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Chapter 1: Introduction

Curve counting on Calabi-Yau threefolds was motivated by string theory. Let

X be a smooth projective Calabi-Yau threefold over C, i.e. KX =
∧3 ΩX ' OX .

Let C ⊂ X be a nonsingular embedded curve of genus g. The Calabi-Yau condition

implies that the expected dimension [32] of the space Mg(X) of projective nonsin-

gular curves of genus g embedded in X is 0. To obtain a well-defined invariant, we

need to compactify the spaceMg(X). There are three main ways: Gromov-Witten

(GW) theory, Donaldson-Thomas (DT) theory, and Pandharipande-Thomas (PT)

theory.

In GW theory, curves are viewed as algebraic maps

f : C → X.

The compactification strategy is to allow nodal singularities in the domain. Let

β ∈ H2(X,Z). The moduli space of stable maps

Mg(X, β) =

{
f : C → X

∣∣∣∣∣C is a nodal curve of arithmetic genus g,

f∗[C] = β, and Aut(f) is finite

}
.

is a compact Deligne-Mumford stack [15]. The moduli space admits a virtual funda-
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mental class [Mg(X, β)]vir of virtual dimension 0 [3], and integration along it defines

the GW invariant

Ng,β =

∫
[Mg(X,β)]vir

1 ∈ Q.

GW invariants play a crucial role in closed type IIA string theory.

To illustrate DT theory and PT theory, we consider a family of curves

Ct = {x = 0 = z} ∪ {y = 0 = z − t} ⊂ C3, t 6= 0.

Each curve Ct has two components: the y-axis, and a shift of the x-axis in the

z-direction by t. The ideal of Ct is

It = (x, z) · (y, z − t) = (xy, zy, x(z − t), z(z − t)),

which fits into a short exact sequence

0→ It → C[x, y, z]
st−→ C[x, y, z]/(x, z)⊕ C[x, y, z]/(y, z − t)→ 0.

In DT theory, we identify Ct with It and let t→ 0:

It → I0 = (xy, xz, yz, z2).

The limit curve is {xy = 0 = z} with a scheme-theoretic embedded point at the
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origin. In PT theory, we identify Ct with st and let t→ 0:

C[x, y, z]
s0−→ C[x, y, z]/(x, z)⊕ C[x, y, z]/(y, z).

The kernel of s0 is the ideal of the curve {xy = 0 = z}, and the cokernel is supported

on the origin. (C[x, y, z]/(x, z)⊕ C[x, y, z]/(y, z), s0) is an example of stable pair.

Let X be a smooth Calabi-Yau threefold. Fix β ∈ H2(X,Z) and n ∈ Z. The

Hilbert scheme In(X, β) parameterizes subschemes Z of X in the class [Z] = β

with holomorphic Euler characteristic χ(OZ) = n. In(X, β) is projective and has a

symmetric obstruction theory [25,34] by viewing In(X, β) as a moduli space of ideal

sheaves IZ . The associated virtual fundamental class [In(X, β)]vir [5] has dimension

0, and integration along it defines the DT invariant

In,β =

∫
[In(X,β)]vir

1 ∈ Z.

The DT partition function is defined as

DTβ(X, q) =
∑
n

In,βq
n

The degree 0 DT partition function DT0(X, q) counts 0-dimensional subschemes of

X. It was conjectured in [25, Conjecture 1] and proved in [6, Theorem 4.12] that

DT0(X, q) = M(−q)χtop(X),
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where χtop(X) is the topological Euler characteristic of X, and

M(q) =
∞∏
n=1

(1− qn)−n

is the MacMahon function counting 3D partitions. The reduced DT partition func-

tion is defined as

DT ′β(X, q) =
DTβ(X, q)

DT0(X, q)
.

It is a Laurent series with integral coefficients.

Pandharipande and Thomas [31] introduced a new curve-counting theory via

stable pairs. The moduli space Pn(X, β) parameterizes stable pairs OX
s−→ F with

[F ] = β and χ(F ) = n, where F is a pure 1-dimensional sheaf and s ∈ H0(X,F ) is

a section with 0-dimensional cokernel. Pn(X, β) is a projective scheme as a special

case of the work of Le Potier [22], and it has a symmetric obstruction theory [31]

by viewing stable pairs as two term complexes in the derived category Db(X). The

PT invariant is defined by integration of the dimension 0 virtual fundamental class,

Pn,β =

∫
[Pn(X,β)]vir

1 ∈ Z.

The PT partition function is defined as

PTβ(X, q) =
∑
n

Pn,βq
n.

Roughly speaking, we can think of In(X, β) as parameterizing Cohen-Macaulay
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curves plus free and embedded points on X: any Z ∈ In(X, β) contains a maximal

Cohen-Macaulay curve C ⊂ Z such that the kernel of OZ � OC is 0-dimensional.

Similarly, we can think of Pn(X, β) as parameterizing Cohen-Macaulay curves (the

support of F ) and free points on the curve (the cokernel of the section s). The

DT/PT correspondence

DT ′β(X, q) = PTβ(X, q)

was conjectured by Pandharipande and Thomas [31, Conjecture 3.3].

In [4] Behrend associates to any scheme of finite type over C a constructible

function

νS : S → Z,

with the property [4, Theorem 4.18] that if S is a proper scheme with a symmetric

obstruction theory, then the associated virtual counting invariant
∫

[S]vir
1 coincides

with the weighted Euler characteristic

χ̃(S, νS) :=
∑
n∈Z

nχtop(ν
−1
S (n)).

Using motivic Hall algebra, Bridgeland [7, Theorem 1.1] proved the DT/PT cor-

respondence and showed that DT ′β(X, q) is the Laurent expansion of a rational

function invariant under the transformation q ↔ q−1, which was conjectured in [25].

Another consequence of Behrend [4] is that we can define DT (resp., PT)

invariants for smooth quasi-projective Calabi-Yau threefolds by the weighted Euler

characteristic of In(X, β) (resp., Pn(X, β)). When X is toric with torus T = (C∗)3,
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the T -fixed points of the Hilbert scheme In(X, β) are isolated. The DT invariant is

a given by a signed count of T -fixed points [6, Theorem 3.4],

In,β =
∑

p∈In(X,β)T

(−1)dimTpIn(X,β).

An explicit formula in terms of β, n, and the geometry of X can be found in [25,

Theorem 2]. The study of T -fixed curves in X naturally leads to the notion of the

DT vertex Vλµν [31, Section 5.2] which enumerates monomial ideals of C[x1, x2, x3].

Here, (λ, µ, ν) is a triple of partitions. Combinatorially,

Vλµν(q) =
∑
π

q|π|,

where the sum is over all 3D partitions π asymptotic to (λ, µ, ν) (see Definition 5.16,

5.17). Okounkov, Reshetikhin and Vafa [28] derived an explicit formula in terms of

Schur functions for Vλµν(q) (see Proposition 5.18). In particular,

V∅∅∅(q) = M(q)

recovers the MacMahon function.

In PT theory, each componentQ ⊂ Pn(X, β)T in the T -fixed loci is a product of

P1’s [30, Theorem 1]. Locally on C3, each component Qπ corresponds to a labelled

box configuration π ⊂ Z3 [30, Section 2.5]. The corresponding PT vertex was
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conjectured in [30, (5-3)] to be

Wλµν(q) =
∑
Qπ

χtop(Qπ)q|π|,

where the sum is over all labelled box configurations with outgoing partitions (λ, µ, ν).

This was proved in the 1-leg or 2-leg case, i.e. at least one of λ, µ, and ν is empty

because the T -fixed loci are isolated. The DT/PT vertex correspondence was con-

jectured in [31, Conjecture 5.1],

Wλµν(q) =
Vλµν(q)

V∅∅∅(q)
.

Bryan, Cadman and Young [10] studied DT theory for a toric orbifold Calabi-

Yau 3-fold X with transverse An−1 singularities (see Definition 4.1 and Section 4.4).

The local model for X is [C3/Zn] where Zn acts on C3 with weights (1,−1, 0). Let

K(X ) be the Grothendieck group of compactly supported coherent sheaves on X

up to numerical equivalence. There is a filtration

F0K(X ) ⊂ F1K(X ) ⊂ F2K(X ) ⊂ F3(X )

given by the dimension of the support. Given β ∈ F1K(X ), the moduli space

Hilbβ(X ) parameterizes substacks Z ⊂ X having [OZ ] = β. It is a quasi-projective

scheme [29, Theorem 1.5]. The DT invariant DTβ(X ) is defined as the topological

Euler characteristic of Hilbβ(X ) weighted by the Behrend’s function. It is given by

a signed count of T -fixed points [10, Lemma 13], and is evaluated in [10, Theorem
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25]. The central object is the orbifold DT vertex V n
λµν (see Definition 5.19), which

is a generating function for 3D partitions, colored by representations of Zn, and

asymptotic to (λ, µ, ν). An explicit formula in terms of Schur functions for V n
λµν is

given in [10, Theorem 12]. As an example, they computed the reduced DT partition

function for the local football Xa,b [10, Proposition 3],

DT ′(Xa,b) =
a∏
k=1

b∏
l=1

∞∏
m=1

(1− vpk · · · pa−1rl · · · rb−1(−q)m)m.

We will study PT theory on a toric CY3 with transverse An−1 singularities.

We will use the orbifold PT vertex W n
λµν to compute/conjecture the PT invariants

following the work of [10,30]. In the 1-leg case, we derive an explicit formula for the

orbifold PT vertex (Theorem 5.22). As an example, we compute the PT partition

function PT (Xa,b) (Proposition 4.20), and verify the orbifold DT/PT correspondence

for the local football Xa,b.

This paper is organized as follows. In Chapter 2 we review the theory of

semistable sheaves on projective stacks following [26]. Let π : X → X be a projective

Deligne-Mumford stack over C with moduli scheme X. We fix a polarization OX(1)

on X and a generating sheaf E on X . By Definition 2.1, E is a locally free sheaf on

X whose fibre at each geometric point of x ∈ X contains the regular representation

of the stabilizer group at x. Moreover, there is an exact functor

FE : Coh(X )→ Coh(X), F 7→ π∗(F ⊗ E∨).
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In [26] Nironi introduced the modified Hilbert polynomial:

PE(F ,m) = χ(X,FE(F)(m)),

and used this to define Gieseker stability condition in the usual way. Notice that the

stability condition depends on both OX(1) and E . Nironi constructed the moduli

space of semistable sheaves on X with modified Hilbert polynomial P as a quotient

stack [Q/GL(N)] [26, Theorem 5.1].

In Chapter 3 we study the moduli space of stable pairs on projective stacks.

The main references are [18,22,23,26]. Let P be a polynomial of degree d. A stable

pair (F , s) consists of a pure coherent sheaf F with modified Hilbert polynomial

PE(F) = P and a section s : OX → F with dim Coker s < d. When d = 1, this

is the stable pair studied by Pandharipande and Thomas [31]. In [22] Le Potier

introduced a different notion of stability. Let δ be a polynomial with deg δ ≥ degP .

The (reduced) Hilbert polynomial of a pair (F , s) is defined as

PE(F , s) = PE(F) + ε(s)δ

(
pE(F , s) = pE(F) + ε(s)

δ

rE(F)

)
,

where ε(s) = 1 if s 6= 0 and ε(s) = 0 if s = 0. The δ-(semi)stability is defined as

the Giesker (semi)stability with respect to pE(F , s). for nondegenerate (s 6= 0) pairs

(F , s), we show that there is no strictly δ-semistable pairs and the two stability

conditions are equivalent (Lemma 3.7). Using GIT, we have

Theorem 1.1. Let (X , E ,OX(1)) be a polarized smooth projective stack over C.
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The moduli space MX (P ) parameterizing stables pairs (F , s) with PE(F) = P is

represented by a projective scheme MX (P ).

In Chapter 4 we study PT invariants on an orbifold toric CY3 with trans-

verse An−1 singularities following [10, 30]. Associated to an orbifold toric CY3 X

is a trivalent graph whose vertices are the torus fixed points and whose edges are

the torus invariant curves. There is additional data at the vertices describing the

stabilizer group of the fixed points and there is additional data at the edges giving

the degrees of the normal bundles to the fixed curves. The PT partition function

PT (X ) is shown (see (4.6)) in the 1-leg and 2-leg cases, and conjectured in the 3-leg

case to have the form

PT (X ) =
∑
edge

assignments

∏
e∈Edges

E(e)
∏

v∈Vertices

Ŵ n
λµν(v)

where the sum is over all ways of assigning partitions to the edges. The edge terms

E(e) depend on the normal bundle of the corresponding curve and the partition

assigned to the edge. The vertex terms Ŵ n
λµν are given by the orbifold PT vertex

W n
λµν modified by certain signs of the variables. In the 1-leg case, W n

λµν is the

generating function for the number of Zn-colored reverse plane partitions. We have:
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Theorem 1.2. Let λ be a partition, then

W n
λ∅∅(q0, · · · , qn−1) = q−Aλsλt(q),

W n
∅λ∅(q0, · · · , qn−1) = q−Aλtsλ(q),

W n
∅∅λ(q0, · · · , qn−1) =

∏
�∈λ

1

1−
∏n−1

a=0 q
ha(�)
a

,

where

q−Aλ =
n−1∏
a=0

q−Aλ(a,n)
a , Aλ(a, n) =

∑
(j,k)∈λ

⌊
j + a

n

⌋
,

sλ(q) is the Schur function with q = (1, q1, q1q2, q1q2q3, · · · ), ha(�) denotes the num-

ber a-colored boxes in the hook of �, and the overline denotes the exchange of vari-

ables qa ↔ q−a.

As an example, we compute and verify the orbifold DT/PT correspondence PT (Xa,b) =

DT ′(Xa,b) for the local football Xa,b in Section 4.5.

In Chapter 5 we first review partitions and Schur functions following [24,

33] and vertex operators following [27]. We then prove Theorem 1.2 using vertex

operators.
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Chapter 2: Stable sheaves on projective stacks

2.1 Projective stacks

We work over the field of complex numbers C. Every scheme is assumed to

be Noetherian. Let S be a base scheme of finite type over C. By Deligne-Mumford

S-stack we mean a separated Noetherian Deligne-Mumford stack X of finite type

over S. When S = SpecC, we omit the letter S. Under these assumptions, X has a

coarse moduli space π : X → X and the natural mapOX → π∗OX is an isomorphism

[20]. If X is a scheme, we call it a coarse moduli scheme. We recall the following

properties of Deligne-Mumford S-stacks:

• since we work over C, X is tame, i.e. the functor π∗ : QCoh(X )→ QCoh(X)

is exact and maps coherent sheaves to coherent sheaves [2, Lemma 2.3.4];

• if X ′ → X is a morphism of algebraic spaces, then X ′ is the coarse moduli

space of X ×X X ′ [1, Cor 3.3];

• H•(X ,F) ∼= H•(X, π∗F) for any quasi-coherent sheaf F [26, Lemma 1.10];

• π∗F is an S-flat coherent sheaf on X whenever F is an S-flat coherent sheaf

on X [26, Cor 1.3].
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Let X be a Deligne-Mumford S-stack with coarse moduli space π : X → X.

For any locally free sheaf E on X , we have two functors

FE : QCoh(X )→ QCoh(X), F 7→ π∗(F ⊗ E∨),

GE : QCoh(X)→ QCoh(X ), G 7→ π∗G ⊗ E .

The functor FE is exact since E∨ is locally free and the pushforward π∗ is exact.

Definition 2.1. A locally free sheaf E is said to be a generator for the quasi-coherent

sheaf F if the adjunction morphism (left adjoint of the identity id : π∗(F ⊗ E∨) →

π∗(F ⊗ E∨)):

θE(F) : GE ◦ FE(F)→ F

is surjective. It is a generating sheaf for X if it is a generator for every quasi-coherent

sheaf on X . Equivalently, a locally free sheaf E on X is a generating sheaf if and only

if the fibre of E at each geometric point of X contains the regular representation of

the stabilizer group at that point [29, Theorem 5.2].

Olsson and Starr [29, Section 5] proved that a generating sheaf exists and

is stable under base change for tame Deligne-Mumford stacks which are separated

global quotients. In particular, we have

Proposition 2.2. (1) Let X be a Deligne-Mumford S-stack

which is a separated global S-quotient. Then X has a generating sheaf E.

(2) Let π : X → X be the moduli space of X and f : X ′ → X a morphism of

13



algebraic spaces. Denote p : X ′ := X ×X X ′ → X the natural projection, then

p∗E is a generating sheaf for X ′.

Now we are ready to give the definition of projective stack.

Definition 2.3 ( [21, Theorem 5.3]). Let X be a Deligne-Mumford stack over C.

We say X is a (quasi-)projective stack if it satisfies any of the following equivalent

conditions:

1. X admits a (locally) closed embedding into a smooth proper Deligne-Mumford

stack with a projective moduli scheme.

2. X has a (quasi-)projective coarse moduli scheme and a generating sheaf.

3. X is a separated global quotient with a coarse moduli space which is a

(quasi-)projective scheme.

Let π : X → X be a projective stack. A polarization for X is a pair (E ,OX(1)),

where E is a generating sheaf and OX(1) is a very ample line bundle on X.

A relative version of the notion of projective stacks is defined as follows:

Definition 2.4. Let p : X π−→ X
ρ−→ S be a Deligne-Mumford S-stack which is a

separated global S-quotient with coarse moduli scheme X such that ρ : X → S is a

projective morphism. We call p : X → S a family of projective stacks.

Remark 2.5. For any geometric point s of S, we have the following cartesian diagram

Xs Xs s

X X S.

πs

� �

ρs

π ρ

14



Since ρ : X → S is projective, Xs is a projective scheme. Moreover, the properties

of being a separated global quotient and being a coarse moduli space are invariant

under base change, so each Xs is a projective stack.

