
ABSTRACT

Title of Dissertation: LOCAL NEWS AND EVENT DETECTION
IN TWITTER

Hong Wei
Doctor of Philosophy, 2020

Dissertation Directed by: Professor Hanan Samet
Department of Computer Science

Twitter, one of the most popular micro-blogging services, allows users to publish

short messages on a wide variety of subjects such as news, events, stories, ideas, and opin-

ions, called tweets. The popularity of Twitter, to some extent, arises from its capability

of letting users promptly and conveniently contribute tweets to convey diverse informa-

tion. Specifically, with people discussing what is happening outside in the real world by

posting tweets, Twitter captures invaluable information about real-world news and events,

spanning a wide scale from large national or international stories like a presidential elec-

tion to small local stories such as a local farmers market. Detecting and extracting small

news and events for a local place is a challenging problem and is the focus of this thesis.

In particular, we explore several directions to extract and detect local news and events

using tweets in Twitter: a) how to identify local influential people on Twitter for potential

news seeders; b) how to recognize unusualness in tweet volume as signals of potential

local events; c) how to overcome the data sparsity of local tweets to detect more and

smaller undergoing local news and events. Additionally, we also try to uncover implicit

https://www.cs.umd.edu/~hyw
https://www.cs.umd.edu/~hjs
https://www.cs.umd.edu

correlations between location, time, and text in tweets by learning embeddings for them

using a universal representation under the same semantic space.

In the first part, we investigate how to measure the spatial influence of Twitter users

by their interactions and thereby identify the locally influential users, which we found are

usually good news and event seeders in practice. In order to do this, we built a large-scale

directed interaction graph of Twitter users. Such a graph allows us to exploit PageRank

based ranking procedures to select top local influential people after innovatively incorpo-

rating in geographical distance to the transition matrix used for the random walking.

In the second part, we study how to recognize the unusualness in tweet volume at

a local place as signals of potential ongoing local events. The intuition is that if there

is suddenly an abnormal change in the number of tweets at a location (e.g., a significant

increase), it may imply a potential local event. We, therefore, present DeLLe, a methodol-

ogy for automatically Detecting Latest Local Events from geotagged tweet streams (i.e.,

tweets that contain GPS points). With the help of novel spatiotemporal tweet count pre-

diction models, DeLLe first finds unusual locations which have aggregated an unexpected

number of tweets in the latest time period and then calculates, for each such unusual lo-

cation, a ranking score to identify the ones most likely to have ongoing local events by

addressing the temporal burstiness, spatial burstiness, and topical coherence.

In the third part, we explore how to overcome the data sparsity of local tweets when

trying to discover more and smaller local news or events. Local tweets are those whose

locations fall inside a local place. They are very sparse in Twitter, which hinders the

detection of small local news or events that have only a handful of tweets. A system,

called Firefly, is proposed to enhance the local live tweet stream by tracking the tweets of

a large body of local people, and further perform a locality-aware keyword based cluster-

ing for event detection. The intuition is that local tweets are published by local people,

and tracking their tweets naturally yields a source of local tweets. However, in practice,

only 20% Twitter users provide information about where they come from. Thus, a social

network-based geotagging procedure is subsequently proposed to estimate locations for

Twitter users whose locations are missing.

Finally, in order to discover correlations between location, time and text in geo-

tagged tweets, e.g., “find which locations are mostly related to the given topics“ and

“find which locations are similar to a given location“, we present LeGo, a methodology

for Learning embeddings of Geotagged tweets with respect to entities such as locations,

time units (hour-of-day and day-of-week) and textual words in tweets. The resulting com-

pact vector representations of these entities hence make it easy to measure the relatedness

between locations, time and words in tweets. LeGo comprises two working modes: cross-

modal search (LeGo-CM) and location-similarity search (LeGo-LS), to answer these two

types of queries accordingly. In LeGo-CM, we first build a graph of entities extracted

from tweets in which each edge carries the weight of co-occurrences between two en-

tities. The embeddings of graph nodes are then learned in the same latent space under

the guidance of approximating stationary residing probabilities between nodes which are

computed using personalized random walk procedures. In comparison, we supplement

edges between locations in LeGo-LS to address their underlying spatial proximity and

topic likeliness to support location-similarity search queries.

LOCAL NEWS AND EVENT DETECTION IN TWITTER

by

Hong Wei

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2020

Advisory Committee:
Professor Hanan Samet, Chair/Advisor
Professor David Mount
Professor Dinesh Manocha
Professor Leila De Floriani
Professor Udaya Shankar

https://www.cs.umd.edu/~hyw
https://www.cs.umd.edu/~hjs
https://www.cs.umd.edu/~mount
https://www.cs.umd.edu/~dm
https://users.umiacs.umd.edu/~deflo/
https://www.cs.umd.edu/~shankar

c© Copyright by
Hong Wei

2020

Acknowledgments

I would like to express my deepest appreciation to my advisor, Prof. Hanan Samet,

for his support, guidance, encouragement and patience throughout my Ph.D. study at

the University of Maryland. Without him, I would not have been able to complete this

research. I came to work with Hanan on a legendary project, TwitterStand, in his group

in Spring 2015. My research problem was to try to detect as many small news as possible

in that platform. After a while, we realized that we were suffering extreme data sparsity

in Twitter which curb the conduct of further research. It was then only Hanan’s persistent

inquiries sent out to many people that finally helped us finally gain access to full Twitter

data access through Microsoft Research. Even for a short time, such a full access to

Twitter data greatly boosted my research. I am also extremely grateful to Hanan for his

countless nights working on reviewing, editing and revising my research manuscripts.

Often, he stayed up past midnight to finish editing my papers. There were also several

times that I felt frustrated with my research progress. Henan has always been always there

to listen to me, encourage me and more importantly, be patient with me. His advice has

also been of great benefit to me in my personal life like job seeking and making a living.

So I really had great pleasure of working with Prof. Hanan Samet.

I would like to extend my sincere thanks to Prof. David Mount, Prof. Dinesh

Manocha, Prof. Udaya Shankar and Prof. Leila De Floriani for serving on my thesis

committee and additionally Prof. Larry Davis for serving on my proposal committee.

Many thanks for their valuable feedback and suggestions about my work. I would also

like to thank Dr. Jagan Sankaranarayanan for the insightful discussions.

ii

I would like to express my special gratitude to Prof. Leila De Floriani for her

generous help in using her Apache Spark cluster. Thanks should also go to Dr. Sudipta

Sengupta, Dr. Jin Li and Dr. John Krumm for providing access to the valuable Twitter

data. I would like to acknowledge the help of UMIACS computing staff for their constant

technical support.

iii

Table of Contents

Acknowledgements ii

Table of Contents iv

List of Tables viii

List of Figures ix

1 Introduction 1
1.1 Measuring Spatial Influence of Twitter Users by Interactions 3
1.2 Detecting Latest Local Events from Geotagged Tweet Streams 5
1.3 Enhancing Local Live Tweet Stream to Detect News 5
1.4 Learning Embeddings of Spatial, Textual and Temporal Entities in Geo-

tagged Tweets . 6

2 Measuring Spatial Influence of Twitter Users by Interactions 8
2.1 Introduction . 8
2.2 Related Work . 11
2.3 Build an Interaction Graph G . 14

2.3.1 Dataset . 14
2.3.2 Twitter User Locations . 16

2.4 Measuring Spatial Influence In G . 19
2.4.1 Observation and Motivation . 19
2.4.2 PageRank Overview . 22
2.4.3 Edge-Locality PageRank . 23
2.4.4 Source-Vertex-Locality PageRank 25
2.4.5 Geographical PageRank . 26

2.5 Empirical Evaluation . 28
2.5.1 Experimental Settings . 29

2.5.1.1 Baseline Approaches 29
2.5.1.2 Evaluation Methods 30
2.5.1.3 Default Parameter Setting 32

2.5.2 Top 5 Influential Twitter Users for 3 U.S. Cities 34
2.5.3 Correlation and Effectiveness 38

2.5.3.1 Correlation . 38
2.5.3.2 Effectiveness . 39

iv

2.5.4 Different Types of Interactions 41
2.5.5 Effects of Geotagging Twitter users 41
2.5.6 Sensitivity of Distance-Decay Parameter κ 43
2.5.7 Application to News Detection 44

2.6 Conclusions . 45

3 Detecting Latest Local Events from Geotagged Tweet Streams 47
3.1 Introduction . 47
3.2 Related Work . 50
3.3 Preliminaries . 53

3.3.1 Problem . 53
3.3.2 System Overview . 54

3.4 The Batch Mode . 56
3.4.1 Seeker . 56

3.4.1.1 Tweet Count Prediction 56
3.4.1.2 From Prediction To Unusualness 67

3.4.2 Ranker . 68
3.4.2.1 Temporal Burstiness 68
3.4.2.2 Spatial Burstiness . 69
3.4.2.3 Topical Coherence . 70
3.4.2.4 Ranking Function . 71

3.4.3 Expander . 72
3.4.4 Summarizer . 74

3.5 Online Modifications . 76
3.6 Evaluation on Tweet Count Prediction 78

3.6.1 Datasets . 78
3.6.2 Baseline Approaches . 80
3.6.3 Evaluation Metric . 81
3.6.4 Experimental Results . 82

3.6.4.1 Compare with Baselines 82
3.6.4.2 Effects of period and trend Dependence 84
3.6.4.3 Effects of Length of closeness Dependence Sequences . 84
3.6.4.4 Effects of Building Deeper Networks 85

3.7 Evaluation on Local Event Detection . 86
3.7.1 Experimental Settings . 86

3.7.1.1 Datasets . 86
3.7.1.2 Baseline Approaches 87
3.7.1.3 Parameter Settings . 88

3.7.2 Illustrative Cases . 90
3.7.3 Quantitative Analysis . 92

3.7.3.1 Effectiveness . 92
3.7.3.2 Efficiency . 95

3.7.4 Online Modifications . 96
3.8 Conclusions . 98

v

4 Enhancing Local Live Tweet Stream to Detect News 99
4.1 Introduction . 99
4.2 Related Work . 103
4.3 System . 107

4.3.1 Online Twitter User Geotagging via Spark 107
4.3.2 Enhancing Local Live Tweet Stream 112
4.3.3 Extracting Locality-Aware Keywords 114
4.3.4 Online Clustering to Detect News 117
4.3.5 System User Interface . 119

4.4 Experiments . 120
4.4.1 Online Processing Settings and Efficiency 120
4.4.2 Twitter User Geotagging via Spark 121

4.4.2.1 Boosting Dataset . 121
4.4.2.2 Effectiveness . 122

4.4.3 Enhanced Local Live Tweet Stream 124
4.4.4 Local News Detection . 126

4.4.4.1 Parameter Settings . 126
4.4.4.2 Local News Media Agencies and Baseline Approaches 128
4.4.4.3 Mutual Recalls . 132
4.4.4.4 Precision . 135

4.5 Conclusions and Future Work . 139

5 Learning Embeddings of Spatial, Textual and Temporal Entities in Geotagged
Tweets 141
5.1 Introduction . 141
5.2 Related Work . 145
5.3 Preliminaries . 148

5.3.1 Problem . 148
5.3.2 System Overview . 148

5.4 Method . 149
5.4.1 Spatial, Temporal and Textual Entity Extraction 149

5.4.1.1 Spatial Entity Extraction 149
5.4.1.2 Temporal and Textual Entity Extraction 151

5.4.2 Co-occurrence Graph Construction 151
5.4.3 Cross-Modal Search . 152

5.4.3.1 From the Perspective of Co-occurrence Graph 153
5.4.3.2 From the Perspective of Vectorized Embeddings 155
5.4.3.3 Learning Embeddings 155

5.4.4 Location-Similarity Search . 156
5.4.4.1 Co-occurrence Graph Enhancement 157
5.4.4.2 Learning Embeddings 158

5.5 Evaluation . 159
5.5.1 Experimental Settings . 159

5.5.1.1 Datasets . 159
5.5.1.2 Baseline Approaches 159

vi

5.5.1.3 Parameter Settings . 162
5.5.2 Illustrative Cases . 163

5.5.2.1 Cross-Modal Search 163
5.5.2.2 Location Similarity Search 166

5.5.3 Quantitative Analysis . 167
5.5.3.1 Effectiveness . 167
5.5.3.2 Efficiency . 171

5.5.4 Parameter Sensitivity . 172
5.6 Conclusions . 173

6 Future Work 175

7 Conclusion 179

8 Top 70 Influentials on Boston using Different Methods 183

Bibliography 192

vii

List of Tables

2.1 The top 5 influential Twitter users identified for 3 different cities using
InD, LocInd, PR and ELPR. 33

2.2 The top 5 influential Twitter users identified for 3 different cities using
iFol− lq, S VPR and GPR. 34

2.3 Correlation matrix between different algorithms. 39
2.4 Number of verified Twitter users in the top-100. 40
2.5 Effects of geotagging on different algorithms. 42
2.6 Sensitivity of κ in RELPR and RGPR regarding their correlation with RLocInD,

RELPR and RS VLPR, respectively. 43

3.1 List of main notations in Section 3.4 . 60
3.2 Comparison results (RMSE) on city of Seattle and NYC. 84
3.3 Comparison results using Precision, Recall and F-Score. 93

4.1 Effect of λ. 123
4.2 Contribution of different local live tweet sources. 124
4.3 The 9 reputable Boston local news agencies. 129
4.4 The mutual recalls between Firefly, baseline approaches and the 9 rep-

utable Boston local news agencies. 133
4.5 Proportions of different types of tweet clusters. 137

5.1 Comparison results using Mean Reciprocal Rank. 168
5.2 MRR values in LeGo-LS. 170

8.1 Top 70 influential Twitter users (in various categories) on Boston using
InD, LocInd, PR and ELPR. 183

8.2 Top 70 influential Twitter users (in various categories) on Boston using
iFol− lq, S VPR and GPR. 186

viii

List of Figures

2.1 (a) The number of vertices and edges of interaction graphs built by using
1, 3, 6, 12 and 24-month of tweets. (b) Venn diagram of edges in G by
retweet, reply and mention, respectively. 16

2.2 (a) Distributions of the i-follower/i-friends a Twitter user has. (b) Distri-
bution of the distances of edges. 17

2.3 (a) CDFs of i-followers for 5 local news agencies over their geographical
distance. (b) CDFs of i-followers for the top 5 users (who are selected by
maximum indegrees in G). 19

2.4 (a) Top 100 Twitter users in Boston sorted by the number of i-followers.
(b) Top 100 Twitter users in Boston sorted by the number of i-followers
within 100 km. 20

2.5 (a) The average ranking orders of 4 different categories of the local in-
fluentials in Boston, MA. (b) The correlations between different types of
interactions. 39

2.6 (a) Ratio of “Local”, “Global” and “None” tweets by top 70 Boston influ-
ential users in method ELPR. (b) Number of total tweets vs. number of
“Local” tweets for different categories of users. 45

3.1 Examples of geotagged tweets about the soccer game of “Seattle Sounders”
vs “D.C. United” at the stadium of “CenturyLink Field” at 7:30 PM,
2017-07-19. All the tweets were located at the stadium of “CenturyLink
Field”, i.e., the red grid cell in Figure 3.2a. 48

3.2 The soccer game in Figure 3.1 brings about an anomalous amount of
tweets both spatially and temporally. (a) Spatial distribution of the tweets
around the stadium at 7:30 PM - 8:00 PM. The stadium lies in the red
square. Each red dot is a tweet, and the number in a grid cell refers to
its number of tweets while an empty cell means no tweets. (b) Temporal
distribution of the tweets at the game stadium. The tweets are aggregated
every 30 minutes. 54

3.3 System overview. 55
3.4 Temporal pattern. (a) Seattle City; (b) NYC. Time step is in the unit of

30 minutes, starting from 18:30 on 2016-06-15. 59

ix

3.5 Tweet count prediction model. ResConvLSTM: Residual ConvLSTM
block; FCs: Fully-Connected Layers, i.e. Dense layers. 61

3.6 The inner structure of ConvLSTM. The LSTM matrix multiplication is
replaced with convolution. 62

3.7 ResConvLSTM block. BN: Batch Normalization; ReLU: Rectifier Linear
Unit; CL: ConvLSTM . 64

3.8 Histogram of moving distance of Twitter users. We only consider Twit-
ter users who have 2 or more geotagged tweets in the 3-hour time period
starting from 18:30 on 2016-06-15. The moving distance of a user is
calculated as the largest distance between the GPS coordinates in his geo-
tagged tweets. 66

3.9 (a) 12×12 grid map in Seattle. (b) 46×46 grid map in NYC. 79
3.10 (a) Prediction example of tweet count distribution around the Seattle city

center at 17:00-17:30 on 2016-07-16. (b) Prediction Example of Tweet
Count Distribution around around the Seattle city center at 17:30-18:00
on 2016-07-16. (The denotation in each grid cell is in the form of “pre-
diction | groundtruth”, referring to the prediction vs. groundtruth number
of tweets. The numbers in red are predictions. No denotation in a cell
means a correct match with the groundtruth.) 83

3.11 (a) Effects of using period and trend dependence or not. (b) Effects of
length of closeness sequences. Note that the higher the curve, the smaller
the RMSE value. 85

3.12 Results of stacking more residual blocks in the city of Seattle. 86
3.13 Examples of true local events. The left is in Seattle, WA, and the right is

in New York City, respectively. (a) A baseball game of Yankees-Mariners
at Safeco Field (2017-07-20 7:00 PM). (b) NYC Pride March traversing
down Fifth Avenue (2017-06-25 10:30 AM). 90

3.14 Examples of false local events. The left is in Seattle, WA, and the right
is in New York City, respectively. (a) People talking about food near the
Space Needle (2017-07-22 4:30 PM). (b) People waiting for 4th of July
fireworks at East River (2017-07-04 5:00 PM). 90

3.15 (a) Precision with different K values. (b) Temporal span and spatial region
size of positive local events in DeLLe. 94

3.16 Distributions on the numbers of time intervals over their processing times
in (a), and over their number of tweets in (b). 95

3.17 (a) Venn diagram on the sets of events in batch mode and online mode.
(b) Distribution of time spent in online mode. 97

4.1 A local news in Westborough, MA on Oct 24th, 2016. 100
4.2 System architecture of Firefly. 107
4.3 An illustration of outliers in the locations of reciprocal friends. 110
4.4 System user interface. 120
4.5 CCDFs of reciprocal friends. 123

x

4.6 Histograms of # of tweets. (a) Histogram of # of tweets in a news by
each individual news agency. (b) Histogram of # of tweets posted by each
individual Twitter user. 128

4.7 Example of human judging UI. 137
4.8 Distribution of news cluster sizes and human evaluation. 137

5.1 An overview of 100 random locations in NYC and LA. 142
5.2 System overview. 149
5.3 Illustration of basic co-occurrence graph. 152
5.4 Add-on edges within locations themselves. 157
5.5 Examples of spatial, textual and temporal queries in NYC. 161
5.6 Examples of location similarity queries in NYC and LA, respectively. . . 166
5.7 Model training time consumption. 171
5.8 Location MRRs vs. Ndim, Nepoch and b in LeGo-CM 173
5.9 Location MRRs vs. Nsn and λ in LeGo-LS 173

xi

Chapter 1: Introduction

Twitter, one of the most popular micro-blogging service, allows users to promptly

and conveniently contribute content on a wide variety of subjects via tweets. A tweet is

usually a short text message limited to at most 280 (140 before November, 2017) charac-

ters and is often posted to convey diverse information on various topics by Twitter users.

Each user in Twitter, can subscribe to another user to receive the contents that the latter

publishes. As a result, with people discussing what is happening outside in the real world

by posting tweets, an invaluable amount of information on the real world news or events

is hidden in Twitter. Extracting such information, especially local news and events, exerts

a measure of influence over various applications such as situation awareness and disaster

recovery. For example, people can acquire the latest information about such local activi-

ties in the town in which they are living such as sale promotions at local supermarkets and

the opening of a farmers market, and thereby enhance their daily lives. It can also be help-

ful for commuting alarms by reporting real-time traffic jams or accidents. In such cases,

after learning what is happening, commuters can actively make a decision to bypass the

congested road segments or avoid the accident sites when planning the routes.

However, detecting and extracting local news and events for a local place is a chal-

lenging problem. First, most of the tweets are usually noisy in the sense that they contain

1

little information on local news and events. Therefore, it is important to identify a source

of good quality tweets for performing news and event detection. Second, a local event

is often described as an unusual activity that happens at specific time and place. This

encourages the adoption of unusualness measures such as a burst in the number of tweets

as a key factor in event detection. Twitter, however, is often plagued with misleading phe-

nomena which also exhibit burstiness of tweets, such as people’s inclination of tweeting

about daily life activities and sometimes occasional global events as well as Twitter bots

posting noisy advertising tweets. Isolating out the specific unusualness representing local

events is therefore a challenging task. Third, the publicly accessible local tweets are very

sparse. For example, the Twitter Sample API stream1, which is open to public to access

its real-time tweets, samples only around 1% of all tweets. Unfortunately, only 1% of

the tweets contain embedded GPS coordinates (geotagged) which allow us to pinpoint

the local place where they are posted from. This greatly limits researchers’ opportunities

to detect more and smaller local news and events because such news or events may only

span a very limited number of tweets.

Apart from detecting local events at a location, it is also important to have descrip-

tive profiles for locations of interest and to measure the similarities between locations

if possible. These are usually composed of queries like “find which locations are mostly

related to the given topics“ and “find which locations are similar to a given location“. Tra-

ditionally, people represent locations and topics in different forms simply because they are

from different domains. For example, locations are usually specified as points or polygon

in the geometric domain, while topics are textual words and character sequences in the

1 https://dev.twitter.com/streaming/reference/get/statuses/sample

2

https://dev.twitter.com/streaming/reference/get/statuses/sample

natural language domain. Under such representation forms, it is hard to perform cross-

domain searches without building associative data structures and hard to perform location

similarity searches with respect to semantic meanings too.

In this dissertation, we discuss several directions to mitigate the challenges in de-

tecting and extracting local news and events, and meanwhile investigate applications of

graph embedding techniques in uncovering correlations between location, time and topic

in human’s urban activities hidden in geotagged tweets. To be specific, we try to find

answers to the following questions:

1. how to identify locally influential people on Twitter for potential news seeders,

2. how to recognize unusualness in tweet volume as signals of potential local events,

3. how to overcome the data sparsity of local tweets to enable detection more under-

going local news and events,

4. how to universally represent spatial, temporal and textual entities in the geotagged

tweets in the same semantic space.

1.1 Measuring Spatial Influence of Twitter Users by Interactions

The three ways of interactions in Twitter–retweet, reply, and mention–comprise of

a latent dynamic information flow network between users, which can be utilized to deter-

mine influential users. Chapter 2 focuses on determining which Twitter users have great

influence on a query location Q in the sense that they are assumed to provide informa-

tion that is of sufficient interest to prompt people at Q to interact with them. Note that

3

an influential Twitter user who is of great influence on Q may not be necessarily from Q.

Therefore, we first define generalized influential Twitter users regardless of whether their

location is known or not, meaning that such generalized influencers on Q can be either

from inside Q, or outside Q, or even unknown. A more interesting subset of generalized

influencers is the ones whose location is in Q, and termed as local influential Twitter

users. One potential application of finding local influencers (e.g., local news media) is to

detect local events by tracking their tweets.

Using a large amount of data collected from Twitter, we first build a large-scale

directed interaction graph of Twitter users and present an analysis of the geographical

characteristics of the edges in this interaction graph and make several interesting observa-

tions. Based on these findings, we propose two versions of PageRank that measure spatial

influence on the interaction graph: Edge-Locality PageRank (ELPR), and Source-Vertex-

Locality PageRank (SVLPR), which takes into account the spatial locality of edges and

the spatial locality of source vertices in edges, respectively. In addition, a Geographical

PageRank (GPR) is also proposed trying to incorporate both of these two factors together.

In the experimental evaluation, we examine the effectiveness of the proposed methods

with respect to 3 different US cities “Boston, MA”, “Bristol, CT” and “Seattle, WA”. The

results show that our algorithms outperform baseline approaches including the topologi-

cal network metrics and the original PageRank. More importantly, we also explored the

possibility of using local influential Twitter users as potential news seeders and showed

that some types of users have high credibility in outputting tweets about local places.

4

1.2 Detecting Latest Local Events from Geotagged Tweet Streams

Geotagged tweet streams contain invaluable information about the real-world local

events like sports games, protests and traffic accidents. Timely detecting and extracting

such events may have various applications but yet unsolved challenges. In Chapter 3,

we present DeLLe, a methodology for automatically Detecting Latest Local Events from

geotagged tweet streams. With the help of novel spatiotemporal tweet count prediction

models, DeLLe first finds unusual locations which have aggregated unexpected number

of tweets in the latest time period and thereby imply potential local events. Next, DeLLe

calculates, for each such unusual location, a ranking score to identify the ones most likely

to have ongoing local events by addressing the temporal burstiness, spatial burstiness and

topical coherence. Furthermore, DeLLe infers an event candidate’s spatiotemporal range

by tracking its event-focus point, which essentially reflects the most recent representa-

tive occurrence site. Finally, DeLLe chooses the most influential tweets to summarize

local events and thereby presents succinct but yet representative descriptions. We evalu-

ate DeLLe on the city of Seattle, WA as well as a larger city of New York. The results

show that the proposed method generally outperforms competitive baseline approaches.

1.3 Enhancing Local Live Tweet Stream to Detect News

Twitter captures invaluable information about real-world news, spanning a wide

scale from large national/international stories like a presidential election to small local

stories such as a local farmers market. Extracting more and smaller news for a local place

5

is a challenging problem and the focus of this chapter. The main challenge lies in the

data sparsity of local tweets, which makes small local stories typically harder to detect

compared to national stories in the sense that there may be just a handful of tweets about

a local story. In Chapter 4, a system, called Firefly, is proposed that overcomes the data

sparsity and captures thousands of local stories per day from a metropolitan area (e.g.,

Boston). The key idea lies in combining the enhancement of a local live tweet stream

in Twitter, the identification of “locality-aware” keywords, and using these keywords to

cluster tweets. Experiments show that the proposed system has significantly higher recall

over a set of representative local news agencies, and at the same time, outperforms the

baseline approach TwitterStand. More importantly, the results also demonstrate that our

system, by utilizing the enhanced local live tweet stream, discovers much more local

news than the methods working only on geotagged tweets, i.e., those with embedded

GPS coordinate values.

1.4 Learning Embeddings of Spatial, Textual and Temporal Entities in

Geotagged Tweets

With online social networks being extended to geographical space, location context

plays a key role in many applications such as local event detection and location recom-

mendation. Geotagged tweets in Twitter serve as an invaluable source to understand peo-

ple’s activities in urban space. Analyzing geotagged tweets to identify implicit contexts

between location, time and text is an interesting problem. In Chapter5, we present LeGo,

a methodology for Leearning embeddings of Geotagged tweets with respect to enti-

6

ties such as locations, time units (hour-of-day and day-of-week) and textual words in

tweets. The resulting compact vector representations of these entities hence make it easy

to perform searches like “find which locations are mostly related to the given topics“

and “find which locations are similar to a given location“. LeGo comprises two work-

ing modes: cross-modal search (LeGo-CM) and location-similarity search (LeGo-LS), to

answer these two types of queries accordingly. In LeGo-CM, we first build a graph of

entities extracted from tweets in which each edge carries the weight of co-occurrences

between two entities. The embeddings of graph nodes are then learned in the same la-

tent space under the guidance of approximating stationary residing probabilities between

nodes which are computed using personalized random walk procedures. In comparison,

we supplement edges between locations in LeGo-LS to address their underlying spatial

proximity and topic likeliness to support location-similarity search queries. We evalu-

ate LeGo on datasets of New York City and Los Angeles, showing that the proposed

method generally outperforms competitive baseline approaches.

7

Chapter 2: Measuring Spatial Influence of Twitter Users by Interactions

2.1 Introduction

Twitter, one of the most popular micro-blogging services, allows users to publish

short messages, called tweets, on various subjects. In Twitter, each user, can subscribe to

another user to receive the contents the latter publishes, through “following” the latter. In

so doing, the former user becomes one of the latter’s “followers”, and the latter becomes

one of the former’s “friends”. The definition of making a “friend” on Twitter is different

from establishing a reciprocal “friend” relationship in other social network services like

Facebook, because such a “following” operation in Twitter completes without requiring

the user being followed to grant permission nor follow back the user who initiates the

“following”, which generates a directed follower-following relationship. With users as

vertices, and their directed relations of following and being followed as edges, a social

network in Twitter builds up.

Such a direct follower-following social graph, however, is not always available due

to the difficulties imposed by the Twitter API rate limits in obtaining access to a complete

social network link structures in current Twitter. On the other hand, Twitter offers a few

more dynamic ways to interact with other people such as retweet, reply, mention, which

have been utilized in some works to determine influential Twitter users such as [59, 16].

8

Different from the absence of follower-following relationship, interactions are embedded

in the meta-data of tweets and need no further request to Twitter API once a tweet dataset

is ready. Therefore, one of the popular strategies is to first rebuild a social network from

interactions and then determine influential users in the interaction graph [57, 29, 120, 89,

14, 41, 53, 45, 135, 46].

However, few of the existing approaches to determining the influence of Twitter

users on the social network gives credits to where they are from and furthermore how

close they are. Therefore, in this chapter, we are focusing on answering the following

question: Given a query location Q, which Twitter users have great influence on it? We

refer Q to a circular region defined by a geographical center point lq and a radius ε.

We consider a Twitter user to be spatially influential at Q if his authority has been

endorsed by the local people from Q. We deem the interactions (retweet, reply, mention)

one user initiates to another as his endorsement of the latter’s authority. In essence, the

more people from a location endorse a Twitter user, more spatially influential he becomes

on that location. In this definition, we don’t require a Twitter user to have to be from

location Q (e.g., his home location falls within Q) to be considered influential there. In

such a sense, the infuential Twitter users are termed as generalized influential Twitter

users on Q. The more interesting subset of the influential Twitter users on Q is the ones

who are also from location Q, termed as local influential Twitter users on Q.

Solving this problem is beneficial to many applications like targeted advertising,

political campaign, trend analysis [80], and location-based recommendation [9]. In par-

ticular, finding local influential Twitter users also has the potential to discovering local

news and events. For example, the Twitter accounts representing local news media usu-

9

ally cover and deliver information in their posted tweets regarding what is happening at a

location and can be utilized as news seeders [102, 47] to help news detection [18, 101].

To test the viability of local influential Twitter users in such applications, we examined

the tweets published by a set of top influential Twitter users in Boston for a week. The

results show that more than half of the tweets are considered local by virtue of discussing

content relevant to the local place, and the ratio of local tweets goes higher if we only

consider specific group of users such as news person (e.g., News Media and Reporter)

and sports person (e.g., Sport Player and Sport Team).

In this chapter, we first build a large-scale directed interaction graph. An intuitive

solution to finding influential Twitter users then is to append a post-processing location

filter step after finding influential people in general. For example, one can rely on the

indegrees of vertices in the interaction graph or apply the PageRank schema to yield a

ranking order for Twitter users regarding their influence, and then select the ones who fall

within Q and identify them as influential Twitter users on Q.

Our proposed methods improve over this strategy by additionally considering spa-

tial locality in the edges and its source vertices respectively. Specifically, by emphasizing

on spatially local edges (applying a exponential distance-decay on the edges), i.e., whose

two vertices have smaller geographical distances, our method Edge-Locality PageRank

(ELPR) more effectively find local influential Twitter users than the network metrics like

indegree and the original PageRank. By focusing on the edges whose source vertices

are spatially local to the query location center lq, our method Source-Vertex-Locality

PageRank (SVLPR) doesn’t rely on a post-processing location filter step and thereby also

captures the Twitter users who are of great influence on but not necessarily from the loca-

10

tion Q. The experiments also show that SVLPR outperforms its indegree-based baseline

approach. Moreover, our hybrid method Geographical PageRank (GPR) attempts to bring

geographical distances among Twitter users into the process of finding spatially influen-

tial Twitter users, which improves over PageRank by taking into consideration both link

structure and geographical distance while propagating influence among users.

The rest of this chapter is organized as follows. In Section 2.2, we review related

work. In Section 2.3, we describe the dataset we are using, along with an interaction

graph built from it. In Section 2.4, we first present our two methods to determine local

and generalized influential Twitter users, respectively and additionally propose a hybrid

method trying to combine them. Section 2.5 describes the experimental evaluation of our

methods. Concluding remarks are drawn in Section 2.6.

2.2 Related Work

There has been much work on identifying the influential users in the social net-

works, Twitter in particular. A few of recent surveys Gayo-Avello [31], Kardara et al.

[52] and Riquelme and González-Cantergiani [95] provide comprehensive summariza-

tions on the different techniques regarding identifying influential Twitter users.

In the Twitter social graph, an intuitive way to measure a user’s influence is by his

number of followers, i.e., the indegree of the vertex representing this user. Although it is

suggested that Twitter itself is also using the same strategy [119], the metric of indegree

isn’t always able to reflect the real happening information flowing patterns in Twitter [59,

16, 119, 64, 124] and therefore is limited in discovering influence patterns. For exam-

11

ple, Cha et al. [16] has reported the bias in identifying influential Twitter users by solely

depending on indegree. One of the factors that may contribute to weakening the effect of

indegree is the courtesy of following back. That is, a user being followed might follow

back just for the sake of courtesy, and such a follower-following relationship does not

carry the strong indication of information and influence flow [119]. In contrast, some

practices of interaction such as mention and retweet in Twitter empower users to spread

information beyond the capability of the existing follower-following network as the com-

munication channels. That is, a user may retweet from or mention people who are not their

immediate followers or people he is not following. This power allow users to collectively

determines the importance of information by choosing to which information spread and

thereby assume more duty in disseminating important information [16]. Consequently,

such dynamic interactions are further exploited to determine influential Twitter users. For

example, Kwak et al. [59], one of the earliest effort to quantitatively study the topological

characteristics of Twitter’s social network, have studied ranking users by the number of

retweets and find that it is quite dissimilar with ranking users by the number of their fol-

lowers. This indicates a gap in influence inferred from the number of followers and that

from the popularity of one’s tweets [59], and further demonstrates a difference between

Twitter’s static follower-following network structure and its dynamic interaction between

users, e.g., retweeting. Furthermore, some derivatives of interactions have also been in-

vestigated like the normalized or averaged retweets and mentions by total tweets or total

followers [16], which might yield a slightly different influence ranking result. Neverthe-

less, such statistical properties of interaction don’t attribute credibility to the phenomenon

that a user’s influence might be propagated to distant users that are not directly connected

12

to (or interacting with him) on social networks.

On the other hand, there have been some works borrowing PageRank from order-

ing webpages in the connected World Wide Web [90] to ranking users in Twitter directed

social network graph [59, 119, 124, 37, 107, 34]. PageRank improves over previous

measures that are based directly on simple metrics in the sense that it assumes that by

following a user, the followers are implicitly conferring some influence to him and then

iteratively propagates a user’s influence through the whole social graph. Thereafter, a lot

of adaption on PageRank have been made to address more aspects of Twitter users in addi-

tion to the sole follower-following structures [119, 37, 107, 34, 124]. The above solutions,

however, heavily rely on the follower-following network in Twitter, and thereby make the

acquisition of necessary data extremely restricted to the Twitter API rate limits 1. To

avoid the limitations of Twitter API in obtaining the follower-following network structure

and meantime capture the dynamic information flow between Twitter users, the interac-

tions like retweet, reply, and mention have been utilized trying to build similar social

graphs [57, 29, 120, 89, 14, 41, 53, 45, 135, 46]. With these graphs, the iterative influ-

ence propagation schema such as PageRank can be applied. For example, MultiRank [29]

builds different graphs for different interactions such as retweet and reply respectively, in

a given topic. Then the ranking of topical influential users is determined by coupling the

PageRank scores in each of the graphs by performing a combined random surfer walk on

the multi-relational network via assigning different weights to each graph.

Another strategy of finding influential users in social networks is by influence max-

imization, which is to select k users to maximize the expected number of users being

1 https://dev.twitter.com/rest/public/rate-limiting

13

 https://dev.twitter.com/rest/public/rate-limiting

influenced [55]. Location-aware influence maximization methods are also proposed such

as Bouros et al. [11] and Li et al. [67], to find top k influential users in a geographical

region. Although they have a similar problem context to us regarding identifying local

influential Twitter users, our work differs from them by addressing people’s geographical

proximity (distance) while propagating each other’s influence through the social network.

Moreover, our algorithms inherently bring ranking orders to all the users by running only

once, which is beneficial over their work for queries with varying value of k.

With regard to incorporating geographical proximity between graph vertices into

PageRank, the work of Chin and Wen [21] is the most related to ours. They solve a

different problem to capture spatial concentration of population movement by running

on a geospatial network, where each vertex represents a unique geographical place and

edges form between places within reachability in a given travel time. In so doing, each

vertex comes with geographical coordinates. This, however, does not always hold for the

Twitter social graph as the location of some users might be unknown, as well as their

geographical distances to others. We tackle this problem for such users by introducing

geographical tendency which utilizes location distributions of their friends.

2.3 Build an Interaction Graph G

2.3.1 Dataset

Like the directed follower-following relationships, each Twitter interaction between

users has an underlying direction too, pointing from the user who actively initiates the

action of rewtweet, reply or mention to the other one. Therefore, during building up the

14

interaction graph G = (V,E), a directed edge ei j from user vi to user v j is constructed and

added to E if there exists at least one interaction pointing from vi to v j, both of whom are

also added to V as vertices. For convenience, in a directed edge ei j of G, we call vi one

of v j’s i-followers, i.e., interaction followers, and vice versa, v j one of vi’s i-friends, i.e.,

interaction friends.

Our dataset consists of 5,515,214,722 tweets collected between January 2015 and

December 20162. In these tweets, there are 1,097,055,845 retweet interactions, 587,550,806

reply interactions and 2,147,483,647 mention interactions. We therefore build an inter-

action graph G of 1,503,853,848 directed edges and 147,842,352 users as vertices. Note

that in building G, multiple interactions happening on a same directed edge will be ag-

gregated together and don’t create additional edges. G is relatively sparse in comparison

to the one reported in [59]–a complete Twitter social network by July 2009, though G is

on the similar scale in terms of the number of edges. For example, the ratio of number

of edges over the number of vertices in G is 10.17 while the one in [59] has a ratio of

35.25 with a total number of 1,468,365,182 edges. Although collecting more tweets for

a longer time will increase the ratio, such an increase is at a very slow speed as showen in

Figure 2.1a.

