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Characterization of optical propagation through the low turbulent atmosphere has 

been a topic of scientific investigation for decades, and has important engineering 

applications in the fields of free space optical communications, remote sensing, and 

directed energy.  Traditional theories, starting with early radio science, have flowed 

down from the assumption of three dimensional statistical symmetry of so-called 

fully developed, isotropic turbulence.  More recent experimental results have 

demonstrated that anisotropy and irregular frequency domain characteristics are 

regularly observed near boundaries of the atmosphere, and similar findings have been 

reported in computational fluid dynamics literature.  We have used a multi-aperture 

transmissometer in field testing to characterize atmospheric transparency, refractive 

index structure functions, and turbulence anisotropy near atmospheric boundaries.  

Additionally, we have fielded arrays of resistive temperature detector probes 



 
  

alongside optical propagation paths to provide direct measurements of temperature 

and refractive index statistics supporting optical turbulence observations.  We are 

backing up these experimental observations with a modified algorithm for modeling 

optical propagation through atmospheric turbulence. Our new phase screen approach 

utilizes a randomized spectral sampling algorithm to emulate the turbulence energy 

spectrum and improve modeling of low frequency fluctuations and improve 

convergence with theory.  We have used the new algorithm to investigate open 

theoretical topics, such as the behavior of beam statistics in the strong fluctuation 

regime as functions of anisotropy parameters, and energy spectrum power law 

behavior.  These results have to be leveraged in order to develop new approaches for 

characterization of atmospheric optical turbulence.  
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Chapter 1 : Overview and Theoretical Considerations  
 
 
1.1:  Introduction 

Spurred by the fluid dynamics theories of Taylor [1], Kolmogorov [2, 3], 

and Obukhov [4], the study of wave propagation through turbulent media is at the 

intersection of fluid dynamics and electromagnetics.  There is a rich tradition of 

knowledge [5, 6, 7, 8, 9] in the theoretical study of optical propagation of 

electromagnetic waves through isotropic turbulence.  However, experimental data 

from telescope interferometric systems [10], focal plane images [11, 12], Shack-

Hartman wave front sensors [12, 13], Differential Image Motion Monitor (DIMM) 

systems [14], thin wire anemometers [15], and temporal statistics from various 

instruments [12] indicate that anisotropy and non-Kolmogorov behavior can 

commonly occur under certain conditions.  There are also studies of anisotropic 

turbulence in the computational fluid dynamics literature [16, 17, 18], supporting 

the claims of experimentalists.  

The issues outlined above have, in recent years, led to an increasing interest 

in studies of anisotropic, non-Kolmogorov turbulence [11, 19, 20, 21, 22, 23, 24, 

25].  However, open questions remain regarding the behavior of beam propagation 

in the presence of anisotropic, non-Kolmogorov turbulence within traditional 

assumptions and approximations [25], and also practical methods to link anisotropy 

and irregular turbulence spectra in a reliable way to other observable phenomena 
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have not been well developed.  In this author’s dissertation work we use a 

combination of simulation and field experiments in order further reliable methods 

for estimating variations of anisotropy and deviations from the 2/3rds law of 

Kolmogorov (i.e. non-Kolmogorov turbulence) in an experimental environment.  

That said, this work covers three key areas: 

1. Improvements to the Split Step Propagation Phase Screen Method Using 

Randomized Sampling of the Turbulence Spectrum 

2. Computational Analysis to Verify Theoretical Claims Using Split Step 

Propagation Phase Screen Methods 

3. Experimental Investigations of Anisotropic and Non-Kolmogorov 

Turbulence 

1.2:  Theoretical Background Regarding the Nature of Optical Turbulence 

The study of optical propagation through isotropic random media has been 

extended well beyond the benchmark theories of Taylor [1], Kolmogorov [2, 3], 

and Obukhov [4] to include finite scale sizes [8, 9] and the rise in spectral energy 

(spectral bump) in the viscous-convective range investigated by Hill [26].  More 

general theories of anisotropic, non-Kolmogorov turbulence have not yet tackled 

all of these idiosyncrasies, and as such we start not with traditional models of 

isotropic turbulence and extend in the direction of anisotropy and non-Kolmogorov-
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ness, but start by generalizing the initial assumptions of the earlier theories, and 

moving forward. 

 
Figure 1-1:  Illustrations of the inertial subrange concept of classical turbulence theory, 
from [9].   

