
ABSTRACT

Title of Dissertation: DYNAMICS-INSPIRED GARMENT
RECONSTRUCTION AND SYNTHESIS
FOR SIMULATION-BASED
VIRTUAL TRY-ON

Junbang Liang
Doctor of Philosophy, 2021

Dissertation Directed by: Professor Dinesh Manocha
Department of Computer Science

E-Commerce has been growing at a rapid pace in recent years. People are now

more likely to shop online than going to physical stores. Digital try-on systems, as

one alternative way to improve the user experience and popularize online garment

shopping, has drawn attention of many researchers [1]. However, the technology is

still far from being practical and easy-to-use to replace physical try-on, mostly due

to the gap in modeling and in demonstrating garment-fitting between the digital

and the real worlds. The estimation of the hidden parameters of the garments plays

an important role in closing the gap, examples including accurate reconstruction of

human shapes and sizes through consumer devices, faithful estimation of garment

materials via learning and optimization, user-friendly recovery of dressed garments,

and fast and realistic visual rendering of animated try-on results. Although previous

methods have made some progresses on these under-constrained problems, learning-

based approaches have shown tremendous potential in making notable impact. I

propose to address the key open research issues above by adopting machine learning

and optimization techniques.

To accurately reconstruct human shapes and sizes, I propose a learning-based

shape-aware human body mesh reconstruction for both pose and shape estimation

that is supervised directly on shape parameters. To estimate garment materials

from video, I design a differentiable cloth simulation algorithm that can optimize

its input variables to fit the data, thereby inferring physical parameters from obser-

vations and reaching desired control goals. To take advantage of joint learning and

optimization, I further propose a joint estimation framework targeting human body

and apparels through a close-loop iterative optimization. By extracting temporal

information of both the body and the garment, it can also recover fabric material(s)

of a garment from one single RGB video. To render realistic try-on results in close

to real-time speed, I design a time-domain parallelization algorithm that maximizes

the overall performance acceleration in distributed systems with minimal communi-

cation overhead. I further propose a semi-supervised learning framework to directly

predict fit-accurate cloth draping on a wide range of body shapes.

In summary, my proposed learning-based frameworks focus on improving the

efficiency, scalability, and capability of cloth simulation, and enable accurate hidden

parameter estimation by exploiting cloth simulation for supervised learning and

gradient-based feedback control.

DYNAMICS-INSPIRED GARMENT RECONSTRUCTION AND
SYNTHESIS FOR SIMULATION-BASED VIRTUAL TRY-ON

by

Junbang Liang

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2021

Advisory Committee:
Professor Dinesh Manocha, Chair
Professor Min Wu
Professor Ming C. Lin
Professor Soheil Feizi
Professor Tom Goldstein

© Copyright by
Junbang Liang

2021

Acknowledgments

I would like to thank my advisors, Prof. Dinesh Manocha and Prof. Ming Lin.

I was led to the fascinating world of virtual reality and managed to contribute to

the cutting-edge technology thanks to their guidance. I would also want to thank

my committee members who provide a lot of useful comments and insights to me

to improve the dissertation.

It is not possible to finish this journey without all the kind help and support

from my all of my friends and all the GAMMA members. Last but not the least, I

would like to thank my parents for encouraging me to pursue my dream and giving

me support all the time.

ii

Table of Contents

Acknowledgements ii

Table of Contents iii

List of Tables vii

List of Figures viii

Chapter 1: Introduction 1
1.1 Learning-Based Human Body and Garment Estimation 3
1.2 Differentiable Simulation for Material Optimization 4
1.3 Simulation-Based Virtual Try-On . 5
1.4 Thesis Statement . 6
1.5 Main Results . 7

1.5.1 Shape-Aware Human Reconstruction Using Multi-View Images 7
1.5.2 Differentiable Simulation for Material Optimization 8
1.5.3 Joint Estimation of Human and Garment from Video 9
1.5.4 Time-Domain Parallelization for Accelerating Cloth Simulation 10
1.5.5 Dynamics-Inspired Garment Draping Prediction 10

1.6 Outline of Dissertation . 11

Chapter 2: Shape-Aware Human Reconstruction Using Multi-View Images 13
2.1 Introduction . 13
2.2 Related Work . 16

2.2.1 Human Body Pose and Shape Recovering 16
2.2.2 Learning-Based Pose/Shape Estimations 19
2.2.3 Use of Synthetic Dataset . 19

2.3 Overview . 20
2.4 Model Architecture . 21

2.4.1 3D Body Representation . 23
2.4.2 Scalable Multi-View Framework 24
2.4.3 Training and Inferring . 25
2.4.4 Implementation Details . 26

2.5 Data Preparation . 27
2.5.1 Parameter Space Sampling . 28
2.5.2 Human Body Motion Synthesis 28

iii

2.5.3 Cloth Registration and Simulation 29
2.5.4 Multi-View Rendering . 29

2.6 Results . 31
2.6.1 Ablation Study . 31
2.6.2 Comparisons with Multi-View Methods 34
2.6.3 Real-World Evaluations . 35
2.6.4 Multi-View Input in Daily Life 36
2.6.5 Extra Test Results . 37
2.6.6 Additional Results on Real-World Images 38
2.6.7 Comparison on Human3.6M with Single-View Methods 40
2.6.8 Results Without Training on Synthetic Data 40
2.6.9 Detailed Errors on Real World Evaluation 41
2.6.10 Evaluation on 3D People in the Wild. 42
2.6.11 Running Time . 43

2.7 Conclusion and Future Work . 43

Chapter 3: Differentiable Simulation for Material Optimization 45
3.1 Introduction . 45
3.2 Related Work . 47
3.3 Differentiable Cloth Simulation . 49

3.3.1 Cloth Simulation Basics . 50
3.3.2 Overview . 53
3.3.3 Derivatives of the Physics Solve 54
3.3.4 Dynamic Collision Detection and Response 55
3.3.5 Derivatives of the Collision Response 56
3.3.6 Derivations of the Gradient Computation 62

3.4 Experiments . 65
3.4.1 Ablation Study . 66
3.4.2 Material Estimation . 67
3.4.3 Motion Control . 71
3.4.4 Collision-rich Motion Control 73

3.5 Conclusion . 73

Chapter 4: Joint Estimation of Human and Garment from Video 75
4.1 Introduction . 75
4.2 Related Work . 77
4.3 Method Overview . 80
4.4 Garment Auto-encoder . 82

4.4.1 Two-Level Encoder-Decoder Structure 83
4.4.2 Representative Point Set Extraction 85
4.4.3 Training Losses . 85
4.4.4 Recovery from Point Clouds to Garment Meshes 86

4.5 Material Estimation . 87
4.5.1 Single Frame Closed-Loop Estimation 87
4.5.2 Temporal Estimation for Garment Material 90

iv

4.6 Data Preparation and Training . 91
4.6.1 Training Details . 92

4.7 Experiments . 93
4.7.1 Quantitative Analysis . 93
4.7.2 Qualitative Results . 95
4.7.3 Lab Experiments and User Study 98
4.7.4 Ablation Study . 100
4.7.5 Latent Code Interpolation . 104
4.7.6 Additional Qualitative Results 105
4.7.7 Application: Virtual Try-On 108

4.8 Conclusion . 109

Chapter 5: Time-Domain Parallelization for Accelerating Cloth Simulation 112
5.1 Introduction . 112
5.2 Related Work . 115

5.2.1 Cloth Simulation . 115
5.2.2 Time Parallel Time Integration Method 116
5.2.3 Parallel Cloth Simulation . 117
5.2.4 Hierarchical Structures and Multi-level Methods 117
5.2.5 Mesh Upsampling . 118

5.3 Overview . 119
5.3.1 Two-Level Mesh Hierarchy Representation 120

5.4 Time Domain Parallelization . 121
5.4.1 Static Temporal Partitioning 122
5.4.2 Adaptive Partitioning . 124
5.4.3 Analysis on Performance Scalability 127

5.5 Smooth State Transitioning . 128
5.5.1 Iterative Detail Recovery . 129
5.5.2 Convergence and Continuity 131
5.5.3 Proof of Convergence of Algorithm 3 131
5.5.4 Iteration Number Estimation 134
5.5.5 Implementation Details . 136
5.5.6 State Inconsistency . 137

5.6 Results . 138
5.6.1 Parameter and Scenario Setting 138
5.6.2 Performance . 140
5.6.3 Smoothness . 147
5.6.4 Memory and Render Latency 147
5.6.5 Limitations . 148

5.7 Conclusion and Future Work . 149

Chapter 6: Dynamics-Inspired Garment Draping Prediction 150
6.1 Introduction . 150
6.2 Related Work . 152
6.3 Method . 155

v

6.3.1 Encoder . 156
6.3.2 GCN-Based Decoder . 157
6.3.3 Spectral Domain Decomposition 158
6.3.4 Loss Functions . 160

6.4 Physics-Enforced Optimization . 162
6.5 Experiments . 165

6.5.1 Data Generation . 165
6.5.2 Ablation Study . 166
6.5.3 Optimization for Semi-Supervision 168
6.5.4 Optimization for Graphic Print 169
6.5.5 Quantitative Comparisons . 171
6.5.6 Qualitative Results . 172
6.5.7 Generalization to Different Garment Sizes 173

6.6 Conclusion . 175

Chapter 7: Conclusion 176
7.1 Summary of Results . 176
7.2 Limitations . 179
7.3 Future Work . 181

vi

List of Tables

2.1 Comparison results on Human3.6M using MPJPE 32
2.2 Comparison results on MPI INF 3DHP 32
2.3 Comparison results on my synthetic dataset 33
2.4 Comparison on Human3.6M . 35
2.5 Comparison results on tape-measured data 35
2.6 Results on MPI INF 3DHP, validation set 39
2.7 Results on MPI INF 3DHP, test set 39
2.8 Results on Human3.6M . 41
2.9 Percentages of errors in common measurements 42
2.10 Evaluation on an unseen dataset . 43

3.1 Statistics of the backward propagation 67
3.2 Results on the material parameter estimation task 70
3.3 Motion control results . 72

4.1 Comparison on material estimation 94
4.2 Quantitative comparison . 95
4.3 Lab experiment results . 98
4.4 Ablation study for different parts . 100
4.5 Test errors on the Multi-Garment Net dataset 104
4.6 Comparison with previous works . 108

5.1 Notations and definition of my method 120
5.2 Results on a higher-resolution mesh 139
5.3 Comparison between different partition schemes 141
5.4 Results in the extreme case . 143
5.5 Comparison with GPU method . 144

6.1 Encoders ablation . 166
6.2 Decoders ablation . 167
6.3 Losses ablation . 168
6.4 Self-correcting pipeline ablation study 169
6.5 Adaptation to new materials . 170
6.6 Comparison with TailorNet . 172
6.7 Comparison for models on different sizes 174

vii

List of Figures

2.1 The network structure . 22
2.2 Detailed network structure of the regression block 26
2.3 Examples of rendered synthetic images 30
2.4 Prediction results compared to HMR 37
2.5 Results on images with varying pose and shape 38
2.6 Results on real-world multi-view images 38
2.7 My model trained without synthetic data. 41

3.1 Impact of perturbation . 59
3.2 Example frame from the ablation study 66
3.3 Example frame from the material estimation scene 68
3.4 Example frame from the motion control experiment 70
3.5 A motion control scene with more obstacles 72

4.1 Overall network structure . 81
4.2 The network structure of the garment auto-encoder 82
4.3 My estimation pipeline . 88
4.4 The network structure for body and garment estimation 88
4.5 Qualitative comparison . 97
4.6 Material transfer between videos . 97
4.7 Qualitative results . 97
4.8 Qualitative comparison with a real-world video 100
4.9 Sample test images for the comparisons 101
4.10 Interpolation between different garments 101
4.11 Material transfer examples . 102
4.12 Interpolation results . 106
4.13 Qualitative Results . 107
4.14 Virtual try-on example . 109
4.15 Training data examples . 109
4.16 User study examples . 110

5.1 Simulated ‘Karate’ animation using my method 112
5.2 An overview of my method . 115
5.3 Adaptive partitioning Algorithm . 125
5.4 An example comparison of the meshes 128
5.5 Performance scaling result (large time step) 140

viii

5.6 Results with increasing length of the simulation 140
5.7 Performance scaling result (small time step) 142
5.8 Small scale parallelization comparison 145
5.9 Large scale parallelization comparison 145
5.10 More simulation results . 146
5.11 Refining results . 146

6.1 My model learns how to drape garments 150
6.2 Overall structure of my network . 155
6.3 Visualization of the eigen decomposition 156
6.4 Reconstructions for different numbers of coefficients. 159
6.5 The semi-supervised self-correcting training pipeline. 164
6.6 Bodies at BMI percentiles 10, 30, 50, 70 and 90%. 165
6.7 Qualitative examples of self-correcting optimization 171
6.8 Qualitative comparison with TailorNet 173
6.9 Qualitative comparison with previous work 174

ix

Chapter 1: Introduction

Digital try-on system, as one important part of E-Commerce, has the potential

to become one of the revolutionary technologies that change people’s lives. However,

its development is limited by some practical constraints, such as accurate sizing of

the body and vivid try-on demonstrations.

There are several reasons why customers still prefer physical try-on. First,

consumers are unsure if what they buy online will fit their bodies well. Although

there exist general sizing systems for individuals, its lack of consistency and stan-

dardization across different brands and garment materials can often make it difficult

to sizing the clothes, especially for those with non-standard body shapes and pro-

portion. Accurate estimation of human body shapes is the key to make digital

try-on work. Second, the fabric material is usually one of the key considerations

when shopping for clothes. Different fabric materials affect how the garments look

and fit on a body, how customers would wear it, and whether or not they would

buy it. However, the correspondences between the actual material and its digital

representation are not well understood, not to mention that an accurate material

estimation and digital cloning from the real-world examples is challenging.

Visual effects from the customers’ view is as critical as other factors. There are

1

two common presentations of garments: 2D image-based and 3D mesh with photo-

realistic rendering. They have different advantages and drawbacks, but both need

a large garment database for support. While creating a 3D garment model takes

considerable labor, 2D images often suffer from the lack of variation and it is much

more difficult to make customized changes. In either case, the try-on system would

need a user-friendly design and manipulation backend to meet the customer’s needs.

Last, but not least, a fast and vivid animation of the garments in motion, along with

the body movement, can considerably improve the user experience. Although it is

not as critical as other factors, realistic visual rendering could effectively reduce the

perceptual gap between the real-world and the virtual garments for online shopping.

Although previous methods have made some progresses on these under-constrained

problems, learning-based approaches have shown tremendous potential in making

notable impact. I propose to address the key open research challenges above by

adopting machine learning and optimization techniques. These include:

• Accurate reconstruction of human and garment through consumer devices;

• Faithful estimation of fabric materials via learning and optimization;

• User-friendly recovery of dressed garments;

• A real-time cloth simulation system for customized animation; and

• Fast and realistic visual rendering of animated try-on results.

2

1.1 Learning-Based Human Body and Garment Estimation

Human appearance reconstruction is one of the key techniques for building

a vivid and interactive virtual world. It can be applied to create a virtual avatar

for various applications, such as virtual try-on or teleconferencing. It can also be

used during character prototyping in computer animation. Human body recon-

struction, consisting of pose and shape estimation, has been widely studied in a

variety of areas, including digital surveillance, computer animation, special effects,

and virtual/augmented environments. Most of existing works [2, 3, 4, 5, 6] focus on

human-body reconstruction and recent advances have made significant progress in

this area. However, the problem itself is naturally ambiguous, given limited input

and occlusion. Although applying a predefined prior can alleviate this ambiguity, it

is still insufficient in several cases, especially when a part of the body is occluded by

clothing, or when the pose direction is perpendicular to the camera viewing plane.

For example, when the human is walking towards the camera, it can be difficult

to distinguish the difference between a standing vs. walking pose using a direct

front-view image, while a side-view image could be more informative of the posture.

Moreover, recovery of garment properties, especially for physical material es-

timation, has been under-explored due to the complexity and the diversity of cloth

dynamics and coupled interaction with a human body. Estimating worn garment

materials using RGB frames of a video is highly challenging. Image features are

often sparse, containing many noisy signals regarding the fabric materials worn on

the body. An effective way to amplify useful signals is to estimate garment geometry

3

from images as a by-product. However, this is already an open problem far from be-

ing solved due to several reasons. First, garments have highly dynamical geometry

that is not easy to capture and model. Previous works on garment modeling [7, 8, 9]

and estimation [10, 11, 12] often propose solutions on one single type of garment,

mostly t-shirts. Although the methods are also applicable to other garments, lack

of generalization in capturing different garment geometries present a considerable

barrier for real-world applications: users can only choose one of few pre-trained gar-

ment types and are not able to import new ones easily. Second, accurate estimation

is often hindered by camera projection and human body occlusion. For example, the

human-body estimation network may disagree with the garment reconstruction net-

work in skeleton orientation due to the projection ambiguity (e.g . an arm is posed

forward vs. backward), resulting in prediction misalignment. Therefore, without

a general garment representation and an accurate geometry estimation, it is very

difficult to regress the fabric materials solely from garment image sequences.

1.2 Differentiable Simulation for Material Optimization

Differentiable physics simulation is a powerful family of techniques that applies

gradient-based methods to learning and control of physical systems [13, 14, 15,

16, 17]. It can enable optimization for control, and can also be integrated into

neural network frameworks for performing complex tasks. My work focuses on

cloth simulation, which relates to applications in robotics, computer vision, and

computer graphics [8, 18, 19, 20, 21, 22, 23]. My goal is to enable differentiable cloth

4

simulation, which can provide a unified approach to a variety of inverse problems

for cloth.

Differentiable cloth simulation is challenging due to a number of factors, which

include the high dimensionality of cloth (as compared for example to rigid bod-

ies [13]) and the need to handle contacts and collision. For example, a simple 16×16

grid-based cloth mesh has 289 vertices, 867 variables, and 512 faces when triangu-

lated. Typical resolutions for garments would be at least many thousands, if not

millions, of vertices and faces. Previous work that tackled differentiable simulation

with collisions set up a static linear solver to account for all constraints [13]. In

my simple example with cloth, the number of pairwise constraints would be at least

289×512 = 140K for vertex-face collisions alone, which renders existing methods

impractical even for this simple system. Even if a dynamic solver is applied upon

collision, solving a dense linear system with such high dimensionality makes the

gradient computation infeasible.

1.3 Simulation-Based Virtual Try-On

Drape prediction systems fall mainly in two categories: physics-based simula-

tion and learning-based garment generation. Significant progress has been achieved

in visual simulation of cloth over the past decades [24, 25, 26, 27]. Numerous al-

gorithms have been proposed that achieve high accuracy and robustness for various

3D graphics applications, though real-time simulation remains illusive for complex

simulation scenarios. Given recent advances in manycore and cloud computing, par-

5

allel computing has emerged as a possible alternative to achieve the desired runtime

performance. Parallelization is a popular, practical way to achieve performance im-

provement. With a highly scalable parallelization scheme, physics-based simulation

can be accelerated by orders of magnitude, enabling fast user feedback in virtual

try-on.

As an alternative, learning-based cloth draping is also one of the key compo-

nents in virtual try-on systems. With the help of a well-trained draping network,

virtual try-on can predict quickly and accurately how garments look and fit on a

body. Previously mentioned cloth simulation typically is prohibitively slow, while

image-based try-on [28, 29] does not provide fit-accurate information. Apart from

its use to avoid the dressing room, fast garment draping can also be a critical com-

ponent in interactive character prototyping for a wide range of applications, like

teleconferencing, computer animations, special effects or computer games.

1.4 Thesis Statement

Dynamic constraints can be effectively enforced in human body estimation,

garment material and geometry reconstruction, simulation acceleration, and draping

prediction for virtual try-on systems, by coupling machine learning and optimization

methods with cloth simulation.

To support this thesis statement, I present five novel algorithms:

1. A learning-based shape-aware human body mesh reconstruction for both pose

and shape estimation,

6

2. A differentiable simulation algorithm for fabric material optimization,

3. A joint estimation framework for estimating human body and apparels through

a close-loop iterative optimization,

4. A time-domain parallelization algorithm to accelerate the simulation perfor-

mance in distributed systems, and

5. A dynamics-inspired learning framework to directly predict the cloth draping

on a wide range of body shapes.

1.5 Main Results

This dissertation presents five methods to support each component of the

thesis statement. I list the main results obtained within these methods below:

1.5.1 Shape-Aware Human Reconstruction Using Multi-View Images

In Chapter 2, I propose a scalable neural network framework to reconstruct

the 3D mesh of a human body from multi-view images, in the subspace of the

SMPL model [30]. Use of multi-view images can significantly reduce the projection

ambiguity of the problem, increasing the reconstruction accuracy of the 3D human

body under clothing. The key contributions of this work include:

• A learning-based shape-aware human body mesh reconstruction using SMPL

parameters for both pose and shape estimation that is supervised directly on

shape parameters.

7

• A scalable, end-to-end, multi-view multi-stage learning framework to account

for the ambiguity of the 3D human body (geometry) reconstruction problem

from 2D images, achieving improved estimation results.

• A large simulated dataset, including clothed human bodies and the corre-

sponding ground-truth parameters, to enhance the reconstruction accuracy,

especially in shape estimation, where no ground-truth or supervision is pro-

vided in the real-world dataset.

• Accurate shape recovery under occlusion of garments by (a) providing the

corresponding supervision and (b) deepening the model using the multi-view

framework.

1.5.2 Differentiable Simulation for Material Optimization

In Chapter 3, I propose a differentiable cloth simulator that can be embedded

as a layer in deep neural networks (DNN) for estimating fabric material parameters.

Differentiable simulation provides an effective, robust framework for modeling cloth

dynamics, self-collisions, and contacts in DNN. Due to the high dimensionality of the

dynamical system in modeling cloth, traditional gradient computation for collision

response can become impractical. To address this problem, I propose to compute

the gradient directly using QR decomposition of a much smaller matrix. The key

contributions of this work include:

• A dynamic collision detection scheme to reduce collision dimensionality.

8

• A novel gradient computation method of collision response using implicit dif-

ferentiation.

• An optimized backpropagation algorithm using QR decomposition.

1.5.3 Joint Estimation of Human and Garment from Video

In Chapter 4, I propose a network model that uses video input to jointly

estimate the human body, the garment shape, as well as fabric materials of the

garment dressed on a human. During the estimation, I use a closed-loop optimization

structure to share information between tasks and feed the learned garment features

for temporal estimation of garment material type. The key contributions include:

• The first end-to-end neural network that recovers fabric material(s) of a gar-

ment from one single RGB video;

• A two-level auto-encoder for learning the latent space of garments through

multi-scale feature coupling;

• Joint estimation of human body and apparels through a close-loop iterative

optimization;

• The first garment prediction model that can account for arbitrary topologies

and uses a feedback loop to the body estimation for prediction consistency.

9

1.5.4 Time-Domain Parallelization for Accelerating Cloth Simulation

In Chapter 5, I propose a novel time-domain parallelization technique that

makes use of the two-level mesh representation to resolve the time-dependency issue

and develop a practical algorithm to smooth the state transition from the corre-

sponding coarse to fine meshes. A load estimation and a load balancing technique

used in online partitioning are also proposed to maximize the performance acceler-

ation. The key contributions of this work include:

• A time-domain parallelization algorithm supporting adaptive meshes with min-

imal communication overhead;

• Load estimation and load balancing techniques that maximize the overall per-

formance acceleration;

• A practical state transitioning algorithm between low- and high-resolution

simulations to recover details and ensure the visual quality of the simulated

sequences.

1.5.5 Dynamics-Inspired Garment Draping Prediction

In Chapter 6, I propose a novel learning framework for draping prediction that

can incorporate arbitrary loss functions at runtime composed of three key compo-

nents. First, a physics-inspired supervision on a novel neural network. Second, an

unsupervised optimization process coupled to the physics of individual garments at

runtime. Finally, self-correction of the network based on the samples optimized in

10

the previous stage. The key contributions of this work include:

• A semi-supervised framework that enables easy integration of constraints into

the deep learning model.

• Introduction of novel loss functions that encode geometric, physical, design,

and tailoring constraints.

• A novel encoder/decoder network that effectively captures global and local

features from the input and dynamically aggregates neighborhood information.

• A new self-correcting method based on data augmentation that enables both

more accurate predictions and reduced data preparation time.

1.6 Outline of Dissertation

The subsequent chapters of this dissertation are organized as follows.

Chapter 2 introduces a new shape-aware human body estimation method that

uses multi-view input for accurate reconstruction.

Chapter 3 presents my differentiable cloth simulation method that can com-

pute the gradients efficiently and achieve faster optimization convergence than gradient-

free methods.

Chapter 4 demonstrates a novel joint learning model that simultaneously pre-

dict human body shapes, garment geometry, and its fabric material in an end-to-end

network using temporal garment geometry features represented by latent codes.

Chapter 5 presents my time-domain parallelization algorithm for accelerated

11

cloth simulation.

Chapter 6 describes a semi-supervised learning framework that integrates mul-

tiple geometric and physics constraints into learning garment draping on various

bodies.

12

Chapter 2: Shape-Aware Human Reconstruction Using Multi-View

Images

2.1 Introduction

In order to accurately reconstruct and synthesize garments in virtual try-on

systems, it is necessary to obtain a precise estimation of the 3D user body mesh first.

Human body reconstruction, including both pose and shape estimation, is an essen-

tial building block for realistic virtual try-on systems. Despite its importance in a

large number of applications, human body reconstruction still remains a challenging

and popular topic of interest. While direct 3D body scanning can provide excellent

and sufficiently accurate results, its adoption is somewhat limited by the required

specialized hardware. I propose a practical method that can estimate body pose and

shape directly from a small set of images (typically 3 to 4) taken at several different

view angles, which can be adopted in many applications, such as Virtual Try-On.

Compared to existing scanning-based reconstruction, my proposed approach is much

easier to use. Compared to previous image-based estimation methods, my method

offers a higher degree of accuracy in shape estimation when the input human body

is not within a normal range of body-mass index (BMI) and/or when the body is

13

wearing loose clothing. Furthermore, my framework is flexible in the number of

images used and this feature considerably extends its applicability.

In contrast to many existing methods, I use “multi-view” images as input,

referring to photos taken of the same person with similar poses from different view-

ing angles. They can be taken using specialized multi-view cameras, but it is not

necessary (Sec. 2.6.4). Single-view images often lack the necessary and complete

information to infer the pose and shape of a human body, due to the nature of

projection transformation. By obtaining information from multiple view angles, the

ambiguity from projection can be considerably reduced, and the body shape under

loose garments can also be more accurately reconstructed.

Previous work on pose and shape estimation of a human body (see Sec. 2.2)

mostly rely on optimization. One of the most important metrics used in these

methods is the difference between the original and the estimated silhouette. As a

result, these methods cannot be directly applied to images where the human wears

loose garments, e.g. long coat, evening gown. The key insight of my method is as

follows. When estimating a person’s shape, how the human body interacts with the

cloth, e.g . how a t-shirt is shaped due to the push by the stomach or the chest,

provides more information than the silhouette of the person. So image features,

especially those on clothes, play an important role in the shape estimation. With

recent advances in deep learning, it is widely believed that the deep Convolutional

Neural Network (CNN) structure can effectively capture these subtle visual details as

activation values. I propose a multi-view multi-stage network structure to effectively

capture visual features on garments from different view angles to more accurately

14

infer pose and shape information.

Given a limited number of images, I incorporate prior knowledge about the

human body shape to be reconstructed. Specifically, I propose to use the Skinned

Multi-Person Linear (SMPL) model [30], which uses Principal Component Analysis

(PCA) coefficients to represent human body shapes and poses. In order to train

the model to accurately output the coefficients for the SMPL model, a sufficient

amount of data containing ground-truth information is required. However, to the

best of my knowledge, no such dataset exists to provide multiple views of a loosely

clothed body with its ground-truth shape parameters (i.e. raw mesh). Previous

learning-based methods do not address the shape (geometry) recovery problem [31]

or only output one approximation close to the standard mean shape of the human

body [32], which is insufficient when recovering human bodies with largely varying

shapes. Taking advantage of physically-based simulation, I design a system pipeline

to generate a large number of multi-view human motion sequences with different

poses, shapes, and clothes. By training on the synthetic dataset with ground-truth

shape data, my model is “shape-aware”, as it captures the statistical correlation

between visual features of garments and human body shapes. I demonstrate in the

experiments that the neural network trained using additional simulation data can

considerably enhance the accuracy of shape recovery.

To sum up, the key contributions of my work include:

• A learning-based shape-aware human body mesh reconstruction using SMPL

parameters for both pose and shape estimation that is supervised directly on

15

shape parameters.

• A scalable, end-to-end, multi-view multi-stage learning framework to account

for the ambiguity of the 3D human body (geometry) reconstruction problem

from 2D images, achieving improved estimation results.

• A large simulated dataset, including clothed human bodies and the corre-

sponding ground-truth parameters, to enhance the reconstruction accuracy,

especially in shape estimation, where no ground-truth or supervision is pro-

vided in the real-world dataset.

• Accurate shape recovery under occlusion of garments by (a) providing the

corresponding supervision and (b) deepening the model using the multi-view

framework.

2.2 Related Work

In this section, I survey recent works on human body pose and shape estima-

tion, neural network techniques, and other related work that make use of synthetic

data.

2.2.1 Human Body Pose and Shape Recovering

Human body recovery has gained substantial interest due to its importance in

a large variety of applications, such as virtual environments, computer animation,

and garment modeling. Previous works reduce the ambiguity from occlusion using

16

different assumptions and input data. They consist of four main categories: pose

from images, pose and shape from images under tight clothing, scanned meshes, and

images with loose clothing.

Pose From Images. Inferring 2D or 3D poses in images of one or more people is

a popular topic in Computer Vision and has been extensively studied [33, 34, 35,

36, 37]. I refer to a recent work, VNect by Mehta et al . [31] that is able to identify

human 3D poses from RGB images in real time using a CNN. By comparison, my

method estimates the pose and shape parameters at the same time, recovering the

entire human body mesh rather than only the skeleton.

Pose and Shape From Images under Tight Clothing. Previous work [38, 39,

40, 41, 42, 43] use the silhouette as the main feature or optimization function to

recover the shape parameters. As a result, these methods can only be used when

the person is wearing tight clothes, as shown in examples [44, 45]. By training on

images with humans under various garments both in real and synthetic data, my

method can learn to capture the underlying human pose and shape based on image

features.

Pose and Shape From Scanned Meshes. One major challenge of recovering

human body from scanned meshes is to remove the cloth mesh from the scanned

human body wearing clothes [22]. Hasler et al . [46] used an iterative approach. They

first apply a Laplacian deformation to the initial guess, before regularizing it based

on a statistical human model. Wuhrer et al . [47] used landmarks of the scanned

input throughout the key-frames of the sequences to optimize the body pose, while

recovering the shape based on the ‘interior distance’ that helps constrain the mesh

17

to stay under the clothes, with temporal consistency from neighboring frames. Yang

et al . [48] applies a landmark tracking algorithm to prevent excessive human labor.

Zhang et al . [49] took more advantages of the temporal information to detect the

skin and cloth region. As mentioned before, methods based on scanned meshes are

limited: the scanning equipment is expensive and not commonly used. My method

uses RGB images that are more common and thus much more widely applicable.

Pose and Shape from Images under Clothing. Bălan et al . [50] are the first to

explicitly estimate pose and shape from images of clothed humans. They relaxed the

loss on clothed regions and used a simple color-based skin detector as an optimization

constraint. The performance of this method can be easily degraded when the skin

detector is not helpful, e.g . when people have different skin colors or wear long

sleeves. However, my method is trained on a large number of images, which does

not require this constraint. Bogo et al . [51] used 2D pose machines to obtain joint

positions and optimizes the pose and shape parameters based on joint differences

and inter-penetration error. Lassner et al . [52] created a semi-automatic annotated

dataset by incorporating a silhouette energy term on SMPLify [51]. They trained

a Decision Forest to regress the parameter based on a much more dense landmark

set provided by the SMPL model [30] during the optimization. Constraining the

silhouette energy effect to a human body parameter subspace can reduce the negative

impact from loose clothing, but their annotated data are from the optimization of

SMPLify [51], which has introduced errors inherently. In contrast, I generate a large

number of human body meshes wearing clothes, with the pose and shape ground-

truth, which can then train the neural network to be “shape-aware”.

18

2.2.2 Learning-Based Pose/Shape Estimations

Recently a number of methods have been proposed to improve the 3D pose

estimation with calibrated multi-view input, either using LSTM [53, 54], auto-

encoder [55, 56] or heat map refinement [57, 58]. They mainly focus on 3D joint

positions without parameterization, thus not able to articulate and animate. Choy

et al . [59] proposed an LSTM-based shape recovery network for general objects.

Varol et al . [4] proposed a 2-step estimation on human pose and shape. However,

both methods are largely limited by the resolution due to the voxel representation.

In contrast, my method outputs the entire body mesh with parameterization, thus is

articulated with a high-resolution mesh quality. Also, my method does not need the

calibration of the camera, which is more applicable to in-the-wild images. Kanazawa

et al . [32] used an iterative correction framework and regularized the model using

a learned discriminator. Since they do not employ any supervision other than joint

positions, the shape estimation can be inaccurate, especially, when the person is

relatively over-weighted. In contrast, my model is more shape-aware due to the

extra supervision from my synthetic dataset. Recent works [60, 61, 62] tackle the

human body estimation problem using various approaches; my method offers better

performance in either single- or multi-view inputs by comparison.

2.2.3 Use of Synthetic Dataset

Since it is often time- and labor-intensive to gather a dataset large enough

for training a deep neural network, an increasing amount of attention is drawn

19

to synthetic dataset generation. Recent studies [21, 63] have shown that using a

synthetic dataset, if sufficiently close to the real-world data, is helpful in training

neural networks for real tasks. Varol et al . [64] built up a dataset (SURREAL) which

contains human motion sequences with clothing using the SMPL model and CMU

MoCap data [65]. While the SURREAL dataset is large enough and is very close to

my needs, it is still insufficient in that (a) the clothing of the human is only a set of

texture points on the body mesh, meaning that it is a tight clothing, (b) the body

shape is drawn from the CAESAR dataset [66], where the uneven distribution of the

shape parameters can serve as a “prior bias” to the neural network, and (c) the data

only consists of single view images, which is not sufficient for my training. Different

from [63, 64], my data generation pipeline is based on physical simulation rather than

pasting textures on the human body, enabling the model to learn from more realistic

images where the human is wearing looser garments. Recent works [67, 68] also

generate synthetic data to assist training, but their datasets have only very limited

variance on pose, shape, and textures to prevent from overfitting. In contrast, my

dataset consists of a large variety of different poses, shapes, and clothing textures.

