THESIS REPORT
Ph.D.

New Results on the Analysis of Discrete
Communication Channels with Memory

by F. Alajaji
Advisor: T.E. Fuja

Ph.D. 94-8

929.9:9,

IBR

INSTITUTE FOR SYSTEMS RESEARCH

Sponsored by

the National Science Foundation
Engineering Research Center Program,
the University of Maryland,

Harvard University,

and Industry



NEW RESULTS ON THE ANALYSIS
OF DISCRETE COMMUNICATION
CHANNELS WITH MEMORY

by

Fady Alajaji

Dissertation submitted to the Faculty of the Graduate School
of The University of Maryland in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
1994

Advisory Committee:

Associate Professor Thomas E. Fuja, Chairman/Advisor
Professor Prakash Narayan

Professor Nariman Farvardin

Associate Professor Steven Tretter

Professor Eric Slud






ABSTRACT

Title of Dissertation: NEW RESULTS ON THE ANALYSIS
OF DISCRETE COMMUNICATION
CHANNELS WITH MEMORY

Fady Alajaji, Doctor of Philosophy, 1994

Dissertation directed by: Associate Professor Thomas E. Fuja
Department of Electrical Engineering

The reliable transmission of information bearing signals over a communica-
tion channel constitutes a fundamental problem in communication theory. An
important objective in analyzing this problem is to understand and investigate its
“information theoretic” aspects — i.e., to determine the fundamental limits to how
efficiently one can encode information and still be able to recover it with negligible
loss. In this work, we address this problem for the case where the communication
channel is assumed to have memory — i.e., the effect of noise lingers over many
transmitted symbols. Our motivation is founded on the fact that most real-world
communication channels have memory.

We begin by proposing and analyzing a contagion communication channel. A
contagion channel is a system in which noise propagates in a way similar to the
spread of an infectious disease through a population; each “unfavorable” event
(i.e., an error) increases the probability of future unfavorable events. A contagion-
based model offers an interesting and less complex alternative to other models of

channels with memory like the Gilbert-Elliott burst channel. We call the model



set forth the Polya-contagion channel — a discrete binary communication channel
with additive errors modeled according to the famous urn scheme of George Polya
for the spread of contagion.

We next consider discrete channels with arbitrary (not necessarily stationary
ergodic) additive noise. Note that such channels need not be memoryless; in gen-
eral, they have memory. We show that output feedback does not increase the
capacity of such channels. The same result is also shown for a larger class of chan-
nels to which additive channels belong, the class of discrete symmetric channels
with memory. These channels have the property that their inf-information rate is
maximized for equally likely iid input processes.

Finally, we impose average cost constraints on the input of the additive chan-
nels, rendering them non-symmetric. We demonstrate that in the case where the
additive noise is a binary stationary mixing Markov process, output feedback can

increase the capacity-cost function of these channels.
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Chapter 1

Introduction

.

Transmission of information from one point to another is at the heart of what we
call communication. As an area of concern, communication theory is so vast as to
touch the preoccupations of philosophers as well as scientists, and to give rise to a
thriving technology.

A communication system consists mainly of three parts: (1) The source, which
generates messages at the transmitting end of the system, (2) The destination,
which tries to reproduce the messages as accurately as possible, and (3) The chan-
nel, consisting of a noisy (in general) transmission medium or device for conveying
signals from the source to the destination. The source and destination ends can
be separated via the channel link in two ways: separation in space (as in satellite
transmission) or separation in time (as in storage). In this dissertation, we will
focus our attention on the study of communication channels.

Associated with most communication channels is a non-negative number called
the capacity which, loosely interpreted, is the maximum amount of information
(in bits/channel-use) that can be reliably transmitted across this channel. In other

words, if C' is the capacity of a given channel, then there exist methods of encoding



data for transmission over the channel at rates arbitrarily close to C bits/channel-
use — and these methods provide arbitrarily good performance, provided a suf-
ficiently complex encoder/decoder is permitted. Conversely, it is impossible to
reliably convey data at rates above the capacity.

The simplest kind of channel studied is the discrete (discrete time, discrete
alphabet) memoryless channel (DMC). A DMC is a channel for which the output
letter at a given time depends statistically only on the corresponding input letter.
An example of a DMC is a channel for which the output sequence is obtained by
adding the channel input sequence to a noise sequence that consists of a series of
itd random variables.

A discrete channel is said to have memory, if each letter in the output sequence
depends statistically on the corresponding input letter, as well as on the past
inputs, past outputs and future inputs. If the output letter does not depend on
the past input letters, then the channel is said to be historyless (or with no input
memory); thus the channel has anticipation and output memory. The channel
is causal (or has no anticipation) if for a given input and a given input-output
history, the current output letter is statistically independent of future inputs. If
the channel is causal and historyless, then it possibly has output memory only. An
example of a channel with output memory, would be the additive noise channel
described above, with the exception that the noise sequence is a series of dependent
random variables. In this dissertation, new results are obtained on the analysis of

discrete channels with output memory.



1.1 A Communication Channel Modeled on Con-
tagion

In the first part of the dissertation, we propose and analyze a contagion commu-
nication channel. A contagion channel is a system in which noise propagates in a
way similar to the spread of an infectious disease through a population. The noise
process of the channel is generated according to the contagion model of George
Polya; our motivation is the empirical observation of Stapper et. al. that defects in
semiconductor memories are well described by distributions derived from Polya’s
urn scheme. The resulting channel is stationary but not ergodic, and it has many
interesting properties.

We first derive a maximum likelihood (ML) decoding algorithm for the channel;
it turns out that ML decoding is equivalent to decoding a received vector onto
either the closest codeword or the codeword that is farthest away, depending on
whether an “apparent epidemic” has occurred. We next show that the Polya-
contagion channel is an “averaged” channel in the sense of Ahlswede (and others)
and that its capacity is zero. Finally, we consider a finite-memory version of the
Polya-contagion model; this channel is (unlike the original) ergodic with a non-zero

capacity that increases with increasing memory.

1.2 Feedback Capacity of Discrete Additive Chan-

nels

In the second part of the dissertation, we consider discrete channels with addi-

tive random noise. Note that such channels need not be memoryless; in general,



they have memory. The Polya-contagion channel discussed in the previous section
belongs to the class of such channels.

We investigate the effect of output feedback on the capacity of additive noise
channels with memory. By output feedback, we mean the existence of a “return
channel” from the receiver to the transmitter; we assume this return channel is
noiseless, delayless, and has large capacity. The receiver uses the return channel
to inform the transmitter what letters were actually received; these letters are
received at the transmitter before the next letter is transmitted, and therefore can
be used in choosing the next transmitted letter.

Intuitively, it is plausible that if we use feedback on channels with memory, then
we can use some encoding techniques at the transmitter end in order to combat the
noise of the channel and hence increase the capacity of the channel. However we
reach the seemingly surprising result that the capacity of additive noise channels
with feedback does not exceed their respective capacity without feedback. This is
shown for both ergodic and non-ergodic additive stationary noise. In light of recent
results on channel capacity by Verdd and Han [35], we then generalize our result
for discrete channels with arbitrary additive noise. This result extends Shannon’s
work of more than 35 years ago [30], which showed the same result for memoryless
channels.

Finally, we introduce the notion of symmetric channels with memory to which
additive noise channels belong. These channels are obtained by combining an input
process with an arbitrary noise process that is independent of the input. They
have the property that equiprobable input vectors maximize their block mutual
information. We show that feedback does not increase the capacity of symmetric

channels.



1.3 Feedback Capacity-Cost Function of Discrete

Additive Channels

In the last part of the dissertation, we analyze the capacity-cost function of ad-
ditive noise channels. We consider a binary additive noise channel, where the
noise process is a stationary mixing Markov process of order M. This channel is
symmetric as observed in the previous section. We incorporate average cost con-
straints on the possible input sequences of the additive channel, thus “destroying”
its symmetry. We establish a tight upper bound to the capacity-cost function of
the channel with no feedback (Cyrgp(f3)) and a lower bound to the capacity-cost
function with feedback (Crp(8)). Numerical results indicate that output feedback
can increase the capacity-cost function of this channel. An upper bound to Crp(0)

is also obtained, by proving the converse to the coding theorem.

1.4 Outline of the Dissertation

The rest of this dissertation is organized as follows. In Chapter 2, we present the
communication channel modeled by the spread of disease. We then look at the
effect of output feedback on the capacity of discrete channels with additive noise in
Chapter 3. The analysis of the capacity-cost function of discrete additive Markov
channels with feedback is addressed in Chapter 4. Finally, conclusions are stated

in Chapter 5.



Chapter 2

A Communication Channel Modeled by

the Spread of Disease

2.1 Introduction and Motivation: Communica-
tion via Contagion

We consider a discrete communication channel with memory in which errors spread
in a fashion similar to the spread of a contagious disease through a population. The
errors propagate through the channel in such a way that the occurrence of each
“unfavorable” event (i.e., an error) increases the probability of future unfavorable
events.

One motivation for the study of such channels is the “clustering” of defects in
silicon; Stapper et. al. [32] have shown that the distribution of defects in semicon-
ductor memories fits the Polya-Eggenberger (PE) distribution much better than
the commonly used Poisson distribution. The PE distribution is one of the “con-
tagious” distributions that can be generated by George Polya’s urn model for the

spread of contagion [26, 27]. More generally, real-world communication channels —



in particular the digital cellular channel — often have memory; a contagion-based
model offers an interesting alternative to the Gilbert model and others [20].

We begin by introducing a communication channel with additive noise mod-
eled by the Polya contagion urn scheme; the channel is stationary but not ergodic.
We then present a maximum likelihood (ML) decoding algorithm for the channel;
ML decoding for the Polya-contagion channel is carried out by mapping the re-
ceived vector onto either the codeword that is closest to the received vector or the
codeword that is farthest away — depending on which possibility is more extreme.
We then show that the Polya-contagion channel is in fact an “averaged” channel
[1, 19] - i.e., its block transition probability is the average of those of a class of
binary symmetric channels, where the expectation is taken with respect to the beta
distribution. Using De Finetti’s results on exchangeability, we note that binary
channels with additive exchangeable noise processes are averaged channels with
binary symmetric channels as components.

We show that the capacity of the Polya channel is zero, and we also obtain the
e-capacity of the channel. The zero capacity result provides a counter-example to
the adage “memory can only increase capacity”. We note that this adage applies
only to causal historyless information stable channels [10, 25], and that for more
general channels, memory may increase or decrease capacity.

Finally, we consider a finite-memory version of the Polya-contagion model.
The resulting channel is a stationary ergodic Markov channel with memory M;
its capacity is positive and increases with M. As M grows, the n-fold conditional
distribution of the finite-memory channel converges to the n-fold conditional dis-
tribution of the original Polya channel; however the capacity of the finite-memory

channel does not converge to the capacity of the Polya channel.



2.2 Polya-Contagion Communication Channel

Consider a discrete binary additive communication channel — i.e., a channel for
which the ™ output Y; € {0, 1} is the modulo-two sum of the i** input X; € {0,1}
and the 1™ noise symbol Z; € {0, 1}; more succinctly, Y; = X;®Z;, fori =1,2,3,...

We assume that the input and noise sequences are independent of each other.
The noise sequence {Z;}2, is drawn according to the Polya contagion urn scheme
[28], as follows: An urn originally contains T balls, of which R are red and S are
black (T = R+ S);let p=R/T and 0 =1 — p = S/T. We make successive draws
from the urn; after each draw, we return to the urn 1 + A balls of the same color
as was just drawn. Note that if A = 0, we get the classic case of independent
drawings with replacement. In our problem we will assume that A > 0 (contagion
case) and that p < 0 —ie. p < 1/2. Furthermore, we denote § = A/T. Our
sequence {Z;} corresponds to the outcomes of the draws from our Polya urn with
parameters p and 4, where:

g 1, if the i** ball drawn is red;
b { 0, if the ** ball drawn is black.

In Polya’s model, a red ball in the urn represents a sick person in the population

and a black ball in the urn represents a healthy person.

2.2.1 Block Transition Probability of the Channel

Definition 1 (Channel state) We define the state of the channel after the nt*

transmission to be the total number of red balls drawn after n trials:

SnéZ1+Z2++Zn= n—1+ Zn, So=0.




The possible values of S,, are the elements of the set {0,1,...,n}. Furthermore,

the sequence of states {S,}°2, form a Markov chain, i.e.
P(Sn = Sp I Sn—l = Sp—-1, Sn—2 = Sp—2y..+, SI = 31) = P(Sn = Sp, | Sn—l - Sn—l)-

For a given input block X = [X;,X,,...,X,] and a given output block ¥ =
[Y1,Y3,...,Y,], the block (or n-fold) transition probability of the channel is given
by
PY=y|X=ux) :fll P(Y; =y | Xi = 24,81 = si_1),
i-
where

+3i—10 : 1.
[ﬁﬁ]: lfyz®$@—1,

[ﬂ_lzilz%’grlﬁ]a ify;®z; =0.

plo+8) -+ (p+ (d=1)8)o(0 +9)--- (o + (d— 1)5)

PYi=y | Xi=2;, i1 = 8i-1) = {

We thus obtain:

Pr=ylX=1= T+ 0)(1+25) (1 F (=13 » 1)

where d 2 n — d, d = d(y,z) = weight(z = y ® ) = s, and I'(*) is the gamma
function, I'(x) = [°t*'e~*dt for z > 0. To obtain equation (2.2) from equation

(2.1), we used the fact that I'(z+1) = z I'(z) which leads to the following identity:

n-l PG R
jl;[o(aﬂﬂ)—ﬂ Ty

2.2.2 Properties of the Channel

We first define a discrete channel to be stationary if for every stationary input
process {X;}{2,, the joint input-output process {(X;, Y;)}2, is stationary. Fur-
thermore, a discrete channel is ergodic if for every ergodic input process {X;}2,,

the joint input-output process {(X;, ¥;)}2, is ergodic [21, 16).



Before analyzing the characteristics of the channel, we state from [33] the fol-

lowing definitions and lemma.

Definition 2 A finite sequence of random variables {Z;, Z,,- -+, Z,} is said to be
exchangeable if the joint distribution of {Z1, Z,,- -, Z,} is invariant with respect
to permutations of the indices 1,2,---,n.

Definition 3 An infinite sequence of random variables {Z;}$2, is said to be ez-

changeable if for every finite n, the collection {Z;,, Z;,, - -, Z;, } is exchangeable.
Lemma 1 Exchangeable random processes are strictly stationary.

Exchangeability was investigated by De Finetti (1931) who recognized its fun-
damental role for Bayesian statistics and modern probability. The main interest
in adopting this concept is to use exchangeable random variables as an alterna-
tive to independent identically distributed (iid) random variables. Note that iid
random variables are exchangeable. However, exchangeable random variables are
dependent in general but symmetric in their dependence. We now can study the

properties of the channel:

1. Symmetry: The channel is symmetric. By this we mean that P(Y =
y | X = z) depends only on g @ y since P(Y =y | X =2) = P(Z=y® ).
Due to the symmetry, if we want to maximize the mutual information I(X;Y)
over all input distributions on X, the result is maximized for equiprobable
input n-tuples (uniform éid input process). The resulting output process is

also uniform iid.