In his first 1941 paper on turbulence [2], Andrey Kolmogorov used 

assumptions of isotropy and scale invariance to argue for a universal power law 

governing the second statistical moment of fluid velocity as a function of spatial 

separation, which we will define more formally later using the concept of a 

structure function.  His second 1941 paper on turbulence [3] makes a more 

straightforward dimensional analysis claim, which we will attempt to concisely 

paraphrase. The claim is that far away from the largest scale sizes (the outer scale) 
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and the limitations of fluid viscosity (the inner scale), the spatial frequency energy 

spectrum of turbulence should depend only on the kinematic energy dissipation rate 

of the system, ϵ, with units of 
�𝑚𝑚𝑠𝑠 �

2

𝑠𝑠
= 𝑚𝑚2𝑠𝑠−3, and the spatial wavenumber, 𝜅𝜅, which 

has units of m-1. The one dimensional energy spectrum, 𝐸𝐸(𝜅𝜅), is a frequency 

domain representation of the kinematic energy, 𝑘𝑘𝐸𝐸, with units �𝑚𝑚
𝑠𝑠
�
2

= 𝑚𝑚2𝑠𝑠−2.  

Given 𝐸𝐸(𝜅𝜅) is the kinematic energy density per unit wavenumber, its units are 

 𝑚𝑚3𝑠𝑠−2.  Due to the units of ϵ and 𝜅𝜅 the only function, 𝐸𝐸(𝜅𝜅), that satisfies the 

dimensional criteria is ~𝜖𝜖2/3𝜅𝜅−5/3, i.e.:                                                           

 𝐸𝐸(𝜅𝜅) = 𝐶𝐶𝜖𝜖2/3|𝜅𝜅|−5/3 (1-1) 
 
where 𝐶𝐶 is a unitless constant.   

For obvious reasons, we wish to relate the energy spectrum to spatial 

domain intuition regarding the nature of turbulence.  The Weiner-Khinchin theorem 

[27] relates the autocorrelation, 𝐵𝐵𝑓𝑓(𝑟𝑟) = 〈𝑓𝑓(𝑟𝑟 − 𝑟𝑟0)𝑓𝑓(𝑟𝑟0)〉, of a function or field to 

its energy spectrum by a Fourier transform relation: 

 
𝐵𝐵𝑢𝑢𝑖𝑖(𝑟𝑟) = � 𝐸𝐸(𝜅𝜅) 𝑒𝑒𝑗𝑗𝜅𝜅𝜅𝜅 𝑑𝑑𝑑𝑑

∞

−∞
= 2𝐶𝐶𝜖𝜖2/3 � 𝜅𝜅−5/3 cos (𝜅𝜅𝜅𝜅) 𝑑𝑑𝑑𝑑

∞

0
 (1-2) 

where the ui subscript of 𝐵𝐵𝑢𝑢𝑖𝑖 indicates that this is the ith component of the velocity 

vector, 𝑢𝑢�⃑  �e. g.𝑢𝑢1 = 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�, and 𝑗𝑗 = √−1.  Because we have assumed an infinite 

inertial range, this integral diverges, however we shall demonstrate that other useful 

statistical metrics do converge.   
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We now define the structure function, 𝐷𝐷𝑓𝑓, of a function, f, as [6]: 

 𝐷𝐷𝑓𝑓(𝑥𝑥) =   〈(𝑓𝑓(𝑥𝑥 + 𝑥𝑥0) − 𝑓𝑓(𝑥𝑥0))2〉 (1-3) 

where 〈𝑥𝑥〉 denotes the expectation value of x, and we note the following relation for 

stationary fields (i. e. 〈𝑓𝑓(𝑥𝑥0)2〉 = 〈𝑓𝑓(0)2〉 and 〈𝑓𝑓(𝑥𝑥 + 𝑥𝑥0)𝑓𝑓(𝑥𝑥0)〉 = 〈𝑓𝑓(𝑥𝑥)𝑓𝑓(0)〉): 

 𝐷𝐷𝑓𝑓(𝑥𝑥) = 〈𝑓𝑓(𝑥𝑥 + 𝑥𝑥0)2〉 + 〈𝑓𝑓(𝑥𝑥0)2〉 − 2〈𝑓𝑓(𝑥𝑥 + 𝑥𝑥0)𝑓𝑓(𝑥𝑥0)〉 

= 2〈𝑓𝑓(𝑥𝑥0)2〉 − 2〈𝑓𝑓(𝑥𝑥 + 𝑥𝑥0)𝑓𝑓(𝑥𝑥0)〉               

= 2〈𝑓𝑓(0)2〉 − 2〈𝑓𝑓(𝑥𝑥)𝑓𝑓(0)〉                           

= 2�𝐵𝐵𝑓𝑓(0) − 𝐵𝐵𝑓𝑓(𝑥𝑥)�                                      

(1-4) 

Applying Wiener-Khinchin again: 

