
E�cient Techniques for Range Search Queries onEarth Science Data(Preliminary Report)Qingmin Shi and Joseph F. JaJaInstitute for Advanced Computer Studies,Department of Electrical and Computer Engineering,University of Maryland, College Park, MD 20742, USAfqshi,joseph@umiacs.umd.edugFebruary 22, 2002AbstractWe consider the problem of organizing large scale earth science raster data to ef-�ciently handle queries for identifying regions whose parameters fall within certainrange values speci�ed by the queries. This problem seems to be critical to enablingbasic data mining tasks such as determining associations between physical phenomenaand spatial factors, detecting changes and trends, and content based retrieval. Weassume that the input is too large to �t in internal memory and hence focus on datastructures and algorithms that minimize the I/O bounds. A new data structure, calleda Tree-of-Regions (ToR), is introduced and involves a combination of an R-tree ande�cient representation of regions. It is shown that such a data structure enables thehandling of range queries in an optimal I/O time, under certain reasonable assump-tions. Experimental results for a variety of multi-valued earth science data illustratethe fast execution times of a wide range of queries, as predicted by our theoreticalanalysis.1 IntroductionConsiderable amounts of spatio-temporal data sets are generated on a daily basis with theamount of remotely sensed data alone expected to exceed several terabytes per day within thenext few years. The sources of geospatial data are quite diverse and include satellite imagery,geographical information systems, census data, and environmental assessment and planning.These data sets o�er unprecedented opportunities for exploring associations between envi-ronmental phenomena and spatial factors, building environmental models, detecting changesand �nding interesting spatio-temporal patterns and trends. In spite of a signi�cant progressin the development of geospatial data mining techniques, the exploration of large amounts of1



geospatial data by content remains quite di�cult. The NASA supported Earth Science In-formation Partnership (ESIP) Federation, that includes all the major data centers for earthsciences, developed a list of major scenarios for which content-based retrieval techniques willbe critical [3]. Almost all of these scenarios involve the fundamental problem of determiningspatio-temporal regions over which a certain number of parameter values satisfy certain con-straints, for example the values fall within certain ranges or increase within certain boundsover a time period. This paper develops e�cient techniques for addressing the core problemof determining regions within a large scale raster geospatial data set whose parameters' val-ues fall within speci�ed ranges. A forthcoming paper will show how these techniques can beextended to handle a time series of such data. The techniques developed here have a strongtheoretical foundation and are coupled with an extensive set of experimental results thatillustrate the e�ciency of these techniques.Brie
y our main contributions are:� The development of an e�cient representation of raster data sets consisting of a com-bination of an R-tree built around the parameter values and a decomposition of thespatial-space into regions described by their boundaries. The overall complexity tobuild this structure is dominated by two external sorting steps.� The querying over arbitrary value ranges of the parameters can be done very e�cientlyin time that is approximately proportional to the time it takes to read the output fromexternal memory.� Extensive experimental tests on remotely sensed data con�rmed the e�ciency of ourrepresentation in terms of fast execution times of a wide variety of random queries.The remainder of this paper is organized as follows. In Section 2, we de�ne the problemand the computational model used for analyzing our algorithms. The related work is dis-cussed in Section 3, while our data organization structure is described in Section 4. Sections5 and 6 present the algorithms for building our structure and handling general queries. Theexperimental evaluation of our methods is summarized in Section 7.2 Problem De�nition and Computational ModelWe assume that we are given a gridG of sizeNx�Ny representing a spatial region decomposedinto N = NxNy cells. A k-tuple (f (i;j)1 ; f (i;j)2 ; � � � ; f (i;j)k ) is associated with each cell (i; j) in Gsuch that each parameter f (i;j)l is a certain numerical attribute corresponding to cell (i; j).We assume that G is too large to �t in internal memory and the result of a query may ormay not �t in memory. The problem is to develop a representation of this grid in such away that the following query can be answered very quickly (in time proportional to readingthe output from external memory):Determine all the regions in which the parameters' values fall within speci�edranges: al � fl � bl, for all 1 � l � k (a query window).2