Regarding the contribution to building edges in G, as shown in the Venn diagram

Figure 2.1b, mention is the most significant by covering 99.779% of edges, while retweet

55.005% and reply only 25.445%. The Venn diagram also shows that mention is covering

most of the edges constructed from retweet and reply, indicating that most of the users

who retweet or reply to each other also mention each other. This, however, is not the case

2 https://dev.twitter.com/streaming/reference/get/statuses/sample

15

https://dev.twitter.com/streaming/reference/get/statuses/sample

1-month 3-month 6-month 1-year 2-year
0

5

10

15

10
8

2.91

4.61

6.14

8.09

10.17# of vertices

of edges

(a) (b)

Figure 2.1: (a) The number of vertices and edges of interaction graphs built by using 1,
3, 6, 12 and 24-month of tweets. (b) Venn diagram of edges in G by retweet,
reply and mention, respectively.

for retweet and reply, who only share 2.524% edges in common.

Regarding the distributions of indegree/outdegrees in the interaction graph G, we

plot the complementary cumulative distributions of the number of i-followers/i-friends

each Twitter user has in Figure 2.2a, which shows a power-law pattern. Note that there

is a huge gap between the maximum number of i-followers and the maximum number

of i-friends a Twitter user has. This makes sense because a very popular Twitter user

might receive interactions from millions of people but is very unlikely to actively send

interactions to such a huge amount of people.

2.3.2 Twitter User Locations

In Twitter, there are two sources for knowledge of a user’s location: the geograph-

ical coordinates in his GPS-tagged tweets and the home location in his profile – also

16

10
0

10
1

10
2

10
3

10
4

10
5

10
6

of i-followers/i-friends

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

C
o
m

p
le

m
en

ta
ry

 C
D

F

i-followers, PCTL
95

 = 37

i-friends, PCTL
95

 = 49

(a)

10
0

10
1

10
2

10
3

10
4

10
5

distance (km)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F

Retweet Edges

Reply Edges

Mention Edges

All Edges

(b)

Figure 2.2: (a) Distributions of the i-follower/i-friends a Twitter user has. (b) Distribution
of the distances of edges.

termed as profile-location. The profile-location is often in the form of place names like

“College Park, MD” and can be aligned with databases like GeoNames3 to decode its

geographical latitude/longitude coordinates [73, 72]. In order to assign a unique pair of

latitude/longitude coordinates, for users who have multiple pairs of geographical coordi-

nates, we compute the L1-multivariate median which essentially finds a point having the

minimum sum of distances to a given set of points Z [24]:

argmin
z′

∑
z∈Z

distance(z′,z) (2.1)

After discarding coordinates of (0.0, 0.0) that are likely caused by GPS malfunction,

we then have 54,428,031 (36.8%) Twitter users having geographical coordinates, and

4,933,524 of them from GPS-tagged tweets. Correspondingly, 625,186,580 (41.6%)

edges of G have both their vertices with geographical locations.

Next, we use Twitter users/lookup API to download the profile information for Twit-

3 https://www.geonames.org

17

https://www.geonames.org

ter users whose profile-location have not been exposed in our dataset. These users are

usually the ones who had appeared in our dataset but were only being replied to or men-

tioned by others and thereby lacking the profile location information. After downloading

profiles for these users, we get the locations of additional 12,018,353 users, making a

total 66,446,384 (44.9%) users have geographical locations. This makes 756,737,542

(50.3%) edges in G have both of their vertices with geographical locations.

Furthermore, there have been methods proposed trying to estimate locations for

Twitter users whose locations are unknown such as [24]. We therefore investigate the

effect of utilizing such a geotagging procedure in Section 2.5.5.

Geographical Distribution of Edge Distances In this chapter, the distance of

an edge in G refers to the geographical distance between its two Twitter users. For the

edges both of whose two vertices have geographical coordinates to calculate a distance,

we plot their distance distribution in Figure 2.2b, which shows that interactions happen

over various distances and not always over shorter distances and should receive different

geographical considerations.

We also examined the distributions of the distances from several local news agen-

cies (who are considered as local influential Twitter users) to their i-followers as shown

in Figure 2.3a. It shows that the i-followers of local news agencies are more aggregated

around the place where these agencies are located, indicating their influence are more

revealed at local places. This inspires us to look at only spatially local edges in G to find

local influential Twitter users. In contrast, as shown in Figure 2.3b, the i-followers of

the Twitter users who are considered influential by having largest indegrees are scattered

over places, nationwide and even worldwide, indicating that their influence is not just fo-

18

10
0

10
1

10
2

10
3

10
4

distance (km)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F
 o

f
i-

fo
ll

o
w

er
s

@11alivenews-Atlanta

@fox7austin-Austin, TX

@wbaltv11-Baltimore, MD

@nolanews-New Orleans, LA

@6abc-Philadelphia

(a)

10
0

10
1

10
2

10
3

10
4

distance (km)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F
 o

f
i-

fo
ll

o
w

er
s

@youtube-San Bruno, CA

@niallofficial-Mullingar,Westmeath,Ireland

@louis_tomlinso-Doncaster

@liampayne-UK

@freddyamazin-San Diego, CA

(b)

Figure 2.3: (a) CDFs of i-followers for 5 local news agencies over their geographical
distance. (b) CDFs of i-followers for the top 5 users (who are selected by
maximum indegrees in G).

cusing on the place where they are from and may expanse to other places. Therefore, in

determining the influential Twitter users for a query location Q, Twitter users from other

places should also be considered.

2.4 Measuring Spatial Influence In G

2.4.1 Observation and Motivation

The objective of measuring the spatial influence of Twitter users is to find, given

a query location Q, which Twitter users have great influence on it. An intuitive solution

to this problem is to append a post-processing location filter step after finding influential

people in general. For example, one can use the indegrees of vertices in G or apply the

original PageRank schema (i.e., without giving geographical considerations) to yield a

ranking order for Twitter users regarding their influence, and then select the ones who fall

within Q and identify them as influential Twitter users on Q.

19

1 20 40 60 80 100
0

1

2

3

4

5

6

10
4

of i-followers within 100km

of i-followers

(a)

1 20 40 60 80 100
0

1

2

3

4

5

6

10
4

of i-followers within 100km

of i-followers

(b)

Figure 2.4: (a) Top 100 Twitter users in Boston sorted by the number of i-followers. (b)
Top 100 Twitter users in Boston sorted by the number of i-followers within
100 km.

Such strategy, however, neglects a few important observations.

Regarding Local Influential Twitter Users: First, by utilizing a location filter,

the above strategy assumes that, for a Twitter user in Q, his general influence equals to

his local influence. This, however, is not necessarily true. For example, as shown in

Figure 2.4a, a Twitter user from location Q who has many i-followers is not guaranteed

to have many local people interacting with them, and vice versa in Figure 2.4b. A similar

observation is also reported in [7] but on a scale of country-level.

Second, as shown in Figure 2.3a, for local influential Twitter users, their interaction

followers are more aggregated around the local place, and the number of their followers

decreases as distance increases, which implies that their influence is more revealed at local

places and decays over longer distance. This motivates us to gives different geographical

considerations to edges with different distances using a distance-decay function.

Regarding Generalized Influential Twitter Users: A user from a place (or even

20

without specifying his home location) other than the query location Q might have a

considerable amount of i-followers from Q and thereby have a chance to exhibit non-

negligible and even noticeable influence on Q. For example, even though the Twitter user

“@Youtube” is from thousands of miles away from Boston, the number of his i-followers

from Boston is larger than any other Twitter users that are in Boston. Another example

is “@Patriots” who is a Boston-based Twitter user account, but we found in our dataset,

thousands of people from Bristol, CT retweeting, replying and mentioning this user even

though those two cities are almost 200km away. Applying a location filter to only keep

the Twitter users who are within a limited geographical range to the query location cen-

ter lq is likely going to miss such users, and therefore is not suitable for determining the

generalized influential Twitter users. This inspires us to alternatively measure a Twitter

user’s spatial influence on Q based on the spatial locality of his i-followers with respect

to the query location center lq and thereby capture Twitter users of great influence on Q

without requiring them to have to be from Q.

In the following subsections, we first give a brief description of the PageRank algo-

rithm. Next, we present our 2 instances of PageRank that address the above two observa-

tions, respectively. At last, a hybrid method is proposed trying to combine the 2 instances

of PageRank together using distance-decay functions, along with a location query specific

teleportation vector, which determines the initial influence values assigned to each vertex.

21

2.4.2 PageRank Overview

The mechanism behind PageRank can be briefly explained by an intuitive random

surfer model on a given graph where this surfer visits a vertex with a certain probability

and follows an outbound edge at random to visit next vertex. The influence of each vertex

is then coded in the probability for the random surfer reaching that vertex, calculated as

the sum of probabilities of the surfer following all possible edges towards to that vertex.

Additionally, PageRank defines a damping factor h which controls the probability

that the random surfer, before starting visiting next vertex, chooses to follow an edge

in the given graph to reach the next vertex or simply teleport to one which is not con-

nected by edge with the previous vertex. This damping factor is used to avoid the random

surfer being trapped in some disconnected components (if exist) in the directed graph

and guarantees the convergence of PageRank. In summary, suppose we have a directed

graph G = (V,E) in which V is the vertex set and E is the directed edge set, the PageRank

procedure can be iteratively defined as follows:

�
t+1 = (1−h)∗Π+ h∗�t ×� (2.2)

where �t =

[
rt

1 rt
2 · · · rt

N

]
is the ranking result after iterating t times, N is the

number of vertices N = |V |, and each element rt
i represents the PageRank score of the

vertex vi; h is the damping factor ranging from 0 to 1; Π =

[
π1 π2 · · · πN

]
is a telepor-

tation vector in which each element πi denotes the probability that the surfer teleports to

the vertex vi from any other vertices; and� is the transition probability matrix which is

22

a N ×N matrix with each element mi j specifying the probability that the surfer transits to

vertex v j from vertex vi by following an existing directed edge in the graph. In the typical

PageRank algorithm, the teleportation probability to each vertex is identical by setting

Π =

[
1
N

1
N · · · 1

N

]
, and the transition probability mi j is 0 if vertex vi doesn’t have a

outbound edge to vertex v j, and mi j = 1
|OUTi|

if such an edge exists, where OUTi denotes

the set of vertices to which vi has an outbound edge. For simplicity, we use the lowercase

script out j (or in j) to denote the cardinality of the set OUT j (or IN j which denotes the set

of vertices from whom vertex v j has an inbound edge).

Transition Probability in Weighted Graph Generally, given a weighted graph,

for example, G = (V,E,W) where wi j ∈W denotes the weight of an edge ei j ∈ E , the

transition probability from vertex vi to vertex v j can be calculated defined as [121]:

mi j =
wi j∑

vk∈OUTi

wik
(2.3)

2.4.3 Edge-Locality PageRank

Figure 3a shows that, as the representatives of local influential Twitter users, the

local news agencies have more followers aggregated around the local place but less and

less as geographical distance increases, indicating that their influence might decay over

distance. This, therefore, inspires us that in determining local influential Twitter users,

one Twitter user transfers more influence to another if they have a shorter geographical

distance. We therefore propose to use a distance-decay function [21] to assign edges

weights as follows and hence give more geographical considerations to edges who have

23

shorter distances, e.g„ those who are spatially local.

f EL :=
1

(di j + 1)κ
∗δ(ei j) (2.4)

where δ(ei j) is a binary checking function that outputs 1 if both of the two vertices vi

and v j have geographical locations in G, otherwise outputs 0. di j is the distance between

vertex vi and v j when δ(ei j) = 1, otherwise, set to 0. Adding 1 to distance is to avoid

zero-divisions. The parameter κ is the scale factor of distance decay [21] and determines

the degree at which the power-law curve declines. In general, a larger κ yields a steeper

curve and a more significant effect on distance decay.

With the above weight function f EL, we calculate a Edge-Locality Transition Ma-

trix MEL using Equation 2.3. Along with the identical transportation vector Π in Equa-

tion 2.2, we now define Edge-Locality PageRank (ELPR) as follows:

�
t+1
ELPR = (1−h)∗Π+ h∗�t

ELPR×MEL (2.5)

The ranking result yielded in ELPR, however, is not specific to the query location Q

and thereby needs a location filtering post-process to find the Twitter users who are from

Q.

Location Filtering Given a ranking list of Twitter users and a query location Q :

(lq, ε), an location filtering step is to output a Q-specific ranking list in which only the

Twitter users at a distance of ≤ ε to lq are kept and their relative orders in the original

ranking list are also reserved.

24

2.4.4 Source-Vertex-Locality PageRank

The preferences for spatially-local edges in the Edge-Locality PageRank (ELPR)

proposed in previous section might miss some Twitter users who have been retweeted,

replied or mentioned by a considerable amount of people from the query location Q, even

though they are not from Q. To remedy this, in this section, we propose Source-Vertex-

Locality PageRank (SVLPR) which addresses if a vertex is spatially local to the query

location lq, defined follows:

Definition 1. A vertex vi ∈V is spatially local to a query location lq if their distance(li, lq)

is within a threshold ε. Vertices that don’t have a location li are not spatially local to lq.

We then propose the following source-specific weight function f S VL : ei j→ wi j in

G:

f S VL := δ′(vi, lq, ε) (2.6)

in which, δ′(vi, lq, ε) is a binary spatial locality checking function that outputs 1 if

the vi is spatially local to lq, otherwise outputs 0. In other words, Equation 2.6 essentially

removes all edges ei, j where vi is not in range ε of the query location lq.

A Source-Vertex-Locality Transition Matrix MSVL is then calculated using this

weight function and Equation 2.3. Since MSVL is already lq-specific, we adopt iden-

tical transportation vector Π and define Source-Vertex-Locality PageRank (SVLPR) as

25

follows:

�
t+1
S VLPR = (1−h)∗Π+ h∗�t

S VLPR×MSVL (2.7)

2.4.5 Geographical PageRank

Edge-Locality PageRank (ELPR) and Source-Vertex-Locality PageRank (SVLPR)

find influential Twitter users on location Q by addressing two different geographical con-

siderations of G. The former emphasizes on the edges that are formed within a shorter

spatial distance, while the latter focuses on the edges whose source vertices fall spatially-

locally to the query location center lq. In this section, we combine these two factors in a

Geographical PageRank (GPR) algorithm. Specifically, concatenating these two factors

in GPR is completed by the operation of multiplication via the weight function f GEO

defined as:

f GEO :=



1
(di j + 1)κ

∗δ(vi, lq, ε), both vi, v j have locations,

|INli,ε
j |

|IN j|
∗δ(vi, lq, ε), only vi has a location

1
(dmax + 1)2κ , otherwise.

(2.8)

where di j is the distance between vertex vi and v j, dmax is the maximum value of all

di j and used to punish edges both of whose two vertices don’t have available locations.

And δ(vi, lq, ε) has the same definition with the one in Equation 2.6.

Recall that IN j is the set of vertices from whom vertex v j has an inbound edge,

i.e., the set of interaction followers of user v j. We additionally define INli,ε
j , a subset of

26

IN j in which each vertex is within ε distance to the location li. When a vertex v j doesn’t

have a location label, our intuition of using
|INli,ε

i |

|INi|
as its spatial influence to li is out of

consideration for its likeliness of falling nearby to li by treating its interaction followers’

locations as its potential location distribution.

From Equations 2.8 and 2.3, we then calculate a Geographical Transition Matrix

MGEO. To give more preference to Twitter users who have shorter distance to the query

location center lq, we propose the following Q-Specific Teleportation Vector ΠQ to com-

plement the Geographical Transition Matrix MGEO.

Query Location Q-Specific Teleportation Vector For a query location Q, we first

define a vertex vi’s spatial relevance to Q as follows:

rel(lq,vi) =


1(

distance(li, lq) + 1
)κ , vi has geo-coordinates li

|INlq,ε
i |

|INi|
, otherwise

(2.9)

where distance(li, lq) calculates the geographical distance between the query lo-

cation lq and the location li of vertex vi. The definition of
|IN

lq,ε
i |

|INi|
is similar to the one

defined in Equation 2.8 but now measures the likeness of an unknown-location vertex vi

falling in Q by treating vi’s interaction followers’ locations as its potential location distri-

bution. Now, we normalize the spatial relevance to get a vertex’s teleportation probability

πi =
rel(lq,vi)∑

vk∈V rel(lq,vk) and use ΠQ to denote such a teleportation vector.

Combining the Geographical Transition Matrix MGEO and the query location Q-

Specific Teleportatoin Vector ΠQ,we define the Geographical PageRank (GPR) as fol-

27

lows,

�
t+1
GPR = (1−h)∗ΠQ + h∗�t

GPR×MGEO (2.10)

Like SLVPR, we don’t apply a location filtering post-process on GPR, which will

miss the generalized influential Twitter users on the query location Q. This distinguishes

from ELPR, which is not query location specific and thereby runs only once for different

Qs, although a location filter is needed.

2.5 Empirical Evaluation

In this section, we first describe the experimental settings including the related base-

lines approaches, the evaluation methods and default parameters settings. Next, we report

the results of measuring spatial influence of Twitter users by different methods regarding 3

cities in the USA. Afterwards, we choose the city of Boston, MA to report the comparing

results. Furthermore, we study the effects of the interaction’s types, along with the effects

of applying a geotagging procedure to estimate locations for unknown-location Twitter

users, followed by a study on the sensitivity of the distance-decay factor κ in ELPR and

GPR. Finally, we discuss the potential applications of using local influential Twitter users

as news seeders with respect to local news (event) detection.

28

2.5.1 Experimental Settings

2.5.1.1 Baseline Approaches

Because the difference in types of influential Twitter users that ELPR and SVLPR

are trying to find – the former finds local influential Twitter users who are not only having

great influence on a location but also from there while the latter find generalized influen-

tial Twitter users and doesn’t have a requirement regarding where they are from, we put

them in two different control groups and list their related baseline approaches separately

as follows. In addition, we also present the results of using the hybrid method GPR to

investigate its effects of combing the two types of spatial locality defined in Section 2.4.3

and Section 2.4.4, respectively. Baseline approaches to ELPR (Edge Locality Group):

• InD: measures the influence by a user’s In-Degree in G, i.e., the number of i-

followers a Twitter user has.

• LocInD: measures the influence of a user by the number of its i-followers who are

within ε distance to this user.

• PR: i.e., PageRank, measures the influence by a user’s score by running PageRank

on G.

Baseline approache to SVLPR (Source Vertex Locality Group):

• iFol− lq: measures the influence of a user by the number of its i-followers who are

within ε distance to lq.

29

Since InD, LocInD, PR and ELPR are not Q-specific, a location filter is applied to

only keep the Twitter users within ε distance to lq.

2.5.1.2 Evaluation Methods

Choosing the city of Boston, MA, we study two aspects of the ranking algorithms:

correlation and effectiveness.

1) Correlation. The correlation is measured by a modification of Kendall’s τ [56]

used in Kwak et al. [59]. This modification overcomes the the limit in the original

Kendall’s τ that rankings in comparison must have the same element and allows for com-

paring only top k elements in each rankings. The correlation ranges from 0 to 1, and a

larger value indicates a stronger agreement. In this experiment, we only compare the top

100 in each algorithm’s ranking result.

2) Effectiveness. It is very difficult to evaluate the effectiveness of rankings in lack

of a ground-truth. To approach the effectiveness evaluation, for the methods in the group

of “Edge Locality”, we utilize a set of manually-collected local influential Twitter users

in Boston, MA and compute the average ranking order in each of the methods; for the

methods in the group of “Source Vertex Locality”, we calculate the number of verified

Twitter accounts in the top 100 influentials identified in each of the methods.

Average Ranking Order: We first manually collect 20 locally influential Twitter

users accounts from 4 different categories in Boston metropolitan area and list them as

follows:

News Agencies – “@wcvb”, “@bostondotcom”, “@cbsboston”, “@7news”, “@boston-

30

hearld”;

Sports Team – “@redsox”, “@celtics”, “@nhlbruins”, “@thebostonpride”, “@boston-

cannons”;

Government – “@marty_walsh”, “@cityofboston”, “@bostonpolice”, “@boston-

fire”,

“@masddot”;

University – “@bu_tweets”, “@harvard”, “@mit”, “@berkleecollege”, “@north-

eastern”;

As describe in the following, the selection of the representative local influential

Twitter users is completed by using an external authority, i.e., Google Search Engine, and

such knowledge is not known a priori. More importantly, the experimental evaluation is

not only to identify these local influential users but instead to compare the average ranking

order of them.

Collecting Twitter users in the first 2 categories is completed by first typing the

keywords in Google “Boston local news”, and “Boston Sports team” to find top related

websites and then locating their official Twitter accounts on the webpages. We didn’t

choose the news agency of “Fox 25 Boston” because it changes its Twitter account from

“@fox25news” to “@boston25” in April 2017. The Twitter accounts in the category of

Government are the official accounts of Boston Mayor, Boston Government, Boston Po-

lice Department, Boston Fire Department and Massachusetts Department of Transporta-

tion, respectively. And the Twitter accounts in the category of University are the official

accounts of Boston University, Harvard University, Massachusetts Institute of Technol-

ogy, Berklee College of Music and Northeastern University, respectively.

31

The order of Twitter users in a ranking starts from 0. The smaller order a Twitter

user has, the more influential he is in that ranking. The average ranking order of a set of

influential Twitter users in a ranking is the average of the orders of each influential Twitter

in that ranking. Therefore, a smaller average ranking order indicates a better ranking

algorithm.

Number of Verified Accounts: In Twitter, verified accounts are the ones that have

been examined to be authentic by Twitter itself and considered as high-quality Twitter

users. The status of verification can be found in the Twitter user’s profile information.

We therefore propose to check the quality of a ranking algorithm by counting how many

verified Twitter accounts in its top 100 elements. The more verified accounts that a

ranking algorithm has in its top 100, the higher is its quality.

Note that in the evaluation, we also report the performance of the “Source Vertex

Locality” methods regarding the metric of Average Ranking Order; and vice versa., the

performance of the “Edge Locality” methods regarding the metric of Number of Verified

Accounts is also given.

2.5.1.3 Default Parameter Setting

The default parameters used in our methods and related baseline approaches are set

as follows.

• lq: the query location centers of “Boston, MA”, “Bristol, CT” and “Seattle, WA”

are set to 42.3584/-71.0598, 41.6812/-72.9407 and 47.6062/-122.332, respectively,

using GeoNames database.

32

• ε: the radius ε in the query location Q (also the spatial locality threshold in Defini-

tion 1), is set to 100km, which is large enough for majority of the cities.

• h: the damping factor in PageRank is set to 0.85 for the algorithm PR, ELPR,

SVLPR and GPR.

• κ: the distance-decay factor in ELPR and GPR are set to 4 in default. The sensitivity

of κ is reported in Section 2.5.6.

• PageRank Iterations: 100 for PR, ELPR, SVLPR and GPR.

• Distance Unit: the distance is in the unit of ε, i.e., 100km. .

C
ity Edge Locality

InD LocInD PR ELPR

B
os

to
n,

M
A Patriots Patriots Patriots Patriots

CrazyFightz OnlyInBOS OITNB BostonGlobe
DrJillStein BostonGlobe JohnCena OnlyInBOS
Diaryforcrush RedSox BostonGlobe RedSox
TWICHISTE stoolpresidente RedSox NHLBruins

B
ri

st
ol

,C
T SportsCenter SportsCenter SportsCenter SportsCenter

espn espn espn espn
ESPNNFL SmackHighCT ESPNNFL SmackHighCT
ESPNStatsInfo ESPNNFL ivoryella MikeAndMike
darrenrovell ESPNStatsInfo darrenrovell ESPNStatsInfo

Se
at

tle
,W

A amazon Seahawks amazon Seahawks
OriginalFunko Mariners Starbucks Mariners
Starbucks KING5Seattle Seahawks SoundersFC
Seahawks seattletimes BillGates seattletimes
XSTROLOGY SoundersFC Microsoft KING5Seattle

Table 2.1: The top 5 influential Twitter users identified for 3 different cities using InD,
LocInd, PR and ELPR.

33

C
ity Source Vertex Locality Hybrid

iFol− lq S VLPR GPR

B
os

to
n,

M
A YouTube YouTube Patriots

realDonaldTrump realDonaldTrump Youtube
Patriots Patriots BostonGlobe
GIRLposts BostonGlobe OnlyInBOS
HillaryClinton OnlyInBOS RedSox

B
ri

st
ol

,C
T YouTube YouTube Youtube

realDonaldTrump realDonaldTrump SportsCenter
GIRLposts GIRLposts WSHHFANS
SportsCenter SportsCenter realDonaldTrump
SincerelyTumblr CauseWereGuys Patriots

Se
at

tle
,W

A YouTube YouTube Seahawks
Seahawks Seahawks YouTube
realDonaldTrump realDonaldTrump Mariners
HillaryClinton Mariners seattletimes
GIRLposts DangeRussWilson SoundersFC

Table 2.2: The top 5 influential Twitter users identified for 3 different cities using
iFol− lq, S VPR and GPR.

2.5.2 Top 5 Influential Twitter Users for 3 U.S. Cities

In this section, we analyze and compare the top 5 Twitter users identified by our

methods and the ones by related baseline approaches with regards to 3 cities “Boston,

MA”, “Bristol, CT” and “Seattle, WA”. The results are listed in Table 2.1 and Table 2.2,

in which the symbol “@” at the start of each Twitter username is omitted for compactness.

We notice that quite a few of the top 5 influential Twitter users listed in Table 2.1

and Table 2.2 are related to commercial accounts. This doesn’t come as a surprise in

the sense that such users usually have more interactions from other Twitter users due

to their population and thus would rank at top positions. More examples of influential

Twitter users from various walks of life (news media, reporters, sports team, sports player,

politicians, musicians etc.) with respect to Boston can be found in the Appendix Table 8.1

34

and Table 8.2.

By listing only the top 5 influential Twitter users, Table 2.1 and Table 2.2 are able to

show that in general, taking into geographical proximity into consideration, our proposed

methods yield better results than the baseline approaches. Such a difference becomes

more significant when the ranking orders (i.e., as the one listed in the table) are taken into

account. We were surprised to observe such differences even for only the top 5 users. In

the following, we describe the details of such a difference observed in different methods.

InD vs. LocInD: In general, InD might return noise Twitter users. For example,

we do not consider the Twitter users “@Diaryforcrush” and “@TWICHISTE” for the city

“Boston, MA” and the Twitter user “@XSTROLOGY” for the city of “Seattle, WA” iden-

tified by InD are of great influence on their cities because they have very few people from

their cities to interact with them. Take “@TWICHISTE” for example, out of the 38,187

i-followers he has, only 10 are within 100km of the center of Boston, MA. In contrast,

the 5-th local influential Twitter user “@stoolpresidente” identified by LocInD only has

11,754 i-followers, but 2,356 of them are within 100km to the center of Boston, MA. Al-

though “@Diaryforcrush” and “@XSTROLOGY” get the locations from their geotagged

tweets, diffuse of such type of geographical information is not going to totally eliminat-

ing noisy users because of the existence of users like “@TWICHISTE” who indeed has a

profile-location as “Boston, MA”, and might also miss some important Twitter users like

“@Patriots” and “@Mariners”, neither of them giving valid profile-locations.

In contrast, by finding Twitter users who have the most interaction followers from

the local area, LocInD gives high quality results. For example, most of the Twitter ac-

counts identified by LocInD are officially accounts of either sports teams, or local news

35

agencies or reporters in each of the three cities, with an exception of “@SmackHighCT”

in the city of “Bristol, CT”, which is a branch account of a social platform SmackHigh.

This account usually posts hilarious contents on high school lifestyle and receives lots of

“retweets” from almost one thousand of people in “Bristol, CT”.

PR vs. ELPR: Both PR and ELPR improve on their indegree counterparts InD and

LocInD by not just considering how many i-followers (or local i-followers) a user has but

also the influence of these i-followers. For example, in comparison with InD, the Twitter

users in PR are all official and verified accounts. Similarly, “@NHLBruines” ranked in

the top-5 in ELPR but not in LocInD because all the top-4 users in ELPR (or LocInD) are i-

followers of “@NHLBruines” while only 2 of them are i-followers of “@stoolpresidente”

even though “@NHLBruines’ has less i-followers from Boston than “@stoolpresidente”.

Taking the spatial locality of edges into consideration, ELPR generally outputs a

different set of top 5 influentials in comparison with PR across the 3 cities because it

focuses more on the interactions happened geographically within a city-level. Take the

city of Boston for example, the top 5 influentials in ELPR have an average of 4204.2

people from Boston actively interacting with them, while the ones in in PR have only

2900.2. The numbers for the cities of Bristol and Seattle are 1286.8, 1423.8 and 1396.0

and 2371.6, respectively. This means that ELPR more effectively finds Twitter users that

are locally influential.

iFol− lq vs. SVLPR: Comparing to previous algorithms, iFol− lq and SVLPR find

Twitter users who are influential on a place but not necessarily from there. For example,

either the profile-locations of “@YouTube”, “@realDonaldTrump” or “@HillaryClinton”

is specfified as the 3 cities. Another Twitter user “@GIRLposts” doesn’t has a profile-

36

location. But this doesn’t mean they don’t have influence or negligible influence on the

3 cities. For example, for each of the 3 cities, “@YouTube” has the most number of

i-followers from that city than any other accounts, even the ones who are at the city.

In comparison with iFol− lq, the portion of the Twitter users who are from the

query city identified by SVLPR slightly increases due to its additional consideration of

link structures.

Furthermore, in these two methods, several Twitter users are found influential across

all the three cities such as “@YouTube” and “@realDonaldTrump”, indicating that the

influence of these Twitter users are not limited to a local place and goes beyond their

profile-locations. This corresponds to the distance distributions of such Twitter users to

their i-followers as shown in Figure 2.3.

GPR: Taking both the spatial locality of edges and source vertices into considera-

tion, GPR outputs a combination of the top influentials in ELPR and in SVLPR. The most

interesting finding is that “@Patriots”, the official Twitter account of a sport team based

in Boston, ranked 5th in GPR regarding its influence on the city of Bristol, CT. This is

because on one side, “@Patriots” has thousands of people from Bristol, CT to interact

with it and on the other side, Boston,MA is at a moderate distance of 170km from Bristol,

CT.

37

2.5.3 Correlation and Effectiveness

2.5.3.1 Correlation

The correlations between the algorithms are listed in Table 2.3, in which the high-

est correlation in each row is in bold font. It is clearly that indegree methods are more

related to their PageRank counterparts, for example, InD vs. PR, LocInD vs. ELPR and

iFol− lq vs. SVLPR. In contrast, our proposed methods have lower correlation with the

existing metrics InD and PR, indicating they generate different ranking results to them.

This implies identifying spatial influential Twitter users is not a simply procedure of first

determining general influence in interaction graph G by InD and PR and then applying a

location filter post-processing.

In addition, the methods InD, LocInD, PR and ELPR have lower correlations to the

methods iFol− lq and SVLPR because the former group of methods require that a Twitter

user who is influential on a location Q is also from that location, while the latter group of

methods don’t have such a requirement.

In default, our hybrid method GPR is slightly more correlated with SVLPR than

ELPR, indicating that it emphasizes more on the spatial locality of source vertices than

the spatial locality of edges and might have more Twitter users who are not from the query

location Q in its ranking results as shown in Table 2.2.

We also compared with GPR after applying the location filter with the methods in

ELPR group, and listed the results in the column with the header GPR− lq. It shows that

the hybrid method GPR, after removing the users who are not local the query location,

38

strongly correlates with ELPR.

Edge Locality Source Vertex Locality Hybrid
Corr. InD LocInD PR ELPR iFol− lq S VLPR GPR GPR− lq

InD 1.0 0.35 0.60 0.35 0.17 0.17 0.28 0.31
LocInD 0.35 1.0 0.36 0.60 0.30 0.38 0.30 0.54

PR 0.60 0.36 1.0 0.40 0.20 0.18 0.29 0.36
ELPR 0.35 0.60 0.40 1.0 0.30 0.19 0.50 0.54

iFol− lq 0.17 0.30 0.20 0.30 1.0 0.60 0.53 0.17
S VLPR 0.17 0.38 0.18 0.19 0.60 1.0 0.56 0.15

GPR 0.28 0.30 0.29 0.50 0.53 0.56 1.0 0.23

Table 2.3: Correlation matrix between different algorithms.

News Agency Gov. Univ. Sports Team All

Categories of influential users in Boston

1400

1200

1000

800

600

400

200

0

A
v

er
ag

e
R

an
k

in
g

 O
rd

er

InD

LocInD

PR

ELPR

iFol-l
q

SLVPR

GPR

(a)

Retweet vs. Reply Retweet vs. Mention Reply vs. Mention
0.2

0.3

0.4

0.5

0.6

0.7

C
o

rr
el

at
io

n
s

InD

LocInD

PR

ELPR

iFol-l
q

SVLPR

GPR

(b)

Figure 2.5: (a) The average ranking orders of 4 different categories of the local influentials
in Boston, MA. (b) The correlations between different types of interactions.

2.5.3.2 Effectiveness

Average Ranking Order: Figure 2.5a shows the average ranking orders of the

4 categories of manually-collected locall influential Twitter users in Boston by different

algorithms. Clearly, our method ELPR outperforms its baseline approaches InD, LocInD

and PR. In addition, LocInD outperforms both InD and PR, justifying the benefits brought

39

by considering the spatial locality of edges in graph G in determining the spatial influence

of Twitter users. Moreover, our method SVLPR that is aware of the spatial locality of

source vertices to query location lq, also achieves better performance than its baseline

approach iFol− lq by additionally taking into account of link structures. At last, our

hybrid method GPR considering both of the two types of spatial locality in ELPR and

SVLPR has a moderate performance because it introduces popular users like “@YouTube”

who are not in Boston, MA.

Number of Verified Accounts: Table 2.4 list how many verified accounts are there

in the top 100 Twitter users identified by different methods. The results show that in the

group of “Source Vertex Locality”, our proposed method SVLPR is slightly better than its

baseline approach iFol− lq because its additional awareness of link structures; and in the

group of “Edge Locality”, our proposed method ELPR clearly outperforms other related

methods because in reality, most of the local influential accounts are official accounts of

entities like organizations etc and such accounts usually are verified by Twitter. Our hy-

brid method, GPR, again achieves a moderate performance. This is because, comparing

the ELPR, it also retrieves Twitter users that are pouplar among people but not necessar-

ily are verified like “@WSHHFANS” because such Twitter users may not represent any

organization entities in the real world.

Edge Locality Source Vertex Locality Hybrid
InD LocInD PR ELPR iFol− lq S VLPR GPR

46 76 63 81 55 59 60

Table 2.4: Number of verified Twitter users in the top-100.

40

2.5.4 Different Types of Interactions

as shown in Figure 2.1b, the 3 types of interactions retweet, reply and mention con-

tribute differently to building the edges in the interaction graph G. To investigate how

much difference in the influential Twitter users identified by different types of interac-

tions, we run the algorithms on the graphs constructed from only using retweet, reply

and mention, respectively and calculate the correlations for retweet vs. reply, retweet vs.

mention and reply vs. mention. The results are plotted in Figure 2.5b, which shows that

retweet vs. mention generally has stronger correlations than retweet vs. mention and reply

vs. mention. This corresponds to Figure 2.1b where retweet and mention have more edges

in common than the other two.

2.5.5 Effects of Geotagging Twitter users

In this section, we study the effects of applying a geotagging procedure to estimate

locations for unknown-location Twitter users. We use relative changes (+/-) in Average

Ranking Order and relative changes (+/-) in the Number of Verified Accounts to evaluate

an algorithm’s changes before and after geotgagging. The relative changes of Average

Ranking Order is calculated with respect to all the 20 manually-collected Twitter users in

Boston in Section 2.5.1.2.

We estimate location for unknown-location Twitter users by utilizing a Twitter user

geotagging procedure [24], which is reported to have the state-of-the-art city-level accu-

racy. In essence, [24] assigns a location estimation to a Twitter user by using his reciprocal

friends’ locations as a set of points in Equation 2.1 to calculate a median point. After the

41

geotagging, we have 74,846,116 (50.6%) Twitter users assigned with geographical lo-

cations, and 1,084,772,048 (72.1%) edges whose two vertices both have geographical

locations.

We then again run the different algorithms using the new set of location labels of

vertices for G, and list their results in Table 2.5. For the changes in Average Ranking

Order, in the control group of “Edge Locality”, methods InD, LocInD and PR get more

affected by the geotagging procedure while ELPR receives less effects with the Average

Ranking Order by only increasing 5.4. The method iFol− lq is much more susceptible

to geotagging than SVLPR because iFol− lq only considers the the location of source

vertices and would exhibit larger difference when more Twitter users are geotagged as in

Q.

For the changes in the Number of Verified Accounts, all methods yield slight changes

before and after geotagging, indicating geotagging unknown-location Twitter users has

less effect on the verified official accounts. This is because in most cases such verified

official accounts are likely to provide a profile-location, which lets us have their geograph-

ical location at hand before geotagging.

Edge Locality SV Locality Hybrid
InD LocInD PR ELPR iFol− lq S VLPR GPR

Avg. Order 477.8 97.6 232.8 56.7 764.9 301.9 107.7
Avg. Order +/- +38.1 +13.35 +19.15 +5.4 +72.4 +10.75 -13.25
Veri. Accts. 48 75 62 80 52 56 58
Veri. Accts. +/- +2 +1 +1 -1 -3 -3 -2

Table 2.5: Effects of geotagging on different algorithms.

42

2.5.6 Sensitivity of Distance-Decay Parameter κ

To investigate the sensitivity of κ in ELPR, we compare its correlations to InD under

different values of κ. Similarly, for the sensitivity of κ in GPR, we compare its correlation

to ELPR and SVLPR respectively. The results are listed in Table 2.6.

Table 2.6 shows that until κ = 23, ELPR is becoming more similar to InD as the

value of κ continues to increase to generate a more significant effect of distance-decay in

MEL. This indicates that a larger κ makes ELPR more prefer Twitter users having shorter

distance to the query location center lq. The correlation drops at κ = 23 because LocInD

relies on a location filter and doesn’t geographically distinguish the Twitter users within

ε = 100km to the query location lq, while ELPR continues preferring to rank higher for

those who have even shorter distance to lq.

Table 2.6 also shows that GPR has more similarities to SVLPR across different κ

than ELPR. In the meantime, as κ increases, GPR gives more weights on edges having

shorter distances and thereby its correlation with ELPR increases. Such trade-off stabi-

lizes after 22.