2. Stationarity: From equation (2.1) and the above definitions, we can con-

clude that the noise process {Z;}2; forms an erchangeable random process.

10



The noise process is thus strictly stationary (by Lemma 1) and thus identi-

cally distributed. We get:

and the correlation coeflicient

COT(Zi, ZJ) . CO’U(Zi, Zj) _ (5

= = >0 Vi#yg
\/Var(Zi) Var(Z;) 1+9 #J

indicates the positive correlation among the random variables of the noise

process.

3. Non-Ergodicity : It is shown in [28, 11] that Z 2 limy, 00 Sp/1 exists
almost surely, where Z has the beta distribution with parameters p/é and
o /6. Thus the noise process {Z;}32, is not ergodic since its sample average

does not converge to a constant.

2.3 Maximum Likelihood (ML) Decoding

Suppose M codewords are possible inputs to the channel with transition probability
P(Y = y|X = gz); the codebook is given by C = {z;,Z,,...,Z)}, With each
z, € {0,1}*. For a given received vector y € {0,1}" the maximum likelihood

estimate of the transmitted codeword is
z=argmax{P(¥Y = y|X =2) : 2, € C}.
From equation (2.2), we can rewrite the transition probability of the channel as:

PY =y |X=2z)=g(dz,y)),

11



where g : {0, 7] — [0,1] is defined by

g

g(d):A-F<§+d>-F(6+n—d),

and A is a constant depending on n, p, and §.
In order to analyze the behavior of P(Y =y | X = z), we refer to the following

definition and lemmas without stating their proofs from [7]:

Definition 4 Let f be a real-valued function defined and strictly positive on an

interval I ¢ R. If
fluz + (1 —w)y) < [F@)]f @)™

for all x, y € T and all u € [0, 1], then fis said to be logarithmically convex or briefly

log-convex on I. If the inequality is strict, then fis said to be strictly log-convex.

Another definition of log-convexity is the following: If f(z) > 0 for all x € T
and if log f is convex on I, then fis said to be log-convex on I. Furthermore, by

the inequality of the arithmetic and geometric means, we have:

F@I @I <u f@) + (1 —u) f(y).

Thus log-convexity implies convexity, but not conversely.

Lemma 2 The set of all log-convex functions is closed under both addition and

multiplication- i.e., if f; and f, are log-convex, then so are f; + f; and fi.f.
Lemma 3 The gamma function is strictly log-convex on R.,.

We thus obtain that g(-) defined above is strictly log-convex on the interval [0,n].

This observation leads to the following result.

12



Proposition 1 The transition probability function P(Y = y | X = z) of the
Polya-contagion channel is strictly log-convex in d(z, y) and has a unique minimum

at

n 1—-2p
dh=35+55

Furthermore, P(Y =y | X = z) is symmetric in d(z,y) about do.

Proof 1 As above, define g(d) = P(Y. = y|X = &) for any 2, y such that d(z,y) =

d; then g(-) is strictly log-convex. For dy = (n/2) + ((1 — 2p)/26), we obtain

n 1 n 1
g(d0+€)—g(dg—f)—AF<‘2—+2—5+€) F(E—F%—e)

for any e; therefore g(-) is symmetric about dy and the strict convexity of g(-)

means that a unique minimum occurs there. [ |

Decoding Algorithm: From the results above, the ML decoding algorithm for

the channel is as follows:

1. For a given n-tuple y received at the channel output, compute d; = d(y, z;),

fori =1,..., M. Compute also dyq = max;<;<p{d;} and dpin = ming<;<p{d;}.

2. If |dmas — do| < |dmin — do|, map y onto a codeword z; for which d; = dpmin.

In this case ML decoding <= minimum distance decoding.

3. If |dmas — do| > |dmin — do|, map y onto a codeword z; for which d; = dneq.

In this case ML decoding <=> maximum distance decoding.

In Figure (2.1), we have that

13



: b o - - - - - - - -

0 min{di} do max{di}

Figure 2.1: Transition probability function vs Hamming distance.
Observations:
o Insight into the decoding rule:

— We can rewrite dg as:

n 1 /T
do-a*z(rR)'

Note that n/2 is (of course) the distance the received n-tuple would be
from the transmitted codeword if half of the bits get flipped; note also
that (T'/2 — R) is the initial offset from having an equal number of red

and black balls in the urn. Thus dy may be thought of as an equilibrium

14



point.

— The best estimate is then specified by the value of d; that is furthest
away from the equilibrium point dy. In other words, the best decision
is based on the following reasoning: either many errors occurred during
transmission — an apparent epidemic, to use the contagion interpretation

— or very few errors occurred — an apparently healthy population.

e We note that, if dy > n — 0.5, then condition (2) in the above algorithm
is always satisfied — meaning minimum distance decoding is optimal. The
requirement dy > n — 0.5 is equivalent to the condition

1—-2p

)
< n—1"

so if the parameter § = A/T is sufficiently small — i.e., there is sufficiently
little memory in the system — minimum distance decoding is optimal. In
particular, if 6 = 0, the draws from the urn are independent and the channel
reduces to a binary symmetric channel with crossover probability p. Thus
this observation is consistent with the fact that, for a BSC with crossover
probability less than one-half, minimum-distance decoding is maximum like-

lihood decoding.

2.4 Averaged Communication Channels

Averaged channels with discrete memoryless components were first introduced by
Jacobs [19] and then were analyzed by Ahlswede [1] and Kieffer [21] who investi-
gated their operational capacity. We will show that the Polya-contagion channel is

an averaged channel with components that are binary symmetric channels (BSC'’s).

15



Consider a family of stationary channels parameterized by 6:

Wiy =y | X =2),0c0)

o0
n=1"

where Y and X are respectively the input and output blocks of the channel, each
of length n. W(,(")(-) is the n-fold transition probability of the channel specified by
feco.

Definition 5 We say a channel is an “averaged” channel with stationary ergodic
components if its block transition probability is the expected value of the transition
probabilities of a class of stationary channels parameterized by 8 — i.e., if it’s of

the form:

W=yl X=2) = [WX=y|X=g) dG()

for some distribution G(-) on 6.

Note that if a channel is averaged with stationary components then it is sta-
tionary, and it may have memory. One way an averaged channel may be realized
is as follows: From among the components, nature selects one according to some
probability distribution G. This component is then used for the entire transmission.
However the selection is unknown to both the encoder and the decoder.

We will show that the Polya channel — and indeed any additive channel —
belongs to this class of channels. But first we need to recall some results from
(13, 14, 15]:

Notation: Consider a discrete time random process with alphabet D; let
(D) denote a o-field consisting of subsets of D, and let u be a probability

measure such that (D, o(D>), x) forms a probability space. Finally, let U, :

16



D% — D denote a sampling function defined by U, (u) = u,. Then the sequence
of random variables {U,;n = 1,2,...} is a discrete time random process, to be

denoted [D, u, U].

Lemma 4 (Ergodic Decomposition) Let [D, u, U] be a stationary, discrete time
random process. There exists a class of stationary ergodic measures {ug; 6 € O}
and a probability measure G on an event space of © such that for every event

F C o(D*) we can write:

wF) = [ nalF) dG(6).

Remark: The ergodic decomposition theorem states that, in an appropriate sense,
all stationary non-ergodic random processes are a mixture of stationary ergodic
processes; that is if we are viewing a stationary non-ergodic process, we are in
reality viewing a stationary ergodic process selected by nature according to some
probability measure G. By directly applying the ergodic decomposition theorem

we get the following result.

Proposition 2 Any discrete channel with stationary (non-ergodic) additive noise
is an averaged channel whose components are channels with additive stationary

ergodic noise.

Proof 2 Let {Z;} be the (non-ergodic) noise sequence. Then the ergodic de-
composition theorem states that P(Z = 2) = P(Z, = #,...,2, = 2,) may
be written as the expected value of the distribution of a class of stationary er-
godic processes; since the noise and input sequences are independent, we have
WO(Y =yl X =2)=P(Z=y~-xz) and so W(Y. = y|X = z) may likewise be
expressed as the expected value of the transition probabilities of a class of channels

with stationary ergodic additive noise. |
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Proposition 3 The binary Polya-contagion channel is an averaged channel; its
components are BSC’s with crossover probability 6, where 6 is a beta-distributed

random variable with parameters p/é and o /4.

Proof 3 We showed in Proposition 2 that the Polya channel is an averaged channel
whose components are channels with additive stationary ergodic noise. To prove
the rest of the proposition we just note that, if we let fg(6) be the pdf of a beta-

distributed(p/d,0/d) random variable — i.e.,

M)___P/J-—l _9elt '
fo(8) = F(p/5)r(0/5)9 (1-6)°7", f0<d<I;

0, otherwise,
then
1
|| a0 - 0y e0 fo(6)db = P(Y. = ylX =),
0
where P(Y = y|X = z) describes the Polya-contagion channel as in (2.2). |

Observation: We could have proved part of Proposition 3 by using De Finetti’s
results on exchangeability, since the additive noise process of the Polya channel is

a binary exchangeable random process. De Finetti’s results are summarized below

[11, 34].

Theorem 1 (De Finetti) For an infinite sequence of random variables, the con-
cept of exchangeability is equivalent to that of conditional independence with a
common marginal distribution; ie. if Z;,Z,,... is an infinite sequence of ex-
changeable random variables, then there exists a o-field F and a distribution G
such that, given F, the random variables Z;, Z,, ... are conditionally independent

with distribution function G.
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Corollary 1 For every infinite sequence of exchangeable random variables {Z;}
such that Z; € {0, 1}, there corresponds a probability distribution G concentrated

on the interval (0, 1) such that:
1
P(Zi=e1,Zs=es,..., %0 =€) =/ 6% (1 - 9)"* dG(9),
0
where k =e; +e2+---+e,and e; € {0,1} fori =1,2,...,n.

This brings us to the following more general result:

Proposition 4 Any binary channel with an exchangeable additive noise process

is an averaged channel with binary symmetric channels (BSC’s) as its components.

2.5 Capacity of the Polya Channel

Consider a discrete (not necessarily memoryless) channel with input alphabet A
and output alphabet B; let W™ (Y. = y|X = z) be the n-fold transition probability

describing the channel.

Definition 6 An (M, n,¢€) code has M codewords, each with blocklength n, and
average error probability not larger than €. R > 0 is an e-achievable rate if for
every v > 0 there exists, for sufficiently large n, (M, n, €) codes with rate

loga(M)

>R—7.
n Y

The maximum e-achievable rate is called the e-capacity, C.. The channel capacity,
C, is the maximum rate that is e-achievable for all 0 < € < 1. It follows immediately
from the definition that

C =limC..
e—0
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In [35], Verdd and Han derived a formula for the capacity of arbitrary single-users

channels (not necessarily stationary, ergodic, information stable, etc.):
Lemma 5 The channel capacity C is given by
C =sup I(X;Y), (2.4)

where the symbol [ (X;Y) is the inf-information rate between X and Y and

is defined as the liminf in probability*of the sequence of normalized information

densities L ix,y (X;Y), where

Py (bla)
P(n) (B) ’

Using the above lemma as well as the properties of the inf-information rate

ix;y (g;b) = log (2.5)

derived in [35], we obtain that that the inf-information rate in (2.4) is maximized
when the input process is equally likely Bernoulli (symmetry property), yielding

the following expression for the capacity of the Polya channel

C'Polya, =1- -H(Z)’

where H(Z) is the sup-entropy rate of the additive Polya noise process {Z,},

defined as the limsup in probability of -71; log, ;(%E. Since the noise process is
g =

stationary, we obtain that the sup-entropy rate is equal to the supremum over the

the entropies of almost every ergodic component of the noise process [21, 35]:

Chrolya = 1 — essgsup h(Wy), (2.6)

LIf A, is a sequence of random variables, then its liminf in probability is the supremum of all
reals a for which P(A,, < a) — 0 as n — oo. Similarly, its limsup in probability is the infimum

of all reals 8 for which P(4, > ) — 0 as n — oo [35].
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where

e the noise entropy rate h(Wp) is given by

° ]- n n
h(We)=—1lim = 5 W (y|z) Q™ (z) log, Wy (y | z),

n—=cc n g,yEA"

e and the essential supremum is defined by
essosup f(6) £ inf [r: dG(F(6) < 1) =1].

We know that the stationary ergodic components of the Polya channel are BSC’s
with crossover probability 0; therefore the noise entropy rate is given by H (W) =
hy(8), where hy(z) = —zlogy(z) — (1 — ) log,(1 — z). Equation (2.6) then yields

the capacity of the channel:
Cholya = 1 — essg sup hy(0).

Since 6 has the beta distribution on [0,1], we obtain essg sup hy(6) = 1 which and

50 Cpolys = 0.

e-Capacity of the Polya Channel: Since the stationary Polya noise process
{Z,} is a mixture of Bernoulli(f) processes where the parameter ¢ is beta dis-

tributed with parameters p/é and o/d, it can be shown using the ergodic de-

(2)
surely (hence in distribution) to the random variable V' = hs(U) where U is beta-

composition theorem [14, 16] that = log, FZ’-‘%—Z converges in L' and almost

distributed(p/d,0/6). The cumulative distribution function (cdf) of V' is given
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where h; ' (a) € [0,1/2] is the smallest root of the equation a = hy(u), and Fy () is
the cdf of U. Note that since U is beta distributed, Fy/ () is strictly increasing in
the interval [0, 1]; it therefore admits an inverse Fy;'(+). Now, applying the formula

for e-capacity in Theorem 6 in [35], we obtain

C.=1-F;'(1-¢). (2.8)
Note that lim,_,oC, =1 — Fyy!(1) =1 —1 = 0, as expected.
Observations:

e The zero capacity of the Polya channel is due to the fact that € can occur in
any neighborhood of the point 1/2 with positive probability. This channel
behaves like a compound channel with BSC’s as components and the capacity

of such a compound channel is equal to the infimum of the capacities of the

BSC'’s.

e The zero capacity result suggests that the Polya channel might not be a good
model for a realistic channel. However in Section 2.7 we will consider a finite-
memory channel that approximates the Polya channel as memory increases,
but with a capacity that does not approach zero. Before we do so, however,
we first point out that the Polya channel provides a counterexample to the

adage “memory increases capacity”; this is the subject of the next section.
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2.6 Effect of Memory on the Capacity of the
Polya Channel

In [10], Pinsker and Dobrushin showed that “for a wide class” of channels, the
capacity of a channel with memory is not less than the capacity of the “equivalent”
memoryless channel. They considered a channel with input alphabet A, output
alphabet B, and n-fold transition probability W™ (yy,...,yn | 21,...,2,), z; € A,
y; € B, such that:
WO Dy, Yner | Z1, ey Tny) = ZBW(")(yl,...,yn | Z1,...,%,). (2.9)
yn€

Specifically, they considered such channels with an operational capacity given by

C=1lm L0, (2.10)

n—o0 n

where

Cn= sup I((X1,...,Xn);(Y1,...,Ya)).
(X1, Xn)

Here, I ((X3,...,X,); (Ya,...,Y,)) is the block mutual information between the
input and the output. They then defined the memoryless channel associated with

this channel to have n-fold transition probability

n
WO (g, paler, ...,z HW (wilzs),
i=1

where

Wiy |z) = >, WOy, p | z1,...,2) (2.11)
yl""ayi—leB

and the left-hand side of (2.11) is assumed to be independent of (z1,...,2n_1).