2.2 Gieseker stability

In this section, we briefly recall some facts about the concept of Gieseker

stability on projective stacks following [26, Section 3]. Let X be a projective stack

over C with coarse moduli scheme π : X → X. We fix a polarization (E ,OX(1)) on

X .

Let F be a coherent sheaf on X , we define the support Supp(F) of F to be the

closed substack associated to the ideal I = Ker(OX → E nd(F)). The dimension

dimF is the dimension of its support.

Definition 2.6. We say a coherent sheaf F is pure of dimension d if for any nonzero

subsheaf G of F the support of G is of pure dimension d.

As it was shown in [26], every coherent sheaf F has the torsion filtration:

0 ⊂ T0(F) ⊂ · · · ⊂ TdimF−1(F) ⊂ TdimF(F) = F

where every factor Ti(F)/Ti−1(F) is pure of dimension i or zero.

Definition 2.7. The saturation of a subsheaf G ⊂ F is the minimal subsheaf Ḡ

containing G such that F/Ḡ is pure of dimension d or zero, i.e. the kernel of the
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surjection

F → F/G → (F/G)/Td−1(F/G).

Lemma 2.8 ( [26, Lemma 3.4]). Let F be a coherent sheaf on X , then we have

π(Supp(F)) = π(Supp(F ⊗ E∨)) ⊇ Supp(FE(F)).

Moreover, FE(F) = 0 if and only if F = 0.

The functor FE preserves dimension and pureness.

Proposition 2.9 ( [26, Proposition 3.6]). Let F be a coherent sheaf on X , then

(1) dim(F) = dim(FE(F));

(2) F is pure if and only if FE(F) is pure.

The functor FE(F) preserves torsion filtration.

Corollary 2.10 ( [26, Cor 3.7]). Let F be a coherent sheaf on X of dimension d.

Consider the torsion filtration

0 = T0(F) ⊂ · · · ⊂ Td−1(F) ⊂ Td(F) = F .

Then

0 = FE(T0(F)) ⊂ · · · ⊂ FE(Td−1(F)) ⊂ FE(TdimF(F)) = FE(F)

is the torsion filtration of FE(F).
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Corollary 2.11 ( [26, Cor 3.8]). Let F be a pure sheaf on X , then π(Supp(F)) =

Supp(FE(F)).

For pure coherent sheaves on X , the functor FE preserves supports.

Definition 2.12. Let F be a coherent sheaf on X of dimension d, we define the

modified Hilbert polynomial of F as

PE(F , n) = χ(X ,F ⊗ E∨ ⊗ π∗OX(n)) = χ(X,FE(F)(n)) = P (FE(F), n).

Since FE preserves dimension, the modified Hilbert polynomial can be written

as

PE(F , n) =
d∑
i=0

αE,i(F)
ni

i!
.

Moreover, the modified Hilbert polynomial is additive on short exact sequences since

FE is exact and the Euler characteristic is additive on short exact sequences. As in

the scheme case, the modified Hilbert polynomial of a flat family of coherent sheaves

is locally constant on the fibres.

Lemma 2.13 ( [26, Lemma 3.16]). Let p : X → S be a family of projective stacks

with a fixed relative polarization (E ,OX(1)). Let F be an OS-flat coherent sheaf on

X . Assume S is connected. There is a polynomial P such that for every closed point

s ∈ S

χ(Xs,F ⊗ E∨ ⊗ π∗OX(m)|Xs) = P (m).

Definition 2.14. We denote by rE(F) = αE,d(F) the multiplicity of F . The reduced
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modified Hilbert polynomial is then pE(F) =
PE(F)

rE(F)
, and the slope is µ̂E(F) =

αE,d−1(F)

αE,d(F)
.

Definition 2.15. A coherent sheaf F is semistable if it is pure and for every proper

subsheaf F ′ ⊂ F one has pE(F ′) ≤ pE(F). F is called stable if it is semistable and

the inequality is strict.

Definition 2.16. Let F be a pure sheaf on X . A strictly ascending filtration

0 = HN0(F) ⊂ HN1(F) ⊂ · · · ⊂ HNl(F) = F

is a Harder-Narasimhan filtration if it satisfies the following:

(1) the i-th graded piece grHNi = HNi(F)/HNi−1(F) is semistable for every i =

1, · · · , l;

(2) denoted with pi = pE(gr
HN
i (F)), then

pmax(F) := p1 > · · · > pl =: pmin(F).

Proposition 2.17 ( [26, Theorem 3.2.2]). Let F be a pure sheaf on X , then F has

a unique Harder-Narasimhan filtration.

As pointed out by Nironi, the functor FE doesn’t preserve the Harder-Narasimhan

filtration. However, we have the following relation between the maximal slopes.

Proposition 2.18. Let X be a projective stack over C. Let F be a pure sheaf on
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X . Let m̃ be an integer such that FE(E)(m̃) is generated by global sections, i.e.

OX(−m̃)⊕N � FE(E),

where N = h0(X,FE(E)(m̃)). Then

µ̂max(F) ≤ µ̂max(FE(F )) ≤ µ̂max(F) + m̃ deg(OX (1)). (2.1)

Proof. The proof is the same as [26, Proposition 4.24].

Being pure and being semistable are open conditions in flat families.

Proposition 2.19 ( [26, Proposition 4.15]). Let p : X → S be a family of projective

stacks with a fixed relative polarization (E ,OX(1)). Let F be an S-flat d-dimensional

coherent sheaf on X with fixed modified Hilbert polynomial P . Then the sets

{s ∈ S|Fs is pure of dimension d} and {s ∈ S|Fs is semistable}

are both open in S.

2.3 Boundedness

Let m be an integer. Recall that a coherent sheaf F on X is said m-regular if

for all i > 0

H i(X,F (m− i)) = 0.
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The Mumford-Castelnuovo regularity of F is the number

reg(F ) := inf{m ∈ Z | F is m-regular}.

The regularity is regF = −∞ if and only if F is 0-dimensional.

Definition 2.20. We define the Mumford regularity of a coherent sheaf F on X to

be the Mumford regularity of FE(F) on X and we will denote it by regE(F).

Definition 2.21. A set-theoretic family F of sheaves on X is bounded if there is a T

of finite type and a coherent sheaf H on XT such that every sheaf in F is contained

in the fibers of H.

We have the following important result on boundedness on X .

Proposition 2.22 ( [26, Cor 4.17]). A set-theoretic family F of sheaves on X is

bounded if and only if FE(F ) is bounded on X.

We have the stacky version of the Kleiman criterion.

Proposition 2.23 ( [26, Theorem 4.12]). Let F be a family of coherent sheaves on

X . Then the following statements are equivalent:

(1) The family F is bounded.

(2) The set of modified Hilbert polynomials {PE(F)|F ∈ F} is finite and there is

an integer m such that every F ∈ F is m-regular.

(3) The set of modified Hilbert polynomials {PE(F)|F ∈ F} is finite and there is

a coherent sheaf H on X such every F ∈ F is a quotient of H.
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We also have the stacky version of the Grothendieck lemma.

Lemma 2.24 ( [26, Lemma 4.13]). Let X be a projective stack with coarse moduli

scheme π : X → X. Let P be a polynomial and ρ an integer. There is a constant

C = C(P, ρ) such that if F is a d-dimensional coherent sheaf with PE(F) = P

and regE(F) ≤ ρ, then µ̂E(G) ≥ C for every purely d-dimensional quotient G of F .

Moreover, the family of purely d-dimensional quotients G with µ̂E(G) bounded from

above is bounded.

For our convenience, we list some results on boundedness on X.

Proposition 2.25 ( [18, Theorem 3.3.7]). Let C be a rational constant. The family

of pure coherent sheaves F with Hilbert polynomial P on X such that µ̂max(F ) ≤ C

is bounded.

Proposition 2.26 ( [22, Lemma 2.13]). Let F be a pure sheaf of dimension d and

multiplicity r on X. Let Y be the scheme-theoretic support of F . Then the minimum

slope µ̂min(OY ) is bounded below by a constant determined by dimX, r, and d.

Proposition 2.27 ( [18, Cor 3.3.8]). Let X be a projective scheme with very ample

line bundle OX(1). Let F be a pure coherent sheaf of dimension d and multiplicity

r. Then

h0(F (m))

r
≤ 1

d!

(
r − 1

r
[µ̂max(F ) + C − 1 +m]d+ +

1

r
[µ̂(F ) + C − 1 +m]d+

)
, (2.2)

where C = r2 + (r + d)/2 and [·]+ = max{·, 0}.
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Chapter 3: Moduli space of stable pairs

3.1 Stable pairs

Let X → SpecC be a projective stack with coarse moduli scheme π : X → X

and polarization (E ,OX(1)). Let P be a polynomial of degree d and multiplicity r,

and δ be a polynomial with positive leading coefficient and deg δ ≥ degP .

Definition 3.1. A pair (F , s) (of type P ) consists of a coherent sheaf F over

X with modified Hilbert polynomial PE(F) = P and a section s : OX → F . A

subpair (F ′, s′) consists of a coherent subsheaf ı : F ′ ⊂ F and a section s′ : OX → F ′

such that 
ı ◦ s′ = s if Im s ⊂ F ′

s′ = 0 otherwise.

A quotient pair (F ′′, s′′) consists of a coherent quotient sheaf q : F → F ′′ and a

section s′′ = q ◦ s : OX → F ′′.

A short exact sequence of pairs

0→ (F ′, s′)→ (F , s)→ (F ′′, s′′)→ 0
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consists of a short exact sequence of the underlying sheaves such that (F ′, s′) is a

subpair and (F ′′, s′′) is the corresponding quotient pair.

Following [31], we make the following definition.

Definition 3.2. A pair (F , s) is a stable pair if F is pure and dim Coker(s) < d.

A family of stable pairs parametrized by a scheme T of finite type over C is a

pair

sT : OXT → F

such that F is a coherent sheaf flat over XT and for all closed points t ∈ T , the

restriction (Ft, st) to the fibre Xt is stable. We define a functor

MX (P ) :=MX (E ,OX(1), P ) : (Sch /C)◦ → (Sets)

which associates to any scheme T of finite type over C the set of isomorphism classes

of flat families of stable pairs on XT with Hilbert polynomial P , and associates to

any morphism T ′ → T its pullback.

Theorem 3.3. Let (X , E ,OX(1)) be a polarized smooth projective stack over C.

Then MX (P ) is represented by a projective scheme MX (P ).

To construct the moduli scheme using GIT, we need a different notion of

stability following [22].

Definition 3.4. The Hilbert polynomial of a pair (F , s) w.r.t. to δ is

PE,δ(F , s) = PE(F) + ε(s)δ,

23



and the reduced Hilbert polynomial of the pair is

pE,δ(F , s) = pE(F) + ε(s)
δ

rE(F)
.

Here,

ε(s) =


1 if s 6= 0,

0 otherwise.

Remark 3.5. (1) To ease notation, we will omit δ and denote the Hilbert polyno-

mial (resp., reduced Hilbert polynomial) of a pair (F , s) by PE(F , s) (resp.,

pE(F , s)).

(2) The Hilbert polynomial of pairs is additive on short exact sequences since

ε(s) = ε(s′) + ε(s′′) and the modified Hilbert polynomial of coherent sheaves

is additive on short exact sequences.

Definition 3.6. A pair (F , s) is δ-(semi)stable if

(1) F is pure,

(2) p(F ′,s′)(≤)p(F ,s) for every proper subpair (F ′, s′).

Clearly, a pair (F , 0) is δ-(semi)stable if and only if F is (semi)stable as a

coherent sheaf. We will call a pair (F , s) nondegenerate if s 6= 0.

Lemma 3.7. Let (F , s) be a nondegenerate pair with PE(F) = P . Then the follow-

ing assertions are equivalent

(1) (F , s) is δ-semistable;
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(2) (F , s) is δ-stable;

(3) (F , s) is stable, i.e. F is pure and dim(Coker s) < d.

Proof. (1) =⇒ (2) Suppose (F , s) is δ-semistable. Let (F ′, s′) be a nonzero subpair

of (F , s) such that

pE(F ′) + ε(s′)
δ

rE(F ′)
= pE(F) +

δ

rE(F)
.

Since deg δ ≥ degP , by comparing leading coefficients we obtain ε(s′) = 1 and

rE(F ′) = rE(F). Hence, PE(F ′) = PE(F), which implies that F ′ = F . Thus, (F , s)

has no strictly δ-semistable subpair, i.e. (F , s) is δ-stable.

(2) =⇒ (3) Consider the subpair (Im s, s). Since (F , s) is δ-stable, we have

pE(Im s) +
δ

rE(Im s)
≤ pE(F) +

δ

rE(F)
.

By comparing leading coefficients, we get rE(Im s) ≥ rE(F). Since Im s ⊂ F , we have

rE(Im s) ≤ rE(F). Thus, rE(Im s) = rE(F). It follows that degPE(Coker s) < d, i.e.

dim(Coker s) < d.

(3) =⇒ (1) Suppose F be pure and dim(Coker s) < d. Let (F ′, s′) be a

proper subpair of (F , s) such that

pE(F ′) + ε(s′)
δ

rE(F ′)
> pE(F) +

δ

rE(F)
.

Since deg δ ≥ degP , we have ε(s′) = 1. It follows that rE(F ′) < rE(F), or rE(F ′) =
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rE(F) and pE(F ′) > pE(F). If rE(F ′) < rE(F), then Im s ⊂ F ′ and the quotient

F/F ′ is d-dimensional, which contradicts the assumption that dim(Coker s) < d. If

rE(F ′) = rE(F) and pE(F ′) > pE(F), then PE(F ′) > PE(F), which contradicts the

assumption that F ′ is a proper subsheaf. Therefore, (F , s) is δ-semistable.

Assumption. From now on, unless stated differently (F , s) is nondegenerate. As

a consequence of Lemma 3.7, we will use stability and δ-stability interchangeably.

Moreover, the functor MX (P ) characterizes isomorphism classes of nondegenerate

δ-stable pairs.

Proposition 3.8 (Harder-Narasimhan filtration). Let (F , s) be a nondegenerate

pair where F is pure of dimension d. Then there is a unique filtration by subpairs

0 = (F0, s0) ⊂ · · · ⊂ (Fl, sl) = (F , s)

such that each grHNi (F , s) = (Fi, si)/(Fi−1, si−1) is δ-semistable of dimension d and

pmax(F , s) = p1 > p2 > · · · > pl = pmin(F , s),

where pi = pgrHNi (F ,s).

Proof. Let F1 = Im(s) be the saturation of Im(s) in F , then dim(F1/ Im(s)) < d.

By Lemma 3.7, (F1, s) is δ-stable. Notice that the quotient pair (F , s)/(F1, s) =

(F/F1, 0) is degenerate. By Proposition 2.17, we get a Harder-Narasimhan filtration

for the pure sheaf F/F1. Combining them together, we obtain a Harder-Narasimhan

filtration for the pair (F , s).
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To prove uniqueness, it suffices to prove that F1 = Im(s). Notice that

pE(F1) + ε(s1)
δ

rE(F1)
> pE(F) +

δ

rE(F)
.

Since deg δ ≥ degP , we have ε(s1) = 1. Hence, F1 ⊇ Im(s). Since F/F1 is pure

of dimension d, F1 contains the saturation Im(s) of Im s. Since F/Im(s) is pure of

dimension d, F1/Im(s) is zero or pure of dimension d. According to Lemma 3.7,

dim(F1/Im(s)) < d because (F1, s) is δ-stable. Thus, F1 = Im(s).

We have the following reinterpretation of δ-stability.

Lemma 3.9. Let (F , s) be a nondegenerate pair where F is pure and PE(F) = P .

It is δ-stable if and only if for every proper subpair (F ′, s′),

PE(F ′)
2rE(F ′)− ε(s′)

<
P

2r − 1
.

Proof. This is just a special case of [22, Lemma 4.3].

3.2 Boundedness

In order to construct the moduli space via GIT, we first prove that the family

of underlying sheaves of stable pairs is bounded.

Proposition 3.10. The family

F = {F|(F , s) is a δ-stable pair with PE(F) = P}
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of coherent sheaves on X is bounded.

Proof. According to Proposition 2.22, F is bounded if and only if FE(F ) is bounded.

By Proposition 2.25, it suffices to show that there is a constant C such that

µ̂max(FE(F)) ≤ C

for every F ∈ F .

Consider the pair

FE(s) : FE(OX )→ FE(F).

Since FE is exact and preserves both dimension and pureness by Proposition 2.9,

we obtain that FE(OX ) and FE(F) are both pure and dim(CokerFE(s)) < d. Let

Y = Supp(FE(F)) and

0 = HN0(FE(F)) ⊂ HN1(FE(F)) ⊂ · · · ⊂ HNl(FE(F)) = FE(F)

be the µ̂-Harder-Narasimhan filtration of FE(F). Since dim(CokerFE(s)) < d, we

have that ImFE(s) 6⊆ HNl−1(FE(F)). Hence, the composition

FE(OX )⊗OY → FE(F) � grHNl (FE(F))
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is a non-zero morphism between pure sheaves of dimension d. This implies that

µ̂min(FE(F)) = µ̂(grHNl (FE(F))) ≥ µ̂min(FE(OX )⊗OY )

= µ̂min(FE(OX )) + µ̂min(OY ).

According to Proposition 2.26, µ̂min(OY ) is bounded below by a constant A which

only depends on d, r and dimX. Then

µ̂max(FE(F)) ≤ rµ̂(FE(F))− (r − 1)µ̂min(FE(F))

≤ rµ̂(FE(F))− (r − 1)(µ̂min(FE(OX )) + A) =: C

as desired.

We can rephrase the stability using global sections instead of Hilbert polyno-

mial.