κ 2−3 2−2 2−1 20 21 22 23

ELPR vs. LocInD 0.01 0.01 0.05 0.33 0.54 0.60 0.57
GPR vs. ELPR 0.02 0.02 0.02 0.11 0.39 0.50 0.50
GPR vs. S VLPR 0.46 0.46 0.47 0.52 0.57 0.56 0.56

Table 2.6: Sensitivity of κ in RELPR and RGPR regarding their correlation with RLocInD,
RELPR and RS VLPR, respectively.

43

2.5.7 Application to News Detection

In this section, we explore the potential of local influential Twitter users in acting

as news sources (e.g., news seeders [102, 32]) by examining how many of their tweets are

about local news (events).

Using the dataset in Section 2.3, we collected 1,306 tweets posted by the top 70

Boston influential Twitter users identified by the ELPR method (which is given in Ta-

ble 8.1 in Appendix 8 between Dec 01, 2016 and Dec 07, 2017, and manually categorize

these tweets into “Local”, “Global” and “None”, indicating whether a tweet is about

Boston’s local news (events), or generally global news or neither of both. The mean and

median number of tweets in each user are 18 and 6, respectively. The distribution is

presented in Figure 2.6a, showing that 75% of the tweets are about news, and more im-

portantly, 67.1% are considered local. This supports the viability of using local influential

users as potential local news seeders.

However, not every local user tweets about a local location. For example, although

“@HarvardBiz” is considered influential in Boston, his tweets are mostly reviews on busi-

ness and technology etc, and are rarely about local news or events. Thus, to investigate

which category of Twitter users (the category information of users is provided in Ta-

ble 8.1 and Table 8.2 in italic font) are contributing “Local” tweets, for each category of

users, we plot the number of their total tweets and the number of their “Local” tweets in

Figure 2.6b, which shows that the users in the categories of Reporters, News and Sports

are contributing most of the “Local” tweets and meanwhile maintain a high fraction of

“Local” tweets in their own tweets. In addition, most of the tweets posted by users in

44

6%

13%

81%

None

Global

Local

(a)

O
rg

.
E
du

.
C

o.
M

is
c.

G
ov

.
U

ni
v.

Po
li.

R
ep

or
te

r
N

ew
s

Sp
or

ts

0

100

200

300

400
of tweets

of "Local" tweets

(b)

Figure 2.6: (a) Ratio of “Local”, “Global” and “None” tweets by top 70 Boston influential
users in method ELPR. (b) Number of total tweets vs. number of “Local”
tweets for different categories of users.

University, Government and Education are considered “Local”, though they have fewer

tweets. Therefore, these users might be considered as news seeders, and additional pro-

cedures such as classification or topic-sensitive ranking [119] might be exploited in the

future to pick out such types of users to improve the quality of news seeders.

2.6 Conclusions

This chapter focused on finding spatial influential Twitter users on a query location

Q based on the interactions sent out by the local people from Q. The experiments show

that by making use of the spatial local edges, our proposed method Edge-Locality PageR-

ank (ELPR) outperforms other related algorithms in finding local influential Twitter users.

As local influential Twitter users don’t include the ones who are from other places but

still have great influence on Q, we furthermore present a method Source-Vertex-Locality

PageRank (SVLPR) to find generalized influential Twitter users on the query location Q

45

without requiring them to be from location Q. A hybrid method Geographical PageRank

(GPR) that takes into account both edge locality and source vertex locality to determine

influential Twitter users is also presented. In addition, we also investigate the influence

determined by using different types of interactions and also the effects of applying a geo-

taggging procedure.

There are still many aspects of interactions to explore, such as the frequency and

temporal properties [30]. The reciprocity of interactions is also another interesting factor.

Also, it is an interesting topic to investigate the typical patterns of how user’s influence

evolves across regions. In addition, SVLPR or GPR can be modified to find local influ-

ential Twitter users by appending a location filter and therefore to compare with InD and

ELPR. At last, as discussed in Section 2.5.7, topic-sensitive technologies like LDA might

be explored further to identify local influential Twitter users that are in the topic of local

news (events).

46

Chapter 3: Detecting Latest Local Events from Geotagged Tweet Streams

3.1 Introduction

With people posting what is happening outside in the real world, tweets in Twitter

encapsulate invaluable information on real-world events as they break. For example, Twit-

ter is nowadays becoming an increasingly important information channel to for people to

learn about breaking news [58, 59]. Except for the basic facts including a text message

and a publish timestamp, some tweets may also contain a geotag to indicate the posting

location, and termed geotagged tweets. Geotagged tweets are particularly interesting in

the sense that they provide the complement information about the place of interest, e.g.,

where the events occur. Such location information is crucial when profiling the occur-

rence of an event by filling in the three pieces of information: where, when and what. In

this chapter, we aim to detect the latest local events from live geotagged tweet streams. A

local event is defined as an unusual activity that appears at some specific time and place

and also shows topical coherence. For instance, Figure 3.1 presents some exampling geo-

tagged tweets about a soccer game held in the city of Seattle, WA. Timely discovering

such local events has a wide range of applications. For example, people can acquire the

latest information about such local activities in their living town., and thereby enhance

their daily lives. It can also be helpful for commuting alarms by reporting real-time traffic

47

Figure 3.1: Examples of geotagged tweets about the soccer game of “Seattle Sounders”
vs “D.C. United” at the stadium of “CenturyLink Field” at 7:30 PM, 2017-07-
19. All the tweets were located at the stadium of “CenturyLink Field”, i.e.,
the red grid cell in Figure 3.2a.

jams or accidents. In such cases, after learning what is happening, the commuters can

actively make a decision to bypass the congested road segments or avoid the accident

sites.

It is, however, challenging to detect local events from live geotagged tweet streams.

First, detecting local events by capturing unusualness requires considering not only tem-

poral historical patterns but also spatial circumstances. Some studies [84, 5, 62, 40]

measure the burstiness, intensity of increment in the number of tweets at a place over a

short time period, as signals of local events. But burstiness does not always imply the

occurrence of a local event. For example, the burstiness of tweets at a shopping mall or a

famous coffee bar in the morning is often expected and not unusual. Some work improves

this measure to capture temporally routine patterns by gathering time-aware statistics [4].

However, without geographical consideration, occasional nation-wide events may also

48

accumulate a temporally unusual number of tweets at local places. For example, on pres-

idential election nights, one may observe suddenly more tweets all over the places. Sec-

ond, a local event, as it develops, may receive follow-up updates on its content and may

also migrate geographically. For example, when a crime happens at a place, people expect

to receive updates as investigation progresses. Another example is that a demonstration

protest may follow a route moving from one place to another. Therefore, it is desirable

to dynamically and timely monitor and track the development of an ongoing event, and

report its latest updates.

In this chapter, we propose DeLLe to discover, track and describe local events from

live geotagged tweets. The contribution of DeLLe lies in its four modules: seeker, ranker,

expander and summarizer.

Seeker finds unusual locations which exhibit spatiotemporal unusualness with re-

spect to the number of tweets and therefore potentially correspond to local events. For

this purpose, seeker employs a novel prediction-based anomaly detection strategy. In

particular, seeker first exploits convolutional LSTMs (ConvLSTM [103]) to predict the

expected number of tweets in the future, which accounts for not only historical patterns

but also neighboring locations. Next, seeker compares the predicted value with the actual

number of tweets to determine the existence of unusualness. Unlike previous studies [58,

5] which claim anomalies only based on the local time series data of a location, we also

consider the horizontal situation in other places simultaneously to mitigate the effects of

global events.

Ranker suppresses the possibly noisy candidates of local events. In practice, not all

spatiotemporal burstinesses necessarily correspond to an actual local event. We therefore

49

bring order to the candidates with a ranking procedure by considering temporal bursti-

ness, spatial burstines and topical coherence, and thereby select the top ones likely to be

corresponding to the occurrence of local events.

Expander tracks and updates the movement of an ongoing local event in both space

and time using event-focus and content similarity. An event focus records its most im-

portant site of occurrence at certain time. While the content similarity between the tweets

in two nearby locations is used as a measurement to check whether an ongoing local

event moves to nearby locations or keeps bubbling up at the same place. In so doing, this

module is dynamically monitoring the impact range of a local event.

Summarizer generates an abstract for a detected local event by selecting its most

influential tweets. For human consumption, an event should be presented in a succinct

description [58] but yet with up-to-date and key information. It is therefore important to

choose representative tweets to summarize the detected local events. This module builds

tweet authority graphs based on their textual similarities and subsequently runs random

walk procedures to select the most influential tweets for events.

3.2 Related Work

There has been a plural of works on detecting local events using tweets in Twitter.

Atefeh [8] and Abdelhaq [2] provide two excellent surveys. In general, existing methods

focusing on geotagged tweets can be classified into two strategies: model dimension ex-

tension and geographical space tessellation. Model dimension extension treats location

as additional variables to existing models. For example, some studies treat location as

50

latent variables in their generative topic model [131, 44, 140, 117]. Location distance be-

tween tweets can also be incorporated to measure similarities [134, 130, 112, 10] during

clustering.

Geographical space tessellation divides space into small and disjoint cells for ag-

gregating geotagged tweets. The motivation is that a local event usually has a limited

spatial impact and would fall in the same or nearby cell(s). The grid is the simplest yet

most commonly used way of tessellation [104, 3, 5, 2, 50, 113, 49, 141], although other

structures have also been explored including hierarchical triangular meshes [58], pyramid

structures [81, 80], Voronoi tessellations [66] and k-d tree [76].

After aggregating tweets to tessellation cells, a simple way for event detection is to

examine whether the number of the aggregated tweets or the arriving rate exceeds a cer-

tain threshold [84, 4]. This, however, is easily plagued by tweet distribution heterogeneity

both temporally and spatially. Thus, various anomaly detection methods have been ex-

plored. The core idea is to use previous history of data to build a baseline (or make a

prediction) and then compare with the actual value to check for significant discrepan-

cies [58, 5, 62]. For example, TwitInfo [83] uses the weighted average of historical tweet

counts to compute the expected frequency of tweets. But sole historical data often neglect

the effects exerted by nearby geographical regions. Krumm and Horvitz [58] therefore in-

clude features like tweet counts from adjacent regions in their anomaly detection method.

Our method is different from the above methods in two senses: 1) our prediction model

captures both spatial dependencies and temporal patterns [116]; 2) when claiming an

anomaly, we account for not only the history of a location itself but also the situation at

other places in the meantime to mitigate the effect of unexpected global events.

51

We found that the most related work to our task are EvenTweet [5], Eyewitness [58],

GeoBurst [134] and TrioVecEvent [131]. EvenTweet detect events by identifying and

clustering temporal bursty keywords. However, using words instead of tweets as clus-

tering elements, this method may group semantically irrelevant words together and in

the meantime not sit well with event summarization. Eyewitness [58] discretizes space

and time and finds tweet volume spikes as potential local events by comparing the pre-

dicted value with the observed value. However, it needs to perform an exhaustive sweep

through different space and time pieces and thereby is not easy to modify for online pro-

cessing. GeoBurst [134] generates candidate events by identifying pivot tweets based on

geographical and semantic similarities and ranks them using spatiotemporal burstiness to

filter out noisy ones. TrioVecEvent learns multimodal embeddings of tweets to address

the information on location, time and text during clustering and is reported to achieve

much better accuracy than its baseline approaches. However, neither of these two meth-

ods actively performs event detection on a given tweet stream unless a query time window

is specified.

Due to the sparsity of geotagged tweets (1%), some methods try to acquire more

local tweets by tracking local people [118, 114]. The location information in these meth-

ods, however, are usually in a very coarse resolution (e.g., city-level) and rarely used when

grouping tweets together. Some methods try to first detect an event and then estimate its

location afterwards, e.g., TwitterStand [102]. These methods are different from our focus

as we instead try to extract local events from geotagged tweet streams.

52

3.3 Preliminaries

3.3.1 Problem

Given a geotagged tweet stream, our goal is to identify the latest local events. For-

mally, suppose that t is the current (latest) time point and ∆t is a short time interval, we

define Dt to be the geotagged tweet stream up to t, and Dt−∆t→t be the geotagged tweet

stream from t−∆t to t. In other words,Dt−∆t→t essentially represents the latest geotagged

tweets with respect to ∆t. For simplicity, a geotagged tweet d can be seen as a tuple

〈timed, locd, txtd,userd〉 in which timed is the publication time, locd is the geographical

location (i.e., a pair of lat/long coordinates), txtd refers to the textual content and userd

is the user posting this tweet. The latest local event detection problem is then to extract

from Dt−∆t→t all possible local events, where each event is a cluster of geographically,

temporally and semantically close tweets.

Typically, the occurrence of a local event often brings about an unusually consid-

erable amount of relevant tweets at the happening location for a certain time period. For

example, a soccer game was set to start at 7:30 PM at the stadium “CenturyLink Field”

near the center of the city of Seattle. Many tweets with keywords “Sounders”, “sounder-

sfc” and “CenturyLink Field” etc (shown in Figure 3.1) was posted at that location during

the game. Figure 3.2 shows that an unusual amount of such tweets were observed both

geographically and temporally.

Motivated by the above observation, we propose a prediction-based method for

detecting the latest local events, called DeLLe. The key idea of DeLLe is to first detect

53

1
1
1

1

2
1

1

2

4

4

14

3

(a)

-300 -200 -100 0 100 200 300
0

5

10

15

time (in 30 mins) centered at 7:30 PM, 2017-07-19

of

 tw
ee

t

(b)

Figure 3.2: The soccer game in Figure 3.1 brings about an anomalous amount of tweets
both spatially and temporally. (a) Spatial distribution of the tweets around the
stadium at 7:30 PM - 8:00 PM. The stadium lies in the red square. Each red
dot is a tweet, and the number in a grid cell refers to its number of tweets
while an empty cell means no tweets. (b) Temporal distribution of the tweets
at the game stadium. The tweets are aggregated every 30 minutes.

spatiotemporal unusualness as possible candidates of local events and then select the ones

that most likely corresponding to local events.

3.3.2 System Overview

Figure 3.3 demonstrates DeLLe’s overall design. DeLLe can work in two modes:

batch mode and online mode. The major difference is that the batch mode exploits a

disjoint discretization in the time dimension while the online mode utilizes a continu-

ous sliding time window and correspondingly a set of updating modifications for online

processing. We will detail these modifications in Section 3.5.

We utilize a uniform grid to tessellate the spatial region into squares of size ∆l×∆l,

where ∆l is the side length of the square. Although more complex tessellation struc-

54

Summarizer

Space
Batch Mode

Online ModeTessellation

Figure 3.3: System overview.

tures [51, 58, 80] have been explored, grid tessellation is the simplest yet most commonly

used way of subdividing geographical space [104, 5, 50, 113, 49]. More importantly, it

enables us to exploit state-of-the-art spatiotemporal tweet count prediction model [116]

by treating each grid cell as a pixel and therefore the whole grid as image-like data. In

reality, local events may not fall neatly on the grid cell boundaries. Therefore, we propose

a module of expander to connect nearby cells which share similar content to alleviate that

issue.

After discretizing space, the tweets are subsequently fed into a pipeline of four mod-

ules: seeker, ranker, expander and summarizer. Seeker finds spatiotemporal unusualness

in the number of tweets as potential candidates of local events. Ranker selects which set

of unusualness found by the seeker are most likely to be local events. Afterwards, the

expander tries to infer a local event’s span in both time and space under the metric of

semantical similarity. At last, the summarizer generates an abstract for a detected local

event by selecting the latest top influential tweets.

55

3.4 The Batch Mode

In this section, we present the workflow of DeLLe in its batch mode. In order to

detect the local events fromDt−∆t→t, we discretizes the geotagged tweet stream into a set

of disjoint intervals, i.e.,{· · · [t− 2∆t, t−∆t), [t−∆t, t)}. In the following, we explain how

to do tweet count prediction, unusualness detection, event expansion, and summarization

for this time series of tweets.

3.4.1 Seeker

After tessellating the space into an M ×N grid and discretizing time into periods

of length ∆t, the task of seeker is to identify grid cells that show an unusual aggregation

of tweets in latest geotagged tweet stream Dt−∆t→t or DT where T denotes the last time

interval of length ∆t.

3.4.1.1 Tweet Count Prediction

The goal of tweet count prediction is to use previously historical tweet count data

in a local region to forecast the number of tweets to appear in the next time step [116]. On

an M×N grid map, the tweet count values in the grid cells at time step τ can be written in

a tensor Xτ ∈ �
M×N where Xτ(m,n) is the tweet count in the grid cell (m,n) at time step

τ. Therefore, the prediction problem is formulated as follows:

Definition 2. The tweet count prediction problem P is to generate a prediction YT , which

is an estimation of XT , given a list of historical observations {Xτ|τ = 0, · · · ,T −1}.

56

Related Approaches As time goes by, the tweet counts in a region may be formulated as

time series data, which enables the exploitation of the techniques like historical average

and autoregressive integrated moving average (ARIMA) [42]. For example, TwitInfo [83]

uses the weighted average of historical tweet counts to compute the expected frequency

of tweets. Lin et al. [74] proposed a space-time autoregressive integrated moving average

(STARIMA) model to predict urban traffic flow volume. Moreover, Chae et al. [17] adopt

a similar model to seasonal ARIMA and decomposes the time series into the sum of a

seasonal part, a trend part, and a remainder part, to check whether there exists an unusual

volume of tweets.

Time series analysis based techniques, however, often neglect the effects exerted by

nearby geographical regions when making predictions on a specific local region. There-

fore, in their work on finding anomalies, Krumm and Horvitz [58] build a gradient boost-

ing regression function that estimates the number of tweets on a region based on a list

of features including the time of the day, the day of the week, and the tweet counts from

neighboring regions.

With the recent advances in deep learning, a few recent studies have focused on

introducing deep neural networks into modeling spatiotemporal data [15, 106]. For ex-

ample, Shi et al. [103] propose a novel convolutional LSTM (ConvLSTM) network for

precipitation on radar echo spatiotemporal data, which enables the capture of both spa-

tial and temporal correlation simultaneously by combining a convolution network and

a recurrent LSTM network. Such a combination is done by innovatively replacing the

matrix multiplication operations used in LSTM with convolution operations. This is dif-

ferent from Spatiotemporal Recurrent Convolutional Networks (SRCN) proposed in [126]

57

which simply stack additional LSTM layers after convolutional layers.

Focusing on citywide crowd prediction, Zhang et al. [136] first partition historical

spatiotemporal sequences into three subsets closeness, period and trend, which corre-

spond to recent, near and distant history. Each subset is then fed into a Deep Convolution

Neural Network to yield a prediction, and such predictions are then fused together along

with external features such as week-of-day to produce the final forecast. Moreover, their

subsequent work [137] further introduces the residual network [38] to capture citywide

spatial dependence and gives better accuracy. Our method is different from them in the

sense that we utilize ConvLSTM layers instead of regular convolution layers to build up

our model, which shows effectiveness in our dataset.

Our Prediction Model Making high-quality predictions of tweet count in a region is

challenging due to complex spatial and temporal dependencies. For instance, if there are

consistent bursty tweets at a coffee shop (e.g., Starbucks) in the morning, it should not

be mistakenly reported as unusual. The advances in deep learning have motivated a few

recent studies to introduce deep neural networks into modeling spatiotemporal data for

better capturing spatial and temporal dependences [136, 137].

In this chapter, we presented a residual Convolutional LSTM (ConvLSTM [103])

based prediction model [116], which exhibited state-of-the-art accuracy. In the following,

we give a brief introduction to this tweet count prediction model [116]. Figure 3.5 illus-

trates the structure of the neural network model. Zhang et al. [137, 136] pointed out that

making predictions on spatiotemporal data relies on not only the observations of recent

time but also those in near history and distant history, and model these temporal depen-

dencies as temporal closeness, period and trend. A similar observation on tweet count

58

data is also found [116]. For example, Figure 3.4 draws the tweet counts in a region

time step

0 50 100 150 200 250 300 350 400 450 500

#
 o

f
tw

e
e

t
c
o

u
n

t

0

5

10

15

(a)

time step

0 50 100 150 200 250 300 350 400 450 500

#
 o

f
tw

e
e
t
c
o
u
n
t

0

5

10

15

(b)

Figure 3.4: Temporal pattern. (a) Seattle City; (b) NYC. Time step is in the unit of 30
minutes, starting from 18:30 on 2016-06-15.

for 500 time steps in the city of Seattle and NYC, respectively. The results show that our

data indeed have certain temporal periodical pattern. As a result, in order to predict an

expected tweet count Yt at time step t, we break the historical observations to extract the

59

∆l the side length of a grid cell
t, ∆t current time, length of time interval
τ, T time step, the latest time step

Dt,DT tweet stream up to t, tweet stream during T
Xτ, Yτ tweet count at τ, prediction of tweet count at τ

(m,n) a grid cell in an M×N grid map
c, p, q closeness, period, trend

ET , ET prediction error, a list of prediction errors up to T
k∆E′T unusualness threshold

YT (m,n) a list of historical predictions on (m,n)
WT (m,n) the set of keywords in (m,n) at T

S DDw
T (m,n) spatial density distribution of word w in (m,n) at T

TS (d′,d′′) topical similarity between tweet d′ and d′′

T BT (m,n) temporal burstiness of cell (m,n) at T
S BT (m,n) spatial burstiness of cell (m,n) at T
TCT (m,n) topical coherence of cell (m,n) at T

T ECT (m,n) the set of Temporal Expansion Cells of cell (m,n)
S ECT (m,n) the set of Spatial Expansion Cells of cell (m,n)

k the number of tweets for event summarization and topical coherence

Table 3.1: List of main notations in Section 3.4

closeness, period and trend dependence sequences Xc
t , Xp

t and Xq
t .

To be specific, the closeness sequence is a list of lc continuous tweet count values

right before the current time step and is denoted by Xc
τ =

[
Xτ−lc Xτ−(lc−1) · · · Xτ−1

]
.

The period sequence is a lp-long list of historical tweet count values periodically sampled

every p interval: Xp
τ =

[
Xτ−p·lp Xτ−p·(lp−1) · · · Xτ−p·1

]
. Similarly, the trend sequence

is a lq-long list of historical tweet count values periodically sampled but every q interval:

Xq
τ =

[
Xτ−q·lq Xτ−q·(lq−1) · · · Xτ−1·q

]
. In practice, p is set to a duration of one-day to

capture daily periodicity and q to one-week to reveal weekly trend. Each of Xc
τ, Xp

τ and

Xq
τ is separately fed into three designated neural networks which shares the same structure

but with different weights, to generate separate predictions Yc
τ , Y p

τ and Yq
τ , respectively. In

the end, a parametric-matrix-based fusion process is applied to combine the 3 prediction

60

ConvLSTM

ConvLSTM

+

ResConvLSTM

ConvLSTM

ConvLSTM

ResConvLSTM

ConvLSTM

ConvLSTM

ResConvLSTM

tim
e

of
 d

ay
,

da
y

of
 w

ee
k

FCs

trend period closeness
meta
data

time

Figure 3.5: Tweet count prediction model. ResConvLSTM: Residual ConvLSTM block;
FCs: Fully-Connected Layers, i.e. Dense layers.

results, together with the meta-feature of time, to generate the final prediction. Each of the

three dependence sequences is then fed into a designated network with the same structure

but different weights to get the three predictions Yc
t , Y p

t and Yq
t , respectively.

In the following, we will briefly explain the key stacking blocks in Figure 3.5,

including the ConvLSTM layer, the ResConvLSTM block, the FC layer and temporal

properties fusion.

1. ConvLSTM layer.

The Long Short-Term Memory (LSTM) network, one of the well-known recurrent

neural networks, has achieved great success in many applications such as sequence

modeling and especially sequence prediction [33, 43, 105]. Despite its strong abil-

ity in modeling temporal dependences of sequences, LSTM ignores spatial informa-

61

Figure 3.6: The inner structure of ConvLSTM. The LSTM matrix multiplication is re-
placed with convolution.

tion when the sequence data is multi-dimensional. To overcome this drawback, Shi

et al. [103] proposed the Convolutional LSTM (ConvLSTM) which innovatively

uses a convolution operator in the state-to-state and input-to-state transitions (see

62

Figure 3.6). The key equations in ConvLSTM are shown as follows:

it = σ(Wxi ∗Xt + Whi ∗ht−1 + Wci ◦ ct−1 + bi)

ft = σ(Wx f ∗Xt + Wh f ∗ht−1 + Wc f ◦ ct−1 + b f)

ct = ft ◦ ct−1 + it ◦ tanh(Wxc ∗Xt + Whc ∗ht−1 + bc)

ot = σ(Wxo ∗Xt + Who ∗ht−1 + Wco ◦ ct + bo)

ht = ot ◦ tanh(ct)

(3.1)

where t iterates from 1 to T − 1. The variables Xt, ct, ht, it, ft, and ot are tensors

to represent values of the inputs, cell outputs, hidden states, input gates, forget

gates and output gates. σ is a logistic sigmoid function. The operator ◦ denotes

the Hadamard product, i.e., element-wise product of matrix. And ∗ denotes the

convolution operator instead of matrix multiplication, which is a key difference

from FC-LSTM [33]. At last, W∗ and b∗ are weight and bias matrices parameters

which need to be learned during training.

2. ResConvLSTM block.

It is well known that deeper networks can model more complex functions and thus

are more expressive. However, networks that work well in practice usually cannot

be very deep. This is due to the vanishing gradient problem. To avoid this vanishing

gradient problem and make the design of a deeper network possible, [38] proposed

skip connections which directly link the output of lower layers to the input of higher

layers. This shortcut has proven to be effective to alleviate the vanishing gradient

problem in the training process and achieved significantly better performance in

63

many applications. Recently, [69] has shown that skip connections can also help to

prevent the loss function from being chaotic, leading to a more convex loss function,

and thus, making it easy to find a good local minimum. Essentially, a residual

building block can be defined as:

Y = F (X) + X, (3.2)

where X and Y are the input and output tensors of the residual block. The function

F represents several convolutional or ConvLSTM layers [39, 137, 138]. We use the

ConvLSTM [103] to assemble the residual block, which is illustrated in Figure 3.7.

This is a key difference from ST-ResNet [137] which uses a regular convolutional

layer instead as shown in Figure 3.7.

+BN ReLU CL BN ReLU CL

Figure 3.7: ResConvLSTM block. BN: Batch Normalization; ReLU:
Rectifier Linear Unit; CL: ConvLSTM

3. FC layer.

To help capture the regular time-varying changes, meta-data features such as time-

of-day, day-of-week are also hooked in the model by stacking two fully-connected

layers. The first is an embedding layer for features and the second maps from low

to high dimensions to make the output have the same shape as the target [137].

4. Temporal Properties Fusion

Zhang et al. [137, 136] pointed out that in spatiotemporal data sequences, mak-

64

ing predictions on the future observations does not only rely on the observations

of recent time but also depends on those in near history and distant history. Such

temporal dependencies are modeled as temporal closeness, period and trend. More

specifically, the temporal closeness dependence sequence is a lc-long list of con-

secutive observations before the current time step and can be denoted by Xc
t =[

Xt−lc Xt−(lc−1) · · · Xt−1

]
. The temporal period dependence sequence is a lp-

long list of historical observations which are chosen with a time interval p: Xp
t =[

Xt−p·lp Xt−p·(lp−1) · · · Xt−p·1

]
. Similarly, the temporal trend dependence se-

quence is a defined as a lq-long list of historical observations which are also peri-

odically chosen but with the time interval q: Xq
t =

[
Xt−q·lq Xt−q·(lq−1) · · · Xt−1·q

]
.

In practice, p is set to a period of one-day to capture daily periodicity and q is set

to one-week to reveal weekly trend.

Each of Xc
t , Xp

t and Xq
t are separately fed into three designated neural networks,

which have the same structure but different weights, to generate observation pre-

dictions Yc
t , Y p

t and Yq
t , respectively. At last, a parametric-matrix-based fusion is

adopted to combine the three outputs Yc
t , Y p

t and Yq
t to yield the final prediction

Yt [137] using the following equation:

Yt = Wc ◦Yc
t + Wp ◦Yp

t + Wq ◦Yq
t (3.3)

where W∗ are weight matrices that balance different components. Additionally,

features such as the time of the day and the day of the week can also be incorporated

into Yt using fully-connected layers.

65

Except for the output ConvLSTM layer which has only 1 hidden state, all ConvL-

STM layers are configured to have 32 hidden states. Since we only focus on predicting the

expected spatiotemporal tweet count for the next time step, we set the output ConvLSTM

layer to return one prediction sequence.

We define the size of the filter in our ConvLSTM to be 3× 3. This is because the

spatial correlation of tweet count data is quite local, i.e., the number of tweets in a grid is

correlated with the ones in the nearby grids instead of grids farther away. For example,

(a) (b)

Figure 3.8: Histogram of moving distance of Twitter users. We only consider Twitter
users who have 2 or more geotagged tweets in the 3-hour time period starting
from 18:30 on 2016-06-15. The moving distance of a user is calculated as the
largest distance between the GPS coordinates in his geotagged tweets.

Figure 3.8 shows the histogram of moving distance of Twitter users during a time period

of 3 hours in the city of Seattle and NYC, respectively. We notice that the majority of

Twitter users travel less than 500 meters, i.e. less than the size of a grid cell.

Comparing with ST-ResNet [137], we replace its regular convolutional layers with

ConvLSTM, as the latter is more powerful in capturing temporal dependence. Moreover,

we stack only one residual block, instead of multiple blocks, because we empirically

66

notice that adding more layers to our model cannot improve the performance of the model

and sometimes results in over fitting. This also corresponds to the fact that Twitter users

in our dataset usually have shorter moving distances.

3.4.1.2 From Prediction To Unusualness

We define the prediction error to be ET = YT −XT , where XT is the latest tweet

count on a spatial M × N grid and YT is the prediction of XT . ET (m,n) indicates the

prediction error of the grid cell (m,n). Intuitively, a significant negative ET (m,n) indicates

a local event as there were many more tweets than usual. Following [58], we define

precision of our prediction model to be σET , where σET (m,n) is the standard deviation of

the grid cell (m,n) w.r.t. its history of prediction errors ET (m,n) = {· · ·ET−1(m,n),ET }. To

account for the precision of the prediction model, we re-define the prediction error as:

E′T = ET �σET (3.4)

where � denotes the element-wise division operation.

To detect unusual grid cells using E′T , we utilize an image restoration framework

called Deep Image Prior [108]. Our intuition is that the unusualness in E′T is like spike

noise in an image, and Deep Image Prior can be used to denoise corrupted images without

prior knowledge of training data. Suppose that E′′T is the restored image of E′T , and

∆E′T = E′′T −E′T , we claim a grid cell (m,n) is unusual if

|∆E′T (m,n)−µ∆E′T | ≥ k∆E′T ·σ∆E′T (3.5)

67

where µ∆E′T and σ∆E′T are the mean and standard deviation of grid cells in ∆E′T , re-

spectively. k∆E′T is a predefined threshold for determining the unusualness of a grid cell.

Different from [58], our approach accounts for both history of a grid cell and information

of other cells on the whole region when detecting unusualness in a location. This is im-

portant in differentiating global events which might cause an unusual number of tweets

on a local grid cell.

3.4.2 Ranker

The seeker module described above outputs a set of unusual grid cells. In this

section, we make a ranking of these unusual locations to identify the top ones that are most

likely corresponding to the occurrence of local events, by addressing temporal burstiness,

spatial burstiness and topical coherence.

3.4.2.1 Temporal Burstiness

For a grid cell (m,n), suppose that YT (m,n) represents a history of estimations on

its number of tweets up to the time step T , and is defined as:

YT (m,n) = {· · ·YT−1(m,n),YT (m,n)} (3.6)

Then we use z-score to quantify the grid cell (m,n)’s temporal burstiness [134] at

T , denoted as T BT (m,n) and defined as:

T BT (m,n) =
XT (m,n)−µYT (m,n)

σYT (m,n)
(3.7)

68

where µYT (m,n) and σYT (m,n) are the mean and standard deviation of YT (m,n), re-

spectively. Recall that XT (m,n) is the actual number of tweets in grid cell (m,n) at time

step T .

3.4.2.2 Spatial Burstiness

Given a grid cell (m,n), the spatial burstiness is measured by the spatial density

distribution of keywords of the tweets in (m,n). The intuition is that a low spatial density

distribution means that the keyword is widely spread over space and a high distribution

means that the keyword occurs only at a few locations. Therefore, the keywords in local

events should have higher spatial density distribution to be spatially bursty.

Suppose that DT (m,n) is the tweet set in grid cell (m,n) at T , and WT (m,n) is

the set of keywords (e.g., after removing stop words) in (m,n), i.e.,WT (m,n) = {w | w ∈

txtd and d ∈ DT (m,n)}. Let S DDw
T (m,n) be the spatial density distribution of keyword w

in grid cell (m,n) at T , i.e.,

S DDw
T (m,n) =

of w in grid cell (m,n)∑
(m′,n′)∈M×N

of w in grid cell (m′,n′)
(3.8)

We now define the spatial burstiness of grid cell (m,n) as:

S BT (m,n) =
∑

w∈WT (m,n)

S DDw
T (m,n) (3.9)

69

3.4.2.3 Topical Coherence

The topical coherence is to capture the semantical similarity of tweets in a grid

cell. In other words, the tweets posted on the same event should be discussing similar

content and probably using similar vocabularies. Twee2Vec [28] learns the vector-space

representations of tweets using a character-based bi-directional recurrent neural network

model, and has been demonstrated to have good performance in the application of clus-

tering semantically similar tweets together [109]. To measure the topical similarity be-

tween tweets, we use Tweet2Vec implementation1 to encode a textual tweet in character

sequence to a vector embedding with a default dimension size of 500.

Let TS (d′,d′′) be the topical similarity between tweets d′ and d′′. To measure

the topical coherence of the tweets in cell (m,n), we construct a graph, called the Tweet

Influence Graph.

Definition 3. (Tweet Influence Graph). The tweet influence graph on the grid cell (m,n)

at T , is an undirected graph GT = (VT ,ET) where VT is the set of all tweets in DT (m,n),

ET is the set of edges between tweets, and the weight of an edge between d′ and d′′ is

their topical similarity TS (d′,d′′).

We now employ PageRank [90], a random walk procedure, on the tweet influence

graph to bring orders to the influence of tweets in DT (m,n) and thus identify the top k

tweets with the most influence, denote byDk
T (m,n). The topical coherence is thus defined

1 https://github.com/vendi12/tweet2vec_clustering

70

https://github.com/vendi12/tweet2vec_ clustering

as:

TCT (m,n) =

∑
d′∈Dk

T (m,n),d′′∈Dk
T (m,n)

TS (d′,d′′)

k2 (3.10)

The rationale is that if the tweets in DT (m,n) are about the same local event, then

the most topically influential tweets should have higher topical similarity between each

other. One may point out that such a topical coherence measurement would suppress a

grid cell having multiple topically unrelated ongoing events. We argue that such a case is

very rare with a fine space and time discretization.

3.4.2.4 Ranking Function

As the final step, we now define the ranking score of the grid cell (m,n) by aggre-

gating its temporal burstiness, spatial burstiness and topical coherence, after rescaling

them to [0,1] with respect to other grid cells:

RT (m,n) = T B′T (m,n) ·S B′T (m,n) ·TC′T (m,n) (3.11)

where T B′T (m,n) = (T BT (m,n)− T Bmin
T)/(T Bmax

T − T Bmin
T) with T Bmax

T and T Bmin
T

being the maximum and minimum of topical burstiness among all grid cells at T . Spatial

burstiness and topical coherence are rescaled in the same way, receptively.

71

3.4.3 Expander

Suppose that we choose the top K unusual grid cells after ranking at T , and claim

that they are the candidates most likely to be local events inDT . In reality, different local

events might have different spatial and temporal ranges, e.g., spanning over a larger region

than the grid cell size ∆l ∗∆l or for a longer duration than the time discretization interval

∆t. We therefore, in this section, try to infer the spatiotemporal range of these local event

candidates.

The basic idea of expander is to connect (spatially or temporally) nearby grid cells

if they share similar content. As presented in Algorithm 1, the expansion consists of two

parts: temporal expansion and spatial expansion. The temporal expansion checks whether

the occurrence of previous event candidates continues to the present, and updates them

if so. The spatial expansion examines whether nearby grid cells are relevant to the same

event.

During the expansion, for each event candidate, we maintain a grid cell as its event-

focus grid cell. The event-focus grid cells are initially set to be the most unusual cells

(i.e., the top ranking cells in Equation 3.11). As time proceeds, the event-focus grid

cell of an event might stay at the same grid cell (e.g., a sit-down protest), or move to

another one (e.g., a demonstration protest), or simply no longer exists (e.g., the ending

of an event). Meanwhile, new event-focus grid cells might join as well if new events

happen. Note that during the spatial expansion, several event-focus grid cells might exist

adjacently and need to be merged if they are about the same content. For a given cell

(m,n), we denote by S ECT (m,n) (Spatial Expansion Cells) the cells for it to examine

72

for spatial expansion at T , and similarly T ECT (m,n) (Temporal Expansion Cells) for

temporal expansion. S ECT (m,n) and T ECT (m,n) are defined as follows.

S ECT (m,n) = {(m± i,n± j)T | i, j ∈ {−1,0,1}} \ {(m,n)T }

T ECT (m,n) = S ECT (m,n)∪{(m,n)T }

(3.12)

The spatial range for expansion is currently set to adjacent cells incident at an edge

or vertex and can extend further if necessary.

Whether or not two adjacent grid cells are connected depends on their content sim-

ilarity. We treat each grid cell containing its tweets as a document and thus build a term-

document matrix. In this matrix, each row represents a token (non-stop words) in tweets,

each column represents a document, i.e., a grid cell, and each element can refer to the

token frequency (or TF-IDF) per document. Next, the content similarity between two

grid cells can be calculated by their corresponding column vectors under the metric of co-

sine similarity. More advanced document similarity techniques such as Latent Semantic

Analysis (LSA) [61] may further be applied on the term-document matrix to measure the

similarities between documents at a lower rank. It is, however, usually a time-consuming

process due to the introduction of Singular Value Decomposition (SVD). For approxima-

tion as well as efficiency, we limit each column vector to contain the information on its

most frequent kcs tokens during cosine similarity calculation, where kcs is a predefined

value.

73

Algorithm 1: Expander
Input: CT−1 — the set of event-focus grid cells at time T −1, C′T — the top K

ranking grid cells at time T (i.e., the newly identified event-focus grid
cells), εcs — content similarity threshold.