2.3 Overview

In this section, I give an overview of my approach. First, I define the problem

formally. Then, I introduce the basic idea of my approach.

Problem Statement: Given a set of multi-view images, I1 . . . In, taken for the

same person with the same pose, recover the underlying human body pose and

20

shape.

In the training phase, I set n = 4, i.e. by default I take four views of the

person: front, back, left and right, although the precise viewing angles and their

orders are not required, as shown in Sec. 2.4.3. To extend my framework to be

compatible with single view images, I copy the input image four times as the input.

For more detail about image ordering and extensions to other multi-view input,

please refer to Sec. 2.4.3. I employ the widely-used SMPL model [30] as my mesh

representation, for its ability to express various human bodies using low dimensional

parametric structures.

As mentioned before, this problem suffers from ambiguity issues because of

the occlusions and the camera projection. Directly training on one CNN as the

regressor can easily lead to the model getting stuck in local minima, and it cannot

be adapted to an arbitrary number of input images. Inspired by the residual network

structure [69], I propose a multi-view multi-stage framework (Sec. 2.4) to address

this problem. Since real-world datasets suffer from limited foreground/background

textures and ground-truth pose and shape parameters, I make use of synthetic data

as additional training samples (Sec. 2.5) so that the model can be trained to be

more shape-aware.

2.4 Model Architecture

In this section, I describe the configuration of my network model. As shown

in Fig. 2.1, I iteratively run my model for several stages of error correction. Inside

21

Figure 2.1: The network structure. Multi-view images are first passed through an
image encoder to get feature vectors f1, ..., fn. With initial guesses of the camera
parameters Θ1,i

c and the human body parameters Θ1,1
b , the network starts to estimate

the parameters stage by stage and view by view. Each regression block at the
ith stage and the jth view regresses the corrective values from image feature fj
(red) and previous guesses Θi,j

c (blue) and Θi,j
b (green). The results will be added

up to the input values and passed to future blocks. While the new human body
parameters (green) can be passed to the next regression block, the view-specific
camera parameters (blue) can only be passed to the next stage of the same view.
Finally, the predictions of the n views in the last stage are outputted to generate
the prediction.

each stage, the multi-view image input is passed on one at a time. At each step, the

shared-parameter prediction block computes the correction based on the image fea-

ture and the input guesses. I estimate the camera and the human body parameters

at the same time, projecting the predicted 3D joints back to 2D for loss computa-

tion. The estimated pose and shape parameters are shared among all views, while

each view maintains its camera calibration and the global rotation. The loss at each

step is the sum of the joint loss and the human body parameter loss:

Li = λ0L2Djoint + λ1L3Djoint + LSMPL (2.1)

22

where λ0 and λ1 scale the units and control the importance of each term. I use L1

loss on 2D joints and L2 loss on others. LSMPL is omitted if there is no ground-truth.

2.4.1 3D Body Representation

I use the Skinned Multi-Person Linear (SMPL) model [30] as my human body

representation. It is a generative model trained from human mesh data. The pose

parameters are the rotations of 23 joints inside the body, and the shape parameters

are extracted from PCA. Given the pose and shape parameter, the SMPL model

can then generate a human body mesh consisting of 6980 vertices:

X(θ, β) = WG(θ)(X0 + Sβ + PR(θ)) (2.2)

where X ∈ R6980 × R3 is the computed vertices, θ ∈ R72 are the rotations of each

joint plus the global rotation, β ∈ R10 are the PCA coefficients, W,S and P are

trained matrices, G(θ) is the global transformation, X0 are the mean body vertices,

and R(θ) is the relative rotation matrix.

For the camera model, I use orthogonal projection since it has very few pa-

rameters and is a close approximation to real-world cameras when the subject is

sufficiently far away, which is mostly the case. I project the computed 3D body

back to 2D for loss computation:

x = sX(θ, β)RT + t (2.3)

23

where R ∈ R2 × R3 is the orthogonal projection matrix, s and t are the scale and

the translation, respectively.

2.4.2 Scalable Multi-View Framework

My proposed framework uses a recurrent structure, making it a universal model

applicable to the input of any number of views. At the same time, it couples

the shareable information across different views so that the human body pose and

shape can be optimized using image features from all views. As shown in Fig. 2.1,

I use a multi-view multi-stage framework to couple multiple image inputs, with

shared parameters across all regression blocks. Since the information from multiple

views can interact with each other multiple times, the regression needs to run for

several iterative stages. I choose to explicitly express this shared information as

the predicted human body parameter since it is meaningful and also contains all

of the information of the human body. Therefore the input of a regression block is

the corresponding image feature vector and the predicted camera and human body

parameters from the previous block. Inspired by the residual networks [69], I predict

the corrective values instead of the updated parameters at each regression block to

prevent gradient vanishing.

I have n blocks at each stage, where n is the number of views. Since all the

input images contain the same human body with the same pose, these n blocks

should output the same human-specific parameters but possibly different camera

matrices. Thus I share the human parameter output across different views and the

24

camera transformation across different stages of the same view. More specifically, the

regression block at the ith stage and the jth view takes an input of (fj,Θ
i,j
c ,Θ

i,j
b), and

outputs the correction ∆Θi,j
c ,∆Θi,j

b , where fj denotes the jth image feature vector,

Θi,j
c is the camera matrices and Θi,j

b is the human parameters. After that, I pass

Θi+1,j
c = Θi,j

c + ∆Θi,j
c to the next stage of the block at the same view, while I pass

Θi,j+1
b = Θi,j

b +∆Θi,j
b to the next block of the chain (Fig. 2.1). At last, I compute the

total loss as the average of the prediction of all n views in the final stage. Different

from static multi-view CNNs which have to fix the number of inputs, I make use of

the RNN-like structure in a cyclic form to accept any number of views, and avoid

the gradient vanishing by using the error correction framework.

2.4.3 Training and Inferring

Intuitively I use n = 4 in my training process, since providing front, back,

left, and right views can often give sufficient information about the human body. I

choose a random starting view from the input images to account for the potential

correlation between the first view and the initial guess. A specific order of the input

views is not required since (a) the network parameters of each regression block are

identical, and (b) none of the camera rotation information are shared among different

views. To make use of large public single-view datasets, I copy each instance to 4

identical images as my input.

During inference, my framework can adapt to images with any number of views

n as shown below. If n ≤ 4, I use the same structure as used for training. I can pad

25

any of the input images to fill up the remaining views. As each view is independent

in terms of global rotation, the choice of which view to pad does not matter. If

n > 4, I extend my network to n views. Since this is an error-correction structure,

the exceeded values introduced by extra steps can be corrected back. Note that

the number of camera parameter corrections of each view always remains the same,

which is the number of stages.

Figure 2.2: Detailed network structure of the regression block at the ith stage and
the jth view. fj denotes the image feature of the jth view, Θi,j

c denotes the camera
parameters, and Θi,j

b denotes the human body parameters.

2.4.4 Implementation Details

During training, besides my synthetic dataset for enhancing the shape estima-

tion (detailed discussion in Sec. 2.5), I train on MS-COCO [70], MPI INF 3DHP [71]

and Human3.6M [72] datasets. Each mini-batch consists of half single view and half

multi-view samples. Different from HMR [32], I do not use the discriminator. This

is because (a) I initialized my parameters as the trained model of HMR [32], (b) the

ground-truth given by my dataset serves as the regularization to prevent unnatural

pose not captured by joint positions (e.g . foot orientations), and most importantly,

(c) the ground-truth SMPL parameters from their training dataset does not have

sufficient shape variety. Enforcing the discriminator to mean-shape biased dataset

26

will prevent the model to predict extreme shapes. I use 50-layer ResNet-v2 [73] for

image feature extraction. The detailed structure inside the regression block is shown

in Fig. 2.2. I fix the number of stages as 3 throughout the entire training and all

testing experiments. The learning rate is set to 10−5, and the training lasts for 20

epochs. Training on a GeForce GTX 1080 Ti GPU takes about one day.

2.5 Data Preparation

To the best of my knowledge, there is no public real-world dataset that cap-

tures motion sequences of human bodies, annotated with pose and shape (either

using a parametric model or raw meshes), with considerable shape variation and

loose garments. This lack of data, in turn, forces most of the previous human body

estimations to focus only on joints. The most recent work [32] that recovers both

pose and shape of human body does not impose an explicit shape-related loss func-

tion, so their model is not aware of varying human body shapes. In order to make

my model shape-aware under clothing, I need data with ground-truth human body

shapes where the garments should be dressed rather than pasted on the skin. A

large amount of data is needed for training; sampling real-world data that cap-

tures the ground-truth shape parameters is both challenging and time-consuming.

I choose an alternate method — using synthesized data. In this section, I propose

an automatic pipeline to generate shape-aware training data, to enhance the shape

estimation performance.

27

2.5.1 Parameter Space Sampling

I employ the SMPL model [30], which contains pose and shape parameters for

human body. Pose parameters are rotation angles of joints. To sample meaningful

human motion sequences in daily life, I use the CMU MoCap dataset [65] as my

pose subspace. The shape parameters are principle component weights. It is not

ideal to sample the shape parameters using Gaussian distribution; otherwise there

will be many more mean-shape values than extreme ones, resulting in an unbalanced

training data. To force the model to be more shape-aware, I choose to uniformly

sample values at [µ− 3σ, µ + 3σ] instead, where µ and σ represent the mean value

and standard deviation of the shape parameters.

2.5.2 Human Body Motion Synthesis

After combining CMU MoCap pose data with the sampled shape parameters,

it is likely that the human mesh generated by the SMPL model has inter-penetration

due to the shape difference. Since inter-penetration is problematic for cloth simula-

tion, I design an optimization scheme to avoid it in a geometric sense:

min ‖x− x0‖ s.t. g(x) + ε ≤ 0 (2.4)

where x and x0 stand for the vertex positions, g(x) is the penetration depth, and ε

is designed to reserve space for the garment. The main idea here is to avoid inter-

penetrations by popping vertices out of the body, but at the same time keeping

28

the adjusted distance as small as possible, so that the body shape does not change

much. This practical method works sufficiently well in most of the cases.

2.5.3 Cloth Registration and Simulation

Before I can start to simulate the cloth on each body generated, I first need

to register them to the initial pose of the body. To account for the shape variance

of different bodies, I first manually register the cloth to one of the body meshes.

I mark the relative rigid transformation T of the cloth. For other body meshes, I

compute and apply the global transformation, including both the transformation T

and the scaling between two meshes. At last, I use the similar optimization scheme

described in Sec. 2.5.2 to avoid any remaining collisions since it can be assumed that

the amount of penetration after the transformation is small.

I use ArcSim [74] as the cloth simulator. I do not change the material param-

eters during the data generation. However, I do randomly sample the tightness of

the cloth. I generally want both tight and loose garments in my training data.

2.5.4 Multi-View Rendering

I randomly apply different background and cloth textures in different sets of

images. I keep the same cloth textures but apply different background across dif-

ferent views. I use the four most common views (front, back, left, and right), which

are defined w.r.t. the initial human body orientation and fixed during the render-

ing. I sample 100 random shapes and randomly apply them to 5 pose sequences in

29

Figure 2.3: Examples of rendered synthetic images. I use a large number of real-
world backgrounds and cloth textures so that the rendered images are realistic and
diverse.

the CMU MoCap dataset (slow and fast walking, running, dancing, and jumping).

After resolving collisions described in Sec. 2.5.3, I register two sets of clothes on

it, one with a dress and the other with a t-shirt, pants, and jacket (Fig. 2.3). The

pose and garment variety is arguably sufficient because (a) they provide most com-

monly seen poses and occlusions, and (b) it is an auxiliary dataset providing shape

ground-truth which is jointly trained with real-world datasets that have richer pose

ground-truth. I render two instances of each of the simulated frames, with randomly

picked background and cloth textures. Given an average of 80 frames per sequence,

I have generated 32,000 instances, with a total number of 128,000 images. I set

the first 90 shapes as the training set and the last 10 as the test set. I ensure the

generalizability across pose and clothing by coupling my dataset with other datasets

with joint annotations (Sec. 2.4.4).

30

2.6 Results

I use the standard test set in Human3.6M and the validation set of MPI INF 3DHP

to show the performance gain by introducing multi-view input. Since no publicly

available dataset has ground-truth shape parameters or mesh data, or data contains

significantly different shapes from those within the normal range of BMI (e.g . over-

weight or underweight bodies), I test my model against prior work (as the baseline)

using the synthetic test set. Also, I test on real-world images to show that my model

is more shape-aware than the baseline method – qualitatively using online images

and quantitatively using photographs taken with hand-held cameras.

My method does not assume prior knowledge of the camera calibration so the

prediction may have a scale difference compared to the ground-truth. There is also

extra translation and rotation due to image cropping. To make a fair comparison

against other methods, I report the metrics after a rigid alignment, following [32].

2.6.1 Ablation Study

I conduct an ablation study to show the effectiveness of my model and the

synthetic dataset. In the experiments, HMR [32] is fine-tuned with the same learning

setting.

2.6.1.1 Pose Estimation

I tested my model on datasets using multi-view images to demonstrate the

strength of my framework. I use Mean Per Joint Position Error (MPJPE) of the

31

14 joints of the body, as well as Percentage of Correct Keypoints (PCK) at the

threshold of 150mm along with Area Under the Curve (AUC) with threshold range

0-150mm [75] as my metrics. PCK gives the fraction of keypoints within an error

threshold, while AUC computes the area under the PCK curve, presenting a more

detailed accuracy within the threshold.

I use the validation set of MPI INF 3DHP [32] as an additional test dataset

since it provides multi-view input. It is not used for validation during my training.

I also evaluated the original test set, which consists of single-view images.

Comparison: As shown in Table 2.1 and 2.2, under the same training condi-

tion, my model in single-view has similar, if not better, results in all experiments.

Meanwhile, my model in multi-view achieves much higher accuracy.

Method
MPJPE

w/ syn. training
MPJPE

w/o syn. training
HMR 60.14 58.1

Mine (single) 58.55 59.09
Mine (multi) 45.13 44.4

Table 2.1: Comparison results on Human3.6M using MPJPE. Smaller errors implies
higher accuracy.

Method
PCK/AUC/MPJPE

w/ syn. training
PCK/AUC/MPJPE

w/o syn. training
HMR 86/49/89 88/52/83

Mine (single) 88/52/84 87/52/85
Mine (multi) 95/63/62 95/65/59

Table 2.2: Comparison results on MPI INF 3DHP in PCK/AUC/MPJPE. Better
results have higher PCK/AUC and lower MPJPE.

32

2.6.1.2 Shape Estimation

To the best of my knowledge, there is no publicly available dataset that pro-

vides images with the captured human body mesh or other representation among a

sufficiently diverse set of human shapes. Since most of the images-based datasets are

designed for joint estimation, I decide to use my synthetic test dataset for large-scale

statistical evaluation, and later compare with [32] using real-world images.

Other than MPJPE for joint accuracy, I use the Hausdorff distance between

two meshes to capture the shape difference to the ground-truth. The Hausdorff

distance is the maximum shortest distance of any point in a set to the other set,

defined as follows:

d(V1, V2) = max(d̂(V1, V2), d̂(V2, V1)) (2.5)

d̂(V1, V2) = max
u∈V1

min
v∈V2
‖u− v‖2 (2.6)

where V1 and V2 are the vertex set of two meshes in the same ground-truth pose, in

order to negate the impact of different poses. Intuitively a Hausdorff distance of d

means that by moving each vertex of one mesh by no more than d away, two meshes

will be exactly the same.

Method
MPJPE/HD

w/ syn. training
MPJPE/HD

w/o syn. training
HMR 42/83 89/208

Mine (single) 44/65 102/283
Mine (multi) 27/53 84/273

Table 2.3: Comparison results on my synthetic dataset in MPJPE/Hausdorff Dis-
tance(HD). Better results have lower values.

33

As shown in Table 2.3, my model with multi-view input achieves the smallest

error values, when compared to two other baselines. After joint-training with syn-

thetic data, all models perform better in shape estimation, while maintaining similar

results using other metrics (Table 2.1 and 2.2), i.e. they do not overfit. The joint

errors of the HMR [32] are fairly good, so they can still recognize the synthesized

human in the image. However, a larger Hausdorff distance indicates that they lose

precision on the shape recovery.

Adding my synthetic datasets for training can effectively address this issue

and thereby provide better shape estimation. I achieved a much smaller Hausdorff

distance (with syn. training) even only using single view. This is because my

refinement framework is effectively deeper, aiming at not only the pose but also the

shape estimation, which is much more challenging than the pose-only estimation.

With the same method, multi-view inputs can further improve the accuracy of shape

recovery compared to results using only one single-view image.

2.6.2 Comparisons with Multi-View Methods

Since other multi-view methods only estimate human poses but not the entire

body mesh, I compare the pose estimation results to them in Human3.6M. As shown

in Table 2.4, I achieved state-of-the-art performance even when camera calibration is

unknown and no temporal information is provided. As stated in Sec. 2.6, unknown

camera parameters result in a scaling difference to the ground-truth, so the joint

error would be worse than what it actually is. After the Procrustes alignment that

34

accounts for this effect, my method achieves the best MPJPE compared to other

methods. Another potential source of the error is that my solution is constrained

in a parametric subspace, while other methods output joint positions directly. In

contrast, my method computes the entire human mesh in addition to joints and the

result can be articulated and animated directly.

Method MPJPE Known Camera? Run Time Temporal Opt? Articulated? Shape?
Rhodin et al . [76] - Yes 0.025fps Yes No Mix-Gaussian
Rhodin et al . [55] 98.2 Yes - Yes No No

Pavlakos et al . [57] 56.89 Yes - No No No
Trumble et al . [53] 87.3 Yes 25fps Yes No No
Trumble et al . [56] 62.5 Yes 3.19fps Yes No Volumetric
Núñez et al . [54] 54.21 Yes 8.33fps Yes No No
Tome et al . [58] 52.8 Yes - No No No

Mine 79.85
No 33fps No Yes Parametric

Mine (PA) 45.13

Table 2.4: Comparison on Human3.6M with other multi-view methods. My method
has comparable performance with previous work even without the assistance of cam-
era calibration or temporal information. PA stands for Procrustes Aligned results.

2.6.3 Real-World Evaluations

Method Standing Sitting
HMR [32] 7.72% 7.29%

BodyNet [4] 13.72% 29.30%
Mine (single) 6.58% 10.18%
Mine (multi) 6.23% 5.26%

Table 2.5: Comparison results on tape-measured data using average relative errors
(lower the better).

I first conduct a study on how my method performs differently with either

single- or multi-view inputs under various conditions. My test subjects have two

poses: standing and sitting, and the model is additionally tested on two sets of

variants from the images. One is slightly dimmed, and the other has a large black

35

occlusion at the center of the first image. I use the percentage of errors from common

body measurements used by tailors (i.e. lengths of neck, arm, leg, chest, waist, and

hip), which is obtained using direct tape measurements on the subjects. I report the

average relative error in Table 2.5. It is observed that single-view results are affected

by the “occluded sitting” case, while the multi-view input can largely reduce the

error. The reason why HMR is not impacted is that they uniformly output average

human shapes for all input images. I also report results from BodyNet [4]. BodyNet

outputs voxelized mesh and needs a time-consuming optimization to output the

SMPL parameters. Its accuracy largely depends on the initial guess. Therefore, it

resulted in a large amount of errors on the “sitting” case.

I also tested my model on other online images, where no such measurement

can be done. As shown in Fig. 2.4, HMR [32] can predict the body pose but fails

on inferring the person’s shape. On the contrary, my model not only refines the

relative leg orientations but also largely respects and recovers the original shape of

the body.

2.6.4 Multi-View Input in Daily Life

It is often difficult to have multiple cameras from different view angles cap-

turing a subject simultaneously. My model has the added benefit of not requiring

the multi-view input be taken with the exact same pose. As the model has an error

correction structure, it can be applied as long as the poses of the four views are

not significantly different. I do not impose any assumptions on the background, so

36

(a) The input image. (b) My result. (c) HMR.

Figure 2.4: Prediction results compared to HMR. My model can better capture the
shape of the human body. The recovered legs and chest are closer to the person in
the image.

the images can be even taken with a fixed camera and a “rotating” human sub-

ject, which is the typically case when the method is used in applications like virtual

try-on.

2.6.5 Extra Test Results

Table 2.6 and 2.8 shows the test results before Procrustes Alignment in MPI INF 3DHP

validation set and Human3.6M, respectively. The same conclusion about over-fitting

and multi-view improvement can also be drawn from these data.

Table 2.7 shows the result in MPI INF 3DHP test dataset. Since there is only

one view fed into the model, the results are similar.

37

Figure 2.5: Results on images with varying pose and shape. The top row is the
input image. The middle row shows my recovery results, and the bottom row shows
the results from HMR [32]. Mine achieves better shape recovery results.

Figure 2.6: Results on real-world multi-view images. The top row is the input image.
The middle row shows my recovery results, and the bottom row shows the results
from HMR [32]. HMR is only given the front view as input. Mine achieves better
pose recovery results due to more view angles.

2.6.6 Additional Results on Real-World Images

As shown in Fig. 2.5, given similar joint estimation results, my model captures

more image features that indicate the shape of the human body and thereby gives

38

Method
PCK/AUC/MPJPE

w/ syn. training
PCK/AUC/MPJPE

w/o syn. training
HMR [32] 66/33/141 71/36/129

Mine (single) 69/32/139 68/33/138
Mine (multi) 72/34/128 72/35/126

Table 2.6: Results on MPI INF 3DHP, validation set, before Procrustes aligment.

Method
PCK/AUC/MPJPE

w/ syn. training
PCK/AUC/MPJPE

w/o syn. training
HMR [32] 65/30/139 65/29/137

HMR (PA) 84/47/91 85/48/89
Mine 65/29/142 66/29/137

Mine (PA) 85/49/89 86/49/89

Table 2.7: Results on MPI INF 3DHP, test set. The results of [32] are tested on
cropped images by Mask-RCNN [77] so the values have minor difference than their
reported ones. Only single view is available in this dataset.

much better results in terms of human shape. My method can distinguish between

fat (Column 1-5) and slim (Column 6-8) persons, and between male and female.

On the other hand, the output shapes from HMR are almost the same, which is

around the mean shape value. By incorporating the shape-aware synthetic dataset,

my method largely improves the recovery when the input human body does not have

an average shape. I also tested with real-world multi-view images vs. single-view

HMR. I feed the front view of the subject to HMR but input all views into my model.

As shown in Fig. 2.6, the front view does not provide complete information of the

subject pose, resulting in large pose errors on the limbs. By sharing information

from more views (most importantly side views in this case), my model can effectively

reduce the ambiguity from the camera projection and thereby provide good pose

estimations across all views.

39

2.6.7 Comparison on Human3.6M with Single-View Methods

Table 2.8 shows the comparison with single-view results. As mentioned previ-

ously, the reason I don’t have much better accuracy before rigid alignment is that:

• My method does not assume known camera, resulting in an unknown scaling

difference to the real-world coordinates. After the Procrustes alignment, I

achieved similar (and better with multi-view) performance.

• My solution is constrained in a subspace. Other methods output joint positions

directly so they have more DOF and can be more accurate. However, my

output is more comprehensive, as it contains the entire human mesh in addition

to joints and the result can be articulated and animated directly.

Compared to Kolotouros et al . [62], my model is trained on a much more

diverse dataset (e.g . MS-COCO), which means that the accuracy may not be mini-

mized on the specific subset (Human 3.6M).

2.6.8 Results Without Training on Synthetic Data

I further tested another variant of my model, which is trained without synthetic

data (Fig. 2.7). It achieves better joint estimation, but the recovered human body

does not seem to be visually correct, especially at the end-effectors. This is because

the joint-only supervision does not impose any constraints on the orientations of

the end-effectors, resulting in an arbitrary guess. The HMR model [32] avoids this

by adding a discriminator, which however could have negative impact on shape

40

Method MPJPE PA-MPJPE
Tome et al . [35] 88.39 -
Rogez et al . [78] 87.7 71.6
Mehta et al . [31] 80.5 -

Pavlakos et al . [33] 71.9 51.23
Mehta et al . [75] 68.6 -
Sun et al . [79] 59.1 -
Zhou et al . [37] 107.26 -
Debra et al . [80] 55.5 -

*Kolotouros et al . [62] 74.7 51.9
*Omran et al . [60] - 59.9

*Pavlakos et al . [61] - 75.9
*HMR [32] 87.97 58.1

*Mine (single-view) 88.34 58.55
*Mine (multi-view) 79.85 45.13

Table 2.8: Results on Human3.6M. My method results in smaller reconstruction
errors compared to HMR [32]. * indicates methods that output both 3D joints and
shapes.

estimations, as discussed in Sec. 2.4.4. My synthetic dataset provides a supervision

to not only the joint positions but also the rotations, hence the model will learn a

prior at the end-effectors, demonstrating more natural results.

Figure 2.7: My model trained without synthetic data.

2.6.9 Detailed Errors on Real World Evaluation

The error percentages of each measure are shown in Table 2.9. Since the

length of the arm and leg can be seen clearly in the front view, both inputs provide a

41

reasonably good estimation. However, given more views, my model can significantly

reduce the error on other measurements, especially on those of chest, waist, and hip.

I found that image illuminance has a negligible effect on the recovery result, which is

due to the translation invariance of the convolutional layers. Occlusion has a notable

impact on the recovery using only a single-view image, given only one view of the

human body. However, by incorporating more views using my network model, the

estimation can be considerably improved, indicating that the model using multi-view

images is more robust to occlusion than with a single-view image as input.

error % Regular Dimmed Partly Occluded
input Standing Sitting Standing Sitting Standing Sitting

of views Single Multi Single Multi Single Multi Single Multi Single Multi Single Multi
neck 1.12 12.19 0.048 3.53 0.58 11.31 0.39 2.55 0.45 11.28 22.11 6.11
arm 4.76 4.22 8.03 7.33 6.21 4.95 8.10 6.89 5.20 3.82 7.20 6.70
leg 6.65 4.66 2.94 3.46 5.18 3.92 2.83 3.64 2.53 3.54 4.94 4.24

chest 4.59 7.72 8.40 3.1 6.20 7.20 8.13 3.19 19.80 1.57 30.04 13.72
waist 2.42 12.80 5.46 0.70 3.73 11.98 5.01 0.0084 13.78 8.52 30.05 10.61
hip 8.88 0.62 11.88 5.83 11.36 0.12 11.78 5.50 15.08 1.65 15.95 7.54

error % Regular Dimmed Partly Occluded
input Standing Sitting Standing Sitting Standing Sitting

method HMR BodyNet HMR BodyNet HMR BodyNet HMR BodyNet HMR BodyNet HMR BodyNet
neck 10.4 2.9 4.8 26.3 8.4 1.6 4.6 26.2 9.2 3.9 5.7 6.8
arm 6.1 21.3 9.8 25.6 8.6 22.8 9.7 23.6 8.1 19.5 9.7 9.6
leg 7.9 6.3 1.8 4.4 4.3 6.6 1.8 3.3 5.1 6.2 2.1 3.0

chest 11.2 26.3 11.7 51.9 11.7 24.9 11.6 41.3 11.9 24.9 11.6 21.3
waist 9.4 9.0 8.7 42.7 9.4 7.7 8.5 33.7 9.7 8.3 8.4 11.4
hip 1.25 19.2 7.8 79.8 3.5 18.8 7.7 80 2.9 17 5.5 36.9

Table 2.9: Percentages of errors in common measurements of the human body under
various lighting conditions using single-view vs. multi-view images. The multi-view
model performs significantly better in estimating measurements of chest, waist, and
hip, and is more robust, given variations in lighting and partial occlusion.

2.6.10 Evaluation on 3D People in the Wild.

I have conducted the evaluation on 3D People in the Wild dataset. As shown in

Table 2.10, although the dataset consists of single view images of only a few subjects

with nearly standard shapes, my model achieved better accuracy over HMR, while

Alldieck et al . did not generalize well. The metric I used is mean joint error for

42

pose, and mean vertex error with ground-truth pose for shape.

2.6.11 Running Time

The previous work [32] trained 55 epochs for 5 days, while mine trained 20

epochs for 1 day. I list the training time here for reference, but it is actually not

comparable since the batch size, epoch size and GPU type are not the same. In

my environment, the inference time of HMR [32] is 2 microseconds while mine takes

7.5 (per view). This is because my network has a deeper structure to account for

multiple views.

Method Mean Joint Err. Mean Vertex Err. (GT Pose)

HMR 93.77 21.71
Alldieck et al . [68] 169.61 47.07

Mine 96.86 20.96

Table 2.10: Evaluation on an unseen single-view dataset: 3D People in the Wild.
Values are mean joint error for pose and mean vertex error with ground-truth pose.
My method has smaller errors than Alldieck et al .

2.7 Conclusion and Future Work

I proposed a novel multi-view multi-stage framework for pose and shape es-

timation. The framework is trained on datasets with at most 4 views but can

be naturally extended to an arbitrary number of views. Moreover, I introduced

a physically-based synthetic data generation pipeline to enrich the training data,

which is very helpful for shape estimation and regularization of end effectors that

traditional datasets do not capture. Experiments have shown that my trained model

43

can provide equally good pose estimation as state-of-the-art using single-view im-

ages, while providing considerable improvement on pose estimation using multi-view

inputs and a better shape estimation across all datasets.

While synthetic data improves the diversity of human bodies with ground-

truth parameters, a more convenient cloth design and registration are needed to

minimize the performance gap between real-world images and synthetic data. In

addition, other variables such as hair, skin color, and 3D backgrounds are subtle

elements that can influence the perceived realism of the synthetic data at the higher

expense of a more complex data generation pipeline. With the recent progress in

image style transfer using GAN [81], a promising direction is to transfer the synthetic

result to more realistic images to further improve the learning result.

This work has been published in the proceedings of the International Confer-

ence on Computer Vision (ICCV) 2019.

44

Chapter 3: Differentiable Simulation for Material Optimization

3.1 Introduction

Given the body estimation results in Chapter 2, the main task for building a

virtual try-on system is to dress the given body with virtual garments. However,

creating a cloth mesh that faithfully represents a real garment in a digital system is

not easy. First, the geometry of the mesh needs to be designed well to fit the body.

Second, the fabric materials of the designed garment are even more challenging to

model correctly. While the geometry of the garment can still be intuitively hand

crafted by experienced artists or designers, it is difficult to determine the fabric

materials that exhibit mechanical properties closely resembling the real ones. There

are two possible approaches to achieve this material cloning/estimation task. One

way is to use supervised machine learning on manually labelled material data, which

is labor-intensive and error-prone. The other method makes use of the geometric

similarity instead of the direct material label, but needs a module that can compute

the analytic relationship between the resulting geometry and the estimations or

guesses of the fabric materials. Differentiable physics that can derive gradients

regarding the simulation inputs can offer such a capability. With the differentiable

simulation, one can either use an optimizer or train a network model to predict the

45

materials from the input, and compute its geometric appearance analytically. After

comparing with the target shapes, a loss can then be created and back-propagate

to the network, guiding the learning in a more intuitive way.

In this chapter, I propose a differentiable cloth simulation algorithm. First, I

use dynamic collision detection since the actual collision pairs are very sparse. The

collision response is solved by quadratic optimization, for which I can use implicit

differentiation to compute the gradient. I directly solve the equations derived from

implicit differentiation by using the QR decomposition of the constraint matrix,

which is much smaller than the original linear system and is often of low rank.

This approach reduces the gradient computation to a linear system of a small up-

per triangular matrix (the R component of the decomposition), which enables fast

simulation and backpropagation.

My experiments indicate that the presented method makes differentiable cloth

simulation practical. Using my method, the largest size of the linear system is 10x-

20x smaller than the original solver in the backpropagation of the collision response,

and the solver is 60x-130x faster. I demonstrate the potential of differentiable cloth

simulation in a number of application scenarios, such as physical parameter esti-

mation and motion control of cloth. With only a few samples, the differentiable

simulator can optimize its input variables to fit the data, thereby inferring physical

parameters from observations and reaching desired control goals.

46

3.2 Related Work

Differentiable physics. With recent advances in deep learning, there has been

increasing interest in differentiable physics simulation, which can be combined with

other learning methods to provide physically consistent predictions. Belbute-Peres

et al . [13] and Degrave et al . [14] proposed rigid body simulators using a static for-

mulation of the linear complementarity problem (LCP) [82, 83]. Toussaint et al . [15]

developed a robot reasoning system that can achieve user-defined tasks and is based

on differentiable primitives. Hu et al . [16] implemented a differentiable simulator

for soft robots based on the Material Point Method (MPM). They store the object

data at every simulation step so that the gradient can be computed out of the box.

Schenck and Fox [17] embedded particle-based fluid dynamics into convolutional

neural networks, with precomputed signed distance functions for collision handling.

They solved or avoided collisions by assuming special object shapes, transferring to

an Eulerian grid, or solving the corresponding collision constraint equation.

None of these methods can be applied to cloth simulation. First, cloth is a 2D

surface in a 3D world; thus methods that use an Eulerian grid to compute material

density, such as MPM [16], are not applicable. Second, the collision constraints in

cloth simulation are more dynamic and complex given the high number of degrees

of freedom; thus constructing a static dense LCP for the entire system [13, 14] or

constructing the overall state transition graph [15] is inefficient and usually impos-

sible for cloth of common resolution, since contact can happen for every edge-edge

or vertex-face pair. Lastly, the shape of cloth changes constantly so self-collision

47

cannot be handled by precomputed signed distance functions [17].

In contrast, my method uses dynamic collision detection and computes the

gradients of the collision response by performing implicit differentiation on the

quadratic optimization used for computing the response. I utilize the low dimension-

ality and rank of the constraint matrix in the quadratic optimization and minimize

the computation needed for the gradient propagation by giving an explicit solution

to the linear system using QR decomposition of the constraint matrix.

Deep learning and physics. Supervised deep networks have been used to approx-

imate physical dynamics. Mrowca et al . [84] and Li et al . [85] learned interaction

networks to model particle systems. Ingraham et al . [86] trained a model to predict

protein structures from sequences using a learnable simulator; the simulator predicts

the deformation energy as an approximation to the physical process. Deep networks

have also been used to support the simulation of fluid dynamics [87, 88, 89]. My

method differs from many works that use deep networks to approximate physical

systems in that I backpropagate through the true physical simulation. Thus my

method conforms to physical law regardless of the scale of the problem. It can also

naturally accept physical parameters as input, which enables learning from data.

