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Educational assessments are characterized by the interplay among substantive 

theories, task design, and measurement models.  Substantive theories define the 

nature of inferences to be made about students and types of observations that lend 

support to the targeted inferences.  Task design represents the schemes for the design 

of tasks and extraction of evidence from student behaviors in the task situations.  

Measurement models are the tools by which observations of students’ performances 

are synthesized to derive the targeted inferences.  

This dissertation elaborates on the interplay by specifying the entities that are 

involved and how they work in concert to produce an effective assessment and sound 

inferences.  Developments in several areas are contributing to interest in more 

complex educational assessments: Advances in cognitive psychology spark interest in 

more complex inferences about students’ knowledge, advances in technology make it 

possible to collect richer performance data, and advances in statistical methods make 



fitting more complex models feasible.  The question becomes how to construct and 

analyze assessments to take advantage of this potential.  In particular, a framework is 

required for understanding how to think about selecting and reasoning through the 

multivariate measurement models that are now available.  

Illustrations of the idea are made through explicating and analyzing the 1996 

National Assessment of Educational Progress (NAEP) Science Assessment.  Three 

measurement models, each of which reflects a particular perspective for thinking 

about the structure of the assessment, are used to model the item responses.  Each 

model sheds light on a particular aspect of student proficiencies, addresses certain 

inferences for a particular purpose, and delivers a significant story about the 

examinees and their learning of science.  Each model highlights certain patterns at 

the expense of hiding other potentially interesting patterns that reside in the data.  

Model comparison is conducted in terms of conceptual significance and degree of fit.  

The two criteria are used in complement to check the coherence of the data with the 

substantive theories underlying the use of the models. 



  

 

 

MULTIDIMENSIONALITY IN THE NAEP SCIENCE ASSESSMENT: 

SUBSTANTIVE PERSPECTIVES, PSYCHOMETRIC MODELS,  

AND TASK DESIGN 

 

By 

Hua Wei 

 

Dissertation submitted to the Faculty of the Graduate School of the 

University of Maryland, College Park, in partial fulfillment 

of the requirements for the degree of 

Doctor of Philosophy 

2008 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Advisory Committee: 

Professor Robert J. Mislevy, Chair 

Professor Paul J. Hanges 

Professor Gregory R. Hancock 

Assistant professor Jeffrey R. Harring 

Adjunct assistant professor Amy B. Hendrickson 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© Copyright by 

Hua Wei 

2008 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 ii 

Acknowledgements 

First of all, I would like to thank my advisor, Dr. Mislevy, for his vision, patience, and 

tremendous support throughout the stages of this dissertation.  Without his 

encouragement and mentorship, all the work would not have been completed.  I 

would also like to thank Dr. Hancock, Dr. Harring, Dr. Hendrickson, and Dr. Hanges 

for their guidance and insightful suggestions.  Discussions with them helped me to 

focus and clarify my thinking.  My gratitude also goes to my fellow students in 

EDMS, whose friendship and support made my studies much more pleasant and 

productive than they would otherwise have been.  Finally, I want to thank my parents 

and my husband for their great support along the way.   

 



 iii 

Table of Contents 

Acknowledgements………………………………………………………………...….ii 

Table of Contents……………………………………………………………………..iii 

List of Tables………………………………………………………………………….vi 

List of Figures……………………………………………………………………….viii 

Chapter 1: Introduction………………………………………………………………..1 

Chapter 2: Literature Review………………………………………………………...10 

2.1 Assessment argument…………………………………………………...10 

2.2 Assessment triangle……………………………………………………..14 

2.3 Role of measurement models…………………………………………...16 

2.4 Review of measurement models………………………………………..20 

2.4.1 The multidimensional between-item model…………………20 

2.4.2 Item factor analytic model…………………………………...23 

2.4.3 Mixture of item response theory models…………………….25 

2.5 Fit indices……………………………………………………………….29 

2.6 NAEP science assessment………………………………………………32 

Chapter 3: Cases of Convergence in Model and Narrative Relationships…………...35 

3.1 Measurement models and narrative stories as two representations…….35 

3.2 Unidimensional models versus multidimensional models……………...37 

3.2.1 Unidimensionality and essential unidimensionality…………37 

3.2.2 Essential unidimensionality and multidimensionality……….39 

3.3 Between-item versus within-item multidimensionality………………...44 

3.4 Multidimensional models versus mixture models………………………46 

3.5 Unidimensional models versus mixture models………………………...52 

Chapter 4: Methodology……………………………………………………………...55 

4.1 Data ……………………………………………………………………..55 

4.2 Model analyses………………………………………………………….58 

4.2.1 The multidimensional between-item model…………………59 

4.2.2 The exploratory item factor analytic model…………………60 



 iv 

4.2.3 MCMC estimation of the mixture models…………………..62 

4.3 Computation of the fit indices…………………………………………..65 

Chapter 5: Results and Discussion…………………………………………………...72 

5.1 Analysis results of a single item block …….…………………………...73 

5.1.1 Results of model analyses…………………………………...78 

5.1.1.1 The between-item multidimensional model……...78 

5.1.1.2 The exploratory item factor analytic model……...85 

5.1.1.3 The mixture Rasch model………………………..92 

5.1.2 Comparison of model fit by information criteria…………..107 

5.1.3 Comparison of narrative stories for selected examinees…...110 

5.1.4 Background characteristics of latent classes……………….113 

5.2 Analysis results of block combination 1.....………..………………….117 

5.2.1 Results of model analyses………………………………….118 

5.2.1.1 The between-item multidimensional model…….118 

5.2.1.2 The exploratory item factor analytic model……123 

5.2.1.3 The mixture Rasch model………………………128 

5.2.2 Comparison of model fit by information criteria…………..137 

5.3 Analysis results of block combination 2……………..………………..138 

5.3.1 Results of model analyses………………………………….139 

5.3.1.1 The between-item multidimensional model…….139 

5.3.1.2 The exploratory item factor analytic model…….145 

5.3.1.3 The mixture Rasch model……………………….150 

5.3.2 Comparison of model fit by information criteria…………..157 

5.4 Synthesis of analysis results across the three data sets………………..158 

Chapter 6: Conclusions……………………………………………………………..162 

6.1 Summary of main findings…………………………………………….162 

6.2 Responses to the meta-questions………………………………………164 

6.3 Implications to science assessment design…………………………….166 

6.4 Limitations of the study and future work……………………………...171 



 v 

Appendix A: Items in Block S20 for Grade 8…….………………………………...174 

Appendix B: Latent class membership and examinees’ background variables..……178 

References…………………………………………………………………………..185 



 vi 

List of Tables 

Table 1: Factor loadings of the one-factor model for all  

the items in Block S20……………………………………………………...75 

Table 2: Factor loadings of the two-factor model for all  

the items in Block S20……………………………………………………...76 

Table 3: Factor loadings of the three-factor model for all  

the items in Block S20……………………………………………………...77 

Table 4: Item difficulty estimates and fit statistics from ConQuest 

for Block S20 excluding Item 10 (The dimensions are  

defined in terms of content areas)………………………………………….81 

Table 5: Item difficulty estimates and fit statistics from ConQuest 

for Block S20 excluding Item 10 (The dimensions are  

defined in terms of science process skills)…………………………………83 

Table 6: Root mean square residuals (RMSRs) for the one-, two-,  

three-, and four-factor models for Block S20  

(excluding Item 10)………………………………………………………....88 

Table 7: Chi-square statistics for the one-, two-, three-, and four-factor 

models for Block S20 (excluding Item 10)…………………………………89 

Table 8: Tests of chi-square difference statistics between factor models  

for Block S20 (excluding Item 10)………………………………………….89 

Table 9: Factor loadings of the two-factor model for Block S20  

(excluding Item 10)…………………………………………………………90 

Table 10: Item difficulties of the 2-class mixture Rasch model 

for Block S20 (excluding Item 10)………………………………………..98 

Table 11: Item difficulties of the 3-class mixture Rasch model 

for Block S20 (excluding Item 10)……………………………………….103 

Table 12: Comparison of fit statistics across and within types 

of models for Block S20 (excluding Item 10)……………………………109 

Table 13: Results of model analyses for the selected examinees 

for Block S20 (excluding Item 10)……………………………………….111 

Table 14: Associations between background variables and latent  

class membership of the 2-class mixture Rasch model 

solution for Block S20 (excluding Item 10)……………………………...116 

Table 15: Item difficulty estimates and fit statistics from ConQuest  

for Blocks S7 and S4 (The dimensions are defined  

in terms of content areas)………………………………………………...120 

Table 16: Item difficulty estimates and fit statistics from ConQuest  

for Blocks S7 and S4 (The dimensions are defined 

in terms of science process skills)………………………………………..122 

Table 17: Root mean square residuals (RMSRs) for the one-, two-,  

and three-factor models for Blocks S7 and S4…………………………...125 

Table 18: Chi-square statistics for the one-, two-, three-, and  

four-factor models for Blocks S7 and S4………………………………...125 



 vii 

Table 19: Tests of chi-square difference statistics between factor models 

for Blocks S7 and S4……………………………………………………..126 

Table 20: Factor loadings of the two-factor model for  

Blocks S7 and S4…………………………………………………………127 

Table 21: Item difficulties of the 2-class mixture Rasch model  

for Blocks S7 and S4……………………………………………………..132 

Table 22: Item difficulties of the 3-class mixture Rasch model 

for Blocks S7 and S4……………………………………………………..136 

Table 23: Comparison of fit statistics across and within types  

of models for Blocks S7 and S4………………………………………….138 

Table 24: Item difficulty estimates and fit statistics from ConQuest  

for Blocks S20 (excluding Item 10) and S4 (The dimensions 

are defined in terms of content areas)……………………………………141 

Table 25: Item difficulty estimates and fit statistics from ConQuest 

for Blocks S20 (excluding Item 10) and S4 (The dimensions 

are defined in terms of cognitive domains)………………………………143 

Table 26: Root mean square residuals (RMSRs) for the one-, two-,  

and three-factor models for Blocks S20 and S4………………………….146 

Table 27: Chi-square statistics for the one-, two-, and three-factor 

models for Blocks S20 and S4…………………………………………...147 

Table 28: Tests of chi-square difference statistics between factor models 

for Blocks S20 and S4……………………………………………………147 

Table 29: Factor loadings of the two-factor model for Blocks S20 

(excluding Item 10) and S4………………………………………………149 

Table 30: Item difficulties of the 2-class mixture Rasch model 

for Blocks S20 (excluding Item 10) and S4……………………………...152 

Table 31: Item difficulties of the 3-class mixture Rasch model 

for Blocks S20 (excluding Item 10) and S4……………………………...155 

Table 32: Comparison of fit statistics across and within types 

of models for Blocks S20 (excluding Item 10) and S4…………………..157 



 viii 

List of Figures 

Figure 1: Toulmin's structure for arguments………………………………………….11 

Figure 2: Elaborated Toulmin’s diagram……………………………………………..12 

Figure 3: Structures of between-item and within-item 

multidimensionality………………………………………………………………45 

Figure 4: Between-item multidimensionality in terms of  

content areas for Block S20 (excluding Item 10)………………………….79 

Figure 5: Between-item multidimensionality in terms of  

science process skills for Block S20 (excluding Item 10)…………………79 

Figure 6: Scree plot from exploratory factor analysis for  

Block S20 (excluding Item 10)……………………………………………87 

Figure 7: Trace plots for a subset of parameters being monitored 

 in the two-class mixture Rasch model for Block S20  

(excluding Item 10)………………………………………………………..95 

Figure 8: History plots for a subset of parameters being monitored 

 in the two-class mixture Rasch model for Block S20  

(excluding Item 10)………………………………………………………..96 

Figure 9: Scatter plot of item difficulties of the two-class  

mixture Rasch model for Block S20 (excluding Item 10)…………………99 

Figure 10: Trace plots for a subset of parameters being monitored 

 in the three-class mixture Rasch model for Block S20 

 (excluding Item 10)……………………………………………………..101 

Figure 11: History plots for a subset of parameters being monitored 

in the three-class mixture Rasch model for Block S20  

(excluding Item 10)……………………………………………………..102 

Figure 12: Scatter plot of item difficulties between Class 1 and Class 2 

of the three-class mixture Rasch model for Block S20  

(excluding Item 10)……………………………………………………..104 

Figure 13: Scatter plot of item difficulties between Class 1 and class 3 

of the three-class mixture Rasch model for Block S20  

(excluding Item 10)……………………………………………………..105 

Figure 14: Scatter plot of item difficulties between Class 2 and class 3 

of the three-class mixture Rasch model for Block S20  

(excluding Item 10)……………………………………………………..106 

Figure 15: Scree plot from exploratory factor analysis for  

Blocks S7 and S4………………………………………………………..124 

Figure 16: History plots for a subset of parameters being monitored in the 

two-class mixture Rasch model for Blocks S7 and S4………………….130 

Figure 17: History plots for a subset of parameters being monitored in the 

three-class mixture Rasch model for Blocks S7 and S4………………...134 

Figure 18: Scree plot from exploratory factor analysis for  

Blocks S20 (excluding Item 10) and S4………………………………...145 

Figure 19: History plots for a subset of parameters being monitored in the 



 ix 

two-class mixture Rasch model for Blocks S20  

(excluding Item 10) and S4……………………………………………..151 

Figure 20: History plots for a subset of parameters being monitored in the 

three-class mixture Rasch model for Blocks S20  

(excluding Item 10) and S4……………………………………………..154 



 1

Chapter 1: Introduction 

 Advances in cognitive and measurement sciences have inspired development of 

assessment practices that can address more ambitious questions.  Evolving 

conceptions about how students acquire, organize, and use knowledge offer the 

potential for richer and more coherent assessments that can better assist learning and 

teaching.  However, this potential can be realized only if the general scientific 

principles for assessment design are explicated and implemented in assessment 

applications.  Especially, the interplay among substantive, statistical, and operational 

aspects of an assessment is the foundation for developing an effective assessment that 

suits the purpose for which it is designed and achieves its potential for informing 

instruction and learning (National Research Council, 2001; Mislevy, Steinberg, & 

Almond, 2003).   

Essentially, every assessment is characterized by the interplay among substantive 

theories, patterns in the data, and measurement models (National Research Council, 

2001; Wilson, 2005).  Substantive theories define the nature of inferences to be made 

about students, how observations of student performance should be collected and in 

what task situations, and what aspects of student performance are relevant evidence 

that lends support to the targeted inferences.  Patterns in the data are salient aspects 

of students’ performances that bear evidence about their unobserved proficiencies.  

They are the target of analysis.  Measurement models are the tools by which patterns 

in the data are analyzed to derive the targeted inferences.  

Substantive theories, patterns in the data, and measurement models should be 
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coordinated to produce an effective and coherent assessment and generate sound 

inferences.  With regard to a measurement model, on the one hand, it should be 

formulated in a way that is consistent with test developers’ substantive theories and 

appropriate in grain-size for the purpose of the assessment.  It is not a haphazard 

collection of variables randomly appearing in the form of a mathematical function.  

Rather, the inclusion of variables and distributions in a measurement model and the 

level of detail at which they are defined are determined by the important substantive 

relationships in the assessed domain and the theoretical constructs and observations 

that are involved (Mislevy, Wilson, Ercikan, & Chudowsky, 2002).  Although it may 

be unrealistic to model every subtlety and complexity of the substantive relationships, 

a simplified version should be reflected in a measurement model.  The conceptual 

significance of a measurement model is determined by the validity of its underlying 

substantive theories and the strength of linkage between the model and the theories.  

On the other hand, a measurement model should be structured to capture the 

significant patterns in the data (Ibid).  Features of task situations and students’ 

responses to the tasks should be closely monitored in the model.  Any salient aspect 

of data that exists in the real-world setting but is left unmodeled will contaminate the 

validity of the model and distort inferences made through the model.  The extent to 

which a measurement model represents and explains patterns in the data can be 

signified by statistical data-model fit indices.  Model criticism tools, such as tests of 

person fit or item fit, are available to detect suspected departures of a measurement 

model from particular aspects of observed data (Wilson, 2005).  
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In this dissertation, the three pillars of a coherent assessment and their interplay 

were discussed to illuminate the different approaches to multidimensionality.  

Multidimensionality is a recurring issue in educational assessments.  Essentially, it 

results from the interaction between features of examinees and features of tasks in the 

test settings.  Three types of multidimensionality were analyzed in the presentation 

to illustrate ideas.  Two of these types are distinguished by Adams, Wilson, and 

Wang (1997).  A test measuring several parallel unidimensional subscales with no 

common item across subscales is multidimensional between items.  In contrast, a test 

measuring several latent dimensions with some items related to more than one 

dimension is multidimensional within items.  A third type of multidimensionality is 

conceptualized by mixture models (Rost, 1990; Mislevy & Verhelst, 1990; Yamamoto 

& Everson, 1995).  Distinctions among the three types of multidimensional test 

structures reflect different perspectives for thinking about knowledge and learning in 

the domain of interest, different rationales by which test developers want to 

characterize students’ knowledge and proficiency, and different design choices they 

make to implement their rationales.   

The assessment being analyzed in this dissertation is the 1996 National 

Assessment of Educational Progress (NAEP) science assessment.  In many 

large-scale assessments like NAEP, unidimensionality is a basic assumption.  Item 

responses are usually analyzed by unidimensional item response theory (IRT) models.  

The narrative theme supported by unidimensional IRT models is that all persons and 

items are placed along a single continuum of latent trait and persons’ positions on the 
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continuum indicate their overall propensities to answering items correctly and items’ 

positions indicate their overall probabilities of being answered correctly.  Stories can 

be told in the following form: some students are more likely to give correct responses 

to all items than other students, and some items are more difficult than others for all 

students.   

However, the assumption of unidimensionality does not hold for the NAEP 

science assessment, which is designed to cover three content areas: physical science, 

life science, and earth science.  The measurement theme of the NAEP science 

assessment appears to go beyond a single unidimensional IRT model.  Therefore, 

multivariate modeling techniques merit consideration for assessments like NAEP 

which are targeted at multiple aspects of students’ knowledge, skills, and abilities.  

As described in the NAEP 1996 Technical Report (Allen et.al., 1999), each of the 

test items is classified into one of three fields of science and the three fields of science 

constitute the scales for score reporting.  Creating a scale for each of the three fields 

of science is consistent with the conception that each discipline of science has its own 

special ways of knowing and that the patterns of development of competence are 

unique to some extent within each subject domain (National Research Council, 1996).  

Having three separate subscales, each of which is associated with a different cluster of 

items, complies with the definition of between-item multidimensionality.  The 

procedure used in NAEP to model between-item multidimensionality follows two 

steps.  In the first step, a unidimensional IRT model is fit to each subscale to estimate 

item parameters.  In the second step, the parameters of the underlying multivariate 
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latent space are estimated by having the item parameters fixed at their estimated 

values.  In this study, a multidimensional random coefficients multinomial logit 

model (MRCMLM; Adams, Wilson, & Wang, 1997) rather than three unidimensional 

models was fit to the item responses to estimate item parameters as well as parameters 

of the latent abilities.  The primary advantage of fitting a multidimensional IRT 

model such as MRCMLM is that it provides better estimates of item parameters and it 

yields consistent estimates of the correlations among the latent abilities (ibid).  

Although various fields of science may differ in terms of theories, themes, and 

factual information, the essentials of learning natural sciences are common across 

scientific disciplines.  This viewpoint is evident in the design of the NAEP science 

assessment.  As specified in the NAEP Science Framework (National Assessment 

Governing Board, 2000), the NAEP science assessment is created to measure three 

latent dimensions that cross the three content areas.  Inspired by a consideration of 

the design feature, an exploratory item factor analytic model was applied to the NAEP 

science data in this study to investigate the number of dimensions that actually 

underlie students’ performances, how each item is differentially associated with each 

dimension, and what each dimension represents. 

In a large-scale science assessment such as NAEP, the examinees come from 

distinct subpopulations with different background characteristics.  Thus, one cannot 

assume a priori that item difficulties are equal across examinees.  In fact, there may 

be factors that make some items easier for one examinee but harder for another.  

These factors are the cause of multidimensionality.  In recent years, discrete mixtures 
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of IRT models (for example, Rost, 1990; Mislevy & Verhelst, 1990) are increasingly 

being used to deal with multidimensionality.  These models look at 

multidimensionality from a different perspective in that they fit models of lower 

dimensionality—indeed often unidimensionality—but allow the item parameters to 

vary across subgroups, each of which has a distinct latent ability distribution.  These 

models have proved useful for studying tests from the perspective of more subtle 

shifts in difficulty due to developmental change, strategy use, and curricular emphasis.  

In this dissertation, an exploratory analysis using a mixture Rasch model (MRM; Rost, 

1990) was performed to detect potential latent dimensions.  A mixture Rasch model 

integrates the Rasch and latent class models, with item parameters estimated for each 

latent class and ability distributions obtained within latent classes.  The major 

advantage of fitting an MRM to the NAEP science data is that it identifies latent 

subpopulations and the distinct characteristics of the subpopulations can be used to 

explain the existence of multidimensionality in the data at large.  Importantly, the 

substantive story that accords with this model may differ in instructionally or 

pedagogically meaningful ways from those associated with standard within- or 

between-item multidimensional models.  

In this dissertation, data from the NAEP science assessment were analyzed by 

three types of measurement models.  Each measurement model sheds light on a 

particular aspect of student proficiencies, addresses certain inferences for a particular 

purpose, and delivers a significant story about the examinees and their learning of 

science.  Each model highlights certain patterns at the expense of hiding other 
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potentially interesting patterns that reside in the data.  Model fit indices, including 

the Akaike’s (1973) information criterion (AIC), the Consistent Akaike’s information 

criterion (CAIC; Bozdogan, 1987), and the Bayesian information criterion (BIC; 

Schwarz, 1978), were used to compare the posited models and, in turn, evaluate the 

coherence of the data with the substantive theories underlying the use of the models.   

Analyzing the same assessment data through three different types of models is 

meant to illustrate the interplay among substantive theories, psychometric models, and 

patterns in the data.  Specifically, I am interested in knowing how different theories 

about science learning motivate the use of different statistical models, what specifics 

of the assessment data are highlighted by the models, how the models compare with 

one another in terms of substantive meaningfulness and statistical fit, and how the 

three aspects of assessment work together to bring about targeted inferences. 

In addition to answering the specific research questions, this dissertation serves to 

address the following meta-questions that are considered to be of primary importance 

to assessment applications: 

1. In light of the interplay among the three aspects of an assessment, how 

does a measurement model integrate with the other two aspects of an 

assessment?  Especially, how does it connect with the substantive 

theories of the subject domain being assessed, and how does it represent 

and model the assessment data? 

2. How do alternative measurement models express different conceptions 

about knowing and learning in the subject domain of interest?  How do 
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they highlight different patterns in the data and model them in different 

ways?  What are the considerations in choosing an appropriate 

measurement model?  

3. How should the models be discussed and compared in terms of the way 

they model students’ performance data, and the types of inferences they 

support regarding students’ knowledge and learning? 

4. How does the interplay among substantive theories, measurement models, 

and patterns in the data inspire efforts in task design?  Specifically, in the 

cycle of assessment development, when does the phase of modeling fitting, 

model interpretation, and model evaluation take place and how does it 

inform practices in other phases? 

The major contribution of the dissertation is that it elaborates on the interplay 

among substantive theories, patterns in the data, and measurement models in an 

assessment, and illustrates this idea in the analysis of a complex assessment.  The 

often-mentioned issue of multidimensionality provides the backdrop for the 

discussion.  Data obtained from the NAEP science assessment, which is designed to 

be multidimensional, are analyzed by three different multidimensional models, each 

of which accords with a different conception about knowing and doing in science and 

addresses inferences targeted at a different aspect of student proficiencies.  Three 

different rationales for the existence of multidimensionality are clearly articulated and 

supported with data analyses and model evaluation.  Based on the results of the 

analysis, three different stories are told about how different patterns of achievement 
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vary across subject areas and subpopulations of examinees and why.  Integrating 

ideas from assessment arguments, substantive perspectives on knowing and learning 

in science, and statistical modeling, this dissertation represents an effort to orchestrate 

model fitting, model interpretation, and model evaluation within the conceptual 

framework of an assessment argument.      
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Chapter 2: Literature Review 

The theme of this dissertation is the interplay among substantive arguments, 

statistical modeling, and data patterns in an assessment.  This chapter starts by 

reviewing the structure of an assessment argument, highlighting the role of 

probability-based measurement models.  The theoretical background of the interplay 

among the substantive, statistical, and operational aspects of an assessment, also 

known as the assessment triangle (National Research Council, 2001) is provided.  

What follows is a review of the measurement models that are used for data analysis, 

along with the fit indices by which the models are evaluated.  The last section of this 

chapter is a discussion of the perspective on knowing and learning in science as 

reflected in the NAEP science assessment and the rationale for the design of the 

assessment. 

2.1 Assessment argument 

Every assessment is a special case of evidentiary argument (Mislevy, 1994).  

The line of reasoning starts from observations of students’ performances in a handful 

of task situations to inferences about their knowledge or proficiency in more broadly 

construed domains.  Although the specifics may vary from one assessment to another, 

the structure that organizes the specifics into a coherent argument is common across 

all assessments.  The structure of educational assessments can be understood in 

terms of concepts and representational forms introduced by Toulmin (1958).  In 

Toulmin’s terms, an argument is reasoning from particular data to particular claims.  

Data are things that we observe and claims are propositions that we want to support 



 11 

with data.  The inference from particular data to a particular claim is justified by a 

warrant, which is in turn supported by backing.  The backing for a warrant is 

grounded upon substantive theories and accumulated experience.  In any particular 

case, the inference from data to a claim is qualified by alternative explanations, which 

are supported by rebuttal evidence.  The structure of a simple argument is outlined in 

Figure 1.   

Figure 1: Toulmin's structure for arguments.  

 

 

Reasoning flows from data (D) to claim (C) by justification of a 

warrant (W), which in turn is supported by backing (B). The inference 

may need to be qualified by alternative explanations (A), which may 

have rebuttal evidence (R) to support them. 

 

Educational assessments are more complex than Figure 1.  An assessment often 

consists of many claims and data elements, involves multiple chains of reasoning, and 

contains interweaving dependencies among claims and pieces of data (Mislevy, 2003).  

Figure 2 displays the structure of an assessment argument that leads from observing 

Sue’s responses to multiple two-digit subtraction items with borrowing to inferences 

about her ability of solving similar problems.  Observations of Sue’s performances in 
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multiple targeted tasks are held as evidence to make an inference about her likely 

performances in the domain of such tasks.  The warrant that justifies the connection 

between the data and the claim encompasses definitions of the targeted task situations, 

response classifications, and, most importantly, a probability-based inference model.  

Reasoning through the model establishes the relationship between observed 

proportions of correct responses and true proportions in terms of probability.   

Figure 2: Elaborated Toulmin’s diagram 

 

Toulmin’s diagram delineates the basic structure of an assessment, but the 

substance of every element in the assessment structure and the rationale that 

orchestrates them as a coherent argument are defined by substantive theories and 

psychological perspectives on knowledge and learning (Mislevy, 2003).  Substantive 

theories deal with a specific domain of inquiry and are expressed in narrative forms 

such as categories and properties.  They provide the substance for an assessment 

C : Sue's probability of 
correctly answering a 2- 
digit subtraction problem 
with borrowing is p 

W:Sampling theory machinery 
A : [e.g., observational 

errors, data errors, 
misclassification of 
responses or 
performance situations, 
distractions, etc.] 

since 

so 

unless 

and 

for reasoning from true 
proportion for  

responses in n 

situations to observed counts .

D11 : Sue's 
answer to 
 Item 

D11 : Sue's 
answer to 
 Item 

D1j : Sue's 
answer to 
 Item 

D2j structure 
and contents 
of Item j 

D2j structure 
and contents 
of Item j 

D2j structure 
and contents 
of Item j 
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argument.  Psychological perspectives are of particular significance because they 

determine the nature of claims that we want to say about students, types of data that 

we want to obtain to support the claims, and the rationale that justifies the connection 

between data and claims.  Different perspectives emphasize different aspects of 

knowing and learning and have different implications for what should be highlighted 

in an assessment and how it should be implemented.  Interested readers may refer to 

Greeno, Collins, and Resnick (1996) and National Research Council (2001) for a 

thorough discussion of the implications of the different psychological perspectives for 

assessment practices.  

Assessments motivated by different psychological perspectives may appear 

different on the surface, but a closer look at the arguments underlying the assessments 

reveals a deeper level of invariability.  Every assessment has the same narrative 

structure, which is fleshed out by substantive theories and psychological perspectives.  