Proposition 3.11. There is an m0 ∈ Z+ such that for any integer m ≥ m0 and

any nondegenerate pair (F , s), where F is pure and PE(F) = P , TFAE:

(1) the pair (F , s) is stable;

(2) PE(F ,m) ≤ h0(FE(F)(m)), and for any proper subpair (F ′, s′),

h0(FE(F ′)(m))

2rE(F ′)− ε(s′)
<
h0(FE(F)(m))

2r − 1
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(3) for any proper quotient pair (G, s′′) where dimG = d,

h0(FE(G)(m))

2rE(G)− ε(s′′)
>

P (m)

2r − 1
.

Proof. (1) =⇒ (2) By Proposition 3.10, there is an integer m0 such that for any

integer m ≥ m0, we have H i(FE(F)(m)) = 0 for all i > 0. In particular, P (m) =

h0(FE(F)(m)). In the proof of boundedness, we also showed that µ̂max(FE(F)) is

bounded above, say µ̂max(FE(F)) ≤ µ0.

Since FE is exact and preserves pureness, FE(F ′) is a pure subsheaf of FE(F).

Then we have µ̂max(FE(F ′)) ≤ µ0 and rE(F ′) ≤ r. Using Le Potier-Simpson estimate

(2.2), we obtain

h0(FE(F ′)(m))

rE(F ′)
≤ 1

d!

(
r − 1

r
[µ0 + C − 1 +m]d+ +

1

r
[µ̂(FE(F ′)) + C − 1 +m]d+

)
,

where C = r2 + (r + d)/2 and [·]+ = max{·, 0}.

Let A > 0 be an integer such that A is larger than all roots of P . Replace m0

by max{m0, A}. Then

h0(FE(F)(m)) = P (m) >
r

d!
(m− A)d, for all m ≥ m0.

Suppose µ1 is an integer such that

C − 1 + µ0

(
1− 1

r

)
+
µ1

r
< −A.
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Enlarging m0 if necessary, we have

1

d!

(
r − 1

r
[µ0 + C − 1 +m]d+ +

1

r
[µ1 + C − 1 +m]d+

)
<

(m− A)d

d!
<
P (m)

r

by considering the coefficient of md−1.

If µ̂(FE(F ′)) ≤ µ1, then for m ≥ m0 we get

h0(FE(F ′)(m)) <
rE(F ′)
r

h0(FE(F)(m)) ≤ 2rE(F ′)− ε(s′)
2r − 1

h0(FE(F)(m)).

The reason for the last inequality is as follows. Since (F , s) is stable, we have

pE(F ′) + ε(s′)
δ

rE(F ′)
< p+

δ

r
.

In particular, if ε(s′) = 1, then rE(F ′) = r. Thus,

rE(F ′)
r
≤ 2rE(F ′)− ε(s′)

2r − 1
.

We are left to consider the case where µ̂(FE(F ′)) ≥ µ1. We can assume F ′

is saturated. By Grothendieck’s lemma [18, Lemma 1.7.9], the family of such F ′ is

bounded. Thus, there are only finitely many modified Hilbert polynomials PE(F ′).

We can enlarge m0, if necessary, such that for m ≥ m0, PE(F ′,m) = h0(FE(F ′)(m))

and

PE(F ′)
2rE(F ′)− ε(s′)

<
P

2r − 1
⇐⇒ PE(F ′,m)

2rE(F ′)− ε(s′)
<

P (m)

2r − 1
.
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Combining this with Lemma 3.9, we finish the proof.

(2) =⇒ (3) Given a proper quotient pair, we can form the short exact sequence

0→ (F ′, s′)→ (F , s)→ (G, s′′)→ 0.

Thus, we obtain an exact sequence,

0→ H0(FE(F ′)(m))→ H0(FE(F)(m))→ H0(FE(G)(m)).

Notice that r = rE(F ′) + rE(G) and 1 = ε(s′) + ε(s′′). By condition (2),

h0(FE(G)(m))

2rE(G)− ε(s′′)
≥ h0(FE(F)(m))− h0(FE(F ′)(m))

2r − 1− (2rE(F ′)− ε(s′))

>
h0(FE(F)(m))

2r − 1
≥ P (m)

2r − 1
.

(3) =⇒ (1) We first show that the family of coherent sheaves satisfying condition

(3) is bounded. Let Fmin = grHNl (F) be the last factor in the µ̂-Harder-Narasimhan

filtration of F with respect to slope. By Le Potier-Simpson estimate (2.2) and (2.1),

we have

h0(FE(Fmin)(m))

rE(Fmin)
≤ 1

d!
([µ̂max(FE(Fmin)) +m− 1 + C]+)d

≤ 1

d!
([µ̂E(Fmin) + m̃ degOX (1) +m− 1 + C]+)d

=
1

d!
([µ̂E,min(F) + m̃ degOX (1) +m− 1 + C]+)d ,
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where C = r2 + (r+ d)/2. Let (Fmin, s
′′) be the induced quotient pair. If ε(s′′) = 0,

by assumption, we have

P (m)

r
<

2P (m)

2r − 1
<
h0(FE(Fmin)(m))

rE(Fmin)

≤ 1

d!
([µ̂E,min(F) + m̃ degOX (1) +m− 1 + C]+)d .

Since P (m)/r ≥ (m− A)d/d!, we have

µ̂E,min(F) > −m̃ degOX (1)− C − A− 1,

which is bounded below. If ε(s′′) 6= 0, then the composition

FE(OX )⊗OY → FE(F) � FE(Fmin)

is a non-zero morphism between pure sheaves of dimension d. Hence,

µ̂min(FE(OX )) + µ̂min(OY ) = µ̂min(FE(OX )⊗OY )

≤ µ̂max(FE(Fmin)) ≤ µ̂(Fmin) + m̃ degOX(1)

= µ̂E,min(F) + m̃ degOX(1).

Since µ̂min(OY ) is bounded below, µ̂E,min(F) is also bounded below. Thus, in both

cases, µ̂E,max(F) is bounded above. Using (2.1) again, we have that µ̂max(FE(F)) is

bounded above. Therefore, the family of coherent sheaves satisfying condition (3)
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is bounded.

Let (F1, s) be the first factor in the Harder-Narasimhan filtration of (F , s).

From Proposition 3.8, we know (F1, s) is a nondegenerate stable pair. By Propo-

sition 3.10, the family of the underlying sheaves {F1} is bounded. Therefore, the

family of sheaves {F/F1}, where (F , s) satisfies condition (3) and (F1, s) is the

first factor in the Harder-Narasimhan filtration of (F , s), is also bounded. In par-

ticular, the set of reduced modified Hilbert polynomial pE(F/F1) is finite. Let

grHNl (F , s) = (G, s′′) be the last factor in the Harder-Narasimhan filtration of (F , s).

We can assume ε(s′′) = 0; otherwise, (F , s) is stable according to Proposition 3.8.

Then G is actually the last factor of the Harder-Narasimhan filtration of F/F1.

Hence, pE(G) < pE(F/F1). This implies µ̂(FE(G)) is bounded above because there

are only finitely many pE(F/F1). By Grothendieck’s lemma [18, Lemma 1.7.9], the

family of such {FE(G)} is bounded. Enlarging m0 if necessary, we can assume that,

for all m ≥ m0, PE(G,m) = h0(FE(G)(m)) and

PE(G,m)

2rE(G)− ε(s′′)
>

P (m)

2r − 1
⇐⇒ PE(G)

2rE(G)− ε(s′′)
>

P

2r − 1
.

Now according to condition (3), the last inequality holds. Thus, ε(s′′) ≥

rE(G)/r, which forces ε(s′′) = 1, which is a contradiction. Therefore, (F , s) is

stable.
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3.3 Construction of the moduli space

By Proposition 3.10 and Proposition 3.11, there is an integer m0 such that for

all m ≥ m0, the following conditions are satisfied:

(1) FE(F)(m) is globally generated and H i(FE(F)(m)) = 0 when i > 0 for every

nondegenerate stable pair (F , s);

(3) the three conditions in Proposition 3.11 are equivalent.

Fix such an m and let V be a vector space of dimension equal to P (m).

Let (F , s) is a stable pair, then we get a quotient

q : V ⊗ E ⊗ π∗OX(−m) � F

obtained by applying the functor GE to

V (−m) ' H0(FE(F )(m))(−m) � FE(F)

and composing with θE(F) : GE ◦ FE(F) � F . The morphism q corresponds to a

closed point of Q := Quot(V ⊗ E ⊗ π∗OX(−m), P ), which is a projective scheme

according to [26, Proposition 4.20]. Similarly, let U = H0(FE(OX )(m)), we have the

quotient

ev : U ⊗ E ⊗ π∗OX(−m) � OX .

35



The section s gives rise to a linear map

σ : U → H0(FE(F)(m)) ' V,

which corresponds a closed point of N := P(Hom(U, V )). Thus, any stable pair

(F , s) determines a point (σ, q) ∈ N ×Q and the following commutative diagram

U ⊗ E ⊗ π∗OX(−m) OX

V ⊗ E ⊗ π∗OX(−m) F .

ev

σ̃:=σ⊗id s

q

Conversely, given a pair (σ, q) ∈ N ×Q, we obtain a pair if q ◦ σ̃(ker(ev)) = 0.

Lemma 3.12. There is a closed subscheme W ⊆ N × Q such that for every point

(σ, q) ∈ N ×Q the composition q ◦ σ̃ factors through ev if and only if (σ, q) ∈ W .

Proof. Same as [35, Proposition 3.4].

Definition 3.13. We define Z to be the open locus of points (σ, q) in W such that

F is pure and q induces an isomorphism of vector spaces V ' H0(FE(F)(m)). Let

Z denote the closure of Z.

Remark 3.14. Z is indeed open because being pure is open [26, Proposition 5.15] and

the semicontinuity theorem for cohomology holds for projective stacks [26, Theorem

1.8].

We now come to the GIT construction of the moduli space of stable pairs.
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Consider the natural action of GL(V ) on N ×Q:

(σ, q) · g = (g−1 ◦ σ, q ◦ g).

for g ∈ GL(V ). We observe that C∗ ⊂ GL(V ) acts trivially on both N and Q. We

can consider the actions of PGL(V ) or SL(V ). Indeed, the line bundles linearized

for the actions of these two groups are the same up to taking finite tensor powers

since PGL(V ) is a quotient of SL(V ) by a finite group. We consider the SL(V )

action. It is clear that Z is invariant under this action. The closure Z is invariant

as well.

By [26, Proposition 4.20], the functor FE induces a closed embedding

Q ↪→ Quot (V ⊗ FE(E)(−m), P ).

For l ∈ N big enough, there is a closed embedding into the Grassmannian

Quot (V ⊗ FE(E)(−m), P ) ↪→ Grass (V ⊗H0(FE(E)(l −m)), P (l)).

Consider the very ample line bundle det(S) where S is the universal quotient bundle

on the Grassmannian. Let Ll be its pull back to Q. According to [26, Lemma 6.3], Ll

is SL(V )-linearized. The line bundle ON(1) is also SL(V )-linearized. For positive

integers n1 and n2, the following line bundle is SL(V )-linearized:

L = ON(n1) � L⊗n2
l .
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Let λ : C∗ → SL(V ) be a 1-parameter subgroup. We have a weight decompo-

sition

V =
⊕
n

Vn

such that λ(t) · v = tn · v for every t ∈ C∗, v ∈ Vn. This gives us an ascending

filtration V≤n =
⊕

i≤n Vi.

For a point ξ = (σ, q) ∈ N ×Q. Let n(σ) be the smallest integer n such that

Im(σ) ⊂ V≤n. Then the Hilbert-Mumford weight of λ at ξ with respect to ON(1) is

µON (1)(ξ, λ) = n(σ).

The filtration on V produces a filtration on F with subsheaves F≤n = q(V≤n ⊗

E(−m)). We have an induced surjection qn : Vn ⊗ E(−m) → F≤n/F≤n−1 =: Fn.

Taking the sum of all weights we obtain a new quotient sheaf:

q : V ⊗ E(−m)→
⊕
n

Fn =: F .

By [26, Lemma 6.11],

lim
t→0

λ(t) · q = q.

Moreover, according to [26, Lemma 6.12], the Hilbert-Mumford weight of λ at ξ

with respect to Ll is

µLl(ξ, λ) = −
∑
n

nPE(Fn, l).

So we have:
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Lemma 3.15. The Hilbert-Mumford weight of λ at ξ with respect to L is

µL(ξ, λ) = n1 · n(σ)− n2

∑
n

nPE(Fn, l).

An application of Hilbert-Mumford criterion shows the following lemma.

Lemma 3.16. For l sufficiently large, let (σ, q) ∈ Z be a closed point. Then the

following two conditions are equivalent:

(1) (σ, q) is GIT-(semi)stable with respect to L;

(2) For any nontrivial proper subspace W < V , let

FW = q(W ⊗ E ⊗ π∗OX(−m)).

Then

PE(FW , l)(≥)
n1

n2

(
εW (σ)− dimW

dimV

)
+ P (l)

dimW

dimV
. (3.1)

Here, εW (σ) is either 1 or 0 depending on whether W contains Im(σ) or not.

Proof. Same as [23, Lemma 4.1].

Now, let

n1

n2

=
P (l)

2r
.

Since the family of such FW that is generated by a linear subspace of V is bounded.

39



We can fix l such that (3.1) is equivalent to

PE(FW )(≥)
P

2r

(
εW (σ)− dimW

dimV

)
+ P

dimW

dimV
. (3.2)

Remark 3.17. Let (σ, q) ∈ Z be GIT-(semi)stable, and let (F , s) be the associ-

ated pair. Then (F , s) is nondegenerate. Indeed, let W = Im(σ), then FW =

Im(s). If W = V , then Im(s) = F ; otherwise, according to (3.2), PE(Im(s)) >(
1
2r

(
1− dimW

dimV

)
+ dimW

dimV

)
P > 0. Hence, Im(s) 6= 0.

Lemma 3.18. Let (σ, q) ∈ Z be GIT-(semi)stable with associated pair (F , s). For

any coherent subsheaf F ′ ⊂ F , let (F ′, s′) denote the induced subpair and W =

V ∩H0(FE(F ′)(m)), then

PE(F ′)(≥)
P

2r

(
ε(F ′)− dimW

dimV

)
+ P

dimW

dimV
, (3.3)

where ε(F ′) = 1 if Im(s) ⊂ F ′; 0 otherwise.

Proof. The proof is similar to [35, Proposition 4.3]. According to [26, Rem 6.14],

we obtain a natural injection FW ↪→ F ′. If εW (σ) = 1, i.e. Im(σ) ⊂ W , then

Im(s) ⊂ FW ⊂ F ′. Thus, ε(F ′) = 1 and (3.3) is the same as (3.2).

We only need to consider the case when εW (σ) = 0 and Im(s) ⊂ F ′. Let
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W ′ = W ⊕ Im(σ). Clearly, FW ′ ⊂ F ′ and εW ′(σ) = 1. By (3.2), we have

PE(F ′) ≥ PE(FW ′)(≥)
P

2r

(
1− dimW ′

dimV

)
+ P

dimW ′

dimV

≥ P

2r

(
1− dimW

dimV

)
+ P

dimW

dimV
.

When defining Z, we require F to be pure and q induces an isomorphism

V ' H0(FE(F)(m)). When taking closure, these may no longer be true. The

following two Corollaries impose restrictions.

Corollary 3.19. If (σ, q) ∈ Z is GIT-semistable with associated pair (F , s), then

the induced map V → H0(FE(F)(m)) is injective and for any coherent subsheaf

G ⊂ F such that dimG ≤ d− 1, H0(FE(G)(m)) ∩ V = 0.

Proof. Same as [26, Lemma 6.16] and [18, Cor 4.4.7] using (3.2).

Corollary 3.20. If (σ, q) ∈ Z is GIT-semistable with associated pair (F , s). Then

there exists a pure coherent sheaf H such that

0→ Td−1(F)→ F φ−→ H

is exact and PE(H) = PE(F). Moreover, the induced pair (H, φ◦s) is nondegenerate.

Proof. The first part is just [26, Lemma 6.10]. For the second part, let W = Im(σ),

then FW = Im(s). By looking at the leading coefficients in (3.2), we see that Im(s)

has dimension d. Thus, Im(s) ( Td−1(F) and φ ◦ s 6= 0.
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Now we are ready to compare δ-stability and GIT-stability.

Proposition 3.21. Let (σ, q) ∈ Z with associated pair (F , s). The following two

assertions are equivalent:

(1) (σ, q) is GIT-(semi)stable with respect to L.

(2) (F , s) is (semi)stable and q induces an isomorphism V ' H0(FE(F)(m)).

Proof. Let (σ, q) ∈ Z be GIT-(semi)stable. Let φ : F → H be as in Corollary 3.20.

Then (H, φ ◦ s) is nondegenerate. Since kerφ = Td−1(F), according to Corollary

3.19, the induced map

V ↪→ H0(FE(F)(m))→ H0(FE(H)(m)) (3.4)

is injective. For any dimension d quotient ρ : H → G, let K = ker ρ ◦ φ. We obtain

an exact sequence

0→ K → F ρ◦φ−−→ G.

Let W = V ∩H0(FE(K)(m)). Then we have

h0(FE(G)(m)) ≥ h0(FE(F)(m))− h0(FE(K)(m)) ≥ dimV − dimW. (3.5)

By taking the leading coefficients in (3.3) we get

(2rE(K)− ε(K)) dimV ≥ (2r − 1) dimW. (3.6)
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Since Td−1(F) ⊂ K, we have

K/Td−1(F) ↪→ F/Td−1(F) ↪→ H� G.

It follows that r = rE(H) ≥ rE(K/Td−1(F)) + rE(G) = rE(K) + rE(G). Combining

this with (3.5) and (3.6), we have

h0(FE(G)(m))

2rE(G)− ε(ρ ◦ φ ◦ s)
≥ dimV

2r − 1
· 2rE(G)− (1− ε(K))

2rE(G)− ε(ρ ◦ φ ◦ s)

If ε(ρ ◦ φ ◦ s) = 0, then Im(s) ⊂ K. Hence, ε(K) = 1. Then the above inequality

becomes

h0(FE(G)(m))

2rE(G)− ε(ρ ◦ φ ◦ s)
≥ dimV

2r − 1
=

P (m)

2r − 1
.

