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Chapter 1: Introduction

Curve counting on Calabi-Yau threefolds was motivated by string theory. Let
X be a smooth projective Calabi-Yau threefold over C, i.e. Kx = /\3 Qyx ~ Ox.
Let C' C X be a nonsingular embedded curve of genus g. The Calabi-Yau condition
implies that the expected dimension [32] of the space M, (X) of projective nonsin-
gular curves of genus g embedded in X is 0. To obtain a well-defined invariant, we
need to compactify the space My(X). There are three main ways: Gromov-Witten
(GW) theory, Donaldson-Thomas (DT) theory, and Pandharipande-Thomas (PT)
theory.

In GW theory, curves are viewed as algebraic maps
f:C—=X.

The compactification strategy is to allow nodal singularities in the domain. Let

B € Hy(X,Z). The moduli space of stable maps

C' is a nodal curve of arithmetic genus g,
f:[C] = B, and Aut(f) is finite

ﬂg(X,ﬁ)—{f:C’%X

is a compact Deligne-Mumford stack [15]. The moduli space admits a virtual funda-



mental class [M, (X, 8)]"" of virtual dimension 0 [3], and integration along it defines

the GW invariant

Ngﬂ:/ 1e€Q.

[Mg(Xvﬁ)]Vir
GW invariants play a crucial role in closed type IIA string theory.

To illustrate DT theory and PT theory, we consider a family of curves
C,={z=0=2}U{y=0=2—-t} CC? t#£0.

Each curve C} has two components: the y-axis, and a shift of the x-axis in the

z-direction by t. The ideal of C} is
L= (0,2) - (9,2 — 1) = (wy, 2y, 2z — 1), 2(z — 1)),
which fits into a short exact sequence
0— I, = Clz,y,2] 2 Cla,y, 2]/(z,2) ® Clz,y, 2]/ (y, 2 — t) = 0.
In DT theory, we identify C; with I, and let t — 0:
I — Iy = (2y, 22,92, 2%).

The limit curve is {zry = 0 = 2z} with a scheme-theoretic embedded point at the



origin. In PT theory, we identify C; with s, and let t — 0:

The kernel of s is the ideal of the curve {xy = 0 = z}, and the cokernel is supported
on the origin. (C[z,y, z]/(x, z) ® Clz,y, z]/(y, 2), so) is an example of stable pair.
Let X be a smooth Calabi-Yau threefold. Fix f € Hy(X,Z) and n € Z. The
Hilbert scheme I,,(X, ) parameterizes subschemes Z of X in the class [Z] = /8
with holomorphic Euler characteristic x(Oz) = n. I,(X, ) is projective and has a
symmetric obstruction theory [25,34] by viewing I,,(X, ) as a moduli space of ideal
sheaves I. The associated virtual fundamental class [, (X, 3)]*"" [5] has dimension

0, and integration along it defines the DT invariant

L= / 1eZ.
[ (X B

The DT partition function is defined as

DTys(X,q) = > Inpq"

The degree 0 DT partition function DT5(X, q) counts 0-dimensional subschemes of

X. It was conjectured in [25, Conjecture 1] and proved in [6, Theorem 4.12] that

DTO (XJ Q) = M(_q)Xtop(X)7



where 10, (X) is the topological Euler characteristic of X, and

is the MacMahon function counting 3D partitions. The reduced DT partition func-

tion is defined as

DTs(X, q)

DT,(X,q) = ——7~.
B( >Q) DTO<X7Q>

It is a Laurent series with integral coefficients.

Pandharipande and Thomas [31] introduced a new curve-counting theory via
stable pairs. The moduli space P, (X, ) parameterizes stable pairs Ox 2 F with
[F] = 8 and x(F) = n, where F is a pure 1-dimensional sheaf and s € H°(X, F) is
a section with 0-dimensional cokernel. P,(X, ) is a projective scheme as a special
case of the work of Le Potier [22], and it has a symmetric obstruction theory [31]
by viewing stable pairs as two term complexes in the derived category D°(X). The

PT invariant is defined by integration of the dimension 0 virtual fundamental class,

Pus = / 1€z
[Pn(X’ﬁ)]vir

The PT partition function is defined as

PT3(X,q) =Y Pasq".

Roughly speaking, we can think of ,,(X, ) as parameterizing Cohen-Macaulay



curves plus free and embedded points on X: any Z € I,,(X, 5) contains a maximal
Cohen-Macaulay curve C' C Z such that the kernel of O; — O¢ is 0-dimensional.
Similarly, we can think of P, (X, ) as parameterizing Cohen-Macaulay curves (the
support of F') and free points on the curve (the cokernel of the section s). The
DT/PT correspondence

DT3(X, q) = PT5(X, q)

was conjectured by Pandharipande and Thomas [31, Conjecture 3.3].
In [4] Behrend associates to any scheme of finite type over C a constructible
function

vs: S — 7,

with the property [4, Theorem 4.18] that if S is a proper scheme with a symmetric

obstruction theory, then the associated virtual counting invariant f[ 1 coincides

S]Vir

with the weighted Euler characteristic

X(S.vs) =) nxiop(vs' (n).

neZ

Using motivic Hall algebra, Bridgeland [7, Theorem 1.1} proved the DT /PT cor-
respondence and showed that DTé(X ,q) is the Laurent expansion of a rational

!, which was conjectured in [25].

function invariant under the transformation g <+ ¢~
Another consequence of Behrend [4] is that we can define DT (resp., PT)

invariants for smooth quasi-projective Calabi-Yau threefolds by the weighted Euler

characteristic of I,(X, 8) (resp., P,(X,3)). When X is toric with torus 7' = (C*)3,



the T-fixed points of the Hilbert scheme I,,(X, 5) are isolated. The DT invariant is

a given by a signed count of T-fixed points [6, Theorem 3.4,

]n,ﬂ _ Z (_1>dimTpIn(X,B).

pe[n(XnB)T

An explicit formula in terms of §,n, and the geometry of X can be found in [25,
Theorem 2]. The study of 7T-fixed curves in X naturally leads to the notion of the
DT vertex V), [31, Section 5.2] which enumerates monomial ideals of Clxy, x2, 23]

Here, (A, p,v) is a triple of partitions. Combinatorially,

where the sum is over all 3D partitions 7 asymptotic to (A, p, ) (see Definition 5.16,
5.17). Okounkov, Reshetikhin and Vafa [28] derived an explicit formula in terms of

Schur functions for V), (¢) (see Proposition 5.18). In particular,

Vooo(q) = M(q)

recovers the MacMahon function.
In PT theory, each component Q C P, (X, 8)T in the T-fixed loci is a product of
PYs [30, Theorem 1]. Locally on C3, each component Q, corresponds to a labelled

box configuration 7 C Z3* [30, Section 2.5]. The corresponding PT vertex was



conjectured in [30, (5-3)] to be

W)\/W(Q) = thop(Qﬂ)qlﬂ,
Qr

where the sum is over all labelled box configurations with outgoing partitions (\, p, v/).
This was proved in the 1-leg or 2-leg case, i.e. at least one of A\, u, and v is empty
because the T-fixed loci are isolated. The DT/PT vertex correspondence was con-

jectured in [31, Conjecture 5.1],

Bryan, Cadman and Young [10] studied DT theory for a toric orbifold Calabi-
Yau 3-fold X with transverse A,,_; singularities (see Definition 4.1 and Section 4.4).
The local model for X is [C3/Z,] where Z,, acts on C3 with weights (1, —1,0). Let
K(X) be the Grothendieck group of compactly supported coherent sheaves on X

up to numerical equivalence. There is a filtration
FyK(X)C FIK(X) C FRK(X) C F5(X)

given by the dimension of the support. Given f € FiK(X), the moduli space
Hilb” (X) parameterizes substacks Z C X having [Oz] = 8. It is a quasi-projective
scheme [29, Theorem 1.5]. The DT invariant DT3(X) is defined as the topological
Euler characteristic of Hilb? (X) weighted by the Behrend’s function. It is given by

a signed count of T-fixed points [10, Lemma 13], and is evaluated in [10, Theorem

7



25]. The central object is the orbifold DT vertex VY, (see Definition 5.19), which
is a generating function for 3D partitions, colored by representations of Z,, and
asymptotic to (A, p, ). An explicit formula in terms of Schur functions for Vi, is
given in [10, Theorem 12]. As an example, they computed the reduced DT partition

function for the local football &, ; [10, Proposition 3],

a b oo

DT'(x.,) =] (1= vpk- - paary- - o1 (=¢)™)"™

k=11=1 m=1

We will study PT theory on a toric CY3 with transverse A,,_; singularities.
We will use the orbifold PT vertex WY, to compute/conjecture the PT invariants
following the work of [10,30]. In the 1-leg case, we derive an explicit formula for the
orbifold PT vertex (Theorem 5.22). As an example, we compute the PT partition
function PT'(X,;) (Proposition 4.20), and verify the orbifold DT/PT correspondence
for the local football &, .

This paper is organized as follows. In Chapter 2 we review the theory of
semistable sheaves on projective stacks following [26]. Let 7 : X — X be a projective
Deligne-Mumford stack over C with moduli scheme X. We fix a polarization Ox(1)
on X and a generating sheaf £ on X. By Definition 2.1, £ is a locally free sheaf on
X whose fibre at each geometric point of x € A contains the regular representation

of the stabilizer group at x. Moreover, there is an exact functor

Fg : Coh(X) — Coh(X), F — m(F®E&Y).



In [26] Nironi introduced the modified Hilbert polynomial:

Pe(F,m) = x(X, Fe(F)(m)),

and used this to define Gieseker stability condition in the usual way. Notice that the
stability condition depends on both Ox (1) and £. Nironi constructed the moduli
space of semistable sheaves on X with modified Hilbert polynomial P as a quotient
stack [Q/GL(N)] [26, Theorem 5.1].

In Chapter 3 we study the moduli space of stable pairs on projective stacks.
The main references are [18,22,23,26]. Let P be a polynomial of degree d. A stable
pair (F,s) consists of a pure coherent sheaf F with modified Hilbert polynomial
Pe(F) = P and a section s : Oy — F with dim Cokers < d. When d = 1, this
is the stable pair studied by Pandharipande and Thomas [31]. In [22] Le Potier
introduced a different notion of stability. Let 6 be a polynomial with degd > deg P.

The (reduced) Hilbert polynomial of a pair (F,s) is defined as

Pe(F,s) = Pe(F) +¢€(s)d (pg(}", s) =pe(F) + e(s)rg?]__)> ,

where €(s) = 1 if s # 0 and €(s) = 0 if s = 0. The J-(semi)stability is defined as
the Giesker (semi)stability with respect to pg(F,s). for nondegenerate (s # 0) pairs
(F,s), we show that there is no strictly d-semistable pairs and the two stability

conditions are equivalent (Lemma 3.7). Using GIT, we have

Theorem 1.1. Let (X,E,0x(1)) be a polarized smooth projective stack over C.



The moduli space My (P) parameterizing stables pairs (F,s) with Pe(F) = P is

represented by a projective scheme My (P).

In Chapter 4 we study PT invariants on an orbifold toric CY3 with trans-
verse A,_; singularities following [10,30]. Associated to an orbifold toric CY3 X
is a trivalent graph whose vertices are the torus fixed points and whose edges are
the torus invariant curves. There is additional data at the vertices describing the
stabilizer group of the fixed points and there is additional data at the edges giving
the degrees of the normal bundles to the fixed curves. The PT partition function
PT(X) is shown (see (4.6)) in the 1-leg and 2-leg cases, and conjectured in the 3-leg

case to have the form

prxy= > I E© ] Wi,

edge ecEdges v€E Vertices

assignments

where the sum is over all ways of assigning partitions to the edges. The edge terms
E(e) depend on the normal bundle of the corresponding curve and the partition
assigned to the edge. The vertex terms quy are given by the orbifold PT vertex
Wy, modified by certain signs of the variables. In the l-leg case, W7}, is the

generating function for the number of Z,-colored reverse plane partitions. We have:

10



Theorem 1.2. Let )\ be a partition, then

W/{l@(ﬁ(qov e 7Q7L71) = inAS)\t(q)7

W(gl)\@(q()) o 7Qn71) = inAt S)\(q),

1
W(Z%A(qm e aQn—l) = H n—1 ho(0)’
fex 1 = Iazo qaa( :

where

—A(am )+
HqA)\ )A,\an) Z\‘]nan

sx(q) is the Schur function with q = (1, ¢1, 142, 14243, - - + ), ha(J) denotes the num-
ber a-colored boxes in the hook of U1, and the overline denotes the exchange of vari-

ables q, <> q_q.

As an example, we compute and verify the orbifold DT /PT correspondence PT'(X, ;) =
DT'(X,;) for the local football X, ; in Section 4.5.

In Chapter 5 we first review partitions and Schur functions following [24,
33] and vertex operators following [27]. We then prove Theorem 1.2 using vertex

operators.

11



Chapter 2: Stable sheaves on projective stacks

2.1 Projective stacks

We work over the field of complex numbers C. Every scheme is assumed to
be Noetherian. Let S be a base scheme of finite type over C. By Deligne-Mumford
S-stack we mean a separated Noetherian Deligne-Mumford stack X of finite type
over S. When S = SpecC, we omit the letter S. Under these assumptions, X has a
coarse moduli space 7 : X — X and the natural map Ox — 7,0y is an isomorphism
[20]. If X is a scheme, we call it a coarse moduli scheme. We recall the following

properties of Deligne-Mumford S-stacks:

e since we work over C, X is tame, i.e. the functor 7, : QCoh(X) — QCoh(X)

is exact and maps coherent sheaves to coherent sheaves [2, Lemma 2.3.4];

e if X’ — X is a morphism of algebraic spaces, then X’ is the coarse moduli

space of X xx X' [1, Cor 3.3];
o H*(X,F)= H*(X,m.JF) for any quasi-coherent sheaf F [26, Lemma 1.10];
o 7. F is an S-flat coherent sheaf on X whenever F is an S-flat coherent sheaf

on X [26, Cor 1.3].

12



Let X be a Deligne-Mumford S-stack with coarse moduli space 7 : X — X.

For any locally free sheaf £ on X', we have two functors

Fg: QCoh(X) — QCoh(X), F i m(F®EY),

Ge : QCoh(X) — QUoh(X), G G ® E.

The functor F¢ is exact since £V is locally free and the pushforward =, is exact.

Definition 2.1. A locally free sheaf £ is said to be a generator for the quasi-coherent
sheaf F if the adjunction morphism (left adjoint of the identity id : m.(F @ £€Y) —
W*(f@ (c/’\/)):

95(]:) : GgOFg(.F) — F

is surjective. It is a generating sheaf for X if it is a generator for every quasi-coherent
sheaf on X. Equivalently, a locally free sheaf £ on X is a generating sheaf if and only
if the fibre of £ at each geometric point of X contains the regular representation of

the stabilizer group at that point [29, Theorem 5.2].

Olsson and Starr [29, Section 5] proved that a generating sheaf exists and
is stable under base change for tame Deligne-Mumford stacks which are separated

global quotients. In particular, we have

Proposition 2.2. (1) Let X be a Deligne-Mumford S-stack

which 1s a separated global S-quotient. Then X has a generating sheaf £.

(2) Let m : X — X be the moduli space of X and f : X' — X a morphism of

13



algebraic spaces. Denote p : X' := X xx X' — X the natural projection, then

p*E is a generating sheaf for X'.
Now we are ready to give the definition of projective stack.