 
𝐷𝐷𝑓𝑓(𝑥𝑥) = 2� 𝐸𝐸𝑓𝑓(𝜅𝜅)�1− 𝑒𝑒𝑗𝑗𝜅𝜅𝜅𝜅� 𝑑𝑑𝑑𝑑

∞

−∞
 (1-5) 

For our quantity of interest, the velocity structure function is given by:  

 
𝐷𝐷𝑢𝑢𝑖𝑖(𝑟𝑟) = 4𝐶𝐶𝜖𝜖2/3 � 𝜅𝜅−5/3 (1 − cos (𝜅𝜅𝜅𝜅)) 𝑑𝑑𝑑𝑑

∞

0
  

= 4𝑟𝑟2/3𝐶𝐶𝜖𝜖2/3  � 𝜅𝜅′−5/3 (1− cos (𝜅𝜅′)) 𝑑𝑑𝑑𝑑′
∞

0
                        

 

(1-6) 

Where we have made the change of variables, 𝜅𝜅′ = 𝑟𝑟𝑟𝑟.  In Equation (1-6), we have 

demonstrated the 𝑟𝑟2/3 dependence of the famous Kolmogorov’s 2/3𝑟𝑟𝑟𝑟𝑟𝑟 law [2, 3], 

as we note that ∫ 𝜅𝜅′−5/3 (1− cos (𝜅𝜅′)) 𝑑𝑑𝑑𝑑′∞
0  is both a definite integral and is not a 

function of r.  Clearly, from the form of (1-6) we can see a 𝑟𝑟𝑝𝑝 dependence in the 

spatial domain maps to a 𝜅𝜅−(𝑝𝑝+1) dependence in the frequency domain, with p an 
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arbitrary constant between 0 and 2, exclusive.  It can be shown [6] for integrals of 

the form of (1-6): 

 
� 𝑥𝑥−(𝑝𝑝+1) (1 − cos (𝑥𝑥)) 𝑑𝑑𝑑𝑑
∞

0
=

2𝜋𝜋

sin �𝜋𝜋𝜋𝜋2 � 𝛤𝛤(1 + 𝑝𝑝)
,   0 < 𝑝𝑝 < 2 

 

(1-7) 

where 𝑥𝑥 and 𝑝𝑝 are arbitrary, and 𝛤𝛤(𝑥𝑥) is the gamma function of x.   

As applied to optical propagation, we will generally be more interested in 

the three dimensional energy spectrum, Ф(𝜅𝜅), of the wave vector, 𝜅𝜅 = 𝜅𝜅𝑥𝑥𝑒̂𝑒1 +

𝜅𝜅𝑦𝑦𝑒̂𝑒2 + 𝜅𝜅𝑧𝑧𝑒̂𝑒3, where the 𝑒̂𝑒’s are orthogonal unit vectors in three dimensional 

frequency space.  Ф(𝜅𝜅) can be expressed as a function of the vector autocorrelation 

function, 𝐵𝐵𝑢𝑢𝑖𝑖(𝑟𝑟) = 𝐵𝐵𝑢𝑢𝑖𝑖(|𝑟𝑟|), as [6]: 

 
Ф(𝜅𝜅) =

1
(2𝜋𝜋)3� cos(𝜅𝜅 ∙ 𝑟𝑟)

∞

−∞

𝐵𝐵𝑢𝑢𝑖𝑖(𝑟𝑟) 𝑑𝑑𝑟𝑟                                             

=
1

(2𝜋𝜋)2 � � cos(𝜅𝜅𝜅𝜅 ∙ cos 𝜃𝜃)𝐵𝐵𝑢𝑢𝑖𝑖(𝑟𝑟) 𝑟𝑟2 sin𝜃𝜃 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑
𝜋𝜋

0

∞

0

 

=
1

2𝜋𝜋2𝜅𝜅
� 𝑟𝑟 sin(𝜅𝜅𝜅𝜅)𝐵𝐵𝑢𝑢𝑖𝑖(𝑟𝑟) 𝑑𝑑𝑑𝑑
∞

0

                                        

(1-8) 

where in the second step 𝜃𝜃 is the angle between 𝜅𝜅 and 𝑟𝑟.  By noting that 2𝐵𝐵𝑢𝑢𝑖𝑖(𝑟𝑟) 

and 𝐸𝐸(𝜅𝜅) are Fourier transform pairs, this implies: 

 𝐸𝐸(𝜅𝜅) = 𝜋𝜋−1 � 𝐵𝐵𝑢𝑢𝑖𝑖(𝑟𝑟) cos (𝜅𝜅𝜅𝜅) 𝑑𝑑𝑑𝑑
∞

0
 (1-9) 
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𝑑𝑑𝑑𝑑(𝜅𝜅)
𝑑𝑑𝑑𝑑

= −𝜋𝜋−1 � 𝑟𝑟 𝐵𝐵𝑢𝑢𝑖𝑖(𝑟𝑟) sin(𝜅𝜅𝜅𝜅)𝑑𝑑𝑑𝑑
∞

0
 (1-10) 