Output: The updated event-focus grid cells CT at time T
/* Temporal Expansion */

1 foreach event-focus grid cell (m,n)T−1 ∈CT−1 do
// TCCT (m,n) are the grid cells at time T
// that are temporally connected to (m,n)T−1

2 TCCT (m,n)←− { c | c ∈ T ECT (m,n),
εcs ≤ ContentSimilarity(c, (m,n)T−1)} ;

3 if TCCT (m,n) , then
4 c′ = argmax

c∈TCCT (m,n)
ContentSimilarity(c, (m,n)T−1) ;

// c′ is now a new event-focus grid cell
// transited from (m,n)T−1

5 C′T ←−C′T
⋃
{c′};

/* Spatial Expansion */
6 foreach event-focus grid cell (m,n)T ∈C′T do

// S CCT (m,n) are the grid cells at time T
// that are spatially connected to (m,n)T

7 S CCT (m,n)←− { c | c ∈ S ECT (m,n),
εcs ≤ ContentSimilarity(c, (m,n)T)} ;
// If (m,n)T is spatially connected to other
// event-focus grid cells, merge them.

8 if S CCT (m,n)
⋂

C′T , then
9 Temp = (S CCT (m,n)

⋂
C′T)

⋃
{(m,n)T };

10 c′ = argmax
c∈Temp

TopicalCoherence(c) ;

11 C′T ←− (C′T \Temp)
⋃
{c′};

12 return C′T

3.4.4 Summarizer

The module of summarizer selects the most representative tweets from a cluster of

tweets in an event, and thereby produce a succinct description. When summarizing an

event across several time steps, the tweets at the latest time step T are preferred to earlier

ones in order to reflect the newest dynamic updates on events.

The general idea of event summarization expects that the tweets associated with

74

the event demonstrate a meaningful description of the event for human consumption [58].

For this purpose, we exploit the most influential tweets in the grid cells. As discussed

in Section 3.4.2.3, Dk
T (m,n) consists of the top k tweets with the most influence at the

grid cell (m,n). The summarization works as follows. First, if an event is limited to

one grid cell, then its top k tweets are the summarization set of tweets. i.e., Dk
T (m,n).

Second, if an event impacts several grid cells, then we look at the top grid cells with the

largest topical coherence scores defined in Equation 3.10 to select which tweets to form

the summarization. To be specific, suppose that an event e’s spatial impact at T consists

of a set of grid cells, denoted by S Ie
T . The subset of S Ie

T used for summarization is defined

as:

S IS ume
T = {(mi,ni)| i = 1 · · · k′} (3.13)

where 1 ≤ k′ ≤ k, specifying that the summarization tweets are only from the top-k′

grid cells with the largest topical coherence scores in S Ie
T . The topical coherence score

in each grid cell weighs how many tweets it will contribute to the summarization. For

example, let TCT (mi,ni) be the i-th largest topical coherence score, then the number of

tweets its grid cell (mi,ni) should contribute is:

ki = round(
TCT (mi,ni)∑k′
1 TCT (mi,ni)

)∗ k (3.14)

Such ki tweets come from the top k influential tweets in (mi,ni), denoted by Dki

T (mi,ni).

75

Therefore, the summarization tweet set is:

S umTweetse
T =

k′⋃
i

Dki

T (mi,ni) (3.15)

3.5 Online Modifications

In this section, we present the modifications that allow DeLLe to process tweets in

an approximately online way. The major modification is to utilize a continuously moving

sliding window instead of disjoint intervals of time. For example, suppose that the current

time is t, the window length is ∆t, and the current sliding window is at [t− 2∆t, t−∆t).

Then the next sliding window to consider in the online processing is at [t− 2∆t + ∆s, t−

∆t + ∆s), instead of [t−∆t, t) as in the batch mode. ∆s denotes the moving step length in

the sliding window. In what follows, we describe the changes to the modules in the batch

mode needed to enable online processing.

Seeker In the online processing, with a small moving step ∆s, two consecutive slid-

ing windows mostly overlap each other and might present little difference. Consequently,

if the prediction model takes the previous consecutive windows as the input, it probably

generates a prediction very similar to the current sliding window and thus fails to detect

anomalous aggregation of tweets. Therefore, to make predictions in the online processing,

we still use the data in the previously disjoint time interval as the input. For example, the

last time interval in the closeness sequence used for predicting the tweet count at [t−∆t, t)

is [t−2∆t, t−∆t), instead of [t−∆t−∆s, t−∆s), which is the last sliding time window.

Ranker As the sliding window proceeds, the tweets in the grid cells may also

76

change, as well as the scoring factors in the ranking Equation 3.11. Recalculating some

scores like spatial burstiness and topical coherence from scratch can be very time-consuming.

Therefore, we leverage historical results to update the changes caused by inserting new

tweets as well as deleting old tweets. For example, in updating the spatial burstiness

scores, the system maintains a keyword list which specifies the frequency of a keyword’s

appearance in each grid cell. Thus, only simple addition or subtraction is necessary for up-

dating frequencies of words. The more complex changes come from updating the scores

of topical coherence as the tweet influence graph may evolve when inserting new tweets

or deleting obsolete tweets. To handle such changes, we exploit OSP [125], a fast random

walk algorithm on dynamic graphs using Offset Score Propagation. The core idea of OSP

is to first calculate an offset seed vector based on the adjacency difference between old

and new graphs.Next, such a seed vector is propagated across the new graph, resulting in

offset scores. Finally, OSP adds up the old and offset random walking scores to get the

final scores.

Expander The most time-consuming part in this module is calculating the content

similarities between grid cells using their most frequent keywords, which may change as

news tweets come in or old tweets go away. For a fast implementation, each grid cell

maintains a local heap to track the top frequent keywords in it.

Summarizer The summarizer is easy to modify for online processing because the

topical coherence of each grid cell and its most influential tweets have already been cal-

culated in the modified ranker module. Therefore, the essential task is to, for each event,

maintain a list of top-k′ grid cells with the largest topical coherence scores, by using a

priority queues.

77

3.6 Evaluation on Tweet Count Prediction

All the experiments in this study are completed on an Nvidia GPU Quadro P6000

and the models are built using Keras [22] libraries with TensorFlow [1] as the backend.

3.6.1 Datasets

We use two sets of geotagged tweets collected from 2015-07-09 to 2017-09-30 in

two cities: Seattle, WA (SEA) and New York City (NYC) to carry out all our experiments.

The total number of tweets in each dataset is 1,025,181 and 10,084,839 , respectively.

Geotagged tweets are those that contain a pair of longitude and latitude coordinates values

which indicate their location. These geotagged tweets are then aggregated into grid cells,

which are 500m×500m squares spanning from [47.579784, -122.373135] to [47.633604,

-122.293062] in SEA, and from [40.647984, -74.111093] to [40.853945, -73.837472] in

NYC, which correspond to their metropolitan areas, respectively. The two grid maps are

shown in Figure 3.9, respectively. In this study, we define the interval of a time step to be

30 minutes, an empirical trade-off between the prediction promptness and accuracy. For

example, the task of prediction prefers shorter temporal intervals as it gives more timely

results. Shorter temporal intervals, however, might be too small to aggregate enough

tweets for making high-quality prediction due to the sparsity of tweets.

Removing Spam Tweets We identify two types of tweets as spam: (1) The tweets

whose geographical coordinate values are the same as one of the city centers. Because

such tweets are likely posted by accounts who simply give out a nominal location address

(e.g., “Seattle, WA” and “New York City”) which are then automatically geodecoded by

78

(a) (b)

Figure 3.9: (a) 12×12 grid map in Seattle. (b) 46×46 grid map in NYC.

the Twitter location service to city centers. Such accounts send out geo-targeted tweets

spams such as “@tmj_sea_legal1” and they are very unlikely to be present exactly at the

city centers. We removed 224,335 and 0 tweets for Seattle and NYC in this step. (2)

The tweets that are posted by suspicious Twitter users who behave more like bots, e.g.,

publishing more than 5 tweets at exactly the same location and 3 or more of such tweets

are sent out only in 1 minute. We removed 204,800 and 44,389 tweets for Seattle and

NYC datasets in this step. After filtering out spam tweets, we now have 756,457 and

9,880,039 tweets in the Seattle and NYC datasets, respectively.

Normalization The values of the tweet count are scaled to [−1,1] using Min-Max

normalization [137]. Consequently, a tanh activation function is applied to the output for

a faster convergence [65, 137]. To compare with the groundtruth, the predicted values are

scaled back to normal ranges.

Training We split the data in each of the two cities into the training and the testing

79

dataset, where the testing dataset contains the last 28 days of the observation sequences

and the rest of the data belong to the training dataset. In so doing, we have 18,624

training samples and 1,344 testing samples for the city of Seattle, and 26,304 training

and 1,344 testing samples for New York City. The discrepancy between the numbers of

training samples are due to occasional missing data on some days for each of the two

cities. Following [137], our training procedure contains two steps. (1) To find a good

initialization of our model, We first train our model using 90% of the training data and

reserve the rest 10% as validation data. During this step, we apply early-stopping based

on the validation loss. (2) After that, we continue to train our model on all the training

data for another fixed number of epochs (e.g. 100 epochs). The loss function used in the

training process is the Mean Squared Error.

By default, the periodicity and trend interval p and q are set to one day and one

week, respectively. The lengths of the dependence sequences are set to lc = 3, lp = 1 and

lq = 1.

3.6.2 Baseline Approaches

We choose the following seven methods as the baseline approaches:

• ZERO: a naive baseline approach which simply yields predictions of 0s for all tweet

count.

• ARIMA: Auto Regressive Integrated Moving Average (ARIMA) model is a time

series analysis model for understanding the time series data or predicting future

points in the series [42].

80

• SARIMA: Seasonal ARIMA, which additionally considers possible seasonal effects.

• Eyewitness: Eyewitness [58] uses gradient boosting regressors to train a regression

function by considering features such as the time of the day, the day of the week

and tweet counts from neighboring regions.

• ST-ResNet: ST-ResNet [137] is the currently state-of-the-art method used in spa-

tiotemporal data prediction which is a strong baseline. Different from the proposed

method, it uses regular convolution layers instead of convolutional LSTM layers.

By default, ST-ResNet uses one residual block, which achieves the best results on

our dataset. The effects of stacking multiple residual blocks will be further explored

in Section 3.6.4.4.

• ConvLSTM × 3: a baseline approach that simply stacks three layers of ConvLSTM

in order to contrast the effectiveness of a residual block over a ConvLSTM layer. It

replaces the Residual ConvLSTM block with a ConvLSTM layer in Figure 3.5.

• ConvLSTM × 4: a baseline approach that stacks four layers of ConvLSTM in order

to contrast the effectiveness of the skip connection in the residual block. We define

this model by simply removing the skip connections in our proposed model.

3.6.3 Evaluation Metric

The results are measured by the Root Mean Square Error (RMSE):

√√
1
n

n∑
i=1

(Yi−Xi)2 (3.16)

81

where n is number of testing cases, and Yi and Xi are the prediction and groundtruth

values, respectively.

3.6.4 Experimental Results

We start with an illustration of two predication examples, followed by a comparison

between our proposed method and the six baselines mentioned in Section 3.6.2. Then we

study the effectiveness of temporal dependence sequences and the effect of deeper neural

networks.

Figure 3.10 presents the prediction results using our model for the two tweet count

distribution examples. The denotation in each grid cell is in the form of “prediction|groundtruth”,

referring to the prediction vs. groundtruth number of tweet count. The numbers in red

are predictions. No denotation in a cell means a correct match with the groundtruth. The

results show that both of the predictions are generally good matches to the groundtruth

by being able to capture the overall distribution of tweets as well as yielding only a slight

difference for grid cells that have larger values of the tweet count. The error is mostly

caused from predicting empty tweets for grid cells which have only one tweet. Such a

situation is relatively arbitrary in the sense that the occurrence of such a tweet can be

sporadic, which makes it hard to predict.

3.6.4.1 Compare with Baselines

Table 3.2 shows the results of seven baselines and the proposed method on two

cities: Seattle and New York City. Simply generating prediction of 0s (ZERO) for every

82

0|1 0|1

0|1

0|1

0|1

2|3 1|21|4

8|7

6|4

2|0

(a)

0|1

1|2 1|0 1|0

6|7

5|4

2|4

2|6

(b)

Figure 3.10: (a) Prediction example of tweet count distribution around the Seattle city
center at 17:00-17:30 on 2016-07-16. (b) Prediction Example of Tweet
Count Distribution around around the Seattle city center at 17:30-18:00 on
2016-07-16. (The denotation in each grid cell is in the form of “prediction |
groundtruth”, referring to the prediction vs. groundtruth number of tweets.
The numbers in red are predictions. No denotation in a cell means a correct
match with the groundtruth.)

grid cell performs much worse than all other methods. We notice that ST-ResNet outper-

forms all the other methods except the proposed one, showing its effectiveness. Using

ConvLSTM achieves comparative results to ST-ResNet. We believe that this is because

of the ability of ConvLSTM to model the spatial and temporal information well. The

proposed method outperforms all the baselines and achieves state-of-the-art results. It

achieves significantly better accuracies than both ConvLSTM × 3 and ConvLSTM × 4,

which illustrates the effectiveness of the skip connections. As mentioned in [69], the loss

functions of deeper networks are more likely to be chaotic, while adding skip connections

can prevent this leading to a more convex loss function which is easier to train.

83

Method Seattle NYC
ZERO 0.6353 1.2054
ARIMA 0.5117 0.5301
SARIMA 0.5242 0.5340
Eyewitness 0.4580 0.5332
ST-ResNet 0.4344 0.5166
ConvLSTM × 3 0.4659 0.5232
ConvLSTM × 4 0.4557 0.5278
Our Model 0.4164 0.4879

Table 3.2: Comparison results (RMSE) on city of Seattle and NYC.

3.6.4.2 Effects of period and trend Dependence

We now investigate the performance of our model with and without utilizing pe-

riod and trend information. We set the corresponding length variables lq (lq) to 0 or

1 to indicate whether the model is configured to use such information. The results are

presented in Figure 3.11a. It shows that only using closeness information may perform

even worse than the baselines and justifies the exploitation of period and trend depen-

dence sequences. Nevertheless, in this study, we found that longer (> 2) period and trend

dependence sequences do not always yield better accuracy.

3.6.4.3 Effects of Length of closeness Dependence Sequences

In this subsection, we study whether a longer closeness dependence sequence can

help achieve better performance in method ST-ResNet and in our model. The results are

illustrated in Figure 3.11b. It can be seen that both models are able to achieve slightly

better accuracy when the length begins to increase, but the performance saturates or be-

comes worse after lc reaches 4. One possible reason is that the tweets that happened a

84

(l
p
, l

q
) settings

(0, 0) (0, 1) (1, 0) (1, 1)

R
M

S
E

0.9

0.8

0.7

0.6

0.5

0.4

Our Model (SEA)

ST-ResNet (SEA)

Our Model (NYC)

ST-ResNet (NYC)

(a)

l
c
: length of closeness sequence

1 2 3 4 5 6

R
M

S
E

0.6

0.5

0.4

Our Model (SEA)

ST-ResNet (SEA)

Our Model (NYC)

ST-ResNet (NYC)

(b)

Figure 3.11: (a) Effects of using period and trend dependence or not. (b) Effects of length
of closeness sequences. Note that the higher the curve, the smaller the RMSE
value.

longer time ago may not provide much information for predicting the tweet at the current

time. Meanwhile, our model has higher gains than ST-ResNet because recurrent structure

is more powerful in capturing temporal information. Moreover, we notice that ST-ResNet

is more sensitive to tweets posted a longer time ago as the performance drops dramatically

when lc = 4 for Seattle and lc = 5 for New York City.

3.6.4.4 Effects of Building Deeper Networks

In general, we found no significant gains by stacking more residual ConvLSTM

blocks in our method ResConvLSTM. Take the city of Seattle for example, Figure 3.12

illustrates the results of stacking {0,1,2,4} residual blocks using RMSE metrics. It shows

that two or more layers can not guarantee to achieve better results, although the perfor-

mance deteriorates if no residual block is used at all. The situation is similar when it

comes to stacking more residual convolutional blocks in baseline approach ST-ResNet.

85

We believe this is due to the following two reasons: (1) As discussed in [69], deeper

networks usually have a more chaotic loss function, making them difficult to train. (2)

Deeper networks are more likely to suffer from over fitting.

number of residual blocks

0 1 2 4

R
M

S
E

0.50

0.48

0.46

0.44

0.42

0.4

Our Model (SEA)

ST-ResNet (SEA)

Figure 3.12: Results of stacking more residual blocks in the city of Seattle.

3.7 Evaluation on Local Event Detection

DeLLe is implemented in Python and evaluated on a computer with an Intel Xeon

E5 CPU, an Nvidia Quadro P6000 GPU and 64GB memory.

3.7.1 Experimental Settings

3.7.1.1 Datasets

The evaluation is performed on two sets of geotagged tweets collected in Sec-

tion 3.6.1 for two cities: Seattle, WA (SEA) and New York City (NYC) [116]. Their

86

geographical regions are two bounding boxes spanning from [47.579784, -122.373135]

to [47.633604, -122.293062] in SEA, and from [40.647984, -74.111093] to [40.853945,

-73.837472] in NYC as illustrated in Figure 3.9. We take the data from 2017-06-23 to

2017-07-23 for testing and local event detection.

3.7.1.2 Baseline Approaches

We compare with the baseline approaches described below:

• EvenTweet [5] first identifies temporal bursty keywords and spatial local keywords

and then clusters them to find local events.

• Eyewitness [58] finds tweet volume spikes in discretized time and space as potential

local events by comparing the actual number of tweets with the predicted value

using a regression model.

• GeoBurst [134] first generates candidate events by seeking pivot tweets based on

geographical and semantic similarities and then ranks them with spatiotemporal

burstiness to remove noisy ones.

• TrioVecEvent [131] first learns multimodal embeddings of tweets on the domains

of location, time, and text and then uses a Bayesian mixture clustering model to

find event candidates.

87

3.7.1.3 Parameter Settings

We run DeLLe in its batch mode by default and will evaluate its difference from

the online processing in Section 3.5. The major parameters in DeLLe are set as follows.

For space and time, we set the side length of grid cells ∆l = 500m and the length of time

interval ∆t = 30 minutes (by dividing a natural integral hour into two intervals) since such

values provide fine enough resolution for local event detection as well as yield good per-

formance for tweet count prediction [116]. As a result, we have a 12× 12 grid map in

SEA and 46×46 in NYC. For the moving step length in sliding windows, we set ∆s = 5

minutes, which is long enough for the online processing latency in our system. In the

seeker module, we set the length of closeness, period and trend to lc = 3, lp = 1 and lq = 1

as in Section 3.6 [116] because such a setting achieves the best prediction accuracy. We

set the threshold for determining the unusualness of a grid cell k∆E′T = 3, a commonly

used value for anomaly detection. As for the PageRank procedure to calculate topical co-

herence in the ranker module, we use the default damping factor 0.8 and run 20 iterations

in all cases. After tuning, in calculating content similarity between grid cells for expan-

sion, we set the number of frequent tokens kcs to 5 and the content similarity threshold εcs

to 0.7. We set k = 5 as the number of the most influential tweets used for calculating the

topical coherence as well as the number of tweets used to summarize a local event [134,

58]. In each time interval, we select at most K = 5 unusual grid cells as the local event

candidates. Because not every time interval does necessarily have K local events happen-

ing, we apply a simple heuristic for suppressing the negative candidates. It removes grid

cells having too few users (i.e., less than 5) or having a topical coherence score less than

88

0.8, which is a suggested lower bound for tweet clustering using Tweet2Vec [28, 109].

For fairness, we also similarly filter out the event candidates with less than 5 users for the

baseline approaches as well in the evaluation.

EvenTweet takes the same space partition as in DeLLe and similarly selects the top

K local event candidates. Since each event in EvenTweet is a cluster of keywords instead

of tweets, we use the implementation in [134] to retrieve the top k representative tweets.

Eyewitness exhaustively sweeps through a set of different space and time discretiza-

tion and is unsuitable for processing live tweet streams. We ease its settings by using the

same space and time discretizations in the batch mode of DeLLe. To select the top K local

event candidates, we rank them by the prediction error divided by the standard deviation

of the error of its regression function, which has shown to be an important feature in clas-

sifying events to be postivie or negative [58]. After that, each local event is represented

by by choosing k = 5 tweets with the highest frequency words.

For GeoBurst and TrioVecEvent, we adopt their default parameter settings and

implementations in [134] and [131], respectively. Since both methods require an input

time window to query the occurrence of local events, we set it as a list of disjoint ∆t-

size windows like the time discretization in DeLLe’s batch mode and choose the top K

candidates for comparison. Note that TrioVecEvent also classifies an event candidate to

be true or false, we therefore use the spatial deviation (i.e., lat/long deviations, which are

the two most important features in their classifier) to rank local events.

89

(a) Seattle, WA (b) New York City

Figure 3.13: Examples of true local events. The left is in Seattle, WA, and the right is in
New York City, respectively. (a) A baseball game of Yankees-Mariners at
Safeco Field (2017-07-20 7:00 PM). (b) NYC Pride March traversing down
Fifth Avenue (2017-06-25 10:30 AM).

(a) Seatlle, WA (b) New York City

Figure 3.14: Examples of false local events. The left is in Seattle, WA, and the right is in
New York City, respectively. (a) People talking about food near the Space
Needle (2017-07-22 4:30 PM). (b) People waiting for 4th of July fireworks
at East River (2017-07-04 5:00 PM).

3.7.2 Illustrative Cases

We select several positive and negative examples of local event detection and present

them in Figure 3.13 and Figure 3.14, respectively. Each example is described by 5 repre-

sentative tweets with locations plotted as red circles in the accompanying maps. Ahead of

each tweet is its publisher’s username. Note that multiple tweets may reside at the same

location causing overlapping and dark red circles.

Figure 3.13 illustrates two positive local events reported in DeLLe. Figure 3.13a

is about a baseball game between the Yankees and the Mariners held at the Safeco Field

in Seattle. Figure 3.13b is about NYC Pride March 2017 traversing southward down

90

Fifth Avenue in New York City. Those two events are very demonstrative as examples of

local events because they have exhibited the necessary properties DeLLewants to capture:

spatiotemporal unusualness regarding the number of tweets at a local place and topical

coherence regarding the content of aggregated tweets. The tweets selected to describe the

events are also representative to convey the necessary information. It is worth mentioning

that the tweets in Figure 3.13a fall closely to the common border of two neighboring

grid cells. The expander module in DeLLe effectively captures this case by connecting

spatiotemporally adjacent grid cells sharing similar content. These two examples also

appeared in the baseline approaches.

Figure 3.14 presents two cases of negative local events in EvenTweet and Eyewitness,

respectively. Figure 3.14a refers to an activity about people talking food near the Space

Needle in Seattle, WA. EvenTweet reported this activity as a local event since it finds

some spatiotemporal bursty keywords like “Bite”. This is because, when the day comes

around dinner time, that area seems to be a popular place for people to eat and thereby

aggregates tweets with similar keywords about food. Likewise, GeoBurst also falsely

reported a related geo-topic cluster because it groups together tweets mentioning similar

keywords on the topic and located geographically closely. Although such an activity may

attract enough tweets at a high rate at certain time (e.g., dinner time in the example), it

usually follows a periodic daily pattern and does not reflect any unusual event. Neither

Eyewitness or our method DeLLe reported this activity because both of them take routine

patterns into consideration. Similarly, TrioVecEvent classified it as a non-local event

too. This is because its multimodal embedding model also addresses the effect of time in

tweets and unveils typical words in different regions and time periods.

91

Figure 3.14b is an example of negative local event reported in Eyewitness. It is

about people waiting for the 4th of July fireworks show at East River Ferry Dock in New

York City. This is more like a national event in the United States because fireworks show

on Independence Day may happen at different places in a nationwide scale. When it

comes close to the evening, one may expect that tweets about fireworks suddenly increase

all over the country. Both GeoBurst and TrioVecEvent reported this nationwide event

too. This is because such an event is also geographically compact and more importantly,

semantically coherent. In contrast, we do not find the occurring grid cell of this event

ranked in the top unusual grid cell candidates in our method DeLLe. There are three

reasons behind this. First, the likelihood of unusualness in this grid cell was not high con-

sidering that other places were experiencing similar burstiness in tweet volume. Second,

the spatial burstiness was not strong either because similar keywords were being used ev-

erywhere. Third, the topical coherence in this grid cell deteriorated due to the presence of

lots of other tweets like “@511NY Cleared: Incident on #ServiceBus at Midtown”. Even-

Tweet did not report this event either because the keyword like “fireworks” and “july4th”

appeared adequately in other regions too and thus was considered not to be local to this

event’s occurring site.

3.7.3 Quantitative Analysis

3.7.3.1 Effectiveness

We first evaluate the different local event detection methods using precision, recall

and f-score. For precision, we recruited 3 volunteers to individually judge the detected

92

Method
Seattle, WA NYC

P R F # P R F
EvenTweet 354 0.391 0.390 0.390 1665 0.146 0.131 0.138
Eyewitness 273 0.769 0.593 0.670 1204 0.614 0.398 0.483
GeoBurst 354 0.517 0.517 0.517 1665 0.203 0.182 0.192
TrioVecEvent 240 0.858 0.582 0.694 1214 0.704 0.461 0.557
DeLLe 269 0.862 0.655 0.745 1128 0.741 0.450 0.560

Table 3.3: Comparison results using Precision, Recall and F-Score.

events and collect the results using the strategy of majority votes. The instructions given

to the judges are summarized as follows:

Each candidate of local event has a set of 5 tweets, accompanied by a mini map

showing their location. Local events may come from the city of Seattle, WA or New York

City. Please read the tweets and answer if they are talking about the same local event.

Local events can be about traffic accidents, sports games, parade, protests, gatherings

and crimes etc. National or global events such as national holidays are not considered to

be local. Daily life activities such as buying coffee in the morning and going out to eat

dinner in the evening are not local events either. In addition, if the presented tweets are

about totally different topics, then it is not an local event. If you can’t determine whether

the candidate is about a local event, label it as negative candidate too.

In lack of groundtruth on the set of events happened in the real world, we build a

pseudo groundtruth by assembling a set of distinct true positive local events reported in

different methods to calculate the recall and f-score. The comparison results are listed in

Table 3.3. It shows that DeLLe outperforms baseline approaches in most cases. In partic-

ular, a significant improvement is observed over EvenTweet and GeoBurst. DeLLe also

achieves comparatively better results to Eyewitness, showing the effectiveness of its un-

93

usualness detection and consideration of topical coherence. We notice that TrioVecEvent

outperforms all other methods except for the proposed one, showing its effectiveness of

multimodal embedding of location, time and text information in tweets.

0.887

0.818

0.869

0.785

0.862

0.768

0.862

0.76

0.862

0.741

1 2 3 4 5
K

0
20

0
40

0
60

0
80

0
10

00
12

00
N

um
be

r
of

 e
ve

nt
s

Positive events in SEA
Positive events in NYC
Negative events

(a)

1 2 3 4 5 6 7 8 9 10 11 12 13
Number of grid cells / time intervals

0
20

0
40

0
60

0
80

0
N

um
be

r
of

 p
os

iti
ve

 e
ve

nt
s

Spatial Region Size in SEA
Temporal Size in SEA
Spatial Region Size in NYC
Temporal Size in NYC

(b)

Figure 3.15: (a) Precision with different K values. (b) Temporal span and spatial region
size of positive local events in DeLLe.

To evaluate the sensitivity of K, Figure 3.15a illustrates the number of positive

local events out of the total detected ones in DeLLe when K varies. The decimal number

above each bar represents the precision. In general, the precision decreases as K increases

because a larger K likely outputs more negative local events, even thought it may also give

more positive ones. We notice that the precision and the number of positive local events

nearly maintain the same in SEA after K = 2 and NYC after K = 3.

Figure 3.15b plots the distributions of positive local events in DeLLe regarding the

temporal span (i.e., number of time intervals) and spatial region size (i.e., number of grid

cells). The results show that the majority of the events fall within one single time interval

and one grid cell. This validates our settings in the time and space discretization.

94

3.7.3.2 Efficiency

To investigate the efficiency, after each time interval ends, we record the time spent

in processing the tweets aggregated during that interval for the 5 different methods. The

results are reported on the NYC dataset as it contains relatively more tweets. The total

number of time intervals is 1,488.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Time (seconds)

1
0

0
1

0
1

1
0

2
1

0
3

N
u
m

b
e
r

o
f
b
a
tc

h
e
s
 (

ti
m

e
 i
n
te

rv
a
ls

)

Our Method
EvenTweet
Eyewitness
GeoBurst
TrioVecEvent

(a) (b)

Figure 3.16: Distributions on the numbers of time intervals over their processing times in
(a), and over their number of tweets in (b).

Figure 3.16a presents the distributions of time intervals over their processing time

in different methods. To have an idea of the number of tweets in each time interval, we

plot its histogram in Figure 3.16b. Among the three methods that exploit space partition

strategy (i.e., EvenTweet, Eyewitness and DeLLe), Eyewitness in general is the most effi-

cient method because it does not require sophisticated tweet text processing except when

summarizing its detected event. DeLLe has achieved similar efficiency with Eyewitness

in majority cases, even though a few of the cases sometimes take as long as 15 seconds.

The major overhead lies in computing topical coherence in the ranker module as well as

95

content similarity in the expander module. These steps, however, are only necessary when

an unusual grid cell appears. Simply running the seeker module to identity potential local

event candidates is very fast and takes 0.06 seconds on the average. EvenTweet is less ef-

ficient than the other methods due to its calculation of spatial entropy to identify spatially

local keywords and then performing clustering. Although GeoBurst and TrioVecEvent

have excellent efficiency as well, their implementations [134, 131] require certain prepro-

cessing steps on the tweets like extracting keywords and keyword co-occurrence relation,

which would take considerably more time.

3.7.4 Online Modifications

The batch mode of DeLLe divides the temporal dimension into disjoint time inter-

vals, i.e., {· · · [t−2∆t, t−∆t), [t−∆t, t)}. In practice, some local events may fall across these

interval boundaries. We made online modifications in Section 3.5 for handling this issue.

In this section, we investigate the effectiveness and efficiency of these modifications on

the NYC dataset.

Effectiveness is evaluated by example how many local events detected in the batch

mode are also detected in the online processing and meanwhile how many local events

the batch mode misses. For comparison, we here claim that two local event candidates

refer to the same occurrence if i) their content similarity is greater than 0.7; ii) their time

centroids (i.e., the average publish time of the tweets) are within 2∆t (i.e., one hour); iii)

they come from the same grid cell. Figure 3.17a shows the Venn diagram of different sets

of local event candidates generated in batch and online mode. For comparison, we also

96

(a)

1 3 5 7 9 11 13 15 17 19

Time (seconds)

1
0

0
1

0
1

1
0

2
1

0
3

1
0

4

N
u
m

b
e
r

o
f
s
lid

in
g
 t
im

e
 w

in
d
o
w

s

(b)

Figure 3.17: (a) Venn diagram on the sets of events in batch mode and online mode. (b)
Distribution of time spent in online mode.

include one variant of the batch mode, called Batch 1
2 ∆t, which offsets the disjoint time

intervals by 1
2∆t, i.e, {· · · [t − 5

2∆t, t − 3
2∆t), [t − 3

2∆t, t − 1
2∆t)}. The Venn diagram shows

that the online mode, with help of the flexible sliding time window, has chances to screen

different interval settings on the temporal dimension and indeed discovers more local

events. We also found that Batch 1
2 ∆t has slightly more events than the original batch mode

(i.e., dividing an integral hour into two time intervals). This is reasonable in the sense that

although the latter time division fits more with the habits of people for planning events,

people are likely to post tweets before an event starts when they have chances.

For evaluating the efficiency, we similarly record the processing time for each step

in the sliding moving window. The results are presented in Figure 3.17b. Generally,

the online processing shows a similar trend with the batch mode except for more cases

falling after 10 seconds. After analyzing, we found that the major overhead lies in the

frequent invocation of the expansion procedure to connect temporally adjacent cells that

97

are semantically similar. Even so, the worst case takes less than 20 seconds in general

and is likely acceptable for many applications.

3.8 Conclusions

In this chapter, we presented DeLLe for detecting latest local events in geotagged

tweet streams. In essence, DeLLe first identifies spatiotemporal unusualness using a novel

prediction-based anomaly detection approach, and subsequently ranks them to identify

potential local events, by addressing both spatiotemporal burstiness and topical coher-

ence. Afterwards, DeLLe monitors the impact range for an ongoing local event in space

and time by tracking its movement with content similarity, and meanwhile selects in-

fluential tweets for summarization. The evaluation results on two selected cities show

that DeLLe outperforms competitive baselines in most cases, showing the effectiveness

of the proposed method.

The human evaluation yields a groundtruth of local events, and therefore enables the

exploration of learning to classify spatiotemporal unusualness into true/false local events

using features like burstiness and topical coherence. We leave this for our future work.

98

Chapter 4: Enhancing Local Live Tweet Stream to Detect News

4.1 Introduction

The popularity of Twitter arises from its capability of letting users promptly and

conveniently contribute tweets on a wide variety of subjects such as news, stories, ideas,

and opinions. As a result, with people discussing what is happening outside in the real

world by posting tweets, an invaluable amount of information on the real world news

is hidden in Twitter. Therefore, many researchers have devoted remarkable efforts to

discover this knowledge. For example, TwitterStand [102] is a news tweet processing

system that aggregates tweets from a sparsely sampled tweet source to detect news. This

is not a problem for major news stories since there are more than enough tweets to capture

them.

However this approach is too brute-force for smaller-scale local news where every

single tweet matters because such types of news may only span a very limited number of

tweets. Figure 4.1 shows a news story about the “Westborough Education Foundation”

that happened at around 6:30 PM on Oct 24, 2016 at Westborough, MA. We only found 6

tweets (8 if retweets are included) about this news by the time we captured the screenshot,

and none of them is geotagged, i.e., containing a pair of geographical lat/lon coordinate

values. No access to full tweets in Twitter makes data sparsity pervasive in Twitter’s

99

publicly accessible tweets, and further compromises the possibility of collecting all 6

tweets about this news. The challenge in capturing such news lies in being able to find

these tweets, cluster them into a news story, and then subsequently displaying it on a map.

Figure 4.1: A local news in Westborough, MA on Oct 24th, 2016.

In this chapter, we are interested in detecting news (a set of tweets) that are being

discussed by local people from a given place (e.g., Boston city), and meanwhile empha-

sizing on finding local news. The term “local news” refers to a news event that happens

at or is of great interest to the given place. For instance, the news story in Figure 4.1

may only be of interest to the local community and not much further beyond. Local news

can sometimes escalate to be of national/international interest such as when it is dramatic

(e.g., Boston Marathon bombing in May 2013). We want to capture both these types.

Other national and international stories that are discussed by local people (e.g., a presi-

dential election) are also in by providing a local perspective to larger news stories. Our

focus is primarily the former two classes of stories, and later in our experiments we eval-

uate how well we do with and without considering these national and international news

stories.

Identifying the news stories that are of great interest to a place requires a combina-

100

tion of approaches. It requires first finding users that reside and tweet about our place of

interest. To find such users, we implement an efficient online social network-based Twit-

ter user geotagging approach, which is to approximate the location of a Twitter user by

examining the publicly-known locations of his social friends (neighbors). The publicly-

known location, termed the profile-location, is provided in a Twitter user’s profile, but is

only available for around 20% (in our case, 32%) of Twitter users [24]. This makes the

procedure of geotagging Twitter users indispensable in our system. With the help of this

scheme and its efficiency, our system, Firefly, keeps trying to find as many as possible

active Twitter users from a given area and putting their posting statuses (tweets) to a local

live tweet stream to largely increase its number of local tweets.

Next, there is a larger problem of clustering these local tweets so that news can be

captured. For example, some features like bursty words [60, 84] or TF-IDF [102, 114] that

are commonly used to group tweets together might not work well with small local news

because such news span over a very limited number of tweets, and thus words in them

hardly bring about burstiness or yield distinguishing TF-IDF scores. Another category of

methods that only exploit geotagged tweets such as [58, 134] would simply miss the news

example in Figure 4.1 because few of its tweets are geotagged.

In this chapter, we utilize an idea of “locality-aware keywords” to capture the

changes in word-usage patterns caused by a news of limited local interest from the per-

spective of individual people. Essentially, the locality-aware keywords in each tweet are a

set of words that are used only recently by this tweet’s publisher and also at the same time

only appear in a limited number of other Twitter users’ tweets. Such locality-aware key-

words correspond to the aspects of a local news being “novel” as its nature of being new,

101

as well as having a small spread span among Twitter users. Take the one in Figure 4.1 for

example, “Westborough”, “Education”, “Foundation”, “Trivia” and “Bee” are considered

as locality-aware because they are new words used by this set of people.

To capture news from the enhanced local live tweet stream, we keep identifying and

updating locality-aware keywords from tweets that are in the latest 6-hour sliding time

window (The choice of 6-hour window is in recognition that television media usually

has four times of locally-oriented news broadcast in one day and thus is an appropriate

lifetime of local news), and group tweets together that share at least a number of locality-

aware keywords to form news clusters. Finally, in our system’s UI, a Twitter timeline

is created to post the news we detect from an area in real time. We also estimate the

geographic focus of detected news (tweets clusters) to display them on maps.

The main contribution of this chapter is summarized as follows:

• We implement an efficient online Twitter user geotagging procedure on Apache

Spark, which takes less than 3 seconds to geotag Twitter users appearing in 1000

tweets. Such efficiency is essential to maintaining the liveness of the enhanced local

tweet stream and furthermore the timeliness in news detection.

• Our enhanced local live tweet stream easily covers up a typical metropolitan area.

For example, in Boston, we are tracking 176K Twitter users, which is considered

sufficient since Boston has a population of 646K1 and that one-fifth of the USA

population are active Twitter users2.

• The design of locality-aware keywords emphasizes the word usage characteristics
1 http://www.census.gov/popest/about/terms.html
2 https://www.statista.com/statistics/274564/monthly-active-twitter-users-in-the-united-states/

102

http://www.census.gov/popest/about/terms.html
https://www.statista.com/statistics/274564/monthly-active-twitter-users-in-the-united-states/

of small, local news from the view of Twitter users who are discussing them (e.g.,

only a small number of people talk about them and they use words they didn’t use

before).