Deep learning and cloth. Coupling cloth simulation with deep learning has be-

come a popular way to solve problems such as detail refinement, garment retargeting,

and material estimation. Yang et al . [21] proposed a recurrent model to estimate

physical cloth parameters from video. Lähner et al . [23] trained a GAN to generate

wrinkles on a coarse garment mesh which can then be automatically registered to a

48

human body using PCA. Gundogdu et al . [8] trained a graph convolutional frame-

work to generate drapes and wrinkles given a roughly registered mesh. Santesteban

et al . [90] developed an end-to-end retargeting network using a parametric human

body model with displacements to represent the cloth.

These applications may benefit from my method. For garment retargeting

problems, the relationship between body pose and vertex displacement is made ex-

plicit via the computed gradient, which can then be applied in network regularization

for better performance. For parameter estimation, the differentiable simulation pro-

vides an optimization-based solution rather than a learning-based one. Instead of

learning statistics from a large amount of data, I can directly apply gradient-based

optimization via the simulator, which does not require any training data.

3.3 Differentiable Cloth Simulation

In this section, I introduce the main algorithms for the gradient computation.

In general, I follow the computation flow of the common approach to cloth simula-

tion: discretization using the finite element method [91], integration using implicit

Euler [27], and collision response on impact zones [74, 92]. I use implicit differen-

tiation in the linear solve and the optimization in order to compute the gradient

with respect to the input parameters. The discontinuity introduced by the collision

response is negligible because the discontinuous states constitute a zero-measure set.

During the backpropagation in the optimization, the gradient values can be directly

computed after QR decomposition of the constraint matrix.

49

3.3.1 Cloth Simulation Basics

Generally, cloth simulation includes three steps: force computation, dynamic

solve, and collision handling. Extra steps, such as plasticity handling and strain

limiting, are omitted since they are not essential components of a basic cloth simu-

lation.

3.3.1.1 Force Computation

For external forces, the most common ones are gravity and wind forces, which

are both straightforward. I focus on internal, constraint and frictional forces here.

Clothes are usually modeled as a 2D manifold mesh in 3D space. I apply Finite

Element Method (FEM) to compute internal forces. For each triangle face in the

mesh, I compute the deformation gradient as a variable of the strain:

F =
∂x

∂X
(3.1)

Here, x is the current 3D position of the triangle, and X is their coordinate in

the 2D material space. Then, the stress (or internal forces) is computed using the

deformation gradient F. Usually a strain energy E is defined and I use its negative

gradient as the force. In my base simulator, the stress is defined as a piece-wise

linear function regarding the Green-Lagrange Strain, defined by Wang et al . [93]:

E =
1

2
(F>F− I) (3.2)

50

Note that due to the geometric modeling of the cloth, there is no force caused

by the thickness of the cloth. Most simulators use an extra ‘bending force’ as a

compensation, following Grinspun et al . [94]. The bending force is defined between

two adjacent faces when their dihedral angle is not a resting one.

The other two categories are relatively simpler. Constraint forces are defined

as the negative gradient of the constraint energy, while frictional forces are created

when two objects are in close proximity and have relative motions.

3.3.1.2 Dynamic Solve

In the simplest case, I solve Ma = f for the acceleration and update the

position and velocity accordingly, as shown in Algorithm 1. This Forward Euler

method suffers from the well-known stability issue and often limits the time step

size for the simulation. In order to take larger step for faster simulation, Backward

Euler is often used. More specifically, I want my acceleration to match the force

computed in the next time step:

M
∆v

∆t
= f(x + ∆x) = f(x + ∆t(v + ∆v)) (3.3)

By using Taylor Expansion, I have:

(M−∆t2
∂f

∂x
)∆v = ∆tf(x + ∆tv) (3.4)

51

So the matrix used in the linear solve (Sec. 3.3.3) is defined as:

M̂ = M−∆t2
∂f

∂x
(3.5)

As long as I have the Jacobian of the forces ∂f
∂x

, I can compute a more stable result

of ∆v and can apply larger ∆t, as discussed by Baraff and Witkin [27].

3.3.1.3 Collision Handling

As introduced in Sec. 3.3.4, I used continuous collision detection between two

simulation steps to detect all possible collisions. When two faces collide with each

other, there are two different collision types: vertex-face collision and edge-edge

collision. The common trait is that at time of collision, the four involved vertices

are in the same plane. Based on this, I can develop and solve a cubic equation

regarding the time of collision, t (Sec. 3.3.4).

When the collision is detected, I need to form the corresponding constraint at

time t:

(
4∑

k=1

wkxk(t)

)
· n ≥ d (3.6)

Here, wk is the weight parameter, xk(t) is the vertex position at time t, n is the

normal of the plane, and d is the cloth thickness. The weight parameters are de-

termined using barycentric coordinates of the intersection point in the face (in the

vertex-face collision case) or on the edges (in the edge-edge collision case).

52

I consider w and n as constants during the optimization, and xk(t) is lin-

early interpolated between two time steps. So it is a linear constraint regarding x.

Combining all constraints together, I have:

Gx + h ≤ 0. (3.7)

In the collision response phase, I want to introduce minimum energy to move

the vertex away so that all constraints can be satisfied. Therefore, I form this

optimization as a QP problem, as shown later in Sec. 3.3.5.

3.3.2 Overview

I begin by defining the problem formally and providing common notation. A

triangular mesh M = {V , E ,F} consists of sets of vertex states, edges, and faces,

where the state of the vertices includes both position x and velocity v. Given a

cloth meshMt together with obstacle meshesMobs
t at step t, a cloth simulator can

compute the mesh stateMt+1 at the next step t+1 based on the computed internal

and external forces and the collision response. A simple simulation pipeline is shown

in Algorithm 1, where M is the mass matrix, f is the force, and a is the acceleration.

For more detailed description of cloth simulation, please refer to Sec. 3.3.1. All

gradients except the linear solve (Line 4 in Algorithm 1) and the collision response

(Line 7) can be computed using automatic differentiation in PyTorch [95].

53

Algorithm 1: Cloth simulation

1: v0 ← 0
2: for t = 1 to n do
3: M, f ← compute forces(x,v)
4: at ←M−1f
5: vt ← vt−1 + at∆t
6: xt ← xt−1 + vt∆t
7: xt ← xt+ collision response(xt,vt,x

obs
t ,vobst)

8: vt ← (xt − xt−1)/∆t
9: end for

3.3.3 Derivatives of the Physics Solve

In modern simulation algorithms, implicit Euler is often used for stable inte-

gration results. Thus the mass matrix M used in Algorithm 1 often includes the

Jacobian of the forces. I denote it below as M̂ in order to mark the difference. A

linear solve will be needed to compute the acceleration since it is time consuming to

compute M̂−1. I use implicit differentiation to compute the gradients of the linear

solve. Given an equation M̂a = f with a solution z and the propagated gradient

∂L
∂a
|a=z, where L is the task-specific loss function, I can use the implicit differentiation

form

M̂∂a = ∂f − ∂M̂a (3.8)

to derive the gradient as

∂L
∂M̂

= −daz
> ∂L

∂f
= d>a , (3.9)

54

where da is obtained from the linear system

M̂>da =
∂L
∂a

>
. (3.10)

The proof is as follows. I take ∂L
∂f

as an example here, the derivation of ∂L
∂M̂

is

similar:

∂L
∂f

=
∂L
∂a
· ∂a

∂f
= d>a M̂ · M̂†I = d>a . (3.11)

The first equality is given by the chain rule, the second is given by Equations 3.8

and 3.10, and M̂† is the pseudoinverse of matrix M̂.

3.3.4 Dynamic Collision Detection and Response

As mentioned in Sec. 3.1, a static collision solver is not suitable for cloth

because the total number of possible collision pairs is very high: quadratic in the

number of faces. A common approach in cloth simulation is to dynamically detect

collision on the fly and compute the response. I use a bounding volume hierarchy

for collision detection [96], and non-rigid impact zones [92] to compute the collision

response.

Specifically, I solve a cubic equation to detect the collision time t of each

vertex-face or edge-edge pair that is sufficiently close to contact:

(x1 + v1t) · (x2 + v2t)×(x3 + v3t) = 0, (3.12)

55

where xk and vk (k = 1, 2, 3) are the relative position and velocity to the first

vertex. A solution that lies in [0, 1] means that a collision is possible before the next

simulation step. After making sure that the pair indeed intersects at time t, I set

up one constraint for this collision, forcing the signed distance of this collision pair

at time t to be no less than the thickness of the cloth δ. The signed distance of

the vertex-face or edge-edge pair is linear to the vertex position x. The set of all

constraints then makes up a quadratic optimization problem as discussed later in

Sec. 3.3.5.

For backpropagation, I need to compute the derivatives of the solution t since

it is related to the parameters of the constraints. I use implicit differentiation here

to simplify the process. Generally, given a cubic equation ax3 + bx2 + cx + d = 0,

its implicit differentiation is of the following form:

(3ax2 + 2bx+ c)∂x = ∂ax3 + ∂bx2 + ∂cx+ ∂d. (3.13)

Therefore I have

[
∂x
∂a

∂x
∂b

∂x
∂c

∂x
∂d

]
=

1

3ax2 + 2bx+ c

[
x3 x2 x 1

]
. (3.14)

3.3.5 Derivatives of the Collision Response

A general approach to integrating collision constraints into physics simulation

has been proposed by Belbute-Peres et al . [13]. However, as mentioned in Sec-

tions 3.1 and 3.2, constructing a static LCP is often impractical in cloth simulation

56

because of high dimensionality. Collisions that actually happen in each step are

very sparse compared to the complete set. Therefore, I use a dynamic approach

that incorporates collision detection and response.

Collision handling in my implementation is based on impact zone optimiza-

tion [74]. It finds all colliding instances using continuous collision detection (Sec. 3.3.4)

and sets up the constraints for all collisions. In order to introduce minimum change

to the original mesh state, I develop a QP problem to solve for the constraints. Since

the signed distance function is linear in x, the optimization takes a quadratic form:

minimize
z

1

2
(z− x)>W(z− x) (3.15)

subject to Gz + h ≤ 0 (3.16)

where W is a constant diagonal weight matrix related to the mass of each vertex,

and G and h are constraint parameters. I further denote the number of variables

and constraints by n and m, i.e. x ∈ Rn, h ∈ Rm, and G ∈ Rm×n. Note that this

optimization is a function with inputs x, G, and h, and output z. My goal here is

to derive ∂L
∂x

, ∂L
∂G

, and ∂L
∂h

given ∂L
∂z

, where L refers to the loss function.

When computing the gradient using implicit differentiation [97], the dimen-

sionality of the linear system (Equation 3.20) can be too high. My key observation

here is that n >>m > rank(G), since one contact often involves 4 vertices (thus 12

variables) and some contacts may be linearly dependent (e.g . multiple adjacent col-

lision pairs). OptNet [97] solves a linear equation of size m+ n, which is more than

necessary. I introduce a simpler and more efficient algorithm below to minimize the

57

size of the linear equation.

3.3.5.1 QR Decomposition

To make things simpler, I assume that G is of full rank in this section. At

global minimum z∗ and λ∗ of the Lagrangian, the following holds for stationarity

and complementary slackness conditions:

Wz∗ −Wx + G>λ∗ = 0 (3.17)

D(λ∗)(Gz∗ + h) = 0, (3.18)

with their implicit differentiation as

 W G>

D(λ∗)G D(Gz∗ + h)


∂z

∂λ

 =

 W∂x− ∂G>λ∗

−D(λ∗)(∂Gz∗ + ∂h)

 , (3.19)

where D() transforms a vector to a diagonal matrix. Using similar derivation to

Sec. 3.3.3, solving the equation

W G>D(λ∗)

G D(Gz∗ + h)


dz

dλ

 =

∂L∂z
>

0

 (3.20)

58

can provide the desired gradient:

∂L
∂x

= dTz W (3.21)

∂L
∂G

= −D(λ∗)dλz
∗> − λ∗d>z (3.22)

∂L
∂h

= −dTλD(λ∗). (3.23)

(See Sec. 3.3.6.2 for the derivation.) However, as mentioned before, directly solving

Equation 3.20 may be computationally expensive in my case. I show that by per-

forming a QR decomposition, the solution can be derived without solving a large

system.

Figure 3.1: Impact of perturbation. A small perturbation of the target position will
cause the final result to move along the constraint surface.

To further reduce computation, I assume that no constraint is ‘over-satisfied’,

i.e. Gz∗ + h = 0. I will remove these assumptions later in Sec. 3.3.5.2. I compute

the QR decomposition of
√

W
−1

G>:

√
W
−1

G> = QR. (3.24)

59

The solution of Equation 3.20 can be expressed as

dz =
√

W
−1

(I−QQ>)
√

W
−1∂L
∂z

>
(3.25)

dλ = D(λ∗)−1R−1Q>
√

W
−1∂L
∂z

>
, (3.26)

where
√

W
−1

is the inverse of the square root of a diagonal matrix. The result

above can be verified by substitution in Equation 3.20.

The intuition behind Equation 3.25 is as follows. When perturbing the original

point x in an optimization, the resulting displacement of z will be moving along the

surface of Gx + h = 0, which will become perpendicular to the normal when the

perturbation is small. (Fig. 3.1 illustrates this idea in two dimensions.) This is

where the term I − QQ> comes from. Note that
√

W
−1

G> is an n×m matrix,

where n >>m and the QR decomposition will only take O(nm2) time, compared to

O((n+m)3) in the original dense linear solve. After that I will need to solve a linear

system in Equation 3.26, but it is more efficient than solving Equation 3.20 since

it is only of size m, and R is an upper-triangular matrix. In my collision response

case, where n ≤ 12m, my method can provide up to 183x acceleration in theory.

The speed-up in my experiments (Sec. 3.4) ranges from 60x to 130x for large linear

systems.

3.3.5.2 Low-rank Constraints

The algorithm above cannot be directly applied when G is low-rank, or when

some constraint is not at boundary. This will cause R or D(λ∗) to be singular. I now

60

show that the singularity can be avoided via small modifications to the algorithm.

First, if λk = 0 for the kth constraint then dλk doesn’t matter. This is because

the final result contains only components of D(λ∗)dλ but not dλ alone, as shown

in Equations 3.22 and 3.23. Intuitively, if the constraint is over-satisfied, then

perturbing the parameters of that constraint will not have impact on z. Based on

this observation, I can remove the constraints in G when their corresponding λ is 0.

Next, if G is of rank k, where k < m, then I can rewrite Equation 3.24 as

√
W
−1

G> = Q1[R1 R2], (3.27)

where Q1 ∈ Rn×k, R1 ∈ Rk×k, and R2 ∈ Rk×(m−k). Getting rid of R2 (i.e. removing

those constraints from the beginning) does not affect the optimization result, but

may change λ so that the computed gradients are incorrect. Therefore, I need to

transfer the Lagrange multipliers to the linearly independent terms first:

λ1 ← λ1 + R−1
1 R2λ2, (3.28)

where λ1 and λ2 are the Lagrange multipliers corresponding to the constraints on

R1 and R2.

61

3.3.6 Derivations of the Gradient Computation

3.3.6.1 Proof of Equation 3.9

I now show that ∂L
∂M̂

= −daz
>. For convenience of expression, I split the

matrix M̂ into elements {M̂i,j}. Setting irrelevant variables to zero, I obtain from

Equation 3.8 that:

M̂∂a = −∂M̂z =


0

−∂M̂i,jzj

0

 (3.29)

Hence, I have:

∂a

∂M̂i,j

= M̂†


0

−zj

0

 (3.30)

Similar to Equation 3.11, I arrive at:

∂L
∂M̂i,j

=
∂L
∂a
· ∂a

∂M̂i,j

= d>a M̂ · M̂†


0

−zj

0

 = −dai
zj (3.31)

62

Combining all elements in M̂ together I have:

∂L
∂M̂

= −daz
> (3.32)

3.3.6.2 Proof of Equation 3.20-3.23

Let ẑ =

[
z λ

]>
. Using Equation 3.19 I have:

∂ẑ

∂x
=

 W G>

D(λ∗)G D(Gz∗ + h)


† W

0

 (3.33)

∂ẑ

∂h
=

 W G>

D(λ∗)G D(Gz∗ + h)


†  0

−D(λ∗)

 (3.34)

Then, the chain rule can yield the results as:

∂L
∂x

=
∂L
∂ẑ
· ∂ẑ

∂x
(3.35)

=

[
d>z d>λ

] W G>

D(λ∗)G D(Gz∗ + h)

 ·
 W G>

D(λ∗)G D(Gz∗ + h)


† W

0


(3.36)

= d>z W (3.37)

63

∂L
∂h

=
∂L
∂ẑ
· ∂ẑ

∂h
(3.38)

=

[
d>z d>λ

] W G>

D(λ∗)G D(Gz∗ + h)

 ·
 W G>

D(λ∗)G D(Gz∗ + h)


†  0

−D(λ∗)


(3.39)

= −d>λD(λ∗) (3.40)

Similarly as Sec. 3.3.6.1, I split the matrix G into elements {Gi,j}. From Equa-

tion 3.19 I have:

 W G>

D(λ∗)G D(Gz∗ + h)

 ∂ẑ =

 −∂G>λ∗

−D(λ∗)∂Gz∗

 =



0

−∂Gi,jλ
∗
i

0

−λ∗i∂Gi,jz
∗
j

0


(3.41)

which indicates that:

∂ẑ

∂Gi,j

=

 W G>

D(λ∗)G D(Gz∗ + h)


†



0

−λ∗i

0

−λ∗i z∗j

0


(3.42)

64

So the chain rule gives:

∂L
∂Gi,j

=
∂L
∂ẑ
· ∂ẑ

∂Gi,j

(3.43)

=

[
d>z d>λ

] W G>

D(λ∗)G D(Gz∗ + h)

 ·
 W G>

D(λ∗)G D(Gz∗ + h)


†



0

−λ∗i

0

−λ∗i z∗j

0


(3.44)

= −dzjλ
∗
i − dλiλ

∗
i z
∗
j (3.45)

Combining all elements in G together, I have:

∂L
∂G

= −λ∗d>z −D(λ∗)dλz
∗> (3.46)

3.4 Experiments

I conduct three experiments to showcase the power of differentiable cloth sim-

ulation. First, I use an ablation study to quantify the performance gained by using

my method to compute the gradient. Next, I use the computed gradient to optimize

the physical parameters of cloth. Lastly, I demonstrate the ability to control cloth

motion.

65

3.4.1 Ablation Study

As mentioned in Sec. 3.3.5.1, my method for computing the gradients of the

optimization can achieve a speed-up of up to 183x in theory. I conduct an ablation

study to verify this estimate in practice. In order to clearly measure the timing

difference, I design a scenario with many collisions. I put a piece of cloth into an

upside-down square pyramid, so that the cloth is forced to fold, come into frequent

contact with the pyramid, and collide with itself, as shown in Fig. 3.2.

Figure 3.2: Example frame from

the ablation study. A piece of

cloth is crumpled inside a square

pyramid, so as to generate a large

number of collisions.

I measure the running time of backpropa-

gation in each quadratic optimization and also

the running time of the physics solve as a ref-

erence. With all other variables fixed, I com-

pare to the baseline method where the gradients

are computed by directly solving Equation 3.20.

Timings are listed in Tab. 3.1. In this experi-

ment, the backpropagation of the physics solve

takes from 0.007s to 0.5s, which, together with

the timings of the baseline, implies that the collision handling step is the critical

bottleneck when there are many collisions in the scene. The results in Tab. 3.1

show that my proposed method can significantly decrease the matrix size required

for computation and thus the actual running time, resolving the bottleneck in back-

propagation.

The experimental results also match well with the theory in Sec. 3.3.5. Each

66

collision involves a vertex-face or edge-edge pair, which both have 4 vertices and 12

variables. Therefore, the original matrix size (n + m = 13m) should be about 13

times bigger than in my method (m). In my experiment, the ratio of the matrix

size is indeed close to 13. Possible reasons for the ratio not being exactly 13 include

(a) multiple collision pairs that share the same vertex, making n smaller, and (b)

the constraint matrix can be of low rank, as described in Sec. 3.3.5.2, making the

effective m smaller in practice.

Mesh

resolution

Baseline Mine Speedup

Matrix size Runtime (s) Matrix size Runtime (s) Matrix size Runtime

16x16 599± 76 0.33± 0.13 66± 26 0.013± 0.0019 8.9 25

32x32 1326± 23 1.2± 0.10 97± 24 0.011± 0.0023 13 112

64x64 2024± 274 4.6± 0.33 242± 47 0.072± 0.011 8.3 64

Table 3.1: Statistics of the backward propagation with and without my method
for various mesh resolutions. I report the average values in each cell with the cor-
responding standard deviations. By using my method, the runtime of gradient
computation is reduced by up to two orders of magnitude.

3.4.2 Material Estimation

In this experiment, my aim is to learn the material parameters of cloth from

observation. The scene features a piece of cloth hanging under gravity and subjected

to a constant wind force, as shown in Fig. 3.3. I use the material model from Wang

et al . [93]. It consists of three parts: density d, stretching stiffness S, and bending

stiffness B. The stretching stiffness quantifies how large the reaction force will be

when the cloth is stretched out; the bending stiffness models how easily the cloth

can be bent and folded.

I used the real-world dataset from Wang et al . [93], which consists of 10 dif-

67

ferent cloth materials. There are in total 50 frames of simulated data. The first 25

frames are taken as input and all 50 frames are used to measure accuracy. This is

a case-by-case optimization problem. My goal is to fit the observed data in each

sequence as well as possible, with no “training set” used for training.

In my optimization setup, I use SGD with learning rate ranging from 0.01

to 0.1 and momentum from 0.9 to 0.99, depending on the convergence speed. The

initial guess is the set of average values across all materials. I define the loss as

the average MSE across all frames. In order to speed up optimization, I gradually

increase the number of frames used. Specifically, I first optimize the parameters

using only 1 simulated frame. I proceed to the second frame after the loss decreases

to a certain threshold. This optimization scheme can help obtain a relatively good

guess before additional frames are involved.

Figure 3.3: Example

frame from the material

estimation scene for cloth

blowing in the wind.

As a simple baseline, I measure the total external

force and divide it by the observed acceleration to com-

pute the density. For the stretching stiffness, I simplify

the model to an isotropic one and record the maximum

deformation magnitude along the vertical axis. Since the

effect of the bending stiffness is too subtle to observe, I

directly use the averaged value as my prior. I also com-

pare my method with the L-BFGS optimization by Wang

et al . [93] using finite difference. I used the PyTorch L-

BFGS implementation and set the learning rate ranging from 0.1 to 0.2 depending

on the convergence speed.

68

For the performance measurement, I use the Frobenius norm normalized by

the target as the metric for the material parameters:

E(P) =
‖P−P0‖F
‖P0‖F

, (3.47)

where P and P0 are the estimated and the target physics parameters, which stand

for either density d, stretching stiffness S, or bending stiffness B. In order to show

the final visual effect, I also measure the average distance of the vertices between the

estimated one and the target normalized by the size of the cloth as another metric:

E(X) =
1

nTL

∑
1≤i≤T,1≤j≤n

‖Xi,j −Yi,j‖2, (3.48)

where L is the size of the cloth, and X and Y are T×n×3 matrices denoting the n

simulated vertex positions across T frames using the estimated parameter and the

target, respectively.

Tab. 3.2 shows the estimation result. I achieve a much smaller error in most

measurements in comparison to the baselines. The reason the stiffness matrices

do not have low error is that (a) a large part of them describes the nonlinear stress

behavior that needs a large deformation of the cloth and is not commonly observed in

my environment, (b) different stiffness values can sometimes provide similar results,

and (c) the bending force for common cloth materials is too small compared to

gravity and the wind forces to make an impact. The table shows that the linear

part of the stiffness matrix is optimized well. With the computed gradient using

69

my model, one can effectively optimize the unknown parameters that dominate the

cloth movement to fit the observed data.

Compared with regular simulators, my simulator is designed to be embedded

in deep networks. When gradients are needed, my simulator shows significant im-

provement over finite-difference methods, as shown in Tab. 3.2. Regular simulators

need to run one simulation for each input variable to compute the gradient, while

my method only needs to run once for all gradients to be computed. Therefore, the

more input variables there are during learning, the greater the performance gain

that can be achieved by my method over finite-difference methods.

Method
Runtime

(sec/step/iter)

Density

error (%)

Non-ln streching

stiffness error (%)

Ln streching

stiffness error (%)

Bending stiffness

error (%)

Simulation

error (%)

Baseline - 68 ± 46 74 ± 23 160 ± 119 70 ± 42 12 ± 3.0

L-BFGS [93] 2.89 ± 0.02 4.2 ± 5.6 64 ± 34 72 ± 90 70 ± 43 4.9 ± 3.3

Mine 2.03 ± 0.06 1.8 ± 2.0 57 ± 29 45 ± 41 77 ± 36 1.6 ± 1.4

Table 3.2: Results on the material parameter estimation task. Lower is better. ‘Ln’
stands for ‘linear’. Values of the material parameters are the Frobenius norms of the
difference normalized by the Frobenius norm of the target. Values of the simulated
result are the average pairwise vertex distance normalized by the size of the cloth.
My gradient-based method yields much smaller error than the baselines.

Figure 3.4: Example frame from the motion control experiment: dropping cloth into
a basket.

70

3.4.3 Motion Control

I further demonstrate the power of my differentiable simulator by optimizing

control parameters for motion control of cloth. The intended task is to drop a piece

of cloth into a basket, as shown in Fig. 3.4. The cloth is originally placed on a table

that is away from the basket. The system then applies external forces to the corners

of the cloth to lift it and drop it into the basket. The external force is applied for 3

seconds and can be changed during this period. The basket is a box with an open

top. A planar obstacle is placed between the cloth and the basket to increase the

difficulty of the task.

The initial control force is set to zero. The control network consists of two FC

layers, where the input (size 81×2×3) is the position and velocity of each vertex,

the hidden layer is of size 200, and the output is the control force (size 4×3). The

learning rate is 10−4 and the momentum is 0.5. The reported result is the best

among 10 trials.

I define the loss here as the squared distance between the center of mass of

the cloth and the bottom of the basket. To demonstrate the ability to embed the

simulator into neural networks, I also couple my simulator with a two-layer fully-

connected (FC) network that takes the mesh states as input and outputs the control

forces. My methods here are compared to two baselines. One of the baselines is a

simple method that computes the momentum needed at every time step. The entire

cloth is treated as a point mass and an external force is computed at each time

step to control the point mass towards the goal. Obstacles are simply neglected

71

in this method. The other baseline is the PPO algorithm, as implemented in Ray

RLlib [98]. The reward function is defined as the negative of the distance of the

center of mass of the cloth to the bottom of the basket.

Method Error (%) Samples

Point mass 111 –
PPO [98] 432 10,000
Mine 17 53
Mine+FC 39 108

Table 3.3: Motion control results. The table reports the smallest distance to the
target position, normalized by the size of the cloth, and the number of samples used
during training.

Tab. 3.3 shows the performance of the different methods and their sample

complexity. The error shown in the table is the distance defined above normalized

by the size of the cloth. My method achieves the best performance with a much

smaller number of simulation steps. The bottom of the basket in my setting has

the same size as the cloth, so a normalized error of less than 50%, as my methods

achieve, implies that the cloth is successfully dropped into the basket.

Figure 3.5: A motion control scene with more obstacles. The cloth needs to drop
down and slide through the slopes to get to the target position.

72

3.4.4 Collision-rich Motion Control

I here demonstrate an example of motion control application with richer col-

lisions. As shown in Figure 3.5, there is a series of obstacles above the basket that

preclude the cloth from falling directly into it. The variable settings are the same as

described in Sec. 3.4.3. My differentiable simulation provides the task with correct

gradients so that the cloth is deposited into the basket.

3.5 Conclusion

I presented a differentiable cloth simulator that can compute the analytical

gradient of the simulation function with respect to the input parameters. I used dy-

namic collision handling and explicitly derived its gradient. Implicit differentiation

is used in computing gradients of the linear solver and collision response. Exper-

iments have demonstrated that my method accelerates backpropagation by up to

two orders of magnitude.

I have demonstrated the potential of differentiable cloth simulation in two

application scenarios: material estimation and motion control. By making use of

the gradients from the physically-aware simulation, my method can optimize the

unknown parameters faster and more accurately than gradient-free baselines. Using

differentiable simulation, I can learn the intrinsic properties of cloth from observa-

tion.

One limitation of my existing implementation is that the current simulation

architecture is not optimized for large-scale vectorized operations, which introduces

73

some overhead. This can be addressed by a specialized, optimized simulation system

based solely on tensor operations.

This work has been published in the conference proceedings of Neural Infor-

mation Processing Systems (NeurIPS) 2019.

74

Chapter 4: Joint Estimation of Human and Garment from Video

4.1 Introduction

Chapter 2 and 3 introduce novel methods to estimate the human body and

garment material independently. It is not difficult to observe that the two tasks are

closely related. Jointly estimating both in an end-to-end system can help remov-

ing certain ambiguity originating from the input image. Moreover, estimating the

garment materials of a worn garment is a more challenging task than what Chapter

3 introduces; it does not assume known external forces or even garment geometry,

making differentiable physics not applicable under such a circumstance.

In this chapter, I introduce an end-to-end learning model that achieves both

garment geometry estimation and fabric material prediction at the same time. To

handle the dynamic geometry and different topologies of the garments and to pro-

vide a unified parametric model for the garments, I propose a two-level auto-encoder

network. The key observation is that classical point cloud encoders such as Point-

Net [99] are great for capturing global shapes, but not suitable for encoding the

local details. Multi-scale feature extraction not only decomposes the problem into

smaller partitions, but also decouples global and local features to enable larger cov-

erage on local shape learning. It is also critical to construct a continuous space that

75

includes different topological structures, since topology transitions often happen lo-

cally. During the estimation, I couple the human body inference with the garment

recovery to maximize the estimation accuracy of the two correlated tasks. Other

than traditional multi-tasking, I further introduce a closed-loop structure so that

the garment features of different scales can guide the body estimation to improve

the accuracy for both. Based on the temporal change of these garment features, I

can then perform accurate material classification accordingly. To sum up, my key

contributions include:

• The first end-to-end neural network that recovers fabric material(s) of a gar-

ment from one single RGB video (Section 4.3);

• A novel two-level auto-encoder for learning the latent space of garments through

multi-scale feature coupling (Section 4.4);

• Joint estimation of human body and apparels through a close-loop iterative

optimization (Section 4.5);

• A large dataset of garment motion sequences with wide variations of human

body, fabric materials, textures, and lightings (Section 4.6);

• The first garment prediction model that can account for arbitrary topologies

and use a feedback loop to the body estimation for prediction consistency

(Section 4.7).

My experiments show that the proposed network structure effectively increases the

capability and accuracy of the fabric material estimation. By using only a few frames

76

of a person wearing a garment, my model can faithfully reconstruct the garment

fabric material(s), using the recovered shape and motion of both the garment and

the human body as the conditioning in the material estimation task.

4.2 Related Work

Fabric material estimation. Researchers have been tackling different inverse

problems, including inverse cloth design [100], combinatorial material design [101],

BRDF parameter capturing [102], weaving pattern reconstruction [103], human ma-

terial perception [104, 105], and frictional coefficient estimation [106, 107]. As a

typical example of inverse problems, physical material estimation is a challenging

yet important component of scene understanding. Cloth material estimation is even

more challenging than most due to its highly dynamic motions. Previous works

study the task in a simplified and constrained scenario, and recover the materials

using statistical observation [108, 109], optimization [110, 111], or learning [21, 112].

In contrast, my method learns the cloth material from videos of a human wearing

garments, which is more general and widely applicable. More importantly, my

method makes use of the estimated multi-scale garment latent codes as input sig-

nal as well, which is shown to be much more useful in recovering overall garment

geometry with local details than the traditional image features.

Garment modeling and estimation. Garment geometry capturing or recov-

ery has been studied in computer graphics and computer vision. To address this

problem, non-learning methods employ symmetry with user input [113], optimiza-

77

tion [110, 114], or binocular data [115]. Recently, methods using deep learning have

been proposed for faster speed and more convenient usage [8, 10, 11, 12, 116, 117,

118, 119, 120, 121, 122]. In addition, direct garment modeling methods have also

been proposed using spherical parameterization [7] for estimation or displacement

map [123] for retargetting.

Different from displacement-based cloth representation [10], PCA-based mod-

els [9], and mesh-CNN-based methods [8], my garment model is universal to all

topologies, applicable to those not homotopy to human surfaces (e.g . long dresses),

and enabling semantic interpolation between different garments. Compared with

[7], my model generates a stand-alone garment mesh, which is easy to export and

retarget. More importantly, my method is the first end-to-end network that jointly

estimates the garment material together with its geometry.

This method focuses on the material estimation of garments. Without any

prior knowledge, I take an RGB video as input and recover the garment mesh, which

is then used for fabric material estimation. My method is substantially different from

most garment capturing or generation methods [90, 122, 124] regarding model input,

output, and assumptions.

Point cloud encoder and decoder. PointNet [99] was among the first network

model for encoding an unordered point set. Follow-on improvements include spatial

partition [125, 126, 127], edge convolution [128], local region filtering [129, 130], and

analogous convolutional operators [131].

Although these recent works have utilized hierarchical structure to some ex-

78

tent, their methods are not sufficient for auto-encoding the garment geometry or

topology. The key difference between garment auto-encoding and rigid gadgets

auto-encoding is that there are a large number of local details (e.g . wrinkles) due

to cloth’s highly deformable and dynamical nature. As a result, latent codes for

local details are necessary. Methods using random sampling [131] or farthest point

sampling [127] propose unstable representative points for similar input, thus not

suitable for local feature encoding. [131] used a stabilized version of self-organized

mapping (SOM) for representative point generation, but did not further encode the

local features. So this method [131] is still a single-level auto-encoder.

In contrast, my two-level auto-encoder for garments successfully encodes local

features, while capturing the global geometry. The trained latent code maintains

similarity between similar input point clouds – otherwise not achievable using un-

stable representative points in prior works.

Human reconstruction from images. Human estimation using RGB images

has been a popular research topic in deep learning for its importance in virtual

reality and computer animation. While early works propose network models for

only 2D/3D body skeletons [31, 132, 133], more recent works introduce techniques

to regress the entire human body – either using a parametric human model [2, 3]

or voxel-based representation [4, 5, 6]. Given the fact that the annotations in most

real-world datasets contain only joint positions, the learning process has been refined

in various ways [68, 134, 135, 136, 137].

In order to estimate the fabric material, I need to recover the garment shape

79

on the human body, which is an important problem rarely addressed in human

estimation tasks. In my pipeline, I use state-of-the-art human body predictions as

a strong prior for the garment estimation module. Given the focus of this paper,

I use video input solely for garment material estimation. Thereby, I do not review

related works on video-based pose estimation here. Instead, I refer the interested

readers to a recent survey [138].