Definition 2.3 ( [21, Theorem 5.3]). Let X be a Deligne-Mumford stack over C.

We say X is a (quasi-)projective stack if it satisfies any of the following equivalent

conditions:

1. X admits a (locally) closed embedding into a smooth proper Deligne-Mumford

stack with a projective moduli scheme.
2. X has a (quasi-)projective coarse moduli scheme and a generating sheaf.

3. X is a separated global quotient with a coarse moduli space which is a

(quasi-)projective scheme.

Let 7 : X — X be a projective stack. A polarization for X is a pair (£, Ox(1)),
where £ is a generating sheaf and Ox(1) is a very ample line bundle on X.

A relative version of the notion of projective stacks is defined as follows:

Definition 2.4. Let p : X = X 2 S be a Deligne-Mumford S-stack which is a
separated global S-quotient with coarse moduli scheme X such that p: X — Sisa

projective morphism. We call p : X — S a family of projective stacks.

Remark 2.5. For any geometric point s of S, we have the following cartesian diagram

Ts X Ps N

| ©
X 7

~

»

3

X
|
X

N

~

\
7
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Since p : X — S is projective, X, is a projective scheme. Moreover, the properties
of being a separated global quotient and being a coarse moduli space are invariant

under base change, so each X is a projective stack.

2.2 Gieseker stability

In this section, we briefly recall some facts about the concept of Gieseker
stability on projective stacks following [26, Section 3]. Let X be a projective stack
over C with coarse moduli scheme 7 : X — X. We fix a polarization (£, Ox (1)) on
X.

Let F be a coherent sheaf on X', we define the support Supp(F) of F to be the
closed substack associated to the ideal Z = Ker(Ox — &nd(F)). The dimension

dim F is the dimension of its support.

Definition 2.6. We say a coherent sheaf F is pure of dimension d if for any nonzero

subsheaf G of F the support of G is of pure dimension d.

As it was shown in [26], every coherent sheaf F has the torsion filtration:

0C T0<f) C - C Tdim]:—l(]:) C Tdim]:(]:) =F

where every factor T;(F)/T;—1(F) is pure of dimension i or zero.

Definition 2.7. The saturation of a subsheaf G C F is the minimal subsheaf G

containing G such that F/G is pure of dimension d or zero, i.e. the kernel of the

15



surjection

F—=F|G— (F/G)/Ta1(F/G).

Lemma 2.8 ( [26, Lemma 3.4]). Let F be a coherent sheaf on X, then we have

7(Supp(F)) = m(Supp(F @ ")) 2 Supp(Fe(F)).

Moreover, Fe(F) =0 if and only if F = 0.
The functor Fg preserves dimension and pureness.
Proposition 2.9 ( [26, Proposition 3.6]). Let F be a coherent sheaf on X, then
(1) dim(F) = dim(Fe(F));
(2) F is pure if and only if Fe(F) is pure.
The functor Fg(F) preserves torsion filtration.

Corollary 2.10 ( [26, Cor 3.7]). Let F be a coherent sheaf on X of dimension d.

Consider the torsion filtration

OZTo(f)C"'CTd_l(F)CTd(F):F.

Then

0= Fg(To(.F)) c---C Fg(Tdfl(f)) C Fg(Tdimf(f)) = Fg(f)

is the torsion filtration of Fg(F).

16



Corollary 2.11 ( [26, Cor 3.8]). Let F be a pure sheaf on X, then w(Supp(F)) =

Supp(Fe(F)).
For pure coherent sheaves on X', the functor Iy preserves supports.

Definition 2.12. Let F be a coherent sheaf on X of dimension d, we define the

modified Hilbert polynomial of F as
Pe(F,n) = x(X, F @ & @ 7" Ox(n)) = X(X, Fe(F)(n)) = P(Fe(F),n).

Since F¢ preserves dimension, the modified Hilbert polynomial can be written

as

d i

n
Pg(]:, n) = E Oégﬂ(]:)ﬁ
i=0 ’

Moreover, the modified Hilbert polynomial is additive on short exact sequences since
F¢ is exact and the Euler characteristic is additive on short exact sequences. As in
the scheme case, the modified Hilbert polynomial of a flat family of coherent sheaves

is locally constant on the fibres.

Lemma 2.13 ( [26, Lemma 3.16]). Let p : X — S be a family of projective stacks
with a fized relative polarization (€,O0x(1)). Let F be an Og-flat coherent sheaf on
X. Assume S is connected. There is a polynomial P such that for every closed point
ses

X(Xo, F @ &Y @1 Ox(m)|x,) = P(m).
Definition 2.14. We denote by 7¢(F) = ag 4(F) the multiplicity of F. The reduced

17



modified Hilbert polynomial is then pg(F) = 5(]__), and the slope is fig(F) =
Te

aga-1(F)

Oég7d(./t‘) .

Definition 2.15. A coherent sheaf F is semistable if it is pure and for every proper
subsheaf 7' C F one has pg(F') < pe(F). F is called stable if it is semistable and

the inequality is strict.

Definition 2.16. Let F be a pure sheaf on X'. A strictly ascending filtration

0=HNo(F) CHN((F)C---CHN(F)=F

is a Harder-Narasimhan filtration if it satisfies the following:

(1) the i-th graded piece gri™ = HN;(F)/HN;_1(F) is semistable for every i =

17... 7[;

(2) denoted with p; = pg(grf™N(F)), then

pmax<f) =pr > > pp = pmin(F)-

Proposition 2.17 ( [26, Theorem 3.2.2]). Let F be a pure sheaf on X, then F has

a unique Harder-Narasimhan filtration.

As pointed out by Nironi, the functor F¢ doesn’t preserve the Harder-Narasimhan

filtration. However, we have the following relation between the maximal slopes.
Proposition 2.18. Let X be a projective stack over C. Let F be a pure sheaf on

18



X. Let m be an integer such that Fe(E)(m) is generated by global sections, i.e.

Ox(=m)*" — Fe(€),

where N = h%(X, Fg(€)(m)). Then

i (F) < frons(Fe (F)) < frna(F) + 7 deg(Ox(1)). (2.1)

Proof. The proof is the same as [26, Proposition 4.24]. ]
Being pure and being semistable are open conditions in flat families.

Proposition 2.19 ( [26, Proposition 4.15]). Let p : X — S be a family of projective
stacks with a fized relative polarization (€, Ox(1)). Let F be an S-flat d-dimensional

coherent sheaf on X with fized modified Hilbert polynomial P. Then the sets

{s € S|Fs is pure of dimension d} and {s € S|F is semistable}

are both open in S.

2.3 Boundedness

Let m be an integer. Recall that a coherent sheaf F' on X is said m-reqular if
for all i« > 0

H'(X,F(m —1i))=0.

19



The Mumford-Castelnuovo regularity of F' is the number

reg(F) :=inf{m € Z | F is m-regular}.

The regularity is reg ' = —oo if and only if F' is 0-dimensional.

Definition 2.20. We define the Mumford regularity of a coherent sheaf F on X to

be the Mumford regularity of Fe(F) on X and we will denote it by rege(F).

Definition 2.21. A set-theoretic family .% of sheaves on X' is bounded if there is a T’
of finite type and a coherent sheaf H on X such that every sheaf in .% is contained

in the fibers of H.
We have the following important result on boundedness on X.

Proposition 2.22 ( [26, Cor 4.17]). A set-theoretic family F of sheaves on X is

bounded if and only if Fe(F) is bounded on X .
We have the stacky version of the Kleiman criterion.

Proposition 2.23 ( [26, Theorem 4.12]). Let .F be a family of coherent sheaves on

X. Then the following statements are equivalent:
(1) The family % is bounded.

(2) The set of modified Hilbert polynomials { Pe(F)|F € F} is finite and there is

an integer m such that every F € % is m-reqular.

(3) The set of modified Hilbert polynomials { Pe(F)|F € F} is finite and there is
a coherent sheaf H on X such every F € % is a quotient of H.

20



We also have the stacky version of the Grothendieck lemma.

Lemma 2.24 ( [26, Lemma 4.13]). Let X' be a projective stack with coarse moduli
scheme m : X — X. Let P be a polynomial and p an integer. There is a constant
C = C(P,p) such that if F is a d-dimensional coherent sheaf with Pg(F) = P
and rege(F) < p, then fig(G) > C for every purely d-dimensional quotient G of F.
Moreover, the family of purely d-dimensional quotients G with [ig(G) bounded from

above is bounded.

For our convenience, we list some results on boundedness on X.

Proposition 2.25 ( [18, Theorem 3.3.7]). Let C be a rational constant. The family
of pure coherent sheaves F' with Hilbert polynomial P on X such that fimax(F) < C

18 bounded.

Proposition 2.26 ( [22, Lemma 2.13]). Let F' be a pure sheaf of dimension d and
multiplicity r on X. LetY be the scheme-theoretic support of . Then the minimum

slope [imin(Oy) is bounded below by a constant determined by dim X, r, and d.

Proposition 2.27 ( [18, Cor 3.3.8]). Let X be a projective scheme with very ample
line bundle Ox(1). Let F be a pure coherent sheaf of dimension d and multiplicity

r. Then

P 2 (L) 0t L) 01 emit) 2)

where C' = 1?4+ (r +d)/2 and [-]; = max{-,0}.
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Chapter 3: Moduli space of stable pairs

3.1 Stable pairs

Let X — SpecC be a projective stack with coarse moduli scheme 7 : X — X
and polarization (£, Ox(1)). Let P be a polynomial of degree d and multiplicity r,

and d be a polynomial with positive leading coefficient and degd > deg P.

Definition 3.1. A pair (F,s) (of type P) consists of a coherent sheaf F over
X with modified Hilbert polynomial P¢(F) = P and a section s : Oy — F. A
subpair (F', s’) consists of a coherent subsheafs : 7/ C F and a section s’ : Oy — F

such that

108 =5 if ImsC F'
s=0 otherwise.

A quotient pair (F”,s”) consists of a coherent quotient sheaf ¢ : F — F” and a

section 8" =qos: Oy — F".

A short exact sequence of pairs

0— (F,s) = (F,s) = (F",s") =0
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consists of a short exact sequence of the underlying sheaves such that (F',s’) is a
subpair and (F”,s”) is the corresponding quotient pair.

Following [31], we make the following definition.
Definition 3.2. A pair (F,s) is a stable pair if F is pure and dim Coker(s) < d.

A family of stable pairs parametrized by a scheme T of finite type over C is a
pair

STZOXT%ﬁ

such that .# is a coherent sheaf flat over X and for all closed points t € T', the

restriction (%, s;) to the fibre A& is stable. We define a functor

Mx(P) := Mx(E,0x(1), P) : (Sch /C)° — (Sets)

which associates to any scheme 7' of finite type over C the set of isomorphism classes
of flat families of stable pairs on X with Hilbert polynomial P, and associates to

any morphism 7" — T its pullback.

Theorem 3.3. Let (X,€,0x(1)) be a polarized smooth projective stack over C.

Then Mx(P) is represented by a projective scheme My (P).

To construct the moduli scheme using GIT, we need a different notion of

stability following [22].

Definition 3.4. The Hilbert polynomial of a pair (F,s) w.r.t. to J is

Pe s(F,s) = Pe(F) + €(s)9,
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and the reduced Hilbert polynomial of the pair is

pes(F,s) = pe(F) + €(s)

T’g(f)l

Here,

1 if s#0,
€(s) =

0 otherwise.

Remark 3.5. (1) To ease notation, we will omit ¢ and denote the Hilbert polyno-
mial (resp., reduced Hilbert polynomial) of a pair (F,s) by Pg(F,s) (resp.,

pg(f, 8))

(2) The Hilbert polynomial of pairs is additive on short exact sequences since
€(s) = e(s') + €(s”) and the modified Hilbert polynomial of coherent sheaves

is additive on short exact sequences.
Definition 3.6. A pair (F, s) is 6-(semi)stable if
(1) F is pure,
(2) pr.)(L)p(r,s) for every proper subpair (F',s').

Clearly, a pair (F,0) is J-(semi)stable if and only if F is (semi)stable as a

coherent sheaf. We will call a pair (F, s) nondegenerate if s # 0.

Lemma 3.7. Let (F,s) be a nondegenerate pair with Pg(F) = P. Then the follow-
ing assertions are equivalent
(1) (F,s) is 0-semistable;
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(2) (F,s) is 0-stable;

(3) (F,s) is stable, i.e. F is pure and dim(Coker s) < d.
Proof. (1) = (2) Suppose (F, s) is d-semistable. Let (F’, s") be a nonzero subpair
of (F,s) such that

4] J

pe(F') + 6(8/)7"5(}"’) = pe(F) + )

Since degd > deg P, by comparing leading coefficients we obtain ¢(s’) = 1 and
re(F') = re(F). Hence, Pe(F') = Pg(F), which implies that 7' = F. Thus, (F,s)
has no strictly d-semistable subpair, i.e. (F,s) is d-stable.

(2) = (3) Consider the subpair (Ims, s). Since (F, s) is d-stable, we have

pe(Ims) +

re(Im s)

By comparing leading coefficients, we get r¢(Im s) > rg(F). Since Im s C F, we have
re(Ims) < rg(F). Thus, re(Ims) = rg(F). It follows that deg Pe(Coker s) < d, i.e.
dim(Coker s) < d.

(3) = (1) Suppose F be pure and dim(Cokers) < d. Let (F',s’) be a

proper subpair of (F,s) such that

J

pe(F) + () — > pe(F) + =

re(F7)

Since degd > deg P, we have €(s') = 1. It follows that re(F') < re(F), or re(F') =
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re(F) and pe(F') > pe(F). If re(F') < re(F), then Ims C F’ and the quotient
F/F' is d-dimensional, which contradicts the assumption that dim(Coker s) < d. If
re(F') = re(F) and pe(F') > pe(F), then Pg(F') > Pg(F), which contradicts the

assumption that F’ is a proper subsheaf. Therefore, (F,s) is d-semistable. ]

Assumption. From now on, unless stated differently (F,s) is nondegenerate. As
a consequence of Lemma 3.7, we will use stability and d-stability interchangeably.
Moreover, the functor My (P) characterizes isomorphism classes of nondegenerate

0-stable pairs.

Proposition 3.8 (Harder-Narasimhan filtration). Let (F,s) be a nondegenerate

pair where F is pure of dimension d. Then there is a unique filtration by subpairs

0 = (Fo,80) C -+ C (Fi,8) = (F,5)

such that each gri™(F,s) = (Fi, s:)/(Fi_1, si_1) is 6-semistable of dimension d and

pmax<f75) =p1>p2>->pP :pmin<‘F73)7

where p; = Pg,uN (F g -

Proof. Let F; = Im(s) be the saturation of Im(s) in F, then dim(F;/Im(s)) < d.
By Lemma 3.7, (Fi,s) is d-stable. Notice that the quotient pair (F,s)/(F1,s) =
(F/Fi,0) is degenerate. By Proposition 2.17, we get a Harder-Narasimhan filtration
for the pure sheaf F/F;. Combining them together, we obtain a Harder-Narasimhan
filtration for the pair (F,s).
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To prove uniqueness, it suffices to prove that F; = Im(s). Notice that

pe(F1) + e(sl)ﬁ > pe(F) +

Tg(f).