• We evaluate our system against a set of representative local news agencies as well as

a few baseline approaches. The results show that we achieve the highest news cov-

erage and at the same time, outperform the baseline approaches. More importantly,

our method detects hundreds of more local news in comparison with the methods

that solely utilize the existing Twitter’s publicly available tweet stream.

The rest of this chapter is organized as follows. Section 4.2 summarizes the related

work. Section 4.3 details the design and implementation of our system. Section 4.4

describes the experimental evaluation of our methods. Section 4.5 contains concluding

remarks as well as directions for future work.

4.2 Related Work

There is a large body of related work that deals with extracting useful patterns (e.g.,

news, events) from social media, Twitter in particular. Two recent surveys Atefeh and

Khreich [8], and Abdelhaq [2] provide an excellent description of different techniques.

We review some of the related work that deals specifically with the problem of detecting

local events. There are two broad categories of methods for taking location into consider-

ation when performing detection tasks, namely: location-anchored and event-anchored.

The essential difference is whether event or location is the primary clustering key. For

example, event-anchored methods first detect an event and then determine its location,

103

while location-anchored methods examine if an event happens at a certain location.

Location-Anchored Methods: Among the location-anchored methods are two popu-

lar approaches: model dimension extension and geographical space tessellation. Model

dimension extension treats geographical information as an additional variable to the exist-

ing models. For example, in calculating similarity between documents while performing

a clustering algorithm, geographical distance between tweets can be incorporated in the

clustering algorithm [70] to form potential events [134, 131, 112, 10]. Hong et al. [44] and

Zhou and Chen [140] and Wei et al. [117] treat geographical regions as latent variables in

their generative topic model.

Geographical space tessellation fills the map with small, non-overlapping cells. The

motivation here is that local news or events, which usually have an limited geographical

area impact, should fall in the same or nearby cell(s). Grid tessellation is the simplest yet

most commonly used way of subdividing the geographical space into small equal-sized

cells [104, 5, 50, 113, 49]. In reality however, the geographical distribution of social

media documents is not homogeneous, frequently requiring the consideration of adjacent

cells in the analysis. To alleviate this issue, a few strategies are proposed including re-

sizing the cells, connecting nearby cells if they share similar features, or utilizing an

adaptive hierarchical tessellation structure [51]. For example, Krumm and Horvitz [58] et

al. discretize the space with a hierarchical triangular mesh. Magdy et al. [81, 80] describe

a system called Mercury for querying top-k spatio-temporal queries on microblogs in

real-time using a pyramid structure.

After tessellation, the social media documents or features are aggregated into small

cells according to their inferred geographical information. Next, an intuitive way to de-

104

tect the existence of any anomaly at a specific location is to count aggregated documents

or other feature entities like keywords to see if their number exceeds a certain thresh-

old. Counting, however, is easily plagued by distribution heterogeneity both temporally

and spatially. Therefore, various anomaly detection techniques have been explored. For

example, Xu et al. [122] employ a probabilistic model that recovers spatio-temporal sig-

nals using a Poisson point process estimation to deal with sample bias and data sparsity

problems. Others exploit the usages of a discrepancy paradigm which compares between

previous data (to build up a baseline) and the newly observed data [58, 5, 62, 40].

Nevertheless, such methods depend heavily on the availability of social media doc-

uments containing geographical information. Such geographical information, however,

is very rare in Twitter, with geotagged tweets accounting for less than 1% [113, 12, 76].

Some works have proposed to estimate a geographical location for a non-geotagged tweet.

The intuitive approach towards this problem is to geotag nominal locations (place names)

embedded in the content of a microblog to get its possible longitude/latitude coordinates

by aligning against existing gazetteer databases or services, e.g. GeoNames3 [2, 113, 110,

98]. While another set of works try to assign a geographical location to a non-geotagged

tweet by its poster’s location [12, 83, 93] , which might be initially estimated through a

social network based procedure [24, 71, 123, 27, 99] or tweets content-based methods

[19, 20, 82, 35, 25, 68].

Event-anchored Methods: This class of methods, after identifying events, lever-

ages an additional step of spatial analysis to determine the locations where they are

happening. For example, TwitterStand [102], after clustering tweets to identify events,
3 http://geonames.org/

105

http://geonames.org/

estimates each news cluster’s geographical focus by making use of both geographical

information in the content of the tweet and by the source location of the users. This geo-

graphic focus is computed as a whole by ranking the geographic locations in the cluster.

One basic measure of relevance used in their ranking is the frequency of occurrence of

each geographic location in the cluster. The reasoning is that if a geographic location

is important to the event at hand, the it would be mentioned in many tweets and linked

articles belonging to the cluster. In addition, they also give a higher relevance score to

groups of locations that are mutually proximate by considering that geographic locations

that are nearby to each other lend evidence to each other. To infer and track the location

of detected earthquake or typhoon events, Sakaki et al. [100] resort to Kalman filtering

and particle filtering by treating each Twitter user as a sensor.

Even though all event-related documents are exploited (not just the ones with loca-

tion information) in event-anchored methods, their data sources still suffer from sparsity

to detect small, local events. For example, TwitterStand’s data source, which then claimed

to sample around 10% of all tweets but now only 1%, is still too small for small-scale

events that might only span 3 ∼ 5 tweets in total.

Therefore, realizing it is the local data sparsity that undermines the opportunities

for researchers to discover small-scale events in Twitter, our system proposes to enhance

the public local live tweet stream for an area by i) identifying as many Twitter users

as possible that are from that area and then ii) tracking the tweets that they publish in

real-time. Weng and Lee [118] similarly track a number of users in Singapore to detect

news but only at a small scale, i.e., 1K Twitter users. In contrast, we identify and track

176K users in Boston. Our work is also different from Albakour et al. [6], which directly

106

chooses several areas in London to collect tweet data, and tries to detect events for each

of these areas separately. Their method doesn’t solve the problem of local data sparsity

by using Twitter’s Streaming API, i.e., statuses/filter with parameter “locations”, in our

experiment, is still very sparse and thus makes a very limited contribution to local news

detection.

4.3 System

In this section, we present the design and implementation of our event detection

system, Firefly, as illustrated in Figure 4.2. Including the User Interface, Firefly consists

of 5 major modules, which are described below sequentially.

4.3.1 Online Twitter User Geotagging via Spark

The goal of this module is to keep estimating the geographical locations for more

Twitter users, and thus to maintain a large pool of geotagged Twitter users. In so doing, for

a given geographical area like the Boston Metropolitan area, our system can easily retrieve

a large body of Twitter users in it. Tracking tweets posted by these users significantly

enhances our local live tweet stream.

Twitter User Geotagger

Index

word uids

Enhancing Local
Live Tweet Stream

Twitter User
Geotagger

Online Twitter User
Geotagging via Spark

Specify
an Area

Y

tra
ck

 u
se

r

Online Clustering

S
ys

te
m

 U
se

r I
nt

er
fa

ce

Twitter Sample API
~50 tweets/second

RDD
user neighb.

RDD
user latlon

RDD
GeoNames

Streaming API
w/ locations

Local Tweets
from
Sample API

Extracting Locality-Aware
Keywords

Index
word tids

Index

uid tids

user of Tweet
in this area?

Streaming API
w/ follow

Locality-Aware
Keyword
Extractor

Cluster Tweets
using their

Locality-Aware
Keywords

Newskeep
tweet

track
area

Twitter User
Geotagger

tid cid

Index

tid uid

Index
tid r.t.

Index

Figure 4.2: System architecture of Firefly.

107

The motivation behind geotagging Twitter users is that the profile-location infor-

mation for specifying where a Twitter user comes from is only sparsely available in pub-

lic data. Therefore, inspired by studies [Takhteyev2012Geography, 88] that online so-

cial friendships are often formed over short geographic distances, a social network-based

Twitter user geotagging method is proposed in [24], which approximates a user’s location

by examining the publicly-known locations of his online friends (neighbors). This method

is reported to have the state-of-the-art city-level accuracy when geotagging a large-scale

body of Twitter users and, more importantly, doesn’t require sophisticated natural lan-

guage processing in comparison with tweets content-based methods [19, 20, 82, 35, 25],

thus making it more suitable for online geotagging.

To be specific, the social network-based geotagging problem is addressed from the

point of view of solving an optimization problem, i.e., inferring user locations is solved

by finding

min f ‖∇ f‖ s.t. fi = li, ∀i ∈ L (4.1)

where f = (f1, f2, f3... fn) represents location estimation for each user 1...n, and L

denotes the set of users who opt to make their locations li public. The total variation is

formulated as ‖∇ f‖ =
∑

i j wi j ∗ d(fi, f j), where d(·, ·) measures geographical distance.and

wi j weighs the friendship between user i to user j, which essentially reflects how many

times user i reciprocally interacts with j such as retweeting, mentioning etc. Note that,

an edge between i and j in the graph is bidirectional and only formed if both i and j have

actively initiated at least one interaction with each other, and we use reciprocal neighbors

108

or friends to term such edges.

The above minimization problem could be solved by calculating, for each user,

the L1-multivariate median from his reciprocal neighbors’ locations. The value of L1-

multivariate median [111], which acts as a user’s estimated (geotagged) location and is

denoted by lL1mm, essentially finds a point that minimizes the sum of its distances to the

users’ reciprocal neighbors. For a user j, its L1-multivariate median lL1mm
j is mathemati-

cally defined as,

lL1mm
j = argmin

l

∑
li∈L j

wi, j ∗d(l, li) (4.2)

where, L j contains the locations of j’s reciprocal neighbors. In the implementation,

Equation 4.2 can be solved through a coordinate descent procedure.

Upon completing the calculation of location estimate, for a user j, how far lL1mm
j de-

viates from his reciprocal neighbors determines whether he accepts lL1mm
j . This deviation,

called Geographical Dispersion, is defined as,

GD(L j) = mediani wi, j ∗d(lL1mm
j , li) s.t. li ∈ L j (4.3)

For example, user j will accept his estimated location if GD(L j) is less than a given

threshold, γ. In our experiments, we set γ = 100 km, which is suggested as a suitable

trade-off between geotagging coverage and accuracy for the city-level scenarios [24].

One drawback of [24] lies in indiscriminately utilizing all available location in-

formation from reciprocal friends to calculate a candidate location estimation in Equa-

tion 4.2, while some of them might be noisy points as discussed in [123]. For example,

109

as illustrated in Figure 4.3 (where each circle represents a reciprocal friend and the num-

ber in each circle denotes the weight to that friend), a user from Boston has 9 reciprocal

friends with available location information, 4 of them (red circles) are relatively far away

from Boston and can be seen as noisy points or outliers because incorporating them into

Equation 4.2 is likely to yield a location estimation that does not satisfy the geographical

dispersion constraints γ, and thereby fails to geotag this Twitter user.

Washington, DC New York BostonProvidence

2
1
2

2
1

3
2

1
3

Figure 4.3: An illustration of outliers in the locations of reciprocal friends.

Inspired by the observation in [123] that the location of a friend is usually more

reliable if a user has multiple friends from that or nearby location, we propose a single-

linkage-clustering based outlier removal procedure to get rid of potential noisy points. As

presented in Algorithm 2, this procedure works as follows. Take the locations of a user

j’s reciprocal neighbors, L j, as the input, we first perform the Single Linkage Clustering

with geographical dispersion γ being the distance threshold. During the clustering, two

location points in L j that are within γ are grouped into the same cluster; and two clusters

are merged if a pair of points from each of them are within γ. Next, we select the cluster

with maximum sum of weights and use it as new L j in Equation 4.2 to calculate the

location estimation.

Another improvement over [24] is a minimum size constraint for L′j because too

few location information might be considered as weak evidence [27]. In other words, we

110

Algorithm 2: Outlier Removal
Input: The locations of user j’s reciprocal neighbors –L j; distance threshold –γ;

cluster size threshold–λ
Output: A list of locations after removing outliers – L′j

1: A set of clusters C = {C1,C2,C3...} ←− Single Linkage Clustering on L j with γ;
2: L′j = argmax

Ck∈C

∑
li∈Ck

wi, j

3: return L′j if |L′j| ≥ λ; else ∅

refuse to calculate lL1mm
j for user j if |L′j| is less than a given threshold λ. The experi-

mental results show that such a constraint for λ might effectively improve the accuracy of

geotagging in the sparse social networks where users have only a few reciprocal friends,

especially the ones with valid locations.

Publicly-Known Locations of Twitter Users In Twitter, there are two sources to

know a user’s location: profile-location or the GPS coordinates embedded in his tweets.

The profile-location is often in the form of place names like “College Park, MD” and can

be aligned with databases like GeoNames to decode its geographical latitude/longitude

coordinates. In order to assign a unique pair of latitude/longitude coordinates, for a user

having multiple GPS points available in his tweets, we compute the L1-multivariate me-

dian for these points and similarly check the geographical dispersion to decide whether to

use this median or not. At last, for a Twitter user who has a valid profile-location as well

as a valid L1-multivariate median calculated from his tweets, we opt to use his profile-

location if this location is within γ of the median; otherwise, his two sources of location

information seem to be conflicting with each other and thus wouldn’t be utilized. Algo-

rithm 3 outlines our online Twitter user geotagging procedure, which utilizes a streaming

computing platform Spark Stream by maintaining 4 RDD variables [127, 26, 128, 129].

Resilient Distributed Dataset (RDD), is a distributed memory abstraction which gives

111

Spark the ability to perform fast in-memory map-reduce operations. IndexedRDD extends

key-value RDD by enforcing key uniqueness and pre-indexing the entries for efficient

look-up operations. In practice, RDD could be seen as a table in the database. The In-

dexedRDD variable for GeoNames, location→latlon, is to align the profile-location, e.g.,

“Boston, MA”, to decode its latitude/longitude coordinates, e.g., [42.3584, -71.0598]. The

RDD variable, location→user keeps a reversed index from a user to his profile-location to

perform join operation in Spark. The RDD variable, user→twGPS, stores for each user,

the GPS coordinates embedded in his tweets. The RDD variable, user→neighb., stores

the neighborships between users. Finally, the IndexedRDD variable, user→latlon, caches

the geotagged user to retrieve users in a given area.

To quickly start our online geotagging procedure, i.e., fill in the RDD variables,

we boost our algorithm with one year of tweets data collected from the Twitter Sample

API statuses/sample. We discretize this live tweet stream into 23-second intervals using

DStream in Spark to perform the online Twitter user geotag. For an incoming user, we

first look-up his geographical coordinates in user→latlon; if this fails, then we try to

align his profile-location (if provided) to GeoNames; otherwise, we retrieve a list of his

reciprocal neighbors’ locations to estimate his location.

4.3.2 Enhancing Local Live Tweet Stream

Given a geographical area, this module tries to collect as many tweets as possible

from three sources: two of Twitter’s statuses/filter Streaming API – “follow” and “loca-

112

Algorithm 3: Online Twitter User Geotagging via Spark
Input: Twitter’s Public Live Tweet Stream – G; 1 year of tweets collected from

Twitter Sample API – T
Output: Geotagged Twitter Users

1: Boosting Phase:
a. Load location→latlon from GeoNames; and extract location→user, user→neighb.,

and user→twGPS in T;
b. user→latlon←− location→user join location→latlon;
c. Update user→latlon with users whose lat/lon can be calculated upon user→twGPS

using Equation 4.2 and 4.3.
2: Online Geotagging:
a. Init a Spark DStream D in G w/ a 23s time window;
b. Update user→neighb. and user→twGPS with D;
c. for each user u in D who is not in user→latlon and fails to align profile-location in

location→latlon and fails to calculate a lat/lon in user→twGPS then do
i). get u’s reciprocal neighbors’ coordinates Lu by

joining u, user→neighb. and user→latlon;
ii). L′u← Outlier-Removal(Lu)
iii). calculate lL1mm

u by L′u if |L′u| ≥ λ;
iv). u accepts lL1mm

u if GD(Lu) ≤ γ;
end for

tions”4, and tweets filtered from another Twitter Sample API statuses/sample 5, which

returns a small random sample (usually 1%) of all public tweets. The Statuses/filter "fol-

low" real-time returns the postings of a list of specified Twitter users (5,000 at most) as

they publish tweets; while “locations” tracks the tweets falling in a geographical area

either according to tweet’s embedded GPS coordinates or place names.

After specifying an area A, our system first retrieves a set of Twitter users who fall

inside A using IndexedRDD variable user→latlon built in Section 4.3.1, and collects their

live tweets via statuses/filter “follow”. Our experiments in Section 4.4.2 show that doing

so dramatically increases the number of local tweets and thereby boosts the number of

detected local news in our system. Meanwhile, statuses/filter “locations” is also initiated
4 https://dev.twitter.com/streaming/reference/post/status/filter
5 https://dev.twitter.com/streaming/reference/get/statuses/sample

113

https://dev.twitter.com/streaming/reference/post/status/filter
https://dev.twitter.com/streaming/reference/get/statuses/sample

to collect tweets with embedded GPS coordinates or place names falling inside A. Finally,

we also keep one’s tweets captured from Twitter Sample API if he is from A. Note that as

the system runs, we also keep following the newly found Twitter users belonging to A to

track their real-time tweets.

4.3.3 Extracting Locality-Aware Keywords

“Hot” news or events in Twitter often cause, temporally or spatially, noticeable

changes (e.g., word usage and increase in the number of related-tweets) in Twitter, thereby

encouraging the exploitation of anomaly detection techniques such as the discrepancy

paradigm [62, 5, 58] which makes a comparison between previous data (to build up a

baseline) and the newly observed data to discover anomalies. These techniques are often

addressed only from the perspective of detecting anomalies in the entire set of tweets

(e.g., a set of tweets collected or aggregated together either geospatially or temporally),

and in so doing might miss small-scale local news. Again, the data sparsity might make

the problem worse. For example, to detect the news in Figure 4.1 is like finding a needle

in a haystack from tweets because such a story, with only 6 tweets, hardly affects the word

usage pattern in that evening at Westborough, MA.

However, if we look at the news story in Figure 4.1 from the view of individual

people involved, such a small news poses noticeable changes in their word-usage pattern.

For example, “Westborough Education Foundation Trivia Bee” are recently used words

for 3 the Twitter users in that afternoon.

Therefore, given the sparsity of local news tweets, we utilize the following obser-

114

vations to capture such news. First, instead of looking for bursty or frequently used words

with respect to a corpus of tweets from different Twitter users, we focus on the newly-

used words with respect to the tweets from a single Twitter user. In other words, for a

Twitter user, we are only interested in the words recently used by him. Such newly-used

words correspond to the aspect of local news being “novel” as its nature of being news.

Second, to reflect the aspect of local news being discussed by a limited number of people,

we look for the words that are only used by a limited number of Twitter users, instead of

the ones intensively used by people. Therefore, for a given tweet, we identify the words

exhibiting the above two properties and call them locality-aware keywords in the sense

that they are aware of the characteristics of local news. For example, consider the tweets

in Figure 4.1 where “Westborough”, “Education”, “Foundation”, “Trivia” and “Bee” are

considered as locality-aware because they are new words used by this set of people.

Inspired by this, we recognize a word (only non-stopwords) in a tweet to be locality-

aware by looking at 3 measures: how many times this tweet’s publisher uses it, how many

other users are using it and how many tweets contain it. To ensure the local news we detect

are up to date, all these measures are computed in the latest 6-hour sliding time window

from the enhanced local live tweet stream. If we treat a user’s tweet as a sentence, then

all his tweets in time order form a document, and all the tweets in the latest time window

consist of a corpus. This is different from the idea of TF-IDF used in [102, 114] which

treat each single tweet as a document.

We term the above 3 measures as term frequency, document frequency and corpus

frequency, i.e., TF, DF and CF, respectively. Here we assume that a word appears at

most once in a tweet (or counts only once if more), which is reasonable given the 140-

115

Algorithm 4: Online Extracting Locality-Aware Keywords and Online Cluster-
ing to Detect News

Input: the latest 6-hour sliding window in enhanced local live tweet stream – S ;
the locality-aware constraints – RT F , RDF and RCF ; the threshold values
m, n and r

Output: news, i.e., clusters of tweets
1: load hash variables uid→tids, word→uid, word→tids, tid→uid, tid→cid, tid→r.t.

in last time window;
2: while true do

a. pull a tweet from S , get its non-stopword tokens
W, tweet id t, and user id u;

b. Locality-Aware Keywords WL←− ∅

c. Extracting Locality-Aware Keywords Procedure:
for each word w ∈W do

i). calculate T Fw, T F′w, DFw, CFw, CF′w from uid→tids, word→uid,
and word→tids;

ii). WL←−WL∪{w} if T Fw, T F′w, DFw, CFw and CF′w meet with the
constraints of RT F , RDF and RCF ;

iii). update word→uids, word→tids by inserting w and its corresponding u
and t;

end for
d. update uid→tids by inserting u and t;
e. update tid→r.t. by inserting t and retweet number;
f. Online Clustering Procedure:

for each Wm
L ∈ subsets of WL with size m do

i). retrieve Q – the ids of tweets containing all words in Wm
L , from word→tids;

ii). retrieve the user set U in Q using tid→uid;
iii). continue if |U | < n;
iv). extract the largest group of tweets C from Q with the same cluster id c

(a null c means that the tweets in C haven’t formed a cluster yet);
v). calculate RTC , which is the sum of retweet number of each tweet in C,

using tid→r.t..
vi). if |C| ≥ d |Q|2 e and |U | ≥ dr ∗RTCe then

c←− generate a new id if c is null;
assign t to cluster c in hash tid→cid;
report t as a news tweet to system UI;
break;

end if
end for

g. Remove obsolete tweets from uid→tids,
word→tids, tid→uid, tid→cid and update word→uids;

end while

116

character limit. For a given word w in the tweet posted by user u, these measures are

computed as: T Fw = |Tu ∩Tw|, DFw = |Uw|, and CFw = |Tw|. Tu denotes the tweets of

user u, Tw denotes the tweets containing word w, Uw denotes the users who recently used

the word w. Our heuristic is that, in order for a word w to be locality-aware, it should have

a smaller T Fw (i.e. how many times it has been used recently by a Twitter user), which

indicates that word w might be newly used by this user and thereby captures a news’s

"novelty"; DFw (i.e., how many Twitter users have been using word w recently) should

have a limited range (like [3, |US |
20] specified in parameter settings in Section 4.4.4.1, where

US is the set of Twitter users), to reflect the local news’s characteristic of having a limited

spread among people; and also CFw should be small to avoid commonly used words like

“day” and “people” etc. In our implementation, to account for the heterogeneity of the

rates of publishing tweets for different users and for the number of tweets collected at

different times and different places, we also use the relative frequencies of T Fw and CFw,

i.e., T F′w =
|Tu∩Tw|
|Tu|

, CF′w =
|Tw|
|TS |

, where TS represents all current tweets. The constraints

for T F, T F′, DF, CF and CF′ — denoted by RT F , RDF and RCF — are discussed in

Section 4.4.4.1.

4.3.4 Online Clustering to Detect News

As presented in Algorithm 4, we take into account the following two aspects to

group tweets together. First, the tweets need to share at least a number m of locality-

aware keywords to be grouped together. Second, at least n different Twitter users must

exist in a cluster. Existing methods usually neglect the importance of these two aspects.

117

For example, GeoBurst [134] measures the semantic similarity between two tweets by

performing random walks on their keyword co-occurrence graph to calculate the average

probability that one tweet reaches another. However, without requiring a minimum num-

ber of keywords in a tweet, two tweets containing and sharing very few keywords could

be mistakenly considered semantically coherent even if they are not on the same topic. In

addition, TwitterStand [102] groups tweets together as long as they are similar enough in

the TF-IDF vector space and in so doing, might form noisy clusters out of a single Twitter

user’s repeated tweets.

Therefore, in our method, to cluster an incoming tweet, we first retrieve a set of

tweets sharing at least m locality-aware keywords. If these tweets were contributed by

less than n Twitter users, or the majority of the tweets don’t locate in the same cluster,

then we don’t group this new tweet and try another set of m locality-aware words. We also

require that a news spreads among more local people. In Twitter, the spread extent of a

tweet is provided by its retweet number, i.e., how many other Twitter users retweet it. We

now define, for a given news cluster C, its spread extent RTC to be the sum of the retweet

number of each tweet in it. And the local spread ratio spreadlocal is computed by |U |
RT ,

where U is the users contributing to C. In our experiments, we set spreadlocal ≥ r = 0.4

to account for the local tweets that we might not capture.

The details of calculating the above measures are presented in Algorithm 4. Gen-

erally, Firefly uses a one-shot process, meaning that once a tweet is added to a cluster, it

remains there forever. We will never revisit or recluster the tweet, which is desirable for

real-time detection of news from a local live tweet stream. We don’t incorporate addi-

tional care of the aspects from geographical dimension or temporal dimension as they are

118

implicitly reflected in the procedure enhancing the local live tweet stream and its 6-hour

sliding window.

4.3.5 System User Interface

As shown in Figure 4.4, our user interface consists of two sources: a Twitter Time-

line6 and a Google Map based Web Application [102]. The Twitter Timeline allows a

user to view a list of tweets collected for various purposes, such as real-time monitoring

of a Twitter user’s updates or searching for the latest tweets on a specific topic. Therefore,

in order to demonstrate the latest news that we detect in real-time, a Twitter Timeline 7 is

created via Twitter Collections API, which is very convenient for other Twitter users to

view and even subscribe to. Note that the Collections API only allows for a user to re-

tain a few thousands of tweets and automatically delete the oldest ones if it has too many

tweets.

To display the events that we detect on the Google map-based web application, we

utilize a procedure to estimate the geographical focus for a news cluster in [102]. This

procedure, by making use of both the geographical information in tweet content and the

source location of the users in an event cluster, computes a geographical focus as a whole

by ranking the geographic locations mentioned in the cluster. After geotagging an event

cluster, the Google map-based web application displays a marker for this event at its

geographical coordinates.
6 https://support.twitter.com/articles/164083
7 https://twitter.com/bostonnewslocal/timelines/878280225074950144

119

https://support.twitter.com/articles/164083
https://twitter.com/bostonnewslocal/timelines/878280225074950144

Twitter User
Geotagger

Estimating Geographic Focus

Google Map based Web Application

User Interface

News

Geotagger

Twitter Timeline

Figure 4.4: System user interface.

4.4 Experiments

4.4.1 Online Processing Settings and Efficiency

Our system adopts sliding time window techniques to meet the demand for online

processing of a live tweet stream. The experiments are evaluated on a Spark cluster of

5 computing nodes where each node has two 6-core Intel Xeon E5-2620 v3 CPUs and

128GB of RAM.

For Online Geotagging, we utilize the Spark Stream to discretize the live tweet

stream from the Twitter statuses/sample API into intervals of 23 seconds, which is the

average time to accumulate 1000 tweets. Similarly, a 6-hour sliding time window is ap-

plied on the enhanced local live stream for locality-aware keyword extraction and online

120

clustering. The 6-hour window size is intuitively set in recognition of the fact that televi-

sion media usually has four times of a locally-oriented news broadcasts in one day. The

day of Jan 16, 2017 is chosen to evaluate our system for news detection with respect to

the Boston metropolitan area i.e., the rectangle area [42.008339, -71.803026, 42.732923,

-70.577545].

In our experiments, we find the major overhead is the Boosting Phase in Algo-

rithm 3, which takes around 76 minutes to finish. But this procedure runs only once to

start up the system and does not affect the timeliness of subsequent procedures. After

the Boosting Phase, the online geotagging procedure takes an average of 3 seconds to

process 1,000 tweets from the Twitter statuses/sample API, and geotags an average of 47

unknown-location Twitter users per second. Afterwards, Algorithm 4 processes 70 tweets

per second on average (which is also the approximate arriving rate of tweets in enhanced

local live stream) and reports about 3 tweet clusters per minute.

4.4.2 Twitter User Geotagging via Spark

4.4.2.1 Boosting Dataset

To boost the startup of geotagging Twitter users, we utilize a set of tweets col-

lected between 09/2015 and 09/2016. This dataset consists of 2,876,822,081 tweets,

102,382,292 users and 824,303,126 pairs of neighbor-ships. Among these users, 31,250,047

have valid location source (successfully aligning profile-location to GeoNames or having

embedded GPS coordinates) and are used to build-up the variable user→latlon. Accord-

ingly, variable user→neighb. builds from the extracted neighbor-ships. Filtering down to

121

only reciprocal neighbors, we have a reciprocal graph of 24,946,962 vertices (8,787,152

of them have lat/lon coordinates) and 54,550,871 bidirectional edges.

4.4.2.2 Effectiveness

In lack of a ground-truth for Twitter users’ locations, we exploit the boosting dataset

to evaluate the effectiveness on coverage and accuracy. Specifically, for the 8,787,152

Twitter users with lat/lon coordinates in the reciprocal graph built in Section 4.4.2.1,

their lat/lon coordinates are obtained from the profile-location or GPS coordinates in their

tweets, and are thus treated as ground-truth. We then perform a leave-p-out validation by

randomly sampling 10% (i.e., 878,715) of these Twitter users to evaluate the coverage

and accuracy. The coverage is to calculate how many Twitter users in the sampling set

would get geotagged, while accuracy is to calculate the mean distance error between the

ground-truth and their estimated location.

To geotag the 10% users, we again utilize the sub-procedure iii) in the Online Geo-

tagging of Algorithm 3. Our experiment shows that with γ = 100 km, λ = 2, 13.6% (i.e.,

119,505 out of 878,715) test users get geotagged with a mean error of 228.66 km and a

median of 27.93 km, which as shown in [24], is accurate at city-level for majority of test

users.

Effect of Outlier Removal To evaluate the effect of outlier removal, we now ex-

clude the step of outlier-removal in Algorithm 3 to geotag the 10% test Twitter users with

γ fixed at 100 km and λ at 2. This brings us a lower 7.1% coverage with a larger mean

error of 279.81 km, showing that removing outliers significantly increases the chances for

122

0 10
0

10
1

10
2

10
3

of reciprocal friends

10
-4

10
-3

10
-2

10
-1

10
0

C
o
m

p
le

m
en

ta
ry

 C
D

F

all

w/ location

w/ outlier removal

Figure 4.5: CCDFs of reciprocal friends.

test users to get successfully geotagged while without compromising accuracy.

λ Coverage (%) Mean Error (km)
1 53.3% 7900.54
2 13.6% 228.66
3 6.5% 251.34
4 3.9% 213.62
5 2.5% 191.65
10 0.6% 234.72
20 0.1% 187.16

Table 4.1: Effect of λ.

Effect of λ (the Minimum Number of Reciprocal Friends with Valid Locations)

We first plot the distributions on the number of reciprocal friends of these 10% Twitter

users in Figure 4.5, as well as the ones with locations and the ones that have survived

from the outlier removal step. Figure 4.5 shows that lots of the Twitter users have very

few reciprocal friends that have locations. In such a sparse reciprocal graph, it may not

be fair to decide the location for a Twitter user only based on very few of his friends

locations. To avoid generating noisy location estimations, a Twitter user is not going

123

to be geotagged until the number of his reciprocal friends having locations exceeds the

required minimum.

To investigate the sensitivity of the minimum constraint parameter λ in Algorithm 3,

we fix γ = 100 km and use different values of λ= {1,2,3,4,5,10,20} for the 10% sampling

test users and list the corresponding coverage and mean errors in Table 4.1. The results

show that although λ = 1 is able to geotag more than half of the test users, it brings

about an acceptably large error; λ = 2 seems to reach the best trade-off point between

coverage and accuracy; while larger λ values have similar accuracy, they have relatively

low coverage.

4.4.3 Enhanced Local Live Tweet Stream

At the start of the day on Jan 16, 2017, 176,007 users are found in the input Boston

bounding box. Among them, 101,409 provide valid location source (profile-location or

GPS), and the remaining 74,598 are geotagged using Algorithm 3. Following these two

sets of users to track their real-time postings comprises of the two sources of Streaming

API w/ “follow” I and II as listed in Table 4.2, respectively8.

Source
of tweets # of news

Local tweets Cluster tweets Involved Exclusive (acc. %)
Sample API 6,182 638 167 21 (35.5%)
Str. API w/ loc. 76,983 2,123 359 76 (52.9%)
Str. API w/ fol. I 2,986,291 23,120 2,489 1,241 (58.5%)
Str. API w/ fol. II 1,730,889 16,654 1,857 609 (52.7%)

Total 4,800,345 43,535 N/A N/A

Table 4.2: Contribution of different local live tweet sources.

Table 4.2 first shows how many local tweets (i.e., the tweets that fall in the given
8 Multiple API tokens are used because one only follows up to 5000 users.

124

area or are published by people there) as well as how many cluster tweets (i.e., the tweets

that compose the detected clusters) each source contributes to our enhanced local live

tweet stream. We collected a total of 4,800,345 tweets from the Boston area during a

24-hour period. Among which, Twitter Streaming API statuses/filter “follow” (I and II)

contributes the most, by making up 98.27% of all the tweets in the enhanced local live

tweets, while the other two sources only output a very small amount of local tweets. Sim-

ilarly, regarding the tweets comprising the clusters, 93.66% come from source Streaming

API statuses/filter “follow”. For example, all the tweets related to the news in Figure 4.7

are in source “follow”. More importantly, Table 4.2 further shows that tracking Twitter

users who don’t have valid location sources also make significant contributions just like

tracking the users with valid location sources. This reinforces the important role that the

online Twitter user geotagging procedure plays in our system.

In addition, Table 4.2 also lists the number of “Involved” news (i.e., how many news

a source’s tweets have participated in forming) and the number of “Exclusive” news (i.e.,

how many news a source’s tweets have exclusively formed, in other words, these news are

formed by tweets only from this source), along with its accuracy of positive local news

(the accuracy evaluation method is detailed in Section 4.4.4.4). The result shows that the

majority of news events are generated using the tweets in Streaming API statuses/filter w/

“follow”, indicating that by tracking local Twitter users, our method is able to find much

more news than solely using the Twitter’s publicly available tweet streams.

125

4.4.4 Local News Detection

In this section, we evaluate the performance of our system on detecting news from

the enhanced local live tweet stream using mutual recall and precision. Mutual recalls are

evaluated between our system and a set of local news media agencies, together with a few

baseline approaches. As for precision, we recruited 3 volunteers to individually judge the

detected news and collect the results using the strategy of majority votes.

4.4.4.1 Parameter Settings

Note that although some of the following parameter settings depend on the specific

input city, they are simply statistics and easy to infer for other places. There are 3 con-

straints for a word to be locality-aware: RT F , RDF and RCF . For RT F , the main goal is to

capture a local news’s nature of being new and to reflect a person’s word-usage anomaly,

by requiring both T F and T F′ to be small (of course, at least greater than 0). This means

that, an upper boundary needs to be imposed on T F. To obtain an empirical value of

this, we collect the tweets posted by the Twitter accounts listed in Table 4.4 (note that the

Twitter account of @fox25news has changed to @boston25 in April 2017), and perform

an analysis, for each individual agency, of how many of its tweets are about the same

news. The results, presented in Figure 4.6a, show that an agency usually tweets only 1 or

2 tweets (5 at most) about the same news. The situation is similar when the time period

narrows down to a 6-hour (e.g., from 15:00 to 21:00). We therefore set the upper bound

of T F to 5. Figure 4.6b reminds us that this value could work for most of Twitter users

as they usually post less than 10 tweets, either in one day or in a 6-hour time window,

126

This value, however, seems too strict for Twitter users who publish 10 or more tweets and

perhaps keep posting updates on the same news event. We therefore turn to T F′ to relax

the constraint of T F, and set a threshold value of 0.3 for T F′. To summarize, we have

RT F := (|Tu| < 10 ∧ T F ≤ 5)∨ (|Tu| ≥ 10 ∧ T F′ ≤ 0.3).

RT F alone, however, is not enough because it would mark most of the words for

most of Twitter users as locality-aware. We further utilize DF to explore another char-

acteristic of local news: being “limited spread”. Recalling the fact that one-fifth of the

population are active Twitter users, we set RDF := 3 ≤ DF ≤ |US |
20 , where US are all the

users in the time window S . Our argument is that when DF = 3, there might be an equal

number of users reporting the same activity in Twitter. This further indicates that in re-

ality, there might exist an ongoing news event that involves 15 people. Likewise, we set

the upper boundary to 1% of the population, which is around |US |
20 . The distribution of

detected cluster size in Figure 4.8a further validates our assumption.

Finally, there is an additional constraint RCF to get rid of commonly used words.

Our analysis on the CF′s of most common non-stopwords in English shows that they have

a min CF of 0.57% (max: 2.7%, mean: 1.6% and median: 1.8%). Also considering that

the average number of tweets published by a Twitter user is around 2 (e.g., in Figure 4.6b,

2.30 and 1.82 for one day and 6-hour) and DF’s upper bound, we set the upper bound of

CF to |US |
10 . Therefore, RCF is set as RCF := CF ≤ |US |

10 ∧CF′ ≤ 0.57%, which helps us to

successfully recognize words like “trump”, “martin”, “luther”, “day” and “people” as not

locality-aware.

We then have 3 more threshold values to set for online clustering in Algorithm 4.

For the least number of overlapping words between two tweets to cluster together, we set

127

(a) News size by news agency (b) Tweet number by Twitter user

Figure 4.6: Histograms of # of tweets. (a) Histogram of # of tweets in a news by each in-
dividual news agency. (b) Histogram of # of tweets posted by each individual
Twitter user.

m = 5 because it is usually large enough to cover a news’s “who”, “what” and “where”

information, e.g., the bold words in the example event of Figure 4.1. In our experience,

a larger m makes clustering tightly cohesive yet might split the same news story into

several clusters; while a smaller m might not fully reveal a story’s own trait and groups

non-related things together. To be consistent with RDF , we set the least number of people

in a cluster n = 3. At last, although we require that a local news should have more local

people talking about it, other than the people from outside world, we set the local spread

ratio threshold r = 0.4 to deal with the tweets we might miss.

4.4.4.2 Local News Media Agencies and Baseline Approaches

Reputable Local News Media Agencies We select 9 Boston local news agencies,

as listed in Table 4.3 in the form of “@ScreenName”, to collect their news tweets as a

groud-truth dataset to compare with. The news stories in the news agencies come from

128

two parts: tweets posted by their accounts and articles published in their websites. The

articles are collected by crawling their websites every 5 minutes listed in Table 4.3. Due

to copyright constraint, we only retain an article’s title, url and publish datetime.

Agency Name
Twitter Newspaper

Screen Name Tweet
Num.

News
Num.

Website URL Article
Num.