4.3 Method Overview

I first give the formal problem definition below. Given a video clip showing a

person moving (e.g . walking, jumping, bending, etc), I estimate the fabric materials

of the garment worn by the person. By fabric materials, I refer to the physical

material parameters used in cloth simulation. I adopt the same material parameter

definition introduced in [93], which consists of 24 parameters for stretching stiffness

and 15 parameters for bending stiffness.

Due to the fact that the differences of the material parameter values do not

intuitively reflect the human visual perception, I follow the previous work [21] to

discretize the material parameter space based on the amount of deformations due to

external forces. Using sensitivity analysis [139], the stretching stiffness is split into

6 classes and 9 for the bending. Combining both dimensions will yield 54 different

material classes. As confirmed by [21], these 54 classes cover most of the common

materials, including polyester, cotton, nylon, rayon, and their combinations. For

example, one type of materials named ‘white-swim-solid’ consisting of 87% nylon

80

and 13% spandex, as measured by [93], fits in the discrete classification model with

the stretching label of 2 and the bending label of 3.

In this paper, I introduce an end-to-end deep neural network (Fig. 4.1) for

simultaneously estimating the garment geometry and its material type(s), along

with the human body. My key idea is that image features are not sufficient for

inferring garment materials; it is necessary to extract the garment geometry as

well for a more accurate estimation. To support different topologies of garments, I

choose point clouds for its geometry representation. To better account for the highly

dynamic garment surfaces, I train a two-level point cloud auto-encoder (Sec. 4.4) so

that it can learn the global shapes and local features of the garment to reduce the

total number of degrees of freedom. I use the SMPL model (see [30] for its rigorous

math definition) to represent the human pose and shape.

Figure 4.1: Overall network structure. Given an RGB video, I extract its image
features and estimate the body and garment shape frame by frame (Sec. 4.5.1). The
latter is decoded to obtain a garment mesh (Sec. 4.4). The temporal sequences of
image and garment are fed to an LSTM for material classification (Sec. 4.5.2).

I divide the estimation pipeline into two phases. First, I estimate the human

body and the cloth geometry in a frame-by-frame manner (Sec. 4.5.1). A closed-

loop optimization structure is used to improve the estimation accuracy of these

two correlated tasks. The garment geometry prediction module is conditioned on

81

the human body parameters, and at the same time provides corrective feedback to

the human body prediction module. I then feed the features of the image and the

garment geometry from each frame together to a temporal neural network for the

garment material estimation (Sec. 4.5.2). By sharing common features, providing

corrective feedback, and conditioning on outputs of closely-related tasks, my network

model can achieve higher estimation accuracy on all three tasks than independent

estimation baselines.

4.4 Garment Auto-encoder

I first set up an auto-encoder for the cloth model. Since the model is designed

Figure 4.2: The network structure of the garment auto-encoder. The point
cloud sampled from the original mesh is first fed to a global PointNet for coarse shape
features. Its representative point set is then obtained by decoding the global features
from an AtlasNet. From those points, I sample the local patches using K-nearest
neighbor and pass them to a local PointNet for detailed shape features. The local
decoder is then conditioned on the global latent code and the corresponding patch
center to recover the patches that are stitched together to form the reconstructed
point cloud.

not to assume fixed garment topology, I choose to use point clouds as the underlying

representation. Other representations, such as graph-based [140] or displacement-

based [10, 11], rely on either fixed graph structure, or fixed human surface, thus not

applicable for generalization to different garments. The use of auto-encoder here is

82

necessary because the degrees of freedom (DoF) for point clouds are too high for

estimation. An encoder-decoder structure can effectively reduce the DoF and retain

only the essential information, such as the global shape and the local details. More

importantly, it clusters similar shapes to similar latent codes, which is beneficial to

the estimation module. As later shown in the Appendix, my model provides smooth

transitioning between different topologies by using simple interpolation between

latent codes, which is never achieved in previous works.

4.4.1 Two-Level Encoder-Decoder Structure

Previous point cloud auto-encoders such as AtlasNet [141] use Multi Layer

Perceptron (MLP) to transform a 2D patch to a set of 3D points in the space. Their

method performs well in point cloud datasets that include rigid objects, such as

airplanes or chairs, since the deformations presented in those objects are simple and

regular. However, it cannot be directly applied to learn garment point clouds, since

garments have a much larger variance in point cloud distribution due to its dynamic

nature. For example, a simple dress can create different wrinkle structures under

different external forces. As a result, one global auto-encoder cannot account for

all detailed structures, resulting in overly smoothed point clouds. Recently, [142]

proposes a method to resolve patch overlapping and collapsing occurred in AtlasNet,

but it still cannot account for arbitrary topologies and detailed wrinkles.

I propose a two-level auto-encoder for learning the latent space of the cloth.

As shown in Fig. 4.2, I use a set of representative points C to express the global

83

shape of the garment, and sample around them to form local patches, which are

encoded independently to account for local shapes. Specifically, given a point cloud

P, I first pass it through a global auto-encoder to form a representative point cloud:

C = Dg(Eg(P), θ) (4.1)

where Eg and Dg are the global encoder and decoder, and θ is the human body pa-

rameter. Next, I use K-nearest-neighbor to sample points around the representative

ones:

Pi = KNN(P, ci) (4.2)

where ci is the i-th element in C, and Pi is the i-th patch. This step forms local

patches around the representative points. Finally, I pass each patch to the shared

local auto-encoder, and do a union operation to obtain the reconstructed point

cloud:

Qi = Dl(El(Pi), zg, ci) (4.3)

Q =
⋃
i

Qi (4.4)

where Qi and Q are the reconstructed patches and point cloud, Dl and El are the

local decoder and encoder, and zg = Eg(P) is the global latent code.

84

4.4.2 Representative Point Set Extraction

Note that Eq. 4.3 and 4.4 imply that the representative points C have to be

in the same order as the local latent codes zl. This is the key reason why traditional

methods such as farthest point sampling [127] do not work: its ordering is very

sensitive to the input, resulting in an unknown mapping between reconstructed

patch centers C and the local patches Pi (thus the local latent code zli).

To resolve this issue, I encode the entire point cloud and compute the rep-

resentative points using the decoder itself. Due to the continuous nature of the

auto-encoder network, the continuity and consistency regarding similar point clouds

are guaranteed, thus ensuring ci to be exactly matched with Pi.

4.4.3 Training Losses

During training, I use Chamfer Distance between two point clouds as the loss:

d(P,Q) =
1

|P|
∑
p∈P

min
q∈Q
‖p− q‖+

1

|Q|
∑
q∈Q

min
p∈P
‖q− p‖ (4.5)

I apply the Chamfer Distance loss between the representative point set and the point

cloud to learn the global shape, and the one between the recovered and the original

point cloud, both patch-wisely and globally, to capture the local details:

LAE = d(P,C) +
1

n

n∑
i=1

d(Pi,Qi) + d(P,Q) (4.6)

85

4.4.4 Recovery from Point Clouds to Garment Meshes

The point cloud representation of a garment mesh does not explicitly store the

connectivity information, so it is necessary to apply certain prior when recovering

meshes from point clouds. One straightforward way is to connect each point with

its neighbors, determined by a distance threshold. However, this method does not

guarantee the resulting mesh to be a manifold. Instead, I use manifold surfaces to

approximate the results.

The overall pipeline to recover point clouds to meshes is split into several steps.

I first employ Screen Poisson algorithm [143] on the point cloud with estimated

normals using neighboring points to recover the overall shape and topology of the

garment. Next, I remove the reconstructed vertices that are too far away from the

point cloud, since the first step tends to generate water-tight meshes. I focus on

removing large clusters that forms holes for neck, arms, and legs. After upsampling

on the resulting mesh, I deform the mesh by minimizing the distance dM(P,F)

between the point cloud P and the mesh F as defined below:

dM(P,F) =
1

|P|
∑
p∈P

min
f∈F

d̂(p, f) +
1

|F|
∑
f∈F

min
p∈P

d̂(p, f) (4.7)

where d̂ is the point-to-face distance, f ∈ F is a face in the garment mesh, F is the

set of all faces of the mesh. I use other regularization terms similar to the mesh

deformation demo in Pytorch3D [144].

86

4.5 Material Estimation

With the garment auto-encoder (Sec. 4.4) at hand, garment material estima-

tion becomes tractable. I design my overall pipeline as shown in Fig. 4.3. Given the

sequence of image frames, I first feed them one by one to a model for estimating

the human body and cloth geometry. By predicting the latent vector instead of

the exact positions of the point cloud, the single-frame estimation network avoids

severe overfitting or producing irrational results, due to the reduction of the degree

of freedom by the auto-encoder.

Next, I combine the image features as well as the estimated garment latent

code as the temporal signals, which go through a canonical temporal network module

(i.e. LSTM [145]) to predict the final material type. Since the latent space preserves

similarity (i.e. positive correlation between distances of latent vectors and distances

between the original point clouds), the motion of the estimated latent vector becomes

a better indicator of garment motion than image features, which is beneficial to

garment material learning. I do not include body features here because the garment

material is directly related to the garment motion, which has already taken the

human body as the condition (Sec. 4.5.1). I discuss more details of the network in

the following sections.

4.5.1 Single Frame Closed-Loop Estimation

As shown in Fig. 4.4, I train a model to estimate the human body and cloth

geometry given one single frame. Formally, in each frame, I am given the image

87

Figure 4.3: My estimation pipeline. Each video frame is first processed to obtain
the image feature, the human body, and the garment shape. Then the image fea-
tures are concatenated with the garment latent code as input to LSTM for material
recovery.

(a) Closed loop structure for body & gar-

ment estimation

(b) Detailed structure in the garment esti-

mation block

Figure 4.4: The network structure for body and garment estimation in each
frame. (a) The garment shape estimation block takes the human body parameters
as a prior, but also provides a feedback correction. (b) The garment estimation
module consists of three identical, shared-weight blocks, each of which takes image
features f and current predictions of the human body θ0 and garment z0, and outputs
the corrective values.

features f . I first go through a state-of-the-art body estimation block, HB, to get a

first-hand body estimation:

θ̂ = HB(f) (4.8)

88

where θ̂ = [θ, β] are the human body parameters including pose and shape. In the

garment estimation block, I take as input f together with θ̂ and regress the garment

latent code z and a final value of body parameters θ. Inside the garment estima-

tion block, I use three shared-parameter small regression blocks, RB, to iteratively

provide the correction, given the current estimation:

θ0 = θ̂ z0 = 0 (4.9)

∆θi,∆zi = RB(θi−1, zi−1) (4.10)

θi = θi−1 + ∆θi zi = zi−1 + ∆zi (4.11)

Overall, the garment estimation block forms a closed-loop structure, in which the

human body parameters are required to predict the garment, and are later corrected

back by the garment prediction as well.

The key insight of my module design is that the human body and garment

shape are highly correlated at different scales and should be jointly learned us-

ing shared information. On the global scale, the detailed features of the garments

restrict the variance of the human body and reduce ambiguity due to camera pro-

jection. On the local scale, the body pose and shape largely defines the valid distri-

bution of the garment wrinkle positions. My proposed structure is also analogous

to iterative optimization and feedback control in other areas, where two objectives

serve as prior knowledge of each other and are improved iteratively. My work is the

first to introduce this idea to the human and garment joint estimation task.

89

The loss function for the single-frame estimation is defined as:

Ls = Lbody + LAE (4.12)

Lbody = L2D + L3D + LSMPL (4.13)

where L2D, L3D, and LSMPL represent the 2D joint loss, the 3D joint loss, and the

body parameter loss defined to supervise the human body estimation [136], and LAE

is the Chamfer distance defined in Eq. 4.6 to supervise the garment estimation.

4.5.2 Temporal Estimation for Garment Material

Garment material estimation is challenging since the visual difference of differ-

ent materials is subtle and can easily be overwhelmed by disturbance, e.g . various

directions or magnitudes of external forces. To tackle this problem, previous works

often assume fixed environment settings and cloth shapes [21, 110]. While I follow a

similar principle when training the material estimation module, I go one step further

that I only assume common human motion for driving the garment instead of the

whole external force field. While previous works [21, 110] can only handle videos

of a piece of cloth hanging and dragged by the wind, my method possesses a wider

applicability regarding the diversity of the garment shapes, sizes and human mo-

tions in the input video, which for the first time enables practical usages for garment

material cloning.

As shown in Fig. 4.3, I collect and concatenate the image features and the

estimated garment latent vector of each frame as the input signal, and feed the

90

sequence of the signals to LSTM to produce a summary feature. Finally, I pass the

summary feature to a fully-connected layer for material type classification. I use the

cross-entropy loss for supervision.

I train the model in an end-to-end fashion, but deliberately fix the single-frame

estimation module. While my training does not benefit from end-to-end fine-tuning

(which I technically can), it poses an even more challenging task for the temporal

estimation module. No matter how expressive the network is, the training results

will not be great, if the input signal provided by the previous module is noisy. My

experiments demonstrated in Sec. 4.7 indicate that the multi-scale garment features

are not merely useful for detecting the fabric materials; they are the dominant

features during the estimation and can boost the test accuracy compared to methods

that only feed the image features.

4.6 Data Preparation and Training

In order to train my model, a large number of examples that contain ground

truth human body parameters, garment meshes, and the corresponding material

parameters are needed. These are very challenging to capture in real world. To

supplement a very limited number of such real-world videos, I create a large dataset

of videos generated with controlled variables with the corresponding ground-truth

values for validation. I vary different conditions to generate this dataset:

Human motion. I sample common human motion sequences and shape parameters

in the CMU Mocap dataset [65], including walking, sitting, boxing and climbing

91

stairs.

Garment meshes. I use the garment dataset from [146].

Material space. I sample different materials uniformly in the discretized space

mentioned in Sec. 4.3.

Human and garment textures. I use random human textures from SUR-

REAL [147] and random garment textures from online images.

Lighting. I employ diverse outdoor and indoor environment maps downloaded

from [148].

In total, I create a dataset of 250,000 images (10 motions * 100 garments *

250 frames) for single-frame human and garment geometry estimation, and 140,000

video sequences with each consisting of 25 images sampled at a frame rate of 5.

Some examples of my training datasets are shown in Fig. 4.15.

4.6.1 Training Details

The split percentages for the train/validation/test sets are 85%/5%/10%. Dur-

ing training, I use Adam [149] to minimize the loss. The learning rate is 10−3 for the

auto-encoder, and 10−4 for others. They are scaled down to 10−4 and 10−5 respec-

tively after 10 epochs. All hyper-parameters are chosen empirically. As shown in

Fig. 4.2, I use a representative point set of size 256, and generate 128 points for each

patch. The sampling size for the ground-truth point set (N in Fig. 4.2) is 16,384.

I trained and tested my model on a machine with 8 CPUs (Intel Xeon, 3.60GHz)

for data loading and 2 GPUs for computing (GeForce GTX 1080). I trained my auto-

92

encoder, single-frame module, and the temporal module for 20 epochs, respectively.

4.7 Experiments

I demonstrate the performance of my model as follows. (1) To illustrate

my model’s generality and effectiveness quantitatively (Sec. 4.7.1) and qualitatively

(Sec. 4.7.2), I compare the results of my material estimation pipeline with the

baselines and previous works. (2) I conduct a user study to investigate material

perception using this work and quantify the similarity between the measurements

of real-world fabrics from lab experiments and predicted garment materials from

videos (Sec. 4.7.3). (3) I conduct additional comparison with other related learning-

based methods, including ablation studies and latent code for garment interpola-

tion/design, and application to virtual try-on.

4.7.1 Quantitative Analysis

Mine vs. Image-Only [21]. Due to the difference regarding the input dis-

tribution (dressed garment on a human body in my method vs. hanging cloth in

theirs), I re-train their model on my datasets for a fair comparison. I study the

contribution of image-only features vs. garment-only features, as well as CNN vs.

LSTM (that exploits the temporal coherence). Finally, I compare the overall perfor-

mance difference between mine and [21]. The test classification accuracy is reported

in Table 4.1.

Findings: (1) While all three models have learned the relationship between

93

motion and materials and all three outperform random guess, the garment feature

signals are shown to be much more important than the image features. This finding

is not surprising, since the garment shape is directly affected by the material. (2)

Combining the two features, as my model does, further improves the test accuracy.

A possible reason is that an overall capturing of the garment shape (e.g . width and

length of the entire piece), which is difficult to retrieve using garment latent codes,

could be more easily extracted using image features. (3) By exploiting temporal

coherence, unsurprisingly all three versions of the model achieve better accuracy

than only using 1 image.

Method Mean Temporal Garment Features
Accuracy Gain Gain

Random guess 1.85% - -

Image only, CNN 5.11%
40.16%

-
Image only, LSTM [21] 45.27% -

Garment only, CNN 11.85%
53.31%

6.74%
Garment only, LSTM 65.16% 19.89%

Image + Garment, CNN 12.62%
57.52%

7.51%
Image + Garment, LSTM (mine) 70.14% 24.87%

Table 4.1: Comparison on material estimation: my method achieves much
higher accuracy (∼50%) in classification than [21].

Mine vs. Optimization-based [110]: An optimization-simulation framework

to obtain the fabric material parameters using wrinkle density of the garment in a

single image was proposed in [110]. In contrast, my method extracts both static

image features and spatio-temporal garment features across frames. I generate the

same set of test scenes as shown in Fig. 4.9. My model is tested on these sequences

under varying lighting and visibility conditions; the average accuracy is reported in

94

Table 4.2. In this challenging case where the lighting condition and the textures are

not seen in the training distribution, my method still achieves comparable accuracy

with previous method [110], but it runs more than 1,000x faster. Mine is the first

end-to-end learning-based method to predict fabric materials directly from a video of

garments worn on a human body.

Method
Accuracy (%)

SpeedMid-day Sunset

T-shirt Pants Skirt T-shirt Pants Skirt

[110] 80.2 80.2 83.3 81.6 79.9 80.7 4-6 hours
Mine 86.5 91.6 81.6 82.4 91.6 79.6 8.7s

Table 4.2: Quantitative comparison with [110]. My method achieves compara-
ble or higher accuracy, but runs at least three orders of magnitude faster than
the state-of-the-art [110].

4.7.2 Qualitative Results

I compare mine with the most relevant work of [110] for joint estimation of

garment shapes and materials, as shown in Fig. 4.5. My method achieves similar

reconstruction accuracy and visual quality as [110]. But, [110] uses semantic seg-

mentation, thus suffering from tedious manual processing and long inference time.

In contrast, my learning-based method is fully automatic and can compute the pre-

diction in real time. Moreover, my method does not assume the sewing patterns as

a prior.

I further compare with several learning methods [10, 118] in Sec. 4.7.6. Many

often use additional information (e.g . mesh templates or known garment types)

as priors, so direct visual comparison is not meaningful. Nonetheless, my model

95

successfully generalizes to unseen real-world images/videos with comparable visual

results, as shown in Fig. 4.13. During these experiments, my method is directly

applied without any fine-tuning or post-optimization. Although trained using syn-

thetic datasets, my model correctly identifies people and the garments from real-

world images, and achieves similar visual results in all examples, when compared

with previous works. The network is also capable of the predicting correct sizes of

garments relative to the body, due to multiscale auto-encoders.

Material Cloning for Virtual Try-On: I show three application scenarios

of my method. In Fig. 4.6, given an RGB video of a person wearing garments

of different fabric materials, my method can identify the underlying material and

clone it onto other garment models using cloth simulation. My method is the first

to achieve fast and accurate material extraction from videos of dressed garments on

a body. I further show the ability of my method to reconstruct the entire human

appearance from the input video using one single network. I first estimate the body

and the garment geometry frame by frame, and use the temporal information to

infer the material. The three parts are combined using cloth simulation to generate

the final output. Fig. 4.7 and Fig. 4.8 show the reconstruction results (also see the

supplement video). My reconstructed garment shapes and wrinkles match those in

the input video frames.

96

(a) Input image (b) Results from [110] (c) My results

Figure 4.5: Qualitative comparison with [110]: Mine is easier to use and
achieves visually comparable reconstruction much faster without priors on garment
patterns and topology.

(a) Soft silk (b) Stiff polyester (c) Soft silk (d) Stiff polyester
Input videos Estimated materials

Figure 4.6: Material transfer between videos. My method can take videos of a
person wearing any garments (a, b) and clone the underlying fabric materials onto
other simulated garments (c, d).

(a) Real (b) Virtual (c) Real (d) Virtual

Figure 4.7: Qualitative results: my method faithfully recovers the T-shirt mate-
rials (a, c) in video so that the wrinkles around the simulated t-shirt sleeves (b, d)
appear similar under different poses.

97

4.7.3 Lab Experiments and User Study

In this experiment, I test the prediction accuracy of my method using real-

world materials. I used five real-world materials measured from lab experiments [93],

which are sampled from sweater, t-shirt, tablecloth, jeans, and blanket, respectively.

The materials are used to create videos using the same pipeline as I generate the

training data. The videos are then input to my network model for material estima-

tion, which is used to generate the resulting videos with other conditions being held

the same (see Fig. 4.16 for sample frames).

I first quantify my material recovery using the sensitivity analysis described

in [21]. For each of the materials, I measure its stiffness ratio according to the

deformations under a fixed amount of external forces. The measured values are

then compared with the one predicted from my method, reported in Table 4.3. My

method achieves a relatively small error between 9.5% to 16.7%.

Material Name [93] Stretching Ratio Bending Ratio Mean Relative
(GT/Prediction) (GT/Prediction) Error

gray-interlock 1.01/1 1.6/2 10.5%
navy-sparkle-sweat 0.56/0.5 1.7/2 12.8%
white-dots-on-blk 15.8/20 3.5/4 16.7%
11oz-black-denim 3.6/3 3.0/3 8.3%

pink-ribbon-brown 2.93/3 12/10 9.5%

Table 4.3: Lab experiment results. My material estimation achieves relatively
small errors compared to lab measurements on all real-world materials tested.

To further validate and quantify the material similarity, I conduct a user study

to examine how close my estimation results are to the ground-truth data in human

perception. In the study, I place two videos side by side for each material; then ask

each participant to rate the level of material similarity: from 0 (totally different)

98

to 10 (identical). There are 25 subjects in my study group: 17 male and 8 female,

with age ranging from 20 to 40. To further calibrate the subjective score range,

I use a pair of videos generated from the same material but with different mesh

resolutions and inform the participants that this example has a similarity score of

5 for calibration. My results show that the average similarity ratings for five tested

materials vs. the ground-truth data are all larger than 5, ranging from 5.7 to 8.5,

with an overall mean value of 7.1. These indicate that my method indeed can recover

fabric materials with only minor perceptible differences to the real-world materials.

Besides the main results, I also conducted several other studies to investigate

how people perceive the garment materials in different environmental conditions:

Garment color and texture. I changed the garment colors and textures; then

asked participants the same questions. I found that by varying the garment colors,

either brighter or darker, does not affect the similarity scores much – within a

maximum difference of 0.4. On the other hand, changing the textures results in

more perceptible effect – with similarity score differences of 0.5 to 0.9.

Lighting. I varied the lighting conditions in the rendered results to understand

how shading on the garments affects material perception. The results show that

the similarity scores are decreased by 1.1-1.3 when one of the videos has a different

lighting angle than the other. These noticeable difference indicate the effects of

lighting and shading on how humans perceive wrinkles and folds.

Stiffness range. I took the material called ‘gray-interlock’, consisting of 60% cot-

ton and 40% polyester, and multiplied its material parameters by 1, 2, 5, and 10,

99

respectively. The participants were asked to distinguish which of the two sampled

materials is stiffer. My findings indicate that there is little perceptible visual differ-

ence between lower stiffness values till when the garment stiffness is increased to a

certain threshold. This finding also reconfirms my design rationale of the material

space discretization using sensitivity analysis in Sec. 4.3.

Additional Results. I present more comparisons with other related learning-based

methods for garment shape and pose recovery in Appendices. Please note that none

of these methods was designed to recover the fabric materials, the main focus and

motivation of this work for simulation-based virtual try-on, as shown in Fig. 4.8.

(a) Input video (b) Reconstruction result

Figure 4.8: Qualitative comparison with a real-world video.

4.7.4 Ablation Study

Method CD SD
Single-scale 0.31 8.05
Multi-scale 0.12 1.03

Method MPJPE CD
w/o feedback 62.93 0.89
w/ feedback 55.20 0.88

(a) Auto-encoder (b) Human and garment estimation

Table 4.4: Ablation study for different parts of my proposed network. My
method is marked in Italic. CD stands for errors in Chamfer Distance; SD stands for
Sinkhorn Divergence [150]; and MPJPE stands for Mean Per Joint Position Error
– all in millimeters (mm). My method results in notably smaller errors than all
baselines in the estimation and reconstruction tasks.

100

(a) T-shirt and pants (day) (b) T-shirt and skirt (day)

(c) T-shirt and pants (night) (d) T-shirt and skirt (night)

Figure 4.9: Sample test images for the comparisons with [110].

In the following ablation studies, I verify the effectiveness of my network model.

I use the test errors to compare my model with the baselines, which include previous

methods or their combinations. During the test, all other conditions are held the

same, except for the network structure itself.

w=0.0 w=0.2 w=0.5 w=0.8 w=1.0

Figure 4.10: Interpolation between different garments. w is the interpola-
tion weight. I extract the latent code of 2 different garments: a long-sleeve top &
pants (leftmost) and a short-sleeve dress (rightmost). I use the decoder to produce
new garments of linearly-interpolated latent codes, enabling smooth transitioning
between topologically different garments not achieved before.

Garment auto-encoder. I use a two-level auto-encoder structure to address the

highly dynamic geometry of garments, as discussed in Sec. 4.4. I demonstrate here

101

Soft Silk Frame 1 Frame 2 Stiff Polyester Frame 1 Frame 2

Figure 4.11: Material transfer examples. My method can accurately estimate the
material parameter from the input video and replicate the same effect in other
animations. Note that different estimated materials create significantly different
visual appearance even for the same animation.

its effectiveness compared to the baseline, which simply consists of a PointNet [99]

encoder and an AtlasNet [141] decoder. There are two theoretical advantages of

my method against the baseline. First, the two-level structure partitions the entire

point cloud by patches that only overlap by a small fraction. This approach makes

the local features more focused on its local shape rather than on a more expanded

surface. Next, the two-level network also offers more capability to express detailed

features and prevents overly-smooth reconstructions.

In Table 4.4(a), I report my test errors compared to the baseline. In addition

to Chamfer Distance as I used in the training, I also use Sinkhorn Divergence [150],

which is a fast approximator for computing Earth Moving Distance between two

distributions. While Chamfer Distance indicates the average distance between two

102

point clouds, Sinkhorn Divergence captures the density difference across space. The

numbers in the table show that my method not only reproduces point clouds closer

to the ground-truth but also has more evenly-distributed points due to my patch-

wise partition during training. The results align with my theoretical analysis.

Garment geometry estimation. In Sec. 4.5.1, I proposed a closed-loop feedback

structure to improve the estimation of both the human body and garment shape.

I conducted an ablation study to show the difference introduced by this structure.

My baseline is a two-branch estimation block that predicts the human body and the

garment in parallel but sharing the image features as input. Although it does not

have the feedback correction, it already benefits from multi-tasking which can ex-

tract useful common image features. I use Mean Per Joint Position Error (MPJPE)

for human estimation metric, and Chamfer Distance for garment estimation.

As shown in Table 4.4(b), by introducing an extra feedback loop, my model

results in a much smaller error on human body estimation. Interestingly, the gar-

ment estimation error is not greatly improved, possibly because the error comes

more from local shapes (especially those occluded by the human) than the global

one.

I further compare my method with a recent work [10] since their task is the

most relevant to mine. I use the public dataset from Multi-Garment-Net [10], which

consists of 95 scans of people. Nearly half of them are not suitable due to incorrect

or incomplete garment labeling. I tested my model in the dataset without any fine-

tuning and used their reported numbers for comparison. I use the Chamfer Distance

103

defined in Eqn. 4.5 as my test metric. As shown in Table 4.5, my model, without

any fine-tuning or domain adaptation, achieves the smallest error – whether the

ground-truth human body model is provided or not during reconstruction. Since

my model is trained on a wider range of body poses and garment types than theirs

while achieving better accuracy, it has shown to offer good generality to unseen

inputs.

Methods
[68] [10] Mine

GT Pose GT Pose Full Pred. GT Pose Full Pred.

Pants (mm) 5.44 5.57 10.16 1.58 3.08
Short Pants (mm) 8.23 5.97 10.00 4.92 5.69

T-shirt (mm) 5.80 5.63 11.97 1.67 3.08
Shirt (mm) 5.71 6.33 9.05 2.29 3.75
Coat (mm) 5.85 5.66 9.09 2.84 3.65

Table 4.5: Test errors on the Multi-Garment Net dataset [10]. My method
achieves the best estimation accuracy across all garment types, without any fine-
tuning or reference body.

4.7.5 Latent Code Interpolation

To showcase the expressiveness of my learned latent space, I conducted an

experiment generating new garments by interpolation. I encode two different gar-

ments to obtain their latent codes and linearly interpolate in between. I generate

the new point clouds using the interpolated results accordingly. The visual results

are shown in Fig. 4.10. My results show that the interpolations represent a smooth

transition between the two original garments, creating new garment styles that are

not seen before during training. Note that modeling long dresses or garments with

different mesh structures are not achieved in previous works, which either use dis-

104

placement maps [10, 11] (thus not able to model dresses) or mesh-CNN for encoding

local features [8] (thus not applicable to different mesh topologies). My method is

the first to propose a feature space that unifies garments of different topologies with

different body poses and shapes, which is the key component to accurate garment

material estimation, as demonstrated in Table 4.1.

I provide more interpolation results in Fig. 4.12. As described in Sec. 4.7.5, my

algorithm enables two garment meshes to be interpolated using their latent code to

generate new garments. The first row shows an example where the dress is shorten

at the bottom and extended at the sleeves gradually. I also show interpolation

results in the point cloud form in Row 2-4. The second row is another example

of transformation from dress to pants, and the last two examples demonstrate the

ability to interpolate the garment with different body poses. In these two cases, the

garment type is the same, but the body pose is changing. Although the poses in

between are never seen in the training set, the interpolated garment point clouds

follow the pose transition, showing very little interpenetrations with the body. Note

that when the human legs are moving, the garment correctly deforms with the pose,

close enough to be consistent with the body motion, while still being collision-free.

See the supplementary video for the interpolation animation.

4.7.6 Additional Qualitative Results

I tested my model without any fine-tuning on the images provided in MGN [10]

and DeepCap [118], as shown in Fig 4.13. Although my model is never exposed

105

w=0.0 w=0.2 w=0.5 w=0.8 w=1.0

w=0.0 w=0.2 w=0.5 w=0.8 w=1.0

Figure 4.12: Interpolation results. My method can smoothly interpolate gar-
ments between different topologies and body poses.

to real-world images, it successfully predicts the human body pose and garment

shape correctly. Note that my model is an end-to-end network that has no prior

knowledge to any information about the garment shape, while MGN assumes that

there is a one-to-one approximation mapping between body vertices and garment

vertices. DeepCap has an initial ground-truth mesh that is to be optimized. My

model can thereby easily generalize to unseen garments, which is not possible using

these two works. In Table 4.6, I extensively compare my work with previous ones

regarding different assumptions, functionalities, and abilities. I define ‘one model

per garment’ in ‘generality’ as that the method needs to create extra templates or

106

registrations to the body, or need to retrain part of the network in order to predict

a different garment type. Although DeepFashion3D [120] and ARCH [119] also have

generality to different topologies to some extent, there are still limitations in their

pipeline. The output from DeepFashion3D has to be continuous in one body part,

meaning that they cannot support all topologies (e.g . dresses with holes). ARCH

does support different garments on the body, but the output is a water-tight mesh

together with the body, which is not always convenient for certain applications like

virtual try-on. In contrast, my method naturally supports all kinds of topologies,

and predicts the body and the garment in separate meshes.

Input image MGN [10] Mine (point cloud) Mine (mesh)

Input image DeepCap [118] Mine (point cloud) Mine (mesh)

Input image DeepCap [118] Mine (point cloud) Mine (mesh)

Figure 4.13: Qualitative Results. My model can achieve similar visual results
with previous work without any knowledge of the target garment or any assumption
of the topology (See Table 4.6).

107

Method Input Dependencies Generality Dresses support Separate mesh Material Estimation

MGN [10] Semantic seg. + 2D joints Garment correspondences One model per garment No Yes No
DeepCap [118] Foreground seg. Template mesh One model per garment Yes (w/ known template) No No

[110] Semantic seg. Template mesh One model per garment Yes (w/ known template) Yes Yes
DeepFashion3D [120] RGB frame (garment only) None One model for all Yes (limited topologies) Yes No

Tailornet [11] Body parameters Garment correspondences One model per garment Yes (limited topologies) Yes No
BCNet [121] RGB frame Garment correspondences One model per garment Yes (limited topologies) Yes No
SIZER [123] Body scan Garment labels One model per garment No Yes No
ARCH [119] RGB frame (foreground only) None One model for all Yes (water-tight) No No

Mine RGB frame None One model for all Yes Yes Yes

Table 4.6: Comparison with previous works. My method can handle the largest
set of garments, using fewest possible information (i.e. RGB image), in one stand-
alone, end-to-end network.

4.7.7 Application: Virtual Try-On

To further showcase the strength of my network, I apply it to a virtual try-on

application. An online video clip showing a person wearing a dress is taken as input

to my network (Fig. 4.14a). The body and the dress are estimated in each frame,

and the fabric material is inferred using the garment motion and the image features.

As shown in Fig. 4.14b, my method successfully infers the correct human body and

the garment.

I then simulate the garment in a different body motion, which is the key

functionality in virtual try-on systems. The simulated results (Fig. 4.14c) show that

the garment motion provides similar visual impression with the input dress (mostly

from the wrinkle motions of the dress). This example shows that my method can

effectively extract the correct type of fabric material and transfer the given fabric

material in a video to a simulation-based virtual try-on system. More animation

results can be found in Fig. 4.11 and the supplementary video.

108

(a) Input video clip (b) Estimated result (c) Simulation result

Figure 4.14: Virtual try-on example. My network model can clone a person’s
appearance from the physical world (in a video) to the virtual world, enabling simu-
lation under different motions with accurate estimations of the body shape, garment
geometry, and fabric materials.

Figure 4.15: Training data examples. My dataset includes various garment
topologies with rich body poses, textures, and background environments. Some
examples are shown here.