Since degd > deg P, we have €(s;) = 1. Hence, F; 2O Im(s). Since F/F; is pure

of dimension d, F; contains the saturation Im(s) of Ims. Since F/Im(s) is pure of

dimension d, F;/Im(s) is zero or pure of dimension d. According to Lemma 3.7,

dim(F;/Im(s)) < d because (Fi, s) is d-stable. Thus, F; = Im(s). O

We have the following reinterpretation of d-stability.

Lemma 3.9. Let (F,s) be a nondegenerate pair where F is pure and Pg(F) = P.

It is 0-stable if and only if for every proper subpair (F',s'),

Pe(F") _ P
2re(F') —e(s’) 2r—1

Proof. This is just a special case of [22, Lemma 4.3]. O

3.2 Boundedness

In order to construct the moduli space via GIT, we first prove that the family

of underlying sheaves of stable pairs is bounded.

Proposition 3.10. The family

F ={F|(F,s) is a §-stable pair with Ps(F) = P}
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of coherent sheaves on X is bounded.

Proof. According to Proposition 2.22, .% is bounded if and only if F¢(.%) is bounded.

By Proposition 2.25, it suffices to show that there is a constant C' such that

ﬂmax(FS('F)) S C

for every F € Z.

Consider the pair

Fg(S) . Fg(o/y) — Fg(f)

Since F¢ is exact and preserves both dimension and pureness by Proposition 2.9,
we obtain that Fe(Oy) and Fg(F) are both pure and dim(Coker Fe(s)) < d. Let

Y = Supp(Fe(F)) and

0= HNo(Fe(F)) C HN1(Fg(F)) C -+ C HN(Fe(F)) = Fe(F)

be the fi-Harder-Narasimhan filtration of Fg(F). Since dim(Coker Fg(s)) < d, we

have that Im Fe(s) € HN;_1(F¢(F)). Hence, the composition

Fe(Ox) ® Oy — Fe(F) — g™ (Fe(F))
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is a non-zero morphism between pure sheaves of dimension d. This implies that

fimin(Fe (F)) = ulgr{™ (Fe(F))) = fimin(Fe(Ox) @ Oy)

= fimin(Fe(Ox)) + fimin(Oy ).

According to Proposition 2.26, fimin(Oy) is bounded below by a constant A which

only depends on d,r and dim X. Then

fmax (Fe (F)) < rfu(Fe(F)) = (r = 1) fimin (Fe(F))

< P Fe(F)) = (= 1) (jimin(Fe(O)) + A) =: €

as desired. O

We can rephrase the stability using global sections instead of Hilbert polyno-

mial.

Proposition 3.11. There is an mqo € Z* such that for any integer m > myq and

any nondegenerate pair (F,s), where F is pure and Pe(F) = P, TFAE:
(1) the pair (F,s) is stable;

(2) Pe(F,m) < h(Fe(F)(m)), and for any proper subpair (F',s'),

W (Fe(F)(m) _ h°(Fe(F)(m))
2re(F') —€e(s') 2r—1
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(3) for any proper quotient pair (G, s") where dimG = d,

h(Fe(G)(m) _ P(m)
2re(G) —e(s”) ~ 2r—1°

Proof. (1) = (2) By Proposition 3.10, there is an integer mg such that for any
integer m > mg, we have H'(Fg(F)(m)) = 0 for all ¢ > 0. In particular, P(m) =
h(Fg(F)(m)). In the proof of boundedness, we also showed that figax(Fe(F)) is
bounded above, say fimax(Fe(F)) < po.

Since Fg is exact and preserves pureness, Fg(F’) is a pure subsheaf of Fg(F).
Then we have fipax(Fe(F')) < po and r¢(F') < r. Using Le Potier-Simpson estimate

(2.2), we obtain

1
r

W) (m) o % <T Lo+ C— 1 m)t

o A(FeF) +C = 14 mlt),

where C' = r? + (r +d)/2 and [], = max{-,0}.
Let A > 0 be an integer such that A is larger than all roots of P. Replace my

by max{mg, A}. Then
RO (Fg(F)(m)) = P(m) > —(m — A)?, for all m > my.
Suppose 7 is an integer such that

|
C—1+u0(1——)+&<—A.
T r
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Enlarging my if necessary, we have

1 /fr—1 q 1 d
E( " [ug+C—1+m]++;[u1+0—1+m]+)< d < .

by considering the coefficient of md=1.

If f(Fe(F')) < pa, then for m > my we get

Tg(f/) hO(Fg(F)(m)) < 27‘5(./_"/) - 6(3/)

- L 0(Fe(F) (m)

WO (Fe(F')(m)) <

The reason for the last inequality is as follows. Since (F, s) is stable, we have

, ) )
pg(]:)+e(s)m <p+;.

In particular, if €(s’) = 1, then r¢(F’) = r. Thus,

re(F') < 2re(F') — e(s’).
ro 2r—1

We are left to consider the case where fi(Fg(F’)) > pi. We can assume F'
is saturated. By Grothendieck’s lemma [18, Lemma 1.7.9], the family of such F' is
bounded. Thus, there are only finitely many modified Hilbert polynomials Pg(F”).
We can enlarge my, if necessary, such that for m > mg, Pe(F',m) = h%(Fe(F')(m))

and
Pe(F') P Pe(F',m) P(m)
2rg(F') —e(s') S -1 2re(F) —e(s’) 2r—1
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Combining this with Lemma 3.9, we finish the proof.

(2) = (3) Given a proper quotient pair, we can form the short exact sequence

0— (F,s) = (F,s) = (G,s") = 0.

Thus, we obtain an exact sequence,

0 — H(Fe(F')(m)) = H(Fe(F)(m)) — H(Fe(G)(m)).

Notice that r = r¢(F') + rg(G) and 1 = €(s') 4 €(s”). By condition (2),

hY(Fe(G)(m))
2re(G) — €(s")

WO (Fe(F)(m)) — h°(Fe(F')(m))
2r — 1 — (2rg(F') —e(s'))
WOE(F)m) _ Plm)
2r — 1 —2r—1

>

(3) = (1) We first show that the family of coherent sheaves satisfying condition
(3) is bounded. Let Fiin = gri™(F) be the last factor in the fi-Harder-Narasimhan

filtration of F with respect to slope. By Le Potier-Simpson estimate (2.2) and (2.1),

we have
AL I0) 2 (s (Fe(Fo) + 11 14 L)
< 5 ([te(Fuin) + 7 deg Ox(1) 4 m — 1+ O )"
= (e n(F) + Mo cdeg Ox(1) +m — 14C],)",
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where C'= 12 + (r +d)/2. Let (Fuin, s”) be the induced quotient pair. If e(s”) = 0,

by assumption, we have

P(m) _ 2P(m) _ h*(Fe(Fuin)(m))
r < 2r—1 = :g(fmin)

1 -
< a ([frg min(F) + mdeg Ox(1) +m — 1+ C’]+)d.

Since P(m)/r > (m — A)¢/d!, we have

ﬂ&min(f) > —m deg O/y(l) —(C—-A-— 1,

which is bounded below. If ¢(s”) # 0, then the composition

Fg(OX) & Oy — Fg(./_") —» Fg(Fmin)

is a non-zero morphism between pure sheaves of dimension d. Hence,

frmin(Fg(Ox)) + fimin(Oy) = fimin(Fe(Ox) @ Oy)
§ ﬂmax(FS(«Fmin)) S /l(«/t-min) + mdeg OX(1>

= fig min(F) + mdeg Ox(1).

Since fimin(Oy) is bounded below, fig min(F) is also bounded below. Thus, in both
cases, [l max(F) is bounded above. Using (2.1) again, we have that fimax(Fe(F)) is

bounded above. Therefore, the family of coherent sheaves satisfying condition (3)
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is bounded.

Let (Fi,s) be the first factor in the Harder-Narasimhan filtration of (F,s).
From Proposition 3.8, we know (Fi, s) is a nondegenerate stable pair. By Propo-
sition 3.10, the family of the underlying sheaves {F;} is bounded. Therefore, the
family of sheaves {F/Fi}, where (F,s) satisfies condition (3) and (Fy,s) is the
first factor in the Harder-Narasimhan filtration of (F,s), is also bounded. In par-
ticular, the set of reduced modified Hilbert polynomial pg(F/Fi) is finite. Let
gritN(F,s) = (G, s") be the last factor in the Harder-Narasimhan filtration of (F, s).
We can assume €(s”) = 0; otherwise, (F,s) is stable according to Proposition 3.8.
Then G is actually the last factor of the Harder-Narasimhan filtration of F/Fj.
Hence, pe(G) < pe(F/F1). This implies i(Fe(G)) is bounded above because there
are only finitely many pg(F/F1). By Grothendieck’s lemma [18, Lemma 1.7.9], the
family of such {F¢(G)} is bounded. Enlarging my if necessary, we can assume that,
for all m > my, Pe(G,m) = h°(Fg(G)(m)) and

2re(G) — e(s") - 2r — 1 — 2re(G) — e(s") - or —1°

Now according to condition (3), the last inequality holds. Thus, €(s”) >
re(G)/r, which forces €(s”) = 1, which is a contradiction. Therefore, (F,s) is

stable.
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3.3 Construction of the moduli space

By Proposition 3.10 and Proposition 3.11, there is an integer m such that for

all m > my, the following conditions are satisfied:

(1) Fe(F)(m) is globally generated and H'(Fg(F)(m)) = 0 when i > 0 for every

nondegenerate stable pair (F, s);
(3) the three conditions in Proposition 3.11 are equivalent.

Fix such an m and let V' be a vector space of dimension equal to P(m).

Let (F,s) is a stable pair, then we get a quotient

:VRERT Ox(—m) —» F

obtained by applying the functor G¢ to

V(=m) = H(Fg(F)(m))(—=m) — Fe(F)

and composing with 0¢(F) : Gg o Fe(F) — F. The morphism ¢ corresponds to a
closed point of @ := Quot(V ® &€ @ 7*Ox(—m), P), which is a projective scheme
according to [26, Proposition 4.20]. Similarly, let U = H°(Fg(Ox)(m)), we have the
quotient

ev: U®ERT Ox(—m) —» Oy.
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The section s gives rise to a linear map
o:U — H(Fg(F)(m)) ~V,

which corresponds a closed point of N := P(Hom(U,V)). Thus, any stable pair

(F,s) determines a point (0,q) € N x @ and the following commutative diagram

U®E®mOx(—m) —3 O

5::a®idl ls

V®E®mOx(—m) ——» F.
Conversely, given a pair (0,¢q) € N x @), we obtain a pair if g o 7(ker(ev)) = 0.

Lemma 3.12. There is a closed subscheme W C N x @) such that for every point

(0,q9) € N x Q the composition q o o factors through ev if and only if (o,q) € W.
Proof. Same as [35, Proposition 3.4]. O

Definition 3.13. We define Z to be the open locus of points (o, ¢) in W such that
F is pure and ¢ induces an isomorphism of vector spaces V ~ H°(Fg(F)(m)). Let

Z denote the closure of Z.

Remark 3.14. Z is indeed open because being pure is open [26, Proposition 5.15] and
the semicontinuity theorem for cohomology holds for projective stacks [26, Theorem

1.8].

We now come to the GIT construction of the moduli space of stable pairs.
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Consider the natural action of GL(V) on N x @Q:

(0,9)-g= (9" 00,q09).

for g € GL(V'). We observe that C* C GL(V') acts trivially on both N and Q). We
can consider the actions of PGL(V') or SL(V). Indeed, the line bundles linearized
for the actions of these two groups are the same up to taking finite tensor powers
since PGL(V) is a quotient of SL(V) by a finite group. We consider the SL(V)
action. It is clear that Z is invariant under this action. The closure Z is invariant
as well.

By [26, Proposition 4.20], the functor Fg induces a closed embedding

Q — Quot (V ® Fe(E)(—m), P).

For | € N big enough, there is a closed embedding into the Grassmannian

Quot (V @ Fe(€)(—=m), P) < Grass (V @ H*(Fe(&)(1 —m)), P(l)).

Consider the very ample line bundle det(S) where S is the universal quotient bundle
on the Grassmannian. Let L; be its pull back to ). According to [26, Lemma 6.3], L;
is SL(V)-linearized. The line bundle Oy (1) is also SL(V')-linearized. For positive

integers ny and ng, the following line bundle is SL(V)-linearized:

L= ON(’I’Ll) X L(lgn2
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Let A : C* — SL(V) be a 1-parameter subgroup. We have a weight decompo-
sition

V=,

such that A(t) - v = t" - v for every t € C*,v € V,,. This gives us an ascending

filtration V<, = @, V.

i<n
For a point £ = (0,q) € N x Q. Let n(o) be the smallest integer n such that

Im(o) C V<,. Then the Hilbert-Mumford weight of A at £ with respect to On(1) is

OO, A) = n(o).

The filtration on V produces a filtration on F with subsheaves F<, = q(V<, ®
E(—m)). We have an induced surjection g, : V,, ® E(—m) — F<p/F<n_1 =: F.

Taking the sum of all weights we obtain a new quotient sheaf:
7:V®&E(-m)— @}"n = F.
By [26, Lemma 6.11],
lim A(t) - ¢ = q.

Moreover, according to [26, Lemma 6.12], the Hilbert-Mumford weight of A at &

with respect to L; is

PN = =) nPe(Fu,l).

So we have:
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Lemma 3.15. The Hilbert-Mumford weight of A at & with respect to L is

pHEN) =n1-n(o) —na Y nPe(F,.1).

An application of Hilbert-Mumford criterion shows the following lemma.

Lemma 3.16. For | sufficiently large, let (0,q) € Z be a closed point. Then the

following two conditions are equivalent:
(1) (o,q) is GIT-(semi)stable with respect to L;

(2) For any nontrivial proper subspace W < V', let
Fw =qW @ E @71 Ox(—m)).

Then

PR D)2 (arlo) = GV )+ POSERT ()

Here, ew (o) is either 1 or 0 depending on whether W contains Im(o) or not.
Proof. Same as 23, Lemma 4.1]. O

Now, let
ni _ P(l)

No 2r

Since the family of such Fy that is generated by a linear subspace of V' is bounded.
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We can fix [ such that (3.1) is equivalent to

P<€W(> dimW) pdim W 52)

7T dmV dim V"~
Remark 3.17. Let (0,q) € Z be GIT-(semi)stable, and let (F,s) be the associ-
ated pair. Then (F,s) is nondegenerate. Indeed, let W = Im(o), then Fy =

Im(s). If W = V| then Im(s) = F; otherwise, according to (3.2), Pe(Im(s)) >

(% (1 - flihriv“//) + ‘fffrrr‘lv“,/) P > 0. Hence, Im(s) # 0.

Lemma 3.18. Let (0,q) € Z be GIT-(semi)stable with associated pair (F,s). For
any coherent subsheaf F' C F, let (F',s") denote the induced subpair and W =

VN H(Fe(F')(m)), then

P

PP ()

B d1mW> PdlmW (3.3)

dim V' dim V"’

where e(F') =1 if Im(s) C F'; 0 otherwise.

Proof. The proof is similar to [35, Proposition 4.3]. According to [26, Rem 6.14],
we obtain a natural injection Fy — F'. If ey (o) = 1, i.e. Im(o) C W, then
Im(s) C Fy C F'. Thus, ¢(F') =1 and (3.3) is the same as (3.2).