The narrative structure emphasizes the flow of reasoning from data to claims through 

the justification of a warrant and qualification of alternative explanations.  Domain 

knowledge and perspectives about learning make explicit what types of competencies 

are to be determined about students, what to look for in what they say, do, or make, 

and how it constitutes evidence about what they know and can do.  Filling in the 

general narrative structure with domain-specific substance enables an assessment to 

tell stories with regard to how students interact with the test tasks, what aspects of test 

performance bear evidence about student proficiencies, and how students at different 

levels of proficiency exhibit different patterns of behavior.   
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A characteristic of educational assessments that makes them different from 

regular evidentiary arguments is the use of measurement models as one aspect of a 

warrant.  The framework of an assessment argument consists of a narrative structure 

overlaid by a probability-based measurement model (Mislevy & Huang, 2006).  The 

narrative structure makes explicit the elements of an assessment and their 

relationships, and connects them into a coherent argument.  Measurement models 

come into the picture at another level.  The substantive claims about students are 

expressed in terms of student model variables and probability distributions, values for 

which are inferred through a probability-based measurement model from values of 

observable variables, which are extracted from students’ performances in the test, 

such as item responses.  The measurement model quantifies the relationships 

between the two sets of variables in the form of conditional probability distribution of 

observable variables given latent student model variables and thus supports 

probability-based reasoning from observations of student performance to targeted 

inferences.  The role that a measurement model plays in an assessment will be 

further discussed in the subsequent sections.  

2.2 Assessment triangle 

Every assessment, regardless of its purpose or the context in which it is used, is 

based on a triad of interconnected elements, namely, cognition, observation, and 

interpretation.  This framework, referred to as the assessment triangle (National 

Research Council, 2001), embodies the principle of evidentiary reasoning and can be 

used to analyze existing assessments and design new ones.   
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The cognition vertex of the triangle refers to the theory or set of beliefs about 

how people learn, what they know, and what should be assessed in a subject domain.  

The theory is often derived from educational research and cognitive studies of how 

people acquire, represent, and use knowledge and develop expertise in a particular 

domain.  The word “cognition” does not imply that the theory must come from the 

cognitive perspective.  Rather, it should be consistent with a psychological 

perspective, as appropriate for the purpose of the assessment, and targeted at a level of 

detail sufficient to get the job of assessment done (Ibid).  An effective assessment 

often starts from a clearly conceptualized cognitive model centered around a 

well-defined theoretical construct, which is considered most important to assess based 

on substantive theories and through the lens of a particular psychological theory.  

Observation refers to the collection of tasks and observations used to elicit 

demonstrations of important knowledge and skills from students.  This aspect of 

assessment is essentially a set of schemas for the design of tasks that elicit 

illuminating responses from students.  Tasks should be carefully designed to provide 

evidence that is linked to the cognitive model and lends support to the theoretical 

construct measured in the assessment (Ibid).   

The interpretation corner of the triangle refers to all the methods and tools used to 

reason from fallible observations to inferences about students.  Observations of 

students’ performances in a set of tasks are synthesized into inferences about students’ 

knowledge, skills, or other attributes through some interpretational framework, which 

consists mainly of scoring rubrics and a probability-based measurement model.  The 
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scoring rubrics are the rules for extracting salient aspects from students’ performances 

and expressing them as values of observable variables, which are used to update 

beliefs about students’ knowledge, skill, and abilities through the machinery of a 

measurement model. 

Each of the three elements of the triangle should be connected to the other two in 

a meaningful way in order to produce an effective assessment and generate sound 

inferences (Ibid).  The nature of cognition, the kinds of observation, and the details 

of interpretation may differ in their particulars, but the challenge of assessment design 

is the same for every task at hand.  Essentially, assessment design is an iterative 

process (Wilson, 2005).  An entire cycle of the process includes formulating a 

cognitive model about the type of knowledge and skills to be measured in an 

assessment, creating tasks that will address the targeted knowledge and skills, trying 

out the tasks on samples of students and observing their performances, analyzing the 

performance data through the use of a statistical model, and interpreting the results 

within the framework of the substantive model.  It is almost certainly necessary to 

repeat the cycle one or more times whenever mismatch or inconsistency is identified.  

If that happens, the cognitive model may need to be refined, data recollected, and 

measurement design re-contemplated.  Each iteration represents an effort of 

strengthening the linkage among the elements of an assessment and enhancing the 

cohesion and effectiveness of the underlying argument.  

2.3 Role of measurement models 

As mentioned above, educational assessments differ from regular evidentiary 
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arguments in that they use measurement models as one aspect of a warrant.  

Measurement models are employed to quantify the relationships between students’ 

proficiencies that we want to know about and aspects of their performances that bear 

evidence of the proficiencies.  Student characteristics such as their knowledge, skill, 

and proficiencies are indexed by parameters of the student model, and important 

aspects of student behavior that evidence the measured proficiencies are captured by 

observable variables.  Observable variables and student model variables are linked 

by probability-based functions, and conditional independence is usually assumed for 

observable variables given student model variables.  Through the machinery of 

probability-based reasoning, especially through the application of Bayes theorem (for 

example, Mislevy, 1994), observations in the assessment setting are rendered into 

beliefs or conjectures about students’ states with respect to the proficiencies of 

interest.   

A measurement model, however, is not about variables or distributions per se.  

What underlies a measurement model is a substantive model that specifies the 

measurement theme and connects the variables and distributions to real-world 

phenomena.  Decisions about a measurement model, such as the number and nature 

of variables to be included, how they are connected to each other, and what form the 

model takes, are made in accordance with the substantive model.  This 

substantively-determined measurement model combines the collection of evidence 

from observations into support for summary conjectures through structures of 

mathematical probability, and delivers the story of the assessment argument in a more 



 18 

succinct way.  In particular, the probability-based reasoning through the structure of 

the measurement model permits one to synthesize the information from observations 

into beliefs about students’ knowledge, skills, and abilities.  

Measurement models are the lenses through which we view patterns in the data.  

They are not intended to explain every single detail of data.  Rather, they are 

designed to capture the most important patterns in the data (Mislevy, Wilson, Ercikan, 

& Chudowsky, 2002).  Variables and distributions are the integral components that 

build up the lenses, through which stories can be told with regard to how students 

interact with the test tasks, what aspects of test performance bear evidence about 

student proficiencies, and how students at different levels of proficiency exhibit 

different patterns of performance (Mislevy & Huang, 2006).   

A measurement model, therefore, should be evaluated by two criteria.  First, it 

should be meaningful in the sense that it formalizes the relationships posited in the 

substantive model.  A measurement model disconnected from its substantive context 

is meaningless and will result in meaningless or even misleading conclusions.  The 

meaningfulness of a measurement model can be evaluated by examining its degree of 

match with the substantive model.  Moreover, a measurement model, however 

closely it represents a substantive model, should be able to describe data adequately.  

The goodness of fit of a measurement model is evaluated in terms of the extent to 

which observed data deviate from predictions of the model.  Severe departures alert 

us to the possibility of model misspecification or failure of the built-in assumptions, 

such as conditional independence or unidimensionality.  Moreover, the ways in 
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which the observed data differ from the model predictions give us clues about 

possible causes of misfit.  In case of model-data misfit, the substantive model that 

precedes the measurement model also needs to be reexamined to validate the 

conceptual underpinnings of the measurement model.   

The two criteria by which a measurement model is judged should be used to 

complement each other to inform model modification exercises.  Model construction 

and modification efforts should be oriented toward stressing the link between a model 

and its substantive context and improving the fit between the model and the data.  A 

model that is substantively sound may not be able to account for the characteristic 

features of the data, simply because what the theories predict is not observed in the 

data.  In this sense, checking the degree of model-data fit is also checking the 

relevance and coherence of the underlying substantive theories.  As Embretson 

(1998) explicitly stated, “The cognitive models are evaluated by the overall fit of a 

mathematical model” (p. 383).  In the other direction, a model that fits the data at 

hand but lacks a solid theoretical basis needs to be tied back to relevant substantive 

theories to validate the results obtained from data analysis. 

To put it in a broader context, making sense of data collected in an assessment 

situation through the use of a measurement model is an instance of model-based 

reasoning (Stewart & Hafner, 1994).  Establishing correspondences between 

elements of data and entities in the structure of a measurement model is the starting 

point for making explanations and predictions with regard to students’ performance 

data.  After the model is formulated, reasoning is carried out through the model, i.e. 
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the assessment data are analyzed in terms of the variables, distributions, and the 

quantitative relations specified in the model, and explanations and predictions are 

made about students, test items, and how their interactions give rise to the observed 

data.  The explanatory and predictive power of the model is evaluated by checking 

the degree of fit between the data and the model.  Any anomalous data that are 

inconsistent with model predictions suggest directions for model-revising efforts, 

which are targeted at reconceiving and restructuring the data with a better-fitting 

model.  Given the iterative nature of model-based reasoning, the application of a 

measurement model to assessment data may involve multiple cycles of model 

formation, model use, model evaluation, and model revision until the revised model is 

sufficient.   

2.4 Review of measurement models 

In this section, three types of measurement models are reviewed and compared in 

terms of assumptions, properties, and estimation methods.  Each type of model 

represents a distinct approach to accounting for and modeling multidimensionality, 

and produces inferences targeted at different aspects of students’ proficiency in 

science.    

2.4.1 The multidimensional between-item model 

In the last two decades, substantial amounts of work has been done on the 

development and application of multidimensional item response theory (MIRT) 

models (for example, Reckase, 1997; McDonald, 1999).  A multidimensional 

Rasch-type model, called the multidimensional random coefficients multinomial logit 
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model (MRCMLM; Adams, Wilson, & Wang, 1997), is particularly useful in practical 

testing situations due to its flexibility and generalizability.  

The MRCMLM is a multidimensional extension of the unidimensional random 

coefficients multinomial logit model (RCMLM; Adams & Wilson, 1996).  It 

assumes that a set of D traits underlie the persons’ responses.  The probability of a 

response in category k of item j  is modeled as 

∑
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DP /)exp()|,,;1( 212112 ξξθθ +++== θξX BA  
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The MRCMLM can be used to model different types of multidimensional tests.  

A subclass of the model is used for between-item multidimensional tests in which 

there are several parallel unidimensional subscales and each item measures only one 

subscale.  Another subclass of the model is used for within-item multidimensional 

tests which are designed to measure several latent dimensions and some or all items 

are related to more than one dimension.  The two types of multidimensionality can 

be modeled by having appropriate design and scoring matrices in the MRCMLM.  

For a between-item multidimensional test in which the items are all dichotomous, 

the item response function of the MRCMLM is simplified as:  
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where jβ  is the difficulty of item  j, iθ  is the multivariate vector of person i, 

indicating person i’s positions on the multiple latent continuous scales, and  
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and M is the total number of dimensions assessed in the test.   

The MRCMLM can be estimated by marginal maximum likelihood estimation 

(MML; Bock & Aitkin, 1981) via the application of the EM algorithm (Dempster, 

Laird, & Rubin, 1977).  Consistent estimates of structural item parameters are 
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obtained.  Person parameters can then be estimated by fixing the item parameters at 

their estimated values.  Estimation of the parameters in the MRCMLM is 

implemented in the ConQuest program (Wu, Adams, & Wilson, 1998).   

2.4.2 Item factor analytic model 

 Item factor analysis is a technique used to investigate the dimensionality of test 

items.  It provides evidence with respect to whether a set of items are indeed 

measuring a single latent ability or several kinds of abilities, and estimates the   

strength of relationships between items and latent abilities.  Unlike classical factor 

analysis of continuous measured variables, factor analysis of items cannot be 

implemented on the observed Pearson product moment correlations of item responses 

that are either dichotomously scored or scored as discrete values within certain 

bounds, due to a number of problems (Mislevy, 1986).  General practice is to assume 

that a vector of latent response variables underlie the observed item response variables 

and to perform common factor analysis on the estimated correlations of the latent 

response variables.  

Suppose a test is composed of J  dichotomously scored items, it is assumed that 

the observed variable jX  is governed by the continuous latent response variable jY  

and the threshold jγ  as 

otherwise.

Y if 

,0

,1 j j

jX
γ≥





=  

The unobserved continuous variable jY  is then modeled as a linear function of M 

( JM < ) latent factors θ     plus its own unique factor jv  as 
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The latent factors θ     are assumed to be distributed as MVN (0, Ф), and the unique 

factors or residuals jv  are distributed as MVN (0, Ψ), where Ψ    is a diagonal matrix 

with positive diagonal values.  Assuming that the latent factors and residuals are not 

correlated, the variables jY  are distributed as MVN (0, Σ).  To eliminate the 

problem of indeterminacy introduced by the unobserved nature of both jY  and θ , 

specifications are made that Ф= I where I is an identity matrix of order M and 

1=Σ jj  for each j .  It follows that Σ = ΛΛ’+ Ψ and Ψ = I –diag (ΛΛ’), where Λ is 

the matrix of factor loadings. 

 There are a number of methods of estimating the parameters in an item factor 

model.  A traditional approach is to use information in the two-by-two contingency 

tables of joint frequencies to obtain tetrachoric correlations, and then obtain 

unweighted least squares, weighted least squares, or maximum likelihood solutions of 

the parameters.  Christoffersson (1975) and Muthén (1978) proposed estimation 

approaches that uses three-, and four-way margins of the raw data table, that is, joint 

frequencies for items taken three and four at a time, to obtain estimates of parameters.  

A full information approach (Bock, Gibbons, & Muraki, 1988), as its name suggests, 

uses all the available information in the data matrix, estimates parameters through the 

marginal maximum likelihood (MML) method.  These methods have been 

implemented in computer programs such as LISREL (Jöreskog & Sörbom, 1996), 

Mplus (Muthén & Muthén, 1998), and TESTFACT (Wilson, Wood, & Gibbons, 

1991).  In this dissertation, the full information approach was used via the 

implementation of TESTFACT.  



 25 

 Researchers (e.g., McDonald, 1999) recognize that item factor analytic models 

and multidimensional IRT models have many similarities in methodology.  Moreover, 

the formal equivalence of the two types of models has been established in the 

literature (e.g., Bock & Aitkin, 1981; Takane & De Leeuw, 1987).  Following the 

notation used in the preceding discussion, the probability of a correct response to item 

j as a function of θ  is given by a normal ogive model  
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which is the form of the multidimensional linear logistic item characteristic function 

first presented by McKinley and Reckase (1982).  Therefore, fitting a common factor 

model to a pool of item responses is equivalent to fitting a compensatory MIRT model, 

and the item parameters estimated in the factor model can be translated into their 

MIRT analogs.   

2.4.3 Mixture of item response theory models 

 Traditional item response theory (IRT) describes the performance of all 
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examinees by using a single model.  It provides estimates of students’ overall 

propensities toward correct responses, but fails to give a detailed account about the 

processes or strategies by which students give correct responses to the items.  Latent 

class analysis (Lazarsfeld & Henry, 1968; Dayton, 1998), on the other hand, does not 

assign proficiency estimates to individual examinees, but categorizes examinees into 

discrete latent classes, each of which is identified with a unique response pattern.  

The response patterns signal examinees’ cognitive structures of understanding or 

developmental stages with regard to certain proficiency.  Capabilities and limitations 

of the two types of models motivate the development of other modeling techniques.  

Mixtures of IRT models result from the integration of IRT models and latent class 

models.  Within a mixed model framework, the quantitative differences between 

persons are accounted for by the latent continuous variable in the IRT model within 

each component of the mixture, and the qualitative differences between persons are 

explained by the latent categorical variable, whose categories correspond to the 

components of the mixture (Rost, 1990).  Mixture models can be continuous, too, 

but in this study, the focus is on discrete mixture models in which there are a finite 

number of components.  

 One of the earliest attempts to combine IRT and latent class models was made by 

Yamamoto (1989).  He introduced a hybrid model which assumes that the population 

is a mixture of a group of examinees who respond to items in accordance with an IRT 

model and a group of examinees whose response patterns cannot be explained by the 

IRT model but are associated with the latent classes they belong to.  In the IRT group, 
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the probability of an examinee giving a correct response to an item is a function of his 

(or her) latent ability and the difficulty of that item.  Responses of examinees in the 

latent class group follow certain patterns which reflect their class membership.  Each 

class is characterized by a specific response pattern (called an idealized response 

pattern), which often results from a unique understanding or misunderstanding of the 

content being measured.  An extended hybrid model (Yamamoto & Everson, 1995) 

was applied to detecting test speededness and strategy switching from systematic 

responding to random guessing.  

 Rost (1990) proposed a mixed Rasch model in which it is assumed that the 

population of examinees is composed of two or more latent groups.  The responses 

of all the examinees within each latent group are modeled by a standard Rasch model.  

The item difficulty parameter for each item is assumed to vary across groups.  

Therefore, the probability of a correct response by examinee i from class g to item j is 

given by: 
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where G denotes the number of latent groups, and gπ  is the proportion of group g in 

the population, or the mixing parameter as Rost called it.  Constraints are set on gπ  

that 10 g << π  and 1
1

=∑
=

G

g

gπ .  



 28 

 Conditional maximum likelihood estimates of item difficulties within each class 

and proportions of latent classes can be obtained through the use of an EM algorithm, 

as described by Rost (1990).  Person proficiency for each person within each class 

can be estimated by using the empirical Bayes inference method.  Rost’s mixture 

model does not make any assumption about item parameters in the latent classes or 

class sizes, which makes it particularly useful in the context of exploratory analysis, 

where no strong theory exists a priori about the nature of the differences between the 

IRT models representing the distinct latent groups.  

 Mixture modeling can also provide a framework for testing theories about 

cognitive processes in a specified content domain.  Mislevy and Verhelst (1990) used 

a mixed linear logistic test model (LLTM; Fischer, 1973) to model strategy use in 

solving spatial tasks.  The model assumes that there are two latent classes of 

examinees, each attempting the items with a distinct strategy.  The probability of 

item response is given by the Rasch model.  Item difficulty is further modeled as a 

linear function of more basic parameters that reflect the effects of salient 

characteristics of the item as relevant under the strategy being used.   

 Unlike Rost’s model, Mislevy and Verhelst’s model requires substantial 

knowledge about the content domain prior to data modeling, such as the finite number 

of strategies being used, the salient item features relevant to each strategy, and the 

extent to which each characteristic is manifest in each item.  Therefore, it is more 

often used in the context of confirmatory analysis, such as testing hypotheses.  

 Mixture models retain the advantages of both IRT and latent class models.  The 
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quantitative characterization enabled by the IRT component makes mixture modeling 

widely applicable in educational testing practices, and the qualitative differentiation 

effected by the latent class component makes it particularly useful in addressing 

thorny issues that cannot be solved within the traditional IRT framework.  As one of 

its applications, mixture models are used in detecting multidimensionality and, more 

importantly, understanding what causes it.  Allowing item parameters to vary across 

latent classes sets the stage for modeling the different mode of interaction between 

items and examinees within each latent class.  Different patterns of item parameters 

across latent classes are evidence that items that were designed to measure a single 

trait actually elicit different abilities from different types of examinees.  That is 

exactly what results in multidimensionality.  Mixture models have also been used in 

detecting differential item functioning (Cohen & Bolt, 2005), strategy use (Mislevy & 

Verhelst, 1990), and test speededness (Yamamoto & Everson, 1995; Bolt, Cohen, & 

Wollack, 2002).    

2.5 Fit indices 

 In this dissertation, three types of measurement models are compared in terms of 

goodness of fit as well as conceptual significance.  In this section, a number of fit 

indices that are used for model comparison are reviewed, and research findings 

regarding their performance are summarized.  

 The likelihood ratio chi-square difference statistic ( 2

diffG ) is used in many 

applications where the relative fit of a set of nested models is compared.  It is usually 

presumed to be asymptotically distributed as a chi-square distribution, with its degrees 
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of freedom equal to the difference of the degrees of freedom between the two models.  

However, this presumption may not be valid in some cases.  For small sample sizes, 

the chi-square ratio difference statistic is not closely approximated by a chi-square 

distribution.  Besides, the use of this statistic in some applications, such as 

comparisons of latent class models or mixture models, may result in violations of 

regularity conditions (Bishop, Fienberg, & Holland, 1975), which are required for the 

asymptotic results to hold.  Most importantly, it is only appropriate for comparisons 

among nested models.  The three types of models being studied in this dissertation 

are non-nested models, and, therefore, cannot be compared with this test.  

Akaike’ Information Criterion (AIC) (Akaike, 1973) has been applied in a variety 

of model comparison and selection problems.  When there are several contending 

models and the parameters within the models are estimated by the method of 

maximum likelihood, AIC is computed for each model by using the following 

formula: 

pLAIC 2)log(2 +−= ,                                                (9) 

where L  denotes the likelihood of the sample based on the maximum likelihood 

estimates of the model parameters, and p  refers to the number of nonredundant 

parameters estimated in the model.   

AIC is criticized in the literature (for example, Bhansali & Downham, 1977) on 

the grounds that it is not asymptotically consistent since sample size is not directly 

involved in its calculation.  Without violating Akaike’s main principles, Bozdogan 

(1987) made two analytical extensions to AIC, and one of them results in a selection 
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criterion called CAIC, which is denoted as follows: 

)1)(log(2)log(2 ++−= NpLCAIC ,                                    (10) 

where N denotes the sample size.  CAIC is asymptotically consistent, and, as 

compared with AIC, penalizes complex models more severely. 

 The Bayesian Information Criterion (BIC) (Schwarz, 1978) is of the same general 

form as AIC.  It is defined as follows: 

)log()log(2 NpLBIC +−= .                                          (11) 

It differs from AIC only in the second term which depends on the sample size.  

Obviously, as N increases, BIC favors simpler models more strongly than AIC. 

AIC, CAIC, and BIC are generally used to compare non-nested models.  They 

differ in terms of their penalties for overparameterization.  Generally speaking, for 

realistic sample sizes, BIC and CAIC tend to select simpler models than those chosen 

by AIC.  This belief is strengthened by the results in Lin and Dayton (1997).   

As mentioned above, AIC, CAIC, and BIC are calculated using the maximum 

likelihood estimates of the model parameters.  When the model parameters are 

estimated via methods other than maximum likelihood estimation, modified versions 

of these criteria are considered appropriate.  Congdon (2003) suggested calculating 

AIC and BIC using the posterior means of the parameters in Bayesian modeling when 

the parameters are estimated via Markov Chain Monte Carlo (MCMC) sampling 

methods.  The AIC and BIC described by Congdon were studied along with other 

model selection indices for mixture IRT models in Li, Cohen, Kim, and Cho (2006), 

and the results suggested that BIC performed the best in terms of correctness and 
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consistency.   

2.6 NAEP science assessment 

The design of science assessments is a fairly broad area.  In this dissertation, I 

am focused on the rationale for assessing science achievement in NAEP and the 

design choices that the assessment developers have made to implement the rationale.   

The NAEP science assessment is a nationally representative and continuing 

assessment of what America’s students know and can do in the subject area of science.  

Its primary goals are to detect and report the status of students’ science achievement 

and track changes over time.  It provides comprehensive, dependable national 

achievement data that help educators, legislators, and others reflect on the current 

practices in science education and make appropriate adjustments to increase the 

science literacy of students in the United States (National Center for Education 

Statistics, 1999).   

Given the purpose of the NAEP science assessment, it should be envisioned in the 

large context of the national science education system.  The National Science 

Education Standards (National Research Council, 1996) represent “a broad consensus 

about the elements of science education needed to permit all students to achieve 

excellence” (Ibid).  Specifically, the standards for science content, which prescribe 

what students should know, understand, and be able to do in natural sciences, are of 

particular guidance to the design of NAEP science assessment.   

The categories of the content standards include the subject matter of science 

associated with the divisions of the domain of science, as well as unifying principles, 



 33 

concepts, and processes that transcend disciplinary boundaries.  Science subject 

matter focuses on “the science facts, concepts, principles, theories, and models that 

are important for all students to know, understand, and use” (Ibid), while the unifying 

concepts and processes standard “describes some of the integrative schemes that can 

bring together students' many experiences in science education across grades K-12” 

(Ibid).  Obviously, the standards not only emphasize the need to examine the extent 

and organization of students’ knowledge, but also stress the need to “probe for 

students' understanding, reasoning, and the utilization of knowledge” (Ibid).  

The development of the NAEP Science Assessment Framework (National 

Assessment Governing Board, 2000) was guided by the basic principles and 

perspectives of the National Science Education Standards.  The Framework was 

structured as a matrix, having fields of science and knowing and doing science as its 

two major dimensions.  The fields of science are, namely, earth, physical, and life 

sciences.  Knowing and doing science includes conceptual understanding, scientific 

investigation, and practical reasoning.  Each assessment task can be classified into 

one subcategory in each of the two dimensions.  Besides, two other categories, 

namely nature of science and themes are specified in the framework that pervade 

science education but only pertain to a limited number of items in the assessment.  

Items that belong to these two categories are developed to measure knowledge of 

content within a specific field of science and an area of knowing and doing science, in 

addition to addressing knowledge of either of the two categories.  Nature of science 

includes “the history of science and technology, the habits of mind that characterize 
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these fields, and methods of inquiry and problem solving” (Ibid).  Themes represent 

big ideas or key organizing concepts that enable students to better understand natural 

phenomena, such as systems, models, and patterns of change.   

The two major dimensions of the Framework reflect the idea that learning science 

involves learning the organized factual knowledge that is unique to each domain, as 

well as the essentials of learning natural sciences, such as the general process of 

scientific investigation, way of reasoning, and reliance on technology.  The 

development of science literacy can be characterized as occurring along two 

dimensions: the content and cognitive dimensions.  While students learn science 

facts, concepts, and theories in their everyday study, they also gain an acquaintance 

with conceptual and procedural schemes that enable them to understand the natural 

world better.  Therefore, assessing science achievement involves assessing the 

science content, which is domain-specific, and, more importantly, assessing general 

abilities of understanding, doing, and using science (National Assessment Governing 

Board, 2000) that are believed to cross the various content areas.  
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Chapter 3: Cases of Convergence in  

Model and Narrative Relationships 

In this chapter, the interplay between measurement models and narrative stories is 

further discussed with an emphasis on the homology between the two.  The 

interrelationships among the types of models being studied in this dissertation are 

explored.  Specifically, I am focusing on the conditions under which the models 

converge or contrast and the similarities or differences between the narrative stories 

associated with the models under those conditions.  

3.1 Measurement models and narrative stories as two representations 

Measurement models and narrative stories are two kinds of representations 

(Mislevy, 2006; Greeno, 1983) of the domains that assessment projects tap into.  

They characterize the real-world situation with objects, relationships, and properties 

that are not necessarily explicit in the situation.  They provide a framework in which 

reasoning of the situation can proceed: the process of mapping between the problem 

situation and representations leads to understanding, explanations, and predictions of 

the situation.  The two representations are the same in the sense that they involve the 

same set of conceptual entities (Greeno, 1983) when representing a problem situation.  

They differ in terms of the perspective from which the problem situation is 

characterized and the form in which the entities and their relations are represented.  

Understanding the homology between narrative stories and measurement models 

facilitates understanding of the problem domain that they both represent.  A 

measurement model is a mathematical abstraction of the key aspects, patterns, and 
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relationships that exist in the assessment situation.  With each measurement model is 

associated a narrative space.  Connecting the formal entities, including variables and 

distributions, in a measurement model with people, events, and contexts in the real 

world spells out all the narrative stories that can be told about the assessment itself 

and those who are assessed.  The variables and their relationships defined in a model 

can be quite flexible, and, accordingly, the stories inferred from different models are 

of different versions.   

In this dissertation, three types of measurement models are fit to the same 

assessment data.  A look on the surface tells that these models have different 

structures and involve different variables.  However, under certain conditions they 

become equivalent.  The formal relations between these models are reflected in the 

similarities and differences between the narrative stories derived from the models.  

Typically, the stories told from the models are of different characteristics, but under 

particular conditions, they become the same.  In relation to the two criteria of 

evaluating measurement models that were discussed in the previous chapter, i.e., 

conceptual meaningfulness and statistical fit, the conditions under which the models 

diverge can be gauged by tests of fit and it is with significant statistical results that the 

meaningfulness of different versions of narrative stories can be justified.  

 The questions addressed in this chapter then, are these: 

� Under what conditions on model parameters do the models under 

consideration become mathematically equivalent? 

� Are there corresponding equivalences of narratives in those 
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circumstances? 

