
ABSTRACT

Title of dissertation: PRIMAL-DUAL INTERIOR-POINT

ALGORITHMS FOR LINEAR PROGRAMS

WITH MANY INEQUALITY CONSTRAINTS

Luke Michael Blohm Winternitz, 2010

Dissertation directed by: Professor André L. Tits

Department of Electrical

and Computer Engineering

Linear programs (LPs) are one of the most basic and important classes of

constrained optimization problems, involving the optimization of linear objective

functions over sets defined by linear equality and inequality constraints. LPs have

applications to a broad range of problems in engineering and operations research,

and often arise as subproblems for algorithms that solve more complex optimization

problems.

“Unbalanced” inequality-constrained LPs with many more inequality con-

straints than variables are an important subclass of LPs. Under a basic nonde-

generacy assumption, only a small number of the constraints can be active at the

solution–it is only this active set that is critical to the problem description. On the

other hand, the additional constraints make the problem harder to solve. While

modern “interior-point” algorithms have become recognized as some of the best

methods for solving large-scale LPs, they may not be recommended for unbalanced

problems, because their per-iteration work does not scale well with the number of

constraints.

In this dissertation, we investigate “constraint-reduced” interior-point algo-

rithms designed to efficiently solve unbalanced LPs. At each iteration, these meth-

ods construct search directions based only on a small working set of constraints,

while ignoring the rest. In this way, they significantly reduce their per-iteration

work and, hopefully, their overall running time.

In particular, we focus on constraint-reduction methods for the highly efficient

primal-dual interior-point (PDIP) algorithms. We propose and analyze a convergent

constraint-reduced variant of Mehrotra’s predictor-corrector PDIP algorithm, the

algorithm implemented in virtually every interior-point software package for linear

(and convex-conic) programming. We prove global and local quadratic convergence

of this algorithm under a very general class of constraint selection rules and under

minimal assumptions. We also propose and analyze two regularized constraint-

reduced PDIP algorithms (with similar convergence properties) designed to deal

directly with a type of degeneracy that constraint-reduced interior-point algorithms

are often subject to. Prior schemes for dealing with this degeneracy could end up

negating the benefit of constraint-reduction. Finally, we investigate the performance

of our algorithms by applying them to several test and application problems, and

show that our algorithms often outperform alternative approaches.

PRIMAL-DUAL INTERIOR-POINT ALGORITHMS FOR LINEAR

PROGRAMS WITH MANY INEQUALITY CONSTRAINTS

by

Luke Michael Blohm Winternitz

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2010

Advisory Committee:
Professor André L. Tits, Chair/Advisor
Professor Benjamin Kedem
Professor Steven I. Marcus
Assistant Professor Nuno Martins
Professor Dianne P. O’Leary
Associate Professor Adrian Papamarcou

c© Copyright by

Luke Michael Blohm Winternitz
2010

Dedication

For Lei.

ii

Acknowledgments

First and foremost I want to thank my friend and advisor André Tits. André

is not only one of the most generous and kind people I know, but he is also one of

the most intelligent and technically apt, and it has been a pleasure to work with

him on this research program. Although, at times I have found this effort to be

extremely challenging, both technically and personally, my iteraction with André

has been nothing but positive. I have, saved in my inbox, hundreds of email threads

where André and I were working together to tackle technical issues both small and

large; many times he would email me early in the morning with ideas that came to

him in his sleep! His passion for problem solving was infectious, and it was often

in these efforts that I was able to let go and truely enjoy my research. I know that

André and I will remain friends and I hope to continue our technical interaction in

the future.

Next, I would like to thank Dr. Dianne O’Leary for serving on my committee

and for her helpful feedback and discussions regarding my work and our collaborative

work together throughout my Ph.D. experience. Dr. O’Leary’s ideas often helped me

to see things in a different light, and her technical comments were always valuable.

I would like to thank the rest of my dissertation committee: Dr. Kedem,

Dr. Marcus, Dr. Martins and Dr. Papamarcou, for serving on my commitee. I

truely appreciate their careful reading of my thesis and their helpful questions and

suggestions, and I thank them for making my defense an enjoyable experience.

I would like to further thank Dr. Kedem and Dr. Papamarcou for their out-

standing courses in the statistical theory of estimation/detection and information,

fields that are still of great interest to me, and of great relevance to my work at

NASA. They are both incredible teachers and I want to say that their effort is

greatly appreciated.

I would also like to thank Dr. Krishnaprasad for all of the time that he gave me

iii

during my early graduate career. I have great admiration for Dr. Krishnaprasad’s

depth of knowledge and passion for science, and found him to be an inspirational

figure in my academic career.

I need to thank NASA and Goddard Space Flight Center, my workplace since

2001, for its outstanding academic programs that I have taken full advantage of over

the past eight years. These programs have allowed me to pursue graduate work,

something I wanted and needed to do, while developing a career in a field I truely

love. I want to thank the adminsitrators of the Part-Time Graduate Study Program

and the Study Fellowship Program, and especially my supervisors in code 596 for

their support throughout my extended graduate school career. I owe NASA and

Goddard a debt of gratitude for this opportunity, and I intend to pay it back with

a career focused on furthering the NASA mission.

I am very fortunate to have been blessed with a loving family who have been

supportive of every effort I have undertaken. During my graduate school experience,

my parents and siblings were always there to provide support and encouragement

when I needed it, and for that, and for everything else I want to thank them deeply.

It is very hard to express in words what my family means to me, so I will just

reiterate that I am truely blessed to have them.

Finally, I want to thank my best friend and wife Lei for her support over the

past ten years. I know that it has been a very long, and at times difficult, process

for her, and I truely appreciate the sacrifices she has made to allow me to do this. I

am looking forward so much to spending more time with her (and Peanut) and our

future family together.

iv

Contents

1 Background 1
1.1 The problem of interest . 1
1.2 Dealing with large numbers of inequality constraints 5
1.3 Active set methods. 6

1.3.1 Linear programming: revised simplex method 7
1.4 Column generation and cutting-plane methods for linear programs . . 14

1.4.1 Column generation . 15
1.4.2 Cutting-plane methods for linear programs 17

1.5 Cutting-plane methods for general (smooth or non-smooth) convex
optimization . 18

1.6 Interior-point methods . 23
1.7 Prior work on constraint-reduction in IPMs for LP 25
1.8 Dantzig and Ye’s build-up dual affine-scaling method 26

1.8.1 The dual affine-scaling algorithm 26
1.8.2 The build-up variant of DAS 33

1.9 Tone’s “active-set” dual potential-reduction method 37
1.9.1 Ye’s (dual) potential reduction algorithm 38
1.9.2 Tone’s “active-set” variant . 46
1.9.3 Kaliski and Ye’s variant of Tone’s method for connected net-

work flow problems . 53
1.10 Den Hertog et al.’s build-up-and-down path following method 56

1.10.1 Dual logarithmic barrier method 56
1.10.2 A constraint-reduced variant 58
1.10.3 Den Hertog et al.’s logarithmic barrier cutting-plane method . 60

1.11 Primal-dual (symmetric) interior-point methods 61
1.12 Tits et al.’s primal-dual affine-scaling algorithm 64

1.12.1 Constraint-reduced primal-dual affine-scaling algorithm 64
1.12.2 A simple constraint-reduced Mehrotra predictor-corrector . . . 67

1.13 Nicholls’ work on infeasible constraint-reduced predictor corrector al-
gorithms for LP . 71

1.14 Jung et al.’s work on reduced convex QP for SVMs 71

v

2 Algorithm rMPC⋆ 72
2.1 Notation and a lemma . 73
2.2 Development of a provably convergent variant of rMPC 75

2.2.1 A constraint reduction mechanism 79
2.3 Global convergence analysis . 88
2.4 Local convergence . 98

2.4.1 Proof of Theorem 2.4.1 . 99

3 Degeneracy in reduced IPMs 119
3.1 Introduction . 121

3.1.1 Avoiding the issue through assumptions 121
3.1.2 Regularization of the linear systems 122
3.1.3 Sources of the regularization 124

3.2 Two algorithms . 128
3.2.1 Regularized rPDAS . 129
3.2.2 Regularization in the limit of small δ 142
3.2.3 Kernel step rPDAS . 144

3.3 Adding a barrier term . 155

4 Numerical experiments 156
4.1 Numerical experiments with rMPC⋆ 156

4.1.1 Implementation . 157
4.1.2 Randomly generated problems 159
4.1.3 Discrete Chebyshev approximation problems 163
4.1.4 Comparison with other algorithms 166

4.2 Numerical experiments with the regularized algorithms 168
4.2.1 The tube-in-a-cube problem 168
4.2.2 Random sparse problems . 173
4.2.3 Discussion . 174

5 Applications in filter design 179
5.1 Discretized semi-infinite linear programming 179
5.2 Linear phase, finite-impulse response (FIR) filters 184
5.3 FIR magnitude response design and spectral factorization 192
5.4 Arbitrary complex response FIR Chebyshev design 199
5.5 Spatial filters for antenna array beam-steering 203
5.6 Numerical performance . 207
5.7 Discussion . 210

6 Summary 215

7 Future lines of research 220
7.1 Complexity results . 220
7.2 Efficient and robust implementation 222
7.3 Specialization to target applications 224

vi

7.4 Extension to convex-conic form problems 231
7.5 Extension to general nonlinear, possibly non-convex, problems 242

vii

List of Tables

1.1 RPS algorithm dominant costs per iteration. 15

4.1 Results of various heuristics on the Chebyshev approximation problem.166
4.2 Comparison of algorithms with no constraint reduction. 169
4.3 Comparison of algorithms with constraint reduction. 170

5.1 Linear phase FIR symmetry/filter types. 185
5.2 Specification for GSFC-Navigator GPS receiver decimation filter. . . . 188
5.3 Typical phase noise specification for a 10MHz TCXO. 197
5.4 Numerical performance on the applications problems. 209

7.1 Cost of iteration of primal-dual method on GP example. 248
7.2 Performance of constraint-reduction in the primal-dual method. . . . 248

viii

List of Figures

1.1 Our problem class of interest and its place among all optimization
problems. 5

1.2 Constraint-reduction in two dimensions. 24

2.1 Safeguard for the steplength in rMPC⋆ 78

3.1 Artificial rank-degeneracy in constraint-reduced algorithms. 121

4.1 Performance of rMPC⋆ with the most-active rule on random problems.160
4.2 Performance of the rMPC⋆ with the adaptive-rule on random problems.162
4.3 Tube-in-a-cube problem . 171
4.4 Tube-in-cube kernel-like step counts. 176
4.5 Performance of the regularized rPDAS and rMPC⋆ and kernel-step

rPDAS methods the tube-in-cube. 177
4.6 Estimated degree of degeneracy on sparse problems. 178

5.1 GSFC-Navigator GPS receiver signal path with decimation filter high-
lighted. 188

5.2 GPS receiver front-end filter specification 193
5.3 Matlab code for filter design. 194
5.4 FIR magnitude response design problem phase noise specification and

fit. 200
5.5 Phase noise synthesis filter impulse response and simulated trajectory. 201
5.6 Linear prediction filter designed by minimax approximation. 203
5.7 Linear prediction filter in action. 211
5.8 Linear prediction filter impulse response. 212
5.9 A general array signal processor. 213
5.10 Target beam pattern for the antenna array problem. 214
5.11 Optimized beam pattern for the antenna array problem. 214

7.1 Hessian error bounds for inexact conic programming constraint-reduction.251
7.2 Trajectories of the primal-dual method on the geometric program-

ming example. 252

ix

List of Algorithms

1 Revised Primal Simplex Algorithm . 13
2 Dual Simplex Algorithm . 14
3 Dual affine-scaling algorithm for LP 29
4 Dantzig-Ye Build-up affine-scaling algorithm 37
5 Ye’s DPR algorithm [Ye91] . 46
6 Tone’s Active-Set DPR algorithm [Ton93] 52
7 den Hertog’s build-up and down path-following method 60
8 rPDAS algorithm of [TAW06] . 67
9 Iteration rMPC [Meh92, Wri97], constraint-reduced as in [TAW06] . . 70
10 Algorithm rMPC⋆ . 85
11 Regularized rPDAS . 132
12 Kernel-step rPDAS . 146
13 Constraint-reduced algorithm for conic (at least linear) programming . 241

x

Chapter 1

Background

1.1 The problem of interest

The fundamental problem dealt with in the field of mathematical programming is

the constrained optimization problem

min
x∈X

f(x)

s.t. x ∈ X0, (1.1)

where s.t. stands for “subject to”, and the constraint set X0 is some subset of the

space of variables X . In most practical applications, the abstract constraint set X0

can be expressed in terms of a number of equality and inequality constraints

min
x∈X

f(x)

s.t. gi(x) = 0 i ∈ E , (1.2)

hj(x) ≤ 0 j ∈ I.

1

where E and I are the equality and inequality constraint index sets respectively.

This formulation has enormous modeling power; a vast array of problems arising in

all fields of science, engineering, and operations research can be put into this frame-

work. Unfortunately, without further restriction on the objective and constraint

functions (and the space of variables and constraint indices), this problem is utterly

intractable. That is, there is no implementable algorithm that can solve every in-

stance, even in an approximate sense, with a reasonable amount of theoretical or

practical effort. To render it tractable we must narrow the scope by restricting the

problem data.

There are a number of useful ways to restrict the problem data. First, a basic

assumption is to restrict attention to problems where X is a finite dimensional vector

space, and where I and E are finite sets. Unfortunately, even after such restriction,

problem (1.2) is still intractable.1 To achieve tractability, the restriction that is

really needed is convexity of the objective and feasible set. The key advantage

of the convexity assumption is that it guarantees that all local minima are also

global minima. Convex optimization is still a very powerful modeling paradigm,

and the modern theory and algorithms for convex optimization are becoming quite

satisfactory. The first two chapters of [Nes03] provide further and clearer motivation

for the convexity assumption.

Another type of restriction is to assume “smoothness” of the problem data.

This allows the use of the derivatives and associated local approximations of the

functions f , gi, and hj in algorithms for solving (1.2). Even within the class of

smooth-convex optimization problems there is a fundamental trade-off between the

restrictiveness of the class of problems that a particular algorithm addresses and

the performance of that algorithm. The most efficient algorithms address fairly

specific classes of problems and exploit their structure to the fullest extent pos-

1For example, hard combinatorial optimization problems can be recovered even after this as-
sumption by using nonconvex constraints.

2

sible. Important further restricted classes of smooth-convex problems include (in

decreasing nested order) semidefinite programs (SDP), second-order-cone programs

(SOCP), convex quadratic programs (QP), and finally linear programs (LP), where

the functions in (1.2) are all affine.

While LPs are the most basic class of constrained smooth convex optimization

problems, they are also one of the most important. They have applications in a

broad range of problems in engineering and science, and especially in operations re-

search. Furthermore, LPs often arise as subproblems in algorithms that solve more

complex classes of optimization problems, particularly hard combinatorial optimiza-

tion problems. See, for example, [BT97, Van96, Lue84, PS82] for more motivation

for the importance of LP.

In this dissertation, we focus our attention on linear programs with the further

structure that in (1.2), withm the dimension of X , |I| is very large relative tom−|E|,

that is, the number of inequality constraints is large relative to the dimension of the

affine manifold containing the feasible set. For linear programs in dual standard

form (see (1.3) below), we have X = Rm, |I| = n, and |E| = 0, so that in this case,

we are interested in problems with n ≫ m. Figure 1.1 gives a schematic diagram

showing where this class of problems lives among all optimization problems. We

will attempt to modify a class of algorithms to improve their efficiency on these

“unbalanced” linear programs. Our algorithm class of interest is the primal-dual

interior-point methods (PDIPMs). PDIPMs have emerged as some of the most

efficient algorithms, both practically and theoretically, for solving linear programs

as well as other smooth-convex, and even nonconvex optimization problems. While

PDIPMs are (arguably) becoming the algorithms of choice for most large-scale linear

programming applications, alternative algorithms may have the advantage when

n ≫ m for reasons that we will cover in detail in this chapter. Our goal in this

dissertation is to attempt to improve the performance of the PDIPMs on our problem

3

class of interest, linear programs with many inequality constraints.

In the rest of the first chapter, we give an overview of traditional methods

for solving LPs with many inequality constraints. We then introduce interior-point

methods (IPMs) for LP, and introduce some notions of “constraint-reduction” that

attempt to help IPMs deal with many inequality constraints by allowing them to,

in some sense, ignore most of the constraints most of the time. We also give a com-

prehensive review of past research on constraint-reduced interior-point methods. In

Chapter 2 and 3 we propose and analyze three constraint-reduced PDIPMs. The

first algorithm, the topic of Chapter 2, is a constraint-reduced variant of Mehrotra’s

predictor-corrector, the PDIPM implemented in virtually all interior-point software

packages for LP, while the two algorithms proposed in Chapter 3 are PDIPMs de-

signed to deal with a certain type of degeneracy that constraint-reduced IPMs are

subject to. In Chapter 4 we develop some specific constraint selection rules and

test our algorithms on a few example problems. We also compare one of our algo-

rithms to alternative constraint-reduced IPMs. In Chapter 5 we look more closely

at some real-world applications from the area of digital filter design, and apply

our algorithms to LPs arising there. Chapter 6 gives a more in-depth summary of

the content and contributions of the dissertation (to which we now refer the inter-

ested reader for a more detailed overview). Finally, Chapter 7 proposes and briefly

investigates some possible future lines of research.

Remark 1.1.1. Although our focus in this dissertation will be on linear program-

ming, we believe that a good deal of what can be said regarding LPs with many

constraints applies to convex (and possibly even nonconvex) optimization problems

with many constraints, so throughout this introduction and later in Chapter 7, we

keep in mind the more general case.

Remark 1.1.2. In some sections of this chapter, we go into great detail in our de-

scription of some prior approaches for problems with many constraints (particularly,

4

sections 1.3.1, 1.8, and 1.9). Such sections can be lightly skimmed without loss of

continuity.

All optimization problems

Problems
Smooth

Convex
Problems

LPs with

(this thesis)
many inequalities

QP

SOCP

SDP

LP

Figure 1.1: Our problem class of interest and its place among all optimization problems.

1.2 Dealing with large numbers of inequality con-

straints

For most algorithms for LP (as well as for more general problems), the larger |I|

is, the more effort will be required to solve the problem. Under certain “constraint

qualifications”, only very few, usually no more than m (the number of variables), of

these constraints can be active at the solution, and it is only these active constraints

that are critical to the description of the feasible region. The remaining inactive

inequalities are in some sense irrelevant to the problem, and possibly even redundant

(e.g., Figure 1.2 below). Intuitively, there should be a way to ignore most of these

5

“irrelevant” constraints to reduce our workload. This will be the simple underlying

motivation driving many of the ideas in this dissertation. In the rest of this chapter,

we will address a number of traditional past approaches to problems with many

constraints. The approach of the first class of methods is based on trying to guess

and verify the set of active constraints as efficiently as possible.

1.3 Active set methods.

A popular approach to solving mathematical programs, the active set methods, intel-

ligently guess which constraints are active at the solution, and then solve a smaller

equality constrained problem with the “active” inequality constraints replaced by

equality constraints, and the remaining inequality constraints deleted. The solution

to this smaller problem is then checked for optimality in the original problem; if it

is optimal, then the algorithm terminates, otherwise the guess at the active set is

updated, and the algorithm iterates.

Active set methods deal naturally with the difficulty of many constraints.

These methods generally manage to do a modest amount of work at each iteration.

Another advantage is that finite termination for these methods can often be proven if

the equality constrained subproblems can be solved. This is because these methods

intentionally seek to exploit the combinatorial aspect of constrained optimization

problems: there are only finitely many active sets to check. The main disadvantage

of the active set methods is that they may require a very large number of iterations:

there can be a huge number of possible active sets. The most famous active set

method is the simplex method for linear programming, introduced by Dantzig in the

late 1940’s. Even with seemingly intelligent “pivoting” rules for updating the active

set, examples were constructed, namely the famous Klee-Minty cubes [KM72], on

which the simplex method would check all possible feasible active sets, i.e., vertices

6

of the feasible region, before finding the correct one, showing the simplex method

to be theoretically inefficient, and inspiring research that ultimately lead to the

rediscovery of interior-point methods and the proof of their efficiency.

1.3.1 Linear programming: revised simplex method

In this section, and through much of this dissertation, we will mainly consider the

primal and dual standard forms of linear programming:

min cTx

s.t. Ax = b,

x ≥ 0,

and
max bTy

s.t. ATy ≤ c,
(1.3)

where A is an m× n matrix with n≫ m, that is, the dual problem has many more

inequality constraints than variables. We assume b 6= 0.2 The dual problem can

alternatively be written in the form (with slack variable s)

max bTy

s.t. ATy + s = c,

s ≥ 0.

(1.4)

The first highly successful algorithm for LP was Dantzig’s simplex method. As

originally posed, the simplex method requires more computation and storage than

necessary, and is not set up to deal well with large numbers of constraints. Specifi-

cally, one iteration of the original (primal) simplex method consists of updating an

(m + 1) × (n + 1) matrix, the “simplex tableaux”, which always requires O(mn)

work and memory since the tableaux is generally dense. The revised simplex method

improves this situation by maintaining only the critical pieces of data, namely, the

2This assumption is benign, since if b = 0 the problem at hand is readily solved: any dual
feasible point y0 (assumed available for the algorithm analyzed here) is dual optimal and x = 0 is
primal optimal.

7

current m ×m basis matrix (possibly in inverted or factored form), and the list of

basic indices. If A is sparse and has only O(m2) nonzeros, then the per-iteration

memory requirement is reduced to O(m2). The per-iteration computational cost is

still O(mn) in the worst-case, although this can often be reduced to O(m2) by “par-

tial pricing” or column generation techniques (see discussion in section 1.4 below

and [BT97]). We now give a more detailed account of the revised simplex method

which will lead to the first methods attempting to deal with large numbers of dual

inequality constraints.

An overview of the primal and dual simplex methods [BT97,

Van96, Lue84, PS82]

The simplex method is based on the fundamental fact about linear programming

that, if the feasible region is nonempty and contains a vertex3 (equivalently an

extreme point or basic feasible solution), then, unless the optimal set is empty,

at least one of these extreme points is optimal. Therefore, when seeking optimal

solutions to LPs, it is sufficient to restrict attention to the vertices. The simplex

method starts at some vertex and moves to an adjacent vertex (one that shares an

edge) with improved objective value, until an optimal vertex is reached.

There are two main flavors: the primal simplex algorithm and the dual simplex

algorithm. Each moves around vertices of their respective feasible regions. Specif-

ically, both algorithms maintain a basis partition, i.e., a partition (B,N) of the

set n := {1, 2, . . . n}, with the “basis matrix” AB (i.e., the matrix formed from the

columns of A with indices in B) invertible. It will be convenient to assume a fixed,

but arbitrary, ordering for the sets B and N during each iteration. We will use the

notation B(j) to denote the jth element of B, and the notation (xB)j := xB(j). The

current iterate, or basic solution, is given by (x, y, s) where xN := 0 and sB := 0,

3The feasible region of a primal standard form LP, if nonempty, always contains a vertex when
A is of full rank.

8

enforcing complementarity (the condition that xisi = 0 for all i ∈ n), and the re-

maining components are set to satisfy the equality portion of the primal and dual

feasibility conditions

Ax = b,

and

ATy + s = c. (1.5)

This is achieved by setting

xB = A−1
B b,

and

sN = cN −AT
Ny,

with

y = (A−1
B)TcB.

The difference between the primal and dual algorithms is that the primal algorithm

maintains primal feasibility

xB ≥ 0,

moving from vertex to adjacent vertex of the primal polyhedron {x | Ax = b, x ≥ 0}

in a way such that the primal objective decreases, while the dual algorithm maintains

dual feasibility

sN ≥ 0,

moving from vertex to adjacent vertex of the dual polyhedron {y | ATy ≤ c} in a way

such that the dual objective increases. In the primal algorithm, dual feasibility is

achieved only when a primal optimal vertex is reached, while in the dual algorithm,

primal feasibility is achieved only at a dual optimal vertex.

We now discuss in detail the primal algorithm, which will be seen to be more

9

efficient for problems with n≫ m. In what follows, we essentially follow the discus-

sion in [Van96, chap. 4], but make the notation and terminology more compatible

with the standard notation of interior-point methods. Starting from a primal basic

feasible solution and the corresponding dual basic solution, the algorithm checks

the current solution for optimality, i.e., checks if sN ≥ 0. The component sN is

commonly referred to as the “reduced cost” and the process of computing sN is

referred to as “pricing”. If the current vertex is not optimal, then the algorithm

moves along a feasible edge to a new vertex with improved cost. This can be viewed

as a continuous process where a single component of xN , say the jth, is allowed

to increase from zero. Here, a “+” superscript is used to denote the new situation

with x+
N = tej , for some t > 0, where ej is a vector of appropriate dimension whose

jth component is one and the rest are zeros. To maintain Ax = b when x+
N = tej

increases from zero, x+
B must become

x+
B = A−1

B b−A−1
B ANx

+
N = xB − tA−1

B ANej = xB + t∆xB ,

with ∆xB := −A−1
B ANej . Plugging this into the objective, gives

cTx+ = cTBx
+
B + cTNx

+
N

= cTB(xB + t∆xB) + tcTNej

= cTB(xB − tA−1
B ANej) + tcTNej

= cTBxB + t(cN − (A−1
B AN)TcB)Tej

= cTBxB + t(cN −AT
Ny)

Tej

= cTBxB + t(sN)Tej = cTBxB + t(sN)j.

Thus, taking j, the column “entering the basis”, to be such that (sN)j < 0, will

cause the objective to improve for small enough t (barring degeneracy, see e.g.,

10

[BT97]). So, t is increased until one of the components of xB becomes zero, and

thus “leaves the basis”. This never happens if ∆xB ≥ 0, which indicates that the

primal objective is not bounded from below on the primal feasible region, and hence

that the dual is infeasible. Otherwise, it happens when

t = t∗ := min

{
(xB)k

−(∆xB)k

∣
∣ k s.t. (∆xB)k < 0

}

.

Let i denote an index that achieves the minimum. Then, in the terminology of the

method, with j the column entering the basis and i the column leaving the basis,

the iterate moves to the new vertex by updating

t∗ =
(xB)i

−(∆xB)i

,

x+
B = xB + t∗∆xB , (1.6)

x+
N = t∗ej ,

and update the basis

B+ = (B ∪ {N(j)}) \ {B(i)},

N+ = n \B+.

Alternatively, once the new basis is known, the update can be computed anew as

x+
B = (AB+)−1b, (1.7)

x+
N = 0,

which must agree with (1.6).

11

The dual iterate can be computed with the new basis via4

y+ = (AT
B+)−1cB+ ,

s+
N+ = cN+ −AT

N+y+,

s+
B+ = 0.

Alternatively, the dual update can be viewed as a continuous process. As

pointed out in [Van96], that view reveals a remarkable symmetry between the pri-

mal and dual algorithms. In the continuous view, the dual variables move along a

direction (∆y,∆s),

(y(τ), s(τ)) = (y, s) + τ(∆y,∆s),

while preserving the equality constraint s(τ) = c−ATy(τ). This requirement forces

∆s = −AT∆y. Complementary slackness at the updated iterate only allows (sB)i to

increase from zero, so that ∆sB := ei can be taken as a definition. This completely

determines the dual step since then it must hold that ∆y = −A−1
B ei and ∆s =

−ATA−1
B ei. Finally the step length τ ∗ is determined by (s+

N)j = (sN)j + τ ∗(∆sN)j =

0, which is required by complementary slackness of (x+, s+). In summary (noting

that ∆y is really ancillary to the process) the dual step is given by

τ ∗ =
(sN)j

−(∆sN)j

,

∆sN = −AT
NA

−1
B ei,

s+
B = τ ∗ei, (1.8)

s+
N = sN + τ ∗∆sN .

In summary, the (revised) primal simplex algorithm:

4In practice, this can and should be done efficiently with low-rank updates.

12

Algorithm 1: Revised Primal Simplex Algorithm

Input: LP data A, b, c; Initial iterate: x a primal basic feasible solution, with

basis partition (B,N); Parameters: none;

Output: Exact primal-dual solution (x, y, s)

while There exists j such that (sN)j < 0 do

Choose one such j (entering column);

Compute ∆xB = −(A−1
B AN)ej ;

Set t = min
{

(xB)k

−(∆xB)k
| (∆xB)k < 0

}

,

with index i achieving the minimum (leaving column);

Compute ∆sN = (A−1
B AN)Tei;

Let τ =
(sN)j

−(∆sN)j
;

Set

x+
N = tej, x+

B = xB + t∆xB

s+
B = τei, s+

N = sN + τ∆sN

Set B+ = (B ∪ {N(j)}) \ {B(i)};
end

The symmetry between the primal and dual simplex methods is striking when

∆y is eliminated from the dual algorithm. The idea is exactly the same: start from a

(now dual) basic feasible solution, choose one active constraint from sB = 0 (rather

than xN = 0) to release that will help to improve the objective, and then make

sure to preserve the equality constraint and complementary slackness. We omit a

detailed description of the dual simplex algorithm, but list it for comparison.

13

Algorithm 2: Dual Simplex Algorithm

Input: LP data A, b, c; Initial iterate: s corresponding to a dual basic

feasible solution y, with basis partition (B,N); Parameters: none;

Output: Exact primal-dual solution (x, y, s)

while There exists j such that (xB)j < 0 do

Choose one such j (leaving column);

Compute ∆sN = (A−1
B AN)Tej ;

Set t = min
{

(sN)k

−(∆sN)k
| (∆sN)k < 0

}

,

with index i achieving the minimum (entering column);

Compute ∆xB = −(A−1
B AN)ei ;

Let τ =
(xB)j

−(∆xB)j
;

Set

s+
B = tei, s+

N = sN + t∆sN

x+
N = τej , x+

B = xB + τ∆xB

Set B+ = (B ∪ {N(i)}) \ {B(j)};
end

1.4 Column generation and cutting-plane meth-

ods for linear programs

In this section we discuss some variations on the basic revised simplex method, that

are more efficient for unbalanced problems with n ≫ m. A good general reference

for this material of this section, which we draw heavily on, is [BT97].

14

1.4.1 Column generation

The computational cost of the major tasks required in each iteration of the revised

primal simplex method are listed in Table 1.1.5

Operation flops

Solve AB∆xB = −ANej O(m2)
Solve AT

B∆y = −ANei O(m2)
Compute ∆sN = −AT

N∆y O(mn)
Update the factorization of AB O(m2)

Table 1.1: Revised primal simplex algorithm dominant costs per iteration (assuming
dense matrices).

To complete an iteration of the revised primal simplex method, one needs

only the current basis and a method to choose a new column to enter the basis

that will lead to an improvement in the objective. The usual way to do this is to

fully compute sN and choose a negative component according some “pivoting” rule;

the most common method chooses the column with the most negative sj . However,

notice in Table 1.1, that computing the update for sN is the only operation whose

cost depends on n, and when n ≫ m this could easily be the most expensive

task. However, we reiterate the fact that the entire sN vector does not need to be

computed in the iteration; all that is needed is a way of generating a column of A

with negative reduced cost, hence the name “column generation”. Thus, one may

try to compute only part of sN , a technique called “partial pricing”. In some cases,

it may be possible to guess, e.g., using prior information on the problem’s structure,

an index j for which sj < 0, or alternatively, one could just compute them one

by one in some order, or in random order, until a negative sj is identified. These

methods are typically very effective in early iterations and can reduce the cost of an

iteration to O(m2) if intelligent updating schemes are used. In later iterations, as

5The first two rows of the table suggest that an m×m linear system can be solved with O(m2)
work rather than O(m3) work; this can be done if efficient low-rank factorization updating schemes
are used (since the basis matrix AB only changes in two columns at each iteration).

15

fewer and fewer columns have negative reduced cost, it is likely that more and more

work will be needed to identify one. In the end, the minimal component of sj must

be computed to check for optimality. If this is done by computing sN completely,

then the iterations necessarily cost O(mn) eventually.

Note that these ideas do not work for the dual simplex algorithm. This is

because the corresponding “pricing” operation is cheap in the dual algorithm, while

the computation of t, which cannot be avoided, becomes expensive: it is now an

O(n) operation.

In some cases, it may not be necessary to explicitly compute sj = cj − aT
j y

for any j, if instead there is available a “column generator” subroutine that takes

the current iterate as input and returns a column with negative reduced cost. One

prominent example of this is in the Dantzig-Wolfe decomposition [DW60] method

for problems with “multi-commodity flow” structure (i.e., the constraint matrix

has a block diagonal structure plus a group of linking constraints). There, the

original problem is converted to an equivalent LP with fewer equality constraints,

but exponentially many variables. This would normally be a bad idea, but as it

turns out, the converted problem has available an efficient column generator that

involves the solution of a handful of smaller LPs. See [BT97] or [Lue84] for more

detail.

A systematic class of methods that use these ideas are as follows. The revised

simplex method described above can be thought of as consisting of an outer iter-

ation and of a (trivial) inner iteration. The inner iteration consists of solving the

“restricted master LP”

min cTBxB

s.t. ABxB = b,

xB ≥ 0,

(1.9)

which only requires a basis inversion. The outer iteration works toward solving the

16

original LP (the “master problem”) by, at each iteration, updating the working set

of constraints (the basis B), adding a single constraint from the master problem

with negative reduced cost and removing a single constraint from B. Termination

occurs when no constraint in the master problem has negative reduced cost; then

the optimal point for the restricted problem is optimal for the master problem. This

can be generalized to allow for a larger working set of constraints W in the restricted

problem. The inner iteration then consists of solving the restricted master problem

min cTWxW

s.t. AWxW = b,

xW ≥ 0,

(1.10)

and the outer iteration consists of updating W by adding some constraints from

the master problem in n \W with negative reduced cost, and possibly adding and

deleting others from W . If this is not possible then the master problem is solved.

Taking this to the other extreme, by setting W = n, the outer iteration becomes

trivial.

These column generation methods with appropriate updating (pivot selection)

rules inherit the finite termination property of the simplex method, and as mentioned

above, they often perform very well in early iterations but tend to slow down, or

“tail off” in later iterations.

1.4.2 Cutting-plane methods for linear programs

From the dual point of view, the column generation method can be seen as a con-

straint generation, or cutting-plane method. The duals of the restricted master pro-

grams are “relaxed dual problems”—polyhedral outer approximations to the master

LP. From this point of view, the relaxed LP is solved in the inner iteration and check

17

for dual feasibility, that is check if s ≥ 0 (no negative reduced costs). If the solution

to the relaxed problem is feasible, then it is also optimal for the master problem;

otherwise the constraint set is updated by adding some violated constraints and

adding/deleting others and then iterating.

With these methods in hand, there is no requirement that the the restricted

master or relaxed dual problems be solved by the primal simplex method. One

can, in fact, use any method for solving LPs, and many have been tried. However,

it turns out that since successive restricted problems are generally similar to one

another, differing in only a few columns of the constraint matrix, the new problem

can be efficiently “reoptimized” using the primal simplex method. Specifically, if

the optimal basis from the previous restricted problem is kept in the new problem,

then the previous optimal point will be basic for the updated problem. Thus, the

primal simplex method can be “warm-started”from this point and can often solve

the new problem in only a handful of iterations. This is one of the strengths of

simplex methods that have kept them competitive in the interior-point era.

1.5 Cutting-plane methods for general (smooth

or non-smooth) convex optimization

The main idea of the cutting-plane method applies more broadly than just to LP.

Consider the convex feasibility problem

find x

s.t. x ∈ X .
(1.11)

This is quite general since X can, for example, represent the optimal set of (1.1). The

basic cutting-plane method finds a point in X by creating a sequence of improving

polyhedral outer approximations P k, such that P k+1 ⊂ P k, P k+1 6= P k, and an

18

associated sequence of “query” points yk ∈ P k. If the volume (other measures of

“size” are possible) of P k shrinks at a constant rate, and X has positive volume,

then then the algorithm must terminate finitely. Under the assumption that P 0 is

contained in a ball of radius R and X contains a ball of radius r, and if the ratios

of volumes of successive approximations satisfy

vol(P k+1)

vol(P k)
≤ β < 1,

then the algorithm requires at most

⌈
n log(R/r)

− log(β)

⌉

iterations.

These algorithms use a separation oracle, that is, a subroutine that takes, as

input, the query point yk ∈ P k, and either determines yk ∈ X , and hence, that

the problem is solved, or declares yk 6∈ X , and returns a separating hyperplane

defined by a vector u, i.e., u is such that uTyk ≤ α ≤ uTx for all x ∈ X . The half-

space containing X is then intersected with P k to generate P k+1. If the separating

hyperplane satisfies uTyk < α, then it is called a deep cut, otherwise it is called a

neutral cut [BV07].

These methods are of interest in this dissertation because X may involve many

linear and/or nonlinear inequality constraints, while P k is generally much simpler,

and the work required to update the iterate, i.e., computing yk+1, is primarily de-

termined by the complexity of P k. (Of course, the work required by the separation

oracle should also be taken into account.)

19

A variation of this basic method allows for a linear objective function:

min cTx

s.t. x ∈ X .
(1.12)

The cutting-plane method for LP, described in section 1.4.2 as the dual view of the

column generation method, fits this framework. There, the target set X is the opti-

mal set of the master LP. The sets P k+1 ⊂ P k correspond to the feasible regions of

the relaxed dual problems, and the query points are the optimal solutions to relaxed

problems. The separation oracle here works by identifying a violated constraint from

the master problem and returning this constraint as the cutting plane. This method

is one instance of the Kelley cutting-plane (KCP) algorithm [Kel60]. One of its

benefits, in the LP case, is that it allows efficient reoptimization using the simplex

method. A more general version of KCP allows for a nonlinear objective and, in

addition to the polyhedral “model” of the feasible region, a polyhedral (piecewise

linear) model of the objective is built-up during the iteration. The minimizers of this

model function over the P k are taken as the query points yk. The KCP method for

general convex problems has been shown to be theoretically (very) inefficient, e.g.,

[Nes03], but some “stabilizations” of KCP, namely bundle and level methods, are

much more efficient [Nes03]. In the context of LP, the convergence of this method

has been observed to be quite slow, particularly in later iterations; this is the so

called “tailing off” effect.

We now describe some specific cutting-plane methods for (1.11). Different

cutting-plane methods use different methods for selecting yk and uk. It is intuitively

clear that for good performance yk should be as deeply in the interior of P k as

possible.6 Some well known centers [Nes03, BVS] used to define yk are as follows.

6An intuitive reason for why the KCP method tails off is just this: its query points are extreme
points of the feasible region, not interior-points at all. Of course, KCP generates deep cuts, but as
the iteration approaches optimality, it is generally the case that the cuts get less and less deep.

20

• Center of gravity. The center of gravity of P k is defined as

yk :=

∫

P k xdx
∫

P k dx
.

The corresponding cutting-plane method—regardless of how the hyperplane

is chosen!—has β ≤ 1 − 1/e ≃ 0.63, which is nearly optimal. This is not

trivial to prove, but it is not hard to see that β ≤ 1
2
. Remarkably, this β is

completely independent of the problem data, including the dimension of X .

Thus the complexity in terms of calls to the oracle is O(n log R
r
), which is

optimal in the sense that, up to a multiplicative factor, this bound coincides

with certain lower complexity bounds for the problem class; see [Nes03] for

further detail on optimal methods. Unfortunately, computing the center of

gravity of a general convex set X is at least as hard as solving (1.11), so this

choice of yk is only of theoretical interest.

• Chebyshev center. Elzinga and Moore [EM75] suggested generating the

cuts from the Chebyshev center of P k, giving the Elzinga-Moore cutting-plane

(EMCP) method. The Chebyshev center is defined to be the center of the ball

of largest radius that fits inside a polyhedron. It can be found as the solution of

a dual standard form LP with m+1 variables and n constraints, where n is the

number of constraints defining P k. Therefore, the work required to compute

the Chebyshev center is essentially the same as solving the subproblem in the

KCP method. Reoptimization by simplex methods for EMCP may not be as

effective as in the KCP method however, because successive optima are not

basic feasible solutions for the successive LP subproblems, and so the simplex

method cannot be easily “warm-started”.

• Center of maximum volume inscribed ellipsoid. Another possible center

is the center of the maximum volume ellipsoid inscribed in P k. This center can

21

be obtained as the solution to a convex optimization problem [BV04, KT93].

It can be shown that β = 1 − 1/n, and hence, that its efficiency in terms of

calls to the oracle is O(n2 log R
r
).

• Analytic center. Yet another way to define the deepest point of a poly-

hedron, or any convex set {x | fi(x) ≤ 0, i ∈ I}, defined by a system of

inequalities, is as the analytic center, that is, the minimizer of the log-barrier

function

−
∑

i∈I

log(−fi(x)). (1.13)

The centering subproblem here is not an LP, as was the case for the KCP and

EMCP methods, and so simplex methods do not apply. However, the problem

is efficiently solved by Newton’s method, and, in fact, this centering problem

is the fundamental subproblem solved by many polynomial-time interior-point

algorithms. The analytic center cutting-plane (ACCP) idea generated a large

amount of research in the 1990’s (presumably because of its connection to

IPMs) and it is still an active area of research. Several variants of this method

when applied to convex programs have been shown to have overall polynomial

complexity, e.g., [Ye92, Nes95, Nes03, BVS]. Furthermore, the performance of

this method seems to be quite good in practice, see, e.g., [BVS].

• Center of minimum volume containing ellipsoid. This center can also

be obtained as the solution to a convex optimization problem [BV04] and,

presumably, a corresponding cutting-plane method can be developed. The

author has not seen such an algorithm though. Of course, this center is used by

Khachiyan’s famous ellipsoid method [Kha79] for LP, the first polynomial time

algorithm for linear programming. The ellipsoid method is not a cutting-plane

method, but the basic idea is the same. Rather than P k being polytopes, they

are ellipsoids. This allows for particularly efficient computation of successive

22

centers. It is possible that the ellipsoid method could be used to efficiently

solve problems with many constraints.

1.6 Interior-point methods

Interior-point methods (IPMs) flip the workload as compared to active set and

cutting plane methods. Iteration counts are both theoretically and practically much

lower than in the active set methods. For LP, for a fixed accuracy, theoretically,

O(
√
n) iterations suffice, while practically it is commonly believed that only O(log n)

iterations are needed. The downside to IPMs is that the work per iteration is

generally much higher.

In this section, we again focus primarily on linear programming problem (1.3),

repeated here for convenience:

min cTx

s.t. Ax = b,

x ≥ 0,

and
max bTy

s.t. ATy ≤ c.
(1.14)

Although there are many different interior-point-algorithms for LP, in most of

them, if direct methods of linear algebra are used, the dominant task per iteration is

the formation and solution of a system of “normal equations”, which have the form

ADATu = f, (1.15)

with A the constraint matrix of the LP and D some diagonal matrix. When A is

dense, the cost of forming the normal matrix is O(nm2) floating-point operations,

and the cost of solving the resulting system, typically by Cholesky factorization and

back substitution, is O(m3).

23

redundant
active

irrelevant?

Figure 1.2: A view of the y space when m = 2 and n = 12. The arrow indicates the
direction of vector b. The two active constraints are critical and define the solution, while
the others are redundant or perhaps not very relevant for the formation of good search
directions.

When n ≫ m, the cost of forming the normal matrix dominates the work

per-iteration. This requires computing the sum

ADAT =

n∑

i=1

diaia
T
i , (1.16)

where ai is the ith column of A and di is the ith diagonal entry of the diagonal

matrix D. Each term of the sum corresponds to a particular constraint in the

dual problem (or variable in the primal). On the other hand, as argued before,

we might expect most of the n constraints to be redundant, or not very relevant

for the formation of a good search direction (see Figure 1.2). We would like to

reduce the required work by ignoring some or most of them. For example, one

possible approach relies on the fact that the coefficient di is often related to “nearness

to activity” of the ith constraint,7 being large for constraints close to the current

iterate, and small for constraints far away from it. In (1.16), if a small set of q < n

“important” constraints, perhaps related to the size of the corresponding di, were

selected and then only the corresponding partial sum computed, the dominant term

in the cost-per-iteration would be reduced to O(qm2) operations. This approach

is precisely that taken in the paper of Tits et al. [TAW06], which we will discuss

7At least if we assume A has its columns normalized.

24

in more detail below. Similar possibilities arise in other interior-point methods: by

somehow ignoring most of the constraints, one may hope that a “good” step can

still be computed, at significantly reduced cost. (Such a step may even be better :

see [DNPT06] for evidence of the potential harm caused by redundant constraints.)

1.7 Prior work on constraint-reduction in IPMs

for LP

In this section we review, in some detail, prior work on constraint-reduction for

interior-point methods in the context of linear programming. There are essentially

three classes of interior-point algorithms:

1. Affine-scaling,

2. Potential-reduction,

3. Path-following.

It turns out that these three classes are closely related, in that almost all variants

use a linear combination of two fundamental steps or search directions: the affine-

scaling and centering direction [Her92]. IPMs can further be classified as primal,

dual, or primal-dual, depending on the prevalence of the primal vs. dual variables

in the iteration. This notion too can be somewhat blurry at times. We will see

that there has been work on all three classes attempting to reduce the cost of an

iteration, and in some cases the iteration complexity as well, using some notion

of constraint-reduction. The first constraint-reduced IPM was proposed in an un-

published technical report [DY91], by two of the most important figures in linear

programming.

25

1.8 Dantzig and Ye’s build-up dual affine-scaling

method

The idea of constraint-reduction for interior-point algorithms goes back at least

as far as Dantzig and Ye [DY91], who proposed a “build-up” variant of a dual

affine-scaling algorithm (DAS). We will first review the standard dual affine-scaling

algorithm, a dual variant of Dikin’s famous algorithm [Dik74].

1.8.1 The dual affine-scaling algorithm

Given a strictly feasible point (y, s) for the dual problem in (1.14), i.e., s := c −

ATy, s > 0,8 the standard dual affine-scaling step or search direction is defined

as the solution to the elementary ellipsoid (sometimes called the Dikin ellipsoid)

constrained optimization problem

max bT∆y,

s.t. ‖S−1AT∆y‖ ≤ β, (1.17)

where the S is defined as the diagonal matrix with components Sii = si, i =

1, 2 . . . n. (Throughout this chapter, and this dissertation, matrices X and S will

always represent diagonal matrices with vectors x and s, respectively, on the main

diagonal.) The solution to this problem is evident when rewritten in terms of the

inner product

〈u, v〉y := 〈u,Hv〉
8Interior-point algorithms for the dual problem always have s > 0. They may or may not

enforce the dual feasibility condition s = c − ATy though. If dual feasibility is not enforced, the
dual iterate should be thought of as (y, s), if, instead, dual feasibility is enforced, as in the DAS
algorithm, one can think of y as the “main” dual iterate and take s to be defined by s := c−ATy.
This is the convention used in the discussion of the DAS algorithm. (Alternatively, if A has full
rank, s can be viewed as main iterate and y defined by the feasibility equation ATy + s = c.)

26

corresponding to the positive-definite matrix

H := AS−2AT.

We call this inner-product the “H-inner-product”, and the norm ‖u‖y = 〈u, u〉y that

it induces will be referred to as the “H-norm”.9 Using the H-inner-product, (1.17)

becomes

max 〈by,∆y〉y,

s.t. ‖∆y‖y ≤ β, (1.18)

where by := H−1b is the gradient of the objective in the H-inner-product. The

solution is

∆y = β
by

‖by‖y
. (1.19)

It can be verified that the update y+ = y + ∆y is strictly dual feasible when y is.

When β ∈ (0, 1), the constraint in (1.17) or (1.18) can be seen to define an ellipsoid

inscribed in the dual feasible region: since y is strictly feasible (i.e., s = c−ATy > 0),

it holds that

s+ = c− ATy+ = s−AT∆y = S

(

e− β
S−1ATby
‖S−1ATby‖

)

> 0.

This expression makes it clear that the step

∆y = β
by

‖S−1ATby‖∞
(1.20)

9This notation is borrowed from J. Renegar’s outstanding book [Ren01]. Note that this H is
a function of y (through s), which is why the notation uses a y subscript. The matrix H is the
Hessian at y of the logarithmic barrier f(y) := −∑n

i=1 log(c − aT
i y) for the dual feasible region

{y | ATy ≤ c}.

27

is also feasible. This latter step is called the long-step affine-scaling step (as is the

step length that goes almost all the way to the boundary of the feasible set along the

same direction) while (1.19) is called the short-step affine-scaling step. In practice,

the long-step variant is usually preferable, but, as in [DY91], the proof here is given

for the short-step variant. The modification of this analysis for the long-step variant

is (supposedly) straightforward.

The DAS algorithm also defines primal iterates or “estimates” (that are gen-

erally infeasible with respect to the non-negativity constraints) as the solution to

the following least squares problem involving the complementarity condition10

min ‖Sx‖2

s.t. Ax = b, (1.21)

with solution

x = S−2ATby. (1.22)

Now that the main pieces are in place, we state a variant of the classic DAS algo-

rithm.

10A result that has been independently proven by many authors shows that given any sequence
of sk > 0, the corresponding xk sequence defined by (1.21) remains bounded. (This result can
be used to remove the primal nondegeneracy assumption used in the proof of convergence of the
DAS outlined below, which comes from [DY91, BT97].) The first proof was by [Dik74], an English
version of which can be found in [VL88]; see also [Sai96]. Stewart [Ste89] obtained this result in
the form of a bound on the norm of oblique projectors, and provided an independent, geometric
proof. O’Leary [O’L90] later proved that Stewart’s bound is sharp. It was also proven by Todd in
[Tod90]. Finally, in [MTW93], the authors derive it as a consequence of Hoffman’s Lemma [Hof52].
We too make use of this result in the analysis of our algorithms developed in Chapters 2 and 3.

28

Algorithm 3: Dual affine-scaling algorithm for LP

Input: LP data A, b, c; Initial iterate: y, s = c− ATy > 0;

Parameters: β ∈ (0, 1), and ε > 0;

Output: O(ε)-optimal primal-dual solution (x, y, s)

while xTs ≥ ε or ‖[x]−‖1 ≥ ε do

Compute ∆y as in (1.19);

Set y+ := y + β∆y and s+ := c− ATy+;

Set x+ associated to (y+, s+) as in (1.22);

end

In the stopping criterion, [x]− := min{x, 0}, the negative part of x.

Remark 1.8.1. Here we discuss the stopping criterion used in Algorithm 3, and the

meaning of the claimed O(ε) solution. When this variant of the DAS method stops,

we have xTs ≤ ε, ‖[x]−‖ ≤ ε, Ax = b, and (y, s) feasible. xTs = cTx − bTy ≤ ε

implies bTy ≥ cTx− ε. Now taking (y, s) = (y∗, s∗) optimal in cTx = bTy + xTs, we

have

cTx ≥ z∗ + xTs∗ ≥ z∗ − ‖[x]−‖1 · ‖s‖∞ ≥ z∗ − ǫδ,

where z∗ is the optimal value of the LP (assumed finite) and δ := minoptimal s∗ ‖s∗‖∞.

So that we have

bTy ≥ z∗ − ǫ(1 + δ).

This δ is a kind of condition number for the dual problem [Wri97], but unfortunately

may be hard to estimate.

Convergence of the short-step dual affine-scaling algorithm
under nondegeneracy assumptions

Under the following nondegeneracy assumptions, a simple proof of convergence of

Algorithm 3 can be developed [DY91, BT97, Dik74]:

29

1. The matrix A has full rank.

2. An interior dual feasible point is given.

3. An interior primal feasible point exists (the dual solution set is nonempty and

bounded).

4. Every dual basic feasible solution is non-degenerate, i.e., the inequality con-

straint s ≥ 0 has exactly m active components.

5. Every primal basic solution is non-degenerate, i.e., the inequality constraint

x ≥ 0 has exactly n−m active components.