According to Proposition 3.11, the pair (H, φ ◦ s) is (semi)stable. In particular,

h0(FE(H)(m)) = P (m). By a dimension reason, the induced map (3.4) is an iso-

morphism and

V ' H0(FE(F(m))).

Moreover, we obtain the following commutative diagram:

V ⊗ E ⊗ π∗OX(−m)

H0(FE(F(m)))⊗ E ⊗ π∗OX(−m) F

H0(FE(H(m)))⊗ E ⊗ π∗OX(−m) H.

∼

q

∼

φ

Hence, φ is surjective. Since PE(F) = PE(H), φ is an isomorphism. Thus, (F , s) is
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(semi)stable.

Conversely, assume (F , s) is (semi)stable and V ' H0(FE(F(m))). For any

nontrivial proper subspace W < V , let F ′ = q(W ⊗E⊗π∗OX(−m)) and (F ′, s′) the

corresponding subpair. If (F ′, s′) = (F , s), then (3.2) is obviously satisfied. Assume

that (F ′, s′) is a proper subpair. By Proposition 3.11, we have

h0(FE(F ′)(m))

2rE(F ′)− ε(s′)
<
h0(FE(F)(m))

2r − 1
.

The following commutative diagram

W H0(FE(F ′(m)))

V H0(FE(F(m))).∼

implies that dimW ≤ h0(FE(F ′(m))). Hence,

dimW

2rE(F ′)− ε(s′)
<

dimV

2r − 1
.

Therefore,

rE(F ′) >
1

2
ε(s′)− 1

2
· dimW

dimV
+ r

dimW

dimV
.

Notice that Im(σ) ⊂ W implies Im(s) ⊂ F ′, we have ε(s′) ≥ εW (σ). Combining this

with (3.2), (σ, q) is GIT-(semi)stable.

Proof of Theorem 3.3. Let R denote the locus of stable points such that q induces

an isomorphism V ' H0(FE(F)(m)). By Proposition 3.21, R = Zs, the GIT-stable
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points. Using a similar argument as in [18, Lemma 4.3.1] or the more detailed version

on projective stacks [9, Theorem 4.12], we get MX (P ) ' [Zs/GL(V )]. Let M s be

the GIT-quotient, then M s corepresents MX (P ). Moreover, M s is a projective

scheme because we don’t have any strictly semistable points.

By a similar argument as [18, Cor 1.2.8, Lem 4.3.2], we can show that the

stabilizer in PGL(V ) of a closed point in Zs is trivial. By Luna’s étale slice Theorem

[18, Theorem 4.2.12], Zs → M s is a principal PGL(V )-bundle. Since the universal

family on Zs is PGL(V )-linearized, it descends to M s according to [18, Theorem

4.2.14]. Thus, M s is a fine moduli space.
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Chapter 4: Curve counting via stable pairs

4.1 PT invariants

Definition 4.1. An orbifold Calabi-Yau 3-fold (CY3) is a smooth, quasi-projective,

Deligne-Mumford stack X over C of dimension three having generically trivial sta-

bilizers and trivial canonical bundle,

KX = OX .

The definition implies that the local model for X at a point p is [C3/Gp] where

Gp ⊂ SL(3,C) is the (finite) group of automorphisms of p.

LetKc(X ) be the Grothendieck group of compactly supported coherent sheaves

on X . We say F1,F2 ∈ Kc(X ) are numerically equivalent,

F1 ∼num F2

if

χ(G ⊗ F1) = χ(G ⊗ F2)
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for all locally free sheaves G on X . In particular, PE(F1) = PE(F2). We define

K(X ) = Kc(X )/ ∼num .

There is a natural filtration

F0K(X ) ⊂ F1K(X ) ⊂ F2K(X ) ⊂ K(X )

given by the dimension of the support.

Given β ∈ F1K(X )/F0K(X ), the moduli space P (X , β) parameterizes stable

pairs

OX
s→ F

where [F ] = β. The two stability conditions are:

1. the sheaf F is pure with compact support,

2. the section s has 0-dimensional cokernel.

By Definition 2.3, we can embed X into a projective stack. It follows from Theorem

3.3 that P (X , β) is a quasi-projective scheme.

Let

CF = Supp(F) = V (Ann(F))

be the support of F .
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Lemma 4.2. For a stable pair (F , s),

Supp(Im(s)) = CF .

Proof. This is the stacky version of [31, Lemma 1.6]. It suffices to show that

Ann(Im(s)) ⊂ Ann(F). Let a ∈ Ann(Im(s)). If a 6∈ Ann(F), let f be a sec-

tion for which af is not 0. Let Z be the 0-dimensional support of Coker(s) and U

be its complement. Since F|U = Im(s)|U , we obtain (af)|U = a|Uf |U = 0. Hence,

the subsheaf generated by af has dimension 0 support, which violates the purity of

F .

Since Im(s) is a quotient of OX , Im(s) is a structure sheaf. By Lemma 4.2,

OCF ' Im(s) is pure. We have the following exact sequence,

0→ ICF → OX
s−→ F → Q→ 0.

The cokernel Q has dimension 0 support. The reduced support stack, Suppred(Q),

is called the zero locus of the pair. The zero locus lies on CF .

Let C ⊂ X be a fixed curve with compact support and pure structure sheaf

OC. Let m ⊂ OC be the ideal sheaf of a 0-dimensional reduced substack. Since

mr/mr+1 has dimension 0 support and OC is pure, H om(mr/mr+1,OC) = 0. Ap-

plying H om(·,OC) to the following exact sequence

0→ mr+1 → mr → mr/mr+1 → 0
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yields the inclusion

H om(mr,OC) ↪→H om(mr+1,OC).

In particular, the inclusion mr ↪→ OC induces a canonical section

OC ↪→H om(mr,OC).

Let (F , s) be a stable pair with support C satisfying

Suppred(Q) ⊂ Supp(OC/m).

Notice that H om(Q,OC) = 0 by purity of OC. Applying H om(·,OC) to the fol-

lowing exact sequence

0→ OC → F → Q→ 0

yields the inclusion

0→H om(F ,OC)→ OC.

Let OZ be the cokernel, then IZ = H om(F ,OC). Since F is isomorphic to OC

away from the support of Q, we have Z is 0-dimensional and

Zred ⊂ Suppred(Q) ⊂ Supp(OC/m).

For r � 0, there is an inclusion mr ⊂ IZ with 0-dimensional cokernel. By purity,
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we get

H om(IZ ,OC) ⊂H om(mr,OC).

The obvious double dual

F →H om(H om(F ,OC),OC) = H om(IZ ,OC)

is isomorphic away from the support of Q, so is an injection by the purity of F .

Therefore, we obtain

OC ↪→ F ↪→H om(mr,OC).

with composition the canonical section. Dividing by OC, we get

Q ⊂H om(mr,OC)/OC. (4.1)

Conversely, given (4.1), let F be the preimage of Q in H om(mr,OC). Since

OC is pure, F is also pure. Moreover, F fits into an exact sequence

OX � OC → F → Q→ 0.

Let s denote the section. By Lemma 4.2, (F , s) is stable with support C. We obtain

the following stacky version of [31, Proposition 1.8].

Lemma 4.3. A stable pair (F , s) with support C and

Suppred(Q) ⊂ Supp(OC/m)
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is equivalent to a coherent subsheaf Q ⊂ lim
−→

H om(mr,OC)/OC.

Let Db(X ) be the bounded derived category of coherent sheaves on X . To

each stable pair

[OX
s→ F ] ∈ P (X , β)

we associate a complex

I• = {OX → F} ∈ Db(X ).

As in [31], P (X , β) can be viewed as a component of the moduli space of complexes

with trivial determinant in Db(X ). Using the stability condition and same argument

as in [31, Lemma 1.14], we obtain

E xt≤−1(I•, I•) = 0, H om(I•, I•) = OX .

In particular, I• is simple. Using the result of [19] or a similar argument as in

[16, Proposition 2.2.1] for moduli space of stable sheaves with fixed determinant,

we obtain a symmetric perfect obstruction theory on P (X , β) with tangent space

governed by Ext1
0(I•, I•) and obstruction space governed by Ext2

0(I•, I•) where

the subscript 0 denotes trace-free Ext. By [5, Section 5], it gives rise to a virtual

fundamental class [P (X , β)]vir ∈ A0(X ). When X is projective, P (X , β) is also

projective, and the virtual fundamental class [P (X , β)]vir can be integrated to an

integer

#vir(P (X , β)) =

∫
[P (X ,β)]vir

1.
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In [4], Behrend defined an integer-valued constructible function

vS : S → Z

associated to any scheme S over C. The weighted Euler characteristic is defined to

be

χ̃(S) = χ(S, vS) =
∑
k∈Z

kχtop(v−1
S (k))

where χtop(·) is the topological Euler characteristic. If S is endowed with a sym-

metric obstruction theory and assume that S is proper. Behrend [4, Theorem 4.18]

proved that

#vir(S) = χ̃(S).

Definition 4.4 (PT invariants). The PT invariant of X in the class β ∈ F1K(X )

is given by

PTβ(X ) = χ̃(P (X , β)).

Notice that this is well defined for non-compact geometries.

We define the PT partition function by

PT (X ) =
∑

β∈F1K(X )

PTβ(X )qβ.

With an appropriate choice of a basis e1, · · · , er for F1K(X ), we can regard PT (X )
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as a formal Laurent series in the variables q1, · · · , qr, where

qβ = qd11 · · · qdrr

for β =
∑r

i=1 diei.

We end this section with some facts about the Behrend function vS.

• If S is smooth at P , then vS(P ) = (−1)dimS [4, Section 1.2].

• If S admits a Gm-action with isolated fixed points and a Gm-equivariant sym-

metric obstruction theory, then for each fixed point P ,

vS(P ) = (−1)dimTS|P .

In particular,

χ̃(S) =
∑
P

(−1)dimTPS, (4.2)

where the sum is over the Gm-fixed points [6, Theorem 3.4].

4.2 Orbifold DT crepant resolution conjecture (CRC) and DT/PT

correspondence

Let X be an orbifold CY3 and let X be its coarse space. Given α ∈ K(X ),

let Hilbα(X ) be the category of families of substacks Z ⊂ X having [OZ ] = α.

By [29, Theorem 1.5], Hilbα(X ) is represented by a quasi-projective scheme.
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Definition 4.5. The DT invariant of X in the class β ∈ F1K(X ) is given by

DTβ(X ) = χ̃(Hilbβ(X )).

where χ̃(·) is the weighted Euler characteristic.

The DT partition function is defined as

DT (X ) =
∑

β∈F1K(X )

DTβ(X )qβ.

The degree zero DT partition function is

DT0(X ) =
∑

α∈F0K(X )

DTα(X )qα,

and the reduced DT partition function is

DT ′(X ) =
DT (X )

DT0(X )
.

Let Y = Hilb[Op](X ) be the Hilbert scheme parameterizing substacks in the

class [Op] ∈ F0K(X ). According to [8], Y is a smooth CY3 and Y is a crepant

resolution of X, i.e. there is resolution of singularities π : Y → X such that

π∗KX = KY . Moreover, there is a Fourier-Mukai isomorphism

Φ : K(X )→ K(Y ), F 7→ Rq∗p
∗F ,
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where p : Z → X , q : Z → Y are the projections from the universal substack

Z ⊂ X × Y onto each factor. This isomorphism doesn’t respect the filtration

F•K(X ) and F•K(Y ). However, if X satisfies the hard Lefschetz condition [12, Def

1.1], which in this case is equivalent [11, Lemma 24] to the condition that all Gp are

finite subgroups of SO(3) ⊂ SU(3) or SU(2) ⊂ SU(3), then the image of F0K(X )

under Φ is contained in F1K(Y ). Let FexcK(Y ) = Φ(F0K(X )), whose elements can

be represented by formal differences of sheaves supported on the exceptional fibers

of π : Y → X, and FmrK(X ) = Φ−1(F1K(Y )), whose elements can be represented

by formal differences of sheaves supported in dimension one where at the generic

point of each curve in the support, the associated representation of the stabilizer

of that point is a multiple of the regular representation. We have the following

commutative diagram

F0K(X ) FmrK(X ) F1K(X )

F0K(Y ) FexcK(Y ) F1K(Y ).

∼

Φ

∼

Φ

Define the exceptional DT partition function of Y and multi-regular DT partition

function of X to be:

DTexc(Y ) =
∑

α∈FexcK(Y )

DTα(Y )qα,

DTmr(X ) =
∑

β∈FmrK(X )

DTβ(X )qβ

Jim Bryan and David Steinberg [13, Conjecture 1.1] made the following conjecture:
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Conjecture 4.6 (CRC). Let X be an orbifold CY3 satisfying the hard Lefschetz

condition. Let Y be the CY resolution of X described above. Then using Φ to

identify the variables we have

DTmr(X )

DT0(X )
=

DT (Y )

DTexc(Y )
.

Conjecture 4.7 (Orbifold DT/PT correspondence). Let X be an orbifold CY3

satisfying the hard Lefschetz condition. Then

PTmr(X ) =
DTmr(X )

DT0(X )
.

4.3 Orbifold toric CY3s and web diagrams

Let X be an orbifold toric CY3. By [10, Lemma 40], X is uniquely deter-

mined by its coarse moduli space X, a toric variety with Gorenstein finite quotient

singularities and trivial canonical bundle. The combinatorial data determining an

orbifold toric CY3 is expressed as the data of a web diagram, which is essentially

dual to the data of a fan.

Definition 4.8. A web diagram consists of the following data.

• A finite trivalent graph Γ.

• A marking {xv,e}, which consists of a non-zero vector xv,e ∈ Z2 for each pair

(v, e) where e is an edge incident to a vertex v.
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• For each compact edge e with bounding vertices v and v′,

xv,e + xv′,e = 0.

• For each vertex v with incident edges (e1, e2, e3),

xv,e1 + xv,e2 + xv,e3 = 0.

Two markings {xv,e} and {x′v,e} are equivalent if there exists g ∈ SL2(Z) such that

g · xv,e = x′v,e for all (v, e).

Let X be an orbifold toric CY3 with coarse moduli space X. Such an X

determines a simplicial fan Σ ⊂ N ⊗Q where N ' Z3. Since the canonical divisor

is trivial, there is a linear function l : N → Z such that l(vi) = 1 for all the

generators of 1-dimensional cones of Σ. Let Γ̂ be the intersection of Σ with the

plane {v : l(v) = 1}. Γ̂ is a triangulation with integral vertices. Let Γ be graph

dual to Γ̂ in the plane {v : l(v) = 1}. Under duality, a vertex v with incident edge e

corresponds to a triangle v̂ in Γ̂ and a bounding edge ê. We define a marking on Γ as

follows. Fixing an orientation on the plane, the edge ê inherits an orientation from

the triangle v̂. The oriented edge defines an integral vector xv,e in {v : l(v) = 0}.

The set {xv,e} makes the graph Γ a web diagram.

Remark 4.9. The vertices of Γ correspond to the torus fixed points in X , the edges

correspond to torus invariant curves, and the regions in the plane delineated by

the graph correspond to torus invariant divisors. Γ will necessarily have some non-
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(1, 0, 0)

(1,−1, 1)

(1, 0, 2)

(1, 1, 1)
(2, 0)

(−1, 1)

(−1,−1)

(−2, 0)

(1, 1)

(1,−1)

Figure 4.1: The web diagram for local P1 ×BZ2

compact edges; these correspond to edges incident to only one vertex. We denote

the set of compact edges by Edgescpt.

Example 4.10. Let X be the local P1 × BZ2, namely the global quotient of the

resolved conifold Tot(O(−1)⊕O(−1)→ P1) by Z2 acting fiberwise by −1. The web

diagram of X is given in Figure 4.1.

Example 4.11. Let a, b be positive integers. Let

Xa,b = Tot
(
O(−p0)⊕O(−p∞)→ P1

a,b

)

be the total space of the bundle O(−p0) ⊕ O(−p∞) over the football P1
a,b which is

by definition P1 with root construction [14] of order a and b at the points p0 and

p∞. The web diagram of Xa,b is given in Figure 4.2.
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(1, 0, 0)

(1,−a, 0)

(1, 0, 1)

(1, b, 1)
(1, 0)

(−1, a)

(0,−a)

(−1, 0)

(0, b)

(1,−b)

Figure 4.2: The web diagram for local football Xa,b

Locally, X is of the form [C3/G] where G is a finite subgroup of the torus

T = (C∗)3.

Lemma 4.12 ( [10, Lemma 46]). Let v be the vertex of Γ, let (e1, e2, e3) be the three

edges incident to v, and let xv,ei = (ai, bi) be the markings. Then X has an open

neighbourhood about the torus fixed point corresponding to v given by [C3/G] where

G is the subgroup of the torus T = (C∗)3 given by

t1t2t3 = 1, t
aj
i = taij , t

bj
i = tbij .

The action of G on C3 is given by

(z1, z2, z3) 7→ (t1z1, t2z2, t3z3)
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where the zi coordinate axis is the T invariant curve corresponding to the edge ei.

Moreover, the order of G is given by

|G| = x1 ∧ x2 = x2 ∧ x3 = x3 ∧ x1,

where xi ∧ xj = aibj − ajbi. The order of Hi, the stabilizer group of a generic point

on the T invariant curve corresponding to ei is given by

|Hi| = gcd(ai, bi).