Thus the one-step transition probabilities of the memoryless channel are equal to
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the per-letter marginals of the channel with memory. The capacity of the associated
memoryless channel is denoted by C,,, and they showed that:

~

Co>Ci+Cot - +0Ch

By “a wide class of channels”, they made some implicit assumptions:

e The channels are non-anticipatory (causal) and historyless (with no input
memory). The non-anticipatory property can be seen from equation (2.9),

where it is implicitely assumed that

WOy, ynalen, o, @) = WO, g, 7).

Furthermore, equation (2.11) assumes the distribution on the n* channel
output given the first n channel inputs depends only on the n** input - i.e.,

the original channel has no input memory; it is historyless.

e The channels are information stable. Information stable channels have the
property that the input that maximizes mutual information and its corre-
sponding output behave ergodically [35, 25]. The class of information stable
channels is the most general class of channels for which equation (2.10) rep-

resents the operational capacity.

If we restrict ourselves to stationary channels, then W, (Yn | zn) = W(yn | z,,) for

allnandsoCnZnC', where C~'1:C~'2:...:C~Y =C. ThuswegetCZC’.

In [2], Ahlswede showed that there are averaged channels for which the intro-
duction of memory decreases capacity. We briefly show that the Polya-contagion

channel is such a channel.
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We showed in the previous section that the capacity of the Polya channel is
zero. Now, let us compute C, the capacity of the associated memoryless channel.
The transition probability of the associated memoryless channel W() is

W (Y, = ol Xp = 20) = ) / W,;(")(X =y|X = z) dG(8)
yl""’yn—le{o’l} ©

= Y WY =ylX =21)dG@)
e yl"",yn—1€{0’1}
- /e Wi (Ya = Yol Xn = 2n) dG(6)
1
= gynden (1 — 9)1=n®en) £5(0) df

= @ (] - p)l—(yn@wn)’

where © = [0,1], and dG(6) = fo(f) df is the beta distribution with parameters
p/6 and o /4 given in Proposition 3.

Thus we observe that the memoryless channel equivalent to the Polya channel
is a BSC with crossover probability p; this leads us to the conclusion that, for

p # 1/2, the memory in the Polya channel decreases capacity.

One can obtain an even simpler example of an averaged channel which has a
smaller capacity than the associated memoryless channel. Consider an averaged
channel consisting of two BSC’s - one with crossover probability 0 and the other
with crossover probability 1/2 - and the two BSC’s are equally likely. Then simple
calculations reveal that the averaged channel has zero capacity, while the equivalent
memoryless channel has capacity 1 — hy(1/4), where hy(-) is the binary entropy

function.

On the other hand, one can derive examples of stationary non-ergodic channels
for which memory increases capacity. Consider an averaged channel consisting of

two BSC’s - one with crossover probability 0 and the other with crossover probabil-
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ity 1 - and the two BSC’s are equally likely. The capacity of the averaged channel
is now 1, while the equivalent memoryless channel has zero capacity. This leads us
to conclude that for arbitrary discrete channels, memory may increase or decrease

capacity.

2.7 Finite-Memory Contagion Channel

An unrealistic aspect of the Polya channel is its infinite memory. Consider, for
instance, the millionth ball drawn from Polya’s urn; the very first ball drawn from
the urn and the 999,999’th ball drawn from the urn have an identical effect on the
outcome of the millionth draw. In the context of a communication channel, this is
not reasonable; we would assume that the effects of the “disease” fade in time. We
now consider a more realistic model for a contagion channel with finite memory,
where the noise in the additive channel is generated according to a modified version
of the Polya urn scheme.

Assume once again that the channel output Y; is the modulo-two sum of the
input X; and the noise Z;; as for the Polya channel, assume that the input and
noise sequences are independent. Then {Z;}2, is drawn according to the following
urn scheme: An urn initially contains T balls — R red and S black (T = R+ S).
At the j'th draw, j = 1,2,..., we select a ball from the urn and replace it with
1+ A balls of the same color (A > 0); then, M draws later — after the (j + M)’th
draw — we retrieve from the urn A balls of the color picked at time 7. Once again
let p=R/T <1/2,0=1—p=_5/T and § = A/T. Then the noise process {Z;}

corresponds to the outcomes of the draws from the urn, where:
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, { 1, if the ** ball drawn is red;
i =

0, if the ** ball drawn is black.

Observation: With this modification of the original Polya urn scheme, the num-

ber of balls in the urn is constant (7" 4+ MA balls) after an initialization period of

M draws. It also limits the effect of any draw to M draws in the future.

2.7.1 The Distribution of the Noise

During the initialization period (n < M), the process {Z;} of the finite-state
channel is identical to the Polya noise process discussed earlier. We now study the
noise process forn > M + 1.

Let R, be the number of red balls in the urn after n draws, T,, be the total
number of balls in the urn after n draws, and r, = R,/T,. Then T,, = T + MA

forn > M + 1, and so

R+ (Zn+Zn1+ -+ Zn_mi)A
T+ MA

P+ (Zn+Zpn1+-+ Zpn-p41)0
1+ Mé ’

We now have that:

p+ (en_l +€p9+--- +6n_M)6
14+ M6

P(Zn = 1|Z1 =e€,. --,Zn—l = 6n_1) =
= Tp-1

= P(Zn = 1|Zn—M =€p_My---, Zn—l = en—l)>

where e; € {0,1}. Thus the noise process {Z;}2,,., is a Markov process of order
M. We shall refer to the resulting channel as the finite-memory contagion channel.
For an input block X = [Xj, X,,..., X,,] and an output block Y = [V}, Y;,..., V,],

the block transition probability of the resulting binary channel is as follows:
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e For blocklength n < M, the block transition probability of this channel is
identical to that of the Polya-contagion channel given by equations (2.1) and
(2.2).

e For n > M + 1, we obtain:

Pyl =y|X=2) = P(Z=¢

Il
==

PZi=¢€ | Zisi=¢€1,.. .y Zi_m = €i—m)
1

-,
1

e: l—e;
i p+8¢_15 ’ U+(M—8i_1)5 !
L 2.12
T 5] (o] e
where
;53 (o +0) TG (o + 59)
ITe2t (1 + £6) ’
e; = Z; DY,
k=e +---+epy,
and

Si—1=¢€_1+ -+ e_p.

By examining the above equation we can show that the noise process (and so the
channel) is stationary since the block distribution of the noise is invariant under

all finite shifts, i.e.
P(Zl =61,Z2 :62,...,Zn=6n) = P(ZH"T =61,Z2+T =32,,__,Zn+7_ :en)

for all finite 7 > 0.
Remark: Obviously, as M grows, the n-fold transition distribution of the finite-
memory contagion channel converges to the n-fold transition distribution of the

Polya-contagion channel, i.e. P}}‘)(-) — PI(,'é)lya(-).
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2.7.2 Properties of the Noise Process

We now consider the properties of the noise process {Z;}. Define {W,,} to be the
process obtained by M-step blocking {Z,} —ie. Wy, = (Zn, Znt1,-- s Zntrr-1)-
Then {W,} is a one-step Markov process with 2M states; we denote each state
by its decimal representation; i.e. state 0 corresponds to state (0---00), state 1
corresponds to state (0---01), ..., and state (2 —1) corresponds to state (1---11).

Tedious calculations reveal the following properties about the process {W,}.

e {W,} is a homogeneous stationary Markov process with stationary distri-
bution IT = [m,my,...,mem_;], where 7; is computed as follows. Let w(s)
denote the number of 1’s in the binary representation of the decimal integer

i, where 1 € {0,1,...,2™ — 1}. Then

w(i)—1 M—1—w(%)
II e+38) I (c+kd)
=0 k=0
i = M—1
II (1 +¢5)
=1

o If we let {p;;} be the one-step transition probabilities - i.e., p;; = Pr(W, =
G Wao1 =14), 14,5 € {0,1,...,2M — 1} — then

g+ (1]\3[_;\/;1(;(2))5, if j = 2i (modulo 2M);

Py = %%é;%ﬁ, if j = (20 +1) (modulo 2M); (2.13)

0, otherwise.

We'‘ve thus shown that the Markov process {W,,} is irreducible and aperiodic;
therefore it is strongly mizing [24] and hence ergodic. Since the additive
noise process is stationary and mixing, the resulting additive noise channel

is ergodic [16, 25].

29




Observation: For M =1 the one-step transition probability matrix of {Z,} is

1 o+ 1—-o

Q= [pi;] = T (2.14)

o l1l—o0o+494
Clearly one can choose § and ¢ to “match” the transition probabilities of an arbi-

trary irreducible two-state Markov chain.

2.7.3 Capacity of the Finite-Memory Contagion Channel
Using the results in the previous subsection, we arrive at the following proposition.

Proposition 5 The capacity Cy, of M-memory contagion channel is non-decreasing

in M. It is given by:

M I M
1 p+ké
Cy =1 kg . Ly hy (1 +M5) , (2.15)

where
2o (p+36) TIEG"™" (o + €5)
=i (1+md) ’

and h(-) is the binary entropy function.

Ly =

Proof 5 Since the channel is stationary ergodic (and hence information stable),

its capacity is given by equation (2.10) which yields

CM = 1—H(ZM+1 I ZM7ZM—17~~~7Z1) (216)

2M 1

= 1+ ) m pij logy i
4,§=0
M I M

p+ké

- 1-3 Le h,,( )

k=0 k 1+M6

The monotonicity of Cys in M follows from (2.16) because the Markov noise process

is stationary and conditioning can only decrease entropy. m
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Proposition 6 The following equality holds:

Jim Cur =1 [ ho(s) fo()d, (2.17)

where fz(z) is the beta(p/d, 0/8) pdf and hy(-) is the binary entropy function.

M
Proof 6 If we examine the quantity Ly in the formula of Cj, we note that
k

it is equal to the probability that Sy, = k, where Sj, is the state of the original
Polya-contagion channel after the M’th draw, as defined in Section 2.2.1. We thus

have:

M
o4 p+ ko .
Oy = 1 l;)hb(1+M5> P(Sur = k)

'&+T5 SM
- — M _—=
=1 2 h”(ﬁJré)P(M T)

T€{k/M:k=0,1,...M}

£ + Tyé
oo (525

M

where Tjr = Syr/M. We know by Property 3 in Section 2.2.2, that Ty, = Sy /M
converges almost surely to a beta-distributed random variable Z with parameters
p/é and o/6. This almost surely convergence implies convergence in distribution.

We now state the “weak equivalence theorem” [4]:

Lemma 6 Let the random variables X,, and X have respectively distributions p,

and p. Then the following two conditions are equivalent;:
1. pn = p as n — o0; i.e. X, converges to X in distribution.

2. [ fdpn, — [ fdu as n —> oo, or equivalently Ex, [f(X,)] — Ex[f(X)]

as n —» oo for every bounded, continuous real function f(-).
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Therefore using the above lemma with the fact that h,(-) is bounded and contin-

k
uous, and that limp,_,. b (ﬁLE‘MJ—&) = hy(2), we get:
M

<K

By, [hb (?)l = Ez[h(2)]
- /0 " ha(2) f2(2)dz

(=)

Proposition 7 If welet /(X;Y) denote the mutual information between the input
vector X and output vector Y connected over the original (non-ergodic) Polya

channel, then

1 1
lim ~sup /(XGY) =1— [ hy(z) f2()d.

nooo Ny

where fz(z) is the beta(p/d, o/6) pdf.

Proof 7 We have

sup ~ I(X;Y)=1— ~ HY | X) =1

X n n

S|

> HY; | Y77, X7,
j=1

where X = X" = [Xy,...,X,]) and X7 = [X,..., X;]. From Section 2.2.1, we

know that

PY;=ylY7 ' =y X =07) = P(Y;j=y; | X;=2;,5_1=sj1)
+8;_10 . 1.

Ew,  fwen=1

[—(_J—LU+ J1-si-1 6] N lf yj D ZL']' = O,

1+(G-1)3

where 5;_1 is the state of the Polya channel after j — 1 draws.
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We can then compute H(Y; | Y71, X7) to obtain:

H(Y; | Y7L, X%) = H(Y;| X;,55-1)

i p+ké
"\1+ (G -1é

i
™

) P(§;1 = )

k=0

As in the previous proof, we use the “weak equivalence theorem” to get

lim (Y | Y/, 50) = [ ha(2) Fo ()

j—ooo

where fz(-) is given as above. Finally using the Cesaro-mean average, we obtain

lim — H(Y | X) = Jim B | V7 X) = [ ho(2) fa(a)d.

n—0o n, j—oo

Observation: As the memory M grows, P{V(-) — ngw(-), but the capacity
Cys of the (ergodic) finite-memory channel does not converge to the capacity of
the (non-ergodic) Polya-contagion channel (which is zero). On the contrary, C
increases in M and converges to 1— [y hy(2) fz(2)dz. In addition, if we let I(X;Y)
denote the mutual information between the input vector X and output vector ¥

connected over the original (non-ergodic) Polya channel, then

lim lsupI(X;X) =1- /01 he(2) fz(2)dz. (2.18)

n—oop x
The left side of equation (2.18) is called the information rate capacity of the Polya
channel; we have thus demonstrated that, as we let the memory in the finite-
memory contagion channel increase, not only does the channel block transition
distribution converge to that of the Polya channel, but the information rate capac-

ities also converge to that of the Polya channel. However, there is no convergence
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in the operational capacity. It seems reasonable to assume that this is due to the
non-ergodic nature of the Polya channel. In the following proposition we examine

this question.

Proposition 8 Consider a sequence of historyless non-anticipatory stationary er-
godic channels; let the n-fold transition probability of the M channel be denoted
W(") (Y =y | X =z). Let Cy denote the capacity of the M™ channel. Finally,

suppose this sequence of channels satisfies the following conditions.