We now sketch a proof of convergence of the dual affine-scaling algorithm. The argu-

ment is a combination of arguments used in [DY91] and those used in a convergence

analysis of a primal affine-scaling algorithm given in [BT97]. (See also [Dik74].)

Step 0: Algorithm is well defined

The dual iterates remain strictly feasible due to the constraints in (1.17).

Step 1: Ascent and asymptotic complementary slackness

A key fact is that in view of (1.17), ∆y is a strict ascent direction for the dual

objective bTy. Indeed,

bT∆y = β
bTby
‖by‖y

= β‖by‖y > 0.

Further, by (1.22),

‖Sx‖ = ‖by‖y. (1.23)

Therefore, the sequence of dual objective values increases strictly and is bounded,

hence it converges to some value z∗. Thus, passing to the limit as k → ∞ in the

30

relationship

z∗ ≥ bTyk+1 ≥ bTyk + β‖by‖y = bTyk + β‖Skxk‖ ≥ bTyk,

gives ‖Xksk‖ → 0, that is, complementary slackness is satisfied asymptotically.

Step 2: Convergence of a subsequence to a dual basic feasible solution

and complementary primal basic solution

The assumptions imply that the dual solution set is nonempty and bounded

and the nondegeneracy assumptions imply that it is a singleton. This implies that

the level set

{y | ATy ≤ c, bTy ≥ bTy0},

which contains the iterates (by monotonicity), is bounded. Thus the sequence of

dual iterates remains bounded and therefore has a limit point ȳ. Let K be an infinite

index set on which yk → ȳ. Next it will be shown that this ȳ (actually any limit

point) is a dual basic feasible solution and that {xk} converges to the associated

primal basic solution x̄ on K.

Let s̄ = c − ATȳ and (B,N) be the index partition such that s̄N > 0 and

s̄B = 0. We claim that AB is invertible and hence that ȳ is the basic feasible solution

associated to B and, further, that since ‖Xksk‖ → 0, it holds that xk
N → 0 =: x̄N

on K, and xk = A−1
B (b − ANx

k
N) → A−1

B b := x̄B on K, the primal basic solution

associated to B.

To prove the claim, note that, clearly, AB has at most m independent columns.

If it has fewer than m independent columns, then one can find v ∈ N (AT
B), such

that v 6∈ N (AT
N) (since A is full rank). Using this v, and with appropriate t, setting

ỹ := y + tv, it is possible to get ci − aT
i ỹ = 0 for some i ∈ N while maintaining

sN ≥ 0. Define B̃ = B ∪ i, and repeat this process until AB̃ has m independent

31

columns. If |B̃| > m, then selecting m independent columns from AB̃ defines a

degenerate dual basic feasible solution, which contradicts our assumption. Thus

|B̃| = m. We claim that B = B̃ which would complete the proof. Again, since

‖Xksk‖ → 0, it holds that xk
N → 0 on K, and hence ABx

k = (b − ANx
k
N) → b on

K. If B were strictly contained in B̃, then AB̃x
k → b on K as well and so xk would

converge to a degenerate primal basic solution on K, which does not exist under

our assumptions.

Step 3: The entire sequence converges.

To show convergence of the sequence, we show that the only limit point of the

bounded {yk} sequence is ȳ. The argument is by contradiction. If there are two

limit points (both basic feasible solutions) then there is a subsequence on which

the dual iterates are arbitrarily close to one limit point and, on the next iteration,

jump arbitrarily close to the second limit point. These limit points are at a positive

distance away from each other by the non-degeneracy assumption. This contradicts

the ellipsoidal constraint in (1.17) which implies −1 ≤ sk+1
i −sk

i

sk
i

≤ 1, i.e., that

0 ≤ sk+1
i ≤ 2sk

i .

Step 4: (ȳ, x̄) is optimal

This amounts to showing x̄B ≥ 0. The proof is by contradiction. Assume for some

j ∈ B x̄j < 0 and hence xk
j < −δ for some δ > 0, and for all k large enough.

However (1.22) and (1.23) give

∆sk = −AT∆yk = −β A
Tby

‖by‖y
= −β (Sk)2xk

‖Skxk‖ ,

32

and so ∆sk
j > 0 for k large enough, which means sk

j eventually increases at every

step, contradicting s̄j = 0.11

Step 5: local linear rate

The dual affine-scaling algorithm obeys

bTȳ − bTyk+1

bTȳ − bTyk
≤ 1 − 1√

m
+ εk,

with εk → 0. The proof is omitted.

We mention now in passing that significant work has been done to eliminate

the nondegeneracy assumption and the long step variant has been shown to be

globally convergent for all β ≤ 2/3. The analysis is much more involved however

[MTW93].

1.8.2 The build-up variant of DAS

In their build-up version of DAS, Dantzig and Ye [DY91] take a subset Q of the

columns of A, according to rules described below, and compute

max bT∆y

s.t. ‖S−1
Q
AT

Q
∆y‖ ≤ β < 1 (1.24)

defining HQ := AQS
−2
Q
AT

Q
, and by,Q := H−1

Q
b, this can be rewritten as

max 〈by,Q,∆y〉y,Q

s.t. ‖∆y‖y,Q ≤ β < 1 (1.25)

11Perhaps interestingly, our analysis of a primal-dual affine-scaling algorithm comes, along a
quite different route, to a very similar argument (inspired there from much earlier work [PTH88]),
see section 2.3, Theorem 2.3.8.

33

The solution to the elementary ellipsoid-constrained problem is given by

∆y(Q) = β
by,Q

‖by,Q‖y,Q
(1.26)

The primal variable is defined as

x+
Q

= S−2
Q
AT

Q
by,Q, (1.27)

x+
n\Q

= 0. (1.28)

Note, x+
Q

is the solution to

min ‖SQxQ‖2,

s.t. AQxQ = b. (1.29)

with sQ := cQ − AT
Q
y.

The constraining ellipsoid now is only inscribed in the region {y|AT
Q
y ≤ cQ},

which can be seen as an outer approximation to the feasible region, but one may

hope that the update y+ := y+∆y is still feasible for the original problem. If indeed

this step is feasible with respect to the full constraint set, then it is taken. Otherwise,

the algorithm enters a minor-cycle phase where a “blocking constraint” along the

direction defined by (1.24) is added to Q and (1.24) is re-solved. If the resulting

direction is still infeasible, the process repeats. Clearly this process is guaranteed

to terminate once all constraints are added after at most n − |Q0| minor-cycles,

where Q0 is the initial constraint set. Further, the addition of each constraint in the

minor-cycle can be done efficiently by using rank-one updates to recompute ∆y(Q),

etc. Convergence of this method is easily established given the convergence result

for the original DAS algorithm, as given above. The necessary adjustments to those

arguments are discussed next.

34

Step 0: Algorithm is well defined

Same.

Step 1: Ascent and asymptotic complementary slackness

It should be clear that ∆y(Q) is still a strict ascent direction for bTy. The same

argument as before gives ‖Xk
Qks

k
Qk‖ → 0, and since xk

n\Qk := 0, it still holds that

‖Xksk‖ → 0

Step 2: Convergence of a subsequence to a dual basic feasible solution

and complementary primal basic solution

Same.

Step 3: The entire sequence converges.

The only potential problem is that the relation 0 ≤ sk+1
i ≤ 2sk

i , which held for

i ∈ B, and was used to get the contradiction, now holds only if i ∈ Qk. However

this is not a problem really because for i ∈ B, i 6∈ Qk can happen only finitely many

times since xk
i → x̄i > 0, while xk

i := 0 if i 6∈ Qk.

Step 4: (ȳ, x̄) is optimal

The argument is the same since j ∈ B implies j ∈ Qk for all k large enough, as just

argued.

Step 5: local linear rate

Same.

Remark 1.8.2. Actually Dantzig and Ye use stronger assumptions in the proof they

give. Here are the exact assumptions from [DY91]:

1. b 6= 0 and c 6= 0.

2. Every subset of m columns of A is independent .

3. The primal problem is feasible.

4. An interior dual feasible point is given.

5. Every dual basic feasible solution is non-degenerate.

35

6. Every primal basic solution is non-degenerate.

(Note Assumptions 5 and 6 imply Assumption 1.) These allow a very similar proof

in the unreduced case to the one given, the only significant difference being in step

2 where instead of using boundedness of the dual iterates (which comes from the

assumption that the dual solution set is bounded) to obtain a subsequence convergent

to a basic solution, they use their Assumptions 2 and 6.

It is interesting that the rule by which the constraints are selected is of no

consequence as far as the asymptotic convergence analysis goes. In [DY91], the

initial constraint set is chosen according to one of three rules: sort the constraints

in descending order according to vi, where vi is one of

1. vi = 1/sk
i ,

2. vi = xk
i /s

k
i ,

3. vi = xk
i ,

and keep the first m as Q0.

The authors add an additional operation to the algorithm: before beginning

each minor-cycle they perform a basis inversion on B = Q0 and terminate if it is the

optimal basis. They show that under each of the above three rules, the algorithm

terminates finitely. This is clear from the asymptotic convergence result under the

nondegeneracy assumption (which implies strict complementary slackness of the

optimal (x, s)), since eventually, under the above rules, the optimal basis will be

identified and selected as Q0.

Finally we state a version of the Dantzig and Ye’s algorithm formally:

36

Algorithm 4: Dantzig-Ye Build-up affine-scaling algorithm

Input: LP data A, b, c; Initial iterate: y, s = c− ATy > 0;

Parameters: β ∈ (0, 1), and ε > 0;

Output: exact or O(ε)-optimal primal-dual solution (x, y, s)

while xTs ≥ ε or ‖[x]−‖1 ≥ ε do

Choose initial Q s.t. rank(AQ) = m, |Q| = m;

if Q is optimal then Stop;

while |Q| < n do

Compute ∆y(Q) as in (1.26) (or update);

Set y+(Q) = y + ∆y;

if y+(Q) is infeasible then

Augment Q with additional constraints;

else

Set y := y+(Q) and s := c−ATy(Q);

Set x using (1.28);

break;

end

end

end

1.9 Tone’s “active-set” dual potential-reduction

method

In 1993 K. Tone [Ton93] used a similar idea as in [DY91], but based his algorithm on

the dual potential-reduction (DPR) algorithm of Ye [Ye91]. A benefit of the DPR

algorithm over the DAS algorithm is that DPR achieves the best complexity bound

known for linear programming. As in the previous section, we will first describe in

some detail the parent algorithm.

37

1.9.1 Ye’s (dual) potential reduction algorithm

The name DPR is somewhat of a misnomer, because the algorithm really maintains

a sequence (xk, yk) of feasible primal-dual iterates and, in fact, achieves a constant

reduction of the primal-dual potential function

ϕρ(x, s) = ρ log(xTs) −
n∑

i=1

log(xisi) (1.30)

at each iteration. However, the dual iterates play the lead role, as will be seen. In

fact, Ye calls it the “dual-form of the potential reduction algorithm”, suggesting, as

is indeed the case, that there is a corresponding primal-form.

Any algorithm that can achieve, in every iteration, a constant reduction of

size δ > 0 say, in ϕρ(x, s) (with ρ > n), achieves a nice complexity bound. To see

this, the inequality

ϕn(x, s) = n logn + n log
xTs

n
− n log

(
n∏

i=1

xisi

) 1
n

≥ n log n. (1.31)

is needed, which follows from taking logarithms of both sides in the arithmetic-

geometric mean inequality

xTs

n
≥
(

n∏

i=1

xisi

) 1
n

.

In view of (1.31), it can be seen that after the kth step of the iteration of such

algorithm,

ϕρ(x
0, s0) − kδ ≥ ϕρ(x

k, sk) = ϕρ(x
k, sk) − ϕn(x

k, sk) + ϕn(xk, sk)

= (ρ− n) log((xk)Tsk) + ϕn(x
k, sk)

≥ (ρ− n) log((xk)Tsk) + n log n

38

will hold, or equivalently,

(xk)Tsk ≤ e
ϕρ(x0,s0)−kδ−n log n

ρ−n

will hold. This last expression shows that (xk)Tsk ≤ ε is guaranteed after the right

hand side is less than ε, which is true for any k greater than or equal to

k∗ =

⌈
ϕρ(x

0, s0) + (ρ− n) log 1
ε
− n logn

δ

⌉

. (1.32)

If ϕρ(x
0, s0) = O(

√
n) and ρ = n +

√
n, then DPR achieves the best known com-

plexity for LP, namely O(
√
n log 1

ε
) iterations.12

Now we describe how the Ye’s DPR algorithm achieves the required constant

reduction of ϕρ. For this, Ye used the dual potential function, defined for z̄ > bTy

by

ϕd
ρ(y, z̄) := ρ log(z̄ − bTy) −

n∑

i=1

log(si). (1.33)

There is a close relation between the dual and primal-dual potential functions: if

(x, s) are primal and dual feasible and z̄ = cTx, then xTs = z̄ − bTy, so that

ϕd
ρ(y, z̄) := ϕρ(x, s) +

m∑

i=1

log(xi),

and in particular, for a fixed x0, s0 = c−ATy0, and s1 = c− ATy1, it holds that

ϕd
ρ(y

0, z̄) − ϕd
ρ(y

1, z̄) = ϕρ(x
0, s1) − ϕρ(x

0, s0).

Thus, for fixed x0, a given decrease in the dual potential function corresponds to

the same decrease in the primal-dual potential function.

12One might wonder why not take ρ < n+
√
n. It turns out the algorithm cannot always achieve

the δ decrease in the potential function for any smaller ρ. See (1.55) below.

39

Ye’s DPR algorithm (as well as Tone’s variant) maintains a sequence of points

{(xk, yk, sk, z̄k)}, which satisfy the relations

sk = c− ATck > 0, (1.34)

Axk = b, xk > 0, (1.35)

z̄k = cTxk. (1.36)

In order to achieve the required reduction of the potential function, two types of

steps are needed. The first, which is referred to as the dual step, attempts to decrease

the dual potential function (and hence the primal-dual potential function) in a direct

way by minimizing the linearized potential function over a feasible ellipsoid. The

dual step is defined as the solution to

min ∇ϕD(y, z̄)T∆y,

s.t. ‖S−1AT∆y‖ ≤ β. (1.37)

Note this is the steepest descent direction for ϕD(y, z̄) with respect to the inner-

product 〈x, y〉y := xTHy on Rm, defined by the Hessian of the log-barrier for the

feasible region H := AS−2AT. (Note also, this is the same constraint used in the

DAS algorithm in (1.17).) Writing (1.37) in terms of this inner product gives

min 〈H−1∇ϕD(y, z̄),∆y〉y,

s.t. ‖∆y‖y ≤ β. (1.38)

As before, the solution to this problem is now clear,

∆y = −β d

‖d‖y
, (1.39)

40

where d := H−1∇ϕD(y, z̄), and the optimal value of (1.38) is

−β‖d‖y.

The quantity ‖d‖y gives the magnitude of the directional derivative of ϕd
ρ(y, z̄) along

∆y, as well as the size of the step measured in the H-norm. Defining the prescaled

step

p := −S−1ATH−1∇ϕD(y, z̄) (1.40)

so that the relation ‖p‖ = ‖d‖y, holds, allows things to be phrased in terms of the

Euclidean inner product (as is done in the references). When ‖p‖ = ‖d‖y is “large”,

a significant decrease in ϕd
ρ (and hence in ϕρ) along the direction d, is expected.

This is indeed the case, and this is what DPR does. Specifically, for an a priori fixed

γ ∈ (0, 1), if ‖p‖ ≥ γ, the algorithm takes a dual step, which consist of setting

y+ := y + ∆y, (1.41)

s+ := s+ ∆s, (1.42)

x+ := x, (1.43)

z+ := z. (1.44)

Now we show, following the analysis of [Ye91], that a fixed reduction in ϕρ

can be achieved after a dual step. For this, we use the fact that, by construction,

‖S−1∆s‖ ≤ β < 1, and that the standard bound (at least standard in interior-point

methods, see, e.g., [Ye91])

eTd ≥
n∑

i=1

log(1 + di) ≥ eTd− ‖d‖2

2(1 − ‖d‖∞)
. (1.45)

is valid for any d ∈ Rn with ‖d‖∞ < 1. The second inequality is the interesting

41

part; it can be derived from the Taylor expansion

log(1 + x) =

∞∑

i=1

(−1)k−1x
k

k
,

by bounding terms larger than second order. Using (1.45), gives

ϕρ(x, s
+) − ϕρ(x, s) = ρ log(1 +

xT∆s

xTs
) −

n∑

i=1

log(1 +
∆si

si

)

≤ ρ

xTs
xT∆s−

n∑

i=1

log(1 +
∆si

si
)

≤ − ρ

z̄ − bTy
b′∆y − eTS−1∆s+

‖S−1∆s‖2

2(1 − ‖S−1∆s‖) (1.46)

= ∇ϕD(y, z̄)T∆y +
β2

2(1 − β)

= −β‖d‖y +
β2

2(1 − β)

≤ −βγ +
β2

2(1 − β)
. (1.47)

The first two inequalities use (1.45) (upper then lower) and the last inequality holds

if ‖d‖y = ‖p‖ ≥ γ, as assumed. Whenever this is the case, a constant decrease can

be achieved: for example, with γ = 1
2

and β = 3
5
, the decrease is at least 0.05.

On the other hand if ‖p‖ = ‖d‖y is small, then DPR instead takes a primal

step, which is described next. Although the potential reduction algorithm is different

in spirit than path following methods, which must maintain proximity to the central

path, the central path does play a role. In particular, the point on the path with

duality measure13

r :=
xTs

ρ
=
z̄ − bTy

ρ

serves as a reference point for the DPR method in the following sense. Considering

the central path conditions (Sx̂ = re, along with primal and dual feasibility), DPR

13Note that, since ρ > n, this is a point with a smaller duality gap than the current iterate.

42

defines the primal estimates defined by the following least-squares problem.

min ‖1

r
Sx̂− e‖

s.t. Ax̂ = b. (1.48)

If the optimal value is zero and x̂ is nonnegative, then s is on the central path with

duality measure r.

In any event, when (1.48) is rewritten as

min ‖S(x̂− x) + Sx− re‖

s.t. AS−1S(x̂− x) = 0,

the solution

x̂ = x− S−1PN (AS−1)(Sx− re) (1.49)

is evident, and it holds that

1

r
Sx̂− e =

(
1

r
Sx− e

)

− PN (AS−1)

(
1

r
Sx− e

)

= PR(S−1AT)

(
1

r
Sx− e

)

. (1.50)

Then, since

∇ϕD(y, z̄) = −1

r
b+ AS−1e = −AS−1

(
1

r
Sx− e

)

,

so that, from (1.40),

p = PR(S−1AT)

(
1

r
Sx− e

)

,

43

which gives the important relations

p =
1

r
Sx̂− e, (1.51)

x̂ = rS−1(e+ p), (1.52)

showing that when ‖p‖ < 1, x̂ > 0 also holds, so that hence x̂ is a primal interior

feasible point, giving a candidate primal update. DPR uses this update: whenever

‖p‖ < γ < 1, the algorithm takes a primal step, which consists of setting

y+ := y,

s+ := s,

x+ := x̂,

z+ := cTx+.

Ye [Ye91] showed that this primal update can also be used to get a constant decrease

in ϕρ. Using (1.50) and (1.52), first note that

(x+) = rS−1(p+ e) =
xTs

ρ
S−1(p+ e) (1.53)

(x+)Ts = eTSx+ = reT(p+ e) =
xTs

ρ
(eTp+ n) (1.54)

44

so that

ϕρ(x
+, s) − ϕρ(x, s) =

= ρ log(
(x+)Ts

xTs
) −

n∑

i=1

log x+
i +

n∑

i=1

log xi

= ρ log(
eTp+ n

ρ
) −

n∑

i=1

log(r
pi + 1

si
) +

n∑

i=1

log xi

≤ ρ(
eTp+ n

ρ
− 1) −

n∑

i=1

log(pi + 1) + n log ρ− (n log xTs−
n∑

i=1

log xisi)

≤ eTp+ n− ρ−
n∑

i=1

log(pi + 1) + n log
ρ

n

≤ eTp+ n− ρ− eTp+
‖pi‖2

2(1 − ‖p‖) + n log
ρ

n

≤ −(ρ− n) + n log
ρ

n
+

γ2

2(1 − γ)
, (1.55)

where the lower bound (1.31) for ϕn(x, s) has been used in the fifth line. If ρ =

n +
√
n, the first two terms in the final bound decrease strictly in n and converge

to the value of −0.5, and for n = 1 they evaluate to log(2) − 1 = −0.3069. Thus,

for example, taking γ = 1
2
, the potential function decreases by at least 0.05.

Thus, with this choice of ρ, and many choices of (γ, β), DPR is seen to achieve

a constant decrease in ϕρ whether a dual step or a primal step is used. Therefore,

the complexity result (1.32) holds for DPR.

45

Algorithm 5: Ye’s DPR algorithm [Ye91]

Input: LP data A, b, c; Initial iterate: y, s = c− ATy > 0, primal feasible x,

z̄ = cTx;14

Parameters: ρ = n+
√
n, γ ∈ (0, 1), β ∈ (0, 1), ε > 0;

Output: ε-optimal primal-dual solution (x, y, s)

while xTs ≥ ε do

Compute p using (1.40);

if ‖p‖ ≥ γ then

dual step

Compute ∆y using (1.39);

Set y := y + ∆y and s := c− ATy;

else

primal step

Compute x̂ by (1.49);

Set x := x̂, z̄ := cTx;

end

end

15 Various, more practical, versions of the above algorithm, which allow for line-

searches in the dual step, are possible. As long as the guaranteed potential reduction

is achieved, the same convergence and complexity result holds.

1.9.2 Tone’s “active-set” variant

Tone’s variant of the DPR incorporates constraint-reduction in a similar way to the

Dantzig and Ye variant of the dual affine-scaling algorithm. In particular, Tone’s

15More generally z̄ can be any upper bound on the dual optimal value, in which case x should
be taken positive such that xTs > ε.

46

dual step is defined by the solution to

max ∇ϕd
ρ(y, z̄)

T∆y,

s.t. ‖S−1
Q
AT

Q
∆y‖ ≤ β(Q). (1.56)

The ellipsoid constraint now is inscribed in a relaxed polyhedron (containing the

feasible region) so that, again, the resulting step is not necessarily feasible for any

β < 1. However, rather than fixing β a priori, as in Danzig and Ye, and “minor-

cycling” to add new constraints until feasibility is achieved, instead, a special β =

β(Q) is chosen as a function of Q, for which the step is assured to be feasible for the

original constraints. (This β(Q) need not be computed in practice; it is only needed

for the analysis.) A minor-cycle is still used, but its purpose is to achieve sufficient

decrease of the potential function rather than feasibility.

We first make a general observation regarding the feasibility question. Given

M and N , (symmetric) positive definite matrices, consider the two ellipsoids

EM = {x ∈ R
m | xTMx ≤ 1}, (1.57)

EN = {x ∈ R
m | xTNx ≤ 1}. (1.58)

It is not hard to see that EM ⊂ EN if and only if

xTNx ≤ xTMx, for all x ∈ R
m,

which is often written as N �M . A sufficient condition for this is that λmax(N) ≤

λmin(M).16

16This is not necessary however, e.g., N = diag(3, 1), M = diag(4, 2).

47

Next, define EQ(β(Q)) as the ellipsoid indicated in (1.56), or more precisely

EQ(β(Q)) := {y′ | ‖S−1AT
Q
(y′ − y)‖ ≤ β(Q)}.

We would like to know for what Q and β(Q) the ellipsoid EQ(β(Q)) is contained in

the feasible region. We know that En(1) = {y′ | ‖S−1AT(y′ − y)‖ ≤ 1} is feasible,

and, based on the discussion of the previous paragraph, EQ(β(Q)) ⊆ En(1) if and

only if

H � 1

β2
HQ, (1.59)

(where H = AS−2AT and HQ = AQS
−2
Q
AT

Q
), or equivalently,

H
n\Q �

(
1

β2
− 1

)

HQ.

A sufficient condition for the latter relation is

λmax(Hn\Q) ≤
(

1

β2
− 1

)

λmin(HQ), (1.60)

and the largest β for which (1.60) holds is

β∗(Q) :=

√

λmin(HQ)

λmax(Hn\Q) + λmin(HQ)
.

In light of these results, since (1.59) holds for β = β∗(Q), the following lemma found

in [Ton93] follows easily.

Lemma 1.9.1. (i)

‖S−1AT∆y‖2 ≤ 1

β∗(Q)2
‖S−1

Q
AT

Q
∆y‖2

(ii) For all β(Q) < β∗(Q), the solution to (1.56) is strictly dual feasible.

48

(iii) β∗(Q) increases if Q is augmented with additional constraints; and β∗(n) = 1.

The solution to (1.56), as for (1.37), is given by

∆y = −β(Q)
d(Q)

‖d(Q)‖y,Q

,

where d(Q) := H−1
Q

∇ϕD(y, z̄), and ‖ · ‖y,Q is the norm defined in terms of HQ. The

optimal value of (1.56) is

−β(Q)‖d(Q)‖y,Q.

As in the DPR algorithm, when ‖d(Q)‖y,Q is large (greater than some fixed γ ∈

(0, 1)), then the potential function has a large directional derivative along this di-

rection, and a significant decrease of the dual potential function is expected along

d(Q). A possible problem now, that did not exist for DPR, is that β∗(Q) may be

very small, preventing progress. However, if the working set Q is chosen as Q = n

and ‖d(Q)‖y,Q ≥ γ, then the analysis for DPR applies (β∗(n) = 1), and a constant

decrease, say δ∗∗, is guaranteed. The DPR algorithm sets a threshold δ∗ < δ∗∗ and

enters a minor-cycle that, starting from an initial Q, repeatedly solves (1.56), and

if ‖d(Q)‖y,Q ≥ γ, checks if

δ(Q) := ϕρ(x, s) − ϕρ(x, s + ∆s) ≥ δ∗. (1.61)

In fact, after a dual step, using Lemma 1.9.1 (i), and comparing (1.47)-(1.46), it can

49

be seen that

ϕρ(x, s
+) − ϕρ(x, s) =

≤ − ρ

z̄ − bTy
b′∆y(Q) + eTS−1∆s(Q) +

‖S−1∆s(Q)‖2

2(1 − ‖S−1∆s(Q)‖)

≤ ∇ϕD(y, z̄)T∆y(Q) +

1
β∗(Q)2

‖S−1
Q

∆sQ(Q)‖2

2(1 − 1
β∗(Q)

‖S−1
Q ∆sQ(Q)‖)

≤ −β‖d(Q)‖y +

β2

β∗(Q)2

2(1 − β
β∗(Q)

)

≤ −βγ +

β2

β∗(Q)2

2(1 − β
β∗(Q)

)
. (1.62)

If β(Q) is chosen as β(Q) := τβ∗(Q)2, with τ ≤ 0.5, then β(Q)
β∗(Q)

≤ 0.5 (since

β∗(Q) ≤ 1) and

ϕρ(x, s
+) − ϕρ(x, s) ≤ −βγ +

β2

β∗(Q)2

2(1 − β
β∗(Q)

)
≤ −(τγ − τ 2)β∗(Q)2 (1.63)

So if 0 < τ < γ < 1 then a constant decrease is achieved in the dual step. For

example, taking τ = 1
3

and γ = 1
2
, allows δ∗∗ = 1

18
≃ 0.0556 and say δ∗ = 0.05. In

any event, if (1.61) holds, then the dual step is taken and the next iteration begins,

otherwise more constraints are added to Q and (1.56) is resolved. This process ends

once (1.61) holds for some Q or ‖d(Q)‖y,Q < γ. In the latter case, instead a primal

step can be taken, which is described next.

The prescaled step p(Q) is defined, analogously to (1.40), as

p :=






pQ(Q)

pQ̄(Q)




 :=






−S−1
Q
ATH−1∇ϕ(y, z̄)

0




 . (1.64)

50

Note that ‖pQ(Q)‖ = ‖p(Q)‖ = ‖d(Q)‖y,Q. The relationships

x̂(Q) = rS−1(p(Q) + e), (1.65)

p(Q) =
1

r
Sx̂(Q) − e, (1.66)

are the analogs of (1.51)-(1.52) in the DPR algorithm, also hold, where here, x is

defined as the solution to (1.48). In Tone’s variant there is no analog for (1.48),

but instead x̂(Q) is defined by (1.65). It is clear that x̂(Q) so defined is a strictly

feasible primal point whenever ‖p(Q)‖ < 1, and the analysis of the primal step for

DPR relied only on feasibility and the relationship (1.65). Thus, if ever ‖p(Q)‖ =

‖d(Q)‖y,Q < γ ≤ 1 then the primal step gives the required decrease. Note that

in view of (1.66), p
n\Q = 0 means that after a primal update, the components

(x̂
n\Q, sn\Q) are perfectly centered.17

Each iteration terminates either with a dual step satisfying (1.61) or a primal

step for which the constant reduction is achieved. It is possible (however unlikely)

that, in every iteration, n−m minor-cycle iterations are needed (if constraints are

added one at a time to Q), but ultimately, the constant reduction can always be

achieved for ϕρ and so the same (major) iteration complexity results. The hope, of

course, is that very few minor-cycles are needed, and each iteration uses only a small

subset Q of the total constraint set, thus making the solution of (1.56) cheaper.

As a final remark, one may have become concerned about the choice β(Q) =

τβ∗(Q)2, since β∗(Q) is very expensive to evaluate. This is no real problem however,

because in practice, the fixed step of length β(Q) is replaced with a line-search. If

the constant decrease of δ∗ is guaranteed in a dual step by a fixed step, it is certainly

achieved by a line search (at least in an exact line search).

We now state Tone’s algorithm formally.

17We borrow this idea in our algorithm rMPC⋆, which we propose and analyze in Chapter 2.

51

Algorithm 6: Tone’s Active-Set DPR algorithm [Ton93]

Input: LP data A, b, c; Initial iterate: y, s = c− ATy > 0, primal feasible x,

z̄ = cTx;

Parameters: ρ = n+
√
n, γ ∈ (0, 1), δ∗ > 0, ε > 0;

Output: ε-optimal primal-dual solution (x, y, s)

while xTs ≥ ε do

Choose initial Q s.t. rank(AQ) = m;

while δ < δ∗ do

Compute p(Q) using (1.64);

if ‖p(Q)‖ ≥ γ then dual step

Compute ∆y(Q) = −H−1
Q
ϕd

ρ(y, z̄) and set ∆s(Q) = −AT∆y(Q);

Set τ = arg min{ϕρ(x, s+ t∆s(Q)) | t ≥ 0};

Set δ = ϕρ(x, s) − ϕρ(x, s+ τ∆s(Q));

if δ < δ∗ then

Augment Q with additional constraints;

else

set y := y + τ∆y(Q) and s := s + τ∆s(Q);

end

else primal step

Set x := x̂(Q) and z̄ := cTx;

break; (sufficient decrease will be satisfied)

end

end

end

In practice, the minor-cycling can greatly slow the algorithm. Tone recommends a

rank-one updating procedure for adding new constraints during the minor-cycles.

This can help somewhat, but it would still be much better to find a way to eliminate

the minor-cycles altogether. In an impressive piece of work, Kaliski and Ye found

that this could indeed be done (at the cost of a weakened complexity estimate) for

52

the highly structured class of connected network flow problems.

1.9.3 Kaliski and Ye’s variant of Tone’s method for con-

nected network flow problems

Kaliski and Ye [KY93] proposed a variant of Tone’s algorithm, deemed the “short-

cut potential reduction” algorithm, which was tailored to solving large scale trans-

portation problems and, more generally, connected network flow problems. For such

problems, several simplifications can be made to Tone’s method, and most impor-

tantly the minor-cycling can be avoided.

The transportation problem is a special case of the network flow linear pro-

gramming problem. It is one of the most important and well studied classes of LPs

[BT97], [Lue84]. The problem is as follows: given ns sources and nd destinations,

with all sources connected to all destinations, determine the minimal cost “flow”

in the network that moves the full supply bsi available at source i, and satisfies the

demand bdj at destination j. If the flow from source i to destination j is given by

matrix Xij, and x is the column stacked vector of X, and b :=






bs

bd




, then this

results in an LP in standard primal form with constraint matrix A (the node-arc

incidence matrix) of size m× n with m = ns + nd and n = ns · nd, and of the form

A =















eT 0 . . . 0

0 eT . . . 0

. . .

0 0 . . . eT

I I . . . I















Notice A is very sparse with all entries either 0 or 1. (The primal simplex algorithm

is extremely effective at taking advantage of this problem’s structure, the resulting

53

algorithm is often called the network simplex method.) An important property of

the transportation problem is that every basic feasible solution corresponds to a

minimal spanning tree (MST) in the network graph, and vice-versa [BT97]. Thus,

in the context of constraint-reduction, keeping an MST in the constraint set will

guarantee that the normal matrix is invertible.

In their algorithm, the constraints are sorted according to one of three rules,

exactly as in Dantzig-Ye. Constraints are added to the set Q, one-by-one according

to one of these orderings, until an MST is contained inQ. An efficient sorting routine

is developed for this purpose—the hybrid quicksort. Since they consider very large

sparse problems, the authors decided to use an iterative method for computing the

search direction. The normal equations are solved using preconditioned conjugate

gradient (PCG) on a partial normal matrix formed from only those columns of A

contained in Q. The partial normal matrix formed from the columns in the MST,

which can be efficiently computed, is used as the preconditioner. They claim that

this is an extremely efficient preconditioner. In particular, near the solution, they

observe that often, merely m/100 PCG iterations are required to obtain a 10−6

residual. The authors also propose a finite termination method where an advanced

iterate is projected onto the optimal primal/dual face. They show that this is

effective in the numerical experiments, often saving more than half of the iterations

on large problems.

All of Kaliski and Ye’s improvements to and specializations of Tone’s method

are significant. However, we feel that the key achievement of their work is that

they show, for the class of connected network flow problems, the minor-cycling

in Tone’s algorithm can be eliminated. Using only the initial constraint set (all

constraints kept in sorted order until the MST is obtained) a fixed reduction in

the potential function can be achieved. This reduction is inversely related to the

column dimension m which means that complexity estimate of Tone’s method is

54

somewhat weakened. However, this is really somewhat of a theoretical breakthrough

for constraint-reduction; it says that, at least for this restricted class of problems, we

really do not need the entire constraint set to get a polynomial complexity result.

However, both Dantzig-Ye and Tone leave the possibility that in every iteration

Q = n ultimately, so that these algorithms could potentially be much less efficient

than the base algorithm due to a huge amount of minor-cycling, which is of course

opposite of the desired effect. The following result [KY93, Lemma 4] provides the

key:

Lemma 1.9.2. [KY93] Choose Q so that it contains an MST for the graph, and

choose τ1 and τ2 so that

s−2
i ≥ τ1 for i ∈ Q and s−2

i ≤ τ2 for i ∈ Q̄

Then

λmin(HQ) ≥ τ1(m− 1)−2 and λmax(Hn\Q) ≤ 2τ2(m− 1)

and hence

β∗(Q) ≥
(

1 +
2τ2(m− 1)

τ1(m− 1)−2

)−1/2

≥
(

1 +
2τ2
τ1

(m− 1)3

)−1/2

= O(m−3/2)

In our opinion this is a brilliant result. Their proof relies heavily on the fact

that A is a node-arc incidence matrix. Thus, by (1.63), in (1.32), δ = O(β∗(Q)2) =

O(m−3) so that the iteration complexity becomes O(
√
nm3 log 1

ε
).18

There is one caveat here: the number of constraints needed to obtain the

MST is not bounded a-priori except by n. However, the authors claim that in the

numerical experiments, no more than 2m were ever needed.

18Kaliski and Ye claim a complexity of O(
√
nm3/2 log 1

ε).

55

1.10 Den Hertog et al.’s build-up-and-down path

following method

In [HRT94], Den Hertog, building on work of Ye [Ye92], proposed a “build-up and

down” path-following algorithm based on a dual logarithmic barrier method.

1.10.1 Dual logarithmic barrier method

Den Hertog’s base algorithm is the dual logarithmic-barrier path-following method,

which generates a sequence of approximate minimizers of the logarithmic barrier

function

f(y, µ) = −bTy − µ
n∑

i=1

log si, (1.67)

where si = ci − aT
i y, as usual. The exact minimizers of f define the dual central

path. The optimality conditions for this problem are

∇f(y, µ) = −b+ µAS−1e = 0, (1.68)

s = c−ATy > 0. (1.69)

Defining x := µS−1e, these can be written as

Ax = b, (1.70)

ATy + s = c, (1.71)

Xs = µe, (1.72)

(x, s) > 0. (1.73)

56

The Newton step is

p = −∇2f(y, µ)−1∇f(y, µ) (1.74)

= −(AS−2AT)−1(−b+ µATS−1e) (1.75)

= (AS−2AT)−1(b− Ax). (1.76)

The log-barrier method works by starting with y0, a near minimizer of f(·, µ0), for a

given µ0, where nearness is measured by the Newton decrement, i.e., the f -Hessian

norm of the Newton step for f . This quantity can also be expressed as

δ(y, µ) = min

{∥
∥
∥
∥

Xs

µ
− e

∥
∥
∥
∥

| Ax = b

}

, (1.77)

which defines a primal estimate x similar to that of the DAS and DPR algorithms

in (1.51)-(1.52) and (1.65)-(1.66). A “β-approximate” minimizer of f(·, µ), or a β-

approximate µ-center, is a point y with δ(y, µ) < β. A point y is called simply an

“approximate µ-center” if it is a β-approximate µ-center for β = 1; any such point

is in the quadratic convergence region of Newton’s method for f(·, µ).

Once the iteration reaches a β-approximate µ-center, for appropriate β, the

barrier parameter µ is then decreased by a fixed fraction, i.e.,

µ+ := (1 − θ)µ,

and Newton steps are taken on f(·, µ+) until an approximate minimizer is again

reached. As µ → 0 the iterates approach the solution to the LP. For more detail

see [Her92, Ren01]. For very small θ, namely θ = O(1√
n
), we have the “short-step”

path following method, and it can be shown that only one Newton step, which

is guaranteed to remain feasible, is needed to re-obtain an approximate minimizer

after an update of µ. These methods require only O(
√
n log 1

ε
) iterations to achieve

57

an approximate minimizer with an objective value within ε of optimality (this is

the best known bound for LP, it is also achieved by DPR and many others). For

larger θ = O(1) we have the long-step algorithms, and more Newton steps may be

needed. In this case the iteration complexity bound increases to O(n log 1
ε
), but

paradoxically, practical performance is much better.

1.10.2 A constraint-reduced variant

Den Hertog [HRT94] applied constraint reduction methodology to the logarithmic

barrier method using the following approach. Initially, a small set of working con-

straints is selected, defining a (relaxed) cutting-plane model of the feasible region of

the original or “master” problem. Consider the “relaxed” optimization problem of

minimizing the objective over the cutting-plane model of the feasible region. The

algorithm starts from a point that is simultaneously feasible for the master problem,

and is an approximate µ-center for the relaxed problem. (Den Hertog also shows a

way to obtain such a point from a “weighted” approximate µ-center for the original

problem.)

The algorithm maintains a sequence of iterates feasible for the master problem

by following the central path of the relaxed problem, just as is done in the log-

barrier method described above. Specifically, at each major iteration, µ is decreased

to µ̄ = (1 − θ)µ and Newton steps are taken on f(·, µ̄) to bring the iterates back

to the vicinity of the central path of the relaxed problem. Since these iterates

may stray outside the feasible region of the master problem, this process must be

carefully monitored. In particular, the central path of the relaxed problem is not

likely to lie entirely in the feasible region for the master problem, so the target point

corresponding to µ̄ on the relaxed central path may be infeasible for the master

problem.

Thus, at some point (unless we are very lucky), the iterates will approach

58

or violate a constraint of the master problem not included in the relaxed problem.

When this happens, the algorithm reacts by stepping back to the previous iterate

(safely in the feasible region of the master problem) and adding the constraints that

caused the disruption to the working set. Newton steps for the updated relaxed

problem are then taken to bring the iterates near the central path of the new relaxed

problem, and then the path-following process resumes. Constraints in the relaxed

problem that have large slack (and thus may be expected to be inactive at the

solution and/or have little effect on the current path following process) can be

pruned at the beginning of each major iteration. Of course, once this is done,

additional Newton steps may be needed to return the iterate to the vicinity of the

central path of the updated relaxed problem.

Using analysis extending that of Ye [Ye92], the effect of shifting, adding, and

deleting constraints on the proximity measure and on the log-barrier are studied,

and this analysis is used to show that the algorithm achieves the same polynomial

complexity bounds as the standard log-barrier method except with n is replaced

by q∗, the maximum number of constraints in relaxed problem. Notably, as in the

work of [Ye92], this suggests that both the computational cost per iteration and

the iteration complexity may be reduced since it is likely that q∗ < n. However, in

general, q∗ is not known a-priori, and the only sure upper bound for it n. We now

state den Hertog’s algorithm formally.

59

Algorithm 7: den Hertog’s build-up and down path-following method

Input: LP data A, b, c; Initial iterate: y, s = c− ATy > 0, an approximate

µ-center for the relaxed problem defined by the initial constraint set

Q; Parameters: θ ∈ (0, 1), ε > 0;

Output: ε-optimal primal-dual solution (x, y, s)

while µ ≥ ε do

Delete constraints (details omitted);

µ := (1 − θ)µ;

while δQ > 0.25 do (Center and add constraints)

Compute the Newton step p for fQ(·, µ);

Set ỹ = min{fQ(y + tp, µ) | ci − aT
i (y + tp) > 0};

if ci − aT
i ỹ < τ for any i ∈ n \Q then

Add all such i to Q;

else

y = ỹ

end

end

It is not critical that the feasible region of the problem be polyhedral for the

basic mechanism of this algorithm to apply, and so, as other cutting-plane algorithms

for LP naturally extend to more general convex optimization problems (see sections

1.4.2 and 1.5), so too does this method.

1.10.3 Den Hertog et al.’s logarithmic barrier cutting-plane

method

In [HKRT95], den Hertog et al. extended the method developed in [HRT94] to more

general convex optimization problems and carried out numerical experiments on a

variety of problems, including some coming from semi-infinite programming. The

principle is identical to the method for linear programming described above: the

60

central path of a relaxed cutting-plane model of the feasible region is followed as

long as it remains feasible for the master problem. When the path strays outside the

master feasible region, the cutting-plane model is updated by adding appropriate

constraints, and the path-following process resumes, now following the central path

of the updated model.

1.11 Primal-dual (symmetric) interior-point meth-

ods

While the algorithms reviewed in the previous sections have nice theoretical con-

vergence properties—Tone’s achieves the best known complexity, and den Hertog’s

perhaps even somewhat improves it—they are all based on dual algorithms.19 On

the other hand, it is the “symmetric”, as Ye calls them [Ye97], primal-dual interior-

point methods (PDIPMs) that have been incorporated into practical algorithms for

large-scale LP and its extensions. Thus, it is only natural to try to apply constraint-

reduction methodology to PDIPMs.

The PDIPMs apply Newton’s method, or variations thereof, to the equality

portion of the perturbed Karush-Kuhn-Tucker (KKT) optimality conditions for the

primal-dual pair (1.3), namely,

ATy + s− c = 0,

Ax− b = 0, (1.78)

Xs− τe = 0,

(x, s) ≥ 0,

19See discussion in section 1.9.1 for some qualification of this statement.

61

with X = diag(x), S = diag(s), e the vector of all ones, and τ a positive parameter.

As τ ranges over (0,∞), the unique (if it exists)20 solution (x, y, s) to this system

traces out the primal-dual “central path”. Newton-type steps for system (1.78),

which are well defined, in particular, when X and S are positive definite and A has

full rank, are obtained by solving









0 AT I

A 0 0

S 0 X

















∆x

∆y

∆s









=









c−ATy − s

b−Ax

σµe−Xs









, (1.79)

where we have set τ = σµ, with µ = xTs/n the current “duality measure” and

σ ∈ [0, 1]. This step aims to eliminate the primal and dual infeasibilities b−Ax and

c − ATy − s, while setting the pairwise “complementarity” xisi equal to σµ for all

i ∈ {1, 2, . . . n}, i.e., it aims for the point on the central path with duality measure

reduced to σµ. At the two extremes for choice of σ, one gets first, with σ = 0, the

“primal-dual affine-scaling” (PDAS) direction, which aims directly for the solution,

and second, with σ = 1, the “centering direction”, which aims for the point on the

central path with the current value of the duality measure µ. Thus, the step (1.79)

can be thought of as a combination of the two steps, with σ defining the blend.

Intuitively, σ > 0 helps to preserve the inequalities that are also part of the KKT

conditions (1.78) which are unlikely to hold at the end of a full affine scaling step.

System (1.79) is often solved by first eliminating ∆s, giving the symmetric-

20System (1.78) has a unique solution for each τ > 0 (equivalently, for some τ) if there exists
(x, y, s) with Ax = b, ATy + s = c and (x, s) > 0 [Wri97, Thm. 2.8, p39]. This is the so called
“Slater” or “interior-point” condition.

62

indefinite “KKT” or “augmented” system






−X−1S AT

A 0











∆x

∆y




 =






c− ATy − σµX−1e

b− Ax




 , (1.80)

∆s = −AT∆y + (c− ATy − s),

or by further eliminating ∆x, giving the “normal system”

AS−1XAT∆y = b− Ax+ AS−1X(c−ATy − σµX−1e),

∆s = −AT∆y + (c− ATy − s), (1.81)

∆x = −S−1X(−AT∆y + c− ATy − σµX−1e).

In the dual-feasible (s = c − ATy > 0) affine-scaling (σ = 0) variant (relevant to

[TAW06] and the algorithms developed in Chapters 2 and 3), the normal equations

simplify to

AS−1XAT∆y = b,

∆s = −AT∆y, (1.82)

∆x = −x− S−1X∆s.

There are many different variations of the PDIPM method for each of the

standard classes of IPMs mentioned at the beginning of section 1.7: affine-scaling,

potential-reduction, and path-following. There is also a large number of elegant

theoretical results regarding their convergence properties. Many of the PDIPMs

achieve the best known iteration complexity bound O(
√
n log 1

ε
) for LP. The books

by Ye [Ye97] and Wright [Wri97], which is specifically dedicated to PDIPMs, provide

a very nice coverage of these results.

63

1.12 Tits et al.’s primal-dual affine-scaling algo-

rithm

In [TAW06], the authors proposed a simple constraint-reduction methodology and

applied it to two PDIPMs: a primal-dual affine-scaling (PDAS) algorithm and

Mehrotra’s predictor-corrector (MPC) algorithm. A common component of the prior

work [DY91, Ton93, HRT94], discussed in the previous sections, is the “minor-cycle”

that adds constraints and tries again when the step generated using the working con-

straint set fails to pass certain acceptability tests. (As discussed earlier, Kaliski and

Ye [KY93] showed that the minor-cycle could be eliminated when Tone’s algorithm

is applied to connected network flow problems.) In contrast, no minor-cycle is used

in the rPDAS algorithm of [TAW06]. As in [DY91, Ton93, HRT94], at each iteration,

rPDAS uses a small working set of constraints to generate a step, but this step is not

subjected to acceptability tests; it is simply taken. This has the advantage that the

cost per iteration can be guaranteed to be cheaper than when the full constraint set

is used; however it may preclude polynomial complexity results, as were obtained in

[Ton93, HRT94]—it seems likely that some guarantee on the quality of each step, or

at least of each group of steps, is needed for such results. Global and local quadratic

convergence of rPDAS was proved in [TAW06] (under nondegeneracy assumptions)

using a nonlinear programming inspired line of argument [Her82, PTH88].

1.12.1 Constraint-reduced primal-dual affine-scaling algo-
rithm

The algorithm rPDAS has as its parent a PDAS algorithm that simply takes steps

along the PDAS direction obtained by solving (1.79) with σ = 0, and iterates.

There are prior convergence analyses available for PDAS [MAR90, Sai94], however,

the analysis of [TAW06] is not derived from these approaches, so we omit their

64

description. The analysis of [TAW06] applies equally well in the unreduced case, as

the full set of constraints is always an admissible working set, so the (unreduced)

parent and (reduced) child analysis can be viewed as one and the same in this case.

Next, we discuss the method of constraint-reduction used in [TAW06]. Since

rPDAS is dual-feasible and uses the Newton direction for the unperturbed KKT

equations, i.e., τ = 0 in (1.78), the step equations are of the form (1.82), except

rPDAS replaces the normal matrix AS−1XAT with the partial sum

AQXQS
−1
Q
AT

Q
=

n∑

i∈Q

xi

si

aia
T
i , (1.83)

which only includes a subset Q ⊆ {1, 2, . . . n} of “important” constraints (or columns

of A). The only restriction imposed in [TAW06] on the choice of Q, is that it must

include M , for some M ≥ m, of the most-active constraints, i.e., those constraints

sT
i y− ci = si ≥ 0, with smallest slack value si. The specific value of M is tied to an

assumption that every m×M submatrix of A be of rank m.21 The authors denote

the admissible set of constraint sets at a dual strictly feasible point y by QM(y).

Algorithm rPDAS then solves (1.81) with no other changes. The resulting

direction (∆y,∆s) is used in a line-search that takes a step nearly to the boundary

of the dual feasible region. Specifically the dual variables are updated by

(y+, s+) := (y + t̂∆y, s+ t̂∆s), (1.84)

where

t̂ := min{1,max{βt̄, t− ‖∆y‖}}, (1.85)

t̄ := arg max{t ∈ [0, 1] | x+ t∆s ≥ 0}, (1.86)

21We will have much more to say about such assumptions in Chapter 3.

65

and where the specific form of t̂ preserves strict feasibility (s > 0) and allows

quadratic convergence, by letting t̂→ 1 near the solution (when ∆y → 0).

The primal variable x is updated to x+ by clipping the full step x̃ := x+ ∆x

from below and above to values χ and χ, respectively, using the complicated-looking

formula:

x+ := min{max{x̃, ϕ}, χ}, (1.87)

ϕ ≡ ϕ(x̃,∆y) := max{χ, ‖∆y‖2 + ‖[x̃]−‖2} (1.88)

where [x̃]− := max{x̃, 0}, and the min and max are applied componentwise. The full

(Newton) step x̃ is clipped from below by ϕ(x̃,∆y) which keeps the primal iterates

away from zero, away from the optimal set, while allowing local quadratic conver-

gence; the update is also explicitly clipped from above to guarantee boundedness of

the primal iterates. The global convergence proof has a similar flavor to that of the

DAS algorithm described in section 1.8, while the quadratic local rate essentially

follows from the fact that its steps are based on the Newton step. Here we formally

state algorithm rPDAS of [TAW06] (without stopping criteria).

66

Algorithm 8: rPDAS algorithm of [TAW06]

Input: LP data: A, b, c; Initial iterate: y, s = c− ATy > 0, working

constraint set Q0 ⊆ {1, 2, . . . n}, with |Q| ≥M ; Parameters:

M ∈ {1, 2, . . . n}, β ∈ (0, 1), χ > 0, χ > 0;

while forever do

Compute (∆y,∆s,∆x) by solving (1.81), with partial normal matrix

(1.83), and set x̃ = x+ ∆x;

Compute largest dual feasible step from (1.86), and t̂ by (1.85);

Update dual variables to (y+, s+) using (1.84);

Update primal variables to x+ using (1.88);

Choose Q ∈ QM (y).

end

As discussed above, to the author’s knowledge, aside from the analysis of

rPDAS in [TAW06], no attempts have been made to date at analyzing constraint-

reduced versions of PDIPMs, the leading class of interior-points methods over the

past decade. This observation applies in particular to the current “champion” among

the PDIPMs, Mehrotra’s predictor-corrector algorithm (MPC, [Meh92]), which com-

bines an adaptive choice of the centering parameter σ in (1.79) and a second order

correction to the affine-scaling direction, which together have proven to be extremely

effective in practice.