Investigating Equations (1-8) and (1-10), we establish a useful relation between the 

one dimensional and three dimensional energy spectra: 

 Ф(𝜅𝜅) = −
1

2𝜋𝜋𝜋𝜋
𝑑𝑑𝑑𝑑(𝜅𝜅)
𝑑𝑑𝑑𝑑

 (1-11) 

In the earth’s atmosphere wind is primarily a product of natural convection 

due to the sun’s heating of the ground and the ground’s cooling of the air at night 

[9].  There is also a natural relationship between the refractive, n, index of air and 

temperature given by [28]: 

 

𝑛𝑛(𝑟𝑟) = 1 + 77.6 ∙ 10−6 ∙ �1 +
7.52 ∙ 10−15

𝜆𝜆2
�
𝑃𝑃(𝑟𝑟)
𝑇𝑇(𝑟𝑟) 

≅ 1 + 79 ∙ 10−6
𝑃𝑃(𝑟𝑟)
𝑇𝑇(𝑟𝑟)                                  

(1-12) 

where the approximation given is valid for optical wavelengths, 𝜆𝜆, in the visible 

and infrared range, P is pressure in millibar (mb), and T is temperature in Kelvin 

(K).  Consistency of the experimental observations of temperature flows with 

velocity flows have led to the assumption that the convective transfer of 

temperature is driven primarily by advection [9, 26, 29], the transfer due to bulk 

flow, as opposed to diffusion (transfer due to Brownian motion).  It flows naturally 

from this assumption that we have a structure function for temperature of the form: 

 𝐷𝐷𝑇𝑇(𝑟𝑟) =  〈(𝑇𝑇(𝑟𝑟 + 𝑟𝑟0) − 𝑇𝑇(𝑟𝑟0))2〉 (1-13) 
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= 𝐶𝐶𝑇𝑇2𝑟𝑟𝑝𝑝                      

where 𝐶𝐶𝑇𝑇2 is the temperature structure constant with units 𝐾𝐾 ∙ 𝑚𝑚−𝑝𝑝.  With a natural 

link between turbulent atmospheric mixing and refractive index already 

established, we now consider index of refraction index structure functions, 𝐷𝐷𝑛𝑛, of 

the form: 

 

𝐷𝐷𝑛𝑛(𝑟𝑟) =  〈�𝑛𝑛(𝑟𝑟 + 𝑟𝑟0) − 𝑛𝑛(𝑟𝑟0)�
2〉 = 𝐶𝐶𝑛𝑛2𝑟𝑟𝑝𝑝 

≅ �79 ∙ 10−6
𝑃𝑃
𝑇𝑇2
�
2

𝐶𝐶𝑇𝑇2𝑟𝑟𝑝𝑝       
(1-14) 

where 𝐶𝐶𝑛𝑛2 is the index of refraction structure constant. Because the index of 

refraction, 𝑛𝑛, is unitless 𝐶𝐶𝑛𝑛2 has units 𝑚𝑚−𝑝𝑝.  For Kolmogorov turbulence, the units 

of 𝐶𝐶𝑛𝑛2 are 𝑚𝑚−2/3, as 𝑝𝑝 =  2/3.  The structure given in Equation (1-14), along with 

the definite integral relation given in Equation (1-7), corresponds to a one 

dimensional energy spectrum given by: 

 
𝐸𝐸𝑛𝑛(𝜅𝜅) = 𝐶𝐶𝑛𝑛2

sin �𝜋𝜋𝜋𝜋2 � 𝛤𝛤(1 + 𝑝𝑝)

2𝜋𝜋
 |𝜅𝜅|−(𝑝𝑝+1) 

= 𝐶𝐶𝑛𝑛2
cos �𝜋𝜋𝜋𝜋2 � 𝛤𝛤(𝛼𝛼 − 2)

2𝜋𝜋
 |𝜅𝜅|2−𝛼𝛼                                     

(1-15) 

where we have introduced a new variable, 𝛼𝛼 = 𝑝𝑝 + 3, which is the three dimension 

spectral power law.  Applying equation (1-11), we have the three dimensional 

spectrum: 
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𝜙𝜙𝑛𝑛(𝜅𝜅) =

cos �𝜋𝜋𝜋𝜋2 � 𝛤𝛤(𝛼𝛼 − 2)

4𝜋𝜋2
 (𝛼𝛼 − 2)|𝜅𝜅|−𝛼𝛼 

=
𝐶𝐶𝑛𝑛2𝐴𝐴(𝛼𝛼)