A region is de�ned as the maximal set of connected cells where the parameter valuessatisfy the constraints in each cell. The output to our query consists of a list of all the cellsin these regions such that all the cells in the same region are assigned the same label. Ourtechniques will carry out to more robust de�nitions of regions such as density-base regionsin [11].Solving the above problem involves e�cient identi�cation of the cells whose parameters'values fall within the speci�ed ranges and fast groupings of cells into connected regions.The main focus here is on minimizing the query time. In addition, the storage of the newstructure is also important since the size of the raw data is assumed to be large. In general,we aim to achieve the following three properties:� The size of the new representation should be comparable to the raw data.� The construction time of the new representation should be e�cient in the sense thatthe input data should only be scanned a few times.� Queries should be answered very quickly in time proportional to the output size.To analyze our algorithms, we will use the standard two-level I/O model [4] de�ned bythe following parameters:N : the size of the input;M : the internal memory size; andB: the size of a disk block.We assume that B2 < M < N . An I/O operation is de�ned as the transfer of one blockof contiguously stored data between disk and internal memory. Hence scanning an input ofsize N stored contiguously on a disk takes O(N=B) I/O operations in this model.3 Related WorkAmajor component of our problem requires the handling of multidimensional range queries ofpoint data. A large number of external data structures and algorithms have been proposedto deal with this problem. In contrast to the two-dimensional case where solutions thatprovide provable good performance exist (see for example [20, 16, 6]), most data structuresfor high dimensional data are aimed at achieving good practical performance (A recentsurvey can be found in [12]). Among them, the R-tree [13] has been widely accepted asan e�cient external tree structure for handling multidimensional data sets. Many dynamicR-tree variations have appeared in the literature (see for example [19, 7, 15, 9]) and theydi�er mainly in the heuristics used to split or merge nodes when node over
ows or under
owsoccur. More relevant to the work reported here is the static case where the entire data setis known beforehand. Techniques that deal with this type of data are sometimes called tree-packing or bulk-loading. Various tree packing techniques aimed at improving node utilizationand minimizing the minimum bounding rectangles (MBRs) of nodes have been introduced.They either sort data based on some spatial orders and recursively pack them into tree nodes3



level-by-level from bottom up (such as in [18, 14, 17]), or recursively partition data usingvarious heuristics (such as in [23, 8]). Techniques for e�ciently constructing dynamic R-treesfor static data sets have also been explored. They view the construction of an R-tree fora static data set as a batched insertion problem and use lazy bu�ering strategy to achieveoptimal I/O complexity [10, 5].All the above techniques report the individual points that satisfy the range query. Forraster data, one needs to �nd regions for which the attributes fall within the query window.Very few attempts have been made to address this problem. Most past work revolves aroundorganizing the data objects hierarchically according to their spatial locations and summariz-ing their parameter values at di�erent levels. STING [22] stores statistical information aboutthe types and parameters of distributions for subsets of data in a hierarchical grid structure.This information can be used during a query to identify relevant cells that are later clusteredusing for example density based methods [11]. Yang et al. [24] addressed the same problem asin this paper but for a single parameter, and proposed a two level hierarchical structure thatuses histograms to summarize the distributions of data values. The histograms of the highlevel cells are then clustered. The representative histogram summarized from histogramsin the same cluster is used to decide whether that cluster of cells should be checked for agiven query. These previous methods provide approximate answers without any guaranteedaccuracy.In the following three sections, we will discuss how our proposed data structure is usedto solve this problem.4 Data StructureThe proposed data structure, called the Tree-of-Regions (ToR) is an extension of the R-treestructure, although the same technique can be used to extend other tree structures. Eachnode of the R-tree de�nes a k-dimensional value range. For each node, we associate a set ofregions such that the cells in each region have attributes that fall within the correspondingvalue range. Each leaf node of a ToR corresponds to a unique k-tuple from G and containsa pointer to the regions whose parameter values are equal to the k-tuple. Each internalnode occupies an entire block and has O(B) children. It contains a minimum boundingrectangle (MBR), which is the tightest bounding rectangle of the union of the minimumbounding rectangles of its children. For leaf nodes, MBRs reduce to k-tuples. It is clearthat the spatial region induced by the MBR of an internal node is the union of the spatialregions induced by its children. Figure 1 shows a ToR with B = 3 for a data set with twoparameters. The top part of the �gure illustrates the tree structure. Distinct k-tuples andtheir corresponding leaf nodes are depicted as dots. Internal nodes are represented by theirMBRs shown as rectangles. The bottom part consists of four spatial regions R(a), R(b),R(c), and R(d) that are associated with leaf nodes a, b, c, and internal node d, respectively.There are two bene�ts of storing regions at higher level nodes. First, during a range query,if the MBR of a node is covered entirely by the query window, the regions correspondingto that node can be reported immediately, with no need to explore the descendants of thatnode. Second, higher level nodes tend to have larger regions. By pre-storing these largerregions, we can compute the connected regions much more e�ciently.4