1.12.2 A simple constraint-reduced Mehrotra predictor-corrector

At the end of their paper, in [TAW06], the authors also proposed and presented some

numerical results for a constraint reduced variant of MPC, called rMPC, although

without any attempt at analysis. Their variant was based on the simple and highly

67

practical version of MPC presented (also without analysis) in [Wri97, Ch. 10].22

To achieve constraint-reduction, rMPC of [TAW06] used the same method used for

their rPDAS algorithm, namely they replace the full normal matrix, with the partial

sum (1.83). Next we discuss MPC as presented in [Wri97, Ch. 10], and the minor

modification to make it into rMPC, as presented in [TAW06].

From a primal-dual interior-point (x, y, s), MPC/rMPC computes the affine

scaling direction (∆xa,∆ya,∆sa) by solving (1.81), where rMPC replaces the normal

matrix with the reduced normal matrix (1.83), for some admissible set of working

constraints. The unreduced MPC can equally well solve the augmented or normal

equations as in (1.80) and (1.81), while rMPC (and rPDAS) is rather tied to the

normal equations. It then computes the maximum primal and dual feasible step

lengths along the affine scaling direction via

tap := arg max{t ∈ [0, 1] | x+ t∆xa ≥ 0}, (1.89)

tad := arg max{t ∈ [0, 1] | s+ t∆sa ≥ 0}. (1.90)

If this maximum step were actually taken, the duality measure would be reduced

from µ = xTs/n to

µa =
1

n
(x+ tap∆x

a)T(s+ tad∆s
a), (1.91)

and this might be thought of as a good step if µa is much smaller than µ, meaning

that not much centering is needed. One of the defining features of MPC is that it

chooses its “centering parameter” σ adaptively according to the heuristic formula23

σ := (µa/µ)3. (1.92)

22Investigations of the convergence properties of variants of unreduced MPC can be found in
[Meh92, ZZ95, ZZ96, SPT07, Car09].

23We show in Chapter 2, that an extension of this formula used in our constraint-reduced variant
of MPC, allows quadratic convergence whenever the exponent is ≥ 2.

68

Next, MPC/rMPC computes its combined centering/corrector direction by solving

the linear system









0 AT I

A 0 0

S 0 X

















∆xc

∆yc

∆sc









=









0

0

σµe− ∆Xa∆sa









, (1.93)

which uses the same matrix as in (1.79), with modified right-hand-side for (∆xc,∆yc,∆sc).

The term ∆Xa∆sa can be shown to introduce a second-order correction to the affine-

scaling search direction that helps it to make rapid progress toward the solution (see

[Wri97, chap. 10] for more detail). Note that since the matrix in (1.93) is the same as

in (1.79), and its normal-matrix required by rMPC is also the same, the centering-

corrector direction can be cheaply computed by reusing any factorization that had

been computed in the affine-scaling direction calculation. Algorithm MPC/rMPC

then combines the affine-scaling and centering-corrector direction to form the total

search direction

(∆xm,∆ym,∆sm) := (∆xa,∆ya,∆sa) + (∆xc,∆yc,∆sc), (1.94)

and computes the maximum step along this direction as

t̄mp := arg max{t ∈ [0, 1] | x+ t∆xm ≥ 0}, (1.95)

t̄md := arg max{t ∈ [0, 1] | s+ t∆sm ≥ 0}. (1.96)

Finally, MPC/rMPC updates the primal and dual variables by taking a step almost

all the way to the boundary by computing

tmp := βt̄mp , t
m
d := βt̄md , (1.97)

69

with β ∈ (0, 1) an algorithm parameter, and setting

(x+, y+, s+) := (x, y, s) + (tmp ∆xm, tmd ∆ym, tmd ∆sm). (1.98)

Now we formally present Algorithm MPC/rMPC of [Wri97]/[TAW06].

Algorithm 9: Iteration rMPC [Meh92, Wri97], constraint-reduced as in

[TAW06]

Input: LP Data: A,b,c; Initial iterate: y, s > 0, x > 0, working set of

constraints Q ⊆ n;

Parameters: β ∈ (0, 1);

while forever do

Compute affine-scaling direction via (1.81) with σ = 0 and replacing the

normal matrix with (1.83);

Determine the maximum feasible affine-scaling step-length using

(1.89)-(1.90) and compute σ using (1.92);

Solve (1.93) using the normal equations for the centering-corrector

direction;

Form the total search direction using (1.94) and find the maximum

feasible step-length using (1.95)-(1.96);

Update the primal and dual variables to (x+, y+, s+) using (1.97) and

(1.98);

Choose Q+ ∈ QM (y+);

end

As stated, Algorithm MPC/rMPC has no known convergence guarantees. Pre-

vious approaches to providing such guarantees involve introducing certain safeguards

or modifications [Meh92, ZZ95, ZZ96, SPT07, Car09]. In the next chapter, as one

of the main contributions of this dissertation, we introduce a set of modifications to

Algorithm rMPC that allows us to prove global and local quadratic convergence.

70

1.13 Nicholls’ work on infeasible constraint-reduced

predictor corrector algorithms for LP

Further numerical investigation of a constraint-reduced (in the same sense as [TAW06]),

variant of MPC was conducted in [Nic09]. This work focused in particular on al-

lowing infeasible iterates. In [Nic09], the author presents some ideas for a conver-

gence analysis for such an algorithm. (A full convergence analysis of a dual-feasible

constraint-reduced variant of MPC is developed in [WNTO10], which is also the

topic of Chapter 2 of the present dissertation.) Nicholls also investigated constraint-

reduction for a different infeasible predictor-corrector algorithm for LP from [Pot96]

which is similar to the feasible variant presented in [Wri97, Ch. 5, p.90-96].

1.14 Jung et al.’s work on reduced convex QP for

SVMs

In [JOT10, JOT08], an extension of the work of Tits et al. in [TAW06] was carried

out for convex quadratic programming (QP or CQP), and the authors applied their

algorithms to the QP arising in support vector machine (SVM) training, a popular

modern technique for designing classifiers for labeled data (see e.g., [SS01]). Jung

proves global and local quadratic convergence of his algorithms by extending the

analysis of [TAW06]. In Jung et al.’s papers and dissertation, different practical

issues were considered, including development of adaptive constraint selection rules

for a specific application (namely, SVM training) and allowing for a (dual) infeasible

starting point.

71

Chapter 2

A convergent constraint-reduced
Mehrotra predictor-corrector
algorithm

In this chapter, we propose and analyze a convergent constraint-reduced variant

of MPC that we term rMPC⋆ to distinguish it from rMPC of [TAW06], described

in section 1.12.2. Our algorithm uses a minimally restrictive class of constraint

selection rules that are somewhat different than those used in Algorithm 8/rPDAS.

These constraint selection rules, as in [TAW06], do not require the minor cycles used

in many of the prior constraint-reduced IPMs discussed in the previous chapter. We

borrow from the line of analysis of [Her82, PTH88] and especially [TAW06] in our

analysis, but we use a somewhat different, and perhaps more natural, perspective on

the notion of constraint reduction than was put forth in [TAW06] (see Remark 2.2.1

below). We also prove global convergence under assumptions that are significantly

milder than those invoked in the analysis of rPDAS in [TAW06]. We then prove

q-quadratic local convergence under appropriate nondegeneracy assumptions. The

proposed iteration and stronger convergence results apply, as a limiting case, to

a variation of rPDAS, thus, essentially improving on the results of [TAW06]. As

a further special case, our results apply to standard unreduced primal-dual affine

72

scaling. In that context, our conclusions (Theorem 2.3.8 and Remark 2.3.1) are

weaker than those obtained in the work of Monteiro et al. [MAR90] or, for a different

type of affine scaling (closer to the spirit of Dikin’s work [Dik67]), in that of Jansen

et al. [JRT90]. In particular, we do not prove polynomial complexity. On the other

hand, the specific algorithm we analyze has the advantage of allowing for much

larger steps, of the order of one compared to steps no larger than 1/n (in [MAR90])

or equal to 1/(15
√
n) (in [JRT90]), and convergence results on the dual sequence

are obtained without an assumption of primal feasibility. Much of this discussion is

taken from a paper by Winternitz et al. [WNTO10].

2.1 Notation and a lemma

As the analysis will become formal in this chapter (and in the next), in this section,

we fix our notation which is, for the most part standard, and some of which we have

already used in Chapter 1. We use ‖·‖ to denote the 2-norm or its induced operator

norm. Given a vector x ∈ Rn, we let the corresponding capital letter X denote the

diagonal n × n matrix with x on its main diagonal. We define n := {1, 2, . . . n}

and given any index set Q ⊆ n, we use AQ to denote the m× |Q| (where |Q| is the

cardinality of Q) matrix obtained from A by deleting all columns ai with i 6∈ Q.

Similarly, we use xQ and sQ to denote the vectors of size |Q| obtained from x and

s by deleting all entries xi and si with i 6∈ Q. n \Q := n \ Q. We define e to be

the column vector of ones, with length determined by context. For a vector v, [v]−

is defined by ([v]−)i := min{vi, 0}. Lowercase k always indicates an iteration count,

and limits of the form yk → y∗ are meant as k → ∞. Uppercase K generally refers to

an infinite index set and the qualification “on K” is synonymous with “for k ∈ K”.

In particular, “yk → y∗ on K” means yk → y∗ as k → ∞, k ∈ K. Further, we define

73

the dual feasible, dual strictly feasible, and dual solution sets, respectively, as

F := {y ∈ R
m | ATy ≤ c},

F o := {y ∈ R
m | ATy < c},

F ∗ := {y ∈ F | bTy ≥ bTw for all w ∈ F}.

We term a vector y ∈ Rm stationary if y ∈ F s, where

F s := {y ∈ F | ∃x ∈ R
n, s.t. Ax = b, X(c− ATy) = 0}. (2.1)

Given y ∈ F s, every x satisfying the conditions of (2.1) is called a multiplier asso-

ciated to the stationary point y. A stationary vector y belongs to F ∗ if and only if

x ≥ 0 for some multiplier x. The active set at y ∈ F is

I(y) := {i ∈ n | aT
i y = ci}.

Next, we define

J(G, u, v) :=









0 GT I

G 0 0

diag(v) 0 diag(u)









(2.2)

and

Ja(G, u, v) :=






G 0

diag(v) −diag(u)GT




 (2.3)

for any matrix G and vectors u and v of compatible dimensions (cf. systems (1.79)

and (1.80)). Finally, we write down our first lemma which is taken nearly verbatim

from [TAW06, Lemma 1].

Lemma 2.1.1. Ja(A, x, s) is nonsingular if and only if J(A, x, s) is. Further suppose

x ≥ 0 and s ≥ 0. Then J(A, x, s) is nonsingular if and only if (i) xi + si > 0 for all

74

i, (ii) {ai : si = 0} is linearly independent, and (iii) {ai : xi 6= 0} spans Rm.

2.2 Development of a provably convergent variant

of rMPC

As mentioned at the end of section 1.12, we will introduce several modification

to Algorithm 9 that will allow us to prove some convergence results. Specifically,

aside from the constraint-reduction mechanism (to be discussed in section 2.2.1),

Algorithm 10/rMPC⋆ proposed below has four significant differences from Algo-

rithm 9/rMPC, all motivated by the structure of the convergence analysis adapted

from [Her82, PTH88, TZ94, TAW06]. These differences, which occur in the adaptive

selection of the centering parameter in (1.92), the formation of the total direction

in (1.94), and in the update of the primal and dual variables in (1.98), are dis-

cussed next. Numerical experience suggests that they do not negatively affect the

performance of the algorithm.

The first difference is the formula for the centering parameter σ. Instead of

using (1.92), we set

σ := (1 − ta)λ,

where ta := min{tap, tad}, tap, tad are defined in (1.89)-(1.90), and λ ≥ 2 is a scalar

algorithm parameter. This formula agrees identically with (1.92) when λ = 3,

(x, y, s) is primal and dual feasible, and ta = tap = tad. In general, both formulas

result in similar empirical performance, while the new formula simplifies our analysis

and allows us to prove quadratic local convergence in section 2.4 below.

The second difference is in formation of the total direction where we introduce

a mixing parameter γ ∈ (0, 1] and replace (1.94) with

(∆xm,∆ym,∆sm) := (∆xa,∆ya,∆sa) + γ(∆xc,∆yc,∆sc). (2.4)

75

Nominally we want γ = 1, but we reduce γ as needed to enforce three properties

of our algorithm that are needed in the analysis. The first such property is the

monotonic increase of bTy mentioned previously. While, given dual feasibility, it

is readily verified that ∆ya is an ascent direction for bTy (i.e., bT∆ya > 0), this

may not be the case for ∆ym, defined in (1.94). To enforce monotonicity we choose

γ ≤ γ1 where γ1 is the largest number in [0, 1] such that

bT(∆ya + γ1∆y
c) ≥ θbT∆ya, (2.5)

with θ ∈ (0, 1) an algorithm parameter. It is easily verified that γ1 is given by

γ1 =

{

1 if bT∆yc ≥ 0,

min
{
1, (1 − θ) bT∆ya

|bT∆yc|
}

else .
(2.6)

The second essential property addressed via the mixing parameter is that the centering-

corrector component cannot be too large relative to the affine-scaling component.

Specifically, we require

‖γ∆yc‖ ≤ ψ‖∆ya‖, ‖γ∆xc‖ ≤ ψ‖x̃a‖ and γσµ ≤ ψ‖∆ya‖, (2.7)

where ψ ≥ 0 is another algorithm parameter.1 This property is enforced by requir-

ing γ ≤ γ0, where

γ0 := min

{

γ1, ψ
‖∆ya‖
‖∆yc‖ , ψ

‖x̃a‖
‖∆xc‖ , ψ

‖∆ya‖
σµ

}

. (2.8)

The final property enforced by γ is that

t̄md ≥ ζtad, (2.9)

1 If ψ = 0, then rMPC⋆ reduces to a constraint-reduced affine-scaling algorithm extremely
similar to Algorithm 8/rPDAS from [TAW06] reviewed in section 1.12.

76

where ζ ∈ (0, 1) is a third algorithm parameter and t̄md depends on γ via (1.96) and

(2.4). We could choose γ to be the largest number in [0, γ0] such that (2.9) holds,

but this would seem to require a potentially expensive iterative procedure. Instead,

rMPC⋆ sets

γ :=

{
γ0 if t̄md,0 ≥ ζtad,

γ0
(1−ζ)t̄md,0

(1−ζ)t̄md,0+(ζtad−t̄md,0)
else,

(2.10)

where

t̄md,0 := arg max{t ∈ [0, 1] | s+ t(∆sa + γ0∆s
c) ≥ 0}. (2.11)

Geometrically, if t̄md,0 ≥ ζtad then γ = γ0, but otherwise γ ∈ [0, γ0) is selected in such

a way that the search direction ∆sm = ∆sa + γ∆sc goes through the intersection of

the line segment connecting s+ ζtad∆s
a and s+ ζtad(∆s

a + γ0∆s
c) with the feasible

line segment connecting s+ tad∆s
a and s+ t̄md,0(∆s

a + γ0∆s
c). See Figure 2.1. Since

the intersection point s + ζtad(∆s
a + γ∆sc) is feasible, (2.9) will hold. Overall we

have

γ ∈ [0, γ0] ⊆ [0, γ1] ⊆ [0, 1]. (2.12)

In spite of these three requirements on γ, it is typical that γ = 1 in practice, with

appropriate choice of algorithm parameters, as in chapter 4, except when aggressive

constraint reduction is used— i.e., very few constraints are retained at each iteration.

The remaining two differences between rMPC⋆ and MPC, aside from constraint

reduction, are in the update of the primal and dual variables in 1.98. They are both

taken from [TAW06]. First, (1.97) is replaced by

tmp := max{βt̄mp , t̄mp − ‖∆ya‖} (2.13)

and similarly for tmd , to allow for local quadratic convergence. Second, the primal

update is replaced by a componentwise clipped-from-below version of the primal

77

s

s + ta
d
∆sa

s + ζta
d
∆sa

s + t̄m
d

(∆sa + γ∆sc)

s + ζta
d
(∆sa + γ0∆sc)

0
s + t̄m

d,0(∆sa + γ0∆sc)

s + ζta
d
(∆sa + γ∆sc)

Figure 2.1: Enforcing t̄md ≥ ζtad with γ. The positive orthant here represents the feasible
set s ≥ 0 in two-dimensional slack space (i.e., s-space). The top arrow shows the step
taken from some s > 0 along the affine scaling direction ∆sa. The bottom arrow is the
step along the MPC direction with mixing parameter γ0. In this picture, the damping
factor t̄md,0 is less than ζtad, so we do not choose γ = γ0. Rather, we take a step along the
direction from s that passes through the intersection of two lines: the line consisting of
points of the form s + ζtad(∆s

a + γ∆sc) with γ ∈ [0, γ0] and the feasible line connecting
s+ tad∆s

a and s+ t̄md,0(∆s
a + γ0∆s

c). The maximum feasible step along this direction has
length t̄md ≥ ζtad.

update in (1.98). Namely, defining x̂ := x+ tmp ∆xm and x̃a := x+∆xa, for all i ∈ n,

we update xi to

x+
i := max{x̂i, min{ξmax, ϕ}}, (2.14)

ϕ := ‖∆ya‖ν + ‖[x̃a]−‖ν , (2.15)

where ν ≥ 2 and ξmax > 0 (small) are algorithm parameters.2 The lower bound,

min{ξmax, ϕ}, ensures that, away from KKT points, the components of x remain

bounded away from zero, which is crucial to the global convergence analysis, while

allowing for local quadratic convergence. Parameter ξmax, the maximum value of the

lower bound, is not needed in the convergence analysis, but is important in practice;

if ξmax is set sufficiently small, then normally x+ = x̂ and the resulting iteration

2In Algorithm 8/rPDAS of [TAW06], the primal update is also clipped from above by a large,
user selected value, to insure boundedness of the primal sequence. We show in Lemma 2.3.4 below
that such clipping is unnecessary.

78

emulates the behavior of Algorithm 9/MPC.

2.2.1 A constraint reduction mechanism

Given a working set of constraints Q and a dual-feasible point (x, y, s),3 we compute

an MPC-type direction for the “reduced” primal-dual pair

min cT
Q
xQ

s.t. AQxQ = b,

xQ ≥ 0,

and

max bTy

s.t. AT
Q
y + sQ = cQ,

sQ ≥ 0.

(2.16)

To that effect, we first compute the “reduced” affine-scaling direction by solv-

ing









0 AT
Q

IQ

AQ 0 0

SQ 0 XQ

















∆xa
Q

∆ya

∆sa
Q









=









0

b−AQxQ

−XQsQ









(2.18)

3If a dual strictly feasible point is not immediately available, we can first use the constraint-
reduced method to solve the “phase one” problem

min
t,y

{t | ATy − c ≤ te}, (2.17)

for which (t, y) = (max{−c }+1, 0) is strictly feasible. If an iterate (t, y) of the phase one problem
has t < 0, then the iteration can be terminated, and y used to start the algorithm on the original
problem. If, on the other hand, the phase one problem is solved to optimality, and its optimal value
is nonnegative, then the original problem has no strictly feasible point. Recent work, related to
that of this dissertation, investigates convergence properties and practical behavior of constraint-
reduced PDIPMs that do not require the availability of an initial dual feasible point by adding
penalty terms to the objective [HT10], see also [Nic09].

79

and then the “reduced” centering-corrector direction by solving









0 AT
Q

IQ

AQ 0 0

SQ 0 XQ

















∆xc
Q

∆yc

∆sc
Q









=









0

0

σµQe− ∆Xa
Q
∆sa

Q









, (2.19)

where µQ := (xQ)T(sQ)/|Q|. As discussed above, we combine these components

using the mixing parameter γ to get our primal and dual search directions:

(∆xm
Q
,∆ym,∆sm

Q
) := (∆xa

Q
,∆ya,∆sa

Q
) + γ(∆xc

Q
,∆yc,∆sc

Q
). (2.20)

This leaves unspecified the search direction in the n \Q components of ∆xm and

∆sm. However, in conjunction with an update of the form (1.98), maintaining dual

feasibility from iteration to iteration requires that we set

∆sa
n\Q

:= −AT
n\Q

∆ya and ∆sc
n\Q

:= −AT
n\Q

∆yc.

Thus, we augment (2.20) accordingly, yielding the search direction for xQ, y, and s,

(∆xm
Q
,∆ym,∆sm) = (∆xa

Q
,∆ya,∆sa) + γ(∆xc

Q
,∆yc,∆sc). (2.21)

As for x
n\Q, we do not update it by taking a step along a computed direction. Rather,

inspired by an idea used in Algorithm 6 from [Ton93], we consider the update

x+
i :=

µ+
Q

s+
i

i ∈ n \Q,

where µ+
Q

:= (x+
Q
)T(s+

Q
)/|Q|. This would make (x+

n\Q
, s+

n\Q
) perfectly “centered”.

80

Indeed,

µ+ =
(x+)T(s+)

n
=

(x+
Q
)T(s+

Q
) + (x+

n\Q
)T(s+

n\Q
)

n

=
|Q|
n
µ+

Q
+
∑

i∈n\Q

x+
i s

+
i

n

=
|Q|
n
µ+

Q
+
n− |Q|

n
µ+

Q
= µ+

Q
,

and hence x+
i s

+
i = µ+ for all i ∈ n \Q. However, in order to ensure boundedness of

the primal iterates, we use instead, for i ∈ n \Q,

x̂i :=
µ+

Q

s+
i

, x+
i := min{x̂i, χ}, (2.22)

where χ > 0 is a large parameter. This clipping is benign because, as proved in

the ensuing analysis, under our stated assumptions, all the n \Q components of the

vector x constructed by Algorithm 10/rMPC⋆ will be small eventually, regardless of

how Q may change from iteration to iteration. In practice, this upper bound will

never be active if χ is chosen reasonably large.

Remark 2.2.1. A somewhat different approach to constraint-reduction, where the

motivating idea of ignoring irrelevant constraints is less prominent, is used in Al-

gorithm 8 of [TAW06]. There, as discussed in section 1.12, instead of the reduced

systems, (2.18)-(2.19), full systems of equations of the form (1.79) are solved via

the corresponding normal systems (1.81), only with the normal matrix AS−1XAT

replaced by the reduced normal matrix AQS
−1
Q
XQA

T
Q
. Possible benefits of the ap-

proach taken here in rMPC⋆are: (i) the [TAW06] approach is essentially tied to the

normal equations, whereas our approach is not, (ii) if we do solve the normal equa-

tions (2.49) (below) there is a (mild) computational savings over algorithm rMPC

of [TAW06], and (iii) computational experiments suggest that rMPC⋆ is at least as

efficient as Algorithm 9/rMPC in practice.

81

Before formally stating Iteration rMPC⋆, we describe a general constraint se-

lection rule under which our convergence analysis can be carried out. We use a

rule related to the one used in [TAW06] and other past constraint-reduced IPMS,

in that we require Q to contain some number of nearly active constraints at the

current iterate y.4 However, the rule here aims to allow the convergence analysis

to be carried out under weaker assumptions on the problem data than those used

in [TAW06]. In particular, we explicitly require that the selection of Q ensures

rank(AQ) = m, whereas, in [TAW06], this rank condition is enforced indirectly

through a rather strong assumption on A. Also, the choice made here makes it

possible to (largely) eliminate a strong linear independence assumption, namely,

Assumption 3 of [TAW06], equivalent to “nondegeneracy” of all “dual basic feasible

solutions”.

Before stating the rule, we define two terms used throughout the chapter. For

a natural number M ≥ 0 and a real number ǫ > 0, a set of “M most-active” and

the set of “ǫ-active” constraints refer, respectively, to a set of constraints with the

M smallest slack values (ties broken arbitrarily) and the set of all constraints with

slack value no larger than ǫ.

Rule 2.2.1. At a dual feasible point y, select Q arbitrarily from the set Qǫ,M(y)

defined below.

Definition 2.2.1. Let ǫ ∈ (0,∞], and let M ∈ n be an upper bound on the number

of constraints active at any dual feasible point. Then a set Q ⊆ n belongs to Qǫ,M(y)

if and only if the following two conditions hold.

C1 : Q contains all ǫ-active constraints at y among some set of M most-active

constraints.

4Of course, nearness to activity can be measured in different ways. Here, the “activity” of a
dual constraint refers to the magnitude of the slack value si associated to it. When the columns
of A are normalized to unit 2-norm, the slack in a constraint is just the Euclidean distance to the
constraint boundary. Also see Remark 2.2.4 below on invariance under scaling.

82

C2 : AQ has full row rank.

To help clarify Rule 2.2.1, we now describe two extreme variants. First, if

the problem is known to be nondegenerate in the sense that the set of vectors ai

associated to dual active constraints at any feasible point y is a linearly independent

set, we may set M = m and ǫ = ∞. Then, a minimal Q will consist of m most-active

constraints, achieving “maximum” constraint reduction. On the other hand, if we

have no prior knowledge of the problem, M = n is the only sure choice, and in this

case we may set ǫ equal to a small positive value to enact the constraint reduction.

Rule 2.2.1 leaves quite a bit of freedom in choosing the constraint set. In

practice, we have had most success with specific rules that keep a small number,

typically 2m or 3m, most-active constraints and then add additional constraints

based on heuristics suggested by prior knowledge of the problem structure.

The following two lemmas are immediate consequences of Rule 2.2.1.

Lemma 2.2.2. Let x > 0, s > 0, and Q ∈ Qǫ,M(y) for some y ∈ F . Then

AQXQS
−1
Q
AT

Q
is positive definite.

Lemma 2.2.3. Given y′ ∈ F , there exists ρ > 0 such that for every Q ∈ Qǫ,M(y)

with y ∈ B(y′, ρ) ∩ F we have I(y′) ⊆ Q.

Before specifying Algorithm 10/rMPC⋆, we state two basic assumptions that

guarantee it is well defined.

Assumption 1. A has full row rank.

Assumption 2. The dual strictly feasible set is nonempty.

All that is needed for the iteration to be well-defined is the existence of a dual

strictly feasible point y, that Qǫ,M(y) be nonempty, and that the linear systems

(2.18) and (2.19), of Steps 1 and 3, be solvable. Under Assumption 1, Qǫ,M(y) is

83

always nonempty since it then contains n. The solvability of the linear systems then

follows from Lemma 2.1.1 using the rank condition C2 of Definition 2.2.1.

Remark 2.2.2. The convergence analysis that follows is inspired largely by that of

[TAW06], but we make use of significantly weaker assumptions. Both analyses use

(at least implicitly) the above two assumptions, but the analysis of [TAW06] also as-

sumes that: 1) every m×M submatrix of A is full rank for some M ≥ m [TAW06,

Assumption 1], 2) the dual solution set is nonempty and bounded [TAW06, As-

sumption 2], and 3) at every dual feasible point, the gradients of all active con-

straints are linearly independent [TAW06, Assumption 3]. The rPDAS algorithm of

[TAW06] also explicitly clips the primal iterates from above. In our analysis of the

more general rMPC⋆ below, we show such clipping is unnecessary, we replace 1) with

the milder requirement on Q that rank(AQ) = m, and we remove 2) and show that,

if the dual solution set is empty, then the algorithm generates a sequence of objective

values that improve without bound. Finally, we postpone the application of 3) until

the last step of analysis and, alternatively, offer an approach to force convergence to

the dual optimal set without 3), see Remark 2.3.1.

The algorithm definition follows on the next page. Since we refer back to the various

steps of the algorithm throughout the analysis, we include rather more detail in its

statement than in the previous algorithms.

84

Algorithm 10: Algorithm rMPC⋆

Input: LP data: A, b, c; Initial iterate: y, s = c− ATy > 0, x > 0;
Parameters: β ∈ (0, 1), θ ∈ (0, 1), ψ ≥ 0, χ > 0, ζ ∈ (0, 1), λ ≥ 2,
ν ≥ 2, ξmax ∈ (0,∞],5 ǫ ∈ (0,∞] and M ∈ n;

while forever do
Step Compute the reduced affine-scaling direction, i.e., choose Q ∈ Qǫ,M(y),1

solve (2.18) for (∆xa
Q
,∆ya,∆sa

Q
), set ∆sa

n\Q
:= −AT

n\Q
∆ya and compute

tap := arg max{t ∈ [0, 1] | xQ + t∆xa
Q
≥ 0}, (2.23)

tad := arg max{t ∈ [0, 1] | s + t∆sa ≥ 0}, (2.24)

ta := min{tap, tad}. (2.25)

Step Compute the centering parameter2

σ := (1 − ta)λ . (2.26)

Step Compute the centering-corrector direction, i.e., set µQ :=
(xQ)T(sQ)

|Q| ,3

solve (2.19) for (∆xc
Q
,∆yc,∆sc

Q
) and set

∆sc
n\Q

:= −AT
n\Q

∆yc.

Step Form the total search direction4

(∆xm
Q
,∆ym,∆sm) := (∆xa

Q
,∆ya,∆sa) + γ(∆xc

Q
,∆yc,∆sc), (2.27)

where γ is as in (2.10), with µ (in (2.8)) replaced by µQ. Set

t̄mp := arg max{t ∈ [0, 1] | xQ + t∆xm
Q
≥ 0}, (2.28)

t̄md := arg max{t ∈ [0, 1] | s+ t∆sm ≥ 0}. (2.29)

Step Update the variables: set5

tmp := max{βt̄mp , t̄mp − ‖∆ya‖}, (2.30)

tmd := max{βt̄md , t̄md − ‖∆ya‖}, (2.31)

and set

(x̂Q, y
+, s+) := (xQ, y, s) + (tmp ∆xm

Q
, tmd ∆ym, tmd ∆sm). (2.32)

Set
x̃a

i :=

{
xi + ∆xa

i i ∈ Q,
0 i ∈ n \Q, (2.33)

ϕ := ‖∆ya‖ν + ‖[x̃a]−‖ν , (2.34)

and for each i ∈ Q, set

x+
i := max{x̂i, min{ξmax, ϕ}}. (2.35)

Finally, set
µ+

Q
:=

(x+
Q
)T(s+

Q
)

|Q| (2.36)

and, for each i ∈ n \Q, set

x̂i :=
µ+

Q

s+
i

, (2.37)

x+
i := min{x̂i, χ}. (2.38)

end

In the convergence analysis, we will also make use of the quantities x̃m, s̃a,

and s̃m defined similarly to x̃a, x̃m (the undamped steps)

x̃m
i :=

{
xi + ∆xm

i i ∈ Q,

0 i ∈ n \Q,
(2.39)

s̃a := s+ ∆sa, (2.40)

s̃m := s+ ∆sm. (2.41)

Remark 2.2.3. Just like MPC/rMPC, rMPC⋆ uses separate step sizes for the pri-

mal and dual variables. Often in convergence analyses of MPC-type algorithms, a

common step size is assumed, but we found that using separate step sizes works well

in practice, and furthermore, was needed in the proof of a critical result (Proposition

2.4.5).

Remark 2.2.4. While rMPC⋆ as stated fails to retain the remarkable scaling invari-

ance properties of MPC, invariance under diagonal scaling in the primal space and

under Euclidean transformations and uniform diagonal scaling in the dual space can

be readily recovered (without affecting the theoretical properties of the algorithm)

by modifying iteration rMPC⋆ along lines similar to those discussed in section 5

of [TAW06].

In closing this section, we note a few immediate results to be used in the

sequel. First, the following identities are valid for j ∈ {a,m}:

tjp = min

{

1,min

{
xi

−∆xj
i

| i ∈ Q, ∆xj
i < 0

}}

, (2.42)

tjd = min

{

1,min

{
si

−∆sj
i

| ∆sj
i < 0

}}

. (2.43)

5The convergence analysis allows for ξmax = ∞, i.e., for the simplified version of (2.35): x+
i :=

max{x̂i, ϕ}. However a finite, small value of ξmax seems to be beneficial in practice.

86

Next, the following are direct consequences of equations (2.18)-(2.19) and Steps 1

and 3 of Iteration rMPC⋆:

∆sj = −AT∆yj for j ∈ {a, c,m}, (2.44)

and, for i ∈ Q,

si∆x
a
i + xi∆s

a
i = −xisi, (2.45)

si

−∆sa
i

=
xi

x̃a
i

when ∆sa
i 6= 0 and

xi

−∆xa
i

=
si

s̃a
i

when ∆xa
i 6= 0, (2.46)

si∆x
m
i + xi∆s

m
i = −xisi + γ(σµQ − ∆xa

i ∆s
a
i). (2.47)

Further, system (2.18) can alternatively be solved in augmented system form6






AQ 0

SQ −XQA
T
Q











∆xa
Q

∆ya




 =






b−AQxQ

−XQsQ




 , (2.48)

∆sa
Q

= −AT
Q
∆ya,

or in normal equations form

AQS
−1
Q
XQA

T
Q
∆ya = b, (2.49a)

∆sa
Q

= −AT
Q
∆ya, (2.49b)

∆xa
Q

= −xQ − S−1
Q
XQ∆sa

Q
. (2.49c)

6This form of the augmented system is equivalent to (1.80) after scaling the second block row
by XQ and then swapping the block rows.

87

Similarly, (2.19) can be solved in augmented system form






AQ 0

SQ −XQA
T
Q











∆xc
Q

∆yc




 =






0

σµQe− ∆Xa
Q
∆sa

Q




 , (2.50)

∆sc
Q

= −AT
Q
∆yc,

or in normal equations form

AQS
−1
Q
XQA

T
Q
∆yc = −AQS

−1
Q

(σµQ − ∆Xa
Q
∆sa

Q
), (2.51a)

∆sc
Q

= −AT
Q
∆yc, (2.51b)

∆xc
Q

= −S−1
Q
XQ∆sc

Q
+ S−1

Q
(σµQ − ∆Xa

Q
∆sa

Q
). (2.51c)

Finally, as an immediate consequence of the definition (2.27) of the rMPC⋆ search

direction in Step 4 of Iteration rMPC⋆ and of the expressions (2.8) and (2.10) (in

particular (2.8)), we have

‖γ∆yc‖ ≤ ψ‖∆ya‖, γσµQ ≤ ψ‖∆ya‖. (2.52)

2.3 Global convergence analysis

The analysis given here is inspired from the line of argument used in [TAW06] for

the rPDAS algorithm, but, as mentioned in the introduction to this chapter, we use

less restrictive assumptions.

The following proposition, which builds on [TAW06, Prop. 3], shows that

Algorithm rMPC⋆ can be repeated indefinitely and that the dual objective strictly

increases.

Proposition 2.3.1. Let x > 0, s > 0, and Q ∈ Qǫ,M(y) for some y ∈ Rm. Then

88

the following hold: (i) bT∆ya > 0, (ii) bT∆ym ≥ θbT∆ya, and (iii) tmp > 0, tmd >

0, y+ ∈ F o, s+ = c− ATy+ > 0, and x+ > 0.

Proof. Claim (i) follows directly from Lemma 2.2.2, (2.49a) and b 6= 0, which imply

bT∆ya = bT(AQS
−1
Q
XQA

T
Q
)−1b > 0.

For claim (ii), if bT∆yc ≥ 0, then, by claim (i),

bT∆ym = bT∆ya + γbT∆yc ≥ bT∆ya ≥ θbT∆ya,

and from Step 4 of Algorithm 10/rMPC⋆, if bT∆yc < 0 then, using (2.8) and (2.10)

(γ ≤ γ1), (2.6), and claim (i), we get

bT∆ym ≥ bT∆ya + γ1b
T∆yc ≥ bT∆ya + (1 − θ)

bT∆ya

|bT∆yc|b
T∆yc

= bT∆ya − (1 − θ)bT∆ya = θbT∆ya.

Finally, claim (iii) follows from Steps 4 - 5 of Iteration rMPC⋆.

It follows from Proposition 2.3.1 that, under Assumption 1, Iteration rMPC⋆ gen-

erates an infinite sequence of iterates with monotonically increasing dual objective

value. From here on we attach an iteration index k to the iterates.

As a first step, we show that if the sequence {yk} remains bounded (which

cannot be guaranteed under our limited assumptions), then it must converge. For

this, we make use of the following lemma, a direct consequence of results in [Sai96]

(see also [Sai94]).

Lemma 2.3.2. Let A ∈ Rm×n, full row rank, and b ∈ Rm be given. Then, (i) there

exists ρ > 0 (depending only on A and b) such that if, for some positive definite

89

diagonal matrix D, ∆y solves

ADAT∆y = b, (2.53)

then

‖∆y‖ ≤ ρbT∆y;

and (ii), if a sequence {yk} is such that {bTyk} is bounded and, for some ω > 0,

satisfies

‖yk+1 − yk‖ ≤ ωbT(yk+1 − yk) ∀k, (2.54)

then {yk} converges.

Proof. The first claim immediately follows from Theorem 5 in [Sai96], noting (as

in [Sai94], section 4) that, for some α > 0, α∆y solves

max{ bTu | ‖D1/2ATu‖ ≤ 1}.

(See also Theorem 7 in [Sai94].)7 The second claim is proved using the central

argument of the proof of Theorem 9 in [Sai96]:

N−1∑

k=0

‖yk+1 − yk‖ ≤ ω
N−1∑

k=0

bT(yk+1 − yk) ≤ 2ωv ∀N > 0,

where v is an upper bond to {bTyk}, implying that {yk} is Cauchy, and thus con-

verges.

Lemma 2.3.3. Suppose Assumptions 1 and 2 hold. If {yk} is bounded then yk → y∗

for some y∗ ∈ F , and if it is not, then bTyk → ∞.

Proof. To prove the lemma it suffices to show that the sequence {yk} generated by

rMPC⋆ satisfies inequality (2.54) for some ω > 0. To see why, suppose (2.54) holds.

7Note this is of the same form as the ball constrained LP that defines the Algorithm 3/DAS
search direction.

90

If {yk} is bounded then so is {bTyk} and, in view of Lemma 2.3.2 (ii) and the fact

that {yk} is feasible, we have yk → y∗, for some y∗ ∈ F . On the other hand, if {yk}

is unbounded, then {bTyk} is also unbounded (since, in view of Lemma 2.3.2 (ii),

having {bTyk} bounded together with (2.54) would lead to the contradiction that

the unbounded sequence {yk} converges). To establish (2.54), in view of (2.32), it

suffices to show that, for some ω > 0,

‖∆ym,k‖ ≤ ωbT∆ym,k ∀k.

Now, since ∆ya,k solves the normal equations (2.49a), the hypothesis of Lemma 2.3.2

(i) is validated for ∆ya,k, and thus, for some ρ > 0,

‖∆ya,k‖ ≤ ρbT∆ya,k ∀k.

With this in hand, we obtain, for all k, using (2.27), (2.12), (2.8), and (2.5),

‖∆ym,k‖ ≤ ‖∆ya,k‖+γk‖∆yc,k‖ ≤ (1+ψ)‖∆ya,k‖ ≤ (1+ψ)ρbT∆ya,k ≤ (1+ψ)
ρ

θ
bT∆ym,k,

so the sought inequality holds with ω := (1 + ψ)ρ
θ
.

We also have that the primal iterates remain bounded.

Lemma 2.3.4. Suppose Assumption 1 holds. Then {xk}, {x̃a,k}, and {x̃m,k} are all

bounded.

Proof. We first show that {x̃a,k} is bounded. Defining Dk
Qk := Xk

Qk(S
k
Qk)

−1 and us-

ing (2.49a)-(2.49b) we have ∆sa,k = −AT
Qk(AQkDk

QkA
T
Qk)

−1b, which, using definition

(2.33) of x̃a,k
Qk , and (2.49c) gives

x̃a,k
Qk = Dk

QkA
T
Qk(AQkDk

QkA
T
Qk)

−1b. (2.55)

91

Sequences of the form DkAT(ADkAT)−1, with A full rank and Dk diagonal and

positive definite for all k, are known to be bounded; a proof can be found in [Dik74].8

Hence ‖x̃a,k‖ = ‖x̃a,k
Qk ‖ ≤ R with R independent of k (there are only finitely many

choices of Qk). Finally, boundedness of {x̃m,k} and {xk} is proved as follows. Let R′

be such that max{‖xk‖∞, (1 + ψ)R, χ, ξmax} < R′, for some k. From (2.39), (2.27),

(2.10) (γ ≤ γ0), (2.8), and (2.33), we have

‖x̃m,k‖ = ‖x̃m,k
Qk ‖ = ‖xk

Q
+ ∆xa,k

Qk + γ∆xc,k
Qk‖ ≤ ‖x̃a,k

Qk ‖ + ψ‖x̃a,k
Qk ‖ ≤ (1 + ψ)R ≤ R′,

(2.56)

and since, as per (2.28), (2.30) and (2.32), x̂k
Qk is on the line segment between

xk
Qk and the full step x̃m,k

Qk , both of which are bounded in norm by R′, we have

‖xk+1
Qk ‖∞ ≤ max{‖x̂k

Qk‖∞, ξmax} ≤ R′. On the other hand, the update (2.38) for the

n \Qk components of xk+1, ensures that

‖xk+1
n\Qk‖∞ ≤ χ ≤ R′,

and the result follows by induction.

The global convergence analysis essentially considers two possibilities: either

∆ya,k → 0 or ∆ya,k 6→ 0. In the former case yk → y∗ ∈ F s, which follows from

the next lemma. In the latter case, Lemma 2.3.6 and Lemma 2.3.7 show that

yk → y∗ ∈ F ∗.

Lemma 2.3.5. For all k, Ax̃a,k = b and Ax̃m,k = b. Further, if Assumption 1 holds

and ∆ya,k → 0 on an infinite index set K, then for all j, x̃a,k
j sk

j → 0 and x̃m,k
j sk

j → 0,

both on K. If, in addition, {yk} is bounded, then yk → y∗ ∈ F s and all limit points

of the bounded sequences {x̃a,k}k∈K and {x̃m,k}k∈K are multipliers associated to the

8An English version of the proof of [Dik74] can be found in [VL88]; see also [Sai96]. Stewart
[Ste89] obtained this result in the form of a bound on the norm of oblique projectors, and provided
an independent, geometric proof. O’Leary [O’L90] later proved that Stewart’s bound is sharp.

92

stationary point y∗.9

Proof. The first claim is a direct consequence of the second block equations of (2.18)

and (2.19), (2.27), and definitions (2.33), and (2.39). Next, we prove asymptotic

complementarity of {(x̃a,k, sk)}k∈K, i.e., that x̃a,k
i sk

i → 0 on K for all i ∈ n. Using

the third block equation in (2.18) and, again, using (2.33) we have, for all k,

x̃a,k
j sk

j = −xk
j ∆s

a,k
j , j ∈ Qk, (2.57)

x̃a,k
j sk

j = 0, j ∈ n \Qk. (2.58)

Since xk is bounded (Lemma 2.3.4), and ∆sa,k = −AT∆ya,k → 0 on K, this implies

x̃a,k
j sk

j → 0 on K for all j. We also can prove asymptotic complementarity of

{(x̃m,k, sk)}k∈K. Equation (2.47) and (2.39) yield, for all k,

sk
j x̃

m,k
j = −xk

j ∆s
m,k
j + γk(σkµk

Qk − ∆xa,k
j ∆sa,k

j), j ∈ Qk, (2.59)

sk
j x̃

m,k
j = 0, j ∈ n \Qk. (2.60)

Boundedness of {x̃a,k}k∈K and {xk} (Lemma 2.3.4) implies boundedness of {∆xa,k
Qk }k∈K

since ∆xa,k
Qk = x̃a,k

Qk − xk
Qk . In addition, ∆ya,k → 0 on K and (2.52) imply that

γk∆yc,k → 0 on K and γkσkµk
Qk → 0 on K. The former implies in turn that

γk∆sc,k = −γkAT∆yc,k → 0 on K by (2.44). Thus, in view of (2.27), {∆sm,k}k∈K

and the entire right-hand side of (2.59) converge to zero on K. Asymptotic com-

plementarity then follows from boundedness of {x̃m,k} (Lemma 2.3.4). Finally, the

last claim follows directly from the above and from Lemma 2.3.3.

Recall the definition ϕk := ‖∆ya,k‖ν + ‖[x̃a,k]−‖ν from (2.34). The next two

lemmas outline some properties of this quantity.

9Such “multipliers” are defined below equation (2.1).

93

Lemma 2.3.6. Suppose Assumption 1 holds. If {yk} is bounded and lim infk→∞ ϕk =

0, then yk → y∗ ∈ F ∗.

Proof. By definition (2.34) of ϕk, convergence of ϕk to zero on some infinite index

set K implies that ∆ya,k → 0 and [x̃a,k]− → 0 on K. Lemma 2.3.5 and [x̃a,k]− → 0

on K thus imply that {yk} converges, and its limit y∗ is optimal.

Lemma 2.3.7. Suppose Assumptions 1 and 2 hold and {yk} is bounded. If ∆ya,k 6→

0, then lim infk→∞ ϕk = 0. Specifically, for any infinite index set K on which

infk∈K ‖∆ya,k‖ > 0, we have ϕk−1 → 0 for k ∈ K as k → ∞.

Proof. We proceed by contradiction. Thus, suppose there exists an infinite set K ′ ⊆

K on which ‖∆ya,k‖ and ϕk−1 are both bounded away from zero. Let us also suppose,

without loss of generality, that Qk is constant on K ′, say equal to some fixed Q, and

(by the boundedness assumption) yk → y′ on K ′, for some y′ ∈ F . Lemma 2.2.3

then guarantees that I(y′) ⊆ Q. We also note that, since the rule for selecting Q

ensures that AQ has full rank and, as per (2.18), ∆sa,k = −AT
Q
∆ya,k, we have that

‖∆sa,k‖ is also bounded away from zero on K ′. Define δ1 := infk∈K ′ ‖∆sa,k‖2 > 0,

and next note that, in view of (2.35), the fact that ϕk−1 ≥ ε, for some ε > 0, implies

that δ2 := inf{xk
i | i ∈ Qk, k ∈ K ′} > 0. We now note that, by Step 5 of rMPC⋆

and Proposition 2.3.1 (ii), for all k ∈ K ′,

bTyk+1 = bT(yk + tm,k
d ∆ym,k) ≥ bTyk + tm,k

d θbT∆ya,k. (2.61)

Also, from (2.49a) and (2.44), we have for all k ∈ K ′,

bT∆ya,k = (∆ya,k)TAQ(Sk
Q
)−1Xk

Q
AT

Q
∆ya,k

= (∆sa,k
Q

)T(Sk
Q
)−1Xk

Q
∆sa,k

Q
≥ δ2
R
δ1 > 0, (2.62)

where R is an upper bound on {‖sk‖∞}k∈K ′ (notice {sk} converges on K ′ since

94

{yk} does). In view of (2.61)-(2.62), establishing a positive lower bound on tm,k
d for

k ∈ K ′ will contradict boundedness of {yk}, thereby completing the proof.

By (2.31) and since Step 4 of Iteration rMPC⋆ ensures (2.9), we have tm,k
d ≥

βt̄m,k
d ≥ βζta,k

d ≥ 0. Therefore, it suffices to bound ta,k
d away from zero. From (2.24),

either ta,k
d = 1 or, for some i0 such that ∆sa,k

i0
< 0, (without loss of generality we

assume such i0 is independent of k ∈ K ′) we have

ta,k
d =

sk
i0

−∆sa,k
i0

. (2.63)

If i0 ∈ n \Q, then {sk
i0}k∈K ′ is bounded away from zero (since I(y′) ⊆ Q). Then, in

this case, the desired positive lower bound for ta,k
d follows if we can show that ∆sa,k

is bounded on K ′. To see that the latter holds, we manipulate Sk
Q
x̃a,k

Q = −Xk
Q
∆sa,k

Q

(from (2.49c) and (2.33)) and ∆sa,k
Q = −AT

Q
∆ya,k to write

∆sa,k = AT(AQA
T
Q
)−1AQ(Xk

Q
)−1Sk

Q
x̃a,k,

which is bounded on K ′ since δ2 > 0, sk is bounded, and x̃a,k is bounded (by Lemma

2.3.4). On the other hand, if i0 ∈ Q, using (2.63) and (2.46) we obtain ta,k
d = xk

i0/x̃
a,k
i0

,

which is bounded away from zero on K ′ since xk
Q

is bounded away from zero on K ′

and x̃a,k
Q is bounded by Lemma 2.3.4. This completes the proof.

Theorem 2.3.8. Suppose Assumptions 1 and 2 hold. Then, if {yk} is unbounded,

bTyk → ∞. On the other hand, if {yk} is bounded, then yk → y∗ ∈ F s. Under the

further assumption that, at every dual feasible point, the gradients of all active con-

straints are linearly independent,10 it holds that if F ∗ is not empty, {yk} converges

to some y∗ ∈ F ∗, while if F ∗ is empty, bTyk → ∞, so that, in both cases, {bTyk}

converges to the optimal dual value.

Proof. The first claim follows from Lemma 2.3.3. Concerning the second claim,

95

under Assumptions 1 and 2, the hypothesis of either Lemma 2.3.5 or Lemma 2.3.7

must hold: {∆ya,k} either converges to zero or it does not. In the latter case, the

second claim follows from Lemmas 2.3.7 and 2.3.6 since F ∗ ⊆ F s. In the former

case, it follows from Lemma 2.3.5.

To prove the last claim, it is sufficient to show that, under the stated linear

independence assumption, it cannot be the case that {yk} converges to some y∗ ∈

F s \ F ∗. Indeed, the first two claims will then imply that either yk → F ∗, which

cannot occur when F ∗ is empty, or bTyk → ∞, which can only occur if F ∗ is

empty, proving the claim. Now, proceeding by contradiction, suppose that yk →

y∗ ∈ F s \ F ∗. It then follows from Lemma 2.3.7 that ∆ya,k → 0, since, with

y∗ 6∈ F ∗, Lemma 2.3.6 implies that lim infk→∞ ϕk > 0. Lemma 2.3.5 then implies

that Skx̃a,k → 0, and Ax̃a,k = b. Define J := {j ∈ n | x̃a,k
j 6→ 0}. Since Skx̃a,k → 0,

and since sk = c − ATyk → c − ATy∗, we have that sk
J → 0, i.e., J ⊆ I(y∗). Thus,

by Lemma 2.2.3, J ⊆ I(y∗) ⊆ Qk holds for all k sufficiently large. Then, using the

second block equation of (2.18) and (2.33), we can write

b = AQk x̃a,k
Qk = Ax̃a,k = AJ x̃

a,k
J + An\J x̃

a,k
n\J , (2.64)

where, by definition of J , the second term in the right hand side converges to zero.

Under the linear independence assumption, since J ⊆ I(y∗), AJ must have linearly

independent columns and a left inverse given by (AT
JAJ)−1AT

J . Thus, using (2.64),

we have x̃a,k
J → (AT

JAJ)−1AT
J b. Define x̃∗ by x̃∗J := (AT

JAJ)−1AT
J b and x̃∗

n\J := 0, so

that x̃a,k → x̃∗. Since y∗ 6∈ F ∗, x̃∗j0 < 0 for some j0 ∈ J , and x̃a,k
j0
< 0 holds for all k

sufficiently large, which implies that sk
j0
→ 0. However, from (2.46), for all k large

enough,

∆sa,k
j0

= − sj0

xj0

x̃a,k
j0
> 0,

so that, by (2.32), sk+1
j0

> sk
j0
> 0 holds for all k large enough, which contradicts

96

sk
j0 → 0.

Whether yk → y∗ ∈ F ∗ is guaranteed (when F ∗ is nonempty) without the linear

independence assumption is an open question.