1. As M grows, their n-fold transition distributions converge to the n-fold tran-
sition distribution of a historyless non-anticipatory stationary channel —i.e.,
if we let W(")( =y | X = z) denote the n-fold transition probability of the

limiting channel, then for any real n-tuples z and y,

lim WP (Y =y|X=2)=WM¥=y|X=2z)

Moo -

2. The “information rate capacities” of the channels converge to that of the
limiting channel - i.e., if Ip/(X;Y) denotes the n-fold mutual information
between the inputs and outputs of the M% channel, and I,(X;Y) denotes

the same for the limiting channel, then

1 1
lim lim —sup Iy (X;Y) = lim —sup I,(X;Y).

M—oon—0oq  x nooo N x

Let C, denote the capacity of the limiting channel; then a sufficient but not nec-

essary condition that
lim Cy =C
M—oo

is that the limiting channel be ergodic.
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Proof 8 The proof that ergodicity is sufficient is trivial. All the channels are er-
godic, so the information rate capacities are equal to the corresponding operational
capacities; condition (2.) says the information rate capacities converge, and so the
operational capacities must too.

To see that ergodicity is not necessary, we briefly sketch a counter-example. Let
{UM}, be a stationary, mixing binary Markov process indexed by the parameter

M; assume that P(U} = 0) = P(UM = 1) = 1/2 and that UM has one-step

—M 1—92-M
Qum = .
1—-9"M 9—M 4

We create a noise process {ZM}2, by two-blocking the process {UM} —i.e., ZM =

transition matrix

(Z¥,zY) = UM, UH.,) for i = 0,1,2,.... Then {ZM} is a one-step Markov

chain with four states and transition matrix

9-2M 9-M(1_9-M) (1 _9-M)2  9=M(] _ 9-M)
9-M(] _9=M) (1 _9-M)2  9-M(] _g-M) 9-2M

YTl g gmgMy (oM gow(1 ooy
gM(1—2M)  (1—2M)2  g-M(1_gM) g

Now consider the channel with input/output alphabet {00, 01, 10,11}, where the
it input X; = (Xj1, Xi2) is related to the i output V; = (Y;1, Y) by Vi = (Xu @
Z¥, Xpo®ZY). {ZM} is a stationary mixing process; thus the channel is stationary
ergodic [25]. For finite M, the capacity — both operational and information rate —
is give n by Cyr = 2 — H(Z}|Z}) bits/channel use. From Qzm we observe that
limps— 00 H(ZM|ZM) = 0; thus, limp,_,o Car = 2 bits/channel use.

As M increases, the process {ZM} converges in distribution to a stationary

non-ergodic process {Z;} with two equiprobable components — {01, 01,01,01,...}

and {10,10,10,10,...}. The information rate capacity of this — that is,
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lim,,_, o maxx (1/n)I,(X; Y) - is two bits/channel use. Thus both of the conditions
above are met. However, this limiting channel is a mixture of two deterministic
channels, and its operational capacity is also two bits per channel use. Thus the

ergodicity of the limiting channel is not a necessary condition.

2.8 Summary

In this chapter we considered a discrete channel with memory in which errors
“spread” like the spread of a contagious disease through a population; the channel
is based on Polya’s model for contagion. The channel is stationary and non-
ergodic. We first presented a maximum likelihood (ML) decoding algorithm for the
channel, and then showed that this channel is in fact an “averaged” channel, and
its capacity is zero. Using De Finetti’s results on exchangeability, we noted that
binary channels with additive exchangeable noise processes are averaged channels
with binary symmetric channels as components. The zero capacity result illustrates
a counter-example to the adage “memory can only increase capacity”. The e-
capacity of the Polya channel was also derived.

Finally, we considered a finite-memory version of the Polya-contagion model.
The resulting channel is a stationary ergodic Markov channel with memory M; its
capacity is positive and increases with M. As M increases, the n-fold transition
distribution of the finite-memory contagion channel converges to the n-fold transi-
tion distribution of the original Polya-contagion channel, but its capacity does not

converge to the capacity of the Polya channel.
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Chapter 3

Feedback Capacity of Discrete Channels

with Memory

3.1 Introduction

We consider discrete channels with additive random noise. Note that such channels
need not be memoryless; in general, they have memory. The Gilbert burst-noise
channel [12], as well as the Polya-contagion channel analyzed in the previous chap-
ter, belong to the class of such channels. We assume that these channels are
each accompanied by a noiseless, delayless feedback channel with large capacity.
We show that the capacity of the channels with feedback does not exceed their
respective capacity without feedback. This is shown for both ergodic and non-
ergodic additive stationary noise processes. In light of recent results on a general
channel capacity formula by Verdid and Han [35] we then generalize our result for
discrete channels with arbitrary (non-stationary, non-ergodic in general) additive
noise processes.

We remark that for these channels, the capacities with and without feedback
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are equal because additive noise channels are symmetric channels. By this we mean
that the block mutual information (respectively the inf-information rate for the
case of arbitrary additive noise) between input and output processes is maximized
by equally likely #d input process. Finally, we introduce the notion of symmetric
channels with memory. These channels are obtained by combining an input process
with an arbitrary noise process that is independent of the input. We also show that
feedback does not increase the capacity of discrete symmetric channels. Additive
noise channels belong to the class of symmetric channels.

In earlier related work, Shannon [30] showed that feedback does not increase
the capacity of discrete memoryless channels. The same result was proven to be
true for continuous channels with additive white Gaussian noise. Later, Cover and
Pombra [8] and others considered continuous channels with additive non-white
Gaussian noise and showed that feedback increases their capacity by at most half
a bit; similarly, it has been shown [8] that feedback can at most double the capacity

of a non-white Gaussian channel.

3.2 Discrete Channels with Stationary Ergodic

Additive Noise

3.2.1 Capacity with no Feedback

Consider a discrete channel with common input, noise and output g-ary alphabet
A where A = {0,1,...,q—1}, described by the following equation: Y, = X,, ® Z,,

forn=1,2,3,... where:

e @ represents the addition operation modulo g.
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e The random variables X,,, Z, and Y,, are respectively the input, noise and

output of the channel.

o {X,} L {Z,},1ie. the input and noise sequences are independent from each

other.
e The noise process {Z,}2=$° is stationary and ergodic.

Note that additive channels defined above, are “non-anticipatory” channels; where
by “non-anticipatory” we mean channels with no input memory (i.e., historyless)
and no anticipation (i.e., causal) [18]. Recall that a channel is said to have no
anticipation if for a given input and a given input-output history, its current output
is independent of future inputs. Furthermore, a channel is said to have no input
memory if its current output is independent of previous inputs. Refer to [18] for
more rigorous definitions of causal and historyless channels.

We furthermore note that discrete additive noise channels are symmetric chan-
nels. Symmetric channels are channels for which the block mutual information
(respectively the inf-information rate for general channels) is maximized by equally
likely ¢d input process. This class of channels will be considered in Section 3.5.
This is due to the facts that the input and noise processes of the channel are inde-
pendent from each other, the addition operation (modulo ¢) is invertible and the
input and output alphabets are finite and have the same cardinality.

A channel code with blocklength n and rate R consists of an encoder
f:{1,2,..., 2"y 5 A"

and a decoder

g: A" —{1,2,...,2"F},
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The encoder represents the message V € {1,2,...,2"R} with the codeword f(V) =
X" = [X1, X, ..., X,] which is then transmitted over the channel; at the receiver,
the decoder observes the channel output Y™ = [¥7,Y3,...,Y;], and chooses as its
estimate of the message V = g(Y™). A decoding error occurs if V # V.

For additive channels, Y; = X; @ Z; for all ;. We assume that V is uniformly
distributed over {1,2,...,2"%}. The probability of decoding error is thus given
by:

onR

PP = 5w X Prio(r™) £ VIV =k} = Prig() £V}

We say that a rate R is achievable (admissible) if there exists a sequence of codes

with blocklength n and rate R such that
lim P™ =0.
N=r00

The objective is to find an admissible sequence of codes with as high a rate as
possible. The capacity of the channel is defined as the supremum of the rate over
all admissible sequences of codes. We denote it by Cnyrp, to stand for capacity
with no feedback.

Because the channel is a discrete channel with additive stationary ergodic noise,

the nonfeedback capacity Cyrp of this channel is known and is equal to ([35], [22]):

1
CNFB = lim sup _I(Xn)yn)

n—o0 xXn n

1
logy(¢) — lim — H(Z"), (3.1)

where
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2" = (21,29, .., Zy),

I(X™;Y™) is the mutual information between the input vector X™ and the output
vector Y, and the supremum is taken over the input distributions of X™. H(Z")
is the entropy of the noise vector Z". ¢ The expression in (3.1) can be shown to
be the capacity of the channel using the Shannon-McMillan (AEP) theorem [22],
[35].

3.2.2 Capacity with Feedback

We now consider the corresponding problem for the discrete additive channel with
complete output feedback. By this we mean that there exists a “return channel”
from the receiver to the transmitter; we assume this return channel is noiseless,
delayless, and has large capacity. The receiver uses the return channel to inform
the transmitter what letters were actually received; these letters are received at
the transmitter before the next letter is transmitted, and therefore can be used in
choosing the next transmitted letter.

A feedback code with blocklength n and rate R consists of sequence of encoders
fit{1,2,...,2""} x A" 5 A
fori=1,2,...,n, along with a decoding function
g: A" = {1,2,..., 2"}

The interpretation is simple: If the user wishes to convey message V € {1,...,2"%}
then the first code symbol transmitted is X; = f;(V); the second code symbol
transmitted is X, = f2(V,Y;), where Y] is the channel’s output due to X;. The

third code symbol transmitted is X5 = f5(V,Y],Y;), where Y5 is the channel’s
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output due to X,. This process is continued until the encoder transmits X,, =
VYL, Y,, ... Y, ). At this point the decoder estimates the message to be
g(Y™), where Y™ = [V}, Y3,...,Y,].

Assuming our additive channel, Y; = X; & Z; where {Z;} is a stationary
ergodic noise process. Again, we assume that V is uniformly distributed over
{1,2,...,2"R} and we define the probability of error and achievability as in Sec-
tion 3.2.1.

Note, however, that because of the feedback, X™ and Z" are no longer inde-
pendent; X; may depend on Z¢~1.

We will denote the capacity of the channel with feedback by Crg. As before,

Crp is the supremum of all admissible feedback code rates.

Proposition 9 Feedback does not increase the capacity of channels with additive

stationary ergodic noise:

1
CFB = CNFB = logQ(q) — lim — H(Zn) (32)

n—0 f

Proof 9 Since Vis uniformly distributed over {1,2,...,2"%}, we have that H(V) =

nR. Furthermore, H(V) = H(V|Y™) + I(V;Y"). Now by Fano’s inequality,

HVIY™) < hy(PM™) + P log, (2" — 1)
< 14 Pé") log, (2“R)

= 1+ P™nR,

since hy(P{™) < 1, where hy(-) is the binary entropy function.

We then have:

42



= HV[Y") +I(V;Y™)
< 14+ PMnR+I(V;Y™),

where R is any admissible rate.

Dividing both sides by n and taking n to infinity, we get:

1 .

Let us thus study I(V;Y™"):

n

I(V;Y™) =3 I(V; YY), (34)
i=1
but
I(V;Y)Y™Y) = HEY™) — HY|V,Y*) (3.5)
= HY|Y'™) - HX;® Z|V,Y'™). (3.6)

Now the fact that X; = f;(V,Y4,...,Y;—1) implies that

HX;® Z|V,Y"™) = H(Z|V,Y", X) (3.7)
= H(Z|V,Y" ' X, X1, Z2771) (3.8)
= H(Z|V, Y, X'z (3.9)
= H(Z|Z). (3.10)

Here,
e Equation (3.7) follows from the fact that given V and Y*7!, X; is known

deterministically and H(Z + X |X) = H(Z|X).

e Equations (3.8) and (3.9) follow from the fact that given V and Y™, we know
all the previous transmitted letters X, X, ..., X;_; and thus we can recover

all the previous noise letters Z, = Y; — X; (mod ¢) for j =1,2,...,7— 1.
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e Equation (3.10) follows from the fact that Z; and (V,Y*!, X¥) are condi-

tionally independent given Z~!,
Therefore
I(V;Y|Y"Y) = HY; YY) — H(Z|Z7Y), (3.11)

and

NE

Iv;Y") = Y [HWY™Y) — H(Z|27)] (3.12)

= H(Y™) - H(Z"). (3.13)

-,
1l

But H(Y™) < log, ¢" because the channel is discrete. Therefore, if we divide both

sides of (3.13) by n, and take n to infinity, we obtain that
Crp < CnFB.

But by definition of a feedback code, Crp > Cnrp since a non-feedback code is a

special case of a feedback code. Thus we get:

) 1
CFB = CNFB = logz(q) — lim — H(Zn) (314)

n—ooo

Observations:

1. Tt is important to note that for additive channels, the conditional noise en-
tropy (given in equations (3.7)-(3.10)) remains the same with or without
feedback. This is because addition is invertible; in general H(X) > H(f(X))
with equality holding for invertible functions f(-). This is true for both

discrete and continuous alphabet additive channels.
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2. The reason why output feedback potentially increases the capacity of addi-
tive non-white Gaussian channels [8] is because for continuous channels we
have power constraints on the input, which upon optimization may increase
lim,, o0 % H(Y™) when feedback is used; while for discrete channels this
quantity is upperbounded by log,(q) and cannot be increased with feedback.
In particular for discrete additive channels, the output entropy rate is equal
to log,(g) without feedback (symmetry property). It is therefore suspected
that feedback might increase the capacity of discrete additive channels if we

impose power constraints on the input.

3. The result given in Proposition 9 can be easily extended to discrete non-
anticipatory channels with additive asymptotically mean stationary (AMS)
ergodic noise process. Such class of noise processes include time-homogeneous
ergodic Markov chains with arbitrary initial distributions. The proof is iden-
tical to that of Proposition 9, since the non-feedback capacity for the channel
with AMS ergodic additive noise is still given by equation (3.2) [16], [35]. A
random process has the AMS property (or is an AMS process) if its sample
averages converge for a sufficiently large class of measurements (e.g., the indi-
cator functions of all events); furthermore, there exists a stationary measure,
called the “stationary mean” of the process, that has the same sample aver-
ages. A necessary and sufficient condition for a random process to possess

ergodic properties with respect to the class of all bounded measurements is

that it is AMS [15].

Finally, with the result of Proposition 9 in mind, it would be interesting to
investigate discrete non-additive channels with known non-feedback capacities, and

see whether output feedback would increase their capacities.
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3.3 Discrete Channels with Stationary Non-Ergodic
Additive Noise

3.3.1 Capacity with no Feedback

Consider a discrete channel similar to the one considered in Section 3.2 with the
exception that the additive noise process {Z,} to the channel is stationary but
non-ergodic. We know from Proposition 2 in the previous chapter that the result-
ing channel is an averaged channel whose components are discrete channels with
additive stationary ergodic noise.