3.2 Unidimensional models versus multidimensional models 

3.2.1 Unidimensionality and essential unidimensionality 

Unidimensionality is an assumption required of many item response theory (IRT) 

models, such as the one-, two-, and three-parameter logistic models.  Two definitions 

of unidimensionality, namely strict unidimensionality and essential unidimensionality, 

are distinguished in the literature (Stout, 1990; Junker, 1993).  Strict 

unidimensionality means that the probabilities of correct responses to test items are 

strictly a function of only one latent variable, in addition to variables that represent 

item characteristics.  The general form of a strictly unidimensional IRT model is 

expressed as 

( ) ( )∫ === θθθ dfxXPxXP jjjj )(| .                                  (12) 

Only a single factor, the unidimensional latent trait θ , fully accounts for an 

individual’s performance in a test.  Any IRT model that posits strict 

unidimensionality satisfies the assumption of local independence, which is written as: 

( ) ( ) ( )[ ] j
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=

=−===== ∏ 1

1

11 |11|1|,...,,..., θθθ .  (13) 

It is shown that local independence implies 

( ) 0|, =θkj XXCov                                                  (14) 

for all pairs of },...,1{, Jkj ∈ and for all levels of θ  (Sijtsma & Molenaar, 2002).  

The zero pair-wise conditional covariance is a result of local independence and is 

called weak local independence.  In general, local independence holds approximately 

when weak local independence holds (for example, McDonald & Mok, 1995).  In 
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practice, strict unidimensionality is considered too restrictive to be applicable in 

real-world test situations, where minor dimensions other than the trait being measured 

also affect examinees’ responses.   

Essential unidimensionality, a less stringent definition of unidimensionality, 

recognizes that every test is inherently multidimensional and that item responses are 

affected by a dominant latent trait and some non-significant latent factors.  It 

assumes a vector of latent traits },...,,{ 21 Mθθθθ=θ relevant to the test items, where 

θ  represents the dominant latent trait of interest and the rest of the vectors denote 

minor latent traits that are associated with the test items.  An essentially 

unidimensional IRT model is represented as 

( ) ( )∫
∞

∞−
==== θθθ dfxXPxXP jjjj )(| θ .                              (15) 

IRT models that postulate essential unidimensionality satisfy the assumption of 

essential independence.  Essential independence is represented as  
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J

XXCov
Jkj

kj θθ

 as ∞→N  (Stout, 1990).                  (16) 

This indicates that after conditioning on the dominant latent traitθ , the residual 

covariances between items are very small on average.   

 Essential independence is a weaker assumption of local independence.  It 

focuses on the individual examinee differences that are essential or dominant in 

influencing test performance rather than all the individual differences that influence 

test performance.  As Stout stated, essential independence holds if any of the 

following three conditions is satisfied: (1) only a few items depend on the trait(s) 
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other than the dominant trait; (2) each latent trait other than the dominant trait 

influences at most a small number of items, and these incidental traits are orthogonal 

to each other, conditioning on the dominant trait; (3) the magnitude of the dependence 

of the items on the trait(s) other than the dominant trait is small, even though most of 

the items may depend on them.   

 The definition of strict unidimensioanlity is impractical for psychological or 

educational testing and essential unidimensionality presents an efficient and 

appropriate approximation to it.  Attending to the only dominant latent trait and 

ignoring other inessential or minor traits is not detrimental for any practical purposes 

and has no adverse impact on the inferences that we want to make about the 

examinees.    

3.2.2 Essential unidimensionality and multidimensionality 

Multidimensional IRT models are extensions of unidimensional IRT models.  

Instead of maintaining the assumption of (strict or essential) unidimensionality, 

multidimensional models assume that there is more than one latent dimension that 

significantly influences examinees’ responses to test items.  The general form of a 

multidimensional IRT model is written as 

( ) ( )∫ === θθθ dfxXPxXP jjjj )(| .                                   (17) 

Unlike unidimensional models in which the latent trait that underlies the item 

response is represented as a scalar, multidimensional models represent the latent trait 

as a vector.  Local independence of a multidimensional model implies that  

( ) 0|, =θkj XXCov                                                  (18) 
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for all pairs of },...,1{, Jkj ∈ and for all values of θ . 

 Comparison of the formulas for essential unidimensionality and 

multidimensionality leads to a conclusion that an essentially unidimensional model is 

technically a multidimensional model but approaches a unidimensional model in the 

limit.  In other words, it is multidimensional in nature, but predictions for item 

responses made on the basis of the unidimensional approximation approach the 

correct multidimensional predictions.  Mathematically, this is written as 

( ) ( ) ( )∫∫ =≈=== θθθ dfxXPdfxXPxXP jjjjjj )(|)(| θθθ .              (19) 

Insights about the distinction between essential unidimensionality and 

multidimensionality can also be gained through comparing their geometric 

representations.  In an essentially unidimensional test, items are represented as 

vectors in a multidimensional space.  They all point to approximately the same 

direction and thus form a relatively homogeneous cluster.  The orientation of the 

cluster in the latent space reflects the dominant latent trait measured by the test.  In a 

multidimensional test, all the item vectors are plotted in a multidimensional space.  

The direction of each vector indicates the composite of latent traits it purports to 

measure.  A pattern that suggests multidimensionality is that the item vectors form 

several distinct item clusters, implying that the test as a whole is multidimensional, 

but each item cluster can be treated as a unidimensional subtest.  Another scenario is 

that the item vectors cannot be separated into distinct item clusters, implying that the 

test is multidimensional and that the items measure different combinations of latent 

traits.  These two representations coincide with the two types of multidimensionality, 
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namely between- and within-item multidimensionality, which will be compared in the 

following section.  

 The dimensionality of a test can be evaluated by a variety of fit indices and 

significance tests (Tate, 2003).  As implied by Tate, almost all of the methods for 

assessing test dimensionality are based on the concept of essential unidimensionality. 

No matter what assessment method, parametric or nonparametric, is used to examine 

dimensionality, the basic rationale is as follows: the assumption of local independence 

is assessed under a hypothesized model, unidimensional or multidimensional, and 

measures are obtained that indicate the amount of item dependence.  If item 

dependence is stronger than what would be expected by chance, the assumption of 

local independence is suspected.  If strong dependencies exist among items, the 

assumed model dimensionality would be rejected.  It should be noted that in this 

approach, local independence is defined as pairwise or weak local independence and 

item dependencies are calculated on the basis of the conditional covariances of item 

responses for all item pairs at all levels of the latent traits.   

Many achievement tests are designed to be unidimensional for scoring and 

ranking purposes.  However, as Ackerman (1994) argued, “unidimensionality should 

never be assumed but should always be verified” (p. 257).  When the conditions of 

unidimensionality are satisfied for a given test and the specified population, persons’ 

differences in test performance are attributed to their differences with regard to the 

latent trait measured by the test.  Stories about persons’ propensities toward correct 

responses and items’ difficulty, discriminating power, and other characteristics can be 



 42 

told.  The assessment of unidimensionality is related to the test in general, and there 

are item fit and person fit indices, which indicate the goodness of fit of individual 

items and persons.  These fit indices can detect items or persons that exhibit unique 

response patterns deviant from those expected.  Existence of such items or persons 

does not necessarily undermine the viability of unidimensionality, but should be 

carefully investigated and properly interpreted.   

When the assumption of unidimensionality is not viable for a test, a 

multidimensional model should be considered.  Multidimensional IRT models are 

applied for either exploratory or confirmatory uses.  Exploratory MIRT models are 

used when the test developer has no strong theory about the structure of the test to be 

analyzed.  As stated in the previous chapter, a MIRT model used in an exploratory 

mode is equivalent to a common factor analytic model.  Mathematically, a common 

factor model is represented as Equation 2 

jMMjmmjjjj vY ++++++= θλθλθλθλ ......2211 ,  

where jY  is the continuous latent response variable underlying the observable 

dichotomous variable jX , mjλ  is the factor loading of jY  on the latent factor mθ , 

and jv  is the unique factor.  It approaches the unidimensional model if either (i) the 

factor loadings approach one another (i.e., same loadings across items, 

or Jj 111211 ...... λλλλ ==== , Jj 222221 ...... λλλλ ==== , …,

mJmjmm λλλλ ==== ......21 ,…, MJMjMM λλλλ ==== ......21  where },...,1{ Jj∈  

and },...,1{ Mm∈ ) or (ii) the factor correlations all approach 1.  In the first case, 

multiple (M) latent traits are required but the exact same combination of them is 
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required for all (J) items.  The same combination, the composite of latent traits, can 

be thought of as a single dimension.  The second case means that multiple latent 

traits are involved, but people are lined up exactly the same way with regard to all 

latent traits.  The common lineup may as well be thought of as the single dimension 

involved in this set of items, for this group of examinees.   

When the test developer has substantial knowledge about the content domains or 

cognitive abilities assessed in the test and how they are needed in combination for a 

correct response to each item, a MIRT model can be used to verify (or reject) his (or 

her) knowledge.  A family of MIRT models developed for confirmatory uses is the 

multidimensional random coefficients multinomial logistic model (MRCMLM), 

which was described in the previous chapter.  The MRCMLM approaches the 

unidimensional random coefficients multinomial logistic model (RCMLM) when the 

underlying ability is unidimensional.  

The goodness of fit of a hypothesized multidimensional model is evaluated by 

comparing it to that of a unidimensional model.  If the improvement in fit is 

significant, the multidimensional model is retained.  Stories that are consistent with 

expectations of the model can be told.  For example, persons are compared with 

regard to their knowledge in the content areas or abilities covered in the test.  

Similarly, items are characterized by their required combinations of knowledge or 

abilities.  If the multidimensional model does not fit significantly better than a 

unidimensional model, the more parsimonious unidimensional model is retained and 

explanations of persons and items are made in accordance with the unidimensional 
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model.  

3.3 Between-item versus within-item multidimensionality 

 As discussed above, the distinction between between- and within-item 

multidimensionality can be best understood with their geometric representations.  A 

between-item multidimensional test is represented as being made up of several 

dimensionally homogeneous item clusters, while a within-item multidimensional test 

can not be broken into a smaller number of distinct clusters.  A mathematics 

achievement test that contains subtests of arithmetic, algebra, geometry, and 

measurement is an example of a between-item multidimensional test.  Within-item 

multidimensionality is most easily recognized in a test composed of mathematics 

word problems, which require both computation and reading skills (Ansley & Forsyth, 

1990).  To use the concepts in factor analysis, a between-item multidimensional test 

can also be understood as exhibiting simple structure (Stout et al., 1996), while a 

within-item multidimensional test as displaying complex structure.  Figure 3 

illustrates the structural differences between the two kinds of multidimensionality.  
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Figure 3: Structures of between-item and within-item multidimensionality 
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subscales are distinct but correlated.  A joint analysis, which takes advantage of the 

correlations among the latent dimensions, leads to improved estimates of item and 

person parameters.  Within-item multidimensional tests are often analyzed with 

compensatory or noncompensatory models, depending on the nature of the interaction 

between the required latent dimensions.  Compensatory models are used more often 

than noncompensatory models in practical testing situations, partly because they have 

well-developed estimation algorithms.  The most commonly used compensatory 

models are the two-parameter linear logistic model (McKinley & Reckase, 1982) and 

its variations.  Besides, the MRCMLM is developed to incorporate a wide class of 

multidimensional models, which can be used in contexts in which either a 

compensatory or noncompensatory model is deemed desirable.  

3.4 Multidimensional models versus mixture models 

Multidimensional models and mixtures models represent two different techniques 

of modeling item responses that cannot be adequately accounted for by a single 

unidimensional trait.  Although different in structure, they are equivalent under 

certain conditions.  Specifically, Rijmen and De Boeck (2005) studied two 

extensions of the Rasch model, the between-item multidimensional model (Adams, 

Wilson, & Wang, 1997) and the mixture Rasch model (Rost, 1990), and proved their 

equivalence in certain circumstances.  

In the Rasch model, the marginal probability of a response pattern y is equal to  
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where ( )θf  is the distribution function of the latent variable θ  in the population of 



 47 

examinees.  The first extension of the Rasch model is its multidimensional version.  

Suppose a test consists of K subgroups of items and each group can be modeled by the 

Rasch model.  Let '

21 ),...,,...,,( jKjkjjj rrrr=r  where  

otherwise.

groupth   the tobelongs  item if 

,0

,1 kj
r jk


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Based on the between-item multidimensional model, the marginal probability of a 

response pattern y is equal to  
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where θ  is a K-dimensional vector which represents the latent traits, β  is the vector 

of item parameters, and R is a KJ × matrix with jr as is jth row.   

The second extension of the Rasch model is its mixture version.  Suppose the 

population of examinees consists of G latent classes.  According to the mixture 

Rasch model, the marginal probability of a response pattern y is equal to  
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where gπ  is the proportion of the gth class, gβ  is the vector of item difficulties for 

the gth class, and ( )θgf is the distribution function of θ  for the gth class.   

 In exploring the formal relation between the two models, Rijmen and De Boeck 

(2005) rewrote the between-item multidimensional model in Equation 21 as  
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where θξ T= , with T a nonsingular transformation matrix and 1−= TS , and ( )ξq  is 

the distribution function of ξ .  Equation 23 can be reformulated as 
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if we condition the kth latent variable kξ  on the vector of K-1 other latent variables 

)(kξ .  If T is chosen such that the inner integral of the function corresponds to the 

function of the Rasch model, this reformulation of the between-item multidimensional 

model can be regarded as a continuous version of the mixture Rasch model, where 

each class has a different set of values for )(kξ .  

 For a given class in which )()( kk aξ = , the probability of observing a response 

pattern y  is equal to 
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where )(k

ls is the lth ( ),....,,...,2,1 Kkl = row of S, without element lks .  Considering 

the fact that each item belongs to one dimension in the between-item 

multidimensional model, Equation 25 can be simplified as 
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where kkl ss
j 1=  for items that belong to the first dimension, kkl ss

j 2=  for items that 

belong to the second dimension and so on.  The inner integral of Equation 26 will be 

equal to the formulation of the Rasch model as in Equation 19 if 1=lks  for all l, or, 

in other words, the kth column of S consists of ones only.  

 As seen in Equation 26, the item parameter for the jth item within a latent class is 

equal to the item parameter jβ  of the between-item multidimensional model and “a 
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term that is common for all the items belonging to the same original dimension l and 

that depends on the value of )(ka one is conditioning upon, )(

)(

k

k

ls a ” (Rijmen & De 

Boeck, 2005, p. 486), plus a term that is common for all items due to the identification 

restriction that ( ) .0| )()( == kkkE aξξ   To put it simply, within a given class, the 

item parameters are equal to the item parameters of the multidimensional model plus 

a shift parameter that is specific for the dimension an item belongs to in the 

multidimensional model.  The term )(

)(

k

k

ls a  can be seen as an interaction between 

the latent class a person belongs to (identified by the values of )(ka ) and the group a 

particular item is associated with (i.e., dimension l).  A mixture model with this 

property is similar to a Saltus model (Wilson, 1989; Mislevy & Wilson, 1996), except 

that it consists of a continuous mixture of classes while in a Saltus model the classes 

are often discontinuous.   

 The formal equivalence between the two types of models suggests that a 

between-item multidimensional model is approximated by a mixture Rasch model in 

which the item parameters for items associated with the same dimension are equal 

across classes up to a class-specific shift parameter, as the number of classes 

approaches infinity.  In other words, the effect of being in a particular class upon 

responding to an item is common for all items of the same dimension.  The 

interaction between person group and item class in the mixture model, as represented 

by the shift parameter, approximates the algorithm in the multidimensional model that 

items measure different dimensions and people have different distributions along 

those dimensions. 
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 In addition to establishing the formal equivalence between the between-item 

multidimensional model and a continuous mixture Rasch model, Rijmen and De 

Boeck did a simulation study which suggests that the equivalency relationship holds 

approximately between a two-dimensional between-item model and a finite mixture 

Rasch model with only two latent classes. 

 In another line, Reise and Gomel (1995) compared the mixture Rasch model and 

the full information item factor analytic model and argued that these two models 

“represent two conceptually distinct ways of accounting for heterogeneity in an item 

response matrix” (p. 342).  To put it more exactly, the two types of models can be 

distinguished as addressing “item heterogeneity” or “person heterogeneity”.  This 

study is a complement to the study by Rijmen and De Boeck in some sense because it 

is also an exploration of the relationship between a MIRT model and the mixture 

Rasch model.  Besides, solutions from the exploratory analyses suggested that the 

personality assessment being analyzed can be well represented by a two-dimensional 

between-item model or a two-class mixture Rasch model.  It should be recognized 

that the item factor analytic model resembles the between-item multidimensional 

model and its rotated solution may suggest between-item multidimensionality.  It 

differs from the between-item multidimensional model in some ways such as, the item 

discrimination parameters are included in an item factor analytic model, the group 

membership of each item is estimated but not specified a priori, and a probit link is 

used instead of a logit link.  

For a given test, the solutions given by the between-item multidimensional model 
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and the mixture Rasch model share some similarities due to the isomorphic relation 

between the two types of models.  The distinctions between the dimensions in the 

between-item multidimensional model often correspond to the characteristic features 

of the latent classes in the mixture Rasch model.  For example, the results from 

Reise & Gomel (1995) indicated that a 2-factor IRT model and a 2-class mixture 

Rasch model provided the best representations of the data.  The two dimensions 

were called “agency” and “communication”, and the two latent classes identified by 

the mixture Rasch model turned out to be the “agentic” and “communal” types of 

people. 

The equivalence between the two models is discussed in the context that the true 

model underlying the test data is known to be the between-item multidimensional 

model.  If the true model is unknown and the two models are fit to the test data, they 

do not always fit equally well.  Generally speaking, the between-item 

multidimensional model is more parsimonious than the mixture Rasch model. 

However, as discussed in the previous chapter, choosing between models is not 

merely a statistical issue.  There are circumstances in which one model is preferred 

over the other (Reise & Gomel, 1995).  For example, if items can be reasonably 

divided into groups a priori, the between-item multidimensional model will be 

considered more plausible.   

On the other hand, the two models emphasize different aspects of the variations 

observed in a response matrix, and tell different stories about persons and items.  

The between-item multidimensional model associates items with multiple latent 
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dimensions and expresses person differences along these dimensions.  It emphasizes 

the differences between items with regard to the particular latent dimension each 

measures and explains response heterogeneity with multiple dimensions of individual 

differences.  The mixture Rasch model assumes a single latent trait and identifies 

multiple subpopulations.  It focuses on the distinctions among persons with regard to 

the class each belongs to.  Response heterogeneity is accounted for by person 

differences, which are described both qualitatively, as class membership, and 

quantitatively, as values on the latent dimension specific to each class.   

3.5 Unidimensional models versus mixture models 

 The general form of a mixture IRT model can be expressed as  
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where gπ  is the proportion for the gth class, and ( )ggjXP βθ ,|1=  is the response 

function for the gth class that accords with a certain unidimensional IRT model.  A 

mixture model is collapsed to a unidimensional model under two circumstances.  

When one of the components of the mixing parameter π  is essentially equal to 1 and 

the others are essentially equal to 0, the mixture model is essentially a unidimensional 

model.  In that case, there is a mixture in principle, but virtually all examinees are in 

the same class.  Another scenario would be that the item parameters in the different 

classes all approach one another.  In that case, there are different classes of 

examinees, but all classes share the same response probabilities for the test items.  

Unidimensional models and mixture models are comparable in the sense that they 

both assume unidimensionality.  Unidimensional models assume that examinees all 
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come from the same population and that their differences are quantitative with regard 

to a single latent dimension.  Items are also located on the same scale.  A mixture 

model assumes that the population of examinees consists of multiple qualitatively 

different classes, and that the class-membership is latent.  Within each latent class, 

unidimensionality still holds.  However, the item parameters are class-specific, 

implying that the particular dimension the test items are measuring varies across 

classes.  

The differences between a unidimensional model and a mixture model make them 

applicable in different contexts and for different purposes.  In a unidimensional 

model, a single latent trait is assumed to underlie the response process of every item 

for every examinee, and a common set of item parameters are estimated for all 

examinees, which implies that all examinees are assumed to perceive and respond to 

the items in the same manner.  This assumption does not hold at all times, especially 

when the examinees come from distinct subpopulations with different background 

characteristics, just like those in the NAEP science assessment.  In modeling their 

item responses, the examinees cannot simply be characterized as possessing different 

quantities of a latent trait.  They should also be distinguished in terms of the qualities 

of latent traits they may have demonstrated in the process of responding to the items.  

In case the assumption of unidimensionality fails, a mixture model, for example, the 

mixture Rasch model, can be used in an exploratory mode to investigate the 

heterogeneity among examinees.  Of course, mixture models (for example, Mislevy 

& Verhelst, 1990) can also be used in confirmatory analysis to support hypotheses 
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about the causes for heterogeneity among persons in the item-solving process.   

 Unidimensional models and mixture models tell different stories about persons 

and items.  In the unidimensional Rasch model, each item is equally easy or hard for 

all the examinees.  Examinees are quantified with regard to the single latent 

construct measured in the test.  In the mixture Rasch model, by contrast, one or more 

items are harder for one class but easier for another.  For all examinees, the 

probability of belonging to each latent class is calculated.  Examinees with response 

patterns of a particular type have a larger likelihood of belonging to one latent class 

than to another.  A mixture model almost always fits better than a unidimensional 

model because it can account for departures from unidimensionality and detect more 

refined distinctions about examinees.  However, it does not always make more sense 

than a unidimensional model.  It tends to pick up characteristics that are only unique 

to the particular items that are included in the test and the particular examinees who 

took the test.  Interpretation of the latent classes should be based on the 

generalizability of these characteristics.  

As noted in each section of this chapter, under certain conditions, each two of the 

three types of models converge in both mathematical forms and narrative stories.  In 

cases of convergence, tests of statistical fit or fit indices cannot tell the differences 

between the models, and the narrative stories associated with the models are the same.    
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Chapter 4: Methodology 

4.1 Data  

Data used in the study were item responses of the 8
th

 graders from the national 

comparison sample in the NAEP 1996 science assessment.  As described in the Data 

User Guide (National Center for Education Statistics, 1999), the NAEP 1996 science 

assessment was administered to samples of students in the participating states as well 

as to a national sample.  NAEP employs a stratified cluster sampling scheme in 

selecting participants.  The national comparison sample was a subsample from the 

full national sample created to allow for valid state and national comparisons.  It was 

representative of all students in Grade 8 enrolled in public and nonpublic schools in 

the United States in the assessment year.   

Each student was administered a booklet containing cognitive and background 

items.  The pool of cognitive science items for Grade 8 was divided into fifteen 

mutually exclusive blocks.  Each block contained both multiple-choice and 

constructed-response items.  The number of items within a block ranged from 6 to 

16.  Four of the fifteen blocks were hands-on tasks in which students were given a 

set of equipment and asked to conduct an investigation and answer questions (mostly 

constructed-response) related to the investigation.  Three of the remaining eleven 

regular paper-and-pencil blocks were theme blocks, which were designed to address 

the themes in science education, as described in the NAEP science assessment 

framework.   

Based on a complex matrix sampling design (Allen et al., 1999), blocks of items 
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were assembled into booklets, which were then assigned to students.  Each booklet 

contained three blocks of cognitive items.  Each booklet contained a block of 

hands-on tasks, which were always presented in the last position of the booklet.      

Theme blocks were placed randomly in student booklets, but not in every booklet.  

Each booklet contained no more than one theme block.  Each non-theme 

paper-and-pencil block appeared in the first or second position of a booklet the same 

number of times.  The administration of booklets to students followed a spiraling 

design, which was a systematic way to ensure that each booklet appeared an 

appropriate number of times in the student sample.   

In addition to three cognitive science blocks, each booklet also contained three 

segments of background items, i.e. a demographic questionnaire, a science 

background questionnaire, and a motivation questionnaire.  Every student received 

the same background items.  The student demographic questionnaire included 

questions about race, mother’s and father’s level of education, types of reading 

materials at home, and school attendance.  The science background questionnaire 

included questions that addressed attitudes and perceptions about science, time spent 

studying science, and instructional experiences related to science in the classroom.  

The motivation questionnaire asked students questions such as how they thought 

about their performances in the test and how important it was for them to do well in 

the test.  

In this dissertation, data analyses were performed with responses to cognitive 

science items.  To circumvent the complexities of matrix sampling in the NAEP 
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assessment instrument, data analyses could be done on single blocks or combinations 

of blocks.  Analyzing multiple blocks simultaneously would involve having more 

items but fewer examinees in the response data than analysis of a single block.   In 

this study, data analyses were performed with three sets of response data.  Analyses 

were first done on a single block of items, whose content and framework 

classifications were released to the public.  Analyses could be desirably done on a 

booklet, which contained three blocks.  However, since not a single booklet in the 

1996 NAEP science assessment was released for public use, analyses were then done 

on two other data sets, each containing examinees’ responses to two blocks of items.   

To simplify data analysis, polytomously scored constructed-response items were 

dichotomized in a manner that the collapsing of categories resulted in the most 

balanced dichotomous response frequencies for each item.  That is to say, categories 

were collapsed so that the frequency of correct responses would approximate that of 

the incorrect responses as much as possible.  In this way, the loss of information due 

to dichotomization was minimized.  

In the data files used in the study, missing responses were recoded as “omitted” or 

“not presented”.  Specifically, missing responses prior to the last observed response 

of a block were coded as omissions, while missing responses at the end of a block 

were coded as not reached.  In the model analyses, omitted responses were treated as 

incorrect responses and not reached items were treated as if they had not been 

presented to the examinee.  The same response data were analyzed by each model in 

the study.  
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4.2 Model analyses 

In this study, item responses were analyzed by three different types of 

measurement models and the results were compared within and across types of 

models.  The multidimensional between-item models were used in a confirmatory 

approach to examine two hypotheses that were implied by the design rationale of the 

NAEP science assessment.  The first hypothesis, which was assumed in the NAEP 

science score reporting system, stated that the assessment was multidimensional 

because of the three content areas that were covered.  The second hypothesis was 

that the assessment was multidimensional in terms of the three cognitive proficiencies 

that the items wee designed to measure.  Following the confirmatory analyses, item 

responses were then subjected to exploratory analysis via two types of models.  

Exploratory item factor analysis was conducted to investigate the number of latent 

factors that underlay the item responses, how the items were associated with the 

factors, and how the factors were to be interpreted.  The mixture Rasch models were 

used to identify multiple latent classes of examinees whose response patterns were 

qualitatively dissimilar.  Quantitative differences among students were scaled within 

each class.  

The three models reflect three different conceptualizations of multidimensionality.  

The multidimensional between-item model approaches multidimensionality at a 

global level by evaluating the structure of the test instrument.  The factor model and 

mixture IRT model account for multidimensionality in terms of “item heterogeneity” 

and “person heterogeneity”, respectively (Reise & Gomel, 1995).  The three models, 
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when used in complement with each other, provide a general as well as a nuanced 

picture about the test, the items, and the examinees.  

4.2.1 The multidimensional between-item model 

Application of the multidimensional between-item model is inspired by the 

design feature of the NAEP science assessment.  Each block as a whole covers three 

fields of science (physical, earth, and life sciences) and three types of cognitive 

proficiencies (conceptual understanding, practical reasoning, and scientific 

investigation), but each item within a block is designed to measure knowledge of 

content of only one field of science and one type of cognitive proficiency.  Thus, the 

structure of the assessment can be accounted for by the multidimensional 

between-item model and the dimensions can be defined in terms of content areas or 

science process skills.  

As mentioned above, the multidimensional between-item model is a subclass of 

the multidimensional random coefficients multinomial logit model (MRCMLM).  

Estimation of the MRCMLM is based on the marginal maximum likelihood (MML) 

estimation procedure, which is implemented in ConQuest.  When estimating the item 

parameters of the model, the vector-valued person parameter θ  is assumed to follow 

a multivariate normal distribution.  Results provided by ConQuest include estimates 

of the item parameters, means, variances, covariances and correlations of the latent 

dimensions, and deviance of the model.  ConQuest also provides expected a 

posterior (EAP) ability estimates and maximum likelihood ability estimates for the 

person parameters.  The overall fit of the multidimensional model can be examined 
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by testing the difference in the model deviance between a unidimensional model and 

the multidimensional model, which approximates a chi-square distribution 

asymptotically with degrees of freedom equal to the number of additional parameters 

estimated in the multidimensional model.  A significant test result indicates that the 

multidimensional model fits the item response data significantly better than the 

unidimensional model.  

ConQuest also provides fit statistics for individual items, which are 

residual-based indices similar to the weighted and unweighted fit statistics that were 

developed by Wright and Masters (1982).  Weighted fit statistics are preferred 

because they are less sensitive to unexpected responses made by persons for whom 

the item of interest is far too easy or far too difficult.  Wu (1997) has shown that 

these statistics have approximate scaled chi-square distributions and can be 

transformed to approximate normal deviates (t-values).  Following standard 

guidelines, an item is considered as a misfit item if the absolute value of its associated 

t-statistic is greater than 2.0.  A t-value greater than 4.0 or less than -4.0 indicates 

serious misfit.  However, according to Hambleton & Murray (1983), sample size can 

significantly impact the detection of misfit items.  Based on their simulation study, 

the number of detected misfit items tends to increase with the increase of sample size, 

and it seems that sample sizes around 600 to 1000 may give accurate results.  When 

sample size is over 1000, the fit statistics need to be interpreted with caution.  

