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ABSTRACT

Title of Thesis: A NEW CLASS OF PETRI NETS FOR MODELING, PLANNING
AND SCHEDULING OF FLEXIBLE MANUFACTURING SYS-

TEMS

Name of degree candidate: Marios Markos Leventopoulos

Degree and Year: Master of Science, 1994

Thesis directed by: Associate Professor George Harhalakis, Institute for Systems
Research
Assistant Professor Ioannis Minis, Institute for Systems Research
Dr. Jean-Marie Proth, INRIA Metz and Institute for Systems

Research

This work addresses the modeling, verification, planning and scheduling problems of non-
cyclic discrete systems with emphasis on Flexible Manufacturing Systems. We introduce
a special type of Petri nets, the Conflict-Free nets with Input and Output transitions (CFIO
nets) that provide a much needed platform on which all these problems can be tackled in
a unified manner. It is shown that CFIO nets are live, reversible, if consistent, and can
be kept bounded under certain conditions. We develop reduction rules which facilitate the
detection of the above properties. We then take advantage of the qualitative properties
of CFIO nets and use those models to develop a linear programming formulation of the
production planning problem. Finally we use the CFIO nets, along with the production

planning results, to develop the production schedule of the Flexible Manufacturing system.
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1 Introduction

1.1 Flexible Manufacturing Systems: An Overview

During the past three decades industrialized countries have made significant changes
in manufacturing practices. Production is moving towards high-quality products
and small lot sizes (it is said that the economy of scale has been replaced by the
economy of scope), competitiveness has become global, and unpredictable demands

are progressively replacing steady demands.

Factory automation (FA) is one promising way to address these changes [46].
Factory automation is the synthesis of flexible manufacturing systems (FMS), computer-
aided design/computer-aided manufacturing (CAD/CAM), and office automation (OA).
Among these three basic elements, FMS form the core of FA on the shop floor: they
are designed to fill the gap between high-production transfer lines and low-production
NC machines. A flexible manufacturing system is capable of producing a wide variety
of products (or parts) with virtually no time lost for change from one product to the
next [47]. To achieve this objective FMS integrate industrial robots, numerical control
(NC) machines, and automated material-handling systems into a manufacturing cell.
In view of the capital-intensive nature of FMS it is important to design and operate
them as efficiently as possible.

The problems related to FMS can be classified into design and operational ones.
Design problems are concerned with the optimal selection of the FMS components
and their interconnection, including [48]: (i) selection of part families, (ii) selection of

pallets and fixtures, (iii) selection of material-handling systems, (iv) selection of the



information system that links the various FMS modules and the FMS with the rest of
the FA modules, (v) layout of the FMS. Operational problems relate to the utilization
of the FMS and include [49]: (i) batch sizing, (ii) balancing of the workload, (iii) long
and medium term planning, (iv) scheduling and dispatching, (v) tool management, (vi)

response to changes in demand, (vii) reaction to resource disruptions.

The decisions involved in the design and operation stages of FMS are complex.
Thus it is necessary to provide the decision makers with aids that will allow them to
plan, design and operate the FMS as effectively as possible. Such critical aids include
methods for system modeling and analysis which support the selection of “good” design
alternatives and operational policies. Furthermore a unified environment that supports

modeling, verification and performance evaluation is highly desirable.

Since FMS are discrete-event, dynamic systems, many tools exist to model and
analyze them. For instance, queueing theory, state-transition analysis, mathematical
programming, and simulation may be used for analyzing the system performance,
while entity-relationship approaches and the CIMOSA! related tools are used for the

functional specification of such systems.

In this thesis we develop Petri net-based models to support the modeling and
verification of FMS designs, as well as to support short term planning and scheduling
during FMS operation. The following subsections review relevant work in Petri nets.
Significant work in Production Planning and Scheduling is also reviewed to provide a

background for the applications addressed by the proposed tools.

1 Computer Integrated Manufacturing — Open System Architecture, ESPRIT program



1.2 Brief Review of Petri Nets

Petri nets have been successfully used in the specification and the functional
modeling of manufacturing systems. The reader may refer to Silva and Valette [44],
and Murata [40] for an introduction in the area of Petri nets applied to flexible
manufacturing. DiCesare et al. [33] present a thorough analysis of the subject. Timed
Petri Nets, a variation of Petri nets that incorporates time information, have been
extensively used for performance analysis of manufacturing systems. Murata [40] gives
a good introduction on timed Petri nets. For use of timed Petri nets in manufacturing

systems see also Di Mascolo et al. [38], Hillion et al. [39], and Ramchandani [42].

Manufacturing systems are usually clacified in two types by Petri net researchers: (i)
Cyclic production manufacturing systems, in which part-production rates are constant.
(ii) Non-cyclic manufacturing systems in which part-production rates vary with time.
The first type of systems is common in a make-to-stock environment, while the second
type is common in a make-to-order environment. Numerous analytical techniques are
available to support the preliminary design of cyclic manufacturing systems. Such
systems are typically modeled using strongly connected event graphs, a special class
of conflict-free Petri nets the analytical properties of which are particularly powerful.
Desrochers [25] and Silva [26],[44] present a survey of event graphs and their use in
manufacturing systems. Rozenberg [31] has studied the use and application of event
graphs. For a more extensive study on event graph-related properties see Berthelot
[28] and Rozenberg [29], and for event graph invariant analysis see Silva [26], [30].
Event graphs are also used for performance evaluation [39], [41] and optimization of

cyclic systems [2].



For the more general (non-cyclic) FMS, as well as for job-shops, which are also non-
cyclic, strongly connected event graphs techniques are not appropriate; this is because
such systems are not conflict-free. In addition, one must introduce and remove parts
from the system and this process cannot be represented by a strongly connected net.

This motivates the quest for more powerful modeling tools than event graphs.

1.3 Brief Review of Production Planning and Scheduling

Planning a manufacturing system consists of determining the type and number of
parts to manufacture in a given time horizon, in order to satisfy a given demand.
Given the production plan, the central concern of job shop scheduling is to allocate the
necessary production tasks to limited resources and determine the task starting times,
in order to optimize a given set of criteria while satisfying certain manufacturing

constraints.

A substantial body of literature addresses different aspects of planning and sched-
uling, including machine sequencing (Baker [9]), mathematical modeling of the gen-
eral resource-constrained project scheduling problem (Rodammer [23]), mixed model
assembly line scheduling (Miltenburg et al. [19], and [20]), network programming

methods (Zahorik et al. [24]) and job-shop scheduling (Adams [8]).

The vast literature in the scheduling field has been reviewed and classified by a
number of authors. Panwalkar and Iskander [22] present and critique a comprehensive
list of various priority rules proposed in the literature. Rodammer and White [23]
survey various approaches to the production scheduling problem, such as machine

sequencing, resource-constrained project scheduling, discrete event simulation and




artificial intelligence methods. MacCarthy and Liu [12] and Lawler et al. [18] have
tabulated the types of scheduling problems addressed in the literature along with the

most important solution methods.

One of the important objectives for the n-job, m-machine, job shop problem is the
minimization of the production makespan. Various approaches have been proposed
for this problem, including mixed integer linear programming (Lageweg et al. [17]),
branch-and-bound searches (Greenbreg [13], Barker et al. [10] and Carlier et al. [11])
and several heuristic methods (Adams et al. [8] and Stoner et al. [45]). However,
optimal methods are computationally prohibitive for practical cases, given that the
underlying problem is NP-hard?. A detailed classification and complexity analysis of
scheduling problems can be found in Lawler et al. [18] and Herrmann et al. [14].
There has been, as mentioned, much research on single machine and multiple machine
scheduling problems, but little work has been performed on systems with routing
flexibility since linear programming models of the scheduling problem become very
complex. Hoitomt [15], [16] and Owens [21] have adapted Lagrangian relaxation
techniques to decompose complex scheduling problems, but there is no support for
shared resources.

The actual generation of schedules has not received much attention in the Petri net
community. Carlier and Chretienne [32] developed a polynomial algorithm, which,
given a firable sequence for the underlying model, computes the earliest feasible
schedule for that sequence. Shih and Sekiguchi [43] use Petri nets to simulate, through

a beam search, the evolution of an FMS. Lee and DiCesare [37] introduced a search

2 For a guide to the theory of NP-completeness the reader is referred to Garey and Johnson [34]



algorithm that operates on the reachability tree of a Petri net model of the manufacturing
system to produce a feasible schedule. Their method supports flexible routings and
shared resources. Furthermore, it avoids the size explosion of the reachability tree
by using a heuristic that disregards parts of the tree on the basis of an approximate

evaluation.

It is important to note at this point that problems arise in the integration of
research done with Petri nets in the different areas of manufacturing systems modeling
and analysis. A comprehensive approach needs to address specification, functional
modeling, preservation of qualitative properties, planning, and scheduling in a unified
manner. To date research conducted in these areas has not employed the same type of
Petri nets. For example, different studies have used Color Petri nets, simple Petri nets

(also called black & white Petri nets) and event graphs.

1.4 Thesis Objectives and Structure

This thesis addresses the modeling and verification problems of FMS and non-cyclic
manufacturing systems during system design as well as the planning and scheduling
problems during system operation. We provide a much needed platform on which
all these problems can be tackled in a unified manner. Thus, we eliminate the need
for system designers to create different models for system representation, qualitative

analysis, and planning and scheduling.

For this purpose we introduce the Conflict Free nets with Input and Output tran-
sitions (CFIOs), a subset of simple Petri nets. CFIOs offer strong graphical power

for non-cyclic manufacturing systems. We show that modeling realistic manufacturing



systems with Petri nets decomposable to consistent CFIOs guarantees the desired qual-
itative aspects of the system, i.e. the absence of deadlocks and overflows, the ability
of the system to recover from errors, the ability to reach all the states for which it was
designed, and the presence of certain mutual exclusions in the use of shared resources.
An algorithm that tests a CFIO for such important properties is presented. Finally
we use these models for planning and scheduling. For these problems we provide
powerful heuristics that use aggregation techniques to find a good approximation to

the optimal solution.

The remainder of this work is organized as follows: In Chapter 2 we provide
critical definitions and properties of Petri nets. In Chapter 3 the CFIO nets are defined
and the notion of manageable manufacturing systems is introduced. We analyze the
qualitative properties of CFIO nets and relate them to manageability. These properties
are employed in Section 4.3, to perform planning. A small example illustrates the
proposed procedures. In Section 4.4 we introduce a critical path-based heuristic that
computes a schedule from the planning information derived in Chapter 4.3, such that
the makespan of production is within a given time period. An example is also presented

to illustrate this procedure. In Chapter 5 we present our conclusions.




2 Background: Petri Nets

This chapter gives a brief description of important types of Petri nets. In Section 2.1
we introduce black-and-white Petri nets; we use the definition and notation of Murata
[40] and DiCesare et al [33]. In Section 2.2 we discuss timed Petri nets and in 2.3 we

define the control places which are used for modeling external decisions.
2.1 Black and White Petri Nets

The structure of a Petri net is defined by a weighted, bipartite, directed graph which
consists of places (represented by circles), transitions (represented by bars), and arcs

(represented by arrows).
Definition 1: A Petri net is a quadruple N =< P,T,F,W > where :

e P ={py,p2-..,pn} is a finite set of places,

e T = {t1,t2,...,t,} is a finite set of transitions,

* PNT =0;ie. places and transitions are disjoint sets,

o FC(PxT)U(T x P)is aset of arcs (flow relations),

e W :F — Nt, where NT is the set of positive natural numbers, is a weight

function which assigns a strictly positive value to each arc.

Definition 2: A Petri net is said to be ordinary if all its arc weights are equal to one.

If there exists a directed arc joining p € P tot € T (t to p), then p is an input
(output) place of ¢t. The set of input places of ¢ is denoted by *, while the set of output
places of ¢ is denoted by ¢°. Similarly, if there exists a directed arc joining t € T' to

p € P (p to t), then ¢ is an input (output) transition of p. The set of input (output)
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Figure 1: A marked Petri net
transitions of p is denoted by °p (p°®). This notation can be extended to a subset of
places or transitions. For example °S (S°®) with S C P, is the union of all ®p (p*) such
that p € S. Accordingly *T' (7*) denotes the set of all places of the net which are
input (output) places of at least one transition. *P (P*) denotes the set of all transitions

which are input (output) transitions of at least one place.
Definition 3: A Marked Petri net is a Petri net PN =< N, M > where:

e N =< P,T,F,W > is a Petri net as defined above,

e M :P — N is called a marking of PN, where N is the set of natural numbers.

