978; Bahan & Supalla, 1995).  Nespor and Sandler 

(1999) provide an analysis of Israeli Sign Language, where cues for prosodic and 

intonational phrase boundaries are taken from facial features (brows, eyes, cheeks, 

mouth, tongue, head tilt, mouthing), body shifts, and temporal cues (reduplications, 

pauses, and speed and size of movements).  Although they do not report the time 

durations of prosodic phrases, which are embedded in intonational phrases, on 

average their examples show prosodic phrases with 2 signs and intonational phrases 

with 3 signs.  Boyes-Braem (1999) provide an analysis of prosodic rhythms among 

early and late learners of Swiss German Sign Language.  The examples in her work 

show the time-course of sentences, where signs and prosodic units are labeled.  A 

rough estimate based on the measurements she provides suggests that a prosodic unit 

is, on average, about 1 second long.  Some of these findings may converge with 

reports of speech, where prosodic information is conveyed at rates of 1–3 Hz 

(Munhall, Jones, Callan, Kuratate, & Vatikiotis-Bateson, 2004).   

The intuition behind the finding that global rates in languages are equivalent is 

that the rate of informational transfer in language is relatively consistent.  In this 

sense, the capacity of the communication channel in language may be amodally 

determined.  The objective in transmitting information is to ensure that the message is 
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conveyed through a noisy channel, in the shortest amount of time, and with the lowest 

probability of error.  Resistance to error and rate are traditionally considered to be 

opposing factors, where conveying minimal information with each fragment is the 

most error resistant strategy but also the slowest.  Chong et al. (2009) demonstrate 

that the ratio of the information bits in units of ASL and English is approximately 5:1.  

Nevertheless, English is not overall slower than ASL.  An extension of their analysis 

to calculating information transfer rates suggests that they may be quite similar, 

although the channels that are particular to different modalities may determine how 

many information bits are transmitted at a time.  Based on these characteristics, 

auditory and visual processing of language may be differentially sensitive to noise in 

the channel, as demonstrated by the experiments in Chapter 2.   

The finding that units of linguistic form and meaning unfold at approximately 

the same time-scales has broader implications for language processing.  This suggests 

that sensory integration and extraction of meaning proceed in parallel.  In addition to 

research from neuroscience (Hickok & Poeppel, 2007), a typological investigation of 

patterns in language processing can lead to better models for the architecture of 

computational and neural networks for language.  Although there is still much room 

for improvement in our understanding of how many meaningful units get phonetically 

realized, how meaning is constructed, and the discrete nature of meaningful units 

(Embick & Noyer, 2007; Liddell, 2003), this first attempt to compare units of form 

and meaning highlights the importance of taking into consideration the time 

properties of phonological and morphological processing, which are temporally 

tightly linked.   
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4 Conclusion 
 
 

4.1 Overview 
 
 

In Chapter 2, I described evidence for larger temporal integration windows in 

sign language perception than in speech.  In Chapter 3, I summarized findings that 

support the claim that units of form and meaning are produced in periods of longer 

time scales in sign language production than in speech.  Despite these differences that 

are putatively aligned with modality, universal patterns emerge as well.  In both 

English and ASL experiments, intelligibility of the sensory signal falls drastically 

with severe time distortions created with local reversals.  The hypothesis that 

sensitivity to time distortions is dependent on the size of representational units in the 

signal has been confirmed in two ways, by comparing the results across English and 

ASL, and by comparing the results within each language for normal and compressed 

sentences.  Taken together with the findings from Chapter 3, as well as other studies 

on production rates, the temporal integration windows implicated by these perception 

experiments corresponds to syllables in ASL. 

In this concluding chapter, I discuss temporal patterns in language processing 

more broadly, providing a synthesis of key findings from speech and sign language 

research, considering the implications, and outlining future directions.  
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4.2 More than meets the eye 
 

Sign language perception involves much more than processing visual signals 

produced by the sign articulators.  It is guided by linguistic knowledge about sign 

language grammar and sensitivity to how signals unfold in time.  Temporal 

integration windows in language processing do not seem to arise just from the 

properties of a particular sensory system or just from a special property of language 

but from the interaction of the two.  The difference between ~ 50 – 60 ms windows in 

speech and ~ 250 – 300 ms windows in sign language clearly demonstrate the effect 

of modality. The window of ~ 250 – 300 ms in sign language perception for sentences 

played at normal rates in this work is attributed to the perceiver’s integration of the 

visual signal according to syllabic units in ASL (present results from Chapter 3, as 

well as Wilbur & Nolen (1986)).   Studies of compressed and locally-time reversed 

sentences in both modalities have now shown that the durations over which the signal 

is integrated must be flexible to a certain extent and adjust to the rate of the incoming 

linguistic information.  Of course, time-compression studies of spoken and sign 

language (Foulke & Sticht, 1969; Foulke, 1971; Ahissar, Nagarajan, Ahissar, 

Protopapas, Mahncke, & Merzenich, 2001; Fischer, Delhorne, & Reed, 1999) at 

increasing rates also demonstrate the limitations of this flexibility, but similar 

findings from spoken and sign language suggest that perceptual bottlenecks are 

modality-independent.  