4.2.2 The exploratory item factor analytic model 

As mentioned above, the exploratory full-information item factor analysis is 
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implemented in the TESTFACT program, which uses the marginal maximum 

likelihood estimation (MML) method on the full item response data matrix to obtain 

item parameters.  TESTFACT first performs a principal factor analysis on the 

smoothed tetrachoric correlation matrix by using the minimum squared residuals 

(MINRES) method.  Factors are extracted and factor loadings are obtained.  In the 

initial solution generated by MINRES, the factors are orthogonal to each other, and 

can be subjected to varimax (factors being orthogonal) or promax (factors being 

oblique) rotation, as indicated in the command.  In this study, all the rotations 

performed on the factor solutions were promax rotations, and the correlations between 

the factors were estimated.  The factor loadings are then converted to intercepts and 

slopes, which serve as the starting values for the MML procedure.  The 

full-information item factor analysis results in a chi-square statistic for the model fit 

and parameter estimates for both the factor analytic and the multidimensional item 

response theory formulations.  

Determining the number of factors with the exploratory solution provided by 

TESTFACT involves examining the latent roots of the tetrachoric correlation matrix, 

the root mean square residual (RMSR) statistic for the matrix of residuals, chi-square 

difference statistics, and the number of substantial loadings for the factors (Stone & 

Yeh, 2006).  As suggested by many researchers (for example, Gorsuch, 1983), 

examination of scree plots is useful for determining the number of factors.  RMSR is 

a statistic that summarizes the differences between the observed correlations and the 

model-implied correlations, i.e., the matrix of residuals provided in the TESTFACT 
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output.  A value of .05 can be used to indicate an acceptable factor solution (Muthén 

& Muthén, 2001).  The chi-square difference statistics between nested factor models 

can be tested to determine the number of factors.  If adding another factor does not 

bring about significant improvement in fit, the current factor model should be retained 

as the most appropriate model.  Finally, the factor loadings should be examined to 

identify the cluster of items that have high loadings on each factor.  The magnitude 

of factor loadings indicates the strength of the relationships between the items and the 

factors.   Factors are interpreted based on the items that are strongly associated with 

them.  Typically, a factor loading is considered substantial if it is greater than .3 

(Gorsuch, 1983).   

A recent article by Stoel, Galindo-Garre, Dolan, & van den Wittenboer (2006) 

points out that the boundary conditions of the parameters in the common factor model 

make the chi-square difference tests no longer appropriate for comparing nested factor 

models.  Other fit statistics such as the information criterion indices may be used 

instead in comparing this type of models.  In this dissertation, I used both the 

chi-square difference tests and the information criteria in comparing factor models, 

but the latter ones should be given more attention because they are considered more 

reliable.  

4.2.3 MCMC estimation of the mixture models 

Rost’s (1990) mixture Rasch model (MRM) is used in the third set of analyses. 

Estimation of the model is carried out by using the Markov chain Monte Carlo 

(MCMC) estimation algorithm, which finds more applicability than the traditional 
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MML/EM estimation in estimating complex types of item response models due to its 

straightforwardness (Patz & Junker, 1999).  By adopting a perspective of Bayesian 

inference, MCMC methods impose a prior distribution (often very weak) for each 

parameter in the model and estimate the full conditional posterior distribution of each 

parameter given the observed data and other parameters in the model.  The basic 

idea of MCMC is to simulate a Markov chain whose stages represent a sample from 

the parameter’s posterior distribution and the sample mean of the stages of the 

Markov chain is taken as the estimate of the parameter.   

MCMC methods have been found to be particularly useful in estimating mixture 

distributions (Robert, 1996).  In MRM, a class membership parameter is sampled for 

each examinee at each stage of the chain, along with a continuous latent ability 

parameter at each stage of the chain.  Specifically, for each examinee, the class 

membership parameter is sampled from the conditional distribution of the examinee’s 

membership in that class given the sampled item parameters and parameters for the 

mixing proportions.  Similarly, the parameters for the mixing proportions are 

sampled from their posterior distributions conditional on the sampled class 

memberships, abilities for all examinees, and item parameters.  The parameters for 

the mixing proportions are defined according to the frequencies with which the 

examinees are sampled into the classes over the stages of the chain.  The frequency 

with which each examinee is sampled into each class determines the posterior 

probability of the examinee’s membership in that class.   

In this dissertation, the WinBUGS software (Spiegelhalter et al., 2003) is used to 
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implement the MCMC estimation of the mixture Rasch model.  The ability 

parameters are assumed to be normally distributed within classes.  The mean of the 

ability distribution is fixed to zero for each class, and the standard deviation is left to 

vary across classes.  Item difficulty for each item within each class is assumed to 

follow a normal distribution with mean of zero and standard deviation of two.   

Label-switching is a common problem in running discrete mixture models via 

MCMC estimation.  The class labels permute during the simulation run, which 

makes the output difficult to interpret.  Several methods have been proposed for 

handling the problem, including imposing constraints on the parameters (Richardson 

& Green, 1997), cluster-based relabeling of the simulated parameters (Stephens, 

1997), and preassigning one or more observations to each component with certainty 

(Chung, Loken, & Schafer, 2004).  In this dissertation, I attempt to solve the problem 

of label switching by using the last approach since it has been shown to be both 

simple and effective.     

It should be noted that in this study guessing is not modeled in any of the three 

types of models.  The influence of guessing can be incorporated in TESTFACT to 

estimate the parameters of the item factor model.  I choose not to do that because I 

am not particularly interested in the influence of guessing and I want to compare the 

results from TESTFACT with results from the other two types of models, in which 

guessing can not be accommodated.   

Another point that needs to be brought into attention is that the cluster sampling 

scheme of NAEP violates the random sampling assumption of Item Response Theory 
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(IRT)-based measurement models, and would have a non-negligible impact upon 

parameter estimation and interpretation of results.  It tends to reduce the accuracy of 

parameter estimates and make significance tests more powerful than they should be.  

In this dissertation, no special treatment was done to account for the effect of cluster 

sampling because this study was not focused on the technical details of the models or 

statistical solutions for any assumption violation problems.   

4.3 Computation of the fit indices 

The three types of models are expected to lead to different results, which all make 

sense if understood within their own conceptual framework.  The differences among 

the three sets of solutions and interpretations need to be evaluated on the basis of 

model fit.  In this dissertation, information criteria, including AIC, BIC, and CAIC, 

are used for comparing the models.  These fit statistics are especially useful in 

comparing models with a non-nested relationship, which is true of the three types of 

models compared in this study.   

As discussed above, the information criteria are appropriate when maximum 

likelihood estimates (MLE) of model parameters are obtained.  The first two types of 

models are estimated via marginal maximum likelihood (MML) estimation, and the 

model estimates can be used directly in the computation of the information criteria.  

The mixture Rasch models are estimated by using the MCMC algorithm and the 

posterior means of the model parameters approximate the MLEs if the sample size is 

sufficiently large.  For example, Li, Cohen, Kim, and Cho (2006) used the BIC 

criterion with posterior means for mixture models similar to the ones proposed here as 
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obtained from the MCMC estimation.  

Computing the information criteria for each model is essentially computing the 

log likelihood of the response data by using the estimated parameters of that model, 

since the other two components of information criteria, sample size and degrees of 

freedom, can be directly obtained from the model and the data.  Specifically, the log 

likelihood of the response data under the assumption of each model can be computed 

in the same framework by holding the model parameters fixed at their estimated 

values.  All the models are built on the same matrix of dichotomous item response 

data.  The general form of the log likelihood is  
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The log likelihood is estimated for each model with that model’s form for the 

probability of the item response ijx .  The form of the model and the nature of the 

item and person parameters are determined in each model.  In each case, optimal 

estimates, either MLEs or Bayesian posterior means, are used for item parameters in 

the calculation, and person parameters are integrated out.  

In the between-item multidimensional model, the item parameters ξ, along with 

the covariances of the latent dimensions are estimated via MML estimation.  To 

compute the log likelihood, I randomly sample 200 θ  vectors from the multivariate 
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normal distribution )ˆ,ˆ( ΣµN , where  
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11σ̂ , 22σ̂ , 33σ̂  are the estimated variances of the three latent dimensions, and 

21σ̂ (or 12σ̂ ), 31σ̂ (or 13σ̂ ), 32σ̂ (or 23σ̂ ) are the estimated covariances among the three 

latent dimensions.  The 200 θ  vectors are regarded as quadrature points and each 

quadrature is equally weighted.  Given that all the items being analyzed are 

dichotomized and only the item difficulty is estimated for each item, the response 

probability for the jth item conditional on the mth quadrature mθ , is given by 
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where jξ̂  is the estimated difficulty for the jth item, and A and B are the design and 

scoring matrices.  The probability of obtaining the response pattern iX , conditional 

on the mth quadrature mθ   is 
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The unconditional probability of obtaining the response pattern iX  is approximated 

as  
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where N is the number of persons in the sample.  

In the item factor analytic model, the item response function is given by 
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cumulative normal density function.  The item parameters a’s and d’s, along with the 

correlations of the latent factors are estimated via MML estimation (Bock, Gibbons, 

& Muraki, 1988) in TESTFACT.  Let’s take a two-factor item model as an example.  

To compute the log likelihood, I randomly sample 200 θ  vectors from the 

multivariate normal distribution N (0000, )Σ̂ , where  
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21r̂ (or 12r̂ ) is the estimated correlation among the two latent factors.  The probability 

of obtaining the response pattern iX , conditional on the mth quadrature mθ  is 
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where m1θ  and m2θ  are the components of mθ . 

Since the 200 θ  points are equally weighted, the unconditional probability of 
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obtaining the response pattern iX  is approximated as 
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Calculating log likelihood is more complicated for the mixture Rasch model.  In 

the mixture Rasch model, the response probability of the ith person to the jth item is 

given by 
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The item parameters gjβ  and class proportions gπ are estimated via MCMC 

estimation in WinBUGS.  In this study, the θ  distribution for each latent class is 

assumed to be normal.  The mean of the distribution is constrained to be equal to 

zero for each class, while the standard deviation of the distribution is freely estimated.  

Take the two-class mixture Rasch model as an example.  To compute the log 

likelihood, I randomly select 100θ ’s from the normal distribution N (0, 1σ̂ ), and 1σ̂  

is the estimated standard deviation of the first class.  Another 100θ ’s are randomly 

selected from the normal distribution N (0, 2σ̂ ), and 2σ̂  is the estimated standard 

deviation of the second class.  The 100 θ  points from each distribution are 

regarded as quadrature points and each quadrature has a weight of .01.  Let m1θ  

denote the mth θ  point selected from the distribution of the first class, and m2θ  



 70 

denote the mth θ  point from the second class.  Conditional on the mth quadrature 

point of the first class, m1θ , the probability of obtaining the response pattern iX is 

equal to  
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Conditional on the knowledge that the ith person belongs to the first class, the 

probability of obtaining the response pattern iX  is approximated as 
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If the ith person’s class membership is unknown, the probability of obtaining the 

response pattern iX  is approximated as 
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where 1π̂  and 2π̂  are the estimated class proportions obtained from the two-class 

mixture Rasch model solution.  Therefore, the likelihood of obtaining the entire 

response matrix for all the persons is approximately 
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 Computing the information criteria involves identifying the number of parameters 

to be estimated and sample size for each model, in addition to calculating the log 
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likelihood.  In this study, all the models are used to analyze the same response data 

and the sample size is the number of examinees from whom the responses were 

obtained.  The number of parameters varies across the models.  For the 

between-item multidimensional model, the parameters to be estimated include item 

difficulties, the means of the hypothesized dimensions, and the unique elements of the 

variance-covariance matrix.  To solve the identification problem, the mean of the 

item difficulties for each dimension is constrained to be zero.  This is achieved by 

fixing the item difficulty of the last item on each dimension to be equal to the negative 

sum of the difficulties of the other items on that dimension.  Suppose there are J 

items in the response data and the proposed model contains D dimensions, the number 

of parameters estimated in the model is equal to 
2

)1( +⋅
+

DD
J .  For an item factor 

analytic model, the parameters to be estimated include item thresholds and factor 

loadings for all the items, minus the number of constraints.  For an M-factor model, 

the number of constraints is equal to 2/)1( −⋅ MM , and the number of estimated 

parameters to is equal to JMJ +⋅ - 2/)1( −⋅ MM .  In the context of MCMC, the 

number of parameters estimated in a mixture Rasch model is the sum of item 

difficulties across all classes, the number of means of theta for all classes, and the 

number of class proportion estimates.  Suppose the proposed mixture Rasch model 

has G classes, the number of parameters is equal to )1( −++⋅ GGGJ .  
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Chapter 5: Results and Discussion 

In this dissertation, data analysis was first done on a single block of items. 

Students who responded to the items were the subjects of analysis.  The three types 

of models were fit to the response data and results of model analysis were 

summarized in terms of substantive meaningfulness and statistical fit.  Information 

criteria, including AIC, BIC, and CAIC, were computed for each model.  Based on 

these indices, goodness of fit was compared both within and across types of models.  

Narrative stories about science proficiency were compared across models for a small 

number of examinees, and commonalities and distinctions among those stories were 

discussed.  Besides, as a follow-up to mixture model analysis, examinees’ 

demographic and background variables were extracted and their associations with 

latent class membership were studied.  

Replicative data analysis was done on two other data sets to examine the 

generalizability of the findings found in the block-level analysis.  As mentioned 

above, data analysis could be performed on an entire booklet.  However, only four 

item blocks of the 1996 NAEP science assessment for Grade 8 were released for 

secondary use and not any three of them were bundled together as a booklet.  

Therefore, I picked two combinations of item blocks, each of which was administered 

as part of a booklet, and studied examinees’ responses to the block combinations.  

Similarly, the three types of models were fit to the response data and analysis results 

were again compared across models in terms of substantive significance and statistical 

fit.  
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The last section of this chapter is a synthesis of the analysis results found across 

the three data sets, with their commonalities and differences highlighted and discussed.  

Implications of the findings to assessment design are also discussed.  

5.1 Analysis results of a single item block 

Block S20 was selected as the target of analysis because it was one of the 

publicly released blocks and detailed information about the items in the block was 

available.  It was made up of 8 multiple-choice and 8 constructed-response items.  

It contained 6 items on physical science, 6 on earth science, and 4 on life science.  

There were 1251 8th graders to whom Block S20 was administered.  Responses to 

the multiple-choice and short constructed-response items were scored as right or 

wrong, and responses to the extended constructed-response items were originally 

scored as discrete integer values within certain bounds (from 0 to 3 or 4).  As 

mentioned above, responses to polytomously scored items were dichotomized in this 

study in order to simplify data analysis.   

A preliminary exploratory factor analysis was performed on the response matrix 

in TESTFACT, and the factor loadings of the one-, two-, and three-factor solutions are 

summarized in Tables 1-3.  The results of factor analysis suggested that Item 10 

behaved oddly.  In the one-factor solution, its loading on the single factor was 

negligible (= .091), while the other items had moderate to high loadings on that factor.  

In the two-factor solution, it did not load substantially on either of the two factors.  

In the three-factor solution, it loaded highly (= .881) on the third factor, while all the 

other items had negligible loadings on that factor.  In addition, the estimates of item 
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parameters provided by NAEP indicated that Item 10 was a very difficult item (b = 

4.0574), but students of the lowest ability had a 20% chance of getting it right (c 

= .1986).  This is saying that the factor on which this item loaded highly was not a 

psychometrically meaningful factor but related to whether a student was a lucky 

guesser on that item.  Due to this reason, I dropped this item in further analyses.  

(See Appendix A for Item 10.  I suspect that most students chose a wrong answer to 

this item because they did not know the word “mitochondrion”, which was the key 

word in the question, and those who got it right simply made lucky guesses.)
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Table 1: Factor loadings of the one-factor model for all the items in Block S20 

 

Item  Factor 1 

S20_1 .399 

S20_2 .550 

S20_3 .504 

S20_4 .090 

S20_5 .665 

S20_6 .495 

S20_7 .532 

S20_8 .604 

S20_9 .338 

S20_10 .091 

S20_11 .346 

S20_12 .248 

S20_13 .529 

S20_14 .508 

S20_15 .730 

S20_16 .543 

 

Note: The item in bold, Item 10, has a negligible loading on the single factor, on 

which almost all the other items have substantial loadings.  
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Table 2: Factor loadings of the two-factor model for all the items in Block S20 

 

Item  Factor 1 Factor 2 

S20_1 .434 -.019 

S20_2 .149 .461 

S20_3 .068 .497 

S20_4 -.180 .278 

S20_5 .019 .782 

S20_6 .561 -.022 

S20_7 .261 .334 

S20_8 .508 .129 

S20_9 .129 .224 

S20_10 .217 -.130 

S20_11 .146 .231 

S20_12 .290 -.040 

S20_13 .606 -.050 

S20_14 .500 .040 

S20_15 .493 .314 

S20_16 .650 -.054 

 

Note: The item in bold, Item 10, has negligible loadings on both factors.  
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Table 3: Factor loadings of the three-factor model for all the items in Block S20 

 

Item  Factor 1 Factor 2 Factor 3 

S20_1 .458 .050 -.066 

S20_2 .265 -.029 .353 

S20_3 .181 .002 .397 

S20_4 -.091 .014 .204 

S20_5 .057 .093 .826 

S20_6 .594 .069 -.090 

S20_7 .408 -.122 .188 

S20_8 .612 -.025 -.003 

S20_9 .202 .006 .150 

S20_10 -.015 .881 .110 

S20_11 .247 -.115 .123 

S20_12 .248 .139 -.005 

S20_13 .629 -.004 -.101 

S20_14 .574 -.031 -.063 

S20_15 .598 -.056 .185 

S20_16 .658 .076 -.092 

 

Note: The item in bold, Item 10, has a substantial loading on factor 2, on which all the 

other items have negligible loadings.  However, it has negligible loadings on 

factor 1 and factor 3, each of which is strongly indicated by a number of items.  

Based on the factor loadings of Item 10 in the three factor model solutions, we 

can make a conclusion that Item 10 is not measuring a psychometrically 

interesting factor and should be excluded in further analyses. 

 

Analysis results for Block S20 are organized into four sections: results of model 

analyses, comparison of model fit by information criteria, comparison of narrative 

stories for selected examinees, and background characteristics of latent classes.  

Results of model analyses for each model are summarized and discussed in three 



 78 

sub-sections: the model/narrative frame, results in term of parameters and fit, and 

results in terms of substance.   

5.1.1 Results of model analyses 

5.1.1.1 The between-item multidimensional model 

� The model/narrative frame 

The between-item multidimensional model represents test structure in terms of 

several parallel unidimensional subscales.  Each subscale is associated with a distinct 

set of items and no item is common across subscales.  The association between items 

and subscales is determined in the test design and item writing stage.  Therefore, the 

between-item multidimensional model is often used in confirmatory analysis to 

evaluate the hypothesized test structure.  

In the between-item multidimensional model, items are clustered along 

predefined lines and item parameters are estimated on a priori grounds.  Specifically, 

each item is categorized as an indicator of one subscale, and the parameter(s) of the 

item is estimated on that subscale.  Students are characterized by a set of proficiency 

scores along the dimensions that are intended to be covered in the test.  Distinctions 

along the hypothesized dimensions are believed to lead to different response patterns 

among the examinees.  

According to the design framework of the NAEP science assessment, each item 

block can be treated as a multidimensional testing instrument, whose structure is 

described by a three-dimensional between-item model.  The three dimensions 

correspond to the three fields of science or the three science process skills.  Figures 4 
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and 5 depict the between-item multidimensional structure of Block S20 in terms of 

content areas and process skills, respectively.  Based on the test structure illustrated 

in Figure 4, a three-dimensional between-item model was fit to the response matrix to 

test the hypothesis that the item block is multidimensional due to item content.  

Similarly, a three-dimensional between-item model was fit to the response matrix to 

test the hypothesis that the item block is multidimensional due to science process 

skills, based on what is illustrated in Figure 5. 

 

Figure 4: Between-item multidimensionality in terms of content areas for Block S20 

(excluding Item 10) 

 

 

Figure 5: Between-item multidimensionality in terms of science process skills for 

Block S20 (excluding Item 10) 
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� Results in terms of parameters and fit 

The parameters of the multidimensional between-item models were estimated in 

ConQuest.  In estimating the item difficulties, constraints were applied so that the 

mean of the item difficulties was zero on each dimension.  This was done by setting 

the difficulty of the last item in each dimension equal to the negative sum of the 

difficulties of the rest of the items on that dimension.  The total number of 

parameters estimated in the model was equal to 21, which included twelve item 

difficulties, the means of the three latent distributions, and the six unique elements of 

the variance-covariance matrix.  Below are the results from the two sets of 

confirmatory analysis.  

Hypothesis 1: The item block is multidimensional due to item content.  

Under this hypothesis, items are indicators of three content areas.  Table 4 

summarizes the estimates of item difficulties for the 15 items along with their 

standard errors and diagnostic statistics of fit.  It should be noted that standard errors 

and fit statistics were not provided for constrained parameters.  Based on the 

criterion discussed in Chapter 4, the analysis results suggest that all the items fit 

acceptably except for Items 2, 8, 11, and 15.  
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Table 4: Item difficulty estimates and fit statistics from ConQuest for Block S20 

excluding Item 10 (The dimensions are defined in terms of content areas) 

 

Unweighted Fit Weighted Fit Item Dimension Estimate Standard 

Error MNSQ T MNSQ T 

S20_1 Life -0.445 0.046 1.03 0.8 1.00 0.1 

S20_2 Earth  -0.766 0.043 1.12 2.9 1.10 3.1 

S20_3 Physics -1.266 0.046 1.05 1.4 1.06 1.7 

S20_4 Earth  2.033 0.053 1.08 1.9 1.07 1.9 

S20_5 Earth 0.904 0.047 1.04 0.9 1.04 1.1 

S20_6 Physics 0.715 0.049 0.97 -0.7 0.98 -0.6 

S20_7 Physics 0.075 0.047 0.99 -0.1 1.01 0.4 

S20_8 Earth -1.594 0.045 1.09 2.2 1.08 2.2 

S20_9 Earth 0.326 0.045 1.07 1.6 1.05 1.4 

S20_11 Physics 0.128 0.047 1.13 3.1 1.12 3.1 

S20_12 Earth -0.902*      

S20_13 Life -0.114 0.045 1.00 0.1 1.01 0.3 

S20_14 Life 0.559*      

S20_15 Physics 0.303 0.048 0.86 -3.7 0.87 -3.8 

S20_16 Physics 0.044*      

 

Notes: 1. * indicates that the item difficulty was constrained.   

2. A weighted T statistic with an absolute value larger than 2 suggests moderate 

misfit.  Items in bold are moderately misfit items.  

 

The estimated mean of the latent distribution was -.828 for physical science, -.538 

for earth science, and .661 for life science.  This is not saying that this sample of 

students was more able in life science than in physical science or earth science.  

These were three separate scales and, as mentioned before, the origin of each of the 

three scales was set by making the mean of the item difficulties zero on each scale.  
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Therefore, the three scales did not have a common origin or unit.  A general 

statement that can be made was that an average student did better in an average item 

in life science than in physical science or earth science.  No constraints were placed 

on the variances.  The estimated variance of the latent distribution was 1.144 for 

physical science, 0.759 for earth science, and 1.086 for life science.  This implies 

that the variability of students’ abilities as assessed by the test items was larger in 

physical science and life science than in earth science.  

A unidimensional model was fit to the same response data and its goodness of fit 

was compared with that of the three-dimensional model.  The deviance for the 

unidimensional model was 21486.669, and the number of estimated parameters was 

equal to 16.  The deviance for the three-dimensional model was 21477.017, and the 

number of estimated parameters was equal to 21.  The difference between the two 

deviances follows an asymptotic chi-square distribution with degrees of freedom 

equal to the difference between the numbers of estimated parameters for the two 

models.  The deviance difference between the two models was equal to 9.652 with 5 

degrees of freedom.  A significance test of the difference statistic suggests that the 

multidimensional model does not fit significantly better than the one-dimensional 

model because the p-value )086.( =p of the statistic is larger than the nominal level 

of .05.   

Hypothesis 2: The item block is multidimensional due to science process skills. 

Under this hypothesis, items are indicators of three science process skills.  Table 

5 summarizes the estimates of item difficulties for the 15 items along with their 
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standard errors and diagnostic statistics of fit.  Again, standard errors and fit 

statistics were not provided for constrained parameters.  Based on the same criterion 

as was used before, all the items fit acceptably except for Items 2 and 13.  Clearly, 

the number of misfit items under this hypothesis was smaller than the number of 

misfit items under the previous hypothesis.  

 

Table 5: Item difficulty estimates and fit statistics from ConQuest for Block S20 

excluding Item 10 (The dimensions are defined in terms of science process skills) 

 

Unweighted 

Fit 

Weighted Fit Item Dimension Estimate Standard  

Error 

MNSQ T MNSQ T 

S20_1 Conceptual understanding -1.440 0.045 1.02 0.6 1.01 0.2 

S20_2 Conceptual understanding -0.628 0.043 1.09 2.1 1.08 2.6 

S20_3 Conceptual understanding -0.811 0.043 1.06 1.5 1.06 1.7 

S20_4 Conceptual understanding 2.137 0.052 1.10 2.3 1.07 1.9 

S20_5 Conceptual understanding 1.020 0.047 1.04 1.0 1.03 0.9 

S20_6 Practical reasoning 1.212 0.049 0.93 -1.7 0.96 -1.0 

S20_7 Practical reasoning 0.578 0.047 0.94 -1.5 0.99 -0.1 

S20_8 Practical reasoning -1.424 0.048 0.95 -1.4 0.95 -1.6 

S20_9 Practical reasoning 0.591 0.047 1.10 2.5 1.05 1.5 

S20_11 Conceptual understanding 0.486 0.045 1.07 1.7 1.05 1.6 

S20_12 Conceptual understanding -0.762*      

S20_13 Practical reasoning -1.089 0.046 0.93 -1.9 0.92 -2.4 

S20_14 Practical reasoning -0.416 0.045 0.98 -0.5 0.99 -0.3 

S20_15 Scientific investigation 0.000*      

S20_16 Practical reasoning 0.548*      

Notes: 1. * indicates that the item difficulty was constrained.   

2. A weighted T statistic with an absolute value larger than 2 suggests moderate 

misfit.  Items in bold are moderately misfit items.  
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The estimated mean of the latent distribution was -.404 for conceptual 

understanding, -.318 for practical reasoning, and -1.470 for scientific investigation.  

Again, a general statement can not be made about students’ proficiencies with regard 

to the three process skills because the latent dimensions were estimated in a way that 

they did not have a common origin.  The estimated variance of the latent distribution 

was 0.673 for conceptual understanding, 1.076 for practical reasoning, and 3.769 for 

scientific investigation.  The large variance associated with the dimension of 

scientific investigation was due to the fact that only one item was scaled on this 

dimension and the examinees’ performances on that item varied a lot.  

The three-dimensional between-item model was again compared with the 

unidimensional model in terms of goodness of fit.  The deviance for the 

three-dimensional model was 21414.225 and the number of estimated parameters was 

equal to 21.  The deviance difference between the three-dimensional model and the 

unidimensional model was equal to 72.444 with 5 degrees of freedom.  A 

significance test of the chi-square difference statistic suggests that the 

multidimensional model fits significantly better than the unidimensional model 

because the p-value )000.( =p of the statistic is smaller than the nominal level of .05.   

� Results in terms of substance 

A comparison of the two sets of analysis suggests that multidimensionality in 

terms of cognitive processes makes more sense than multidimensionality in terms of 

content areas for the observed response data.  If subscales are to be used for score 

reporting on the basis of this item block, they should be defined in terms of cognitive 
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processes rather than content areas.   

The estimated correlations among the three process skills were .902, .915, 

and .942.  The large values of the correlations imply that reporting an overall score 

for each examinee may be adequate for summarizing his (or her) performance on the 

test.  Depending on the constraints that must be accommodated and the resources 

that are available, test developers can choose between using several subscales, which 

is informative but costly, and using a single scale, which is less expensive but less 

informative.  

The high correlations among the cognitive process skills resulted in the high 

correlations among the three content areas, which were estimated to be .906, .889, 

and .846.  This is so because the cognitive factors are believed to cross the 

disciplinary boundaries of the content areas.  Although assigning each examinee a 

set of subscores, each corresponding to a field of science, can be justified for practical 

purposes, it provides no more information than reporting a single overall score.  

Besides, students’ individual differences in science learning can be more accurately 

described in terms of cognitive process skills than subject matter knowledge.  