For p € P, M(p) is the number of tokens contained in the place p for marking M.
In Figure 1, we present an ordinary Petri net; its tokens are represented by dots. The
marking of this net is M =< 1,2,0,1,3,0 >, i.e., M(p1) = 1, M(p;) = 2 and so on.
Definition 4: A Petri net N =< P,T,F,W > is called pure if *tNt* =0, Vt € T.

A pure Petri net can be represented by an incidence matrix

C=lcj], t=12,...,m7=12,....m

9



where
~W(pi,t;), if pi €%
cij = +W(pi,t;), ifpi €1t§
0, otherwise

As an example, the following incidence matrix corresponds to the ordinary Petri net
presented in Figure 1. Each row corresponds to a place, and each column corresponds

to a transition.

1 0 -1 O 0 0 ]
0 0 1 0 0 -1
11 -1 -1 0 0
¢= 0 0 O 1 0 -1
01 0 -1 1 0
0 0 0 1 -1 0 |
For example, the value c34 = —1 in the 3% row, 4" column, corresponds to the
directed arc connecting place psz with transition ¢4. ¢34 = —1 because #4 is an output

transition of ps and the weight of the corresponding arc is one.

When a manufacturing system is modeled using Petri nets, tokens represent parts,
resources, or other information, places represent buffers, and transitions represent
operations.

In a Petri net, the marking is the state of the net, and it evolves according to the

following rules:

Transition firing rules

1. A transition ¢ is enabled if each input place p of ¢ has at least W (p, t) tokens, where
W(p,t) is the weight of the arc from p to ¢; that is, M(p) > W (p,t),Vp € *t
2. A firing of an enabled transition ¢ removes W(p,t) tokens from each input place

p of t and adds W (¢, q) tokens to each output place ¢ of ¢.

10



3. An enabled transition may or may not fire. That is because the firing of one enabled
transition may disable another. For example in Figure 2 although both transitions
are enabled, only one can fire. Such conflicts are resolved non-deterministically,

i.e. the model does not specify how to resolve them.

t, R,
O

P,

—"0

t,

Figure 2: Example of a conflict

Definition 5: Siphon and Trap: In an ordinary net, a non-empty subset of places S is
called a siphon if *S C S°. Once a siphon becomes token-free, it remains token-free.

The subset S is called a trap if S®* C *S. Once a trap is marked it remains marked.

Figure 3: S1 is a siphon: °S1 C S1°®, S2is a trap: S1* C °S1

Definition 6: Reachable marking: If by firing a sequence o of transitions, we can

reach a marking M from an initial marking My, we say that M is reachable from

Moy, and that o is a feasible firing sequence (or firable sequence) starting at M, and

11



leading to M. We denote this as follows:

M €R(My)
and

My, M

The two markings are related by the Petri net state equation:

M = My + Ca, (1)

where o, = [al,a?,...,a™]T and of is the number of times transition ¢; is fired in

0. «, is called the counting vector of o.

Note that the state equation by itself provides only a necessary condition for M to
be reachable from M, (i.e. M € R(My)), as there may be no feasible firing sequence o
corresponding to the counting vector «,. Consider for example the following marked

Petri net, shown in Figure 4:
el

p3

p2

pl

Figure 4 M = {0,0,0,1] is not reachable

12



pr|—-1 0
C _pg 1 —].
p3 -1 1
Dbs | 0 1 |
M, =[1,0,0,0]

The marking M = [0,0,0,1] and the counting vector 2 = [1,1]T satisfy the state
equation. However, there exists no feasible firing sequence such that My — M, and

thus the marking M is not reachable from M.

Definition 7: In the state equation consider the case where M = M, . The integer
solution of the homogeneous equation Ca, = 0 is called a #-invariant.

The set of transitions corresponding to nonzero entries in a t-invariant is called a
support of the invariant. A support is said to be minimal if no proper nonempty subset
of the support is also a support. An invariant z is said to be minimal if there is no
other invariant z’ such that z[t] < z'[t] for all ¢.

The following chapters show that t-invariants provide a poweful tool for quali-
tative analysis of Petri nets, and facilitate the planning and scheduling approach of

manufacturing systems via the use of CFIO nets.

Definition 8: An elementary circuit is a directed path which starts from a node (place
or transition) of the Petri net, ends at the same node, and includes each node only

once. For instance, <ps, t4, ps, t5, ps> is an elementary circuit of the net in Figure 1.

13



Note: A directed path which starts and ends at the same node, but does not necessarily

include each node only once, is called a circuit.

2.2 Timed Petri Nets

The representation of time in models of manufacturing systems is essential. There
are two ways of introducing time into Petri nets; by associating time with either
transitions or places. In the following we will be using the three phase timed firing

definition of deterministically transition-timed Petri Nets [33].

Definition 9: A deterministically transition-timed Petri Net (+-TPN) is a couple

< N,Z > such that:

1. N =< PT,F,W > is a Petri net as defined above,

2. Z:T — Qt, where Qt is the set of non-negative rational numbers.

Z(t) is called the firing time of transition ¢{. The dynamic aspect of a timed Petri net
is also defined through its marking (see definition 3).
The firing of a transition ¢ can be initiated as soon as the transition is enabled and

it comprises in three phases:

1. Upon firing, tokens are removed from the input places of the fired transition
according to the weight function. Conflicts are resolved in the same manner as in
non-timed Petri nets, i.e. non-deteministically.

2. The firing duration is Z(t) time units.

3. After Z(t) time units have elapsed, the firing ends and tokens are added to the

output places of the transition according to the weight function.

14



Non-reentrant TPNs: In this work we consider +-TPNs for which two firings of the
same transition cannot overlap. We can enforce such a restriction by adding a place
g to every transition ¢ in the net, and connect it such that it is both an input and an
output of ¢; i.e. ¢ € *t and ¢ € 1* : < ¢, > is a self-loop. The initial marking of each
place belonging to a self-loop is one token only. We denote by @ = {¢1,42,.-.,q}

the finite set of those places. Such a timed Petri net is called non-reentrant.
2.3 Control Places

Krogh et al. [1] were the first to propose an extension of Petri nets to account for
external decisions that can influence the behavior of the system. This is achieved by
introducing control places to the Petri net (represented by a double concentric circle).

A control place p has the following properties:

1. °p = 0: A control place has no input transitions.

2. M(p) < 1: There is at most one token in each control place.

3. The initial and subsequent markings of a control place are decided externaly to
the system and are not changed by the firing of transitions. That is, a token is not
removed from a marked control place when one of its output transitions fires (see
Figure 5). Obviously, unmarked control places effectively disable their output

transitions.

2.4 Chapter Summary

In this chapter we have briefly introduced and defined Petri net models that are
important for the remainder of this work. The static aspect of the Petri net comprises

a bipartite graph, while the dynamic aspect is provided by the net marking. For pure

15



t2

pl V\i;plﬁ pl ‘\i‘plﬁ

Figure 5: Behavior of a control place

Petri nets the incidence matrix provides an equivalent mathematical representation of
the static aspect, and the state equation [Equation (1)] defines the dynamics of the net.
Transition timed Petri nets (hereafter simply called TPNs) associate time with transition

firings. Control places model external decisions.

16



3 Conflict Free Nets with Input
and Output Transitions

In this chapter we introduce a new class of Petri nets which are capable of modeling
and analyzing non-cyclic manufacturing systems. These nets are called Conflict Free
with Input and Output transitions (CFIO) and are defined in Section 3.1. Subsequently,
in Section 3.2, we consider the properties of liveness, boundedness, and consistency
of CFIOs, and we show their relationship to manageability, a set of properties derived
from the need to assess the design of manufacturing systems. Section 3.3 provides
methods to evaluate these properties for a given CFIO net. Finally, in Section 3.4 we
show that the properties of CFIO nets propagate into Petri nets that are unions of CFIO
nets. Such Petri nets are employed in subsequent chapters to model and perform the

planning and scheduling of non-cyclic manufacturing systems.

3.1 Definition of CFIO Nets

Conflict Free nets with Input and Output transitions include two types of transitions

that support non-cyclic behavior:

i. Input transitions deliver tokens to the net, making it possible to model raw
material and component parts that are delivered to the manufacturing system.
ii. Output transitions remove tokens from the net. In manufacturing, these tokens

represent finished goods or completed subassemblies leaving the system.

To convert a black-and-white Petri net with input and output transitions to a CFIO,

we introduce control places that implement external control. Appropriate control turns

17



such a net into a conflict-free net. As soon as a control decision is applied by means
of the control places, some of the transitions are frozen (i.e. cannot fire anymore).
By removing from the initial Petri net the frozen transitions, the related arcs, and the
input and output places that are not connected to non-frozen transitions, we obtain
a conflict-free subnet. Such a subnet is referred to hereafter as a Conflict-Free net
with Input and Output transitions (CFIO). Note that using this approach a sequence of
decisions applied to a non-cyclic manufacturing system can be modeled by a sequential

activation of conflict-free subnets of the initial Petri net model.

Definition 10: CFIO nets form a subclass of ordinary and pure Petri nets with the

following three properties:

1. They are structurally conflict-free:

.tl N .tz = w, th,t2eT

This implies that each place has only one output transition.

2. They do not include input and output places (also called source/sink places):

.T_:T.

3. They include at least one input transition and at least one output transition:

T_P* 40

TP #

The net shown in Figure 6 is a CFIO net, where ¢y and ¢, are the input transitions,

and tg and {9 are the output transitions.
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Figure 6: A CFIO net

3.2 Properties of CFIO Nets

In order to associate CFIO net properties to important properties of manufacturing

systems, we first introduce the notion of manageability.
Definition 11: A CFIO that models a manufacturing system is manageable if

i. Itis live, i.e., the corresponding manufacturing system is deadlock free.

ii. Itis possible to keep the net bounded i.e. the work-in-process of the corresponding

manufacturing system can be held below a given level.

iii. Any valid state (marking) of the net can be reached from any other valid state. For
the manufacturing system, this condition implies that any valid inventory level, as

well as any machine availability state, can be reached.

In this section manageability is related to the CFIO properties of liveness, bound-
edness and consistency. In Section 3.2.1 we show that a CFIO net is structurally live.
In Section 3.2.2 we show that although CFIOs are not structurally bounded, CFIO-
based models of manufacturing systems can be kept bounded. In Section 3.2.3 we

show that reversibility is a consequence of consistency in the case of CFIOs, and that
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CFIO nets are reversible for any initial marking provided that all elementary circuits

of these nets are marked.

3.2.1 Liveness

Definition 12: A Petri net is said to be structurally live if there exists at least one
marking M, for which the marked net is live, i.e. for all ¢t € T and for all My € R(M,),
there exists a marking M, € R(M;) such that ¢ is enabled in M.

Note that if NV is a structurally live Petri net, then there exists a vector z of positive

integers such that Cz > 0 (Memmi [6], and Sifakis [7]).

Result 1: A CFIO net is structurally live.

To show this result we first prove lemma 1 and subsequently we consider lemma

2 from Murata [40].
Lemma 1: Every siphon in a CFIO net contains a circuit.

Proof: Let N =< P,T,F,W > be a CFIO net with at least one siphon. Consider
any subset S of P such that S forms a siphon, and let N be the subnet of N consisting
of the places in S along with the connected transitions and arcs. Note that N is also
a CFIO net and, thus, it has no input places. Moreover, Ng has no input transitions,

since its places form a siphon. Since Ng has no input, it contains a circuit.

Lemma 2: A conflict-free net N is structurally live if and only if every siphon in

N contains a trap [40].

Proof of result 1: Since IV is a conflict free net, each place has only one output

transition, and therefore the output transitions of places belonging to a circuit also
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belong to the circuit. This implies that every circuit in N is a trap. Furthermore from
lemma 1, every siphon in N contains a circuit. Thus, every siphon in N contains a

trap, and according to lemma 2, it follows that N is structurally live.

Q.E.D.

Result 1 shows that the liveness property is intrinsic to CFIOs. Thus the first

condition of manageability (as defined above) is satisfied for CFIOs.

3.2.2 Boundedness

Definition 13: A Petri net is said to be structurally bounded if for any initial marking

M, there exists an integer k£ > 0, such that for any M € R(M,), M(p) < k,Vp € P.

Result 2: A CFIO net is not structurally bounded.