The results of Experiment 2, where the duration of temporal integration 

windows was proportionally reduced by half with sentences compressed by a factor 
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of 2, parallel to the findings in speech (Figueroa, 2009; Stilp, Kiefte, Alexander, & 

Kluender, 2010), point towards common mechanisms in the auditory and visual 

processing of language.  Stilp et al. (2010) argue that the findings from locally 

reversed speech support explanations based on cochlear-scaled spectra.  However, the 

present results from sign language demonstrate the need for more general models, 

where perceptual processes are more broadly driven by sensitivity to the rate of 

incoming information. 

In studies of low-level visual processing, temporal resolution in vision is ~20 

ms (Chase & Jenner, 1993).  In an EEG visual MMN paradigm, temporal windows of 

150-170 ms in duration are reported (Czigler, Winkler, Pató, Várnagy, Weisz, & 

Balázs, 2006).  The results of Experiment 1 in Chapter 2 implicate longer windows of 

~ 250 – 300 ms for sign language processing, suggesting that the linguistic nature of a 

perceptual task can extend the duration of windows for sensory integration.  As 

described in Chapter 3, studies from categorical perception in signing (Emmorey, 

McCullough, & Brentari, 2003; Baker, Idsardi, Golinkoff, & Petitto, 2005; Best, 

Mathur, Miranda, & Lillo-Martin, 2010) and perception of apparent motion (Wilson, 

2001) have also shown that sign language knowledge guides visual processing.   

At the algorithmic level of language processing, I adopt the assumption that 

perceptual processes are guided by internal guesses about the upcoming 

representations (Halle & Stevens, 1959, 1962; Stevens & Halle, 1967; Yuille, & 

Kersten, 2006; Poeppel, Idsardi, & van Wassenhove, 2008).  The analysis of rates in 

natural production describes what the patterns that influence perception might be.  

Part of integrating the sensory signal over certain time windows is driven by the 
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expectation for representations unfolding over those durations.  When the sensory 

signal is manipulated in such a way that those expectations are violated, cognitively 

restoring the signals becomes much more difficult.   

Sentence processing in both spoken and sign languages requires the ability to 

track rapidly changing sensory signals and integrate them skillfully over long 

durations.  As Foulke and Sticht (1969) note in their review of compression studies, 

there are cases where performance on the identification of words is lower than overall 

comprehension of sentences, and where it is also higher.  The results in Chapter 2, 

where intelligibility of locally-reversed input falls sharply at 267 ms reversals and 

plateaus at ~50% at reversals of ~500 ms and greater, reflect the demands of 

phonological processing in sentence processing.  In a separate pilot study that was 

designed by Clifton Langdon, we tested the intelligibility of locally reversed single 

signs and found that accuracy was higher than 50% for most signs.  Although many 

signs are recoverable, when reversals exceed a certain size, it is likely that “un-doing” 

the motion is not automatic and requires deliberate effort.  When all signs in a rapid 

sequence are distorted in such way, capturing each sign using concerted strategies 

becomes much more challenging.  As Mayberry and Fischer (1989) describe late 

learners, difficulty in sentence processing can be attributed to phonological 

bottlenecks (late L1 versus L2 learners of ASL were not distinguished in their study).  

Late learners are believed to be much less efficient at phonological encoding, which 

has consequences for many other aspects of language processing. Experiment 1 

results suggest that local reversals cause disruptions in the automatic recognition of 

phonological information that is encoded through time.  However, spatially encoded 
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phonological information provides a buffer that makes signed sentences more robust 

to time distortions than speech.  Late learners are characterized as a group that has 

difficulty with efficient phonological encoding for even normal sentences.  

Experiment 3 results show that late L2 learners of ASL are much more sensitive to 

distortions in the signal than native signers. 

In addition to theories of sensory processing, theories of representations of 

linguistic units and knowledge about how they combine are integral to complete 

models of language processing.  In particular, assumptions about the status of 

linguistic primitives motivate psycholinguistic and neurolinguistic investigations 

about how they fold unfold in real time (Poeppel, Idsardi, & van Wassenhove, 2008).  

In turn, considerations about the time-scales at which these units are processed may 

help better inform theories about representations for features, segments, syllables, 

morphemes, phrases, and sentences.   

 

4.3 Hierarchical coupling in sign language processing? 
 

In speech perception, it has been proposed that endogenous rhythms in the 

gamma (30-50 Hz) and theta (4-7 Hz) bands serve critical roles for the processing of 

segments and syllables.  More broadly, rhythmic aspects in many biological functions 

are associated with the frequencies of neural oscillations.  Given the findings that the 

rate of syllables and morphemes in ASL are 3 per second, and that ~ 250 – 300 ms 

durations are critical temporal integration windows in perception, neural activity in 

the delta (1-3 Hz) band is implicated for sign language processing.   
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As is emphasized in the multi-time resolution model of speech perception 

(Poeppel, 2003), temporal integration windows need not be viewed as serially 

organized frames for processing.  In sign language, different levels of representations 

are also evident in theories of segments, syllables, prosodic units, and 

intonational/discourse units.  Even in the case of fluent fingerspelling, the letters do 

not come as a simple sequence of letters but are structured into “chunks” that have 

been referred to as movement envelopes (Akamatsu, 1982).  Thus, while delta 

oscillations are by no means the only important neural activity, the new 

psychophysical results presented here strongly suggest that they may have a 

privileged status in sign language processing. 