Remark 2.3.1. While a fairly standard assumption, the linear independence condi-

tion used in Theorem 2.3.8 to prove convergence to a dual optimal point, admittedly,

is rather strong, and may be difficult to verify a priori. We remark here that, in view

of the monotonic increase of bTyk and of the finiteness of the set {bTy : y ∈ F s\F ∗},

convergence to a dual optimal point should occur without such assumption if the it-

erates are subject to perturbations, (say, due to roundoff) assumed to be uniformly

distributed over a small ball. Indeed, suppose that yk converges to y∗ ∈ F s \F ∗, say,

with limit dual value equal to v. There exists α > 0 such that, for every k large

enough, the computed yk will satisfy bTyk > v with probability at least α, so that

this will happen for some k with probability one. Of course, again due to pertur-

bations, bT yk could drop below v again at some later iteration. This however can

be addressed by the following simple modification of the algorithm. Whenever the

computed yk+1 satisfies bTyk+1 < bTyk, discard such yk+1 and compute ∆yp(yk, Q)

(‘p’ standing for “pacer” step) by solving an appropriate auxiliary problem, such as

the small dimension LP

max{bT∆yp | AT
Qk∆y

p ≤ sQk := cQk −AT
Qky

k, ‖∆yp‖∞ ≤ 1}, (2.65)

where Q ∈ Qǫ,M(yk), and redefine yk+1 to be the point produced by a long step (close

to the largest feasible step) taken from yk in direction ∆yp(yk, Q). It is readily shown

that the solution ∆yp(yk, Q) provides a feasible step that gives uniform ascent near

any yk ∈ F s \F ∗. Note that, in “normal” operation, typical stopping criteria will be

10This additional assumption is equivalent to the assumption that “all dual basic feasible so-
lutions are nondegenerate” commonly used in convergence analyses of affine scaling and simplex
algorithms, see, e.g., [BT97], section 1.8, and Chapter 3 below.

97

satisfied before any decrease in {bTyk} due to roundoff is observed, and the suggested

pacer step will never be used.

Finally, the following convergence properties of the primal sequence can be

inferred whenever {yk} converges to y∗ ∈ F ∗, without further assumptions.

Proposition 2.3.9. Suppose that Assumptions 1 and 2 hold and that yk → y∗ ∈ F ∗.

Then, there exists an infinite index set K on which ∆ya,k → 0 and {x̃a,k}k∈K and

{x̃m,k}k∈K converge to the primal optimal set.

Proof. As in the proof of Theorem 2.3.8 we hinge on (overall) convergence of {∆ya,k}

to zero or not. In the former case, Lemma 2.3.5 implies that for any subsequence K ′

on which {‖∆ya,k‖}k∈K ′ is bounded away from zero, the conclusion of this proposi-

tion holds on the “previous” subsequence K = K ′ − 1. In the latter case, Lemma

2.3.7 implies that there exists K on which ϕk → 0, which implies that ∆ya,k → 0

on K and that, by Lemma 2.3.5, {x̃a,k} and {x̃m,k} converge to the primal optimal

set on K.

2.4 Local convergence

If {yk} converges to the optimal set (see Remark 2.3.1), under the additional

Assumption 3 (stated below), the iteration sequence zk := (xk, yk) converges q-

quadratically to the unique primal-dual solution z∗ := (x∗, y∗). (Uniqueness of x∗

follows from Assumption 3.) The (lengthy) details of the analysis are deferred to

the next subsection.

Assumption 3. The dual solution set is a singleton, i.e., F ∗ = {y∗}, and {ai : i ∈

I(y∗)} is a linearly independent set.

This assumption supersedes Assumption 2. The final assumption is justified by

Remark 2.3.1 at the end of the previous section.

98

Assumption 4. yk → y∗.

Theorem 2.4.1. Suppose Assumptions 1, 3 and 4 hold. Then the iteration sequence

{zk} converges locally q-quadratically, i.e., zk → z∗ and there exists c∗ > 0 such that,

for all k large enough, we have

‖zk+1 − z∗‖ ≤ c∗‖zk − z∗‖2.

Furthermore, for k large enough, the rank condition C2 in the definition of Qǫ,M(yk)

is automatically satisfied.

Remark 2.4.1. The next subsection, containing the proof of Theorem 2.4.1, is

rather long and technical, and may be skimmed lightly without loss of continuity.

2.4.1 Proof of Theorem 2.4.1

The proof of quadratic convergence of {zk} is in two steps: we first show that, under

Assumptions 1, 3, and 4, the iteration sequence converges to the unique primal-dual

solution, namely zk → z∗ (Proposition 2.4.5), and then we show that the convergence

occurs with a q-quadratic rate eventually.

The first result is a slight extension of [TAW06, Lemma 13].

Lemma 2.4.2. Under Assumptions 1, 3, and 4, the unique primal-dual solution

(x∗, s∗) satisfies strict complementary slackness, i.e., x∗ + s∗ > 0. Further, for any

Q such that I(y∗) ⊆ Q, J(AQ, x
∗
Q
, s∗

Q
) and Ja(AQ, x

∗
Q
, s∗

Q
) are nonsingular.

Proof. Assumption 3 and the Goldman-Tucker theorem, (e.g. see [Wri97, p.28])

imply strict complementary slackness for the pair (x∗, s∗). Assumption 3 also implies

that {ai | i ∈ I(y∗)} = {ai | x∗i 6= 0} consists of exactly m linearly independent

vectors. Hence, the three conditions for Lemma 2.1.1 are satisfied, and the non-

singularity claim follows.

99

The following technical lemma, that relates quantities generated by rMPC⋆,

is called upon in Lemmas 2.4.4 and 2.4.11 to show that the damping coefficients tmp

and tmd converge to one and, moreover, that they do so fast enough for quadratic

convergence of {zk} to take place.

Lemma 2.4.3. Suppose Assumptions 1, 3, and 4 hold. Let (x, y, s) satisfy ATy +

s = c, s > 0, and x > 0 and let Q ∈ Qǫ,M(y), and let A be some index set

satisfying A ⊆ Q.11 Let ∆xa
Q
, ∆sa, x̃a, s̃a, x̃m, s̃m, t̄mp , and t̄md be generated by

Algorithm 10/rMPC⋆. If x̃m
i > 0 for all i ∈ A and s̃m

i > 0 for all i ∈ n \ A, then

t̄mp ≥ min

{

1, min
i∈Q\A

{
si

|s̃a
i |

}

, min
i∈Q\A

{
si

s̃m
i

− |∆sa
i |

|s̃m
i |

}}

, (2.66)

t̄md ≥ min

{

1,min
i∈A

{
xi

|x̃a
i |

}

, min
i∈A

{
xi

x̃m
i

− |∆xa
i |

|x̃m
i |

}}

. (2.67)

Proof. First consider (2.66). With reference to (2.42), we see that either t̄mp = 1, in

which case (2.66) is verified, or for some i0 ∈ Q with ∆xm
i0
< 0, we have

t̄mp =
xi0

−∆xm
i0

< 1. (2.68)

Suppose i0 ∈ A(⊆ Q). Since ∆xm
i0 < 0 and xi0 > 0, in view of the definition (2.39)

of x̃m, the inequality x̃m
i0

= xi0 + ∆xm
i0
> 0, which holds by assumption, implies

xi0/(−∆xm
i0
) > 1, contradicting (2.68). Thus we must have i0 ∈ Q \ A. To

complete the proof of (2.66), we consider two possibilities. If

|∆xa
i0 | ≥ |∆xm

i0 |,
11In applications of this lemma we have in mind A = I(y∗).

100

then, using (2.46) we have

t̄mp =
xi0

−∆xm
i0

≥ xi0

|∆xa
i0
| =

si0

|s̃a
i0
| , (2.69)

and (2.66) is again verified. Alternately, if |∆xa
i0
| < |∆xm

i0
|, then using (2.47) and

rearranging terms, we get (see below for explanation of the inequalities)

t̄mp =
xi0

−∆xm
i0

=
si0

s̃m
i0

+
γσµQ

−∆xm
i0
s̃m

i0

+ γ
∆xa

i0

∆xm
i0

∆sa
i0

s̃m
i0

≥ si0

s̃m
i0

− γ
|∆xa

i0
|

|∆xm
i0
|
|∆sa

i0
|

|s̃m
i0
| ≥ si0

s̃m
i0

− |∆sa
i0
|

|s̃m
i0
| ,

where γ, σ, and µQ are as generated by rMPC⋆. The first inequality follows be-

cause the second term is nonnegative: the numerator is nonnegative, −∆xm
i0
> 0 by

assumption, and s̃m
i0
> 0 also by assumption. The second inequality follows since

|∆xa
i0
| < |∆xm

i0
| and γ ≤ 1. So, once again, (2.66) is verified. Finally, inequal-

ity (2.67) is proved by a very similar argument that flips the roles of x and s.

Lemma 2.4.4. Suppose Assumptions 1, 3, and 4 hold. Given any infinite index set

K such that ∆ya,k → 0 on K, it holds that x̂k → x∗ on K, and xk+1 → x∗ on K.

Proof. Since, by Assumption 4, yk → y∗, in view of Lemma 2.2.3, we may assume

without loss of generality that I(y∗) ⊆ Qk for all k ∈ K. Now, since ∆ya,k → 0

on K and yk → y∗, (2.44) implies that ∆sa,k → 0 on K, and Lemma 2.3.5 implies

that x̃a,k → x∗ on K and x̃m,k → x∗ on K, in particular, that [x̃a,k]− → 0 on K.

Further, by (2.52), and (2.27), ∆ym,k → 0 on K which implies, again by (2.44), that

∆sm,k → 0 on K.

With this in hand, we first show that ‖x̂k
Qk − x∗

Qk‖ → 0 on K.12 We have for

all k, using the triangle inequality, (2.39), and (2.32),

12Note that the dimension of x̂k
Qk − x∗

Qk , i.e., |Qk|, may vary with k.

101

‖x̂k
Qk −x∗Qk‖ ≤ ‖x̂k

Qk −x̃m,k
Qk ‖+‖x̃m,k

Qk −x∗
Qk‖ ≤ |1−tm,k

p | ‖∆xm,k
Qk ‖+‖x̃m,k−x∗‖. (2.70)

Since x̃m,k → x∗ on K and {∆xm,k
Qk }k∈K is bounded (since, as per Lemma 2.3.4, {xk}

and {x̃m,k}k∈K are both bounded), we need only show tm,k
p → 1 on K. Now, yk → y∗

implies sk → s∗ and, since ∆ya,k → 0 on K, it follows from (2.44), (2.27), (2.52), and

(2.41) that s̃m,k → s∗ on K. Next, since I(y∗) ⊆ Qk, and since x̃m,k → x∗ on K and

s̃m,k → s∗ onK, strict complementarity of (x∗, s∗) (Lemma 2.4.2) implies that, for all

k ∈ K large enough, x̃m,k
i > 0 for i ∈ I(y∗) and s̃m,k

i > 0 for i ∈ n \ I(y∗). Without

loss of generality, we assume it holds for all k ∈ K. Therefore, the hypothesis of

Lemma 2.4.3 is verified, with A = I(y∗), for all k ∈ K, and in view of (2.66), since

∆sa,k → 0 on K and {sk}, {s̃a,k} and {s̃m,k} all converge to s∗ on K, we have

t̄m,k
p → 1 on K (since s∗i > 0 for all i ∈ n \ I(y∗)). Further, by (2.30) and since

∆ya,k → 0 on K, we also have tm,k
p → 1 on K. So indeed, ‖x̂k

Qk − x∗
Qk‖ → 0 on K.

Next, we show that ‖xk+1
Qk − x∗

Qk‖ → 0 on K. First, let i ∈ I(y∗) (⊆ Qk for

all k ∈ K). We have already established that ϕk = ‖∆ya,k‖ν + ‖[x̃a,k]−‖ν → 0 on

K and x̂k
i → x∗i > 0 on K (positivity follows from strict complementary slackness).

This implies, by (2.35), that for sufficiently large k ∈ K we have xk+1
i = x̂k

i , so that

xk+1
i → x∗i on K. Now consider i ∈ n \ I(y∗), where x∗i = 0, and consider the set

Ki ⊆ K defined by Ki := {k ∈ K | i ∈ Qk}. If Ki is finite, then this i is irrelevant

to the limit of ‖xk+1
Qk − x∗

Qk‖. If Ki is infinite however, then since ϕk → 0 on Ki and

x̂k
i → x∗i = 0 on Ki, we have from (2.35) that xk+1

i → 0 = x∗i on Ki. Thus we have

shown that ‖xk+1
Qk − x∗

Qk‖ → 0 on K.

Now, let K ′ be the subset of K on which n \Qk is nonempty. If K ′ is finite,

then the proof of the lemma is already complete. Otherwise, to complete the proof,

we show that ‖xk+1
n\Qk − x∗

n\Qk‖ = ‖xk+1
n\Qk‖ → 0 on K ′. For this, we consider i ∈

102

n \ I(y∗) and the set Ki ⊆ K ′ defined by Ki := {k ∈ K ′ | i ∈ n \Qk}. As

before, if Ki is finite then this index i is irrelevant to the limits we are interested

in. If it is infinite, then by (2.38) we get xk+1
i ≤ µk+1

Qk /sk+1
i on K i. Now, since

‖xk+1
Qk − x∗

Qk‖ → 0 on K, it follows from complementarity of (x∗, s∗), that µk+1
Qk → 0

on K. Since {sk+1
i } is bounded away from zero (since i ∈ n \ I(y∗)) and µk+1

Qk → 0

on K, we have xk+1
i → x∗i = 0 on Ki. Thus, the proof is complete.

Proposition 2.4.5. Suppose Assumptions 1, 3 and 4 hold. Then we have (i)

∆ya,k → 0 and ∆ym,k → 0, (ii) x̃a,k → x∗ and x̃m,k → x∗, (iii) x̂k → x∗ and

xk → x∗, and (iv) ‖∆xa,k
Qk ‖ → 0 and ‖∆xm,k

Qk ‖ → 0.

Proof. First we show that ∆ya,k → 0. Supposing it is not so, take an infinite index

set K with infk∈K ‖∆ya,k‖ > 0. Lemma 2.3.7 then implies that there exists an

infinite index set K ′ ⊆ K on which {∆ya,k−1}k∈K ′ and {[x̃a,k−1]−}k∈K ′ converge to

zero (since ϕk−1 → 0 as k → ∞ with k ∈ K ′). We assume without loss of generality

that Qk = Q, a constant set, for all k ∈ K ′ (since Qk is selected from a finite set).

Lemma 2.4.4 implies xk → x∗ on K ′ and since sk → s∗ (onK ′ in particular), we have

J(AQ, x
k
Q
, sk

Q
) → J(AQ, x

∗
Q
, s∗

Q
) on K ′. Further, by strict complementarity of (x∗, s∗)

and Assumption 3, and since I(y∗) ⊆ Q, Lemma 2.4.2 implies that J(AQ, x
∗
Q
, s∗

Q
) is

nonsingular. Using these facts and noting that (2.18) and the inclusion I(y∗) ⊆ Q

imply

J(AQ, x
k
Q
, sk

Q
)









x̃a,k
Q

∆ya,k

∆sa,k
Q









=









0

b

0









on K ′ and J(AQ, x
∗
Q
, s∗

Q
)









x∗
Q

0

0









=









0

b

0









,

(2.71)

we see that ∆ya,k → 0 on K ′. This gives the desired contradiction and proves that

the entire sequence {∆ya,k} converges to zero. In view of (2.52) and definition (2.27)

103

of ∆ym, the proof of claim (i) is complete.

In view of Lemma 2.3.5 and Lemma 2.4.4, claims (ii) and (iii) are immediate

consequences of claim (i). Claim (iv) follows directly from claims (ii) and (iii).

From here forward, we focus on the {zk} = {(xk, yk)} sequence. To prove

quadratic convergence of {zk} to z∗ = (x∗, y∗), we show that there exist constants

c ≥ 0, and ρ > 0 (independent of z = (x, y) and Q) such that for all z ∈ B(z∗, ρ)∩Go

and all Q ∈ Qǫ,M(y),

‖z+(z,Q) − z∗‖ ≤ c‖z − z∗‖2. (2.72)

Here

B(z∗, ρ) := {z ∈ R
m+n | ‖z − z∗‖ ≤ ρ},

Go := {(x, y) ∈ R
n × R

m | x > 0, y ∈ F o},

and z+(z,Q) is the update to z with the dependence of z+ on z and Q made explicit.

We will use this explicit notation for all quantities that depend on (z,Q) from now

on, e.g. ∆za(z,Q), x̃m(z,Q), etc. Notice that the set of (z,Q) such that z ∈ Go

and Q ∈ Qǫ,M(y) is precisely the domain of definition of the mappings z+(·, ·),

∆za(·, ·), etc., defined by Algorithm 10/rMPC⋆. We also will use the somewhat

abusive notation

zQ := (xQ, y), ∆zQ := (∆xQ,∆y).

The following lemma gives a neighborhood B(z∗, ρ∗) of z∗, for a certain ρ∗ > 0,

on which we will prove that the quadratic rate inequality (2.72) holds for a certain c.

In particular, several useful bounds that simplify the remaining analysis are proven

on this neighborhood. We first define a quantity that is guaranteed to be positive

104

under strict complementarity, which holds under Assumption 3:

ε∗ := min{1, min
i∈n

(s∗i + x∗i)} > 0. (2.73)

Lemma 2.4.6. Suppose Assumptions 1, 3 and 4 hold and let β > 0. Then there

exists ρ∗ > 0 and R > 0 such that, for all z ∈ B(z∗, ρ∗) ∩Go and Q ∈ Qǫ,M(y), the

following hold:

(i) I(y∗) ⊆ Q and ‖Ja(AQ, xQ, sQ)−1‖ ≤ R, (2.74)

(ii) max{‖∆za
Q
(z,Q)‖, ‖∆zm

Q
(z,Q)‖, ‖∆sa

Q
(z,Q)‖, ‖∆sm

Q
(z,Q)‖} < ε∗/2,

(2.75)

(iii) min{xi, x̃
a
i (z,Q), x̃m

i (z,Q)} > ε∗/2, ∀ i ∈ I(y∗), (2.76)

max{si, s̃
a
i (z,Q), s̃m

i (z,Q)} < ε∗/2, ∀ i ∈ I(y∗), (2.77)

max{xi, x̃
a
i (z,Q), x̃m

i (z,Q)} < ε∗/2, ∀ i ∈ n \ I(y∗), (2.78)

min{si, s̃
a
i (z,Q), s̃m

i (z,Q)} > ε∗/2, ∀ i ∈ n \ I(y∗), (2.79)

(iv) βt̄mp (z,Q) < t̄mp (z,Q) − ‖∆ya(z,Q)‖, (2.80)

βt̄md (z,Q) < t̄md (z,Q) − ‖∆ya(z,Q)‖. (2.81)

Proof. Let s := c − ATy. (Note that, through y, s varies with z.) Consider the

(finite) set

Q
∗ := {Q ⊆ n | I(y∗) ⊆ Q}.

By Lemma 2.2.3, Qǫ,M(y) ⊆ Q∗ for all y sufficiently close to y∗. To prove the lemma,

it suffices to show that we can find ρQ > 0 and RQ > 0 to establish claims (i)-(iv)

for any fixed Q ∈ Q∗ and all z ∈ B(z∗, ρQ). Indeed, in view of the finiteness of Q∗,

105

the claims will then hold for all Q ∈ Q∗ and z ∈ B(z∗, ρ∗) with ρ∗ := minQ∈Q∗ ρQ

and R := maxQ∈Q∗ RQ. Thus, we now fix Q ∈ Q∗ and seek appropriate ρQ and RQ,

under which the claims can all be validated.

Claim (i) follows from Lemma 2.4.2, since I(y∗) ⊆ Q, and continuity of

Ja(AQ, ·, ·). Claim (ii) follows from claim (i) and nonsingularity of the limit of

the matrix in (2.18) and (2.19). Claim (iii) follows from (2.73), complementarity of

(x∗, s∗), and (2.75). Finally, in view of claim (iii) and Lemma 2.4.3 (with A = I(y∗)),

claim (iv) follows based on the same argument as used in the proof of claim (ii),

after reducing ρQ if need be.

It is well known that, under nondegeneracy assumptions, Newton’s method for

solving a system of equations enjoys a quadratic local convergence rate. It should

not be too surprising then that an algorithm that is “close enough” to being a

Newton method also has a quadratic rate. The following result, borrowed from

[TZ94, Proposition 3.10] and called upon in [TAW06], gives a convenient sufficient

condition for this “close enough” criterion to be met.

Lemma 2.4.7. Let Φ : Rn → Rn be twice continuously differentiable and let z∗ ∈ Rn

be such that Φ(z∗) = 0 and ∂Φ
∂z

(z∗) is nonsingular. Let ρ > 0 be such that ∂Φ
∂z

(z) is

nonsingular whenever z ∈ B(z∗, ρ). Let dN : B(z∗, ρ) → R
n be the Newton incre-

ment dN(z) := −
(

∂Φ
∂z

(z)
)−1

Φ(z). Given any α1 > 0, there exists α2 > 0 such that

the following statement holds: For all z ∈ B(z∗, ρ) and z+ ∈ Rn such that for each

i ∈ n,

min{|z+
i − z∗i |, |z+

i − (zi + dN
i (z))|} ≤ α1‖dN(z)‖2, (2.82)

it holds that

‖z+ − z∗‖ ≤ α2‖z − z∗‖2.

106

This leads to the following simple corollary, whose idea comes from [TAW06, The-

orem 17].

Corollary 2.4.8. Let Φ, dN(z), z∗ and ρ be as in Lemma 2.4.7. Then given any

α1 > 0, there exists α3 > 0 such that the following statement holds: For all z ∈

B(z∗, ρ) and z+ ∈ Rn such that for each i ∈ n,

min{|z+
i − z∗i |, |z+

i − (zi + dN
i (z))|} ≤ α1 max{‖dN(z)‖2, ‖z − z∗‖2}, (2.83)

it holds that

‖z+ − z∗‖ ≤ α3‖z − z∗‖2.

Proof. Given α1 > 0, suppose z ∈ B(z∗, ρ) and z+ ∈ R
n are such that (2.83) holds

for all i ∈ n. If ‖z − z∗‖ ≤ ‖dN(z)‖, then (2.83) is identical to (2.82) and Lemma

2.4.7 provides an α2 > 0 such that

‖z+ − z∗‖ ≤ α2‖z − z∗‖2.

If instead ‖dN(z)‖ < ‖z − z∗‖ then, from (2.83), for each i ∈ n we have either

|z+
i − z∗i | ≤ α1‖z − z∗‖2 or |z+

i − (zi + dN
i (z))| ≤ α1‖z − z∗‖2.

In the latter case,

|z+
i − z∗i | ≤ |z+

i − (zi + dN
i (z))| + |(zi + dN

i (z)) − z∗i | ≤ α1‖z − z∗‖2 + α0‖z − z∗‖2,

where α0 is a constant for the quadratic rate of the Newton step on B(z∗, ρ) (e.g., a

Lipschitz constant for ∂Φ
∂z

times an upper bound for ∂Φ
∂z

−1
on B(z∗, ρ)). Overall, we

107

have thus shown that, for all i ∈ n,

|z+
i − z∗i | ≤ d‖z − z∗‖2,

with d = max{α1 + α0, α2}. Hence the claims hold with α3 =
√
nd.

Following [TAW06], we will apply Corollary 2.4.8 to the equality portion of the KKT

conditions for (1.3) with the slack variable s eliminated, namely,

Φ(x, y) :=






Ax− b

X(c−ATy)




 = 0. (2.84)

This function is twice continuously differentiable, it vanishes at (x∗, y∗), its Jacobian

at z = (x, y) is equal to Ja(A, x, c− ATy) and is nonsingular at z∗ by Lemma 2.4.2

and hence near z∗ by continuity, and the corresponding Newton step is ∆za(z,n),

the unreduced affine-scaling step.

Our first task (Lemmas 2.4.9-2.4.12) is to compare the step taken along the

rMPC⋆ direction

ẑ+
Q
(z,Q) := (x̂Q(z,Q), y+(z,Q)) (2.85)

to the Q components of the Newton/affine-scaling step, zQ + ∆za
Q
(z,n). Verifying

condition (2.83) amounts to verifying one of four alternative inequalities for each

component of z+
i (z,Q). We will use all four alternatives. First, for Q ∈ Qǫ,M(y),

define

Tm(z,Q) :=






tmp (z,Q)I|Q| 0

0 tmd (z,Q)Im




 .

We can then write

ẑ+
Q
(z,Q) = zQ + Tm(z,Q)∆zm

Q
(z,Q), (2.86)

108

and we note that

‖I − Tm(z,Q)‖ = |1 − tm(z,Q)|, (2.87)

where

tm(z,Q) := min{tmp (z,Q), tmd (z,Q)}. (2.88)

Now we break the comparison of the rMPC⋆ step to the Newton/affine-scaling step

into three pieces using the triangle inequality, equations (2.86) and (2.87), and the

fact that γ(z,Q) ≤ 1 by definition. We obtain

‖ẑ+
Q
(z,Q) − (zQ + ∆za

Q
(z,n)‖

≤ ‖ẑ+
Q
(z,Q) − (zQ + ∆zm

Q
(z,Q))‖ + ‖∆zm

Q
(z,Q) − ∆za

Q
(z,Q)‖ + ‖∆za

Q
(z,Q) − ∆za

Q
(z,n)‖

= ‖(I − Tm(z,Q))∆zm
Q

(z,Q)‖ + γ(z,Q)‖∆zc
Q
(z,Q)‖ + ‖∆za

Q
(z,Q) − ∆za

Q
(z,n)‖

≤ |1 − tm(z,Q)|‖∆zm
Q

(z,Q)‖ + ‖∆zc
Q
(z,Q)‖ + ‖∆za

Q
(z,Q) − ∆za

Q
(z,n)‖. (2.89)

The next three lemmas bound each component of (2.89) in terms of the norm

of the affine-scaling direction. The first is a slightly simplified version of [TAW06,

Lemma 16] that provides a bound for the last term in (2.89). An almost identical

proof as in [TAW06] applies using ρ∗ from Lemma 2.4.6, and we refer the reader

there for details.

Lemma 2.4.9. Suppose Assumptions 1, 3 and 4 hold. Then there exists c1 > 0

such that, for all z ∈ B(z∗, ρ∗) ∩Go, Q ∈ Qǫ,M(y),

‖∆za
Q
(z,Q) − ∆za

Q
(z,n)‖ ≤ c1‖z − z∗‖ · ‖∆za

Q
(z,n)‖.

An immediate consequence of Lemma 2.4.9 is the following inequality, which is

used in the proofs of Lemma 2.4.12 and Theorem 2.4.1 below: for all z ∈ B(z∗, ρ∗)∩

109

Go and Q ∈ Qǫ,M(y) we have

‖∆za
Q
(z,Q)‖ ≤ ‖∆za

Q
(z,n)‖ + ‖∆za

Q
(z,Q) − ∆za

Q
(z,n)‖

≤ (1 + c1‖z − z∗‖)‖∆za
Q
(z,n)‖

≤ (1 + c1ρ
∗)‖∆za

Q
(z,n)‖. (2.90)

The next lemma provides a bound for the second term in (2.89).

Lemma 2.4.10. Suppose Assumptions 1, 3 and 4 hold. Then there exists c2 > 0

such that for all z ∈ B(z∗, ρ∗) ∩Go and Q ∈ Qǫ,M(y),

‖∆zc
Q
(z,Q)‖ ≤ c2‖∆za

Q
(z,Q)‖2. (2.91)

Proof. Let z ∈ B(z∗, ρ∗)∩Go and Q ∈ Qǫ,M(y). Using (2.50) and the uniform bound

R on ‖Ja(AQ, xQ, sQ)−1‖ from (2.74), we have

‖∆zc
Q
(z,Q)‖ ≤ ‖Ja(AQ, xQ, sQ)−1‖

∥
∥
∥
∥
∥
∥
∥






0

σ(z,Q)µQ(z,Q)e− ∆Xa
Q
(z,Q)∆sa

Q
(z,Q)






∥
∥
∥
∥
∥
∥
∥

≤ R
(√

n|σ(z,Q)µQ(z,Q)| + ‖∆Xa
Q
(z,Q)∆sa

Q
(z,Q)‖

)
. (2.92)

Further, in view of (2.44), we have

‖∆Xa
Q
(z,Q)∆sa

Q
(z,Q)‖ ≤ ‖∆Xa

Q
(z,Q)‖‖∆sa

Q
(z,Q)‖

≤ ‖∆xa
Q
(z,Q)‖‖∆sa

Q
(z,Q)‖

≤ ‖A‖ ‖∆za
Q
(z,Q)‖2.

Next, we note that µQ(z,Q) = (xQ)T(sQ)/|Q| is bounded on B(z∗, ρ) ∩Go (by

Cauchy-Schwartz and since (2.74) gives |Q| ≥ m). Thus, to handle the first term in

110

(2.92) and hence to prove the lemma, it suffices to show that

|σ(z,Q)| ≤ d‖∆za
Q
(z,Q)‖2, (2.93)

for some d independent of z and Q. Step 2 of rMPC⋆ sets σ = (1 − ta(z,Q))λ,

with ta(z,Q) as defined in Step 1 of Iteration rMPC⋆. As usual, when bounding

the damping coefficients tap and tad, there are two very similar arguments to be made

for the primal and dual steps. We first bound tad(z,Q) as expressed in (2.43). By

Lemma 2.4.6 ((2.75) and (2.79)), we have

si

|∆sa
i (z,Q)| >

ε∗/2

ε∗/2
= 1 for all i ∈ n \ I(y∗), (2.94)

so that, in view of (2.43), either tad(z,Q) = 1, in which case |1 − tad(z,Q)| = 0, or

using equation (2.46), since I(y∗) ⊆ Q (by (2.74)),

tad(z,Q) =
si

−∆sa
i (z,Q)

=
xi

x̃a
i (z,Q)

for some i ∈ I(y∗) (2.95)

(here i depends on (z,Q)). In the latter case, using (2.33) and assertion (2.76) of

Lemma 2.4.6, we have

|1 − tad(z,Q)| =

∣
∣
∣
∣
1 − xi

x̃a
i (z,Q)

∣
∣
∣
∣
=

∣
∣
∣
∣

∆xa
i (z,Q)

x̃a
i (z,Q)

∣
∣
∣
∣
≤ 2

ε∗
‖∆za

Q
(z,Q)‖. (2.96)

A very similar argument gives

|1 − tap(z,Q)| ≤ 2

ε∗
|∆sa

i (z,Q)| ≤ 2

ε∗
‖A‖‖∆za

Q
(z,Q)‖.

Since ta(z,Q) = min{tap(z,Q), tad(z,Q)}, we get

|1 − ta(z,Q)| ≤ 2

ε∗
max{‖A‖, 1}‖∆za

Q
(z,Q)‖,

111

and, since λ ≥ 2, (2.93) holds with d = (2/ε∗)λ max{‖A‖λ, 1}. This completes the

proof.

A direct implication of Lemma 2.4.10 (and Lemma 2.4.6 (ii)), which will be used in

the proof of Lemmas 2.4.11 and 2.4.12, is that, for all z ∈ B(z∗, ρ∗) ∩ Go and Q ∈

Qǫ,M(y),

‖∆zm
Q

(z,Q)‖ ≤ ‖∆za
Q
(z,Q)‖ + ‖∆zc

Q
(z,Q)‖ ≤ ‖∆za

Q
(z,Q)‖ + c2‖∆za

Q
(z,Q)‖2

≤
(

1 + c2
ε∗

2

)

‖∆za
Q
(z,Q)‖. (2.97)

The following lemma provides a bound for the first term in (2.89).

Lemma 2.4.11. Suppose Assumptions 1, 3 and 4 hold. Then there exists c3 > 0

such that, for all z ∈ B(z∗, ρ∗) ∩Go and Q ∈ Qǫ,M(y),

|1 − tm(z,Q)| ≤ c3‖∆za
Q
(z,Q)‖. (2.98)

Proof. Let z ∈ B(z∗, ρ∗) ∩Go and Q ∈ Qǫ,M(y). We first show that

|1 − tmp (z,Q)| ≤ d1‖∆za
Q
(z,Q)‖,

for some d1 independent of z and Q. Assertions (2.74), (2.76) and (2.79) in Lemma

2.4.6 imply respectively that I(y∗) ⊆ Q, x̃m
i (z,Q) > 0 for i ∈ I(y∗), and s̃m

i (z,Q) > 0

for i ∈ n \ I(y∗). Thus we may apply assertion (2.66) of Lemma 2.4.3 (with

A = I(y∗)) to get

1 − t̄mp (z,Q) ≤ max

{

0, max
i∈Q\I(y∗)

{

1 − si

s̃a
i (z,Q)

}

, max
i∈Q\I(y∗)

{

1 − si

s̃m
i (z,Q)

+
|∆sa

i (z,Q)|
s̃m

i (z,Q)

}}

≤ max

{

max
i∈Q\I(y∗)

{ |∆sa
i (z,Q)|

s̃a
i (z,Q)

}

, max
i∈Q\I(y∗)

{ |∆sm
i (z,Q)|

s̃m
i (z,Q)

+
|∆sa

i (z,Q)|
s̃m

i (z,Q)

}}

.

112

Further, (2.79), (2.44), and (2.97) yield

1 − t̄mp (z,Q) ≤ 2

ε∗
max

i∈Q\I(y∗)
{|∆sm

i (z,Q)| + |∆sa
i (z,Q)|}

≤ 2

ε∗
‖A‖ (‖∆ym(z,Q)‖ + ‖∆ya(z,Q)‖)

≤ 2

ε∗
‖A‖

(

2 + c2
ε∗

2

)

‖∆za
Q
(z,Q)‖.

Finally, by assertion (2.80) of Lemma 2.4.6, we have βt̄mp (z,Q) < t̄mp (z,Q)−‖∆ya(z,Q)‖,

so that by (2.30) tmp (z,Q) = t̄mp (z,Q) − ‖∆ya(z,Q)‖, and

1 − tmp (z,Q) = 1 − t̄mp (z,Q) + ‖∆ya(z,Q)‖ ≤ d1‖∆za
Q
(z,Q)‖,

with d1 := 2
ε∗
‖A‖(2 + c2ε

∗/2) + 1. By a similar argument that essentially flips the

roles of n \ I(y∗) and I(y∗) and the roles of x and s, we get

|1 − tmd (z,Q)| ≤ d2‖∆za
Q
(z,Q)‖,

with d2 := 2
ε∗

(2 + c2ε
∗/2) + 1. Since tm(z,Q) = min{tmp (z,Q), tmd (z,Q)}, the claim

follows with c3 := max{d1, d2}.

The final lemma applies the previous three lemmas to inequality (2.89) to bound

the difference between the Q component of our step (2.85) and the Newton step.

Lemma 2.4.12. Suppose Assumptions 1, 3 and 4 hold. Then there exists c4 > 0

such that, for all z ∈ B(z∗, ρ∗) ∩Go and Q ∈ Qǫ,M(y),

‖ẑ+
Q
(z,Q) − (zQ + ∆za

Q
(z,n))‖ ≤ c4 max{‖z − z∗‖2, ‖∆za

Q
(z,n)‖2}. (2.99)

Proof. Applying Lemmas 2.4.9, 2.4.10, and 2.4.11 to (2.89) and using definition

113

(2.85) of ẑ+
Q
(z,Q), we get, for all z ∈ B(z∗, ρ∗) ∩Go and Q ∈ Qǫ,M(y),

‖ẑ+
Q
(z,Q) − (zQ + ∆za

Q
(z,n)‖

≤ c3‖∆za
Q
(z,Q)‖‖∆zm

Q
(z,Q)‖ + c2‖∆za

Q
(z,Q)‖2 + c1‖z − z∗‖‖∆za

Q
(z,n)‖

≤ d‖∆za
Q
(z,Q)‖2 + c2‖∆za

Q
(z,Q)‖2 + c1‖z − z∗‖‖∆za

Q
(z,n)‖,

with d := c3(1 + c2ε
∗/2) using (2.97). In view of (2.90), the result follows.

Proof of Theorem 2.4.1. We show that there exists c∗ > 0 such that, for all

z ∈ B(z∗, ρ∗) ∩Go and Q ∈ Qǫ,M(y), we have

‖z+(z,Q) − z∗‖ ≤ c∗‖z − z∗‖2,

where ρ∗ is as in Lemma 2.4.6. The claim of quadratic convergence of {zk} will then

follow, since, by Assumption 3 and Proposition 2.4.5 (iii), we know that zk → z∗.

First, let us fix an arbitrary z ∈ B(z∗, ρ∗) ∩ Go and Q ∈ Qǫ,M(y), and show that,

for each i ∈ n,

min{|z+
i (z,Q)−z∗i |, |z+

i (z,Q)−(zi+∆za
i (z,n))|} ≤ α1 max{‖∆za(z,n)‖2, ‖z−z∗‖2}.

(2.100)

In view of Corollary 2.4.8, the claim will then follow. Now, in view of Lemma 2.4.12

and definition (2.85) of ẑ+(z,Q), condition (2.100) holds for the y+(z,Q) components

of z+(z,Q). It remains to verify condition (2.100) for the x+(z,Q) components of

z+(z,Q).13

13Note that the bound provided by Lemma 2.4.12 involves the components of x̂Q(z,Q), while
we seek to bound the components of x+

Q
(z,Q).

114

First let i ∈ I(y∗) (⊆ Q, by Lemma 2.4.6 (i)). Note that (explanation follows)

‖[x̃a(z,Q)]−‖ν + ‖∆ya(z,Q)‖ν < ‖∆xa
Q
(z,Q)‖ν + ‖∆ya(z,Q)‖ν < 2

(
ε∗

2

)ν

≤ ε∗

2
.

The first inequality uses the fact that (since x > 0)

‖[x̃a(z,Q)]−‖ = ‖[xQ + ∆xa
Q
(z,Q)]−‖ < ‖∆xa

Q
(z,Q)‖, (2.101)

the second inequality uses Lemma 2.4.6 (ii), and the third uses the bounds ν ≥ 2

and ε∗ ≤ 1 (see definition (2.73) of ε∗). On the other hand, by assertion (2.76) of

Lemma 2.4.6, the definitions (2.32) of x̂i(z,Q) and (2.39) of x̃m
i (z,Q), we have

ε∗

2
< min{xi, x̃

m
i (z,Q)} ≤ x̂i(z,Q).

Putting these together, we obtain

‖[x̃a(z,Q)]−‖ν + ‖∆ya(z,Q)‖ν < x̂i(z,Q),

so that, by (2.35), x+
i (z,Q) = x̂i(z,Q) for i ∈ I(y∗)(⊆ Q) and hence, in view of

Lemma 2.4.12, condition (2.100) also holds for the corresponding components of

z+(z,Q).

Next, consider the components x+
i (z,Q) with i ∈ Q \ I(y∗). We proceed to

establish the inequality

‖x+
Q\I(y∗)(z,Q)‖ ≤ d2 max{‖∆za

Q
(z,n))‖2, ‖z − z∗‖2} (2.102)

which, besides establishing (2.100) for the x+
Q\I(y∗)(z,Q) component of z+(z,Q)

(since x∗i = 0 for i ∈ Q \ I(y∗)), also serves to help establish (2.100) for the x+
n\Q

(z,Q)

component of z+(z,Q). Thus, let i ∈ Q \ I(y∗). Either we again have x+
i (z,Q) =

115

x̂i(z,Q), or we have x+
i (z,Q) = min{ξmax, ‖[x̃a(z,Q)]−‖ν + ‖∆ya(z,Q)‖ν}. In the

former case, we have (explanation follows), for some d1 independent of z and Q,

|x+
i (z,Q)| = |x̂i(z,Q)| = |x̂i(z,Q) − x∗i |

≤ |x̂+
i (z,Q) − (xi + ∆xa

i (z,n))| + |(xi + ∆xa
i (z,n)) − x∗i |

≤ ‖ẑ+
Q
(z,Q) − (zQ + ∆za

Q
(z,n))‖ + ‖(z + ∆za(z,n)) − z∗‖

≤ c4 max{‖z − z∗‖2, ‖∆za
Q
(z,n))‖2} + d1‖z − z∗‖2.

The first inequality is just the triangle inequality, the second is clear, and the third

uses Lemma 2.4.12 and the quadratic rate of the Newton step on B(z∗, ρ∗), with ρ∗

as in Lemma 2.4.6. In the latter case,

|x+
i (z,Q)| ≤ ‖[x̃a(z,Q)]−‖ν + ‖∆ya(z,Q)‖ν

≤ ‖∆xa
Q
(z,Q)‖2 + ‖∆ya(z,Q)‖2 = ‖∆za

Q
(z,Q)‖2

≤ (1 + c1ρ
∗)2‖∆za

Q
(z,n)‖2.

The second inequality uses (2.101), ‖∆za
Q
(z,Q)‖ ≤ 1 (by Lemma 2.4.6 (ii) and the

definition (2.73) of ε∗), and ν ≥ 2, and the third uses (2.90). So we have established

(2.102), and (2.100) follows for the x+
Q\I(y∗)(z,Q) component of z+(z,Q).

Finally, let i ∈ n \Q (⊆ n \ I(y∗), by Lemma 2.4.6 (i)). We again have x∗i = 0

and using (2.38), we get

|x+
i (z,Q) − x∗| = |x+

i (z,Q)| ≤ µ+
Q
(z,Q)(s+

i (z,Q))−1. (2.103)

By the definitions (2.32) and (2.41) of s+
i (z,Q) and s̃m

i (z,Q), and assertion (2.79)

of Lemma 2.4.6, we have s+
i (z,Q) = si + tmd ∆sm

i (z,Q) ≥ min{si, s̃
m
i (z,Q)} > ε∗/2.

Using this fact together with the definition (2.36) of µ+
Q
(z,Q) and the fact that

116

|Q| ≥ m, we may further bound (2.103) as

|x+
i (z,Q) − x∗| ≤ 2

mε∗




∑

i∈I(y∗)

x+
i (z,Q)s+

i (z,Q) +
∑

i∈Q\I(y∗)

x+
i (z,Q)s+

i (z,Q)



 .

(2.104)

Using boundedness of B(z∗, ρ∗), and Lemma 2.4.6 (ii), to bound |x+
i (z,Q)| for i ∈

I(y∗) and |s+
i (z,Q)| for i ∈ n \ I(y∗), and then using norm equivalence, we get, for

some d3 and d4 independent of z and Q,

|x+
i (z,Q) − x∗| ≤ d3‖s+

I(y∗)(z,Q)‖ + d4‖x+
Q\I(y∗)(z,Q)‖.

Continuing, we have (explanation follows), for some d5−d8 all independent of z and

Q,

|x+
i (z,Q) − x∗| ≤d3‖s+

I(y∗)(z,Q) − s∗I(y∗)‖ + d5 max{‖z − z∗‖2, ‖∆za
Q
(z,n))‖2}

≤d6‖ẑ+
Q
(z,Q) − z∗

Q
‖ + d5 max{‖z − z∗‖2, ‖∆za

Q
(z,n))‖2}

≤d6‖ẑ+
Q
(z,Q) − (zQ + ∆za

Q
(z,n))‖ + d6‖(zQ + ∆za

Q
(z,n)) − z∗

Q
‖

+ d5 max{‖z − z∗‖2, ‖∆za
Q
(z,n))‖2}

≤d7 max{‖z − z∗‖2, ‖∆za
Q
(z,n)‖2} + d8‖z − z∗‖2

+ d5 max{‖z − z∗‖2, ‖∆za
Q
(z,n))‖2}.

The first inequality uses the bound (2.102) and the fact that s∗I(y∗) = 0. The second

uses (2.44), and the third uses the triangle inequality. The final inequality uses

Lemma 2.4.12 to bound the first term and the quadratic rate of the Newton step on

B(z∗, ρ∗) to bound the second term.

Thus condition (2.100) is verified for all components of z+(z,Q) and the first

claim of Theorem 2.4.1 follows, i.e., we have thus shown that the sequence {zk} =

117

{(xk, yk)} constructed by Algorithm 10/rMPC⋆ converges q-quadratically to (x∗, y∗).

The second claim of Theorem 2.4.1, that for all k large enough, the rank condition

C2 in the definition of Qǫ,M(yk) is automatically satisfied, follows from Lemma 2.4.2

and Lemma 2.4.6 (i).

118

Chapter 3

Rank-degeneracy in
constraint-reduced IPMs for LP

The notion of “degeneracy” in linear programming usually refers to the existence

of degenerate basic feasible solutions (see Section 1.3.1), that is, basic feasible solu-

tions with too many active inequalities. The existence of degenerate basic feasible

solutions can cause simplex methods to stall or fail (by “cycling”) and can also be

problematic for some interior-point methods: nondegeneracy assumptions are used

in the analysis of the dual affine-scaling algorithm outlined in section 1.8, that of

algorithm rPDAS of [TAW06], and in the proof of the second part of Theorem 2.3.8

of this dissertation.

The present chapter focuses on a different type of linear programming degener-

acy, namely, when the constraint matrix A is rank deficient. In such case, we say the

constraint matrix A (and the LP) is rank-degenerate. (We will expand the meaning

of this term in what follows.) When A is rank-degenerate, the feasible region of the

standard-form dual problem has no extreme points and, if the problem is feasible,

optimality can occur only on an entire face (and the corresponding primal basic

feasible solution is degenerate in the sense of the first paragraph). Furthermore, if

the cost vector has a nonzero component along N (AT), the dual problem, if feasible,

119

will be unbounded, and the primal will be infeasible. Even when the problem has

a solution, this situation is problematic for many linear programming algorithms.

For example, the standard search directions used in interior-point methods become

undefined. Generally, rank-degeneracy is dealt with by preprocessing the problem

to remove dependent rows of A or by using some type of regularization.

In the context of constraint-reduction, a type of “artificial” rank-degeneracy

can arise even when A itself has full rank, since a simple choice of working constraint

set Q may result in an AQ matrix that is not full rank, i.e., the gradients of the

working constraint do not span Rm. (Henceforth, in what might be considered an

abuse of terminology we drop the prefix “artificial” when talking about this type

of rank-degeneracy.) When this happens, the search directions are no longer well

defined. We could make the assumption that precludes the situation, e.g., we can

assume that every m ×m sub-matrix of A has full rank. This assumption is used

by Dantzig and Ye [DY91] in the build-up DAS algorithm, and by Tits et al. in the

rPDAS algorithm of [TAW06], but such assumption is unlikely to hold, in general,

in real world problems, and furthermore, may be impossible to verify a priori. In

other prior work, including that of Chapter 2 of this dissertation, the assumption

is imposed on Q rather than A. That is, the constraint selection rule requires that

Q be chosen so rank(AQ) = m. It is possible to explicitly enforce this, for example,

with a Gram-Schmidt orthogonalization procedure, or by updating a rank-revealing

pivoted Cholesky factorization, or by schemes that simply add more constraints to

Q when rank(AQ) < m. However, these methods may require more effort than we

would like to invest, and may result in large |Q|, which is what we aimed to avoid

in the first place.

In this chapter, we investigate various ways of efficiently dealing with rank(AQ) <

m. We provide a discussion of a few simple approaches that essentially sidestep the

issue, and then present and analyze two algorithms that address it directly.

120

3.1 Introduction

a2

a1

Figure 3.1: Example of artificial degeneracy in two dimensions. From the current iterate
(the dot), the two nearest constraints are selected as the working constraints. They do
not span R

m, and hence rank(AQ) = 1 < m = 2.

As in previous chapters, given a working set of constraintsQ and a dual-feasible

point (x, y, s), we consider computing a PDIP direction for the “reduced” primal-

dual pair using (2.16). This leaves the search direction in the n \Q components of

∆x and ∆s undefined. We put aside this issue for the time being. Instead, we focus

on the possibility that, for arbitrary choice of Q, the coefficient matrix in (2.18) may

be singular. This happens when the set of vectors {ai}i∈Q defining the constraints

in the dual problem do not span Rm; see Figure 3.1.

3.1.1 Avoiding the issue through assumptions

In [TAW06](and [DY91]), the authors avoid this problem by making the assump-

tion that the constraint matrix A has a special property we will call M-rank-

nondegeneracy. A constraint matrix is M-rank-nondegenerate if every m×M sub-

matrix has rank m, where M ≥ m. Likewise, we say A is M-rank-degenerate if it is

not M-rank-nondegenerate, and if unspecified, we assume M = m. Unfortunately,

121

rank-nondegeneracy is a property that fails to hold for most constraint matrices

appearing in “real world” LPs. In particular, suppose M = m, then an (m-)rank-

nondegenerate constraint matrix can have at most m − 1 zeros out of n entries in

any row and thus, at most (m − 1)m zeros total. This means, at least if n ≫ m,

that bona-fide sparse problems are rank-degenerate. Of course, many non-sparse

problems will also be rank-degenerate.

In Chapter 2, we instead require that the choice of the constraint set Q satis-

fies rank(AQ) = m. There are some classes of problems where it is relatively simple

to satisfy this rank condition. For example, in the work of [KY93], applying Tone’s

method to transportation problems, including a minimal-spanning-tree of the un-

derlying graph in Q ensures rank(AQ) = m. However, in general, enforcing the rank

condition complicates the selection of Q and greatly restricts the set of admissible

Q.

3.1.2 Regularization of the linear systems

Even without constraint-reduction, i.e., when Q = n, there is still the question of

whether the Newton-KKT system is nonsingular and numerically well-conditioned.

This will not be the case if the rows of A are dependent or nearly so, or if the

diagonal matrix X−1S is poorly-conditioned.

A common way to control the condition number of the Newton-KKT systems,

without assumption on A, is through regularizing the “KKT” or “augmented” sys-

tem






−X−1S AT

A 0











∆x

∆y




 =






c− ATy − σµX−1e

b− Ax




 , (3.1)

122

by addition of diagonal factors δI and ρI, namely,






−(X−1S + ρI) AT

A δI











∆x

∆y




 =






c−ATy − σµX−1e

b− Ax




 , (3.2)

see, e.g. [ST96]. Note that, here, the right-hand-side is unmodified; sometimes

different right-hand-sides are used, as we will see below. The corresponding normal

equations have normal matrix

W := (A(X−1S + ρI)−1AT + δI).

If (x, s) > 0 then, δ > 0 ensures the normal matrix is nonsingular without assump-

tions on the rank of A. Furthermore, as shown in, e.g., [ST96], if in addition ρ > 0,

then the normal matrix has bounded condition number. Indeed,

‖W‖ ≤ ‖A‖2‖(X−1S + ρI)−1‖ + δ ≤ ‖A‖2

ρ
+ δ

and

‖W−1‖ = λmax(W
−1) =

1

λmin(W)
≤ 1

δ

so that

κ(W) = ‖W‖‖W−1‖ ≤ ‖A‖
ρδ

+ 1.

In the context of constraint-reduction, whether or not rank(A) = m, it may

be advantageous to allow choices of Q that result in rank(AQ) < m. In such cases,

regularizations similar to the above may be used to ensure solvability of the reduced

PDIP systems. One way to motivate the regularization (3.2) is to think of it as

the Newton-KKT step for a perturbed version of the standard linear programming

problem (as discussed below). From this point-of-view, when the regularization

parameters are set to fixed positive values, we may end up solving the perturbed

123

problem, and questions regarding the relevance of this solution to original problem

arise. For small enough values of the regularization parameters, the solution of

this perturbed problem will also be a solution for the original problem [MR79]. In

this case the regularization is sometimes called “exact”[FO07]. If assumptions are

made that ensure eventual solvability of the PDIP systems, e.g., rank(AQ) = m

holds near the solution, then it may be reasonable to use such regularization in

early iterations, but allow δ and ρ to go to zero in the limit. This is of particular

interest in the context of constraint-reduction where the problem may be well-posed,

but we introduce the “degeneracy” by ignoring constraints during the iteration. In

the rest of this chapter we focus on the δ-regularization only, as this is all that is

immediately needed to give us solvable linear systems. Investigation of the use of

the ρ-regularization in our algorithms is left as future work.

3.1.3 Sources of the regularization

One simple way to regularize the problem is to add bound constraints to the dual

problem in (1.3) of the form

−Re ≤ y ≤ Re or equivalently, ‖y‖∞ ≤ R.