4.4 Orbifold toric CY3 with transverse An−1 singularities

Let X be an orbifold toric CY3 whose orbifold structure is supported on a

disjoint union of smooth curves. By Lemma 4.12, the local model is [C3/Zn] where

Zn acts on C3 with weights (1,−1, 0). The coarse space X has transverse An−1

singularities along the curves (where n can vary from curve to curve). In particular,

such X satisfies the hard Lefschetz condition.

Let Γ be the web diagram of X . For each edge e, let C(e) be the corresponding

torus invariant curve. Define n := n(e) such that Zn is the local group of C(e). It

will be convenient to choose an orientation on Γ.

Definition 4.13. Let Γ be the web diagram associated to an orbifold toric CY3

with transverse An−1 singularities. An orientation is a choice of directions for each

edge and an ordering (e1(v), e2(v), ee(v)) of the edges incident to each vertex v which
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f ′

f

D′(e)

D0(e)
e

D∞(e)

D(e)

g′

g

Figure 4.3: The edge e with orientation chosen for adjacent edges

is compatible with the counterclockwise cyclic ordering. If any of the n(ei(v)) 6= 1,

we make this (necessarily unique) edge e3(v). We will call such an edge the special

edge and denote it as simply e(v).

Given an orientation on Γ and a compact edge e corresponding to C(e), let

D(e) and D′(e) denote the two regions incident to e with the convention that D(e)

lies to the right of e. We also use D(e) and D′(e) to denote the corresponding torus

invariant divisors. Notice that C(e) = D(e)∩D′(e). Let p0(e) and p∞(e) denote the

torus fixed points corresponding to the initial and final vertices incident to e. Let

D0(e) and D∞(e) denote the torus invariant divisors meeting C(e) transversely at

p0(e) and p∞(e). Given a vertex v, let D1(v),D2(v),D3(v) denote the regions and

the corresponding torus invariant divisors opposite the edges e1(v), e2(v), e3(v). The

oriented web diagram near the edge e is given in Figure 4.3.

Let e be a compact edge and let C = C(e), D = D(e), D′ = D′(e). The normal

bundle of C ⊂ X is

NC/X = OC(D)⊕OC(D′).
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Let

m = degOC(D), m′ = degOC(D′). (4.3)

If n = n(e) > 1, the C is a BZn gerbe over P1 and

m,m′ ∈ 1

n
Z.

By Calabi-Yau condition,

m+m′ = −2.

If n = 1, then in Figure 4.3, one of

a = n(f), a′ = n(f ′)

and/or one of

b = n(g), b′ = n(g′)

is possibly greater than 1 and C is a football: a P1 with root constructions of order

max(a, a′) and max(b, b′) at 0 and ∞.

We define

δ0 =


1 if a > 1,

0 if a = 1,

and similarly for δ′0, δ∞, and δ′∞. By [10, Lemma 48] and the Calabi-Yau condition
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OC(D +D′) = KC = OC(−p0 − p∞), we can write

OC(D) = OC(m̃p− δ0p0 − δ∞p∞), (4.4)

OC(D′) = OC(m̃′p− δ′0p0 − δ′∞p∞), (4.5)

where p is a generic point on C, m̃, m̃′ ∈ Z, and

m̃+ m̃′ = δ0 + δ′0 + δ∞ + δ′∞ − 2.

Notice that

m = m̃− δ0

a
− δ∞

b
,

m = m̃′ − δ′0
a′
− δ′∞

b′
.

By convention, we define m̃ = m and m̃′ = m′ if n = n(e) > 1.

As in [10, Section 3.3], we will use the following generators for F1K(X ). Let

p ∈ X be a generic point and let p(e) ' BZn(e) be a generic point on the curve

C(e). Let ρa, a ∈ {0, · · · , n(e) − 1} be the irreducible representations of Zn(e) with

indexing chosen so that

Op(e)(−aD(e)) ' Op(e) ⊗ ρa.

We have the following classes in F1K(X ) and their associated variables (see Table

4.1).

63



Table 4.1: Generators for F1K(X )

Class in F1K(X ) Associated variable Indexing set

[Op] q
[Op(e) ⊗ ρa] qe,a e ∈ Edges, a ∈ {0, · · · , n(e)− 1}
[OC(e)(−1)⊗ ρa] ve,a e ∈ Edgescpt, a ∈ {0, · · · , n(e)− 1}

Remark 4.14. (1) If C(e) ' P1×BZn(e), then OC(e)(−1) is the pull back of OP1(−1)

and ρa is the pullback from BZn(e). In general, let π : C̃(e) → C(e) be the degree

n(e) cover obtained from the base change P1 → P1, z 7→ zn(e). Then C̃(e) is a trivial

BZn(e) gerbe and [OC(e)(−1)⊗ ρa] is defined to be the class 1
n(e)

π∗[OC̃(e)(−1)⊗ ρa].

(2) The above classes generate F1K(X ) over Q but there are relations. In particular,

for each edge e, there is the relation

[Op] = [Op(e) ⊗Rreg]

where Rreg =
∑

a ρa denotes the regular representation of Zn(e). This relation gives

rise to the relation

q =

n(e)−1∏
k=0

qe,a.

Given a partition λ ⊂ Z2 and an integer n, let

λ[a, n] = {(i, j) ∈ λ : i− j = a mod n}

denote the set of boxes in λ of color a mod n. Let

|λ|a = |λ[a, n]|
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denote the number of boxes of color a mod n in λ.

Definition 4.15. Let Γ be the web diagram of X and assume that Γ has an ori-

entation. An edge assignment on Γ is a choice of a partition λ(e) for each edge e

such that λ(e) = ∅ for every non-compact edge. Given a vertex v, we get a triple of

partitions (λ1(v), λ2(v), λ3(v)) by setting

λi(v) =


λ(ei(v)) ei(v) is oriented outward,

λt(ei(v)) ei(v) is oriented inward,

where λt is the transpose of λ. An edge assignment is called multi-regular if each λ3

satisfies |λ3|a = |λ3|/n(e3) for all a

The action of the torus T on X induces a T action on P (X , β). Let Q ⊂

P (X , β)T be a connected T -fixed locus. By Lemma 4.21,

Q =
∏
v

Qπ(v),

where each Qπ(v) is a product of P1’s. Q corresponds with sets {λ(e), π(v)} where

{λ(e) : e ∈ Edgecpt} is an edge assignment and {π(v) : v ∈ Vertices} is a collection of

labelled box configurations with outgoing partitions (λ1(v), λ2(v), λ3(v)). Here, each

π(v) is a subset of Z3 depending on (λ1(v), λ2(v), λ3(v)). The complete description

of π(v) will be given in Section 4.6.

Proposition/Conjecture 4.16. Let X be an orbifold toric CY3 with transverse
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An−1 orbifold structure. Then

PTβ(X ) =
∑

Q⊂P(X ,β)T

χtop(Q)(−1)dimTI•P (X ,β),

where I• ∈ Q ⊂ P (X , β)T is a T -fixed stable pair.

Remark 4.17. To get an explicit formula for PTβ(X ), we will follow [10] to give a

combinatorial description of the T -fixed substacks in Section 4.6 and to calculate

the parity of the tangent space to a T -fixed point in Section 4.7.

In the 1-leg or 2-leg case, that is at most 2 of λi(v)’s are nonempty for each

v, the T -fixed points are isolated (See Section 4.6). We can prove Proposition 4.16

using (4.2). The 3-leg case is conjectural.

The Zn PT vertex (See Definition 4.27)

W n
λ1λ2λ3

(q0, · · · , qn) =
∑
Qπ

χtop(Qπ)q
|π|0
0 · · · q|π|n−1

n−1

counts colored labelled box configurations with outgoing partitions (λ1, λ2, λ3). We

color the boxes in a labelled box configuration π according to the rule that a box

(i, j, k) ∈ π has color i − jmodn. In the 1-leg case we have the following explicit

formula for the Zn PT vertex. For any partition λ, define

q−Aλ =
n−1∏
a=0

q−Aλ(a,n)
a
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where

Aλ(a, n) =
∑

(j,k)∈λ

⌊
j + a

n

⌋
.

Theorem 4.18. Let λ be a partition, then

W n
λ∅∅(q0, · · · , qn−1) = q−Aλsλt(q),

W n
∅λ∅(q0, · · · , qn−1) = q−Aλtsλ(q),

W n
∅∅λ(q0, · · · , qn−1) =

∏
�∈λ

1

1−
∏n−1

a=0 q
ha(�)
a

,

where sλ(q) is the Schur function with q = (1, q1, q1q2, q1q2q3, · · · ), ha(�) denotes

the number a-colored boxes in the hook of �, and the overline denotes the exchange

of variables qa ↔ q−a.

We will prove this in Chapter 5.

Given a triple of partitions (λ1, λ2, λ3), we define

λ1[a, n] = {(j, k) ∈ λ1| − j ≡ amodn},

λ2[a, n] = {(k, i) ∈ λ2|i ≡ amodn},

λ3[a, n] = {(i, j) ∈ λ3|i− j ≡ amodn}

to be the set of boxes in λi with color a. Let

|λi|a = |λi[a, n]|, i = 1, 2, 3
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be the number of boxes with color a. Let

Cλ
m̃,m̃′ =

∑
(i,j)∈λ

(−m̃i− m̃′j + 1)

and let

Cλ
m̃,m̃′ [a, n] =

∑
(i,j)∈λ[a,n]

(−m̃i− m̃′j + 1).

Let e = e3(v), n = n(e), and

qv =


(qe,0, qe,1, · · · , qe,n−1) e is oriented outward,

(qe,0, qe,n−1, · · · , qe,1) e is oriented inward.

We define

(−1)s(λ3)qv

to be the same as qv but with each qe,a multiplied by the sign (−1)sa(λ3) where

sa(λ3) = |λ3|a−1 + |λ3|a+1 + δa,0.

We also define

v|λ|e :=

n(e)−1∏
a=0

v
|λ|a,n(e)
e,a ,

q
Cλ
m̃,m̃′

e :=

n(e)−1∏
a=0

((−1)δa,0qe,a)
Cλ
m̃,m̃′ [a,n(e)]

,

qAλe :=

n(e)−1∏
a=0

((−1)δa,0qe,a)
Aλ(a,n(e)).
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Finally, let λ = λ(e), n = n(e), and let

SEλ =


∑n−1

a=0 C
λ
m,m′ [a, n](|λ|a−1 − |λ|a+1) + |λ|a|(|λ|a + (1 +m)|λ|a−1), n > 1

|λ|(m̃+ δ0 + δ∞), n = 1.

Let

Σπ(v) =
n−1∑
a=0

|λ3|a(|λ1|a + |λ2|a + |λ1|a+1 + |λ2|a−1).

Theorem/Conjecture 4.19. Let X be an orbifold toric CY3 with transverse An−1

singularities and let Γ be the diagram of X . Then

PT (X ) =
∑
edge

assignments

∏
e∈Edges

Eλ(e)

∏
v∈Vertices

(−1)Σπ(v)W
n(e3(v))
λ1(v)λ2(v)λ3(v)((−1)s(λ3(v))qv) (4.6)

where

Eλ(e) = (−1)SEλv|λ|e q
Cλ
m̃,m̃′

e

(
qAλf

)δ0 (
q
Aλt
f ′

)δ′0 (
qAλg
)δ∞ (

q
Aλt
g′

)δ′∞
and (f, f ′, g, g′) are as in Figure 4.3.

4.5 Example: the local football

The graph of the local football Xa,b is in Figure 4.3. Since

O(D) = O(−p0), O(D′) = O(−p∞),
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we have

n(f) = a, n(g′) = b, n(f ′) = n(g) = n(e) = 1, m̃ = m̃′ = 0.

To ease notation, let

v = ve,

pk = qf,k, k = 0, · · · , a− 1,

rl = qg′,l, k = 0, · · · , b− 1,

and

q = p0 · · · pa−1 = r0 · · · rb−1.

Here, v and q keep track of the degree and the holomorphic Euler characteristic of

the curve, and pk ∈ Ẑa and rl ∈ Ẑb keep track of the embedded stacky points at p0

and p∞. By Theorem 4.19, we have

PT (Xa,b) =
∑
λ

Eλ ·W a
λ∅∅((−p0), p1, · · · , pa−1) ·W b

λt∅∅((−r0), r1, · · · , rb−1)

where

Eλ =(−1)|λ|v|λ|(−q)|λ|

· (−p0)Aλ(0,a)p
Aλ(1,a)
1 · · · pAλ(a−1,a)

a−1 (−r0)Aλt (0,b)r
Aλt (1,b)
1 · · · rAλt (b−1,b)

b−1 .
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Applying the formula in Theorem 4.18, we get

W a
λ∅∅((−p0), p1, · · · , pa−1) = (−p0)−Aλ(0,a)p

−Aλ(1,a)
1 · · · p−Aλ(a−1,a)

a−1 sλt(1, pa−1, pa−1pa−2, · · · )

W b
λ∅∅((−r0), r1, · · · , rb−1) = (−r0)−Aλt (0,b)r

−Aλt (1,b)
1 · · · r−Aλt (b−1,b)

b−1 sλ(1, rb−1, rb−1rb−2, · · · ).

Let Q = (1, q, q2, · · · ) and use the homogeneity of Schur functions

w|λ|sλ(x1, x2, · · · ) = sλ(wx1, wx2, · · · )

we get

PT (Xa,b) =
∑
λ

sλt(−v(−q)Q,−vpa−1(−q)Q, · · · ,−vpa−1pa−2 · · · p1(−q)Q)

· sλ(Q, rb−1Q, · · · , rb−1rb−2 · · · r1Q).

Using the orthogonality of Schur functions [24, Section 1.4 (4.3’)]

∑
λ

sλ(x)sλt(y) =
∏
i,j

(1 + xiyj)

we arrive the following

Proposition 4.20. The PT partition function of the local football Xa,b is given by

PT (Xa,b) =
a∏
k=1

b∏
l=1

∞∏
m=1

(1− vpk · · · pa−1rl · · · rb−1(−q)m)m. (4.7)

Since the only stacky curves in Xa,b are non-compact, the edge assignments
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are multi-regular. Thus,

PTmr(Xa,b) = PT (Xa,b)

The Calabi-Yau resolution Y → X has a single (−1,−1)-curve given by the proper

transform of the football to which are attached two chains of (0,−2)-curves having

a−1 and b−1 components each. According to Proposition 4.20 and [10, Proposition

3], we have

PTmr(Xa,b) = DT ′mr(Xa,b) =
DT (Y )

DTexc(Y )
,

which verifies the CRC 4.6 and DT/PT correspondence 4.7. Notice on Y the vari-

ables p1, · · · , pa−1 and r1, · · · , rb−1 corresponds to the classes of the curves in each

of the chains and v corresponds to the class of the (−1,−1)-curve.

4.6 T-fixed points and the Zn PT vertex

Let X be a toric CY3 orbifold with web diagram Γ. Let v ∈ Γ be a vertex.

By Lemma 4.12, X has an open neighbourhood about the torus fixed point cor-

responding to v given by Uv = [C3/G] where G is a finite subgroup of the torus

T = (C∗)3.

Let

I• = [OX
s−→ F ] ∈ P (X , β)T

be a T -fixed stable pair. Let

I•v = [OUv
sv−→ Fv]
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be the restriction of this stable pair on Uv. Notice that I•v is the same as

I•v = [OC3
sv−→ Fv]

where sv is an G-invariant section of the G-equivariant sheaf Fv on C3. Thus, we

get a T -fixed stable pair on C3. Conversely, given a T -fixed stable pair I•v on C3.

By [30, Section 2.1], sv is a T -invariant section of the T -equivariant sheaf Fv. Since

G is a subgroup of T , we obtain a T -fixed stable pair on Uv.

The restricted data (Fv, sv) can be characterized as certain labelled box con-

figurations [30, Section 2]. Let Cv be the support of Fv. The subscheme Cv ⊂ C3 is

T -invariant of pure dimension 1 and is defined by a monomial ideal

ICv ⊂ C[x1, x2, x3].

The localizations

(ICv)xi ⊂ C[x1, x2, x3]xi , i = 1, 2, 3

are all T -fixed and correspond to a triple of partitions
→
µ = (µ1, µ2, µ3). Since Cv

has dimension 1, at least one of the µi is non-empty.

Conversely, consider a triple
→
µ = (µ1, µ2, µ3) of partitions such that they are
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not all empty. Let

Iµ1 = µ1[x2, x3] · C[x1, x2, x3],

Iµ2 = µ2[x3, x1] · C[x1, x2, x3],

Iµ3 = µ3[x1, x2] · C[x1, x2, x3]

and let

I→
µ

=
3⋂
i=1

Iµi .

The curve C→
µ

with ideal sheaf I→
µ

is easily seen to be the unique T -fixed pure curve

with partitions
→
µ.

Consider the exact sequence associated to (Fv, sv),

0→ ICv → OC3
sv−→ Fv → Qv → 0.

We conclude that Cv = C→
µ

for some
→
µ.

Since Supp(Qv) is both 0-dimensional by stability and T -fixed, Qv must be

supported at the origin. By Lemma 4.3, the pair (Fv, sv) corresponds to a T -

invariant coherent subsheaf

Qv ⊂ lim
−→

H om(mr,OC→
µ

)/OC→
µ
,

74



where m = 〈x1, x2, x3〉 is the ideal sheaf of the origin. Let

Mi = (OCµi )xi = (C[x1, x2, x3]/Iµ1)xi , i = 1, 2, 3.

For example,

M1 = C[x1, x
−1
1 ]⊗ C[x2, x3]

µ1[x2, x3]
,

which can be viewed as a cylinder

Cyl1 = {(i, j, k)|(j, k) ∈ µ1} ⊂ Z3

in the space of T -weights. By simple calculation,

lim
−→

H om(mr,OC→
µ

) =
3⊕
i=1

lim
−→

H om(mr,OCµi ) =
3⊕
i=1

Mi := M.