4.8 Conclusion

In this chapter, I introduced an end-to-end learning model for garment material

estimation using RGB videos. I do not assume other inputs (e.g. segmentation, 3D

109

gray-interlock navy-sparkle-sweatwhite-dots-on-blk 11oz-black-denimpink-ribbon-brown

Ground-truth materials

Predicted materials

Figure 4.16: User study examples. My predictions received similarity scores of
5.7 to 8.5 in a 0-10 range.

scans, multi-views, etc.) or any prior knowledge on the garment shape/topology,

design patterns/templates, or correspondences. I extract the multi-scale features

to effectively represent the dynamic geometry structure of garments, which can be

combined with image features to estimate fabric materials by learning their temporal

patterns, while improving the human body reconstruction using a feedback loop.

This approach is perhaps the first to introduce a unified parametric model for all

garment types, and it can thereby support garments of different topologies without

the need to retrain different models. Experiments show that my method achieves

much higher accuracy up to 70.14% in estimating fabric materials than prior works,

while offering capabilities in recovering garment types and topologies with generality

and simplicity for an unification of multiple correlated tasks.

One limitation of this method is that the current representation does not

support multi-layer or folded garments. These issues can be addressed by adding

110

structural prior to the garment model to encode multi-layer clothing and curvature

representation to support multi-fold features. I further postulate that the proposed

multiscale garment auto-encoder can also be integrated with neural rendering [151]

to synthesize photorealistic images of simulated garments.

111

Chapter 5: Time-Domain Parallelization for Accelerating Cloth Sim-

ulation

Figure 5.1: Simulated ‘Karate’ animation using my method. My method parallelizes
the simulation workload in time domain using a two-level mesh representation. In
the figure, the time domain partition point sk is between frame t-1 and t, which
will be simulated by two different processors. I use an iterative detail recovery
algorithm to refine the state of the cloth from low-resolution mesh before the par-
allel high-resolution simulation begins. As a result, very little visual artifacts can
be observed from (b) to (c). In the shown benchmark above, my parallelization
method has achieved up to 99x speedup on 128-core systems – an unprecedented
level of scalability in distributed CPU systems – compared to at most 47x on a
128-core system [152]. The performance gain is also better than the GPU par-
allelization [153] on similar benchmarks, while my approach offers the additional
flexibility for coupling with adaptively remeshed cloth simulators.

5.1 Introduction

With the proper estimated body parameters, garment geometry, and fabric

materials obtained from Chapter 4, it is now possible to synthesize garments on a

112

given sequence of body motion. One straight-forward way for garment synthesis is

using cloth simulation. It offers realistic garment motion and collision-free results

at the cost of high latency and throughput. Luckily, given the fact that the try-on

system often resides on the cloud, it is possible to accelerate the cloth simulation

by making use of manycore and cloud computing.

In this chapter, I propose a novel method for parallelizing cloth simulation.

Unlike previous methods, my method divides the workload in time domain that

minimizes the communication overhead, thereby achieving much better scalability

and higher performance gain over previous methods.

The key challenge in time-domain parallelization is to obtain or approximate

the simulation states before the time-consuming simulation begins. I use a two-

level mesh representation to address this time-dependency issue. Observing that

a coarse-level mesh can be simulated at a much higher speed, my method runs a

lower-resolution simulation using coarser meshes to approximate the state at each

time step. After an appropriate remeshing process, the higher-resolution simula-

tions using finer meshes can be run in parallel. To further refine the simulation

results, I propose a practical technique to smooth the state transition from the low-

resolution to high-resolution simulations. To recover the lost states, I make use

of the coarse-level mesh and run several ‘static’ simulation steps before the high-

resolution simulation starts. Experiments in Sec. 5.6 show that this technique can

reduce the visual artifacts between temporal partitions. In order to balance the

workload of each processor, I further develop an adaptive partitioning algorithm,

which takes into account the varying time consumption of each frame caused by

113

different contact configurations. I make use of the time measurements of previous

frames in both mesh resolutions and determine the partition point based on the

current estimation of the total running time.

To sum up, the key contributions of this work include:

• A time-domain parallelization algorithm supporting adaptive meshes with min-

imal communication overhead (Sec. 5.3);

• Load estimation and load balancing techniques that maximize the overall per-

formance acceleration (Sec. 5.4);

• A practical state transitioning algorithm between low- and high-resolution

simulations to recover details and ensure the visual quality of the simulated

sequences (Sec. 5.5).

On a given set of benchmarks, my method achieves an unprecedented level of

scalability in distributed CPU systems when compared to [152, 154]. Its performance

gain is also higher than the GPU parallelization [153], while my approach offers the

additional flexibility for coupling with adaptively remeshed cloth simulators. I also

verify that given sufficient amount of processors, my method can achieve an average

performance as fast as the low-resolution simulation, while obtaining simulation

results similar to ones using high-resolution meshes. This method can be widely

adopted in applications, where runtime performance is much more critical than

accuracy, such as rapid design prototyping.

114

5.2 Related Work

Figure 5.2: An overview of my method. I first simulate the cloth mesh in low
resolution, obtaining the approximated states XC

k . After I select the starting point
in time for each processor sk (Sec. 5.4), I use the upsampling function to generate
the initial states X̃F

sk
and recover the detail information iteratively (Sec. 5.5). Lastly,

I simulate the entire sequence in parallel, given the starting states XF
sk

.

In this section, I survey recent works on cloth simulation, parallelization tech-

niques, and other related acceleration techniques for physics-based simulation.

5.2.1 Cloth Simulation

Simulation of cloth and deformable bodies has been extensively studied for a

wide range of applications in different areas, from computer graphics, CAD/CAM,

robotics and automation, to textile engineering. Due to their ability to take large

time steps, implicit or semi-implicit methods [24, 155, 156, 157] have been widely

adopted after the seminal work by Baraff and Witkin [27]. However, most of these

works focus on the serial simulation improvement and their runtime performances

can be slow. I use one of the state-of-the-art simulation algorithms, ARCSim [74],

as the cloth simulator in my prototype implementation, but my parallelization tech-

nique does not rely on any specific simulation algorithm.

115

5.2.2 Time Parallel Time Integration Method

The scientific computing community have thoroughly studied parallelization

techniques solving partial differential equations [158, 159, 160]. I refer readers to

this survey by Gander et al. [161] for more details. Cloth simulation is similar to the

general time-evolution equations. However, there is a gap for these works to be di-

rectly applicable. Cloth simulation has coupled other non-PDE factors, such as the

collision response due to continuous contacts with the human body. The standard

collision response within Physically-based Modeling literature is usually an “empir-

ical” impulse applied mainly on the boundary cases, where the cloth is about to

collide with the body or within a pre-defined ’threshold’ neighborhood. Traditional

solutions [158] use an arbitrary initial guess (e.g.Xt = X0) for each of the time step

and try to update the overall solution using a fixed point iteration. The discontinu-

ity introduced by collision not only prevents the method from solving the fixed point

problem in Newton’s method (calculating derivatives of the conditional term deter-

mined by variables to be solved), but also prevents most of the collision response

algorithm from obtaining stable and correct results (a severe inter-penetration of

Xt = X0 at time t that can hardly be handled). This special characteristic of cloth

simulation makes it challenging to apply methods solving pure integrations (where

the solution space is often regular) such as PFASST [158], due to collision-induced

discontinuities.

116

5.2.3 Parallel Cloth Simulation

Several parallelization techniques for cloth simulation have been proposed.

[162, 163] proposed GPU-based simulation methods for elastic bodies. [164, 165,

166, 167, 168] proposed different types of spatial parallelization but they all suffer

from severe sub-linear scalability due to large communication overhead. [152] im-

proved the work from [169] using Asynchronous Contact Mechanics and reduced

the communication by proposing a locality-aware task assignment, which first scaled

more than 16 cores. [153] implemented a GPU-based simulation pipeline. Their

method has achieved an impressive speedup of 58 times, which is comparable to the

performance of my method on a 64-core cluster.

The main difference between other parallelization methods and mine is that

I decompose the simulation task in time domain. Partitioning in time domain sig-

nificantly reduces the communication cost in distributed systems, thereby offering

a considerable speedup. To the best of my knowledge, my method is the first

time-domain parallelization algorithm for cloth simulation that can be coupled with

adaptive remeshing schemes.

5.2.4 Hierarchical Structures and Multi-level Methods

Multi-level algorithms have offered significant performance improvement on

various simulation problems. Tamstorf et al. [170] proposed a multi-grid method to

speed up the cloth simulation. Bergou et al. [171] developed a tracking solver for

rapid interaction in animation. They set up a two-level mesh representation and used

117

the desired coarse level animation to guide the fine level one by applying constrained

dynamics. My method builds on top of their work to ensure the low-res consistency

of the results. Recent works [172, 173, 174] generate high-resolution wrinkles from

low-resolution cloth. My method is a physically-aware approach; it’s more diverse

and realistic compared to those work. Mine is more of an intermediate trade-off

between time-consuming simulation and physically-unaware wrinkle synthesis. I

use a hierarchical mesh representation to approximate the states of the cloth mesh

at each time step, before transitioning to computationally expensive high-resolution

simulations on fine meshes.

5.2.5 Mesh Upsampling

Mesh upsampling algorithms are widely explored from geometrical approaches [175,

176, 177] to data-driven methods [178, 179]. My method needs a specific mesh

upsampling function to transfer the (approximated) state of the simulated cloth

from low-resolution to high-resolution. While classic subdivision methods [177] can-

not generate high-resolution details, data-driven ones [178, 179] depend largely on

the specific configuration in the training data, and as a result, can generate inter-

penetrations when applying to arbitrary scenarios. For generality, I do not assume

any specific upsampling function. Instead, I introduce an iterative detail-recovering

approach described in Sec. 5.5 in order to account for the lost details in the low-

resolution mesh. In my experiment, I use an adaptive remeshing method in [74] for

its flexibility of use and a straightforward, linearly-interpolated subdivision for fast

118

error computation.

5.3 Overview

In this section I give an overview of my approach. I define the problem formally

before I introduce the basic idea of the method.

Problem Statement: Given the initial state of a cloth mesh, X0 (inclusive of both

position and velocity), generate a sequence of cloth states V = {X1, . . . ,XN} that

characterize the cloth interaction with the given environment, using a time step ∆t

and a simulation function Xk+1 = f(Xk,∆t).

Fig. 5.2 shows the overall pipeline of my algorithm. The key idea of this

method is to partition the time domain of the cloth simulation rather than the

spatial domain of the simulated cloth. In order to obtain the (approximated) mesh

state without full simulations, I propose a two-level hierarchy representation. I

simulate the cloth mesh XC at a coarser level with much lower computation and

determine the partition point S (in time) according to the algorithm described in

Sec. 5.4 before I simulate the entire high-resolution sequence XF at the finer level

in parallel.

The fine-level mesh at the starting point of each temporal partition is obtained

by the corresponding coarse-level mesh using an upsampling/remeshing function

u(XC). However, the finer mesh may be quite different from the coarse one after

remeshing because high frequency information XD is not stored in the coarse-level

mesh. Therefore, I design a practical state-transitioning technique to recover the

119

lost details to the extent possible, before the high-resolution simulation begins. This

state-transitioning method will be discussed in Sec. 5.5. I list the notations used in

this chapter in Table 5.1.

NOTATION DEFINITION

Xk state of the cloth at step k
V output sequence of states
N simulation sequence length
∆t specified time step
f(Xk,∆t) one-step simulation
f i(Xk,∆t) i-step simulation
XC coarse level state
XF exact fine level state
XD state difference between the two level states

X̃F approximated fine level state
u(XC) upsampling function
p number of processors
S ordered set of starting points for parallelization
sj starting point of the jth processor
K coarse-to-fine ratio

Table 5.1: Notations and definition of my method.

5.3.1 Two-Level Mesh Hierarchy Representation

Ideally I want to divide the whole simulation process into several temporal

partitions so that I can simulate each partition in parallel and independently. How-

ever, since the mesh state at step k, Xk, is determined by the state at previous step

Xk−1, I do not know the exact intermediate states until I finish the simulation from

step 0 to step k. Here I use the hierarchical mesh representation to address this

time-dependency problem. I maintain two sets of simulated meshes, XC and XF ,

which represent the low- and high-res(olution) simulation states using the coarse-

and fine-level meshes, respectively. I can recover the high-res state from the low-res

120

one by a user-defined upsampling function: X̃F = u(XC).

Note that the obtained high-res state from the fine mesh, X̃F , is only an

approximation of the exact state XF . But, for simplicity, I assume that XF = X̃F

in this section. Further state refinement is discussed in Sec. 5.5.

Due to the fact that the simulation using a coarse mesh is significantly faster

than the one using a fine mesh, I can obtain low-res states {XC
1 , . . . ,X

C
N} in a

relatively small amount of time. I further choose p starting points S = {s0 =

0, s1, . . . , sp−1} in time for p processors, according to my partitioning algorithm to

be discussed in Sec. 5.4.1, and run the high-res simulation using the fine mesh in

parallel:

XF
k =


X̃F
k k ∈ S

fk−sj(XF
sj
,∆t) sj < k < sj+1

(5.1)

where

f i(Xk,∆t) =


f(f i−1(Xk,∆t),∆t) i > 1

f(Xk,∆t) i = 1

(5.2)

for running i steps of simulation.

5.4 Time Domain Parallelization

In this section I will describe my parallelization technique. I solve the parti-

tioning problem from the simplest case to the most complex one, in order to balance

the workload of each processor.

121

5.4.1 Static Temporal Partitioning

A straightforward approach for the partition problem is to divide the time

domain into p temporal segments of the same length:

sj = bN
p
jc (5.3)

Assuming that every simulation step using the fine mesh takes the same

amount of time, the overhead of this partition schedule is the time spent in simula-

tion using the coarse mesh. To further simplify the case, I take another assumption

that the simulation speed at the low-res level is K times as fast as high-res level. I

can estimate the speedup as:

η1 =
KN

K N
p

+ (p− 1)N
p

=
Kp

K + p− 1
(5.4)

Note that in the low-res simulation using a coarse mesh there is no need to

continue the simulation after I reach sp−1. Therefore, the time spent on low-res

simulation is (p− 1)N
p

.

One improvement of the straightforward approach is that I can start the high-

res simulation in parallel, as long as the corresponding starting point is ready. In-

tuitively, I want all processors of the system to finish their jobs at the same time

to achieve a good workload balance and the best speedup possible. This objective

can be attained by adjusting the starting points so that the processor which starts

122

earlier takes a longer part to simulate. Taking the same assumption, I arrive at a

load-balancing equation:

sj +K(sj+1 − sj) = sj+1 +K(sj+2 − sj+1)

Recall that K is the ratio between the high- to low-res simulation time, sj, sj+1,

and sj+2 are the starting point for simulation on the processors j, j + 1, and j + 2,

respectively. This equation yields:

sj = b1− q
j

1− qp
Nc (5.5)

where q = 1− 1
K

. The speedup can then be expressed as:

η2 =
KN

K(s1 − s0)
= K −K(1− 1/K)p ≈ p−

(
p

2

)
1

K
(5.6)

This is a tighter bound than Eqn. 5.4, as p approaches to K. The key reason

behind the sub-linear speedup is that the overhead ratio to the original computation

is 1/K. In practice, the ratio between high- to low-res simulation time can be

controlled by the user and can usually reach 100∼200 using the method described

in Sec. 5.4.3, which is sufficient for running on a large distributed system.

123

5.4.2 Adaptive Partitioning

In the discussion above, I consider K as a known constant throughout the

entire simulation process. However, it is highly unlikely that this would be the

case. First of all, remeshing in the simulation run leads to a varying number of

vertices and thus a dynamically changing size of the linear system. Secondly, the

computational cost can vary considerably, even with the same mesh size, due to

collision queries. Recent studies [153] show that collision detection and response

can take up to 80% of the total running time. Moreover, the difference of per-step

runtime is also dominated by the collision response and the size of the adaptive mesh,

which are largely related to the object granularity. It has much more impact in the

high-resolution than the low-resolution, which K accounts for as well. Therefore,

the ratio of high- to low-res simulation time varies and the exact number is usually

unknown.

A fixed partitioning scheme can become unstable and sensitive to these varia-

tions, resulting in load imbalance. One common solution is to cut down the jobs into

more smaller tasks so that the imbalance can be reduced by dynamic job scheduling

scheme. This method surely works, but it will have large extra overhead due to job

scheduling and required preprocessing time (Sec. 5.5), and extra hand-tuned granu-

larity parameter to optimize the performance. Since I want to avoid any unnecessary

computational overhead, I here propose an adaptive partitioning algorithm.

Suppose that I have simulated up to step n using the coarse mesh, when the

first high-res parallel simulation with the same starting time has completed m steps,

124

Figure 5.3: Adaptive partitioning Algorithm. I estimate the ratio of high-to-low-res
simulation time, K̃, according to the runtime data I observe so far ([0,m] in High-res
on Processor 1 and [0,n] in Low-res on Processor 0). The objective is to predict the
future running time (marked by ‘Processor 0’ and ‘Processor 1’ respectively) to be
as close as possible to the actual time.

where m < n. Let TC(m) and TF (m) denote the running time of the previous m

steps using the coarse and fine meshes, respectively. Then, the ratio of the high-to-

low-res simulation time, K̃, can be approximated as:

K̃ =
TF (m)

TC(m)
=

TC(n)

TC(m)
(5.7)

Since these numbers may vary, it is not appropriate to determine the global

partition points using current approximations. Instead, I use them to determine if I

should perform a cut on step n, i.e. whether n should be s1 or not. Fig. 5.3 gives a

visualization of the process. The objective of the partitioning algorithm is that the

total running time on the processor 0, which performs the low-res simulation and

the last part of the high-res simulation, is equal to the running time of the current

parallel simulation that performs the high-res simulation using a fine mesh from step

0 to step n. This relation can be formulated as:

TC(s̃p−1) + (TF (N)− TF (s̃p−1)) = TF (n) (5.8)

where s̃p−1 is the estimated starting point of the last partitioned segment. I use

125

the method described in Sec. 5.4.1 to obtain this parameter. I further approximate

Eqn. 5.8 to:

n =
N

K̃
+
K̃ − 1

K̃
(N − s̃p−1) (5.9)

by assuming stable parameters in the remaining simulation:

TF (j) = K̃TC(j) = K̃TC(1)j for any j (5.10)

Since n is increasing while K̃ and s̃p−1 can be considered stable compared to

n, Eqn. 5.9 can be defined at some point in 1 ≤ n ≤ N − p. The remaining cut can

be completed recursively. Algorithm 2 shows the pseudocode of this method. K̃ and

s̃p−1 here are approximated values used only for this cut. They can vary during the

simulation, which will guide my partition algorithm to have adaptive cuts, instead

of fixed ones in Sec. 5.4.1.

Algorithm 2: - Adaptive Partitioning

Require: N, p, XC
0

1: n← 0
2: start fine level simulation from step 0 on Processor 1
3: while true do
4: n← n+ 1
5: obtain XC

n from XC
n−1

6: m← steps finished by Processor 1
7: calculate K̃, s̃p−1 from Eqn. 5.5 and 5.7
8: if condition of Eqn. 5.9 is met then break
9: end if

10: end while
11: t1 ← n
12: Control Processor 1 to stop at Step n
13: Recursively partition remaining N-n steps with p-1 processors

126

In practice, the overall performance using adaptive partitioning is similar to

that using static partitioning when the user can manually select the best K value

for the simulation scenario. This algorithm generally offers the advantage of dynam-

ically estimating the ratio of the high-to-low-res simulation time, so the user does

not need to hand-tune this parameter for the best possible speedup.

5.4.3 Analysis on Performance Scalability

As discussed in the previous sections, the scalability of this time-domain parti-

tioning method for parallel cloth simulation depends largely on the general runtime

ratio between the high- to low-res simulation time, K. Since I perform a low-res

simulation using a coarse mesh and a parallel one using a fine mesh, the low-res

running time is a computational overhead for all processors and thus the speedup

before any improvement is K
1+K/p

= Kp
K+p

. The ideal case of perfect workload bal-

ance, η2, is discussed in Sec. 5.4.1, hence the actual performance of Algorithm 2 in

a specific scenario, η3, has the following theoretical bound:

Kp

K + p
< η1 ≤ η3 ≤ η2 < K (5.11)

Therefore, the higher the K value is, the higher the overall performance gain

of my method would be. One common way to increase K is to control the number of

total mesh triangles by limiting the smallest possible size of each triangle in the low-

resolution level. The other way is to enlarge the time step of the low-res simulation,

since it is the common overhead of all processors and should aim for faster speed

127

rather than smaller discretization errors. A properly chosen large time step can

improve the overall performance with minimal impact on the simulation results.

With the coarsening techniques in space and time domains, K can be sufficiently

large to obtain good scalability in large distributed systems.

5.5 Smooth State Transitioning

Figure 5.4: An example of the coarse mesh XC , intermediate mesh, X̃F , and the
fine mesh, XF , after iterative corrections.

As mentioned in Sec. 5.4, the high-res simulation state approximation X̃F =

u(XC) is not the same as the exact state XF using the fine mesh, the reason of

which is that the high frequency information needed to reconstruct the states of

the fine mesh is missing in the estimated states of the simulation using the coarse

mesh. Therefore, if I take X̃F directly as the starting state of the parallelized

simulation, error e = E(X̃F ,XF) will occur, since the high-frequency information is

lost. Although e will vanish as the detail of the mesh is recovered by the simulation,

another error will appear at the beginning of the subsequent partition after the end of

the current one. (Here I focus on the actual visual effect instead of the L2 distance

of each vertex. The error of my specific goal can be defined as the smoothness

128

of the cloth.) Thus, this error will appear as a ‘popping visual artifact’ in the

final concatenated sequence of the cloth simulation. Fig. 5.4 shows an example of

the inaccurate starting mesh (middle) obtained from the corresponding coarse level

mesh (left), which causes a popping visual artifact because the error compared to

the actual state (right) is large enough to be visible.

One straight-forward method is to apply global smoothing optimization as a

post-processing step. However, this space-time optimization is too time consuming

to be used in speed demanding applications. As mentioned before, Bergou et al. [171]

used constrained dynamics for fine level simulation to match with the coarse level

motion. I employ this method to prevent the high-res simulation from diverging too

far from the low-res one. However, the high-frequency detail information would be

still missing at the transition point. Inspired from the observation that the visual

error will be eliminated during the simulation, I propose an iterative refinement

technique that can recover as much as possible the high-frequency detail of the

cloth from the low-res simulation using the coarse mesh.

5.5.1 Iterative Detail Recovery

Consider the mesh state at the consecutive step points XC
k−1 and XC

k . The

fine-level mesh can be regarded as the sum of the low-frequency coarse mesh and

the high-frequency detail:

XF = u(XC) + XD (5.12)

Assuming that the time step is sufficiently small and the detail does not change

129

much between two simulation steps, I have:

XF
k−1 − u(XC

k−1) ≈ XF
k − u(XC

k) = XD
k (5.13)

The idea here is to approximate XF
k−1 using XC

k−1, XC
k and X̃F

k . From Eqn. 5.13

I have:

X̃F
k = f(X̃F

k−1,∆t) (5.14)

≈ f(X̃F
k − u(XC

k) + u(XC
k−1),∆t) (5.15)

Note that Eqn. 5.15 can be considered as an updated version of Eqn. 5.14. By

subtracting the upsampled change of the state as a backward step and the simulation

itself as a forward one, I can compute X̃F
k iteratively. Algorithm 3 below shows the

iterative detail recovery process. I run this algorithm at each of the transition point

as a pre-processing step before the high-res simulation begins.

Algorithm 3: - Iterative Detail Recovery

Require: XC
k−1, XC

k (k ∈ S)

1: X̃F
k ← u(XC

k)
2: while not reaching maximum iteration do
3: X̃F

k−1 ← X̃F
k − u(XC

k) + u(XC
k−1)

4: X̃F
k ← f(X̃F

k−1,∆t) with constraints introduced by TRACKS [171]
5: end while
6: XF

k ← X̃F
k

130

5.5.2 Convergence and Continuity

Taking the advantage of the constraint-based tracking solver introduced by

Bergou et al. [171], this iterative algorithm can be proved to have convergence

guarantee. I show the proof in the following section. It is not guaranteed that the

convergence point is exactly the same as the high-res simulation result. However,

due to the enforcement of the tracking constraint, the difference compared to the

result at the previous step will be O(∆t), which means that there will be very little

discontinuity and in most practical cases they are invisible.

5.5.3 Proof of Convergence of Algorithm 3

Theorem 1. Algorithm 3 can reach the convergence point when applying the coarse-

level tracking constraints to the system, as long as ∂F
∂X

= 0 for external forces.

Proof. I assume the whole system is running under the Forward Euler method:

∆x

∆v

 = ∆t

 ∆v

M−1F(X)

 (5.16)

where F is the force function, and X =

(
x v

)T
is the state of the cloth. Given the

assumption that ∂F
∂X

= 0 for external forces, they have the same contributions for

each iteration and are all canceled out by the subtraction (∆u(XC
k)) in Algorithm 3.

So I only consider internal forces.

Since I only focus on one high-res simulation step here, I leave off the resolution

131

superscript and replace the step number subscript by the iteration time. I denote

the upsampled coarse-level difference by ∆X0 =

(
∆x0 ∆v0

)T
. Using the new

notation, I have:

xi

vi

 =

xi−1 −∆x0

vi−1 −∆v0

+ ∆t

vi−1 −∆v0

M−1F

 (5.17)

I now regard the evolution from

(
xi−1 vi−1

)T
to

(
xi vi

)T
as one full simu-

lation step (instead of a backward-forward iteration), and only focus on the velocity

equation (since the position can be derived from it):

vi = vi−1 + ∆t(M−1F−∆a0) (5.18)

where ∆a0 = ∆v0/∆t is the corresponding acceleration value. Given that the

internal forces are negative gradients of the potential energy, I have:

d2x

dt2
= M−1F−M−1M∆a0 (5.19)

= −M−1∂E

∂x
−M−1∂M∆a0 · x

∂x
(5.20)

= −M−1∂E

∂x
−M−1∂E0

∂x
(5.21)

= −M−1∂Ẽ

∂x
(5.22)

where I make up a form of potential energy (E0) with constant gradients to unite

the two components.

132

By computing the dot product with the velocity (of the previous iteration), I

have:

dx

dt
·Md2x

dt2
= −dx

dt

∣∣∣
(i−1)∆t

· ∂Ẽ
∂x

∣∣∣
xi−1−∆x0

(5.23)

= −dx
dt
· (∂Ẽ
∂x

∣∣∣
xi−1

− ∂2Ẽ

∂x2
∆x0) (5.24)

= −(
∂Ẽ

∂t
− ∂2Ẽ

∂x∂t
∆x0) (5.25)

= − ∂

∂t
(Ẽ − ∂Ẽ

∂x
∆x0) (5.26)

= −∂Ẽ
∂t

∣∣∣
xi−1−∆x0

(5.27)

or in a discrete form:

vi−1 ·Mai = −∂Ẽ
∂t

∣∣∣
xi−1−∆x0

(5.28)

This equation means that the whole system tends to decrease the sum of the

potential energy: when Ẽ is decreasing, the acceleration ai will have roughly the

same direction with the velocity; otherwise it will have the opposite one, makes the

velocity direction turn around eventually. The coarse-level tracking constraint here

serves as a damping component, which prevents the system from oscillation due to

conservation of energy. It also prevents Ẽ from infinitely decreasing since the coarse

shape of the mesh is strictly preserved [171]. Therefore, after sufficient number of

iterations the whole system will reach a balance where ∂Ẽ
∂t

= 0, and a stable result

gives vi = ai = 0.

Note that although I have constraints on external forces, in most of the cases,

133

they can be easily satisfied, such as gravitational forces and user-control impulse

forces. Here I consider collision response as part of the constraint system, so it

does not have impacts on the practical correctness. I use Forward Euler only for

the simplicity of the expression in the proof. Actually I can derive the same form

of Eqn. 5.18 using any other integrator (e.g. Backward Euler), during which the

extra terms related to ∆v0 (introduced by Backward Euler [27]) can be canceled

out, eventually leaving ∆a0. The main idea of the proof is that the system is

conservative, regardless of the actual integrator, before adding extra damping con-

straints that ensures the final convergence. Upon convergence, the change in the

high-res states (i.e. velocities and accelerations) will be the same as the change in

the interpolated low-res states. This step, together with the position constraints by

TRACKS, ensures the position and velocity difference between the high-res results

at the boundary to be O(∆t), smoothing out the visual popping artifact.

5.5.4 Iteration Number Estimation

The number of iterations needed for convergence, according to the proof, is

largely related to the strength of the coarse-level constraint (in other words, the

coarse-to-fine ratio K), since it provides the damping force to the system. Addi-

tionally, given a fixed upsampling scale (K), the iteration number is also related to

a) the stiffness and density of the cloth, and b) the time step ∆t. I estimate my

iteration number in a simplified 2-D spring-mass system. Suppose at t = 0 a string

with length l is hanging horizontally, with both endpoints fixed. It is currently

134

discretized as one single piece of 1-D string so the middle part of itself will not fall

down. However, in the continuous real-world space, it is not in the equilibrium state

and it has a residual energy of O(l2). This continuous case can actually be regarded

as a string discretized to infinitely many small pieces. I define the residual energy

as the difference of the potential energy between the current discretized one and the

continuous one.

Subdividing the spring will bring the entire system closer to the actual contin-

uous case (since the newly introduced vertices will fall down), so the residual energy

will decrease. The spring system will start to bounce around upon discretization

and I assume that there are damping forces in the system. After discretizing the

spring into c pieces of equal length, the new system will have a residual energy of

O(l2/c) when reaching the equilibrium state in the new discretization setting. If the

system is in the critical damping condition, the energy will decrease by a factor of

e after t =
√
ms/ξ seconds, where ms is the mass of the spring and ξ is the stiff-

ness. Therefore, the recovery time needed from the coarse level to the fine one is

O(
√
ms/ξ ln c).

In my case, I have K = cO(1) which depends on the embedded simulator and

the collision state. Also I set lnK ≤ 7 to cover most of the cases. I use the density

and the Frobenius norm of the stretching and bending stiffness matrix in [93] to

estimate
√
ms/ξ. ms typically ranges from 0.1 to 1, while the value of ξ is between

10 and 100.

Combining all of them above, I have an estimation of c0

√
ms/ξ/∆t as the

number of iteration steps needed, where ms is the density and ξ is the Frobenius

135

norm of the stretching and bending stiffness matrix in [93]. I use c0 = 10 across all

of my experiments. In practice, the iteration can also end when no large difference

is detected between current and previous results. I found that using my estimation

number the difference threshold can be as small as 10−3 relative to the scale of the

cloth.

In each of the temporal partition, I add an extra simulation steps of c0

√
ms/ξ/∆t

to refine the starting state, so the total ideal performance gain due to parallelization

is

η =
N

c0

√
ms/ξ/∆t+N/η2

(5.29)

Given a cloth material configuration with fixed ms and ξ, η will have an upper-

bound of η2 if c0

√
ms/ξ/∆t<<KN/η2. This can be easily satisfied since the duration

N∆t is usually from a few seconds to many minutes, and c0

√
ms/ξ is usually smaller

than 1.

5.5.5 Implementation Details

There are some minor details in the implementation of the approach. When I

take a larger step in the low-resolution simulation, I estimate the change of the state

in the corresponding high-res step u(XC
k) − u(XC

k−1) by linearly interpolating the

states in between. The same method is also used in the adaptive partitioning method

described in Sec. 5.4.2. The recovery iterations also count into the estimation of the

current K̃, but do not count into the total number of steps, N , since there is no

corresponding step in the low-res level and each processor has the same number of

136

extra simulation steps, so the system still remains balanced. I regard K̃ as +∞ if

the first step of the high-res simulation is not finished at the time I determine n in

Sec. 5.4.2. Note that the state X includes both the position and velocity components.

I also refine the velocities in the upsampling phase. When using adaptive remeshing,

I obtain the new velocity as the average of the two vertices during edge splitting,

following ArcSim [74]. The change of the state is also computed correspondingly.

5.5.6 State Inconsistency

In the extreme cases where the high-resolution mesh is much finer than the low-

res one, e.g. 1M versus 100, the shape of the cloth in that case is largely determined

by the aggregated effect from details not captured by low-res simulation. Therefore,

I cannot recover the exact detail as in the serially simulated one at the transition

point, which is referred to as the ‘state inconsistency problem’. Enforcing the high-

res mesh to match the low-res one using the tracking solver [171] can effectively avoid

this problem. So, it can lead the simulation result to follow the movement of low-res

one instead, which limits this approach from accuracy-demanding usage in those

extreme cases. However, for other usage such as rapid design prototyping, where

environmental constraints are mild and K is reasonable, motion difference between

two levels is small and I can indeed achieve visually plausible results with high

speedup, which are shown in Fig. 5.10 and 5.11. Alternative methods to improve

the speedup without harming the accuracy is also discussed later in Sec.5.6.5.

137

5.6 Results

My method is tested on a large computing cluster with 526 compute nodes,

each with 12-core (dual socket), 2.93 GHz Intel processors, 12M L3 cache (Model

X5670), and 48 GB memory at 2:1 ratio IB interconnect, MPI for communication.

I run one process in each of the cores (compactly assigned). I use up to 128 cores of

this cluster to show the linear scalability provided by my theory and up to 512 cores

to show the maximum possible speedup in large distributed systems. I could not

test on a larger number of cores due to a core limit of 512 per job locally. I use the

upsampling function by [74] throughout all of my experiments except in Table 5.4,

which uses linearly-interpolated subdivision for fast error computation. As stated in

Sec. 5.5.6, this method cannot guarantee the same accuracy as full simulation, which

often cannot guarantee the same accuracy as the physical systems. The objective of

this work is to generate visually plausible simulation to provide rapid visual feedback

for interactive applications, such as rapid design prototyping.

5.6.1 Parameter and Scenario Setting

As mentioned in Sec. 5.4.3, I control the general coarse-to-fine ratio by lim-

iting the smallest mesh size and enlarging the time step of the low-res simulation.

Specifically in all of my test cases, the smallest length size of the triangle in the

low-res simulation is about 5 times as large as that in the high-res one. The number

of iterations in each of the smoothing processes is set to be the same as that in

Sec. 5.5.4. I use ARCSim [74] as my base simulator, since it naturally supports

138

adaptive mesh refinement with an efficient remeshing algorithm. My method can

be used in other CPU-based simulators using uniform meshes as well, as long as

the upsampling algorithm is specified or implemented. All listed K in the following

tables are averaged values across the entire simulation. I show scaling results using

figures for clarity.