(𝜅𝜅𝑥𝑥2 + 𝜅𝜅𝑦𝑦2 + 𝜅𝜅𝑧𝑧2)𝛼𝛼 2�
          

(1-16) 

Where we use the relation 𝛤𝛤(𝑥𝑥 + 1) = 𝑥𝑥𝑥𝑥(𝑥𝑥) to define the A function, given by: 

 
𝐴𝐴(𝛼𝛼) =

cos �𝜋𝜋𝜋𝜋2 �𝛤𝛤(𝛼𝛼 − 1)

4𝜋𝜋2
 (1-17) 

For Kolmogorov turbulence 𝛼𝛼 = 11/3 and 𝐴𝐴(𝛼𝛼) = 𝐴𝐴(11 3⁄ ) ≅ 0.0330.   

We have been careful to derive the refractive index spectral model, initially 

justified by dimensional arguments, in a more flexible manner that allows for 

varying dependence of the energy spectrum on wave number, and structure on 

radial distance.  It is also notable, that although the traditional units of 𝐶𝐶𝑛𝑛2 are 𝑚𝑚−2/3, 

in the generalized model the units of 𝐶̃𝐶𝑛𝑛2 are 𝑚𝑚3−𝛼𝛼.  We now have a framework to 

discuss non-Kolmogorov turbulence without consideration of inner and outer scale 

sizes, which is applicable to propagation of beams with diameters well between that 

of the inner and outer scales.   

To include statistical anisotropy, or directional dependence, we can modify 

the three dimensional energy spectrum, again, to be of the form [19, 23]: 

 
Ф𝑛𝑛(𝜅𝜅) =

𝐶̃𝐶𝑛𝑛2𝐴𝐴(𝛼𝛼) 𝜇𝜇𝑥𝑥 𝜇𝜇𝑦𝑦

�𝜇𝜇𝑥𝑥2𝜅𝜅𝑥𝑥2 + 𝜇𝜇𝑦𝑦2𝜅𝜅𝑦𝑦2 + 𝜅𝜅𝑧𝑧2�
𝛼𝛼
2�
 (1-18) 



10 
 

where we have introduced 𝜇𝜇𝑥𝑥 and 𝜇𝜇𝑦𝑦 as the unitless anisotropy parameters in the x- 

and y-directions, respectively, and we have added the tilde notation above 𝐶̃𝐶𝑛𝑛2 to 

indicate it is no longer the structure function in any direction, but only in the z-

direction.  Note that for the ranges of α’s that allow the structure function implied 

by Equation (1-19), given below, to converge (i.e. 3 < α < 5), independently 

increasing μ in either direction decreases the energy in the spectrum.  Additionally, 

direct investigation of the structure function predicted by Equation (1-18) after 

change of variables κ’ = μκ indicates increasing μ effectively lowers the structure 

function in the x-, y- directions: 

 

𝐷𝐷𝑛𝑛(𝑟𝑟) = 𝐶̃𝐶𝑛𝑛
2𝐴𝐴(𝛼𝛼) �

1 − cos�𝑥𝑥𝜅𝜅𝑥𝑥′𝜇𝜇𝑥𝑥
+
𝑦𝑦𝜅𝜅𝑦𝑦′
𝜇𝜇𝑥𝑥

+ 𝑧𝑧𝜅𝜅𝑧𝑧�

(𝜅𝜅𝑥𝑥′2 + 𝜅𝜅𝑥𝑥′2+𝜅𝜅𝑧𝑧2)𝛼𝛼 2�

∞

−∞

 𝑑𝑑𝜅𝜅′ 

= 𝐶̃𝐶𝑛𝑛2 ��
𝑥𝑥2

𝜇𝜇𝑥𝑥2
+
𝑦𝑦2

𝜇𝜇𝑦𝑦2
+ 𝑧𝑧2�

𝛼𝛼−3

                             

(1-19) 

However, as it is a convention that propagation is in the z-direction [9], and 

in keeping with the paraxial approximation [9] of light which assumes propagation 

is by-in-large in a single direction, the refractive index fluctuations in the direction 

of propagation are not considered [9], and so we simplify Equation (1-18), also 

expressible as Ф𝑛𝑛(𝜅𝜅) = Ф𝑛𝑛�𝜅𝜅𝜌𝜌, 𝜅𝜅𝑧𝑧� = Ф𝑛𝑛�𝜅𝜅𝑥𝑥, 𝜅𝜅𝑦𝑦, 𝜅𝜅𝑧𝑧� as [24]: 