Proof: A Petri net is structurally bounded if and only if there exists a vector y of
positive integers such that y”C < 0 (Memmi [6], and Sifakis [7]). However a CFIO
net has at least one input transition, and therefore at least one column of the incidence
matrix contains only nonnegative values, of which at least one is 1. If [a] is this

column, then Ay > 0 such that y?[a] < 0. Thus, Ay > 0 such that y7C < 0.

QED.

Result 3: Consider a CFIO net, and assume that the number of firings of all input
transitions is bounded. This CFIO net can be kept bounded if and only if the Petri net

obtained by removing the input transitions is bounded.
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Proof:

(a) Sufficiency: Let A = [A;1A;] be the incidence matrix of the CFIO net where A,
comprises the columns of 7' — P* (i.e., the columns that correspond to the input
transitions).

Boundedness of the net corresponding to A, implies that for any initial marking
M, there exists an integer k1 > 0 such that for any M € R(My), M(p) < k,Vp € P.
Using the Petri net state equation this can be written as:

VMo, 3Ky = [ky, ky,..., k1]T, k€ N* st
(2)

Ya,,such that My 2 M, M, + Aza,, < K,
where o, is a feasible sequence of transition firings related to P* and a,, is the
counting vector. Let o; be a sequence related to the input transitions T — P°.
Since all input transitions are always enabled it is possible to find a feasible firing
sequence o, for any a,, and for any initial marking My. Furthermore, since there
are no restrictions on how many times each input transition may fire, then for any
K = [k,k,..., k)T with k > ky, there exists a feasible sequence of transition firings

o1 such that:
Alaal S K — I{ly (3)

i.e., we can select a,;, such that A;a,, is less than any given positive integer vector.

Equations (2) and (3) above imply that there exists Ky and o; such that:

Mo+ [414a)| 2 | < &

27
Ay,
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and, thus, the CFIO net can be kept bounded for a given o and for any initial marking

M.

(b) Necessity: If A, as defined above is not bounded, then for any K > 0:

My + Azoz,,z > K

for at least one feasible sequence o, related to an initial marking Mj. Note that the
columns of A; do not contain negative values. Thus, A;a,, is nonnegative for any
o1. This implies that My + Ay @y, + A2a,, > K. In other words, for any K > 0 there

exists a feasible sequence o = ¢y o o2 such that

M0+AOZO->K

and, consequently, the CFIO net cannot be kept bounded.

Q.E.D.

To relate the above results to manageability consider condition (ii) of definition 11,
which requires the ability to maintain the CFIO net bounded. Result 3 provides a way
to test for this condition; i.e., if by removing the input transitions the resulting net
remains unbounded, then the initial net is also unbounded. This, in turn, implies that
the system is non-manageable. The reverse is also true.

We claim that such an unbounded model cannot result from a well-designed
manufacturing system. To clarify this point let us consider an unbounded net N
and let N, be the net obtained from N by removing the input transitions. According
to Result 3, IV is unbounded at some place p. Thus, for some initial marking, at least

one of the inputs of p, say £, can fire an infinite number of times. Since there are no
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input transitions, ¢ must drain a token an infinite number of times from a place other
than p. Furthermore, since the initial (and every other) marking is finite, ¢ must belong
to a circuit and “feed” its input place (indirectly) by its own firings. This implies that ¢
belongs to a marked circuit all transitions of which can be enabled an infinite number
of times. Furthermore, in this case, all input places of the circuit transitions belong
to a circuit; otherwise they would not be able to supply an infinite number of tokens.

We have thus shown the following theorem:

Theorem: Let NV be a CFIO net and let N, be the net obtained by removing all the
input transitions of N. If N, is unbounded, then it contains a circuit (not necessarily
elementary), all transitions of which have inputs only within the circuit. We will call

such a circuit self-sustained.

A well-designed manufacturing system should not contain a self-sustained circuit,
i.e., it should not be unbounded. The existence of a self-sustained circuit is equivalent
with the existence of an uncontrollable manufacturing subsystem, the operation of
which cannot be affected by external control. Thus, a CFIO that remains unbounded
after removing (or effectively controlling) its input transitions indicates some design
or modeling error. Section 3.3.1 shows how to detect such problems that lead to an

unmanageable system.
3.2.3 Consistency

Definition 14: A CFIO net N is consistent if there exists a marking M, and a transition
firing sequence o such that My —=» My, and o contains every transition of N at least

once.
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Sifakis [7] and DiCesare [33] show that consistency in Petri nets holds if and only
if there exists a vector > 0 such that Cz = 0, where C is the incidence matrix

of the net.

Result 4: If a CFIO net is consistent, then for any initial marking My such that each
elementary circuit contains at least one token, and for every M € R(Mpy), we have
My € R(M) (i.e. the net is reversible for every initial marking M, such that all
elementary circuits are marked).

In the proof we will use the following theorem from Murata [40], which holds for

generalized Trap Circuit (TCC) nets, a superclass of CFIO nets:

Theorem: In a conflict-free net N, M, is reachable from M, if there exists a
nonnegative integer vector & =< 21,%, -, &y, > such that My = My + Cz, and
every siphon in (V,, My, ) contains a marked trap; where, C denotes the incidence
matrix of N; N, denotes the subnet of N consisting of transitions ¢ such that z; > 0
along with their input places, output places and their connecting arcs; My, denotes the

sub-vector of M, corresponding to the places of N,.

Proof of result 4: From Lemma 1, and since all circuits are marked, every siphon in
N contains a marked trap. Since M is reachable from M, there exists a nonnegative

integer vector = such that:

M:M0+CCL'

However, by assumption, N is consistent and thus there exists a positive vector z such

that Cz = 0. Without loss of generality we can select z large enough so that z > z
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(by multiplying it by an arbitrarily large positive constant). Let y = z — . We then

have Cz = —Cy and My = M + Cy.

Using the above theorem it remains to show that every siphon in N, contains a
marked trap under the marking M. Note, however, that N, = N since y > 0 and
all siphons in NV contain a marked trap in all markings reachable by M. Thus M, is

reachable from M and the net is reversible.

QED.

Corollary 1: For every initial marking M, of a consistent CFIO net, such that all
elementary circuits contain at least one token each, M; € R(M;) and M, € R(M,)

implies that M; € R(M;) and M, € R(M).

According to this corollary, in a consistent CFIO net, for any initial marking M,
with at least one token in every elementary circuit, any marking reachable from M,
can be reached from any other marking reachable from Mj. Result 4 shows that the
consistency property of CFIO nets guarantees the third condition of the manageability

property of manufacturing systems (see definition 11).

3.3 Detection of Properties of CFIO Nets

The previous subsections have established that a consistent CFIO which can be kept
bounded satisfies all three manageability conditions. However, since only liveness is
intrinsic to CFIOs, in order to assess the manageability of manufacturing systems
modeled by CFIOs, it is necessary to develop techniques to determine whether: i) a

net can be kept bounded and ii) it is consistent.

26



In the discussion that followed Result 3 of Section 3.2.2 it was shown that CFIOs
that do not contain self-sustained loops can be kept bounded. Thus, to assess this
property it suffices to detect the existence of self-sustained circuits in a CFIO net. In
the following subsections we introduce a method that i) detects self-sustained circuits
in a CFIO net, ii) determines whether the net is consistent, and iii) calculates the t-
invariant information, which is necessary for production planning. This method reduces
the CFIO net, preserving the consistency property and the t-invariant information, and
comprises two basic steps: circuit reduction and path reduction. These two steps are

discussed below.

3.3.1 Circuit Reduction

The first step of CFIO net reduction is the circuit reduction during which all self-
sustained loops (circuits) are detected. If no such circuits are found, then, according
to Section 3.2.2, the net under consideration can be kept bounded. Some cases of
inconsistency that are caused by a particular circuit formation are also detected during
circuit reduction. If no such pathological circuit formations exist, then each elementary
circuit of the net is reduced to a single transition. It will be shown that the resulting
net maintains the consistency property (or the lack of it) of the original net.

We follow two steps during circuit reduction. First all circuits in the CFIO net are
detected. We use an algorithm developed by Knuth [36] that sorts and detects circuits
in directed bipartite graphs, such as Petri nets. Secondly we employ Result 5 below,
which shows that if there exists a circuit with a place that has more than one input, the
net is not consistent. For each circuit detected, it is straightforward to check whether

its places have only one input transition. If that is the case, the circuit is reduced to
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a single transition. To transform the incidence matrix of the net accordingly, all the
columns corresponding to the circuit transitions are replaced by a new column which
is the sum of the removed columns. In effect the new transition “inherits” all the
input and output places of the reduced circuit. On the other hand, if the circuit has a
place with multiple input transitions, then, as shown in the following result, the net is
not consistent. This reduction is repeated for all circuits. If no circuits with multiple
input places are found, the circuit reduction step terminates succesfully. Otherwise it
is reported that the net is not consistent.

Result 6 shows that circuit reduction preserves the consistency property. Note that
if the reduced circuit was a self-sustained circuit, it would have no input transitions

and the resulting transition will be an input transition.

The flowchart of the circuit reduction algorithm is shown in Figure 7.

Result 5: Let N be a CFIO net. If for at least one elementary circuit v C N, there

exists a place p € v which has more than one input transition, then N is not consistent.

tl

Figure 8: Examples of inconsistent CFIO nets

Proof of Result 5: Let ¥ C N, be an elementary circuit of N. Consider any marking

My and any transition firing sequence o which contains every transition at least once.
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Net is not
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EXIT

resulting transition
an input transition

Figure 7: Circuit Reduction

Since N is conflict-free, [p®| = 1 and p € v = p® € «. This implies that the total
number of tokens in the circuit < cannot decrease. Now if there exists p € v such
that |%p| > 1, firing once every transition ¢ € °p will increase the number of tokens
in v by |°| — 1 . Since o contains each ¢ € °p at least once, firing o will increase
the number of tokens in 4. Thus M, cannot be recovered. Since there exists no M,

and o such that My —— My, N is not consistent. Figure 8 shows two examples of

inconsistent CFIO nets.

Result 6: If all elementary circuits of a CFIO net N are marked and all places in
them have only one input transition, then the consistency of N can be determined by
examining the consistency of a net N' which is derived from N as follows: Replace

each elementary circuit v by a transition ¢, such that any input (output) place of a
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Figure 9: Circuit reduction rule

transition of 7, which is not included in 7, becomes an input (output) place of t,. N

is consistent if and only if Ny is consistent.

Proof of Result 6: Let us assume that each elementary circuit contains at least one
token, and that in any elementary circuit a place has only one input transition. We
seek to prove that the reduction rule presented in Figure 9; i.e. the reduction of an
elementary circuit to a single transition, as described in Result 6, preserves consistency.
In the remainder of the proof, C and C' are the incidence matrices of N and N'

respectively. The proof consists of two parts:

(a) If N is consistent then N! is consistent.

(b) If N is not consistent then N! is not consistent.

(@) N is consistent:

According to the definition of consistency, J € N™, such that z > 0 and C'z = 0.
Without loss of generality, we can assume that N contains only one elementary circuit
< Pirstivy Piar tins oy Pis» tj, >. We assume that the rows (columns) of C are ordered

according to the indices of the places (transitions). Then C? is related to C as follows:
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. . Ly ] forj #7
* Derive C* from C by setting c?; = {C(Z;J) . or J.%J.l
’ > k=1 ¢(,5k)  forj =71
« Derive C° from C° by removing the columns of transitions js, 3, ..., /.

e Obtain C' by removing the rows of places 41,42, ...,7, of C°.

Since each p € v has one input and one output transition, each row : € {2q,...25}
in C is such that:
—1, for exactly one j € {j1,...,Js}, say j;

cij = +1, for exactly one j € {j1,-..,Js}, say j;"
0, otherwise

Furthermore Cz = 0 implies:

m
E Cij 5 =0 for:= 1,2,...,n
j=1

=>¢;;~%j- + ¢ uze =0forie {11,2,...,0s}

Since this is true for all ¢ € {21,...7,}, it follows that 2;, = z;, = --- = z;,. Let

1

us now build z* as follows:

() ifj & {J1,72,---Js}, then z1 = z;, if the k*" column of C! has been derived from
the j** column of C.

(ii) ! = z;,, where v is the rank in C* of the column obtained by adding the columns
1,72, ey Js Of C
Based on the process followed to build C?, the definition of x!, and that fact that

Cz = 0, we obtain C'z! = 0, which implies that N! is consistent.

Q.E.D.