I use 7 different benchmarks to test the performance and the animation qual-

ity of my method: Blue Dress and Yellow Dress (Fig. 5.11(a,b)), Sphere

(Fig. 5.11(c)), Falling (Fig. 5.11(d)), Karate (Fig. 5.1), Twisting (Fig. 5.10(a))

and Funnel (Fig. 5.10(b)). The default setting is 20 second simulation at the low-

resolution time step of 0.02 sec using 128 cores. I extend the duration to 80 seconds

and decrease the time step to make comparisons and validate my theoretical analysis

on performance gain. Below are descriptions of each benchmark data.

To the best of my knowledge, previous works did not provide any code or

experimental data to public, so the best known practice is to use the reported

‘speedup data’ in other works with similar scenarios, to minimize the difference

due to computing platforms or implementation. I use the timing data of ‘Two

Cloths Draped’ scenario from [152] since it has similar settings as mine (cloth-object

interaction), similarly with other benchmarks.

Scenario Blue Dress Yellow Dress Sphere Falling Karate Twisting Funnel
Original size speedup 74.1 75.0 102 116 96.4 92.3 93.8
4x large size speedup 99.6 109 178 119 103 101 108

Table 5.2: Results on a higher-resolution mesh. I run my system on meshes of higher
resolution. Values in the table are the corresponding speedup.

139

Figure 5.5: Performance scaling result with large low-res time step. A nearly linear
scalability is achieved.

Figure 5.6: Results with increasing length of the simulation. A larger speedup is
observed with longer duration of simulation.

5.6.2 Performance

Nearly linear scalability w.r.t. the number of cores. As indicated

in Fig. 5.5, my method achieves a good scalability with an increasing number of

processors. The reason of the super-linear speedup in the ‘Sphere’ scene is that

it contains rapidly changing contacts with obstacles. When the cloth is free from

contact after the sphere passes through, the remeshing algorithm of ARCSim failed

140

to simplify the mesh effectively, spending an unnecessarily large amount of time

simulating simple flat cloth. However, due to the nature of my two-level structure, I

maintain a reasonably small number of mesh elements while preserving the quality,

and therefore outperform the serial approach significantly. I tested my method on a

higher-resolution mesh and observed an even better speedup (Table 5.2) due to the

same reason.

Improved scalability with increasing simulation duration. I show in Fig 5.6

that the scalability of my parallelized cloth simulation improves as the duration

of the simulation increases. Although the averaging effect of the remaining load

imbalance may partially account for it, the most likely reason is from Eqn. 5.29. I

have relatively small speedup in 128-core parallelization when simulating a 20-second

simulation because the iterative detail recovery algorithm consumes a relatively

large amount of time according to Eqn. 5.29. Since the overhead is not dependent

on the duration of the simulation and my method is a time-domain parallelization

technique, the performance gain improves as the length of the simulation increases

due to a smaller portion of the overhead.

Cores 8 16 32 64 128
Uniform partition runtime(s) 5533 3010 1042 684 631
Adaptive partition runtime(s) 4721 2568 928 565 532

Speedup (%) 117 117 112 121 119

Table 5.3: Comparison between different partition schemes. Values in the table are
simulation runtime in seconds.

Performance impact on different choices of parameters. To verify my scal-

ability analysis in Sec. 5.4.3 and 5.5.4, I further ran my benchmark with much

smaller time steps in low-res simulation. As mentioned in Sec. 5.4.3, increasing

141

Figure 5.7: Performance scaling result with small low-res time steps. Compared to
Fig. 5.5, the speedup for cases with core number larger than 32 is decreased, due
to the smaller time steps for low-res simulation.

low-resolution time step is one of the ways to increase the ratio of high-to-low-res

simulation time, K. Fig. 5.7 shows that smaller time steps in low-res simulation

leads to a sub-linear scaling in all datasets, starting from the 64-core configuration.

Although the ‘Sphere’ dataset has a bigger K due to its simplicity, the scalability

starts to degrade at 128 cores as well. The speedup still increases with the simu-

lation duration. However, as it is more closely bounded by K, the gain factor is

not as significant as that with large time steps. In practice, a large time step in

low-resolution simulations is beneficial to the parallelization performance, but it is

limited by (a) the embedded simulation method, (b) the duration of a single frame,

and (c) the desired animation quality.

Performance impact on different partition schemes. Table 5.3 shows that by

using my adaptive partitioning scheme, I achieve an average of about 120% speedup

compared to the uniform partitioned one with the best chosen parameter. In cases

such as rapid design prototyping, where the cloth is in continuous contact with

142

Scenario Blue Dress Yellow Dress Sphere Falling Karate Twisting Funnel
Time step(low-res) 1/200s 1/100s 1/50s 1/125s
Time step(high-res) 1/200s 1/500s
of faces(low-res) 5K 6K 8K 6K 4K 4K 4K
of faces(high-res) 80K 95K 131K 94K 58K 65K 65K

of triangles(obstacle) 20K 20K 1280 15K 28K 762 4K
K 165 170 172 60 99 188 794

Low-res speed (serial 1-core) 0.6 0.79 1 1.2 0.83 0.22 0.32
High-res speed(OpenMP 12-core) 32.2 44.3 55.9 23.2 27.6 13.7 86.7

My method 0.89 1.14 1.3 1.5 0.91 0.41 1.22
Error before detail recovery 11% 12% 3.2% 22% 29% 46% 16%
Error after detail recovery 4% 6% 0.6% 5% 9% 14% 7%

Table 5.4: Results in the extreme case. I use 512 cores to simulate these scenes.
Values in the table are in seconds per frame. The error metric is relative curva-
ture difference compared to serial results in percentage. I use linear interpolated
subdivision for fast error comparison.

obstacles, the parameter K remains relatively stable. However, it is still difficult

to compute K before simulation begins, since it depends on the specific mesh and

collision structure. Furthermore, it is best not to compute the parameter using the

first few frames, since the cloth at the beginning can be under constrained without

sufficient contact with the obstacles. My adaptive partitioning method here serves

as an on-the-fly parameter estimation algorithm in order to achieve good workload

balance.

Low-res speed with high-res mesh on a large distributed system. I further

test my method in extreme cases where K is relatively small compared to p, which

is possible in practice when the computational resources are sufficient. The runtime

result is shown in Table 5.4. Although I cannot achieve a speedup as high as 512

due to the limitation of K, I have actually met the upper bound. The serial low-

resolution simulation has consumed most of the time so there is very little space to

improve in my scheme.

Comparison with previous CPU parallelization work. I compare the perfor-

mance of my method against other CPU parallelization techniques. Fig. 5.8 shows

143

that in smaller-scale systems (less than 16 cores), my method can maintain a linear

speedup with respect to the single-core system, scaling better compared to previ-

ous CPU-based methods using spatial-domain partitioning, e.g. 11x over 16 cores

by [154]. For larger-scale systems (Fig. 5.9), I achieved about 50% more efficiency

than previous methods such as [152]. In these methods, the processors need to send

the information to each other, typically several times, when solving the linear sys-

tem, resulting in large communication overhead and limited scalability. In contrast,

my method only needs to share the states from low-resolution simulations once.

Therefore, my method can achieve greater scalability and efficiency in comparison.

In addition, I compare my method with the original embedded OpenMP ver-

sion of ARCSim. Although a maximum of 2.69x is observed using OpenMP with

2 cores due to a better cache usage in the linear solver, the performance scaling

is poor when adding more cores, which results from that the simulation algorithm

does not parallelize the remeshing process due to memory access issues. My method

disables the OpenMP feature in the ARCSim. Since I parallelize the simulation

in time domain, I can avoid memory access control problems, thereby achieving a

better speedup.

Method Speedup over sequential ArcSim [74] Supports Adaptive Mesh?
Tang et al. [153] 47-58x No

My method(64-core) 50-75x Yes
My method(128-core) 75-115x Yes
My method(512-core) 91-214x Yes

Table 5.5: Comparison with GPU method [153]. Other than the scalable
speedup gain with more cores, the method is able to naturally support adaptive
mesh during the simulation.

Comparison with GPU-based parallelization. Using similar benchmarks as [153],

144

Figure 5.8: Small scale parallelization comparison. My method (in blue solid line)
achieves a linear speedup, while others are limited by the communication overhead
due to spatial domain partitioning.

Figure 5.9: Large scale parallelization comparison. My method (in blue solid line)
achieves about 50% higher efficiency than [152] using dynamic workload balancing.

the speedup of my method in a 64-core system configuration is up to 54x in prac-

tical scenarios compared to the original ARCSim implementation on a single-core

system and achieves a performance gain comparable to the GPU parallelization of

[153] (Table. 5.5). However, my method has other distinctive strengths compared

to the GPU method. Mine is the first work that can couple an adaptive mesh of

varying dimensions during the simulation. I use the same number of triangles for

145

(a) Twisting (b) Funnel

Figure 5.10: More simulation results (best view with zoom-in in PDF). I have
achieved visually plausible and smooth results even in challenging cases involving
frequent contacts.

performance comparison, but in practice I can produce similar visual granularity

with much fewer triangles using adaptive mesh [74], thereby making my method

even faster. Moreover, my performance can be further improved using more cores

and a longer simulation sequence, as shown in Fig 5.5 and 5.6.

(a) Blue Dress (b) Yellow Dress

(c) Sphere (d) Falling

Figure 5.11: Refining results (best view with zoom-in in PDF). The left image in
each of the example is the upsampled mesh without detail recovery, which lacks high
frequency details and causes ‘popping’ artifacts. The right one is the corresponding
mesh using my method.

146

5.6.3 Smoothness

Fig. 5.11 and Table 5.4 shows the results before and after the refining algo-

rithm is applied. If directly using the results from the upsampling algorithm, the

detail of the cloth is significantly different from the correct one and therefore in-

troduces popping artifacts. After applying the iterative smoothing algorithm, the

high frequency information is recovered. I use average curvature distance defined

in Eqn. 5.30 to measure the error between the recovered mesh and the original,

high-res one simulated using ARCSim on a single core.

E =

∑
f1,f2∈F |curv(f1, f2)− curv(f̃1, f̃2)|∑

f1,f2∈F |curv(f1, f2)|
(5.30)

where f1, f2 are two adjacent faces in the original mesh, and f̃1, f̃2 are two cor-

responding faces in my simulation result. I disable remeshing and use linearly-

interpolated subdivision for fast comparison. A larger value of the curvature error

indicates a sharper edge in the corresponding position and thus a potential artifact.

Before my recovery method, a relative error up to 46% is observed, which can cause

large ‘popping’ artifacts in the result animation (Fig. 5.11). By using my technique,

the error has decreased by 2-5 times, which is a significant improvement.

5.6.4 Memory and Render Latency

The extra memory footprint introduced by my method is small compared to

the high-res mesh. In my experiments, the low-res mesh storage is 5.5% of the high-

147

res one. I do not render the low-res simulation in my method, and it actually starts

at the same time with the first partition of the high-res one. Therefore, my method

does not introduce any latency compared to the full-res simulation. In fact, I have

achieved a ‘pre-fetch’ effect for the subsequent partitions due to the very fast, low-

res simulation, thereby reducing any potential latency introduced by non-real-time

simulation.

5.6.5 Limitations

There are some limitations with this method. First of all, the performance

gain is bounded by the ratio of low- to high-resolution simulation time. Other than

accelerating the simulation through parallelization in the temporal domain, I can

additionally employ GPU implementation to further improve the overall gain. With

a factor of 50x speedup from GPU [153] and a sufficient number of processors to

parallelize the high-resolution simulation, it is possible to accelerate the performance

even further. Secondly, the runtime of my method is bounded by a single-step high-

resolution simulation time. This implies that at least one simulation step must take

place in order to see the result. However, my method accelerates the overall per-

formance, so I can actually achieve ‘pseudo-interactivity’, where the user can have

a very fast visual feedback in parallel. Another possible direction is to implement a

hybrid domain decomposition scheme, allocating some processors for spatial-domain

parallelization to accelerate the single-step runtime. My approach provides plausi-

ble visual results in practical real-time applications, like rapid design prototyping.

148

However, as stated in Sec. 5.5.6, This approach may not be suitable in applica-

tions requiring high precision. In practice, the resulting cloth can sometimes appear

slightly stiffer than the original one.

5.7 Conclusion and Future Work

In this chapter, I introduce a novel temporal-domain parallelization method for

practical cloth simulation such as rapid design prototyping. Taking the advantage of

faster simulations on coarser meshes, I parallelize the cloth simulation in time with

accelerated computation and minimal communication overhead. I also proposed

an iterative detail recovery algorithm to minimize the visual artifacts due to the

state transitioning from coarse to fine meshes. My method outperforms existing

CPU- and GPU-based parallelization techniques on a diverse set of benchmarks.

It offers high efficiency and nearly linear scalability on large distributed systems,

while maintaining high-fidelity visual simulation of the cloth. The scalability of

my method is dependent on the ratio of low- to high-resolution simulation time,

the length of the simulation, and persistence of contacts with obstacles. Since this

method utilizes only time-domain parallelization, a natural extension would be a

hybrid decomposition scheme that may provide a potential usage in short-duration

simulation or in circumstances with memory constraint.

This work has been published in the proceedings of ACM SIGGRAPH/Eurographics

Symposium on Computer Animation (SCA) 2018.

149

Chapter 6: Dynamics-Inspired Garment Draping Prediction

6.1 Introduction

Other than accelerated cloth simulation proposed in Chapter 5, one can also

use deep learning to directly predict the garment draping given the body as input.

This approach offers real-time feedback to the user guaranteed by GPU-based net-

work inference. Within the training distribution, learning-based methods can also

produce draping results as good as simulated ones, accurately revealing information,

such as fitting and material perception.

Figure 6.1: My model learns how to drape garments in two stages: first supervising
the network with a physics-inspired loss, then optimizing the output according to
the physics of specified garments, such as new print shapes or materials, in a self-
correcting way.

However, there exists a number of major challenges for interactive learning-

150

based virtual try-on. First, it is well-known that machine learning models tend

to produce overly smoothed results when using per-vertex distances as their main

loss [11, 180, 181]. Although previous works [11] addressed this issue to some ex-

tent, they are limited to a narrow set of shapes composed of nine distinct bodies.

Next, while garments are often composed of different materials (e.g . the frontal

graphics print in T-shirts), existing works typically model a single one because it

is impractical to consider all combinations of different graphics prints shapes at

training time. Finally, it is expected that the garments predicted by the network

model is fit-accurate, although the most common losses in related work (per-vertex

geometry errors) do not necessarily entail fit accuracy. This translates into changes

in the overall shape of the garment and violations to its material properties.

In this chapter, I propose a novel semi-supervised framework to address all

issues above. One key idea is that physical constraints can be reformulated as

geometric loss functions that can be optimized during training. However, using

the exact physical loss functions from scratch does not result in good draping due

to their complexity. Therefore, I first train my model with supervised, physics-

inspired loss functions, and then optimize the model output individually for each

sample to conserve the actual physical energy and minimize/eliminate geometric

intersections. Given their superior quality compared to the initial predictions, the

resulting optimized samples can then be re-used to further improve the initial feed-

forward network.

Overall, the key contributions of this work include:

151

• A semi-supervised framework that enables easy integration of constraints into

the deep learning model.

• Introduction of novel loss functions that encode geometric, physical, design,

and tailoring constraints.

• A novel encoder/decoder network that effectively captures global and local

features from the input and dynamically aggregates neighborhood information.

• A new self-correcting method based on data augmentation that enables both

more accurate predictions and reduced data preparation time.

6.2 Related Work

Drape prediction systems fall mainly in three categories: physics-based simu-

lation, learning-based garment generation, and direct estimation of garments from

real-world.

Physics-based Cloth Simulation. Physics-based garment simulation systems

usually include spatial discretization [27, 91] and different forms of simulations [24,

182]. Although several techniques have been proposed to speed up cloth simulation,

including GPU acceleration [162, 183], spatial and temporal parallelization [152,

170, 184, 185], and other techniques [186, 187, 188], real-time, physically accurate

cloth dynamics for any given human shape remains illusive [74].

To reduce computation time, several works produce high frequency wrinkles

on low-resolution meshes as a practical trade-off [173, 178, 186, 189, 190], but are

152

typically limited to tight garments. In tight garments, cloth material and overall

drape have a negligible effect in the wrinkles. In contrast, my feed-forward model

can achieve real-time performance even when generating high-resolution garments.

Inspired from optimization-based simulation [191], I use the physics-based metrics

as some of the loss functions, resulting in realistic folds and wrinkles.

Learning-based Garment Draping. As a faster alternative to simulation, learning-

based approaches have been developed for draping garments with better visual

quality and realism, including normal map generation [124], KNN body-garment

fusion [8], wrinkle-assisted design [9], displacement regression [192, 193], motion-

conditioned auto-encoder [194], and least-square approximation [195]. However,

these works are limited in different aspects: [124] do not provide geometric de-

tails; [8, 193, 195] generate relatively smoothed results; [193, 194, 195] do not gener-

alize to a wide range of body shapes; [9] requires user knowledge of wrinkle formation;

and [192] cannot deal with loose clothing and produces a single mesh containing both

body and garment fused. In contrast, my method takes only a human body mesh

as input and directly regresses the garment mesh as output with realistic geometric

details.

Other works tackle the same task as my system does. Santesteban et al . [180]

used RNN to capture the motion-dependent garment shapes on the body. Vidaurre

et al . [181] extended the approach to cover more size variations of different design

parts. Since [180, 181] supervise their methods with a pure per-vertex distance loss,

their model suffers from smoothed folds especially when the garment is loose. To

153

remedy the smoothing effect, Patel et al . [11] interpolated high frequency results

from different anchors based on the inverse of per-vertex distances between garment

predictions on the canonical pose. Despite its success, it is based on a limited discrete

set of training shapes, which can pose generalization problems as can be observed in

Sec. 6.5.6. In contrast to the three methods above, I design an exhaustive set of loss

functions inspired by physics constraints, including the minimization of differences

in the spectral domain.

Garment Capture and Estimation. Instead of simulating garments, some sys-

tems capture garments from real-world data. These systems focus on inferring the

mesh geometry using visual features and retargeting it to the desired body. State-

of-the-art methods have varying types of input, including images [12, 68, 110, 116,

120, 121, 196], mesh scans [22, 197], RGB videos [2, 198], or videos together with

the depth channel [122, 199]. Despite the appeal of avoiding altogether physical

simulation in both train and test stages, capturing methods still have a number of

drawbacks. First, it is hard to collect a dataset large enough to train a model that

can cover the large variation of human shapes. Moreover, simple retargeting often

fails to account for non-rigid and non-linear transitions of the garment deforma-

tion between different bodies. Note that there is an intrinsic difference between my

method and capture systems: while my method focuses on generating drapes given

just the underlying body, capture methods extract the garment from existing media.

154

6.3 Method

In this work, I focus on a wide range of human body sizes rather than different

poses. To this end, I used the SMPL model [30] to generate a set of 20,000 bodies

of varied male shapes (see supp. mat. for the equivalent female model) following

a uniform distribution of BMIs between 15 and 65, all with the same A-pose. In

comparison, my analysis indicates that from the 9 discrete bodies used by Tailor-

Net [11] only one has a BMI over 30. Given that 42.4% of the population in the

US has obesity (BMI > 30) [200], TailorNet does not have enough coverage on large

bodies.

Figure 6.2: Overall structure of my network. I use 1D CNN as my encoder and
Graph Convolutional Network (GCN) as the decoder with four different resolutions.
I additionally employ an MLP-based spectral decoder for high frequency preserva-
tion.

The overall structure of my network is shown in Fig. 6.2. I first pass the

ordered vertex coordinates of the body to a 1D CNN network to extract features

(Sec. 6.3.1). Next, I transform the features corresponding to vertices in the body

using 1-layer MLP, and distribute them to the vertices of the garment according to

155

fixed correspondences between body and garment. I design a resolution hierarchy

for the Graph Convolutional Network (GCN) decoder to capture both global and

local information (Sec. 6.3.2). To improve the higher frequency wrinkles, I finally

introduce an MLP branch that predicts the garment residuals in the spectral domain

(Sec. 6.3.3). The losses used for training this network are described in Sec. 6.3.4.

6.3.1 Encoder

Figure 6.3: Visualization of the eigenvectors and their eigenvalues. Red denotes
large weights, blue small ones.

Unlike PointNet [99], which obviates the vertices order by spatially pooling

its features, I would like to exploit the fixed topology of the input SMPL vertices.

Since the input mesh does not have a neighbor structure constant across vertices, a

natural choice for this would be a GCN. However, in Sec. 6.5.2 I show that my simpler

alternative, a 1D CNN, empirically outperforms the GCN. I hypothesize that this

might be due to the large amount of model capacity devoted to body parts unrelated

to the garment (i.e. head, hands, etc). In practice, using a 1D CNN on the original

SMPL vertex order is more efficient and captures most SMPL neighborhoods, since

156

91.24% of the SMPL vertices have their adjacent indexed neighbors being adjacent

in topology, and 94.01% are at most two-hops away.

6.3.2 GCN-Based Decoder

Following a similar reasoning as in the previous section, I would like to cap-

ture local relations between the garment vertex neighborhoods. Therefore, I use a

graph convolutional network in the decoder. A common graph convolutional layer

is defined as:

y = fθ(Ax) (6.1)

where A is the aggregation matrix which collects and processes the information in

the neighborhood in an isotropic way, and fθ is the nonlinear activation function

for feature extraction. The expressiveness of this network is inherently limited since

the constant aggregation matrix cannot adapt its neighbor aggregation weights.

Attention-based GCN [201] addresses this issue by proposing an MLP to estimate

the aggregation parameters given the vertex features:

y = fθ1(Aθ2x) (6.2)

Aθ2 [i, j] = MLP (xi,xj) (6.3)

157

In contrast, I propose to learn the aggregation parameters independently per vertex,

without an explicit dependence on the features:

Aθ2 [i, j] = θ2[i, j] (6.4)

Another particularity of my decoder is its hierarchical nature. Analogous to

up-scaling in 2D image generation, feeding the encoded features to a coarsened mesh

helps distributing global features to broader regions of the garment. To linearly

upsample the features, I use the barycentric weights of the corresponding higher

resolution vertices with respect to the lower resolution ones, all in UV space. I use

four resolutions in the decoder for all experiments.

6.3.3 Spectral Domain Decomposition

Simulation systems are known to be input-sensitive; negligible differences in

the input or initialization can result in substantial differences in the outputs, spe-

cially in the high frequency domain. Supervision on vertex positions tends to average

those multiple possible outcomes, smoothing out its predictions. However, the high

frequency content of the garment is critical for garment perception, since it is highly

correlated to garment materials and tightness. This motivates the need to inspect

the spectral components of the garment mesh [202]. Specifically, I apply the eigen

decomposition on the Laplacian operator:

L = UDU−1 (6.5)

158

where U ∈ Rn∗n and D are the eigenvectors and the diagonal matrix of the eigen-

values. I pick the subset of eigenvectors V ∈ Rn∗k corresponding to the smallest

k eigenvalues. The spectral coefficients of a mesh c = V>x thereby represent the

mesh components with lowest impact on Laplacian values. This method rejects the

highest frequencies (typically noisy) since high frequency entails large local changes,

which have a large impact in the Laplacian (and therefore large eigenvalues). The

visualization of the eigenvectors is shown in Fig. 6.3.

Figure 6.4: Reconstructions for different numbers of coefficients.

This spectral decomposition is used by introducing an MLP-based branch in

the decoder network to account for residuals of the spectral components. I output

the coefficients ∆c of the 4,000 eigenvectors with the smallest eigenvalues, which are

sufficient for reconstruction (see Fig. 6.4). These coefficients are then transferred

back to the spatial domain ∆x = V∆c and added to the final result.

I also introduce a spectral loss during training. This loss ensures that high

frequency components, which typically result in small vertex displacements, deserve

proper attention in the supervision of my model.

159

6.3.4 Loss Functions

I design a number of loss functions to supervise and guide the model towards

realistic outputs. First of all, I split the output into a correspondence point set and

a displacement map:

x = cx + dx y = cy + dy (6.6)

where c are the correspondence (closest) points on the body surface and d are the

displacements w.r.t. the correspondence, and ∗x represents the prediction while ∗y

represents the ground-truth. This partition of garment into body plus displacement

is common in the literature [11, 196], but here it enables an important direction loss

that prevents intersections and preserves normals:

Ldir = R(−n>(cx − cy)

‖cx − cy‖
) + (1− (x− cy)

>dy
‖x− cy‖‖dy‖

) (6.7)

where R denotes relu, and n is the normal direction at cy. The first part of the

direction loss constrains the correspondence to be outside of the body, while the sec-

ond part constrains the direction of the prediction to be similar to the ground-truth.

Since cy is defined as the closest point on the body surface to the garment vertex x,

minimizing the direction loss can help generate results with fewer intersections and

better normal consistency.

I also use per-vertex L1 difference of these two components separately to su-

160

pervise the overall shape:

LV 2V = ‖cx − cy‖1 + ‖dx − dy‖1 (6.8)

Additionally, I applied physics-based losses to learn the correct deformation

of the garment. The key idea here is to transfer the physics constraints applied in

simulation to geometric differences. I choose two aspects that reflect the physics:

edge lengths and deformation gradients. First, the edge loss measures the difference

of the edge lengths relative to the ground-truth:

Le =
1

|E|
∑

(u,v)∈E

|‖ux − vx‖ − ‖uy − vy‖|
‖uy − vy‖

(6.9)

where ∗x are the predictions and ∗y are the ground-truths, and E is the edge set of

the mesh. This loss guides the model to generate more wrinkles because smoothed

results often have smaller overall circumference (thereby larger Ledge) than ground-

truths. Additionally, I define a loss that supervises on the difference of the defor-

mation gradient of each face in the mesh:

Ld =
∑
f∈M

‖Fx(f)− Fy(f)‖1 (6.10)

Fx(f) = x(f)X−1(f) (6.11)

where F(f) is the deformation gradient [203] of face f in the mesh M, defined as

the change of the world-space coordinates (x) per unit change of the material-space

161

coordinates (X) within each triangle. This loss is less intuitive than the edge loss, but

provides better alignment to the ground-truth regarding the potential energy and

the internal forces it generates. For example, the deformation gradient can represent

the shear stress and bulk stress separately, while the edge-based loss cannot.

To capture the curvature and higher frequency errors, I further define a Lapla-

cian Difference loss, and a spectral loss as described in Sec. 6.3.3:

Ll =
3∑

k=0

‖Lk(x− y)‖1 (6.12)

Ls = ‖V>(x− y)‖1 (6.13)

where Lk is the Laplacian operator on the mesh graph at the k-th resolution, and

V are the eigenvectors of the Laplacian operator on the original mesh defined in

Sec. 6.3.3. I apply the Laplacian difference loss in different resolutions to account

for wrinkles and folds of different sizes.

The total loss is the sum of all losses defined above:

L = LV 2V + Ldir + Le + Ld + Ll + Ls (6.14)

6.4 Physics-Enforced Optimization

During inference on unseen input bodies, it is likely that the drape prediction

does not reach a stable dynamical state because the corresponding potential energy

may not be fully minimized in all cases. More importantly, it is not uncommon

162

in practical try-on applications that the garment is composed of materials different

from the ones used in training. For example, a frontal graphic print of a T-shirt is

usually stiffer and heavier than the rest of T-shirt. In theory such situations could

be solved by training with the appropriate data, but this solution turns impractical

when I consider not only a large variety of graphics print shapes for garments, but

further more the infinite variety of them in services that allow you to create your

own print.

To address the problems above, I propose to optimize the inferred models

on specific samples at runtime. I finetune the network weights for each sample to

minimize the potential loss of the garment defined below:

Lp = Lg + Lst + Lb (6.15)

Lg =
∑
v∈M

m(v)g>x(v) (6.16)

Lst =
∑
f∈M

S(f) Lb =
∑
e∈M

B(e) (6.17)

where Lp, Lg, Lst, and Lb are the potential loss functions and its components:

gravity, stretching, and bending energy, respectively. M is the predicted mesh,

m(v) and x(v) is the mass and coordinates of vertex v, S(f) is the stretching energy

of face f , and B(e) is the bending energy of two adjacent faces with common edge

e. I follow the definitions of the stretching and bending energy from the simulator

I used [74]. In short, material stiffness coefficients are multiplied to elements in the

Green Strain of f and the curvature of e, respectively. To make the optimization

163

collision-aware, I introduce a penetration loss function [8].

Figure 6.5: The semi-supervised self-correcting training pipeline.

The proposed optimization step serves two purposes in my pipeline. First,

it can be used to generate better training data. I empirically show in Table 6.5

that my optimization generates garments with lower potential than the simulated

data, even when both are initialized with my network. My hypothesis is that the

lack of hard penetration constraints and kinematic limits helps my optimization

find a more stable state. Re-training the network with this data can be regarded

as self-correcting unsupervised learning since the training data has been produced

by the previous network, turning the entire pipeline into a semi-supervised learning

framework.

Second, it can be adapted to materials that are not covered by the original

model, which covers homogeneous T-shirts. The optimization allows us to predict

drapes where the T-shirts contain graphic prints with different shapes and materials

(Fig. 6.1). To achieve this, I simply minimize the potential loss of the new system

containing the new graphic print. Results in Sec. 6.5 show that the optimization is

indeed effective in performing these two tasks.

164

6.5 Experiments

I conduct several experiments to evaluate my method, including ablation stud-

ies testing several different configuration of my system, accuracy tests of the physics

optimization, comparisons with previous work, and generalization over multiple T-

shirt sizes.

6.5.1 Data Generation

I use the SMPL [30] body model to generate my input dataset. Shape param-

eters are sampled following a uniform distribution in BMI space with range from

10 to 65 (see Fig. 6.6). In terms of pose, I restrict myself to a fixed A-pose to

concentrate on a wide shape variation.

Figure 6.6: Bodies at BMI percentiles 10, 30, 50, 70 and 90%.

I use the T-shirt from TailorNet [11] as my garment template, after retopolo-

gizing it to generate a proper UV template for simulation. To generate the ground-

truth garments, I initialize the garment to a precomputed configuration coherent

with the T-pose average SMPL body. ArcSim [74] is used to simulate the garment

movements while the body is linearly morphed into the target shape with A-pose.

165

The body morphing lasts for two simulation seconds in total, and ArcSim contin-

ues to simulate the garment dynamics on the body for two more seconds to obtain

stable results. In total, I generate 20,000 such human bodies and garments, where

the training/validation/test split is 8:1:1 (for this reason the tables are annotated

as 16k for the full dataset of 20000 samples).

6.5.2 Ablation Study

In this section I evaluate different components of my method in terms of the

loss functions defined in Sec. 6.3.4 except from LV 2V , which is replaced by the more

intuitive mean euclidean distance (ME). I also track the ratio of all garment vertices

which are intersected with the human body, p. In the tests in this section, all system

components are held constant except for the one being tested.

Encoder. In this experiment my 1D CNN encoder is replaced with other approaches

like PointNet [99], the original GCN [204] and my modified GCN (see Sec. 6.3.2),

where I replaced upsampling for downsampling operations. Table 6.1 shows that

my CNN encoder outperforms other approaches. GCN performs worst because a

large part of its capacity is used in feature extraction on body regions of the body

irrelevant for my task (e.g . hands and feet).

Encoder Type ME (cm) Ll (cm) Le (%) Ls Ld p (%)

PointNet [99] 0.35 0.16 9.36 1.1e-3 4.6e-3 0.05
GCN [204] 0.45 0.18 10.32 1.2e-3 5.1e-3 0.1
GCN (mine) 0.36 0.16 9.54 1.1e-3 4.7e-3 0.05

CNN (mine) 0.33 0.16 9.21 1.0e-3 4.5e-3 0.05

Table 6.1: Encoders ablation. ME stands for Mean Euclidean.

166

Decoder. For comparison, I replaced my multi-scale GCN decoder (see Sec. 6.3.2)

with a 2D CNN decoder that represents the garment in UV space [124], an MLP,

and the original GCN [204]. My final model achieves the best results in most of the

metrics, especially when adding the spectral residual connection. Although the 2D

CNN decoder have slightly smaller intersection rates than mine, its large errors in

terms of edge lengths and face deformations indicates that the model fails to learn

the dynamics of the garment.

Decoder Type ME (cm) Ll (cm) Le (%) Ls Ld p (%)

2D CNN 0.54 0.49 39.45 2.0e-3 22.2e-3 0.04
MLP 1.62 0.25 15.71 2.0e-3 7.5e-3 6.96

1D CNN 5.02 0.38 24.51 3.2e-3 11.6e-3 24.67
GCN (original) 1.92 0.41 37.01 3.5e-3 19.8e-3 2.56

GCN (mine) 0.34 0.16 9.36 1.1e-3 4.6e-3 0.06
GCN (mine) + spec 0.33 0.16 9.21 1.0e-3 4.5e-3 0.05

Table 6.2: Decoders ablation. ME stands for Mean Euclidean.

Loss functions. I verify the effectiveness of my loss functions by comparing the

test metrics of the learned model when disabling the loss functions one at a time.

The main baseline is the per-vertex L2 loss commonly used in previous works [11,

180, 181]. As shown in Table 6.3, all my designed loss functions contribute to smaller

overall errors. It can be observed that the intersection ratio is drastically reduced

simply by replacing the baseline L2 loss to LV 2V that trains the correspondence

and displacement separately (Eqn. 6.8). Introducing the direction loss Ldir further

reduces the intersection close to their minimum. The losses related to local shape

(Lp), deformations (Le and Ld), and spectral energy (Ls) are reduced by introducing

the rest of the losses, with negligible negative effects in other metrics.

167

Loss Functions ME (cm) Ll (cm) Le (%) Ls Ld p (%)

Lbase = L2 0.4 0.21 12.35 1.2e-3 6.3e-3 2.05

L0 = LV 2V 0.33 0.21 12.93 1.2e-3 6.7e-3 0.41
L1 = L0 + Ldir 0.37 0.23 13.93 1.3e-3 7.2e-3 0.04
L2 = L1 + Ll 0.36 0.18 11.39 1.2e-3 5.7e-3 0.03
L3 = L2 + Le 0.35 0.16 9.55 1.1e-3 4.7e-3 0.04
L4 = L3 + Ls 0.34 0.16 9.36 1.1e-3 4.6e-3 0.04

L5 = L4 + Ld (mine) 0.33 0.16 9.21 1.0e-3 4.5e-3 0.05

Table 6.3: Losses ablation. ME stands for Mean Euclidean.