11 
 

 
Ф𝑛𝑛�𝜅𝜅𝜌𝜌, 0� =

𝐶̃𝐶𝑛𝑛2𝐴𝐴(𝛼𝛼) 𝜇𝜇𝑥𝑥 𝜇𝜇𝑦𝑦

�𝜇𝜇𝑥𝑥2𝜅𝜅𝑥𝑥2 + 𝜇𝜇𝑦𝑦2𝜅𝜅𝑦𝑦2�
𝛼𝛼
2�
 (1-20) 

Given we will assume the direction of mean propagation as z, 𝜌𝜌 = 𝑥𝑥𝑒̂𝑒1 + 𝑦𝑦𝑒̂𝑒2 and 

𝜅𝜅𝜌𝜌 = 𝜅𝜅𝑥𝑥𝑒̂𝑒1 + 𝜅𝜅𝑦𝑦𝑒̂𝑒2.  Equation (1-20) gives the form of the refractive index three 

dimensional spectrum we will use for the majority of this work. 

 Finally, we note that in later sections the statistics of an ideal atmospheric 

turbulence phase screen an understanding of the covariance function of refractive 

index will be necessary.  The classical theory for propagation through random 

media derives all statistics in light of the Markov Approximation, which is the 

assumption that atmospheric turbulence is approximately delta-correlated in the 

direction of propagation.  Formally: 

𝐵𝐵𝑛𝑛(𝜌⃑𝜌, 𝑧𝑧) = �Ф𝑛𝑛�𝜅𝜅𝜌𝜌, 𝜅𝜅𝑧𝑧�
∞

−∞

exp�𝑗𝑗�𝜅𝜅𝜌𝜌 ∙ 𝜌⃑𝜌 + 𝜅𝜅𝑧𝑧𝑧𝑧��  𝑑𝑑𝜅𝜅𝜌𝜌𝑑𝑑𝜅𝜅𝑧𝑧 

                         ≅ � exp(𝑗𝑗𝜅𝜅𝑧𝑧𝑧𝑧)𝑑𝑑𝜅𝜅𝑧𝑧

∞

−∞

�Ф𝑛𝑛�𝜅𝜅𝜌𝜌, 0� exp�𝑗𝑗𝜅𝜅𝜌𝜌 ∙ 𝜌⃑𝜌� 𝑑𝑑𝜅𝜅𝜌𝜌

∞

−∞

 

= 2𝜋𝜋𝜋𝜋(𝑧𝑧)𝐴𝐴𝑛𝑛(𝜌⃑𝜌)                                          

(1-21) 

In Equation (1-21) we have implicitly defined the two dimensional autocorrelation, 

𝐴𝐴𝑛𝑛(𝜌⃑𝜌), and made use of the identity [9]: 

 
� exp(𝑗𝑗𝑗𝑗𝑧𝑧)𝑑𝑑𝑑𝑑
∞

−∞

= 2𝜋𝜋𝜋𝜋(𝑧𝑧) (1-22) 

With regards to Equation (1-22), we note also that: 
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𝛿𝛿(𝑥𝑥) ≡ lim
𝑎𝑎→∞

� exp(2𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋)𝑑𝑑𝑑𝑑

𝑎𝑎
2

−𝑎𝑎2

= lim
𝑎𝑎→∞

�
exp(2𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋)

2𝜋𝜋𝜋𝜋𝜋𝜋
�
−𝑎𝑎2

𝑎𝑎
2

 

= lim
𝑎𝑎→∞

sin(𝜋𝜋𝜋𝜋𝜋𝜋)
𝜋𝜋𝜋𝜋

                                                     

(1-23) 

Equation (1-22) is an extension of Equation (1-23) under a change of variables 

within the integral. 

1.3:  Mathematical Background Regarding the Simulation of Optical Propagation  

In this section we shall discuss the paraxial approximation of the Green’s 

function for optical propagation, the use of this function to define a transfer function 

for propagation, how this is approximated in discretized simulations, and a 

modification to the traditional propagation technique which allows for shrinking 

and expanding grid spacing with each propagation step.  The Green’s function for 

optical propagation in vacuum is given by [30]: 

 
𝐺𝐺(𝑟𝑟) =

exp(𝑗𝑗𝑘𝑘0|𝑟𝑟|)
4𝜋𝜋|𝑟𝑟|   (1-24) 

where 𝑘𝑘0 = 2𝜋𝜋
𝜆𝜆

 is the vacuum optical number with 𝜆𝜆 the wavelength, and 𝑟𝑟 = 𝑥𝑥𝑒̂𝑒𝑥𝑥 +

𝑦𝑦𝑒̂𝑒𝑦𝑦 + 𝑧𝑧𝑒̂𝑒𝑧𝑧 is the position vector.  For the study of coherent light relevant to this 

thesis, i.e. beam waves, Equation (1-24) is approximated by the paraxial 

approximation: 
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𝐺𝐺(𝜌⃑𝜌, 𝑧𝑧) =
exp�𝑗𝑗𝑘𝑘0�𝜌𝜌2 + 𝑧𝑧2�

4𝜋𝜋�𝜌𝜌2 + 𝑧𝑧2
=

exp �𝑗𝑗𝑘𝑘0𝑧𝑧�1 + 𝜌𝜌2
𝑧𝑧2�

4𝜋𝜋𝜋𝜋�1 + 𝜌𝜌2
𝑧𝑧2

 

≅
exp(𝑗𝑗𝑘𝑘0𝑧𝑧) exp �𝑗𝑗𝑘𝑘0

𝜌𝜌2
2𝑧𝑧�

4𝜋𝜋𝜋𝜋
                    

(1-25) 

where 𝜌⃑𝜌 = 𝑥𝑥𝑒̂𝑒𝑥𝑥 + 𝑦𝑦𝑒̂𝑒𝑦𝑦 and 𝜌𝜌 = |𝜌⃑𝜌|.  The Huygen-Fresnel Integral yields the 

diffracted field at any point due to an input complex field, 𝑈𝑈(𝜌⃑𝜌′, 0), as per: 

 
𝑈𝑈(𝜌⃑𝜌, 𝑧𝑧) ≅ −2𝑗𝑗𝑘𝑘0 �𝐺𝐺(𝜌⃑𝜌 − 𝜌⃑𝜌′, 𝑧𝑧)

∞

−∞

𝑈𝑈(𝜌⃑𝜌′, 0)𝑑𝑑𝜌⃑𝜌′ (1-26) 

Equation (1-26) implies that paraxial optical propagation a distance, 𝑧𝑧, can be 

approximated as a convolution with a kernel given by the Fresnel impulse response 

[31]: 

 

𝐻𝐻(𝜌⃑𝜌, 𝑧𝑧) =
exp(𝑗𝑗𝑘𝑘0𝑧𝑧) exp �𝑗𝑗𝑘𝑘0

𝜌𝜌2
2𝑧𝑧�

𝑗𝑗𝑗𝑗𝑗𝑗
 (1-27) 

Acknowledging that the constant phase rotation term, exp(𝑗𝑗𝑘𝑘0𝑧𝑧), associated with 

z-direction propagation is of little interest, we note that simulations of optical 

propagation usually take advantage of the Fourier Convolution Theorem [32] (also 

known as the Convolution Theorem or convolution property of the Fourier 

transform).  The Fourier Convolution Theorem states that the convolution operator 

is equivalent to the inverse transform of the product of Fourier transforms of the 
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impulse response and input field.  As we shall later demonstrate, neglecting the 

phase rotation term, the Fourier transform of Equation (1-27) is given by: 

 𝐻𝐻�(𝑞⃑𝑞, 𝑧𝑧) = 𝑒𝑒−𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋|𝑞𝑞�⃑ |2 (1-28) 

where 𝑞⃑𝑞 = 𝑞𝑞𝑥𝑥𝑒̂𝑒𝑥𝑥 + 𝑞𝑞𝑦𝑦𝑒̂𝑒𝑦𝑦 is the spatial frequency vector.  In most manifestations of 

phase screen simulation of optical turbulence, the discretized complex field matrix, 

𝐔𝐔𝐨𝐨𝐨𝐨𝐨𝐨,𝑛𝑛𝑛𝑛, is computed from the input field matrix, 𝐔𝐔𝐢𝐢𝐢𝐢,𝑛𝑛𝑛𝑛, and the Fresnel impulse 

response matrix, 𝐐𝐐𝑚𝑚𝑚𝑚, with use of the two dimensional Fast Fourier Transform 

(FFT) and Inverse FFT (IFFT):   

 𝐪𝐪𝑚𝑚𝑚𝑚2 ≡ (𝑚𝑚𝛥𝛥𝛥𝛥𝑥𝑥)2 + �𝑛𝑛𝛥𝛥𝛥𝛥𝑦𝑦�
2
 (1-29) 

 𝐐𝐐𝑚𝑚𝑚𝑚 ≡ fftshift{exp[−𝑗𝑗𝑗𝑗∆𝑧𝑧𝑧𝑧𝐪𝐪𝑚𝑚𝑚𝑚2 ]} 
 

(1-30) 

 𝐔𝐔𝐨𝐨𝐨𝐨𝐨𝐨,𝑛𝑛𝑛𝑛 = IFFT2 �𝐐𝐐𝑚𝑚𝑚𝑚 ∙ FFT2�𝐔𝐔𝐢𝐢𝐢𝐢,𝑛𝑛𝑛𝑛�� 
 

(1-31) 