The analysis of fine-structures in speech that operate at fast rates are attributed 

to oscillations in the gamma band and bilateral activations in the superior temporal 

gyrus (STG) of the auditory cortex (Boemio, Fromm, Braun, & Poeppel, 2005).  

Aside from some trilled movements where the temporal direction is nondistinctive, 

sign language does not involve fluctuations at such high frequencies.  Nevertheless, in 

experiments that tested the perception of meaningful lexical signs and meaningless 

(but phonetically plausible) signs, a bilateral activation in STG was found only for 

deaf signers but not hearing nonsigners (Petitto, Zatorre, Gauna, Nikelski, Dostie, & 

Evans, 2000).  Although the findings from deaf signers may point to explanations 

where STG might be more generally sensitive to some aspects of visual processing 

and not just auditory processing, the differences from hearing nonsigners suggest that 

the activation was driven by the nature of higher order processing of the visual 

signals, such as phonological processing, lexical access, and subsequent integration 
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into other computations.  Electrocorticographic gamma activity has been used to 

study neuroanatomy and processing dynamics of speech and sign language 

production (Crone, Hao, Hart, Boatman, Lesser, Irizarry, & Gordon, 2001), with 

results that are fairly consistent with other imaging studies that demonstrate overlaps 

in the functional organization of language-processing areas across modalities.  Aside 

from the special role that it may have for sensory selection in speech perception, 

gamma activity is more broadly associated with feature binding and attention (Singer 

& Gray 1995; Fries, Nikolic, & Singer, 2007; Schroeder & Lakatos 2008).   

The current findings about the time properties of sign language processing 

suggest that the brain operates in a rhythmic mode, and more specifically, that neural 

activity entrains to the low frequency rhythms of signing.  Based on the models of 

oscillatory coupling, especially where gamma synchronies contribute to 

enhancements in the processing of task-relevant events (Schroeder & Lakatos, 2009) 

and attention in visual information processing (Müller, Gruber, & Keil, 2001), future 

work may also find evidence for the critical role of gamma activity in sign language 

processing for sensory selection as well as higher-order processing as in speech. 

Future work investigating the temporal properties of signing and the neural 

basis for these dynamics requires use of methodologies with high temporal resolution, 

such as EEG and MEG, complemented by high temporal resolutions measures of sign 

articulation.  It may be predicted that phase patterns of endogenous rhythms in the 

delta band will be correlated with the sign language intelligibility, where successful 

processing of the visual signals requires continuous segmentation and integration of 

the input in ~300 ms temporal windows.  At these low frequency rates, the dynamics 
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of sensory processing in spoken and signed languages may converge.  However, these 

low frequency rates may play a greater role in sign language processing because 

lexical and prosodic information are processed together at these time-scales.  This 

prediction may be consistent with the prosodic model of sign language phonology 

(Brentari, 1998:22), who argues that “ASL exploits paradigmatic constraints in a 

greater range of phenomena than do spoken languages.”  Finally, understanding the 

nature of the relationship between the neuronal oscillations that subserve language-

independent functions and those that entrain to the sensory input in language 

processing should be a broader goal in this research.   

 

4.4 Innate sensitivity to rhythms in language 
 

Sensitivity to rhythms in language is attested in the earliest stages of language 

acquisition, where newborns are born preferring the voice and language of their 

mother (DeCasper & Fifer, 1980; Mehler, Jusczyk, Lambertz, Halsted, Bertoncini, & 

Amiel-Tison, 1988).  An analysis of newborns’ cry melodies have shown that their 

productions reflect the prosodic contours of their mother’s language (Mampe, 

Friederici, Christophe, & Wermke, 2009).  After birth, prosodic information in speech 

continues to shape the language acquisition for young children, for word 

segmentation (Jusczyk, Houston, & Newsome, 1999) and learning syntactic structure 

(Gleitman & Wanner, 1982).  Infants seem to prefer input where prosodic contours 

are made salient through infant-directed speech (Cooper & Aslin, 1990; Werker & 
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McLeod, 1989).  Babbling, one of the earliest stages of language production, is 

marked by its rhythmic qualities.   

The importance of rhythm in sign language processing is now evident in a 

wide variety of cases.  Babbling is no longer considered to be a precursor to speech 

because of the biomechanics of the mandible but to all languages (Petitto & 

Marentette, 1991).  Deaf infants growing up in signing environments also prefer 

“motherese” versions of the input (Masataka, 2003).  The sensitivity to rhythmic 

aspects of the visual signal does not arise from auditory deprivation.  Hearing 

children who are born to deaf parents and thus exposed to signing also manually 

babble (Petitto, Holowka, Sergio, & Ostry, 2001).  These manual gestures are distinct 

from other manual movements that might be typical of general motor development 

because they are produced in the signing space, produced at unique frequencies, and 

only appear among sign-exposed infants.  Evidence that sensitivity and preference for 

linguistic input is partially innate and not driven by exposure is presented by Krentz 

and Corina (2008).  6-month old hearing infants that had never been exposed to sign 

language show a preference to look at videos of signing compared to videos of 

communicative gestures that are not linguistic. 