We only need to consider the case when ey (o) = 0 and Im(s) C F'. Let
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W'=W @ Im(o). Clearly, Fy» C F" and ey (o) = 1. By (3.2), we have

. , . ,
P (1_d1mW> PdlmW

2r dimV dimV
> E 1 dl.mW Pdl_mW.
2r dimV dimV

]

When defining Z, we require F to be pure and ¢ induces an isomorphism
V =~ H°(F¢(F)(m)). When taking closure, these may no longer be true. The

following two Corollaries impose restrictions.

Corollary 3.19. If (0,q) € Z is GIT-semistable with associated pair (F,s), then
the induced map V. — H°(Fe(F)(m)) is injective and for any coherent subsheaf

G C F such that dimG < d — 1, H*(F¢(G)(m)) NV = 0.
Proof. Same as [26, Lemma 6.16] and [18, Cor 4.4.7] using (3.2). O

Corollary 3.20. If (0,q) € Z is GIT-semistable with associated pair (F,s). Then

there exists a pure coherent sheaf H such that

0= Ty (F) = FSH

is exact and Pe(H) = Pg(F). Moreover, the induced pair (H, pos) is nondegenerate.

Proof. The first part is just [26, Lemma 6.10]. For the second part, let W = Im(o),
then Fyr = Im(s). By looking at the leading coefficients in (3.2), we see that Im(s)
has dimension d. Thus, Im(s) € Ty_1(F) and ¢ o s # 0.
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Now we are ready to compare d-stability and GIT-stability.

Proposition 3.21. Let (0,q) € Z with associated pair (F,s). The following two

assertions are equivalent:
(1) (0,q) is GIT-(semi)stable with respect to L.
(2) (F,s) is (semi)stable and q induces an isomorphism V ~ H°(Fg(F)(m)).

Proof. Let (0,q) € Z be GIT-(semi)stable. Let ¢ : F — H be as in Corollary 3.20.
Then (H, ¢ o s) is nondegenerate. Since ker ¢ = T, _;(F), according to Corollary

3.19, the induced map

V — HY(Fg(F)(m)) — H°(Fe(H)(m)) (3.4)

is injective. For any dimension d quotient p : H — G, let K = ker p o ¢. We obtain
an exact sequence

o%/c%ffi‘&g.

Let W =V N H°(Fg(K)(m)). Then we have

WO(Fe(G)(m)) = hO(Fe(F)(m)) — hO(Fe(K)(m)) > dimV — dimW.  (3.5)

By taking the leading coefficients in (3.3) we get

(2re(K) —e(K))dimV > (2r — 1) dim W. (3.6)
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Since Ty_1(F) C K, we have

KTy s (F) = FJTus(F) = H — G

It follows that r = re(H) > re(K/Ty—1(F)) +re(G) = r¢(K) 4+ rg(G). Combining

this with (3.5) and (3.6), we have

hO(Fe(G)(m)) - dimV' 2rg(G) — (1 — €(K))
2re(G) —€e(popos) — 2r—1 2rg(G) —e(pogos)

If e(pogpos)=0,then Im(s) C K. Hence, ¢(K) = 1. Then the above inequality

becomes

hY(Fg(G)(m)) S dimV P(m)
2re(G) —e(pogos) —2r—1  2r—1

According to Proposition 3.11, the pair (H,¢ o s) is (semi)stable. In particular,
hO(Fg(H)(m)) = P(m). By a dimension reason, the induced map (3.4) is an iso-
morphism and

V =~ H(Fe(F(m))).
Moreover, we obtain the following commutative diagram:

VeERT* Ox(—m)

l 2 x
HYFe(F(m))) ® E @ 7*Ox(—m) F
I I

HY(Fe(H(m))) @ E @ m*Ox(—m) — H.

Hence, ¢ is surjective. Since Pg(F) = Pe(H), ¢ is an isomorphism. Thus, (F,s) is
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(semi)stable.

Conversely, assume (F,s) is (semi)stable and V ~ H°(F¢(F(m))). For any
nontrivial proper subspace W <V, let F/ = ¢(W @ E@7m*Ox(—m)) and (F', s’) the
corresponding subpair. If (F',s") = (F, s), then (3.2) is obviously satisfied. Assume
that (F’,s’) is a proper subpair. By Proposition 3.11, we have

WO (Fe(F)(m) _ RO (Fe(F)(m))
2rg(F') —e(s') 2r—1

The following commutative diagram
W —— HYFg(F'(m)))
V —=— H°(Fe¢(F(m))).

implies that dim W < h%(Fe(F'(m))). Hence,

dim W - dim V'
2re(F') —e(s’) ~2r—1

Therefore,

1 1 dimW dim W
! = / .
re(F) > 56 — 5 v T amy

Notice that Im(o) C W implies Im(s) C F’, we have €(s’) > ey (o). Combining this

with (3.2), (o, q) is GIT-(semi)stable. O

Proof of Theorem 3.3. Let R denote the locus of stable points such that ¢ induces

an isomorphism V ~ HY(F¢(F)(m)). By Proposition 3.21, R = Z*, the GIT-stable
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points. Using a similar argument as in [18, Lemma 4.3.1] or the more detailed version
on projective stacks [9, Theorem 4.12], we get My (P) ~ [Z°/GL(V)]. Let M*® be
the GIT-quotient, then M?® corepresents Mx(P). Moreover, M?® is a projective
scheme because we don’t have any strictly semistable points.

By a similar argument as [18, Cor 1.2.8, Lem 4.3.2], we can show that the
stabilizer in PGL(V') of a closed point in Z* is trivial. By Luna’s étale slice Theorem
[18, Theorem 4.2.12], Z* — M?* is a principal PGL(V')-bundle. Since the universal
family on Z*® is PGL(V)-linearized, it descends to M*® according to [18, Theorem

4.2.14]. Thus, M?* is a fine moduli space. O
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Chapter 4: Curve counting via stable pairs

4.1 PT invariants

Definition 4.1. An orbifold Calabi-Yau 3-fold (CY3) is a smooth, quasi-projective,
Deligne-Mumford stack X over C of dimension three having generically trivial sta-

bilizers and trivial canonical bundle,

K)( = OX.

The definition implies that the local model for X at a point p is [C?/G,] where

G, C SL(3,C) is the (finite) group of automorphisms of p.

Let K.(&X) be the Grothendieck group of compactly supported coherent sheaves

on X. We say Fi, Fy € K.(X) are numerically equivalent,

lenumf2

if

X(G® F) =x(G R F)
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for all locally free sheaves G on X. In particular, Pe(F;) = Pe(F2). We define

There is a natural filtration

RK(X)C FK(X)C KBE(X)C K(X)

given by the dimension of the support.
Given g € F1K(X)/FyK(X), the moduli space P(X, 3) parameterizes stable
pairs

Ox > F

where [F] = . The two stability conditions are:

1. the sheaf F is pure with compact support,

2. the section s has 0-dimensional cokernel.

By Definition 2.3, we can embed X into a projective stack. It follows from Theorem
3.3 that P(X, ) is a quasi-projective scheme.
Let

Cr = Supp(F) = V(Ann(F))

be the support of F.
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Lemma 4.2. For a stable pair (F,s),

Supp(Im(s)) = Cz.

Proof. This is the stacky version of [31, Lemma 1.6]. It suffices to show that
Ann(Im(s)) € Ann(F). Let a € Ann(Im(s)). If a ¢ Ann(F), let f be a sec-
tion for which af is not 0. Let Z be the 0-dimensional support of Coker(s) and U
be its complement. Since F|y = Im(s)|y, we obtain (af)|y = aly fly = 0. Hence,
the subsheaf generated by af has dimension 0 support, which violates the purity of

F. O

Since Im(s) is a quotient of Oy, Im(s) is a structure sheaf. By Lemma 4.2,

Oc, ~ Im(s) is pure. We have the following exact sequence,

0—=Ze, »Ox > F— Q—0.

The cokernel Q has dimension 0 support. The reduced support stack, Supp™“*(Q),
is called the zero locus of the pair. The zero locus lies on Cx.

Let C C X be a fixed curve with compact support and pure structure sheaf
Oc. Let m C O¢ be the ideal sheaf of a 0-dimensional reduced substack. Since
m” /m" ™! has dimension 0 support and O is pure, Zom(m”/m" ™! Oc) = 0. Ap-

plying s#om(-, O¢) to the following exact sequence

0—-m™ >m" - m/m*t =0
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yields the inclusion

Hom(m", Oc) — AHom(m Oc).

In particular, the inclusion m” < O induces a canonical section

Oc — %om(mr, Oc)

Let (F,s) be a stable pair with support C satisfying

Supp™“/(Q) C Supp(Oc/m).

Notice that #Zom(Q, O¢) = 0 by purity of O¢. Applying .7Zom(-, O¢) to the fol-
lowing exact sequence

0=0c—=F—=Q—=0

yields the inclusion

0— %Om(f, Oc) — Oc.

Let Oz be the cokernel, then Zz = om(F,O¢). Since F is isomorphic to O¢

away from the support of Q, we have Z is O-dimensional and

27 C Supp™(Q) C Supp(Oc/m).

For r > 0, there is an inclusion m"” C Zz with 0-dimensional cokernel. By purity,
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we get

Hom(Zz,0c) C Hom(m", Oc).

The obvious double dual

F — Hom(Hom(F,Oc),Oc) = Hom(Zz,Oc)

is isomorphic away from the support of Q, so is an injection by the purity of F.
Therefore, we obtain

Oc — F — %om(mr, Oc)

with composition the canonical section. Dividing by O, we get

QC %om(mr, Oc)/@c (4.1)

Conversely, given (4.1), let F be the preimage of Q in sZom(m”", O¢). Since

Oc is pure, F is also pure. Moreover, F fits into an exact sequence

Oy » O > F —Q—0.

Let s denote the section. By Lemma 4.2, (F, s) is stable with support C. We obtain

the following stacky version of [31, Proposition 1.8].

Lemma 4.3. A stable pair (F,s) with support C and

Supp”“*(Q) C Supp(O¢/m)
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is equivalent to a coherent subsheaf Q C lims#om(m”, Oc)/Oc.
H

Let D°(X) be the bounded derived category of coherent sheaves on X. To
each stable pair

[Ox = F] € P(X, )

we associate a complex

7* = {0x — F} € D"(X).

As in [31], P(X, ) can be viewed as a component of the moduli space of complexes
with trivial determinant in D®(X). Using the stability condition and same argument

as in [31, Lemma 1.14], we obtain
Ext="1(I*,I°) =0, #om(I°,I°) = Oy.

In particular, Z*® is simple. Using the result of [19] or a similar argument as in
[16, Proposition 2.2.1] for moduli space of stable sheaves with fixed determinant,
we obtain a symmetric perfect obstruction theory on P(X, ) with tangent space
governed by Extj(Z®,Z°*) and obstruction space governed by Ext2(Z®,Z°*) where
the subscript 0 denotes trace-free Ext. By [5, Section 5|, it gives rise to a virtual
fundamental class [P(X,[)]"" € Ao(X). When X is projective, P(X,[) is also
projective, and the virtual fundamental class [P(X, 3)]""" can be integrated to an
integer
I

[P(x,B)]v

o1



In [4], Behrend defined an integer-valued constructible function

U525—>Z

associated to any scheme S over C. The weighted Euler characteristic is defined to

be

X(S) = x(S,v8) = > kxuop(vg" (k)

keZ
where xiop(+) is the topological Euler characteristic. If S is endowed with a sym-
metric obstruction theory and assume that S is proper. Behrend [4, Theorem 4.18]

proved that

#7(S) = X(S).

Definition 4.4 (PT invariants). The PT invariant of X in the class f € F1 K(X)
is given by

PT3(X) = X(P(X, 5)).

Notice that this is well defined for non-compact geometries.

We define the PT partition function by

PT(X)= > PT(X)q".
BEFIK(X)

With an appropriate choice of a basis ey, - - - , e, for F} K(X), we can regard PT(X)
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as a formal Laurent series in the variables ¢, - , ., where
qﬁ:qfl',_qgr
for 6 = Z;:l dlez
We end this section with some facts about the Behrend function vg.

e If S is smooth at P, then vg(P) = (—1)4™5 [4, Section 1.2].

e If S admits a G,,,-action with isolated fixed points and a G,,-equivariant sym-

metric obstruction theory, then for each fixed point P,
Us(P) — (_1>dimTS|P.
In particular,

X(S) =Y (=1t Trs, (4.2)

where the sum is over the G,,-fixed points [6, Theorem 3.4].

4.2 Orbifold DT crepant resolution conjecture (CRC) and DT /PT

correspondence

Let X be an orbifold CY3 and let X be its coarse space. Given a € K(X),
let Hilb*(X) be the category of families of substacks Z C X having [Oz] = a.

By [29, Theorem 1.5], Hilb%(X) is represented by a quasi-projective scheme.
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Definition 4.5. The DT invariant of X in the class 5 € F1 K(X) is given by

DTy(X) = X(Hilb? (X)).

where X(-) is the weighted Euler characteristic.

The DT partition function is defined as

DT(X)= Y  DTsX)q".
BEFIK(X)

The degree zero DT partition function is

DT (X)= Y DIL.(X)g"

aEFHK(X)

and the reduced DT partition function is

DT(X)

DT'(X) = 1 @

Let Y = Hilbl(X) be the Hilbert scheme parameterizing substacks in the
class [O,] € FoK(X). According to [8], Y is a smooth CY3 and Y is a crepant
resolution of X, i.e. there is resolution of singularities 7 : ¥ — X such that

™ Kx = Ky. Moreover, there is a Fourier-Mukai isomorphism

O K(X)— K(Y), F+s Rg.p*F,
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where p : 7 — X,q : Z — Y are the projections from the universal substack
Z C X xY onto each factor. This isomorphism doesn’t respect the filtration
FK(X) and F,K(Y'). However, if X satisfies the hard Lefschetz condition [12, Def
1.1], which in this case is equivalent [11, Lemma 24] to the condition that all G, are
finite subgroups of SO(3) C SU(3) or SU(2) C SU(3), then the image of FyK(X)
under @ is contained in F1 K(Y). Let Fi., . K(Y) = ®(Fy K (X)), whose elements can
be represented by formal differences of sheaves supported on the exceptional fibers
of m:Y = X, and F,,,K(X) = & }(F,K(Y)), whose elements can be represented
by formal differences of sheaves supported in dimension one where at the generic
point of each curve in the support, the associated representation of the stabilizer
of that point is a multiple of the regular representation. We have the following

commutative diagram

FK(X) —— F, K(X) —— FK(X)

J¢s Jes

FRK(Y) — FoK(Y) —— FIK(Y).

Define the exceptional DT partition function of Y and multi-reqular DT partition

function of X to be:

DT...(Y)= Y DI.(Y)q,

aGFech(Y)

DT,.(X)= Y  DTs(X)q’
BEFm K (X)

Jim Bryan and David Steinberg [13, Conjecture 1.1] made the following conjecture:
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Conjecture 4.6 (CRC). Let X be an orbifold CY3 satisfying the hard Lefschetz
condition. Let Y be the CY resolution of X described above. Then using ® to
tdentify the variables we have

DT,..(X)  DT(Y)
DTy(X)  DT..(Y)

Conjecture 4.7 (Orbifold DT/PT correspondence). Let X be an orbifold CY3

satisfying the hard Lefschetz condition. Then

PT(X) = %.