c
b

R(b)

d

a

an R-tree

MBRs of

regions
associated
with some
R-tree nodes

R(d)
R(c)

R(a)Figure 1: An example of the ToRThese potential bene�ts come at a storage cost as cells are duplicated along the pathfrom the root to the leaf nodes. A light version of the ToR that associates regions only withthe leaf nodes is another possible choice. However, it turns out that the query performanceof the light ToR is much inferior without introducing any signi�cant space savings. Relatedexperimental results will be reported in the full paper.A region associated with a ToR node is represented as a list of non-overlapping horizontalsegments, each consisting of a maximal set of horizontally connected cells. Each segmentis stored as a triple (y; x left; x right), where x left and x right are the x-coordinates ofits leftmost and rightmost cells and y is its y-coordinate. Segments in the list are sortedusing y as the primary key and x left as the secondary key. Using segments to representregions have several bene�ts. First, this representation maintains all boundary informationof a region. Second, the amount of storage required is proportional to the perimeter of theregion, which is much smaller than the area. Third, merging regions reduces to mergingsegments, which can be done quite e�ciently as we will show soon. Figure 2 shows themerging of two regions represented using segment lists.
merge
Figure 2: Merge of two regions represented by segment listsOur overall data structure consists of three �les: the segment �le, the leaf �le, and thetree �le. Each �le contains elements of the same size. The segment �le contains the set ofsegment lists corresponding to the tree nodes. The list of segments corresponding to thesame node are always stored contiguously on disk. The leaf �le consists of the leaf nodes.The tree �le is used to store the internal nodes. The reason we separate the leaf nodes fromthe internal nodes is that they have di�erent structures. A leaf node does not contain thearray of child pointers as does an internal node. Since we target our solution for very largedata sets, we do not make the assumption that either of the three �les will �t entirely inmemory. 5