7News Boston @7News 73 61 http://whdh.com/news/local/ 15
boston.com @BostonDotCom 29 21 https://www.boston.com

/tag/local-news
4

The Boston Globe @BostonGlobe 156 128 http://www.bostonglobe.com
/?refresh=true

22

Boston Herald @bostonherald 106 95 http://www.bostonherald.com
/news/local_coverage

21

CBS Boston @CBSboston 64 52 http://boston.cbslocal.com
/category/news/

83

FOX25 @fox25news 85 64 http://www.myfoxboston.com
/news/local

13

Globe Metro @GlobeMetro 12 11 http://www.bostonglobe.com
/metro

12

Metro Boston @metroBOS 26 15 http://www.metro.us/
boston/news/

22

WCVB 5 @WCVB 143 110 http://www.wcvb.com
/local-news

27

Table 4.3: The 9 reputable Boston local news agencies.

As most of the tweets posted by these agencies are of good quality, we perform a

simple clustering algorithm to extract news from them. That is, for a single news agency,

as long as any two of his tweets share 5 non-stopwords, we group them together. The

value of 5 is heuristic, by accounting for the number of words to specify a story’s “who,

what and where”. As presented in Table 4.3, the amount of tweets and the amount of

news these agency cover are various, with “@BostonGlobe” being the most active and

“@metroBOS” the least active.

Baseline Approaches We also compare our method with the following four base-

129

line approaches listed.

• TwitterStand: TwitterStand [102] groups news tweets into cluster of tweets to form

news stories using a TF-IDF based similarity metric. In the experiments, the clus-

tering similarity threshold ε is set to 0.8. It is worth mentioning that their concepts

of TF and DF are different from ours in the sense that they treat each single tweet

as a document while we treat all of a user’s tweets as a document and each of his

tweets as a sentence.

• TwitterStand-3: By default, TwitterStand only reports a cluster as a news story if it

has more than 10 tweets. In this setting, we relax the minimum number of tweets

to 3, out of the consideration of fairness for TwitterStand to be able to detect news

of small scale.

• EvenTweet: EvenTweet [5] first identifies temporal bursty keywords (using a Gaus-

sian distribution based discrepancy paradigm) and spatial local keywords (using the

entropy of a word’s spatial distribution) and then clusters them together according

to their spatial density distribution. The spatial density distribution is calculated

based on a N ×N grid tessellation. We set N = 50 in our experiments. The tempo-

ral bursty keywords are identified using a Gaussian distribution based discrepancy

paradigm, while spatial local keywords identified using the entropy of a word’s

spatial distribution on a regular grid tessellation.

• GeoBurst: GeoBurst [134] first generates candidate events by identifying pivot

tweets based on geographical and semantic similarities and then ranks the candi-

dates according to their spatiotemporal burstiness to filter out noisy ones. Geo-

130

graphical similarities between tweets are calculated by a kernel function on their

spatial distance, while the semantic similarities are calculated by performing a ran-

dom walk procedure with restarts on tweets’ keyword co-occurrence graph. In our

experiments, we adopt the default settings in their method, i.e., the spatial distance

kernel bandwidth is set to 0.01, the random walk restart probability and similarity

threshold are set to 0.2 and 0.02, respectively.

As summarized in Section 4.2, TwitterStand (or TwitterStand-3) is an event-anchored

method and therefore is fed with the same enhanced local live tweet stream in Firefly

to detect news, while the last two are location-anchored methods which only take geo-

tagged tweets (with embedded GPS coordinates) as input. In the 4,800,345 tweets we

collected, 33,966 tweets are geotagged (Streaming API w/ follow: 23,810; Streaming

API w/location: 10,101; Sample API: 55) and chosen as the input to EvenTweet and

GeoBurst. Note that the geotagged tweets are less than the total tweets obtained from

Streaming API w/location because this API also returns non-geotagged tweets containing

place names that fall in the given query area.

By default, EvenTweet represents each cluster as a group of keywords, and we

retrieve the tweets from which the keywords are extracted to represent its clusters to be

consistent with other methods. To maximize the number of potential news detected in

EvenTweet and GeoBurst, a cluster in them is selected to be output as long as it has at

least 3 tweets.

131

4.4.4.3 Mutual Recalls

The mutual recalls are computed by examining how many news in the news agen-

cies or baseline approaches have been found by our system and vice versa. We claim a

news cluster cX in agency X recalls a news cluster cY in agency Y if there is a tweet in cX

and another tweet in cY that share at least 5 non-stopwords. The results are summarized

in Table 4.4, in which a news agency’s “@Screen Name” is to represent its tweets news.

Also, to make the table compact, we give each agency an order denotation in the column

headers, ranging from A to W. Below the column headers are the number of news found

in an agency or our system Firefly. So for a cell, it shows how many news row X covers

over column Y.

Table 4.4 shows that Firefly achieves high recalls against most of news agencies.

For example, we successfully detect news like “Stabbing Reported at Stoughton Home of

UMass Boston Chancellor”, “Dog killed by coyote in Gloucester, police issue warning”

and “A woman caught in the line of fire in Lyn” etc which are also reported by “@7News”.

In contrast, a very large portion of news in Firefly don’t receive coverage from any of

the listed news agencies, e.g., “There is a growing collection of lonely hand warmers at

Fallon Field in #Roslindale”, “Hockey star Kacey Bellamy took a break from prepping for

the 2018 Winter Olympics to chat with @BrooksSchool girls hockey team today!” and

“Just a portion of the many people that volunteered today to build STEM kits for Boston

schools” etc. This confirms the effectiveness of our design of enhancing local live tweet

stream and extracting locality-aware keywords.

The result is in accordance with our observation that there would be lot more news

132

happening in an area than reported locally [85] , and is consistent with our expectation

because we try to identify various kinds of news, activities and news like missing pets,

sales events, concerts and farmer’s market etc., while local news agencies usually publish

news of greater public interest.

A B C D E F G H I J K L M N O P Q R S T U V W
of news 3364 409 2331 184 179 61 21 128 95 52 64 11 15 110 15 4 22 21 83 13 12 22 27
Firefly A 3364 305 1213 135 164 48 21 85 32 41 49 6 10 69 11 4 16 6 20 9 7 4 10
TwitterStand B 200 409 1607 71 46 7 5 13 15 4 4 0 2 12 1 0 5 2 11 1 0 1 3
TwitterStand-3 C 215 395 2331 51 66 8 6 16 19 4 5 0 5 15 2 0 6 2 13 1 1 2 5
Eyewitness D 236 218 292 184 151 6 6 3 3 15 2 0 3 15 1 0 1 1 6 1 2 3 1
GeoBurst E 132 64 202 126 179 7 1 3 3 7 5 0 3 5 0 0 0 2 3 1 0 1 3
@7News F 49 73 212 2 13 61 3 4 7 2 6 0 1 9 13 0 2 1 3 0 1 2 1
@BostonDotCom G 21 22 47 1 1 3 21 6 5 0 2 1 0 3 0 3 3 1 2 1 1 1 1
@BostonGlobe H 85 83 210 2 6 4 6 128 4 3 1 2 0 5 0 2 12 0 4 0 6 3 0
@bostonherald I 38 82 179 1 3 7 5 4 95 0 7 1 1 5 2 2 2 9 1 1 0 0 1
@CBSboston J 41 64 149 2 8 2 0 3 0 52 1 0 0 4 0 0 1 0 7 0 1 0 0
@fox25news K 49 23 64 2 5 6 2 1 7 1 64 0 2 2 4 1 0 2 0 9 0 0 1
@GlobeMetro L 6 0 0 0 0 0 1 2 1 0 0 11 0 0 0 0 4 0 0 0 3 0 0
@metroBOS M 11 27 62 2 5 1 0 0 1 0 2 0 15 0 1 0 0 0 0 1 0 3 2
@WCVB N 69 95 217 7 13 9 3 5 5 4 2 0 0 110 1 0 1 0 4 0 0 1 13
7News Boston O 12 2 2 1 0 13 0 0 2 0 4 0 1 1 15 0 1 0 0 0 1 1 1
boston.com P 4 0 0 0 0 0 3 2 2 0 1 0 0 0 0 4 1 1 0 0 1 0 0
The Boston Globe Q 17 30 72 1 0 2 3 12 2 1 0 4 0 1 1 1 22 0 2 0 4 1 1
Boston Herald R 7 6 15 1 3 1 1 0 9 0 2 0 0 0 0 1 0 21 1 1 0 1 1
CBS Boston S 20 147 352 6 3 3 2 4 1 7 0 0 0 4 0 0 2 1 83 0 0 1 0
FOX25 T 13 1 8 1 2 0 1 0 1 0 9 0 1 0 0 0 0 1 0 13 0 0 0
Globe Metro U 9 0 1 0 0 1 1 6 0 1 0 3 0 0 1 1 4 0 0 0 12 1 1
Metro Boston V 4 13 30 6 3 2 1 3 0 0 0 0 3 1 1 0 1 1 1 0 1 22 2
WCVB 5 W 10 25 43 1 3 1 1 0 1 0 1 0 2 13 1 0 1 1 0 0 1 2 27

Table 4.4: The mutual recalls between Firefly, baseline approaches and the 9 reputable
Boston local news agencies.

In contrast, the default settings of TwitterStand have much lower recalls across the

9 local news agencies. Although relaxing its cluster size to have minimum of 3 tweets

yields many more clusters, it doesn’t yield clearly higher recalls. We conjecture that in

doing so, TwitterStand-3 is reporting many small clusters for the same news due to the

fragmentation problem in its online clustering [102]. For example, the 409 news of Twit-

terStand are covering 1,607 news of TwitterStand-3. This also explains TwitterStand-3’s

133

extremely asymmetric mutual recalls over the local news agencies. In contrast, Firefly’s

locality-aware keywords based clustering is more reliable by finding word-usage anomaly

from the perspective of a Twitter user instead of a tweet itself.

It comes as no surprise that EvenTweet and GeoBurst, both of which only run

on sparsely available geotagged tweets, have low recalls across the local news agencies

too. This is essentially because geotagged tweets cover very limited news in our dataset.

For example, none of the news tweets posted by local news agencies contain geotagged

tweets. Similarly, in all the tweets clusters generated by our system Firefly, only 633 of

them contain geotagged tweets and only 107 of tweets clusters are formed by only geo-

tagged tweets. This shows that by utilizing non-geotagged tweets, we are able to detect

much more local news than methods EvenTweet and GeoBurst and further reinforces the

importance of enhancing local live tweet stream by finding and tracking local Twitter

users.

Another factor contributing to the low recalls of TwitterStand-3 might be its clas-

sifier step which throws away more than half of the tweets (68.9%). To verify this, we

omit the classifier in TwitterStand-3 and the resulting clusters are able to recall 1,135

ones detected in Firefly. It, however, outputs a total of as high as 9,314 clusters but 5,713

of them are covered by Firefly, indicating that in so doing, TwitterStand-3’s clustering is

working very poorly without effectively merging similar groups of tweets. In contrast,

Firefly’s locality-aware keywords based clustering doesn’t rely on a pre-trained classifier

and is more reliable by finding word-usage anomaly from the perspective of a Twitter user

instead of a tweet itself.

Table 4.4 also shows that our system Firefly misses quite a few of the news for some

134

agencies such as “@bostonherald” and its newspaper “Boston Herald”. To dig out the

reasons behind this, we collect the 63 news of “@bostonherald” that we missed but only

identified 5 of them as relevant. The major reason we missed these 5 news is because

there are extremly few tweets covering them. For example, the news ‘Good Samaritan

rescues trapped dog from inferno” seemed contributed only by “@BostonHerald” as we

only find this single 1 related tweet. The situation is similar regarding the website articles

we missed in “Boston Herald”, except that some of these articles don’t appear in the

tweets of its official news agency Twitter account.

It is also not unusual to find that some website articles relate to no tweets as we

find local news agencies were not always publishing tweets about their website articles.

One example is “@CBSboston” v.s. “CBS Boston”: “@CBSboston” didn’t post a sin-

gle tweet about an accident of “Driver Suffered Serious Injuries When Car Crashed Into

Pole In Carver” published in its website. This might give more explanations for website

articles that our system didn’t capture, and also inspire us to integrate cross-domain news

source [139] to further mitigate the tweet data sparsity in the future. Another interesting

observation from Table 4.4 is that different news agencies tend to cover different stories,

with very few overlapping ones. This makes platforms like ours more valuable as a user

doesn’t have to browse different news agencies to learn about what is happening out there.

4.4.4.4 Precision

We asked 3 human judges to independently examine the 3,364 clusters of tweets

detected in Firefly. As shown in Figure 4.7, each candidate news is a set of tweets with

135

their urls. The set of tweets are selected by having the most non-stopwords, retweet

numbers and overlapping words with each other and no more than 5 tweets. The drop-

down list provides 3 available options: “Positive”, “Neutral” and “Negative”, which are

used by the judges to answer the question: “Are the three or more tweets describing the

same local news?”. The instructions given to the judges are summarized as follows:

Each candidate news has a set of tweets, followed by their urls. Please read the

tweets and answer if they are talking about the same news. A local news, here, refers to

an event that happens in Boston Metropolitan area. For example, local news can be about

traffic, weather, missing persons/pets, farmer’s market, yard-selling and book-selling,

happy hour of bars and restaurants, crimes, protests, gatherings, award-nominations,

and parties, meetings, celebrations, conferences, sports games etc. You can utilize the

tweets’ urls to get more information such as where the news happened. If you can’t deter-

mine where it happened, choose “Negative”. National/international news are recognized

as “Neutral”. News that happened in another place, like sports held in another city,

should be “Negative”. Also if you don’t think the presented tweets are representing a

news, select “Negative”.

Figure 4.8b presents the distribution of judges’ answers of the 2,574 events out of

3,364 that received a majority of “Positive”s or “Negative”s. Among the 2,574 events,

73.6% had 2 or more “Positive”s and were consented to be local news. The median

number of tweets and median number of users in these local news are only 7 and 6,

respectively, as shown in Figure 4.8a. We also discovered that most of the clusters with

a majority of “Negative” were formed by a set of people tweeting like ”My fitbit for

1152017 6145 steps and 29 miles traveled”. This surprised us because this crowd behavior

136

Figure 4.7: Example of human judging UI.

3 10 20 30 40 50 60 70 80 90100+

cluster size

0

100

200

300

400

h
o
w

 m
an

y
 c

lu
st

er
s

of tweets -local news

of users - local news

of tweets - national/intl news

of users - natinal/intl news

(a) Distribution of tweets and users.

56%

18%

13%

14%
3 Positives

2 Positives

3 Negatives

2 Negatives

(b) Distribution of human evaluation.

Figure 4.8: Distribution of news cluster sizes and human evaluation.

meets our constraint for local news. In addition, out of 3,3364 news we detected, 649

received 2 or more “Neutral”s and were considered to be national or international news.

≥2 Positives ≥2 Neutrals ≥2 Negatives

Firefly 1,894 (56.3%) 649 (19.3%) 680 (20.2%)
TwitterStand 14 (3.4%) 306 (74.8%) 76 (18.6%)
TwitterStand-3 123 (5.28%) 1302 (55.9%) 816 (35.0%)
EvenTweet 44 (23.9%) 27 (14.7%) 90 (48.9%)
GeoBurst 52 (29.1%) 21 (11.7%) 70 (39.1%)

Table 4.5: Proportions of different types of tweet clusters.

Next, we evaluate the clusters in TwitterStand, TwitterStand-3, EvenTweet and

GeoBurst in the same way and list their proportions of news receiving more than 2 “Pos-

137

itives”, 2 “Neutrals” and 2 “Negatives” respectively in Table 4.5. In comparison, among

the 409 clusters in TwitterStand, only 14 are identified as local news. The low propor-

tion of local news in the default settings of TwitterStand is caused by its constraint that

it takes at least 10 tweets to form a cluster. Although relaxing this limit to 3 tweets in

TwitterStand-3 captures more local news, its non-news proportion increases much more

by falsely recognizing some repeating tweets from Twitter users as news, e.g. “@healy-

like”. In contrast, by only exploiting the sparsely available geotagged tweets, EvenTweet

and GeoBurst are only able to detect a small number of positive local news. Similarly,

in Firefly, out of the 107 clusters that are formed by only geotagged tweets, 47 of them

receive ≥ 2 “Positives” and are considered positive local news. This further illustrates

that making only use of geotagged tweets will miss the majority of local news reported in

non-geotagged tweets.

Note that TwitterStand captures national or international news (≥2 Neutrals) at a

very high accuracy by setting the cluster size to be ≥ 10 tweets. And the mean and

median number of tweets in such clusters in TwitterStand are 127 and 49, respectively,

much larger than 16 and 11 in Firefly. This is because Firefly has a different strategy to

find such news in the sense that, from the perspective of an individual Twitter user, Firefly

is only interested in some of his latest tweets that are discussing different content from

his old ones, while TwitterStand might take all his tweets as news-related. This difference

becomes more significant when it comes to columnists or sports reporters who might post

many updates on the same news event. In addition, our 6-hour sliding window and the

constraint for locality-aware keywords to be used by a limited number of people might

also contribute to the relatively smaller number of tweets in national or international news

138

clusters detected in Firefly.

4.5 Conclusions and Future Work

In this chapter, we presented a system called Firefly to detect news for a given geo-

graphical area. In order to deal with the infamous sparsity problem in publicly available

Twitter data, Firefly first enhances the local live tweet stream by identifying a large body

of Twitter users in an area to follow via an online geotagging procedure and thereby sig-

nificantly increases the amount of tweets generated from that area. With the enhanced

local live tweet stream, we propose a method to identify locality-aware keywords and fur-

ther use them to cluster tweets together to detect news. Comparing with news extracted

from a set of local news agencies’ tweets, our system achieves the highest recalls, and at

the same time, outperforms the baseline approach TwitterStand regarding both recall and

precision in detecting local news, and more importantly, is able to detect much more local

news than the approaches that only use geotagged tweets.

A small portion of news might be present in two or more clusters if these news

don’t get updates in a time period that exceeds 6-hour, which is the main reason whey

Table 4.4 is not symmetric for Firefly. A remedy to this problem in the future might be

to simply lengthen the time window or to keep a pool of news clusters before the current

sliding time window and keep them active if they receive updating tweets. In addition,

the importance of various users should be addressed differentially. For example, reporter

or news agencies should be more trustworthy to publish news. Additionally, as the human

verification yields a ground-truth of local news, a learning procedure might be explored

139

to help determine the parameter values in extracting locality-aware keywords and online

clustering. We leave these questions for our future work.

140

Chapter 5: Learning Embeddings of Spatial, Textual and Temporal Enti-

ties in Geotagged Tweets

5.1 Introduction

Twitter, one of the most popular micro-blogging services, allows users to write and

share short messages, called tweets, on a wide variety of topics like life experiences and

daily activities. Contributing to its convenience and promptness in composing contents,

Twitter serves as an essential platform in learning people’s real-world activities in almost

real time. Geotagged tweets are particularly interesting in the sense that they provide

complement information about the place of interest, e.g., where the activities occur. Such

location information is crucial when profiling human activities by completing the three

pieces of information regarding where, when and what.

In this chapter, we aim to uncover the correlation between location, time and topic

in human’s urban activities hidden in geotagged tweets. For instance, Figure 5.1 presents

some sampled locations of interest that people often check in New York City and in the

city of Los Angeles. Looking at these locations, one may wonder why people go to these

places, what they are actually doing there and when do they usually go there, etc. On the

other hand, people may also wonder: given a city, which places are popular for its resi-

141

(a) NYC (b) LA

Figure 5.1: An overview of 100 random locations in NYC and LA.

dents to participate in certain activities like visiting museums, eating food and shopping,

etc; and if they do, when they would do so. Effectively answering such questions has

a wide range of applications like urban planning [48], location recommendation [139],

disaster recovery and location function classification [75]. For example, one can query

the popular locations for certain activities in his living place and thus help newcomers

quickly integrate to local life or tourists to make sightseeing plans.

It is, however, challenging to extract location, time and topic context from geo-

tagged tweets. First, although geotagged tweets provide GPS coordinates indicating

where people participate in activities, these coordinates often impose certain disagree-

ment even for the same event at the same place, due to the flexibility of people’s move-

ment and sometimes the noise of GPS satellite signals. For instance, one may notice that

the GPS points extracted from the check-in tweets on the same local restaurant may form

a cloud of points on map instead of a single pinpoint. Aside from this, it is also unrealistic

142

to include every possible geographical location because of space continuity. Therefore, it

is imperative and practical to extract locations of interest in the form of clusters of GPS

points. Second, it is hard to effectively and efficiently capture the cross-modal correla-

tions between the spatial, temporal and textual aspects of people’s daily-life activities. For

example, the techniques of document-term matrix, TF-IDF and Single Value Decomposi-

tion (SVD) are often applied to analyze the co-occurrence relationship between locations

and words. Such methods, however, can not be easily modified to cope with data of three

or more dimensions. Tensor rank decomposition [36] is more promising in modeling

high-dimension data but less applicable for large-scale datasets due to its computational

complexity. In order to find the relationship between locations and topics, some stud-

ies treat location as a latent variable in their generative topic model [131, 44, 140, 117].

These models usually do not yield uniform representations for location, time and topic in

the same latent space and are less suitable for applications like performing cross-modal

searches.

This chapter aims to learn to represent the spatial, temporal and textual entities in

the geotagged tweets by means of embedding vectors in the same semantic space. We pro-

pose LeGo to accomplish this learning task. The general idea of LeGo works as follows.

First, LeGo extracts essential spatial, temporal and textual entities from the geotagged

tweets. Spatial entities refer to locations of interests which witness the aggregation of

people. They are usually identified using a clustering algorithm [48, 134] and are in the

form of groups of tweet locations. For the publish time of tweets, LeGo uses the features

like hour-of-day and day-of-week as temporal entities because (1) Such features are in

recognition that these integral values of time play as very strong signals for people to

143

follow in order to arrange and conduct life activities; (2) These features are of great im-

portance in revealing a location’s topic category [133, 48, 75]. As for textual entities in

tweets, we address the extracted keywords and phrases by getting rid of stopwords. Sec-

ond, LeGo systematically constructs a co-occurrence graph that spans spatial, temporal

and textual entities in tweets. In particular, the nodes represent the entities, and the edges

are weighted by the number of times that two nodes co-occur in tweets. Third, LeGo

exploits a graph learning algorithm that approximates the stationary residing probabili-

ties between nodes which result from performing personalized random walk procedures.

In essence, the learning algorithm aims to generate low-dimensional representations of

nodes so that such representations would maximize the likelihood of one node yielding

another node to be the probability of this node residing at another node. At last, al-

though the co-occurrence graph between entities from different dimensions is beneficial

for capturing the cross-modal correlations, it neglects the explicit similarities that may po-

tentially exist between locations, such as spatial proximity and topic likeliness. To better

support queries like location-similarity search, LeGo-LS extends the basic co-occurrence

graph by supplementing edges between locations to address their spatial proximity and

topic likeliness. Since the edges in the graph are now weighted differently, the graph

learning algorithm is also modified to be compatible with the heterogeneous graph.

The contributions of this chapter are summarized as follows.

• First, we comprehensively profile people’s activities in Twitter from 4 aspects: loca-

tion, words, hour-of-day and day-of-week.

• Second, for cross-modal search, we construct a co-occurrence graph to calculate sta-

tionary residing probabilities between nodes, which subsequently guides the learning

144

process in the graph embedding algorithm.

• Third, for location-similarity search, we add explicit edges between locations to

the co-occurrence graph to address their spatial proximity and topic likeliness, and

thereby capture such within-location affinities.

The rest of this chapter is organized as follows. Section 5.2 reviews related work.

Section 5.3 briefly describes the problem and provides an overview of the method. Sec-

tion 5.4 details the design and implementation of the proposed method. Section 5.5

presents the experimental evaluation results. Section 5.6 contains concluding remarks

as well as directions for future research.

5.2 Related Work

There has been much work on identifying correlations between locations and tex-

tual contents and sometimes time factors. Some work has focused on discovering geo-

graphical topics [44, 77, 117]. For example, Hong et al. [44] introduce the geographical

location in a tweet as an additional component to a mixture of graphical language mod-

els to reveal underlying topics at a location. Wei et al. [117] furthermore introduce the

time factor into the probabilistic graphical models and show its importance in discover-

ing latent local events. Our method is different from these works because they rely on

probability graphical models which impose prior distribution assumptions on the existing

data while we rely on the simple co-occurrence relationship to learn embeddings. Liu et

al. [77] treat hashtags in tweets as potential topics and investigate their associations with

time and regions. The associations are primarily determined by the closeness of tweets

145

with respect to location, time and textual content. Although the study [77] is closer to

our work in the sense that we both utilize the correlations between textual content and

locations, there remain significant differences. First, we encode the correlations between

location and topics in embeddings while [77] relies on an ad-hoc index value. Second, the

embeddings learned in the same semantic space enable us to perform cross-modal queries

while [77] only addresses the query of finding which hashtags are most frequently asso-

ciated with the given time and region windows. Instead of geographical topics, there are

also some works on detecting geographical trends from tweets [4, 3, 80]. For simplicity,

the geographical trends can be viewed as bursty words whose occurrences are experienc-

ing significant and abrupt increases within the given time and space windows. The main

goal of geographical trend detection is to efficiently identify and query bursty words in

a live tweet stream. For example, both Abdelhaq and Gertz [3] and Magdy et al. [80]

have designed specific storage and indexing data structures as well as anomaly detection

metrics to support the queries of geographical trends. The key factor differentiating our

method from these works is that they essentially perform anomaly detection while we fo-

cus on normal real-life associations between locations, time and topics. This also makes

our work different from a set of studies on local event detections [58, 140, 131, 134]

which also emphasize anomaly detection.

Therefore, we are more interested in studies which similarly represent locations

and topics in the form of vectors. The document-term matrix-based techniques (such as

TF-IDF, SVD) provide a typical way of presenting multi-dimensional data as vectors.

However, these vectors typically capture the information only from the same dimension

and are limited in cross-modal queries. Besides, such techniques are difficult to extend

146

to high-dimensional data. Recently, there have been efforts bringing the technique of

word2vec [87] to location-based social networks in order to learn embedding representa-

tion of locations and users [91, 86, 54]. The foundation of these methods lies in a graph

embedding strategy proposed in DeepWalk [92]. In specific, in order to exploit the idea

of word2vec in a graph, DeepWalk analogizes a node in the graph as a word and creates

pseudo sentences by simulating random walks to generate node sequences. These pseudo

words and sentences are then fed into word2vec models to obtain vector representation of

graph nodes. For example, Pang and Zhang [91] create a bipartite graph which includes

both user and location as nodes in the graph and thereby learn their both vector repre-

sentations in the same semantic space. These methods rely on the availability of location

history contextual data, which, however, is relatively sparse or incomplete with respect to

individual Twitter users.

Similar to our method, CrossMap [132] also exploits co-occurrence relationships

to jointly learns embeddings for location, time and text. The key differences are three-

fold: (1) We try to minimize the gap between embedding-based probabilities and graph-

based stationary residing probabilities while CrossMapminimizes the difference between

embedding-based probabilities and outdegree-based probabilities; (2) We include the fea-

tures of hour-of-day and day-of-week in time while CrossMap relies on detected tem-

poral hotspots; (3) We address both topical likeliness and spatial proximity in location-

similarity search. ReAct [133] also uses co-occurrences between location, time and

text in tweets to learn embeddings. However, its location is in the form of grid cells

of 300mx300m. Although such a tessellation of space may simplify the processing of

geospatial location, its assumption of a uniform distribution may not fit well to real-life

147

tweet data and is sensitive to parameters like grid cell size and sometimes noise. In con-

trast, our method identifies spatial clusters of tweets as locations of interest beforehand.

5.3 Preliminaries

5.3.1 Problem

Given a set of geotagged tweets D, our goal is to learn compact vector represen-

tations of spatial, temporal and textual entities found in D in the same semantic space

while preserving their correlations. For simplicity, a geotagged tweet d ∈ D can be seen

as a tuple 〈GPS d,T IMEd,T EXTd〉 in which GPS d is the geographical location (i.e., a

pair of lat/long coordinates), T IMEd is the publication time, and T EXTd refers to the

textual content. After preprocessing, we extract essential entities in d and rewrite it as

〈locd,hourd,wdayd,wordd〉 in which locd refers to which location of interest (e.g., which

cluster) GPS d falls in or close by, hourd and wdayd are hour-of-day and day-of-week in

T IMEd, and wordd is a bag of key words extracted from T EXTd. A co-occurrence rela-

tionship exists between a location and a word if they co-exist in a tweet. Actually, such

co-occurrence relationships can be established for every pair of the 4 different types of

entities. The objective in this chapter is to represent these entities in the form of compact

vectors which preserve such co-occurrence relationships.

5.3.2 System Overview

Figure 5.2 demonstrates LeGo’s overall design. After extracting the essential spa-

tial, temporal and textual entities and building the basic graph based on the co-occurrence

148

between entities, LeGo may work in two modes: cross-modal search (LeGo-CM) and

location-similarity search (LeGo-LS). The major difference is that the LeGo-LS adds ex-

tra edges within locations themselves and runs the graph embedding algorithm on the

subgraphs simultaneously while LeGo-CM directly runs the embedding algorithm on the

whole graph after performing random walk procedures.

Geotagged
Spatial Clustering

(extracting locations)

Tweets
Text Preprocess

(extracting words)

Basic Graph
Construction

(co-occurrence graph of
loc., word, hour-of-day &

day-of-week)

Random Walking
(get stable residing prob.)

Graph Enhancement
(add edges of locations)

Embeddings
Learning

Cross-Modal Search

Location-Similarity Search

Figure 5.2: System overview.

5.4 Method

In this section, we present the workflow of LeGo. Specifically, we first discuss

entity extraction from tweets and also graph construction based on co-occurrence. Next,

we detail the implementation of LeGo-CM and LeGo-LS.

5.4.1 Spatial, Temporal and Textual Entity Extraction

5.4.1.1 Spatial Entity Extraction

Although tessellating space into uniform grid cells [133] may ease the processing

of location information, it suffers from the sensitivity of the grid-size parameter as well

as inherently assumes a uniform distribution of tweets over space, which is not practical

in real-life. On the other hand, it is also impractical to consider every single spatial point

149

simply because of space continuity. We therefore seek to identify locations of interest

as the spatial entities in our system. Such locations of interest represent the aggregation

points or regions of human presence for the purpose of conducting various daily life

activities.

Many clustering algorithms have been investigated and adapted to work on spatial

data [48], including k-means [78], mean shift [23] and Hierarchical Density-Based Spatial

Clustering of Applications with Noise (HDBSCAN) [13]. In this chapter, we use mean

shift to group together GPS points in tweets and thus identify locations of interest. The

advantage of mean shift lies in its simplicity and generality [132] which does not assume

any prior knowledge about the underlying data distribution. In order to do so, we first

convert the geographical GPS coordinates from spherical to planar using the Azimuthal

equidistant projection. Such a projection preserves the distance between objects, although

it may distort their shapes. This distortion imposes few effects on our application.

Mean shift is a clustering algorithm that assigns circular regions of data points to

clusters by iteratively shifting towards the modes. The mode can be understood as a local

maxima of the density function upon the samples of data points. Formally, let zt be the

estimation of mode at iteration t, zt+1 can be defined as:

zt+1 =

∑
p∈Nb(zt)

K(p−zt

b)p

∑
p∈Nb(zt)

K(p−zt

b)
(5.1)

where Nb(zt) represents a set of points falling inside the circular region centered

at zt with a radius of b (also called the bandwidth in the mean shift); K(p−zt

b) is a kernel

150

function that determines the weight of nearby points based on their distance to the mode

estimation. In this chapter, we use a flat kernel as follows:

K(
p− zt

b
) :=


1, if ‖

p− zt

b
‖ ≤ 1

0, if ‖
p− zt

b
‖ > 1

(5.2)

The mean shift continues to iterate until zt converges to a small variance, e.g., ‖zt+1−

zt‖ goes below a small value, and thereby yields a location of interest.

5.4.1.2 Temporal and Textual Entity Extraction

Comparing to extracting locations of interest from tweets, it is quite intuitive and

straightforward to extract temporal and textual entities. For example, we can directly

calculate the local hour-of-day and day-of-week from the UNIX timestamp in a tweet’s

publication time. As for essential words in tweets, we exploit the off-the-shelf tool [96,

97] 1 to attain entities and noun phrases as textual entities [134].

5.4.2 Co-occurrence Graph Construction

Up to now, we have 4 types of entities: location, hour-of-day (hour), day-of-week

(wday) and word as illustrated in Figure 5.3. These entities function as the vertices in

the co-occurrence graph G = (V,E). During building the co-occurrence graph G, an edge

between ei j between node vi and node v j establishes and add 1 to its weight if vi and

v j co-exist in the tweet d. Note that the nodes of “word” have additional edges within
1 https://github.com/aritter/twitter_nlp

151

https://github.com/aritter/twitter_nlp

themselves to capture the co-occurrence between words in tweets, which is different from

the other 3 types of entities.

Location Word

Hour

WDay

Time

Figure 5.3: Illustration of basic co-occurrence graph.

5.4.3 Cross-Modal Search

The objective of cross-modal search is to answer this question: given an entity

from one modal, which entities in other modals are most likely to be associated with it?

For example, given a query location, what words are more likely to be observed from

it, and what time periods in a day or which days in a week does this location tend to

hold activities? Formally, given a source entity vm
i from modal m and a target entity vn

j

from modal n, what is the possibility of observing vn
j from vm

i ? In the following, we try

to approach this possibility from two perspectives: co-occurrence graph and vectorized

embeddings, and then utilize their relationship to guide the embedding learning process.

152

5.4.3.1 From the Perspective of Co-occurrence Graph

On the co-occurrence graph G, we resort to modifying personalized graph random

walk procedures [90, 121, 79, 115] to approach the above probability, which is actually

equivalent to the possibility of the random surfer residing at vertex vn
j if he initially starts

vm
i . For convenience, let us denote this probability by p(vm

i → vn
j).

We first give a brief description of the random walk process and then present our

modifications in order to calculate p(vm
i → vn

j). The mechanism behind the random walk

on the graph can be briefly explained by an intuitive random surfer model where this

surfer starts at a vertex and follows an outbound edge at random to visit the next vertex.

The possibility of eventually residing at each vertex is then coded in the probability for

the random surfer reaching that vertex, calculated as the sum of probabilities of the surfer

following all possible edges towards to that vertex. Additionally, a damping factor h is

usually defined to control the probability that the random surfer chooses, before start to

visit next vertex, to follow an edge to reach the next vertex or simply teleports to the next

vertex. This damping factor is used to avoid the random surfer being trapped in some

disconnected components (if that exist) and guarantees the convergence of the random

walk. In summary, suppose we have a graph G = (V,E), the personalized random walk

procedure can be iteratively defined as follows:

�
t+1 = (1−h)∗Π+ h∗�t ×� (5.3)

where �t =

[
rt

v1
rt

v1
· · · rt

vN

]
is the residing possibility after iterating t times, N is the

153

number of vertices N = |V |, and each element rt
vi

represents the residing probability on

the vertex vi; h is the damping factor ranging from 0 to 1; Π =

[
π1 π2 · · · πN

]
is a

teleportation vector in which the element πi = 1 if the surfer starts at vi with the rest

being zeros; and� is the transition probability matrix which is a N ×N matrix with each

element mi j specifying the probability that the surfer transitions to vertex v j from vertex

vi by following an existing edge in the graph. Typically, the transition probability mi j is

0 if vertex vi doesn’t have a outbound edge to vertex v j, and mi j = 1
|OUTi|

if such an edge

exists, where OUTi denotes the set of vertices to which vi has an outbound edge.

Since the edges in the co-occurrence G have weights, let us adjust the transition

probabilities between vertices accordingly. Specifically, if wi j denotes the weight of an

edge ei j ∈ E , then the transition probability from vi to v j can be calculated as [121]:

mi j =
wi j∑

vk∈OUTi

wik
(5.4)

Finally, suppose that we now have the converged residing probabilities for graph

nodes � =

[
rv1 rv1 · · · rvN

]
, instead of directly using the residing probability of vertex

vn
j (i.e., rvn

j
), we calculate its normalized variant as the p(vm

i → vn
j):

p(vm
i → vn

j) =
rvn

j∑
vk∈Vn

rvk

(5.5)

where Vn denotes the set of vertices from the modal n.

154

5.4.3.2 From the Perspective of Vectorized Embeddings

Remember that our goal is to approach the possibility of generating the entity vn
j

from the entity vm
i which is from a different modal. Suppose that we have the vectorized

embeddings of the entities, it is relatively easy to model the objective probability using

the embeddings compared to co-occurrence grahp. For example, we may use p(vn
j |v

m
i) as

the objective probability, which is defined as:

p(vn
j |v

m
i) =

evm
i ·v

n
j∑

vk∈Vn
evm

i ·vk
(5.6)

where v is the vectorized embedding of entity v and Vn similarly denotes the set of

entities from the modal n.

5.4.3.3 Learning Embeddings

Given the probability of p(vm
i → vn

j) from the co-occurrence graph and the prob-

ability of p(vn
j |v

m
i) from the initial embeddings, the goal of learning embeddings is to

iteratively update values in embeddings so that p(vn
j |v

m
i) becomes more and more close

to p(vm
i → vn

j). In so doing, the eventually computed vectorized embeddings will be able

to preserve the structure information of the co-occurrence graph. We use the Kullback-

Leibler divergence KL(·) to measure the difference between two probability distributions.

155

Subsequently, we define the loss function between any two modals of entities as:

L(m,n) =
∑

vm
i ∈V

m

KL(p(vm
i → ·)‖p(·|vm

i))

+
∑

vn
j∈V

n

KL(p(vn
j → ·)‖p(·|vn

j))

(5.7)

Such a loss function basically means to minimize both of the distribution differences

to generate one modal of entities from entities in another modal and conversely to generate

another modal of entities from entities in this modal. At last, the total loss function is the

sum of different L(m,n) with respect to all different edges types in Figure 5.3. Note that

the computation of such loss functions can be solved efficiently using stochastic gradient

descent and negative sampling [87, 132].

5.4.4 Location-Similarity Search

The objective of location-similarity search is to answer this question: given a lo-

cation in a city, which other locations are most similar to it? Although the location em-

beddings learned in Section 5.4.3 may help answer this question to some extent, the ba-

sic co-occurrence graph omits certain explicit relationships within locations like spatial

proximity and thereby imposes limitations to the learned embeddings. In this section,

we modify the basic co-occurrence graph by supplementing two types of edges within

locations and subsequently learn location embeddings for supporting similarity search.