4.3  Orbifold toric CY3s and web diagrams

Let X be an orbifold toric CY3. By [10, Lemma 40], X is uniquely deter-
mined by its coarse moduli space X, a toric variety with Gorenstein finite quotient
singularities and trivial canonical bundle. The combinatorial data determining an
orbifold toric CY3 is expressed as the data of a web diagram, which is essentially

dual to the data of a fan.
Definition 4.8. A web diagram consists of the following data.
e A finite trivalent graph I'.

e A marking {z,.}, which consists of a non-zero vector z, . € 7?2 for each pair

(v, €) where e is an edge incident to a vertex v.
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e For each compact edge e with bounding vertices v and v/,

Ty.e + Tyl e = 0.

e For each vertex v with incident edges (ey, e, e3),

xvzel —"_ x’l},eg —"_ IUaGS = O

Two markings {7,.} and {7/, .} are equivalent if there exists g € SLy(Z) such that

g Tye =, forall (v,e).

Let X be an orbifold toric CY3 with coarse moduli space X. Such an X
determines a simplicial fan ¥ C N ® Q where N ~ Z3. Since the canonical divisor
is trivial, there is a linear function ! : N — Z such that [(v;) = 1 for all the
generators of 1-dimensional cones of ¥. Let [ be the intersection of ¥ with the
plane {v : I(v) = 1}. Tis a triangulation with integral vertices. Let I'" be graph
dual to T in the plane {v : {(v) = 1}. Under duality, a vertex v with incident edge e
corresponds to a triangle ¢ in T and a bounding edge €. We define a marking on I" as
follows. Fixing an orientation on the plane, the edge é inherits an orientation from
the triangle 0. The oriented edge defines an integral vector x,. in {v : {(v) = 0}.

The set {x,,.} makes the graph I' a web diagram.

Remark 4.9. The vertices of I' correspond to the torus fixed points in X, the edges
correspond to torus invariant curves, and the regions in the plane delineated by
the graph correspond to torus invariant divisors. I' will necessarily have some non-
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Figure 4.1: The web diagram for local P* x BZ,

compact edges; these correspond to edges incident to only one vertex. We denote

the set of compact edges by Edges™".

Example 4.10. Let X be the local P! x BZ,, namely the global quotient of the
resolved conifold Tot(O(—1) & O(—1) — P!) by Z, acting fiberwise by —1. The web

diagram of X is given in Figure 4.1.

Example 4.11. Let a,b be positive integers. Let

Xop = Tot (O(—po) ® O(—pos) — Pclz,b)

be the total space of the bundle O(—po) ® O(—poo) over the football P, , which is
by definition P* with root construction [14] of order a and b at the points py and

Poo- The web diagram of X, is given in Figure 4.2.
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(1,0,1)

(1,0) (—1,0)
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|
!

!
|
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|
|
|
|
|
!

!
|
|
|

N

(1,0,0)
Figure 4.2: The web diagram for local football A,

Locally, X is of the form [C*/G] where G is a finite subgroup of the torus

T = (C*).

Lemma 4.12 ( [10, Lemma 46]). Let v be the vertex of I', let (e1, ea, e3) be the three
edges incident to v, and let x,., = (a;,b;) be the markings. Then X has an open
neighbourhood about the torus fived point corresponding to v given by [C?/G] where

G is the subgroup of the torus T = (C*)3 given by
titaty =1, 7 =19, 17 = 1%,
The action of G on C3 is given by

(21, 22, 23) > (t121,ta20, t323)
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where the z; coordinate axis is the T invariant curve corresponding to the edge e;.

Moreover, the order of G is given by

|G|:$1AZE2:ZIZ2/\ZE3:[E3/\I1,

where x; \ x; = a;b; — a;b;. The order of H;, the stabilizer group of a generic point

on the T invariant curve corresponding to e; is given by

|Hz’ = ng(&i, bz)

4.4 Orbifold toric CY3 with transverse A, _; singularities

Let X be an orbifold toric CY3 whose orbifold structure is supported on a
disjoint union of smooth curves. By Lemma 4.12, the local model is [C?/Z,] where
Z, acts on C* with weights (1,—1,0). The coarse space X has transverse A, ;
singularities along the curves (where n can vary from curve to curve). In particular,
such X satisfies the hard Lefschetz condition.

Let I" be the web diagram of X'. For each edge e, let C(e) be the corresponding
torus invariant curve. Define n := n(e) such that Z, is the local group of C(e). It

will be convenient to choose an orientation on I'.

Definition 4.13. Let I' be the web diagram associated to an orbifold toric CY3
with transverse A,,_; singularities. An orientation is a choice of directions for each

edge and an ordering (e1(v), ea(v), e.(v)) of the edges incident to each vertex v which
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D'(e)
Dy(e) > Doo(e€)
; D(e) g

Figure 4.3: The edge e with orientation chosen for adjacent edges

is compatible with the counterclockwise cyclic ordering. If any of the n(e;(v)) # 1,
we make this (necessarily unique) edge e3(v). We will call such an edge the special

edge and denote it as simply e(v).

Given an orientation on I'" and a compact edge e corresponding to C(e), let
D(e) and D'(e) denote the two regions incident to e with the convention that D(e)
lies to the right of e. We also use D(e) and D’(e) to denote the corresponding torus
invariant divisors. Notice that C(e) = D(e) N D'(e). Let po(e) and poo(e) denote the
torus fixed points corresponding to the initial and final vertices incident to e. Let
Do(e) and Dy (e) denote the torus invariant divisors meeting C(e) transversely at
po(e) and po(e). Given a vertex v, let Dy(v), Da(v), D3(v) denote the regions and
the corresponding torus invariant divisors opposite the edges e;(v), ea(v), e3(v). The
oriented web diagram near the edge e is given in Figure 4.3.

Let e be a compact edge and let C = C(e), D = D(e), D' = D’(e). The normal
bundle of C C & is

NC/X = Oc(D) D Oc(D/).
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Let

m = deg Oc(D), m' = deg Oc(D'). (4.3)

If n =n(e) > 1, the C is a BZ, gerbe over P! and

1
m,m' € 7.
n

By Calabi-Yau condition,

m4+m' = —2.

If n =1, then in Figure 4.3, one of

and/or one of

is possibly greater than 1 and C is a football: a P! with root constructions of order
max(a,a’) and max(b, ') at 0 and oo.

We define

1 ifa>1,
0 ifa=1,

and similarly for ¢j, 6o, and ¢’ . By [10, Lemma 48] and the Calabi-Yau condition
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Oc(D+7D') = Ke = Oc(—po — Pso), We can write

Oc(D) = Oc(mp — dopo — docPoo) (4.4)

Oc(D') = Oc(m'p — dgpo — 0oPos) (4.5)

where p is a generic point on C, m, m’' € Z, and

m+m' =8+ &y + 0 + 0y — 2.

Notice that

%0 O
N a b’
I A

m = /—5—7

By convention, we define m = m and m’ = m’ if n = n(e) > 1.

As in [10, Section 3.3], we will use the following generators for Fy K (X). Let
p € X be a generic point and let p(e) ~ BZy) be a generic point on the curve
C(e). Let pq, a € {0,--- ,n(e) — 1} be the irreducible representations of Z, ) with

indexing chosen so that

Op(e)(—aD(e)) =~ Ope) @ Pa-

We have the following classes in F} K (X) and their associated variables (see Table

4.1).
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Table 4.1: Generators for F} K (X)

Class in F1K(X) Associated variable Indexing set

[Op] q
[Op(e) X pa] Ge.a ec Edgesa a € {07 e 7”(6) - 1}
[Oc(e)(=1) @ pa]  Veya e € Edges™,a € {0,--- ,n(e) — 1}

Remark 4.14. (1) If C(e) ~ P! X BZy.), then O¢(¢)(—1) is the pull back of Op1(—1)

and p, is the pullback from BZ,y. In general, let 7 : C(e) — C(e) be the degree
n(e) cover obtained from the base change P* — P!, z — 2. Then C(e) is a trivial
BZyey gerbe and [O¢(e)(—1) ® p] is defined to be the class ﬁm [Oé(ve)(—l) ® Pal-
(2) The above classes generate F1 K (X) over Q but there are relations. In particular,

for each edge e, there is the relation
[Op] = [OP(E) ® Ryeg)

where R,.; = ), po denotes the regular representation of Zin(ey- This relation gives

rise to the relation
n(e)—1
q= H Ge,a-
k=0

Given a partition A C Z? and an integer n, let
AMa,n| ={(i,j) € Ax:i—j=a modn}
denote the set of boxes in A of color ¢ mod n. Let

[Ala = [Ala, 7]
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denote the number of boxes of color ¢ mod n in .

Definition 4.15. Let I" be the web diagram of X and assume that I'" has an ori-
entation. An edge assignment on T is a choice of a partition A(e) for each edge e
such that A(e) = () for every non-compact edge. Given a vertex v, we get a triple of

partitions (A;(v), Aa(v), A3(v)) by setting

Aei(v))  e;(v) is oriented outward,

)\i (U) =

A(ei(v)) e;(v) is oriented inward,

where \! is the transpose of A\. An edge assignment is called multi-reqular if each \s

satisfies |Az|, = |A\3|/n(e3) for all a

The action of the torus 7" on X induces a T action on P(&X,[3). Let Q C

P(X,8)T be a connected T-fixed locus. By Lemma 4.21,

Q = H Qw(v)a

where each Qr(y) is a product of P'’s. Q corresponds with sets {A(e),w(v)} where
{\(e) : e € Edge™} is an edge assignment and {7 (v) : v € Vertices} is a collection of
labelled box configurations with outgoing partitions (A (v), A2(v), A3(v)). Here, each
7(v) is a subset of Z3 depending on (A1(v), Aa(v), A3(v)). The complete description

of (v) will be given in Section 4.6.

Proposition/Conjecture 4.16. Let X be an orbifold toric CYS3 with transverse
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A, _1 orbifold structure. Then

PTa(X) = > xiop(Q)(=1)Hm Tz PXD),
QCP(Xx,8)T

where I* € Q C P(X, 8)T is a T-fized stable pair.

Remark 4.17. To get an explicit formula for PT3(X), we will follow [10] to give a
combinatorial description of the T-fixed substacks in Section 4.6 and to calculate

the parity of the tangent space to a T-fixed point in Section 4.7.

In the 1-leg or 2-leg case, that is at most 2 of \;(v)’s are nonempty for each
v, the T-fixed points are isolated (See Section 4.6). We can prove Proposition 4.16
using (4.2). The 3-leg case is conjectural.

The Z,, PT vertex (See Definition 4.27)

Wi (@05 ) = 3 Xop( @)y ™+ gy
a

counts colored labelled box configurations with outgoing partitions (A1, Ay, Az). We
color the boxes in a labelled box configuration 7 according to the rule that a box
(1,7,k) € m has color i — jmodn. In the 1-leg case we have the following explicit

formula for the Z, PT vertex. For any partition \, define

n—1
in)\ — H q;A)\(CL,TL)
a=0
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where

Theorem 4.18. Let A be a partition, then

WQ@@@O» T aQn—l) = C]_AAS,\t(q)7

W@"A@((Jm e ne1) = C]_A”SA(UI),

1
W@n@)\(qo7 e aQn—l) — H n—1 h O 9
fex 1= ITazo qaa( :

where s\(q) is the Schur function with q = (1,q1,¢192, 19293, -+ ), ha(0) denotes
the number a-colored boxes in the hook of L1, and the overline denotes the exchange

of variables q, <> q_q.

We will prove this in Chapter 5.

Given a triple of partitions (A1, A2, A3), we define

Mla,n] ={(j, k) € M| = j = amodn},
Aala,n] = {(k,i) € \2|i = amodn},

Asla,n] = {(i,j) € A\3]i —j = amodn}
to be the set of boxes in \; with color a. Let

|Aila = [Aia,n]],i =1,2,3
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be the number of boxes with color a. Let

(4,9)EX
and let
Colan] = > (=mi—m'j+1).
(i,5)EXa,n]
Let e = e3(v), n = n(e), and
(Ge.0sGets ** +Gem—1) e is oriented outward,
Gy =
(G0, Gen—1," "+ 1qeq) e is oriented inward.

We define

(_1)8()\3)(]1)

to be the same as ¢, but with each ., multiplied by the sign (—1)%(**) where
Sa(A3) = [Asla=1 + [Asla+1 + dao-

We also define

n(e)—1

Al Mla.n(e)
oM = H Vea

a=0
n(e)—1

Ca it > lan(e)]
g. ™" = [ (10 0)
a=0
n(e)—1

quA — H ((_1)5Q’OQe,a)AA(a’n(e))'
a=0
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Finally, let A = A(e),n = n(e), and let

>0 Con el 1) (Mot = Narr) + Mol (Al + (1 4+ m) M), 2> 1

SE, =
’)‘|(m+50+5oo>7 n = 1.
Let
n—1
Yir(w) = Z IAsla([Aila + [Aela + [Aifas1 + [A2la—1)-
a=0

Theorem/Conjecture 4.19. Let X be an orbifold toric CY3 with transverse A,

singularities and let T' be the diagram of X. Then

PT(X) = Z H Ee) H (- )”(”)W,\l65)(/1\}2(u)xg(y)((_1)5(/\3@))%) (4.6)

edge ecEdges v€E Vertices

assignments

where

) = (DB ()" () (485 ()

and (f, f',g,9") are as in Figure 4.5.

4.5 Example: the local football

The graph of the local football X, is in Figure 4.3. Since

69



we have

To ease notation, let

UV = Ve,
Pk = 4fk, k:O,"',(I—].,

Tt =4qqg 1, k:Oa"'ab_17

and

q=Po " Pa-1=T0" " "Tp-1.

Here, v and ¢ keep track of the degree and the holomorphic Euler characteristic of
the curve, and py € Za and r; € Zb keep track of the embedded stacky points at pg

and p... By Theorem 4.19, we have

PT(Xa,b) = Z E/\ ' W)(\Z(Z)(Z)((_pO)apla T 7pa71) ' W)l\)fQ)@((_TO)a 1, 7Tb71)
A

where

Ey :(_1)|AIU\AI(_Q)IAI

a) Ax(1,a Ay(a—1,a Ayt (1,b Ay (b—1,b
- (—po) O Jpiaa >...pa3§ 1 )(—TO)AV(“)rl”( )"'Tbﬁ( )
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Applying the formula in Theorem 4.18, we get

a — a) —Ax(l,a —Ay(a—1,a
W,\Q)@((—Po)ypl, T 7]9a71) = (—po) A0, )pl A(L.a) "'pa_f( ! )Skt(lapaflapaflpaf% T
_ —A(1,b — A, (b—1,b
W,\b@@((—ro), Ty, ﬂ“bfl) = (—7’0) A”(O’b)ﬁ a0, "7“1,_1”( )8,\(1, Tp—1,Tp—1Tp—2," " ).