The canonical section OC→
µ

corresponds to (1, 1, 1) ∈ M and is T -invariant. Hence,

the T -fixed stable pair (Fv, sv) is equivalent to a finitely generated T -invariant

C[x1, x2, x3]-submodule

Qv ⊂M/〈(1, 1, 1)〉.

For every weight w ∈ Z3, let 1w,2w and 3w be three independent vectors. A

C-basis for M is

{iw|w ∈ Cyli}.
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The C[x1, x2, x3]-module structure is given by

x1 · iw = iw+(1,0,0), x2 · iw = iw+(0,1,0), x3 · iw = iw+(0,0,1).

A C-basis for the submodule OC→
µ
⊂M is given by the set

{1w + 2w + 3w|w ∈ Z3
≥0}

where iw = 0 if w 6∈ Cyli. We can decompose the union of the cylinders Cyli into 4

disjoint parts
3⋃
i=1

Cyli = I+ ∪ II ∪ III ∪ I−

where

I+ = {w|w has nonnegative coordinates and lies in exactly one of the cylinders},

II = {w|w lies in exactly two of the cylinders},

III = {w|w lies in all three of the cylinders},

I− = {w|w has at least one negative coordinate}.

The quotient M/OC→
µ

is supported on II ∪ III ∪ I− and has the following C-basis

• If w ∈ I− is supported on Cyli, then

C · iw ⊂M/OC→
µ
.
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• If w ∈ II is supported on Cyli and Cylj, then

C · iw ⊕ C · jw
C · (1w + 2w + 3w)

=
C · iw ⊕ C · jw
C · (iw + jw)

' C ⊂M/OC→
µ
.

• If w ∈ III, then

C · 1w ⊕ C · 2w ⊕ C · 3w
C · (1w + 2w + 3w)

' C2 ⊂M/OC→
µ
.

A finitely generated T -invariant C[x1, x2, x3]-submodule

Q ⊂M/OC→
µ

yields the following labelled box configuration [30, Section 2.5]: a finite number of

boxes supported on II ∪ III ∪ I− satisfying the following rules:

1. If w ∈ I− and if any of

(w1 − 1, w2, w3), (w1, w2 − 1, w3), (w1, w2, w3 − 1)

support a box then w must support a box.

2. If w ∈ II, w 6∈ Cyli, and if any of

(w1 − 1, w2, w3), (w1, w2 − 1, w3), (w1, w2, w3 − 1)

support a box other than a type III box labelled by the 1-dimensional subspace
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C · iw, then w must support a box.

3. If w ∈ III and the subspace of

C · 1w ⊕ C · 2w ⊕ C · 3w
C · (1w + 2w + 3w)

induced by boxes supported on

(w1 − 1, w2, w3), (w1, w2 − 1, w3), (w1, w2, w3 − 1)

is nonzero, the w must support a box. If the subspace has dimension 1, then

w is labelled by the corresponding point in

P1 = P
(
C · 1w ⊕ C · 2w ⊕ C · 3w

C · (1w + 2w + 3w)

)

or unlabelled. If the subspace has dimension 2, then w is unlabelled.

We will use π = π(v) = π(
→
µ) to denote such a labelled box configuration.

Lemma 4.21. Let X be a toric CY3 orbifold with web diagram Γ. Let Q ⊂ P (X , β)T

be a connected component of T -fixed locus. Then Q is a product of P1’s and cor-

responds with sets {λ(e), π(v)} where {λ(e) : e ∈ Edgecpt} is an edge assignment

and {π(v) : v ∈ Vertices} is a collection of labelled box configurations with outgoing

partitions (λ1(v), λ2(v), λ3(v)).
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Proof. For each vertex v ∈ Γ, we have seen that the T -fixed restricted data

I•v = [OUv
sv−→ Fv]

locally on each open chart Uv = [C3/G] corresponds to a labelled box configuration

π(v). The gluing condition is simply the matching of edge partitions. We conclude

that

Q =
∏
v

Qv,

where each Qv is a component of the moduli space of T -invariant C[x1, x2, x3]-

submodules of M/OC→
µ

. By [30, Proposition 3], each Qv, as a reduced variety, is a

product of P1’s which is obtained by assigning different labels to each unrestricted

path component of labelled type III boxes in π(v). By [30, (3-1)], the global to local

restriction map of the T -weight 0 part of the Zariski tangent space

Ext0(I•,F)T =
⊕
v

Ext0(I•v ,Fv)T

is an isomorphism. Since G is a subgroup of T , we have

Ext0(I•v ,Fv)T =
(
Ext0(I•v , Fv)

G
)T

= Ext0(I•v , Fv)
T .

By [30, Proposition 4],

dim Ext0(I•v , Fv)
T = dimQv.

Therefore, Q is nonsingular.
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To compute the PT invariant PTβ(X ) using (4.2), we consider the Calabi-Yau

subtorus

T0 = {(t1, t2, t3)|t1t2t3 = 1} ⊂ T.

Since T0 acts trivially on KX , we obtain

Ext1
0(I•, I•)∨ ' Ext2

0(I•, I•)

as T0-representation. Hence, P (X , β) carries a T0-equivariant symmetric obstruction

theory.

Let I•v = [OUv
sv−→ Fv] be a T -fixed restricted data, it is also T0-fixed. By

Lemma 4.12,

G ⊂ T0 ⊂ T.

Hence,

Ext0(I•v ,Fv)T0 =
(
Ext0(I•v , Fv)

G
)T0

= Ext0(I•v , Fv)
T0 .

In the 1-leg or 2-leg case, we have (see [30, Section 3.3])

Ext0(I•v , Fv)
T0 = 0.

It follows that P (X , β)T0 is no larger and consists of a finite number of isolated

points. Now we use the fact in the proof of Lemma 4.1 in [6] to find a one-parameter

subgroup Gm ⊂ T0 with respect to which all weights of all tangent spaces at all

fixed points are nonzero. Thus, all Gm-fixed points are also isolated. Using (4.2),
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we obtain

Proposition 4.22. In the 1-leg or 2-leg case, the T -action on P (X , β) has isolated

fixed points, and we have

PTβ(X ) =
∑

I•∈P (X ,β)T

(−1)dimTI•P (X ,β).

In the 3-leg case, let X be a smooth toric Calabi-Yau 3 fold , then the loci

P (X, β)T0 are conjectured to be nonsingular [30, Conjecture 2]. Assuming this

conjecture, Pandharipande and Thomas use the localization formula [17] to prove

that

PTβ(X) =
∑

Q⊂P (X,β)T

χtop(Q)(−1)dimTI•P (X,β)

in the localized T -equivariant chow ring Q[s1, s2, s3](s1,s2,s3). Combining this with

the previous proposition we make the following conjecture

Conjecture 4.23. Let X be an orbifold toric CY3. Then

PTβ(X ) =
∑

Q⊂P (X ,β)T

χtop(Q)(−1)dimTI•P (X ,β),

where I• ∈ Q ⊂ P (X , β)T is a T -fixed stable pair.

Remark 4.24. Let S be a scheme with a Gm-equivariant symmetric obstruction

theory and nonsingular fixed loci. Let P be a fixed point (not necessarily isolated),

then Conjecture 4.23 suggests that the Behrend function takes value

vS(P ) = (−1)dimTS|P .
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Next, we write the K-theory class of the underlying sheaf F of a T -fixed stable

pair (F , s) as a sum over edge and vertex terms. It will be convenient to identify an

element (i, j, k) ∈ Sπ(v) with the corresponding divisor. Thus if we write D ∈ Sπ(v)

we will mean

D = iD1(v) + jD2(v) + kD3(v)

for the corresponding (i, j, k) ∈ Sπ(v). Similarly, D ∈ λ(e) means

D = iD(e) + jD′(e)

for the corresponding (i, j) ∈ λ(e).

Given a triple of partitions
→
µ = (µ1, µ2, µ3). Let Q be a component of the

moduli space of T -fixed C[x1, x2, x3]-submodules of M/OC→
µ

. By Lemma 4.21, Q

is a product of P1. For each labelled box configuration π ∈ Q, consider the set of

boxes

Sπ = π ∪ II ∪ III.

For each box w ∈ Sπ, we define

η(w) = ξ(w) + `(w) (4.8)
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where

`(w) =



0 if w 6∈ π

2 if w is a unlabelled box of type III,

1 otherwise,

and

ξ(w) = 1−#cylinders containing w.

Notice that every π ∈ Q has the same type of boxes when forgetting the exact

labels and η(w) depends on the type of w. We will use Qπ to denote the component

containing π.

Proposition 4.25. Let OX → F be a T -invariant stable pair on X with associated

data {λ(e), π(v)}. Then in T -equivariant compactly supported K-theory we have

F =
∑

e∈Edgescpt

∑
D∈λ(e)

OC(e)(−D) +
∑

v∈Vertices

∑
D∈Sπ(v)

η(D)Op(v)(−D)

where η(D) is defined in (4.8).

Proof. By Lemma 4.2, we obtain the following short exact sequence

0→ OC → F → Q→ 0,
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where C is the support of F . Hence,

F = OC +Q.

By [10, Proposition 4],

OC =
∑

e∈Edgescpt

∑
D∈λ(e)

OC(e)(−D) +
∑

v∈Vertices

(
−
∑
D∈II

Op(v)(−D)−
∑
D∈III

2Op(v)(−D)

)
.

Notice that Q is supported entirely at the T -fixed points p(v). We have

Q =
∑

v∈Vertices

Qv =
∑

v∈Vertices

∑
D∈Sπ(v)

`(D)Op(v)(−D).

The proposition follows immediately.

In the case where X has transverse An−1 orbifold structure, we can write the

decomposition of F into the generators described in Table 4.1.

Proposition 4.26. (1) The vertex terms decompose as

∑
D∈Sπ(v)

η(D)Op(v)(−D) =


∑

(i,j,k)∈Sπ(v) η(D)[Op(v) ⊗ ρi−j] e3(v) is oriented outward,

∑
(i,j,k)∈Sπ(v) η(D)[Op(v) ⊗ ρj−i] e3(v) is oriented inward.
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(2) Using the notation as in Section 4.4 and Figure 4.3, we have

∑
(i,j)∈λ

OC(−iD − jD′) =
n−1∑
k=0

|λ|k · [OC(−1)⊗ ρk] +
n−1∑
k=0

Cλ
m̃,m̃′ [k, n] · [Op(e) ⊗ ρk]

+ δ0

a−1∑
k=0

Aλ(k, a) · [Op(f) ⊗ ρk] + δ′0

a′−1∑
k=0

Aλt(k, a
′) · [Op(f ′) ⊗ ρk]

+ δ∞

b−1∑
k=0

Aλ(k, b) · [Op(g) ⊗ ρk] + δ′∞

b′−1∑
k=0

Aλt(k, b
′) · [Op(g′) ⊗ ρk].

Proof. See [10, Lemma 15 & Prop 5].

Proposition 4.25, Proposition 4.26, and Table 4.1 suggest the following defini-

tion.

Definition 4.27. The Zn PT vertex W n
→
µ

is defined by

W n
→
µ

=
∑
Qπ

χtop(Qπ)q
|π|0
0 · · · q|π|n−1

n−1 (4.9)

where the sum is taken over the components Qπ of the moduli space of T -fixed

C[x1, x2, x3]-submodules of M/OC→
µ

and

|π|a =
∑

w=(i,j,k)∈Sπ
i−j≡amodn

η(w)

is the (normalized) number of boxes of color a in Sπ.

Given a labelled box configuration π = π(
→
µ). We can view

π ∩ Cyl−i
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as a reverse plane partition (RPP) of shape µi, an array of nonnegative integers of

shape µi that is weakly increasing in both rows and columns, by summing over the

boxes sitting on top of each � ∈ µi along the i-axis.

In the 1-leg case, i.e. only one µi is nonempty, the T -fixed points are isolated

and are in bijective correspondence with RPPs of shape µi by Lemma 4.21. The Zn

PT vertex W n
→
µ

simplifies to

∑
π∈RPP(µi)

q
|π|0
0 · · · q|π|n−1

n−1 , i = 1, 2, 3,

where

|π|a =
∑

(i,j,k)∈π
i−j≡amodn

1.

We will find an explicit formula for the PT vertex in Section 5.

4.7 The sign formula

Let

I• = [OX → F ] ∈ P (X , β)T

be a T -fixed stable pair. The Zariski tangent space to I• in P (X , β) is isomorphic

to Ext1
0(I•, I•). We want to compute the sign (−1)dim Ext10(I•,I•) and arrange them

into vertex and edge terms. The calculation is adapted from [10, Section 6].

The Calabi-Yau condition on X implies that

KX ' OX ⊗ C[µ]
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as a T -equivariant line bundle for some primitive weight µ ∈ Hom(T,C∗) [10, Lemma

18]. The shifted dual of a T -representation V is defined by the formula

V ∗ = V ∨ ⊗ C[−µ].

Proposition 4.28 ( [10, Proposition 6]). The shifted dual satisfies the following

properties.

(1) For any T -equivariant sheaf F and G,

Exti(F ,G)∗ ' Ext3−i(G,F)

and likewise for traceless Ext.

(2) Let V and W be virtual T -representations such that

V − V ∗ = W −W ∗.

Then the virtual dimension of V and W are equal modulo 2.

Let V be a virtual T -representation. We define s(V ) ∈ Z/2Z to be the di-

mension modulo 2 of V . If V is an anti-self shifted dual virtual representation,

i.e.

V = W −W ∗

for some W . We define

σ(V ) = s(W ).
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By Proposition 4.28 above, σ(V ) is independent of the choice of W .

Consider as T -representations, we have that

Ext1
0(I•, I•)− Ext2

0(I•, I•)

=χ(OX ,OX )− χ(I•, I•)

=χ(OX ,OX )− χ(OX −F ,OX −F)

=χ(OX ,F) + χ(F ,OX )− χ(F ,F).

By Proposition 4.28, we have

Ext1
0(I•, I•) = Ext2

0(I•, I•)∗

and

χ(F ,OX ) = −χ(OX ,F)∗.

Hence,

s(Ext1
0(I•, I•)) = σ(Ext1

0(I•, I•)− Ext2
0(I•, I•))

= σ(χ(OX ,F)− χ(OX ,F)∗ − χ(F ,F))

= s(χ(OX ,F)) + σ(χ(F ,F))

= χ(F) + σ(χ(F ,F)).
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Given any decomposition F =
∑

iKi in KT (X ), we have

χ(F ,F) =
∑
i,j

χ(Ki, Kj)

=
∑
i

[(Ext0(Ki, Ki)− Ext1(Ki, Ki))− ((Ext0(Ki, Ki)− Ext1(Ki, Ki))
∗]

+
∑
i<j

[χ(Ki, Kj)− χ(Ki, Kj)
∗].

Therefore,

s(Ext1
0(I•, I•)) = χ(F) +

∑
i

s(Hom(Ki, Ki)− Ext1(Ki, Ki)) +
∑
i<j

s(χ(Ki, Kj)).

Let’s first compute

∑
i

s(Hom(Ki, Ki)− Ext1(Ki, Ki)).

We call these the diagonal terms. It can be divided into edge terms and vertex

terms.

By Proposition 4.21, we have

F =
∑

e∈Edgescpt

∑
D∈λ(e)

OC(e)(−D) +
∑

v∈Vertices

∑
D∈Sπ(v)

η(D)Op(v)(−D).

Let e be a compact edge and let C = C(e), D = D(e), and D′ = D′(e) so that
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C = D ∩D′. We have the following exact sequence

0→ OX (−D −D′)→ OX (−D)⊕OX (−D′)→ OX → OC → 0. (4.10)

For A ∈ λ(e), we tensor (4.10) by OX (−A) and then apply H om(·,OC(−A)) to

obtain

1. H om(OC(−A),OC(−A)) = OC,

2. E xt1(OC(−A),OC(−A)) = OC(D)⊕OC(D′) = NC/X ,

3. E xt2(OC(−A),OC(−A)) = OC(D +D′) =
∧2NC/X .

By local-to-global spectral sequence

Hom(OC(−A),OC(−A)) = H0(OC)

Ext1(OC(−A),OC(−A)) = H0(NC/X )⊕H1(OC).

Since h0(OC) = 1 and h1(OC) = 0, we deduce that each edge e contributes

∑
A∈λ(e)

(1 + h0(NC/X )) = |λ(e)|(1 + h0(NC/X )) (4.11)

to the diagonal terms.

Let v be a vertex. Let p = p(v) and Di = Di(v), i = 1, 2, 3. We have the
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following exact sequence

0→ OX (−D1 −D2 −D3)→
⊕

1≤i<j≤3

OX (−Di −Dj)

→
3⊕
i=1

OX (−Di)→ OX → Op → 0.

(4.12)

For A ∈ π(v), we tensor (4.12) by OX (−A) and then apply H om(·,Op(−A)) to

obtain

E xti(Op(−A),Op(−A)) = Op ⊗
∧i

Np/X , i = 0, 1, 2, 3.

By local-to-global spectral sequence

Hom(Op(−A),Op(−A)) = H0(Op)

Ext1(Op(−A),Op(−A)) = H0(Np/X )⊕H1(Op).

Since h0(Op) = 1 and h1(Op) = 0, we deduce that each vertex v contributes

∑
A∈Sπ(v)

η2(A)(1 + h0(Np/X )) (4.13)

to the diagonal terms, where η(A) is defined in (4.8).

Next, we compute the off-diagonal terms

∑
i<j

s(χ(Ki, Kj)).

It is convenient to introduce an arbitrary total order on each λ(e) and π(v). Let
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C = C(e), C ′ = C(e′), and p = p(v). The off-diagonal terms can be divided into edge

terms,

OC(−A) and OC(−B)

for A < B in λ(e), and vertex terms, which come in three types:

1. Op(−A) and Op(−B) for A < B in Sπ(v).

2. OC(−A) and Op(−B) for A ∈ λ(e) and B ∈ Sπ(v) where e is incident to v.

3. OC(−A) and OC′(−B) for A ∈ λ(e) and B ∈ λ(e′), where e 6= e′ have common

vertex v.