(b) N is not consistent:
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If N! were consistent, then:

el e N™ gl > 0st Clzl =0

where my is the number of transitions of N'. It would then be possible to expand

zl to obtain z € N™ by setting:

i. z; = z if the kth column in C" is the jth column in C.
ii. z; =, =..=z; =z} if transition t; replaces the elementary circuit y C N

containing t;,,t;,,...,t;,.

Using the same arguments as in (a), we can see that © > 0 and Cz = 0. This

implies that N is consistent, which is a contradiction. Thus N; is not consistent.

Q.ED

Note: Detection of Self-Sustained circuits: As mentioned in the previous section, all
input places of a self-sustained circuit belong to the circuit. Circuit reduction, as
described above, will reduce such a circuit to an input transition, thus facilitating the

detection of self-sustained circuits in the model.
3.3.2 Path Reduction

The second step in the CFIO reduction method is the path reduction, called as such
because it detects and reduces paths that connect input to output transitions. Using
path reduction all but the input and output transitions of the net are eliminated. Thus,
in effect, the reduced net is a “black box” maintaining the input/output relation of
the original net but, details on internal structure are abstracted. In most cases the

resulting net is significantly reduced. The reduction maintains the consistency (or lack
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of it) of the original net. Furthermore, the t-invariant information of the original net
is retrievable from the reduced net. The small size of the final net facilitates the easy

detection of consistency.

Since the path reduction algorithm operates on the output of the circuit reduction
step, it is assumed that the CFIO net under consideration does not contain elementary
circuits. The algorithm comprises the following two steps: i) define a set of relations
between the number of firings of input and output transitions, and ii) construct the
incidence matrix of the reduced net, based on these relations. In particular, each

relation corresponds to one row of the matrix, i.e. one place of the reduced net.

Path Reduction Procedure

Step 1: We define a set of relations between the number of firings of the input
and output transitions. In the original net, for each transition ¢, we denote by n; the
number of times ¢ can fire. If the initial marking of the CFIO net is zero, the following

inequalities hold:

ng < Z Nu, Vp€E*t (4)

UuE*p

If we apply inequality (4) repeatedly, starting from an output transition ¢;, we obtain

a set of inequalities between the numbers of input and output transition firings:

n, <Y Biny, fors=1,2,...,Hjandj€ F (5)
keE
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where:

* E = {k|tx is an input transition}
 F = {j|t; is an output transition}
* H; is the number of different inequalities obtained starting from output transition ¢;

* [, are positive integers.

Inequalities (5) provide the maximal number of times an output transition can fire,
given the number of times the input transitions have been fired and assuming that the
initial marking is zero.

Step 2: We will now show how to construct the incidence matrix of a reduced

net such that:

1. The resulting net is consistent if and only if the initial net is consistent.

2. The resulting net contains only input and output transitions which have an one-to-
one correspondence with the input and output transitions of the original net.

3. If the resulting net is consistent, each t-invariant of the resulting net corresponds

a t-invariant of the original net.

Consider the consistency property of the net defined in Section 3.2.3. Since
we assume zero initial marking, the CFIO net is consistent if and only if we can
remove from it the tokens which have been introduced by firing the input transitions.
Furthermore, since input transitions model the introduction of parts and raw materials
to the system, we assume that they do fire at least once.

According to the process which leads to inequalities (5), a necessary and sufficient

condition for the CFIO net to be consistent is then to find n;, > 0 for every k € E
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and n;, > 0 for every j € F' such that inequalities (5) turn into equalities, i.e.

—ny, + Y Biny, =0 (6)
keE
Similarly, the CFIO net has a t-invariant if there exists n = [ng,, ng,, ..., "k, |, n 2

0, {k1,k2,...,k} = EU F, such that inequalities (5) turn into equalities. Note that

if a Petri net is consistent, it has at least one t-invariant, but the converse is not true.
The incidence matrix C* of the reduced net N! is obtained starting from equations

(6). Each equation in (6) provides one row of C'. Consider thesth equation related

to ¢; and the corresponding row of C':

 the element of C! corresponding to output transition ¢; is (-1),
e for every k € E, the element of C? corresponding to input transition ¢ is 35,

* the other elements of the row are 0.

The reduced CFIO net corresponding to the incidence matrix C'! is hereafter denoted
by N, while the initial CFIO net is denoted by N. Similarly to N, the net N! is
consistent if inequalities (5) become equalities for strictly positive values. Furthermore
N has a t-invariant if, similarly to N, inequalities (5) turn into equalities for values
of n = [ng,,Mkyy. .. 0k, s 2 0, {k1,ke,...,kc} =EUPF.

The consistency of N is directly related to the consistency of N1. Assume that 2! is
known (z! # 0) such that C'z! = 0, i.e. N is consistent. Firing the input transitions
of N as many times as indicated in z', and then firing the enabled transitions until

none remains enabled anymore, we obtain the following results :
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(i) the elements of z and z! which correspond to the input and output transitions

of N and N, respectively, are the same.

(i) the vector z, the elements of which represent the number of times each transition

fired, satisfies Cz = 0

The following result summarizes the above remarks:

Result 7: Given a CFIO net NV with zero initial marking we define a relationship
between the firings of its input and output transitions. In particular, this relationship
provides the upper bound of the number of times each output transition fires as
a positive linear combination of the number of thimes the input transitions fires.
Considering these upper bounds, it is possible to derive a reduced net N as shown

above. Furthermore:

(i) N is consistent if and only if N?! is consistent.

(ii) A vector z > 0 such that Cz = 0 is derived in a unique way from a vector z! > 0

such that C'a! = 0, and vice versa; C (C') is the incidence matrix of N (N1).

(iii) A vector z # 0 such that Cz = 0 is derived in a unique way from a vector ! # 0

such that C'z! = 0, and vice versa. Vector z (z!) is a t-invariant of N (N1).

In this subsection we have shown how the path reduction procedure can be used
to further reduce a CFIO net that has already been reduced by the circuit reduction
procedure. The resulting net is simpler, and it preserves the consistency property as

well as the t-invariant information. An example illustrating the procedure follows:
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Figure 10: Initial net N

Example of Path Reduction Procedure: Consider the CFIO net given in Figure

10. By applying inequality (4) to the output transition ¢t we obtain:

ny < ny (7)

ny <ng+ns+ng (8)

Considering ¢4, t5 and tg, we obtain, respectively:

Ny S nq + Ny ) (9)
ns < ng +ng (10)
Ng < n3 (11)

Combining (7) with (9), and (8) with (9) through (11), we obtain, respectively:

nr < ny + ng (12)

ny < ny + 2ng + 2n3 (13)
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Similarly, starting from tg, we obtain:

Figure 11: Reduced net N’

The related reduced net N! is given in Figure 11.

In this example:

ty to 13 14 5 tg tr s
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and
t1 1o t3 t7 s

pll 1 0 -1 0
Cl

p3{0 0 1 0 -1

Let us examine the consistency of the reduced net and obtain the t-invariant
information. N! is not consistent, since there is no solution of C'2! = 0 such
that ! > 0. Thus, it follows that the original net N is not consistent. Note that
vector z! = [1,0,0,1,0] is such that C'z! = 0. Thus, 2! is a t-invariant, which
means that if we fire ¢; once, starting from zero-marking, we return to zero marking
by firing ¢;. In this example inequalities (6) become equalities if ny = ny = 1 and
ny = ng = ng = 0. By firing ¢; in IV, we enable {4 and by firing {4 we enable 7.
Thus z = [1,0,0,1,0,0,1,0] is a t-invariant of N.

3.4 Decomposition of a Petri Net Model of
a Manufacturing System

CFIO nets can be used as building blocks for larger and more complicated nets
that model realistic manufacturing systems. In this section we will show that the
qualitative properties we discussed in the previous section propagate to Petri nets that
are decomposable to CFIO nets.

Let us consider a Petri net N with input and output transitions that model the arrival

of parts to and the departure of parts from a manufacturing system. A subset NC of

N is a CFIO of N if:
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i) NC is a connected CFIO net.

ii) The input (output) transitions of NC' are input (output) transitions of N.

iii) Every node (place or transition) of NC' is a node of N.

iv) For every transition ¢t of NC, the set of input (output) places of ¢ in NC' is

equal to the set of input (output) places of ¢ in V.

Definition 15: We call a Petri net /N with input and output transitions a decomposable

Petri net, if there exist consistent CFIO nets NC;, NC,,..., NC,, of N, such that:

N =|JnNc
=1
Result 8: A decomposable Petri net each elementary circuit of which contains at least

one token

(i) is consistent
(ii) can be kept bounded by controlling its input and output transitions, and

(iii) is live.
Proof:

(i) Let C be the incidence matrix of the decomposable Petri net N and
NCy,NC,,...,NC, a set of consistent CFIO nets such that N = |J._; NC;. The
consistency of NC;, i = 1,2,...,r implies that there exists a vector z' € N™such

that Cz* = 0 and

. | >0, ifty € NC;
e = 0, otherwise
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Let us consider z* € N™ such that

zZ:Zx}c fork=1,2,...,m (15)
=1
then
T ) T .
Ca*=C) a'=) Ca'=0 (16)
1=1 =1
Furthermore
zp=> @, >0 fork=1,2,..,m (17)
i=1
since every transition ¢, k£ = 1,2,...,m belongs at least to one NC;, and, thus, w}c
is strictly positive for at least one ¢ € {1,2,...,r}.

From equations (16) and (17) we conclude that N is consistent.

(ii) Given that NC;, NC,,...,NC, are consistent subnets, we consider a vector
such that:
T
x:Zniw’ = [T1,Z2,. .+, Ty (18)
=1

where 2° are the vectors introduced in (i) above, and n; are nonnegative integers.
Then if transition t; is fired z; times, ¥ = 1,2,...,m (which is always possible)
the resulting marking is the initial marking. Thus, N can be kept bounded if the

transitions are fired according to (18).

(iii) Liveness results from the fact that N is the union of CFIO nets.

Q.E.D.

Hereafter we will call activation of the CFIO net NC; the firing of the transitions

of NC; as many times as required by the value of the corresponding component in z*
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Corollary 2: From the proof of Result 8 we can deduce that by sequential activation
of the manageable CFIO nets that compose the Petri net model we can ensure that
the system will retain its expected qualitative properties as defined by manageability:

liveness, boundedness and consistency.

3.5 Chapter Summary

This chapter defines a subclass of black and white Petri nets, the Conflict Free nets
with Input and Output transitions (CFIO). It also introduces the notion of manageability
which is defined by a set of properties that are important in manufacturing systems
i.e. absence of deadlocks and overflows, ability to reach any valid inventory level
and any machine availability state, and ability to recover the initial system. Flexible
manufacturing systems can be modeled by Petri nets that are unions of CFIO nets, and
are manageable if the underlying CFIO nets can be kept bounded and are consistent.
A reduction algorithm that simplifies the detection of these properties, given a union
of CFIO nets, has been developed. In the following chapter we show how to use CFIO
nets to evaluate the designs of a FMS. Furthermore, we employ CFIO nets to perform

planning and scheduling.
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4 Application of CFIO Nets to Flexible
Manufacturing Systems

In this chapter we first discuss the modeling of flexible manufacturing systems using
CFIO nets. Subsequently, we use the Petri net model of a system to evaluate its design

and to perform the production planning and scheduling tasks.

4.1 Petri Net Models of Flexible Manufacturing Systems

We use a bottom-up synthesis approach for modeling flexible manufacturing sys-
tems. It involves determining the CFIO nets that compose a system, and, subsequently,
synthesizing the Petri net model from these modules. There is no rigorous procedure to
perform this bottom-up synthesis. Furthermore the Petri net model of a manufacturing

system is not unique.

Our experience shows that a routing-based modeling approach is convenient in
most cases. This approach considers the sequence of operations that are necessary
to manufacture each part in the system (part routing). The operations included in a
part routing, their inputs and outputs, and the related buffers, are modeled by a single
CFIO net. The inputs and the outputs of this net correspond to the introduction of raw
materials, and the delivery of the finished parts, respectively. Note that since we are
considering flexible manufacturing systems, alternative routings for a part are possible.
In this case, each alternative routing should be modeled by a separate CFIO net. The
CFIO nets corresponding to the production routings of all parts are synthesized to

form the system’s Petri net model.
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Example

Consider an FMS that comprises three machines M;, M,, M3, and manufactures
two types of parts P4 and Pg. The manufacturing operation sequence for P, is
< Oy, 02 >, while the manufacturing operation sequence for Py is < Oz, 04 >. Each

manufacturing operation can be performed by one or more machines, i.e:

Oy : {My(4), Mz(1)}, Oz : {M3(2)}, Os: {M1(4)}, Os: {M2(2), M5(4)}

The quantities in parentheses are the related manufacturing times. Figure 12 shows the

manufacturing operation sequences and the corresponding machines for both part types.