Let Q = (1,q,4¢% ---) and use the homogeneity of Schur functions

Al

w SA(1’1,9€2, e ) = SA(W$17W$2, e )

we get

PT<Xa,b) = Zsz\t(_v(_Q)Qa _vpafl(_q>Q7 crry, —UPqg—1Pa—2 * * pl(_Q)Q)
A

'SA(Q7Tb—1Q,"' ,Tb—17’b—2"'7’1Q)-

Using the orthogonality of Schur functions [24, Section 1.4 (4.3")]

Yo sa@)snly) = [[(+ )

A irj
we arrive the following
Proposition 4.20. The PT partition function of the local football X, is given by

a b

PT(Xp) = TTTTT @ = vpr - pacirs - moca (—g)™)™ (4.7)

k=1 1=1 m=1

Since the only stacky curves in &, ; are non-compact, the edge assignments
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are multi-regular. Thus,

PT (Xap) = PT(Xup)

The Calabi-Yau resolution ¥ — X has a single (—1, —1)-curve given by the proper
transform of the football to which are attached two chains of (0, —2)-curves having
a—1 and b—1 components each. According to Proposition 4.20 and [10, Proposition

3], we have

DT(Y
PTmr(Xa,b) - DTylm«(Xa,b) - .D,I'—(<Y))7

which verifies the CRC 4.6 and DT/PT correspondence 4.7. Notice on Y the vari-
ables p1, -+ ,pe_1 and 7y, -+ , 1,1 corresponds to the classes of the curves in each

of the chains and v corresponds to the class of the (—1, —1)-curve.

4.6 T-fixed points and the Z,, PT vertex

Let X be a toric CY3 orbifold with web diagram I'. Let v € I" be a vertex.
By Lemma 4.12, X has an open neighbourhood about the torus fixed point cor-
responding to v given by U, = [C?*/G] where G is a finite subgroup of the torus
T = (C*)3.

Let

I° = [Ox = Fl € P(X,B)"
be a T-fixed stable pair. Let
I; = [OUU iv_> ‘F’U]
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be the restriction of this stable pair on U,. Notice that Z$ is the same as

It = [Ocs 2% )]

where s, is an G-invariant section of the G-equivariant sheaf F, on C®. Thus, we
get a T-fixed stable pair on C3. Conversely, given a T-fixed stable pair I? on C3.
By [30, Section 2.1], s, is a T-invariant section of the T-equivariant sheaf F},. Since
G is a subgroup of T', we obtain a T-fixed stable pair on U,,.

The restricted data (F,,s,) can be characterized as certain labelled box con-
figurations [30, Section 2]. Let C, be the support of F,. The subscheme C, C C? is

T-invariant of pure dimension 1 and is defined by a monomial ideal

Ie, C (C[.Tl, T2, :L‘g].

The localizations

(Icv)xi C C[xlvx%a:?)]l‘mi = 1a 2a 3

are all T-fixed and correspond to a triple of partitions 1 = (u*, 42, i%). Since C,
has dimension 1, at least one of the y* is non-empty.

Conversely, consider a triple 1 = (u!, 12, u3) of partitions such that they are
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not all empty. Let

Ly = pt e, ws) - Cla, g, 23],
Lz = (23, 21] - Cla, xg, w3),

Ls = 1Pz, 5] - Clay, 2o, 23]

and let
3
Ly = ()1
i=1

The curve Cﬁ with ideal sheaf Iﬁ is easily seen to be the unique T-fixed pure curve
with partitions ﬁ

Consider the exact sequence associated to (F,, s,),
0— I, =» Os 25 F, = Q, — 0.

We conclude that C, = C’/—[ for some ,17
Since Supp(@,) is both 0-dimensional by stability and T-fixed, @), must be
supported at the origin. By Lemma 4.3, the pair (F,,s,) corresponds to a T-

invariant coherent subsheaf

Q, ClimsZom(m”, Oc_,)/Oc_,,
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where m = (21, x9, x3) is the ideal sheaf of the origin. Let
M; = (OC‘”‘)%‘ = ((C[xlu T2, x3]/IM1)Zi7i =1,2,3.

For example,

C[Z‘Q, .2?3]

M, =C e =2
' o }®Ml[$27$3]7

which can be viewed as a cylinder
Cyly = {(i,J. k)|, k) € '} € Z°
in the space of T-weights. By simple calculation,
3
linﬁpom(m ,Ocﬁ) = G_?lin%om(m ,Oc ;) = GBMZ =M.

The canonical section O¢_, corresponds to (1,1,1) € M and is T-invariant. Hence,
1
the T-fixed stable pair (F,,s,) is equivalent to a finitely generated T-invariant

Clxy, e, x3]-submodule

Q, C M/{(1,1,1)).

For every weight w € Z3, let 1,, 2, and 3,, be three independent vectors. A
C-basis for M is

{in|w € Cyl,}.
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The C[z1, 2, z3]-module structure is given by
Ty iy = iw+(1,0,0), Ty iy = iw+(0,1,0), T3 iy, = iw+(0,0,1)-
A C-basis for the submodule O¢ > C M is given by the set
{1, + 2, + 3u|w € Z2,)}

where i, = 0 if w € Cyl,. We can decompose the union of the cylinders Cyl; into 4
disjoint parts

3
oyl =1runummuln

i=1

where

I = {w|w has nonnegative coordinates and lies in exactly one of the cylinders},
IT = {w|w lies in exactly two of the cylinders},
IIT = {w|w lies in all three of the cylinders},

I = {w|w has at least one negative coordinate}.

The quotient M/O¢._, is supported on IIUIITUI™ and has the following C-basis

e If w €I is supported on Cyl,, then

C'iwCM/Oc_w
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e If w € Il is supported on Cyl; and Cyl;, then

C i, ®C-j C iy ®C-j
Chimae Y~CC M/Ofq..
C-(Ly+2p+30) C-(iw+]y) /Oc,

o If w e III, then

Clw@(c2w@@3w
C-(1y+ 2, +30)

2@2 CM/OCH.

A finitely generated T-invariant Clzy, 2, 23]-submodule

QCM/Oc_)

yields the following labelled box configuration [30, Section 2.5]: a finite number of

boxes supported on ITUIIT U I™ satisfying the following rules:

1. If w € I" and if any of

(wl - 17w27w3>7 (w17w2 - ]_,/LUg), (wlaw27w3 - 1)

support a box then w must support a box.

2. Ifw e Il,w ¢ Cyl,, and if any of

(wl - 17w27w3>7 (w17w2 - 17w3)7 <w17w27w3 - 1)

support a box other than a type III box labelled by the 1-dimensional subspace
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C - i,, then w must support a box.

3. If w € III and the subspace of

c-1,9C-2,pC-3,
C-(1y+2,+3y)

induced by boxes supported on

(wl - 1,w2,w3), (w1,w2 - st), (w1,w2,’w3 - 1)

is nonzero, the w must support a box. If the subspace has dimension 1, then

w is labelled by the corresponding point in

pi_p(C l®C-2,8C 3,
N C-(1y + 24 +30)

or unlabelled. If the subspace has dimension 2, then w is unlabelled.
We will use m = 7(v) = 7(1z) to denote such a labelled box configuration.

Lemma 4.21. Let X be a toric CY3 orbifold with web diagram . Let Q C P(X,3)T
be a connected component of T-fized locus. Then Q is a product of P'’s and cor-
responds with sets {\(e),m(v)} where {\(e) : e € Edge™} is an edge assignment
and {m(v) : v € Vertices} is a collection of labelled box configurations with outgoing

partitions (A (v), Aa(v), A3(v)).
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Proof. For each vertex v € I', we have seen that the T-fixed restricted data
I; = [Ouv S—U> ‘F’U]

locally on each open chart U, = [C3/G] corresponds to a labelled box configuration
7(v). The gluing condition is simply the matching of edge partitions. We conclude

that
Q=]

where each @, is a component of the moduli space of T-invariant C[zy, xo, 23]~
submodules of M/O¢ b By [30, Proposition 3], each @Q,, as a reduced variety, is a
product of P'’s which is obtained by assigning different labels to each unrestricted
path component of labelled type III boxes in 7(v). By [30, (3-1)], the global to local

restriction map of the T-weight 0 part of the Zariski tangent space
Ext’(Z*, F)" = @ Ext’(Z;, F,)"
is an isomorphism. Since G is a subgroup of T', we have
Ext’(Z2, F,)" = (Ext®(I3, F,)%)" = Ext’(I2, F,)T.

By [30, Proposition 4],

dim Ext(I?, F,)" = dim Q,.

Therefore, Q is nonsingular. O]
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To compute the PT invariant PT3(X') using (4.2), we consider the Calabi-Yau
subtorus

To = {(t1, 12, t3)[tatats = 1} C T.

Since Ty acts trivially on Ky, we obtain

Exty(Z°,Z°)Y ~ Ext3(Z°,Z°)

as Ty-representation. Hence, P(X, 3) carries a Ty-equivariant symmetric obstruction
theory.

Let 72 = [0y, 2% F,] be a T-fixed restricted data, it is also Ty-fixed. By
Lemma 4.12,

GclycT.

Hence,

Ext’(Z2, F,)™ = (Ext’(I2, F,)%) " = Ext’(I7, F,)™.

In the 1-leg or 2-leg case, we have (see [30, Section 3.3|)

Ext’(I2, F,)™ = 0.

It follows that P(X, )™ is no larger and consists of a finite number of isolated
points. Now we use the fact in the proof of Lemma 4.1 in [6] to find a one-parameter
subgroup G,, C T, with respect to which all weights of all tangent spaces at all

fixed points are nonzero. Thus, all G,,-fixed points are also isolated. Using (4.2),
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we obtain

Proposition 4.22. In the 1-leg or 2-leg case, the T-action on P(X, ) has isolated

fized points, and we have

PTg(X) _ Z (_1)dimTI.P(X,B).
I°cP(x,8)T

In the 3-leg case, let X be a smooth toric Calabi-Yau 3 fold , then the loci
P(X, )™ are conjectured to be nonsingular [30, Conjecture 2]. Assuming this

conjecture, Pandharipande and Thomas use the localization formula [17] to prove

that

PTa(X) = > Xiop(Q)(—1)mTre A
QCP(X,B)T

in the localized T-equivariant chow ring Q[s1, S2, 53](s;,s5,s5)- Combining this with

the previous proposition we make the following conjecture
Conjecture 4.23. Let X be an orbifold toric CY3. Then

PTs(X) = > Xiop(Q)(=1) TP,

Qcr(x,p)T

where I* € Q C P(X,8)" is a T-fized stable pair.

Remark 4.24. Let S be a scheme with a G,,-equivariant symmetric obstruction
theory and nonsingular fixed loci. Let P be a fixed point (not necessarily isolated),

then Conjecture 4.23 suggests that the Behrend function takes value

vs(P) = (—1)dmTsir,
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Next, we write the K-theory class of the underlying sheaf F of a T-fixed stable
pair (F,s) as a sum over edge and vertex terms. It will be convenient to identify an
element (i, j, k) € S;(v) with the corresponding divisor. Thus if we write D € S, (v)
we will mean

D = ’LDl (?}) + jDQ(U) + k’Dg(U)

for the corresponding (i, j, k) € Sy(v). Similarly, D € A(e) means

D = iD(e) + jD'(e)

for the corresponding (7, ) € A(e).

Given a triple of partitions z = (u!, 42, %). Let Q be a component of the
moduli space of T-fixed C[xzy,x2, z3]-submodules of M/Ocﬁ- By Lemma 4.21, )
is a product of P!. For each labelled box configuration # € @, consider the set of

boxes

S, =nmUIlUIIL

For each box w € S, we define

n(w) = &(w) + £(w) (4.8)
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where
4

0 ifwegn

{(w) =92 if w is a unlabelled box of type III,

1 otherwise,
\

and

&(w) = 1 — #cylinders containing w.

Notice that every m € ) has the same type of boxes when forgetting the exact
labels and n(w) depends on the type of w. We will use @, to denote the component

containing .

Proposition 4.25. Let Oy — F be a T-invariant stable pair on X with associated

data {\(e),m(v)}. Then in T-equivariant compactly supported K -theory we have

= > ZOC(e D)+ Y. > n(D) (D)

e€EdgesP! De(e vEVertices DES, (v)

where (D) is defined in (4.8).

Proof. By Lemma 4.2, we obtain the following short exact sequence

0=0c—=F—=Q—=0,
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where C is the support of F. Hence,
F =0+ Q.

By [10, Proposition 4],

Oc= ). Z Oco(=D)+ ) (— > Oww(=D) = > 20p<v)(—1?)> :

e€EdgesP! De(e v€E Vertices Dell Delll

Notice that Q is supported entirely at the T-fixed points p(v). We have

> o= & % im0

v€E Vertices vE Vertices DES, (v
The proposition follows immediately. O]

In the case where X’ has transverse A,,_; orbifold structure, we can write the

decomposition of F into the generators described in Table 4.1.

Proposition 4.26. (1) The vertex terms decompose as

Z(i,j,k)e&r(v) N(D)[Opwy ® pi—;] es(v) is oriented outward,

Z(i,j,k)esﬁ(v) N(D)[Opw) ® pj—i) es(v) is oriented inward.
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(2) Using the notation as in Section 4.4 and Figure 4.3, we have

n—1
Y Oc(—iD = jD') = Ak [Oc(=1) @ ] + Y O swlk 1] - [Ope) © pi]
(4,7)EX k=0
a—1 a'—1
+ 00> Ax(k,a) - [Opipy @ pil + 6y Y Axe(k,a') - [Oppy @ pil
k=0 k=0
b—1 b —
+ 600 > Ax(k,b) - [Opiq) ® pi] + 0Ly ZAM k, V) - [Opery @ pil-
k=0 k=0
Proof. See [10, Lemma 15 & Prop 5]. O

Proposition 4.25, Proposition 4.26, and Table 4.1 suggest the following defini-

tion.

Definition 4.27. The Z, PT vertex Wg is defined by

Wa—Zx@ Qo™ - (4.9)

where the sum is taken over the components (), of the moduli space of T-fixed

Clx1, z2, x3]-submodules of M/O¢_, and
o

ma= > nw)

w=(1,5,k)ESH
i—j=amodn

is the (normalized) number of boxes of color a in S;.

Given a labelled box configuration = = m(z). We can view

m N Cyl;
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as a reverse plane partition (RPP) of shape p’, an array of nonnegative integers of
shape p! that is weakly increasing in both rows and columns, by summing over the
boxes sitting on top of each [J € ! along the i-axis.

In the 1-leg case, i.e. only one p’ is nonempty, the T-fixed points are isolated
and are in bijective correspondence with RPPs of shape ¢ by Lemma 4.21. The Z,

PT vertex Wg simplifies to

Z Q(|)7T|O .”qlzr_‘?[ilai - 172737
TERPP(ut)

where

mla= ) L

(i,3,k)Em
i—j=amodn

We will find an explicit formula for the PT vertex in Section 5.

4.7 'The sign formula

Let

7* = [0y — Fl € P(X,B)"

be a T-fixed stable pair. The Zariski tangent space to Z® in P(X, ) is isomorphic
to Extd(Z*,Z*). We want to compute the sign (—1)3™x6(Z*Z%) and arrange them
into vertex and edge terms. The calculation is adapted from [10, Section 6].

The Calabi-Yau condition on & implies that

Kxﬁo/y@((:[ﬂ]
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as a T-equivariant line bundle for some primitive weight 1 € Hom(7", C*) [10, Lemma

18]. The shifted dual of a T-representation V' is defined by the formula

V =V"®C[—pul.

Proposition 4.28 ( [10, Proposition 6]). The shifted dual satisfies the following

properties.

(1) For any T-equivariant sheaf F and G,

Ext'(F,G)" ~ Ext* (G, F)

and likeunse for traceless Ext.