The non-feedback capacity of this channel with additive non-ergodic noise is

1), [23):
Cnrp = logy(q) —esse sup h(Wy), (3.15)
where
e the noise entropy rate h(Wjy) is given by
AL 1 n
h(Wo) £ lim — Ha(Wy"), (3.16)
with
H W(n) A W(n) nz?y OM () | W(n) n|,n 3.17
(W) == > WU ") QM (") log, W™ (y"a"), (3.17)
anyneAn
where the input block distribution Q™ (z") = qln.

e and the essential supremum is defined by

essgsup f(9) £ inf [r:dG(f(0) <r)=1]. (3.18)
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3.3.2 Capacity with Feedback

As in the previous section, we consider the corresponding problem for the discrete
additive channel with complete output feedback. Similarly, we define a feedback

code with blocklength n and rate R, as a sequence of encoders
fi {1,2,..., 2"} x A1 5 A
fori=1,2,...,n, along with a decoding function
g: A" = {1,2,..., 2"},

The interpretation of the functions is identical to those in Section 3.2.2.

Assuming our additive channel, Y; = X; @ Z; where {Z;} is a stationary non-
ergodic noise process.

Here again, we assume that V is uniformly distributed over {1,2,...,2"%} and
we use the same definitions of achievable rates, probability of decoding error and
capacity as in Section 3.2.2.

Because of the feedback, X™ and Z" are no longer independent; X; depends
causally on Z*~!. We will denote the capacity of the channel with feedback by Crp.

We now get the following result:

Proposition 10 Feedback does not increase the capacity of channels with additive

stationary non-ergodic noise:
Cre = Cnrp = logy(q) — essgsup h(Wp).

Proof 10 The main idea of the proof is the following. The channel is an averaged
channel whose components are stationary channels with additive ergodic noise.

Since feedback does not increase the capacity of each of these components (as
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shown in Section 3.2), it therefore does not increase the capacity of the averaged
channel.

To formalize this reasoning, we will show that the (weak) converse to the chan-
nel coding theorem still holds with feedback. The coding theorem itself obviously
holds since a non-feedback code is a special case of a feedback code, and thus any
rate that can be achieved without feedback, can also be achieved with feedback.

The additive channel is a mixture of channels with additive stationary ergodic

noise, thus by Proposition 9, we obtain that for each of these components:
Oy = Civks-
Now, examining equation (3.15), we have: h(Wj) < essg sup h(W,) a.e. Then for
some small € > 0, there exists components § € © such that:
h(Wg) > essgsup h(Wy) — ¢,
or
logy(q) — h(Wp) < logy(g) — esse sup h(Wp) + e,

or

CI(\?I)F‘B < CnrB + €.

And the probability of such components is § > 0.

By this we mean, that we can find among the stationary components, with
probability § > 0, components with capacity C’](\% g < Cnrp + € for some small
€ > 0;ie.

(SZPT'{QE@Z CI(\?)FB <ONFB+6} > 0.
With feedback encoder f; and message V = k, we define

Aep) = {v e am: filky ) =of) (1=1,2,...,m)},
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where z = (a:,(cl), :z:g), ce :z,(v")) The probability that the feedback codeword for

the message k is 2} is given by Pi(z}) = Zync A(xg)W(")(Y" = y"| X" = z}).
Letting Dy be the decoding set for message k, the probability that the feedback
codeword for the message k is } and a decoding error takes place is given by
Pex(zk) = Tyrea(ep)nps Wm (Y™ = 4| X" = z}), where D§ is the complement of
Dy.

Hence, the probability of decoding error when message k was sent is written as
Pel) = Pr{g(y") £ V|V =k}

S Y WOt oysxr=m). (19

FREAN yne A(2P)NDS

It should be noted here that A(z}) and D§ in the above summation do not depend
on the channel W®)(.). Therefore, the overall average probability of decoding error
is
1 onR
pe(n) =— Z Z Z w® (Y™ =9 X" = 2}). (3.20)
2 k=127 EAn y"GA(mz)ﬂDz

It is evident using Proposition 2, that this probability of error can be expressed as
P™ = / P™ () dG(8). (3.21)
e

where
(n) 1 = () (yn n|yn n
PM(@) = %—RZ Z Z W (Y™ =y X" =2f), (3.22)
k=1g7€A™ yr e A(z])NDE
and P{™(#) is the average probability of decoding error for the channel component
Wy ().
Now, suppose there exists a sequence of feedback codes with blocklength n and

rate R, such that R > Cyrp + 2¢. Thus we have:

PO = [ PO(6) dG(6)
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> P™(6) dG(9). (3.23)

/{oeezcﬁ}BwNM +e}

We now recall the weak converse to the nonfeedback channel coding theorem
for stationary channels with additive ergodic noise: if R > Cnrp + €, for some
small € > 0, then there exists ¥ > 0 , such that Pe(”) > « for sufficiently large n.

To show this, using Fano’s inequality along with the fact that H(V) = nR we have

nR < 1+ P™nR+I(V;Y™)

< 14+ PMnR+I(X™MV); Y™,

where the second inequality follows from the data processing theorem with V —

X" — Y™ forming a Markov chain. Thus

1 1 1
pm > —( _2I(xn Y ——)
¢ T R Rk n( ") n

1 1
> _ _ -
S l(’ l)

R\ ")’

and the result is shown. Note that v 2 }lz (e' - -71;) is independent of the charac-
teristics of the channel.

Therefore, applying the weak converse of the coding theorem for the stationary
channel components with additive ergodic noise, we get that for R > Cypp +2¢ >
C,(\%B + €, there exists some small vy > 0, such that P{™(f) > v, as n — co. As
mentioned above, v is independent of § and depends only on € and R.

Then

lim P™ > Pr{6€©: C{khy < Cnrp+ely=07>0. (3.24)
Therefore the weak converse is proved and Crg = CnFp. [ |
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Observation: It should be noted that for general averaged channels, i.e. non-
additive averaged channels, feedback might increase capacity. For example, if we
consider an averaged channel with a finite number of non-additive discrete memo-
ryless channels (DMC’s), then the non-feedback capacity of the averaged channel

is equal to the capacity of the corresponding compound memoryless channel [1]:

(ac) _ . @), 7D
CNrs max inf QW Wy™). (3.25)
Note that:
(ac) : 0.y
Chre < ;g(g 13(‘0}?(1(@ s We?) (3.26)
= inf OO,
9co

where C®) = maxga I (QW; W) is the non-feedback capacity of each of the
DMC components.

Now, if we use output feedback, the encoder knows the previous received out-
puts, and thus can determine by some statistical means, which one of the DMC
components is being used. In the most pessimistic case, the capacity of this DMC
component may be equal to infgce C®. Thus the capacity with feedback of the

averaged channel will be:
(ac) —; Q)
Crp 5161(1; c\. (3.27)

Therefore C9 > €. This result (equation (3.27)) is equivalent to the result
already derived by Ahlswede for the discrete averaged channel with sender informed
[2].

Finally, in the case for which the inequality in (3.26) holds with the strict
inequality, we obtain that feedback increases capacity: CI(J‘E) > C](\?QB. Refer to

Section 2 in [5] for an example of a finite collection of DMC’s for which (3.26)

holds with the strict inequality.
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3.4 Discrete Channels with Arbitrary Additive

Noise

3.4.1 Capacity with no Feedback

Consider a discrete channel similar to the one considered in Section 3.2 with the
exception that the additive noise process {Z,} to the channel is an arbitrary ran-
dom process (non-stationary, non-ergodic in general). We again use the same
definitions as stated in Section 3.2.1 for channel block code, probability of error,
achievable (or admissible) code rates and operational capacity (the supremum of
all achievable rates). We denote the nonfeedback capacity by Cnyrp.

In [35], Verdd and Han derived a formula for the operational capacity of arbi-
trary single-users channels (not necessarily stationary, ergodic, information stable,
etc.). The rbitrary single-users channels (not necessarily stationary, ergodic, infor-
mation stable, etc.). The (nonfeedback) capacity was shown to equal the supre-
mum, over all input processes, of the input-output inf-information rate defined as

the liminf in probability of the normalized information density:

Cnrg=sup I (X™;Y™), (3.28)
X’ﬂ

where X" = (Xy,...,X,), for n =1,2,..., is the block input vector and

Y" = (Y4,...,Y,) is the corresponding output sequence induced by X™ via the
channel W = Pynjxn : A® = B™ n = 1,2,..., which is an arbitrary sequence
of n-dimensional conditional output distributions from A" to B", where A and B
are the input and output alphabets respectively.

The symbol I (X™;Y™) appearing in (3.28) is the inf-information rate between

52



X™ and Y™ and is defined as the liminf in probability of the sequence of normalized

information densities = ixnyn(X™ Y™), where

PYnIXn (bnlan)

oD (3.29)

ixnyn(a”™; b") = log,

The liminf in probability of a sequence of random variables is defined as fol-
lows: if A, is a sequence of random variables, then its liminf in probability is the
supremum of all reals o for which P(4,, < a) — 0 as n — oo. Similarly, its
limsup in probability is the infimum of all reals S for which P(A,, > ) — 0 as
n — o0. Note that these two quantities are always defined; if they are equal, then
the sequence of random variables converges in probability to a constant (which is
@).

Using equation (3.28) as well as the properties of the inf-information rate de-
rived in [35], we obtain that the inf-information rate in (3.28) is maximized for
equiprobable iid X" (symmetry property), yielding the following expression for the

nonfeedback capacity of our discrete channel with arbitrary additive noise:

Cnrp = logy(q) — H(Z"), (3.30)

where Z" = (Z,,Z,,...,2,) and H(Z") is the sup-entropy rate of the additive
noise process {Z, }, which is defined as the limsup in probability of the normalized

noise entropy density

1 1 1
— logy ————.
n 62 Pzn (Zn)
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3.4.2 Capacity with Feedback

As in the previous section, we consider the corresponding problem for the discrete
additive channel with complete output feedback. Similarly, we use the same defini-
tions as stated in Section 3.2.2 for feedback channel block code, probability of error,
achievability and operational capacity with feedback (supremum of all achievable
feedback code rates). We denote the capacity of the channel with feedback by
Crp.

Note again, that because of the feedback, X™ and Z" are no longer independent;
X; may depend on Z*~!,

We now state the key result (Theorem 4) of [35] which is a new converse ap-
proach based on a simple new lower bound on the error probability of an arbitrary

channel code as a function of its size.

Lemma 7 Let (n, M, €) represent a channel block code with blocklength n, M

codewords and error probability e. Then every (n, M, €) code satisfies

1 1
e > P [; ixnyn (X" Y") < Elog2M —v| — exp(—yn) (3.31)
for every v > 0, where X" places probability mass 1/M on each codeword.
We now obtain the following result:

Proposition 11 Feedback does not increase the capacity of discrete channels with

arbitrary additive noise:

CFB = CNFB - 1Og2(q) - F(Zn) (332)
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Proof 11 We start by noting that the result given in Lemma 7 still holds if we
replace the input vector X™ by the message random variable V where V is uniform
over the set of messages {1,2,...,M}. That is, every (n, M,¢) feedback code

satisfies

1 1
e > P - tyy=(V;Y") < ElogQM - 'y] — exp (—yn) (3.33)

for every v > 0, where V' is uniform over {1,2,..., M}.
We refer to the sequence (n, M, ¢,) of feedback codes with vanishingly small
error probability (i.e., €, — 0 as n — 00) as a reliable feedback code sequence.

Using equation (3.33), we first show that
Crp <supI(V;Y"), (3.34)
Xn

where the supremum is taken over all possible feedback encoding schemes.!

We prove (3.34) by contradiction. Assume that for some p > 0,
Crg =supL(V;Y™) + 3p. (3.35)
X‘n
By definition of capacity, there exists a reliable feedback code sequence with rate
1
R = Elogz M > Cpp — p-. (336)

Now using (3.33) (with v = p) along with (3.35) and (3.36), we obtain that
the error probability of the sequence (n, M, e,) of feedback codes must be lower

bounded by

1

sup L(V;Y") = sup I(V;Y™)= sup I(V;Y™).
Xn Xr=(f1(V),f2(V.Y1) o0, fu (V.Y 1) (f1.f25005F0)
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1
€&n > P Zvyn(v Y™ < s;pl(V; Y™)+p| — exp(—pn). (3.37)

However by definition of I(V';Y™) the probability in the right-hand side of (3.37)
cannot vanish asymptotically; therefore contradicting the fact that ¢, — 0 as

n — co. Thus (3.34) is proved.

Now using the properties of the inf-information rate in [35], we can write

I(v;y") < H(Y™)-HY"V)
< logy(g) - HY"|V). (3-38)

The conditional sup-entropy rate H(Y™|V) is the limsup in probability (ac-

cording to Pyy) of  log, That is H(Y™|V) is the infimum of all reals

1
Pyny (Y7|V)*

1 1 .
B such that Pr {; log, P %) > ﬂ} — 0, as n — 00. But we can write

1
—_—— P(Y" = y™V = ).
p{ 18, ety > } SRV > (¥" =gV =)

n; P Yn=yn|V=y)<2-"8
Yy

Now, letting
fi & filo, g,
and
FERE), L w), o filo, v )] =1, fo -
we have

PY"=y"[V=v)= J[PFi=yly"" =4, V=0

—

@
1l
—

PXi®Zi=y|Y =y V=0uX=f) (339

@
Il
—

|
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Il

PZi=y;® filY" ' =9y V=0X=f) (3.40)

,,
Ml
—_

P(ZZ =y; D fiIYi-l = yi—l’v = IU’Xi = fi,

s
||
_

Zi—l —_ yi—l @ fi—l) (341)

= ﬁ P(Zi=y;® fi|Z7 =y~ @ ) (3.42)
i=1

=P(Z"=y"& ). (3.43)

Here,

e Equation (3.39) follows from the fact that X; = f;(V,Y1,...,Yi_1) due to
feedback.

e Equation (3.40) holds since P(Z+ X =y|X =z) = P(Z =y — z|X = x).

¢ Equation (3.41) follows from the fact that given V and Y*~!, we know all
the previous transmitted letters X7, X5, ..., X;_1 and thus we can recover all

the previous noise letters Z; = Y; — X; (mod q) for j=1,2,...,i—1.

o Equation (3.42) follows from the fact that Z; and (V,Y*"!, X*) are condi-

tionally independent given Z*~!.

Hence,

1 1 n_ ,n n

ym:P(Zr=yngfr)<2-nb

= TPV=y) ¥ Pz=a)

2nP(Zn=zn)<2— 18
= > P(Z"=2").
2 P(Zn=zn)<2-"B

Therefore we obtain that

HY™|V)=H(Z"). (3.44)
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Thus from (3.34), (3.38) and (3.44) we conclude that
CFB S logQ(q) —F(Zn) = CNFB- (345)

But by definition of a feedback code, Crp > Cnrp since a non-feedback code

is a special case of a feedback code. Thus we get:
CFB = CNFB = lOgg(q) —F(Zn) (346)
]

Observation: Note that if the noise process is stationary, then its sup-entropy rate
is equal to the supremum over the entropies of almost every ergodic component of
the stationary noise. If the noise process is stationary ergodic, then its sup-entropy

rate is equal to the entropy rate of the noise [35].