Even in the domain of fingerspelling, which may be considered a sequence of 

handshapes to represent letters of the English alphabet, shows hierarchical 

organization and rhythmic properties.  The acquisition of fingerspelling by young 

deaf children reflect their recognition of movement envelopes, where fingerspelled 

words are analyzed as whole units rather than individual handshapes (Padden & 

LeMaster, 1985; Andrews, Leigh, & Weiner, 2004).  
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Rhythmic characteristics also distinguish native and non-native signers.  In 

subjective ratings, the cues that judges used to determine whether or not a signer was 

native or non-native were handshape, facial expression, rhythm, and lexical choices 

(Kantor, 1978).  In a quantitative measurement of the production of native and non-

native signers of Swiss German Sign Language, Boyes-Braem (1999) found that 

native signers use side-to-side movement of the torso according to prosodic and 

discourse units in the signed sentences, and that this was lacking among late learners.  

Among the three late learners, one who had some limited exposure for one year at an 

early age, had more of these left-right movements than the other two who had no 

early exposure (see Figure 39).  The results suggest that late learners are following 

the prosodic patterns of spoken German (their first language) rather than sign 

language. This production study stands in contrast with perceptual studies where 

nonsigners had similar sensitivity to sign language prosodic cues (Brentari, González, 

Seidl, & Wilbur, 2011; Fenlon, Denmark, Campbell, & Woll, 2007).   Thus, although 

some aspects of prosodic rhythms in signing may be perceptually salient and not 

require sign language knowledge, it is interesting how these characteristics do not 

become automatic in production for late-learners who have had extensive exposure to 

signing. 
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Early Learner Late Learner 

  

Figure 39. Reproduced from Boyes-Braem (1999), demonstrating the 
difference between early and learners of Swiss German Sign 
Language in their lateral torso movements while signing. 

 
By continuing to better understand the rhythmic aspects of sign language 

production, future research can address what are the temporal characteristics of 

typical and atypical development.  Studying the spectral characteristics of signing 

(Foulds, 2004) can also lead to better models of what perceptual cues, aside from 

grammatical organization, distinguish linguistic and nonlinguistic gesture.  Finally, 

such guidelines may help better understand the status of iconic gestures, which seem 

to straddle these boundaries, in visuo-spatial communication.  
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4.5 Channel capacity for sign language 
 

Understanding the rate at which linguistic information is transmitted has had 

practical applications for designing communications devices.  The greater bandwidth 

required for videophones compared to telephones leads to the over-simplistic belief 

that sign language requires larger channel capacities in natural processing.  Chong et 

al. (2009) demonstrate that a phonetic unit that is realized in some fragment of time in 

ASL contains 5 times the amount of information compared to a phonetic unit in 

English.  Based on this calculation, estimating the bit rate per second in English and 

ASL based on production rates of words and signs showed that global information 

transfer rates are the same.   

In an independent information theoretic analysis, Reed and Durlach (1999) 

also reach the conclusion that auditory processing of English and visual processing of 

ASL involve the same information transfer rate.  Among all the communication 

systems they analyze (which also included Morse code though different modalities 

and Braille), the only other system that had comparable information rates with spoken 

English (auditory form) and signed ASL (visual form) was reading (visual form).  

Notably, the visual and tactile forms of spoken English and the tactile form of ASL 

had significantly lower rate measurements.   

In a study examining whether it is possible to transmit signs using the 

bandwidth of one telephone line, Tartter and Knowlton (1981) examined the 

intelligibility of signs produced with 27 moving spots.  This technique has been used 

to study the gross patterns of biological motion (Johansson, 1973).  In signing, 13 
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retroreflective tapes were anchored to gloves worn by each hand and 1 on the nose to 

provide a reference for place of articulation.  27 moving spots were sufficient to allow 

two pairs of deaf subjects to have conversations, although there was some difficulty 

with understanding fingerspelling.  In other studies, spatial image compressions and 

coding schemes have shown similar results, where videos can be substantially 

compressed while conveying intelligible messages in sign languages (Sperling, 

Landy, Cohen, & Pavel, 1985; Abramatic, Letellier, & Nadler, 1982; Pearson, 1981).  

In a more recent study examining the compressability of sign language video 

files, Foulds (2004) approaches the bandwidth requirements from both the perceptual 

and biomechanical perspectives.  Transmission of video with a limited bandwidth 

involves a trade-off of spatial resolution with frame rates.  He explains that most 

efforts on sign language communication systems have focused on how to achieve 

lossy spatial compression while preserving temporal information.  In perception, high 

frame rates are necessary to surpass the critical flicker frequency.  However, from a 

kinematic point of view, critical information for sign language perception may be 

encoded more sparsely.  In a separate pilot study, Foulds measures the spectral 

characteristics of sign language motion by using a sensor that tracks the right index 

finger of a signer who produced a list of 20 ASL signs.  Convergent with the results 

of the rate analysis presented in Chapter 3, he found that most of the spectral energy 

is in the lower frequency range of 0-3 Hz.   