5.1.1.2 The exploratory item factor analytic model 

� The model/narrative frame 

The exploratory item factor analytic model does not impose any predefined 

structure on the test, except that there are a number of latent factors that control the 

examinees’ responses to all the test items.  The test structure is determined by the 

empirical data.  There may be one factor that by itself adequately explains the item 
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responses, or there may be several factors that together account for the variance of the 

response patterns.  The loadings of the items on the factors are not predetermined, 

either.  Each item may load significantly on one or more factors.   

What is of particular interest in this dissertation is to investigate whether the 

factors that come out in the exploratory item factor analytic model solution 

correspond to the content domains which, according to NAEP, summarize student 

performance across all items in the assessment.   

� Results in terms of parameters and fit 

The exploratory item factor analytic models were estimated in TESTFACT.  The 

scree plot in Figure 6 shows that the first factor explains a large proportion of 

variance in the items while the remaining factors, as compared to the first factor, are 

insignificant.  Besides, in the TESTFACT output, the first five largest latent roots of 

the smoothed tetrachoric correlation matrix (with the unit diagonal elements replaced 

by the communalities) are equal to 3.72, 0.41, 0.21, 0.13, and 0.11.  As stated in the 

manual, the number of factors that underlie persons’ responses can be set equal to the 

number of latent roots that are larger than 1.  The result indicates that only the first 

latent root is greater than 1.  Thus, it appears that the one-factor model is sufficient 

for accounting for the data.  
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Figure 6: Scree plot from exploratory factor analysis for Block S20 (excluding Item 

10) 
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A range of factor solutions including one-, two-, three-, and four-factor models 

were estimated and their RMSRs are summarized in Table 6.  As mentioned before, 

the criterion for an acceptable factor solution is that RMSR should be less than .05.  

It turns out that all the four models have acceptable RMSRs.  Selecting a preferable 

model among the four models can be based on another criterion.  According to Tate 

(2003), an additional factor can be added to the model until the reduction of the 

RMSR index is less than roughly 10%.  Judged by this rule, the three-factor model is 

preferred.  
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Table 6: Root mean square residuals (RMSRs) for the one-, two-, three-, and 

four-factor models for Block S20 (excluding Item 10)  

 

Model RMSR Percentage 

of reduction 

1-factor model 0.048  

2-factor model 0.037 23% 

3-factor model 0.033 11% 

4-factor model 0.032 3% 

 

The assessment of dimensionality can also be based on a test of the chi-square 

difference statistic since the set of models being compared have a nesting relationship.  

The chi-square difference statistic is asymptotically distributed as a chi-square 

distribution, with its degrees of freedom equal to the difference between the degrees 

of freedom of the two models.  Table 7 summarizes the chi-square statistics for the 

four models.  Table 8 displays the tests of the chi-square difference statistics.   The 

results suggest that the two-factor model fits significantly better than the one-factor 

model, the three-factor model does not fit significantly better than the two-factor 

model, and the four-factor model does not fit significantly better than the three-factor 

model.  Thus, the two-factor model is selected as the best model by this criterion.  
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Table 7: Chi-square statistics for the one-, two-, three-, and four-factor models for 

Block S20 (excluding Item 10) 

 

# of factors Chi-square DF P-value 

1 3430.39 1220 0.000 

2 3385.79 1206 0.000 

3 3372.15 1193 0.000 

4 3355.90 1181 0.000 

 

Table 8: Tests of chi-square difference statistics between factor models for Block S20 

(excluding Item 10) 

 

 Chi-square 

difference 

DF  

difference 

P-value 

2-factor vs. 1-factor 44.60 14 0.000 

3-factor vs. 2-factor 13.64 13 0.423 

4-factor vs. 3-factor 16.25 12 0.180 

 

Finally, the selection of factors should be based on the pattern of factor loadings 

of each factor solution.  Items that have substantial loadings on a factor are 

considered its salient indicators and used to interpret the factor.  In the one-factor 

solution almost all of the items loaded substantially on the factor.  This implies the 

existence of a general factor that explains a considerable amount of variance of the 

items.  It also agrees with the finding from examining the scree plot.  

Table 9 summarizes the factor loadings of the two-factor solution.  A conclusion 

that can be drawn from the two-factor solution is that the two factors did not represent 

distinct content domains.  As a matter of fact, almost all the items that loaded highly 

on the first factor were designed to assess abilities in practical reasoning or scientific 
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investigation.  There was one exception.  Item 1, which was designed to assess 

conceptual understanding, loaded substantially on the first factor, too.  In contrast, 

all the items that loaded highly on the second factor were designed to assess 

conceptual understanding, although not all the items designed to assess conceptual 

understanding loaded substantially on that factor.  Therefore, the first factor was 

interpreted as representing what students can do in science and the second factor was 

interpreted as indicating what they know in science.  

 

Table 9: Factor loadings of the two-factor model for Block S20 (excluding Item 10) 

 

Item No. Content Process Factor 1 Factor 2 

S20_1 Life Conceptual understanding .455 -.060 

S20_2 Earth  Conceptual understanding .246 .380 

S20_3 Physics Conceptual understanding .169 .415 

S20_4 Earth  Conceptual understanding -.126 .240 

S20_5 Earth Conceptual understanding .093 .769 

S20_6 Physics Practical reasoning .592 -.081 

S20_7 Physics Practical reasoning .368 .230 

S20_8 Earth Practical reasoning .586 .031 

S20_9 Earth Practical reasoning .182 .174 

S20_11 Physics Conceptual understanding .237 .140 

S20_12 Earth Conceptual understanding .269 -.030 

S20_13 Life Practical reasoning .625 -.096 

S20_14 Life Practical reasoning .565 -.047 

S20_15 Physics Scientific investigation .606 .194 

S20_16 Physics Practical reasoning .650 -.084 

Note: Numbers in bold are substantial loadings (>.30) on the two factors.  

The pattern of factor loadings of the three-factor model did not convey so much 
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conceptual meaning as that of the two-factor model.  The first and third factors in the 

three-factor solution resembled the two factors in the two-factor solution, and the 

second factor did not have much conceptual meaning.  The four-factor model 

solution was not interpretable, either.  

Based on the application of all the above-mentioned criteria, the two-factor model 

was considered superior to the other three models in terms of conceptual significance 

and statistical fit.  It should be noted that the solution of the two-factor model 

discussed above was obtained through a promax rotation of the initial solution.  The 

two factors were allowed to be correlated with each other and the estimated 

correlation was .650.  This echoes the fact that the knowing and doing aspects of 

science learning are closely related to each other.   

� Results in terms of substance 

The dichotomization between knowing and doing in science is another meaningful 

way of conceptualizing science achievement.  It agrees with the previous finding that 

what underlies item responses is not subject-matter knowledge of fields of science, 

but cognitive proficiencies developed in the course of science learning.  

Characterizing students by these two aspects of science proficiency can be beneficial 

to instruction and learning, in that students’ factor scores will give us an indication 

about the within-person and across-person differences with respect to these two 

factors.  

The two-factor model solution suggests that some items may require significant 

amounts of both aspects of science proficiency.  This results from the fact that the 
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two aspects of science proficiency are closely connected with each other and a 

requirement of one aspect often necessitates the other.  Recognizing the interaction 

between these two aspects of science proficiency provides the basis for designing 

appropriate task situations that meet the desired goals of assessment (Baxter & Glaser, 

1998)  

5.1.1.3 The mixture Rasch model 

� The model/narrative frame 

The mixture Rasch model conceptualizes persons as coming from one of several 

latent classes, each of which has a distinct ability distribution.  Persons from the 

same latent class have qualitatively similar response patterns to the test items, and the 

dissimilarities among their responses are accounted for by variations along the latent 

dimension associated with that particular class.  The mixture Rasch model is often 

used in exploratory analysis to investigate the number of latent classes and how the 

item parameters are different from one class to another.   

The features of latent classes are identified with items that display varying 

patterns across classes.  Students are characterized by the probabilities of belonging 

to each latent class and the latent abilities along the dimensions associated with the 

latent classes.  In this study, it is of particular interest to test whether the dimensions 

specified by the latent classes correspond to fields of science or cognitive process 

skills.  If that is the case, students of different latent classes can be distinguished by 

these factors that are meaningful to science learning and teaching.   
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� Results in terms of parameters and fit 

A two-class mixture Rasch model was fit to the response data in WinBUGS.  

Five chains with over-dispersed starting values of class proportions were run.  In a 

preliminary run of 3000 iterations, the problem of label switching was observed.  In 

this study, I used the procedure proposed by Chung, Loken, and Schafer (2004) to 

solve the problem of label switching.  I randomly picked one chain and selected for 

each class a number of students whose class membership was consistent over the 

iterations.  I added those constraints to the model as priors and started the second run.  

Chung, Loken, and Schafer (2004) suggested that one prior for one latent class is 

enough in the two latent class case.  However, in our study, adding a prior for each 

class was far from being enough.  Instead, eleven priors were selected for each class.  

A total of 10,000 iterations were simulated for each of the five chains.  The first 

5000 iterations were discarded as burn-ins, and the 5000 iterations after burn-in were 

sampled for each chain.  Thus, posterior estimates of the model parameters were 

calculated from a total of 25,000 iterations.  The same procedure was followed in 

estimating the three-class mixture Rasch model.  The only difference was that in the 

three-class mixture model case, ten priors were selected for each class and 7000 

iterations were discarded as burn-ins.  Again, 5000 iterations after burn-in were run 

for each of the five chains, and posterior estimates of the model parameters were 

based on a total of 25,000 iterations.  

One thing that needs to be mentioned is that about 19 percent of the students in the 

sample did not finish all the items due to the time limit, and about 64 percent of the 
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students gave incorrect responses to more than half of the items in the block.  Thus, 

for a large number of students, their class membership permuted during the span of 

iterations and they could not be assigned class labels with an acceptable level of 

certainty.  

The two-class mixture Rasch model solution 

Checking convergence is a necessary step in MCMC estimation.  It is done by 

examining whether the simulated Markov chain converges to a stationary distribution, 

i.e. the posterior distribution of the parameter being monitored.  For a model with 

many parameters, it is impractical to check convergence for every parameter.  

Instead, a random subset of parameters is selected for convergence checking.  Two 

approaches are generally used in assessing convergence (for a more formal approach 

to convergence diagnosis, please refer to Brooks& Gelman, 1998).  The first 

approach is to examine trace plots of the sample values versus iteration to see when 

the simulation appears to have stabilized.  Second, we can look at the history plot, 

which shows the full history of the sample values for the parameter being monitored.  

Model estimation in WinBUGS often involves running multiple chains simultaneously, 

with each chain starting from a distinct set of initial values for the parameters being 

estimated.  In that case, if all the chains in the trace plot or history plot appear to be 

overlapping one another, we have evidence to claim convergence.  Figure 7 shows 

the trace plots for a subset of parameters.  For each parameter, all the five chains are 

mixing well and have converged to a stabilized distribution before 5000 iterations are 

completed.  Figure 8 shows the history plots for the same parameters.  Again, for 
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each parameter, the five chains appear to have converged to a stationary distribution. 

Figure 7: Trace plots for a subset of parameters being monitored in the two-class 

mixture Rasch model for Block S20 (excluding Item 10) 
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Figure 8: History plots for a subset of parameters being monitored in the two-class 

mixture Rasch model for Block S20 (excluding Item 10) 

 

b[11,2] chains 1:5

iteration

1 2500 5000 7500 10000

   -1.0

   -0.5

    0.0

    0.5

 

b[13,2] chains 1:5

iteration

1 2500 5000 7500 10000

   -1.5

   -1.0

   -0.5

    0.0

    0.5

 

tautheta[2] chains 1:5

iteration

1 2500 5000 7500 10000

    0.0

    1.0

    2.0

    3.0

    4.0

 

pi[1] chains 1:5

iteration

1 2500 5000 7500 10000

    0.0

    0.2

    0.4

    0.6

    0.8

 

Table 10 summarizes the item difficulties obtained from the 2-class solution.  All 

the items, except Item 4, were more difficult for students in Class 1 than for those in 

Class 2.  This implies that Class 2 was made up of generally more able students, 

while Class 1 was made up of less able students.  This general pattern reiterates the 

conclusion drawn from the previous analyses that the assessment is essentially 
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unidimensional.  Besides, the finding that Item 4 was more difficult for students in 

the better-performing group agrees with the one-factor solution in the exploratory 

item factor analysis.  Item 4 loaded negligibly on the factor while almost all the other 

items had substantial loadings on it.  A plausible explanation is that Item 4 was 

measuring some latent trait other than the science proficiency that was measured by 

all the other items.  Estimates of class proportions indicate that about 31 percent of 

the sampled students belonged to the first class and about 69 percent belonged to the 

second class.  
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Table 10: Item difficulties of the 2-class mixture Rasch model for Block S20 

(excluding Item 10) 

 

Item  

 
Content Process Class 1 Class 2 

S20_1 Life Conceptual understanding -.3425 

(.2007) 

-1.361 

(.1058) 

S20_2 Earth  Conceptual understanding .8876 

(.1897) 

-.7457 

(.1428) 

S20_3 Physics Conceptual understanding .4909 

(.1719) 

-.8414 

(.125) 

S20_4 Earth  Conceptual understanding 2.099 

(.2287) 

2.623 

(.1522) 

S20_5 Earth Conceptual understanding 4.876 

(.851) 

.8283 

(.1557) 

S20_6 Physics Practical reasoning 2.881 

(.5534) 

.9915 

(.1089) 

S20_7 Physics Practical reasoning 2.578 

(.6365) 

.3068 

(.1114) 

S20_8 Earth Practical reasoning .3313 

(.2884) 

-1.851 

(.1519) 

S20_9 Earth Practical reasoning 1.133 

(.1671) 

.6668 

(.102) 

S20_11 Physics Conceptual understanding 1.356 

(.1838) 

.6408 

(.09957) 

S20_12 Earth Conceptual understanding -.3345 

(.1614) 

-.3719 

(.09099) 

S20_13 Life Practical reasoning .1893 

(.2288) 

-1.231 

(.1125) 

S20_14 Life Practical reasoning .7343 

(.2298) 

-.5919 

(.1054) 

S20_15 Physics Scientific investigation 4.078 

(.8407) 

.2567 

(.1626) 

S20_16 Physics Practical reasoning 1.534 

(.3351) 

.1323 

(.102) 

 

Note: Numbers in parentheses are standard deviations of the posterior distributions for 

the estimated parameters.   

 

The scatter plot of item difficulties for the two classes, as displayed in Figure 9, 

gives a closer look at the items that distinguished between students in Class 1 and 

those in Class 2.  Specifically, items that are far away from the diagonal of the 
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scatter plot provide some useful information about the characteristics of students in 

the two classes.  From the scatter plot, it can be seen that Items 5, 8 and 15 were 

particularly hard for students in Class 1.  These three items collectively covered the 

three cognitive skills in the domains of physical science and earth science.  They 

were all open-ended items that required written explanations.  This finding confirms 

the conclusion that students in Class 1 were less successful in learning science than 

those in Class 2 with respect to both cognitive skills and content knowledge.  

Besides, a plausible explanation for the poor performance of Class 1 in these items is 

that they were particularly weak in organizing and explaining their thoughts on 

scientific procedures, facts, or phenomena.  

 

Figure 9: Scatter plot of item difficulties of the two-class mixture Rasch model for 

Block S20 (excluding Item 10) 
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The three-class mixture Rasch model solution 

The same procedure was followed in estimating the three-class mixture Rasch 
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model except that in the three-class case ten priors were selected for each class and 

7000 iterations were discarded as burn-ins.  Figure 10 shows the trace plots for a 

subset of model parameters being monitored in the 3-class model.  Figure 11 shows 

the history plots for the same set of parameters.  It appears that all the parameters 

have converged to their stationary distributions by iteration 7000.  
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Figure 10: Trace plots for a subset of parameters being monitored in the three-class 

mixture Rasch model for Block S20 (excluding Item 10) 
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Figure 11: History plots for a subset of parameters being monitored in the three-class 

mixture Rasch model for Block S20 (excluding Item 10) 

 

b[3,2] chains 1:5

iteration

1 5000 10000

   -2.0

   -1.0

    0.0

    1.0

    2.0

 

b[4,2] chains 1:5

iteration

1 5000 10000

    0.0

    1.0

    2.0

    3.0

    4.0

 

b[10,1] chains 1:5

iteration

1 5000 10000

   -1.0

    0.0

    1.0

    2.0

    3.0

 

tautheta[3] chains 1:5

iteration

1 5000 10000

    0.0

    2.5

    5.0

    7.5

   10.0

   12.5

 

Table 11 summarizes the item difficulties obtained from the 3-class solution.  A 

general pattern that can be inferred is that for every item except Items 4, 9, and 12, the 

estimated difficulty for Class 2 was greater than that for Class 3, which was, in turn, 

greater than that for Class 1.  This indicates that Class 1 was made up of the most 

able students, Class 2 of the least able students, and Class 3 of students who stood in 
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between.  Again, this finding suggests the adequacy of the unidimensional model, 

and the items that did not accord with the general pattern were the items that had the 

lowest loadings in the one-factor solution of the exploratory item factor analysis.  

The estimated proportion was .42 for Class 1, .13 for Class 2, and .45 for Class 3.  

 

Table 11: Item difficulties of the 3-class mixture Rasch model for Block S20 

(excluding Item 10) 

 

Item  

 

Content Process Class 1 Class 2 Class 3 

S20_1 Life Conceptual 

understanding 

-1.321 

(.1533) 

.6429 

(.3583) 

-1.26 

(.1709) 

S20_2 Earth  Conceptual 

understanding 

-1.426 

(.2467) 

.9829 

(.2835) 

.4189 

(.1955) 

S20_3 Physics Conceptual 

understanding 

-1.366 

(.237) 

.6769 

(.2603) 

.06474 

(.1499) 

S20_4 Earth  Conceptual 

understanding 

2.354 

(.1975) 

1.517 

(.2796) 

2.965 

(.3416) 

S20_5 Earth Conceptual 

understanding 

.04985 

(.266) 

4.208 

(.7819) 

3.739 

(.8724) 

S20_6 Physics Practical reasoning .8849 

(.1435) 

4.176 

(.8689) 

1.519 

(.1949) 

S20_7 Physics Practical reasoning .046 

(.1487) 

3.896 

(.8758) 

1.141 

(.1944) 

S20_8 Earth Practical reasoning -2.011 

(.1928) 

1.67 

(.6516) 

-1.031 

(.2007) 

S20_9 Earth Practical reasoning .398 

(.1453) 

.7764 

(.264) 

1.222 

(.166) 

S20_11 Physics Conceptual 

understanding 

.4688 

(.1433) 

1.623 

(.307) 

1.001 

(.1454) 

S20_12 Earth Conceptual 

understanding 

-.3721 

(.1417) 

.2174 

(.2489) 

-.5226 

(.1538) 

S20_13 Life Practical reasoning -1.358 

(.17) 

1.291 

(.4034) 

-.7938 

(.1617) 

S20_14 Life Practical reasoning -.6725 

(.1443) 

2.163 

(.6384) 

-.2347 

(.1555) 

S20_15 Physics Scientific investigation -.2435 

(.1917) 

4.058 

(.8854) 

1.768 

(.3635) 

S20_16 Physics Practical reasoning .03917 

(.141) 

3.208 

(.8635) 

.5076 

(.1678) 
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Note: Numbers in parentheses are standard deviations of the posterior distributions for 

the estimated parameters.  

 

A comparison of item difficulties between each two of the three classes is helpful 

in distinguishing between students who belong to different classes.  As displayed in 

Figure 12, in general, Class 1 was associated with smaller item difficulties than those 

for Class 2, except for Item 4 which, as discussed above, assessed a latent trait other 

than the science proficiency that was measured by the rest of the items.  Items 5, 7, 8, 

and 15 were especially hard for students in Class 2.  This is consistent with the 

two-class mixture solution.   

 

Figure 12: Scatter plot of item difficulties between Class 1 and Class 2 of the 

three-class mixture Rasch model for Block S20 (excluding Item 10) 
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Figure 13 displays the differences in item difficulties between Class 1 and Class 3.  

In general, item difficulties for Class 1 were less than those for Class 3, except for 

Item 11.  The differences in item difficulty were the largest for Items 2, 5, and 14, 
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which implies that students in Class 3 had the most difficulty in responding to these 

items.  Items 2 and 5 were associated with earth science and Item 14 with life 

science.  A tentative explanation is that student in Class 3 did not know much in 

earth science or life science.        

 

Figure 13: Scatter plot of item difficulties between Class 1 and class 3 of the 

three-class mixture Rasch model for Block S20 (excluding Item 10) 
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The items that distinguished between Class 2 and Class 3 would be very helpful in 

defining the characteristics of the two groups.  Figure 14 displays the items that 

behaved differently between the two classes.  Students in Class 3 were, generally 

speaking, more capable than students in Class 2.  However, they did worse in Items 

4 and 9, which both assessed knowledge and skills in earth science.  This is 

consistent with the previous finding that students in Class 3 had particular difficulty in 

solving problems in earth science.  On the other hand, Items 6, 7, 15, and 16, which 

were designed to cover physical science, were especially hard for students in Class 2.  



 106 

This pattern suggests that Class 2 was made up of students who knew little in physical 

science while Class 3 was made up of students who found earth science difficult to 

comprehend.   

 

Figure 14: Scatter plot of item difficulties between Class 2 and class 3 of the 

three-class mixture Rasch model for Block S20 (excluding Item 10) 
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A caveat for the interpretations of the latent classes is that they were based on 

only a few items and the common features of these items were identified in light of 

the given classification schemes, such as item format, content and cognitive 

classifications.  It is possible that these items shared some other characteristics 

which made them behave differently across latent classes.  However, those 

characteristics were unknown to us and we could not classify the items in other ways.  

In addition, the different performances on the identified items between the latent 

classes might result from some idiosyncratic features of the items rather than 

meaningful distinctions between the latent classes.  Replication studies were 
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summarized in subsequent sections to cross-validate the results obtained thus far.  

� Results in terms of substance 

 Results of the mixture Rasch models are not as clear-cut as those of the 

exploratory item factor analytic models.  Interpreting latent classes on the basis of 

only a few items incurs the risk of overgeneralization.  Discrepancies in item 

difficulty between latent classes cannot be unequivocally claimed to reflect the true 

discrepancies between the latent classes with regard to the aspect of science 

proficiency being measured.  There may be some trivial factors associated with the 

items that make them behave differently across latent classes.  

 The three-class solution suggests differences among latent classes that seem to be 

systematic.  Students of different classes exhibit strengths and weaknesses in 

different content areas.  Variations among students in terms of content knowledge 

are what the assessment is designed to capture, through the application of a different 

model, though.   

The two-class and three-class mixture Rasch models give rise to patterns of item 

difficulties that are closely connected with the pattern of loadings in the one-factor 

item factor analytic model.  Items that have negligible loadings on the single factor 

are those that manifest the qualitative differences between the latent classes in the 

mixture model solutions.  How the latent classes differ from each other in terms of 

the assessed construct and background characteristics is discussed in Section 5.1.4.   

5.1.2 Comparison of model fit by information criteria 

Three information criterion indices, AIC, CAIC, and BIC, were computed using 
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the method discussed in Chapter 4, for the models studied in this dissertation.  The 

resulting fit statistics are summarized in Table 12.  Judged from “the smaller, the 

better” rule, the mixture Rasch models fit the response data the best, the item factor 

models the worst, and the multidimensional between-item models in the middle.  

Each of the three information criteria points to a different model as the best-fitting 

model: the three-class mixture model is most favored by AIC, the between-item 

multidimensional model by CAIC, and the two-class mixture model by BIC.  This 

result makes sense.  AIC applies the least penalty on model complexity and tends to 

pick the more complex model.  In contrast, BIC and CAIC apply more penalty on 

model complexity and tend to pick the simpler model.  Therefore, AIC picked 

among the several models the most complex model, i.e., the 3-class mixture model, 

and BIC and CAIC picked simpler models.  However, if the best-fitting model has to 

be selected among the models being studied, I would recommend the 2-class mixture 

model because it has the smallest value on BIC, which is considered the most reliable 

fit index for comparing mixture models both in terms of correctness and consistency, 

based on the simulation study by Li, Cohen, Kim, and Cho (2006).   
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Table 12: Comparison of fit statistics across and within types of models for Block S20 

(excluding Item 10) 

 

Models -2ln(L) p AIC CAIC BIC 

Multidimensional between-item model 

(dimensions defined by content areas) 

21154.84 21 21196.84 21496.37 21304.61 

Multidimensional between-item model 

(dimensions defined by cognitive factors) 

21123.14 21 21165.14 21464.67 21272.91 

1-factor item factor analytic model 

(unidimensional IRT model) 

21613.82 30 21673.82 22101.72 21827.77 

2-factor item factor analytic model 21537.94 44 21625.94 22253.53 21851.73 

2-class mixture Rasch model 20956.62 33 21022.62 21493.31 21191.97 

3-class mixture Rasch model 20849.14 50 20949.14 21662.31 21205.72 

 

Notes: 1. p denotes the number of parameters to be estimated in the model and the 

sample size N is 1251 for each model.  

2. Models in bold represent the best-fitting models by the different information 

criteria.    

 

Information criteria take into consideration both degree of fit and model 

complexity when evaluating models.  Based on the information criteria, the mixture 

Rasch models fit the data so much better than the other two types of models that even 

after they were penalized by the additional number of parameters, they still came out 

as the best fitting models.  In other words, their superiority in goodness of fit far 

exceeded the penalties for model complexity.  Compared with the other two types of 

models, the mixture Rasch models seemed to have done a better job in capturing the 

important features of the response patterns and produced more nuanced interpretations 

of the examinees’ proficiencies.   
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5.1.3 Comparison of narrative stories for selected examinees 

 As discussed earlier, the three types of models being studied in the dissertation 

are based on different conceptions about the NAEP science assessment and fit the test 

data differently.  More importantly, they tell different stories about the characteristics 

of the examinees.  In this section, substantive stories inferred from the model results 

were compared between models, with both similarities and differences emphasized.  

Specifically, a small number of response patterns were studied to explore how the 

same responses elicited different stories through the lenses of different measurement 

models.   

 Based on the three sets of analysis results presented above, three models were 

selected from the three types of measurement models, each representing a different 

conceptualization about the assessment.  Results of between-item multidimensional 

analysis indicated that the item block was multidimensional and the multiple 

dimensions were defined as the three cognitive skills: conceptual understanding, 

practical reasoning, and scientific investigation.  Results of exploratory factor 

analysis suggested that the examinees’ responses to the items in this block were 

governed by two factors, namely, the doing and knowing aspects of science learning.  

Mixture Rasch model analyses showed that the two- and three-class models exhibited 

essentially the same patterns, but the two-class model fit better than the three-class 

model.  Thus, the between-item multidimensional model, the 2-factor model, and the 

2-class mixture model were the models being compared in the comparison of 

narrative stories for the selected examinees.    
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 Three examinees were selected, each being representative of a particular type of 

response patterns.  Table 13 summarizes their responses, their latent class 

membership, their estimated θ  values in the between-item multidimensional model, 

and their factor scores in the two-factor model.  An examination of the three 

response patterns reveals the fact that the first examinee gave incorrect responses to 

almost all the items except for Item 4.  By contrast, the second examinee gave 

correct responses to all but only a few items.  The third examinee gave more correct 

responses than the first examinee, but the number of incorrect responses was 

non-negligible. 

 

Table 13: Results of model analyses for the selected examinees for Block S20 

(excluding Item 10) 

 

Between-item 

Multidimensional Model 

2-factor Model ID Response Pattern Class 

 

1θ  2θ  3θ  
1f  2f  

966 000100000000000 1 -1.715 -2.037 -4.565 -1.869 -0.485 

73 111011010011111 2 0.605 0.941 0.958 1.409 0.663 

608 11100000000100M 2 -0.905 -1.116 -2.854 -0.682 -0.011 

Note: M indicates a missing response.  

Results of mixture model analysis show that the first examinee was assigned to 

Class 1 and its posterior probability of belonging to Class 1 was about 97%.  The 

second examinee was assigned to Class 2 and its posterior probability of belonging to 

Class 2 was about 99.99%.  Obviously, each of these two examinees was 

representative of a latent class, and their response patterns supported the finding that 
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Class 2 was composed of examinees who were generally more capable in science than 

those in Class 1.  The third examinee had a response pattern that was not typical of 

either of the two classes, and was assigned to Class 2 with a posterior probability of 

50.02%, a little bit greater than the threshold value of 50%.  All the inferences about 

the third examinee were made on the basis of this class membership.  Furthermore, 

the responses of the three examinees to Item 4 supported the conclusion that Item 4 

carried all the evidence about the qualitative difference between the two classes.  