We could then base a constraint-reduced algorithm on taking PDIP-type steps for

max bTy

s.t. AT
Q
y ≤ cQ, (3.3)

‖y‖∞ ≤ R.

If we define A0 = [I,−I] ∈ Rm×2m, c0 = Re ∈ R2m, and redefine Ã := [A0, A],

c̃ := [c0; c], then we get (3.3) in dual standard form with data (Ã, b, c̃). If we always

124

keep the bound constraints in Q, i.e., {1, 2, . . . 2m} ⊂ Q, then ÃQ will always be

full rank1 and the convergence analysis put forth in [TAW06] and Chapter 2 can

be applied. For such an algorithm to find solutions to the original problem, clearly

R must be set large enough so that the “box” ‖y‖∞ ≤ R contains a dual solution.

If we do not know an a priori bound on a dual solution, we can guess something

reasonably large and solve the problem; if some of the bound constraints are active

at the solution, we can increase R and try again. Alternatively, we could adjust

R “on-the-fly” during the iteration, increasing it if we seem to be terminating with

one of the box constraints active.

This method turns out to introduce something similar to the δ-type regu-

larization (discussed in section 3.1.2) for the components (∆x,∆y). Consider the

unreduced case, and partition Ã = [A0, A], with A0 = [Im,−Im]. The KKT system

is then (with σ = 0 for simplicity)









−X−1
0 S0 0 AT

0

0 −X−1S AT

A0 A 0

















∆x0

∆x

∆y









=









c0 − AT
0 y

c− ATy

b− Ax− A0x0









.

Upon eliminating ∆x0, the component corresponding to the 2m bound constraints,

this becomes






−X−1S AT

A D











∆x

∆y




 =






c− ATy

b− Ax




 (3.4)

where D := A0S
−1
0 X0A

T
0 = S−1

0 X0 ∈ R2m×2m (since A0 = [Im,−Im]), which is

similar to the regularization in equation (3.2), except ρ = 0 and δI is replaced by

1Actually, only one-sided bound constraints are needed to ensure AQ is full rank, but it seems
reasonable to use two-sided constraints since they guarantee existence of a dual solution when the
dual is feasible. In either case, keeping such constraints in Q entails very little cost, e.g., in forming
(1.83), since their gradients are extremely sparse.

125

D = S−1
0 X0. If the bounds are inactive at the solution, then, for i ∈ {1, 2, . . . 2m},

xi will converge to zero and si will converge to a finite positive value so that the

regularization effectively vanishes near the solution.

Alternatively, we could consider centering the box constraints at the current

iterate, rather than at the origin. This idea leads to a “trust-region” type algorithm

that, at iteration k, takes Newton-KKT steps on the problem

max bTy

s.t. ATy ≤ c,

‖y − yk‖∞ ≤ R.

In this case, it may make sense to consider smaller R, which could be adjusted

from iteration to iteration, as is typical in many trust-region methods. The “regu-

larized” KKT matrix (i.e., that remaining after eliminating the component of ∆x

corresponding to the trust region constraint) for this problem is identical to (3.4),

although the linear system has a slightly different right-hand side. Alternatively, we

could consider a Euclidean-norm trust-region

max bTy

s.t. ATy ≤ c, (3.5)

‖y − yk‖2 ≤ R.

The optimality conditions for (3.5) are

126

Ax+ δ(y − yk) = b,

ATy + s = c,

1

2
|y − yk|2 + γ =

1

2
R2, (3.6)

Xs = 0, δγ = 0,

(x, s) ≥ 0, (δ, γ) ≥ 0

where s and γ are slack variables, x is vector of Lagrange multipliers for the con-

straints ATy ≤ c, and δ is the multiplier for the trust-region constraint. After

eliminating all but the (x, y) components, the Newton-KKT step for (3.5) is






−X−1S AT

A δI











∆x

∆y




 =






c− ATy

b− Ax




 ,

which is of the form (3.2) with ρ=0. The same linear system can also be arrived at

by considering the quadratic program

max bTy − δ
2
‖y − yk‖2

s.t. ATy ≤ c,
(3.7)

whose optimality conditions and Newton-KKT step are

ATy + s = c,

Ax+ δy = b,

Xs = 0,

(x, s) ≥ 0,

127

and 




−X−1S AT

A δI











∆x

∆y




 =






c− ATy

b− Ax




 . (3.8)

It is this last approach that we will use to motivate our first algorithm, as it lets the

δ regularization in (3.2) enter in a simple and clean way.

3.2 Two algorithms

In this section, we describe and analyze two dual-feasible, constraint-reduced, PDIP

algorithms for LP designed to deal with the possibility that rank(AQ) < m. In its

kth iteration, the first algorithm selects a value for the regularization parameter δk

and computes the Newton-KKT direction for the perturbed LP

max bTy − δk

2
‖y − yk‖2

s.t. ATy ≤ c
(3.9)

The second algorithm is a variant of one originally developed by Tits et al. in

[TAO06]. This algorithm essentially takes the rPDAS step from [TAW06] whenever

b ∈ R(AQ), which of course is always the case if rank(AQ) = m, but uses a different

update whenever b has a component in the nullspace of AT
Q

which we refer to as

a “kernel step”. As discussed below in section 3.2.2, it turns out that the second

algorithm can be naturally motivated (and efficiently implemented) as a limiting

case of the first algorithm for vanishing δ.

The following assumption will be in force throughout the analysis of these algo-

rithms.

Assumption 1. A has full rank.

Assumption 2. The primal and dual interior regions are nonempty.

128

We also assume for simplicity that b 6= 0, although such assumption can be easily

removed.

In selecting the constraint set Q, both algorithms use relaxed versions of rule 2.2.1.

Rule 3.2.1. At a dual feasible point y, select Q arbitrarily from the set Qǫ,M(y)

defined next.2

Definition 3.2.1. Let ǫ ∈ (0,∞], and let M ∈ {1, 2, . . . n} be a strict upper bound

on the number of constraints active at any dual feasible point. Then a set Q ⊆ n

belongs to Qǫ,M(y) if and only if Q contains all ǫ-active constraints at y among some

set of M most-active constraints.

This is just Definition 2.2.1 minus the rank condition C2, and now with M required

to be a strict upper bound on the number of active constraints at any dual feasible

point. See the discussion given after statement of Rule 2.2.1 and Definition 2.2.1,

which applies here as well (except that, now, M = n will not work for LPs with n

constraints active at some dual feasible point).

3.2.1 Regularized rPDAS

Now we describe and analyze our first algorithm we call the regularized rPDAS,

which is based on the regularization (3.7)-(3.8). That is, we use constraint-reduced

primal-dual affine-scaling (rPDAS) type steps, i.e., with σ = 0. (We discuss the

adaptive use of positive σ parameters below in section 3.3.)

From a dual feasible interior iterate (x, y, s), the basic search direction is defined by






−X−1
Q
SQ AT

Q

AQ δI











∆xQ

∆y




 =






cQ −AT
Q
y

b− AQxQ




 , (3.10)

2Note this is a redefinition of the symbol Qǫ,M(y) first defined in Chapter 2.

129

and

∆s := −AT∆y, (3.11)

which is needed to preserve dual feasibility. The normal equations are

(AQXQS
−1
Q
AT

Q
+ δI)∆y = b, (3.12)

∆xQ = −xQ +XQS
−1
Q
AT

Q
∆y. (3.13)

When (xQ, sQ) > 0 and δ > 0, these equations have unique solutions. We also define

x̃i :=







xi + ∆xi i ∈ Q,

0 i ∈ n \Q.
(3.14)

The dual variables (y, s) are updated to (y+, s+), via

y+ := y + td∆y,

s+ := s+ td∆s = (c− ATy+), (3.15)

with

td = max{βt̄d, t̄d − ‖∆y‖}, (3.16)

t̄d = min

{

1, min

{
si

−∆si
| ∆si < 0

}}

. (3.17)

The primal update x+, adapted from Chapter 2, is given by

x+
i =







max{min{ϕ, ξmax}, xi + tp∆xi} i ∈ Q

min

{
µ+

Q

si
, χ

}

i ∈ n \Q
(3.18)

130

with ξmax > 0 and χ > 0 (resp. small and large) algorithm parameters and

tp = max{βt̄p, t̄p − ‖∆y‖}, (3.19)

t̄p = min

{

1, min

{
xi

−∆xi

| ∆xi < 0, i ∈ Q

}}

, (3.20)

µ+
Q

:=
(x+

Q
)Ts+

Q

|Q| , (3.21)

ϕ := {‖[x̃]−‖2 + ‖∆y‖2}, (3.22)

and for a vector u, [u]− := min{0, u}, the minimum taken componentwise. Finally

we update the regularization parameter as

δ+ = min{ϕ, δ̄}, (3.23)

where δ̄ is a small constant (e.g., 10−3).3

The above sequence of steps are well defined and can be repeated indefinitely as will

be shown in Lemma 3.2.3 below. This justifies attaching an iteration superscript k

to the variables to get the following algorithm.

3The relationship δ+ ≤ ϕ ≤ minx+
i , ∀ i ∈ Q (when ϕ < ξmax), from (3.18) and (3.23), turns

out to be useful in local analysis.

131

Algorithm 11: Regularized rPDAS

Input: LP data: A, b, c; Initial iterate: y0, s0 = c− ATy0 > 0, x0 > 0;

Parameters: M ∈ n, ǫ > 0, δ̄ > 0, ξmax > 0, χ > 0, β ∈ (0, 1);

Set k = 0, δ0 = δ̄, choose Q0 obeying Rule 3.2.1;

while forever do

Solve (3.10) for (∆xk
Qk ,∆y

k).

Update dual variables using (3.15)-(3.17).

Compute x̃k and ϕk from (3.14) and (3.22).

Update Q component of primal variables using (3.18)-(3.20).

Compute µ+
Qk by (3.21), and update xk+1

n\Q
using (3.18)-(3.20).

Set δk+1 = min{δ̄, ϕk} and choose Qk+1 according to Rule 3.2.1.

Set k = k + 1.

end

This algorithm is similar to the rPDAS algorithm of [TAW06], and especially

to the rMPC⋆ algorithm of Chapter 2: it is a regularized version of rMPC⋆ without

the centering-corrector step, i.e., with ψ = 0 (see footnote 1 on page 76). Its primary

benefit over rPDAS of [TAW06] and rMPC⋆, is that with δ > 0, we do not need to

impose the additional condition on the selection of Q that rank(AQ) = m, or impose

the restrictive nondegeneracy assumption of [TAW06], discussed in section 3.1.1.

Global convergence

Lemma 3.2.2. Let ∆y be as constructed by Algorithm 11. Then ∆y 6= 0 and

bT ∆y > 0.

Proof. Both claims follow from our assumption that b 6= 0 and from the fact that

the regularized normal matrix in (3.12) is positive definite when δ > 0.

The next lemma shows that, under our assumptions, Algorithm 11 is well defined,

132

and can be repeated ad infinitum.

Lemma 3.2.3. Suppose Assumptions 1 and 2 hold. Then Algorithm 11 is well

defined, and constructs quantities with the properties that td ∈ (0,∞), y+ ∈ F o,

s+ = c− ATy+ > 0, and x+ > 0.

Proof. First, since s > 0, it always holds that t̄d > 0. Since bT∆y > 0 (Lemma 3.2.2),

it follows from non-emptiness of the dual solution set (which is implied by Assump-

tions 1 and 2), that the largest feasible dual step size t̄d must be finite. Thus from

(3.17), we have t̄d ∈ (0,∞) and thus td ∈ (0,∞). In view of (3.15)-(3.17), it is

always the case that s+ = c − ATy+ > 0 and hence y+ ∈ F o. Finally, (3.18),

(3.22), and the fact that ∆y 6= 0 (Lemma 3.2.2) imply that x+
i > 0 for i ∈ Q,

which, together with the facts that (x, s) > 0, s+ > 0, and χ > 0, give x+
i > 0 for

i ∈ n \Q.

Lemma 3.2.4. Suppose Assumptions 1 and 2 hold. Then {bTyk} is a strictly in-

creasing sequence and {yk} is bounded.

Proof. That {bTyk} increases follows from Lemma 3.2.2 and the fact that tkd > 0

for all k (Lemma 3.2.3). This monotonicity implies that {yk} is confined to the set

S := {y ∈ F |bTy ≥ bTy0}. When maximizing a concave function over a convex

set, boundedness of one super-level set implies boundedness of all others, and our

assumptions imply that the dual solution set is nonempty and bounded [Wri97,

Thm. 2.3]. Thus, S is bounded.

A consequence of monotonicity is that every limit point of {yk} (at least one exists

since the sequence is bounded) has the same objective value. Hence, either all limit

points are optimal, and by boundedness, {yk} converges the dual optimal set, or the

entire sequence stays bounded away from the dual optimal set.

The sequence of primal variables generated by Algorithm 11 is also bounded.

133

Lemma 3.2.5. Suppose Assumptions 1 and 2 hold. Then {xk} and {x̃k} are

bounded.

Proof. Defining Dk
Q

:= Xk
Q
(Sk

Q
)−1 (we suppress the superscript k on the subscript Q

to reduce clutter), from (3.12), (3.13) and (3.14) we have

x̃k
Q

= −Dk
Q
AT

Q
(AQDQA

T
Q

+ δkI)−1b.

To prove that {x̃k
Q
} is bounded, we show that

‖Dk
Q
AT

Q
(AQD

k
Q
AT

Q
+ δkI)−1‖

is bounded by a constant independent of δk > 0, Qk ∈ Qǫ,M(y), and diagonal

Dk
Q
> 0. Define

ÂQ :=

(

AQ I

)

and D̂k
Q

:=






Dk
Q

0

0 δkI




 ,

then ÂQ is full rank and D̂k
Q
> 0 for any δk > 0, thus we have

∥
∥
∥
∥
∥
∥
∥






Dk
Q
AT

Q
(AQD

k
Q
AT

Q
+ δkI)−1

δk(AQD
k
Q
AT

Q
+ δkI)−1






∥
∥
∥
∥
∥
∥
∥

=
∥
∥
∥D̂k

Q
ÂT

Q
(ÂQD̂

k
Q
ÂT

Q
)−1
∥
∥
∥ .

Matrices of the form DAT(ADAT)−1, with A full rank and D > 0 diagonal are what

Stewart calls scaled pseudo-inverses in the paper [Ste89], where he proves that such

matrices have bounded norm independent of D. Calling upon this result we have

the bound
∥
∥
∥D̂k

Q
ÂT

Q
(ÂQD̂

k
Q
ÂT

Q
)−1
∥
∥
∥ ≤ R,

with R independent of Qk, Dk
Q

and δk (note there are only finitely many choices of

134

Qk). In particular, we have

‖x̃k
Q
‖ = ‖Dk

Q
AT

Q
(AQD

k
Q
AT

Q
+ δkI)−1b‖ ≤ R‖b‖ =: R′.

This establishes boundedness for the {x̃k} sequence since x̃k
n\Q

= 0 by (3.13). In

particular, we have ‖x̃k‖∞ ≤ R′. Suppose, without loss of generality, that R′ >

max{‖xk
Qk‖∞, ξmax, χ} for some k. Then, since xk

Qk + tkd∆x
k
Qk is in the convex hull

of {xk
Qk , x̃

k
Qk}, we have by (3.18) that ‖xk+1

Qk ‖∞ ≤ R′. Finally, for i ∈ n \Qk, xk+1
i is

explicitly bounded above by χ. The result then follows by induction.

The global convergence analysis follows that of Chapter 2. Here we hinge on two

possibilities: either ϕk stays bounded away from zero, or for some infinite index set

K, ϕk K−→ 0.4 The next lemma is analogous to Lemma 2.3.5.

Lemma 3.2.6. Suppose Assumptions 1 and 2 hold and ∆yk → 0 on an infinite

index set K, then X̃ksk K−→ 0 and Ax̃k K−→ b. In particular, all limit points (y′, x′) of

the bounded sequence {(yk, x̃k)}k∈K, have y′ ∈ F s with x′ an associated multiplier.

Proof. Since {δk} is bounded, the claim that Ax̃k K−→ b follows from the second block

equations of (3.10) and definition (3.14), since they imply

AQx̃
k + δk∆yk = b.

Next, we prove asymptotic complementarity of {(x̃k, sk)}k∈K . Using the first block

equation in (3.10) and, again, using (3.14) we have, for all k,

x̃k
j s

k
j = −xk

j ∆s
k
j , j ∈ Qk, (3.24)

x̃k
j s

k
j = 0, j ∈ n \Qk. (3.25)

4In Chapter 2 we instead used the alternatives that ∆y → 0 or not. The reader can check that
this amounts to essentially the same argument.

135

Since xk is bounded (Lemma 3.2.5), and ∆sk = −AT∆yk → 0 on K, this implies

x̃k
j s

k
j → 0 on K for all j.

The quantity ϕk := {‖[x̃k]−‖2 + ‖∆yk‖2}, appearing in the primal update (3.18),

can be viewed as an indicator of convergence to the optimal set. If ϕk K−→ 0, then

any limit point (y′, x′) of {(x̃k, yk)}k∈K is primal-dual optimal since Lemma 3.2.6

shows it is stationary, while ϕk K−→ 0 implies the multiplier x′ is nonnegative. Thus,

in such case, in view of monotonicity of the dual objective, the entire sequence {yk}

must converge to the dual optimal set. We have established the following lemma.

Lemma 3.2.7. Suppose Assumptions 1 and 2 hold. If ϕk K−→ 0 for some infinite

index set K, then yk → F ∗.

Thus if yk 6→ F ∗ then, since lim infk→∞ ϕk > 0 and ϕk 6= 0, we must have,

for some ε > 0, ϕk ≥ ε for all k. This, as is shown next, forces ∆yk → 0 so that

yk → F s by Lemma 3.2.6.

Lemma 3.2.8. Suppose Assumptions 1 and 2 hold. Then ϕk ≥ ε > 0 implies

∆yk → 0.

Proof. Suppose ϕk ≥ ε > 0 and ∆yk 6→ 0. From the update equation (3.18), ϕk ≥ ε

for all k implies xk+1
i ≥ ε for all i and k (i.e., xk

i ≥ ε for all i and k ≥ 1), and from

(3.23) that δk ≥ min{δ̄, ε} =: ε′ > 0. Now, since ∆yk 6→ 0 and {yk} is bounded,

there exists a β > 0 and an infinite index set K on which yk K−→ y′, for some y′, and

∀ k ∈ K, ‖∆yk‖ ≥ β and Qk = Q constant (since Qk ∈ 2n, a finite set). Note also

that we must have I(y′) ⊆ Q by Rule 3.2.1 and Definition 3.2.1. We then have that

for each k ∈ K,

M(Q, δk) := (AQ(Sk
Q
)−1Xk

Q
AT

Q
+ δkI) � ε′I ≻ 0,

136

and therefore

bT∆yk = (∆yk)TM(Q, δk)∆yk ≥ ε′‖∆yk‖2 ≥ ε′β2.

Next we seek a lower bound for td. In view of (3.16), it suffices to lower bound

t̄d. Using (3.17), we have t̄kd = 1 or t̄kd =
si(k)

−∆sk
i(k)

for some ∆sk
i(k) < 0 and index i(k)

depending on k. Suppose there is an infinite index set K ′ ⊆ K such that i(k) ∈ I(y′)

for all k ∈ K ′. Then, since I(y′) ⊆ Q, we have, using the first block equation of

(3.10), for all k ∈ K and some γ > 0,

t̄kd :=
sk

i(k)

−∆sk
i(k)

=
xk

i(k)

x̃k
i(k)

≥ γ > 0,

where we used xk
i(k) ≥ ε and the fact that {x̃k}k∈K is bounded (Lemma 3.2.5). On

the other hand, if there is no such K ′, then there must be an infinite index set

K ′′ ⊆ K, on which i(k) ∈ n \ I(y′), in which case, since sk
i(k) is bounded away from

zero on K ′′, and ∆sk is bounded, we have, for some γ′ > 0, that t̄kd ≥ γ′ > 0 on K ′′.

(To see that ∆sk is bounded, we use

∆sk = −AT∆yk = −ATM(Q, δk)−1b,

and note that the right-hand-side is bounded, since 0 ≺ M(Q, δk)−1 � (ε′)−1I. In

either case, the dual objective, which is monotonically increasing overall, increases

by a constant amount on an infinite index set, which is impossible, since {yk} is

bounded by Lemma 3.2.4. Thus, we must have ∆yk → 0.

Taken together, the previous two lemmas imply that either yk → F ∗, or ϕk ≥ ε > 0

and thus ∆yk → 0, so that every limit point of yk is stationary.

Lemma 3.2.9. Suppose Assumptions 1 and 2 hold. Then {yk} converges to the set

of stationary points F s.

137

As was the case for Theorem 2.3.8, if we invoke a linear independence assumption,

convergence to the optimal set can be guaranteed. Specifically, we can use the

argument of [TAW06, Lm. 11], followed by a similar argument used in Theorem

2.3.8 (see also [TAW06, Th. 12]). Whether or not this assumption is truly necessary

to get convergence to F ∗ is still an open question; this uncertainty is part of the

reason we have held out invoking the assumption until this last step. Furthermore,

a similar statement to that made in Remark 2.3.1 also applies here.

Theorem 3.2.10. Suppose Assumptions 1 and 2 hold. Under the further assump-

tion that, at every dual feasible point, the gradients of all active constraints are

linearly independent, it holds that yk → F ∗.

Quadratic local convergence

A similar local convergence analysis analysis to that in [TAW06] and Chapter 2 ap-

plies here. To carry out this analysis we need an additional, rather strong, assump-

tion, albeit an assumption that is typically needed to prove quadratic convergence

of Newton methods.

Assumption 3. The dual solution set is a singleton, i.e., F ∗ = {y∗}, yk → y∗, and

the set {ai | ci = aT
i y

∗} is linearly independent.5

An obvious consequence of this assumption is that sk → s∗ := c− ATy∗.

Assumption 3 gives us everything we need to prove quadratic convergence.

It implies that the optimal multiplier x∗ associated to y∗ is unique, that strict

complementarity holds,6 i.e., that

x∗i > 0 ∀i ∈ I(y∗), (3.26)

5Note this Assumption just combines Assumptions 3 and 4 used in the section 2.4 local conver-
gence analysis of Algorithm rMPC⋆ .

6This follows from Assumption 3 because solvable linear programs always have at least one
strictly complementary solution [Wri97, p.28].

138

and further that

span{ai : i ∈ I(y∗)} = R
m. (3.27)

Since yk → y∗, Rule 3.2.1 implies that I(y∗) ⊆ Qk for all k large enough. Assumption

3 also implies that Ak
Qk has full rank for all k large enough, so that we may allow

the regularization parameter δk to go to zero.7 The next lemma gives a few further

implications of Assumption 3, including the fact that, indeed, δk → 0. The proof of

this lemma uses very similar (actually simpler, since we have no centering-corrector

component in this algorithm) arguments to those used in Lemmas 2.4.3-2.4.6, so we

omit it.

Lemma 3.2.11. Suppose Assumptions 1, 2, and 3 hold. Then ∆yk → 0, x̃k → x∗,

xk → x∗, ∆xk → 0, ϕk → 0, δk+1 → 0, tkd → 1, and tkp → 1.

Now that we know δk → 0, since rMPC⋆ with ψ = 0 (see footnote 1 on page

76) converges quadratically under the same assumptions we invoke here, we should

expect that quadratic convergence should take place for the regularized rPDAS, as

long as δk goes to zero “fast enough”. This is indeed the case, as the analysis below

will show.

As in Chapter 2, the local convergence analysis here uses a simple lemma from

[TZ94, Proposition 3.10] (restated in Lemma 2.4.7 of this dissertation) that shows,

to prove the quadratic rate inequality,

‖z+ − z‖ ≤ c‖z − z∗‖2,

it is sufficient to consider one step of Algorithm 11 from z := (x, y) to z+ = (x+, y+)

7Lemma 3.2.7 says that if yk 6→ F ∗ then ϕk is bounded away from zero, so that (3.23) implies
δk → 0 is possible only if yk → F ∗.

139

and verify that one of the two conditions

|z+
i − zi| ≤ c‖z − z∗‖2, (3.28)

|z+
i − zN

i | ≤ c‖∆zN‖2, (3.29)

holds for each component of the update for every z close enough to z∗, all admissible

Q, and all admissible δ (as z+ will depend only on z, Q, and δ, although we suppress

indication of such dependence in our notation for readability).8 To establish these

inequalities, we need a slight modification of Lemma 2.4.9 of the previous chapter

(a minor variant of [TAW06, Lemma 16]), which bounds the difference between

the reduced, regularized step ∆zQ and the Q-component ∆zN
Q

of the unreduced,

unregularized (Newton) step. The unreduced, unregularized step ∆zN is, in fact,

the Newton step for

Φ(x, y) =






X(c− ATy)

Ax− b




 = 0,

and is given as the solution to the linear system






S −XAT

A 0











∆xN

∆yN




 =






−Xs

b− Ax




 , (3.30)

so that, by eliminating ∆xN
n\Q

from (3.30), we get






SQ −XQA
T
Q

AQ −(A
n\QXn\QS

−1
n\Q
AT

n\Q
)











∆xN
Q

∆yN




 =






−XQsQ

b− AQxQ




 . (3.31)

On the other hand, if we multiply the first block equation of (3.10) through by −XQ,

8By admissible we mean quantities that could be generated by our Algorithm 11. For Q this
just means Q ∈ Qǫ,M (y), while for δ it is a little more subtle, since δ is defined in terms of the
“previous” iterate. Nonetheless, there is a relationship (see (3.36) below) between the “current”
primal iterate x and δ that is enforced by this algorithm, and that is all we will need.

140

we get






SQ −XQA
T
Q

AQ δI











∆xQ

∆y




 =






−XQsQ

b− AQxQ




 . (3.32)

Noting the equality of the right-hand-sides of equations (3.31) and (3.32), we equate

their left-hand-sides and after a bit of manipulation, end up with






SQ −XQA
T
Q

AQ δI




 (∆zQ − ∆zN

Q
) =






0 0

0 −(A
n\QXn\QS

−1
n\Q
AT

n\Q
+ δI)




∆zN

Q
.

In a neighborhood of z∗, under Assumption 3, Lemma 2.1.1 (or [TAW06, Lemma

1]) can be used to show that the coefficient matrix on the left side of this equation

has uniformly bounded inverse near z∗ when Q, and δ are admissible. Thus, for all

z close enough to z∗, we have the bound

‖∆zQ − ∆zN
Q
‖ = c1(An\QXn\QS

−1
n\Q
AT

n\Q
+ δ)‖∆zN

Q
‖, (3.33)

for some c1 independent of z and Q. Finally since s∗
n\Q

is strictly positive, s
n\Q is

bounded away from zero close enough to the solution and x∗
n\Q

= 0. Therefore we

have

‖A
n\QXn\QS

−1
n\Q
A

n\Q‖ ≤ ‖A
n\Q‖2‖S−1

n\Q
‖‖X

n\Q‖

≤ c2‖xn\Q‖ = c2‖xn\Q − x∗
n\Q

‖ ≤ c2‖z − z∗‖, (3.34)

and from (3.18) and (3.23), if z is close enough to z∗, every admissible δ satisfies

δ = min{φ−, δ̄}, (3.35)

where ϕ− indicates the value of ϕ from the previous step. On the other hand, (3.18)

141

implies that, for the same ϕ−,

min{ϕ−, ξmax} ≤ min
i∈Q

xi ≤ min
{i∈Q | x∗

i =0}
|xi − 0| ≤ ‖x− x∗‖ ≤ ‖z − z∗‖, (3.36)

and we note that {i ∈ Q | x∗i = 0} is nonempty, since Rule 3.2.1 ensures that Q

contains at least one constraint that is inactive at the solution, i.e., there is some

index i′ ∈ Q, with s∗i′ > 0, so that x∗i′ = 0 by complementarity. Finally, (3.35) and

(3.36) then imply that for all z close enough to z∗,

δ ≤ ‖z − z∗‖,

and putting this together with (3.33) and (3.34), we get

‖∆zQ − ∆zN
Q
‖ = c‖z − z∗‖ · ‖∆zN

Q
‖,

which is the conclusion of [TAW06, Lemma 16] and Lemma 2.4.9. The rest of the

local convergence analysis follows arguments made in [TAW06] and/or in Chapter

2, to which we refer the reader.

3.2.2 Regularization in the limit of small δ: motivating the
second algorithm

Consider the ∆y component of the search direction of Algorithm 11, which satisfies

the regularized normal equation (for simplicity of notation, we take Q = n here)

(AS−1XAT + δI)∆y = b. (3.37)

142

We investigate what happens in the limit of small regularization parameter δ. For

this, it helps to consider a spectral decomposition of the normal matrix

M = AS−1XAT = V ΣV T =

(

V1 V2

)






Σ1 0

0 0











V T
1

V T
2






with the columns of V1 spanning R(M), the columns of V2 spanning N (M), and

Σ1 > 0. Using this, the dual step can be expressed as

∆y = (V ΣV T + δV V T)−1b

= V (Σ + δI)−1V Tb

=

(

V1 V2

)






Σ1 + δI 0

0 δI






−1




V T
1

V T
2




 b

= V1(Σ1 + δI)−1V T
1 b+ δ−1V2V

T
2 b. (3.38)

As δ → 0, the first term of (3.38) converges to the least norm solution to M∆y = b.

The second term of the last expression is δ−1 times the projection of b onto N (AT) =

N (M). So for vanishing δ, the regularized dual search direction will be along the

projection of b onto the nullspace of AT, unless b has no component in this nullspace,

i.e., unless ∆y is in the range of A, in which case, the search direction will be the

least norm solution to the normal equations. Next we analyze an algorithm based

on this limit direction.

Remark 3.2.1. Interestingly, a variant of the kernel step algorithm presented below

was first proposed by Tits, Absil and O’Leary [TAO06], before the idea for the regu-

larized rPDAS algorithm came about. Only later was this connection made between

the two algorithms.

143

3.2.3 Kernel step rPDAS

This algorithm is similar to Algorithm 11, and we are able to prove similar results.

The analysis is a blend of arguments developed in an unpublished technical report

of Tits, Absil and O’Leary [TAO06], those developed in in Chapter 2 (both of which

borrow from [TAW06]), and some new ideas. As before, the algorithm starts from

a dual strictly feasible point y0, and primal (possibly infeasible) interior point, i.e.,

x0 > 0 but not necessarily with Ax0 = b. We again select Q according to Rule 3.2.1.

Next, we determine whether b ∈ R(AQ). If so, we take a “regular step” defined to

be the least norm solution to

(AQS
−1
Q
XQAQ)∆y = b. (3.39)

If, instead, b 6∈ R(AQ), then we take a “kernel step” along ∆y, which is defined to

be the projection of b onto N (AT
Q
). In either case, the primal step is defined in the

same way as before using equations (3.13) and (3.18)-(3.20). Notice however, that

∆sQ = 0 for kernel steps. This implies x̃Q = −S−1
Q
XQ∆sQ = 0, so that by (3.14),

x̃ = 0 for kernel steps. In the case of a regular step, the dual step length td is chosen

according to (3.16)-(3.17), repeated here:

td = max{βt̄d, t̄d − ‖∆y‖}, (3.40)

t̄d = min

{

1, min

{
si

−∆si
| ∆si < 0

}}

. (3.41)

In the case of a kernel step, we define td differently. First of all, the kernel step length

is not limited to 1; we go along this direction until we hit a blocking constraint not

in working set Q, and take a step almost all of the way to the boundary. Specifically,

defining

ı̂ := arg min

{
si

−∆si
| ∆si < 0

}

, (3.42)

144

(Proposition 3.2.14 below shows that ı̂ is always well defined) and

s := min{sM , ǫ}, (3.43)

where ǫ > 0 and M are the defining parameters for Qǫ,M(y), sM is an Mth smallest

entry of s, and td is chosen as

td :=
sı̂ − θs

|∆sı̂|
, (3.44)

where θ ∈ (0, 1) is an algorithm parameter. This choice of td ensures that the

blocking constraint (indexed by ı̂) will be contained in the updated working set Q+,

and enforces a condition that prevents the algorithm from executing only kernel

steps (Lemma 3.2.19).

We now state the kernel step rPDAS algorithm. The iteration index will be justified

below in Proposition 3.2.14.

145

Algorithm 12: Kernel-step rPDAS

Input: LP data: A, b, c; Initial iterate: y0, s0 = c− ATy0 > 0, x0 > 0;

Parameters: M ∈ n, ǫ > 0, ξmax > 0, χ > 0, β ∈ (0, 1);

Set k = 0, choose Q0 obeying Rule 3.2.1;

while forever do

if b ∈ R(AQk) then (regular step)

Compute ∆yk as the least norm solution of (3.12);

Update the dual variables using (3.15)-(3.17);

else (kernel step)

Set ∆yk equal to the orthogonal projection of b onto N (AT
Qk);

Update the dual variables using (3.42)-(3.44);

end

Compute ∆xk
Qk , x̃

k, and ϕk from (3.13), (3.14), and (3.22);

Update the Qk component of the primal variables using (3.18)-(3.20);

Compute µ+
Qk from (3.21), and compute x+

n\Q using (3.18)-(3.20);

Choose Qk+1 according to Rule 3.2.1;

Set k = k + 1;

end

Global convergence

First we note that if ∆y comes from a kernel step, then it cannot be arbitrarily

small.

Lemma 3.2.12. There exists γ > 0, depending only on A and b, such that ‖∆y‖ ≥ γ

whenever ∆y corresponds to a kernel step.

Proof. A kernel step is taken only when b is not in the range of AQ, thus not

orthogonal to the kernel of AT
Q
. Since kernel steps ∆y are obtained by projection of

b on the kernel of AT
Q
, they are nonzero. Since there are only finitely many different

146

such ∆y (because there are only finitely many submatrices AQ), there must exist

γ > 0 such that ‖∆y‖ ≥ γ.

As in the analysis of the regularized rPDAS, monotonicity of the objective plays a

key role. The first lemma shows that ∆y generated by the kernel step algorithm is

always an ascent direction.

Lemma 3.2.13. Let ∆y be as constructed by Algorithm 12. Then ∆y 6= 0 and

bT ∆y > 0.

Proof. If b ∈ R(AQ), under the assumption that b 6= 0, ∆y = 0 is not a solution to

equation (3.39), so the least norm solution ∆y is nonzero; and if b 6∈ R(AQ), then

b is not orthogonal to N (AT
Q
) and hence its orthogonal projection ∆y on N (AT

Q
)

again is nonzero. If b 6∈ R(AQ), the second claim is immediate and if b ∈ R(AQ), it

follows from positive semidefiniteness of AQS
−1
Q
XQA

T
Q

that

(∆y)Tb = (∆y)T(AQS
−1
Q
XQA

T
Q
)∆y = ‖(AQS

−1
Q
XQA

T
Q
)1/2∆y‖2 > 0.

Indeed, (AQS
−1
Q
XQA

T
Q
)1/2∆y cannot vanish, since b = (AQS

−1
Q
XQA

T
Q
)∆y 6= 0.

Under a mild assumption, Algorithm 12 is well defined, and can be repeated ad

infinitum.9

Proposition 3.2.14. Suppose Assumptions 1 and 2 hold. Then Algorithm 12 is

well defined, and constructs quantities with the properties that td ∈ (0,∞), y+ ∈ F o,

s+ = c− ATy+ > 0, and x+ > 0.

Proof. First, since s > 0, it always holds that td > 0. Since bT∆y > 0 (Lemma 3.2.13),

it follows from nonemptiness of the solution set, which is implied by Assumptions 1

9When b = 0, which is of course a trivial situation since we require dual feasibility, we have
x+ = 0. Still, when b = 0 and x = 0 and all other requisite conditions are satisfied, the kernel step
rPDAS algorithm is well defined, produces again x = 0 (which indeed is the optimal x), and can
be repeated ad infinitum.

147

and 2, that the largest feasible dual step size must be finite. This implies, in view of

(3.40) − (3.42), that ∆si < 0 for some i, so td is always finite and ı̂ is well defined.

It is also easy to see that, under a kernel step, ∆sQ = 0, so we must have ı̂ ∈ n \Q.

In view of (3.15), it is always the case that s+ = c − ATy+. It remains to show

that td > 0 and that s+ > 0 (i.e., y+ ∈ F o) and x+ > 0. When b ∈ R(AQ), td > 0

follows from (3.40) and the fact that td > 0. When b 6∈ R(AQ), td > 0 follows from

(3.44) and the facts that |∆sı̂| > 0, sı̂ > 0, θ ∈ (0, 1), s ≤ sı̂ (since ı̂ ∈ n \Q). Next,

the inequality s+ > 0 follows from (3.41) and (3.15) when b ∈ R(AQ), while, when

b 6∈ R(AQ), we have for all i,

s+
i = si + td∆si = si

(

1 + td
∆si

si

)

≥ si

(

1 + td
∆sı̂

sı̂

)

= si

(

1 − sı̂ − θs

sı̂

)

> 0,

(3.45)

where we have used definition (3.42) of ı̂ and the fact that θs > 0. Finally, ∆y 6= 0

(Lemma 3.2.13), (3.18) and (3.22) imply that for i ∈ Q, x+
i > 0, while for i ∈ n \Q,

(3.18), (3.21), x+
Q
> 0, and s+ > 0, again give x+

i > 0.

Our analysis focuses on the dual sequence {yk}. First, we have the analog of Lemma

3.2.4.

Lemma 3.2.15. The sequence {bTyk} is strictly monotonically increasing. Further,

if Assumptions 1 and 2 hold, then {yk} is bounded.

Proof. Strict monotonicity of {bTyk} follows from Lemma 3.2.13 (and that b 6= 0),

Proposition 3.2.14 (tkd > 0), and (3.15). Assumptions 1 and 2 imply that the dual

solution set is nonempty and bounded, which is equivalent to the superlevel sets

{y ∈ F | bTy ≥ α} being bounded for all α. Boundedness of {yk} then follows from

its feasibility and monotonicity of {bTyk} (Lemma 3.2.13).

Lemma 3.2.16. Suppose Assumption 2 holds. Let K be the set of indexes k such

that a kernel step is taken from yk. Then
∑

k∈K ‖yk+1 − yk‖ converges.

148

Proof. Since {bTyk} is nondecreasing and bounded (Lemma 3.2.15), we know that

∞∑

k=0

|bT (yk+1 − yk)| =

∞∑

k=0

bT (yk+1 − yk) < ∞, (3.46)

which implies that
∑

k∈K

|bT (yk+1 − yk)| < ∞. (3.47)

To complete the proof, we show that there is a constant C such that

‖yk+1 − yk‖ < C|bT (yk+1 − yk)| ∀k ∈ K. (3.48)

Since yk+1 − yk = tkd∆y
k and bT (yk+1 − yk) = tkdb

T ∆yk, (3.48) is equivalent to

‖∆yk‖ < C|bT ∆yk|. (3.49)

However, since a kernel step is taken whenever k ∈ K, (3.49) follows from the fact

that (due to finiteness of the set of possible Qk) the angle between b and ∆yk is

bounded away from 90 degrees over K.

As before, the sequence of primal variables generated by Algorithm 12 also remains

bounded.

Lemma 3.2.17. Suppose Assumptions 1 and 2 hold. Then {xk} and {x̃k} are

bounded.

Proof. We first show that x̃k
Qk is bounded. First note that if k is an iteration index

corresponding to a kernel step, then ∆sk
Qk = 0, and therefore, in view of (3.13),

(3.14) and (3.11), we have

x̃k
Qk = −(Sk

Qk)
−1Xk

Qk∆s
k
Qk = 0,

149

while x̃
n\Qk := 0. If instead, k corresponds to a regular step, then defining Dk

Qk :=

Xk
Qk(S

k
Qk)

−1, from the definition of the regular step and (3.13)-(3.14), we have

x̃k
Qk = Dk

QkA
T
Qk(AQkDk

QkA
T
Qk)

†b, (3.50)

where † denotes the pseudoinverse. In general for M � 0, when b ∈ R(M), it holds

that (M + δI)−1b → M †b as δ → 0 (c.f. section 3.2.2). Together with the fact,

derived in Lemma 3.2.5, that for some R independent of Qk, Dk
Qk , and any δ > 0,

‖Dk
QkA

T
Qk(AQkDk

QkA
T
Qk + δI)−1b‖ ≤ R,

(3.50) establishes boundedness of the {x̃k} sequence (since again x̃k
n\Q

:= 0). Let

R′ ≥ R be such that ‖x̃k‖∞ ≤ R′ where, without loss of generality, R′ ≥ ‖x0‖∞.

Thus, since xk+1
Qk is in the convex hull of {xk

Qk , x̃
k
Qk}, we have that ‖xk+1

Qk ‖∞ ≤ R′,

while for i ∈ n \Qk, xk+1
i is explicitly bounded above by χ, and we may assume

R′ ≥ χ without loss of generality. The result then follows by induction.

The next lemma is analogous to Lemma 3.2.6.

Lemma 3.2.18. Suppose Assumption 1 holds and ∆yk → 0 on an infinite index set

K, then X̃ksk K−→ 0 and Ax̃k K−→ b on K. In particular, all limit points (y′, x′) of the

bounded sequence {(yk, x̃k)}k∈K have y′ ∈ F s with x′ a corresponding multiplier.

Proof. In view of Lemma 3.2.12, there is no loss of generality in assuming that, for

all k ∈ K, ∆yk is constructed by a regular step. The claim that Ax̃k K−→ b is a

straightforward consequence of (3.13) and definition (3.14). (In fact, Ax̃k = b when

k corresponds to a regular step.) Next, we prove asymptotic complementarity of

150

{(x̃k, sk)}k∈K . Using again (3.13) and (3.14) we have, for all k,

x̃k
j s

k
j = −xk

j ∆s
k
j , j ∈ Qk, (3.51)

x̃k
j s

k
j = 0, j ∈ n \Qk. (3.52)

Since xk is bounded (Lemma 3.2.5), and ∆sk = −AT∆yk → 0 on K, this implies

x̃k
j s

k
j → 0 on K for all j.

Lemma 3.2.19. Suppose that Assumptions 1 and 2 hold. Then the sequence of

regular steps is infinite.

Proof. Proceeding by contradiction, suppose that eventually, for k ≥ k0 say, all steps

are kernel steps, and consider k ≥ k0. Let Πk be the set of indices of the components

of sk that are smaller than ǫ. If |Πk| ≤ M , then according to Rule 3.2.1, Πk ⊆ Qk

and so sk+1
i = sk

i < ǫ for all i ∈ Πk, while, in view of the step-size rule (3.44), for

ı̂ ∈ n \Qk ⊆ n \ Πk, sk+1
ı̂ = θsk < ǫ, so that |Πk+1| ≥ |Πk| + 1. On the other

hand, if |Πk| > M , again by Rule 3.2.1, there is a subset of Πk of size M that is

contained in Qk, and again since sk+1
i = sk

i < ǫ, for all i ∈ Qk and sk+1
ı̂ < ǫ, we have

|Πk+1| ≥M +1. Thus we can assume without loss of generality that |Πk| > M , and

thus, for all k, sk = sk
M (from (3.43)).

Now let σk
M denote the sum of M smallest entries of sk, we will show that

under the contradiction hypothesis, σk
M → 0. Yet again, noting that for all i ∈ Qk,

sk+1
i = sk

i , and with ı̂ ∈ n \Qk, sk+1
ı̂ = θsk = θsk

M , and since σk
M ≤ Msk

M , we have

σk+1
M ≤ σk

M + sk+1
ı̂ − sk

M

= σk
M − (1 − θ)sk

M

≤
(

1 − 1 − θ

M

)

σk
M .

Thus indeed, σk
M → 0. Now, due to the finite number of columns of A, there must

151

exist some Q̂ and some indexes i1, i2, . . . , iM ∈ Q̂ such that, for some infinite index

set K, Qk = Q̂ and σk
M =

∑M
ℓ=1 s

k
iℓ

for all k ∈ K, k large enough. Hence, for

ℓ = 1, 2, . . . ,M , sk
iℓ

goes to zero as k goes to infinity, k ∈ K. If we assume, without

loss of generality (since, as per Lemma 3.2.15, yk is bounded), that yk converges to

some dual-feasible y′ on K, all constraints iℓ, ℓ = 1, 2, . . . ,M , are active at y′. Since

i1, i2, . . . , iM ∈ Q̂ and since, by Rule 3.2.1, M is a strict upper bound on the number

of constraints active at any dual-feasible point, we have our contradiction.10

The next two lemmas are the analogs of Lemmas 3.2.7 and 3.2.8 from the analysis

of Algorithm 11. They apply almost identically, except only on infinite index sets

K corresponding to regular steps.

Lemma 3.2.20. Suppose Assumptions 1 and 2 hold. Then, if ϕk K−→ 0 for any

infinite index set K consisting of regular steps, then yk → F ∗.

Thus if yk 6→ F ∗ then we must have, for some ε > 0, ϕk ≥ ε (since lim infk→∞ ϕk > 0

and ϕk 6= 0) and this will be shown to lead to a contradiction.

Lemma 3.2.21. Suppose Assumptions 1 and 2 hold and let K be the set of regular

steps. If infk∈K ϕ
k ≥ ε > 0, then ∆yk K−→ 0.

Proof. Suppose ϕk ≥ ε > 0 and for some infinite K ′ ⊆ K, ‖∆yk‖ ≥ ε′ on K ′. From

the update equation (3.18), ϕk ≥ ε implies xk+1
i ≥ ε for all i and k (i.e., xk

i ≥ ε for

all i and k). Assume, without loss of generality, that yk → y′ on K ′ and Qk = Q is

constant for k ∈ K ′. Note that we then must have I(y′) ⊆ Q by Rule 3.2.1. Also,

since yk is bounded, sk = c−ATyk is also bounded, and we let R be an upper bound

for ‖sk‖.

Since K ′ consists of regular steps, ∆yk is the least-norm solution to the normal

equations. This implies that ∆yk ⊥ N (AT
Q
) and thus that ‖∆sk

Q
‖ = ‖AT

Q
∆yk‖ >

10One of the reasons that Rule 3.2.1 requires M to be a strict upper bound on the number of
active constraints at any dual feasible point is so that this argument can be made.

152

β ′ > 0 for all k ∈ K ′. Therefore, we have, for all k ∈ K ′,

bT∆yk = (∆yk)T(AQ(S−1
Q

)kXk
Q
AT

Q
)∆yk = (∆sk

Q
)T(S−1

Q
)kXk

Q
∆sk

Q
≥ ε

R
β ′ > 0

Next we seek a positive lower bound for td. In view of (3.17), it suffices to lower

bound t̄d. From (3.17), either tkd = 1, or tkd =
si(k)

−∆sk
i(k)

for some ∆sk
i(k) < 0 and index

i(k) depending on k. Suppose there is an infinite index set K ′′ ⊆ K ′ such that

i(k) ∈ I(y′). Then, since I(y′) ⊆ Q, we have using the first block equation of (3.10),

for all k ∈ K ′′,

tkd :=
si(k)

−∆sk
i(k)

=
xi(k)

x̃k
i(k)

≥ γ > 0,

where we used xi(k) ≥ ε and {x̃k}k∈K bounded (Lemma 3.2.5). On the other hand,

if there is no such K ′′ then there must be an infinite index set K ′′′ ⊆ K ′, on which

i(k) ∈ n \ I(y′), in which case, since si(k) is bounded away from zero on K ′′′, and

∆sk is bounded (as we show next), we have tkd ≥ γ > 0 on K ′′′. To see that ∆sk

is bounded, since ∆yk ⊥ N (AT
Q
), we can solve for ∆yk in (3.13) (using (3.14)), and

then compute ∆sk from (3.11) to get

∆sk = −AT(AT
Q
)†X−1

Q
SQx̃

k
Q
,

and note that the right hand side is bounded on K ′′′, since x̃k is bounded and xk ≥ ε

on K ′′′. In either case, we have that the dual objective, which is monotonically

increasing overall, increases by a constant amount on an infinite index set, which is

impossible, since we have assumed the dual solution set to be bounded. Thus, we

must have ∆yk → 0.

Lemma 3.2.22. Suppose Assumptions 1 and 2 hold. Then {yk} converges to the

set of stationary points, F s.

Proof. By boundedness, {yk} converges to its set of accumulation points, which we

153

will show are stationary. Lemma 3.2.16 implies that accumulation points of the

entire sequence {yk} must also be accumulation points of {yk}k∈K , where K is the

set of indices where regular steps are taken, so it suffices to show that accumulation

points of {yk}k∈K are all stationary. Clearly, either {ϕk}k∈K converges to zero or it

is bounded away from zero. In the latter case yk K−→ F s while in the former case

yk K−→ F ∗ ⊆ F s. This concludes the proof.

Once again, invoking the linear independence assumption used in Theorem

2.3.8, we can get the same global convergence to the optimal set. The arguments of

[TAW06, Lm. 11,Th. 12] and Theorem 2.3.8 do the job here as well.

Theorem 3.2.23. Suppose Assumptions 1 and 2 hold. Under the further assump-

tion that, at every dual feasible point, the gradients of all active constraints are

linearly independent, it holds that yk → F ∗.

Quadratic local convergence

We can again prove q-quadratic convergence of {zk} = {(xk, yk)} generated by the

kernel step rPDAS algorithm under Assumption 3. As before, let y∗ denote the

unique solution to (1.4), i.e., F ∗ = {y∗}, let s∗ := c − ATy∗, and let x∗ be the

corresponding multiplier vector, unique in view of Assumption 3. Assumption 3

again implies that strict complementarity holds, i.e.,

x∗i > 0 ∀i ∈ I(y∗). (3.53)

and that

span{ai : i ∈ I(y∗)} = R
m. (3.54)

From Rule 3.2.1 it follows that for all k large enough, I(y∗) ⊆ Qk, and the assump-

tion ensures that AQk has full row rank for all k large enough, so that, eventually,

154

no kernel steps are taken.

Proposition 3.2.24. Suppose that Assumption 3 holds. Then, the sequence of

kernel steps is finite.

It follows that, for k ≥ k0, for some k0, the sequences {xk} and {yk} are identical

with those produced by setting parameter ψ = 0 in Algorithm 10/rMPC⋆ of Chapter

2 (see footnote 1 on page 76), with xk0 and yk0 as initial primal and dual iterates.

The analysis of section 2.4 then applies, so that the sequence {(xk, yk)} converges

q-quadratically. (See Theorem 2.4.1, and also Theorem 17 of [TAW06]).

Theorem 3.2.25. Suppose Assumptions 3 holds. Then {(xk, yk)} converges to

(x∗, y∗) q-quadratically.

3.3 Adding a barrier term

With some amount of work, a barrier term and a Mehrotra-type corrector component

can be added to either of the algorithms discussed in this chapter.11 This can be

done in a similar way as was done for the unregularized case in Chapter 2, where the

analysis of [TAW06] was modified to allow such an augmentation to the algorithm,

preserving the convergence result. Such addition is expected to improve practical

performance significantly. We leave the details for future work.

11In fact the method of adding the barrier term after computing the affine scaling component
was critical in establishing convergence of the algorithm in Chapter 2, and presumably would be
here as well. There the centering-corrector term is added with an adaptive weight that allows
enforcement of dual ascent and other critical properties of the algorithm.

155

Chapter 4

Numerical experiments

In this chapter we develop some numerical experience with our algorithms. We

investigate some problems that can be formulated as LPs with many inequality con-

straints, develop some specific constraint selection rules that fit within the general

class used in Chapters 2-3, and run some numerical experiments, including a com-

parison against prior constraint-reduced IPMs. We attempt to identify whether our

specific constraint-selection rules work well on each problem, and if not, understand

why. We also try to identify good heuristics for constraint selection based on an

understanding of the particular structure of the problem class. In section 4.1 be-

low, we consider problems that are not particularly rank-degenerate and focus on

our first algorithm rMPC⋆. Later, in section 4.2, we investigate the performance of

the regularized and kernel-step rPDAS algorithms of Chapter 3 on some especially

degenerate test problems, and observe some interesting qualitative behavior.