5 Tree ConstructionThe construction of a ToR consists of three steps:1. The creation of the leaf nodes, where each leaf node corresponds to a distinct k-tupleof attribute values. This step includes the creation of all segments corresponding tothe leaf nodes.2. The creation of the internal nodes. Exactly how the internal nodes are constructeddepends on the type of R-tree used. In this paper, we will use the packed HilbertR-tree [14].13. The determination of the segment lists corresponding to the internal nodes.5.1 Construction of Leaf NodesThe objective of the �rst step is to �nd distinct k-tuples and their corresponding segmentlists. These k-tuples form the leaf nodes of the tree structure. We assume that the rawdata consists of a set of records, one for each cell. The record for cell (i; j) is in the form of(f (i;j)1 ; f (i;j)2 ; � � � ; f (i;j)k ; j; i). (Without causing confusion, we will call such record cell as well.)Reformatting is needed if the raw data are stored in a di�erent format. Finding distinctk-tuples is achieved by sorting all cells using the key sequence (f1; f2; � � � ; fk; j; i). Sincewe are making the assumption that the data set resides on a disk, an external merge sortalgorithm [21] is used. This sorting guarantees that cells having the same values are storedcontiguously and, furthermore, horizontally adjacent cells that have the same values are alsostored contiguously. This allows us to use a single scan through the sorted cells to create boththe leaf nodes and the associated segment lists. Cells corresponding to the same k-tuple aremerged into horizontal segments which are then stored contiguously in a segment �le. Leafnodes are created for distinct k-tuples in the same sorted order and stored in a leaf �le. Eachleaf node contains a k-tuple, an integer indicating the number of segments in the associatedsegment list, and a pointer to the beginning of that list in the segment �le. Clearly, this stepinvolves the external sorting of N cells whose I/O complexity is O(N=B logM=BN=B).5.2 Construction of Internal NodesThe Hilbert R-tree packing algorithm packs as many children into a parent node as possiblewhile trying to make sure that children of the same parent are spatially close by using theHilbert \space-�lling" curve. The tree is constructed from bottom up. N0 leaf nodes (atlevel 0) are �rst sorted according to their ascending Hilbert values. The �rst B leaf nodes inthe sorted list are removed from the list and grouped under the same parent node at level 1.1There are three reasons for choosing the Hilbert R-tree. First, it is has been widely regarded as verycompetitive among all the R-tree variations [12]. Second, constructing such a tree structure can be donevery e�ciently, since it involves only one sort of the data set. Third, it has served as a base of performancecomparison for many recently proposed data structures [17, 8, 5]. Note that the Hilbert R-tree can bereplaced by any other static R-tree without a�ecting the remaining tree construction algorithm and thequery algorithm. 6



The next B leaf nodes are again chosen and put under another parent node. This continuesuntil there are no leaf nodes left. After all internal nodes at level 1 are created, they aregrouped similarly into nodes at level 2. The only di�erence is that, the internal nodes areno longer sorted based on their Hilbert values. Instead, they are grouped according to theorder in which they are created. Tree nodes thus are created level by level until there is onlyone node that becomes the root of the R-tree.The complexity of this step is dominated by the Hilbert sorting of the leaf nodes, whichrequires O(N0=B logM=BN0=B) I/O operations. N0 normally is much smaller than N .5.3 Creation of Internal Segment ListsThe creation of the segment lists for internal nodes is done by recursivelymerging the segmentlists of their children, starting from the leaf level.Note that the segments in each list have been sorted in increasing order using keys yand x left, and stored contiguously on the disk. Merging horizontal segments can be donein a similar way as the merging phase of the external sorting, while combining horizontallyadjacent segments. Segments in a list are always brought into memory in blocks. A bu�er ofsize B is allocated for each list. (Note that we have at most B lists per node and B2 < M .)The smallest segment among the �rst segments of all the lists is repeatedly removed andadded to the output segment list until all lists become empty. During this process, whenevera bu�er is empty, another block of segments in the corresponding list is retrieved from thedisk. The output segments are also bu�ered and added to the segment �le in blocks.Suppose the total number of segments associated with the leaf nodes is S, then thecreation of the segment lists for the internal nodes just above the leaf nodes requires O(S=B)I/O operations. As a result, the I/O complexity of the entire process of creating internalsegment lists could be O(S=B logBN0=B), which may seem to be worse than the externalsorting. However, in practice both S and N0 are much smaller that N . Furthermore, thenumber of segments often decreases rapidly as the tree level gets higher. As a result, thisstep is normally dominated by the previous two steps.6 Range QueriesGiven a query window w, an allocation node in the ToR is a node whose MBR is coveredentirely by w and whose parent is not an allocation node. Figure 3 shows the allocationnodes, depicted as dashed rectangles for internal nodes and gray dots for leaf nodes, for thedotted window describing a range query.Answering a range query consists of determining the set of allocation nodes followed bymerging the segment lists of these allocation nodes horizontally. Finally, this list of segmentsis merged vertically to create the output regions.6.1 Identifying Allocation NodesThe search for the allocation nodes starts from the root with the set of allocation nodesinitialized as empty. If a node has no intersection with w, then no action is taken. If a7