Ol M@ M) O, M, (4)

Figure 12: Manufacturing operation sequences for parts P4 and Pg.

Additional set-up operations are required in the manufacture of P4 and Pg. In
operation Oz of product Pg an operator mounts a special fixture on machine M,
(operation Sy). After operation O3 is completed, the operator removes the fixture
from the machine (operation S;). If the operator becomes unavailable, a replacement
operator is provided (operation Ss) to perform the required tasks. Operation Sy
represents the introduction of raw materials for part P4; no manufacturing time is

associated with Sj.
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Table 1 Transition to operation relation for CFIO nets in Figure 13
transition operation resource
tq Sy —
ta o M,
t3 o M,

14 0O, M;
ts Sa operator
te S operator
t7 O4 M3
tg 0, M,
tg O3 M,
t10 S operator

Table 2 Description of places for the CFIO nets in Figure 13

place description

P1 Part available for operation O,

P2 Part available for operation O

P3 Operator available for operation S
Pa Part available for operation O4

D5 Part and fixture available for O3
Ds Fixture available for operation Ss
pr Fixture available for operation S

The set-up related tasks are:

S1: Operator mounts fixture and product on M;. The required set-up time is 2
time units.

Ss: Operator removes fixture. The required tear down time is 1 time unit.

S3: Replacement operator becomes available (no time is required for Ss).

Ss: Raw material for part P4 becomes available (no time is required for Sy).

The first step in modeling this system by CFIO nets is to identify the production
routings. There are two alternative routings for part type P4: Ry = < My, M3 >

, R% = < M,, M5>. The routings for part type Pg are: Ry = <M;,M,>, R} =
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< M, M3>. We model each of these routings by a distinct CFIO net. This is done by:
i) modeling each operation-resource combination by a transition (see Table 1), and ii)
modeling each condition necessary for performing an operation by a place (see Table
2). Figure 13 shows the CFIO nets corresponding to the two alternative routings of

each part P4 and Pg. In this figure N CZ is the model of routing Rf .

The Petri net model of the manufacttléring system includes the union of the CFIO

} H p1 p2 14
nc!
, t1 p1 p2 t4
we? ]
13
18
5 p3 16 p5 9 p4
>
NC} p7 p6
t10
.
5 p3 6 p5 t9 p4
{
NCj P7 p6 { o
0
‘—_

Figure 13: CFIO nets corresponding to the production routings of parts Pa, Pg.
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nets of Figure 13. We complete this model by introducing places ¢, ... gs that relate
the operations performed by the same machine. By placing only one token in each
of these additional places we guarantee that the machines can perform at most one

operation at any given time. Figure 14 shows the resulting model of the FMS.

q4

t2

g6

Figure 14: Petri net model of FMS including resource constraining places qa, ... ge

4.2 Design Evaluation

The Petri net model of the manufacturing system is used to evaluate the system
design with respect to manageability. This is accomplished by determining whether the
CFIO nets of the model are consistent and can be kept bounded. As we have shown in
the previous chapter, liveness is an intrinsic property of CFIO nets and guarantees the
absence of deadlocks in the manufacturing system. Moreover, it ensures that the system

can produce all parts for which it is designed for. Boundedness, on the other hand,

47



implies the absence of buffer overflows and guarantees that there are no uncontrollable
subsystems present. Finally, consistency guarantees the ability to return to the initial
state from any system state. This, in turn, implies that any valid inventory level, as

well as any machine availability state, can be reached.

According to Chapter 3, determining the manageability of the Petri net model
consists of the following two steps that have to be performed on all CFIO nets of

the model:

1. Circuit reduction: If self-sustained circuits are detected, the net under consideration
cannot be kept bounded and is, therefore, non-manageable. This implies that there
is an uncontrollable subsystem in the manufacturing system, which is modeled by
the self-sustained circuit. If no self-sustained circuits are found, then the system
can be kept bounded by controlling its input transitions. During circuit-reduction,
non-consistent circuits are also detected. If such circuits exist, the system is not
consistent and, thus, non-manageable. This anomaly implies that there exists a
buffer that may overflow. If none of the above anomalies are detected, we proceed

with the path reduction step.

2. Path reduction: The net is reduced as described in Section 3.3.2. If the reduced net
N1 is consistent, so is the initial net N, and, thus, N is manageable. Consistency of
N (with incidence matrix C?) is determined by computing the extremal solutions
of C'z! = 0 using classical linear programming approaches ([4], [5]). This

computation is usually very fast, due to the small size of C*.

If one of the CFIO nets of the system model is found to be non-manageable,
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the cause is detected. Subsequently, the designer has to determine if the problem is
due to a modeling or a design error, and correct it accordingly. The procedure is
repeated until all CFIO nets are determined to be manageable. This ensures that under
sequential activation of the CFIO nets of the Petri net model the manufacturing system
retains its qualitative properties as defined by manageability: liveness, boundedness,

and reversibility (see Corollary 2).

Example

The design evaluation approach described above is applied to the sample FMS

introduced in Section 4.1.

Circuit Reduction: The circuit reduction method is applied to each of the CFIO nets
of Figure 13. NC% and NC? have no circuits and remain unaltered. Consider the
CFIO net NC} and its circuit < tg, ps, 9, Ps, t10, 3,6 >. Note that place p3 of this
circuit has more than one input transition, implying that the CFIO net is not consistent
and that the corresponding system is not manageable. This anomaly forces us to search
for the underlying system design flaws. Two such flaws are determined: i) There has
been no consideration for removing the replacement operators once introduced to the
system. ii) By modeling the introduction of an operator to the system by an input
transition, we implicitly assume that there is an unlimited pool of replacement operators
available. We will resolve these problems by establishing a pool of available operators
(at least one), who are responsible for the fixture set-up and tear-down tasks required
for operation O3. Operators from this pool are assigned to these tasks as needed. When

the tasks are complete the operators become part of the available pool.
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The updated version of NCg which reflects these design changes is shown in
Figure 15. Place p3 models the pool of operators, and its tokens model the available
operators. After operation S; (modeled by t;0) is completed, the operator rejoins
the pool of available operators. Operation S; (modeled by ts) is performed by an

available operator from the pool.

NC},

Figure 15: CFIO net NC} modeling the redesigned routing Ry

The CFIO net of Figure 15 has two circuits: < tg, ps, t9, Pg, t10, P3, tg > and
< ts, s, t9, Pe, t10, P7, 16 >. These are reduced to a single transition in accordance
to the circuit reduction rules, i.e. by substituting in the corresponding incidence matrix
all the columns corresponding to the circuit transitions by a new column, that is equal

to the sum of the ones removed. The reduced net has as follows:

8

t11 p4

NC}

Figure 16: CFIO net NC} after circuit reduction has been performed

The reduction resulted to an input transition, ¢, implying that the reduced circuit
was a self-sustained circuit. This is due to a modeling error; i.e. we failed to model

the introduction of raw materials for the corresponding routing; as a consequence the
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18

reduced t12 p8 t11 p4

NC}

Figure 17: Final version of NC}%
model implied that the underlying system could produce indefinitely. The corrected
model and its reduced version are shown in Figure 17, where transition ¢;, models the
introduction of raw materials denoted by a new operation Ss in the operation sequence
of part Pg. As with operation S5, we assume that there is no manufacturing time
associated with Ss. Place ps models the availability of raw materials. Transition ¢,
models the aggregated operations 51, O3 and S;. The firing time of ¢y is equal to the
total operating time for Sy, O3 and S, i.e. 4 time units. The resulting net has no other

circuit, and the circuit reduction step is complete.

The circuit reduction of CFIO NC% is similar to that of CFIO NC}, and the

corrected and reduced models of NC% are shown in Figure 18.

Path Reduction: Consider the CFIO net NCY in Figure 13. According to the path
reduction procedure described in Section 3.3.2 we assume that the initial marking is
zero and we define a set of inequalities between the number of firings of the input

and output transitions (in this case between transition ¢; and t4). To do so we apply
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Equation (4) starting from the output transition, ¢4, to obtain n, < ng and ny < n;.
The resulting input-output relation is
ny < ng

which complies with Equation (5). The reduced net comprises a single place, one
input and one output transition. This was expected, since CFIO NCY% was a single
path connecting a single input transition to a single output transition. Obviously the
reduced net is consistent, and thus CFIO net NCY, is also consistent. The path reduction
procedure for the other three CFIO nets is similar and results to reduced nets, each
comprising an input transition, a place and an output transition.

This analysis showed that after the design and modeling corrections all CFIO
nets are manageable, and, so is the Petri net model of the manufacturing system
(which is defined by their union). Figure 19 presents the final Petri net model of
the manufacturing system, and incorporates the necessary corrections for the design
flows and the modeling errors.

2 p8
6 p5 19 p4

2
NCy p3 p7 06 \I 7

t10

reduced 12 p8 11 p4
2
I t7

Figure 18: Final version of NC%
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q4

112

q5

qé

Figure 19: Model of manufacturing processes and resource constraints

4.3 Planning

Given a list of parts, the corresponding quantities required and the part due dates,
production planning determines the time period in which each operation of each part
should be performed, as well as the number of parts to be processed by each operation.
Production is planned to optimize a system performance index, e.g. minimizing work-
in-process inventory, balancing machine utilization, etc. In this section we show how
to use the Petri net model of a flexible manufacturing system in order to develop a
convenient linear programming formulation of the production planning problem. By
solving the resulting linear program, we determine the number of times the CFIO nets
have to be activated within each time period, so that the demand is satisfied and the

criterion is optimized. Activation of a CFIO net corresponds to performance of the
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operations of the corresponding routing during the activation period.

As will be shown in the next section, the advantage of using Petri nets (decompos-
able to CFIO nets) as the basis of the planning problem formulation is that it provides
the means to abstract this problem in a convenient manner. Furthermore, it allows the
planner to select the level of abstraction in order to obtain a desirable balance between
solution quality and computational burden. Finally, using CFIO nets for planning
guarantees the preservation of the qualitative properties of the system during system

operation.

4.3.1 Planning Model

Our approach consists of two steps. First, given the Petri net model of the
manufacturing system, we decompose it to CFIO nets. Secondly, we use the resulting
CFIO nets to formulate the linear program of the planning problem, which is solved by
standard techniques. Note that the linear program does not consider each operation of
each part separately, but aggregates all operations corresponding to a single CFIO net
into one decision variable. Correspondingly, the solution of the linear program provides
the number of times each CFIO net should be activated within each time period, or,
equivalently, the number of times the operations of the corresponding routings should

be performed.

Step 1: A natural decomposition of the system’s Petri net model to CFIO nets is
achieved if each CFIO net corresponds to a routing of a single part. To reduce
the computation burden of production planning, it may be desirable, however, to

decompose the Petri net model, such that the individual CFIO nets represent more
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than one routing. In this case, the number of the resulting CFIO nets is smaller and so
is the size of the linear program. The drawback of considering unions of routings during
production planning is that we reduce the flexibility of producing the corresponding
parts in variable ratios. This is because by aggregating the CFIO nets of two or more

parts we do not have the flexibility of activating their nets separately.

To better define this “production flexibility” issue we present the following result
which is a direct consequence of Corollary 2 (N is the Petri net model of the

manufacturing system under consideration):

Result 9: Let M € R(My) such that M is reachable by sequential activation of the
CFIO nets of N. Then it is possible to reach My from M by sequential activation

of the same CFIO nets.

It is important to realize that the above result does not guarantee that M, is reachable
from all markings reachable by My, since not all M € R(M,) are reachable by
sequential activation of the CFIO nets. The more CFIO nets we aggregate, the fewer
markings are reachable by sequential activation of these nets. Thus, flexibility loss can
be quantified by the number of markings which are reachable from the initial marking
but are not reachable by sequential activation of the selected CFIO nets. Maximal
flexibility would be obtained by using the minimal CFIO nets of the Petri net model,
i.e., CFIO nets the transitions of which correspond to the minimal t-invariants. Minimal
CFIO nets cannot be decomposed further. In fact, if the CFIO nets corresponding to
N are the CFIO nets corresponding to the minimal t-invariants, then N is reversible

for any marking M, such that each elementary circuit contains at least one token.
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Finally, it is emphasized that it is up to the designer to decide on the desired level
of aggregation of the model’s CFIO nets, in order to strike a good balance between

computational burden and production flexibility.