Based on these findings, Foulds estimated that a frame rate of 6 frames per 

second may be sufficient to capture the kinematic information necessary for sign 

intelligibility, the higher standard of 30 frames per second (0-15 Hz bandwidth) is 
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necessary to avoid flickers in perception.  Foulds uses a method that smoothly 

interpolates the lower bandwidth to the standard 30 frames per second.  The results 

from an intelligibility experiment, where original videos (with 0-15 Hz bandwidth) 

were compared to stick figure animations (with 0-15 Hz and 0-3 Hz bandwidths), 

showed that the temporal compression by a factor of 5 (to 6 frames per second) 

preserved the intelligibility of the stimuli.  Foulds concludes that “Earlier reported 

limitations were imposed by human perception and are not determined by the 

kinematic bandwidth of human movement associated with sign production.” 

Fould’s measurement of the spectral characteristics of signing motion should 

be extended to articulations of conversational sentences for future studies comparing 

the dynamics of the sensory signal to the rhythms of neural oscillations, as discussed 

earlier. 

 

4.6 Availability of two communication channels? 
 

Given the apparently large differences between the vocal-auditory and 

manual-visual modalities, the convergence of rates in spoken and signed languages is 

remarkable.  What happens when both modalities/channels are available to a language 

user?  

Bimodal bilinguals are individuals who are fluent in a spoken and a signed 

language, like English and ASL.  In natural conversations, bimodal bilinguals have 

been observed to produce code-blended constructions, even while communicating 
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with English speaking monolinguals (Pyers & Emmorey, 2008).  Based on the finding 

that bimodal bilinguals used ASL-appropriate facial expressions while speaking 

English, Pyers and Emmorey propose that “This result provides evidence for a dual-

language architecture in which grammatical information can be integrated up to the 

level of phonological implementation.”  In a different study, Casey and Emmorey 

(2009) found that bimodal bilinguals produce more iconic gestures than nonsigners 

and that actual signs are used from time to time.   

The fact that both channels are available does not necessarily mean that 

information can be conveyed at a faster rate.  In a production task (Emmorey, Petrich, 

& Gollan, 2009), English-ASL bilinguals’ performance on picture-naming tasks in 

ASL-only, English-only, and code-blending conditions were compared to English 

monolinguals and ASL monolinguals.  The reaction times among the English 

monolinguals and ASL monolinguals were the same.  The reaction times for bimodal 

bilinguals in the English-only conditions were similar to the English monolinguals.  

However, the responses to ASL-only and code-blending conditions were significantly 

slower, and the reaction times for these two conditions were the same.  The results 

suggest that production in the non-dominant language (ASL) is usually slower, and in 

code-blending conditions, where reaction times in English and ASL match, the slower 

response is attributed to time-locking with the slower language.  These findings 

suggest that the vocal and manual articulators are not independent in simultaneous 

production.  However, in a perceptual experiment, where participants had to make 

semantic judgments to words given in English, ASL, or both languages (code-

blended), the fastest reaction times were attested in the code-blended condition. Thus, 
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in the perceptual channel, the use of both modalities has a facilitating effect, but in 

the production channel, it has a cost.   

In development, a comparison of bilinguals who are acquiring two spoken 

languages (French and English) and a spoken and signed language (French and 

Langues des Signes Québécoise (LSQ)) has demonstrated that early linguistic 

milestones in each language are similar (Petitto, Katerelos, Levy, Guana, Tétreault, 

Ferraro, 2001).  Language mixing occurred to varying degrees in both groups.  Even 

at early stages of acquisition, bimodal bilinguals children are found to produce 

simultaneous constructions of French and LSQ. 94% of the cases where the languages 

were mixed involved simultaneous language mixing.  Although both channels can be 

exploited for bimodal bilinguals, simultaneous production seems to only occur in 

constrained ways. 89% of the simultaneous mixing cases involved lexically 

congruence.  In the other 11% where the signs and words had different meanings, the 

meanings were cohesive, where, for example “Ça ressemble” in French was uttered 

at the same time MOUCHOIR was signed in LSQ, to result in the sentence, ‘This 

resembles a [facial tissue]’.  The average length of utterances by these children when 

mixing the languages was around 3 words, the same as for utterances without 

language mixing.  In other words, the availability of two channels did not mean that 

these children would produce utterances that had double the complexity.   

More recent work looking at the development of bimodal bilingualism – 

among children in the U.S. learning English and ASL, and children in Brazil learning 

Brazilian Portuguese and Libras – also demonstrate both the constrained and variable 

aspects of natural, simultaneous use of languages (Quadros, Lillo-Martin, & Chen 
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Pichler, 2010). Quadros et al. propose that “multiple kinds of blending are possible 

with multiple articulators,” but that “one proposition is one computation with 

intermodal expression.”  Cases where two separate propositions are uttered in the 

languages are never attested.  However, corresponding words and signs are not 

always produced together, and mismatches between two languages were common.  

The results that I have presented suggest that spoken and signed languages operate at 

different time scales for transmitting lexical items, which may be the cause of these 

mismatches.  These observations from language acquisition should be contrasted with 

the findings from adults (Emmorey, Petrich, an&d Gollan, 2009), where code-

blending resulted in slower reaction times, which was attributed to the time-locking 

of the faster, dominant language (English) with the slower language (ASL).    

The simultaneous use of a spoken language and a signing system for 

expressing whole sentences is called simultaneous communication, or SimCom.  

Given that there are no pairs of a spoken and signed language that have identical 

grammars, SimCom usually involves a signed version of a spoken language.  