For the vertex term, we tensor (4.10) byOX (−A) and then apply H om(·,OC(−B))

to obtain

E xti(OC(−A),OC(−B)) = OC(A− B)⊗
∧i

NC/X , i = 0, 1, 2.

It follows that each edge e contributes

∑
A,B∈λ(e)
A<B

χ(OC(A− B)⊗ λ−1NC/X ) (4.14)

to the off-diagonal terms. Here,

λ−1NC/X =
2∑
i=0

(−1)i
∧i

NC/X = OC −OC(D)−OC(D′) +OC(D +D′).

For the type (1) vertex terms, let A < B in Sπ(v), we tensor (4.12) by OX (−A)
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and then apply H om(·,Op(−B)) to obtain

E xti(Op(−A),Op(−B)) = Op(A− B)⊗
∧i

Np/X , i = 0, 1, 2, 3.

It follows that the contribution is

∑
A,B∈Sπ(v)
A<B

η(A)η(B)h0(Op(A− B)⊗ λ−1Np/X ), (4.15)

where

λ−1Np/X =
3∑
i=0

(−1)i
∧i

Np/X .

Let A ∈ λ(e), and B ∈ Sπ(v), where e is incident to v. We tensor (4.10) by

OX (−A) and apply H om(·,Op(−B)) to obtain

E xti(OC(−A),Op(−B)) = Op(A− B)⊗
∧i

NC/X , i = 0, 1, 2.

It follows that the contribution of the type (2) vertex terms is

3∑
i=1

∑
A∈λ(ei)

∑
B∈Sπ(v)

η(B)h0(Op(A− B)⊗ λ−1NC(ei)/X ). (4.16)

Finally, let C = C(e) = D ∩ D′, C ′ = C(f ′) = D′ ∩ D0, and p = p(v) = C ∩ C ′

(see Figure. 4.3). Let A ∈ λ(e) and B ∈ λ(f ′). We tensor (4.10) by OX (−A) and
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then apply H om(·,OC′(−B)) to obtain the complex

0→ OC′(A−B)→ OC′(A−B+D)⊕OC′(A−B+D′)→ OC′(A−B+D+D′)→ 0.

Using the fact that

0→ OC′ → OC′(D)→ Op(D)→ 0

is exact and OC′ → OC′(D′) is 0, we get

1. H om(OC(−A),OC′(−B)) = 0,

2. E xt1(OC(−A),OC′(−B)) = Op(A− B +D),

3. E xt2(OC(−A),OC′(−B)) = Op(A− B +D +D′).

By Calabi-Yau condition, Op(D +D′) = Op(−D0). Hence,

s(χ(OC(−A,OC(−B)) = h0(Op(A− B +D)) + h0(Op(A− B +D +D′))

= h0(Op(A− B +D)) + h0(Op(B −A+D0)),

and the contribution of type (3) vertex terms is

∑
i 6=j

∑
A∈λ(ei(v))

∑
B∈λ(ej(v))

h0(Op(A− B +Dj)) (4.17)

Putting (4.11), (4.13), (4.14), (4.15), (4.16), and (4.17) all together yields

s(Ext1
0(I•, I•)) = χ(F) +

∑
e∈Edges

SEλ(e) +
∑

v∈Vertices

SVπ(v)
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where

SEλ(e) = |λ(e)|(1 + h0(NC(e)/X )) +
∑
A,B∈λ(e)
A<B

χ(OC(e)(A− B)⊗ λ−1NC(e)/X ) (4.18)

and

SVπ(v) =
∑
A∈Sπ(v)

η2(A)(1 + h0(Np/X )) +
∑

A,B∈Sπ(v)
A<B

η(A)η(B)h0(Op(A− B)⊗ λ−1Np/X )

+
3∑
i=1

∑
A∈λ(ei)

∑
B∈Sπ(v)

η(B)h0(Op(A− B)⊗ λ−1NC(ei)/X )

+
∑
i 6=j

∑
A∈λ(ei(v))

∑
B∈λ(ej(v))

h0(Op(A− B +Dj)).

(4.19)

Proposition 4.29. Let X be an orbifold toric CY3 with transverse An−1 orbifold

structure. Let

I• = [OX → F ] ∈ P (X , β)T

be a T -fixed stable pair. The parity of the dimension of the Zariski tangent space of

I• in P (X , β) is given by

s(Ext1
0(I•, I•)) = χ(F) +

∑
e∈Edges

SEλ(e) +
∑

v∈Vertices

SVπ(v)
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where

SEλ =


∑n−1

a=0 C
λ
m,m′ [a, n](|λa−1| − |λa+1|) + |λ|a|(|λ|a + (1 +m)|λ|a−1), n > 1

|λ|(m̃+ δ0 + δ∞), n = 1,

and

SVπ =
n−1∑
a=0

|π|a(|λ3|a−1 + |λ3|a+1) +
n−1∑
a=0

|λ3|a(|λ1|a + |λ2|a + |λ1|a+1 + |λ2|a−1).

Proof. We first treat the edge term (4.18). If n = n(e) > 1, then C = C(e) is a

BZn gerbe. We resymmetrize it as follows. Since NC/X = OC(D) +OC(D′), we get

KC = OC(D +D′) and

λ−1NC/X = OC −OC(D)−OC(D′) +KC.

It follows that

SEλ =|λ|(1 + h0(OC(D)) + h0(OC(D′)))

+
∑
A,B∈λ
A<B

χ(OC(A− B))− χ(OC(A− B)⊗KC)

+
∑
A,B∈λ
A<B

χ(OC(A− B +D))− χ(OC(A− B +D′)).
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By Serre duality,

h0(OC(D′))) = h1(OC(D))),

χ(OC(A− B)⊗KC) = −χ(OC(B −A)),

χ(OC(A− B +D′)) = −χ(OC(B −A+D)).

Hence,

SEλ =
∑
A,B∈λ

χ(OC(A− B)) + χ(OC(A− B +D))

=
n−1∑
a=0

∑
A,B∈λ[a,n]

deg(A)− deg(B) + 1

+
∑
A∈λ[a,n]
B∈λ[a+1,n]

deg(A)− deg(B) + deg(D) + 1

=
n−1∑
a=0

|λ|2a + |λa+1|
∑
A∈λ[a,n]

(deg(A)− 1)

− |λa|
∑

B∈λ[a+1,n]

(deg(B)− 1) + |λ|a|λ|a+1(deg(D) + 1).

Recall that m = degOC(D) and m′ = degOC(D′) (See (4.3)). Therefore,

SEλ =
n−1∑
a=0

|λ|2a − |λa+1|Cλ
m,m′ [a, n] + |λa|Cλ

m,m′ [a+ 1, n] + (1 +m)|λ|a|λ|a+1

=
n−1∑
a=0

Cλ
m,m′ [a, n](|λa−1| − |λa+1|) + |λ|a|(|λ|a + (1 +m)|λ|a−1).

If n = 1, then C is a football. Since λ−1NC/X has rank and degree zero, it is
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trivial in K-theory. Hence, (4.18) becomes

SEλ = |λ|(1 + h0(OC(D)) + h0(OC(D′)))

= |λ|(1 + h0(OC(D)) + h1(OC(−D′ +KC)))

= |λ|(1 + χ(OC(D))).

Since OC(D) = OC(m̃p− δ0p0 − δ∞p∞) (see (4.4)), by [10, Lemma 39],

χ(OC(D)) = 1 + m̃+

⌊
−δ0

max{n(f), n(f ′)}

⌋
+

⌊
−δ∞

max{n(g), n(g′)}

⌋
= 1 + m̃− δ0 − δ∞

Hence, SEλ = |λ|(m̃+ δ0 + δ∞).

Writing λi = λ(ei) and using the facts that

λ−1Np/X =
3∑
i=1

(Op(−Di)−Op(Di)) = 0

and

λ−1NC(ei)/X = 0, i = 1, 2,
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the vertex term (4.19) becomes

SVπ =
∑
A∈Sπ

η2(A)(1 + h0(Op(D1)) + h0(Op(D2)) + h0(Op(D3)))

+
∑
A∈λ3

∑
B∈Sπ

η(B)(h0(Op(A− B +D1)) + h0(Op(A− B +D2)))

+
∑
i 6=j

∑
A∈λ(ei(v))

∑
B∈λ(ej(v))

h0(Op(A− B +Dj))

=
n−1∑
a=0

∑
B∈Sπ [a,n]

η(B)

 ∑
A∈λ3[a−1,n]

1 +
∑

A∈λ3[a+1,n]

1

+
∑

A∈λ1[a,n]

 ∑
B∈λ2[a−1,n]

1 +
∑

B∈λ3[a,n]

1


+

∑
A∈λ2[a,n]

 ∑
B∈λ1[a+1,n]

1 +
∑

B∈λ3[a,n]

1

+
∑

A∈λ3[a,n]

 ∑
B∈λ1[a+1,n]

1 +
∑

B∈λ2[a−1,n]

1


=

n−1∑
a=0

|π|a(|λ3|a−1 + |λ3|a+1) + |λ1|a(|λ2|a−1 + |λ3|a)

+ |λ2|a(|λ1|a+1 + |λ3|a) + |λ3|a(|λ1|a+1 + |λ2|a−1)

=
n−1∑
a=0

|π|a(|λ3|a−1 + |λ3|a+1) +
n−1∑
a=0

|λ3|a(|λ1|a + |λ2|a + |λ1|a+1 + |λ2|a−1).

Theorem/Conjecture 4.19 is now easily proved assuming Proposition/Conjecture

4.16. Using Proposition 4.25, Proposition 4.26, and Table 4.1, the variables in (4.6)

are assigned. The sign of each term is determined by Proposition 4.29. The χ(F)

term is accounted for by multiplying the variables q and qe,0 by −1. The edge term

is multiplied by (−1)SEλ . The first term in SVπ is accounted for by multiplying the

variables qe,a by (−1)|λ3|a−1+|λ3|a+1 , and the second term in SVπ is accounted for by

the sign (−1)Σπ .
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Chapter 5: Generation functions for colored reverse plane partitions

5.1 Partitions and Schur functions

In this section, we review some facts about partitions and Schur functions.

The main references are [24] and [33].

Definition 5.1. A partition is any sequence

λ = (λ1, λ2, · · · ) (5.1)

of non-negative integers in decreasing order:

λ1 ≥ λ2 ≥ · · ·

and containing only finitely many non-zero terms.

The non-zero λi in (5.1) are called the parts of λ. The number of parts is the

length of λ, denoted l(λ). We define the weight of λ to be

|λ| = λ1 + · · ·+ λl(λ).
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The Young diagram of of λ is obtained by drawing a left-justified array of

juxtaposed squares with λi squares in the ith row. Alternatively, we can view a

partition as a subset of Z2
≥0 in the ij-plane with points being placed at the upper-

left corner of each square.

The conjugate of a partition λ is the partition λt whose Young diagram is the

transpose of the Young diagram of λ.

Example 5.2. The Young diagram of λ = (5331) is

1

23
4

5

67
8

9

i

j

O

.

Its weight is |λ| = 12, and its conjugate is λt = (43311).

For any � ∈ λ, the hook length h(�) is defined to be the sum of one plus the

number of boxes horizontally to the right and vertically below the box. In Example

5.2, the hook length of the shaded square is h(�) = 6.

We label the boundaries of the Young diagram of λ from the upper right-hand

corner to the lower left-hand corner by 1 to λ1 + λt1. Let Bh(λ) denote the set of

horizontal boundaries, and Bv(λ) denote the set of vertical boundaries. In Example

5.2, we have

Bv(λ) = {1, 4, 5, 8} and Bh(λ) = {2, 3, 6, 7, 9}.
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Definition 5.3. Given two partitions λ and µ, we write λ ⊃ µ to mean that the

Young diagram of λ contains the Young diagram of µ, i.e. λi ≥ µi for all i ≥ 1. The

set-theoretic difference is called a skew Young diagram, denoted λ/µ.

Example 5.4. is a skew Young diagram of shape (432)/(11).

Definition 5.5. We say λ/µ is a border strip if it is connected and contains no 2×2

block of squares, i.e. successive rows of λ/µ overlap by exactly one square. The

height of a border strip λ/µ is defined to be one less than the number of rows its

Young diagram occupies, denoted by ht(λ/µ).

Example 5.6. Let λ = (432) and µ = (21), then

λ/µ =

is a border strip of height ht(λ/µ) = 2.

Definition 5.7. Let λ and µ be two partitions. We say λ interlaces with µ, denoted

λ � µ, if λ ⊃ µ and they satisfy the Pieri’s relation

λ1 ≥ µ1 ≥ λ2 ≥ µ2 · · · .

Equivalently, the skew Young diagram λ/µ contains at most one box in each column.
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Example 5.8. Let λ = (632) and µ = (42). The skew Young diagram of λ/µ is

which contains 0 or 1 box in each column. Thus, λ � µ.

Definition 5.9. A reverse plane partition (RPP) of skew shape λ/µ is an array

{πij} of nonnegative integers of shape λ/µ that is weakly increasing in both rows

and columns. A semistandard Young tableau (SSYT) is a RPP that is strictly

increasing in columns. The size of π is the sum of its entries, denoted by |π|.

Example 5.10. Let λ = (32) and µ = (1). Then

π = 1 2

0 1

is a RPP of shape λ/µ with size |π| = 4 and

π′ = 1 2

0 2

is a SSYT of shape λ/µ with size |π′| = 5.

Let x = (x0, x1, x2, · · · ) be an infinite set of variables.

Definition 5.11. The skew Schur function of shape λ/µ can be defined as

sλ/µ(x) =
∑

π∈SSYT(λ/µ)

xπ,
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where xπ = x#0s in π
0 x#1s in π

1 · · · .

The principle specialization is

sλ/µ(q) := sλ/µ(q)(1, q, q2, · · · ) =
∑

π∈SSYT(λ/µ)

q|π|,

which is the generating function for SSYT of shape λ/µ. Similarly, we define

RPPλ/µ(q) =
∑

π∈RPP(λ/µ)

q|π|.

When µ = ∅, we have the following beautiful formula.

Proposition 5.12 ( [33, Theorem 7.22.1]). We have

RPPλ(q) =
∏
�∈λ

1

1− qh(�)
,

and

sλ(q) = qa(λ)
∏
�∈λ

1

1− qh(�)
,

where a(λ) =
∑

i(i− 1)λi.
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5.2 Vertex operators

In this section, we review vertex operators following [27, Appendix A]. Let V be

a linear space with basis {k}, k ∈ Z+ 1
2
. The Fock space Λ

∞
2 V is spanned by vectors

vS = s1 ∧ s2 ∧ s3 ∧ · · · ,

where S = {s1 > s2 > s3 > · · · } ⊂ Z + 1
2

is such a subset that both sets

S+ = S\(Z≤0 − 1/2), S− = (Z≤0 − 1/2)\S

are finite. Λ
∞
2 V is equipped with the inner product such that the basis {vS} is

orthonormal.

For any k ∈ Z + 1/2, let ψk be the operator

ψk(vS) = k ∧ vS

and let ψ∗k be its adjoint. Explicitly, let i be the largest index such that si > k.

Then

ψk(vS) =


(−1)ivS∪{k} k 6∈ S,

0 k ∈ S.

ψ∗k(vS) =


(−1)ivS−{k} k ∈ S,

0 k 6∈ S.
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It is clear that

ψ∗kψk(vS) =


vS k 6∈ S,

0 k ∈ S.
, ψkψ

∗
k(vS) =


vS k ∈ S,

0 k 6∈ S.

and they satisfy the anti-commutation relations

ψkψ
∗
l + ψ∗l ψk = δkl.

Define the energy and charge operator by

H =
∑
k

k : ψkψ
∗
k :, C =

∑
k

: ψkψ
∗
k :,

where : ψkψ
∗
k :=


ψkψ

∗
k k > 0,

−ψ∗kψk k < 0.

. Noting that

CvS = (|S+| − |S−|)vS.

Let Λ
∞
2

0 V := ker(C) be the charge zero Fock space.

Let λ = (λ1, λ2, · · · ) be a partition. Define

vλ = vS(λ), S(λ) = {λi − i+ 1/2} ⊂ Z + 1/2.

Let d be the number of boxes along the main diagonal of the Young diagram of
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shape λ. Then

S(λ)+ = {λi − i+ 1/2}di=1, S(λ)− = {−(λti − i+ 1/2)}di=1.

Hence, |S(λ)+| = |S(λ)−| = d. Conversely, for any S ⊂ Z + 1/2, if |S+| = |S−| <

∞, we have S = S(λ) for some partition λ. Clearly, Λ
∞
2

0 V is spanned by the

vectors vλ where λ runs over all partitions.

The energy operator H acts on vλ by

Hvλ =
d∑
i=1

(λi − i+ 1/2 + λti − i+ 1/2)vλ = |λ|vλ,

and so the operator qH acts by

qHvλ = q|λ|vλ

where q is a formal parameter. We call qH the weight operator.

For 0 6= n ∈ Z define

αn =
∑
k

ψk−nψ
∗
k.

Evidently, α∗n = α−n. For n > 0, an easy calculation yields the following

α−nvµ =
∑
λ

(−1)ht(λ/µ)vλ
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summed over all partitions λ ⊃ µ for which λ/µ is a border strip of size n.

Example 5.13.

α−3−−−−−−−−→ + − +

The operators αn satisfy the Heisenberg commutation relations

[αn, α−m] = nδm,n (5.2)

Let x = (x1, x2, x3, · · · ) be an infinite set of variables and let

pn(x) =
∑
i

xni

be the power sum symmetric function.

Definition 5.14. The vertex operators Γ±(x), which are operators on Λ
∞
2

0 V over

the coefficient ring given by symmetric functions in xj’s, are defined as

Γ±(x) = exp

(
∞∑
n=1

pn
n
α±n

)
.