query windowFigure 3: Allocation nodesnode is fully covered by w, then it is identi�ed as an allocation node and added to the setof allocation nodes. Otherwise, if the node intersects w, the same procedure is repeated foreach of its children.Since in practice, many of the cells will share the same values, it is reasonable to assumethat the segment list of each of the leaf nodes contains at least B logB N0 cells. Under thisassumption, the total number C of cells in the output regions is at least fB logB N0, wheref is the number of allocation nodes. Therefore, f � C=(B logB N0). Clearly, only allocationnodes and their ancestors need to be accessed in this step. Since the height of the R-tree isO(logBN0), the total number of nodes accessed is O(f logBN0) = O(C=B).6.2 Merging Segments HorizontallyAfter the allocation nodes are determined, their associated segments are merged so thathorizontally connected segments are combined into a single segment. A segment list mergingalgorithm similar to the one used in the tree construction can be used here. There is onedi�erence, however. Since the number of allocation nodes f could be larger than M/B,multiple iterations might be needed as follows. In each iteration, every M=B segment listsare merged into a single list. There will be O(logM=B f) iterations. Let F be the total numberof segments associated with the allocation nodes. The I/O complexity for each iteration isO(F=B). The total complexity for the horizontal merge is then O(F=B logM=B f). We denotethe list of segments after the horizontal merge as L and its cardinality as T .6.3 Merging Segments VerticallyTo identify the connected regions, we need to assign a label to each output cell such thatcells from di�erent connected regions have di�erent labels. Using the sorted list L, �ndingconnected regions can be done very e�ciently, in fact in O(T=B) I/O time.Note that horizontally connected output segments have already been merged in the hor-izontal merge phase. What remains to be done is to merge the segments vertically to createregions.We �rst use O(T=B) I/O operations to scan L once to partition it into Ty sublists, Tybeing the number of di�erent y-coordinates of these segments. Each sublist contains segmentswith the same y-coordinate. This is possible since segments in L have already been sortedusing their y-coordinates as the primary keys.8



If L �ts in internal memory, then we can apply an internal merging algorithm as follows.First, a graph H is created, whose vertices correspond to the segments in L. If two segmentsare adjacent to each other vertically, their corresponding vertices are connected by an edgein H. H is represented as a set of adjacency lists, one for each vertex. Second, a connectedcomponents algorithm based on depth-�rst search is used to �nd the regions.Each sublist with y-coordinate y has one sublist above (below) it if there exists a sublistwith the y-coordinate equal to y � 1 (y + 1). To construct the adjacency list for the �rstsegment s in a sublist Ls, we scan the sublists above and below until all segments verticallyadjacent to s are found and the �rst such segments are recorded in s's adjacency list. Thenwe continue to scan the same two sublists for the next segment in Ls and keep doing so untilthe adjacency lists for all the segments in Ls are created. Figures 4(a) and (b) give a simpleexample of a segment list L consisting of �ve segments and its corresponding adjacency list.Given a segment, its adjacent segments can be found by scanning the corresponding aboveand below sublists, starting from the segments recorded in its adjacency list.
(0,2)

(1,0)

(2,1)

(3,0)

(5,2)

(6,1)

(7,2)

(8,0)

(9,2)