SimCom does not arise naturally and was originally designed for use in deaf 

education settings.  In Quadros et al.’s work studying natural forms of simultaneous 

production in early acquisition, it is shown that some mismatches between the 

modalities can be tolerated.  However, the lack of natural, full-fledged simultaneous 

systems suggests that mismatches created by the differences in grammars of a spoken 

and signed language cannot be tolerated (Wilbur & Petersen, 1998).  Even with the 

substitution of a natural sign language with an artificial signing system that follows 

the grammar of the spoken language, errors made in both languages while using 
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SimCom reflects processing costs.  A common observation in SimCom is that signed 

English can become inaccurate due to omissions of signs.  Marmor and Petitto (1979) 

report that there were errors in 90% of the signed English sentences produced by 

teachers.  One possibility is that these errors in signed English could be a result of the 

fact that it is a not a natural sign language and operates at a time-scale that is globally 

too slow.  However, Hyde and Power (1991) also report that accuracy in Australasian 

Signed English in SimCom comes at the expense of decreased naturalness in speech 

production, with much slower prosody.  Interestingly, accuracy and rate of speech 

were correlated, where individuals with faster rates were also more accurate.   

In Bellugi and Fischer’s (1972) study, production rates were analyzed for 

ASL-alone, English-alone, and simultaneous signing-speaking conditions.  They 

explain that the participants had much experience and are highly skilled at 

simultaneous production, but they do not explain whether the signing was closer to 

ASL or signed English.  From their description, it appears that both languages were 

affected by the other, where translations of ASL signs resulted in unnatural lexical 

choices in English, and vice versa.  In the simultaneous condition, there were more 

errors in both languages and more time spent for pausing during the narration as 

compared to the one-language conditions.  Somewhat consistent with the results from 

the picture naming task reported by Emmorey, Petrich, and Gollan (2009), the rate of 

speaking in the simultaneous condition was slower than in the speaking-alone 

condition, but the rates in signing were the same.    

Wilbur and Petersen (1998) investigate the modality interactions with respect 

to temporal properties in SimCom.  Consistent with previous studies, they find that 
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sentences produced in English only and ASL only take approximately the same 

amount of time.  Consistent with Klima and Bellugi’s (1979) results on signed 

English, Wilbur and Petersen find that sentences in signed English take considerably 

longer.  The novel finding, however, is that SimCom requires durations that are 

longer than speech-alone but shorter than sign-alone conditions.  In other words, 

speech production is slowed down in SimCom but signing is sped up.  Given that 

speech and signing occur at different time-scales, SimCom forces the systems to be 

time-aligned, which incurs costs in time (for speech) and accuracy (for signing, as 

speeding up results in increased sign omissions).   

As suggested by Fischer, Delhorne, and Reed (1999), as well as Foulke and 

Sticht (1969), bottlenecks in language processing are likely to be rooted in factors 

beyond motor articulation or sensory processing.  In the case of SimCom, even when 

there is redundancy in meaning, there are minimal overlaps in phonological form, 

where sublexical units produced in each language contain information bits.  

Generating this amount greater amount of information has a high cost in production, 

although processing inputs with redundancy in meaning is advantageous in 

perception.  These bodies of work combined suggest that channel capacities in 

language processing arise more from cognitive constraints than from the articulatory-

perceptual interface.   
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4.7 Rates in production and time-course of recognition 
 

Evidence now from several studies show that signs are produced at a rate of 2-

3 per second in ASL.  This implicates that signs are produced at periods of ~400 ms 

at a time.  Although sign durations can be variable, this is not consistent with other 

ways of measuring the average duration of signs.  Signs produced in isolation can be 

somewhat longer (>500 ms), whereas signs excised from sentences can be shorter 

(~250 ms), especially depending on the position within the sentence.  The 

discrepancy between periods determined by rate analysis and durations determined by 

direct measurements is attributed to the fact that there are transitions external to the 

signs. 

Results from perceptual tasks suggest that the time-course of identifying a 

sign is much shorter than 400 ms.  Emmorey and Corina (1990) used a gating task 

with signs presented in isolation.  Participants were asked to identify signs (and report 

how confident they were about their guesses) after viewing videos of a sign, where 

one videoframe was added to each presentation.   On average, 240 ms of a sign 

contained enough information for accurate identification.  These results are similar to 

the findings from speech, where although the whole unit is stored (in memory or the 

lexicon), recognition in perception only needs processing up to point where the unit is 

distinctive from other units.  Grosjean (1981) found that for signs presented in 

isolation, signs can be recognized from approximately the first half of a sign.  

Extending these results, Clark and Grosjean (1982) tested signs that were produced 

within sentences and tested recognition times with or without the sentence context.  
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When presented in context, signs could be recognized from the first 40% of the sign.  

When analyzing what percent way through a sign makes it possible to identify each of 

the four formational parameters of signs (orientation, location, handshape, and 

movement), they found that sign recognition was linked to the identification of 

movement (Grosjean, 1981; Clark & Grosjean, 1982).  Although the four parameters 

could be isolated at around the same percent way into a sign, movement took the 

longest.   

If the average period per sign is about 400 ms, but the true duration of the sign 

is in fact shorter, and only about 50% of the sign has to be viewed for lexical 

recognition, this suggests that much of the sign period is not contributing lexical 

information, which is somewhat puzzling.  Clark and Grosjean do not explain how 

the onset of the sign was measured, especially with respect to how much of the 

transitional movement from the previous sign was included.  