Step 2: The second step of our production planning approach is to formulate the
linear programming problem. Hereafter, we assume that the Petri net model of the
manufacturing system is decomposable into manageable CFIO nets, and that such
a decomposition has been established. As we stated above, production planning
optimizes system performance while ensuring that a variable demand is satisfied.
Therefore, our planning method should determine the number of times the CFIO nets
of the system’s model are activated, in order to satisfy the demand and optimize the

planning criterion.

Activating a CFIO net involves firing transitions which correspond to operations
of the flexible manufacturing system. Thus, each machine in the system should have
adequate capacity to satisfy the workload requirements of these operations. The general

formulation of the resulting capacity constraint for time period % is:

R
3 ) zajp <Dy m=1,...,H k=1,... K (19)

7=1 s€0y,m

where

e R is the number of CFIO nets,

*  O;n is the set of operations performed by machine m and modeled by a transition
of CFIO j,

* 2z, is the production time related to operation s,

* a; is the number of times the j** CFIO has to be activated during the k*! period,

56



e Dy is the duration of the &*® time period,
» H is the number of machines,

¢ K is the number of time periods considered in the production planning problem.

The total demand for each part has to be satisfied by the cumulative production

over all time periods. The resulting demand constraint has as follows:
K K
Yo S uigai>) di i=1,...,L (20)
k=1 j=1 k=1
where

e L is the number of parts
» w,;; is the number of parts ¢ produced by routings modeled by CFIO j

» di is the demand for part : during period k.

In this work the optimization criterion consists of minimizing the sum of the

inventory and backlogging costs. The general formulation is:
K r ‘ R + r R +
F=Y Z{Iz [Z(—dﬁc +y uz',jaj,k)] + B; [Z(d’ -y ui,jaj,k)] }
r=1 i=1 k=1 Jj=1 k=1 j=1

where

e I; is the inventory cost for part ¢,
* B, is the backlogging cost for part ¢,

« [2]" is defined as max(0,z)
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Let y' be the cumulative inventory for part type ¢ at the end of time period r, and

2zt be the cumulative backlog of part ¢ at the end of period . Then

T R
vi > Y (—di+ Y uijak)
k=1 7=1

r R
22 (di = uia;)
k=1 i=1

Using this notation the problem to solve becomes:

-

r=1,...,K i=1,...,L (21)

-

K L

Minimize : Z Z(Iiyi + B,-zi)

r=1 i=1
subject to (19), (20), (21) and
Qj.k 20 j=1,...,R; k=1,...,K

vi>0,2>0 r=1,... ,K;i=1,....L
The solution to the linear program provides the number of times each CFIO net needs
to be activated in each planning period to minimize the inventory and backlogging cost
and to satisfy the demand. In order to determine from this solution the production plan,
i.e. the number of times each operation needs to be performed within each time period,
we need to derive the number of times each transition fires during each time period.
Since every transition models an operation-machine combination, the number of times
each transition fires provides how many times each operation should be performed, and
by which machine. The relationship between CFIO net activation and transition firing
is given by the t-invariant of the corresponding CFIO net. In particular, the number of
times a transition fires is given by the product of the number of times the CFIO net
is activated and the value of the t-invariant element that corresponds to this transition.
Since the CFIO nets are consistent, it is guaranteed that at least one t-invariant exists

for each CFIO net. The CFIO net activations are provided by the solution of the linear
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program and the t-invariants are determined from the reduced CFIO net as described

in Result 7.

By performing these calculations we generate the production plan. Note that the
order of the transition firings in each time period of the plan has not yet been determined
and it may depend on other constraints (such as resource constraints). This ordering

is determined by the scheduling activity discussed in Section 4.4.

The following example demonstrates our production planning approach.
4.3.2 Example

Consider the manufacturing system introduced in Section 4.1, and its Petri net
model. The demand of parts P4 and Pg is given in Table 3 for four consecutive time
periods. The part inventory and backlogging costs are given in Table 4. We assume

that the length of each time period is 40 time units.

Table 3: Demand of parts P4 and Pp Table 4: Costs for parts P4 and Pp
Product Demand Py Pgp

Period d} d2 Backlogging Cost: B; | 20 30

k=1 2 6 Inventory Cost: I; 4 2

k=2 15 1

k=3 7 4

k=4 3 17

In this example we will consider the Petri net model decomposition into the
four CFIO nets as described in the previous section. Taking into consideration the
manufacturing times for each operation-resource combination and the CFIO nets of the

model, the capacity constraints for each machine M, M, and Ms are derived from
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Equation (19):

day i + 4dazx + 4dagr <40
dzp 4+ 2asy <40 k=1,...,4 (22)
2005 + 2a3k + 4dagr <40

Taking in consideration the product demand for each planning period (Table 3), the

demand constaints for each product are derived from Equation (20):
k=1
4 (23)

The criterion of minimizing the sum of the inventory and backlogging costs is

derived from the general formulation.

+ +
f=z;f=1{ 4[2;=1<a1,k+a2,k—dz>] +2o[zz=1(di—al,k—a2,k>] i

+ +
n 2[z;=1(a3,k+a4,k—dz)] +3o[zz=1(dz—as,k—a4,k>] }

where d. is the demand for product i during period k.

By setting

T
yrl 2> Z(am +agr — dxlc)
k=1
T
22 (df — ay, — azg)
k=1

yr 2 ) (s +ask — df)

k=1

,
2 2 ) (df —agp — asp)
k=1

the problem to solve becomes:
4

Minimize : » (4y} + 202} + 2y2 + 3027)

r=1
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subject to (22), (23), (24) and
a;x >0 43,k=1,...,4

Y2 20,220 r=1,...,4;, s=1,2
From the solution of the linear program we obtain the values for o, ie. the
number of times the ¢** CFIO has to be activated during the k*" period (see Table

5). Note that activating a CFIO net corresponds to performing the operations of the

corresponding routing.

Table 5: Linear program solution: The number of times

each CFIO needs to be activated during each time period

Period NCY NC? NC} NCE
k=1 2 0 6 0
k=2 10 5 2 0
k=3 7 0 10 0
k=4 3 0 10 0

To determine the production plan, it is necessary to calculate how many times
each transition fires. This will provide the number of times each operation has to be

performed, and by which machine. To this end we perform the following calculations.

Consider the CFIO net NC% given in Figure 13. In Section 4.2 we have shown
that by applying the circuit and path reduction methods, the CFIO net is reduced to
a single place with one input and one output transition. According to result 7, these
transitions correspond to the input and output transitions of CFIO net NC%. The
incidence matrix of the reduced net is therefore:

iy 14
ct = pg{ 1 —1]
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It is easy to observe that the vector

<ty, t4>
= <1, 1>

is such that C'2! = 0, i.e. ! is a t-invariant for the reduced net. In accordance to
Result 7, a vector x > 0 such that Cz = 0 always exists and can be derived from
vector !, where C is the incidence matrix of the CFIO net N CY. This is done by
firing the input transition ¢; of NC as many times as specified by z*, i.e. once, and

then fire all enabled transitions. The resulting t-invariant is:

<t1, t2, ty >
<1l, 1, 1>

By padding with zeros for the transitions not in NC, we obtain

<t1a t2, t37 t4a t6, t9a th, t12, t7) t8>
H}&: <1, 1, 0, 1, 0, 0, 0O, 0, 0, 0>

Similarily, we obtain the corresponding t-invariant vectors for the other CFIO nets

of this example:

<ti, t2, t3, t4, 6, t9, ti0, t12, t7, ts>
H= <1, 1, 0, 1, 0, 0, 0, 0, 0, 0>
H:= <1, 0, 1, 1, 0, 0, O, 0, 0, 0>
HLY= <0, 0, 0, 0, 1, 1, 1, 1, 0, 1>
H{= <0, 0, 0, 0, 1, 1, 1, 1, 1, 0>

The number of times a transition fires is given by the product of the number of
times the CFIO net is activated and the value of the t-invariant element that corresponds
to this transition. From the above t-invariant information and Table 5 we obtain the
number of times each transition has to be fired during each elementary period (see
Table 6).

Based on Table 6, and considering Table 1 (which provides the relation between

each transition and each operation-machine combination) we can derive the number of
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Table 6: Planning Results: transition firings for each period

Transition
Period t ty t3 ty te t9 tio | ti2 tr ts
k=1 2 2 0 2 6 6 0 6
k=2 15 10 5 15 2 2 0
k=3 7 0 7 10 10 10 10 0 10
k=4 0 10 10 10 10 0 10
Table 7: Production plan
Operations and Machines
S; by 52 by
Period 5 01 by | 01 by | 02 by s Os by e | s, O4 by | O4 by
M, M, M; M M; M;
tor tor
=1 2 2 0 2 6 6 0
k=2 15 10 5 15 2 2 0
= 7 7 0 7 10 10 10 10 0 10
k= 3 3 0 10 10 10 10 0 10

times each operation has to be performed by a certain machine per time period, i.e.

the production plan (see Table 7).

The production during each period (Table 8) is derived from Table 7 if we consider

that operation Oy produces part P4 and operation O4 produces part Pg. By comparing

Tables 3 and 8, one can observe that the production of P4 followed the demand of P4

exactly. However, Pg was overproduced during periods £ = 2 and & = 3 to satisfy

the high demand during period £ = 4. The incurred inventory costs were necessary,

since the demand during period k£ = 4 could not be satisfied by the production during

that period due to resource capacity constraints.
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Table 8: Production quantities

Product
Period Py Py
k=1 2
k=2 15
k=3 7 10
k=4 3 10

4.4 Scheduling

In this section we present an approach to solve the scheduling problem, given a
manageable FMS, its Petri net model and the production plan. The schedule defines the
starting time of each operation within the time period the operation is to be performed

as determined by the production plan.

The problem under consideration is scheduling of a flexible job-shop. Job-shop
refers to the fact that different products follow different sequences of operations through
the shop; flexible refers to the fact that more than one machine is capable of performing
an operation. According to the standard notation of Blazewicz et al. [50] this problem
can be denoted as J/rese11/Cpax. It should also be noted that we deal with variable

demand and non-zero WIP inventory.

There are two types of decisions that have to be made in order to solve the
scheduling problem: (i) Resource Use (RU) decisions which consist of selecting the
resource to perform a given operation when several resources are available. (ii)
Product Sequencing (PS) decisions, which are concerned with the sequencing of product
operations on each resource. The problem objective is to determine the RU and PS

decisions within each time period of the production plan that result in a production
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makespan that is less that the duration of the corresponding period. By production
makespan we mean the time ellapsed from the start of the first operation of the schedule
to the time the last operation is completed. Note that in this work we do not seek to
find the optimum schedule. Instead, we are trying to find a schedule that fits within
the time periods of the production plan. To this end we propose an algorithm that
tries to minimize the makespan; however any solution with a makespan lower than the

duration of the time period is acceptable.
4.4.1 Petri Net Models for Scheduling

Scheduling is based on the same Petri net models we developed for design eval-
uation and production planning. Some aspects of these models that are important for
scheduling are discussed below; in particular we focus on the modeling of RU and

PS decisions.

t1

t2

t3

Figure 20: Modeling of RU type decisions

RU decisions are modeled by places which have more than one output transitions
(hereafter called RU places). Consider, for example, Figure 20: A decision has to be
made whether the next operation for the part (modeled by the token in place p) has to be
performed using the resource related to £, or the resource related to t,, or the resource

related to ¢3. It is clear from our previous discussion on modeling of manufacturing
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systems that a Petri net model which includes such a place will be decomposed to at
least three CFIO nets, each containing the place p and one of its output transitions.
The planning method determines how many times each of these three CFIO nets has
to be activated within each time period. It is the task of scheduling to determine when

each of those activations will occur within each period.

4
q t2

=||<t4 ’Q

t12

Figure 19: Model of manufacturing processes and resource constraints

In the Petri net model of the FMS shown in Figure 19 (and repeated here) there are
two RU places, p; and p4. Place p; and its output transition ¢; belong to CFIO net NC.
Place p; and its output transition ¢3 belong to CFIO net N Cfl. According to the result
of production planning the number of times ¢, and ¢3 are fired per period is known.
For example in the second time period, t, and ¢s fire 10 and 5 times, respectively (see

Table 6). In this section we will show how to determine when those activations should
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occur, in order to comply with the production plan of each time period.