The first examinee performed better in Item 4 than the other two, although his (or her) 

performance in the rest of the items was inferior to that of the other two.   

Between-item multidimensional analysis produced estimated θ  values for each 

examinee along the three predefined dimensions.  Apparently, the first examinee had 

smaller θ  values than the second and third examinee.  Another pattern that is easily 

observable is that the first examinee had lower θ  values on the dimensions of 

practical reasoning and scientific investigation than on the dimension of conceptual 

understanding.  The opposite pattern was observed in the θ  values of the second 

examinee.  Based on these θ  values, a tentative conclusion can be drawn that the 

first examinee was especially weak in terms of reasoning and investigation skills, 

while the second examinee was more balanced in the development of the three kinds 

of cognitive skills.  The pattern of the estimated θ  values of the third examinee was 

similar with that of the first examinee, and a similar statement could be made about 

the third examinee.  

The factor scores obtained from the 2-factor model support the conclusion from 
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the between-item multidimensional analysis.  In the 2-factor model, Factor 1 was 

interpreted as representing what students can do in science and Factor 2 as 

representing what students know in science.  Obviously, the first examinee had lower 

scores on Factor 1 than on Factor 2, while the factor scores of the second examinee 

displayed the opposite pattern.  This finding indicates that the first examinee was 

even weaker in the doing aspect of science learning than in the knowing aspect, while 

the second examinee was good at both aspects and his (or her) proficiency in the 

doing aspect was even more advanced than in the knowing aspect of science learning.  

Again, the third examinee had similar factor scores with those of the first, and, 

therefore, similar conclusions could be drawn for the two examinees. 

5.1.4 Background characteristics of latent classes 

In this section, I extracted the demographic and background variables of the 

examinees and studied how the manifest examinee characteristics were associated 

with latent class membership.  The 2-class mixture model solution was the solution 

interpreted here because it was identified by BIC as fitting the data better than the 

3-class model.  The model was estimated in WinBUGS through the MCMC 

algorithm, which was briefly described in Chapter 4.  Basically, in the estimation, a 

class membership was sampled for each examinee at each iteration proportional to the 

probability of that examinee belonging to that class, which was conditional upon the 

item parameters, parameters for the mixing proportions, and abilities of all examinees.  

The frequency with which each examinee was sampled into each class defined the 

posterior probability of the examinee’s membership in that class, and each examinee 
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was assigned to whichever latent class that had the highest posterior probability.   

Based on the estimation method described above, of the 1251 examinees in the 

response data, 365 were classified to Class 1 and 886 to Class 2.  This is consistent 

with the estimated class proportions (.31 and .69) reported earlier.  As shown in 

Table 10, the item difficulties estimated for Class 1 are larger than those for Class 2, 

except for Item 4.  As discussed earlier, mixture modeling characterizes person 

heterogeneity in terms of qualitative differences and quantitative differences.  Item 4 

carries all the evidence for the qualitative difference between the two classes, while 

the quantitative differences between the two classes reside in the general pattern of the 

estimated item difficulties.   

An examination of the content of Item 4 provides an answer to the question about 

how the two classes differ qualitatively from each other.  Item 4 asks about the two 

most common elements in the Earth’s crust.  Clearly, this item emphasizes the recall 

of knowledge rather than the more advanced cognitive abilities.  However, the 

knowledge required by this item is unrealistically challenging for 8
th

 graders, 

according to the commentary by Li (2006).  Li claims that even some college 

students who majored in science and engineering in a prestigious university failed to 

give a correct answer to this question.  It seems that this particular item is actually 

assessing some peripheral or unscientific content for this sample of examinees.  

Therefore, the difference in performance on this item between the two latent classes 

should be attributed to the idiosyncratic features of the item and does not reflect any 

meaningful systematic difference between the two classes.     
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Quantitative differences between the two classes are evident if we compare the 

estimated item difficulties for the two classes.  As mentioned above, the item 

difficulties indicate that generally speaking, Class 2 was a higher-achieving group in 

science than Class 1.  Thirteen demographic and background variables were 

extracted for the sample and their associations with class membership were studied 

through significance tests.  Table 14 summarizes the variables being studied and the 

results of the significance tests.  Responses of the variables were dichotomized in a 

manner that fit the research questions of interest, and a z-test for proportions from two 

independent groups was performed for each variable (Please refer to Appendix B for 

the associations between the background variables and latent class classifications).  
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Table 14: Associations between background variables and latent class membership of 

the 2-class mixture Rasch model solution for Block S20 (excluding Item 10) 

 

Variables Results of significance tests 

Gender The proportion of males in Class 1 is not smaller than that in 

Class 2. 

IEP The proportion of IEP students in Class 1 is larger than that in 

Class 2. 

LEP The proportion of LEP students in Class 1 is larger than that in 

Class 2. 

Race The proportion of white students in Class 1 is smaller than that in 

Class 2. 

Mother’s education The proportion of students whose mothers have high school 

education or beyond in Class 1 is smaller than that in Class 2. 

Father’s education The proportion of students whose fathers have high school 

education or beyond in Class 1 is smaller than that in Class 2. 

Like science The proportion of students who like science in Class 1 is smaller 

than that in Class 2. 

Good at science The proportion of students who report themselves as good at 

science in Class 1 is smaller than that in Class 2. 

Science is useful The proportion of students who think science is useful in Class 1 is 

smaller than that in Class 2. 

Science is hard The proportion of students who think science is a hard subject in 

Class 1 is not larger than that in Class 2. 

Learning science is 

memorization 

The proportion of students who think learning science is 

memorization in Class 1 is not larger than that in Class 2. 

Studying science in 

school 

The proportion of students who study science every day in Class 1 

is smaller than that in Class 2. 

Time on homework The proportion of students who spend 1 hour or more on science 

homework in Class 1 is not smaller than that in Class 2. 
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Based on the results of the statistical tests, it seems that Class 2, as compared with 

Class 1, was made up of more white students and fewer students with either 

individualized educational plans (IEP) or limited English proficiency (LEP); their 

parents had more education; they were interested in science, considered themselves as 

good at science, had strong motivation to study science, and had more opportunities to 

study science in school.  On the other hand, Class 1 was not made up of more female 

students than Class 2.  Besides, Class 1 was not more likely to think that science is a 

hard subject or that the right way to learn science is memorization, and they did not 

spend less time on science homework than Class 2.  

5.2 Analysis results of block combination 1 (S7 and S4) 

Of the four publicly released item blocks for Grade 8, S7 and S4 appeared 

together in two booklets.  Similarly, Blocks S20 and S4 were bundled together in 

two booklets.  In this section and the following section, analyses were performed on 

these two combinations of item blocks, which elicited responses from more 

examinees than other combinations of any two of the four released blocks, which 

appeared in only one booklet.  Similar to the analyses of a single block, the three 

types of models were fit to the response data sequentially and information criteria 

were computed for each model.  Results of analysis are organized under the heading 

of each model and discussed in terms of estimates of parameters and statistical fit, and 

substantive meaning.   

S7 was a theme block and consisted of 2 multiple-choice and 10 open-ended 

items.  These items covered content from earth science exclusively, and required 
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proficiencies of conceptual understanding, practical reasoning, and scientific 

investigation.  S4 was made up of hands-on tasks, which required examinees to 

conduct an investigation using the provided equipment and answer questions related 

to the investigation.  All the 9 items included in the block were open-ended 

questions.  They covered content from physical and earth sciences and required 

skills from all the three cognitive domains.  These two blocks appeared together in 

two booklets and elicited responses from a total of 419 examinees.   

A preliminary exploratory factor analysis was performed on the data matrix, and 

the factor solutions suggested no odd-behaving items.  Subsequently, all the 21 items 

and their responses were analyzed by the three types of models, following the 

procedures described in Chapter 4.   

5.2.1 Results of model analyses 

5.2.1.1. The between-item multidimensional model 

 In this study, the between-item multidimensional model of the MRCMLM family 

was used in a confirmatory mode to examine two hypothesized test structures.  The 

first hypothesis states that the test is multidimensional and the latent dimensions can 

be defined in terms of content areas.  In contrast, the second hypothesis says that the 

test is multidimensional and the dimensions can be defined in terms of cognitive 

domains.  Under each hypothesis, each item was categorized as an indicator of one 

and only one latent dimension, and the parameter(s) of the item was estimated on that 

dimension.  The association between the items and the hypothesized dimensions was 

provided in the 1996 NAEP science public release report.  
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� Results in terms of parameters and fit 

As specified in the public release report, the two item blocks collectively covered 

physical science and earth science.  Therefore, under the first hypothesis, the test is 

two-dimensional, and the latent dimensions correspond to physical and earth sciences.  

Table 15 summarizes the estimates of item difficulties for the 21 items, along with 

their standard errors and fit indices.  The difficulty of the last item of each dimension 

was constrained, and standard errors or fit indices were not available.  An 

examination of the diagnostic fit indices for the items suggests that Items 5, 7, 8, and 

9 of Block S7 and Items 1 and 5 of Block S4 display modest misfit, and Items 2 and 8 

of Block S4 exhibit serious misfit, according to the criteria discussed in Chapter 4. 
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Table 15: Item difficulty estimates and fit statistics from ConQuest for Blocks S7 and 

S4 (The dimensions are defined in terms of content areas) 

 

Unweighted Fit Weighted Fit Item Dimension Estimate Standard 

Error MNSQ T MNSQ T 

S7_1 Earth -1.211 0.083 0.96 -0.5 0.98 -0.3 

S7_2 Earth  -0.049 0.081 0.93 -1.0 1.01 0.1 

S7_3 Earth -0.291 0.081 0.96 -0.6 1.01 0.2 

S7_4 Earth  0.978 0.085 0.93 -1.0 1.00 0.1 

S7_5 Earth 4.506 0.111 0.79 -3.3 0.87 -2.2 

S7_6 Earth -1.225 0.083 1.14 2.0 1.09 1.5 

S7_7 Earth -0.924 0.082 0.79 -3.3 0.83 -3.0 

S7_8 Earth -1.802 0.086 0.82 -2.8 0.84 -2.8 

S7_9 Earth -0.036 0.081 0.74 -4.1 0.84 -2.7 

S7_10 Earth 1.167 0.086 1.00 0.0 1.10 1.5 

S7_11 Earth 0.770 0.083 0.80 -3.1 0.90 -1.5 

S7_12 Earth 1.628 0.089 0.85 -2.3 0.97 -0.4 

S4_1 Earth -0.675 0.081 1.33 4.3 1.21 3.3 

S4_2 Physics 0.275 0.082 1.29 3.8 1.29 4.2 

S4_3 Physics -0.629 0.080 1.10 1.5 1.07 1.2 

S4_4 Physics 0.354*      

S4_5 Earth -2.773 0.094 0.87 -1.9 0.88 -2.0 

S4_6 Earth 1.151 0.086 0.88 -1.9 0.94 -0.9 

S4_7 Earth -1.870 0.087 0.91 -1.4 0.89 -1.8 

S4_8 Earth 0.249 0.082 0.61 -6.6 0.68 -5.7 

S4_9 Earth 0.408*      

 

Notes: 1. * indicates that the item difficulty was constrained.   

2. A weighted T statistic with an absolute value larger than 2 suggests moderate 

misfit.  Items in bold are moderately misfit items.  A weighted T statistic 

with an absolute value larger than 4 suggests serious misfit.  Items in bold 

italic are seriously misfit items. 
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The deviance for the two-dimensional model was equal to 9186.015, and the 

number of estimated parameters was equal to 24.  A unidimensional model was fit to 

the same response data and its deviance was equal to 9192.948 with 22 estimated 

parameters.  The deviance difference between the two models was equal to 6.933 

with 2 degrees of freedom.  A significance test of the difference statistic suggests 

that the two-dimensional model fits significantly better than the one-dimensional 

model because the p-value )031.( =p of the statistic is smaller than the nominal level 

of .05.   

Under the second hypothesis, the test is three-dimensional, and the latent 

dimensions correspond to conceptual understanding, practical reasoning, and 

scientific investigation.  Table 16 summarizes the estimates of item difficulties along 

the three dimensions, their standard errors and fit indices.  The fit indices for the 

items suggest that Items 1, 7, 8, and 9 of Block S7 and Item 4 of Block S4 are 

moderately misfit items and Item 3 of Block S4 is a seriously misfit item. 
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Table 16: Item difficulty estimates and fit statistics from ConQuest for Blocks S7 and 

S4 (The dimensions are defined in terms of science process skills) 

 

Unweighted Fit Weighted Fit Item Dimension Estimate Standard  

Error MNSQ T MNSQ T 

S7_1 Conceptual understanding -1.387 0.082 0.86 -2.1 0.86 -2.4 

S7_2 Conceptual understanding -0.229 0.080 0.89 -1.7 0.99 -0.1 

S7_3 Conceptual understanding -0.470 0.080 0.88 -1.8 0.93 -1.2 

S7_4 Practical reasoning -0.210 0.089 1.06 0.8 1.07 1.1 

S7_5 Practical reasoning 3.221 0.123 0.95 -0.8 0.97 -0.5 

S7_6 Scientific investigation -0.657 0.083 1.14 1.9 1.10 1.6 

S7_7 Conceptual understanding -1.100 0.081 0.79 -3.2 0.85 -2.6 

S7_8 Scientific investigation -1.240 0.087 0.85 -2.2 0.84 -2.6 

S7_9 Scientific investigation 0.541 0.081 0.80 -3.1 0.85 -2.5 

S7_10 Conceptual understanding 0.981 0.085 0.86 -2.1 0.93 -1.1 

S7_11 Conceptual understanding 0.585 0.083 0.81 -2.8 0.90 -1.6 

S7_12 Conceptual understanding 1.440 0.088 0.81 -2.9 0.90 -1.5 

S4_1 Conceptual understanding -0.852 0.081 1.09 1.3 1.07 1.1 

S4_2 Scientific investigation 1.153 0.083 0.83 -2.6 0.92 -1.2 

S4_3 Scientific investigation 0.195 0.081 0.73 -4.4 0.74 -4.5 

S4_4 Scientific investigation 1.238 0.083 1.29 3.8 1.25 3.5 

S4_5 Scientific investigation -2.219 0.094 0.90 -1.5 0.89 -1.8 

S4_6 Conceptual understanding 0.965 0.085 0.87 -2.0 0.92 -1.2 

S4_7 Practical reasoning -3.011*      

S4_8 Conceptual understanding 0.067*      

S4_9 Scientific investigation 0.989*      

 

Notes: 1. * indicates that the item difficulty was constrained.   

2. A weighted T statistic with an absolute value larger than 2 suggests moderate 

misfit.  Items in bold are moderately misfit items.  A weighted T statistic 

with an absolute value larger than 4 suggests serious misfit.  Items in bold 

italic are seriously misfit items. 
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The deviance for the three-dimensional model was equal to 9190.062 with 27 

estimated parameters.  The deviance difference between this model and the 

unidimensional model was equal to 2.886 with 5 degrees of freedom.  A significance 

test of the difference statistic suggests that the multidimensional model does not fit 

significantly better than the one-dimensional model because the p-value )718.( =p of 

the statistic is far greater than the nominal level of .05.   

� Results in terms of substance 

 A comparison of the goodness-of-fit of the three models suggests that 

between-item multidimensionality in terms of cognitive skills does not provide a 

better description of the structure of the two item blocks than unidimensionality.  In 

contrast, multidimensionality in terms of content areas makes some sense.  This 

finding contradicts with the one found in the between-item multidimensional model 

analyses of Block S20.  A possible reason for the occurrence of different findings is 

that items in Blocks S7 and S4, as compared with those in Block S20, require more of 

content knowledge than of cognitive proficiencies.  For these items, correct 

responses rely more on the subject matter knowledge than on the cognitive 

proficiencies, and lack of subject matter knowledge is a bigger hindrance than 

insufficiency in cognitive abilities.  As a result, examinees’ differences in terms of 

cognitive abilities can not adequately account for their differential performances in 

these items, and the cognitive abilities do not come out as significant dimensions.   

5.2.1.2 The exploratory item factor analytic model 

Similar to what happened in the block-level analysis, one-, two-, three-, and 
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four-factor models were fit sequentially to the response data and estimated through 

TESTFACT.  The model solutions were compared, and the best-fitting model was 

selected on the basis of the criteria discussed in Chapter 4.  

� Results in terms of parameters and fit 

The scree plot in Figure 15 shows the first ten eigenvalues of the tetrachoric 

correlation matrix for the 21 items.  Obviously, the first factor explains a large 

proportion of variance among the items while the remaining factors, as compared to 

the first factor, are insignificant.  

Figure 15: Scree plot from exploratory factor analysis for Blocks S7 and S4 
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Table 17 summarizes the root mean square residuals (RMSRs) for the four model 

solutions and the percentage of reduction in the RMSR as an additional factor is 

added to the current model.  Rules for using the RMSR index say that an RMSR less 

than .05 indicates an acceptable solution and that an additional factor can be added to 

the current model until the reduction in RMSR is less than 10%.  According to these 

rules, it is safe to say that none of the four models fits the data acceptably well, but the 
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three-factor model is most preferred.  

 

Table 17: Root mean square residuals (RMSRs) for the one-, two-, and three-factor 

models for Blocks S7 and S4 

 

Model RMSR Percentage of 

reduction 

1-factor model 0.092  

2-factor model 0.076 17% 

3-factor model 0.064 14% 

4-factor model 0.076 -19% 

 

Table 18 summarizes the chi-square statistics for the four models and Table 19 

shows the results of the chi-square difference tests.  The results suggest that the 

four-factor model fits significantly better than the three-factor model, the three-factor 

model fits significantly better than the two-factor model, and the two-factor model fits 

significantly better than the one-factor model.   

 

Table 18: Chi-square statistics for the one-, two-, three-, and four-factor models for 

Blocks S7 and S4 

 

# of factors Chi-square DF P-value 

1 3933.36 376 0.000 

2 3849.38 356 0.000 

3 3815.29 337 0.000 

4 3783.98 319 0.000 
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Table 19: Tests of chi-square difference statistics between factor models for Blocks S7 

and S4 

 

 Chi-square 

difference 

DF  

difference 

P-value 

2-factor vs. 1-factor 83.98 20 0.000 

3-factor vs. 2-factor 34.09 19 0.018 

4-factor vs. 3-factor 31.31 18 0.026 

 

Factor loadings are another criterion in judging the meaningfulness of a factor 

solution.  In the one-factor solution, almost all of the items loaded substantially on 

the factor.  This indicates the existence of a general factor that explains a 

considerable amount of variance of the items.   

In the two-factor model, the factor loadings exhibited a pattern close to a “simple 

structure”.  Table 20 summarizes the factor loadings of the two-factor solution.  

Clearly, factor 1 is strongly indicated by the first twelve items, i.e., items of Block S7, 

and factor 2 is strongly indicated by the last nine items, i.e., items of Block S4, except 

for only a few exceptions.  S7 is a theme-based block, and a close investigation of 

the items in S7 reveals that they are all questions about the Solar System.  S4 is a 

block of hands-on tasks, and all the items in S4 are related to “salt solutions”.  

Therefore, the two factors are ability and proficiency with regard to the two sets of 

items.  The first factor can be interpreted as representing what students know about 

the Solar System and how they use the knowledge to understand natural phenomena, 

and the second factor can be interpreted as indicating students’ skills in carrying out 

investigations with salt solutions and their abilities in explaining the outcomes.   
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Table 20: Factor loadings of the two-factor model for Blocks S7 and S4 

Item No. Content Process Factor 1 Factor 2 

S7_1 Earth Conceptual understanding .738 -.125 

S7_2 Earth  Conceptual understanding .576 .024 

S7_3 Earth Conceptual understanding .673 -.028 

S7_4 Earth  Practical reasoning .516 .069 

S7_5 Earth Practical reasoning .389 .309 

S7_6 Earth Scientific investigation .385 .073 

S7_7 Earth Conceptual understanding .802 -.043 

S7_8 Earth Scientific investigation .627 .177 

S7_9 Earth Scientific investigation .426 .396 

S7_10 Earth Conceptual understanding .458 .071 

S7_11 Earth Conceptual understanding .611 .092 

S7_12 Earth Conceptual understanding .824 -.165 

S4_1 Earth Conceptual understanding .057 .249 

S4_2 Physics Scientific investigation .022 .676 

S4_3 Physics Scientific investigation .144 .682 

S4_4 Physics Scientific investigation .104 .120 

S4_5 Earth Scientific investigation -.314 .937 

S4_6 Earth Conceptual understanding .188 .425 

S4_7 Earth Practical reasoning -.046 .623 

S4_8 Earth Conceptual understanding .286 .632 

S4_9 Earth Scientific investigation .231 .612 

Note: Numbers in bold are substantial loadings (>.30) on the two factors. 

The pattern of factor loadings in the three-factor model or the four-factor model 

did not make more sense than that in the two-factor model.  Therefore, the 

two-factor model is retained as the model that best explains the factor structure of the 

data.  
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� Results in terms of substance 

 The clear dichotomization in the factor structure of the two-factor solution reveals 

the specificity of the kind of proficiency measured by each of the two blocks.  

Apparently, the two blocks address very different topics.  S7 is a theme-based block 

and requires much knowledge about the Solar System.  In contrast, S4 is a hands-on 

task block and all the items revolve around the topic of salt solutions.  Besides, as 

stated earlier, each block emphasizes more on content knowledge, which is 

subject-specific, than on cognitive abilities, which cross the boundaries of content 

areas.  Consequently, the commonality that underlies the two blocks is insignificant 

as compared with their distinction.   

5.2.1.3 The mixture Rasch model 

Two- and three-class mixture Rasch models were fit sequentially to the response 

data for Blocks S7 and S4 in WinBUGS.  In each model, five chains with 

over-dispersed starting values of class proportions were run.  Similar to what 

happened in the analysis of Block S20, the problem of label switching was dealt with 

by imposing constraints on class membership for a few examinees.  Specifically, a 

small number of examinees were pre-assigned to each latent class in each model.  

For each model, a total of 10,000 iterations were simulated for each of the five chains.  

The first 5000 iterations were discarded as burn-ins, and the remaining 5000 iterations 

were sampled for each chain.  Thus, posterior estimates of the model parameters 

were calculated from a total of 25,000 iterations.   
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� Results in terms of parameters and fit 

The two-class mixture Rasch model solution 

 In estimating the two-class mixture model, ten examinees were assigned to each 

latent class with certainty to solve the problem of label switching.  Figure 16 shows 

the history plots for a subset of model parameters being monitored.  Clearly, all the 

five chains converged quickly to the posterior distribution in each plot. 
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Figure 16: History plots for a subset of parameters being monitored in the two-class 

mixture Rasch model for Blocks S7 and S4 
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Table 21 summarizes the estimated difficulties of the two-class mixture solution. 

A general pattern observed is that the item difficulties estimated for Class 1 were 

greater than those for Class 2, except for Item 4 of Block S4.  This means that Class 

2 was made up of students who were generally more capable than students in Class 1, 

given their performance on the two blocks of items.  This finding is essentially the 

same as the one found in the mixture model analysis of Block S20.  In addition to 

item difficulties, posterior estimates of examinees’ class membership were obtained.  

Since each examinee was tested on more items, class membership was estimated with 

greater confidence.   
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Table 21: Item difficulties of the 2-class mixture Rasch model for Blocks S7 and S4 

Item  Content Process Class 1 

 

Class 2 

S7_1 Earth Conceptual understanding .3486 

(.2249) 

-1.82 

(.2342) 

S7_2 Earth  Conceptual understanding 1.276 

(.2476) 

-.4551 

(.1735) 

S7_3 Earth Conceptual understanding 1.267 

(.2883) 

-.8185 

(.1769) 

S7_4 Earth  Practical reasoning 2.403 

(.3679) 

.5043 

(.1714) 

S7_5 Earth Practical reasoning 5.18 

(.8868) 

3.838 

(.4122) 

S7_6 Earth Scientific investigation -.2677 

(.2076) 

-1.238 

(.1843) 

S7_7 Earth Conceptual understanding 1.011 

(.2928) 

-1.862 

(.2591) 

S7_8 Earth Scientific investigation -.08091 

(.221) 

-2.856 

(.4033) 

S7_9 Earth Scientific investigation 1.953 

(.3372) 

-.7543 

(205) 

S7_10 Earth Conceptual understanding 2.173 

(.3508) 

.8051 

(.1714) 

S7_11 Earth Conceptual understanding 2.793 

(.5184) 

.1256 

(.1794) 

S7_12 Earth Conceptual understanding 3.99 

(.7888) 

.937 

(.1888) 

S4_1 Earth Conceptual understanding -.3023 

(.2219) 

-.418 

(.1677) 

S4_2 Physics Scientific investigation 2.198 

(.3344) 

.01392 

(.1814) 

S4_3 Physics Scientific investigation 1.431 

(.2663) 

-1.131 

(.2339) 

S4_4 Physics Scientific investigation .7312 

(.2147) 

.8134 

(.1742) 

S4_5 Earth Scientific investigation -1.708 

(.259) 

-3.16 

(.3544) 

S4_6 Earth Conceptual understanding 2.108 

(.3133) 

.7578 

(.1764) 

S4_7 Earth Practical reasoning -1.098 

(.2388) 

-2.046 

(.2456) 

S4_8 Earth Conceptual understanding 2.585 

(.5165) 

-.6873 

(.2112) 
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S4_9 Earth Scientific investigation 2.183 

(.4276) 

-.5978 

(.2018) 

 

Note: Numbers in parentheses are standard deviations of the posterior distributions for 

the estimated parameters. 

 

The three-class mixture Rasch model solution 

 Similarly, the problem of label switching was fixed by preassigning examinees to 

latent classes.  In estimating the three-class mixture model, ten examinees were 

preassigned to Class 1, ten to Class 3, and five to Class 2.  This was so because only 

five examinees could be classified to Class 2 with high degrees of certainty based on 

the results of the preliminary run.  Figure 17 shows the history plots for a small 

subset of model parameters being monitored.  In each plot, all the five chains 

converged to the posterior distribution after the completion of a small number of 

iterations.  
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Figure 17: History plots for a subset of parameters being monitored in the three-class 

mixture Rasch model for Blocks S7 and S4 
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    4.0

    6.0
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Table 22 summarizes the estimated item difficulties of the three-class mixture 

solution.  For all the items in Block S7 and a couple of items in Block S4, Class 1 

had the highest item difficulties among all the three classes.  Class 2 had the highest 

item difficulties on most of the items in Block S4.  This finding bears some 

resemblance to the one from the exploratory factor analysis, in which the items in S7 

and items in S4 represent two different factors.  
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Table 22: Item difficulties of the 3-class mixture Rasch model for Blocks S7 and S4 

Item  

 

Conten

t 

Process Class 1 Class 2 Class 3 

S7_1 Earth Conceptual understanding .3853 

(.2321) 

-2.687 

(.9715) 

-1.769 

(.2914) 

S7_2 Earth  Conceptual understanding 1.285 

(.247) 

-.7737 

(.5178) 

-.3953 

(.2229) 

S7_3 Earth Conceptual understanding 1.295 

(.2876) 

-1.258 

(.5041) 

-.7311 

(.2279) 

S7_4 Earth  Practical reasoning 2.398 

(.3484) 

.5139 

(.3835) 

.4552 

(.2272) 

S7_5 Earth Practical reasoning 5.028 

(.85) 

4.129 

(.9381) 

3.714 

(.5392) 

S7_6 Earth Scientific investigation -.3096 

(.2104) 

-.9012 

(.4108) 

-1.416 

(.2682) 

S7_7 Earth Conceptual understanding 1.036 

(.2994) 

-2.249 

(.7299) 

-1.934 

(.3187) 

S7_8 Earth Scientific investigation -.1897 

(.2241) 

-1.995 

(.6024) 

-3.494 

(.6243) 

S7_9 Earth Scientific investigation 1.753 

(.3217) 

.4039 

(.3953) 

-1.406 

(.3413) 

S7_10 Earth Conceptual understanding 2.083 

(.3422) 

.8941 

(.4068) 

.7904 

(.2279) 

S7_11 Earth Conceptual understanding 2.718 

(.4488) 

.1528 

(.4381) 

.05573 

(.229) 

S7_12 Earth Conceptual understanding 4.05 

(.8218) 

.7667 

(.4502) 

.973 

(.2534) 

S4_1 Earth Conceptual understanding -.3551 

(.2183) 

.2294 

(.4241) 

-.6792 

(.2302) 

S4_2 Physics Scientific investigation 1.991 

(.311) 

2.111 

(.7833) 

-.7644 

(.3163) 

S4_3 Physics Scientific investigation 1.308 

(.2579) 

.205 

(.4423) 

-2.16 

(.6005) 

S4_4 Physics Scientific investigation .7553 

(.2131) 

.501 

(.4546) 

.9643 

(.2576) 

S4_5 Earth Scientific investigation -1.858 

(.2671) 

-1.778 

(.469) 

-4.513 

(.8818) 

S4_6 Earth Conceptual understanding 2.035 

(.3103) 

1.698 

(.5669) 

.4242 

(.2324) 

S4_7 Earth Practical reasoning -1.2 

(.2409) 

-.8961 

(.4617) 

-2.836 

(.4752) 

S4_8 Earth Conceptual understanding 2.273 

(.4308) 

.5105 

(.4639) 

-1.319 

(.333) 
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S4_9 Earth Scientific investigation 2.07 

(.3935) 

.4861 

(.5308) 

-1.167 

(.3169) 

 

Note: Numbers in parentheses are standard deviations of the posterior distributions for 

the estimated parameters. 