By the Heisenberg commutation relations (5.2), we observe that Γ∗±(x) = Γ∓(x).

The matrix coefficients of the vertex operators Γ±(x) with respect to the basis {vλ}

are given by skew Schur functions.
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Proposition 5.15 ( [27, A.15]). We have

〈Γ−(x)vµ, vλ〉 = 〈vµ,Γ+(x)vλ〉 = sλ/µ(x). (5.3)

Let y = (y1, y2, · · · ) be another infinite set of variables. By [24, (1) Pg.93], we have

the following orthogonality of skew Schur functions

∑
λ

sλ/µ(x)sλ/ν(y) =
∏
i,j

(1− xiyj)−1
∑
η

sν/η(x)sµ/η(y).

Combining this with (5.3) gives rise to the following commutation equation:

Γ+(x)Γ−(y) =
∏
i,j

(1− xiyj)−1Γ−(y)Γ+(x). (5.4)

By the homogeneity of skew Schur functions, that is sλ(qx) = q|λ|sλ(x), we ob-

tain that the vertex operator Γ±(x) and the weight operator qH satisfy the following

commutation equations

Γ+(x)qH = qHΓ+(xq), qHΓ−(x) = Γ−(xq)qH . (5.5)

We consider the following important specialization of Γ±(x) which create in-

terlacing partitions. Let Γ±(1) be obtained by the specialization x1 7→ 1, xi 7→

0 for i > 1. Explicitly,

Γ±(1) = exp

(∑
n

1

n
α±n

)
.
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Under this specialization, the skew Schur function sλ/µ(x) becomes

sλ/µ(1, 0, 0, · · · ) =


1 if λ � µ

0 otherwise.

By (5.3), we obtain

Γ−(1)µ =
∑
λ�µ

λ, Γ+(1)λ =
∑
µ≺λ

µ.

As a motivating example, we derive MacMahon’s generating function for plane

partitions using vertex operators as in [28]. Recall that a plane partition π is an

array {πij} of positive integers that is weakly increasing in both rows and columns.

Let πt be the t = i− j diagonal slice. It is clear that

∅ · · · ≺ π−2 ≺ π−1 ≺ π0 � π1 � π2 � · · · ∅.

The generating function for plane partitions is defined by

M(q) =
∑
π

q|π|.
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By interlacing plane partitions along the diagonals, we have

M(q) =
〈
∅
∣∣∣∏(Γ+(1)qH)

∏
(Γ−(1)qH)

∣∣∣ ∅〉
=

〈
∅

∣∣∣∣∣
∞∏
i=1

Γ+(qi)
∞∏
j=0

Γ−(qj)

∣∣∣∣∣ ∅
〉

apply (5.5)

=
∏
i>0

∏
j≥0

(1− qi+j)−1 apply (5.4)

=
∞∏
n=1

(1− qn)−n,

which is the MacMahon function.

We also call a plane partition a 3D Young diagram, or 3D diagram for short.

It is a stable pile of cubical boxes that sit in the corner of a large cubical room.

More formally, a 3D Young diagram is a finite set π of Z3
≥0 such that if any of

(i+ 1, j, k), (i, j + 1, k), (i, j, k + 1)

is in π, then (i, j, k) ∈ π. Each ordered triple is a box; the condition means that

boxes are stacked stably in the positive octant with gravity pulling them in the

direction (−1,−1,−1).

Definition 5.16. Let (λ, µ, ν) be a triple of partitions. A 3D partition π asymptotic

to (λ, µ, ν) is a subset π ⊂ Z3
≥0 satisfying

(1) if any of (i+ 1, j, k), (i, j + 1, k) and (i, j, k + 1) is in π, then (i, j, k) ∈ π.

(2) (a) (j, k) ∈ λ⇔ (i, j, k) ∈ π for i� 0,

(b) (k, i) ∈ µ⇔ (i, j, k) ∈ π for j � 0,
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(c) (i, j) ∈ ν ⇔ (i, j, k) ∈ π for k � 0.

Let

ξπ(i, j, k) = 1−# of legs containing (i, j, k).

The normalized size of π is defined by

|π| =
∑

(i,j,k)∈π

ξπ(i, j, k).

Definition 5.17. The topological vertex Vλµν is defined to be

Vλµν(q) =
∑
π

q|π|

where the sum is over all 3D partitions π asymptotic to (λ, µ, ν).

Okounkov, Reshetikhin and Vafa derive an explicit formula for Vλµν using

vertex operators.

Proposition 5.18 ( [28, Eqs (3.18)-(3.20)]).

Vλ,µ,ν(q) = M(q)q−(λ2)−(µ
t

2 )−(ν2)−|λ|/2−|µ|/2−|ν|/2

× sνt(q−ρ)
∑
η

sλt/η(q
−ν−ρ)sµ/η(q

−νt−ρ)

where
(
λ
2

)
=
∑

i

(
λi
2

)
and ρ = (−1/2,−3/2, · · · ).
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Definition 5.19. The Zn DT vertex V n
λµν is defined by

V n
λµν(q0, q1, · · · , qn−1) =

∑
π

q
|π|0
0 · · · q|π|n−1

n−1

where the sum is over all 3D partitions π asymptotic to (λ, µ, ν) and

|π|a =
∑

(i,j,k)∈π
i−j≡amodn

ξπ(i, j, k).

We refer to [10, Theorem 12] for a closed formula for V n
λµν in terms of Schur function.

Let W n
λµν be the Zn PT vertex (Definition 4.27). We have the following con-

jecture:

Conjecture 5.20 (Orbifold DT/PT vertex correspondence). If ν is multi-regular,

then

W n
λµν =

V n
λµν

V n
∅∅∅

.

5.3 Reverse plane partitions with Zn-coloring

Let λ be a partition. To give a natural coloring to π = (πij) ∈ RPP(λ), we

consider it as a subset of Z3 in the following way: we put the Young diagram of λ

on the ij-plane, then

π = {(i, j, k) ∈ Z3|(i, j) ∈ λ, k = −1,−2, · · · ,−πij}.
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Intuitively, we stack cubical boxes on the Young diagram of λ along the direction of

negative k-axis.

Definition 5.21. A Zn-coloring is a homomorphism

K : Z3 → Zn.

For i = 0, 1, · · · , n − 1, let qi be the variable representing color i. Let π be a RPP

of shape λ, then each point in π comes with a color. Let |π|a be the number of

a-colored points in π,

|π|a = |K−1(a) ∩ π|.

We will study the following Zn-colored generating function

W n(q0, · · · , qn−1) =
∑

π∈RPP(λ)

n−1∏
a=0

q|π|aa .

Notice that we can also place λ on the jk-plane or the ki-plane. We use the

following notation:

W n
λ∅∅ : λ is placed on jk-plane,

W n
∅λ∅ : λ is placed on ki-plane,

W n
∅∅λ : λ is placed on ij-plane.

For a fixed coloring K, this will lead to different generating functions.
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We adopt the notation in [10]. For any partition λ, define

q−Aλ =
n−1∏
a=0

q−Aλ(a,n)
a

where

Aλ(a, n) =
∑

(i,j)∈λ

⌊
i+ a

n

⌋
.

For any function f(q0, q1, · · · , qn−1), we use f(q0, q1, · · · , qn−1) to denote the function

obtained by making the change of variables qm ↔ q−m, where we use q−m and qn−m

interchangeably. Finally, let q = (1, q1, q1q2, q1q2q3, · · · ).

Theorem 5.22. Let the coloring K be given by

K(i, j, k) ≡ i− jmodn.

Then

W n
λ∅∅ = q−Aλsλt(q). (5.6)

W n
∅λ∅ = q−Aλtsλ(q). (5.7)

W n
∅∅λ =

∏
�∈λ

1

1−
∏n−1

a=0 q
ha(�)
a

. (5.8)

where ha(�) denotes the number a-colored boxes in the hook of �.

Remark 5.23. 1. When n = 1, i.e. there is no coloring, we have

W 1
λ∅∅ = W 1

∅λ∅ = W 1
∅∅λ = RPPλ .
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In this case, Aλ =
∑

(i,j)∈λ i =
∑

i(i− 1)λti and q = {1, q, q2, · · · }. Thus,

RPPλ(q) =
∏
�∈λ

1

1− qh(�)
= q−

∑
i(i−1)λisλ(q),

which gives a different proof for Proposition 5.12.

2. Theorem 5.22 and [10, Theorem 12] together verify the orbifold DT/PT vertex

correspondence 5.20 in the 1-leg case.

Proof. We first consider W n
λ∅∅. By definition, λ is placed on the first quadrant of

jk-plane. Let (j, k) ∈ λ. For any π ∈ RPP(λ), let πjk be the integer in position

(j, k). The points (i, j, k) in π with this (j, k) are

(−1, j, k), (−2, j, k), · · · , (−πjk, j, k).

Hence, the contribution of (j, k) ∈ λ to W n
λ∅∅ is q−j−1q−j−2 · · · q−j−πjk . Thus, the

contribution of π is

∏
(j,k)∈λ

q−j−1q−j−2 · · · q−j−πjk

=
∏

(j,k)∈λ

(q−1 · · · q−j)−1 ·
∏

(j,k)∈λ

q−1 · · · q−jq−j−1 · · · q−j−πjk .

Notice that the first factor depends only on λ. We can write it as

q−Aλ :=
n−1∏
a=0

q−Aλ(a,n)
a , where Aλ(a, n) =

∑
(j,k)∈λ

⌊
a+ j

n

⌋
.
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Recall that we have the following bijective map

φ : RPP(λ)→ SSYT(λt)

(πjk) 7→ (πjk + j).

Hence, the second factor is just a term in the Schur function sλt(x) under the

specialization xm = q−1 · · · q−m. Therefore,

W n
λ∅∅ = q−Aλ

∑
π∈RPP(λ)

∏
(j,k)∈λ

q−1 · · · q−jq−j−1 · · · q−j−πjk .

= q−Aλsλt(1, q−1, q−1q−2, · · · )

= q−Aλsλt(q),

which is (5.6).

By same argument, we prove (5.7)

W n
∅λ∅ = q−Aλtsλ(q).

It remains to prove (5.8) for W n
∅∅λ. In this case, λ is placed on the first quadrant

of the ij-plane. Let (i, j) ∈ λ and π = (πij) ∈ RPP(λ). The points (i, j, k) ∈ π with

this (i, j) are

(i, j,−1), (i, j,−2), · · · , (i, j,−πij).

Hence, the contribution of (i, j) is q
πij
i−j. In particular, each diagonal slice πi−j is only
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0 1 2 2 3

1 2 2

2 3 4

4

π4π3π2

π1

π0π−1π−2

π−3

i

j

O

Figure 5.1: A Z3-colored RPP of shape (5331)

(i − j)-colored. The adjacent diagonal slices of π interlace in a way depending on

the boundary of λ. We will use an example to illustrate this. Let n = 3, λ = (5331),

and π ∈ RPP(λ) be as in Figure 5.1. It is clear that

∅
Γ+(1)
≺
9

π−3

Γ−(1)
�
8

π−2

Γ+(1)
≺
7

π−1

Γ+(1)
≺
6

π0

Γ−(1)
�
5

π1

Γ−(1)
�
4

π2

Γ+(1)
≺
3

π3

Γ+(1)
≺
2

π4

Γ−(1)
�
1
∅.

where Γ±(1) acts from right to left and we label them from 1 to λ1 +λt1 = 9. Recall

that the boundaries are

Bv(λ) = {1, 4, 5, 8} and Bh(λ) = {2, 3, 6, 7, 9}.

We observe that the pattern of the Γ±(1) coincides with that of the boundary of λ.

More specifically, if h represents a horizontal boundary then the vertex operator at

position h is Γ+(1); if v represents a vertical boundary then the vertex operator at

position v is Γ−(1).
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For t = 1, · · · , λ1 + λt1, define

Γt(1) =


Γ−(1), t ∈ Bv(λ)

Γ+(1), t ∈ Bh(λ).

For a = 0, · · · , n − 1, let qHa denote the a-colored weight operator. We obtain the

following vertex operator expression of W n
∅∅λ:

W n
∅∅λ =

〈
∅,

λt1−1∏
s=1

Γλ1+s+1(1)qH−s · Γλ1+1(1) ·
λ1∏
t=1

qHλ1−tΓt(1)∅

〉

We commute all qHt to the right and all qH−s to the left using (5.5) to get

W n
∅∅λ =

〈
∅,

λt1−1∏
s=1

Γλ1+s+1

(
q

sgn(λ1+s+1)
λ1+s+1

)
· Γλ1+1(qλ1+1) ·

λ1∏
t=1

Γt

(
q

sgn(t)
t

)
∅

〉
.

Here,

qr =



q0q1 · · · qλ1−r, r = 1, · · · , λ1,

1, l = λ1 + 1,

q−1 · · · q−(r−λ1−1), r = λ1 + 2, · · · , λ1 + λt1,

and

sgn(r) =


1, r = λ1 + 1,

(−1)1{r>λ1}(−1)1{r∈Bh(λ)} , r = 1, · · · , λ1, λ1 + 2, · · · , λ1 + λt1

where 1A denotes the indicator function.
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We then commute all Γ+ to the right and all Γ− to the left using (5.4) to

obtain

W n
∅∅λ =

∏
(h,v)∈(Bh(λ),Bv(λ))

h>v

1

1− q
sgn(h)
h q

sgn(v)
v

.

Finally, notice that each pair (h, v) ∈ (Bh(λ),Bv(λ)) with h > v uniquely determines

a � ∈ λ. For example, in Figure 5.1 above, let h = 9 and v = 4, the corresponding �

and its hook are labeled by dotted lines. Clearly, h0(�) = h1(�) = 2 and h2(�) = 1.

Hence,

q
sgn(9)
9 · qsgn(4)

4 = (q−1q−2q−3) · (q0q1) = q2
0q

2
1q2 = q

h0(�)
0 q

h1(�)
1 q

h2(�)
2 .

By similar argument, we obtain

q
sgn(h)
h qsgn(v)

v =
n−1∏
a=0

qha(�)
a .

Therefore,

W n
∅∅λ =

∏
�∈λ

1

1−
∏n−1

a=0 q
ha(�)
a

.

120



Bibliography

[1] Dan Abramovich, Martin Olsson, and Angelo Vistoli. Tame stacks in positive
characteristic. Annales de l’Institut Fourier, 58(4):1057–1091, 2008.

[2] Dan Abramovich and Angelo Vistoli. Compactifying the space of stable maps.
Journal of the American Mathematical Society, 15(1):27–75, 2002.

[3] K Behrend. Gromov-Witten invariants in algebraic geometry. Inventiones
Mathematicae, 127(3):601, 1997.

[4] Kai Behrend. Donaldson-Thomas type invariants via microlocal geometry. An-
nals of Mathematics, 170(3):1307–1338, 2009.

[5] Kai Behrend and Barbara Fantechi. The intrinsic normal cone. Inventiones
mathematicae, 128(1):45–88, 1997.

[6] Kai Behrend and Barbara Fantechi. Symmetric obstruction theories and Hilbert
schemes of points on threefolds. Algebra & Number Theory, 2(3):313–345, 2008.

[7] Tom Bridgeland. Hall algebras and curve-counting invariants. Journal of the
American Mathematical Society, 24(4):969–998, 2011.

[8] Tom Bridgeland, Alastair King, and Miles Reid. The McKay correspondence
as an equivalence of derived categories. Journal of the American Mathematical
Society, 14(3):535–554, 2001.

[9] Ugo Bruzzo, Francesco Sala, and Mattia Pedrini. Framed sheaves on projective
stacks. Advances in Mathematics, 272:20–95, 2015.

[10] Jim Bryan, Charles Cadman, and Ben Young. The orbifold topological vertex.
Advances in Mathematics, 229(1):531–595, 2012.

[11] Jim Bryan and Amin Gholampour. The quantum McKay correspondence for
polyhedral singularities. Inventiones mathematicae, 178(3):655–681, 2009.

[12] Jim Bryan and Tom Graber. The crepant resolution conjecture. In Proc.
Sympos. Pure Math, volume 80, pages 23–42, 2009.

121



[13] Jim Bryan and David Steinberg. Curve counting invariants for crepant resolu-
tions. Transactions of the American Mathematical Society, 368(3):1583–1619,
2016.

[14] Barbara Fantechi, Etienne Mann, and Fabio Nironi. Smooth toric Deligne-
Mumford stacks. Journal für die reine und angewandte Mathematik (Crelles
Journal), 2010(648):201–244, 2010.

[15] William Fulton and Rahul Pandharipande. Notes on stable maps and quantum
cohomology. In Proc. Sympos. Pure Math, volume 62 part 2, pages 45–96.
Amer. Math. Soc., 1997.

[16] Amin Gholampour and Hsian-Hua Tseng. On Donaldson-Thomas invariants of
threefold stacks and gerbes. Proceedings of the American Mathematical Society,
141(1):191–203, 2013.

[17] Tom Graber and Rahul Pandharipande. Localization of virtual classes. Inven-
tiones mathematicae, 135(2):487–518, 1999.

[18] Daniel Huybrechts and Manfred Lehn. The geometry of moduli spaces of
sheaves. Cambridge University Press, 2010.

[19] Daniel Huybrechts and Richard P Thomas. Deformation-obstruction theory for
complexes via Atiyah and Kodaira-Spencer classes. Mathematische Annalen,
346(3):545, 2010.

[20] Seán Keel and Shigefumi Mori. Quotients by groupoids. Annals of Mathematics,
45:193–213, 1997.

[21] Andrew Kresch. On the geometry of Deligne-Mumford stacks. In Algebraic
geometry—Seattle 2005. Part 1, pages 259–271, 2009.

[22] Joseph Le Potier. Systemes cohérents et structures de niveau. Astérisque No.
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