As discussed earlier in Chapter 3, sign-internal movements are distinguished 

from sign-external movements.  Jantunen (2010) explains that “Standard theory treats 

transitions as nonlinguistic, unintentional, meaningless, automatic, nonsalient, 

unmodifiable, holistic, etc. (e.g. Wilbur 1990, Perlmutter 1990, Wilcox 1992, van der 

Hulst 1993).”  However, Jantunen argues that this characterization of transition 

movements and traditional annotations of sign boundaries need to be revised based on 

two experiments (see Figure 40).  In the first experiment, Jantunen studied the 

biomechanics of signing by measuring the acceleration peaks during sentence 

production and found that movement dynamics of sign-internal and sign-external 

transitions were quite similar.  In the second experiment, he tested the intelligibility 
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of video clips that were created by excising the signs and concatenating the remaining 

transition frames in a sentence.  More than 60% of such “signless” video clips were 

understandable.  Given the saliency of these transitions both in terms of phonetic 

attributes and meaningful content, Jantunen proposes that they should be viewed as 

being internal parts of signs.  

 

Figure 40. Reproduced from Jantunen (2010), demonstrating the 
acceleration peaks in the biomechanics of both hands while signing, 
annotated for traditional sign boundaries and transitions between 
signs. 

 
If Jantunen’s model were adopted, it would support the idea that duration of 

signs and the periods of signing rates are in fact the same.  Nevertheless, it still 

presents the question on why signs are produced over long periods of time when the 

time course of lexical recognition is shorter by as much as 50%.  From an 

informational theoretic perspective, some amount of redundancy is not only expected 

but desirable.  A potentially meaningful connection is that redundancy in printed 

English is also reported to be approximately 50% (Chong, Sankar, & Poor, 2009).   

Jantunen’s model also suggests that the idea that most signs are monosyllabic 

needs to be revised.  Future investigations examining the relationship between the 
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rate of form and meaning will need to consider these new ways of counting 

phonological units as well as morpheme units.  Moreover, interpreting all movements 

to be sign-internal would mean that sign languages are not different from spoken 

language in that all phonetic components are meaningful even though the articulators 

are not hidden.  Combining Jantunen’s methods of measuring the patterns of 

acceleration peaks (Jantunen & Takkinen, 2010) and Fould’s (2004) methods of 

measuring spectral frequency will lead to a better understanding of the rhythmic 

characteristics of signing.   

 

4.8 General conclusions 
 

The goal of this dissertation was to investigate temporal integration windows 

and the rates at which form and meaning unfold in language processing from a cross-

linguistic and cross-modal perspective.  Psychophysical experiments using locally-

reversed speech demonstrated that temporal integration windows that capture 

direction-sensitive input are much longer in sign language (~ 250 – 300  ms) than in 

speech (~ 50 – 60 ms).  Despite the differences in these absolute values, the universal 

pattern across languages is that temporal integration windows are sensitive to the size 

of representational units in language.  This was demonstrated by the reduction of 

temporal integration windows in proportion to time-compressed sentences and by the 

comparison between English and ASL.  The analysis of production rates from corpus 

data of natural conversations also contributed to a better understanding of what is the 

temporal dynamics in language production that might shape expectations in the 
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perceptual process. A common mechanism for mapping sensory signals to abstract 

representations that are used towards higher-order linguistic computations is 

integration in time-scales that match the rate of the linguistic units.  Construction of 

meaningful representations may also operate at the same time-scale as syllables since 

the ratio of syllables and morphemes is approximately 1:1 .  Although there may be 

different requirements in the technological implementation, auditory and visual 

channels for language processing seem to involve similar global rates of information 

transfer and the same amount of redundancy.   

Studying the rates at which linguistic units are produced and the time-

windows over which this information is integrated leads to a better understanding of 

how information is chunked and organized when processed through a particular 

channel.  The degree to which information is encoded sequentially/simultaneously 

affects the time-scales of integration windows.  In speech, the unintelligibility of 

sentences where fragments were reversed at durations exceeding the average size of 

segments demonstrates the importance of the temporal direction of the segments.  In 

sign language, although syllables can also be decomposed to segmental units (Liddell, 

1984; Perlmutter, 1992), the robustness of signed sentences to reversal sizes up to the 

length of syllables and signs suggests that the way temporal direction of these 

segments are encoded is different in nature from the segments in speech.  These 

results are consistent with the findings of Wilbur and Allen (1991), who argue against 

internal structure in ASL syllables.   