156

5.4.4.1 Co-occurrence Graph Enhancement

Intuitively, two factors may exert noticeable effects on the similarity between lo-

cations: spatial proximity and topic likeliness. For example, several clothing stores tend

to locate close to each other in real-life shopping malls. On the other hand, two isolated

restaurants may also bear resemblance in the sense that they all provide food catering.

Therefore, we enhance the basic co-occurrence graph by add two types of edges within

locations to address these two factors as shown in Figure 5.4.

Location
A

Location
B

Weight by Spatial Proximity

Weight by Word Co-occurrence

Figure 5.4: Add-on edges within locations themselves.

Next, the weights of the add-on edges are determined as follows. Suppose that we

have two location vertices vl
i and vl

j. For spatial proximity, its weight is determined by

a Gaussian attenuator, i.e., w′i j = e
−dist(vl

i,v
l
j)

2

2b2 , where dist(·) is the planar distance function

and b is the bandwidth defined in the mean shift clustering algorithm in Section 5.4.1.1.

As for topic likeliness, we count how many times a word co-occurrence happens between

two locations. In particular, a word ω co-occurs between locations vl
i and vl

j if ω appears

in both of their tweets. Furthermore, if such a co-occurrence happens in a shorter time,

it should be considered more important. Therefore, we define the weight by word co-

occurrence between vl
i and vl

j as: w′′i j =
∑

ω∈Ωi j

exp(
−di f fω(vl

i,v
l
j)

2

2σ2
ls

), where Ωi j denotes the

set of common words shared by vl
i and vl

j, di f fω(·) measures the smallest gap in time

157

between the time point ω appears in vl
i and the time point ω appears in vl

j, and σls is the

time bandwidth. In practice, encoding all-to-all edges within locations will bring about

significant computation cost if there are many locations of interest. To speedup this, we

make the following two modifications. First, we combine the two types of edges plotted

in Figure 5.4 into one by combining their weights as λw′i j + (1−λ)w′′i j. Second, instead of

adding all-to-all edges within locations, for a location vl
i, we only consider its nearest Nsn

spatial neighbors to supplement such edges.

5.4.4.2 Learning Embeddings

Unlike the basic co-occurrence graph, it becomes impractical or too complex to

perform the random walk procedures on the enhanced graph because it encodes two dif-

ferent types of edge weights. Therefore, we need a different way to compute p(vm
i → vn

j)

on the enhanced graph. Essentially, p(vm
i → vn

j) reflects the possibility that the vertex

vm
i transitions to vertex vn

j , and thereby inspires us to utilize the transition probability in

Equation 5.4 for an approximation [132]. For example, we can now define p(vm
i → vn

j) as

the normalized transition probability as follows:

p(vm
i → vn

j) =
wi j∑

vk∈Vm∩OUTi

wik
(5.8)

Recall that Vm is the set of vertices from modal n and OUTi is a vertex’s outgoing

neighbors. With Equation 5.8, the actual embeddings learning process is similar to the

one in Section 5.4.3.3 except for putting on an extra loss function to address the edges

within locations themselves.

158

5.5 Evaluation

5.5.1 Experimental Settings

5.5.1.1 Datasets

The evaluation is performed on two sets of geotagged tweets collected from 2014-

08-01 to 2014-11-30 in two corresponding cities: New York City (NYC) and Los Angeles,

CA (LA) [133]. The total number of tweets, is about 1.5 million in NYC and 1.2 million

in LA, respectively. We randomly take 10,000 tweets for testing and the rest for learning

the embeddings of location, words, hours-of-day and days-of-week.

5.5.1.2 Baseline Approaches

We compare with the following baseline approaches:

• TF-IDF first builds a document-term matrix between locations and words. There are

various schemes for determining the value of each entry in the matrix. Here in this

method, the scheme is TF-IDF. Each location is then represented by a row vector and

each word is represented by a column vector. Additional zeros are padded into the

smaller-size dimentionality to make row vectors and column vectors have the same

size.

• SVD also builds a document-term matrix between locations and words. But unlike TF-

IDF, the value of each entry in this matrix represents the number of times of each word

appears in each location. The Singular Value Decomposition is then applied to this

159

matrix to reduce the dimentionality size of rows and columns and thereby extract them

as compacted vectors of locations and words.

• Doc2Vec [63] is an extension of Word2Vec technique [87] and directly learns the vector

representations of both documents and words in the same semantic space by introducing

an additional document feature vector. Here, we use the Doc2Vec implementation in

the gensim library 2 and choose DBOW (Distriuted Bag of Words) as the underlying

model.

• ReAct [133] first discretizes space into grid cells and time into hours and subsequently

learns the embeddings of grid cells, hours and words in tweets in a semi-supervised

way. During its learning process, ReAct tries to optimize two objectives. First, given

two attributes in location, time and words, it tries to maximally recover the third at-

tribute. Second, given a tweet, it tries to maximally predict its category. Note that the

category information of a tweet is obtained in advance if a Foursquare link is contained

in that tweet. For fairness in comparison, ReAct takes the spatial clusters generated in

Section 5.4.1.1 as locations in space instead of grid cells, and takes the natural integral

hours for time.

• CrossMap [132] proposed two methods of learning cross-modal embeddings for space,

time and texts: ReconEmbed and GraphEmbed. ReconEmbed is very similar to Re-

Act [133] except for only focusing the objective of attribute recovery. We therefore only

compare with GraphEmbed here. Note that, CrossMap also performs hotspot detection

in temporal dimension instead of directly using temporal features like hour-of-day and
2 https://radimrehurek.com/gensim/models/doc2vec.html

160

https://radimrehurek.com/gensim/models/doc2vec.html

(a) Spatial query: [40.690, -74.045]-Liberty Statue (b) Spatial query:
[40.759, -73.980]-Rockefeller Center

(c) Textual query: broadway. (d) Textual query: beach.

(e) Temporal query: hour=10, day=Wed. (f) Temporal query: hour=22, day=Sat.

Figure 5.5: Examples of spatial, textual and temporal queries in NYC.

day-of-week.

By default, TF-IDF, SVD and Doc2Vec handle data of only two dimensions. We

perform the following preprocessing in these methods in order to incorporate all the en-

tities of location, words, hours-of-day and days-of-week. We treat each location as a

document and its sentences comprise the tweets falling inside the location. The hour-

of-day and day-of-week values extracted from posting time of each tweet are parsed as

special words and appended to that tweet’s bag of words.

161

5.5.1.3 Parameter Settings

The major parameters in LeGo are set as follows. For embedding dimension length,

we set Ndim = 200. For time entities in tweets, we extract its natural integral hours-of-day

and days-of-week from the publication of tweets converted to local time, i.e., hour =

{0,1,2, · · · ,21,22,23} and wday = {Mon,Tue,Wed,Thu,Fri,S at,S un}, in order to reflect

patterns of people’s daily life in urban areas. We set the bandwidth b of mean shift3

for clustering tweet locations to 160m, which yields around 18,000 location clusters in

NYC and 17,000 location clusters in LA. As for the random walk procedure to calculate

stationary residing probabilities between vertices in the co-occurrence graph, we use a

default damping factor h = 0.8 and run 20 iterations in all cases. In the embedding learning

process, we set the number of epochs for training Nepoch = 256 and the learning rate

αlearn = 0.02. As for LeGo-LS for location-similarity search, we set the number of spatial

neighbors Nsn = 8, the weight coefficient of spatial proximity over topic likeliness λ= 0.5,

the bandwidth σls for the time difference of a spatial word co-occurrence to be 2 months.

For comparison, all methods are tested using the same Ndim except for TF-IDF.

Also note that TF-IDF, SVD and Doc2Vec use the same representations of location and

time as LeGo. Although ReAct and CrossMap are also fed with the same form of loca-

tions, they use natural integral hours and time hotspots for time representations as in their

implementation, respectively.
3 https://scikit-learn.org/stable/modules/generated/sklearn.cluster.MeanShift.html

162

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.MeanShift.html

5.5.2 Illustrative Cases

We select several examples of cross-modal search and location-similarity search in

Figures 5.5 and 5.6, respectively.

5.5.2.1 Cross-Modal Search

We perform several case studies of cross-modal searches in NYC and present the

results in Figure 5.5. Each example is described by 4 types of data with locations plotted

as red GPS pin markers in the accompanying maps. Ahead of the map of GPS points

are location-correlated words, hours-of-day and days-of-week. To perform the spatial,

textual and temporal queries, we input the information in one dimension and retrieve the

most similar information in other dimensions under the metric of vector cosine similarity,

which are listed from top to bottom in the figures.

Spatial Queries. Figure 5.5a and Figure 5.5b illustrate two spatial queries in NYC.

The two spatial inputs are the GPS points of two landmark buildings in NYC: the Statue of

Liberty and the Rockefeller Center. The textual, temporal outputs are listed in the columns

of Word, Hour and WDay, correspondingly. From the perspective of top retrieved words,

they are very demonstrative because they exhibit close relatedness to the input location.

For example, “ladyliberty”, “statuliberty” and “statueofliberty” etc are just close variants

of the name of the landmark building. From the perspective of top retrieved hour values,

we find that the Statue of Liberty is more related to the afternoon before 4pm. This is

reasonable in the sense that it is usually open to public up to 4pm. On the contrary, we

find that the Rockefeller Center has a stronger relation to noon and early evening. This

163

is because one of its most famous sights is “top of the rock” which attracts people to go

there and see the landscape of NYC during the day and witness the dusk and night view

of NYC. From the perspective of top retrieved days-of-week, there seems no noticeable

difference between weekdays and weekends in both cases of spatial query. Our intuitive

explanation is that both of these two locations are very popular tour locations and more

importantly, they are also open during the weekends. Therefore, they attract people to

visit regardless of which day it is in the week.

Textual Queries. For textual queries, we give two words “broadway” and “beach”

as the inputs to retrieve most related information on hours-of-day, days-of-week and loca-

tions. The results are presented in Figure 5.5c and Figure 5.5d, respectively. First, we find

that the returned locations (the GPS pin marker in the map) are highly relevant to the input

textual query. For example, the word “broadway” yields a set of locations in which most

are concentrated around the Broadway theatre district in downtown Manhattan, while the

remaining two fall on the Broadway Ave. in the Brooklyn borough of NYC. Meanwhile,

in the case of “beach”, we find all its top retrieved locations are geographically mean-

ingful by falling along waterside. Second, with respect to the retrieved hours-of-day, one

may notice that “broadway” are more correlated to evening time while “beach” more cor-

related to late afternoon. This is consistent with the Broadway show schedules and peo-

ple’s habits of enjoying beach time. Third, when it comes to the retrieved days-of-week,

“broadway”-related activities tend to happen on weekdays, and in comparison, “beach”-

related activities are more relate to late weekdays and early weekends. This provides

meaningful insights to people’s urban life pattern changes from weekdays to weekends:

on weekdays, due to job constraints, people usually choose nearby urban locations for

164

entertainments, and when it is close to weekends, people may get early-release from job

duties and may choose vacation resorts for enjoying the longer free time.

Temporal Queries. Because temporal features include both hour-of-day and day-

of-week, we set both of their values in temporal queries. In Figure 5.5e, we set hour = 10

and wday = Wed to retrieve the top related words and locations. Similarly, in Figure 5.5f,

we set hour = 22 and wday = S at. With respect to the top retrieved words, one can see

that the words are expressing more emotional feelings (e.g., “like” and “good”) rather

than indicative of specific topics. This makes sense because it is not expected that all

people would be involved in the same type of activities even during the same time. Even

so, some words of common sense may pop up like “day” and “night”, respectively. As to

the top retrieved locations in temporal queries, we find the results significantly different

in the case of weekday morning and weekend evening. For example, the locations for

a Wednesday morning in Figure 5.5e mainly stay closely in urban downtown working

zones and the locations for a Saturday evening in Figure 5.5f scatter over different resi-

dent zones. In order to distinguish which temporal feature (hour-of-day or day-of-week)

is determining the distribution pattern of retrieved locations. We make one additional

temporal query with hour = 22,wday = Wed and the results show that the location distri-

bution in Wednesday evening is sparser than the one in Figure 5.5e but denser than the one

in Figure 5.5f. This indicates that such a location distribution pattern results from both

effects of hour-of-day and day-of-week features. It is worth mentioning that this change

in location pattern slightly echoes the observations in textual queries: people’s urban life

pattern may change when it transitions from weekdays to weekends.

165

(a) NYC (b) LA

Figure 5.6: Examples of location similarity queries in NYC and LA, respectively.

5.5.2.2 Location Similarity Search

We now present two examples of location similarity search that encodes both spatial

proximity and topic likeness in NYC and LA, respectively in Figure 5.6. Each example

features a query location (shown as the dark red solid map pin marker) and a list of similar

locations (light red hollow map pin markers). The similar locations are retrieved under the

metric of cosine vector similarity. In the case of NYC, the query location is a GPS point

of [40.781022,-73.973197] where the American Museum of Natural History locates. The

cluster of returned locations that fall close to the query location in Figure 5.6a are all hot

check-in places of nearby museums such as the Metropolitan Museum of Art, the Mu-

seum of Modern Art, the Met Breuer which is a museum of modern and contemporary art

and etc. Although there are 3 locations slightly far away from the input query location,

they exhibit topic likeliness because they are also about museums at different places like

166

the 911 Memorial Museum and the Brooklyn Museum. Therefore, the locations we re-

trieved in Figure 5.6a are very reasonable as they exhibit both spatial proximity and topic

likeliness. Furthermore, we also conduct a similar search in LA by inputting the following

coordinates 34.062787,-118.361282, which is a point surrounded by a cluster of museums

majorly about art. The retrieved locations are plotted on the map in Figure 5.6b. One can

see that, in comparison to NYC, the retrieved locations in the case of LA are relatively

farther away from its query point and distribute more dispersedly. Even so, they reveal a

more significant topic likeliness: The majority of the retrieved locations in LA are about

museums and moreover, are museums of art. For example, among the retrieved locations

are the Getty center which has museums about art, the Norton Simon Museum which is

about public art, and the Hammer Museum which is gallery with a permanent collection

of historical works and special exhibits of edgy contemporary art. Such a strong similarity

in topics may mitigate their relatively large distances in geography. This further demon-

strates the effectiveness of our encoding both spatial proximity and topical likeliness in

learning latent embeddings of locations for similarity search.

5.5.3 Quantitative Analysis

5.5.3.1 Effectiveness

We evaluate the effectiveness of different embedding methods by performing the

tasks of ranking tweets with negative attributes. The task of ranking a tweet d with a

negative attribute is conducted as follows: First, we define a ranking score function f RS (·)

to compute a score of d by averaging the cosine similarities between its embedding vectors

167

of attributes (Note that the embedding vectors of words in wordd will be first averaged to

get a single vector); Second, we mask one of d’s attributes in 〈locd,wordd,hourd,wdayd〉

and fill in a negative candidate value randomly sampled from other tweets in the dataset.

We repeat this process 10 times and get 10 variants of d, denoted by {d′i |i = 1 · · ·10}.

Finally, we compute the ranking order of f RS (d) in { f RS (d′i)|i = 1 · · ·10} in a descending

order, and denote it by Rd. Therefore, topper ranking orders indicates better embeddings

of tweets. To quantify the rankings orders of testing tweets, we adopt the metric of Mean

Reciprocal Rank (MRR) [133, 132], which is defined as:

MRR =

∑
d∈DTest

1
Rd

|DTest|
(5.9)

where DTest represents the testing dataset of tweets. It is easy to see that higher-quality

embeddings will yield larger MRR values. In our settings, we set |DTest| = 10,000 and

then compute such an MRR for each of the attributes in 〈locd,hourd,wdayd,wordd〉.

Cross-Modal Search The results of LeGo-CM for cross-modal search are listed

Method
NYC LA

Loc Word Hour WDay Loc Word Hour WDay
TF-IDF 0.275 0.274 0.279 0.280 0.277 0.279 0.283 0.286
SVD 0.402 0.321 0.321 0.321 0.350 0.317 0.341 0.342
Doc2Vec 0.448 0.491 0.342 0.345 0.469 0.523 0.338 0.336
ReAct 0.470 0.459 0.167 N/A 0.560 0.561 0.167 N/A
CrossMap 0.516 0.619 N/A N/A 0.514 0.642 N/A N/A
LeGo-CM 0.589 0.598 0.348 0.348 0.616 0.612 0.339 0.339

Table 5.1: Comparison results using Mean Reciprocal Rank.

in Table 5.1, and the MRR value in our method is bold if it is the highest value in the

comparison results. It shows that LeGo-CM outperforms almost all baseline approaches

168

including TF-IDF, SVD and Doc2Vec and achieves better results than the state-of-the-art

methods in most cases. In particular, a significant improvement is observed over ReAct

and CrossMap with respect to the MRR values of locations. Note that the MRR values

with respect to day-of-week are not reported for ReAct because this method does not

use this feature. Similarly, CrossMap uses the hotspots in the temporal dimension to

represent time and thus does not report the MRR values for the integral features of hour-

of-day and day-of-week. In general, TF-IDF has the worst performance in most cases

due to its direct use of sparse row/column vectors extracted from the document-term ma-

trix. SVD improves over TF-IDF by performing dimentionality reduction and thereby

only preserves the most essential information in the compacted row/column vectors in the

document-term matrix. In comparison, Doc2Vec gets much better results on location and

word by encoding them in the same latent space. We also notice that the results of ReAct

are not as good as we expect. This is probably contributed by its online learning process

which only addresses the most recent information happening at a location and chooses

to forget the past information in a exponential time-decay manner. This also explains

its low MRR values of hour-of-day. Although CrossMap achieves slightly better MRR

values than our method LeGo-CM with respect to word, it has significant lower MRR

values with respect to location. Two main types of difference in our implementation may

contribute to this difference in the results. First, although our introduction of features

like hour-of-day and day-of-week may help distinguish between similar places because

different places usually exhibit slightly different temporal activity patterns, such integral

time features may overfit certain topics which is not always practical because activities at

the same time may even reveal great varieties. Second, our learning process focuses on

169

the stationary residing probabilities between nodes in the graph. This emphasis may be

useful to the nodes representing locations but not to the nodes representing words. This

is because location nodes do not have mutual edges connecting to each other and thereby

have weak affects on each other during the random walk process.

Location Similarity Search For the completeness of the quantitative evaluation,

we also list the MRR values of our method LeGo-LS for location similarity search. It is

worth mentioning that these MRR values are presented not for the purpose of comparing

with LeGo-CM and its baseline approaches but for the completeness of the evaluation un-

der the metric of MRR. For example, in order to correctly recover the location attribute,

the graph structure and the objective in LeGo-CM are trying to diminish the ambiguity

between different locations while LeGo-LS’s objective is to find similar locations and thus

in some extent encourages the ambiguity between similar locations. Such a difference is

also reflected in the MRR values listed in Table 5.2. In general, LeGo-LS has lower MRRs

in both cities. This is particularly noticeable in the NYC dataset because its locations of

interest have a very dense distribution over the downtown area with a lot of them falling

closely to each other. As a result of introducing similarity weights between locations in

the graph, these geographically close locations in NYC are becoming less distinguish-

able. In comparison, the distribution of the locations of interest in Los Angeles is more

sparse. In other words, the distances between locations are larger, which makes them less

vulnerable to weights of spatial proximity.

Method
NYC LA

Loc Word Hour WDay Loc Word Hour WDay
LeGo-LS 0.523 0.553 0.317 0.318 0.601 0.606 0.310 0.312

Table 5.2: MRR values in LeGo-LS.

170

5.5.3.2 Efficiency

To fairly investigate the efficiency of the learning process, we omit all the data

preparation operations and only address the step of model training. The experiments are

conducted on an AWS EC2 instance with 240GB memory and an Intel Xeon CPU (E5-

2686 2.30GHz). In each method, we record the time spent in processing the training

tweets. The results are reported on the NYC dataset as it contains relatively more tweets.

TF-IDF SVD Doc2Vec ReAct CrossMap LeGo-CM
100

200

300

400

500

600

700

800

900

1000

se
co

nd
s

Figure 5.7: Model training time consumption.

Figure 5.7 presents the training time of different methods in seconds. It shows that

TF-IDF runs the fastest because of its simplicity. Our method LeGo-CM achieves moder-

ate efficiency comparing to CrossMap considering that we address 4 types of nodes in the

graph while ReAct addresses 3 types of nodes. Also note that, introducing extra edges to

connect nearby locations adds extra time consumption in LeGo-LS which usually takes

about 650 seconds to finish training. The method ReAct runs the slowest because of its

171

small batch size which leads to frequent weight updating in its online training procedure.

5.5.4 Parameter Sensitivity

In this section, we evaluate the sensitivity of several essential parameters in our

methods. Specifically, in LeGo-CM, we study the following parameters: the embedding

dimension length Ndim, the number of training epoch Nepoch and the spatial clustering

bandwidth b. We also study the number of spatial neighbors Nsn and the weight coefficient

of spatial proximity over topic likeliness λ in LeGo-LS. By default, we set Ndim = 200,

Nepoch = 100, b = 160m, Nsn = 8, and λ= 0.5. Both of these methods are evaluated against

the MRR values with respect to locations on the NYC dataset. The results are plotted in

Figure 5.8 and Figure 5.9, respectively.

Figure 5.8a shows that the method improves significantly from Ndim = 10 to Ndim =

200 and soon becomes stable. A similar phenomenon is also observed in Figure 5.8b

as a larger Nepoch value leads to a better MRR value and the curve afterwards seems

to converge when Nepoch continues to increase. From Figure 5.8a, we can see that the

MRR value increases to the maximum and then starts to drop when the spatial clustering

bandwidth b increases. This meets with our expectation because a small b may divide a

spatially and topically coherent cluster into many smaller ones and a large b may other-

wise group spatially and topically irrelevant locations into the same cluster.

Figure 5.9 plots the location MRRs in LeGo-LS regarding the number of spatial

neighbors to connect (i.e., how many nearby locations a location is going to have edges

connecting to) and the weight coefficient of spatial proximity over topic likeliness. The

172

results show that LeGo-LS is less sensitive to these two parameters except that the location

MRR significantly increases when the locations do not add on the weight resulted from

topic likeliness. This makes sense because such a weight makes nearby locations look

more similar if they have similar sets of words, and thus makes it hard for the model to

distinguish between them.

0 200 400 600 800 1000
Embedding dimension size: Ndim

0.1
0.2
0.3
0.4
0.5
0.6

M
RR

(a)

20 21 22 23 24 25 26 27 28 29210

Number of training epochs: Nepoch

0.3

0.4

0.5

0.6

M
RR

(b)

0 100 200 300
Spatial clustering bandwidth (m): b

0.45

0.50

0.55

0.60

M
RR

(c)

Figure 5.8: Location MRRs vs. Ndim, Nepoch and b in LeGo-CM

20 21 22 23 24 25 26 27 28

Number of spatial neighbors: Nsn

0.35
0.40
0.45
0.50
0.55
0.60

M
RR

(a)

0.0 0.5 1.0
Weight coefficient of spatial closeness: λ

0.35
0.40
0.45
0.50
0.55
0.60

M
RR

(b)

Figure 5.9: Location MRRs vs. Nsn and λ in LeGo-LS

5.6 Conclusions

In this chapter, we presented LeGo for learning embeddings of spatial, textual and

temporal entities in geotagged tweet. In essence, LeGo has two working modes: LeGo-

CM for cross-modal search and LeGo-LS for location-similarity search. Prior to the

173

learning process, a mean shift-based spatial clustering procedure is performed to detect

locations of interest. For the time dimension, we extract hour-of-day and day-of-week

as temporal entities which are consistent with people’s daily-life habits and patterns.

We then utilize the co-occurrence between locations, words, hours-of-day and days-of-

week to build graphs for LeGo-CM and LeGo-LS, respectively. The graph in LeGo-LS

is slightly different by adding edges between nearby locations whose weights are deter-

mined under the consideration of both spatial proximity and topic likeliness. Another

factor which differentiates LeGo-CM from LeGo-LS is that the former learns the embed-

dings of graph nodes by approximating the stable residing probabilities between nodes

while the latter learns the embeddings in subgraphs. The evaluation results on two se-

lected cities show that LeGo outperforms competitive baselines in most cases, thereby

showing the effectiveness of the proposed method.

For future work, learning and evaluating the embeddings of locations across differ-

ent cities is an interesting topic. For example, with a query location in one city, one may

search for similar locations in a different city to find similar tourism spots. Also, the ex-

ploration of utilizing the learned embeddings to classify location into different categories

like “business” and “residence” is also an interesting direction.

174

Chapter 6: Future Work

When it comes to measuring the spatial influence of Twitter users, we have explored

the role of the geographical consideration, i.e., incorporating the distance-decay function

to determine the influence weights between connected Twitter users. There are, however,

many aspects to further explore. First, topical considerations can be added to thereby

identify influential Twitter users at specific domains. For example, after identifying top

local users, additional procedures such as classification like LDA might be exploited to

pick out news-related users to improve the quality of news seeders. More interestingly,

topic-sensitive ranking is also another direction. For example, Weng et al. [119] propose

TwitterRank to find topic-sensitive influential Twitter users by modifying the original

PageRank to be aware of the topics hidden in the users’ tweets. To be specific, after iden-

tifying a topic distribution for each user, the similarities between users’ topic distributions

are then incorporated into the transition probabilities of the random surfer walking from

one user to another. Similarly, we may also utilize LDA to identity topics related to local

news and events and thereby incorporate topic similarity into the transition matrix. How-

ever, the difficult part is to reasonably balance the weights of geographical distance and

the weights of topic similarities. Second, most of the existing work in building an interac-

tion graph from Twitter interactions neglect the changes in the influence of an interaction

175

edge over time [57, 29, 120, 14, 41, 53, 46]. However, as one aspect of being dynamic,

the creation time of an interaction plays an important factor and should be accounted for.

For example, Cha et al. [16] have reported that the people’s influence determined by

interactions might rise and fall over time and different time period might have different

influential users. The influence of some athletes might substantially increases during the

event of Olympic Games but fade away when they are closing. Therefore, we plan to

apply a Gaussian attenuator on each of interaction edges by assuming the influence an

interaction edge brings about reaches maximum at the time when it happens and fades

away over time. In particular, the Gaussian parameter takes into account the difference in

days between a given time point and the interaction’s creation time.

When it comes to detecting local events from geotagged tweets, we have investi-

gated how to recognize an unusual increase in the tweet volume as a signal of potential

local events. Although the current method DeLLe achieves comparative performance,

there are some remaining constraints. First, DeLLe currently works on city-level scope

and has difficulties in scaling up over larger areas like nation-wide. For example, one may

notice that the spatial ranges that we choose to perform evaluation in the city of Seattle,

WA and New York City are relatively limited on the urban regions. This is due to our grid

tessellation of space and the subsequent modeling tweet count data as images in the neural

network models. Considering that the space grid resolution in Chapter 3 is 50m× 50m,

directly expanding to the national level of U.S. would lead to a grid size of approximately

86000×51000, which is not easy for training with the current neural network architecture

and hardware. Therefore, it is an interesting topic to look for a different space tessellation

technique that can i) reduce the number of dimensions but meanwhile have a fine resolu-

176

tion and ii) be easily adapted into the current deep neural network models. For example,

in order to reduce the memory footprint of convolution as well as increase the voxel reso-

lution in 3D representations, Riegler et al. [94] propose OctNet, a representation for deep

learning with sparse 3D data. The core idea of OctNet in dealing with large but sparse 3D

data is to innovatively introduce an octree into its data structure and subsequently modify

the corresponding neural network operations. Similarly, geotagged tweets may also un-

evenly distribute over different regions. Some areas like the urban districts may see a high

density of tweets, while some areas like open waters may see a very sparse set of tweets.

Therefore, resolutions should be addressed differently for these two areas. Inspired by

OctNet [94], we can similarly build a quadtree representation of tweet count informa-

tion, which yields bigger but fewer grid cells for areas with sparse tweets, and smaller

but more grid cells for areas with dense tweets. Different from OctNet [94] which runs

only one-time convolution operation, we will have to address consecutive neural network

operations on a quadtree data structure because the prediction model consists of multi-

ple layers of neural networks. Second, DeLLe currently relies on a ranking score which

multiplies the weights of different factors including spatial burstiness, temporal bursti-

ness and topical coherence. However, it is often hard to manually design a gold-standard

function to accurately pick out true local event candidates. Not to mention that it also re-

quire a parameter to limit the top-K candidates. In the future, since the human evaluation

yielded a groundtruth of local events, it enables us to explore other learning methods that

may classify spatiotemporal unusualness into true or false local events using features like

burstiness and topical coherence.

When it comes to enhancing local live tweets to enable the detection of more and

177

smaller local news and events, we have presented Firefly, which first identifies a large

body of local people and then collects their tweets to largely increase the number of

possible local tweets. The results show that in so doing, we are able to detect much more

local news comparing with local news agencies and baseline approaches that only exploit

geotagged tweets. There are, however, more questions to answer. First, the locality-

aware keywords based clustering algorithm is not sensitive to the difference between some

national and local news. For example, Firefly is more likely to report a national news as

local news if there are only a very few local people discussing that national news. In

the future, in order to get rid of such national news, we may monitor Twitter in general

to maintain a set of national trends. And for each news we detect from a local place,

we check if it meets one of the national trends and if so, decline to report it. Second,

instead of the current heuristics-based parameter tuning, a learning procedure might be

explored to help determine the parameter values in extracting locality-aware keywords

and online clustering. Third, we have noticed that in a sole closed-domain data source like

Twitter, some local news may not even get reported at all. For example, in Section 4.4.4.3,

we found that some news articles published on the news agencies’ websites relate to no

tweets at all. It shows that there would be lot more news happening in an area than posted

in Twitter. This motivates us to integrate cross-domain news sources such as Instagram,

Facebook and local news websites, to further mitigate the data sparsity in the future.

178

Chapter 7: Conclusion

With people posting tweets to discuss real-world happenings of events, Twitter pro-

vides an invaluable source of data on local news and events. However, detecting and

extracting such local news and events is still challenging due to problems like too many

noisy tweets, complicated spatiotemporal context and data sparsity. We have presented

several directions to deal with these challenges and explored their effectiveness in detect-

ing local news and events.

First, we focused on finding spatially influential Twitter users on a query location

based on the interactions, especially the locally influential users. Because in practice, we

found locally influential Twitter users are usually good news and event seeders. In order

to do this, we have built a large-scale directed interaction graph of Twitter users, and

proposed a variant of a PageRank procedure to select top locally influential people. The

proposed ranking procedure incorporates geographical distance to the transition matrix

used for the random walking. The experiments show that by making use of the spatial

locality, our proposed method Edge-Locality PageRank (ELPR) outperforms other related

algorithms in finding local influential Twitter users. More importantly, we showed that the

majority of such locally influential users have high credibility in outputting local place-

relevant tweets, and thereby may act as potential news and event seeders.

179

Second, we emphasized on recognizing the unusualness in tweet volume at a local

place as a signal of potential ongoing local events. In order to capture the unusual in-

crease in the tweet count, we first try to make a prediction on the expected value of the

number of tweets at a local place. This is accomplished by a novel neural network, which

formulates tweet count prediction as a spatiotemporal sequence forecasting problem and

design an end-to-end convolutional LSTM based network with skip connection. We then

present DeLLe to detect local events in real-time from geotagged tweet streams. With the

help of novel spatiotemporal tweet count prediction models, DeLLe first finds unusual lo-

cations which have aggregated unexpected number of tweets in the latest time period. For

each such unusual location, DeLLe uses a ranking score to identify the ones most likely

having ongoing local events by addressing the temporal burstiness, spatial burstiness and

topical coherence. Furthermore, DeLLe infers an event candidate’s spatiotemporal range

by tracking its event-focus point. Finally, DeLLe chooses the most influential tweets to

summarize local events and thereby presents succinct but yet representative descriptions.

The evaluation on the city of Seattle, WA as well as a larger city of New York show that

the proposed method generally outperforms competitive baseline approaches.

Third, we try to mitigate the data sparsity of local tweets in Twitter, and thereby en-

able the detection of more and smaller local events. A system, called Firefly, is proposed

that overcomes the data sparsity and captures thousands of local stories per day from a

metropolitan area (e.g., Boston). In order to deal with the infamous data sparsity of local

tweets in publicly accessible Twitter data, Firefly first enhances the local live tweet stream

by identifying a large body of Twitter users in an area to follow via an online geotagging

procedure and thereby significantly increases the amount of tweets generated from that

180

area. Our experiments show that, given an area, this procedure easily feeds us almost

all of its active Twitter users. With this enhanced local live tweet stream, Firefly tries to

identify locality-aware keywords and further uses them to cluster tweets together to detect

news. Comparing with a set of local news agencies, our system achieves the highest re-

calls. At the same time, our system also outperforms the baseline approach TwitterStand

regarding both recall and precision. More importantly, Firefly is able to detect much more

local news than the approaches that only use geotagged tweets.

Finally, we try to learn universal representations of spatial, temporal and textual en-

tities in the geotagged tweets under the same semantic space. A methodology, called LeGo,

presented to learn compact vector embeddings for locations, times and topics in tweets

and at the same time, preserve their correlations. In order to do so, LeGo first extracts

spatial, temporal and textual entities from tweets to build their co-occurrence graphs and

then use graph embedding learning techniques to encode co-occurrence into node vec-

tors. In essence, LeGo has two working modes: LeGo-CM for cross-modal search and

LeGo-LS for location-similarity search. For spatial entities, a mean shift-based spatial

clustering procedure is performed to detect locations of interest. For temporal entities,

we extract hour-of-day and day-of-week as temporal entities which are consistent with

people’s daily-life habits and patterns. For textual entities, we extract named entities

and noun phrases in tweets. We then utilize the co-occurrence between locations, words,

hours-of-day and days-of-week to build graphs for LeGo-CM and LeGo-LS, respectively.

The graph in LeGo-LS is formed slightly differently by adding edges between nearby

locations whose weights are determined under the consideration of both spatial proxim-

ity and topic likeliness. Another factor which differentiates LeGo-CM from LeGo-LS is

181

that the former learns the embeddings of graph nodes by approximating the stable re-

siding probabilities between nodes while the latter learns the embeddings in subgraphs.

The results of evaluation on two selected cities show that LeGo outperforms competitive

baselines in most cases, thereby shows its effectiveness.

There are still many other directions to explore as discussed in Chapter 6. For

instance, we may additionally incorporate the temporal and topical considerations in de-

termining local influential Twitter users. We may also explore a different underlying data

structures (rather than the even grid) for modeling tweet count data, which could enable

us to scale up the method beyond city-level to nation-wide. We may also try to integrate

data sources from different domains and platforms like Instagram, Facebook and online

local newspapers to further mitigate the data sparsity of local news and events. We leave

these questions for future work.

182

Appendix 8: Top 70 Influentials on Boston using Different Methods

Table 8.1: Top 70 influential Twitter users (in various categories) on Boston using InD,
LocInd, PR and ELPR.

Edge Locality

InD LocInd PR ELPR

patriots sp. patriots sp. patriots sp. patriots sp.

crazyfightz mi. onlyinbos ne. oitnb co. bostonglobe ne.

drjillstein po. bostonglobe ne. johncena sp. onlyinbos ne.

diaryforcrush mi. redsox sp. bostonglobe ne. redsox sp.

johncena sp. stoolpresidente re. redsox sp. nhlbruins sp.

twichiste mi. nhlbruins sp. mls sp. stoolpresidente re.

redsox sp. mbta co. mittromney po. marty_walsh po.

oitnb co. celtics sp. harvardbiz mi. mbta co.

harvardbiz mi. marty_walsh po. shareaholic co. celtics sp.

shareaholic co. universalhub ne. drjillstein po. davidortiz sp.

valaafshar re. jared_carrabis re. harvard un. gillettestadium sp.

bostonglobe ne. gillettestadium sp. diaryforcrush mi. edelman11 sp.

183

mittromney po. smackhigh mi. jorgeramosnews re. massgovernor po.

mls sp. boston25 ne. celtics sp. universalhub ne.

jorgeramosnews re. feitsbarstool re. crazyfightz mi. crazyfightz mi.

elizabethforma po. edelman11 sp. valaafshar re. jared_carrabis re.

udaqueness mi. davidortiz sp. draftkings co. nesn ne.

invictossomos ne. massgovernor po. aly_raisman sp. harvard un.

quickest_rts mi. wcvb ne. davidortiz sp. bostonpolice go.

rapfavorites mi. bostondotcom ne. elizabethforma po. smackhigh mi.

celtics sp. nesn ne. mit un. boston25 ne.

videodubs mi. 7news ne. banks mi. feitsbarstool re.

onlyinbos ne. bostontweet ne. bose co. mit un.

unapologetiicb mi. bostonherald ne. twichiste mi. tdgarden sp.

asamjulian mi. bostinno ne. nhlbruins sp. bostonmarathon sp.

sopandeb re. bostonpolice go. runkeeper co. bostonherald ne.

banks mi. cbsboston ne. newbalance co. cityofboston go.

macjohnathan mi. necn ne. hubspot co. bostondotcom ne.

13reasonslife mi. massstatepolice go. stoolpresidente re. wcvb ne.

stoolpresidente re. cityofboston go. brgsjks mi. bostontweet ne.

josemanaio mi. wbur ne. edelman11 sp. cbsboston ne.

advil mi. mikereiss re. usagym or. bostinno ne.

heartlle mi. projo ne. 13reasonslife mi. massstatepolice go.

184

hannahkauthor au. jeffphowe re. dimperachi mi. 7news ne.

hubspot co. harvard un. onlyinbos ne. wbur ne.

nhlbruins sp. mit un. correction mi. 985thesportshub ne.

sneakershouts co. benvolin re. generalelectric co. harvardbiz mi.

draftkings co. kirkandcallahan ho. videodubs mi. hubspot co.

brucevh au. bostonmagazine ne. unbellieveable mi. draftkings co.

iamtidora mi. harvardbiz mi. sopandeb re. nerevolution sp.

davidortiz sp. csnne ne. invictossomos ne. necn ne.

radiofreetom au. drjillstein po. thisispvris co. northeastern un.

yourgurljordan mi. 985thesportshub ne. gillettestadium sp. bostonmagazine ne.

shenanigansen co. mbta_cr co. quickest_rts mi. mbta_cr co.

unbellieveable mi. peteblackburn re. gillette co. csnne ne.

harvard un. hubspot co. unapologetiicb mi. mikereiss re.

runkeeper co. justamasshole mi. therealswizzz mu. jeffphowe re.

kendralust mi. michaelfhurley re. aerosmith mu. oitnb co.

albertbreer re. elizabethforma po. sasakiasahi mi. brighamwomens ne.

gillettestadium sp. nwsboston go. skylarkeleven mu. bostonschools ed.

iosernigga mi. bossportsextra ne. cafcofficial sp. charliebakerma po.

edelman11 sp. charliebakerma po. tangurls mi. mittromney po.

irelatewords mi. gerrycallahan re. goodmanespn re. drjillstein po.

mredtrain mi. bostonheraldhs re. albertbreer re. bostonchildrens ho.