4.1 Numerical experiments with rMPC⋆

We first focus on Algorithm 10/rMPC⋆. We discuss in detail our implementation

and then present some specific rules for constraint selection and investigate the

156

performance of rMPC⋆ on two classes of problems. Finally, we make a comparison

with some of the other constraint reduced IPMs discussed in Chapter 1. Sections

4.1.1-4.1.4 of this chapter are derived from [WNTO10].

4.1.1 Implementation

Algorithm rMPC⋆ was implemented in Matlab(R) and run on an Intel(R) Pen-

tium(R) Centrino Duo 1.73GHz Laptop machine with 2 GB RAM, Linux kernel

2.6.17 and Matlab 7 (R14). To compute the search directions (2.21) we solved the

normal equations (2.49) and (2.51), using Matlab’s Cholesky factorization routine

chol. Parameters for rMPC⋆ were chosen as β := 0.95, θ = 0.1, ψ = 109, ζ = 0.3,

λ = 3, ν = 3, χ = 109, and ξmax := 10−11, and for each problem discussed below, we

assume that a small upper bound M on the number of active constraints is available,

and so we always take ǫ = ∞. The code was supplied with strictly feasible initial

dual points (i.e., y0 ∈ F o),and we set x0 := e, the vector of ones.

We used a stopping criterion adapted from [Meh92, p. 592], based on normal-

ized primal and dual infeasibilities and duality gap. Specifically, taking into account

dual feasibility of all iterates, convergence was declared when

termcrit := max

{‖b− Ax‖
1 + ‖x‖ ,

|cTx− bTy|
1 + |bTy|

}

< tol, (4.1)

where tol was set to 10−8.

For algorithm rMPC⋆, the main focus of this chapter, our analysis assumes Q is

selected according to the general Rule 2.2.1, i.e., that Q ∈ Qǫ,M(y) at each iteration.

To complete the description of a specific rule for constraint selection, we simply need

to specify any additional constraints that are to be included in Q, particularly so

that rank condition C2 of Definition 2.2.1 holds. (We discuss the regularized and

kernel-step algorithms that don’t have this issue, in section 4.2 below.) A simple

157

way to deal with C2 is the following. At each iteration, set Q to be a set of M most

active constraints, form the normal matrix and attempt to factor it. If C2 fails, then

the standard Cholesky factorization will fail. At this point simply add the next M

most active constraints to Q, and repeat the factorization attempt with |Q| = 2M .

If it still fails, increase |Q| to 4M by adding the next most active constraints, etc.

(On the next iteration we revert to using only M constraints.) We refer to this

technique as the “doubling” method.

One alternative to the doubling method, discussed in section 3.1.3, is to aug-

ment the dual problem with bound constraints on the y variables, i.e., −πe ≤ y ≤ πe

for some scalar π > 0, and always include these constraints in Q in addition to the

M most active ones. This ensures that C2 holds, while adding negligible additional

work (since the associated constraint vectors are sparse). Furthermore, in practice,

π can be chosen large enough so that these constraints are never active at the so-

lution. Both the doubling method and this “bounding” method were used in our

tests of rMPC⋆, as indicated below.

Without resorting to the regularized algorithms (which we believe is the best

way to resolve the rank-degeneracy issue), a third possibility, also mentioned in the

introduction to Chapter 3, would be to use instead a pivoted Cholesky algorithm

that will compute the factor of a nearby matrix [Hig90], regardless of Q. If C2 fails,

the factor can be (efficiently) updated by including additional constraints [GL83,

Sec.12.5], chosen according to slack value or otherwise, until the estimated condition

number [GL83, p.129] is acceptably small.

We refer to this rule that uses only the M most active constraints, doubling

or bounding if needed, as the “Most Active Rule”. While simple, the Most Active

Rule does not always provide great performance on its own, and it may be desirable

to keep additional constraints in Q to boost performance. In the sequel we describe

some possible methods for selecting additional constraints, and in section 4.1.3 be-

158

low, we give a detailed example of how a heuristic may be developed and tailored

to a particular class of problems.

4.1.2 Randomly generated problems

As a first test, following [TAW06], we randomly generated a standard form linear

program of size m = 200, n = 40000, by taking A, b, y0 ∼ N (0, 1) and then

normalizing the columns of A. We set s0 ∼ U(0, 1) (uniformly distributed in (0, 1))

and c := ATy0 + s0 which guarantees that the initial iterate is strictly dual feasible.

The iteration was initialized with this (s0, y0) and x0 := e, the vector of ones. This

problem is called the “fully random” problem in [TAW06], where a different x0 is

used.

On this problem class, every m×m submatrix of A has full rank, so that any

M ≥ m is valid, and the doubling (or bounding) technique is never needed. Here,

it turns out, constraint reduction works extremely well with the simple Most Active

Rule as long as M is chosen slightly larger than m. Figure 4.1 shows the results for

the Most Active Rule. The points on the plots correspond to different runs on the

same problem. The runs differ in the number of constraints M that are retained

in Q, which is indicated on the horizontal axis as a fraction of the full constraint

set (i.e., M/n is plotted). Thus, the rightmost point corresponds to the experiment

without constraint reduction, while the points on the extreme left correspond to

the most drastic constraint reduction. To resolve the performance near M = m

(the lower bound for M), we have used a logarithmic scale. In the left plot, the

vertical axis indicates, for each value of the abscissa, total CPU time to successful

termination, as returned by the MATLAB function cputime, while the right plot

shows the total number of iterations to successful termination. On the timing plot,

a horizontal dotted line is used to show the time to solution for rMPC⋆ in the

unreduced case. This also essentially gives the performance of the original Iteration

159

MPC, as stated in section 1.12.2. Indeed, it was observed that the safeguards of

rMPC⋆ do not hurt the empirical performance of MPC in the unreduced case.

Figure 4.1: Most Active Rule on the size m = 200, n = 40000 random problem, horizon-
tal axis is on a logarithmic scale. The horizontal dotted black line in the left plot marks
the performance of the unreduced MPC algorithm. The vertical asymptote corresponds
to keeping constraint sets of size approaching m. In particular, the leftmost data point
corresponds to keeping only 205 constraints.

While the random problem has a large amount of redundancy in the con-

straint set, this may not always be the case, and in general we may not know a

priori how many constraints should be kept. We also expect, intuitively, that fewer

constraints will be needed as the algorithm nears the solution and the partition into

active/inactive constraints (at the solution) becomes better resolved. Thus we would

like to find rules that let the algorithm adaptively choose how many constraints it

keeps at each iteration, i.e., that allow the cardinality of the working set to change

from iteration to iteration. As an initial stride towards this end, we consider asso-

ciating a scalar value vi to each constraint for i ∈ n. A large value of vi indicates

that we believe keeping constraint i in Q will improve the search direction and a

small value means we believe it will not help or possibly will do harm. In addition

to the M constraints selected according to the Most Active Rule, we add up to M ′

constraints that have vi ≥ 1, selecting them in order of largest value vi first. We

refer to this rule as the Adaptive Rule. We propose two specific variants of this rule.

160

In the first variant, we set

vi = ηmin
j∈n

{sj}/si,

that is, we add additional constraints that have a slack value smaller than a fixed

multiple η > 1 of the minimum slack. In the second variant, we set

vi = η

√

xi/si

max{xj/sj}
,

that is, we add the ith constraint if
√

xi/si is within a fixed multiple 1/η of the

maximum value of
√

xj/sj.
1 This rule combines information from both the primal

and dual variables with regard to “activity” of this constraint. Note also that this

vi is the (scaled, square root of the) “coefficient” of the ith constraint in the normal

matrix sum (1.16); thus we could interpret this rule as trying to keep the error

between the reduced and unreduced normal matrix small. In view of (2.49a), we

may expect that constraints with small values of
√

xi/si do not play much of a role

in the construction of ∆ym.

Figure 4.2 shows the results of using the second variant of the Adaptive Rule

on our random LP. We set M = 2m and plot (M + M ′)/n on the horizontal axis.

The plot shows that, when η = 10, the average (over an optimization run) time per

iteration increases very slowly as the upper bound M+M ′ on |Q| increases, starting

from the lower bound M = 2m. (Indeed, the right plot shows that the total number

of iterations remains roughly constant.) This means that the average size of |Q| (over

a run) itself increases very slowly, i.e., that |Q| departs little from its minimum value

2m in the course of a run. If η is increased to 1000, the average value of |Q| increases,

which means more variation of |Q| in the course of a run (since |Q| is close to M0 at

the end of the runs: see below); this is the intended behavior. The general behavior

of these rules is that in early iterations the vi are spread out and, with large η, many

1The square root allows the use of similar magnitude η for both variants.

161

will be larger than the threshold value of one. Thus, the iteration usually starts out

using M constraints, the upper bound. As the solution is approached, all vi’s tend

to zero except those corresponding to active constraints which go to infinity (the

second variant needs strict complementarity for this), thus in later iterations only

the M0 most active constraints (the lower bound) will be included in Q. We have

observed that this transition from M +M ′ to M constraints occurs rather abruptly

usually over the course of just a few iterations; the choice of η serves to advance or

delay this transition. In summary, the Adaptive Rule, like the Most Active Rule,

keeps the number of iterations approximately constant over a wide range of choices

of M+M ′, but unlike the Most Active Rule, the time is also approximately constant,

remaining much less than that for MPC.

We could think of many variations of the Adaptive Rule. Here we have only

considered rules that choose v as a function of the current iterate, whereas we expect

that by allowing v to depend on the entire history of iterates and incorporating more

prior knowledge concerning the problem structure, etc., better constraint reduction

heuristics could be developed. We believe that designing good adaptive rules will be

a key to successful and robust application of constraint reduction; we largely leave

this for future work.

Figure 4.2: Adaptive Rule, second variant with M = 2m and η = 101, 103,∞ (setting
η = ∞ corresponds to the Most Active Rule) on the size m = 200, n = 40000 random
problem, horizontal axis on log scale. Here the horizontal axis represents M + M ′, the
upper bound on the size of the constraint set. Again, the horizontal dotted black line in
the left plot marks the performance of the unreduced MPC algorithm.

162

4.1.3 Discrete Chebyshev approximation problems

Here we investigate a “real-world” application, fitting a linear model to a target

vector by minimizing the infinity norm of the residual, namely,

min
u

‖Hu− g‖∞,

where g is the target vector, H is the model matrix, and u is the vector of model

parameters. This can be formulated as a linear program in standard dual form

max{ −t | Hu− g ≤ te, −Hu+ g ≤ te }. (4.2)

If H has dimension p× q, then the “A matrix” of this LP has dimension m×n with

m = q + 1 and n = 2p so that, if p ≫ q (as is typical), then n ≫ m. Dual strictly

feasible points are readily available for this problem; we used the dual-feasible point

u0 = 0 and t0 = ‖g‖∞ + 1 to initialize the algorithm.

As a specific test, we took p = 20000 equally spaced samples of the smooth

function

g0(t) = sin(10t) cos(25t2), t ∈ [0, 1] (4.3)

and stacked them in the p-dimensional vector g. For the columns of H , we took the

q = 199 lowest frequency elements of the discrete Fourier transform (DFT) basis.

When converted to (4.2), this resulted in a m×n linear program with m = 200 and

n = 40000. For this problem, we circumvented the rank condition C2 by adding

the bound constraints −103 ≤ y ≤ 103 (for a total of 40400 constraints) and always

including them in Q.

The initial results were poor: using the basic Most Active Rule with M =

20m and an additional 3m randomly selected constraints, rMPC⋆ required over 500

iterations to solve the problem to 10−8 accuracy. Numerical evidence suggests that

163

there are two distinct issues here; the first causes slow convergence in the initial phase

of the iteration, reducing termcrit (see (4.1)) to around 10−2, and the second causes

slow convergence in the later phase of the iteration, further reducing termcrit to

10−8.

The first issue is that since, for fixed y, the slack “function” c − ATy is

“smooth”2with respect to its index, the most nearly active constraints are all clus-

tered into a few groups of contiguous indices corresponding to the minimal modes

of the slack function. Intuitively, this does not give a good description of the feasi-

ble set, and furthermore, since the columns of A are also smooth in the index, AQ

is likely to be rank deficient, or nearly so, when only the most active constraints

are included in Q, i.e., for the Most Active Rule. This clustering appears to cause

slow convergence in the initial phase. This problem can in large part be avoided by

adding a small random sample of constraints to Q: vastly improved performance is

gained, especially in the initial phase.

The second issue, which persists even after adding random constraints, is that

Q is missing certain constraints that appear to be critical in the later phase, namely

the local minimizers of the slack function. The omission of these constraints results

in very slow convergence in the later phase of the iteration. For example, we ran

rMPC⋆ using M = 3m and adding 10m random constraints and observed that

termcrit was reduced below 10−2 in 90 iterations, but that another 247 iterations

were needed to achieve termcrit< 10−8. Strikingly, in 88% of these later iterations,

the blocking constraint, i.e., the one which limited the line search, was a local

minimizer of the slack function not included in Q. If we instead used M = m and

again 10m random constraints, this happened in nearly 100% of the later iterations.

In light of these observations, we devised a simple heuristic for this class of

smooth Chebyshev problems: use a small M , a small number of random constraints,

2This is because with the chosen discretization, the slack function is effectively oversampled by
a very large factor.

164

and add the local minimizers of the slack function in Q (it is enough to keep those

local minimizers with slack value less than, say, half of the maximum slack value).

Note that in this case the size of the constraint set is not fixed a priori nor upper

bounded—however since the target vector g and the basis elements have relatively

low frequency content, adding the local minimizers generally added only a few (al-

ways fewer than m) extra constraints at each iteration.

Additional observations led to further refinement of this heuristic. First, we

noted that the random constraints only seem to help in the early iterations and

actually seem to slow convergence in the later iterations, so we considered gradually

phasing them out as the iteration approached optimality. Second, we noted that

in place of a random sample of constraints we could instead include all constraints

from a regular grid of the form {i, i+j, i+2j, . . . , i+(k−1)j} ⊆ n for some integers

i, j, k with i ∈ {1, 2, . . . j}, and jk = n.

Table 4.1 displays the performance of these various rules on the discrete Cheby-

shev approximation problem discussed above. The left side of the table describes the

rule used: columns MA, RND and GRD give the number of most active, random,

and gridded constraints respectively, and columns LM and COOL indicate whether

the local minimizers of the slack function are included and whether the random

constraints are phased out or “cooled” as the iteration nears optimality. The right

side gives the performance of the corresponding rule: the first column lists the CPU

time needed to reduce termcrit below 10−8, the next two columns give the number

of iterations needed to reduce termcrit below 10−2 and 10−8 respectively, and the

last column gives the average size of the constraint set during the iteration. The

first row of the table describes the unreduced MPC and gives a baseline performance

level. The second row again illustrates the failure of the Most Active Rule, while

the third and fourth show that adding randomly selected constraints and the local

minimizers of the slack function effectively deals with the issues described above.

165

Rule Description Performance
MA RND GRD LM COOL cputime it:10−2 it:10−8 avg. |Qk|
n 0 0 no - 105.8 s 13 31 40400.0

13m 0 0 no - 382.9 s 758 947 2849.8
3m 10m 0 no no 180.2 s 82 492 2570.0
1m 10m 0 yes no 14.5 s 17 41 2307.8
1m 10m 0 yes yes 9.0 s 21 36 1027.4
1m 0 2m yes - 9.5 s 26 41 745.7

Table 4.1: Results of various heuristics on the Chebyshev approximation problem.

The fifth and sixth rows show enhancements of the specialized rule that achieve a

10-fold speed up over unreduced MPC.

4.1.4 Comparison with other algorithms

In this section we make a brief comparison of rMPC⋆ vs. other constraint-reduced

interior-point algorithms. We implemented the rPDAS algorithm of [TAW06] (dis-

cussed in 1.12 and labeled as rpdas on the tables below), rDPR of [Ton93] (discussed

in section 1.9 and labeled rdpr on the tables), and the build-up DAS of [DY91] (dis-

cussed in section 1.8 and labeled on the tables as tt budas-ss and budas-ls, for

the short and long-step variants respectively) in MATLAB, all using stopping cri-

terion (4.1) with tol = 10−8.3 For rpdas we used the same implementation and

parameters as rMPC⋆, but with ψ = 0. In our implementation of budas we used

parameters β = 0.95, and we replaced the finite termination scheme used in [DY91]

with our termination criterion (4.1). For rdpr we used α = 0.5, δ∗ = 0.05, and

ρ = 5n (the latter attempts to get good practical performance although is not as

good theoretically as ρ = n + ν
√
n for a constant ν > 1). We also removed the

finite termination scheme for rdpr (see [Ton93]), and since rdpr requires an upper

bound on the dual optimal value, we used the optimal value obtained by rMPC⋆

3Stopping criterion (4.1) is appropriate because all tested algorithms produce dual-feasible
iterates.

166

and added 10. Finally, again in rdpr, we used an Armijo line search in place of the

exact minimizing line search.

For test problems we chose an instance of the 200 × 40000 random problem

described in section 4.1.2 (rand), the Chebyshev approximation problem described

in section 4.1.3 (cheb), and three problems from the netlib collection [net] with

n ≫ m (scsd1, scsd6, and scsd8). (We note that the scsd problems are of

less interest for applying constraint reduction because, as compared to our other

test problems, they are of small dimension, less unbalanced, and very sparse which

means the cost of forming the normal matrix is much less than O(nm2).) We

choose initial iterates for the (cheb) and (rand) as described in sections 4.1.2 and

4.1.3 and, for the scsd problems, we used a vector of zeros (dual strictly feasible)

as the initial dual iterate and a vector of ones as the initial primal iterate. For each

of these problems, we ran each algorithm, first using no reduction as a benchmark,

then using a common constraint reduction rule. (Note that all tested algorithms

allow for a heuristic constraint selection rule.) The constraint selection rules used

in the test were as follows. First, as before, we always set ǫ = ∞. Then, for

the random problem we used M = 2m most active constraints and no additional

constraints, for the Chebyshev problem we used the rule corresponding to the last

row of Table 4.1, and for the scsd problems we used M = 2m most active and

2m randomly selected constraints. Finally, the remaining constraints were sorted

by increasing slack value, and in the case of numerical issues solving the linear

systems (in particular if rank condition C2 of Definition 2.2.1 failed), or if the step

was not acceptable, i.e., infeasible in the case of budas or did not achieve required

decrease in the potential function for rdpr, the constraint set was augmented with

2|Q| additional constraints, where |Q| refers to the original size of the constraint

set, and the step was recomputed.

The results for the unreduced and reduced cases are shown in Tables 4.2 and 4.3,

167

respectively. The columns of each table are, in order: the problem name (prob),

the algorithm (alg), the final status (status), the total running time (time), the

number of iterations (iter), and finally the maximum (Mmax) and average (Mavg)

number of constraints used at each iteration. If any algorithm took more than 600

iterations, we declared the status to be a fail, and set the time and iteration

counts to Inf.

In general, the best performance is obtained using rMPC⋆. To some extent

this is to be expected since the base algorithm of rMPC⋆ is a highly efficient primal-

dual algorithm, while the others are based on dual only algorithms. The long-step

variant of the Dantzig-Ye algorithm (budas-ls) also performed well.4

4.2 Numerical experiments with the regularized

algorithms

In this section, we turn to consider the two regularized algorithms developed in

Chapter 3. We introduce a couple of highly degenerate classes of problems, and

investigate the performance and qualitative behavior of our algorithms on them.

First, we introduce a problem where the level of rank-degeneracy can be precisely

controlled.

4.2.1 The tube-in-a-cube problem

The procedure for creating a problem in this class is as follows. First, generate

A, b, y0 ∼ N (0, 1), s0 ∼ U(0, 1) and normalize the columns of A. Next, project

the columns of A onto random r ≤ m dimensional subspace, so that A now has

4For the random problem, budas-ls had to use minor-cycles to increase the constraint set
size to 3200, 800, and 800, respectively, in its first three iterations and used 2m = 400 in the
remaining iterations. On the Chebyshev approximation problem in 17 of the 57 iterations, minor-
cycle iterations were used that each effectively tripled the constraint size.

168

prob alg status time iter Mmax Mavg

cheb rmpc succ 99.11 29 40400 40400.0
cheb rdpr succ 364.89 112 40400 40400.0
cheb rpdas fail Inf Inf 40400 40400.0
cheb budas-ss fail Inf Inf 40400 40400.0
cheb budas-ls fail Inf Inf 40400 40400.0
rand rmpc succ 60.50 18 40000 40000.0
rand rdpr succ 269.87 82 40000 40000.0
rand rpdas succ 67.47 22 40000 40000.0
rand budas-ss succ 1117.98 336 40000 40000.0
rand budas-ls succ 109.74 33 40000 40000.0
scsd1 rmpc succ 0.12 10 760 760.0
scsd1 rdpr succ 0.51 65 760 760.0
scsd1 rpdas succ 0.08 9 760 760.0
scsd1 budas-ss succ 0.49 110 760 760.0
scsd1 budas-ls succ 0.07 17 760 760.0
scsd6 rmpc succ 0.10 12 1350 1350.0
scsd6 rdpr succ 0.59 59 1350 1350.0
scsd6 rpdas succ 0.11 14 1350 1350.0
scsd6 budas-ss succ 1.92 247 1350 1350.0
scsd6 budas-ls succ 0.17 20 1350 1350.0
scsd8 rmpc succ 0.25 10 2750 2750.0
scsd8 rdpr succ 2.30 61 2750 2750.0
scsd8 rpdas succ 0.35 14 2750 2750.0
scsd8 budas-ss succ 9.32 441 2750 2750.0
scsd8 budas-ls succ 0.57 21 2750 2750.0

Table 4.2: Comparison of algorithms with no constraint reduction.

169

prob alg status time iter Mmax Mavg

cheb rmpc succ 13.35 50 1184 1128.5
cheb rdpr fail Inf Inf 31427 1616.2
cheb rpdas fail Inf Inf 15636 2755.8
cheb budas-ss succ 52.28 235 1187 1117.0
cheb budas-ls succ 17.54 57 3278 1667.1
rand rmpc succ 3.31 17 400 400.0
rand rdpr succ 30.85 70 400 400.0
rand rpdas succ 8.42 51 400 400.0
rand budas-ss succ 42.97 271 400 400.0
rand budas-ls succ 3.78 19 3200 589.5
scsd1 rmpc succ 0.09 10 347 340.5
scsd1 rdpr succ 0.47 63 702 355.9
scsd1 rpdas succ 0.04 12 345 338.8
scsd1 budas-ss succ 0.54 105 353 338.3
scsd1 budas-ls succ 0.10 16 347 338.4
scsd6 rmpc succ 0.10 12 651 640.3
scsd6 rdpr succ 0.37 57 652 638.7
scsd6 rpdas succ 0.09 15 653 639.3
scsd6 budas-ss succ 1.32 241 656 638.6
scsd6 budas-ls succ 0.06 19 649 638.6
scsd8 rmpc succ 0.16 10 1660 1641.7
scsd8 rdpr succ 1.67 61 2750 1751.1
scsd8 rpdas succ 0.21 15 1671 1641.7
scsd8 budas-ss succ 5.34 437 1673 1640.7
scsd8 budas-ls succ 0.28 19 1675 1639.9

Table 4.3: Comparison of algorithms with constraint reduction.

170

rank r. Append box constraints ‖y‖∞ ≤ R to the dual problem, and add them to

A. This makes sure that the problem has a solution, and recovers the condition

that rank(A) = m. Finally, set c = ATy0 + s0 to ensure (y0, s0) is dual strictly

feasible, and take x0 = e, the vector of ones. This problem class was named the

“tube-in-a-cube” in [TAO06], because of the geometry of the resulting dual feasible

region which is illustrated in Figure 4.3 for a 2-dimensional problem (i.e., m = 2).

b

a1

a2

Figure 4.3: Tube-in-a-cube problem example in 2-dimensions. For this problem class,
the rank of the constraint matrix A is reduced to a prescribed level r which creates a
k = m − r dimensional “tube” in the feasible region (m = 2, r = k = 1 in the figure).
Then a set of bound constraints (the “cube”) are added to recover the condition that A
have full rank, making the problem solvable.

On this problem we can guess how the kernel step algorithm will behave.

Looking at Figure 4.3, it seems intuitively clear that, if we start somewhere in the

middle of the feasible region, the first step will be a kernel step that moves the iterate

to the top-right part of the feasible set, and the next few iterates will be regular

steps that make rapid progress. We can imagine that if the tube is k-dimensional,

then we will have to take k kernel steps to get to the proper corner of the cube where

the optimal set is. In view of the identification of the kernel step, in section 3.2.2, as

a limiting case of a regularized step with vanishing regularization parameter δ, we

may expect the regularized algorithm for small δ̄ (from (3.23)) to behave similarly.

171

In fact, in view of (3.38), we call very long regularized steps with

‖∆y‖ > 0.05‖b‖/δ, (4.4)

“kernel-like” steps, and below we refer to both kernel steps in the kernel step algo-

rithm and kernel-like steps in the regularized algorithm as “kernel-like” steps. The

particular form for the threshold comes from (3.38), which suggests it should be

proportional to ‖b‖/δ, while the multiplier 0.05, has been determined by trial and

error to appropriately count the long steps.5

The intuitive guess presented above turns out to be a very accurate predic-

tion of the actual behavior of the two algorithms on this problem. Figure 4.4 plots

the average number of kernel steps (over 10 runs) for varying degrees of degener-

acy (tube-dimension), with “cube” constraint ‖y‖∞ ≤ R, R = 10. The observed

behavior is that both algorithms take about k consecutive kernel-like steps, where

k is the tube-dimension, during which the objective is increased very rapidly while

termcrit remains relatively constant, and then switch over to mainly regular-steps

which rapidly decrease termcrit to tolerance.

Figure 4.5 shows the time to solve and iteration count vs. the fraction of

constraint set kept in Q (c.f. Figure 4.1) at each iteration for the regularized rPDAS

algorithm, the kernel step rPDAS algorithm, and a regularized variant of rMPC⋆.

Each algorithm used the Most Active rule to select Q. The parameters were set equal

for the three algorithms, except, for the rPDAS algorithms, we set ξmax = 10−4,

while for rMPC⋆ we set it to ξmax = 10−11.6 As expected, rMPC⋆ gives the best

5An alternative way to define and count “kernel-like” steps for the regularized rPDAS algorithm
is in terms of the size of the projection of b onto N (AT

Q
), namely, whenever this projection is not

too small relative to the least norm solution to the normal equations, we count a kernel-like step.
This gives very similar results to counting long regularized steps, but is more computationally
expensive.

6The rPDAS algorithms have numerical difficulties if ξmax is set to a very small value, while
we have found that rMPC⋆ works best with it set small, although it is not very sensitive to this
parameter on this class of problems.

172

running time performance, followed by regularized rPDAS and finally kernel step

rPDAS, although kernel step rPDAS had fewer iterations than regularized rPDAS.

The kernel step method is slow mainly because computing the kernel step, or even

determining whether it needs to be computed, is more costly than just solving normal

equations. We computed it using Matlab’s null routine (based on a singular value

decomposition) applied to AT
Q
, which computes an orthogonal basis for N (AT

Q
). We

found that the kernel step algorithm had numerical difficulties if we tried to use null

on the normal matrix (N (M) = N (AT
Q
)), which is cheaper, but less numerically well

behaved. There certainly may be better ways to compute this step, but we will leave

such issues for future work.

As in section 4.1.2 (and Figure 4.1), all three algorithms show the benefit

of constraint-reduction on this class of problems. (Regularized algorithms rMPC⋆

and rPDAS show the benefit much more on larger tube-in-cube problems, but the

solution times for the kernel step rPDAS becomes to long to show on the same

graph.)

4.2.2 Random sparse problems

As discussed in section 3.1.1, the sparsity of a constraint matrix A matrix can be

correlated with the degree of rank-degeneracy that the corresponding LP will exhibit.

To quantify this, we introduce a measure of degeneracy degen(A,N, σrank) ∈ [0, 1],

defined as the average value of 1
m

(
m− rank(AQj

)
)
, j = 1, 2 . . .N , where Qj is a

random sample of m columns of A, and the rank is computed as the number of

singular values larger than the threshold σrank. We generated a sequence of random

LPs as in section 4.2.1, except that, in the generation ofA, we specify the sparsity (or

fraction of nonzeros), rather than the explicit tube-dimension. We append bound

constraints of the form ‖y‖∞ ≤ R, again with R = 10, to ensure rank(A) = m.

Figure 4.6 plots our measure of degeneracy versus the percentage of nonzeros in A,

173

averaged over 10 problems of size 100 × 10000, at each sparsity level. Also shown

is the average number of kernel-like steps taken by the two algorithms on these

problems. We see that there is indeed a strong correlation between degeneracy and

sparsity and, as was the case in the tube-in-cube problem, the number of kernel

steps that will be taken can be predicted fairly accurately by the estimated “tube-

dimension” of the LP computed as m× degen(A,N, σrank).

4.2.3 Discussion

Both regularized algorithms effectively deal with the rank-degeneracy that constraint-

reduced algorithms are subject to. In real-world problems, the rank degeneracy is

an issue that must be dealt with, and so it makes sense to incorporate some means of

doing so into any practical constraint-reduced algorithm. The kernel step rPDAS al-

gorithm is interesting theoretically, and even outperforms the regularized algorithm

on some specially constructed problems (such as the tube-in-cube when the cube is

very big compared to the tube-dimension), but its main disadvantage is that the ker-

nel step is more expensive to evaluate than the regularized step. The regularization,

on the other hand, adds no additional overhead to rPDAS, and can be easily incor-

porated into other algorithms, such as rMPC⋆. Experience shows that using a small

regularization in rMPC⋆ does not adversely affect performance on nondegenerate

problems, and definitely helps with degenerate ones. While regularization is not a

silver bullet solution that will allow for careless application of aggressive constraint-

reduction (it is important, in practice, to develop good constraint selection rules for

different problem classes), we do definitely recommend its use. In the next chapter,

we investigate some real-world problems from the area of digital filter design that

result in unbalanced LPs. To solve them we combine the regularized algorithm with

the efficient rMPC⋆, to get a regularized version of rMPC⋆ that, using the constraint

selection rule we developed in this chapter for Chebyshev approximation, is shown

174

to be quite effective on the filter design problems.

175

Figure 4.4: Tube-in-cube problem of size 50 × 2600, “cube” constraint of the form
‖y‖∞ ≤ R, with R = 10, and with varying degrees of degeneracy, namely, with tube-
dimension ranging between 0 (nondegenerate) and 25 (highly degenerate). The plot shows
the number of kernel steps vs. the tube-dimension for the kernel step algorithm, as well
as the number kernel-like directions for the regularized algorithm. For both algorithms
we used the Most Active rule with M = 3m. The regularized algorithm was run with
δ̄ = 10−6, and we counted a kernel-like step whenever ∆y was “large enough” as defined
by (4.4). Examining the results, we see that the tube-dimension is a very good predictor
of the number of kernel-like steps that will be taken on the problem. The observed
behavior is that both algorithms take about k consecutive kernel-like steps, where k is the
tube-dimension, during which the objective is increased rapidly while termcrit remains
relatively constant, and then switch to mainly over to regular-steps which rapidly decrease
termcrit to tolerance.

176

Figure 4.5: Time (in seconds) to solve and iteration count vs. the fraction of the total
constraints used at each iteration for an instance of the tube-in-cube problem with m =
100, n = 10000, tube-dimension k = 10, and “cube” constraint of the form ‖y‖∞ ≤ R, with
R = 10. Results are shown for the two regularized algorithms and a regularized variant of
rMPC⋆; all use the Most Active rule to select Q. As expected, rMPC⋆ is the best performer.
Between the two rPDAS algorithms, the regularized algorithm ran considerably faster, but
the kernel step algorithm took fewer iterations. The explanation for why the kernel step
method is slow, is that computing the kernel step (or even determining whether it needs to
be computed) is costly. We computed it using Matlab’s null routine (based on a singular
value decomposition) applied to AT

Q which, computes an orthogonal basis for N (AT
Q). We

found that the kernel step method had numerical difficulties if it used null on the normal
matrix, which is cheaper, but less numerically well behaved.

177

Figure 4.6: Estimated tube-dimension versus percentage of nonzeros in A. The tube-
dimension is estimated as m×degen(A,N, σrank), with N = 10 and σrank = n×eps(‖A‖),
the Matlab default tolerance for rank estimation (eps is a built-in Matlab function). Also
shown is the number of kernel-like steps taken by the kernel step and regularized rPDAS
algorithms vs. the fraction of nonzeros in the sparse constraint matrix A, of a randomly
generated sparse LP. (For both algorithms we used the Most Active rule with M = 3m.)
Down to about 1% nonzeros (note the fraction of nonzeros decreases, so sparsity increases
toward the right), the increasing sparsity is accompanied by increasing degeneracy, and
the number of kernel-like steps is, again, roughly given by the “tube-dimension”; below
1% density (not shown), the number of kernel-like steps starts to flatten out, and the
tube-dimension serves as an upper bound.

178

Chapter 5

Applications in filter design

Semi-infinite programs (SIP) are optimization problems that have a finite number

of variables but an (often uncountably) infinite number of constraints.1 SIP can be a

powerful tool for modeling engineering design problems, with applications including

the design of digital filters, antenna array weights, and control systems, e.g., [SN82,

HK93, BP95, KM95, WBV98, Pot98, NZ99]. In this chapter, we illustrate the

usage of semi-infinite linear programming (SILP)—SIPs with linear objective and

constraints—in four real-world filter design applications that come from the author’s

work on guidance, navigation, and control systems at NASA Goddard Space Flight

Center. We show that, in each case, these problems can be effectively and efficiently

solved by discretizing the constraint set, and then applying the constraint-reduced

interior-point methods developed in previous chapters.

5.1 Discretized semi-infinite linear programming

An effective way to solve SILPs is by finely discretizing the constraint set and then

applying a linear programming algorithm that can exploit the unbalanced nature

of the resulting problem. One such algorithm is the revised primal simplex method

179

(RPS), described in section 1.3.1; in this chapter, we show that the constraint-

reduced interior-point algorithms developed in this dissertation can also be very

effective.

First, we briefly discuss a matter of terminology. The problems we treat in

this chapter are modeled using the finite variable, infinite constraint form of SILP,

which we refer to as the “dual SILP”. We prefer this naming convention because,

after discretization, our dual SILP is an LP in dual standard form. Many other

authors, however, use the opposite convention.

Each of the four problems we consider below can be put into the following

framework. We wish to fit the linear model

f(ω) =

N−1∑

k=0

φk(ω)yk + ε(ω), (5.1)

consisting of a linear combination of the basis functions φk : RM → R, to the

target function f : RM → R, by selection of the finite dimensional vector y ∈

RN of variables. The basis and target functions are assumed to depend smoothly

on the real vector ω taking values in a compact set Ω ⊂ RM . The difference

ε(ω) := f(ω) −∑N−1
k=0 φk(ω)yk, can be taken as a definition of the residual function

ε : RM → R.

The fit is to be done in a Chebyshev or minimax sense, by solving the opti-

mization problem

min
y∈RN

max
ω∈Ω

W (ω)|F (ω)y − f(ω)|,

where we use the matrix-vector notation F (ω)y :=
∑N−1

k=0 φk(ω)yk, and have added

a real, nonnegative weighting function W : RM → R to emphasize the errors in

different regions of Ω. By introducing the upper bound variable t ∈ R, we can

1Or vice-versa: problems with an infinite number of variables and finite number of constraints
are also called SIPs. The two types often arise as the dual optimization problems of one another.

180

recast this problem as

min
y,t

t

s.t. W (ω)|F (ω)y − f(ω)| ≤ t, ∀ ω ∈ Ω, (5.2)

with a linear objective and an infinite number of linear constraints.

We will solve these problems by sampling the “constraint” set Ω to obtain

a finite set Ωd ⊂ Ω, and then solve the finite linear program that results from

replacing Ω with Ωd in (5.2). The solution (y∗d, t
∗
d) to the discretized problem will

not, in general, satisfy the constraint in (5.2) for all ω ∈ Ω. (If (y∗d, t
∗
d) is feasible for

(5.2), then it is optimal, since the feasible set of the discretized problem contains

that of (5.2).) The question then arises as to how finely the constraint set should be

sampled. Much of the existing theory on discretization of SIPs focuses on designing

a sequence of discretized problems whose solutions converge to the solution to the

full problem [HK93, Ree91]. Here, instead, we prefer to solve a single discretized

problem, whose solution is, in some sense, nearly optimal for the original problem.

We give a simple analysis next that will guide us in the selection of the discretization

mesh for our example problems below.

In the following discussion, we assume ω ∈ Ω ⊂ R, where Ω is an interval of

length ν. We assume further that our discretization set Ωd is a regular mesh of L

points {ωj}L−1
l=0 ∈ Ω that satisfies minωj∈Ωd

|ω−ωj| ≤ ν
2L

for all ω ∈ Ω. The question

then becomes: How large should L be? To address this question, let us consider the

more general SIP

min t

s.t. |g(y, ω)| ≤ t, ∀ ω ∈ Ω, (5.3)

181

with g : RN × R → R, and t ∈ R. Our approach to determining an appropriate

L is to set a maximum level ǫ to which we will tolerate violation of the constraints

for ω ∈ Ω \ Ωd. That is, while at the solution (y∗d, t
∗
d) to the discretized problem,

|g(y∗d, ωj)| ≤ t∗d holds for all ωj ∈ Ωd, we only require

|g(y∗d, ω)| ≤ t∗d + ǫ, ∀ ω ∈ Ω. (5.4)

If this holds, then (y∗d, t
∗
d + ǫ) is an “ǫ-suboptimal” solution for (5.3), in that, it is

feasible (as are all y for large enough t) with value within ǫ of the optimal value t∗

of (5.3) (since t∗d ≤ t∗). Suppose R1 is a Lipschitz constant for g(·, y∗d) on Ω, and let

ω∗
i = arg minωj∈Ωd

|ω − ωj|, then we have (suppressing dependence on y = y∗d in the

notation)

|g(ω)| − t∗d ≤ |g(ω)| − |g(ω∗
i)| ≤ |g(ω)− g(ω∗

i)| ≤ R1|ω − ω∗
i | ≤ R1

ν

2L
, (5.5)

so that choosing

L ≥ L1 :=

⌈
R1ν

2ǫ

⌉

, (5.6)

will imply (5.4). We can improve this bound if we assume further smoothness of g.

In considering (5.4), we can restrict attention to ω′ that locally maximize |g(·, y∗d)|.

Let us assume that t∗d > 0, ω′ ∈ Ω◦ (the interior of Ω), and that g is continuously

differentiable with respect to ω in Ω◦, so that we have ġ(ω′, y∗d) := ∂g
∂ω

(ω′, y∗d) = 0.

Take R2 to be a Lipschitz constant for ġ(·, y∗d) on Ω◦ and let ω∗
i = arg minωj∈Ωd

|ω′−

ωj|. Then we have, for some ω0 between ω′ and ω∗
i ,

|g(ω′)| − t∗d ≤ |g(ω′)| − |g(ω∗
i)| ≤ |ġ(ω0)||ω′ − ω∗

i |

≤ |ġ(ω′) − ġ(ω0)||ω′ − ω∗
i | ≤ R2|ω′ − ω∗

i |2 (5.7)

≤ R2
ν2

(2L)2
,

182

so that choosing

L ≥ L2 :=

⌈

ν

2

√

R2

ǫ

⌉

, (5.8)

will imply (5.4) for any ω ∈ Ω◦, since it holds for any local maximizer ω′ of |g(·, y∗d)|

on Ω◦.2

If the smoothness assumption holds, we can use the generally smaller constant

L2 to determine the size of the regular grid. To account for issues at the boundary

points of Ω, we can add extra grid points at a distance δ = ǫ/R1 from any boundary

points. In view of (5.5), this will guarantee that (5.4) holds for all ω ∈ Ω.

Before moving on to our applications, we discuss two extensions of the above

analysis. First, in some of the problems below, we add side constraints of the form

α(ω) ≤ g(y, ω) ≤ β(ω) ∀ ω ∈ Ωside (5.9)

to (5.3), where Ωside ⊆ Ω. The analysis and bounds derived above still apply (just

replace t∗d with β(ω) everywhere), but with the following caveat. If our side con-

straint is “ǫ-violated”, for example if, for some ω ∈ Ω, β(ω) < g(y∗d, ω) ≤ β(ω) + ǫ,

then we cannot claim that y∗d is ǫ-suboptimal for the original problem in the sense

we used above, since now y∗d is infeasible for (5.9), and feasibility is not recovered

by simply slackening the upper bound variable t∗d to t∗d + ǫ. However, y∗d could still

be thought of as being ǫ-suboptimal if we relax the definition of ǫ-suboptimality so

that it only requires ǫ-feasibility.

Second, it also arises below that our semi-infinite variable ω ∈ Ω ⊂ R
M , with

M > 1. The above analysis still basically applies if we discretize each dimension

of ω independently. This means, however, that the overall size of the discretized

constraint set will grow exponentially with M (we will need LM points if Ω = [0, ν]M ,

2The following related fact is the basis for local reduction methods in SIP [HK93]: if a constraint
|g(ω, y)| ≤ t is active at a solution (y′, t′) to the full SILP with t′ > 0, then ω′ must be a local
maximizer of |g(·, y′)|, so that under a smoothness assumption, if ω′ ∈ Ω◦, then ġ(ω′, y′) = 0.

183

for example). Thus, solving SIPs by fine discretization is subject to the “curse of

dimensionality”, and so, practically, only low-dimensional semi-infinite variables can

be handled (at least based on the above analysis).

5.2 Linear phase, finite-impulse response (FIR)

filters

As our first application problem, we consider the design of a complex-coefficient FIR

filter with frequency response

H(ejω) =
N−1∑

k=0

hke
−jωk, ω ∈ [−π, π]. (5.10)

We use a minimax or Chebyshev criterion to approximate a desired responseHd(e
jω),

by solving the optimization problem

min max
ω∈[−π,π]

W (ω)
∣
∣H(ejω) −Hd(e

jω)
∣
∣ , (5.11)

where the minimization is with respect to the filter coefficients {hk}N−1
k=0 . Here,

W (ω) is a real, nonnegative weighting function that can be used to indicate the

relative importance of the errors in different frequency bands. This problem can

be formulated as a minimization problem with linear objective and semi-infinite

quadratic or second-order cone constraint3

min t

s.t. W (ω)
∣
∣H(ejω) −Hd(e

jω)
∣
∣ ≤ t, ∀ ω ∈ [−π, π]. (5.12)

While, in general, H(ejω) is a complex function and the constraint in (5.12) is

3Constraint reduction can also be beneficial for solving problems with semi-infinite quadratic
or second-order-cone constraints, see [JOT10] and sections 7.4 and 7.5 below.

184

Type I N odd hk = h∗N−1−k for k = 0, 1 . . . (N − 1)/2
Type II N even hk = h∗N−1−k for k = 0, 1 . . .N/2 − 1
Type III N odd hk = −h∗N−1−k for k = 0, 1 . . . (N − 1)/2
Type IV N even hk = −h∗N−1−k for k = 0, 1 . . .N/2 − 1

Table 5.1: Linear phase FIR symmetry/filter types.

quadratic (after squaring), often we are interested in designing the magnitude of the

filter while constraining the phase to be a linear (or affine) function of frequency. The

standard method for imposing such constraints reduces (5.12) to an SILP. Linear

phase constraints are typically imposed by requiring one of four types of symmetry,

summarized in Table 5.1, in the coefficients. The corresponding filters are known

as Type I-IV linear phase FIR filters [OS99].4 Under each of these symmetries, the

frequency response takes the form

H(ejω) = A(ejω)e−jτω,

with τ determined by the filter length N and symmetry type, and where A(ejω) is

a real, but not necessarily non-negative, linear function of the real and imaginary

components of {hk}.

We illustrate this in the case of the Type II linear phase constraint. Define

4Such symmetry constraints are sufficient, but not necessary, for H(ejω) to have linear phase
[OS99].

185

τ = (N − 1)/2, so that N − 1 − τ = τ . Then the frequency response satisfies

H(ejω) =

N−1∑

k=0

hke
−jωk = e−jωτ

N−1∑

k=0

hke
−jω(k−τ)

= e−jωτ

N
2
−1
∑

k=0

hke
−jω(k−τ) + hN−1−ke

−jω(N−1−k−τ)

= e−jωτ

N
2
−1
∑

k=0

hke
−jω(k−τ) + h∗ke

jω(k−τ)

= e−jωτ

N
2
−1
∑

k=0

2ℜ{hke
−jω(k−τ)}

= e−jωτ

N
2
−1
∑

k=0

2αk cosω(k − τ) + 2βk sinω(k − τ),

where hk = αk + jβk. Thus the frequency response

H(ejω) = e−jωτA(ejω)

is a pure delay times a real, “magnitude” component

A(ejω) :=

N
2
−1
∑

k=0

αk2 cosω(k − τ) + βk2 sinω(k − τ), (5.13)

which is linear in (αk, βk).

Similar properties hold for the other standard linear phase Type I-IV FIR

filters. Because of this form of the frequency response, problem (5.12) becomes

a semi-infinite linear programming problem in the variables t and (αk, βk), k =

0, 1, . . . N
2
− 1,

min t

s.t. W (ω)
∣
∣A(ejω) − Ad(e

jω)
∣
∣ ≤ t, ∀ ω ∈ [−π, π], (5.14)

186

where Ad(e
jω) is the desired real response (with the phase delay e−jωτ assumed), and

A(ejω) is as in (5.13). The constraint here is indeed linear because, unlike H(ejω)

in (5.12), A(ejω) is real. Linear side constraints of the form α(ω) ≤ A(ejω) ≤

β(ω), ∀ω ∈ Ω1, for some Ω1 ⊂ [−π, π], can also be easily accommodated in (5.14).

Front-end filter for a Global Positioning System (GPS) re-
ceiver

In this section we describe the design of a decimation filter used in the signal-

processing hardware of a space-based GPS receiver developed by NASA Goddard

Space Flight Center (GSFC), called the GSFC-Navigator.

The GPS L1 frequency, Coarse/Acquisition code signal [Off04, ME01] is re-

ceived and processed by the analog radio frequency (RF) front-end electronics of

the receiver, resulting in an intermediate frequency (IF) signal of 2.046MHz band-

width, centered at 2.556MHz, that is then sampled using a 1.5 bit analog-to-digital

converter at a rate of 32.768MHz. The GPS receiver’s baseband signal processing

blocks require complex (in-phase and quadrature) samples at a rate of 2.048MHz.

To accommodate this, a complex coefficient FIR digital filter is applied to suppress

the negative frequency image and remove broadband quantization noise. The out-

put of the filter is then decimated by 16 (which causes the signal center-frequency

to alias to 0.508MHz) and sent to the baseband signal processing blocks. Figure 5.1

gives a block diagram of the receiver signal path showing the location of the desired

decimation filter.

Performance specifications for lowpass, highpass, bandpass, and bandstop fil-

ters are usually given by setting a maximum allowable passband ripple and mini-

mum required stopband attenuation level for the magnitude response. For our filter,

we would like to achieve at least 30dB of rejection of the stopbands while having

passband ripple of no more than ±0.5dB. There is also an image frequency band

187

Converter
Digital

Analog to

Processing

GPS Baseband

Complex
Samples
at 2.048MHz
centered at
508kHz IF

Complex
Samples
at 32.768MHz
centered at
2.556MHz IF

Real
Samples
at 32.768MHz
centered at
2.556MHz IF

Analog IF
signal centered
at 35.42MHz
2.046MHz bandwidth

RF front end

Analog RF
signal centered
at 1575.42MHz (GPS L1)
2.046MHz bandwidth

Antenna

16
Filter

Decimation

Figure 5.1: GSFC-Navigator GPS receiver signal path with decimation filter highlighted.

number of coefficients N = 64
sampling freq fs=65.536MHz
center freq ωc = 2.556MHz × π/(fs/2) = 0.2451π
one sided bandwidth B = 1.023MHz × π/(fs/2) = 0.0312π
passband low edge ωl = ωc − B = 0.0468π
passband high edge ωh = ωc +B = 0.1092π
passband [ωl, ωh]
passband ripple ≤ 0.5dB
transition bandwidth (passband) ∆ωp = (3/N) × π = 0.0469π
transition bandwidth (image) ∆ωi = 0
stopband [−1, ωl − ∆ωp] ∪ [ωh + ∆ωp, 1]
stopband magnitude ≤ −30dB
image band [−ωh,−ωl]
image band magnitude ≤ −60dB

Table 5.2: Specification for GSFC-Navigator GPS receiver decimation filter. All frequen-
cies, with the exception of the sampling frequency fs, are given in units of radians/sample.

[−ωh,−ωl] that we want to reject to a level of -60dB. Table 5.2 summarizes the filter

specification, and Figure 5.2 shows it graphically along with an example frequency

response that meets all requirements. We will see that the SILP approach to filter

design handles this type of specification very naturally, but first we examine an

alternative approach.

A traditional approach to filter design, and that which is used in most of the

MATLAB filter design tools, is to specify a desired piecewise-linear frequency re-

sponse as a sequence ofK band edges {ωk}K
k=1 and associated amplitudes {A(ejωk)}K

k=1,

with transition bands separating any discontinuities in the sequence of amplitudes.

188

For lowpass, highpass, bandpass, and bandstop filters, the passband and stopband

amplitudes are usually chosen to be either 0 or 1, and relative weights are specified

for the passbands and stopbands indicating their relative importance. For the GPS

filter problem, the frequency bands of interest are

[−1,−ωh − ∆ωi], [−ωh,−ωl]
︸ ︷︷ ︸

image

, [−ωl + ∆ωi, ωl − ∆ωp], [ωl, ωh]
︸ ︷︷ ︸

passband

, [ωh + ∆ωp, 1],

where ωl and ωh are the low and high edges of the passband respectively, and

∆ωi and ∆ωp are the transition bandwidths for the image band and passband.

Thus, our sequence of band edges and magnitudes would be given as {−1,−ωh −

∆ωi,−ωh,−ωl,−ωl+∆ωi, ωl−∆ωp, ωl, ωh, ωh+∆ωp, 1} and {0, 0, 0, 0, 0, 0, 1, 1, 0, 0},

respectively. Then we need to choose a set of weights {W1,W2,W3,W4,W5} to

try to meet the specified ripple and attenuation requirements. Figure 5.3 shows a

MATLAB script that uses the Signal Processing Toolbox function cfirpm to design

complex FIR filter coefficients using a modified Parks-McClellan/Remez exchange

algorithm [KM95] to solve problem (5.11). (This routine is, in fact, closely related to

the simplex method discussed in section 1.3.1 [BP95, NZ99].) Since the optimal error

in (5.11) is not known a priori, this approach can require significant amount of solv-

ing, adjusting the weights, and resolving, to meet hard passband-ripple/stopband-

attenuation specifications, especially if the specifications are tight.5

Contrast this with the SILP approach, which essentially amounts to just writ-

5The appropriate weights can be roughly estimated a priori, since the ratio of errors in each
band will be the ratios of the respective weights in the solution to (5.11).

189

ing down the specification

min t

s.t.
∣
∣A(ejω)

∣
∣ ≤ t, ∀ ω ∈ Ωstop

∣
∣A(ejω)

∣
∣ ≤ −60dB, ∀ ω ∈ Ωimage, (5.15)

−0.5dB ≤ A(ejω) ≤ 0.5dB, ∀ ω ∈ Ωpass,

with Ωstop := [−1, ωl−∆ωp]∪[ωh+∆ωp, 1], Ωimage := [−ωh,−ωl], and Ωpass := [ωl, ωh].