(4,0)(a) A list of sorted segmentssegment above below0 (0; 1; 3) NULL 21 (0; 4; 8) NULL 22 (1; 2; 6) 0 33 (2; 0; 5) 2 NULL4 (2; 7; 9) NULL NULL(b) The corresponding adjacency listsFigure 4: Adjacency listsIf L does not �t in internal memory, we determine the connected regions as follows.We read as many sublists as the internal memory size allows, starting from the one withthe smallest y value. We call this set of sublists a stripe. The internal merging algorithmdescribed above is then applied to label all the segments in that stripe. These labeledsegments are then written back to disk. Next, we again read as many sublists as possible,but starting from the lowest sublist in the last stripe (we call this sublist the lower boundaryof the last stripe and the upper boundary of the current stripe). Since the segments in thatboundary (the boundary segments) have already been labeled, their labels are propagatedto other segments connected to them. New labels will be assigned to segments that do notconnect with any of these boundary segments. If, during the labeling process, we �nd outthat two segments from the upper boundary with di�erent labels are actually connected thenthe label of one of them is changed. This change is kept in an label-update table (LUT) forthat boundary. LUT is also written to disk after the current stripe is processed. The same9



process continues as we read the sublists stripe by stripe with two contiguous stripes sharinga boundary until all segments are labeled.After the downward labeling process, an upward updating operation is performed asfollows. We repeatedly read a stripe and the LUTs of its upper and lower boundaries,starting from the stripe that is just above the lowest stripe. For each stripe, we update thelabels of the segments in it using the label changes maintained in the lower LUT. Thesechanges are also used to update the upper LUT. This process continues until the labels ofthe segments in the �rst stripe are updated. Details will appear in the full paper.Under the reasonable assumption that the size of each of the Ty sublists is less thanO(M), we can make sure that a stripe and its upper and lower LUTs can be loaded intomemory simultaneously, thus guaranteeing that the operations described above are possible.It is obvious that both the downward labeling and the upward updating processes requireO(T=B) I/Os for reading and writing the segments. The additional cost for reading andwriting the LUTs is clearly less than O(T=B) because each LUT is only accessed O(1) timesand the total size of the LUTs is less than the total size of the boundaries, which is less thanT .7 Experimental ResultsWe tested our new approach on a number of raster data sets generated from satellite data.We describe here two types, a global coarse resolution and a �ne resolution. The �rst typeconsists of the standard AVHRR (Advanced Very High Resolution Radiometers) data prod-ucts that form a 1-degree by 1-degree of global coverage generated from 10 day composites.Geophysical parameters contained in the data set include: Normalized Di�erence VegetationIndex (NDVI), two re
ectance channels (channels 1 and 2), three brightness temperaturechannels (channels 3, 4, and 5), and date and hour of observation [2]. NDVI is the ratio ofthe contrast between the response of the two re
ectance channels. We used three of theseparameters (NDVI, channel 1 and channel 4). The total number of cells in each AVHRRdata set is 64K. The second type is the TM (Thematic Mapping) data [1]. Each TM datais a 7200-by-8192 grid representing a region with 30 meter resolution. Each cell has sevenparameters (bands), of which we used �ve (bands 1, 2, 4, 5, and 7) on a 1000 � 1000 grid.A total of 44 data sets are used in our experiments. 24 of them are AVHRR global 1-degreeby 1-degree data and the remaining 20 are the TM data.The tree construction and query answering algorithms were coded in C. All the experi-ments were conducted on a Pentium III 550Mz machine with 1GB Memory running Linux2.2.19. The page size B was chosen to be 8192 bytes.7.1 Sample Query ResultsFigures 5 and 6 give two sample query results. Figure 5(a) is the global 1-degree by 1-degreeNDVI map. Figure 5(b) shows the areas with high temperature and high NDVI values, whichapproximately correspond to the rain forests and the wooded grasslands that mainly locatein Central America, Central Africa, South Asia, and the east coast of Australia. Di�erentcolors are used to denote di�erent connected regions. Figure 6(a) is band 7 for part of a TM10



scene in Columbia. Figure 6(b) shows the query result that largely corresponds to nonforests,which typically have high values in bands 4 and 7.
(a) NDVI values, 10-day composite (b) regions where NDVI � 0.4 andJan. 01, 1989 channel 3 brightness temperature� 260.0 KelvinFigure 5: Sample query results (AVHRR)