 

� Results in terms of substance 

Results of mixture Rasch models suggest that all the items, except for only a few, 

in the two item blocks were consistently harder for a class of examinees and easier for 

the other classes.  This implies that a unidimensional model may be adequate in 

describing examinees’ performances in the assessment.  The exceptional items carry 

the evidence about the qualitative differences between the classes of examinees.  The 

quantitative differences between the latent classes, on the other hand, are reflected in 

the relative magnitude of the estimated item difficulties.   

Again, the items that were harder for the “higher-achieving” class but easier for 

the “lower-achieving” class were the items that had insignificant loadings in the 

one-factor model solution.  This implies that these items were only remotely related 

to the factor, while all the other items were strong indicators of that factor.  A 

plausible explanation is that the majority of items were assessing the science 

proficiency that was designed to be assessed, but a handful of items were poorly 

written that they were actually assessing a peripheral or nonscientific construct.   

5.2.2 Comparison of model fit by information criteria 

Table 23 summarizes the fit statistics for the models applied in the above analyses.    

Generally speaking, the mixture Rasch models fit the response data the best, the item 

factor models the worst, and the multidimensional between-item models in the middle.  
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This is consistent with the results shown in Table 12.  Each of the three information 

criteria points to a different model as the best-fitting model: the three-class mixture 

model is most favored by AIC, the between-item multidimensional model by CAIC, 

and the two-class mixture model by BIC.  This, again, agrees with the finding in 

Table 12.  

 

Table 23: Comparison of fit statistics across and within types of models for Blocks S7 

and S4 

 

Models -2ln(L) p AIC CAIC BIC 

Multidimensional between-item model 

(dimensions defined by content areas) 

8972.764 24 9020.764 9310.582 9117.673 

Multidimensional between-item model 

(dimensions defined by cognitive factors) 

8972.552 27 9026.552 9352.597 9135.575 

1-factor item factor analytic model 

(unidimensional IRT model) 

9092.656 42 9176.656 9683.837 9346.247 

2-factor item factor analytic model 9137.572 62 9261.572 10010.268 9511.920 

2-class mixture Rasch model 8793.726 45 8883.726 9427.134 9065.430 

3-class mixture Rasch model 8724.194 68 8860.194 9681.344 9134.769 

 

Notes: 1. p denotes the number of parameters to be estimated in the model and the 

sample size N is 419 for each model.  

2. Models in bold represent the best-fitting models by the different information 

criteria.   

  

5.3 Analysis results of block combination 2 (S20 and S4) 

As mentioned before, Blocks S20 and S4 were bundled together in two booklets 

and elicited more responses than other combinations of item blocks that only appeared 

once together.  In this section, analyses were performed on this combination of item 

blocks.  The same procedure was followed in the analyses: the three types of models 
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were fit to the response data sequentially and information criteria were computed for 

each model.   

S20 was a regular paper-and-pencil block and consisted of 8 multiple-choice and 

8 constructed-response items.  These items covered content from physical science, 

earth science, and life science, and required proficiencies of conceptual understanding, 

practical reasoning, and scientific investigation.  S4 was a hands-on task block.  All 

the 9 items included in the block were open-ended questions.  Collectively, they 

covered content from physical and earth sciences and required skills from all the three 

cognitive domains.  These two blocks elicited responses from a total of 420 

examinees.  It should be noted that the examinees being studied in this section are a 

subsample of the examinees studied in Section 5.1.   

A preliminary exploratory factor analysis was performed on the response data, 

and the factor model solutions suggested that Item 10 from block S20 again behaved 

oddly.  It was dropped in the analyses thereafter.  In total, there were 24 items and 

420 examinees in the response data analyzed in this section.   

5.3.1 Results of model analyses 

5.3.1.1. The between-item multidimensional model 

 Again, the between-item multidimensional model of the MRCMLM family was 

used to test two hypotheses.  The first hypothesis states that the test is 

multidimensional and the latent dimensions are defined in terms of content areas.  

The second hypothesis says that the test is multidimensional and the dimensions are 

defined in terms of cognitive domains.  Under each hypothesis, each item was 
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categorized as an indicator of one and only one latent dimension, and the parameter(s) 

of the item was estimated on that dimension.  Information about which dimension 

each item was written to assess was provided in the 1996 NAEP science public 

release report.  

� Results in terms of parameters and fit 

Under the first hypothesis, the test is three-dimensional and the three dimensions 

correspond to the three fields of science.  Table 24 summarizes the estimates of item 

difficulties for the 24 items, along with their standard errors and diagnostic fit indices.  

Again, the difficulty of the last item of each dimension was constrained, and standard 

errors or fit indices were not available.  The fit indices for the items suggest that 

Items 3, 7, 8 and 15 of Block S20 and Items 2 of Block S4 display modest misfit, and 

Items 5 of Block S20 and Item 8 of Block S4 exhibit serious misfit. 
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Table 24: Item difficulty estimates and fit statistics from ConQuest for Blocks S20 

(excluding Item 10) and S4 (The dimensions are defined in terms of content areas) 

 

Unweighted 

Fit 

Weighted Fit Item Content Estimate Standard  

Error 

MNSQ T MNSQ T 

S20_1 Life -0.449 0.080 1.02 0.2 0.99 -0.2 

S20_2 Earth  -0.520 0.081 0.88 -1.7 0.89 -1.9 

S20_3 Physics -1.226 0.081 1.11 1.6 1.12 2.1 

S20_4 Earth  2.555 0.101 1.07 1.0 0.93 -0.8 

S20_5 Earth 1.226 0.088 0.66 -5.6 0.72 -4.5 

S20_6 Physics 0.673 0.086 1.09 1.2 1.06 0.9 

S20_7 Physics 0.227 0.083 1.16 2.3 1.17 2.5 

S20_8 Earth -1.372 0.085 0.86 -2.1 0.87 -2.3 

S20_9 Earth 0.538 0.083 1.16 2.2 1.03 0.5 

S20_11 Physics 0.174 0.082 1.19 2.6 1.08 1.2 

S20_12 Earth -0.640 0.081 1.09 1.2 1.06 1.0 

S20_13 Life -0.130 0.079 1.01 0.1 1.02 0.3 

S20_14 Life 0.579*      

S20_15 Physics 0.507 0.084 1.13 1.8 1.17 2.5 

S20_16 Physics 0.214 0.083 1.11 1.6 1.09 1.4 

S4_1 Earth -0.377 0.081 0.91 -1.4 0.90 -1.6 

S4_2 Physics -0.159 0.081 1.17 2.3 1.17 2.6 

S4_3 Physics -0.747 0.080 0.99 -0.2 1.01 0.2 

S4_4 Physics 0.336*      

S4_5 Earth -2.552 0.095 0.88 -1.9 0.88 -1.8 

S4_6 Earth 1.178 0.087 0.94 -0.9 0.98 -0.3 

S4_7 Earth -1.575 0.086 0.89 -1.6 0.89 -1.8 

S4_8 Earth 0.590 0.083 0.51 -8.6 0.60 -7.2 

S4_9 Earth 0.949*      
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Notes: 1. * indicates that the item difficulty was constrained.   

2. A weighted T statistic with an absolute value larger than 2 suggests moderate 

misfit.  Items in bold are moderately misfit items.  A weighted T statistic 

with an absolute value larger than 4 suggests serious misfit.  Items in bold 

italic are seriously misfit items. 

 

 The deviance for the three-dimensional model was equal to 11134.302, and the 

number of estimated parameters was equal to 30.  A unidimensional model was fit to 

the same response data and its deviance was equal to 11139.051 with 25 estimated 

parameters.  The deviance difference between the two models was equal to 4.749 

with 5 degrees of freedom.  A significance test of the difference statistic suggests 

that the three-dimensional model does not fit significantly better than the 

one-dimensional model because the p-value )447.( =p of the statistic is greater than 

the nominal level of .05.   

Under the second hypothesis, the test is three-dimensional, and the latent 

dimensions correspond to the three cognitive abilities.  Table 25 summarizes the 

estimates of item difficulties along the three dimensions, their standard errors and fit 

indices.  The fit indices for the items suggest that Items 2, 5, and 15 of Block S20 

and Item 4 of Block S4 are moderately misfit items and Item 3 of Block S4 is a 

seriously misfit item. 
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Table 25: Item difficulty estimates and fit statistics from ConQuest for Blocks S20 

(excluding Item 10) and S4 (The dimensions are defined in terms of cognitive 

domains) 

 

Unweighted Fit Weighted Fit Item Content Estimate Standard  

Error MNSQ T MNSQ T 

S20_1 Conceptual understanding -1.523 0.081 0.94 -0.9 0.94 -1.0 

S20_2 Conceptual understanding -0.752 0.078 0.84 -2.4 0.86 -2.6 

S20_3 Conceptual understanding -0.986 0.078 0.94 -0.9 0.94 -1.1 

S20_4 Conceptual understanding 2.228 0.096 0.94 -0.9 0.93 -1.0 

S20_5 Conceptual understanding 0.935 0.084 0.72 -4.4 0.81 -3.0 

S20_6 Practical reasoning 1.281 0.087 1.01 0.2 1.00 -0.0 

S20_7 Practical reasoning 0.838 0.084 1.01 0.2 1.00 0.0 

S20_8 Practical reasoning -1.217 0.085 1.06 0.9 1.12 1.8 

S20_9 Practical reasoning 0.680 0.083 1.04 0.6 1.03 0.5 

S20_11 Conceptual understanding 0.371 0.080 0.95 -0.7 0.99 -0.2 

S20_12 Conceptual understanding -0.868 0.078 1.08 1.1 1.09 1.5 

S20_13 Practical reasoning -0.845 0.083 1.02 0.4 1.07 1.1 

S20_14 Practical reasoning -0.143 0.081 1.04 0.5 1.04 0.7 

S20_15 Scientific investigation 1.047 0.090 0.74 -4.2 0.84 -2.3 

S20_16 Practical reasoning 0.824 0.084 1.08 1.1 1.08 1.3 

S4_1 Conceptual understanding -0.614 0.078 0.85 -2.2 0.89 -1.9 

S4_2 Scientific investigation 0.306 0.086 0.97 -0.4 0.97 -0.5 

S4_3 Scientific investigation -0.351 0.085 0.67 -5.4 0.75 -4.3 

S4_4 Scientific investigation 0.857 0.089 1.26 3.5 1.20 2.8 

S4_5 Scientific investigation -2.873 0.100 0.95 -0.7 0.95 -0.7 

S4_6 Conceptual understanding 0.888 0.083 0.85 -2.2 0.91 -1.4 

S4_7 Practical reasoning -1.419*      

S4_8 Conceptual understanding 0.320*      

S4_9 Scientific investigation 1.014*      
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Notes: 1. * indicates that the item difficulty was constrained.   

2. A weighted T statistic with an absolute value larger than 2 suggests moderate 

misfit.  Items in bold are moderately misfit items.  A weighted T statistic 

with an absolute value larger than 4 suggests serious misfit.  Items in bold 

italic are seriously misfit items. 

 

The deviance for the three-dimensional model was equal to 11103.413 with 30 

estimated parameters.  The deviance difference between this model and the 

unidimensional model was equal to 35.638 with 5 degrees of freedom.  A 

significance test of the difference statistic suggests that the multidimensional model 

fits significantly better than the one-dimensional model because the 

p-value )000.( =p of the statistic is smaller than the nominal level of .05.   

� Results in terms of substance 

The multidimensional model analyses suggest that multidimensionality in terms 

of cognitive factors makes more sense than multidimensionality in terms of content 

areas.  This is consistent with the result found in the analyses of Block S20, but 

different from that found in the analyses of Blocks S7 and S4.  

Whether the meaningful multiple dimensions correspond to content areas or 

cognitive factors reflects the relative demands of the two kinds of proficiencies in the 

items, which are largely decided at the item writing stage.  If most of the items 

require more of the recall of knowledge than of the application of more advanced 

science process skills, content areas will come out as significant dimensions.  On the 

contrary, if a majority of the items have high demands for science process skills but 

low or minimal demands for content knowledge, science process skills will end up as 

significant dimensions.   
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5.3.1.2 The exploratory item factor analytic model 

To find the factor structure that best describes the response data, one-, two-, 

three-, and four-factor models were fit sequentially to the data and estimated through 

TESTFACT.  The model solutions were compared, and the best-fitting model was 

selected on the basis of the criteria discussed in Chapter 4.  

� Results in terms of parameters and fit 

Figure 18 is the scree plot that shows the first ten eigenvalues of the tetrachoric 

correlation matrix for the 24 items.  Similar to what was found in the other scree 

plots, the first factor explains a large proportion of variance among the items while 

the remaining factors, as compared to the first factor, are insignificant.   

 

Figure 18: Scree plot from exploratory factor analysis for Block S20 (excluding Item 

10) and S4 
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Table 26 summarizes the root mean square residuals (RMSRs) for the four model 

solutions and the percentage of reduction in the RMSR as an additional factor is 

added to the current model.  Comparing the RMSRs of the four models to the 

threshold value of .05, it is safe to say that none of them fits the data acceptably well.  

The percentage of reduction in the RMSR suggests that the two-factor model is most 

preferred. 

 

Table 26: Root mean square residuals (RMSRs) for the one-, two-, and three-factor 

models for Blocks S20 (excluding Item 10) and S4 

 

Model RMSR Percentage of 

reduction 

1-factor model 0.080  

2-factor model 0.071 11% 

3-factor model 0.065 8% 

4-factor model 0.062 5% 

 

Table 27 summarizes the chi-square statistics for the four models and Table 28 

shows the results of the chi-square difference tests.  The results suggest that the 

four-factor model fits significantly better than the three-factor model, which fits 

significantly better than the two-factor model, which, in turn, fits significantly better 

than the one-factor model.  
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Table 27: Chi-square statistics for the one-, two-, three-, and four-factor models for 

Blocks S20 (excluding Item 10) and S4 

 

# of factors Chi-square DF P-value 

1 5872.69 371 0.000 

2 5822.59 348 0.000 

3 5765.84 326 0.000 

4 5715.12 305 0.000 

 

Table 28: Tests of chi-square difference statistics between factor models for Blocks 

S20 (excluding Item 10) and S4 

 

 Chi-square 

difference 

DF  

difference 

P-value 

2-factor vs. 1-factor 50.10 23 0.001 

3-factor vs. 2-factor 56.75 22 0.000 

4-factor vs. 3-factor 50.72 21 0.000 

 

The last criterion by which we judge the meaningfulness of the factor model 

solution is factor loadings.  An examination of the four model solutions suggests that 

the one- and two-factor solutions make more sense than the three- and four-model 

solutions.  In the one-factor solution, almost all of the items loaded substantially on 

the factor, except for Item 4 of Block S20 and Item 4 of Block S4.  This again 

indicates the existence of a general factor that explains a considerable amount of 

variance of the items.   

In the two-factor model, the majority of items are strong indicators of factor 1 and 

only Items 2 through 5 of Block S20 are strong indicators of factor 2, as shown in 

Table 29.  The items that have substantial loadings on factor1 covered content of all 
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the three fields of science and skills in the three cognitive domains.  In contrast, the 

items that load substantially on factor 2 were designed to assess conceptual 

understanding.  A close look at the content of the four items suggests that, as 

compared with the rest of the items, they have higher demands for content knowledge.  

In other words, a lack of subject matter knowledge has a more direct impact on the 

chances of correctly responding to these items than inadequacies in cognitive skills.  

Based on the examination of the item content, the first factor can be interpreted as the 

general science proficiency and the second factor as the recall of content knowledge.  
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Table 29: Factor loadings of the two-factor model for Blocks S20 (excluding Item 10) 

and S4 

 

Item No.  Content Process Factor 1 Factor 2 

S20_1 Life Conceptual understanding .358 .087 

S20_2 Earth  Conceptual understanding -.091 .807 

S20_3 Physics Conceptual understanding .107 .418 

S20_4 Earth  Conceptual understanding -.176 .405 

S20_5 Earth Conceptual understanding .197 .647 

S20_6 Physics Practical reasoning .418 .204 

S20_7 Physics Practical reasoning .434 .224 

S20_8 Earth Practical reasoning .435 .129 

S20_9 Earth Practical reasoning .207 .186 

S20_11 Physics Conceptual understanding .314 .020 

S20_12 Earth Conceptual understanding .360 -.049 

S20_13 Life Practical reasoning .533 .025 

S20_14 Life Practical reasoning .510 -.014 

S20_15 Physics Scientific investigation .525 .287 

S20_16 Physics Practical reasoning .508 .007 

S4_1 Earth Conceptual understanding .463 .050 

S4_2 Physics Scientific investigation .525 .147 

S4_3 Physics Scientific investigation .661 .166 

S4_4 Physics Scientific investigation .429 -.153 

S4_5 Earth Scientific investigation .892 -.353 

S4_6 Earth Conceptual understanding .547 -.022 

S4_7 Earth Practical reasoning .514 .008 

S4_8 Earth Conceptual understanding .610 .280 

S4_9 Earth Scientific investigation .508 .414 

 

Note: Numbers in bold are substantial loadings (>.30) on the two factors. 
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� Results in terms of substance 

The results of exploratory factor analysis suggest that a unidimensional model 

may be adequate for explaining the examinees’ performances on the items, while the 

two-factor model shows more distinction among the items.  Specifically, a general 

factor of science proficiency is sufficient to account for examinees’ performances on 

the items, but the differential content and process demands of the items result in the 

dichotomization of the general factor.   

5.3.1.3 The mixture Rasch model 

Similarly, two- and three-class mixture Rasch models were fit to the response data 

for Blocks S20 and S4 in WinBUGS.  In each model, five chains with over-dispersed 

starting values of class proportions were run.  Again, the problem of label switching 

was dealt with by pre-assigning a small number of examines to each latent class.  For 

each model, a total of 10,000 iterations were simulated for each of the five chains.  

The first 5000 iterations were discarded as burn-ins, and the remaining 5000 iterations 

were sampled for each chain.  Thus, posterior estimates of the model parameters 

were calculated from a total of 25,000 iterations.   

� Results in terms of parameters and fit 

The two-class mixture Rasch model solution 

 In estimating the two-class mixture model, the problem of label switching was 

fixed by assigning ten examinees to each latent class with certainty.  Figure 19 

shows the history plots for a subset of model parameters being monitored.  Clearly, 

all the five chains converged quickly to the posterior distribution in each plot. 
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Figure 19: History plots for a subset of parameters being monitored in the two-class 

mixture Rasch model for Blocks S20 (excluding Item 10) and S4 
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Table 30 summarizes the estimated difficulties of the two-class mixture solution. 

A general pattern observed is that the item difficulties estimated for Class 1 are 

greater than those for Class 2, except for Item 4 of Block S4.  This means that Class 

2 was made up of students who were generally more capable than students in Class 1, 

given their performance on the two blocks of items.  This finding is essentially the 

same as the one found in the mixture model analysis of Block S20.   

 

Table 30: Item difficulties of the 2-class mixture Rasch model for Blocks S20 

(excluding Item 10) and S4 

 

Item  

 

Content Process Class 1 Class 2 

S20_1 Life Conceptual understanding -.8338 

(.1787) 

-1.246 

(.2436) 

S20_2 Earth  Conceptual understanding .3265 

(.1719) 

-1.389 

(.3467) 

S20_3 Physics Conceptual understanding -.1452 

(.1584) 

-1.098 

(.2851) 

S20_4 Earth  Conceptual understanding 2.709 

(.2667) 

2.368 

(.3289) 

S20_5 Earth Conceptual understanding 2.783 

(.3671) 

-.01154 

(.3161) 

S20_6 Physics Practical reasoning 1.959 

(.2905) 

.452 

(.2215) 

S20_7 Physics Practical reasoning 1.577 

(.2311) 

-.1024 

(.2428) 

S20_8 Earth Practical reasoning -.6906 

(.1749) 

-1.763 

(.2908) 

S20_9 Earth Practical reasoning .9916 

(.1707) 

.2848 

(.2297) 

S20_11 Physics Conceptual understanding .9005 

(.168) 

.6767 

(.2266) 

S20_12 Earth Conceptual understanding -.1893 

(.161) 

-.6588 

(.2252) 

S20_13 Life Practical reasoning -.3195 

(.1768) 

-1.484 

(.2758) 

S20_14 Life Practical reasoning .1182 

(.1806) 

-.5074 

(.2249) 
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S20_15 Physics Scientific investigation 1.979 

(.289) 

-.2034 

(.2809) 

S20_16 Physics Practical reasoning .8648 

(.2177) 

.1029 

(.2296) 

S4_1 Earth Conceptual understanding .275 

(.1623) 

-.8061 

(.2725) 

S4_2 Physics Scientific investigation 1.438 

(.2848) 

-.8166 

(.2769) 

S4_3 Physics Scientific investigation .9869 

(.2865) 

-2.094 

(.4568) 

S4_4 Physics Scientific investigation 1.018 

(.1781) 

.8515 

(.2362) 

S4_5 Earth Scientific investigation -2.082 

(.235) 

-3.199 

(.4708) 

S4_6 Earth Conceptual understanding 1.851 

(.2288) 

.5444 

(.2431) 

S4_7 Earth Practical reasoning -1.009 

(.1833) 

-2.141 

(.3571) 

S4_8 Earth Conceptual understanding 1.804 

(.3532) 

-.8376 

(.3289) 

S4_9 Earth Scientific investigation 2.52 

(.455) 

-.9149 

(.4672) 

 

Note: Numbers in parentheses are standard deviations of the posterior distributions for 

the estimated parameters. 

 

The three-class mixture Rasch model solution 

 In estimating the three-class mixture model, six examinees were preassigned to 

Class 1, six to Class 2, and ten to Class 3.  The number of priors varied across latent 

classes because fewer examinees could be classified to Class 1 or Class 2 with high 

degrees of confidence based on results of the preliminary run.  Figure 20 shows the 

history plots for a small subset of model parameters being monitored.  In each plot, 

all the five chains converged to the posterior distribution after the completion of a 

small number of iterations.  
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Figure 20: History plots for a subset of parameters being monitored in the three-class 

mixture Rasch model for Blocks S20 (excluding Item 10) and S4 
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Table 31 summarizes the estimated item difficulties of the three-class mixture 

solution.  For all the items except Item 4 of Block S20, Class 1 has the highest item 

difficulties among all the three classes.  Class 2 has higher item difficulties than 

Class 2 on all but six items.  The six items cover all the three content areas and all 

the three cognitive dimensions.  No tentative conclusions can be made on the basis 

of the six items about Class 2 and Class 3 with regard to their qualitative differences.   

 

Table 31: Item difficulties of the 3-class mixture Rasch model for Blocks S20 

(excluding Item 10) and S4 

 

Item 

No. 

Content Process Class 1 Class 2 Class 3 

S20_1 Life Conceptual understanding -.2606 

(.3452) 

-1.575 

(.2998) 

-1.093 

(.3212) 

S20_2 Earth  Conceptual understanding .4281 

(.2587) 

-.06561 

(.2556) 

-2.269 

(.5777) 

S20_3 Physics Conceptual understanding -.07908 

(.2636) 

-.1669 

(.2488) 

-2.065 

(.5915) 

S20_4 Earth  Conceptual understanding 2.339 

(.3724) 

3.157 

(.5691) 

2.07 

(.3875) 

S20_5 Earth Conceptual understanding 2.887 

(.4925) 

1.832 

(.3767) 

-.7151 

(.376) 

S20_6 Physics Practical reasoning 3.021 

(.6332) 

.7477 

(.3474) 

.6263 

(.3078) 

S20_7 Physics Practical reasoning 2.443 

(.6634) 

.6519 

(.2635) 

-.4064 

(.3258) 

S20_8 Earth Practical reasoning -.2426 

(.3408) 

-1.313 

(.261) 

-1.986 

(.4246) 

S20_9 Earth Practical reasoning .9471 

(.283) 

.8002 

(.2573) 

.07646 

(.2991) 

S20_11 Physics Conceptual understanding 1.379 

(.4262) 

.5166 

(.2331) 

.6567 

(.3054) 

S20_12 Earth Conceptual understanding .04394 

(.2425) 

-.4606 

(.2286) 

-.8256 

(.317) 

S20_13 Life Practical reasoning .179 

(.3305) 

-1.117 

(.3103) 

-1.521 

(.3699) 

S20_14 Life Practical reasoning .6603 

(.3275) 

-.6699 

(.3243) 

-.2704 

(.3115) 
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S20_15 Physics Scientific investigation 2.827 

(.8082) 

.9086 

(.3071) 

-.5131 

(.311) 

S20_16 Physics Practical reasoning 1.759 

(.6428) 

-.09723 

(.2872) 

.4429 

(.3312) 

S4_1 Earth Conceptual understanding .5013 

(.2841) 

-.02669 

(.2437) 

-1.359 

(.3982) 

S4_2 Physics Scientific investigation 2.084 

(.4707) 

.2249 

(.3414) 

-.9223 

(.3354) 

S4_3 Physics Scientific investigation 2.508 

(.8592) 

-.6763 

(.4839) 

-2.51 

(.5897) 

S4_4 Physics Scientific investigation 1.625 

(.4462) 

.4526 

(.2442) 

1.067 

(.3386) 

S4_5 Earth Scientific investigation -1.536 

(.3331) 

-3.474 

(.8341) 

-2.954 

(.5526) 

S4_6 Earth Conceptual understanding 2.018 

(.3547) 

1.282 

(.2794) 

.3535 

(.3032) 

S4_7 Earth Practical reasoning -.9024 

(.3512) 

-1.377 

(.3057) 

-2.36 

(.4665) 

S4_8 Earth Conceptual understanding 3.26 

(.9238) 

.5295 

(.3455) 

-1.549 

(.4508) 

S4_9 Earth Scientific investigation 3.35 

(.9059) 

1.153 

(.3868) 

-1.997 

(.6613) 

 

Note: Numbers in parentheses are standard deviations of the posterior distributions for 

the estimated parameters. 

 

� Results in terms of substance 

The mixture model solutions suggest that the examinees’ quantitative differences 

are dominant as compared with their qualitative differences.  This is based on the 

fact that all but one item in the two blocks were consistently harder for a class of 

examinees than for (the) other classes.  Besides, the exceptional item that carries the 

evidence about the qualitative differences between the classes of examinees is the 

item that had low internal consistency with the rest of the items, or in other words, the 

item that failed to assess the construct of science proficiency that all the other items 

assessed.  As discussed in Section 5.1.4, this item was most likely to be assessing 
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some peripheral or unscientific construct for this sample of examinees. 

5.3.2 Computation of information criteria 

Table 32 summarizes the fit statistics for the six models being compared in the 

analyses.  These statistics exhibit the same pattern as that shown in Table 12 or 23.  

Generally speaking, the mixture Rasch models fit the response data the best, the item 

factor models the worst, and the multidimensional between-item models in the middle.  

Each of the three information criteria points to a different model as the best-fitting 

model: the three-class mixture model is most favored by AIC, the between-item 

multidimensional model by CAIC, and the two-class mixture model by BIC.  

 

Table 32: Comparison of fit statistics across and within types of models for Blocks 

S20 (excluding Item 10) and S4 

 

Models -2ln(L) p AIC CAIC BIC 

Multidimensional between-item model 

(dimensions defined by content areas) 

10859.528 30 10919.528 11281.943 11040.736 

Multidimensional between-item model 

(dimensions defined by cognitive factors) 

10839.338 30 10899.338 11261.753 11020.546 

1-factor item factor analytic model 

(unidimensional IRT model) 

10979.650 48 11075.650 11655.515 11269.582 

2-factor item factor analytic model 10981.762 71 11123.762 11981.478 11410.620 

2-class mixture Rasch model 10706.128 51 10808.128 11424.234 11014.181 

3-class mixture Rasch model 10618.348 77 10772.348 11702.547 11083.448 

 

Notes: 1. p denotes the number of parameters to be estimated in the model and the 

sample size N is 420 for each model.  