PS decisions are modeled by places that i) have more than one output, and ii) each
output transition of such a place is also an input transition of the place (these places
are hereafter called PS places). In Section 4.1 we introduced PS places to guarantee
that each machine can perform at most one operation at any given time. In this Section
we focus on the decision involved with these places. Consider, for example, Figure
21. A decision has to be made whether the resource (the availability of which is
represented by the token in p) should be used to perform the operation related to t;

or the operation related to ;.

t2

Figure 21: Modeling of PS type decisions

We represent a scheduling decision related to an RU or PS place by a sequence
of transitions to be fired during the time period under consideration. All transitions
of this sequence are output transitions of the RU or PS place. To respect the results
of production planning, transitions appear in the sequence as many times as specified
by the production plan. To illustrate the generation of a transition sequence consider
place g, of Figure 19 which is a PS place. It models the availability of machine M,
which performs operation O, (modeled by transition t3), and operation O4 (modeled

by transition tg). According to the production plan, in the second time period, ¢3 and
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tg fire 5 and 2 times respectively (see Table 6). Thus, for place g, a valid scheduling
sequence for this period is o4, = < t3,1s,t3,13,13,13,13 >.

Using this notation the scheduling decisions are expressed in terms of sequences oy,
assigned to each RU and PS place of the net. Each sequence o, provides the order that
the output transitions of p should be fired. If p is a PS place, o, indicates the order
the output transitions of p should fire. Note that a given transition in the sequence
will not start firing until the previous one stops firing. This is because each resource
can process only one part at a time. If p is an RU place, o, indicates the order the
output transitions of p should start firing. Note that a transition may start firing as
soon the previous one has fired, since resources are allowed to operate concurrently.
In other words, there may be an overlap in the firing period of transitions of o, if p

is an RU-place, but no overlap is allowed if p is a PS place.

We assume that transitions are fired as soon as they are enabled. Consequently,
a schedule is defined as soon as a sequence o, of transitions is assigned to each RU

and each PS place.

It is important to note that the Petri nets we use for modeling flexible manufacturing
systems are non-deterministic. However, resource usage and product sequencing
decisions remove the ambiguity from the model, so that when the Petri net and the

results of scheduling are considered together they result in a deterministic model.

4.4.2 Scheduling Algorithm

Having established the appropriate system model, the objective of the scheduling

problem can be expressed as follows: Determine the sequences o, to be assigned to
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the RU and PS places that result in a makespan which is less than the duration of the
planning period. Note that each planning period may have different duration and will
be considered seperately.

Since the scheduling problem of the general job-shop is NP-hard [18], only heuristic
algorithms can be considered for solving large-sized problems. In this work we follow
a critical path-based scheduling approach. Note that the critical path comprises the
transitions that define the production makespan. Thus, in order to shorten the makespan,

transitions belonging to the critical path should be adjusted.

The scheduling algorithm presented in this section will be employed repeatedly to
determine the production schedule for each period of the production plan. For a given

planning period we employ the following notations:

D: Period duration, in time units.

e n;: The number of firings of transition ¢; within the planning period under
consideration. If ¢; models operation O, on machine M,, n, is the number of
times operation O, is performed on machine M, within the planning period.

» The pair (¢;, %) denotes the k" firing of transition #;. If ¢; models operation O,
on machine M,, (t;, k) models the k*® time machine M, performs operation O,.
Hereafter, the pair (¢;, k) will be refered to as a transition firing.

e S;,(k): Start time of (¢;,k).

e F, (k) : Finish time of (¢;,k): F; (k) =S¢, (k) + Z(t;), where Z(¢,;) is the firing

time of transition t,.

The above notation is used in the following definitions.
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Definition 16: A critical path is a sequence of transition firings

CP= ((tan kﬂl)’ (taz’ kﬁ2)7 ) (tan’ kﬁn))
such that:

1. Stal(kﬁl) = 0
2. F (kg)=Si (ksp), i=1,...,n—1

3. F, (kp,)= IItlEIiCX{Ft(k)} The value of F;, _(kg,) is the makespan.

Given the marked Petri net model and the starting time of every transition firing,
the critical path can be easily computed starting from transition firing (¢, , kg, ) which
is the last firing in the path. The next to last transition firing in the path is the one with
finishing firing time equal to S;, (kg,). The computation continues in a backward
fashion to include transition firings in the critical path until a firing with zero starting

firing time is found. Note that the critical path may not be unique.

Definition 17: Let transition ¢; model operation O, on machine M,,. Then float time
Fi,(k) of the transition firing (t;, k) is the maximal time the transition firing can be

delayed without increasing the makespan; i.e.

7o (k) = min [(ﬂ,(l) +54,(D) = Fu(B)), (Fu(m) + Siy(m) - st.ac))]
where

* transition firing (¢;,/) models the next scheduled operation by machine M,, and
* transition firing (¢4, m) models the next scheduled machine to perfrom operation
0O, (in an FMS it is possible that more than one machine can perform a specific

operation).
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This recursive definition ensures that the float time associated with the k*® time
machine M, performs operation O, (denoted by (¢;,k)) cannot be greater than: i)
the float time of the next operation on M, plus the difference between the ending
time of (¢;,k) and the starting time of that next operation, or ii) the float time of
the next machine scheduled to perform operation O,, plus the difference between the
starting times of (¢;, k) and the starting time of the next machine scheduled to perform

operation Q.

Float times can be calculated in a recursive manner, starting from an input transition.
Consider the transition firing (¢;, k) and the PS and RU sequnces that contain ¢;. Given
this information, recursively compute i) the float times of transition firing (¢;,), which
is the next element in the PS sequence, and ii) the float time of transition firing (¢, m)
which is the next element in the coresponding RU sequence. This calculation of the
float time takes into account the schedule and machine precedence constraints of the

operations. Note that all transition firings on the critical path have zero float time.

The sheduling approach of this work assumes that the following information is

available:

1. The Petri net model N of the manufacturing system, such that NV is decomposable

to manageable CFIO nets.

2. An initial marking, My, such that each elementary cirsuit contains at least one

token. My models the initial WIP of the system.

3. Planning information including the duration D of the planning period under

consideration, and the number of times, n;, each transition, ¢, fires within this
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planning period D.

The scheduling algorithm starts with a feasible set of sequences o, for each PS
and RU place, i.e. with a set of 0,, which do not lead to blocking. To generate such
a set we arbitrarily select an enabled transition t;, and fire it (if it has not fired n;
times already). Since the net is manageable, it is guaranteed that this procedure will
not deadlock and all transitions may fire as many times as specified by the planning
results. The resulting sequence of firings determines the sequences o, for all RU
and PS places. To reduce the computation burden we assume that after a number of

recursions the float times are zero.

The second step is to determine the critical path for this set of sequences o,, as
discussed above. If the makespan of the critical path is greater than the duration of the
planning period, it is evident from definition 16 that is necessary (but not sufficient) to
reduce Fi, (kg,). Equivallently, it is necessary to move earlier in time the finishing
time of one of the transition firings that belongs to the critical path. This, however,
implies that another transition firing will be delayed. If the delay time is less than or
equal to the float time, the transition can be delayed without increasing the makespan.
Note that in doing so it is not allowed to violate the machine precedence constraints
(i.e. the contstraints related to the manufacturing process, taking into account the initial

marking). The following algorithm is derived from the above remarks.

Algorithm: Consider the marked Petri net model of the manufacturing system, the
solution to the production planning problem, and the duration of the planning period

under consideration.
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1. Compute a feasible set of sequences o, and the starting times of the transition
firings (as described above).
2. Compute the critical path and the makespan.

3. Select (ty,ky) and (., k) such that:

a. ty, #F tg

b. (tu,k.) belongs to the critical path;

c. (., k.) immediately preceds (t,, k,) in one of the sequences o,, belonging to
the feasible set of sequences;

d. swapping (t,,k,) and (t., k.) in the sequence does not violate the machine
precedence constraints;

e. the float time associated with (2., k.) is greater than or equal to the delay time

of (t., k) if the latter is swapped with (t,, k,) in the sequence o,,.

If several pairs (1., k,,) and (., k.) satisfy the above conditions, select the one for
which the associated delay is the closest to the float time.
4. If a pair has been found, swap (t,k,) with (¢, k.) in the sequence o, and go

to step 2; else terminate the algorithm.

The output of the algorithm is a transition firing sequence for each RU and PS place.
Those sequences, along with the Petri net model, uniquely define the starting time of

each transition firing, i.e. the time each operation has to be performed on a machine.

Note that the final makespan may be greater than the duration of the planning
period. If this is the case the time period needs to be increased, and the production

plan and production schedule should be recalculated.
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4.4.3 Scheduling Examples

The following examples demonstrate the above scheduling algorithm. The first
example considers the manufacturing system we introduced in Section 4.1 and demon-
strates the fact that it is not always possible to fit the scheduling within the planning
period. The second example is more comprehensive and also considers non-zero ini-

tial WIP.

Example A Consider the manufacturing system introduced in Section 4.1, and its
Petri net model shown in Figure 19. We will apply the scheduling approach to the
second planning period, the duration of which is 40 time units. The number of times
each transition has to fire during this period are given on Table 6 and are repeated
below. For this first example we do not consider initial WIP. The initial marking is

as shown in Figure 19.

Table 9: Transition firings for the second period

Transition
Period tq 1) i3 14 s tg t10 112 tr ts
k= 15 10 5 15 2 2 2 2 0 2

Step 1 of the algorithm produces the initial sequences presented below.

RU sequences

Upl =< (t2a 1)a (t3a 1)7(t3,2), (t3v 3)’(t3)4)7
(t3,5),(t2,2)(t2,3), (t2,4), (2,5), (t2,6),(t2, 7), (t2,8), (t2,9), (2, 10) >

O'p4 = < (ts, 1))(t8;2) >
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PS sequences

04, = < (t2,1),(te,1),(t0,2), (t2,2), (t2,3), (t2,4),
(t3,5)(t2,6), (t2,7), (t2,8),(%2,9), (t2,10) >

0q, = < (ts,1),(ts,2),(ts3, 1), (t3,2), (t3,3)(t3,4), (t3,5) >

04, = < (t4,1),(%4,2),(t4,3),(ts,4), (t4,5), (t4,6),

(t4a 7)’ (t4,8), (t4, 9)’ (t4a 10)’ (t4a 11), (t47 12)’ (t4) 13)> (t4> 14)7 (t47 15) >

In Step 2 the critical path and the initial makespan are computed. The initial critical

path comprises the following 20 transition firings:

CP =< (tl’ 1)’ (t2a 1)’ (t97 1), (t9a 2)’ (t8,2)’ (t3v 1)’ (t3’ 2)’ (t3’ 3)a (t374)7 (t3’ 5)’

(t2, 2), (tz, 3)a (t2a4), (t2,5)’ (t2a6), (t2’ 7)’ (t2’ 8)’ (tz’ 9)’ (tQ’ 10)a (t4’ 15) >

The makespan corresponding to this critical path is 56 time units. In steps 2,
3 and 4 a transition firing is selected from the makespan and is swapped with the
previous transition firing in its corresponding sequence providing that the requirements
of Step 3 are met. After the swap is performed the makespan and the critical path are
recalculated. The procedure is continued until no further omproval is possible. The
following list presents all swaps performed, along with the associated sequence and

the resulting makespan.
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(tg,].) = (tg,l) Oq, 56

(t9,2) = (t2,1) o4 56
(ts, 1) = (t5,2) Oas 52
(t3,1) = (¢5,1) Op, 52
(t3,2) = (tg,2) s 51
(t3,2) = (t2,1) O, 51
(ts,1) = (ts,1) Oan 50
(t3,3) = (1s,2) Og 50
(3,3) = (t2,1) Op, 50

The final critical path comprises 14 transition firings:

CP; = < (t5,1),(to, 1), (t9,2),(t2,1),(t2,2), (t2,3), (t2,4), (t2,5),
(t2,6), (t2,7), (t2,8),(t2,9), (t2,10), (t4,15) >
The corresponding makespan is 50 time units. Note, however, that the schedule
does not fit within the planning period. Therefore production planning needs to be

adjusted and the schedule should be recomputed for each planning period affected.

Example B In this example we will consider an FMS that comprises five machines

M, ..., Ms and manufactures 3 types of parts.