185

stephencozzone co. iamjamesstewart sp. newyorkredbulls sp. massago po.

clintsmithiii au. tdgarden sp. squareenix mi. newbalance co.

spacekatgal po. albertbreer re. cinedatabase mi. nwsboston go.

aly_raisman sp. tomecurran re. advil mi. massdot go.

tenser mi. massdot go. bostonmarathon sp. aly_raisman sp.

1dwwinfo co. johndennisweei ho. apat246 re. bostonfire go.

sumasarabeboys mi. bigjimmurray ho. marty_walsh po. elizabethforma po.

thisispvris co. bostonschools ed. girlcrushbabes mi. homesforourtrps or.

kiiojake mi. nepd_loyko ed. staples co. kirkandcallahan ho.

jared_carrabis re. cousinstizz co. rapfavorites mi. teambaa or.

thekitchensheat mi. tgsports ne. katienolan ho. dannyamendola sp.

mayberrykush mi. bosbizjournal ne. spacekatgal po. al_horford sp.

feitsbarstool re. tonymassarotti re. fieldyates re. iamjamesstewart sp.

mit un. northeastern un. showtimepettis sp. benvolin re.

goodmanespn re. massago po. reebokclassics co. cousinstizz co.

Table 8.2: Top 70 influential Twitter users (in various categories) on Boston using
iFol− lq, S VPR and GPR.

Source Vertex Locality Hybrid

youtube co.- youtube co.- patriots so.+

realdonaldtrump po.- realdonaldtrump po.- youtube co.-

patriots so.+ patriots so.+ bostonglobe ne.+

186

girlposts mi.- bostonglobe ne.+ onlyinbos ne.+

hillaryclinton po.- onlyinbos ne.+ redsox so.+

sportscenter so.- girlposts mi.- realdonaldtrump po.-

onlyinbos ne.+ hillaryclinton po.- wshhfans mi.-

bostonglobe ne.+ sportscenter so.- nhlbruins so.+

sexualgif mi.- redsox so.+ mbta co.+

sincerelytumblr mi.- nytimes ne.- hillaryclinton po.-

dory mi.- causewereguys mi.- stoolpresidente re.+

wshhfans mi.- mbta co.+ marty_walsh po.+

redsox so.+ stoolpresidente re.+ celtics so.+

nytimes ne.- sincerelytumblr mi.- sportscenter so.-

causewereguys mi.- untappd mi.- relatablequote mi.-

tweetlikeagiri mi.- tweetlikeagiri mi.- girlposts mi.-

nfl so.- barstoolsports so.- hornyfacts mi.-

freddyamazin mi.- dory mi.- nytimes ne.-

cnn ne.- berniesanders po.- davidortiz so.+

berniesanders po.- nfl so.- universalhub ne.+

sodamntrue mi.- nhlbruins so.+ entwithbeth mi.-

potus44 po.- wshhfans mi.- causewereguys mi.-

barstoolsports so.- cnn ne.- dory mi.-

bleacherreport so.- weloverobdyrdek mi.- massgovernor po.+

187

weloverobdyrdek mi.- marty_walsh po.+ uberfacts mi.-

stoolpresidente re.+ sexualgif mi.- funnyvines mi.-

woridstarcomedy mi.- sodamntrue mi.- sexualgif mi.-

babyanimalpics mi.- forbes co.- berniesanders po.-

justinbieber mu.- potus44 po.- potus44 po.-

espn ne.- espn ne.- jared_carrabis re.+

nhlbruins so.+ universalhub ne.+ heyifeellike mi.-

foxnews ne.- bleacherreport so.- tweetlikeagiri mi.-

meninisttweet co.- freddyamazin mi.- boston25 ne.+

thetumblrposts mi.- cuteemergency mi.- espn ne.-

kardashianreact mi.- celtics so.+ bostonpolice go.+

mbta co.+ meninisttweet co.- nesn ne.+

girlideas mi.- babyanimalpics mi.- harvard univ.+

reiatabie mi.- robgronkowski so.- sincerelytumblr mi.-

cuteemergency mi.- linkedin co.- feitsbarstool re.+

celtics so.+ massgovernor po.+ sodamntrue mi.-

marty_walsh po.+ etsy co.- thetumblrposts mi.-

craziestsex mi.- buzzfeed ne.- tdgarden so.+

relatablequote mi.- taylorswift13 mu.- wsj ne.-

forbes co.- wsj ne.- mit univ.+

commonwhitegiri mi.- commonwhitegiri mi.- cityofboston go.+

188

universalhub ne.+ justinbieber mu.- bostondotcom ne.+

zaynmalik mu.- kardashianreact mi.- smackhigh mi.+

taylorswift13 mu.- edelman11 so.+ thefunnyteens mi.-

harry_styles mu.- scottzolak host- weloverobdyrdek mi.-

sensanders po.- toucherandrich mi.- bostinno ne.+

worldstar mi.- sensanders po.- _collegehumor_ mi.-

drake mu.- foxnews ne.- bostontweet ne.+

barackobama po.- reiatabie mi.- gillettestadium so.+

hornyfacts mi.- uberfacts mi.- wcvb ne.+

buzzfeed ne.- tombradysego mi.- edelman11 so.+

uberfacts mi.- barstoolbigcat so.- 7news ne.+

jared_carrabis re.+ boston25 ne.+ bostonherald ne.+

michael5sos mu.- woridstarcomedy mi.- babyanimalpics mi.-

robgronkowski so.- gillettestadium so.+ powerful mi.-

wsj ne.- relatablequote mi.- cbsboston ne.+

niallofficial mu.- thefunnyvine mi.- forbes co.-

thefunnyvine mi.- hornyfacts mi.- harvardbiz mi.+

washingtonpost ne.- barackobama po.- massstatepolice go.+

5sos band- wcvb ne.+ freddyamazin mi.-

twitter co.- feitsbarstool re.+ cnn ne.-

louis_tomlinson mu.- chanelpuke mi.- bostonmarathon so.+

189

ap ne.- sharethis mi.- wbur ne.+

chanelpuke mi.- girlideas mi.- 985thesportshub ne.+

camerondallas mu.- davidortiz so.+ bieberbonerz mi.-

In Table 8.1 and Table 8.2, we list the top 70 influential Twitter users on the city of

Boston and manually annotate them into the following categories:

• au. → Author;

• co. → Company;

• ed. → Education;

• go. → Government;

• ho. → Host or Hospital;

• mi .→Miscellaneous;

• mu. →Musician;

• ne. → News;

• or. → Organization;

• po. → Politician or Police;

• un. → University;

• re. → Reporter;

190

• sp. → Sports;

In addition, a suffix “-” means that user is outside Boston, and “+” (or null) in-

side Boston. By examining the categories of the top influential Twitter users, one may

find out that they may act as a reliable news sources. For example, take the top locally

influential Twitter users identified by method ELPR, the majority of them are official Twit-

ter accounts on famous sports teams, newspapers, reporters, politicians and government

agencies etc. They certainly act as high-quality sources of local news and events, and thus

provide an information window to let outsiders to learn of the local happenings.

191

Bibliography

[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, et
al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Soft-
ware available from tensorflow.org. 2015.

[2] Hamed Abdelhaq. “Localized Events in Social Media Streams: Detection, Track-
ing, and Recommendation”. PhD thesis. Heidelberg University, Nov. 2015.

[3] Hamed Abdelhaq and Michael Gertz. “On the Locality of Keywords in Twitter
Streams”. In: ACM IWGS ’14.

[4] Hamed Abdelhaq, Michael Gertz, and Christian Sengstock. “Spatio-temporal Char-
acteristics of Bursty Words in Twitter Streams”. In: SIGSPATIAL ’13.

[5] Hamed Abdelhaq, Christian Sengstock, and Michael Gertz. “EvenTweet: Online
Localized Event Detection from Twitter”. In: PVLDB ’13.

[6] M-Dyaa Albakour, Craig Macdonald, and Iadh Ounis. “Identifying Local Events
by Using Microblogs As Social Sensors”. In: OAIR ’13.

[7] Isabel Anger and Christian Kittl. “Measuring Influence on Twitter”. In: i-KNOW
’11.

[8] Farzindar Atefeh and Wael Khreich. “A Survey of Techniques for Event Detection
in Twitter”. In: Comput. Intell. 31.1 (Feb. 2015), pp. 132–164.

[9] Jie Bao, Yu Zheng, and Mohamed F. Mokbel. “Location-based and Preference-
aware Recommendation Using Sparse Geo-social Networking Data”. In: SIGSPA-
TIAL ’12.

[10] Alexander Boettcher and Dongman Lee. “EventRadar: A Real-Time Local Event
Detection Scheme Using Twitter Stream”. In: GreenCom ’12.

[11] Panagiotis Bouros, Dimitris Sacharidis, and Nikos Bikakis. “Regionally Influen-
tial Users in Location-aware Social Networks”. In: SIGSPATIAL ’14.

[12] Ceren Budak, Theodore Georgiou, Divyakant Agrawal, and Amr El Abbadi. “Geo-
Scope: Online Detection of Geo-correlated Information Trends in Social Net-
works”. In: PVLDB ’13.

[13] Ricardo J. G. B. Campello, Davoud Moulavi, and Joerg Sander. “Density-Based
Clustering Based on Hierarchical Density Estimates”. In: PAKDD ’13.

192

[14] Amparo E Cano, Suvodeep Mazumdar, and Fabio Ciravegna. “Social influence
analysis in microblogging platforms–a topic-sensitive based approach”. In: Se-
mantic Web 5.5 (2014), pp. 357–372.

[15] Michelangelo Ceci, Roberto Corizzo, Fabio Fumarola, Donato Malerba, and Alek-
sandra Rashkovska. “Predictive Modeling of PV Energy Production: How to Set
Up the Learning Task for a Better Prediction?” In: IEEE Transactions on Indus-
trial Informatics 13.3 (June 2017), pp. 956–966.

[16] Meeyoung Cha, Hamed Haddadi, Fabricio Benevenuto, and Krishna Gummadi.
“Measuring user influence in twitter: The million follower fallacy.” In: ICWSM
’10.

[17] Junghoon Chae, Dennis Thom, Harald Bosch, Yun Jang, Ross Maciejewski, David
S. Ebert, and Thomas Ertl. “Spatiotemporal social media analytics for abnormal
event detection and examination using seasonal-trend decomposition”. In: VAST
’12.

[18] Feng Chen and Daniel B. Neill. “Non-parametric Scan Statistics for Event Detec-
tion and Forecasting in Heterogeneous Social Media Graphs”. In: KDD ’14.

[19] Yan Chen, Jichang Zhao, Xia Hu, Xiaoming Zhang, Zhoujun Li, and Tat-Seng
Chua. “From Interest to Function: Location Estimation in Social Media”. In: AAAI
’13.

[20] Zhiyuan Cheng, James Caverlee, and Kyumin Lee. “You Are Where You Tweet:
A Content-based Approach to Geo-locating Twitter Users”. In: CIKM ’10.

[21] Wei-Chien-Benny Chin and Tzai-Hung Wen. “Geographically Modified PageR-
ank Algorithms: Identifying the Spatial Concentration of Human Movement in a
Geospatial Network”. In: PLOS ONE 10.10 (Oct. 2015), pp. 1–23.

[22] Francois Chollet et al. Keras. https://github.com/fchollet/keras. 2015.

[23] Dorin Comaniciu and Peter Meer. “Mean shift: a robust approach toward feature
space analysis”. In: IEEE TPAMI 24.5 (May 2002), pp. 603–619.

[24] Ryan Compton, David Jurgens, and David Allen. “Geotagging One Hundred Mil-
lion Twitter Accounts with Total Variation Minimization”. In: BigData ’14.

[25] Nilesh Dalvi, Ravi Kumar, and Bo Pang. “Object Matching in Tweets with Spatial
Models”. In: WSDM ’12.

[26] Ankur Dave. “IndexedRDD: Efficient Fine-Grained Updates for RDDs”. In: Spark
Summit ’15.

[27] Clodoveu A. Davis Jr., Gisele L. Pappa, Diogo Rennó Rocha de Oliveira, and
Filipe de L. Arcanjo. “Inferring the Location of Twitter Messages Based on User
Relationships”. In: Trans. GIS 15.6 (Nov. 2011), pp. 735–751.

[28] Bhuwan Dhingra, Zhong Zhou, Dylan Fitzpatrick, Michael Muehl, and William
Cohen. “Tweet2Vec: Character-Based Distributed Representations for Social Me-
dia”. In: ACL ’16.

193

https://github.com/fchollet/keras

[29] Zhaoyun Ding, Jia Yan, Zhou Bin, and Han Yi. “Mining topical influencers based
on the multi-relational network in micro-blogging sites”. In: China Comm. 10.1
(Jan. 2013), pp. 93–104.

[30] Maximilian Franzke, Janina Bleicher, and Andreas Züfle. “Finding Influencers in
Temporal Social Networks Using Intervention Analysis”. In: ADC ’16.

[31] Daniel Gayo-Avello. “Nepotistic relationships in Twitter and their impact on rank
prestige algorithms”. In: Information Processing & Management 49.6 (June 2013),
pp. 1250 –1280.

[32] Nick Gramsky and Hanan Samet. “Seeder Finder: Identifying Additional Needles
in the Twitter Haystack”. In: LBSN ’13.

[33] Alex Graves. “Generating Sequences With Recurrent Neural Networks”. In: CoRR
’14 abs/1308.0850 (June 2013).

[34] Behnam Hajian and Tony White. “Modelling Influence in a Social Network: Met-
rics and Evaluation”. In: PASSAT ’11 / SocialCom ’11.

[35] Bo Han, Paul Cook, and Timothy Baldwin. “Text-based Twitter User Geolocation
Prediction”. In: J. AIR 49.1 (Jan. 2014), pp. 451–500.

[36] Richard A. Harshman. “Foundations of the PARAFAC procedure: Models and
conditions for an "explanatory" multi-modal factor analysis”. In: UCLA Working
Papers in Phonetics 16 (1970), pp. 1–84.

[37] Taher H. Haveliwala. “Topic-sensitive PageRank”. In: WWW ’02.

[38] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Deep Residual Learn-
ing for Image Recognition”. In: CVPR ’16.

[39] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Identity Mappings
in Deep Residual Networks”. In: ECCV ’16.

[40] Qi He, Kuiyu Chang, and Ee-Peng Lim. “Analyzing Feature Trajectories for
Event Detection”. In: SIGIR ’07.

[41] Jonathan Herzig, Yosi Mass, and Haggai Roitman. “An Author-reader Influence
Model for Detecting Topic-based Influencers in Social Media”. In: HT ’14.

[42] S.L. Ho and Min Xie. “The use of ARIMA models for reliability forecasting and
analysis”. In: Computers & Industrial Engineering 35.1 (Oct. 1998), pp. 213 –
216.

[43] Sepp Hochreiter and Jürgen Schmidhuber. “Long Short-Term Memory”. In: Neu-
ral Comput. 9.8 (Nov. 1997), pp. 1735–1780.

[44] Liangjie Hong, Amr Ahmed, Siva Gurumurthy, Alexander Smola, and Kostas
Tsioutsiouliklis. “Discovering Geographical Topics in the Twitter Stream”. In:
WWW ’12.

[45] Juan Hu, Yi Fang, and Archana Godavarthy. “Topical Authority Propagation on
Microblogs”. In: CIKM ’13.

194

[46] Lamjed Ben Jabeur, Lynda Tamine, and Mohand Boughanem. “Active Microblog-
gers: Identifying Influencers, Leaders and Discussers in Microblogging Networks”.
In: SPIRE ’12.

[47] Alan Jackoway, Hanan Samet, and Jagan Sankaranarayanan. “Identification of
Live News Events Using Twitter”. In: LBSN ’11.

[48] Sage Jenson, Majerle Reeves, Marcello Tomasini, and Ronaldo Menezes. “Min-
ing location information from users’ spatio-temporal data”. In: SmartWorld ’17.

[49] Christopher Jonathan, Amr Magdy, Mohamed F. Mokbel, and Albert Jonathan.
“GARNET: A holistic system approach for trending queries in microblogs”. In:
ICDE ’16.

[50] Krishna Y. Kamath, James Caverlee, Kyumin Lee, and Zhiyuan Cheng. “Spatio-
temporal Dynamics of Online Memes: A Study of Geo-tagged Tweets”. In: WWW
’13.

[51] Wei Kang, Anthony K.H. Tung, Feng Zhao, and Xinyu Li. “Interactive hierarchi-
cal tag clouds for summarizing spatiotemporal social contents”. In: ICDE ’14.

[52] Magdalini Kardara, George Papadakis, Athanasios Papaoikonomou, Konstantinos
Tserpes, and Theodora Varvarigou. “Large-scale evaluation framework for local
influence theories in Twitter”. In: Inf. Process. Manage. 51.1 (Jan. 2015), pp. 226
–252.

[53] Georgios Katsimpras, Dimitrios Vogiatzis, and Georgios Paliouras. “Determining
Influential Users with Supervised Random Walks”. In: WWW ’15 Companion.

[54] Mayank Kejriwal and Pedro Szekely. “Neural Embeddings for Populated Geon-
ames Locations”. In: ISWC ’17.

[55] David Kempe, Jon Kleinberg, and Éva Tardos. “Maximizing the Spread of Influ-
ence Through a Social Network”. In: KDD ’03.

[56] Maurice George Kendall. “A New Measure of Rank Correlation”. In: Biometrika
30.1/2 (June 1938), pp. 81–93.

[57] Alexy Khrabrov and George Cybenko. “Discovering Influence in Communication
Networks Using Dynamic Graph Analysis”. In: SocCom ’10.

[58] John Krumm and Eric Horvitz. “Eyewitness: Identifying Local Events via Space-
time Signals in Twitter Feeds”. In: SIGSPATIAL ’15.

[59] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. “What is Twitter,
a Social Network or a News Media?” In: WWW ’10.

[60] Elizabeth Kwan, Pei-Ling Hsu, Jheng-He Liang, and Yi-Shin Chen. “Event Iden-
tification for Social Streams Using Keyword-based Evolving Graph Sequences”.
In: ASONAM ’13.

[61] Thomas K Landauer, Peter W. Foltz, and Darrell Laham. “An introduction to
latent semantic analysis”. In: Discourse processes 25 (1998), pp. 259–284.

[62] Theodoros Lappas, Marcos R. Vieira, Dimitrios Gunopulos, and Vassilis J. Tso-
tras. “On the Spatiotemporal Burstiness of Terms”. In: PVLDB ’12.

195

[63] Quoc Le and Tomas Mikolov. “Distributed Representations of Sentences and
Documents”. In: ICML’14.

[64] Alex Leavitt, Evan Burchard, David Fisher, and Sam Gilbert. The Influentials:
New Approaches for Analyzing Influence on Twitter. 2009. url: http : / / www.
webecologyproject.org/wp-content/uploads/2009/09/influence-report-final.pdf.

[65] Yann LeCun, Léon Bottou, Genevieve B. Orr, and Klaus-Robert Müller. “Efficient
BackProp”. In: Neural Networks: Tricks of the Trade 1998.

[66] Ryong Lee and Kazutoshi Sumiya. “Measuring Geographical Regularities of Crowd
Behaviors for Twitter-based Geo-social Event Detection”. In: LBSN ’10.

[67] Guoliang Li, Shuo Chen, Jianhua Feng, Kian-Lee Tan, and Wen-syan Li. “Effi-
cient Location-aware Influence Maximization”. In: SIGMOD ’14.

[68] Guoliang Li, Jun Hu, Jianhua Feng, and Kian-Lee Tan. “Effective location iden-
tification from microblogs”. In: ICDE ’14.

[69] Hao Li, Zheng Xu, Gavin Taylor, and Tom Goldstein. “Visualizing the Loss Land-
scape of Neural Nets”. In: CoRR abs/1712.09913 (2017).

[70] Quanzhi Li, Armineh Nourbakhsh, Sameena Shah, and Xiaomo Liu. “Real-Time
Novel Event Detection from Social Media”. In: ICDE ’17.

[71] Rui Li, Kin Hou Lei, Ravi Khadiwala, and Kevin Chen-Chuan Chang. “TEDAS:
A Twitter-based Event Detection and Analysis System”. In: ICDE ’12.

[72] Michael D. Lieberman and Hanan Samet. “Adaptive Context Features for To-
ponym Resolution in Streaming News”. In: SIGIR ’12.

[73] Michael D. Lieberman and Hanan Samet. “Multifaceted Toponym Recognition
for Streaming News”. In: SIGIR ’11.

[74] Shu-Lan Lin, Hong-Qiong Huang, Da-Qi Zhu, and Tian-Zhen Wang. “The ap-
plication of space-time ARIMA model on traffic flow forecasting”. In: ICMLC
’09.

[75] Haibin Liu, Bo Luo, and Dongwon Lee. “Location Type Classification Using
Tweet Content”. In: ICMLA ’12.

[76] Zhi Liu, Yan Huang, and Joshua R. Trampier. “LEDS: Local Event Discovery and
Summarization from Tweets”. In: SIGSPATIAL ’16.

[77] Zhi Liu, Yan Huang, and Joshua R. Trampier. “Spatiotemporal Topic Association
Detection on Tweets”. In: SIGSPATIAL ’16.

[78] Stuart P. Lloyd. “Least squares quantization in PCM”. In: IEEE Trans. on Infor-
mation Theory 28.2 (Mar. 1982), pp. 129–137.

[79] Peter Lofgren, Siddhartha Banerjee, and Ashish Goel. “Personalized PageRank
Estimation and Search: A Bidirectional Approach”. In: WSDM ’16.

[80] Amr Magdy, Ahmed M. Aly, Mohamed F. Mokbel, Sameh Elnikety, Yuxiong
He, Suman Nath, and Walid G. Aref. “GeoTrend: Spatial Trending Queries on
Real-time Microblogs”. In: SIGSPATIAL ’16.

196

http://www.webecologyproject.org/wp-content/uploads/2009/09/influence-report-final.pdf
http://www.webecologyproject.org/wp-content/uploads/2009/09/influence-report-final.pdf

[81] Amr Magdy, Mohamed F. Mokbel, Sameh Elnikety, Suman Nath, and Yuxiong
He. “Mercury: A Memory-Constrained Spatio-temporal Real-time Search on Mi-
croblogs”. In: ICDE ’14.

[82] Jalal Mahmud, Jeffrey Nichols, and Clemens Drews. “Home Location Identifica-
tion of Twitter Users”. In: ACM TIST 5.3 (July 2014), 47:1–47:21.

[83] Adam Marcus, Michael S. Bernstein, Osama Badar, David R. Karger, Samuel
Madden, and Robert C. Miller. “Twitinfo: Aggregating and Visualizing Microblogs
for Event Exploration”. In: CHI ’11.

[84] Michael Mathioudakis and Nick Koudas. “TwitterMonitor: Trend Detection over
the Twitter Stream”. In: SIGMOD ’10.

[85] Andrew J. McMinn, Yashar Moshfeghi, and Joemon M. Jose. “Building a Large-
scale Corpus for Evaluating Event Detection on Twitter”. In: CIKM ’13.

[86] Kevin Mets. Learning meaningful location embeddings from unlabeled visits.
2018. url: https://www.sentiance.com/2018/01/29/unlabeled-visits/#Location_
Profiling.

[87] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. “Dis-
tributed Representations of Words and Phrases and their Compositionality”. In:
NIPS ’13.

[88] Diana Mok, Barry Wellman, and Juan Carrasco. “Does Distance Matter in the
Age of the Internet?” In: Urban Studies 47.13 (Nov. 2010), pp. 2747–2783.

[89] Lucas A. Overbey, Benjamin Greco, Christopher Paribello, and Terresa Jackson.
“Structure and prominence in Twitter networks centered on contentious politics”.
In: Social Network Analysis and Mining 3.4 (Sept. 2013), pp. 1351–1378.

[90] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The PageR-
ank Citation Ranking: Bringing Order to the Web. Technical Report. Stanford
InfoLab, 1999.

[91] Jun Pang and Yang Zhang. “DeepCity: A Feature Learning Framework for Mining
Location Check-ins”. In: ICWSM ’16.

[92] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. “DeepWalk: Online Learning
of Social Representations”. In: KDD ’14.

[93] Mauricio Quezada, Vanessa Peña Araya, and Barbara Poblete. “Location-Aware
Model for News Events in Social Media”. In: SIGIR ’15.

[94] Gernot Riegler, Ali Osman Ulusoy, and Andreas Geiger. “OctNet: Learning Deep
3D Representations at High Resolutions”. In: CVPR ’17.

[95] Fabián Riquelme and Pablo González-Cantergiani. “Measuring user influence on
Twitter: A survey”. In: Information Processing & Management 52.5 (Sept. 2016),
pp. 949 –975.

[96] Alan Ritter, Sam Clark, Mausam, and Oren Etzioni. “Named Entity Recognition
in Tweets: An Experimental Study”. In: EMNLP ’11.

197

https://www.sentiance.com/2018/01/29/unlabeled-visits/#Location_Profiling
https://www.sentiance.com/2018/01/29/unlabeled-visits/#Location_Profiling

[97] Alan Ritter, Mausam, Oren Etzioni, and Sam Clark. “Open Domain Event Extrac-
tion from Twitter”. In: KDD ’12.

[98] Stephen Roller, Michael Speriosu, Sarat Rallapalli, Benjamin Wing, and Jason
Baldridge. “Supervised Text-based Geolocation Using Language Models on an
Adaptive Grid”. In: EMNLP-CoNLL ’12.

[99] Adam Sadilek, Henry Kautz, and Jeffrey P. Bigham. “Finding Your Friends and
Following Them to Where You Are”. In: WSDM ’12.

[100] Takeshi Sakaki, Makoto Okazaki, and Yutaka Matsuo. “Earthquake Shakes Twit-
ter Users: Real-time Event Detection by Social Sensors”. In: WWW ’10.

[101] Hanan Samet, Jagan Sankaranarayanan, Michael D. Lieberman, Marco D. Adelfio,
Brendan C. Fruin, Jack M. Lotkowski, Daniele Panozzo, Jon Sperling, and Ben-
jamin E. Teitler. “Reading News with Maps by Exploiting Spatial Synonyms”. In:
Commun. ACM 57.10 (Sept. 2014), pp. 64–77.

[102] Jagan Sankaranarayanan, Hanan Samet, Benjamin E. Teitler, Michael D. Lieber-
man, and Jon Sperling. “TwitterStand: News in Tweets”. In: SIGSPATIAL ’09.

[103] Xingjian Shi, Zhourong Chen, Hao Wang, Dit-Yan Yeung, Wai-Kin Wong, and
Wang-chun Woo. “Convolutional LSTM Network: A Machine Learning Approach
for Precipitation Nowcasting”. In: NIPS ’15.

[104] Anders Skovsgaard, Darius Sidlauskas, and Christian S. Jensen. “Scalable top-k
spatio-temporal term querying”. In: ICDE ’14.

[105] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. “Sequence to Sequence Learning
with Neural Networks”. In: NIPS ’14.

[106] Akin Tascikaraoglu. “Evaluation of spatio-temporal forecasting methods in vari-
ous smart city applications”. In: Renewable and Sustainable Energy Reviews 82
(Feb. 2018), pp. 424 –435.

[107] Daniel Tunkelang. A Twitter Analog to PageRank. 2009. url: https://thenoisychannel.
com/2009/01/13/a-twitter-analog-to-pagerank.

[108] Dmitry Ulyanov, Andrea Vedaldi, and Victor S. Lempitsky. “Deep Image Prior”.
In: CVPR ’17.

[109] Svitlana Vakulenko, Lyndon Nixon, and Mihai Lupu. “Character-based Neural
Embeddings for Tweet Clustering”. In: SocialNLP ’17.

[110] George Valkanas and Dimitrios Gunopulos. “How the Live Web Feels About
Events”. In: CIKM ’13.

[111] Yehuda Vardi and Cun-Hui Zhang. “The multivariate L1-median and associated
data depth”. In: Proc. NAS 97.4 (Feb. 2000), pp. 1423–1426.

[112] Maximilian Walther and Michael Kaisser. “Geo-spatial Event Detection in the
Twitter Stream”. In: ECIR ’13.

[113] Kazufumi Watanabe, Masanao Ochi, Makoto Okabe, and Rikio Onai. “Jasmine:
A Real-time Local-event Detection System Based on Geolocation Information
Propagated to Microblogs”. In: CIKM ’11.

198

https://thenoisychannel.com/2009/01/13/a-twitter-analog-to-pagerank
https://thenoisychannel.com/2009/01/13/a-twitter-analog-to-pagerank

[114] Hong Wei, Jagan Sankaranarayanan, and Hanan Samet. “Finding and Tracking
Local Twitter Users for News Detection”. In: SIGSPATIAL ’17.

[115] Hong Wei, Jagan Sankaranarayanan, and Hanan Samet. “Measuring Spatial Influ-
ence of Twitter Users by Interactions”. In: SIGSPATIAL LENS’17.

[116] Hong Wei, Hao Zhou, Jangan Sankaranarayanan, Sudipta Sengupta, and Hanan
Samet. “Residual Convolutional LSTM for Tweet Count Prediction”. In: WWW
’18 Companion.

[117] Wei Wei, Kenneth Joseph, Wei Lo, and Kathleen Carley. “A Bayesian Graphical
Model to Discover Latent Events from Twitter”. In: ICWSM ’15.

[118] Jianshu Weng and Bu-Sung Lee. “Event Detection in Twitter”. In: ICWSM ’11.

[119] Jianshu Weng, Ee-Peng Lim, Jing Jiang, and Qi He. “TwitterRank: Finding Topic-
sensitive Influential Twitterers”. In: WSDM ’10.

[120] Feng Xiao, Tomoya Noro, and Takehiro Tokuda. “Finding News-topic Oriented
Influential Twitter Users Based on Topic Related Hashtag Community Detection”.
In: J. Web Eng. 13.5-6 (Nov. 2014), pp. 405–429.

[121] Wenpu Xing and Ali Ghorbani. “Weighted PageRank algorithm”. In: CNSR ’04.

[122] Jun-Ming Xu, Aniruddha Bhargava, Robert Nowak, and Xiaojin Zhu. “Socio-
scope: Spatio-temporal Signal Recovery from Social Media”. In: ECML PKDD
’12.

[123] Yuto Yamaguchi, Toshiyuki Amagasa, and Hiroyuki Kitagawa. “Landmark-based
User Location Inference in Social Media”. In: COSN ’13.

[124] Yuto Yamaguchi, Tsubasa Takahashi, Toshiyuki Amagasa, and Hiroyuki Kita-
gawa. “TURank: Twitter User Ranking Based on User-tweet Graph Analysis”.
In: WISE ’10.

[125] Minji Yoon, Woojeong Jin, and U. Kang. “Fast and Accurate Random Walk with
Restart on Dynamic Graphs with Guarantees”. In: WWW ’18.

[126] Haiyang Yu, Zhihai Wu, Shuqin Wang, Yunpeng Wang, and Xiaolei Ma. “Spa-
tiotemporal Recurrent Convolutional Networks for Traffic Prediction in Trans-
portation Networks”. In: Sensors 17.7 (June 2017).

[127] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,
Murphy McCauley, Michael Franklin, Scott Shenker, and Ion Stoica. “Resilient
Distributed Datasets: A Fault-tolerant Abstraction for In-memory Cluster Com-
puting”. In: NSDI ’12.

[128] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and Ion
Stoica. “Spark: Cluster Computing with Working Sets”. In: HotCloud ’10.

[129] Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy Hunter, Scott Shenker, and
Ion Stoica. “Discretized Streams: Fault-tolerant Streaming Computation at Scale”.
In: SOSP ’13.

199

[130] Chao Zhang, Dongming Lei, Quan Yuan, Honglei Zhuang, Lance Kaplan, Shaowen
Wang, and Jiawei Han. “GeoBurst+: Effective and Real-Time Local Event Detec-
tion in Geo-Tagged Tweet Streams”. In: ACM TIST 9.3 (Jan. 2018), 34:1–34:24.

[131] Chao Zhang, Liyuan Liu, Dongming Lei, Quan Yuan, Honglei Zhuang, Timothy
Hanratty, and Jiawei Han. “TrioVecEvent: Embedding-Based Online Local Event
Detection in Geo-Tagged Tweet Streams”. In: KDD ’17.

[132] Chao Zhang, Keyang Zhang, Quan Yuan, Haoruo Peng, Yu Zheng, Tim Hanratty,
Shaowen Wang, and Jiawei Han. “Regions, Periods, Activities: Uncovering Urban
Dynamics via Cross-Modal Representation Learning”. In: WWW ’17.

[133] Chao Zhang, Keyang Zhang, Quan Yuan, Fangbo Tao, Luming Zhang, Tim Han-
ratty, and Jiawei Han. “React: Online multimodal embedding for recency-Aware
spatiotemporal activity modeling”. English (US). In: SIGIR ’17.

[134] Chao Zhang, Guangyu Zhou, Quan Yuan, Honglei Zhuang, Yu Zheng, Lance Ka-
plan, Shaowen Wang, and Jiawei Han. “GeoBurst: Real-Time Local Event Detec-
tion in Geo-Tagged Tweet Streams”. In: SIGIR ’16.

[135] Jinxue Zhang, Rui Zhang, Jingchao Sun, Yanchao Zhang, and Chi Zhang. “True-
Top: A Sybil-Resilient System for User Influence Measurement on Twitter”. In:
IEEE/ACM Transactions on Networking 24.5 (Oct. 2016), pp. 2834–2846.

[136] Junbo Zhang, Yu Zheng, Dekang Qi, Ruiyuan Li, and Xiuwen Yi. “DNN-based
Prediction Model for Spatio-temporal Data”. In: SIGSPATIAL ’16.

[137] Junbo Zhang, Yu Zheng, Dekang Qi, Ruiyuan Li, Xiuwen Yi, and Tianrui Li.
“Predicting citywide crowd flows using deep spatio-temporal residual networks”.
In: AAAI ’16.

[138] Yu Zhang, William Chan, and Navdeep Jaitly. “Very deep convolutional networks
for end-to-end speech recognition”. In: ICASSP ’17.

[139] Yu Zheng, Huichu Zhang, and Yong Yu. “Detecting Collective Anomalies from
Multiple Spatio-temporal Datasets Across Different Domains”. In: SIGSPATIAL
’15.

[140] Xiangmin Zhou and Lei Chen. “Event Detection over Twitter Social Media Streams”.
In: VLDB ’14.

[141] Yi Zhu and Shawn Newsam. “Spatio-temporal Sentiment Hotspot Detection Us-
ing Geotagged Photos”. In: SIGSPATIAL ’16.

200

	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Measuring Spatial Influence of Twitter Users by Interactions
	Detecting Latest Local Events from Geotagged Tweet Streams
	Enhancing Local Live Tweet Stream to Detect News
	Learning Embeddings of Spatial, Textual and Temporal Entities in Geotagged Tweets

	Measuring Spatial Influence of Twitter Users by Interactions
	Introduction
	Related Work
	Build an Interaction Graph G
	Dataset
	Twitter User Locations

	Measuring Spatial Influence In G
	Observation and Motivation
	PageRank Overview
	Edge-Locality PageRank
	Source-Vertex-Locality PageRank
	Geographical PageRank

	Empirical Evaluation
	Experimental Settings
	Baseline Approaches
	Evaluation Methods
	Default Parameter Setting

	Top 5 Influential Twitter Users for 3 U.S. Cities
	Correlation and Effectiveness
	Correlation
	Effectiveness

	Different Types of Interactions
	Effects of Geotagging Twitter users
	Sensitivity of Distance-Decay Parameter
	Application to News Detection

	Conclusions

	Detecting Latest Local Events from Geotagged Tweet Streams
	Introduction
	Related Work
	Preliminaries
	Problem
	System Overview

	The Batch Mode
	Seeker
	Tweet Count Prediction
	From Prediction To Unusualness

	Ranker
	Temporal Burstiness
	Spatial Burstiness
	Topical Coherence
	Ranking Function

	Expander
	Summarizer

	Online Modifications
	Evaluation on Tweet Count Prediction
	Datasets
	Baseline Approaches
	Evaluation Metric
	Experimental Results
	Compare with Baselines
	Effects of period and trend Dependence
	Effects of Length of closeness Dependence Sequences
	Effects of Building Deeper Networks

	Evaluation on Local Event Detection
	Experimental Settings
	Datasets
	Baseline Approaches
	Parameter Settings

	Illustrative Cases
	Quantitative Analysis
	Effectiveness
	Efficiency

	Online Modifications

	Conclusions

	Enhancing Local Live Tweet Stream to Detect News
	Introduction
	Related Work
	System
	Online Twitter User Geotagging via Spark
	Enhancing Local Live Tweet Stream
	Extracting Locality-Aware Keywords
	Online Clustering to Detect News
	System User Interface

	Experiments
	Online Processing Settings and Efficiency
	Twitter User Geotagging via Spark
	Boosting Dataset
	Effectiveness

	Enhanced Local Live Tweet Stream
	Local News Detection
	Parameter Settings
	Local News Media Agencies and Baseline Approaches
	Mutual Recalls
	Precision

	Conclusions and Future Work

	Learning Embeddings of Spatial, Textual and Temporal Entities in Geotagged Tweets
	Introduction
	Related Work
	Preliminaries
	Problem
	System Overview

	Method
	Spatial, Temporal and Textual Entity Extraction
	Spatial Entity Extraction
	Temporal and Textual Entity Extraction

	Co-occurrence Graph Construction
	Cross-Modal Search
	From the Perspective of Co-occurrence Graph
	From the Perspective of Vectorized Embeddings
	Learning Embeddings

	Location-Similarity Search
	Co-occurrence Graph Enhancement
	Learning Embeddings

	Evaluation
	Experimental Settings
	Datasets
	Baseline Approaches
	Parameter Settings

	Illustrative Cases
	Cross-Modal Search
	Location Similarity Search

	Quantitative Analysis
	Effectiveness
	Efficiency

	Parameter Sensitivity

	Conclusions

	Future Work
	Conclusion
	Top 70 Influentials on Boston using Different Methods
	Bibliography