2. Models in bold represent the best-fitting models by the different information 

criteria.    
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5.4 Synthesis of analysis results across the three data sets 

In the above three sections, each of three data sets was analyzed by three types of 

models and the analysis results for each data set were compared within and across 

models.  In this section, the analysis results of the three data sets are synthesized, 

with common and unique findings specified and discussed.  The purpose of the 

synthesis is to make a generalization about how well the three types of models were 

able to describe the data structure of the 1996 NAEP science assessment and how the 

multidimensionality in the assessment can be accounted for based on the results from 

the models.   

All three sets of between-item multidimensional analysis indicated that the 

between-item multidimensional model fit the response data better than the 

unidimensional model, although the definition of the multiple dimensions was not 

constant across the three data sets.  How the multiple dimensions were defined 

largely depended on the content and cognitive demands of the items in the data set.  

If the items were designed around one or more specific content strands, like the items 

in Blocks S7 and S4, and the recall of content knowledge was essential to correct 

responses to the items, multidimensionality would be better defined in terms of 

content areas than cognitive factors.  In contrast, if the items required more of the 

application of science process skills than the recall of content knowledge, like the 

items in Block S20, multidimensionality in terms of cognitive factors would explain 

the data better than multidimensionality in terms of content areas.  

For all three data sets, results of exploratory factor analysis suggested that the 
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one- and two-factor models were more interpretable than the more complex models.  

In the one-factor model solution, all the items had substantial loadings on the factor, 

except for only one or two items.  This indicated the existence of a general factor.  

The scree plot for each data set also supported this finding.  The items that had 

negligible loadings on the factor were items that had low internal consistency with the 

rest of the items, or, in other words, items that did a poor job in assessing the targeted 

science proficiency that the other items were all assessing.  

For each of the three data sets, the two-factor model provided a more subtle 

description of the data structure than the one-factor model, although the two factors 

were interpreted differently for each data set.  What the factors represented in each 

data set was strongly influenced by the items included in the data set.  In Block S20, 

some items were assessing examinees’ understanding of the important concepts in 

science, while other items required scientific reasoning or investigation skills.  

Therefore, in the two-factor model solution for the first data set, the two factors were 

interpreted as the doing and knowing aspects of science learning.  In the second data 

set which consisted of two very different item blocks, each block of items required 

knowledge of very specific subject matter and, probably, different levels of science 

process skills.  As a result, the two factors corresponded to the two blocks, with each 

factor representing the knowledge and skills demanded by each block.  The third 

data set ended up with a different version of factor interpretation.  The two factors 

were interpreted as general science proficiency and the ability to recall relevant 

content knowledge.  The first factor was strongly indicated by the majority of the 
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items in the two blocks, while the second factor was closely associated with a small 

number of items that required specific content knowledge.   

Results of mixture Rasch models for all three data sets implied the prevalence of 

unidimensionality.  All the items, except for one or two, were harder for a class of 

examinees but easier for the other class(es).  This indicated that the quantitative 

differences between latent classes outweighed their qualitative differences and that the 

quantitative differences between latent classes could be roughly measured on a single 

scale.  The exceptional items that were harder for the “higher-performing” class but 

easier for the “lower-performing” class(es) bore evidence of the qualitative 

differences between latent classes.  These items turned out to be the items that had 

insignificant loadings on the single factor in the one-factor model solution.  These 

items were so poorly written that were not assessing the targeted science proficiency 

that all the other items were assessing.  Therefore, the qualitative differences 

between latent classes that were based on these items did not have much psychometric 

meaning.  Besides, the between-class differences that were inferred from Figures 12 

through 14 in the three-class mixture Rasch model analysis for Block S20 could not 

be generalized to the other two data sets.  Most likely, they resulted from the 

peculiarity of the items or the sample of examinees.  In a word, although the mixture 

models fit the data sets better than the other two types of models, they did not provide 

a stronger story about the multidimensionality in the assessment.  

Comparisons of information criteria across models for the three data sets all 

pointed to the same finding: the mixture models fit the data better than the 
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between-item multidimensional models, which, in turn, fit the data better than the 

exploratory factor analytic models.  As discussed above, the mixture Rasch models 

did not explain the multidimensionality in the assessment better than the other two 

types of models, despite their superiority in statistical fit.  Furthermore, the finding 

that the between-item multidimensional models fit the data better than the exploratory 

factor models suggested the plausibility of the design rationale of the NAEP science 

assessment.   

In addition, finding different models under different information criteria implies 

that differences among the models in terms of statistical fit were not large enough.  

Therefore, comparing the models in terms of their substantive meaning has more 

relevance in identifying the distinctions among the models.  

In general, the analysis results of the three data sets shared many commonalities 

and the differences were largely accounted for.  It is expected that the common 

patterns observed in the analyses and the conclusions drawn from the results can be 

generalized to the 1996 NAEP science assessment for the 8
th

 grade, and probably to 

the assessments for the other grades, too, but further study is warranted. 
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Chapter 6: Conclusions 

Measurement models are the lenses through which we view patterns in the 

assessment data.  Our viewpoint is determined by how we conceptualize the 

knowledge, skills, and abilities in the targeted subject domain, what kinds of 

inferences we want to make about students, and how we think about the structure of 

the assessment.  In this dissertation, three types of measurement models were 

compared in the analysis of the NAEP science assessment.  They had different 

assumptions about the assessment structure, targeted at different aspects of students’ 

proficiencies, and conveyed different messages about how students learn science.  A 

comparison of the analysis results across the three data sets revealed some common 

patterns, which reflected the systematic features of the NAEP science assessment.  

The main findings from analyzing the three data sets are summarized in the following 

section.  

6.1 Summary of main findings 

 Confirmatory analyses of the predefined test structures led to the conclusion that 

the NAEP science assessment was multidimensional.  The proposed 

multidimensional model fit the response data significantly better than the 

unidimensional model.  The definition of the multiple dimensions varied across data 

sets.  The cause of the variation is considered to be the relative content and cognitive 

demands of the items.  If the cognitive demands outweighed the content demands for 

the majority of the items, the multiple dimensions would correspond to the three 

cognitive dimensions.  Otherwise, the multiple dimensions would correspond to the 
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three content areas.  

 Exploratory factor analyses of the three data sets pointed to the same conclusion 

that the examinees’ responses were better explained by the one- and two-factor 

models than the more complex models.  The chi-square difference test indicated that 

the two-factor model fit significantly better than the one-factor model, but other 

indices of statistical fit favored the one-factor model.  The one-factor model 

suggested the existence of the general science proficiency that accounted for the 

examinees’ responses.  The two-factor model gave more clues about the underlying 

structure of the assessment and the characteristics of the examinees.  The two factors, 

however, were interpreted differently across the three data sets.  The variation in 

factor interpretation was again due to the different requirements of the items with 

regard to content knowledge and cognitive proficiencies.  

 Comparison of the information criteria across the three types of models for the 

three data sets ended up with the same finding: the 3-class mixture Rasch model was 

most favored by AIC, the between-item multidimensional model by CAIC, and the 

2-class mixture Rasch model by BIC.  This conclusion is consistent with expectation.  

Among the three information criteria, AIC applies the least penalty on model 

complexity, CAIC applies the most penalty, and BIC applies more penalty than AIC 

but less than CAIC.  As a result, AIC points to the most complex model, and CAIC 

to the simplest model.  

 Comparison of narrative stories of the three types of models highlighted the fact 

that the between-item multidimensional models and the exploratory item factor 
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analytic models gave plausible stories of the assessment and the performances of the 

examinees, while the mixture Rasch models did not provide a strong and useful 

explanation of the multidimensionality in the assessment.  Although results of fit 

statistics showed that the mixture models fit the data better than the other two types of 

models, they did not have as much substantive meaning as the other two types of 

models.  

6.2 Responses to the meta-questions  

In addition to answering the specific questions related to the nature of the 

multidimensionality in the NAEP science assessment, this dissertation is meant to 

illustrate the idea of the assessment triangle with a real-world assessment and answer 

some meta-questions that are of significance to all assessment applications.  In the 

first three chapters, the four research questions are addressed with full details and 

responses to the questions are then illustrated with results of data analysis.  This 

section is the gist of the discussion in response to the research questions listed in 

Chapter 1.  

Substantive theories, measurement models, and patterns in the data are the three 

building blocks of an assessment.  They should integrate with each other in a 

consistent manner so as to achieve the goals of the assessment.  Measurement 

models are statistical frameworks motivated by substantive theories and convey 

narrative stories about the subject domain being assessed.  Decisions about what 

proficiencies are to be inferred about, what aspects of performance are important to 

the targeted inferences, and what are the relations between the targeted proficiencies 
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and observed performances are made based on the substantive theories.  These 

decisions are translated into variables, distributions, and formulas in measurement 

models.  Through the structure of measurement models, observed performance data 

are used to inform inferences about examinees’ targeted proficiencies.    

As illustrated by the three types of models being applied in this study, different 

measurement models were inspired by different substantive theories and conceptions 

about knowing and learning in the subject domain of interest.  The important 

attributes of which the targeted proficiency is conceived to be composed or the 

significant stages through which the proficiency is developed are used to describe 

persons or classify items.  The interactions between persons and items are 

characterized in different measurement models in terms of different variables, 

distributions, and equations.  Different types of performance data may be required by 

different measurement models.  In this study, however, the three types of models 

analyzed the same sets of data, but from different perspectives.  Each model 

highlighted certain patterns of the data at the expense of hiding other potentially 

interesting patterns.  Consequently, the analysis results generated by the three types 

of models shared some commonalities but also exhibited considerable differences.  

As argued repeatedly in the presentation, selection of an appropriate model 

should be based on substantive and statistical considerations.  However, the 

substantive aspect of model evaluation is often overlooked in assessment applications.  

Statistical fit is often mistakenly used as the sole criterion in model comparison and 

selection.  As discussed in the first two chapters, statistical fit should be combined 
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with considerations of substantive meaningfulness in the evaluation of competing 

models.  More importantly, the model used in the analysis of an assessment should 

be able to serve the purpose of the assessment and make the types of inferences that 

the test developers want to make about the examinees.  Only in this way can the 

measurement model achieve consistency with substantive theories and observed data.  

This dissertation is meant to illustrate how substantive theories, patterns in the 

data, and measurement models should be connected to the other two in a meaningful 

way in order to produce an effective assessment and generate sound inferences 

(National Research Council, 2001).  Basically, assessment design is an iterative 

process of clarifying the specifics of the three building blocks and strengthening the 

connections among them (Wilson, 2005).  In this dissertation, I demonstrated how 

each model is interpreted as a framework by which test performance is predicted in a 

way consistent with the underlying theory, how the predictions about patterns in the 

response data are different from each other, and how the different predictions can be 

synthesized to provide a fuller and richer account of students’ proficiencies, and, more 

importantly, to inspire another iteration of assessment design, in which we refine the 

substantive model, create new tasks, collect more data, and analyze the data with an 

appropriate statistical model.  Each iteration of work represents an effort of 

strengthening the linkage among the elements of an assessment and enhancing the 

cohesion and effectiveness of the underlying argument.   

6.3 Implications to assessment design and analysis 

The design framework of the NAEP science assessment indicates that the 
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assessment tasks were designed to measure both content knowledge and science 

process skills.  However, results of analyses, as discussed in Chapter 5, revealed that 

the requirements for content knowledge and process skills varied from task to task.  

Many combinations of content knowledge and process skills can be possibly involved 

in science assessment tasks.  To better conceptualize the content and process 

demands, Baxter and Glaser (1998) proposed a content-process space, based on which 

assessment items can be roughly divided into four types, namely, “content 

rich-process open, content lean-process constrained, content lean-process open, and 

content rich-process constrained” (p. 38).  The location of an assessment task in this 

space determines the cognitive activities involved for successful task completion, and 

observed patterns of performance reflect examinees’ development stages with regard 

to content knowledge and process skills.  

Baxter and Glaser’s framework helps task designers translate their assessment 

goals into content and process demands and design tasks that are aligned with those 

demands.  With the desired content and process requirements in mind, tasks are 

designed in a way that gives examinees ample opportunities to engage in the 

appropriate cognitive activities that demonstrate how much content knowledge and 

process skills they have possessed.  Furthermore, Baxter and Glaser (1998) argued 

that “recognition of the interrelationships among the subject matter and cognitive 

features of assessment situations provides a basis for selecting or revising situations to 

meet specified objectives” (p. 38).  Iterations between theory and model-based 

analysis of task performances provide useful information about what changes should 
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be made on the content and process demands of the tasks and how task situations can 

be modified so that they involve the appropriate combination of content knowledge 

and process skills.  

The goal of science learning and instruction is to develop a knowledge structure 

that links both content knowledge and science process skills with the conditions under 

which the content knowledge and process skills are to be used.  This well-developed 

knowledge structure is what we call science proficiency or literacy.  The goal of 

science assessments, especially those science assessments for general purposes, is to 

gauge examinees’ science proficiencies using the right type of tasks.  However, the 

difficulty of assessing both content knowledge and process skills in a content 

rich-process open task resides in the fact that students’ failure to complete the task can 

be accounted for by their lack of the required content knowledge or their insufficiency 

with the requisite science process skills.  Therefore, tasks should be designed with a 

focus on the distinguishing features of differential competence and achievement.  

For example, to assess students’ cognitive skills, minimum prior knowledge with the 

content domain should be required in the task so that students’ unfamiliarity with the 

content domain will not be a hindrance to successful task performance.  On the other 

hand, if tasks are meant to assess knowledge generation or recall, they should be 

designed in a way that gives students explicit direction or guidance with regard to 

what procedures are to be carried out and how to carry out those procedures.     

In Chapter 5, results of mixture Rasch model analyses pointed out items that 

behaved differently between classes and items that behaved similarly between classes.   
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For example, in Figure 12, the items off the diagonal of the scatter plot are items that 

provide the most information about the differences between the two classes, while the 

items along the diagonal are items that have similar properties between classes.  An 

implication to science assessment task design based on these results is that items can 

be created that stress the differences between the off-the-diagonal and 

along-the-diagonal items.  For example, ten items can be created that resemble the 

characteristics of the items off the diagonal and ten items can be created that mimic 

the items on the diagonal.  Students’ performances on the two types of items are 

expected to reveal systematic differences between latent classes and what make the 

classes different from each other are significant for science learning and instruction.  

This dissertation centers on the interrelationships among the substantive, 

statistical, and operational aspects of an assessment.  Questions such as how an 

assessment depends on the interrelationships, how the interrelationships can be 

maintained, and how to check the strength of the interrelationships are addressed by 

analyzing students’ response data in an existing assessment through application of 

three types of measurement models.  The discussion of the interrelationships and the 

analysis of the real-world assessment are meant to furnish researchers or practitioners 

with a better understanding of the principles in assessment design and analysis.   

The principles can be applied to inform efforts in the design of new assessments or 

the modification and analysis of existing assessments.    

In new assessment design, having the three elements of the assessment triangle 

and their interrelationships laid out at the outset of the project helps the designers 
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organize their thoughts and plan out all the subsequent operational procedures.   

Decisions about what proficiencies are to be measured, how tasks can be designed, 

and what measurement models are to be used to analyze the data will set the tone for 

the entire assessment project, because these decisions will influence all aspects of the 

assessment’s design and use, including content, format, scoring, reporting, and use of 

results.   In addition, the cycle of formulating the substantive theory, designing 

assessment tasks, and analyzing data through measurement models may need to be 

iterated in order to achieve a close approximation to the assessment triangle. 

The principles of assessment design can also be used to understand or modify 

existing assessments.  Making explicit the building elements of an assessment helps 

to clarify the set of assumptions underlying the assessment and identify potential 

inconsistencies among substantive theories, measurement models, and patterns in the 

data.  With an existing assessment, many aspects of the assessment are already in 

shape and can not be revised on a large scale.  However, in case of inconsistencies, 

the elements of the assessment triangle need to be re-examined and fine-tuned to 

strengthen their interrelationships.  All these examinations and fine-tunings are 

intended to make the existing assessment meet its goals within the context of the 

existing constraints.  

In this dissertation, three different types of measurement models were used to 

analyze the same sets of response data from the 1996 NAEP science assessment.  

Each type of models is inspired by one school of thinking about how students learn 

science, and each type of models highlights a certain pattern in the data sets.  
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Different models bring different features of the data sets into attention and produce 

different analysis results.   More complex models could be used to analyze the same 

data sets and might revoke more features that reside in the data sets.  However, there 

is no unified model that can tackle all the patterns in the data.  Highlighting certain 

patterns in the model analysis often necessitates hiding other patterns in the data, 

which may be potentially meaningful.  In the real world, it is not practical to analyze 

the same data sets with multiple models, like what was done in this dissertation.  The 

goal is to apply a measurement model that is coherent with the substantive theories 

and assessment data and serves the assessment purpose sufficiently well.  

6.4 Limitations of the study and future work 

Due to the confidentiality of the NAEP science assessment data, analyses were 

conducted solely with responses to the publicly released item blocks.  Since there 

were only four item blocks released for public use and not any three of them appeared 

together as a booklet, no analysis was done at the booklet level.  The number of 

items included in each of the three data sets analyzed in this presentation was 

relatively small.  This created a problem, especially in the multidimensional 

between-item models, in which some dimensions were related to a very small number 

of items.  As a result, the accuracy of the estimates of person parameters along those 

dimensions was less than satisfactory. 

In addition, due to the matrix sampling design feature of the NAEP science 

assessment, analyzing more items would involve having fewer examinees in the 

response data.  This problem was evident in the analyses of two item blocks when 
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the sample size was reduced to around 420.  A small sample size like that would 

have an adverse impact on the estimation of parameters and interpretation of 

significance tests. 

In this study, all the analyses were done on dichotomous responses, due to the 

unavailability of the software program POLYFACT, which is able to perform 

exploratory factor analysis on polytomous items.  In the dichotomization of 

polytomous responses, potentially interesting information might be lost.  This 

limitation can be overcome by securing the software or by programming in other 

software packages.   

In this study, guessing was not accounted for in any of the three types of models.   

The reason for not modeling the influence of guessing was that the first type of model, 

namely the MRCMLM model, is a Rasch-type model and unable to accommodate 

guessing.  Leaving guessing out of the models could achieve a better consistency 

among the three types of models.  However, it should be noted that students were 

very likely to have resorted to the guessing strategy in the NAEP science assessment 

when they did not know the correct answer to an item or when the administration time 

was about to expire.    

In the mixture Rasch model analyses, interpretation of the latent classes was 

constrained by the given classification schemes of the items.  In other words, the 

latent classes were interpreted on the basis of the common characteristics of the items 

that were provided by NAEP.  The items that behaved differently across latent 

classes might share some other types of characteristics and those characteristics might 
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be potentially meaningful.  However, those characteristics could not be studied in 

this dissertation due to the constraints on the item classification schemes.   

In this study, three types of models were selected to analyze the same sets of 

response data.  The reason why these models were selected was that each type of 

models was consistent with a strand of theory about science learning and each type of 

models delivered a substantively meaningful story.  There exist other types of 

models that are substantively meaningful and worth studying.  For example, the 

multi-trait multi-method (MTMM) style model is of interest substantively but requires 

an unrealistically large number of items.  Due to the limited availability of the 

released NAEP science assessment items, the MTMM model was not studied in this 

dissertation.  

Science assessments are often designed to be multidimensional since they cover a 

variety of content areas and involve a spectrum of cognitive abilities.  An extension 

to the study on test multidimensionality is a study on subscale score reporting.  

Specifically, reporting subscale scores for the subdomains in science is in line with the 

current conception about science learning and has substantial pedagogical meaning. 

Research efforts should be directed to areas such as the development of models that 

yield precise and reliable subdomain scores, the implementation of efficient 

estimation methods, and the application of these methods to computerized adaptive 

testing.   
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Appendix A: Items in Block S20 for Grade 8 

1. A certain organism has many cells, each containing a nucleus.  If the organism 

makes its own food, it would be classified as 

A. a bacterium 

B. a fungus 

C. a plant 

D. an animal 

 

2. If the locations of earthquakes over the past ten years were plotted on a world map, 

which of the following would be observed? 

A. Earthquakes occur with the same frequency everywhere on Earth. 

B. Earthquakes generally occur along the edges of tectonic plates. 

C. Earthquakes most frequently occur near the middle of continents. 

D. Earthquakes do not seem to occur in any consistent pattern. 

 

3. Which of the following energy sources is the best example of a nonrenewable 

resource? 

A. Coal 

B. Wind 

C. Water 

D. Sunlight 

 

4. The two most common elements in the Earth’s crust are 

A. oxygen and silicon 

B. oxygen and hydrogen 

C. carbon and iron 

D. carbon and sulfur 

 

5. A space station is to be located between the Earth and the Moon at the place where 
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the Earth’s gravitational pull is equal to the Moon’s gravitational pull.  On the 

diagram below, circle the letter indicating the approximate location of the space 

station.  Explain your answer.  

 

 

6. Many young people in their twenties have a significant hearing loss in the 

high-frequency range.  Name one factor that contributes to this loss of hearing.  

Name two ways people could prevent this loss of hearing. 

 

7. When operating ordinary incandescent lightbulbs produce a lot of heat in addition 

to light.  Fluorescent lightbulbs produce much less heat when operating.  If you 

wanted to conserve electricity, which type of bulb should you use?  Explain your 

answer.  

 

8. Maria’s house is near a stream.  She wants to put her vegetable garden close to the 

edge of the stream.  Discuss one advantage and one disadvantage of putting the 

garden there.  

 

9. Mrs. Sanchez grows crops on her farm in a hilly region where soil erosion is a big 

problem.  Which of the following would normally help most to protect the soil on 

her farm from eroding? 

A. Rotating her crops on a yearly basis 

B. Using contour plowing 

C. Irrigating her crops more frequently 

D. Using more chemical pesticides 
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10. What does a mitochondrion do in a cell? 

A. It controls the transport of substances leaving and entering the cell. 

B. It contains the information to control the cell. 

C. It produces a form of energy that the cell can use. 

D. It breaks down waste products in the cell.  

 

11. An insulated bottle keeps a cold liquid in the bottle cold by 

A. destroying any heat that enters the bottle 

B. keeping cold energy within the bottle 

C. trapping dissolved air in the liquid 

D. slowing the transfer of heat into the bottle 

 

12. According to current scientific theory, as the Solar System formed, matter in the 

solar nebula came together to form planets.  The force most responsible for these 

formations was 

A. gravitational 

B. electrical 

C. magnetic 

D. nuclear 

 

13. A group of students took potato salad made with mayonnaise to a picnic on a very 

hot day.  Explain how eating the potato salad could cause food poisoning.  Describe 

something that could be done to the potato salad to prevent the people who eat it from 

getting food poisoning.  

 

14. When a population of mice is infected with parasites, many of the mice die from 

the parasitic infection, but some mice appear as healthy as they were before being 

infected.  Some people are considering using these parasites to control the mouse 

population in people’s homes.  Give one advantage and one disadvantage of using 

these parasites instead of mouse traps or poisons to limit the population of mice. 



 177 

Questions 15-16 refer to an experiment your teacher asks you to perform to compare 

the heating rate of soil with that of water.  To do this, you are given the following 

materials.  

2 heat lamps 

2 bins 

2 thermometers 

1 sample of soil 

1 sample of water 

1 timer 

You are instructed to heat a sample of soil and a sample of water with heat lamps, 

measuring the temperature of each sample once a minute for 8 minutes.  

 

15. There are many experimental variables that must be controlled for in order to 

perform this experiment accurately.  Name three of these variables.  

 

16. Suppose that the experiment yielded the results shown in the table below.  

 

Time (min) 0 1 2 3 4 5 6 7 8 

Soil temp (℃) 20 21 22.5 24 26 27.5 29.5 30.5 32 

Water temp (℃) 20 21.5 23 23.5 24 25.5 26 27.5 28.5 

 

At a beach that has white sand, you measure the temperature of the sand the 

temperature of the seawater at 9:00 a.m.  You find that both have a temperature of 

16℃.  If it is clear and sunny all morning, what do the data from the experiment 

predict about the temperature of the white sand compared to the temperature of the 

seawater at noon?  Explain your answer.  Explain why the prediction based on the 

data might be wrong.  
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Appendix B: Latent class membership and examinees’ background 

variables (for the sample of examinees who responded to Block S20) 

1. Gender 

 Latent Class  

Gender 1 2 Total 

Male 182 440 622 

 49.9% 49.7% 49.7% 

Female 183 446 629 

 50.1% 50.3% 50.3% 

Total 365 886 1251 

 29.2% 70.8%  

2. Individualized education plan (IEP) 

 Latent Class  

IEP 1 2 Total 

Yes 36 40 76 

 9.9% 4.5% 6.1% 

No 329 846 1175 

 90.1% 95.5% 93.9% 

Total 365 886 1251 

 29.2% 70.8%  
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3. Limited English proficiency (LEP) 

 Latent Class  

LEP 1 2 Total 

Yes 23 9 32 

 6.3% 1.0% 2.6% 

No 342 877 1219 

 93.7% 99.0% 97.4% 

Total 365 886 1251 

 29.2% 70.8%  

4. Race/Ethnicity 

 Latent Class  

Race 1 2 Total 

White 118 548 666 

 32.3% 61.9% 53.2% 

Non-white 238 322 560 

 65.2% 36.3% 44.8% 

Omitted 9 16 25 

 2.5% 1.8% 2.0% 

Total 365 886 1251 

 29.2% 70.8%  
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5. Mother’s highest education 

 Latent Class  

Mother’s education 1 2 Total 

Didn’t finish high school 57 86 143 

 15.6% 9.7% 11.4% 

High school or more 215 692 907 

 58.9% 78.1% 72.5% 

Omitted 93 108 201 

 25.5% 12.2% 16.1% 

Total 365 886 1251 

 29.2% 70.8%  

6. Father’s highest education 

 Latent Class  

Father’s education 1 2 Total 

Didn’t finish high school 59 89 148 

 16.2% 10.0% 11.8% 

High school or more 195 638 833 

 53.4% 72.0% 66.6% 

Omitted 111 159 268 

 30.4% 17.9% 21.4% 

Total 365 886 1251 

 29.2% 70.8%  
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7. Agree/disagree: I like science. 

 Latent Class  

I like science 1 2 Total 

Agree 150 475 625 

 41.1% 53.6% 50.0% 

Disagree/Not sure 206 401 607 

 56.4% 45.2% 48.5% 

Omitted 9 10 19 

 2.5% 1.1% 1.5% 

Total 365 886 1251 

 29.2% 70.8%  

8. Agree/disagree: I am good at science. 

 Latent Class  

I am good science 1 2 Total 

Agree 98 453 551 

 26.8% 51.1% 44.0% 

Disagree/Not sure 255 422 677 

 56.4% 47.6% 54.1% 

Omitted 12 11 23 

 2.5% 1.2% 1.8% 

Total 365 886 1251 

 29.2% 70.8%  
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9. Agree/disagree: Science is useful for everyday problems.  

 Latent Class  

Science is useful 1 2 Total 

Agree 106 368 474 

 29.0% 41.5% 37.9% 

Disagree/Not sure 249 505 754 

 68.2% 57.0% 60.3% 

Omitted 10 12 22 

 2.7% 1.4% 1.8% 

Total 365 886 1251 

 29.2% 70.8%  

10. Agree/disagree: Science is a hard subject.  

 Latent Class  

Science is hard 1 2 Total 

Agree 145 315 460 

 39.7% 35.6% 36.8% 

Disagree/Not sure 208 560 768 

 57.0% 63.2% 61.4% 

Omitted 12 11 23 

 3.3% 1.2% 1.8% 

Total 365 886 1251 

 29.2% 70.8%  
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11. Agree/disagree: Learning science is mostly memorization.  

 Latent Class  

Learning science is 

memorization 

1 2 Total 

Agree 118 300 418 

 32.3% 33.9% 33.4% 

Disagree/Not sure 234 569 803 

 64.1% 64.2% 64.2% 

Omitted 13 17 30 

 3.6% 1.9% 2.4% 

Total 365 886 1251 

 29.2% 70.8%  

12. How often do you study science in school? 

 Latent Class  

Study science in school 1 2 Total 

Everyday 229 644 873 

 62.7% 72.7% 69.8% 

Less frequent than everyday 120 227 347 

 32.9% 25.6% 27.7% 

Omitted 16 15 31 

 4.4% 1.7% 2.5% 

Total 365 886 1251 

 29.2% 70.8%  
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13. How much time per week do you spend on doing science homework? 

 Latent Class  

Time on science 

homework 

1 2 Total 

Less than 1 hour 231 544 775 

 63.3% 61.4% 62.0% 

1 hour or more 116 323 439 

 31.8% 36.5% 35.1% 

Omitted 18 19 37 

 4.9% 2.1% 3% 

Total 365 886 1251 

 29.2% 70.8%  
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