Here we have chosen to impose the passband ripple and image band attenuation

requirements as constraints, and optimize the stopband attenuation, but we could

have optimized the image rejection with fixed stopband, etc. A nice feature of this

approach is that linear programming algorithms will usually detect infeasibility,

and so in FIR filter design problems, we will know when we need to increase the

length N of the filter,6 whereas solving only (5.11), without the side constraints (the

Parks-McClellan approach) this may not be at all obvious.

We will approximately solve this SILP by discretizing the frequency interval

[−π, π]. Here, referring back to the discussion of section 5.1, we estimate the Lip-

schitz constants R1 and R2 for this problem and determine how finely the infinite

constraint set in (5.14) should be discretized. For this problem, we have

g(ω, y) = A(ejω) − Ad(e
jω),

where y is the vector of filter coefficients {hk}. Since Ad(e
jω) is piecewise constant,

and

A(ejω) :=

N
2
−1
∑

k=0

αk2 cosω(k − τ) + βk2 sinω(k − τ),

6For rMPC⋆, the phase-one problem (2.17), will terminate with t > 0 if the original problem is
infeasible.

190

we have, with Ȧ(ejω) and Ä(ejω) the first and second derivatives of A with respect

to ω,

|ġ(ω, y)| = |Ȧ(ejω)| ≤
N
2
−1
∑

k=0

2(k − τ)(|αk| + |βk|) ≤ (N − 2) max
k

|k − τ |(|αk| + |βk|)

and

|g̈(ω, y)| = |Ä(ejω)| ≤
N
2
−1
∑

k=0

2(k − τ)2(|αk| + |βk|)

≤ 2 max
k

|k − τ |(|αk| + |βk|)
N
2
−1
∑

k=0

|k − τ | (5.16)

=
N2

4
max |k − τ |(|αk| + |βk|).

For this problem, the quantity maxk |k − τ |(|αk| + |βk|) is, in practice, always bounded

by 1.0 (this was discovered by numerical experimentation, and could be strictly en-

forced by means of additional linear constraints), so we can take

R1 = N, and R2 =
1

2

N2

4
=
N2

8
.

To determine an appropriate L we next need to choose a value for ǫ. Here we will

take ǫ = 0.1t∗d = 10−3, where we have used the rough prior estimate t∗d ≈ 10−2 of

the optimal value of (5.15). In this way, the solution to our discretized problem

will provide a solution to the full problem that is, at worst, about 10% suboptimal.7

Plugging these values of R1, R2, and ǫ, along with N = 64, into the formulas (5.6)

and (5.8), we get L1 ≈ 200000 and L2 ≈ 2250.

Since this problem is relatively small (small being defined as: easily solved

on the author’s laptop), we lean toward the conservative side, and discretize the

7We recognize that this is not totally satisfactory a priori, but once the discretized problem
is solved and t∗d is determined, we will know that we have, at worst, a 100 × ǫ/t∗d % suboptimal
solution for the full SILP (if R1, R2 are valid).

191

interval [−π, π] using an L=20000 point uniform discretization grid. This results in

an LP that has N + 1 = 65 variables and 39372 constraints. The problem is easily

solved using (a regularized version of) algorithm rMPC⋆ and the results are shown

along with the specification in Figure 5.2. The numerical performance of rMPC⋆,

with and without constraint reduction, and that of the revised primal simplex (RPS)

method is given along with their performance on our other application problems in

Table 5.4 at the end of the chapter.

The flexibility and naturalness of the linear programming approach comes at

the cost of an increased computational burden. (For example, the routine cfirpm

solves (5.11) in under 0.1s while rMPC⋆ requires a few seconds. While it is likely

that rMPC⋆ could be significantly sped up through code optimization, it is unlikely

that it will ever run as fast on (5.11) as cfirpm.) For design problems, which

may only need to be run a handful of times, the benefits may outweigh the loss

in speed. For the interior-point approach to solving the linear programs above,

constraint-reduction techniques can significantly mitigate this drawback and offer

an alternative to the RPS method. See section 5.6 below for further discussion of

numerical performance.

5.3 FIR magnitude response design and spectral

factorization

We saw above that the linear phase conditions make the “magnitude” response into

a real, linear function A(ejω) of the design variables (the filter coefficients), and

allow (5.11) to be solved as an LP. While linear phase can be a desirable feature,

especially when the signals being processed carry information in the phase, for other

problems, the magnitude response of the filter is really all that is of interest, and

we will be able to achieve design goals on a magnitude response with a lower order

192

Figure 5.2: Front-end filter specification (in dB) given by thick red horizontal bars. Also
shown is the magnitude response of the optimal solution to (5.15), computed by rMPC⋆,
which meets the complete specification. Note that only frequencies from [−0.3π, 0.3π] are
shown; the spec for |ω| > 0.3π is just a continuation of the 30dB attenuation requirement.

filter if we do not impose a linear phase constraint. (For still other problems, linear

phase is simply incompatible with the design goals, see section 5.4.) Here, we want

to treat the problem

min t

s.t. W (ω)|H(ejω)| ≤ t, (5.17)

α(ω) ≤|H(ejω)| ≤ β(ω),

∀ ω ∈ [−π, π].

As noted previously, in general, constraints on the magnitude response of

a complex transfer function are not linear, but rather quadratic or second-order-

193

N=64; %filter length

fs=65.536; %sampling freq (in MHz)

wc=2.556*pi/(fs/2); %center freq (normalized)

bw=1.023*pi/(fs/2); %signal bandwidth one-sided

wh=wc+bw; %high side signal band edge

wl=wc-bw; %low side signal band edge

dwp=pi*3/Ntaps; %trans. bandwidth adjacent to passband

dwi=eps; %trans. bandwidth adjacent to image band

f=[-1,-wh-dwi,-wh,-wl,-wl+dwi, wl-dwp, wl,wh,wh+dwp,1];

a=[0,0,0,0,0,0,1,1,0,0];

w=[1,32,1,1,1];

%use (complex) Parks-McClellan alg. to find minimax optimal

%N-tap FIR filter

h=cfirpm(N-1,f/pi,a,w).’;

Figure 5.3: MATLAB code for Parks-McClellan based filter design. Since the stop-
band attenuation specification is −30dB and the image band is −60dB, the error ratio is
10−30/20/10−60/20 ≈ 32, so we weigh the image band 32 times more heavily than the
nominal stopband.

cone constraints. Rather than imposing linear phase conditions, a different way of

making (5.17) into a linear program was put forth by Wu, Boyd and Vandenberghe

in [WBV98]. Their idea was to design the magnitude response H(ejω) of an FIR

filter through its autocorrelation coefficients {rk} defined by

rk :=
∞∑

l=−∞
hl+kh

∗
l (5.18)

Note that {rk} is the usual autocorrelation sequence of the output {yk} of the filter

H(ejω) when the input {xk} is unit-variance white noise, i.e., rk = E(yn+k y∗n),

where E(xn+k x
∗
n) = δk, E is expectation on the associated probability space, and

{δk} is the Kronecker delta sequence. Note, also, that {rk} is conjugate symmetric,

i.e., rk = r∗−k, which implies, in a similar way as the Type I and II linear phase

symmetries do, that the discrete-time Fourier transform (DTFT) S(ejω) of {rk} is

194

real and expressible as

S(ejω) =
∞∑

k=−∞
rke

−jωk = r0 +
N−1∑

k=1

αk2 cos(ωk) + βk2 sin(ωk). (5.19)

Here, rk = αk + jβk for k = {1, 2, . . .N − 1}, and r0 is real. In the Fourier domain,

expression (5.18) translates to

S(ejω) = |H(ejω)|2, (5.20)

which shows that S(ejω) ≥ 0 for any autocorrelation sequence coming from an FIR

filter {hk}. Conversely, if S(ejω) > 0, and has the representation (5.19) for finite

N , then there exists {hk} such that (5.18) hold. That is, there is a FIR filter of

length N that has {rk} as its autocorrelation sequence, and if zero-mean white noise

is fed as input to this filter, the output will have the specified autocorrelation and

power spectrum.8 The process of recovering a suitable (usually meaning causal and

minimum phase) H(ejω) from S(ejω) is called spectral factorization.

Following [WBV98], our approach to solving (5.17) will be to first solve the

linear program

min t

s.t. W 2(ω)S(ejω) ≤ t, ∀ ω ∈ Ω2,

α(ω)2 ≤S(ejω) ≤ β(ω)2, ∀ ω ∈ Ω1, (5.21)

S(ejω) ≥ δ, ∀ ω ∈ [−π, π],

8This is a special case, for finite N , of two basic facts from the theory of second-order stationary
random processes: 1) that autocorrelation sequences (positive semi-definite sequences) correspond
to nonnegative Fourier transforms (power spectra) which is known as the Wiener-Khintchine theo-
rem or Herglotz Lemma [PP02, Bre00], and 2) that under weak conditions, various spectral factor-

ization theorems guarantee that a nonnegative power spectrum can be factored as in (5.20), and
viewed as arising as the output spectrum of white noise passing through a minimum-phase, linear
time-invariant filter. See, for example, [PP02, Sch91].

195

with δ > 0, for the real and imaginary components of the autocorrelation coeffi-

cients, and then recover filter coefficients by inverting definition (5.18) or equiva-

lently (5.20). The constraint S(ejω) ≥ δ, ∀ ω ∈ [−π, π], that has been added in

(5.21), guarantees that a spectral factor H(ejω) exists, and setting δ > 0 allows

for simplified techniques of spectral factorization. The appendix of [WBV98] gives

a brief review of spectral factorization techniques, including an efficient technique

based on the Fast Fourier Transform, that we have used in our numerical experi-

ments.

A useful application of this approach is in the design of FIR filters to synthesize

random noise with a given power spectrum. Such noise is generated by feeding zero

mean, unit variance white noise into the filter H(ejω) obtained from spectral factor-

ization of the optimized {rk} or S(ejω) from problem (5.21). A particular problem of

considerable interest to the author’s NASA work is in the synthesis of realistic phase

noise based on oscillator vendor phase noise specifications. This noise can then, for

example, be used in communication receiver system simulations to investigate the

effect on system performance of the receiver and transmitter oscillators. Table 5.3

shows a typical specification of phase noise for a quality temperature compensated

crystal oscillator (TCXO) provided by an oscillator vendor. We now consider the

design of an FIR filter that synthesizes noise with a power spectrum within ±1dB

of this specification.

By interpolating the data in Table 5.3 we arrive at a desired response Sd(e
jω),

which we would like to approximate within an error that is most naturally specified

in decibels. Ideally we would like to minimize an upper bound t on

|10 log10 S(ejω) − 10 log10 Sd(e
jω)| =

∣
∣
∣
∣
10 log10

S(ejω)

Sd(ejω)

∣
∣
∣
∣
,

196

freq offset
L(f) Sx(f) Sd(e

j2πf)
(dBc/Hz) at 10MHz (dB-s2/Hz) (dB-s2/(rad/sample))

1Hz -90 -249 -227
10Hz -100 -259 -237
100Hz -125 -284 -262
1kHz -140 -299 -277
10kHz -145 -304 -282
100kHz -145 -304 -282
1MHz -145 -304 -282
>1MHz -145 -304 -282

Table 5.3: Typical phase noise specification for a 10MHz temperature compensated
crystal oscillator (TCXO). The phase noise specification provided in the first column is
the “single-side-band” phase noise power density relative to the carrier power. The units
are dBc/Hz: the power density in 1Hz bands at different frequency offsets from the carrier,
normalized by the total carrier power. This quantity is typically given the symbol L(f),
and is the standard phase noise metric provided by oscillator vendors. The second column
gives the power spectrum Sx(f) of the phase noise random process x(t) itself, which has
units of seconds. The relationship between these two is Sx(f) = L(f)/2(2πf0)

2, where here
the carrier frequency f0 = 10MHz. See, for example, [Vig99]. Thus, column two is offset
from column one by −10 log10(2(2π106)2) = −159dB. Our simulation will generate the x(t)
process at a Ts = 0.001s sampling time and run for 10 seconds, so it is appropriate to try
to approximate the phase noise power spectrum between 1Hz and fs/2 = 500Hz. Column
three gives Sd(e

jω), our desired approximation target, which has units of s2/(rad/sample),
and is obtained from column two by dividing by 2πTs. Thus, column three is offset from
column two by −10 log 10(2πTs) = 22dB.

197

that is, we will minimize t subject to

−t ≤ 10 log10

S(ejω)

Sd(ejω)
≤ t,

or equivalently, minimize v subject to

1

v
≤ S(ejω)

Sd(ejω)
≤ v. (5.22)

Unfortunately, the left hand inequality in (5.22) is not linear (although it is convex

and can be converted to a second-order-cone constraint [LB97]). Since we are re-

stricting ourselves to the use of linear constraints, two options are: 1) replace the

variable v with a fixed value, e.g. 1dB, and simply require feasibility in the con-

straint, or 2) define v := 1+u, and use the approximation 1/v = 1/(1+u) ≈ (1−u)

to approximately solve (5.22) by instead minimizing u subject to

1 − u ≤ S(ejω)

Sd(ejω)
≤ 1 + u, (5.23)

or equivalently, subject to

10 log10(1 − u) ≤ 10 log10

S(ejω)

Sd(ejω)
≤ 10 log10(1 + u).

If our fitting error is about 1dB or less, the error in the approximation (10 log10(1−u)

in place of −10 log10 u) is small, and the difference between (5.22) and (5.23) is quite

tolerable.

Back to our example, we determine Sd(e
jω) by linearly interpolating the values

in Table 5.3 on a log-log scale, and then, using a combination of the two options

198

discussed above, we solve

min u, s.t.

−u ≤ S(ejω)

Sd(ejω)
− 1 ≤ u, ∀ ω ∈ [0, π],

−1dB ≤ S(ejω)

Sd(ejω)
≤ 1dB, ∀ ω ∈ [0, π], (5.24)

S(ejω) ≥ δ, ∀ ω ∈ [0, π],

where S(ejω) is as in (5.19). (The final set of constraints S(ejω) ≥ δ with δ > 0 are

redundant for small δ given the lower bound in the second set of constraints, so in our

numerical formulation we actually omit it.) Here, we look for a size N = 251 filter

with real coefficients, so we discretize [0, π] (rather than [−π, π]) using 215 = 32768

regularly spaced points.9 The resulting problem is of size 252 × 163840. Numerical

performance is discussed in section 5.6 and summarized in Table 5.4. The optimized

filter is shown in Figures 5.4 and 5.5.

5.4 Arbitrary complex response FIR Chebyshev

design

In this section, we show that even though the general complex Chebyshev FIR

filter approximation problem (where we are interested in approximating a target

9We estimate the constants R1 ≈ 100, R2 ≈ 104 (see section 5.1) using some rough approx-
imations and numerical tests. Then, choosing ǫ = 10−3 (based on an estimate of 0.1t∗), we get
from (5.6) and (5.8), L1 ≈ 3 × 105, L2 ≈ 104. So we expect L = 215 should give a sufficiently
fine discretization mesh, and the power-of-two value is convenient for the subsequent FFT based
spectral factorization.

199

Figure 5.4: FIR magnitude response design problem. Phase noise specification and fit,
along with the approximation error which is to about ± 0.6dB.

magnitude and phase response)

min t

s.t.
∣
∣H(ejω) −Hd(e

jω)
∣
∣ ≤ t, ∀ ω ∈ [−π, π], (5.25)

with H(ejω) =
∑N−1

k=0 hke
−jωk, has a semi-infinite quadratic or second-order-cone

constraint, it can be formulated equivalently as an SILP.10 A simple property of

complex numbers will allow us to do this: if z is complex and r is a positive real

constant, then

10It is a basic fact in convex analysis that all convex optimization problems can be formulated
as SILPs, e.g., using the concept of the support function of a convex set [HUL00]. Unfortunately,
the general formulation is probably only of theoretical interest, since the resulting SILP has a
high-dimensional semi-infinite variable.

200

Figure 5.5: FIR magnitude response design problem. The top plot shows the impulse
response of the phase noise synthesis filter, which was computed by spectral factorization
of the fitted power spectrum. The bottom plot shows a simulated phase noise trajectory.

|z| ≤ r ⇐⇒ ℜ{zejθ} ≤ r ∀ θ ∈ [0, 2π],

where ℜ indicates the real part of a complex number. In [BP95], the authors refer

to this fact as the real rotation theorem. Thus, (5.25) has the equivalent formulation

min t

s.t. ℜ
{(
H(ejω) −Hd(e

jω)
)
ejθ
}
≤ t, (5.26)

∀ ω ∈ [−π, π], θ ∈ [0, 2π],

in which the constraints are indeed linear, albeit with index set now of dimension

two. This technique was attributed to [SN82] in [BP95], where it was used in filter

design problems (see also [NZ99]).

201

Minimax design of a linear prediction filter

As an application of the above, consider the minimax design of a linear prediction

filter in the frequency domain. Our filter will have real coefficients, so the frequency

band of interest is [0, π], rather than [−π, π]. We define the target response to be

the ideal, non-causal one sample advance

Hd(e
jω) := ejω.

Of course, we cannot accurately approximate a non-causal filter with a causal FIR

filter over ω ∈ [0, π], but we can over a limited band of frequencies, say [0, 0.35π].

One way to achieve this is by solving the linear program

min t

s.t. W (ω)ℜ
{(
H(ejω) − ejω

)
ejθ
}
≤ t, (5.27)

∀ ω ∈ [0, π], θ ∈ [0, 2π],

using the real weighting function W (ω) := M on [0, 0.35π], and W (ejω) := 1 on

(0.35π, π], where M is a large number. We can also effectively take M = ∞, by

setting W (ω) = 1 and reducing the range of ω in (5.27) to [0, 0.35π]. However,

in this case, we will need to add some regularizing constraints such as |hk| ≤ R,

for some R > 0, in order for the problem to have a solution. Such constraints can

actually have practical benefit: they can be used to limit the gain of the filter away

from the band of interest, which can serve to make it perform more robustly when

the input signal is not strictly bandlimited to [0, 0.35π].

We discretize [0, π] with 3000 points and θ ∈ [0, 2π] with 100 points and look

for a filter with 25 taps.11 The resulting LP is of size 26 × 105050. Numerical

performance is discussed in section 5.6 and summarized in Table 5.4 at the end of

202

this chapter. The solution to this problem gives a linear prediction filter that works

quite well for any signal bandlimited to [0, 0.35π]. Figures 5.6 and 5.8 shows the

filter design errors and impulse response, and Figure 5.7 shows the performance on

white noise bandlimited to 0.35π.

Figure 5.6: Linear prediction filter designed by minimax approximation of the non-causal
one-sample advance H(ejω) = ejω on the interval [0, 0.35π]. The plots show the absolute
error magnitude (top) and phase error (bottom). Above ω = 0.35π, of course, the causal
filter deviates significantly from the non-causal target. We have, however, prevented wild
behavior above ω = 0.35π through the regularizing constraints |hk| ≤ R.

5.5 Spatial filters for antenna array beam-steering

Finally, we look at the problem of filter coefficient design for the array signal pro-

cessor of Figure 5.9. Here we have N sensors located at coordinates pl ∈ R3,

11Again using some rough approximations and numerical estimates, using (5.6) and (5.8), we
determine L2 ≈ 3000, L1 ≈ 3× 106. The “g” function cannot vary nearly as rapidly in θ as it does
in ω, so we only use 100 points to discretize the range of θ.

203

l = 0, 1, . . . N −1, each independently filtered by a complex FIR filter with response

Hl(e
jω) and summed. The problem is to optimize the array filter coefficients to

achieve a desired array beam pattern B(k, ω), defined as the complex response of

the array to a plane wave

ej(kTx−ωt)

with frequency ω and wavenumber vector k ∈ R3. The beam pattern is the spa-

tial extension of the frequency response which characterizes a linear time invariant

system by its response to the complex exponentials ejωt.

There is a vast literature on weight design and a host of traditional methods

based on FFTs and windowing techniques [Tre02], but more recently, optimization

based approaches (other than least squares) have been put forth seriously and ad-

vocated for their generality [LB97] [WBV98].

When the signals of interest are “narrowband”,12 and we are primarily in-

terested in filtering the input signals with respect to their spatial dimension k, the

array processor can restrict Hl(ω) = wl, a single complex number. In this way the

beam pattern of interest is

B(k) =
N−1∑

k=0

wle
kTpl

,

again a complex linear function of the real and imaginary components of w. Then

the problem of interest is to optimize the weights so that the beam pattern has

desirable properties, i.e., B(k) matches a desired profile. Using a minimax criterion,

we have the familiar looking formulation

min t

s.t. |B(k) −Bd(k)| ≤ t, (5.28)

∀ k ∈ K,

204

where Bd is some desired beam pattern and K is the set of wavenumber vectors on

which we want B(k) to approximate Bd(k).

This problem is quite similar to the FIR design problem, except now the

semi-infinite variable is two-dimensional. (Although k ∈ R
3, the wave equation

constrains its magnitude |k| = ω
c

= 2π
λ

, so that it is characterized by its direction.)

When the locations of the array elements are on a line and regularly spaced—the

so called uniform linear array (ULA)—then an exact analogy holds with the design

of FIR filters. For example, symmetry conditions analogous to the linear phase

conditions of section 5.2 can be imposed on the weight vector (filter coefficients)

to make B(k) = ejkTrA(k) with A(k) real and r ∈ R3 constant. In the case of a

ULA, the problem formulation of section 5.2 can be used. Here, we instead assume

there are N = 49 elements, arranged in a rectangular grid of nominal spacing λ
2

(we set λ = 19cm, the wavelength of the GPS L1 carrier) about the origin of the

x− y plane. The exact positions {pi}N−1
i=0 = {(pi

x, p
i
y, 0)}N−1

i=0 , are perturbed in their

x − y coordinates by random additive Gaussian noise with covariance matrix λ
32
I2.

However, the positions are assumed to be known.

Using k = −2π
λ
u, with u ∈ R

3 a unit vector, and reparameterizing, the beam

pattern becomes

B(u) =
N−1∑

l=0

wle
j 2π

λ
(pl

xux+pl
yuy).

The parameter u is the vector of direction cosines for the direction-of-arrival of

the plane wave, and is related to the elevation φ measured down from the z-axis,

and azimuth θ measured clockwise from the positive x-axis, by ux = sinφ cos θ,

uy = sin φ sin θ. A target beam pattern is shown in Figure 5.10 as a function of the

x and y components of the unit vector u. As is traditional in the antenna array

literature, we show the beam pattern for (ux, uy) in the square [−1, 1]× [−1, 1], but

12A signal is considered narrowband if its information bandwidth is very small compared to the
inverse propagation delay across the array.

205

the values of B(u) for ‖u‖ > 1 are irrelevant, as they do not correspond to physical

directions of arrival (in the literature this is referred to as the “invisible region”). In

this example problem, we are asking for peak gain in a circular region of radius 0.2

around (ux, uy) = (−0.5, 0), and strong null of the same shape and size at (0,−0.5),

and zero gain elsewhere.13 The square [−1, 1]× [−1, 1] in u space is discretized with

a grid of 100 × 100 points.14

As in the FIR design, we add transition (or “don’t-care”) regions around dis-

continuities in the target pattern and remove the invisible region ‖u‖ > 1 from

consideration by deleting these points from the discretized grid. The resulting prob-

lem is

min t

s.t. |B(u) − Bd(u)| ≤ t, ∀u ∈ U, (5.29)

where the problem variables are the complex array weights wl, l = 1, 2, . . .N , and

where U = {‖u‖ ≤ 1} \ {transition regions}. We use the technique of section 5.4 to

make the complex magnitude constraint expressible as a set of linear inequalities,

thus leading to a third dimension (θ ∈ [0, 2π]) for our semi-infinite parameter. We

discretize θ space using 50 points. An alternative approach would be to try to use

the complex magnitude design method of section 5.3, but this would require an

extension of the formulation and spectral factorization techniques used there, and

does not allow for control of the phase of B. Alternatively, we could just treat it

13For directions-of-arrival, u with B(u) = 1, the array signal-to-noise ratio improvement versus

a single element, assuming spatial white noise, is given by G = ‖w‖−2
2 :=

(
∑N−1

i=0 |wi|2
)
−1

[Tre02].

This is an important point, because a good fit to the target beam pattern does not mean that the
array will have good noise performance. Therefore, it can be useful to add a term to the objective
or a constraint to keep ‖w‖2 relatively small. With linear constraints only, we can bound the
∞-norm or 1-norm of w.

14As in the previous two problems, we estimated the Lipschitz constants R1 ≈ 50 and R2 ≈ 200
for this problem using some rough approximations and numerical tests. Since the interval length
is 2 for each dimension, and using ǫ = 0.05 we have, using the formulas (5.6) and (5.8), L1 ≈ 1000
and L2 ≈ 65.

206

as a semi-infinite quadratic or second-order-cone constraint. The latter approach

has been shown to be effective in [WBV98, LB97], but in order to formulate the

problem as a linear program, we use the method of section 5.4.

We end up with an LP of size 99 × 272250. The results of the optimization

are shown in Figure 5.11 and numerical performance is discussed in section 5.6 and

summarized in Table 5.4.

5.6 Numerical performance

The numerical results of our (regularized) algorithm rMPC⋆ on the problems de-

scribed in this chapter are summarized in Table 5.4. We have run each prob-

lem both using a regularized version of rMPC⋆ (with δ̄ = 10−8) with the en-

tire constraint set (i.e., without constraint-reduction) and a significantly reduced

set of constraints. Specifically, for each problem, in reduced mode, we kept only

M = max{15m, ⌊0.1n/m⌋} most-active and uniformly gridded constraints at each

iteration, as well as the local minimizers of the “slack function”. This type of rule

was described and justified in Chapter 4.

We also took this opportunity to make a comparison with the revised primal

simplex algorithm (RPS) with partial pricing (RPS-PP), which was discussed in

section 1.3.1. This is essentially the approach recommended for minimax filter design

in [BP95] and [NZ99]. The RPS algorithm has the advantage that the only O(n)

operations in each iteration are “pricing” the non-basis columns, i.e., computing

c−ATy to decide which column to bring into the basis (the pivoting strategy). By

partial pricing, this operation can often be reduced to no more than O(m), at least

for the early iterations. In our implementation we simply selected 3m columns at

random to price, and added (randomly) 3m more if none had negative cost. This

seemed to work quite well, much better than two alternative pricing/pivoting rules

207

(performance not shown in the table) that are popular in simplex implementations

[BT97]: 1) use the first negative costed column when checking columns in order,

or 2) compute the cost of all columns and select the one with minimal cost. For

these problems, the simplex iterations can be made very fast, since the work is only

O(m3) and m is small;15 the downside of the simplex approach is that it takes a

large number of iterations to solve the problems, many more than the interior-point

methods. This is clearly visible in the results presented in Table 5.4.

The time and iteration entries in the table include the total time and iteration

counts from the phase-1 and phase-2 problems. A phase-1 problem is always needed

for the RPS algorithm to find an initial basic feasible solution, and MPC/rMPC⋆

required use of the phase-1 problem (2.17) to find an initial dual strictly feasible

point for the Type II linear phase filter design problem and the phase noise synthesis

filter problem (for the other problems y0 = 0 was strictly feasible for appropriate

t0). The columns Mmax and Mavg are the maximum and average size of the working

constraint set (or number of columns of A used) in each iteration. For RPS-PP,

Mmax and Mavg always equal m, and for the unreduced MPC, both always equal n.

On all problems rMPC⋆ is significantly faster than the unreduced MPC method.

Consistent with common wisdom, the interior-point algorithms require far fewer

iterations than the RPS method. RPS-PP slightly outperforms rMPC⋆ on the first

and third problems, but fails on the phase noise filter problem (the phase-1 procedure

fails), and is considerably slower than rMPC⋆ on the antenna array problem.

Finally, we would like to note another important advantage our our approach:

it generates dual feasible iterates with monotonically improving objective. If our

algorithm prematurely terminates, for example, due to numerical problems, or im-

patience, the final iterate may very well provide a good solution to the problem of

interest—the discretized dual SILP. In contrast, since the RPS works on the primal

problem, a feasible solution for the dual SILP cannot easily be generated until opti-

208

prob alg status time iter max |Qk| mean |Qk|

Linear phase FIR
rps-pp succ 2.61 629 65 65.0
mpc succ 19.91 25 39372 39372.0
rmpc succ 5.48 40 1985 1947.3

Phase Noise Filter
rps-pp fail Inf Inf 252 252.0
mpc succ 696.47 33 163840 163840.0
rmpc succ 112.57 63 7907 7772.4

Linear Predictor
rps-pp succ 10.14 2672 26 26.0
mpc succ 35.72 31 105050 105050.0
rmpc succ 12.50 49 1963 1704.5

Antenna Array
rps-pp succ 130.93 8042 99 99.0
mpc succ 299.61 32 272250 272250.0
rmpc succ 42.68 35 9769 8598.3

Table 5.4: Numerical performance on the applications problems. Here we compare the
performance of the reduced and unreduced MPC algorithms, along with the RPS-PP
algorithm. The time and iteration entries on the table include the total time and iteration
counts from the phase-1 and phase-2 problems. A phase-1 problem is always needed for
the RPS algorithm to find an initial basic feasible solution, and MPC/rMPC⋆ required
use of the phase-1 problem (2.17) to find an initial dual strictly feasible point for the Type
II linear phase filter design problem and the phase noise synthesis filter problem. On all
problems, rMPC⋆ is significantly faster than the unreduced MPC method. Consistent
with common wisdom, the interior-point algorithms require far fewer iterations than the
RPS method. RPS-PP outperforms rMPC⋆ on the first and third problems, but fails on
the phase noise filter problem (the phase-1 procedure fails), and is slower than rMPC⋆ on
the antenna array problem.

mality is achieved. Thus, if numerical problems cause the RPS iteration to fail, then

all may be lost (at least if feasibility is critical). This is also true for the traditional

Parks-McClellan/Remez Exchange methods which are closely related to the RPS

method. For further discussion of the benefit of feasible, monotonic algorithms in

engineering design problems, see, e.g., [PT93].

15Our implementation of RPS is a basic one coded in Matlab with the same level-of-effort and
care given to our coding of the interior-point algorithms. For simplicity, we did not use updating
procedures discussed in section 1.3.1 to improve the per-iteration work to O(m2), but we also did
not use updating schemes in our implementation of rMPC⋆. It would be worthwhile to try to make
a comparison against a professional simplex software package, but we would want to be able to use
different partial pricing rules which may require access to the source. We did try to get iteration
counts using Matlab’s linprog LP solver configured to use the simplex method without partial
pricing, but we were unable to solve any of our four test problems using it. While such an effort
is still worthwhile, we leave it to future work.

209

5.7 Discussion

In this chapter we examined four real world filter design problems that were natu-

rally formulated as SILPs. A direct and general approach to solving such problems

is to discretize the constraint set and solve the resulting finite LP with a linear pro-

gramming algorithm. Since the discretized problem is typically very unbalanced,

i.e., n≫ m, it is important to use an LP algorithm that can take advantage of this

structure. The standard approach for solving such LPs is to work on the primal

SILP and use an algorithm related to the revised primal simplex (RPS) method

with partial pricing/column generation. We demonstrated in this chapter (and in

this dissertation) that interior-point algorithms using constraint-reduction methods

can also be a viable option for such problems, and that they may offer benefits over

RPS-like methods. One benefit is that the constraint-reduced IPMs may actually be

more efficient on some problem classes. For our algorithm rMPC⋆ at least, another

benefit over the RPS-type methods is that rMPC⋆ is a feasible ascent algorithm for

the problem-of-interest (the discretized dual SILP), which means that the iteration

can be stopped as soon as the objective is “good-enough”, or if numerical difficulties

cause the iteration to stop short of optimality, a feasible solution that may be good

enough is still generated.

More traditional approaches to solving such design problems may offer im-

provements in speed over the LP approach, but this usually comes at the cost of

reduced flexibility and generality. There is a general trend in engineering to get away

from specialized algorithms, and rely more and more on methods of (especially con-

vex) mathematical programming to model and solve design problems [BV04, Nes03].

The author believes this is a good direction to move in, and hopes the work of this

dissertation can help in a small way to encourage the trend.

210

Figure 5.7: Linear prediction filter in action. Both plots show the power spectrum of
an input noise signal that has been bandlimited to [0, 0.35π], as well as the spectrum
of the corresponding prediction error signals for the naive predictor that sets x̂k+1 =
xk, the minimax predictor, and the minimum mean squared error (MMSE) predictor
for ideally bandlimited white noise in [0, 0.35π] (designed by solving the Yule-Walker
equations [PP02]). The top plot shows the result when the bandlimited input is generated
using a 200 tap FIR lowpass filter with passband [0, 0.25π], and stopband [0.35π, π], and
the bottom uses a 100 tap FIR with the same passband/stopband. While the difference
in the input signal spectrum in each case is hardly noticeable, the performance of the
predictors is very different. The power ratio of the input to prediction error signals goes
from 45.48dB to 45.46dB using the minimax predictor, while for the MMSE predictor it
goes from 91dB to 37dB! The reason for this disparity in robustness can be attributed to
the bound constraints that we have put on the filter coefficients for the minimax predictor,
which keeps them at a much smaller level than that of the MMSE filter (see Figure 5.8).
This controls the behavior of the filter outside of the [0, 0.35π] band of interest. (It should
be noted that a similar regularization can be added to the MMSE filter by, for example,
adding a white noise component to the ideal lowpass correlation sequence, i.e., increasing
r0 just a little.)

211

Figure 5.8: Impulse response for the minimax (top) and MMSE (bottom) linear predic-
tion filters. Note the difference in scale. The bound constraints control the minimax filter
coefficient magnitudes and have a “regularizing” effect on its performance.

212

e
j(kTx−ωt)

p0

p1

pN−1

B(k, ω)

HN−1(e
jω)

H1(ejω)

H0(ejω)

...

Σ

Figure 5.9: A general array signal processor, with array elements at locations pl, l =
0, 1, . . . N − 1. The problem is to design the filters Hl(e

jω), for l = 0, 1, . . . N − 1, so as
to achieve desirable properties in the beam pattern B(k, ω), the response of the processor

to a plane wave ej(k
Tx−ωt) with frequency ω and wavenumber vector k. When the signals

of interest are narrowband so the relative time delays in the time of arrival of the signals
to the various elements can be approximated by a phase shift, often the filter is taken
to be Hl(e

jω) = wl ∈ C. When the array processor takes this form it may be called a
“phased-array” processor.

213

Figure 5.10: Target beam pattern for the antenna array problem. We are asking for
0dB gain, shown at level 1.0, at (ux, uy) = (−0.5, 0) and a wide null of the same shape at
(ux, uy) = (0,−0.5), shown at level -0.2. The “don’t care” transition regions are shown at
level -0.1 and include the “invisible region”, u2

x + u2
y > 1.

Figure 5.11: Optimized beam pattern for the antenna array problem.

214

Chapter 6

Summary

In this chapter, we review the main content and contributions of this dissertation.

In Chapter 1 we defined our problem class of interest, the “unbalanced” linear

program with many more inequality constraints than variables. For problems in dual

standard form, these are LPs with n≫ m. Next, we reviewed traditional approaches

for solving LPs with many inequalities (and, more generally, convex optimization

problems with many inequalities), including a detailed discussion of the revised

primal simplex method with partial pricing. After this, we provided a compre-

hensive review of prior “constraint-reduced” interior-point algorithms, noting that

for each of the major classes of interior-point algorithm, namely the affine-scaling,

potential-reduction, and path-following methods, a constraint-reduced variant had

been developed. In most past work, the analysis of the constraint-reduced variants

followed closely that of the parent algorithm through the use of a “minor-cycle” that,

at each iteration, built up the working constraint set until an adequate step could

be generated. Prior to [TAW06], research had focused on dual algorithms, whereas

in [TAW06], the authors considered a constraint-reduced primal-dual interior-point

(PDIP) algorithm rPDAS, which furthermore, did away with the minor-cycle. In

[TAW06], the authors also proposed a simple constraint-reduced version of Mehro-

215

tra’s predictor-corrector (MPC), the PDIP algorithm implemented in virtually all

interior-point software for LP and more generally convex-conic programming, as a

straightforward extension of their rPDAS algorithm. Numerical results were strong

for this algorithm, called rMPC, but no analysis was attempted. Further numerical

study of this type of algorithm with some ideas developed toward a convergence

analysis was conducted in [Nic09].

In Chapter 2, we proposed and analyzed a convergent constraint-reduced vari-

ant of Mehrotra’s predictor-corrector algorithm, which we called rMPC⋆ to distin-

guish it from Algorithm rMPC proposed in [TAW06]. Specifically, rMPC⋆ uses

MPC-like search directions computed for “constraint-reduced” versions of the prob-

lem; see (2.16). As for other constraint-reduced IPMs, the cost of an iteration of

rMPC⋆ can be much less than that of an iteration of MPC; specifically, the high

order work, when solving the normal equations by direct methods with dense A,

is reduced from O(nm2) to O(|Q|m2), where the theory allows |Q| to be O(m) in

nondegenerate cases. The primary contribution of this chapter is the global and

local quadratic convergence analysis of the algorithm under a very general class of

constraint selection rules, and minimal assumptions. The analysis has similarities to

that in [TAW06] for the rPDAS algorithm, but the constraint selection rule used in

our analysis is more general, the nondegeneracy assumptions are considerably less

restrictive, and we employ a somewhat different notion of constraint-reduction that

we feel is more natural. The analysis of rMPC⋆ extends to constrained-reduced, as

well as unreduced, primal-dual affine scaling as a limit case, thus improving on the

results of [TAW06].

In Chapter 3 we discussed the artificial rank-degeneracy that constraint-reduced

algorithms are subject to. Prior constraint-reduced IPMs required that the working

set of constraints satisfy rank(AQ) = m. In practice, this condition can be difficult

to achieve with simple constraint selection rules, and schemes for enforcing it can

216

be computationally intensive, or can end up adding back much, or most, of the

original constraint set. We briefly discussed some simple methods that essentially

sidestep the issue, and then proposed and analyzed two algorithms, the regularized

and kernel step rPDAS, that dealt with it directly. The latter algorithm is based

on the algorithm proposed and analyzed in [TAO06], but we provide an analysis

under somewhat relaxed assumptions. The analysis of each of these algorithms led

to similar conclusions as the Chapter 2 analysis of rMPC⋆, namely global and local

quadratic convergence to the optimal set under certain assumptions. Notably, we

also uncovered a connection between these two algorithms, showing that the ker-

nel step rPDAS algorithm, which was actually proposed first in [TAO06], could be

motivated as a limiting case of the regularized rPDAS algorithm using a very small

regularization parameter. Furthermore, since computing kernel steps is expensive

(compared to solving normal equations), the kernel step search directions might be

approximated as the regularized rPDAS direction with very small parameter.

In Chapter 4 we investigated the numerical performance of the three algorithms

discussed in Chapters 2 and 3. First we focused on rMPC⋆. We developed several

constraint selection heuristics and demonstrated the effectiveness of rMPC⋆ on a

class of random problems where its performance was remarkably good. On these

problems it appeared that we could use constraint reduction to great advantage:

the iteration counts were the same whether we used the entire constraint set or only

the 1% most nearly active constraints, while computation times were dramatically

reduced. We also observed remarkable numerical behavior of rMPC⋆ on a class of

discrete Chebyshev approximation problems after the development of a rule for con-

straint selection tailored to this class of problems. We conducted a limited numerical

comparison of rMPC⋆ against the other constraint-reduced IPMs described in Chap-

ter 1, and rMPC⋆ performed favorably. We then investigated the performance of the

regularized algorithms on two classes of problems that have high degree of degen-

217

eracy (in the sense of Chapter 3), the tube-in-cube problem of [TAO06] and a class

of sparse random problems. We introduced a (random) measure of the degree of

rank-degeneracy based on computing the average rank of randomly sampled m×m

sub-matrices of A. This measure is consistent on the tube-in-cube problem, evalu-

ating to the dimension of the kernel of AT (before adding the bound constraints),

while it also verifies the expected correlation between sparsity and degeneracy. We

predicted and observed an interesting qualitative behavior of the kernel step rP-

DAS and regularized rPDAS (with small parameter) on this problem, namely that

they took about k kernel-like steps, where k is the degree of rank-degeneracy of the

problem, and then switched to regular steps until termination.

In Chapter 5 we investigated some real-world applications from the area of

digital filter design. We presented a variety of approaches to filter design prob-

lems, each of which results in a semi-infinite linear program that can be discretized,

leading to a finite but unbalanced linear program, and then efficiently solved using

algorithms designed for unbalanced LPs. The approach proposed in much of the

literature on SILP design of filters is to use the revised primal simplex algorithm

(RPS). We presented a comparison of the numerical performance of a regularized

variant of rMPC⋆ (an obvious extension of our regularized rPDAS) versus the unre-

duced MPC algorithm, and versus a basic implementation of the traditional RPS

method. The constraint-reduced rMPC⋆ greatly outperformed the unreduced MPC,

as expected, but overall also outperformed the RPS algorithm, whose performance

was uneven on the four filter design problems.

The techniques used in the analysis of rMPC⋆ and the regularized and kernel

step rPDAS algorithms (like that of rPDAS in [TAW06]) allow for the elimination of

the minor-cycle that had been present in most previous constraint-reduced interior-

point algorithms. While this has the benefit of guaranteeing a reduced work per-

iteration, it may make it very difficult to attain (polynomial) complexity results,

218

i.e., global rates of convergence, whereas such results are one of the major strengths

of interior-point algorithms. We believe it may require a different approach to the

analysis to correct the situation. On the other hand, we believe that our line of

analysis should be extensible to general nonlinear programming problems, where

complexity results are elusive. These ideas suggest several lines of possible future

research. We elaborate on these ideas, and propose some more possible future lines

of research in the next and final chapter.

219

Chapter 7

Future lines of research

7.1 Complexity results

The major benefit of extending constraint-reduction to primal-dual interior-point

methods (PDIPMs) is that they generally have better practical performance than

primal-only or dual-only IPMs. This is particularly true of MPC, which is the cur-

rent champion of the IPMs for LP. However, one shortcoming of our work is that

we have no complexity results, whereas LP is a polynomial-time class of problems.

Even in the context of constraint-reduction, such complexity results have been es-

tablished by Tone, Kaliski and Ye and den Hertog, et al. It would certainly be nice

to develop complexity results for a variant of rMPC⋆ or other constraint-reduced

PDIPM.

One source of difficulty in pursuing this goal is that, although rPDAS (of

[TAW06]) and rMPC⋆ are primal-dual algorithms, they do not treat the primal

and dual variables symmetrically. They are motivated by the geometry of the dual

problem, enforcing dual feasibility, while updating the primal variables using a spe-

cialized rule (2.14) that does not preserve primal feasibility. Primal feasibility tends

to come only near the solution. Standard lines of analysis for PDIPMs that lead to

220

polynomial complexity results generally require that either the iterates are primal

and dual feasible, or become so at a controlled rate. In particular, the “infeasible

variants” of path-following methods usually enforce a condition like

‖b− Axk‖ ≤ βµk,

where µk = (xk)Tsk/n is the current duality measure [Wri97]. In practice, with

such algorithms, the infeasibilities typically converge to zero much faster than the

sequence of duality measures. We could attempt to enforce a similar condition by

introducing a minor-cycle, as in the work of [DY91, Ton93, HRT94], that adds con-

straints until the desired condition is satisfied. The infeasible primal-dual potential-

reduction algorithm of Mizuno, Kojima and Todd [MKT95], may offer an good

parent algorithm on which to base the constraint-reduction.

An alternative approach is to take the “inexact” point-of-view. We view the

constraint-reduced step merely as an approximation to the unreduced step. For ex-

ample, in the work of Tits et al. [TAW06], although motivated by the idea that most

constraints could be ignored, the search direction is defined by simply replacing the

normal matrix by the reduced normal matrix. We could think of this as an approx-

imation to the full normal matrix, and thus the resulting step as an approximation

to the full step.1 From this point-of-view, it may make sense to try to bound the

error in the reduced step, and use or develop algorithms that allow some error or

“inexactness” in the step.

Some prior work along the inexact lines is the work of Schurr [Sch06, SOT09],

who developed a short-step path following algorithm for conic optimization that

allows inexact evaluation of the barrier function gradient and Hessian, and still

achieves the best known complexity (see section 7.4 below). In another paper

1If very aggressive constraint reduction is used, i.e., if only a small fraction of the total constraint
set is used in forming the reduced normal matrix, then this approximation point of view may not
be appropriate, at least in early iterations.

221

[Kor00], a PDIPM for LP is developed that allows some error in the right-hand

side of the step equations and still achieves polynomial complexity. The motivation

here was to use an iterative solver and compute inexact search directions by stop-

ping the iteration early, but those ideas may be useful for inexactness arising from

ignoring constraints.

7.2 Efficient and robust implementation

Efficient updating schemes

Many of the linear algebra tasks arising in linear programming algorithms benefit

from introduction of efficient updating schemes. For example in the simplex method,

at each iteration, the basis matrix changes only by removal and insertion of a column.

Practical simplex implementations perform rank-two updates to a factorization of

the basis which requires only O(m2) work rather than the O(m3) work needed for

a from-scratch re-inversion. Similar ideas apply in interior-point algorithms, where

the dominant work per iteration, if we solve the normal equations, involves forming

and solving systems of equations of the form

ADATu = b.

Since only the diagonal matrix D changes from iteration to iteration, we expect to

be able to reuse some information from past iterations. A well known method for

doing this was proposed in Karmarkar’s seminal paper [Kar84].

In the context of constraint-reduction, still more possibilities arise since often

the normal matrix is built-up from a small initial set of columns of A. Several of the

papers discussed in Chapter 1 suggest factorization updating schemes. In particular,

222

in the minor-cycles of the [DY91, Ton93] algorithms, rank-one updates to the normal

matrix factorization are recommended. Updating relevant matrix factorizations is

something that should be done in any efficient implementation.

Use of iterative solvers

In our numerical experiments, we have almost exclusively solved the normal equa-

tions or augmented (KKT) system by direct methods. However, there may be

situations (e.g., when m≫ 1) where iterative methods such as preconditioned con-

jugate gradients (PCG) [Saa03] can do the job more efficiently. When this is the

case, we will not get exact solutions to the Newton system (2.18), but rather we

will compute an approximation ∆̃y to the exact ∆y. We can control the accuracy

(in terms of the residual at least) of ∆̃y by deciding when to terminate the iter-

ation. Alternatively, rather than solving the normal equations we could solve the

(reduced) augmented system (2.48); there are some well-known advantages to doing

this, namely, both the conditioning and the sparsity pattern of the augmented ma-

trix is generally better than that of the normal matrix. The obvious disadvantage

is that it is of size (n + m) × (n + m) rather than m ×m, and if the A matrix is

dense, particularly when n≫ m, there is a great advantage to the normal equations

approach; when the A matrix is sparse, as is often the case in large-scale real world

problems, then the advantage is considerably less. There has been quite a large

amount of work on using iterative methods to solve linear systems arising in primal-

dual interior-point methods; see, for example, [WO00, LMO06, Kor00]. Even in the

context of constraint-reduction, there has been some investigation: Kaliski and Ye

[KY93] used iterative methods to solve the normal equations, in particular, they

reported great success with the PCG algorithm using the minimal spanning tree

(MST) preconditioner (see section 1.9.3).

It seems that there are a variety of interesting future research avenues. Ques-

223

tions that arise include the following:

1. In the context of constraint-reduction, when is using an iterative solver ad-

vantageous?

2. Which iterative methods are most effective?

3. Is it preferable to solve the normal equations, or the augmented system?

4. What are good preconditioners to use for each?

5. What kind of gains can be expected?

6. How does one preserve or obtain convergence results in the face of inexactness

coming from the inexact solutions to the linear systems?

7.3 Specialization to target applications

It seems that general applicability of constraint-reduction with simple constraint

selection rules may be somewhat limited. We saw the initial failure of the sim-

plest rules for choosing the working set on the Chebyshev approximation problems.

This could be taken as a counterexample to the proposition that for problems with

many constraints, a few simple general constraint reduction rules suffice to achieve

significant savings in computation.

On the other hand, the promising result of that study was that after some

closer examination of the problem structure we were able to come up with a very

effective rule for constraint selection for smooth Chebyshev approximation and the

result, in our specific example, was a better than 10-fold speed up over the unreduced

case. The efficiency of this rule was further confirmed in the observed numerical

performance on the application problems of Chapter 5. This can be viewed as a

simple instance of the ubiquitous general principle that exploiting problem structure

in optimization is critical for the design of efficient methods. There is no free lunch;

224

we should not expect the simplest general rules to suffice.

Another example of the success of specialization is the work of Kaliski and Ye

(see section 1.9.3) who made some significant practical improvements and a theo-

retical breakthrough in specializing Tone’s method (see section 1.9) for connected

network flow problems and the transportation problem in particular. Yet another

example is the specialization of the PDAS and rMPC algorithms [TAW06] (see sec-

tion 1.12) to the training of support vector machines [JOT10, JOT08] (see section

1.14).

The bottom line is that one should attempt to specialize constraint selection

rules to specific classes of problems to take advantage of the problem structure

in using constraint-reduction. This can possibly be done in the context of the

general adaptive rule described in section 4.1.2, which assigns a value to vi to each

constraint and selects them in order of largest value. Allowing this vector of values

v to depend on the full history of iterates, in effect building-up a “value-function”

for the constraints, may be beneficial.

Some potential problem classes that may be worth studying (further) are the

Chebyshev approximation problem, Markov decision processes (MDPs), MDPs with

special structure, queuing models, network flow problems, and transportation prob-

lems. Next we provide some foundation for application to MDPs.

Markov decision processes

Another class of problems that can be formulated as inequality constrained LPs in

dual standard form, with many more constraints than variables, is the discrete time

finite state (DTFS) Markovian decision process. MDPs form a powerful modeling

paradigm for framing stochastic control problems. We use [BT05] as our main

reference for this section.

The basic setup goes as follows. Let X = {1, 2, . . . n} be the state space of a

225

DTFS controlled Markov chain. At each state x there is a set U(x) of admissible

controls. Under control u ∈ U(x), the Markov chain transitions to the next state,

with the probability of moving to state y ∈ X given by p(x, y, u). A stationary

(control) policy µ is an element of the Cartesian product Πx∈XU(x), i.e., a map

µ : X → U := ∪x∈XU(x) with µ(x) ∈ U(x) for all x ∈ X . Under a fixed policy

µ, the transition probabilities no longer depend on u and can be arranged into the

transition matrix Pµ, defined by [Pµ]xy = p(x, y, µ(x)). Given a distribution on X

arranged into a vector π, after a transition of the Markov chain, the new distribution

is PT
µ π.

We are interested in identifying an optimal policy, so we must introduce a cost

structure. At each state-control pair (x, u), we assume that a (supposed nonrandom)

cost of g(x, u) is incurred. Under each fixed policy this cost can be arranged into a

vector gµ ∈ R
n defined by [gµ]x = g(x, µ(x)).

The expected “discounted” cost Jµ incurred using policy µ starting from state

x satisfies the linear equation (linear in Jµ ∈ Rn)

Jµ(x) = g(x, µ(x)) + α
∑

y∈X
p(x, y, µ(x))Jµ(y),

where g(x, µ(x)) is the cost of the current state under policy µ and

∑

y∈X
p(x, y, µ(x))Jµ(y)

is the expected future cost; α ∈ [0, 1) is a discount factor that says we are some-

what less concerned about future costs (and makes the theory work out nicely).

Combining these equations for all x ∈ X gives the linear system

Jµ = gµ + αPµJµ, (7.1)

226

(where we make use of, hopefully clear, vector notation) which has solution

Jµ = (I − αPµ)
−1gµ, (7.2)

since α ∈ [0, 1) makes (I − αPµ) invertible. Define the operator Tµ by TµJ :=

gµ + αPµJ , so we can write (7.1) as Jµ = TµJµ.