In Figure 22 the operating sequences for product types A, B and C are presented.
Each block represents one operation and contains the alternative machines that can
perform this operation. We assume that the modeling, design evaluation and process
planning tasks have been performed as described in the previous sections. Figure
23 presents the Petri net model of the manufacturing system. Note that the initial

marking of the model is not zero, modeling initial WIP. The correspondence between
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Figure 22: Manufacturing operations for the three part types of example B.

the machines of the system and transitions of the model is given by Table 10. For
clarity, Figure 23 presents only place ();, which corresponds to the PS decisions
related to machine M;. Places @2, @3, Q4 and Q)5 for machines M, ..., M5 have been
omitted. Also omitted are the places that prevent reentries on transitions ti,ts, tg, 14
and t4g.

We will perform the the production scheduling for a plan period with duration 78
time units. Table 10 contains the firing times of the transitions and the number of

times each transition fires during the time period under consideration.

By applying Step 1 of the scheduling algorithm, the following sequences are derived
(for brevity only the transitions part of the firing is reported):
RU sequences

0p, = < i3,t3,%a,1a,1s,13,%3,13,%3,¢3,t3,t3 >
ps = < T5,T5,15,84,14,14,14,84,15,84,84,15 >
Op, = < t20,t19,%19, %20, t19, E20, E20, t19, t1o, E20,s t1o, trg, trgs tag, Eag, Lo, tag,s Eao, Eag, E1g >
Op,s = < lo1,%a1, 21,001, T21, 821, L1, tat, tan, Ta1, o1, L1, o1y Ban, ton, Ta, ton, To1, o1y B0 >

Op.s = < ta3,123, 24,823,123, 824, T23, 23, E24, t23, 123, T3, L23, T23, L3, Loz, T3, Eas, Loz, Loz >
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Table 10 Transition information for example B

Transition |¢; |to |tz |t |t Vte |t |ts lte |tio |t |ti2

Firing 0 1 3 2 4 0 2 4 0 3 1 8

time

Rt 12 |3 9 7 5 12 12 |12 |11 |O i1 10
Machine | — |M; | Mz | M, [ My | — | My |Ms | — |M;, | My | Ms
Operation | — Oy |01 |0y |0y | — |03 [O4 | — |Os |Os |Og

Transition | ¢33 Vt14 |15 |tie |tz |tis |t1e |t20 |t2r |tz |f2s |tos

Firing 1 0 2 3 2 0 2 2 1 1 2 1
time

e 11 11 |11 j11 11 |20 15 |5 20 |0 17 |3
Machine |M, |— | M, | M; |Ms | — |M; | Ms | My, | Ms | My | M,
Operation |Og | — |07 |Os |Og | — | 010 | 010|011 | O11 | O12 | Oy

PS sequences

04, = < ti9, 15, 82, t19, 15, t15, toa, L2, 19, t1s, t1s, L2, tas, s, tas, T2g, tas, Tho,
t15, t15, t24, t19, 19, L19, t19, T19, t19, 19, T19, t19, t1g, t1g >

04, = < t3,t20,13, 16, t16, t20, t16, t16, t16, t16, t16, 16, t20, E3, 13, t16, T20, T3, E3, t16,
t20, t16,13, i3, 3 >

Ogs = < t11,87,t11, 87, 821, t11, Bay B2, ta,y Br, Bay 7y 7y Ban, 11, By B1ny B1, B0, B0t
ta,t21, %11, t11, 21, t7, T1n, tan,y Bay Bo1, Ban, B21, Bo1,y on s By 7, By By Ty
t7,%4,t21, %91, 821, ta1, t21, t21, 21, o1, 221 >

04, = < ta3, 15,15, t13, 13, t13, t23, t13, t5, t13, t13, T3, 13, t13, t13, t23,
123, 23, t13, t5, 123, L23, s, t23, t23, 123, T3, U5, t23, T23, 123, o3, 23 >

04s = < ti7,%8, s, t17, t17, s, ts, sy ts, t17, ta7y B, bz tar, turs

ts,t17,ts, ts, tg, 1g, 1g >
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In Step 2 the initial makespan and the critical path are calculated:

GP, = < (t23, 1), (t5, 1), (ts, 2), (t1, 1), (t13, 2), (13, 3), (23, 2), (t1,4), (25, 3), (84, 1), (t21, 2),
(t2s,1), (t2,2), (t10,3): (15, 4), (16, 5), (16, 6), (t16, 7), (t16, 8), (20, 3), (13, 3), (2, 4),
(t11,6), (t21,3), (t21,4), (t21,5), (ts, 5), (t21,6), (t11,7), (f13,9), (t13, 10), (t2s, 3), (t2s, 4),
(t23,5), (t13,11), (s, 4), (t23, 6), (t24, 3), (a0, 5), (ta1, 11), (7, 7), (t7,8), (t7,9), (t7, 10),
(t7,11), (t7, 12), (s, 7), (t21, 12), (a3, 10), (t23, 11), (23, 12), (ts5,5), (t2s, 13), (t23, 14),

(t23,15), (t23,16), (23, 17) >
The critical path has 57 transition firings and the makespan is 104 time units.

Subsequently steps 2, 3 and 4 are performed, until there are no more pairs of the
transition firings to be swapped in step 4, and the algorithm stops. Due to space
constraints only some of the initial and final swaps are presented below. The list
presents the associated sequence, the firing of the critical path that was improved and

the resulting makespan.

1 O, (s,1) 104
2 0, (ts,2) 104
3 O, (t13, 1) 104
4 s (t13,1) 104
5 g (t13,1) 104
249 o (t20,4) 80
250 O, (tas,7) 79
251 s (ta1,8) 79
252 o4, (ta, 17) 79
253 Oan (t11,11) 78

After 253 steps the makespan has been reduced adequately and fits with the planning

period. The algorithm is interrupted. The final RU and PS place sequences and the
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critical path are given below.

RU sequences

Op, = < t3,13,1%2,19,19,13,13,13,13,t3,13,13 >

Op, = < ts5,15,14, 5, L4, L4, 4,14, 5, L4, 85,14 >

Op,, = < t19, 119, 120, t20, L19, t20, t20, t19, 19, t19, T19, t20, t19, t19,
t19, t19, 19, t19, t19, t19 >

Op,y = < t21,%21, 821, t21, t21, T21, 21, a1, t21, t21, 221, t2n, to1, o,
t21,%21, %21, t21, t21, t21 >

Ops = < taa, 123, t23, 23, T24, L23, L23, t2d, t23, t23, t23, T23, 23, 23,

t93, 193, t23, 123, 123, ta3 >

PS sequences

04, = < t1g9,t15, 2, t19, t15, t1s, Laa, 2, T19, a5, tas, €2, tas,y Eas, Eas, L2g,
t15, t19, 15, t15, T24, t19, t19, L19, t19, T19, t19, L19, t19, 19, T19, T19 >

o4, = < 13,13, t20, t20, t16, t16, t20, t20, t16, t16, T16, T16, L6, L16s 35 L3,y
t16; 13,13, t16, 120, 16, L3, 3, 13 >
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0gs = < t11,t7,t11, 87, 821, 811, ta, b2, ta, B7y Bay by b7y tany tan s Tans t21s
to1, %21, a1, tan, tan, t21, 87, ta1, B11, t21, B, Ban, By Bon, o1, 01, By
t7, 4, 7, a1, ta1, to1, to1, t7, B7, t7, Bo1, b7, tay to1, B0, o1 >

04, = < ts, 13,113,113, 113, t5, t23, o3, U5, t13, t13, t13, 13, t13, t13, 23,
193,23, t13, t23, t23, U5, t23, t23, t23, t23, t23, Us, t23, t23, t23, t23, 23 >

04 = < t17,18,t8,t17,t17, i3, ts, ts, s, t17, t17, taz, tav, tar, tar, v,

t87 tSa t17’ t87t8a t8’ tg >

The final critical path has 30 transition firings. The makespan duration is 78 time

units.

C-Pf =< (t3’ 1); (t3a 2): (t20) 1), (tZO, 2)$ (tIG) 1)a (t16, 2)) (t20; 3)’ (t2014)> (t16) 3)) (t16>4)a
(tIGa 5)) (t1616)a (t16; 7)7 (tlﬁa 8)a (tB; 3)a (t3,4)) (t16’ 9)1 (t37 5)) (t5> 4)) (t23: 8)a (t23’ 9),
(t23,10), (t23,11), (t23, 12), (5, 5), (t23, 13), (t23, 14), (t23, 15), (t23, 16), (t23, 17) >

Figure 24 presents the Ghant chart of the firings of each transition. Transitions with

zero firing time, and transitions that do not fire have been omitted.

4.5 Software Implementation

All procedures described in this chapter have been implemented in a software
system which i) analyzes a CFIO net in order to determine whether the net can be
kept bounded, and whether it is consistent, ii) performs production planning given
the demand and associated costs; iii) performs the production scheduling given the

planning results.
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The software accepts Petri nets in the form of an incidence matrix and performs

the following steps:

1. Design Analysis:

a.

Circuit reduction: The input is the incidence matrix of a single CFIO net. If
no inconsistent or self-sustained circuits exist, all circuits are reduced to single
transitions. Otherwise, an appropriate error message is generated. The output
of the circuit reduction is the incidence matrix of the reduced CFIO net.
Path reduction: This procedure accepts as input the output incidence matrix
provided in the output of the previous step, and reduces it according to the
path reduction method. The output of this step is the incidence matrix of the
reduced net.

Consistency detection: The input of this step is the output incidence matrix of
the path reduction step. The consistency of the net is examined by calculating
the extremal solutions of C'z! = 0, where C? is the incidence matrix of the

reduced net.

2. Production Planning: The linear program as described in Section 4.3.1 is formu-

lated and solved.

3. Scheduling: It accepts as input the incidence matrix of the Petri net model. It

is assumed that the model is decomposable to manageable CFIO nets. Given an

initial marking, the software calculates via simulation the initial schedule and the

starting times of all transition firings. Secondly, the critical path and float times are

calculated. Subsequently transition firings are swapped if such swapping does not
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increase the makespan and the schedule is recalculated. Finally the final makespan,

the critical path and the transition firings times are reported.

The software has been implemented in the C programming language.

4.6 Chapter Summary

In this chapter we discussed the modeling of an FMS using Petri nets that are
decomposable to CFIO nets, and we applied the methods introduced in Chapter 3 to
evaluate the design of the system with respect to manageability. Subsequently, we
introduced a production planning approach that uses a CFIO net decomposition of
the system model to formulate the corresponding linear program. The latter when
solved provides, for each planning time period, the number of times each operation
should be performed and by which machine. If the Petri net model is decomposed
to minimal CFIO nets, the flexibility of control is maximal but the computational
burden increases. Finally, we developed a critical path-based scheduling algorithm
that supports two types of decisions: resource usage and product sequencing decisions.
The algorithm provides, for each planning period, the time each operation should be

performed, so that the makespan fits within the planning period (if possible).
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5 Conclusions

In this work we developed a Petri net-based model, the Conflict Free nets with
Input and Output transitions (CFIO) nets, to support the modeling and verification of

FMS designs, as well as production planning and scheduling during FMS operation.

CFIO nets are used to detect important qualitative properties of the system such as
i) liveness, which guarantees that the FMS is deadlock free, ii) boundedness, which
guarantees that the work-in-process of the FMS can be held below a given level, and iii)
consistency, which guarantees that any valid inventory level, as well as any machine
availability state, can be reached. CFIO nets are used to formulate the production
planning problem. They facilitate problem abstraction in a convenient manner so
that to strike a desirable balance between solution quality and computational burden.
Having the production plan, production scheduling is performed using the Petri net
model, to obtain the time each operation needs to be performed so that the makespan

of the schedule fits within each planning period.

The contributions of this work can be summarized as follows:

(1) Introduced a special class of conflict-free Petri nets (CFIO nets) which facilitates
modeling and analysis of flexible manufacturing systems.

(i1) Established the qualitative properties of CFIO nets.

(iii) Developed efficient procedures to assess these qualitative properties of a given
CFIO net.

(iv) Employed the Petri net model of an FMS to formulate the production planning

problem.
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(v) Introduced a critical path based-scheduling procedure that supports the two types

of decisions to be made while scheduling the FMS.

It is noted that the production planning and scheduling methods presented in this
work do not represent the only possible approaches, but rather serve as a model for the
type of analysis that the CFIO net formulation can support. Further study is needed
to examine the implementation of other optimization criteria in the planning method
(e.g. machine utilization) and other approaches for the scheduling problem (e.g. the
shifting-bottleneck procedure [8] and global scheduling with genetic algorithms [14],
etc.). Further research could also improve our current scheduling heuristic, by allowing
rescheduling of operations that would result in temporarily increasing the makespan,

so that local minima could be avoided in the search for a global optimum.
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