(a) Band 7, Part of Columbia (Path/Row: 6/66) (b) regions whereOct 16, 1996 band 4 � 20 and band 7 � 20Figure 6: Sample query results (TM)7.2 Query PerformanceWe will �rst examine the overall query performance and then focus on the main componentsof the query algorithm. We will also compare the number of output segments and outputcells to demonstrate the importance of representing regions using segment lists.For each ToR, we generated query windows of 5 di�erent sizes ranging from 5% to 25% ofthe size of the MBR of the root node. For each window size, 30 query windows were randomly11



and uniformly generated within the root MBR. All performance numbers are averaged overthese queries. We will report the experimental results for the TM data, which is much largerthan the AVHRR data.Figure 7 shows the overall query execution time as contributed by the three main steps.We can see that the amount of time it takes to identify the allocation nodes is very smallcomparing to the horizontal and vertical segment merge times. The horizontal merge steptakes up most of the execution time, while the vertical merge step was done much faster.Overall, it can be seen that the queries are handled extremely fast, within 5 seconds for theTM data even for queries with large windows. Furthermore, the query time is proportionalto the output size as had been indicated by our earlier analysis.
Figure 7: Overall query performance

(a) execution time (b) I/O complexityFigure 8: Complexity of Horizontal MergeFigures 8(a) and (b) show the comparison of the theoretical bounds and the observedbounds in terms of execution time and number I/O operations. The X-axis represents thetheoretical complexity F=B logM=B f , where f is the number of allocation nodes and Fis the number of segments associated with them. Since B and M do not change in ourexperiments, this theoretical bound di�ers from F log2 f by only a constant. Thus, usingthe latter will not a�ect the shape of the curves. These two �gures demonstrate that ourexperimental results and the theoretical results are quite consistent. The performance of the12



(a) execution time (b) I/O complexityFigure 9: Complexity of Vertical Merge
(a) AVHRR data (b) TM dataFigure 10: Number of output segments v.s. number of output cellsvertical segment merge is shown in Figure 9. The results are consistent with our theoreticalcomplexity analysis as well.Finally, we compare the number of output cells and output segments to demonstrate thee�ectiveness of the segment representation of output regions. Figure 10 shows the averagenumber of output segments and output cells for both AVHRR and TM data. Note that whilethe number of output cells increases quite fast as the size of the query window increases, thenumber of output segments increases very slowly in both cases. This has enabled the varioussteps in our query answering algorithm to be carried out quite fast.References[1] Landsat thematic mapper data. http://edc.usgs.gov/glis/hyper/guide/landsat tm.[2] Goddard DAAC NOAA/NASA Path�nder AVHRR Land (PAL).http://daac.gsfc.nasa.gov/REFERENCE DOCS/dataset references/pal-summary.html, 1999.[3] Content-based search and data mining. http://www.esipfed.net/clusters/content based/sci scen.html, 2000.[4] A. Aggarwal and J. S. Vitter. The input/output complexity of sorting and relatedproblems. Communications of the ACM, 31(9):1116{1127, Sept. 1988.13