6.5.3 Optimization for Semi-Supervision

This section show how my optimization method described in Section 6.4 not

only adapts to novel runtime conditions, but also allows us to train a system which

achieves high accuracy and fast inference with less data. To validate this, I train

my model with 25% amount of the original simulated training data (4,000 samples),

and re-generate a full dataset (16,000 samples) where each sample is computed by

a 100-iteration optimization from the model prediction. Keeping body input and

train/validation/test split exactly the same, I train an additional model based on

the new dataset and compare the performance to the model that is trained on the

original one.

The test results are shown in Table 6.4. The initial models are denoted as 4k

and 16k regarding different training data sizes, optimized results are marked with

-opt, and 4k-retrain is my retrained model on the optimized data. I evaluate the

systems in terms of realism, training and inference time. Realism is evaluated in

terms of percentage of intersections and the potential defined in Eqn. 6.15. I use this

potential since the original physically simulated garments are not physically optimal

and therefore the comparison in terms of per-vertex distance is misleading. The end-

to-end training time denotes the total time needed to generate the first sample. For

168

example, for 4k-retrain it is the sum of the times from simulation (2,666 hours), 4k

training (3 hours), the optimization of all samples (31 hours), and final retraining

(10 hours).

Training with more data results in higher accuracy but longer training times.

After optimization, the total potential decreases and remaining intersections are

resolved. Although optimization is faster than the simulator, it is prohibitively slow

for real time applications. By using the optimized samples for the retrained network,

I achieve real-time performance with a fairly competitive physical accuracy. Note

that by retraining my system with only 4,000 samples (4k-retrain), my end-to-end

training time is shorter than that of the original system trained on 16,000 samples.

Models Lp p (%)
End-to-end

training time (h)
Inference

time

Simulation 1.0e-4 0.00 0 40min

4k 8.8e-5 0.1 2,669
17 ms

16k 7.5e-5 0.05 10,677

4k-opt 4.3e-5 0.00 2,669
7 s

16k-opt 4.1e-5 0.00 10,677

4k-retrain 5.6e-5 0.04 2,710 17 ms

Table 6.4: Self-correcting pipeline ablation study. Training with more data (16k
vs. 4k) results in higher accuracy but longer end-to-end training time due to data
generation. My optimization (-opt) improves the performance but has long inference
time. Re-training on the optimized data (4k-retrain) achieves small test errors, short
training time and real-time inference.

6.5.4 Optimization for Graphic Print

The optimization method enables the draping adaptation to unseen material

designs. In this experiment, I generate two datasets, one with a stiffer and denser

graphic print on the T-shirt front and one without. I train two models from the

169

datasets separately as the baselines, and also run the optimization process on the

model trained with blank T-shirts to adapt to the new print. In this experiment

I consider the potential Lp according to the materials of the T-shirt with a frontal

graphic print for both optimization and evaluation. I run this process over all the

bodies in my test set.

Table 6.5 shows that training with the correct offline data helps reduce mini-

mally the potential, but the optimization achieves a much stronger error reduction.

A qualitative example is also shown in Fig. 6.7, where it can be observed that the

frontal print forms different wrinkles in the simulation, which are correctly captured

in the optimized result. This process enables model generalization at runtime with-

out new data generation, which is crutial if the amount of material configurations

is very largely or simply unknown at training time. Note that simulation initial-

ized from the model prediction is not only slower, but also less accurate than my

optimized results.

Models Lst Lb Lg Lp Runtime p(%)

w/o Print 7.6e-5 4.5e-7 -9.2e-7 7.5e-5 17ms 0.05
w/ Print 7.5e-5 4.4e-7 -9.2e-7 7.4e-5 17ms 0.05

Optimized 4.2e-5 5.1e-7 -7.8e-7 4.1e-5 7s 0.00
Simulated 1.7e-4 6.2e-7 -9.6e-7 1.7e-4 40min 0.00

Table 6.5: Adaptation to new materials. The optimized results is better than the
network estimations and the simulation initialized with the model predictions with
print, while still being 342x faster.

170

Figure 6.7: Qualitative examples of self-correcting optimization. My method can
adapt the model to unseen materials.

6.5.5 Quantitative Comparisons

I compare quantitatively my system (16k in Table 6.4) with the system most

closely related to mine, TailorNet [11]. Unfortunately I cannot compare to other

relevant systems like [180, 181] since they do not provide publicly available code or

data; however, a qualitative comparison is provided in Sec. 6.5.6 for completeness.

As discussed in Sec. 6.2, remaining works do not fall into the same category as mine,

so I do not include them for comparison.

I compare against Tailornet retrained on my own data. Note that for my

new dataset, each of the anchor shapes contains a single pose, so learned weighted

sum of anchor-based high frequency prediction becomes a learned weighted sum

of fixed garments (Table 6.6 w/ anchor). To provide more capacity to the high

frequency network, I propose an alternative which trains a single high frequency

network without anchors (Table 6.6 w/o anchor). The original Tailornet could not

be used for quantitative comparison since I had to retopologize their template to

create a UV map, resulting in a different vertex count. As shown in Table 6.6, my

method outperforms TailorNet versions in all test metrics, reducing the errors by

171

44% (Ll) to 98% (p). I believe the decoder and the loss from TailorNet are the

causes of this gap. First, my GCN decoder with learned aggregation outperforms

their MLP decoder. Second, I have shown in Sec. 6.5.2 that the per-vertex distance

loss from TailorNet is outperformed by my physics-inspired loss.

Methods ME (cm) Ll (cm) Le (%) Ls Ld p (%)

[11] w/ anchor 1.4 0.4 26.59 2.5e-3 14.1e-3 4.89
[11]-post 1.4 0.4 26.4 2.5e-3 14.0e-3 0.03

[11] w/o anchor 1.36 0.29 17.65 2.1e-3 8.8e-3 3.1

Mine 0.33 0.16 9.21 1.0e-3 4.5e-3 0.05

Improvement 75% 44% 47% 52% 48% 98%

Table 6.6: Comparison with TailorNet retrained with my dataset with high fre-
quency discrete anchors (w/ anchor), after applying its post-processing (-post), and
without them (w/o anchor). My method reduces the error metrics by 44% to 98%.

6.5.6 Qualitative Results

I compare my model (16k in Table 6.4) qualitatively with previous works [11,

180, 181]. A comparison against Tailornet trained on my dataset is shown in Fig. 6.8.

In a few examples where the garment roughly fits the body (Column 1, 2), TailorNet

successfully predicts good results without too many intersections. However, my

prediction results are still visually better due to realization of steeper wrinkles.

In other cases, TailorNet fails to provide collision-free results, and the garments

are unrealistically crumpled. In contrast, my method provides realistic folds and

wrinkles of the garment that follow the dynamics with the body shape.

I also tried my best to compare my results with other two works where code

is not available [180, 181]. I took their original figures and generated my drapes

for similar body shape. Based on the results in Fig 6.9, I hypothesize that their

172

Figure 6.8: Qualitative comparison with TailorNet. My model captures better gar-
ment shapes regarding global fold structures, normal consistency, fine wrinkle de-
tails, and collision avoidance.

per-vertex loss generates smoother garments with less rich wrinkles. However, I

should note that there are substantial differences in terms of T-shirt size, topology

and materials, so this comparison is far from definitive.

6.5.7 Generalization to Different Garment Sizes

This section shows the potential of my model to generalize to different sizes

of the garment. I simulate a smaller T-shirt of the same topology on the original

173

[181] Mine [180] Mine

Figure 6.9: Qualitative comparison with [180, 181]. My model generates finer wrin-
kles around the waist and armpits.

20,000 body samples. I train three different models based on 16,000 small T-shirts,

16,000 original T-shirts, and 32,000 T-shirt of both sizes, and tested them either

against the small or original size set, both of them with 2,000 samples. When the

network is trained on all the data, the T-shirt size is indicated to the network by

simply introducing a flag to the encoded features without any further modifications.

As shown in Table 6.7, the model trained on both sizes preserves similar accuracy

to the ones trained separately, only slightly worse due to the higher complexity of

the task. To improve the results, one possible solution is to train an auto-encoder

for a set of garment templates and inject the latent code as the feature. I leave this

exploration as future work.

Train-Test Set ME (cm) Ll (cm) Le (%) Ls Ld p (%)

Small-Small 0.34 0.16 9.26 1.1e-3 4.5e-3 0.09
Both-Small 0.56 0.19 11.28 1.3e-3 5.5e-3 0.41

Original-Original 0.33 0.16 9.21 1.0e-3 4.5e-3 0.05
Both-Original 0.34 0.16 9.43 1.1e-3 4.6e-3 0.05

Table 6.7: Comparison for models trained on different sizes of the garments; A-
B means train on A and tested on B. The model trained on both sizes achieves
comparable results.

174

6.6 Conclusion

I propose a novel network structure and semi-supervised framework to learn

realistic fit-accurate garment draping on a wide range of human body sizes. I uti-

lize physics-enforced loss functions and a more expressive GCN decoder during the

initial training. Next, a self-correcting optimization method that minimizes the po-

tential energy is proposed to fix the remaining violation of physical laws. Retraining

my original network with the optimized samples makes its predictions even more

physically accurate. Experimental results show that my method outperforms the

state of the art regarding physical realism, dynamics-dependent wrinkle formation,

and collision avoidance.

One limitation of this work is that my model currently only supports a canon-

ical body pose. In future work I am planning to support multiple poses at test

time by simulating my data under multiple poses and using the unposing technique

from [11].

175

Chapter 7: Conclusion

In this dissertation, I proposed various methods for reconstructing human

body and garment from images or videos, as well as synthesizing new garments

given the body mesh. These methods enables shape-aware body recovery from

multi-view images, accurate material retrieval using optimization, faithful garment

reconstruction together with body and material estimation from videos, efficient and

scalable distributed simulation, and fast and realistic garment prediction on human

bodies. I have shown their high effectiveness and accuracy in extensive experiments.

The proposed work can greatly boost the efficiency and realism of simulation-based

virtual try-on systems.

7.1 Summary of Results

To train a shape-aware body estimation model, Chapter 2 introduces a novel

multi-view multi-stage framework. This framework is scalable and can take arbi-

trary number of views as input. Moreover, it describes a training data generation

pipeline using physically-based simulation. It is critical for shape estimation and

regularization of end-effectors that real-world datasets cannot provide. Experiments

show that this method benefits from the simulated dataset generated from this pro-

176

posed pipeline and outperforms existing methods on real-world images, especially

on shape estimations.

Material cloning from real world to virtual world is critical to attaining realism

of virtual try-on systems. To enable a first-order estimation of garment materials,

Chapter 3 presents a differentiable cloth simulator that can provide the gradients

of the cloth simulation function. The gradient of the dynamic collision handling is

explicitly derived. In order to obtain gradients of large formulated functions, implicit

differentiation is used instead of backpropagating step by step. Experiments show

that my backpropagation is two orders of magnitude faster than the baseline method.

The proposed differentiable simulation can be used in a number of inverse problems,

when the environmental setup is known.

To further combine the two correlated objectives above for an end-to-end

method with higher estimation accuracy, Chapter 4 proposes an end-to-end learn-

ing model for estimating body and garment material from RGB videos. In order to

maximize the multi-tasking benefits, human body and the garment shape are jointly

learned as features for the material prediction. To reduce the degree of freedom of

cloth due to its highly dynamic and deformable nature of cloth, a two-level auto-

encoder to represent garments has been proposed in a hierarchical structure. Using

this network, it also becomes possible to smoothly transition the geometry between

different garment topologies. During the estimation, a feedback loop is introduced

to correctly refine the body estimation using the garment prediction. Experiments

show that this proposed system has the highest estimation accuracy and can be

easily generalized to unseen input.

177

Cloth simulations, widely used in computer animation and apparel design, can

be computationally expensive for real-time applications. Some parallelization tech-

niques have been proposed for visual simulation of cloth using CPU or GPU clusters

and often rely on parallelization using spatial domain decomposition techniques that

have a large communication overhead. To avoid a large overhead, Chapter 5 intro-

duces a novel temporal-domain parallelization method for performance-demanding

tasks. I parallelize the cloth simulation in temporal domain by using a faster sim-

ulation result on coarser meshes as an initialization, resulting in accelerated com-

putation within each temporal computational block and minimal communication

overhead. An iterative detail recovery algorithm is designed to minimize the visual

artifacts due to the inconsistency between two resolutions. This proposed method

has nearly linear scaling on manycore clusters and achieves more runtime perfor-

mance advantages, when compared to previous parallel methods with a higher num-

ber of computing cores.

Finally, to train an efficient and accurate prediction model of garments to

provide the final try-on results, Chapter 6 proposes a novel semi-supervised model

to learn physically-correct garment draping on a large variation of human body

shapes. Several loss functions are incorporated to increase the physical awareness of

the network, and a new GCN decoder is used for higher expressiveness. Moreover, a

self-correcting optimization method is adopted to minimize the potential energy of

the prediction and remove the remaining collision with the human body. Retraining

this proposed network with the optimized samples can yield better predictions.

Experiments show that this novel method can provide better draping predictions

178

than previous works in terms of simulated wrinkles and folds, it can also cover a large

distribution of body shapes, while achieving higher speed and accuracy compared

to physics-based cloth simulation.

7.2 Limitations

There are four main limitations in my proposed methods. First, there is a

sim-to-real gap that can hinder the virtual world to reproduce exactly the same vi-

sual effect as those in the real world. Common sources of this gap include lighting,

human skin texture, mesh resolution, and spatial relation with the background and

other objects in the scene. Simulation settings, such as the discretization scheme,

the physical governing laws, and the material model, can also affect the final re-

sults. When the simulated data is used for training network models, this gap may

potentially affect its generalization to unseen real-world images or videos. While

higher-quality training data with more complex settings can certainly reduces the

gap, the labor cost of doing so increases as well. Although the current results show

that models can already perform well when trained with the simulation data, the

potential improvements given by more realistic training data is not yet quantified.

Second, the high computational cost of cloth simulation is also a challenge.

When simulating garments for learning purposes or optimizations, I want the simu-

lation to be as fast as possible so that I can obtain the maximum amount of training

data or the maximum number of iterations within a given amount of time. When

the simulation is used for visual demonstration, real-time response from the user

179

interaction is critical. Although the proposed method in Chapter 5 achieves near

real-time performance, the single-frame simulation runtime is not reduced in this

framework, leading to a high latency feedback.

Next, a parametric generation model for universal garments is still missing.

An ideal garment generation model should be able to account for different varia-

tions, including sizes and lengths, topology, fitness to any given body shape, sewing

patterns, or even accessory locations and geometry. Chapter 4 introduces the first

generation model that unites garments of different topology and sizes using point

clouds. However, this model cannot fully represent garments that have multiple

layers or self-folding, because it does not store connectivity information between

points. Moreover, it does not currently support multiple separated garments and

sewing seams for the same reason. However, such geometric information is critical,

as it directly affects the physical behavior of the reconstructed and learned garment

models.

At last, there remains a large visual disparity and physical difference between

simulation results and network prediction results when it comes to garment synthe-

sis. Although the proposed method in Chapter 6 successfully connects simulation

realism to the network prediction by introducing dynamical constraints in the train-

ing for more realistic predictions, the coverage of the current model is still limited,

when compared to all possible combinations of human poses and shapes, garment

sizes, topology and materials. Given a specific type of garment, the best model I

can get in theory will be able to present different wrinkle formations according to

different input of the human body and the garment material. However, it requires

180

an unrealistic amount of captured or simulated data used for training to cover the

entire spectrum spanned by the control variables. As it is practically impossible to

include every sample in the training datasets, an effective and general decoupling

algorithm between different factors is necessary. But, this problem is currently

under-explored.

7.3 Future Work

While the proposed methods have been proven to be effective in the recon-

struction and the synthesis tasks regarding garments dressed on human bodies, there

are still several potential improvements and challenges that need to be addressed.

Below I suggest a few possible future directions regarding each proposed limitation

described in Section 7.2.

Training data. More research can be conducted to minimize or mitigate the sim-

to-real gap in training data distributions. Chapter 2 and 4 use simulated data for

training the models due to ease of collecting ground-truth labels. While cloth simu-

lation provides a large diversity of training samples with ground-truth parameters,

a more systematic garment design and registration method are needed to minimize

the visual perception difference between real-world images and synthetic ones. In

addition, other variables such as hair, skin color, and 3D backgrounds can also in-

fluence the perceived realism of the synthetic data, but implementing them requires

a more complex data generation pipeline. With the recent progress in image style

transfer and translation using GAN [81], a promising direction is to transfer the

181

appearance of realistic images to the rendered simulation models to further improve

the learning results.

Learning algorithms and architectures. A lot of options are adopted regarding

network architectures being used in different tasks. Chapter 2 introduces a shared-

weight prediction correction framework to integrate multi-view information, while

Chapter 4 jointly learns the body and the garment shape together with a feed-

back loop and feeds the single-frame features to an LSTM for material estimation.

One key problem remains to be solved is to what extent do different network and

framework choices affect the final result, and whether or not there is a specialized

architecture that is generally beneficial to the capturing task regarding garment

properties.

Parametric garment models. More improvements can be made regarding the

parametric garment modeling introduced in Chapter 4. First, encoding multi-layer

information can be achieved by adding structural prior to the garment model so that

more complex structures of garments can be supported. For example, one can encode

a tree structure to represent different garment parts from bodice to accessories.

Second, adding curvature information such as normal in addition to 3D location

can enable support of multi-fold features. A normal vector is extremely helpful to

differentiate two pieces of cloth stacked together with different orientations. Taking

a step further, encoding the texture space coordinates together can even provide the

connectivity information between vertices, potentially allowing easier reconstruction

from point clouds to meshes and smoother results.

182

Human body representation. Currently, the parametric human body model

in Chapter 2, 4, and 6 uses only linear blend shapes and principal components to

represent thehuman body. An intrinsic drawback of this approach is that it cannot

model deformation of the body when encountering geometric constraints such as

collisions. It would be of great value to investigate more complex and realistic body

models as a basic building block of all estimation and prediction modules.

Visual rendering and synthesis. To further speed up the cloth simulation, I can

either introduce vectorization or implement multiple parallelization schemes at the

same time. The current simulation implementation in Chapter 3 is not optimized for

large-scale vectorized operations, leading to imperfect runtime performance. This

issue can be improved by a specialized, optimized simulation system based solely

on large tensor operations. Chapter 5 also proposes a method to accelerate the

computation, which is the time-domain parallelization. This method can naturally

be combined with GPU-based spatial-domain parallelization to reduce the per-frame

computation time, which further decreases the latency and increases the scalability

in terms of the number of computational units.

Generalization and robustness. Disentanglement of multi-dimensional input

factors is the key to boost the generalization ability for the method proposed in

Chapter 6. Regarding data representation, principal component analysis (PCA) or

tangent space displacement representation can be potential directions to disentan-

gle body pose and shape variations. Another promising future improvement can

be training refinement networks conditioned on body pose parameters or the corre-

183

sponding global transformations. While single-frame draping prediction is far from

being solved, extending the current work to learning continuous garment motion is

the ultimate goal towards real-time animated virtual try-on. This will require not

only the encoding of the geometric constraints, but also the capturing of different

temporal patterns dependent on the fabric material type, and can eventually become

a differentiable simulation in a learning-based way.

184

Bibliography

[1] Stevie Giovanni, Yeun Chul Choi, Jay Huang, Eng Tat Khoo, and KangKang
Yin. Virtual try-on using kinect and hd camera. In International Conference
on Motion in Games, pages 55–65. Springer, 2012.

[2] Thiemo Alldieck, Marcus Magnor, Weipeng Xu, Christian Theobalt, and Ger-
ard Pons-Moll. Video based reconstruction of 3d people models. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pages
8387–8397, 2018.

[3] Angjoo Kanazawa, Michael J Black, David W Jacobs, and Jitendra Malik.
End-to-end recovery of human shape and pose. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 7122–7131,
2018.

[4] Gul Varol, Duygu Ceylan, Bryan Russell, Jimei Yang, Ersin Yumer, Ivan
Laptev, and Cordelia Schmid. Bodynet: Volumetric inference of 3d human
body shapes. In Proceedings of the European Conference on Computer Vision
(ECCV), pages 20–36, 2018.

[5] Zerong Zheng, Tao Yu, Yixuan Wei, Qionghai Dai, and Yebin Liu. Deephu-
man: 3d human reconstruction from a single image. In Proceedings of the
IEEE International Conference on Computer Vision, pages 7739–7749, 2019.

[6] Shunsuke Saito, Zeng Huang, Ryota Natsume, Shigeo Morishima, Angjoo
Kanazawa, and Hao Li. Pifu: Pixel-aligned implicit function for high-
resolution clothed human digitization. In Proceedings of the IEEE Interna-
tional Conference on Computer Vision, pages 2304–2314, 2019.

[7] Albert Pumarola, Jordi Sanchez-Riera, Gary Choi, Alberto Sanfeliu, and
Francesc Moreno-Noguer. 3dpeople: Modeling the geometry of dressed hu-
mans. In Proceedings of the IEEE International Conference on Computer
Vision, pages 2242–2251, 2019.

[8] Erhan Gundogdu, Victor Constantin, Amrollah Seifoddini, Minh Dang, Math-
ieu Salzmann, and Pascal Fua. Garnet: A two-stream network for fast and

185

accurate 3d cloth draping. In Proceedings of the IEEE International Confer-
ence on Computer Vision, pages 8739–8748, 2019.

[9] Tuanfeng Y Wang, Duygu Ceylan, Jovan Popovic, and Niloy J Mitra. Learn-
ing a shared shape space for multimodal garment design. arXiv preprint
arXiv:1806.11335, 2018.

[10] Bharat Lal Bhatnagar, Garvita Tiwari, Christian Theobalt, and Gerard Pons-
Moll. Multi-garment net: Learning to dress 3d people from images. In 2019
IEEE/CVF International Conference on Computer Vision, ICCV 2019, Seoul,
Korea (South), October 27 - November 2, 2019, pages 5419–5429. IEEE, 2019.

[11] Chaitanya Patel, Zhouyingcheng Liao, and Gerard Pons-Moll. Tailornet: Pre-
dicting clothing in 3d as a function of human pose, shape and garment style.
In IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
IEEE, jun 2020.

[12] R Daněřek, Endri Dibra, Cengiz Öztireli, Remo Ziegler, and Markus Gross.
Deepgarment: 3d garment shape estimation from a single image. In Computer
Graphics Forum, volume 36, pages 269–280. Wiley Online Library, 2017.

[13] Filipe de Avila Belbute-Peres, Kevin A. Smith, Kelsey Allen, Josh Tenenbaum,
and J. Zico Kolter. End-to-end differentiable physics for learning and control.
In Advances in Neural Information Processing Systems, 2018.

[14] Jonas Degrave, Michiel Hermans, Joni Dambre, and Francis wyffels. A dif-
ferentiable physics engine for deep learning in robotics. Frontiers in Neuro-
robotics, 13, 2019.

[15] Marc Toussaint, Kelsey Allen, Kevin Smith, and Joshua Tenenbaum. Differ-
entiable physics and stable modes for tool-use and manipulation planning. In
Robotics: Science and Systems (RSS), 2018.

[16] Yuanming Hu, Jiancheng Liu, Andrew Spielberg, Joshua B. Tenenbaum,
William T. Freeman, Jiajun Wu, Daniela Rus, and Wojciech Matusik. Chain-
Queen: A real-time differentiable physical simulator for soft robotics. In In-
ternational Conference on Robotics and Automation (ICRA), 2019.

[17] Connor Schenck and Dieter Fox. SPNets: Differentiable fluid dynamics for
deep neural networks. In Conference on Robot Learning (CoRL), 2018.

[18] Marco Cusumano-Towner, Arjun Singh, Stephen Miller, James F. O’Brien,
and Pieter Abbeel. Bringing clothing into desired configurations with limited
perception. In International Conference on Robotics and Automation (ICRA),
2011.

[19] Stephen Miller, Jur van den Berg, Mario Fritz, Trevor Darrell, Kenneth Y.
Goldberg, and Pieter Abbeel. A geometric approach to robotic laundry folding.
I. J. Robotics Res., 31(2), 2012.

186

[20] Katherine L. Bouman, Bei Xiao, Peter Battaglia, and William T. Freeman.
Estimating the material properties of fabric from video. In International Con-
ference on Computer Vision (ICCV), 2013.

[21] Shan Yang, Junbang Liang, and Ming C Lin. Learning-based cloth material
recovery from video. In Proceedings of the IEEE International Conference on
Computer Vision, pages 4383–4393, 2017.

[22] Gerard Pons-Moll, Sergi Pujades, Sonny Hu, and Michael J Black. Clothcap:
Seamless 4d clothing capture and retargeting. ACM Transactions on Graphics
(TOG), 36(4):1–15, 2017.

[23] Zorah Lähner, Daniel Cremers, and Tony Tung. DeepWrinkles: Accurate
and realistic clothing modeling. In European Conference on Computer Vision
(ECCV), 2018.

[24] Rony Goldenthal, David Harmon, Raanan Fattal, Michel Bercovier, and Eitan
Grinspun. Efficient simulation of inextensible cloth. In ACM SIGGRAPH 2007
papers, pages 49–es. 2007.

[25] Dongliang Zhang and Matthew MF Yuen. Cloth simulation using multilevel
meshes. Computers & Graphics, 25(3):383–389, 2001.

[26] Robert Bridson, Ronald Fedkiw, and John Anderson. Robust treatment of
collisions, contact and friction for cloth animation. ACM Transactions on
Graphics (ToG), 21(3):594–603, 2002.

[27] David Baraff and Andrew Witkin. Large steps in cloth simulation. In SIG-
GRAPH, 1998.

[28] Assaf Neuberger, Eran Borenstein, Bar Hilleli, Eduard Oks, and Sharon
Alpert. Image based virtual try-on network from unpaired data. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 5184–5193, 2020.

[29] Xintong Han, Zuxuan Wu, Zhe Wu, Ruichi Yu, and Larry S Davis. Viton: An
image-based virtual try-on network. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 7543–7552, 2018.

[30] Matthew Loper, Naureen Mahmood, Javier Romero, Gerard Pons-Moll, and
Michael J Black. Smpl: A skinned multi-person linear model. ACM transac-
tions on graphics (TOG), 34(6):1–16, 2015.

[31] Dushyant Mehta, Srinath Sridhar, Oleksandr Sotnychenko, Helge Rhodin, Mo-
hammad Shafiei, Hans-Peter Seidel, Weipeng Xu, Dan Casas, and Christian
Theobalt. Vnect: Real-time 3d human pose estimation with a single rgb cam-
era. ACM Transactions on Graphics (TOG), 36(4):44, 2017.

187

[32] Angjoo Kanazawa, Michael J. Black, David W. Jacobs, and Jitendra Malik.
End-to-end recovery of human shape and pose. In Computer Vision and Pat-
tern Regognition (CVPR), 2018.

[33] Georgios Pavlakos, Xiaowei Zhou, Konstantinos G Derpanis, and Kostas Dani-
ilidis. Coarse-to-fine volumetric prediction for single-image 3d human pose. In
Computer Vision and Pattern Recognition (CVPR), 2017 IEEE Conference
on, pages 1263–1272. IEEE, 2017.

[34] Bugra Tekin, Pablo Marquez Neila, Mathieu Salzmann, and Pascal Fua.
Learning to fuse 2d and 3d image cues for monocular body pose estimation. In
International Conference on Computer Vision (ICCV), number EPFL-CONF-
230311, 2017.

[35] Denis Tome, Christopher Russell, and Lourdes Agapito. Lifting from the
deep: Convolutional 3d pose estimation from a single image. CVPR 2017
Proceedings, pages 2500–2509, 2017.

[36] Xingyi Zhou, Qixing Huang, Xiao Sun, Xiangyang Xue, and Yichen Wei.
Weaklysupervised transfer for 3d human pose estimation in the wild. In IEEE
International Conference on Computer Vision, volume 206, page 3, 2017.

[37] Xingyi Zhou, Xiao Sun, Wei Zhang, Shuang Liang, and Yichen Wei. Deep
kinematic pose regression. In European Conference on Computer Vision, pages
186–201. Springer, 2016.

[38] Alexandru O Balan, Leonid Sigal, Michael J Black, James E Davis, and
Horst W Haussecker. Detailed human shape and pose from images. In Com-
puter Vision and Pattern Recognition, 2007. CVPR’07. IEEE Conference on,
pages 1–8. IEEE, 2007.

[39] Yu Chen, Tae-Kyun Kim, and Roberto Cipolla. Inferring 3d shapes and de-
formations from single views. In European Conference on Computer Vision,
pages 300–313. Springer, 2010.

[40] Endri Dibra, Himanshu Jain, Cengiz Öztireli, Remo Ziegler, and Markus
Gross. Hs-nets: Estimating human body shape from silhouettes with con-
volutional neural networks. In 3D Vision (3DV), 2016 Fourth International
Conference on, pages 108–117. IEEE, 2016.

[41] Peng Guan, Alexander Weiss, Alexandru O Balan, and Michael J Black. Es-
timating human shape and pose from a single image. In Computer Vision,
2009 IEEE 12th International Conference on, pages 1381–1388. IEEE, 2009.

[42] Nils Hasler, Hanno Ackermann, Bodo Rosenhahn, Thorsten Thormählen, and
Hans-Peter Seidel. Multilinear pose and body shape estimation of dressed sub-
jects from image sets. In Computer Vision and Pattern Recognition (CVPR),
2010 IEEE Conference on, pages 1823–1830. IEEE, 2010.

188

[43] Arjun Jain, Thorsten Thormählen, Hans-Peter Seidel, and Christian Theobalt.
Moviereshape: Tracking and reshaping of humans in videos. In ACM Trans-
actions on Graphics (TOG), volume 29, page 148. ACM, 2010.

[44] J Tan, Ignas Budvytis, and Roberto Cipolla. Indirect deep structured learning
for 3d human body shape and pose prediction. In BMVC, volume 3, page 6,
2017.

[45] Hsiao-Yu Tung, Hsiao-Wei Tung, Ersin Yumer, and Katerina Fragkiadaki.
Self-supervised learning of motion capture. In Advances in Neural Information
Processing Systems, pages 5236–5246, 2017.

[46] Nils Hasler, Carsten Stoll, Bodo Rosenhahn, Thorsten Thormählen, and Hans-
Peter Seidel. Estimating body shape of dressed humans. Computers & Graph-
ics, 33(3):211–216, 2009.

[47] Stefanie Wuhrer, Leonid Pishchulin, Alan Brunton, Chang Shu, and Jochen
Lang. Estimation of human body shape and posture under clothing. Computer
Vision and Image Understanding, 127:31–42, 2014.

[48] Jinlong Yang, Jean-Sébastien Franco, Franck Hétroy-Wheeler, and Stefanie
Wuhrer. Estimation of human body shape in motion with wide clothing. In
European Conference on Computer Vision, pages 439–454. Springer, 2016.

[49] Chao Zhang, Sergi Pujades, Michael Black, and Gerard Pons-Moll. Detailed,
accurate, human shape estimation from clothed 3d scan sequences. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), volume 2,
2017.

[50] Alexandru O Bălan and Michael J Black. The naked truth: Estimating body
shape under clothing. In European Conference on Computer Vision, pages
15–29. Springer, 2008.

[51] Federica Bogo, Angjoo Kanazawa, Christoph Lassner, Peter Gehler, Javier
Romero, and Michael J Black. Keep it smpl: Automatic estimation of 3d
human pose and shape from a single image. In European Conference on Com-
puter Vision, pages 561–578. Springer, 2016.

[52] Christoph Lassner, Javier Romero, Martin Kiefel, Federica Bogo, Michael J
Black, and Peter V Gehler. Unite the people: Closing the loop between 3d and
2d human representations. In IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), volume 2, page 3, 2017.

[53] Matthew Trumble, Andrew Gilbert, Charles Malleson, Adrian Hilton, and
John Collomosse. Total capture: 3d human pose estimation fusing video and
inertial sensors. In Proceedings of 28th British Machine Vision Conference,
pages 1–13, 2017.

189

[54] Juan Carlos Núñez, Raúl Cabido, José F Vélez, Antonio S Montemayor, and
Juan José Pantrigo. Multiview 3d human pose estimation using improved
least-squares and lstm networks. Neurocomputing, 323:335–343, 2019.

[55] Helge Rhodin, Mathieu Salzmann, and Pascal Fua. Unsupervised geometry-
aware representation for 3d human pose estimation. In Proceedings of the
European Conference on Computer Vision (ECCV), pages 750–767, 2018.

[56] Matthew Trumble, Andrew Gilbert, Adrian Hilton, and John Collomosse.
Deep autoencoder for combined human pose estimation and body model
upscaling. In Proceedings of the European Conference on Computer Vision
(ECCV), pages 784–800, 2018.

[57] Georgios Pavlakos, Xiaowei Zhou, Konstantinos G Derpanis, and Kostas Dani-
ilidis. Harvesting multiple views for marker-less 3d human pose annotations.
In Proceedings of the IEEE conference on computer vision and pattern recog-
nition, pages 6988–6997, 2017.

[58] Denis Tome, Matteo Toso, Lourdes Agapito, and Chris Russell. Rethinking
pose in 3d: Multi-stage refinement and recovery for markerless motion capture.
In 2018 International Conference on 3D Vision (3DV), pages 474–483. IEEE,
2018.

[59] Christopher B Choy, Danfei Xu, JunYoung Gwak, Kevin Chen, and Silvio
Savarese. 3d-r2n2: A unified approach for single and multi-view 3d object
reconstruction. In European conference on computer vision, pages 628–644.
Springer, 2016.

[60] Mohamed Omran, Christoph Lassner, Gerard Pons-Moll, Peter Gehler, and
Bernt Schiele. Neural body fitting: Unifying deep learning and model based
human pose and shape estimation. In 2018 International Conference on 3D
Vision (3DV), pages 484–494. IEEE, 2018.

[61] Georgios Pavlakos, Luyang Zhu, Xiaowei Zhou, and Kostas Daniilidis. Learn-
ing to estimate 3d human pose and shape from a single color image. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 459–468, 2018.

[62] Nikos Kolotouros, Georgios Pavlakos, and Kostas Daniilidis. Convolutional
mesh regression for single-image human shape reconstruction. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pages
4501–4510, 2019.

[63] Wenzheng Chen, Huan Wang, Yangyan Li, Hao Su, Zhenhua Wang, Changhe
Tu, Dani Lischinski, Daniel Cohen-Or, and Baoquan Chen. Synthesizing train-
ing images for boosting human 3d pose estimation. In 3D Vision (3DV), 2016
Fourth International Conference on, pages 479–488. IEEE, 2016.

190

[64] Gül Varol, Javier Romero, Xavier Martin, Naureen Mahmood, Michael J
Black, Ivan Laptev, and Cordelia Schmid. Learning from synthetic humans. In
2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR
2017), 2017.