The difference in performance between early and late learners of ASL 

supports the view that part of being a native user of a language is the ability to 
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efficiently decode the sensory signal and map it to lexical representations.  Part of 

having robust phonological representations may be having tolerance to distortions in 

the signal.  Following the work on bilingualism in spoken languages, future work 

investigating the effect of developmental factors in sensory integration should 

examine the role of noisy environments and noisy inputs for processing sign 

language.  In the case of temporal distortions, late learners are more vulnerable than 

early learners of a sign language.  This remains untested among late learners of a 

spoken language.  In the case of snow-like visual noise, Mayberry and Fischer (1989) 

found that early and late learners were equally vulnerable.  In spoken languages, 

Rogers et al. (2006) report that late bilinguals are more vulnerable to noise and 

reverberations than early bilinguals, who are more vulnerable than monolinguals 

(Rogers, Lister, Febo, Besing, & Abrams, 2006).  It is possible that modality, type of 

noise, age of acquisition, and bilingualism all interact to produce different sensitivity 

to noise.  Understanding the effect of noise in communication for late learners is 

particularly relevant in the sign language community where 95% of deaf individuals 

are born to hearing parents and thus are not exposed to signing since birth.  For 

example, although a noisy channel of communication may allow successful 

communication between two native signers, it may not be adequate for late signers. 

Given the findings that early auditory deprivation leads to a reorganization of visual 

attention to peripheral fields of vision (Bavelier, Dye, & Hauser, 2006), future 

research should also investigate the effect of peripheral noise on cognitive processing 

for both early and late language learners.   
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Understanding how information is chunked through time also has implications 

for working memory.  Advantages in many cognitive functions are associated with 

larger capacities for holding information, integrating its contents, and comparing it to 

other sets of information (Baddeley, 2003; Duncan, Seitz, Kolodny, Bor, Herzog, & 

Ahmed, 2000).  Among the many factors that contribute to working memory 

function, such as attention (Engle, 2002; Conway, Cowan & Bunting, 2001; Kane & 

Engle, 2003) and inhibition or filtering mechanisms (Vogel, McCollough & 

Machizawa, 2005), strategies that can expand working memory capacity include 

rehearsability (Baddeley, 2003; Gathercole & Baddeley, 1993; Wilson & Emmorey, 

1997) and “chunking” strategies (Miller, 1956).  Findings that using ASL results in 

shorter short-term memory spans than when using English implicate a difference 

between auditory versus visually-based representations in taking up resources within 

working memory (Boutla, Supalla, Newport, & Bavelier, 2004).   These results were 

consistent among deaf signers and English monolinguals as well as within hearing 

bilinguals who sign.  More specifically, it is possible that the sequential nature of 

units in speech-based input and processing these units in smaller time-scales results in 

higher spans that are measured serially.   

Among the many consequences of having delayed language exposure, 

individuals who are late learners of a first language have smaller working memory 

capacities than their early learning counterparts (Mayberry, 1993).   Newport (1990) 

explains that the acquisition process and errors made by late learners reflect a lack of 

understanding of the internal structure of signs.  By acquiring language through the 

development of memory, early learners may learn the discrete components in sign 
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even though they are produced simultaneously.  The ability to analyze language in a 

finer-grained way may contribute to a larger working memory capacity that can also 

be exploited for other cognitive functions.   

Knowledge about how linguistic information is chunked when viewed through 

the eyes may also be relevant to research in reading, especially among deaf children 

for whom vision is the primary channel for communication.  A key challenge in deaf 

education is improving the rates and achievement-levels of literacy.  For hearing 

children, correspondences in written print can be found with the language that they 

already speak.  For deaf signers learning to read, the process involves learning the 

grammar of a second language. Increasing evidence for the importance of early 

language exposure suggests that reading skills depend on strong language foundations 

(Mayberry, del Giudice, & Lieberman, 2010; Wilbur, 2000).  Most of the focus on 

literacy efforts has been on phonological coding and awareness skills (Wang, Trezek, 

Luckner, & Paul, 2008; Allen, Clark, del Giudice, & Koo, 2009). Since spoken 

language in its natural usage operates over short time scales that are not relevant in 

sign language processing, one might also imagine that this poses extra challenges.  In 

reading eye movement patterns, although hearing children (inexperienced readers) 

exhibit frequent small saccades, hearing adult readers (skilled readers) exhibit 

fixations in relatively long time scales (200-250 ms on average) and mean saccade 

sizes of 7-9 letter spaces (Rayner, 1998).  However, it is possible that different early 

language experiences, especially using distinct time windows for integrating language 

input, may shape the process of learning to read differently among hearing and deaf 

children. Ahissar et al. (2001) note that understanding temporal response patterns to 
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sensory signals is highly relevant in many cognitive functions.  In particular, they 

mention that individuals with “poor successive-signal processing” in audition and 

vision tend to be poor readers, and that they are more vulnerable than good readers to 

time compressions of sentences.  

By examining perspectives from speech perception and sign language 

processing, as well as information theory, grammatical theory, development, and 

neuroscience, and summarizing new experimental work, I have demonstrated how 

critical temporal dynamics are for language processing and outlined new challenges 

for future research.  Besides making specific contributions to our understanding of 

temporal integration windows and rates in language processing through cross-

linguistic comparisons, this work supports an approach to language processing that 

takes into account the representations of linguistic units, the information in those 

units, and the time course over which they unfold.  In addition to comparisons in 

grammar and functional organization in the brain, temporal relationships in on-line 

language processing demonstrate universal patterns.  Key differences also contribute 

to the model for the architecture of language, where interaction with the sensori-

motor interfaces results in unique properties in each modality.  The time properties 

seen in language processing, which impact the grammar of spoken and signed 

languages, may be best understood from the perspective of the temporal dynamics of 

underlying neural processes, a claim that motivates future interdisciplinary work in 

speech and sign language research.  
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