[5] L. Arge, K. Hinrichs, J. Vahrenhold, and J. S. Vitter. E�cient bulk operations ondynamic R-trees. In Proceedings of the 1st Workshop on Algorithm Engineering andExperimentation, pages 328{348, Baltimore, MD, Jan. 1999.[6] L. Arge, V. Samoladas, and J. S. Vitter. On two-dimensional indexability and opti-mal range search indexing. In Proceedings of the Eighteenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, pages 346{357, Philadelphia,PA, May 1999.[7] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The R*-tree: An e�cientand robust access method for points and rectangles. In H. Garcia-Molina and H. V.Jagadish, editors, Proceedings of the 1990 ACM SIGMOD International Conference onManagement of Data, pages 322{331, Atlantic City, NJ, May 1990.[8] S. Berchtold, C. B�ohm, and H.-P. Kriegel. Improving the query performance of high-dimensional index structures by bulk-load operations. In Proc. 6th Int. Conf. ExtendingDatabase Technology, EDBT, pages 216{230, Mar. 1998.[9] S. Berchtold, D. A. Keim, and H.-P. Kriegel. The X-tree : An index structure for high-dimensional data. In VLDB'96, Proceedings of 22nd International Conference on VeryLarge Data Bases, pages 28{39, Mumbai (Bombay), India, Sept. 1996.[10] J. V. den Bercken, B. Seeger, and P. Widmayer. A generic approach to bulk loadingmultidimensional index structures. In VLDB'97, Proceedings of 23rd International Con-ference on Very Large Data Bases, August 25-29, 1997, Athens, Greece, pages 406{415,1997.[11] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for dis-covering clusters in large spatial databases with noise. In Proceedings of the SecondInternational Conference on Knowledge Discovery and Data Mining (KDD-96), pages226{231, Portland, OR, Aug. 1996.[12] V. Gaede and O. G�unther. Multidimensional access methods. ACM Computing Surveys,30(2):170{231, 1998.[13] A. Guttman. R-trees: A dynamic index structure for spatial searching. In Proceedingsof the ACM SIGMOD International Conference on Management of Data, pages 47{57,Boston, MA, June 1984.[14] I. Kamel and C. Faloutsos. On packing R-trees. In In Proceedings of the Second In-ternational Conference on Information and Knowledge Management, pages 490{499,1993.[15] I. Kamel and C. Faloutsos. Hilbert R-tree: An improved R-tree using fractals. InProceedings of the Twentieth International Conference on Very Large Databases, pages500{509, Santiago, Chile, 1994. 14



[16] P. C. Kanellakis, S. Ramaswamy, D. E. Vengro�, and J. S. Vitter. Indexing for data mod-els with constraints and classes. Journal of Computer and System Science, 52(3):589{612, 1996.[17] S. T. Leutenegger, J. M. Edgington, and M. A. Lopez. STR: A simple and e�cientalgorithm for R-tree packing. In Proceedings of the 13th International Conference onData Engineering (ICDE'97), pages 497{507, Apr. 1997.[18] N. Roussopoulos and D. Leifker. Direct spatial search on pictorial databases usingpacked R-trees. In Proceedings of ACM-SIGMOD 1985 International Conference onManagement of Data, pages 17{31, Austin, TX, Dec. 1985.[19] T. K. Sellis, N. Roussopoulos, and C. Faloutsos. The R+-tree: A dynamic index formulti-dimensional objects. In Proceedings of the 13th Interntational Conference on VeryLarge Data Bases, pages 507{518, Brighton, England, Sept. 1987.[20] S. Subramanian and S. Ramaswamy. The P-range tree: A new data structure forrange searching in secondary memory. In Proceedings of the ACM-SIAM Symposium onDiscrete Algorithms, pages 378{387, 1995.[21] J. S. Vitter. External memory algorithms. In Proceedings of the Seventeenth ACMSymposium on Principles of Database Systems, pages 119{128, New York, NY, USA,June 1998.[22] W. Wang, J. Yang, and R. Muntz. STING: a statistical information grid approach tospatial data mining. In Proceedings of the Twenty-Third International Conference onVery Large Data Bases, pages 186{195, Athens, Greece, Aug. 1997.[23] D. A. White and R. Jain. Algorithms and strategies for similarity retrieval. TechnicalReport VCL-96-101, Visual Computing Laboratory, University of California, San Diego,CA, 1996.[24] R. Yang, K.-S. Yang, M. Kafatos, and X. Wang. Value range queries on earth sciencedata via histogram clustering. In First International Workshop on Temporal, Spatial,and Spatio-Temporal Data Mining, pages 62{76, Lyon, France, Sept. 2001.
15