3.5 Discrete Symmetric Channels with Mem-
ory

Most physical channels produce outputs by combining the input process with a
seperate noise process that is independent of the input signal. In light of this
observation, we consider a physically motivated model for a discrete channel given

by Y, = f(Xn, Z,), forn=1,2,3,... where:

e The random variables X,,, Z, and Y, are respectively the input, noise and

output of the channel.

e The function f: X« Z — ), is a mapping from the cartesian product of the
input alphabet X" and the noise alphabet Z into the output alphabet ). We

assume that the sets X', Z and ) are all finite.
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e {X,} 1 {Z,}, ie. the input and noise sequences are independent from each

other.

e The noise process {Z,}r=%° is an arbitrary process (non-stationary non-

ergodic in general).

Note that the channel described above is non-anticipatory (causal and historyless
and thus it only has output memory (which is due to the memory in the noise

process).

Definition 7 Consider the above channel given by Y, = f(X,,Z,), for n =
1,2,3,... We say that such a channel is symmetric if the following conditions

hold:
1. |X| =|2| = ¢; i.e., the input and noise alphabets have same cardinality.

2. Given the input z, the function f(z, .) is one-to-one; i.e. forallz € X, f(z,2) =
f(x,2) = 2z=2%

3. f71(-) exists such that 2 = f~!(x,y) and given the output y, f~'(-,y) is
one-to-one; i.e. for ally € Y, f(z,y) = f~1(&,y) = 2z = .

Realize that condition (2) implies the following

Py, %, (YnlTn) = Pz, (21), (3.47)

where 2, = f~(zp, Yn).
Furthermore, conditions (1) and (3) guarantee that iid uniform input vectors yield

iid uniform output vectors:
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- () s =re
- (i) zre=m = ()

Note also that our definition of symmetric channels is consistent with the definition
of weakly symmetric discrete memoryless channels (DMC’s) as defined in [9]. That
is if we take our noise process {Z,} to be iid, then by (3.47), all the rows of the

square transition probability matrix of the channel will be permutations of each

others. Furthermore, by conditions 1-3, all the columns will sum to 1 since

Y PY=ylX=2z)=) P(Z=2)=1

zeX 2€Z
Thus for symmetric channels (as defined above), I(X™;Y") is maximized when

the input process is equally likely Bernoulli (which yields an equally likely Bernoulli
output process).
Refering to Section 3.2.2 for the definition of feedback, we obtain the following

result:

Proposition 12 Feedback does not increase the capacity of discrete symmetric

channels:

Crp = Cnrp = logy(q) — H(Z"). (3.48)
Proof 12 From (3.28) we have
Cwrp = sup L (X™Y")
But

I(X™%Y™)

(A

H(Y™) - H({Y™X"

A

logy(q) — H(Y™|X™)

logy(q) — H(Z™), (3.49)
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where the equality in (3.49) is due to (3.47).

Finally, (3.49) holds with equality for equiprobable iid X™, and thus
Cnrp =logy(q) — H(Z").

Using Definition 7 and equation (3.47), the proof of (3.48) follows directly from

the proof of Proposition 11. [ |

Example: Multiplicative Channel:

Consider the multiplicative channel with X = 2 = Y = {-1,1}, given by Y¥;, =
Xn* Zy, for n = 1,2,... where “x” represents the multiplication operation and
{Z,} is an arbitrary noise process that is independent of the input process.

It can easily be verified that this channel is symmetric and that
Crp=Cnpp=1 —H(Z"). (3.50)

Observation: It is pertinent to remark that channels with additive noise satisfy

our definition of symmetry, and therefore belong to the class of symmetric channels.

3.6 Conclusion

In this chapter, we considered a discrete additive noise channel with output feed-
back. We showed that the capacity of the channel without feedback equals its
capacity with feedback. This was first shown for a stationary ergodic and non-
ergodic additive noise process. We then generalized the result for discrete channels
with arbitrary additive noise.

We introduced the notion of symmetric channels with memory. These chan-

nels are obtained by combining an input process with an arbitrary noise process
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that is independent of the input. These channels have the property that their
inf-information rate is maximized when the input process is an equally likely iid
process. We showed that feedback does not also increase the capacity of these

channels. Additive noise channels belong to the class of symmetric channels.
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Chapter 4

Capacity-Cost Function of Discrete
Additive Markov Channels with and

without Feedback

4.1 Introduction

We consider a binary communication channel with additive noise. The noise pro-
cess is a stationary mixing Markov process of order M. We assume that the channel
is accompanied by a noiseless, delayless feedback channel with large capacity.

Additive noise channels are symmetric channels; by this we mean that the block
mutual information between input and output vectors of an additive channel is
maximized for equiprobable input blocks (uniform iid input process). Furthermore,
the uniform iid input process yields a uniform iid outpur process. In the previous
chapter, we showed that the capacity of discrete additive channels with feedback,
does not exceed their respective capacity without feedback. Indeed, this result
holds for the class of discrete symmetric channels.

In achieving our result in Chapter 3, we did not introduce any restriction on
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the possible input sequences of the channels. However, in many communication
channels, not every combination of the elements of the input alphabet can be used
for transmission; this is due to physical restrictions that may arise in the channels.
We therefore incorporate average cost constraints on the input sequences of the
Markov additive channel and analyze its capacity-cost function with and without
feedback.

Since this additive channel with memory becomes non-symmetric under input
constraints, closed form expressions for its nonfeedback and feedback capacity-cost
functions do not exist. This lead us to establish bounds to the nonfeedback and
feedback capacity-cost functions — denoted by Cnrp(8) and Crp(3) respectively
—in order to determine whether the introduction of output feedback brings about
any potential increase in the capacity-cost function of the channel.

We first derive a tight upper bound to Cyrp() which holds for all discrete
channels with stationary mixing additive noise. The bound is the counterpart of
the Wyner-Ziv lower bound to the rate-distortion function of stationary ergodic
sources; this illustrates the striking duality that exists between the rate-distortion
function and the capacity-cost function. A lower bound to Cnyrp(f) is also given.

We then study the capacity-cost function of the channel with feedback. An
encoding feedback strategy is developed for the case where the M’th order Markov
noise process is assumed to be generated by the finite memory conation urn scheme
of Polya. It consists of adding at each instant of time, the maximum a posteriori
(MAP) estimate of the current noise letter to the unencoded input letters repre-
senting the message to be sent. This results in a lower bound to Cpp(f). An upper
bound to Crpg(0) is also derived, by proving the converse to the coding theorem.

The lower bound to Cpg(83) and the upper bound to Cnrp(8) are compared
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numerically, using Blahut’s algorithm for the computation of the capacity-cost
function. The results, computed assuming power cost constraints on the input,
demonstrate that the lower bound to Crg(8) exceeds the upper bound to Cnrp(6)
for certain parameters of the channel.

The rest of this chapter is organized as follows. In Section 4.2, we define the
capacity-cost functions of stationary ergodic channels and present its properties.
The analysis of the nonfeedback and feedback capacity-cost functions of the Markov
channel is given in Section 4.3. In Section 4.4, numerical results indicating that

Crs(B) > Cnre(0) are provided. Finally, conclusions are stated in Section 4.5.

4.2 Preliminaries: The Capacity-Cost Function

Consider a discrete channel with finite input alphabet X, finite output alphabet Y
and n-fold transition probability W™ (y;, v, ..., yn|T1, %2, ..., Zn), ; € X, ¥; € Y,
1=1,2,...,n. In general, the use of the channel is not free; we associate with each
input letter ¢ a nonnegative number b(z), that we call the “cost” of z. The function
b(-) is called the cost function. We assume that the cost function is “bounded”;
i.e., there exists bmax such that b(x) < by for all x € X. If we use the channel
n consecutive times, i.e., we send an input vector 2" = (z1,2s,...,%,), the cost

associated with this input vector is “additive”; i.e.,

n

i=1

For an input process {X;}, with block input distribution P (X" = z") =
PM(X) =21, X0 = 23,...,Xpn = xyn), the average cost for sending X™ is defined
by

EBX™)] =X P™(a") b(z") =3 E b(X:)]-
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Definition 8 An n-dimensional input random vector X" = (Xy, Xs, ..., X,,) that
satisfies

ZEb(X")] < 5

is called a (-admissible input vector. We denote the set of n-dimensional (-

admissible input distributions by 7,,(3):

~Eb(X™) <}

m(8) = { PP(x™)
n

We recall that a discrete channel is stationary if for every stationary input
process {X;}2,, the induced input-output process {(X;, ¥;)}2, is stationary. Fur-
thermore, a discrete channel is ergodic if for every ergodic input process {X;}2;,
the induced input-output process {(X;, ¥i)}{2, is ergodic [18].

A discrete channel with stationary mixing (or weakly mixing) additive noise is
stationary and ergodic [16, 25]. Furthermore, it has no anticipation and no input
memory. Recall that a channel is said to have no anticipation (i.e., causal) if for
a given input and a given input-output history, its current output is independent
of future inputs. Furthermore, a channel is said to have no input memory (i.e.,
historyless) if its current output is independent of previous inputs. Refer to [16, 18]

for more rigorous definitions of causal and historyless channels.
Definition 9 A channel block code of length n over X is a subset

C = {cy, c@), - (e}

of X" where each c(;) is an n-tuple. The rate of the codeis R = %logz IC|. The code

is f-admissible if b(c{‘i)) <n@fori=1,2,...,|C|. If the encoder wants to transmit
message W where W is uniform over {1,2,...,|C|}, he sends the codeword cqw).

At the channel output, the decoder receives Y™ and chooses as estimate of the
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message W = g(¥Y™), where g(-) is a decoding rule. The (average) probability of
decoding error is then P(™ = Pr{g(Y™) # W}.

The capacity-cost function C(8) is the supremum of all rates R for which there
exist sequences of S-admissible block codes with vanishing probability of error as n
grows to infinity (achievable codes). In other words, C(/3) is the maximum amount
of information that can be transmitted reliably over the channel, if the channel
must be used in such a way that the average cost is < §. If b(x) = 0 for every

letter x € X, then C(0) is just the channel capacity C' as we know it.

It is known that under regularity conditions [16] (e.g., for a discrete stationary
ergodic channel with no input memory and no anticipation and with a bounded
and additive cost function ! ), the formulas of C(8) and C are respectively given

by:

C(B) =sup Ca(f) = lim, CalB), (@1)

where C,,(0) is the n’th capacity-cost function given by

A 1
C, = - I(X™Yn), 4.2
) P‘")(I;l"%)érn(ﬂ) n ( ) (42)
and
C =sup C, = lim C,, (4.3)
n n—o0
where
A 1 n n
Cn= max — I(X™Y"), (4.4)
P(n)(X") n

1This follows from the dual result on the distortion rate function D(R) of stationary ergodic

sources (cf. next remark or p. 61 in [17] and Theorem 10.6 in [16]).
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where I(X™;Y™) is the block mutual information between the input vector X"
and the output vector Y. Indeed, the above formulas for capacity hold for a
larger class of channels, the class of information stable channels [25, 35]. A general
formula for the capacity of arbitrary channels (not necessarily information stable)

was recently derived in [35].

Remark: Note that if the channel is stationary ergodic, and the cost function is
additive and bounded, then there exists a stationary ergodic input process that
achieves C(3). This follows from the dual result on the distortion rate function
D(R) of stationary ergodic sources, which states that for a stationary ergodic
source with additive and bounded distortion measure, there exists a stationary
ergodic input-output process Pxayn that achieves D(R) such that the induced
marginal Px» is the source distribution [16, 17]. Therefore, the maximization in
(4.2) can be taken with respect to n-dimensional S-admissible vector distributions

p™(z™) of stationary ergodic input processes.

We now state the properties of C(8) [22]. We first define respectively Bpin, 5%

max
and fOmee by

ﬂmz’n = géli'l b(.’IJ),

B = min {lE [B(X™)] : lI(X"; Y™ = Cn} ,
n n
and

Bmas 2 952, = min { Jimy B b(X")] : lim TI(X"¥") = O} .

n—o0 n,

From the definition of §,,;, above, we can see that %E [b(X™)] > Bmin and so C(B)

is defined only for § > Bn.
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Remark: For a discrete binary channel with additive noise {Z,} and power cost
constraints on the input — i.e. b(z) = 2% — we get that fpim = 0, Bnes = 1/2,
C(Bmin) = 0 and C(Bnaz) = C =1 — H(Zy) where H(Z,,) is entropy rate of the

noise.

Lemma 8 The n’th capacity-cost function Cy,(3) defined in (4.2) is concave and
strictly increasing in B for B, < B8 < B and is equal to C, for 8 > &),

Therefore, the capacity-cost function C(8) given by (4.1) is concave and strictly

increasing in B for Brin < B < Bmas, and is equal to C for 8 > B4

Observation: We close this section by reflecting upon the words of Shannon
concerning the duality between a source and a channel [31]: “ There is a curious and
provocative duality between the properties of a source with a distortion measure
and those of a channel. This duality is enhanced if we consider channels in which
there is a cost associated with the different input letters, and it is desired to find
the capacity subject to the constraint that the expected cost not exceed a certain
quantity [...] The solution of this problem leads to a capacity cost function for
the channel [...], this function is concave downward [...] In a somewhat dual way,
evaluating the rate distortion function R(D) for a source amounts, mathematically,
to minimizing a mutual information [...] with a linear inequality constraint [...]
The solution leads to a function R(D) which is convex downward [...] This duality
can be pursued further and is related to a duality between past and future and the
notions of control and knowledge. Thus, we may have knowledge of the past but

cannot control it; we may control the future but not have knowledge of it.”
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4.3 Discrete Channels with Binary Additive Markov

Noise

4.3.1 Capacity-Cost Function with no Feedback

We consider a discrete channel with memory, with common input, noise and output
binary alphabet and described by the following equation: Y, = X, @ Z,, for

n=12,3,... where:
e @ represents the addition operation modulo 2.

e The random variables X,,, Z, and Y,, are respectively the input, noise and

output of the channel.

e {X,} 1 {Z,}, i.e. the input and noise sequences are independent from each

other.
e The noise process {Z,}32, is stationary and mixing.

We now turn to the analysis of the capacity-cost function (with no feedback)
of this channel. We denote it by Cypp(f). The channel is non-symmetric for
B < Bmaz = 1/2. Thus the formula of Cnxrp(f8) given by (4.1) will not have a
closed form. We will then try to derive an upper bound to Cyrp(5).

In [36], Wyner and Ziv derived a lower bound to the (operational) rate-distortion

function (R(D)) of stationary ergodic sources:

R(D) Z RI(D) — M1,

where
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e R;(D) is the rate-distortion function of an “associated” memoryless source
with distribution equal to the marginal distribution P(V() of the ergodic

source.