(2) Let V and W be virtual T-representations such that

VoVr=W - W

Then the virtual dimension of V' and W are equal modulo 2.

Let V be a virtual T-representation. We define s(V') € Z/27Z to be the di-
mension modulo 2 of V. If V is an anti-self shifted dual virtual representation,
ie.

V=Ww-wr

for some W. We define



By Proposition 4.28 above, ¢(V) is independent of the choice of W.

Consider as T-representations, we have that

Exty(Z°,Z°) — Ext3(Z°,7°)
:X(OX7 OX) - X(I.7I.)
:X(OX, OX) - X(OX - F,Ox — .7:)

=X(Ox, F) + x(F,Ox) — x(F, F).

By Proposition 4.28, we have

Exty(Z°,I°) = Ext3(Z°,I°)*

and

X(F,Ox) = —x(Ox, F)".
Hence,
s(Extg(Z°,Z°)) = o(Exty(Z°,I°) — Ext3(Z°,1°))
=o(X(Ox, F) = x(Ox, F)" = x(F,F))

= s(x(Ox, F)) + o(x(F,F))

= X(F) +o(x(F, F)).
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Given any decomposition F = ), K; in Kp(X), we have

:ZX<KZ'7KJ')
:Z [(Ext®(K;, K;) — Bxt'(K;, K;)) — (Ext®(K;, K;) — Ext!'(K;, K;))*]

+ Y (K Ky) = (K, K)).

1<j

Therefore,

s(Extg(Z°,1%)) = x(F) + Y _ s(Hom(K;, K;) — Ext!(K;, K;)) + Y s(x(Ki, K;)).

1<J

Let’s first compute

Y s(Hom(K;, K;) — Ext' (K, K)).

7

We call these the diagonal terms. It can be divided into edge terms and vertex
terms.

By Proposition 4.21, we have

F= > 2 OclDi+ > > n(D)Oyy(-D).

ecEdges°Pt DEA(e) vE€Vertices DES, (v)

Let e be a compact edge and let C = C(e), D = D(e), and D' = D'(e) so that
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C =DnN7D'. We have the following exact sequence

0= Ox(=D —D') = Ox(—D) ® Ox(=D') = Ox — O¢ — 0. (4.10)

For A € A(e), we tensor (4.10) by Ox(—.A) and then apply Zom(-, Oc(—A)) to

obtain
1. #om(Oc(—A),Oc(—A)) = Oc,
2. Eat'(Oc(—A), Oc(—A)) = Oc(D) ® Oc(D') = Neyw,
3. Ext?(Oc(—A), Oc(—A)) = Oc(D +D') = N> Nex-

By local-to-global spectral sequence

Hom(Oc(—A), Oc(—.A)) = HO(Oc)

Eth(Oc(—A), Oc(—A)) = HO(Nc/X) D Hl(OC)

Since h%(O¢) = 1 and h'(O¢) = 0, we deduce that each edge e contributes

D (14 h%(Neyx)) = IM@)I(1 + h°(Neyx)) (4.11)
AEN(e)

to the diagonal terms.

Let v be a vertex. Let p = p(v) and D; = D;(v),i = 1,2,3. We have the
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following exact sequence

0— Ox(~D1—D;—Ds) » P Ox(~Di— D)

1<i<j<3

s (4.12)
— EBOX(_Di) — Ox - 0O, = 0.
=1

For A € w(v), we tensor (4.12) by Ox(—.A) and then apply s#om(-,0,(—.A)) to
obtain

E1t'(Oy(—A), Oy(—A)) = 0, @ J\ Npja,i =0,1,2,3.
By local-to-global spectral sequence

Hom(O,(—A), Op(-A)) = HO(OP)

Ext'(Op(—A), Op(—A)) = H*(Nyx) & H' (Op).
Since h°(O,) =1 and h'(0,) = 0, we deduce that each vertex v contributes

Y AL+ R (Nya)) (4.13)

AeSr (v)

to the diagonal terms, where 7(A) is defined in (4.8).

Next, we compute the off-diagonal terms

S s(x(Ki, K ).

1<j

It is convenient to introduce an arbitrary total order on each A(e) and w(v). Let
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C =C(e),C"=C(¢), and p = p(v). The off-diagonal terms can be divided into edge
terms,

Oc(—A) and O¢(—B)
for A < B in A(e), and vertex terms, which come in three types:
1. Oy(—A) and O,(—B) for A < B in S;(v).
2. Oc(—A) and O,(—B) for A € A(e) and B € S;(v) where e is incident to v.

3. Oc(—A) and O¢/(—B) for A € A(e) and B € A(¢'), where e # ¢’ have common

vertex v.

For the vertex term, we tensor (4.10) by Ox(—.A) and then apply sZom(-, Oc(—B))

to obtain
Ext'(Oc(—A), Oc(—B)) = Oc(A—~ B)® )\ Nejw,i=0,1,2.
It follows that each edge e contributes

> X(Oc(A-B) @ A1 Neyx) (4.14)

A,BEX(e)
A<B

to the off-diagonal terms. Here,

2 .
AiNesx = (=1)' \ Neyar = Oc = Oc(D) = Oc(D') + Oc(D + D).

=0

For the type (1) vertex terms, let A < B in S;(v), we tensor (4.12) by Ox(—A)
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and then apply s#om(-,O,(—B)) to obtain
@@‘rtl(op(_A)’ Op(_B)) = OP(A - B) ® /\Z Np/Xui = 07 17 27 3.
It follows that the contribution is

Y (AMB)R(Op(A ~ B) @ A1Nyx), (4.15)

A,BESH (v)
A<B

where

3 A
)‘—le/X = Z<_1)i /\Z NP/X‘

1=0

Let A € A(e), and B € S,;(v), where e is incident to v. We tensor (4.10) by

Ox(—A) and apply sZom(-, O,(—B)) to obtain
Ext'(Oc(—A), Oy(—B)) = Op( A~ B) & \ Neywri =0,1,2.
It follows that the contribution of the type (2) vertex terms is

Z N(B)A*(Op(A — B) @ A1 Ne(e x)- (4.16)

3
i=1 A€(e;) BESx(v)

Finally, let C =C(e) =DND', C' =C(f') =D NDy, and p = p(v) =CNC

(see Figure. 4.3). Let A € A(e) and B € A(f"). We tensor (4.10) by Or(—.A) and
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then apply s#om(-, O¢(—B)) to obtain the complex

0— Oa(.A—B) — Oc/(A—B+D)EBOCf(A—B+D/) — OCI(A—B-F’D-F’D/) — 0.

Using the fact that

0— O = Oc (D) = O,(D) =0
is exact and Op — Op/(D') is 0, we get
L. A om(Oc(—A), Oc(—B)) = 0,
2. Ext'(Oc(—A),Oc/(—B)) = O, (A — B+ D),
3. Ext*(Oc(—A),Oc/(—B)) = O)(A—B+D+7D).

By Calabi-Yau condition, O,(D + D’) = O,(—Dy). Hence,

s(x(Oc(—=A,Oc(—B)) = h°(O,(A - B+ D)) + h*(O,(A - B+D+7D))

= 1°(O,(A — B+ D)) + h°(O,(B — A+ Dy)),

and the contribution of type (3) vertex terms is

Yo D D, N(O(A-B+Dy) (4.17)

i#j AeX(e;(v)) BeA(ej(v))

Putting (4.11), (4.13), (4.14), (4.15), (4.16), and (4.17) all together yields

s(Exty(Z°,1%)) = x(F) + Z SExe) + Z SV (v

ecEdges v€E Vertices
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where

SExe) = IMe)|(1+ B (Neeya) + Y x(Oce)(A = B) @ A1 Neyx)  (4.18)

A,BEX(e)
A<B

and

SVaw = > BPAA+R(Nyx)) + Y n(A)nB)R(O)(A = B) © A1 Ny/x)

AES, (v) ABESy (1)

+Z DI (A= B) @ A1 Negey )

i=1 AeX(e;) BESx(v)

+Y > > h(O(A-B+Dy)).

i#j A€N(ei(v)) BeA(e;(v))

(4.19)

Proposition 4.29. Let X be an orbifold toric CY3 with transverse A,_1 orbifold

structure. Let

=[0x = Fl e P(X.B)"

be a T-fixed stable pair. The parity of the dimension of the Zariski tangent space of

Z* in P(X,B) is given by

s(BExt}(Z°,1°)) = + > SExg+ Y, SVk

ecEdges vE Vertices

95



where

> a0 O @, ) (Paal = Pasa]) + Al (Ao + (L +m)[Aar), 0> 1

SE, =
|/\|(T7l+50—}—600), nzl,
and
n—1 n—1
SV =D I7la(Asla-1 + Palarn) + Y PslalMila + Pala + [Aalast + [Aola-r)-
a=0 a=0

Proof. We first treat the edge term (4.18). If n = n(e) > 1, then C = C(e) is a
BZ, gerbe. We resymmetrize it as follows. Since N¢yjx = Oc (D) 4 Oc(D’), we get

KC = Oc(D —+ D,) and

)\,1Nc/x =0 — OC(D) — Oc(D/) + Ke.

It follows that

SEx =|A|(1 + h%(Oc(D)) + h°(Oc(D")))

+ ) X(Oc(A - B)) = x(Oc(A—B)® Ke)

A,BeX
A<B

+ 3 X(Oc(A=B+D)) - x(Oc(A—B+D).

A,BEX
A<B
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By Serre duality,

h'(Oc(D"))) = h'(Oc(D))),
X(Oc(A - B) ® Ke) = —x(Oc(B - A)),

X(Oc(A—B+7D))=—x(0c(B— A+ D)).

Hence,

SEx= 3 X(Oc(A— B)) + x(Oc(A ~ B + D))

A,BeX
n—1
= Z Z deg(A) — deg(B) + 1
a=0 A,Be)|a,n]
+ Z deg(A) — deg(B) + deg(D) + 1

A€A[a,n]
BeXla+1,n]

SR+ el Y (deg(d)— 1)

Aea,n]

—Pal > (deg(B) = 1) + [AafAas1(deg(D) + 1)

BeNa+1,n]

Recall that m = deg O¢(D) and m’ = deg O¢(D') (See (4.3)). Therefore,

5B = 3 I Parsl O las0] + Dl Gl + L]+ (1 m) Al

Z m,m/ [, n]([Aa—1] = [Aat1]) + [Alal ([Ala + (1 +m)[Alg—1).

If n =1, then C is a football. Since A_;N¢,x has rank and degree zero, it is
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trivial in K-theory. Hence, (4.18) becomes

SEx = [A|(1 + h%(Oc(D)) + h°(Oc(D")))
= [M(L+h%(Oc(D)) + h' (Oc(—D' + Ke)))

= [A(1+ x(Oc(D))).

Since O¢(D) = Oc(mp — Jopo — dooPoo) (see (4.4)), by [10, Lemma 39],

)+ | e

=14+m—0)— b

X(Oc(D))=1+m+ {

Hence, SEy\ = |A|(m + 0o + 00o)-

Writing \; = A(e;) and using the facts that

A1Npjx = Z(Op(_pi> —0p(Di)) =0

i=1

and

A—lNC(ei)/X = Oa 1= 17 2a
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the vertex term (4.19) becomes

SVe =Y 7P (A)(L+ h(Op(D1)) + h(Oy(Dy)) + h°(O,(Ds)))
AeSy

+5 S s p(A =B+ D)) + h°(Op(A— B+ Dy)))

A€Xs BESR

+3 ) > W(O(A-B+Dy)

i#j A€A(ei(v)) BeA(e;(v))

:SZn(B)Zl+Z1+Z oo+ Y1

a=0 BeSx[a,n] A€Azla—1,n] A€Azla+1,n] A€eXi[a,n] \BeEX2[a—1,n] BeXs[a,n
PN D SRS D DI R D DR I DR LD D
AeXzla,n] \ BEA[a+1,n] BeAs[a,n] A€Azla,n] \BEA[a+1,n] BeAz[a—1,n]
n—1
= Imla(Aslat 4+ Pslast) + M la(Palacs + [Asla)
a=0

+ [ A2la([Alas1 + [Asla) + [Asa(|At]ars + [A2]a-1)

n—1 n—1
= " Ila(Asla-1 + Aslas) + D ala(Ala + Pala + AMlass + [Azlaa)-
a=0 a=0

]

Theorem/Conjecture 4.19 is now easily proved assuming Proposition/Conjecture
4.16. Using Proposition 4.25, Proposition 4.26, and Table 4.1, the variables in (4.6)
are assigned. The sign of each term is determined by Proposition 4.29. The y(F)
term is accounted for by multiplying the variables ¢ and g.o by —1. The edge term
is multiplied by (—1)5A. The first term in SV is accounted for by multiplying the

variables ¢, , by (—1)Psla—1tAslats " and the second term in SV is accounted for by

the sign (—1)%~.
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Chapter 5: Generation functions for colored reverse plane partitions

5.1 Partitions and Schur functions

In this section, we review some facts about partitions and Schur functions.

The main references are [24] and [33].

Definition 5.1. A partition is any sequence

A= (A1 doy o) (5.1)

of non-negative integers in decreasing order:

and containing only finitely many non-zero terms.

The non-zero A; in (5.1) are called the parts of A. The number of parts is the

length of A\, denoted I()\). We define the weight of A to be

Al=A1+ -+ Ay
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The Young diagram of of X\ is obtained by drawing a left-justified array of
juxtaposed squares with \; squares in the 7th row. Alternatively, we can view a
partition as a subset of ZQZO in the 7j-plane with points being placed at the upper-
left corner of each square.

The conjugate of a partition X is the partition \! whose Young diagram is the

transpose of the Young diagram of \.

Example 5.2. The Young diagram of A = (5331) is

Its weight is |A] = 12, and its conjugate is \' = (43311).

For any O € A, the hook length h(O) is defined to be the sum of one plus the
number of boxes horizontally to the right and vertically below the box. In Example
5.2, the hook length of the shaded square is h(M) = 6.

We label the boundaries of the Young diagram of A from the upper right-hand
corner to the lower left-hand corner by 1 to A\; + A}. Let Bj,()\) denote the set of
horizontal boundaries, and B, (\) denote the set of vertical boundaries. In Example
5.2, we have

B,(\) ={1,4,5,8} and B,(\) = {2,3,6,7,9}.
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Definition 5.3. Given two partitions A and u, we write A D p to mean that the
Young diagram of A contains the Young diagram of u, i.e. A\; > p; for all ¢ > 1. The

set-theoretic difference is called a skew Young diagram, denoted A/ .

Example 5.4. is a skew Young diagram of shape (432)/(11).

Definition 5.5. We say A\/u is a border strip if it is connected and contains no 2 x 2
block of squares, i.e. successive rows of A\/u overlap by exactly one square. The
height of a border strip A\/u is defined to be one less than the number of rows its

Young diagram occupies, denoted by ht(A/u).

Example 5.6. Let A\ = (432) and p = (21), then

A=

is a border strip of height ht(\/u) = 2.

Definition 5.7. Let A and p be two partitions. We say A interlaces with p, denoted

A > w, if A D p and they satisfy the Pieri’s relation

AL > > Ag > g

Equivalently, the skew Young diagram \/u contains at most one box in each column.
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Example 5.8. Let A = (632) and p = (42). The skew Young diagram of A/ is

which contains 0 or 1 box in each column. Thus, A > pu.