[65] CMU. Carnegie-mellon mocap database. created with funding from nsf eia-
0196217, 2003.

[66] Kathleen M Robinette, Sherri Blackwell, Hein Daanen, Mark Boehmer, and
Scott Fleming. Civilian american and european surface anthropometry re-
source (caesar), final report. volume 1. summary. Technical report, SYTRON-
ICS INC DAYTON OH, 2002.

[67] Hosnieh Sattar, Gerard Pons-Moll, and Mario Fritz. Fashion is taking
shape: Understanding clothing preference based on body shape from online
sources. In 2019 IEEE Winter Conference on Applications of Computer Vision
(WACV), pages 968–977. IEEE, 2019.

[68] Thiemo Alldieck, Marcus Magnor, Bharat Lal Bhatnagar, Christian Theobalt,
and Gerard Pons-Moll. Learning to reconstruct people in clothing from a single
rgb camera. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 1175–1186, 2019.

[69] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 770–778, 2016.

[70] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona,
Deva Ramanan, Piotr Dollár, and C Lawrence Zitnick. Microsoft coco: Com-
mon objects in context. In European conference on computer vision, pages
740–755. Springer, 2014.

[71] Dushyant Mehta, Helge Rhodin, Dan Casas, Pascal Fua, Oleksandr Sotny-
chenko, Weipeng Xu, and Christian Theobalt. Monocular 3d human pose
estimation in the wild using improved cnn supervision. In 3D Vision (3DV),
2017 Fifth International Conference on. IEEE, 2017.

[72] Catalin Ionescu, Dragos Papava, Vlad Olaru, and Cristian Sminchisescu. Hu-
man3. 6m: Large scale datasets and predictive methods for 3d human sensing
in natural environments. IEEE transactions on pattern analysis and machine
intelligence, 36(7):1325–1339, 2014.

[73] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings
in deep residual networks. In European conference on computer vision, pages
630–645. Springer, 2016.

[74] Rahul Narain, Armin Samii, and James F. O’Brien. Adaptive anisotropic
remeshing for cloth simulation. ACM Trans. Graph., 31(6), 2012.

191

[75] Dushyant Mehta, Helge Rhodin, Dan Casas, Pascal Fua, Oleksandr Sotny-
chenko, Weipeng Xu, and Christian Theobalt. Monocular 3d human pose
estimation in the wild using improved cnn supervision. In 3D Vision (3DV),
2017 International Conference on, pages 506–516. IEEE, 2017.

[76] Helge Rhodin, Nadia Robertini, Dan Casas, Christian Richardt, Hans-Peter
Seidel, and Christian Theobalt. General automatic human shape and motion
capture using volumetric contour cues. In European conference on computer
vision, pages 509–526. Springer, 2016.

[77] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross B. Girshick. Mask
R-CNN. CoRR, abs/1703.06870, 2017.

[78] Gregory Rogez, Philippe Weinzaepfel, and Cordelia Schmid. Lcr-net:
Localization-classification-regression for human pose. In CVPR 2017-IEEE
Conference on Computer Vision & Pattern Recognition, 2017.

[79] Xiao Sun, Jiaxiang Shang, Shuang Liang, and Yichen Wei. Compositional
human pose regression. In The IEEE International Conference on Computer
Vision (ICCV), volume 2, page 7, 2017.

[80] Rishabh Dabral, Anurag Mundhada, Uday Kusupati, Safeer Afaque, Abhishek
Sharma, and Arjun Jain. Learning 3d human pose from structure and mo-
tion. In Proceedings of the European Conference on Computer Vision (ECCV),
pages 668–683, 2018.

[81] Franziska Mueller, Florian Bernard, Oleksandr Sotnychenko, Dushyant Mehta,
Srinath Sridhar, Dan Casas, and Christian Theobalt. Ganerated hands for
real-time 3d hand tracking from monocular rgb. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 49–59, 2018.

[82] Richard W Cottle. Linear Complementarity Problem. Springer, 2009.

[83] Michael Bradley Cline. Rigid Body Simulation with Contact and Constraints.
PhD thesis, University of British Columbia, 2002.

[84] Damian Mrowca, Chengxu Zhuang, Elias Wang, Nick Haber, Fei-Fei Li, Josh
Tenenbaum, and Daniel L. Yamins. Flexible neural representation for physics
prediction. In Advances in Neural Information Processing Systems, 2018.

[85] Yunzhu Li, Jiajun Wu, Russ Tedrake, Joshua B. Tenenbaum, and Antonio Tor-
ralba. Learning particle dynamics for manipulating rigid bodies, deformable
objects, and fluids. In International Conference on Learning Representations
(ICLR), 2019.

[86] John Ingraham, Adam Riesselman, Chris Sander, and Debora Marks. Learn-
ing protein structure with a differentiable simulator. In International Confer-
ence on Learning Representations (ICLR), 2019.

192

[87] Jonathan Tompson, Kristofer Schlachter, Pablo Sprechmann, and Ken Per-
lin. Accelerating Eulerian fluid simulation with convolutional networks. In
International Conference on Machine Learning (ICML), 2017.

[88] J Nathan Kutz. Deep learning in fluid dynamics. Journal of Fluid Mechanics,
814, 2017.

[89] Jeremy Morton, Antony Jameson, Mykel J Kochenderfer, and Freddie With-
erden. Deep dynamical modeling and control of unsteady fluid flows. In
Advances in Neural Information Processing Systems, 2018.

[90] Igor Santesteban, Miguel A. Otaduy, and Dan Casas. Learning-based anima-
tion of clothing for virtual try-on. In Eurographics, 2019.

[91] Olaf Etzmuß, Michael Keckeisen, and Wolfgang Straßer. A fast finite element
solution for cloth modelling. In Pacific Conference on Computer Graphics and
Applications, 2003.

[92] David Harmon, Etienne Vouga, Rasmus Tamstorf, and Eitan Grinspun. Ro-
bust treatment of simultaneous collisions. ACM Trans. Graph., 27(3), 2008.

[93] Huamin Wang, James F. O’Brien, and Ravi Ramamoorthi. Data-driven elastic
models for cloth: Modeling and measurement. ACM Trans. Graph., 30(4),
2011.

[94] Eitan Grinspun, Anil N Hirani, Mathieu Desbrun, and Peter Schröder. Dis-
crete shells. In Symposium on Computer Animation, 2003.

[95] Benoit Steiner, Zachary DeVito, Soumith Chintala, Sam Gross, Adam Paszke,
Francisco Massa, Adam Lerer, Gregory Chanan, Zeming Lin, Edward Yang,
et al. PyTorch: An imperative style, high-performance deep learning library.
In Advances in Neural Information Processing Systems, 2019.

[96] Min Tang, Dinesh Manocha, and Ruofeng Tong. Fast continuous collision de-
tection using deforming non-penetration filters. In Symposium on Interactive
3D Graphics and Games, 2010.

[97] Brandon Amos and J. Zico Kolter. OptNet: Differentiable optimization as a
layer in neural networks. In International Conference on Machine Learning
(ICML), 2017.

[98] Eric Liang, Richard Liaw, Robert Nishihara, Philipp Moritz, Roy Fox, Ken
Goldberg, Joseph E. Gonzalez, Michael I. Jordan, and Ion Stoica. RLlib: Ab-
stractions for distributed reinforcement learning. In International Conference
on Machine Learning (ICML), 2018.

[99] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep
learning on point sets for 3d classification and segmentation. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages 652–
660, 2017.

193

[100] Romain Casati, Gilles Daviet, and Florence Bertails-Descoubes. Inverse elastic
cloth design with contact and friction. PhD thesis, Inria Grenoble Rhône-
Alpes, Université de Grenoble, 2016.

[101] Bernd Bickel, Moritz Bächer, Miguel A Otaduy, Hyunho Richard Lee,
Hanspeter Pfister, Markus Gross, and Wojciech Matusik. Design and fab-
rication of materials with desired deformation behavior. ACM Transactions
on Graphics (TOG), 29(4):1–10, 2010.

[102] Raquel Vidaurre, Dan Casas, Elena Garces, and Jorge Lopez-Moreno. Brdf
estimation of complex materials with nested learning. In 2019 IEEE Winter
Conference on Applications of Computer Vision (WACV), pages 1347–1356.
IEEE, 2019.

[103] Giuseppe Claudio Guarnera, Peter Hall, Alain Chesnais, and Mashhuda Glen-
cross. Woven fabric model creation from a single image. ACM Transactions
on Graphics (TOG), 36(5):1–13, 2017.

[104] Wenyan Bi, Peiran Jin, Hendrikje Nienborg, and Bei Xiao. Estimating me-
chanical properties of cloth from videos using dense motion trajectories: Hu-
man psychophysics and machine learning. Journal of vision, 18(5):12–12,
2018.

[105] Wenyan Bi and Bei Xiao. Perceptual constancy of mechanical properties of
cloth under variation of external forces. In Proceedings of the ACM symposium
on applied perception, pages 19–23, 2016.

[106] Abdullah Haroon Rasheed, Victor Romero, Florence Bertails-Descoubes, Ste-
fanie Wuhrer, Jean-Sébastien Franco, and Arnaud Lazarus. Learning to mea-
sure the static friction coefficient in cloth contact. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
9912–9921, 2020.

[107] Eder Miguel, Rasmus Tamstorf, Derek Bradley, Sara C Schvartzman, Bern-
hard Thomaszewski, Bernd Bickel, Wojciech Matusik, Steve Marschner, and
Miguel A Otaduy. Modeling and estimation of internal friction in cloth. ACM
Transactions on Graphics (TOG), 32(6):1–10, 2013.

[108] Katherine L Bouman, Bei Xiao, Peter Battaglia, and William T Freeman.
Estimating the material properties of fabric from video. In Proceedings of the
IEEE international conference on computer vision, pages 1984–1991, 2013.

[109] David Clyde, Joseph Teran, and Rasmus Tamstorf. Modeling and data-driven
parameter estimation for woven fabrics. In Proceedings of the ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation, pages 1–11, 2017.

[110] Shan Yang, Tanya Ambert, Zherong Pan, Ke Wang, Licheng Yu, Tamara
Berg, and Ming C Lin. Detailed garment recovery from a single-view image.
arXiv preprint arXiv:1608.01250, 2016.

194

[111] Eder Miguel, Derek Bradley, Bernhard Thomaszewski, Bernd Bickel, Wojciech
Matusik, Miguel A Otaduy, and Steve Marschner. Data-driven estimation of
cloth simulation models. In Computer Graphics Forum, volume 31, pages
519–528. Wiley Online Library, 2012.

[112] Kiran S Bhat, Christopher D Twigg, Jessica K Hodgins, Pradeep Khosla,
Zoran Popovic, and Steven M Seitz. Estimating cloth simulation parameters
from video. 2003.

[113] Bin Zhou, Xiaowu Chen, Qiang Fu, Kan Guo, and Ping Tan. Garment model-
ing from a single image. In Computer graphics forum, volume 32, pages 85–91.
Wiley Online Library, 2013.

[114] Moon-Hwan Jeong, Dong-Hoon Han, and Hyeong-Seok Ko. Garment capture
from a photograph. Computer Animation and Virtual Worlds, 26(3-4):291–
300, 2015.

[115] Derek Bradley, Tiberiu Popa, Alla Sheffer, Wolfgang Heidrich, and Tamy
Boubekeur. Markerless garment capture. In ACM SIGGRAPH 2008 papers,
pages 1–9. 2008.

[116] Thiemo Alldieck, Gerard Pons-Moll, Christian Theobalt, and Marcus Mag-
nor. Tex2shape: Detailed full human body geometry from a single image. In
Proceedings of the IEEE International Conference on Computer Vision, pages
2293–2303, 2019.

[117] Xiaowu Chen, Bin Zhou, Fei-Xiang Lu, Lin Wang, Lang Bi, and Ping Tan.
Garment modeling with a depth camera. ACM Trans. Graph., 34(6):203–1,
2015.

[118] Marc Habermann, Weipeng Xu, , Michael Zollhoefer, Gerard Pons-Moll, and
Christian Theobalt. Deepcap: Monocular human performance capture us-
ing weak supervision. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). IEEE, jun 2020.

[119] Zeng Huang, Yuanlu Xu, Christoph Lassner, Hao Li, and Tony Tung.
Arch: Animatable reconstruction of clothed humans. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
3093–3102, 2020.

[120] Heming Zhu, Yu Cao, Hang Jin, Weikai Chen, Dong Du, Zhangye Wang,
Shuguang Cui, and Xiaoguang Han. Deep fashion3d: A dataset and bench-
mark for 3d garment reconstruction from single images. arXiv preprint
arXiv:2003.12753, 2020.

[121] Boyi Jiang, Juyong Zhang, Yang Hong, Jinhao Luo, Ligang Liu, and Hujun
Bao. Bcnet: Learning body and cloth shape from a single image. arXiv
preprint arXiv:2004.00214, 2020.

195

[122] Tao Yu, Zerong Zheng, Yuan Zhong, Jianhui Zhao, Qionghai Dai, Gerard
Pons-Moll, and Yebin Liu. Simulcap: Single-view human performance capture
with cloth simulation. In 2019 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 5499–5509. IEEE, 2019.

[123] Garvita Tiwari, Bharat Lal Bhatnagar, Tony Tung, and Gerard Pons-Moll.
Sizer: A dataset and model for parsing 3d clothing and learning size sensitive
3d clothing. arXiv preprint arXiv:2007.11610, 2020.

[124] Zorah Lahner, Daniel Cremers, and Tony Tung. Deepwrinkles: Accurate and
realistic clothing modeling. In Proceedings of the European Conference on
Computer Vision (ECCV), pages 667–684, 2018.

[125] Roman Klokov and Victor Lempitsky. Escape from cells: Deep kd-networks
for the recognition of 3d point cloud models. In The IEEE International
Conference on Computer Vision (ICCV), Oct 2017.

[126] Jiaxin Li, Ben M. Chen, and Gim Hee Lee. So-net: Self-organizing network
for point cloud analysis. In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2018.

[127] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++:
Deep hierarchical feature learning on point sets in a metric space. In Advances
in neural information processing systems, pages 5099–5108, 2017.

[128] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma, Michael M Bronstein,
and Justin M Solomon. Dynamic graph cnn for learning on point clouds. ACM
Transactions on Graphics (TOG), 38(5):1–12, 2019.

[129] Charles R. Qi, Wei Liu, Chenxia Wu, Hao Su, and Leonidas J. Guibas. Frus-
tum pointnets for 3d object detection from rgb-d data. In The IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), June 2018.

[130] Yin Zhou and Oncel Tuzel. Voxelnet: End-to-end learning for point cloud
based 3d object detection. In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2018.

[131] Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan Di, and Baoquan Chen.
Pointcnn: Convolution on x-transformed points. In Advances in neural infor-
mation processing systems, pages 820–830, 2018.

[132] Shih-En Wei, Varun Ramakrishna, Takeo Kanade, and Yaser Sheikh. Convo-
lutional pose machines. In Proceedings of the IEEE conference on Computer
Vision and Pattern Recognition, pages 4724–4732, 2016.

[133] Zhe Cao, Tomas Simon, Shih-En Wei, and Yaser Sheikh. Realtime multi-
person 2d pose estimation using part affinity fields. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 7291–7299,
2017.

196

[134] Yuanlu Xu, Song-Chun Zhu, and Tony Tung. Denserac: Joint 3d pose and
shape estimation by dense render-and-compare. In Proceedings of the IEEE
International Conference on Computer Vision, pages 7760–7770, 2019.

[135] David Smith, Matthew Loper, Xiaochen Hu, Paris Mavroidis, and Javier
Romero. Facsimile: Fast and accurate scans from an image in less than a
second. In Proceedings of the IEEE International Conference on Computer
Vision, pages 5330–5339, 2019.

[136] Junbang Liang and Ming C Lin. Shape-aware human pose and shape recon-
struction using multi-view images. In Proceedings of the IEEE International
Conference on Computer Vision, pages 4352–4362, 2019.

[137] Nikos Kolotouros, Georgios Pavlakos, Michael J Black, and Kostas Daniilidis.
Learning to reconstruct 3d human pose and shape via model-fitting in the loop.
In Proceedings of the IEEE International Conference on Computer Vision,
pages 2252–2261, 2019.

[138] Wenjuan Gong, Xuena Zhang, Jordi Gonzàlez, Andrews Sobral, Thierry
Bouwmans, Changhe Tu, and El-hadi Zahzah. Human pose estimation from
monocular images: A comprehensive survey. Sensors, 16(12):1966, 2016.

[139] Andrea Saltelli. Sensitivity analysis for importance assessment. Risk analysis,
22(3):579–590, 2002.

[140] Qingyang Tan, Zherong Pan, Lin Gao, and Dinesh Manocha. Realtime sim-
ulation of thin-shell deformable materials using cnn-based mesh embedding.
IEEE Robotics and Automation Letters, 5(2):2325–2332, 2020.

[141] Theo Deprelle, Thibault Groueix, Matthew Fisher, Vladimir Kim, Bryan Rus-
sell, and Mathieu Aubry. Learning elementary structures for 3d shape gener-
ation and matching. In Advances in Neural Information Processing Systems,
pages 7433–7443, 2019.

[142] Jan Bednarik, Shaifali Parashar, Erhan Gundogdu, Mathieu Salzmann, and
Pascal Fua. Shape reconstruction by learning differentiable surface represen-
tations. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 4716–4725, 2020.

[143] Michael Kazhdan and Hugues Hoppe. Screened poisson surface reconstruction.
ACM Transactions on Graphics (ToG), 32(3):1–13, 2013.

[144] Nikhila Ravi, Jeremy Reizenstein, David Novotny, Taylor Gordon, Wan-Yen
Lo, Justin Johnson, and Georgia Gkioxari. Pytorch3d. https://github.com/
facebookresearch/pytorch3d, 2020.

[145] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735–1780, 1997.

197

https://github.com/facebookresearch/pytorch3d
https://github.com/facebookresearch/pytorch3d

[146] Yu Shen, Junbang Liang, and Ming C Lin. Gan-based garment generation
using sewing pattern images. In Proceedings of the European Conference on
Computer Vision (ECCV), volume 1, page 3, 2020.

[147] Gül Varol, Javier Romero, Xavier Martin, Naureen Mahmood, Michael J.
Black, Ivan Laptev, and Cordelia Schmid. Learning from synthetic humans.
In CVPR, 2017.

[148] Greg Zaal. Hdri haven.

[149] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-
tion. arXiv preprint arXiv:1412.6980, 2014.

[150] Jean Feydy, Thibault Séjourné, François-Xavier Vialard, Shun-Ichi Amari,
Alain Trouvé, and Gabriel Peyré. Interpolating between optimal transport
and mmd using sinkhorn divergences. arXiv preprint arXiv:1810.08278, 2018.

[151] Justus Thies, Michael Zollhöfer, and Matthias Nießner. Deferred neural ren-
dering: Image synthesis using neural textures. ACM Transactions on Graphics
(TOG), 38(4):1–12, 2019.

[152] Xiang Ni, Laxmikant V Kale, and Rasmus Tamstorf. Scalable asynchronous
contact mechanics using charm++. In Parallel and Distributed Processing
Symposium (IPDPS), 2015 IEEE International, pages 677–686. IEEE, 2015.

[153] Min Tang, Huamin Wang, Le Tang, Ruofeng Tong, and Dinesh Manocha.
Cama: Contact-aware matrix assembly with unified collision handling for gpu-
based cloth simulation. In Computer Graphics Forum, volume 35, pages 511–
521. Wiley Online Library, 2016.

[154] Florence Zara, François Faure, and J-M Vincent. Parallel simulation of large
dynamic system on a pc cluster: Application to cloth simulation. International
Journal of Computers and Applications, 26(3):1–8, 2004.

[155] Pascal Volino, Nadia Magnenat-Thalmann, and Francois Faure. A simple
approach to nonlinear tensile stiffness for accurate cloth simulation. ACM
Transactions on Graphics, 28(4):Article–No, 2009.

[156] Cyril Zeller. Cloth simulation on the gpu. In ACM SIGGRAPH 2005 Sketches,
page 39. ACM, 2005.

[157] David Baraff, Andrew Witkin, and Michael Kass. Untangling cloth. In ACM
Transactions on Graphics (TOG), volume 22, pages 862–870. ACM, 2003.

[158] Matthew Emmett and Michael L. Minion. Toward an Efficient Parallel in
Time Method for Partial Differential Equations. Communications in Applied
Mathematics and Computational Science, 7:105–132, 2012.

198

[159] Robert Speck, Daniel Ruprecht, Rolf Krause, Matthew Emmett, Michael L.
Minion, Mathias Winkel, and Paul Gibbon. A massively space-time paral-
lel N-body solver. In Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis, SC ’12, pages
92:1–92:11, Los Alamitos, CA, USA, 2012. IEEE Computer Society Press.

[160] Daniel Ruprecht, Robert Speck, Matthew Emmett, Matthias Bolten, and Rolf
Krause. Poster: Extreme-scale space-time parallelism. In Proceedings of the
2013 Conference on High Performance Computing Networking, Storage and
Analysis Companion, SC ’13 Companion, 2013.

[161] Martin J. Gander and Martin J. Gander. 50 years of time parallel time inte-
gration.

[162] Huamin Wang and Yin Yang. Descent methods for elastic body simulation on
the gpu. ACM Transactions on Graphics (TOG), 35(6):1–10, 2016.

[163] Marco Fratarcangeli, Valentina Tibaldo, and Fabio Pellacini. Vivace: A prac-
tical gauss-seidel method for stable soft body dynamics. ACM Transactions
on Graphics (TOG), 35(6):214, 2016.

[164] Bart Maerten, Dirk Roose, Achim Basermann, Jochen Fingberg, and Guy
Lonsdale. Drama: A library for parallel dynamic load balancing of finite
element applications. In European Conference on Parallel Processing, pages
313–316. Springer, 1999.

[165] Sergio Romero, Luis F Romero, and Emilio L Zapata. Fast cloth simulation
with parallel computers. In European Conference on Parallel Processing, pages
491–499. Springer, 2000.

[166] Michael Keckeisen and Wolfgang Blochinger. Parallel implicit integration for
cloth animations on distributed memory architectures. In Proceedings of the
5th Eurographics conference on Parallel Graphics and Visualization, pages
119–126. Eurographics Association, 2004.

[167] Bernhard Thomaszewski and Wolfgang Blochinger. Parallel simulation of cloth
on distributed memory architectures. In Proceedings of the 6th Eurographics
conference on Parallel Graphics and Visualization, pages 35–42. Eurographics
Association, 2006.

[168] Florence Zara, François Faure, and Jean-Marc Vincent. Physical cloth simu-
lation on a pc cluster. In 4h Eurographics Workshop on Parallel Graphics and
Visualization, 2002.

[169] Samantha Ainsley, Etienne Vouga, Eitan Grinspun, and Rasmus Tamstorf.
Speculative parallel asynchronous contact mechanics. ACM Trans. Graph.,
31(6):151:1–151:8, November 2012.

199

[170] Rasmus Tamstorf, Toby Jones, and Stephen F McCormick. Smoothed aggre-
gation multigrid for cloth simulation. ACM Transactions on Graphics (TOG),
34(6):1–13, 2015.

[171] Miklós Bergou, Saurabh Mathur, Max Wardetzky, and Eitan Grinspun.
TRACKS: Toward Directable Thin Shells. ACM Transactions on Graphics
(SIGGRAPH), 26(3):50:1–50:10, jul 2007.

[172] Matthias Müller and Nuttapong Chentanez. Wrinkle meshes. In Proceedings of
the 2010 ACM SIGGRAPH/Eurographics symposium on computer animation,
pages 85–92. Eurographics Association, 2010.

[173] Huamin Wang, Florian Hecht, Ravi Ramamoorthi, and James F O’Brien.
Example-based wrinkle synthesis for clothing animation. In ACM SIGGRAPH
2010 papers, pages 1–8. 2010.

[174] Damien Rohmer, Tiberiu Popa, Marie-Paule Cani, Stefanie Hahmann, and
Alla Sheffer. Animation wrinkling: augmenting coarse cloth simulations with
realistic-looking wrinkles. In ACM Transactions on Graphics (TOG), vol-
ume 29, page 157. ACM, 2010.

[175] Peter Schröder, Denis Zorin, T DeRose, DR Forsey, L Kobbelt, M Lounsbery,
and J Peters. Subdivision for modeling and animation. ACM SIGGRAPH
Course Notes, 12(2):43, 1998.

[176] Tony DeRose, Michael Kass, and Tien Truong. Subdivision surfaces in char-
acter animation. In Proceedings of the 25th annual conference on Computer
graphics and interactive techniques, pages 85–94. ACM, 1998.

[177] Charles Loop. Smooth subdivision surfaces based on triangles. 1987.

[178] Ladislav Kavan, Dan Gerszewski, Adam W Bargteil, and Peter-Pike Sloan.
Physics-inspired upsampling for cloth simulation in games. In ACM SIG-
GRAPH 2011 papers, pages 1–10. 2011.

[179] Wei-Wen Feng, Yizhou Yu, and Byung-Uck Kim. A deformation transformer
for real-time cloth animation. In ACM Transactions on Graphics (TOG),
volume 29, page 108. ACM, 2010.

[180] Igor Santesteban, Miguel A. Otaduy, and Dan Casas. Learning-Based An-
imation of Clothing for Virtual Try-On. Computer Graphics Forum (Proc.
Eurographics), 2019.

[181] Raquel Vidaurre, Igor Santesteban, Elena Garces, and Dan Casas. Fully Con-
volutional Graph Neural Networks for Parametric Virtual Try-On. Computer
Graphics Forum (Proc. SCA), 2020.

200

[182] Nicholas J Weidner, Kyle Piddington, David IW Levin, and Shinjiro Sueda.
Eulerian-on-lagrangian cloth simulation. ACM Transactions on Graphics
(TOG), 37(4):1–11, 2018.

[183] Min Tang, Tongtong Wang, Zhongyuan Liu, Ruofeng Tong, and Dinesh
Manocha. I-cloth: incremental collision handling for gpu-based interactive
cloth simulation. ACM Transactions on Graphics (TOG), 37(6):1–10, 2018.

[184] Junbang Liang and Ming C Lin. Time-domain parallelization for accelerating
cloth simulation. In Computer Graphics Forum, volume 37, pages 21–34. Wiley
Online Library, 2018.

[185] Tiantian Liu, Adam W Bargteil, James F O’Brien, and Ladislav Kavan. Fast
simulation of mass-spring systems. ACM Transactions on Graphics (TOG),
32(6):1–7, 2013.

[186] Doyub Kim, Woojong Koh, Rahul Narain, Kayvon Fatahalian, Adrien
Treuille, and James F O’Brien. Near-exhaustive precomputation of secondary
cloth effects. ACM Transactions on Graphics (TOG), 32(4):1–8, 2013.

[187] Fabian Hahn, Bernhard Thomaszewski, Stelian Coros, Robert W Sumner,
Forrester Cole, Mark Meyer, Tony DeRose, and Markus Gross. Subspace
clothing simulation using adaptive bases. ACM Transactions on Graphics
(TOG), 33(4):1–9, 2014.

[188] Daniel Holden, Bang Chi Duong, Sayantan Datta, and Derek Nowrouzezahrai.
Subspace neural physics: Fast data-driven interactive simulation. In Pro-
ceedings of the 18th annual ACM SIGGRAPH/Eurographics Symposium on
Computer Animation, pages 1–12, 2019.

[189] Russell Gillette, Craig Peters, Nicholas Vining, Essex Edwards, and Alla Shef-
fer. Real-time dynamic wrinkling of coarse animated cloth. In Proceedings of
the 14th ACM SIGGRAPH/Eurographics Symposium on Computer Anima-
tion, pages 17–26, 2015.

[190] Meng Zhang, Tuanfeng Wang, Duygu Ceylan, and Niloy J Mitra. Deep detail
enhancement for any garment. arXiv e-prints, pages arXiv–2008, 2020.

[191] Victor J Milenkovic and Harald Schmidl. Optimization-based animation. In
Proceedings of the 28th annual conference on Computer graphics and interac-
tive techniques, pages 37–46, 2001.

[192] Qianli Ma, Jinlong Yang, Anurag Ranjan, Sergi Pujades, Gerard Pons-Moll,
Siyu Tang, and Michael J Black. Learning to dress 3d people in generative
clothing. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 6469–6478, 2020.

201

[193] Jinlong Yang, Jean-Sébastien Franco, Franck Hétroy-Wheeler, and Stefanie
Wuhrer. Analyzing clothing layer deformation statistics of 3d human motions.
In Proceedings of the European Conference on Computer Vision (ECCV),
pages 237–253, 2018.

[194] Tuanfeng Y Wang, Tianjia Shao, Kai Fu, and Niloy J Mitra. Learning an
intrinsic garment space for interactive authoring of garment animation. ACM
Transactions on Graphics (TOG), 38(6):1–12, 2019.

[195] Edilson De Aguiar, Leonid Sigal, Adrien Treuille, and Jessica K Hodgins.
Stable spaces for real-time clothing. ACM Transactions on Graphics (TOG),
29(4):1–9, 2010.

[196] Bharat Lal Bhatnagar, Garvita Tiwari, Christian Theobalt, and Gerard Pons-
Moll. Multi-garment net: Learning to dress 3d people from images. In Pro-
ceedings of the IEEE International Conference on Computer Vision, pages
5420–5430, 2019.

[197] Alexandros Neophytou and Adrian Hilton. A layered model of human body
and garment deformation. In 2014 2nd International Conference on 3D Vision,
volume 1, pages 171–178. IEEE, 2014.

[198] Marc Habermann, Weipeng Xu, Michael Zollhoefer, Gerard Pons-Moll, and
Christian Theobalt. Livecap: Real-time human performance capture from
monocular video. ACM Transactions on Graphics (TOG), 38(2):1–17, 2019.

[199] Tao Yu, Zerong Zheng, Kaiwen Guo, Jianhui Zhao, Qionghai Dai, Hao Li,
Gerard Pons-Moll, and Yebin Liu. Doublefusion: Real-time capture of human
performances with inner body shapes from a single depth sensor. In Proceed-
ings of the IEEE conference on computer vision and pattern recognition, pages
7287–7296, 2018.

[200] Adult obesity facts. https://www.cdc.gov/obesity/data/adult.html,
2020.

[201] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero,
Pietro Lio, and Yoshua Bengio. Graph attention networks. arXiv preprint
arXiv:1710.10903, 2017.

[202] Hao Zhang, Oliver Van Kaick, and Ramsay Dyer. Spectral mesh processing. In
Computer graphics forum, volume 29, pages 1865–1894. Wiley Online Library,
2010.

[203] Theodore HH Pian and Pin Tong. Finite element methods in continuum
mechanics. In Advances in applied mechanics, volume 12, pages 1–58. Elsevier,
1972.

[204] Thomas N Kipf and Max Welling. Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiv:1609.02907, 2016.

202

https://www.cdc.gov/obesity/data/adult.html

	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Learning-Based Human Body and Garment Estimation
	Differentiable Simulation for Material Optimization
	Simulation-Based Virtual Try-On
	Thesis Statement
	Main Results
	Shape-Aware Human Reconstruction Using Multi-View Images
	Differentiable Simulation for Material Optimization
	Joint Estimation of Human and Garment from Video
	Time-Domain Parallelization for Accelerating Cloth Simulation
	Dynamics-Inspired Garment Draping Prediction

	Outline of Dissertation

	Shape-Aware Human Reconstruction Using Multi-View Images
	Introduction
	Related Work
	Human Body Pose and Shape Recovering
	Learning-Based Pose/Shape Estimations
	Use of Synthetic Dataset

	Overview
	Model Architecture
	3D Body Representation
	Scalable Multi-View Framework
	Training and Inferring
	Implementation Details

	Data Preparation
	Parameter Space Sampling
	Human Body Motion Synthesis
	Cloth Registration and Simulation
	Multi-View Rendering

	Results
	Ablation Study
	Comparisons with Multi-View Methods
	Real-World Evaluations
	Multi-View Input in Daily Life
	Extra Test Results
	Additional Results on Real-World Images
	Comparison on Human3.6M with Single-View Methods
	Results Without Training on Synthetic Data
	Detailed Errors on Real World Evaluation
	Evaluation on 3D People in the Wild.
	Running Time

	Conclusion and Future Work

	Differentiable Simulation for Material Optimization
	Introduction
	Related Work
	Differentiable Cloth Simulation
	Cloth Simulation Basics
	Overview
	Derivatives of the Physics Solve
	Dynamic Collision Detection and Response
	Derivatives of the Collision Response
	Derivations of the Gradient Computation

	Experiments
	Ablation Study
	Material Estimation
	Motion Control
	Collision-rich Motion Control

	Conclusion

	Joint Estimation of Human and Garment from Video
	Introduction
	Related Work
	Method Overview
	Garment Auto-encoder
	Two-Level Encoder-Decoder Structure
	Representative Point Set Extraction
	Training Losses
	Recovery from Point Clouds to Garment Meshes

	Material Estimation
	Single Frame Closed-Loop Estimation
	Temporal Estimation for Garment Material

	Data Preparation and Training
	Training Details

	Experiments
	Quantitative Analysis
	Qualitative Results
	Lab Experiments and User Study
	Ablation Study
	Latent Code Interpolation
	Additional Qualitative Results
	Application: Virtual Try-On

	Conclusion

	Time-Domain Parallelization for Accelerating Cloth Simulation
	Introduction
	Related Work
	Cloth Simulation
	Time Parallel Time Integration Method
	Parallel Cloth Simulation
	Hierarchical Structures and Multi-level Methods
	Mesh Upsampling

	Overview
	Two-Level Mesh Hierarchy Representation

	Time Domain Parallelization
	Static Temporal Partitioning
	Adaptive Partitioning
	Analysis on Performance Scalability

	Smooth State Transitioning
	Iterative Detail Recovery
	Convergence and Continuity
	Proof of Convergence of Algorithm 3
	Iteration Number Estimation
	Implementation Details
	State Inconsistency

	Results
	Parameter and Scenario Setting
	Performance
	Smoothness
	Memory and Render Latency
	Limitations

	Conclusion and Future Work

	Dynamics-Inspired Garment Draping Prediction
	Introduction
	Related Work
	Method
	Encoder
	GCN-Based Decoder
	Spectral Domain Decomposition
	Loss Functions

	Physics-Enforced Optimization
	Experiments
	Data Generation
	Ablation Study
	Optimization for Semi-Supervision
	Optimization for Graphic Print
	Quantitative Comparisons
	Qualitative Results
	Generalization to Different Garment Sizes

	Conclusion

	Conclusion
	Summary of Results
	Limitations
	Future Work