° L 2 H(X1) — h(X), is the amount of memory in the source. H(X;) is the
entropy of the associated memoryless source with distribution P()(.) and

h(X) is the entropy rate of the original ergodic source.

This lower bound was later tightened by Berger [3]:

R(D) > Ru(D) — pn = R1(D) — pu, (4.5)
where R, (D) is the n’th rate-distortion function of the source, R, (D) is as defined
above and p, = LH(X") — b(X).

In light of the striking duality that exists between R(D) and C(f), as remarked

previously by Shannon [31], we derive an equivalent upper bound to the nonfeed-

back capacity-cost function of a discrete additive channel.

Proposition 13 Consider a discrete channel with additive stationary noise {Z,}.

Let W™ (.) denote the n-fold probability distribution function of the noise process.
Then for N =kn, k,n=1,2,...,

Cn(B) < Ca(B) + Anny < Ci(B) + Ay, (4.6)
where
e C,(P) is the n-fold capacity-cost function of the channel as defined in (4.2).

e C1(B) is the capacity-cost function of the associated discrete memoryless
channel (DMC) with iid additive noise process whose distribution is equal to

the marginal distribution W(l)(-) of the ergodic noise process.
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o Any 2 (1/n)H(Z™) — (1/N)H(ZV) with Zi = (21, Zs, ..., 2;), i = n or N,
and Ay = H(Z,) — (1/N)H(Z"), where H(Z;) is the entropy of the iid

noise process of the associated DMC.

Proof 13 The proof uses a dual generalization of Wyner and Ziv’s proof of the
lower bound to the rate-distortion function. We first need to use the following

expression

k
Where XN = (X(nl), X(Z)’ e ’X(k)) and Y = (Y(l)’ }/(721), caey Y'(?’l:)) Wlth
X0y = (X1,6), Xo,6)5 - - > Xny(3)),

and
Y = (Y0, Ya,00, - - > Yo 0)-
Proving the above inequality goes as follows:

k k
S (X0 ) + Ny = 10X YY) = S [H(Y) - HOG3IX)] + S H(Z)
—H(ZN) - HYN) + H(YN|XN)
k
= Y [H(YE) - H(Z})] + kH(Z,)

=1
~H(Z") - H(YY) + H(Z")
k
= 2_?1 H(YE) - HY™)
k k
= Y HEE) - X HEYRIYViy, -, V)
=1 i=1
k k

> X;H Yi) = 2 H(YR)
i=1

= 0,

where the third equality follows from the stationarity of the noise and the last

inequality follows from the fact that conditioning decreases entropy.
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We now proceed to prove equation (4.6). Let P™)(X) € 7x(8) where i (0) is
described in Definition 1. For this input distribution, we denote §; 2 i1E [b(X 6))]
fori =1,2,...,k; thus (1/k) =5, B < 8. By (4.7), we obtain with this PV (XV):

1 N.yN 1 ¢ - :
NI(X ;Y )SN ;I(XZ',-),Y(?)HAW,
but +7(X7); V) < Co(B) for i =1,2,..., k. Thus
| SRSV .
5 1Y) < = 3 Cal) + A

i=1
By concavity of Cy,(-), we have (1/k) 5, C,(8) < C, ((l/k) K ﬂi) and since
Cn(+) is strictly increasing we have that C), ((1 /Ky Sk ﬁi) < Cp(B). Therefore

1

N I(XN;YN) < Cn(ﬁ) +AnN7

or

1

I XN'YN = < Cn An )
P(N)()r(nzva))ém(ﬁ) N (X, YY) =Cn(B) < Cu(B) + Apn

Thus the first inequality in (4.6) is proved. To prove the second inequality in (4.6),
we need to show that Cn(8) < Ci(B) + A, or Cx(8) < Ci(B) + Ayk. This is

shown using the first inequality in (4.6) and letting n = 1. [ |

Using (4.6) and (4.1), we obtain the following tight upper bound on Cnrg(8).

Corollary Consider the channel described in Proposition 1, with the assumption

that the noise process is stationary mixing. Then

Cnre(B8) < Cn(B) + My, < CL(B) + My, (4.8)
where

e Cn(P) and C1(B) are as defined in Proposition 13.
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o My £ Apoo = (1/n)H(Z™) — h(Zos), and My = A1oo = H(Z1) — h(Zso) is the

amount of memory in the noise process.

The bound given above is asymptotically tight with n.

A Lower Bound to Cngs(8):
If we take the inputs to be iid, we can apply Mrs. Gerber’s Lemma in [29] to
obtain a lower bound on Cypp(83). Let P(X; =1) 2 & be the marginal distribution

of an iid input process such that E[b(X;)] = 0, then

Cra(B) 2 hy (&% hy' (V) — h(Zeo),

where

A

a*xb2a(l=b)+(1—a)b & 2 min{a, 1 — a},

A £ min{h(Zs), 1 — M(Ze)},

and hy(-) is binary entropy function.

4.3.2 Capacity-Cost Function with Feedback

We now consider the binary additive channel with output feedback. By this we
mean that there exists a “return channel” from the receiver to the transmitter;
we assume this return channel is noiseless, delayless, and has large capacity. The
receiver uses the return channel to inform the transmitter what letters were actually
received; these letters are received at the transmitter before the next letter is
transmitted, and therefore can be used in choosing the next transmitted letter.
We look at a particular class of additive noise channels; the class of channels
with additive stationary mixing homogeneous Markov noise of order M. We as-

sume that the Markov noise process is generated by the finite-memory contagion
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urn scheme derived in Chapter 2. Its transition probability is

p+ (671,—1 +ep—o+-- ""‘e'n—M)(S
1+ M6

=P(Zn = 1|Zn—M =€n-M;---Zn-1= en—l)a

P(Zn = 1|Zl = €1,.. -,Zn—l = Cn_1)=

where e; =0or 1, fori =1,2,...,n — 1 and where n > M + 1. We assume that
p<1/2and § > 0. Note that if § = 0, the noise process becomes éid.
For blocklength n < M, the block probability of the process is
plp+98)---(p+(d-1)0)o(c+8)--- (o + (n—d—1)d)
(T+60)(1+20) - (14 (n—1)d)

I() (¢ +d) T($ +n—d)
M) TE) TE+m

Pr(Z"=¢") =

where o =1—p,d=e; +ey+ -+ e, and ['(:) is the gamma function, I'(z) =
foC t® e tdt for z > 0.
For n > M + 1, we have

n
Pr(Z"=e") = H P(Zize,,; | Zi—l =ei_1,..,,Zi_M =ei_M)

i=1

_ L ] lp+81_16]ei [U+(M—3i_l)6]1—ei

jmnry | 1+ M 1+ M§ ’
where
155 (o + 16) T * (o + 56)
L= 5
5 (1 + €5)
k)=61+"'+6M,
and

8i—1 = €j—1+ -+ €i_M.

Remark: For M = 1, the Markov process has a marginal distribution given by

wWW(Z,=1)=p=1-W0(Z, =0),
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and a transition probability matrix given by

b= (7 )
= Wijl — 5

o pid
1+0  1+6

where p;; £ Pr(Z, = j|Z,—y = i). We note that the transition matrix of this
Markov model (for M = 1) is general; it can represent all binary 1’st order Markov
chains with positive? transition matrix.

As in the previous chapter, we define a feedback code with blocklength n and

rate R as a sequence of encoders
fi:{1,2,....2"} x Yy 5 &
fori=1,2,...,n, along with a decoding function
g: Y = {1,2,...,2"E}.

To convey message W € {1,2,...,2"F}  the user sends the codeword X" =
(X1, Xo, ..., Xn) where X; = fi(W,Y1,Ys,...,Yi1); 4 = 1,2,...,n. The decoder
receives Y = (Y1,Ys,...,Y,) and estimates the message to be g(Y"). A decoder
error occurs if g(Y") # W. We assume that W is uniformly distributed over
{1,2,...,2"%}.

The probability of decoding error is thus given by:

onR

1
PM = o3 Pr{g(y") # W|W =k}
k=1

= Pr{g(Y") # W|W = k}.

Since we are studying the capacity-cost function, we require an average cost con-

straint on the input code letters. We say that a feedback rate R is achievable if

2% A pogitive trangition matrix is a matrix whose entries are all strictly positive.
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there exists a sequence of f-admissible (as defined in Definition 2) feedback codes

with blocklength n and rate R such that
lim P™ =0.
n—o0

The supremum of all achievable feedback code rates is then the capacity-cost func-
tion with feedback of the channel that we denote by Crg(3).

The channel being additive, we have Y; = X; ® Z; where {Z;} is the binary
Markov noise process described earlier. Note, however, that because of the feed-
back, X" and Z" are no longer independent; X; may depend recursively on Z*1.

Finding a closed form for Crg(0) is a tedious if not a formidable task. We will

then derive lower and upper bounds to Crp(03).

A. MAP Estimation of Current Noise Letter at the Encoder

With output feedback, the encoder is informed at time instant ¢ about all the
previously received output symbols Y7, Y5, ..., Y;_;; and thus knows all the previous
channel noise samples Z1, Zy, ..., Z;_1, 1 =1,2,... (we assume that Zo = 0 almost
surely). Given this information, the encoder can then estimate the current noise
sample Z; in the channel. Let Z; represent the maximum a posteriori estimate
(MAP) of Z; given (Zy,2,...,2Z;_1). Since the noise process is Markovian of
order M, the encoder needs only the last M noise samples. The MAP estimate Z;
for i > M is *:

5 { 1, fPr(Zi=1Zicx=e€—1,Zi2a=¢€i—9,..., Zipg = €;_pr) > 1/2;

"o, i Pr(Zi=0|Zii1 = €11, i = €icay -y Zicrs = €ing) > 1/2;

wheree;jisOor 1 forj=¢i—M,i—M+1,...,1—1.

3for i < M, we get that Z; is the same as below, with the exception of replacing M by i — 1.
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or

Z {1, if6¢_1+6¢_2+...+6,’_M>-1:256LMJ;
i:

0, otherwise.

To guarantee that the MAP estimate Z; is not a degenerate constant (zero), we

need to require that (1 — 2p+ M4§)/26 < M; i.e.,
M§>1-2p. (4.9)

Thus

A

Zi= f(Zi1,Zia,. .., Zi_y) 21 {Zi—l +Zio+ ...+ Ziy >

I

1—-2p+ M6
26

where 1{-} is the indicator function. For M = 1, we obtain that the MAP estimate

of the current noise sample is nonless but the previous noise sample:

ZA,,; == Zi—l- (410)

B. A Lower Bound to Cpg(B)
We obtain a lower bound to the capacity-cost function of our binary Markov

channel with feedback. We first state the following definition [8, 9].

Definition 10 Let (V",Y™") be jointly distributed with distribution p(v",y"),
where V" = (W}, V5,...,V,) and Y™ = (Y},Y5,...,Y,). Let € > 0, then the set

A™ of jointly e-typical (V™,Y™) sequences is defined by

1
AW = {0y eV x| logyplo”) — ()| < 6

'—n log, p(y )—nH(Y ) <e " logy p(v", y™) nH(V , Y™

)

where p(v") and p(y") are the respective n-fold marginal distributions derived from

p(v™, y"™).
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We now propose the following feedback encoding strategy. Since the encoder
knows the previous noise samples, he can then find the MAP estimate Z; of the
current noise sample. Thus the encoder can try to fight the noise Z; in the channel
by adding the MAP estimate Z; to the unencoded input letters. That is if V(W)
is a n-tuple vector representing message W € {1,2,...,2"%}, then the encoder
sends the feedback codeword X™(W) = (X, Xa,...,X,) where X; = V; @ Z;;
1 =1,2,...,n. The output of the channel is then Y; = X; ® Z; = V; @ U; where

U, = Z, @ Z;. (4.11)

Note that since the noise process {Z;} is stationary mixing and U; is a time-
invariant function of {Z;}, the process {U;} is also stationary and mixing [25].
Realize that the encoder transmits the feedback codeword X™ and thus the

B-admissibility condition should be satisfied by the components of X™. We define
C*(0) by

Ib _ by _ 1 1
where
1
Ch(3) = — (V™ Y™, 4.13
w(B) = o o7 1 ) (4.13)
where

7a(8) = {PW(V") : (4.14)

S|
&
=
S
@
N
VAN
o)
——

and Y; = V; ® U; where the process {U;} is defined by (11).

Remark: We can easily observe from expressions (4.12-4.14) that C*(3) is non-

less but the nonfeedback capacity-cost function of a binary channel with additive
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stationary ergodic noise given by {U;}, with the particularity that the average cost
requirement is not imposed on the input letters V; but on the letters obtained from
Vi® Z,.

This leads us to the following result:

Proposition 14 (Achievability of C'*(3)) Consider the binary Markov additive-
noise channel (described above) with feedback. Then for R < C%() there exists
a sequence of B-admissible feedback codes (i.e., satisfying the average cost con-

straint) with blocklength n and rate R such that P — 0 as n — oc.

Proof 14 The proof uses random coding. Let V"(1), V*(2),..., V*(2") be inde-
pendent identically distributed n-vectors, each drawn according to a distribution
p(v") that achieves C®(8), where p(v") is a n-fold distribution of a stationary
ergodic process.

Transmission: To send message W, where W is uniform over {1,2,..., 2"}, the
transmitter sends X®(W) = (X1, Xs,..., Xn) where X; =V, @ Zii=1,2,...,n
Note that {V;} L {Z;} and thus {V;} L {U;}. We assume that Mé > 1 —2p
in order to have a non-trivial Z;. Note that the feedback codewords X™(W) are
governed by a stationary ergodic distribution since V(W) are selected according
to a stationary ergodic p(v™) (that achieves C®*(8)) and {Z;} is stationary mixing
[16].

Decoding: The receiver receives Y" = (Y1, Ya,...,Y,) where
Y=X,0Z=VieoZaZ=V,®U; i=1,2,...,n.

The receiver declares W € {1,2,...,2"R} was sent if (V"(W), Y") is the only

jointly e-typical pair.
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Error: An error is made if there is no e-typical (V"(W), Y") pair, more than
one such pair or W # W. Furthermore, an error is made if the S-admissibility
constraint is violated.

We investigate the probability of error P®™). We can assume without loss of

generality that W = 1 was sent. We define the events

5= {3 000 > ),
and
E, = {(V"(z‘),Y") € Agn)}; i=1,2,...,2"F
Let Ef be the complement of E;. Then
P™ = Pr(W#1W=1)

= Pr(EyUESUE,UE;U---U Epr|W = 1)

an
< Pr(Ey) + Pr(E{lW =1)+>_ Pr(E|W =1)
=2
= Pr(Ey) + Pr(ES|W = 1) + 2"2Pr(Bo|W =1). (4.15)

Since the codewords are drawn according to a stationary ergodic distribution
that achieves C*((), then by the law of large numbers we get that Pr(E,) < ¢ for

n sufficiently large. We now state the following lemma [9, 22].