Definition 5.9. A reverse plane partition (RPP) of skew shape A/p is an array
{mi;} of nonnegative integers of shape A\/u that is weakly increasing in both rows
and columns. A semistandard Young tableau (SSYT) is a RPP that is strictly

increasing in columns. The size of 7 is the sum of its entries, denoted by ||

Example 5.10. Let A = (32) and = (1). Then

is a SSYT of shape A/u with size |7| = 5.
Let © = (xq, z1, 29, --) be an infinite set of variables.

Definition 5.11. The skew Schur function of shape \/u can be defined as

Sau(T) = Z ",

TESSYT(M/ 1)
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where 1™ = xz)%OS in Trx#ls in .

1

The principle specialization is

svul@) = syul@)(Lg, %)= > g,
7ESSYT(N/ 1)

which is the generating function for SSYT of shape A/u. Similarly, we define

RPPyu(g)= Y, 4"

TE€RPP(\/p1)
When p = (), we have the following beautiful formula.

Proposition 5.12 ( [33, Theorem 7.22.1]). We have

1

RPPA0) = || 7
OeX
and
_ ) 1
S)\(q) =q H 1 — qh(D)>
OeX

where a(X) =Y _.(1 — 1)\;.
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5.2 Vertex operators

In this section, we review vertex operators following [27, Appendix A]. Let V be

a linear space with basis {k}, k € Z+ % The Fock space ATV is spanned by vectors

where S = {s1 > sy >s3>---} CZ+ % is such a subset that both sets

Sp = S\(Z<o —1/2), S- = (Zco = 1/2)\S

are finite. A2V is equipped with the inner product such that the basis {vg} is
orthonormal.

For any k € Z + 1/2, let ¢} be the operator

Yr(vs) =k Avs

and let 9y be its adjoint. Explicitly, let ¢ be the largest index such that s; > k.

Then

(=D'vsugry k&5,

Yr(vs) =
0 kesS.

)

(—l)i’l}g,{k} ke S,

Yr(vs) =
0 kS
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It is clear that

vs k&5, vy k€S,
Upthe(vs) = ; Upp(vs) =
0 kes. 0 k¢S

and they satisfy the anti-commutation relations
Yk + 0k = O

Define the energy and charge operator by

H=Y k:tup:, C=> s,
k k

where : Y} = . Noting that

i k< 0.

Cus = (I5¢] = 15-]vs.

Let AO%V := ker(C) be the charge zero Fock space.

Let A = (A1, Ag,- -+ ) be a partition. Define
Ux = Us(n)s S()\) = {)\Z -1+ 1/2} CZ+ 1/2

Let d be the number of boxes along the main diagonal of the Young diagram of
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shape A. Then
SN =i —i+1/23 1, SOV - = {=(\ =i+ 1/2)}L,.

Hence, |S(A)4] = |S(A)—-| = d. Conversely, for any S C Z + 1/2, if |S;| = |S_| <
oo, we have S = S(\) for some partition A. Clearly, A(? V' is spanned by the
vectors vy, where A runs over all partitions.

The energy operator H acts on vy by

d
Hoy = (A —i+1/24+ X —i+1/2)vy = [Avy,
=1
and so the operator ¢! acts by

H A
q U,\ZCI| lU}\

where ¢ is a formal parameter. We call ¢/ the weight operator.

For 0 # n € Z define

Qp = Z wk—n¢z
k

Evidently, o = a_,,. For n > 0, an easy calculation yields the following

a_pUy, = Z(_l)ht(A/ﬂ)v/\
A
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summed over all partitions A D p for which A/u is a border strip of size n.

Example 5.13.

SECE TN - v

The operators «,, satisfy the Heisenberg commutation relations
[y ] = MO, (5.2)

Let © = (x1, z2,x3,---) be an infinite set of variables and let

be the power sum symmetric function.

Definition 5.14. The vertex operators I'y(x), which are operators on A? V over

the coefficient ring given by symmetric functions in x;’s, are defined as

I'i(x) =exp (f: %ain) )

n=1

By the Heisenberg commutation relations (5.2), we observe that I'f (z) = I'z(z).
The matrix coefficients of the vertex operators Iy (z) with respect to the basis {v,}
are given by skew Schur functions.
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Proposition 5.15 ( [27, A.15]). We have

(P (@)vp3) = {0 T (2)02) = s34 (). (5.3)

Let y = (y1,¥2, - - ) be another infinite set of variables. By [24, (1) Pg.93], we have

the following orthogonality of skew Schur functions

Y svm@)sawy) = [T = 2a) D" sum(@)sumly
%,J

A n

Combining this with (5.3) gives rise to the following commutation equation:

Co@n () = [](1 = 2y) T ()T (). (5.4)

By the homogeneity of skew Schur functions, that is sy(qz) = ¢ sy (), we ob-
tain that the vertex operator 'y (z) and the weight operator ¢ satisfy the following

commutation equations

Ty (2)g" = ¢"Ty(zq), ¢"T_(z) =T (zq)q". (5.5)

We consider the following important specialization of Iy (z) which create in-
terlacing partitions. Let I'yt(1) be obtained by the specialization =1 — 1, z; —

0 for ¢ > 1. Explicitly,

[L(1) =exp (Z %ozin> )

n
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Under this specialization, the skew Schur function sy,,(x) becomes

1 ifA>=pu
S/\//t(170707"') =

0 otherwise.

By (5.3), we obtain

T_(Dp=> A\ Te(MA=> pu

A-p <A
As a motivating example, we derive MacMahon’s generating function for plane
partitions using vertex operators as in [28]. Recall that a plane partition 7 is an
array {m;;} of positive integers that is weakly increasing in both rows and columns.

Let m; be the t = ¢ — j diagonal slice. It is clear that
- <o <Tg <= =T -0

The generating function for plane partitions is defined by

M(g)=> ¢
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By interlacing plane partitions along the diagonals, we have

M(q) = <@ ‘H(H(l)qH) H(F*(l)qH)‘ ®>

— <@ Hm(qi)HF,(qJ‘) ®> apply (5.5)

=[II]a-q¢")" apply (5.4)
i>0 j>0

(e 9]

=[Ja-a9™,

n=1

which is the MacMahon function.
We also call a plane partition a 3D Young diagram, or 3D diagram for short.
It is a stable pile of cubical boxes that sit in the corner of a large cubical room.

More formally, a 3D Young diagram is a finite set 7 of Zgo such that if any of

(t+1,5.k), (i,j+1,k), (i,5,k+1)

is in 7, then (i,j,k) € m. Each ordered triple is a box; the condition means that
boxes are stacked stably in the positive octant with gravity pulling them in the

direction (—1,—1,—1).
Definition 5.16. Let (A, u, v) be a triple of partitions. A 3D partition 7 asymptotic
to (A, i, v) is a subset m C Z3, satisfying

(1) if any of (i +1,4,k),(i,7 + 1,k) and (¢,7,k + 1) is in 7, then (i, j, k) € 7.

(2) (a) (j,k) e X< (i,7,k) € wfori >0,

(b) (k,i) € p< (i,7,k) € wfor j >0,
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(¢) (4,)) €ev & (i,4,k) € mfor k> 0.

Let

&:(i,7,k) =1 — # of legs containing (i, j, k).

The normalized size of 7 is defined by

7= D & 5k).

Definition 5.17. The topological vertex Vy,, is defined to be

VA,UV(q> = Z qw

where the sum is over all 3D partitions 7 asymptotic to (A, u, v).

Okounkov, Reshetikhin and Vafa derive an explicit formula for V),, using

vertex operators.

Proposition 5.18 ( [28, Eqgs (3.18)-(3.20)]).

Vo) = M(q)q_@)_(uzt)_(5)—|/\\/2—|u|/2—\u|/2

X sut(q") Z SAt/n(q_V_p)Su/n(q_Vt_p)
n

where (3) =3, (%) and p = (—1/2,-3/2,--).
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Definition 5.19. The Z,, DT vertez Vy),, is defined by

V)\Zu(q(b qi,- -, QH71> == Z Q[|)7r|0 e qx:hil

where the sum is over all 3D partitions 7 asymptotic to (A, i, v) and

‘Tr'a = Z éﬁ(i7j7 k)

(i,,k) €™
i—j=amodn

We refer to [10, Theorem 12] for a closed formula for Vi, in terms of Schur function.
Let W3, be the Z, PT vertex (Definition 4.27). We have the following con-

jecture:
Conjecture 5.20 (Orbifold DT/PT vertex correspondence). If v is multi-regular,
then
WQILLV =
5.3 Reverse plane partitions with Z,-coloring

Let A be a partition. To give a natural coloring to 7 = (m;;) € RPP(\), we
consider it as a subset of Z? in the following way: we put the Young diagram of \

on the ij-plane, then

m={(i,7,k) € Z*|(i,7) € Nk = —1,-2,--+ , —m;; }.
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Intuitively, we stack cubical boxes on the Young diagram of A\ along the direction of

negative k-axis.

Definition 5.21. A Z,-coloring is a homomorphism
K:7° — 7Ly,

For+=10,1,--- ,n —1, let g; be the variable representing color i. Let © be a RPP
of shape A, then each point in m comes with a color. Let |7, be the number of
a-colored points in 7,

mlo =K (a) N 7l.

We will study the following Z,-colored generating function

n—

1
Wn(q0> o 7Qn71) - Z qy"a'
7ERPP()) a=0

Notice that we can also place A on the jk-plane or the ki-plane. We use the

following notation:

Wigg : A is placed on jk-plane,
Wiag : A is placed on ki-plane,

Wiy : A is placed on ij-plane.

For a fixed coloring K, this will lead to different generating functions.

114



We adopt the notation in [10]. For any partition A, define

n—1
in)\ — H q;Ak(aan)
a=0

where
1+a
A = .
o= 3 [
(3,5)eX
For any function f(qo, q1, - ,Gn-1), we use f(qo, q1, - ,qn—1) to denote the function

obtained by making the change of variables ¢,, <> q_,,, where we use q_,,, and ¢,,_,

interchangeably. Finally, let q = (1, q1, ¢1¢2, ¢1G293, - + - )-

Theorem 5.22. Let the coloring K be given by

K(i,j, k) =i — jmodn.

Then
Wie = ¢ sx(q). (5.6)
Wase = ¢ sa(q). (5.7)
n 1
Wiox = H n—1 ha(0)" (5.8)

Oex 1 — Ha:O a

where h,(O) denotes the number a-colored boxes in the hook of 0.

Remark 5.23. 1. When n =1, i.e. there is no coloring, we have

Wigo = Wing = Wyga = RPP,,.
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In this case, Ay = 35 yer@ = >o,(i — DA} and g = {1,¢,¢°,--- }. Thus,

1 - i—
RPPAQ) = [[ = = > (o)
Oex q

which gives a different proof for Proposition 5.12.

2. Theorem 5.22 and [10, Theorem 12] together verify the orbifold DT /PT vertex

correspondence 5.20 in the 1-leg case.

Proof. We first consider Wy,. By definition, A is placed on the first quadrant of
jk-plane. Let (j,k) € A. For any m € RPP()), let mj; be the integer in position

(7, k). The points (4, j, k) in m with this (j, k) are

(_17j7 k)? (_27j7 k)a ) (_,/lemj? k)

Hence, the contribution of (j,k) € A to W3y, is ¢—j-1¢—j-2-+*q—j—x,- Thus, the

contribution of 7 is

H q—j-19—j-2 """ q—j—mny,

(g,k)EX
= H (g-1- H -1 q—jq9—j—1" " G—j—mjp.-
(7.k)EA (k) EN

Notice that the first factor depends only on \. We can write it as

7A>\ — —Ax(a,n) h A — CL+] .
Hq , where Ay(a,n) Z/\{ -
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Recall that we have the following bijective map

¢ :RPP(A) = SSYT()\)

(1) = (mjn =+ J)-

Hence, the second factor is just a term in the Schur function sy:(z) under the

specialization x,, = q_1 - - - q_,,. Therefore,

—-A
Wi =q¢ ™ Z H -1 q—j9—j-1"""q—j—mj-

TERPP(N) (j,k)EX
= q Msx(l,q1,4-1q-2, )
= inAS)\t(q)a
which is (5.6).

By same argument, we prove (5.7)

Wino = ¢ sx(a).

It remains to prove (5.8) for Wi,. In this case, A is placed on the first quadrant
of the ij-plane. Let (i,j) € A and © = (m;;) € RPP(X). The points (7, j, k) € m with
this (7, j) are

(ivja _1)7 (7:7.77 _2)7 ) (Z'7.].7 _7.‘—2])
Hence, the contribution of (i, j) is ¢; “;. In particular, each diagonal slice 7;_; is only

3
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Figure 5.1: A Zs-colored RPP of shape (5331)

(1 — j)-colored. The adjacent diagonal slices of 7 interlace in a way depending on
the boundary of A\. We will use an example to illustrate this. Let n = 3, A = (5331),

and m € RPP()) be as in Figure 5.1. It is clear that

0.

—
+
=

=

oY L
Naw

rL) TL1) T T Ty i) ()
T_o <X T_1 <X Mg »= T > To < T3 < Ty »
7 6 5 4 3 2 1

where "4 (1) acts from right to left and we label them from 1 to A; + A} = 9. Recall

that the boundaries are
B,(\) ={1,4,5,8} and B,(\) = {2,3,6,7,9}.

We observe that the pattern of the I'y (1) coincides with that of the boundary of A.
More specifically, if h represents a horizontal boundary then the vertex operator at
position h is 'y (1); if v represents a vertical boundary then the vertex operator at

position v is I'_(1).
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Fort =1,--- A\ + Al define

I (1), teB,\)

T.(1), teBy\).

For a = 0,---,n — 1, let ¢/’ denote the a-colored weight operator. We obtain the

following vertex operator expression of Wy, :

-1 A1
W = <®» H F)\1+S+1(1>qfls Toa(1) H%{itrt(l)@>
t=1

s=1

We commute all g7 to the right and all ¢, to the left using (5.5) to get

Al—1 N
n sgn(A1+s son
Wior = <®’ LI Do (qz\gr‘fs-l:lr H)> (@) - [T <Cltg (t)) @> :

s=1 t=1

Here,

(

qoq1 " " Gxy—r, r=1-,A,
qr = 1, l=XM+1,

\qfl Ge(r-r—1), T=A 20 A+ )\ﬁ,

and
1, r = )\1 + 1,
sgn(r) =

(—1)re>rd (=) Mresr p =1 AL A 2, A A

where 14 denotes the indicator function.
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We then commute all 'y to the right and all I'_ to the left using (5.4) to

obtain
Wity = !
Pox — H 1— sgn(h) sgn(v)’
(hv)E(By, (). By (V) dn Ao
h>v

Finally, notice that each pair (h,v) € (B(A), B,(\)) with A > v uniquely determines
a ] e \. For example, in Figure 5.1 above, let h = 9 and v = 4, the corresponding []
and its hook are labeled by dotted lines. Clearly, ho(OJ) = hy(0) = 2 and ho(0) = 1.

Hence,

sgn(9 sgn(4 ho(O) h1(O) ho(O
a5 q Y = (g-19-20-5) - (qoar) = i = 6" "7 0” .

By similar argument, we obtain
n—1
sgn(h n(v o
g = [ e,
a=0

Therefore,

1
Wipy = H n—1 ha(0)"
OeX 1- Ha:O qaa( )
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