We are interested in identifying a policy that starting from state x achieves

the minimal cost, among all possible policies. It turns out that under appropriate

conditions, there exists a (not necessarily unique) policy that is simultaneously op-

timal for all initial states. Given an optimal policy the optimal cost is computed

by (7.2). On the other hand, invoking Bellman’s principle of optimality (see e.g.,

[BT05]), we have that given the optimal cost vector J∗, an optimal policy is given

as

µ∗(x) = arg min
u∈U(x)

{g(x, u) + α
∑

y∈X
p(x, y, u)J∗(y)}.

Then the optimal cost must satisfy Bellman’s equation

J∗(x) = min
u∈U(x)

{g(x, u) + α
∑

y∈X
p(x, y, u)J∗(y)}.

The Bellman operator T is defined by

(TJ)(x) := min
u∈U(x)

{g(x, u) + α
∑

y∈X
p(x, y, u)J(y)},

so that we can write Bellman’s equation succinctly as

J∗ = TJ∗.

Two remarkable properties of T are, first, that it is monotonic, i.e., if J ≤ J ′

(in the componentwise sense), then TJ ≤ TJ ′, and second, that it is a contraction

227

in the infinity norm, i.e.,

‖TJ − TJ ′‖∞ ≤ β‖J − J ′‖∞,

with β ∈ [0, 1) [BT05].

There are at least three standard approaches for solving MDPs. Value iteration

is based on the fixed point iteration

Jk+1 = TJk,

which converges to J∗ since T is a contraction. Policy iteration generates a sequence

of improving policies {µk} by alternating policy evaluation, which consists of solving

the linear equation

Jk = Tµk
Jk,

and policy improvement, which consists of finding µk+1 from the equation

Tµk+1
Jk = TJk,

that is

µk+1(x) = arg min
u∈U(x)

{g(x, u) + α
∑

y∈X
p(x, y, u)Jk(y)}.

It can be shown that Jk+1 ≤ Jk with the inequality strict in at least one component.

Hence, since there are only finitely many policies (and no policy can repeat since

the cost is strictly monotonic), this process converges finitely.

The approach we are interested in, however, is the linear programming ap-

proach, which is based on the following observation. For any vector J ∈ Rn that

satisfies J ≤ TJ we have, using the monotonicity property of the Bellman operator,

228

that

J ≤ TJ ≤ T 2J ≤ T kJ,

for k ≥ 2, and letting k → ∞, we get

J ≤ J∗.

Now, since J∗ = TJ∗, we have that J∗ solves the following mathematical program:

max cTJ

s.t. J ≤ TJ (7.3)

for any c ∈ Rn, c > 0. This is not an LP, but is equivalent to the following LP

in dual standard form with n dual variables and nk constraints, where we assume

|U(x)| = k for all x (otherwise there are n
∑

x∈X |U(x)| constraints).

max cTJ

s.t. J(x) ≤ g(x, u) + α
∑

y∈X
p(x, y, u)J(y) (7.4)

for all x ∈ X , u ∈ U(x)

This LP is unbalanced, and thus a potential candidate for a constraint-reduced

IPM, if k ≫ 1; this can happen, for example, if the control is a finely discretized

version of a continuous control input. A perhaps more common situation is that

n is a huge number (by Bellman’s curse of dimensionality [BT05]) and k is rather

modest in comparison. In this case, practitioners often give up on finding J∗ and the

corresponding optimal policy, but rather settle for an approximate solution derived

from an approximation to the cost vector. Often the approximation takes the form

of a linear model J = Hr, where H ∈ Rn×m is fixed, and r ∈ Rm with m ≪ n.

229

Plugging this model for J in (7.3) leads to

max (HTc)Tr

s.t. (Hr)(x) ≤ g(x, u) + α
∑

y∈X
p(x, y, u)(Hr)(y), (7.5)

for all x ∈ X , u ∈ U(x),

which is an LP with only m variables but still nk constraints. This is sometimes

called the approximate linear programming (ALP) (which I think is an abbreviation

for something like approximate dynamic programming via linear programming) ap-

proach to solving MDPs [TS93, dFR04, dFR03]. Such problems may be good can-

didates for applying constraint-reduction techniques. Unfortunately, many times,

in real applications, n is an astronomical number. Since the constraint-reduced

interior-point algorithms we have discussed so far, including rMPC⋆, still do at least

O(mn) work at each iteration, these methods still may not be viable. Possible

ways forward in this case are by using simplex methods with column generation,

or cutting-plane methods if efficient column/constraint generators are available, or

possibly constraint sampling methods [dFR04, CC06, CC05, CG08] which sample a

subset of the constraints and ignore the rest completely. The reduced ALP (RALP)

is then solved for r∗, and the hope is that not too many of the ignored constraints

will be violated at the resulting solution, and even if some are, the policy that results

using this J = Hr∗ is still useful.

Initial tests with rMPC⋆ on an ALP formulation of a simple MDP, have been

promising; we believe further investigation could definitely be worthwhile.

230

7.4 Extension to convex-conic form problems

Any convex optimization problem can be expressed in “conic standard form”

min 〈c, x〉

s.t. Ax = b,

x ∈ K,

and

max 〈b, y〉

s.t. A∗y + s = c,

s ∈ K∗,

(7.6)

where K is a proper cone, K∗ is its dual (i.e., K∗ = {y | 〈x, y〉 ≥ 0}), and A∗ is

the adjoint of linear map A, see e.g., [Ren01]. This is a formal generalization of

LP, which fits the above form with K the nonnegative orthant. There is a very

nice duality theory for conic programming (CP), which parallels that of LP (with

a few complications—in particular, strong duality need not hold even when both

primal and dual problems are feasible). One of the most remarkable advancements

in optimization theory in recent history was the extension of interior-point-methods

developed for LP to general convex problems. In a series of research papers culmi-

nating in the monograph [NN93], Nesterov and Nemirovskii showed that whenever

an (efficiently computable) self-concordant2 barrier for the convex feasible region D

is available, then the general convex optimization problem

min 〈c, x〉

s.t. x ∈ D (7.7)

(any convex optimization problem can be posed in this form as well) can be solved

efficiently (in polynomial-time) by interior-point-methods. The basic algorithm, the

2These are convex functions that have Lipshitz continuous Hessians in the (affine-invariant)
norm induced by their own Hessians. These are functions that are in some sense ideally matched
to Newton’s method. See [Nes03, Ren01, NN93].

231

path-following method, approximately solves a sequence of barrier subproblems

min 〈c, x〉 + µF (x). (7.8)

The solutions to these problems for µ ∈ (0,∞) trace out the “central-path” which

converges to the solution to (7.7) as µ→ 0.

The interior-point theory combines nicely with the duality theory for CP.

Given a self-concordant barrier F for the cone K, it can be shown that its conjugate

function F∗ (see e.g., [Nes03] or [Ren01]) is a self-concordant barrier for the dual cone

K∗. Considering the associated barrier problems for the primal and dual instances

min 〈c, x〉 + µF (x)

s.t. Ax = b,

max 〈b, y〉 − µF∗(x)

s.t. A∗y + s = c,
(7.9)

and, using the fact that −F ′(x) ∈ K∗ for x ∈ K and −F ′
∗(s) ∈ K for s ∈ K∗, their

associated optimality conditions can be written in a nearly symmetric fashion

Ax = b,

A∗y + s = c,

s+ µF ′(x) = 0,

x ∈ intK, s ∈ intK∗,

Ax = b,

A∗y + s = c,

x+ µF ′
∗(s) = 0,

x ∈ intK, s ∈ intK∗.

(7.10)

Given a sequence of solutions {(xk, yk, sk)} to the primal optimality systems

for decreasing µk (it is known that the x component of such a sequence converges to

the solution of the primal CP instance), it can be shown that the associated dual-

feasible sequence {(yk, sk)} tends to optimality for the dual. In the special situation

that the barrier F is logarithmically homogeneous3 which implies, among many other

interesting things, that F ′(µx) = 1
µ
F ′(x), then the equations s + µF ′(x) = 0 and

3Function F is called logarithmically homogeneous when it satisfies F (tu) = F (u) − ν log t, for
some ν > 0, e.g., (in the scalar case) F (u) = − log u.

232

x + µF ′
∗(s) = 0 are equivalent, so that the primal and dual central paths coincide.

To see this, we make use of the remarkable fact that, in general, −F ′ and −F ′
∗ are

inverses of each other, so that, if s = −µF ′(x), then

−F∗(s) = −F∗(−µF ′(x)) = −F∗

(

−F ′
(
x

µ

))

=
x

µ
, (7.11)

and the reverse implication can be shown by a similar argument. Primal-dual

interior-point methods for CP use Newton or related directions for one of the above

systems, or for equivalent reformulations of one of them. In the special case that

K is a symmetric (equivalently self-scaled) cone,4 in particular, if K is the non-

negative orthant, the second-order cone, or the positive semidefinite cone, then the

class of primal-dual interior-point-methods for LP have very nice generalizations to

CP; most theoretical results and algorithms for LP have very satisfactory analogs

for these classes of problems, see e.g., [NN93, Ren01, Nes03].

Given the prior work on constraint-reduction for LP, it would be natural to

consider constraint-reduction in the context of CP, (with K symmetric or not). In

the context of LP, we visualize the constraint-reduction procedure as relaxing the

original problem and attempting to use or modify a step, or search direction, for the

relaxed problem for use in the original problem. Thus, a question is how to form

the relaxation in this more general context. Suppose the cone K takes the form

K = ∩p
i=1Ki,

and the barrier for the cone takes the form

F (x) =

p
∑

i=1

fi(x),

4We refer the reader to [Ren01], and its references, for a definition and detailed exposition on
the remarkable properties of symmetric cones and their role in interior point methods.

233

where fi is a barrier for the cone Ki. Then the gradient and Hessian for the barrier

are of the form

F ′(x) =

p
∑

i=1

f ′
i(x),

F ′′(x) =

p
∑

i=1

f ′′
i (x).

The barrier subproblem for the primal problem is

min 〈c, x〉 + µF (x), (7.12)

and the associated Newton system is

(
p
∑

i=1

f ′′
i (x)

)

d(x) = −
(

c+ µ

p
∑

i=1

f ′
i(x)

)

.

For some Q ⊆ {1, 2, . . . p}, we can replace this with

(
∑

i∈Q

f ′′
i (x)

)

d(x) = −
(

c+ µ
∑

i∈Q

f ′
i(x)

)

,

which could be much less expensive to solve if evaluating the barrier Hessian and

gradient is expensive. We could try to develop an algorithm similar to that of rPDAS

or rMPC⋆ based on this reduction.

Another way to think of such an approach is as using inexact evaluations of

the barrier gradient and Hessian. Schurr considered precisely that idea in [Sch06,

SOT09]. Specifically, he considered using inexact evaluations of the barrier gradient

and Hessian within a primal-dual short-step path-following algorithm for convex

conic optimization problems. Schurr’s algorithm uses the Newton step for the first

234

system in (7.10), namely,









0 A∗ I

A 0 0

µF ′′(x) 0 I

















∆x

∆y

∆s









=









0

0

−s− µF ′(x)









, (7.13)

except with the gradient F ′(x) and Hessian F ′′(x) replaced by the approximations

F1(x) and F2(x), arriving at









0 A∗ I

A 0 0

µF2(x) 0 I

















∆x

∆y

∆s









=









0

0

−s− µF1(x)









. (7.14)

As is usual in IPMs, the “local inner-product” defined by the barrier Hessian is

the natural geometry in which to measure things. In the local norm, the gradient is

F ′′(x)−1F ′(x), and the Hessian is just the identity. Thus the approximate gradient

is F ′′(x)−1F1(x) and the approximate Hessian is F ′′(x)−1F2(x), so the error e1(x) in

the local gradient, measured in the local norm, is

e1(x) = ‖F ′′(x)−1(F ′(x) − F1(x))‖x

= ‖F ′′(x)1/2F ′′(x)−1(F ′(x) − F1(x))‖,

= ‖F ′′(x)−1/2E1(x)‖,

where E1(x) := F ′(x) − F1(x). Defining E2(x) := F ′′(x) − F2(x), we find that the

error e2(x) in the local Hessian, measured in the local-norm induced operator-norm,

235

is

e2(x) = ‖I − F ′′(x)−1F2(x)‖x = ‖F ′′(x)−1E2(x)‖x

= sup
z

‖F ′′(x)−1E2(x)z‖x

‖z‖x

= sup
z

‖F ′′(x)1/2F ′′(x)−1E2(x)F
′′(x)−1/2F ′′(x)1/2z‖

‖F ′′(x)1/2z‖

= sup
z

‖F ′′(x)−1/2E2(x)F
′′(x)−1/2F ′′(x)1/2z‖

‖F ′′(x)1/2z‖

= sup
u

‖F ′′(x)−1/2E2(x)F
′′(x)−1/2u‖

‖u‖

= ‖F ′′(x)−1/2E2(x)F
′′(x)−1/2‖ = ‖F ′′(x)−1E2(x)‖. (7.15)

Schurr proposed a primal-dual short-step IPM for CP, assuming the barrier

F to be logarithmically homogeneous, but not requiring K to be symmetric. He

proved polynomial complexity of his algorithm under the assumption that the error

measures e1(x) and e2(x) are kept bounded by certain a priori defined constants ε1

and ε2.

Let us consider how we might use this in the LP case. Since we are motivated

by ignoring constraints in an LP with many inequality constraints, we will refor-

mulate the standard dual LP (without slack variables) into primal conic standard

form. We want the barrier to be a sum of terms with each term corresponding to

a constraint in the system, and we want the evaluation of this Hessian to consti-

tute the dominant cost of each iteration. Dual standard form with slack variables

(which is in conic form) is inadequate for this purpose since the barrier for the cone

(the non-negative orthant) is −∑n
i=1 log si which has Hessian S−2; this is cheap to

evaluate (the expensive part of the iteration comes in forming the Normal matrix)

so the inexact method of Schurr will not be very useful along this tack.

It is simple enough to make this better. Consider the dual standard form LP,

236

where we use nonstandard names for the data, with G ∈ Rp×k and p≫ k

max fTu,

s.t. Gu ≤ g.

Introducing a new variable t we have the equivalent formulation

max fTu

s.t. Gu ≤ gt,

t = 1,

with variable x = (uT, t)T in Rp+1. Let m := 1, n := p+ 1, x := (uT, t)T, A := eTn is

a row vector of ones, b := 1, c := −f , and

H := (G,−g), (7.16)

then we have

min cTx

s.t. Ax = b,

x ∈ K,

where the cone K := {x | Hx ≤ 0}. A logarithmically homogeneous self-concordant

barrier (see e.g., [NN93, Ren01, Nes03]) for K is

F (x) = −
n∑

i=1

log(−hT
i x),

237

where hi is the ith row of H . F has gradient

F ′(x) = HDe (7.17)

with D a diagonal matrix with Dii = 1
−hT

i x
, and Hessian

F ′′(x) = HD2HT. (7.18)

Let us focus on the error in the Hessian, as it is in computing the Hessian

approximation where the most significant computational savings can be gained. In

the context of constraint-reduction, we will approximate the barrier Hessian, which,

in this case, has the form HD2HT, by the partial sum HQD
2
Q
HT

Q
. We would like to

have a way of ensuring that the appropriate norm of the error matrix H
n\QD

2
n\Q
HT

n\Q

stays within the allowable range, i.e., e2(x) < ε2.

Unfortunately, to compute the error e2(x), we need the full Hessian, which we

are trying to avoid computing. So we look for a way to efficiently bound the error.

Let us attempt to obtain such bounds for the LP case. To simplify notation define

M := F ′′(x) = HD2HT,

MQ := F2(x) = HQD
2
Q
HT

Q
,

M
n\Q := E2(x) = F ′′(x) − F2(x) = H

n\QD
2
n\Q
HT

n\Q
.

The goal is to obtain a bound on the error e2(x), without having to compute M

or M
n\Q. We hope to find a bound in terms of the di, and perhaps in terms of

properties of the H matrix. We assume, without loss of generality, that the columns

238

of H are normalized to have unit 2-norm. Then, we have

e2(Q) = ‖M−1/2M
n\QM

−1/2‖

= ‖M−1M
n\Q‖

= ‖M
n\QM

−1‖

= ‖M
n\Q(M−1

Q
+

∞∑

k=1

(−M
n\QM

−1
Q

)k)‖

≤ ‖M
n\QM

−1
Q

‖ + ‖M
n\QM

−1
Q

‖2 + c‖M
n\Q‖3

. ‖M
n\QM

−1
Q

‖ =: ea2(Q)

≤ ‖M
n\Q‖‖M−1

Q
‖ =: ba2(Q)

The approximate bound ea2(x) was found to be a very good estimate for e2(x) in our

preliminary experiments, and its elementary bound ba2(Q) was quite good as well.

Unfortunately, we must avoid explicit formation of M
n\Q, and so we seek to further

bound ‖M
n\Q‖ “cheaply”. One possibility is the following:

‖M
n\Q‖ = λmax(Mn\Q)

≤
m∑

i=1

λi(Mn\Q) = trace(M
n\Q)

= trace




∑

i∈n\Q
D2

iihih
T
i





=
∑

i∈n\Q
D2

ii trace
(
hih

T
i

)

=
∑

i∈n\Q
D2

iih
T
i hi =

∑

i∈n\Q
D2

ii. (7.19)

This bound is cheap, but unfortunately, in practice, it is too conservative. The

following heuristic (for which we have no good explanation) seems to work well and

239

is inexpensive to evaluate:

‖M
n\Q‖ .

1
√

|n \Q|
∑

i∈n\Q
D2

ii. (7.20)

To test the plausibility of this approach, we generated a random 100 × 10000

standard form LP and solved it (with rMPC⋆), we stopped the algorithm at it-

erations 8, 10, 12, and 14, and computed the errors in the approximation of the

normal matrix by MQ. (Actually we used here M = AXS−1AT in place of the

M = HD2HT, as it is the quantity available using rMPC⋆, and similarly for MQ,

but these are closely related, and this method is just meant to get reasonable values

for D2
ii for the test.) Figure 7.1 shows the true error in the Hessian approximation

that uses a Q corresponding to the largest values of D2
ii = (S−1

ii Xii). Two of the

approximate error bounds are also shown. The size of the constraint set |Q| is plot-

ted on the horizontal axis. The horizontal line corresponds to ε2 = 0.08 (which is a

reasonable value according to [Sch06]) and when the error, or an upper bound on the

error, falls below this line we may ignore the remaining constraints corresponding

to D2
ii smaller than the crossing point. The approximate bound ‖M

n\Q‖‖M−1
Q

‖ is

quite good (‖M
n\QM

−1
Q

‖, not shown, is even better), while the heuristic from (7.20)

is excellent (although it underestimates the error a little in the last plot). The

bound trace(M
n\Q)‖M−1

Q
‖ (not shown) is far too conservative, and unfortunately, is

essentially useless for this example. In this example, if we use the heuristic bound,

at iteration 10, we can drop about half of the constraints and still keep the error

below the threshold, while by iteration 12 to 14, we can drop most of them. In

practice, determining an appropriate Q could be done in a minor-cycle, where we

choose an initial constraint set Q, evaluate the bound for e2(Q), call it b(Q), and

if b(Q) ≤ ε2 (implying e2(Q) ≤ ε2), then we can use the corresponding approxima-

tion in computing the step, whereas, if b(Q) > ε2, then we need to add additional

240

constraints. If we could tolerate somewhat more error, then the allowable reduction

may be significantly greater, so it would be worth investigating if the analysis of

Schurr could be refined to allow a larger ε2. This is a very preliminary test and

it just gives an idea of what might be possible. There is a large body of work on

matrix theory that we expect can be brought to bear on this problem to help obtain

reasonably tight, and cheaply computable bounds on e2(Q).

If we indeed are able to obtain such bounds then we can use the results of

Schurr to show that, with appropriate choice of parameters θ, 5 τ, ε1, and ε2, the

following algorithm has an iteration complexity bound of O(
√
n log 1

ε
) (note we may

require a “minor-cycle” in the first step), and hopefully considerably less work per

iteration.

Algorithm 13: Constraint-reduced algorithm for conic (at least linear) pro-

gramming

Input: CP Data: A, b, c,K, Initial iterate: (x0, y0, s0) ∈ N (θ);

Parameters: θ ∈ (0, 1), τ > 0, ε > 0, ε1 > 0, ε2 > 0;

Output: ε-optimal primal-dual solution (x, y, s)

while µ ≥ ε do

Select Q so that e1(Q) ≤ ε1 and e2(Q) ≤ ε2;

Compute F1(x) =
∑

i∈Q
f ′

i(x);

Compute F2(x) =
∑

i∈Q
f ′′

i (x);

Solve system (7.13) for (∆x,∆y,∆s);

Set (x+, y+, s+) := (x, y, s) + (∆x,∆y,∆s);

Set µ+ = τµ;

end

5This parameter defines the N (θ) “neighborhood” of the central path. See [Sch06, SOT09] for
details.

241

7.5 Extension to general nonlinear, possibly non-

convex, problems

At first glance there is no reason why these constraint-reduction methods should

not extend to interior-point methods for general inequality constrained nonlinear

programming. In fact, the extension to convex QP has already been done [JOT10].

This should be particularly straightforward if the constraints are linear. In con-

trast to the relatively large amount of work on constraint-reduction in IPMs for

LP, excluding the work of Jung on convex QP [JOT10] and den Hertog’s work in

[HKRT95], there appears to be little prior work for more general cases.

We consider the general inequality constrained problem

min f0(y)

s.t. fi(y) ≤ 0 i = 1, 2, . . . n, (7.21)

where y ∈ Rm, and we assume n≫ m. The barrier method for solving (7.21) takes

Newton steps on the logarithmic barrier subproblem

min f0(y) + τ

n∑

i

− log(−fi(y)), (7.22)

for decreasing values of τ > 0. The log-barrier function for the region {y, | fi(y) ≤

0, i = 1, 2, . . . , n} is

ϕ(y) = −
n∑

i=1

log(−fi(y)),

which has gradient

∇ϕ(y) =
n∑

i=1

∇fi(y)

fi(y)
,

242

and Hessian

∇2ϕ(y) =

n∑

i=1

∇2fi(y)

fi(y)
− ∇fi(y)∇fi(y)

T

fi(y)2
.

If, selecting a small set Q of working constraints, we instead compute the Newton

step for the problem

min f0(y)

s.t. fi(y) ≤ 0 i ∈ Q, (7.23)

with simplified barrier

ϕQ(y) := f0(y) + τ
∑

i∈Q

− log(−fi(y)), (7.24)

then the expressions for the gradient and Hessian are correspondingly simplified,

with sums only over the index set Q. Fewer evaluations of the gradient and Hessian

of the constraint functions will be needed, and furthermore the log-barrier Hessian

may be considerably more sparse, making the Newton system easier to solve. If we

carefully choose the set Q, then we hope that the resulting step will be good for the

original problem.

We can try similar things for the primal-dual interior-point method which takes

Newton steps on the equality portion of the perturbed KKT conditions for (7.21):

f(y) + s = 0,

∇yL(y, x) = ∇yf0(y) + A(y)x = 0, (7.25)

Xs− τe = 0,

(x, s) ≥ 0,

243

where

L(y, x) := f0(y) + xTf(y)

is the Lagrangian for the problem, τ ≥ 0 is the perturbation parameter, x the vector

of Lagrange multipliers for the inequality constraints,

A(y)T :=












∇f1(y)
T

∇f2(y)
T

...

∇fn(y)T












, f(y) :=












f1(y)

f2(y)

...

fn(y)












, X := diag(x), S := diag(s),

and s ≥ 0 is a vector of slack variables for the inequalities. The KKT conditions

(1.78) for the LP problem (1.3) are a special case of (7.25). The Newton system for

the equality portion of (7.25) is (cf. (1.79))









0 A(y)T I

A(y) ∇2
yL(y, x) 0

S 0 X

















∆x

∆y

∆s









=









−f(y) − s

−∇yf(y) − A(y)x

σµe−Xs









, (7.26)

where we have set τ = σµ, with µ = xTs/n the current “duality measure” and

σ ∈ [0, 1]. Similar statements that were made after the introduction of (1.79) apply.

As in the LP case, system (7.26) can be solved by first eliminating ∆s to get

the symmetric-indefinite augmented system (cf. (1.80))






−X−1S A(y)T

A(y) ∇2
yL(y, x)











∆x

∆y




 =






−f(y) − σµX−1e

−∇yf0(y) −A(y)x




 , (7.27)

∆s = −A(y)T∆y − f(y) − s,

244

or by further eliminating ∆x to get normal equations (cf. (1.81))

M(x, y)∆y = −∇yf0(y) − A(y)x+ A(y)S−1X(−f(y) − σµX−1e),

∆s = −A(y)T∆y − f(y) − s, (7.28)

∆x = −S−1X
(
−A(y)T∆y − f(y) − σµX−1e

)
.

where the “normal matrix” is now

M(y, x) := ∇2
yL(y, x) + A(y)S−1XA(y)T

= ∇2
yL(y, x) +

n∑

i=1

xi

si

∇fi(y)∇fi(y)
T

= ∇2f0(y) +
n∑

i=1

(

xi∇2f0(y) +
xi

si
∇fi(y)∇fi(y)

T

)

. (7.29)

If the problem (7.21) is convex, then, as in the LP case, the normal matrix is positive

semi-definite. A simple form of constraint-reduction, analogous to what is done in

[TAW06] for the rPDAS algorithm, is to replace the normal matrix by the reduced

version

MQ(y, x) := ∇2
yL(y, x) +

∑

i∈Q

xi

si
∇fi(y)∇fi(y)

T, (7.30)

or alternatively with

M̃Q(y, x) := ∇2f0(y) +
∑

i∈Q

(

xi∇2fi(y) +
xi

si

∇fi(y)∇fi(y)
T

)

, (7.31)

and use the back-substitutions in (7.28) to define the complete search direction

(∆x,∆y,∆s). Another possibility, analogous to what we have done in the LP algo-

rithms developed in this dissertation, would be to replace the size n+m augmented

245

system (7.27) with the size n + |Q| system






−X−1
Q
SQ AQ(y)T

AQ(y) ∇2
yLQ(y, x)











∆xQ

∆y




 =






−fQ(y) − σµX−1
Q
e

−∇yf0(y) − AQ(y)x




 , (7.32)

∆sQ = −AQ(y)T∆y − fQ(y) − sQ,

which defines a it partial primal-dual search direction (∆xQ,∆y). This method

does not specify the n \ Q component of ∆x, and we would need a method for

updating xn\Q, as was the case for our constraint-reduced LP algorithms developed

in Chapters 2 and 3.

The lines of analysis used in Chapters 2 and 3 are inspired by that of [TAW06],

which was influenced by lines of analysis for nonlinear programming developed in

[Her82, PTH88], so we believe it is likely that our constraint-reduced algorithms

and analysis could be extended to these more general problems, although it would

almost certainly be easier to consider convex problems first.

Example: randomly generated geometric programs

As an example showing that this idea has promise, we generated a random geometric

program with many constraints. Geometric programs (GPs, see e.g., [BV04]) (when

properly formulated) are convex optimization problems of the form (7.21), where

fj(y) = lse(Cjy + dj)

and

lse(z) := log
(∑

ezj

)

,

where subscript j is an index, Cj is a k(j) ×m matrix, and dj ∈ Rk(j). (Note lse(·)

stands for log-sum-exp.) A large number of problems in engineering design can be

246

formulated as GPs, see e.g., [BV04, SB07, Chi05].

Suppose that k(j) = k, a constant, and we have n constraints. Then the cost

of evaluating the constraints is at least O(nkm). Since

∇zlse(z) =
ez

∑
ezj

(exponentiation applied componentwise) and

∇2
zlse(z) = diag

(
ez

∑
ezj

)

− (ez)(ez)T

(
∑
ezj)2

= diag (∇zlse(z)) −∇zlse(z)∇zlse(z)
T,

the cost of evaluating all of the constraint gradients

∇yfj(y) = CT
j ∇zlse(Cjy + dj)

is also O(nkm) and the cost of the evaluating the constraint Hessians

∇2
yfj(y) = CT

j ∇2
zlse(Cjy + dj)Cj

is O(n(km2 + k2m)). Finally, putting together the normal matrix (7.29) costs

O(nm2). It appears that simply evaluating the constraint Hessians dominates the

computation. We summarize this in Table 7.1 along with the corresponding cost

when n is reduced to |Q| < n. (Some items are marked “same” on the table be-

cause, for example, we still have to fully evaluate the constraints in conducting the

line search, etc.) We see that, similar to the linear case, it is reasonable to take

|Q| = O(n/m), thus reducing the dominant cost by a factor of O(m) assuming the

number of line-search iterations (see discussion of algorithm implementation below)

does not increase significantly. It may be worth determining the order constants in

the table, since we may want to know our possible savings when n is only moderately

247

operation full cost reduced cost

evaluate fi(y), ∇yfi(y) O(nkm) same
evaluate ∇2

yfi(y) O(n(km2 + k2m)) O(|Q|(km2 + k2m))
form normal matrix O(mn2) O(|Q|m2)
solve Newton system O(m3) same

line search (LS) # of LS iter. × O(nkm) same

Table 7.1: Cost of iteration of primal-dual method on GP example.

larger than m.

The random problem has n = 10000, m = 100 and k(j) = 5 for j = 1, 2, . . . n.

The components of Cj are sampled independently from the standard normal distri-

bution, and dj is chosen so that the initial point y0 = e is strictly feasible, with the

constraints evaluating to s0 > 0, for some specified set of initial “slack” values.

We used the primal-dual method with the constraints sorted according to

nearness to activity, and we kept the M constraints with smallest values of si.

(Of course, there are other constraint selection rules possible, e.g., choosing them

according to size of xi or xi/si are the most obvious alternatives.) Table 7.2 shows the

time and iterations needed for various fixedM to reduce the duality gap to tolerance.

These results are pleasantly surprising. The benefit of constraint-reduction appears

M iterations time

10000 84 718s
5000 66 363s
2500 55 214s
1000 49 137s
500 41 96s
250 39 83s
100 45 99s

Table 7.2: Performance of constraint-reduction in the primal-dual method with σ = 0.1
on random GP of size k = 5, m = 100, n = 10000.

to be major on this problem. In particular, recall that in our experiments for LP, the

iteration counts generally increased, or stayed roughly constant, as the number of

constraints in the working set were decreased. Here, in contrast, a clear decreasing

248

trend is present: fewer and fewer iterations are needed as we reduce the constraint

set! Of course the iterations are cheaper as well when we keep fewer constraints, so

this appears to be a double benefit.

Figure 7.2 shows a handpicked example in two dimensions where the constraint-

reduced PDIPM requires far fewer iterations to solve the random GP than the cor-

responding unreduced method. In particular, the figure shows the trajectories of

iterates of the primal-dual method with σ = 0.02 on a random GP with m = 2,

k = 5, and n = 100, using constraint-reduction with |Q| = 6 (aggressive reduction)

vs. |Q| = 100 (no reduction). The unreduced trajectory takes a large number of very

short steps, 190 iterations in all, and remains near the boundary of the feasible set

throughout. We intentionally started the iterations from a bad initial iterate, with

the first constraint nearly active; this apparently causes serious problems for the

unreduced algorithm on this class of problems. The constraint-reduced method, on

the other hand, appears to be much less sensitive to the poor initial point: there is

no such stalling, and only 21 iterations are needed. From such poor starting points,

this type of behavior was regularly observed on this class of random GPs. It would

be rather interesting if it occurs also on large real world problems. The results of

Table 7.2 suggest this may be the case on large instances of randomly generated

GPs at least.

The algorithm we used is very simple: we computed the Newton step for the

KKT system and then use a backtracking line search [BV04] to maintain feasibility

with respect to the inequality constraints; feasibility for the multipliers, i.e., non-

negativity, can be enforced more simply. We did not require descent or reduction of

“dual” infeasibility (i.e., the norm of the Lagrangian gradient) in the line-search; we

actually we had some difficulty meeting such a descent condition with the constraint-

reduced variant so we took it out. This is related to the discussion in section 7.1,

and is something that will most likely need to be considered in developing provably

249

convergent variants. Potentially interesting and useful future work would be to

develop specific constraint-reduced variants of the barrier and primal-dual methods

and investigate their theoretical and practical behavior in detail.

250

Figure 7.1: Bounding the error in the barrier Hessian approximation. The plots show
error in the Hessian partial-sum approximation vs. number of terms in the sum; the terms
are taken according to largest value of D2

ii first. We solved a random 100 × 10000 LP,
using unreduced rMPC⋆ to get reasonable values for D2

ii (this is not intended to be a
totally precise test here) and computed the errors in an approximation at iterations 8,
10, 12, and 14. (The problem was solved to tolerance in 16 iterations total.) Note the
difference in scaling of the x-axis on each plot. The horizontal line on each plot specifies
the threshold ε2 = 0.08; all constraints for which the error bound is below this threshold
may be omitted, so that by iteration 10, we can drop about half, and by iteration 12 to
14, we can drop almost all of them. The plot shows the exact error, the approximate
bound ‖M

n\Q‖‖M−1
Q ‖ (both expensive to evaluate), and the inexpensive heuristic (7.20);

all three are in fairly close agreement.

251

Figure 7.2: Trajectories of iterates of the primal-dual method with σ = 0.02, on the
GP example described above in n = 2-dimensional space with k = 5 and m = 100. We
have handpicked this example to show the problems that can occur with many constraints
(with small σ) and the potential benefit of constraint-reduction. An intentionally bad
initial iterate x0 is chosen so that fi(y

0) = −1 for i = 2, 3, . . . m, and f1(y
0) = 10−3.

The dot-marks show the iterates of the algorithm without constraint-reduction, i.e., using
|Q| = 100. In this case, the algorithm severely stalls near the boundary: 190 iterations
were needed to solve the problem. The circle-marked trajectory shows the iterates of the
algorithm using aggressive reduction with |Q| = 6. The situation in that case is much
better, and only 21 iterations were needed. The thick solid line is the boundary of the
feasible region.

252

Bibliography

[BP95] D. Burnside and T. W. Parks. Optimal design of FIR filters with the
complex Chebyshev error criteria. IEEE Transactions on Signal Pro-
cessing, 43(3):605 –616, 1995.

[Bre00] L. Breiman. Probability. SIAM Classics in Applied Mathematics, 2000.

[BT97] D. Bertsimas and J. Tsitsiklis. Introduction to Linear Optimization.
Athena, 1997.

[BT05] D. Bertsekas and J. Tsitsiklis. Dynamic Programming and Optimal
Control, Vols.1&2. Athena scientific, 2005.

[BV04] S. P. Boyd and L. Vandenberghe. Convex Optimization. Cambridge
University Press, Cambridge, UK, 2004.

[BV07] S. Boyd and L. Vandenberghe. Localization and cutting plane methods,
2007. Course Notes, Convex Optimization II, Stanford University.

[BVS] S. Boyd, L. Vandenberghe, and J. Skaf. analytic center cutting plane
methods. Course Notes, Convex Optimization II, Stanford University.
2007.

[Car09] C. Cartis. Some disadvantages of a mehrotra-type primal-dual corrector
interior point algorithm for linear programming. Applied Numerical
Mathematics, 59:1110–1119, 2009.

[CC05] G. Calafiore and M. C. Campi. Uncertain convex programs: randomized
solutions and confidence levels. Mathematical Programming, 102(1):25–
46, 2005.

[CC06] G. Calafiore and M.C. Campi. The scenario approach to robust control
design. IEEE Trans. on Automatic Control, 51(5):742–753, 2006.

[CG08] M. C. Campi and S. Garatti. The exact feasibility of randomized so-
lutions of robust convex programs. SIAM Journal on Optimization,
19(3):1211–1230, 2008.

253

[Chi05] M. Chiang. Geometric programming for communication systems. Com-
mun. Inf. Theory, 2(1/2):1–154, 2005.

[dFR03] D. de Farias and B. Van Roy. The linear programming approach to
approximate dynamic programming. Operations Research, 51(6):850–
865, 2003.

[dFR04] D. de Farias and B. Van Roy. On constraint sampling for the linear
programming approach to approximate dynamic programming. Mathe-
matics of Operations Research, 29(3):462–478, 2004.

[Dik67] I. I. Dikin. Iterative solution of problems of linear and quadratic pro-
gramming. Doklady Akademiia Nauk SSSR, 174:747–748, 1967. English
Translation: Soviet Mathematics Doklady, 1967, Volume 8, pp. 674–675.

[Dik74] I. I. Dikin. On convergence of an iterative process. Upravlyaemye Sys-
temy, 12:54–60, 1974. In Russian.

[DNPT06] A. Deza, E. Nematollahi, R. Peyghami, and T. Terlaky. The central path
visits all the vertices of the Klee-Minty cube. Optimization Methods and
Software, 21(5):851–865, 2006.

[DW60] G. B. Dantzig and P. Wolfe. Decomposition principle for linear pro-
gramming. Operations Research, 8(1):101–111, 1960.

[DY91] G. Dantzig and Y. Ye. A build-up interior-point method for linear pro-
gramming: Affine scaling form. Working paper, Department of Man-
agement Science, University of Iowa, 1991.

[EM75] J. Elzinga and T. J. Moore. A central cutting plane algorithm for the
convex programming problem. Mathematical Programming, 8(1):134–
145, 1975.

[FO07] M. P. Friedlander and D. Orban. Exact primal-dual regularization of
linear programs, 2007. Presentation given at ICCOPT: Hamilton, On-
tario.

[GL83] G. H. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins
University Press, Baltimore, 1983.

[Her82] J. N. Herskovits. Développement d’une Méthode Numérique pour
l’Optimization Non-Linéaire. PhD thesis, Université Paris IX -
Dauphine, Paris, France, 1982.

[Her92] D. den Hertog. Interior Point Approach to Linear, Quadratic and Con-
vex Programming, Algorithms and Complexity. PhD thesis, Faculty
of Mathematics and Informatics, TU Delft, NL–2628 BL Delft, The
Netherlands, September 1992. Subsequently published by Kluwer Pub-
lishers, Dordrecht, The Netherlands, 1994.

254

[Hig90] N. J. Higham. Analysis of the Cholesky decomposition of a semi-definite
matrix. In M. G. Cox and S. J. Hammarling, editors, Reliable Numerical
Computation, pages 161–185. Oxford University Press, 1990.

[HK93] R. Hettich and K. O. Kortanek. Semi-infinite programming: theory,
methods, and applications. SIAM Review, 35(3):380–429, 1993.

[HKRT95] D. den Hertog, J. Kaliski, C. Roos, and T. Terlaky. A logarithmic
barrier cutting plane method for convex programming problems. Annals
of Operations Research, 58:69–98, 1995.

[Hof52] A. J. Hoffman. On approximate solutions of systems of linear inequali-
ties. Journal of Research of the National Bureau of Standards, 49:263–
265, 1952.

[HRT94] D. den Hertog, C. Roos, and T. Terlaky. Adding and deleting constraints
in the path-following method for LP. In D.Z. Du and J. Sun, editors,
Advances in Optimization and Approximation, pages 166–185. Kluwer
Academic Publishers, 1994.

[HT10] M. He and A. L. Tits. An infeasible constraint-reduced interior-point
method for linear programming, 2010. Presented at the 6th Northeast
Control Workshop, Johns Hopkins University in Baltimore, Maryland.

[HUL00] J. Hiriart-Urruty and C. Lemarachal. Fundamentals of Convex Analysis.
Springer, 2000.

[JOT08] J. H. Jung, D. P. O’Leary, and A. L. Tits. Adaptive constraint reduc-
tion for training support vector machines. Electronic Transactions on
Numerical Analysis, (31):156–177, 2008.

[JOT10] J. H. Jung, D. P. O’Leary, and A. L. Tits. Adaptive constraint reduction
for convex quadratic programming. Computational Optimization and
Applications, 2010. To appear.

[JRT90] B. Jansen, C. Roos, and T. Terlaky. A polynomial primal-dual Dikin-
type algorithm for linear programming. Mathematics of Operations Re-
search, 21(2):341–353, 1990.

[Kar84] N. K. Karmarkar. A new polynomial-time algorithm for linear program-
ming. Combinatorica, 4:373–395, 1984.

[Kel60] J. E. Kelley. The cutting plane method for solving convex programs.
Journal of the SIAM, 8(4):703–712, 1960.

[Kha79] L. G. Khachiyan. A polynomial algorithm in linear programming. Dok-
lady Akademiia Nauk SSSR, 224:1093–1096, 1979. English Translation:
Soviet Mathematics Doklady, Volume 20, pp. 191–194.

255

[KM72] V. Klee and G. J. Minty. How good is the simplex algorithm? In
O. Shisha, editor, Inequalities, III, pages 159–175. Academic Press,
1972.

[KM95] L. J. Karam and J. H. McClellan. Complex Chebyshev approximation
for FIR filter design. Circuits and Systems II: Analog and Digital Signal
Processing, IEEE Transactions on, 42(3):207–216, 1995.

[Kor00] J. Korzak. Convergence analysis of inexact infeasible-interior-point al-
gorithms for solving linear programming problems. SIAM Journal on
Optimization, 11(1):133–148, 2000.

[KT93] L. G. Khachiyan and M. J. Todd. On the complexity of approximating
the maximal inscribed ellipsoid for a polytope. Mathematical Program-
ming, 61(2):137–159, 1993.

[KY93] J. A. Kaliski and Y. Ye. A short-cut potential reduction algorithm for
linear programming. Management Science, 39:757–776, 1993.

[LB97] H. Lebret and S. Boyd. Antenna array pattern synthesis via convex
optimization. IEEE Transactions on Signal Processing, 45(3):526–532,
1997.

[LMO06] Z. Lu, R. D. C. Monteiro, and J. W. O’Neal. An iterative solver-based
infeasible primal-dual path-following algorithm for convex quadratic
programming. SIAM J. on Optimization, 17(1):287–310, 2006.

[Lue84] D. G. Luenberger. Linear and Nonlinear Programming. 2nd edition,
Addison-Wesley, Menlo Park, 1984.

[MAR90] R. D. C. Monteiro, I. Adler, and M. G. C. Resende. A polynomial-time
primal-dual affine scaling algorithm for linear and convex quadratic pro-
gramming and its power series extension. Math. of Operations Research,
15:191–214, 1990.

[ME01] P. Misra and P. Enge. ”Global Positioning System: Signals Measure-
ments, and Performance”. Ganja-Jamuna Press, 2001.

[Meh92] S. Mehrotra. On the implementation of a primal-dual interior point
method. SIAM Journal on Optimization, 2(4):575–601, 1992.

[MKT95] S. Mizuno, M. Kojima, and M. J. Todd. Infeasible-interior-point primal-
dual potential-reduction algorithms for linear programming. SIAM
Journal on Optimization, 5(1):52–67, 1995.

[MR79] O. L. Mangasarian and R.R.Myer. Nonlinear perturbation of linear
programs. SIAM Journal on Optimization, 17(6):745–752, 1979.

256

[MTW93] R. D. C. Monteiro, T. Tsuchiya, and Y. Wang. A simplified global
convergence proof of the affine scaling algorithm. Annals of Operations
Research, 46-47(2):443–482, 1993.

[Nes95] Y. E. Nesterov. Cutting plane algorithms from analytic centers: effi-
ciency estimates. Mathematical Programming, 69(1):149–176, 1995.

[Nes03] Y. E. Nesterov. Introductory lectures on convex optimization: a basic
course, volume 87 of Applied Optimization. Kluwer Academic Publish-
ers, Boston, 2003.

[net] Netlib linear programming test problems. http://www-
fp.mcs.anl.gov/OTC/Guide/TestProblems/LPtest/.

[Nic09] S. Nicholls. Column Generation in Infeasible Predictor-Corrector Meth-
ods for Solving Linear Programs. PhD thesis, University of Maryland,
College Park, MD, 2009.

[NN93] Y. E. Nesterov and A. S. Nemirovsky. Interior Point Polynomial Meth-
ods in Convex Programming: Theory and Algorithms. SIAM Publica-
tions. SIAM, Philadelphia, USA, 1993.

[NZ99] S. Nordebo and Z. Zang. Semi-infinite linear programming: A unified
approach to digital filter design with time and frequency-domain spec-
ifications. IEEE Transactions on Circuits and Systems-II: Analog and
Digital Signal Processing, 46(6):765–775, 1999.

[Off04] Navstar GPS Joint Program Office. Navstar GPS Space Seg-
ment/Navigation User Interfaces (IS-GPS-200D), 2004.

[O’L90] D. P. O’Leary. On bounds for scaled projections and pseudo-inverses.
Linear Algebra and its Applications, 132:115–117, 1990.

[OS99] A. V. Oppenheim and R. W. Shafer. Discrete Time Signal Processing.
Prentice Hall Signal Processing Series, 1999.

[Pot96] F. Potra. An infeasible-interior-point predictor-corrector algorithm for
linear programming. SIAM Journal on Optimization, 6(1):19–32, 1996.

[Pot98] A. W. Potchinkov. Semi-infinite programming, chapter 5: The design
of nonrecursive digital filters via convex optimization. Kluwer, Boston-
London-Dordrecht, 1998.

[PP02] A. Papoulis and S. U. Pillai. Probability, Random Variables, and
Stochastic Processes. McGraw-Hill, New York, NY, 2002.

[PS82] C. H. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Al-
gorithms and Complexity. Prentice-Hall, Englewood Cliffs, New Jersey,
1982.

257

[PT93] E. R. Panier and A. L. Tits. On combining feasibility, descent and
superlinear convergence in inequality constrained optimization. Mathe-
matical Programming, 59(1-3):261–276, 1993.

[PTH88] E. R. Panier, A. L. Tits, and J. N. Herskovits. A QP-free, globally
convergent, locally superlinearly convergent algorithm for inequality
constrained optimization. SIAM J. Contr. and Optim., 26(4):788–811,
1988.

[Ree91] R. Reemtsen. Discretization methods for the solution of semi-infinite
programming problems, 1991.

[Ren01] J. Renegar. A Mathematical View of Interior-Point Methods in Convex
Optimization. SIAM, 2001.

[Saa03] Y. Saad. Iterative Methods for Sparse Linear Systems, Second Edition.
SIAM, 2003.

[Sai94] R. Saigal. On the primal-dual affine scaling method. Technical re-
port, Dept. of Industrial and Operational Engineering, The University
of Michigan, 1994.

[Sai96] R. Saigal. A simple proof of a primal affine scaling method. Annals of
Operations Research, 62(1):303–324, 1996.

[SB07] S. J. Kim A. Hassibi S. Boyd, L. Vandenberghe. A tutorial on geometric
programming. Optimization and Engineering, 8(1):67–127, 2007.

[Sch91] L. L. Scharf. Statistical Signal Processing. Addison Wesley, 1991.

[Sch06] S. Schurr. Inexact Primal-Dual Path Following Algorithm for convex
conic optimization. PhD thesis, University of Maryland, College Park,
MD, 2006.

[SN82] R. L. Streit and A. H. Nuttall. A general Chebyshev complex function
approximation procedure and an application to beamforming. J. Acoust.
Soc. Am, 71(1):181–190, 1982.

[SOT09] S. P. Schurr, D.P. O’Leary, and A.L. Tits. A polynomial-time interior-
point method for conic optimization, with inexact barrier evaluations.
SIAM Journal on Optimization, 20(1):548–571, 2009.

[SPT07] M. Salahi, J. Peng, and T. Terlaky. On Mehrotra-type predictor-
corrector algorithms. SIAM Journal on Optimization, 13(4):1377–1397,
2007.

[SS01] B. Scholkopf and A. J. Smola. Learning with Kernels: Support Vec-
tor Machines, Regularization, Optimization, and Beyond. MIT Press,
Cambridge, MA, USA, 2001.

258

[ST96] M. A. Saunders and J. A. Tomlin. Solving regularized linear programs
using barrier methods and KKT systems. Technical report, Stanford
University, Department of EES, 1996.

[Ste89] G. W. Stewart. On scaled projections and pseudo-inverses. Linear
Algebra and its Applications, 112:189–194, 1989.

[TAO06] A. L. Tits, P. A. Absil, and D. P. O’Leary. Constraint reduction for
certain degenerate linear programs. July 30-August 4 2006. presented
at 19th ISMP.

[TAW06] A.L. Tits, P.A. Absil, and W. Woessner. Constraint reduction for lin-
ear programs with many constraints. SIAM Journal on Optimization,
17(1):119–146, 2006.

[Tod90] M. J. Todd. A Dantzig-Wolfe like variant of Karmarkar’s interior-point
linear programming algorithm. Operations Research, 38(6):1006–1018,
1990.

[Ton93] K. Tone. An active-set strategy in an interior point method for linear
programming. Mathematical Programming, 59(1-3):345–360, 1993.

[Tre02] H. L. Van Trees. Optimum Array Processing: Part IV of Detection,
Estimation, and Modulation Theory. John Wiley and Sons, Inc., New
York, 2002.

[TS93] M. Trick and E. Stanley. A linear programming approach to solving
stochastic dynamic programs, 1993. Working Paper, Carnegie Mellon
University.

[TZ94] A.L. Tits and J.L. Zhou. A simple, quadratically convergent algorithm
for linear and convex quadratic programming. In W.W. Hager, D.W.
Hearn, and P.M. Pardalos, editors, Large Scale Optimization: State of
the Art, pages 411–427. Kluwer Academic Publishers, 1994.

[Van96] R. J. Vanderbei. Linear Programming: Foundations and Extensions.
Kluwer Academic Publishers, Boston, 1996. Second Edition: 2001.

[Vig99] J. R. Vig. IEEE standard definitions of physical quantities for fun-
damental frequency and time metrology—random instabilities. IEEE
standard - 1139-1988, 1999.

[VL88] R. J. Vanderbei and J. C. Lagarias. I. I. Dikin’s convergence result
for the affine-scaling algorithm. In J. C. Lagarias and M. J. Todd, ed-
itors, Mathematical Developments Arising from Linear Programming:
Proceedings of a Joint Summer Research Conference, pages 109–119,
Bowdoin College, Brunswick, Maine, USA, 1988. American Mathemat-
ical Society, Providence, RI, USA, 1990.

259

[WBV98] S.P. Wu, S. Boyd, and L. Vandenberghe. Applied Computational Con-
trol, Signal and Circuits, chapter 5: FIR Filter design by Spectral Fac-
torization and Convex Optimization, pages 215–245. Birkhauser, 1998.

[WNTO10] L. B. Winternitz, S. O. Nicholls, A. L. Tits, and D. P. O’Leary.
A constraint reduced variant of Mehrotra’s predictor-corrector al-
gorithm, 2010. Submitted for publication. Available online:
http://www.optimization-online.org/DB HTML/2007/07/1734.html.

[WO00] W. Wang and D.P. O’Leary. Adaptive use of iterative methods in
predictor-corrector interior point methods for linear programming. Nu-
merical Algorithms, 25(1–4):387–406, 2000.

[Wri97] S. J. Wright. Primal-Dual Interior-Point Methods. SIAM, Philadelphia,
1997.

[Ye91] Y. Ye. An O(n3L) potential reduction algorithm for linear program-
ming. Mathematical Programming, 50(2):239–258, 1991.

[Ye92] Y. Ye. A potential reduction algorithm allowing column generation.
SIAM J. on Optimization, 2(1):7–20, 1992.

[Ye97] Y. Ye. Interior Point Algorithms: Theory and Analysis. John Wiley,
New York, 1997.

[ZZ95] Y. Zhang and D. Zhang. On polynomiality of the Mehrotra-type
predictor-corrector interior point algorithms. Mathematical Program-
ming, 68(3):303–31, 1995.

[ZZ96] D. Zhang and Y. Zhang. A Mehrotra-type predictor-corrector algo-
rithm with polynomiality and Q-subquadratic convergence. Annals of
Operations Research, 62(1):131–150, 1996.

260