Lemma 9 (Joint AEP) Let

Al

denote the cardinality of the set Ag").
Then

Agn) < 2n[ﬁH(V",Y")+e]. (4.16)

Furthermore, if the joint process {(V;, Y,)}22, is stationary ergodic, then there

exists ng, such that for all n > ny,

Pr((v®,Y") e AM) >1—e (4.17)
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Now, consider V"(1) as defined above and Y™ = (Y3,Y5,...,Y,,) such that
Y; =Vi(1) @ U, where {V;} L {U;}, i=1,2,...,n, and the additive noise process
{U;} is stationary mixing. Therefore the joint process {(V,(1),Y™)} is stationary
ergodic [16, 25]. By (4.17) in the above lemma, we thus get that Pr(E¢|W = 1) =
Pr ((V"(l), Y") ¢ Agn)) < ¢ for n sufficiently large.

Now,

PrBW=1)= 3  p")p(y"),
(onym)eal™
since by our code generation V"(1) and V(i) are independent for i # 1; thus Y™

and V" (i) are independent, ¢ # 1.

Pr(BW=1) < > o~n[2H(V™)—¢] g-n[+H(¥Y™)~¢]
(wn ym)eal™
= lA(")| gn[~EH(V™) =L H(Y™)+2¢]

< 2n[—%H(V")—%H(Y")+%H(V",Y")+Se]
2—n[%H(Y")—-};H(Y"[V”)+3€]

< 2—n[C’b(ﬂ)+35],

where the first inequality follows from Definition 10 and the second inequality

above follows from (4.16).
Therefore (4.15) yields

Pe(") < 2+ 9-n[C"(B)-R+3¢] < 3e
if n is sufficiently large and R < C®(8); and thus C*®() is achievable. ]

Observation: Realize that the main idea in proving the achievability of C¥(8)
consists of transforming the problem of our original additive Markov channel with

feedback into the problem of a new additive channel with no feedback.
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C. An Upper Bound to Cpg(f)

We now derive an upper bound to the capacity-cost function with feedback.

Proposition 15 Any f-admissible sequence of feedback codes with blocklength

n and rate R such that P{" — 0 as n — oo, must have R < C**(3), where

1
ub T - W, n
() = lim, P (Xmera(f) 1 1w, ¥7), (418)

where the maximization is taken over all f-admissible feedback codewords X" of
the form X; = X;(W,Y* ) fori=1,2,...,n. W € {1,2,...,2"R} is the message,
and the output is described by Y; = X;(W,Y* )@ Z;; i =1,2,...,n.

Proof 15 Let R be the rate of any §-admissible feedback code with blocklength
n and vanishing probability of error (i.e., P{® —s 0 as n — c0).
Since W is uniformly distributed over {1,2,...,2"%} we have that H(W) =

nR. Furthermore, H(W) = H(W|Y™) + I(W;Y™). Now by Fano’s inequality,

HWIY™) < ho(PM) + P logy(2*F — 1)
< 14 P™log,(2"F)

= 14 P™nR

since hy(P{™) < 1, where hy(-) is the binary entropy function.
[

We then obtain

nR = H(W)

= HW|Y™) + I(W;Y™)

A

1+ PM™pR 4+ I(W; Y™

1
1+ P™MpR+  max = I(W,Y").

PUY(X™)em(B) N

(A
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Dividing both sides by n and taking n to infinity, we get:

. 1 n\ __ vub
R IW.Y7) =C"(0).

Observation: Note that since the channel is additive, we can show that I(W,Y™) =
H(Y") — H(Z") (cf. Chapter 3). By comparing Propositions 14 and 15, we can
assert that Cpg(8) = C®(B8) = C*(0) if it can be shown that the feedback encod-
ing scheme we propose in Proposition 14 is indeed the optimal encoding scheme;

a task we do not address at the present.

4.4 Numerical Results

We have thus far shown derived an upper bound on the capacity-cost function with

no feedback:
Cnre(B8) < Co(B) + M,.

This bound becomes tight as n — oo. Furthermore we have derived a lower and

an upper bound to the capacity-cost function with feedback

C*(B) < Crr(B) < C*(8),

where C*() and C**(8) are given respectively by (4.12) and (4.18).

We are interested in determining whether feedback increases the capacity-cost
function of our channel. Elucidating this statement would involve comparing
C®(B8) with C,(8) + M,. But C%(8) = sup, C®(B) where C?(8) is given by
(4.13). Thus, in order to claim that feedback helps, it suffices to show that C2(3)

is greater than C,(8) + M,,. We can write

1 ~ 1
b _ _ ny _ n
Cy(B) = R HY™) - — H(Z"),
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where Y;=V,® Z,;® Z;_, i = 1,2,...,n. Similarly we have

1 1
C, M, = - HY")—- - H(Z"
wB)+ My = max oo HO)— o H(ZY),
where Y, =V, ® Z;, 1 =1,2,...,n. In other words we need to compare
1 ~ ) 1
max — H(Y™) with max — H(Y™).
PMY(Vn)eF, (B) M PM)(Vn)er,(8) T

The comparaison above seems difficult analytically, if not impossible. Fur-
thermore, it is very probable that the feedback quantity above is bigger than the
nonfeedback quantity only for certain values of the channel parameters ¢ and p
(We already know show that for very large § and b(z) = 22, feedback does not
help).

Blahut’s Algorithm: We investigate numerically whether C%(3) is greater than
Cn(B8) + M,. To do this we use Blahut’s algorithm for the computation of the
capacity-cost function [6].

We will hereafter assume that the cost function b(-) is given by b(z) = 2?
—i.e. we will impose power constraints on the channel input letters. C®(8) and
C,.(B) are in fact the capacity-cost functions of discrete memoryless channels whose
input and output alphabets are the sets of words of length n and whose transition
probabilities are given by the n-fold probability distributions of the process {U;}
and the Markov process {Z;} respectively.

Using the algorithm of Theorem 10 in [6], we calculate C¥(3) and Cs(8) for
different values of M, § and p that satisfy condition (4.9). Since the noise is a
Markov process, M, can be expressed analytically in terms of n, § and p using the

results in Chapter 2; thus Cys(f) + Ms is obtained.

Tighter results can be achieved for n > 8; however, the tightness improves
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as 1/n while the computation complexity increases exponentially. The results,
computed to an accuracy of 10~* bits are plotted in Figures 4.1 — 4.4.
The figures* indicate to us that output feedback does increase the capacity-cost

function of our binary Markov additive channel. We define
Ag = CL(B) — (Cs(B) + M)  bits per channel use,

and
Cs(B) + Mg

We therefore obtain that feedback increases the capacity-cost function by at least

Gs x 100.

Ag bits per channel use, which results in a gain of at least Gg %. Values of Ag
and Gy are computed in Table 1.1 for some values of M, 8, p and §. For M = 2,
d = 0.5, p=0.05 and 8 = 0.35, we get a feedback gain of at least 0.0080 bits,
yielding an improvement > 1.11%. For M =2, § = 0.5, p = 0.1 and 8 = 0.35,
Ag = 0.0091 and G5 = 1.59%. Note that for our results above we used the power
cost function b(x) = z?; thus other numerical results, can be obtained for different
cost functions.

Comment: In Chapter 3, we show that feedback does not increase the capacity of
additive channels. In that problem, we do not require constraints on the input, and
the additive channels are symmetric. The symmetry in these channels, maximizes
the output entropy rate with no feedback: lim,,_, % maxx» H(Y") = 1; assuming
binary channels. Thus this quantity cannot be increased with feedback; this leads
to a nonincrease in capacity since the noise entropy rate is the same with and
without feedback. However, if we impose constraints on the input, the output

entropy rate with no feedback is < 1; and hence can be increased with feedback.

*Note that C is zero for 8 < P(Z; = 1), which is p(p+6)/(1+6) for M = 2. This is because

the average power in X, cannot fall below the average power in Z;.
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4.5 Conclusion

In this chapter, we analyzed a binary channel with additive stationary mixing
Markov noise of order M. We introduced average cost constraints on the input
sequences of the additive channel, rendering it non-symmetric. We examined the
effect of output feedback on the capacity-cost function of the channel.

A tight upper bound to the capacity-cost function of the channel with no feed-
back (Cnrp(f)) was established. Furthermore, a lower bound to the capacity-cost
function with feedback (Crp(0)) was obtained. The converse to the coding theo-
rem for the channel with feedback was proven; thus providing an upper bound to
Cra(f). With the help of Blahut’s algorithm for the computation of the capacity-
cost function, we showed that Crp(f) > Cnrp(0) for certain channel parameters.

The results of this chapter can easily be extended to g-ary alphabet (¢ > 2)
additive Markov channels. One of the questions that remain unsolved, would be
to determine whether the upper and lower bounds to Cpp(83) are equal. If this
statement is true, it would imply that the encoding feedback method we proposed
in Section 4.3.2, is indeed the optimal encoding method for this channel.

Further studies may include the investigation of the effect of feedback on the
capacity-cost function of discrete channels with additive stationary ergodic (non-
Markovian in general) noise. In that case, if we use the encoding technique of
Section 4.3.2, the MAP estimate of the noise, is a time-variant function of the
noise process; resulting in a non-ergodic new noise process {U;}.

Other research directions, may involve the study of the capacity of non-symmetric
channels with feedback, like the binary multiplicative channel (the “AND” chan-

nel) or the real adder channel. It is conjectured that feedback do cause an increase

in capacity for such channels.
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M I} ) P Cg(ﬂ) + Mg Céb(ﬂ) Ag Gain Gg

2 10.38]1.00]0.05 0.7847 0.7892 | 0.0045 | 0.57 %

2 1040 1.00 | 0.05 0.7951 0.7999 | 0.0048 | 0.60 %

2 1042 1.00 [ 0.05 0.8080 0.8040 | 0.0040 | 0.50 %

2 1030 0.50 | 0.05 0.6774 0.6840 | 0.0066 | 0.97 %

2 10.35]0.50 | 0.05 0.7198 0.7278 [ 0.0080 | 1.11 %

2 1040 0.50 | 0.05 0.7495 0.7564 | 0.0069 | 0.92 %

2 10.30]0.50 ] 0.10 0.5387 0.5446 | 0.0059 | 1.10 %

2 10.35]0.50 | 0.10 0.5719 0.5810 | 0.0091 | 1.59 %

2 10.40 | 0.50 | 0.10 0.5953 0.6031 | 0.0078 | 1.31%

Table 4.1: Numerical results of feedback lower bound Cg(f) and non-feedback
upper bound Cs(8) + Mg for the M’th order Markov binary channel.
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Figure 4.1: Markov binary channel of order M = 2 with § = 0.5 and p = 0.05.
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Figure 4.2: Enlargement of Figure 1 for 0.3 < 3 < 0.45.
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Figure 4.3: Markov binary channel of order M = 2 with § = 0.5 and p = 0.10.
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Figure 4.4: Enlargement of Figure 3 for 0.3 < § < 0.45.
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Chapter 5

Conclusions

In this dissertation, we obtained new results on the analysis of discrete communi-
cation channels with output memory.

First, we considered a contagion communication channel. A contagion channel
is a system in which noise propagates in a way similar to the spread of an infectious
disease through a population; each “unfavorable” event (i.e., an error) increases the
probability of future unfavorable events. Our motivation was twofold: First, it has
been shown that defects in silicon have distributions generated by such contagious
processes. Second - and more generally - most real-world communication channels,
including the digital cellular channel, have memory — i.e., the effect of noise lingers
over many transmitted symbols. A contagion-based model offers an interesting
and less complex alternative to the Gilbert-Elliott burst model and others. The
model we set forth is the so-called Polya-contagion channel - a discrete binary
communication channel with additive errors modeled according to the famous urn
scheme of George Polya for the spread of contagion. The resulting channel is
stationary but not ergodic, and it has many interesting properties. A maximum

likelihood (ML) decoding algorithm for the channel was derived; it turned out
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that that ML decoding is equivalent to decoding a received vector onto either the
closest codeword or the codeword that is farthest away, depending on whether
an “apparent epidemic” has occurred. We also showed that this channel is an
“averaged” channel in the sense of Ahlswede (and others) and that its capacity is
zero. A finite-memory version of this Polya-contagion model was next considered;
this channel is an ergodic Markov channel of memory M with a non-zero capacity
that increases with increasing memory.

In the second part of this dissertation, we investigated the effect of output
feedback on the capacity of stationary additive noise channels with memory. By
“output feedback”, we assume there exists an ideal “return channel” from the
receiver to the transmitter. Intuitively, it is plausible that, with feedback, some
techniques could be used at the transmitter to control the noise, hence increasing
the channel capacity. However, we arrived at the counter-intuitive result that the
capacity of an additive noise channel with feedback does not exceed its capacity
without feedback. In light of recent results by Verdd and Han on a general formula
for channel capacity [35], we then extended the feedback results above to channels
with arbitrary (not necessarily stationary, etc.) additive noise as well as discrete
“symmetric” channels.

In many communication systems, there are constraints on the inputs that ap-
pear at the input of the channel; the most common is an average power constraint.
We addressed this issue in the last part of the dissertation by incorporating cost
constraints on the input of additive noise channels and considering the effect of
output feedback on the “capacity cost function” —i.e., the maximum rate at which
information can be conveyed subject to the constraint. We demonstrated that

when the additive noise is a stationary mixing Markov process, output feedback
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can increase the capacity-cost function.

There are several directions in which we can proceed in the future. One di-
rection is to use the Polya contagion channel in modeling “real-world” commu-
nication channels, in particular the digital cellular channel. Preliminary results
indicate that, for certain parameters, the Polya-contagion channel provides a good
“fit” to the digital cellular channel. Furthermore, we intend to address the prob-
lem of combined source-channel coding over channels with memory. A combined
source-channel coding system is a system in which the source and channel codes
are jointly designed — as opposed to a tandem source-channel coding system where
the source and channel codes are designed separately. A major consequence of the
work of Claude Shannon is the source-channel separation theorem; it states that in
conveying information from one point to another, the source coding and channel
coding operations can be separated without sacrificing asymptotic optimality. An
important drawback of the tandem coding approach is that optimality is asymp-
totic; it requires the source and channel codes to operate on arbitrarily long blocks
which, in implementation, translates to large complexity and delay. An important
goal here is to find source/channel coding techniques that maximize performance
for a given level of complexity.

Another research direction is to pursue, from an information theory point of
view, the investigation of the problem of coding of information bearing signals for
transmission over communication channels — i.e., to determine the fundamental
limits to how efficiently one can encode information and still be able to recover the
information with negligible loss. One study may include the derivation of a general
capacity formula for arbitrary discrete single-user channels with feedback. This

would result in an extension of the work by Verdd and Han on channel capacity
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[35]). Other works may involve the study of the capacity of non-symmetric channels
with feedback, like the binary multiplicative channel (the “AND” channel) or the

real adder channel. It is conjectured that feedback do cause an increase in capacity

for such channels.
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