Equations (1-29) - (1-31) define the relevant matrices and summarize the 

propagation algorithm, with  𝛥𝛥𝛥𝛥𝑥𝑥 = 1
𝑀𝑀𝑀𝑀𝑀𝑀

, 𝛥𝛥𝛥𝛥𝑦𝑦 = 1
𝑁𝑁𝑁𝑁𝑁𝑁

 are the frequency domain grid 

spacings in terms of the spatial grid spacings, 𝛥𝛥𝛥𝛥, 𝛥𝛥𝑦𝑦, with 𝑀𝑀, 𝑁𝑁 the number of grid 

points in the x- and y-directions (respectively), fftshift{ } represents the process of 

FFT-shifting [33] a two dimensional matrix, and FFT2{ }, IFFT2{ } represent the 

FFT and IFFT operators (respectively). 

Equation (1-31) has a notable limitation, which is that it does not allow for 

a change in spatial resolution (and by extension spatial domain size) between the 
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source and receive planes.  The angular spectrum propagation algorithm [33] enacts 

a change in spatial resolution between the source and receive planes by noting that: 

 
𝑈𝑈(𝜌⃑𝜌2, 𝑧𝑧) = �𝐺𝐺(𝜌⃑𝜌2 − 𝜌⃑𝜌1, 𝑧𝑧)

∞

−∞

𝑈𝑈(𝜌⃑𝜌1, 0)𝑑𝑑𝜌⃑𝜌1 

                             ≅ �
exp �𝑗𝑗𝑘𝑘0

|𝜌⃑𝜌2 − 𝜌⃑𝜌1|2
2𝑧𝑧 �

𝑗𝑗𝑗𝑗𝑗𝑗

∞

−∞

𝑈𝑈(𝜌⃑𝜌1, 0)𝑑𝑑𝜌⃑𝜌1 

(1-32) 

We can write, using 𝜌𝜌1 = |𝜌⃑𝜌1|, 𝜌𝜌2 = |𝜌⃑𝜌2|, and introducing a scaling factor, 𝑚𝑚: 

|𝜌⃑𝜌2 − 𝜌⃑𝜌1|2 = 𝜌𝜌22 − 2𝜌⃑𝜌2 ∙ 𝜌⃑𝜌1 + 𝜌𝜌12 

         = �𝜌𝜌22 +
𝜌𝜌22

𝑚𝑚
−
𝜌𝜌22

𝑚𝑚
� − 2𝜌⃑𝜌2 ∙ 𝜌⃑𝜌1 + (𝜌𝜌12 + 𝑚𝑚𝜌𝜌12 − 𝑚𝑚𝜌𝜌12)                

       =
𝜌𝜌22

𝑚𝑚
+ �1 −

1
𝑚𝑚
�𝜌𝜌22 − 2𝜌⃑𝜌2 ∙ 𝜌⃑𝜌1 + [𝑚𝑚𝜌𝜌12 + (1 −𝑚𝑚)𝜌𝜌12]               

    = 𝑚𝑚��
𝜌𝜌2
𝑚𝑚
�
2
− 2�

𝜌⃑𝜌2
𝑚𝑚
� ∙ 𝜌⃑𝜌1 + 𝜌𝜌12� + �1 −

1
𝑚𝑚
�𝜌𝜌22 + (1 −𝑚𝑚)𝜌𝜌12 

   = 𝑚𝑚 �
𝜌⃑𝜌2
𝑚𝑚
− 𝜌⃑𝜌1�

2

− �
1 −𝑚𝑚
𝑚𝑚

�𝜌𝜌22 + (1 −𝑚𝑚)𝑝𝑝12                                

(1-33) 

Insertion of (1-33) into (1-32) yields: 

𝑈𝑈(𝜌⃑𝜌2, 𝑧𝑧) ≅ �
𝑒𝑒
𝑗𝑗𝑘𝑘0
2𝑧𝑧 �𝑚𝑚�𝜌𝜌��⃑ 2𝑚𝑚−𝜌𝜌��⃑ 1�

2
−�1−𝑚𝑚𝑚𝑚 �𝜌𝜌22+(1−𝑚𝑚)𝑝𝑝12�

𝑗𝑗𝑗𝑗𝑗𝑗

∞

−∞

𝑈𝑈(𝜌⃑𝜌′, 0)𝑑𝑑𝜌⃑𝜌′ 

          =
𝑒𝑒
−𝑗𝑗𝑘𝑘0
2𝑧𝑧 �1−𝑚𝑚𝑚𝑚 �𝜌𝜌22

𝑗𝑗𝑗𝑗𝑗𝑗
�𝑒𝑒

𝑗𝑗𝑘𝑘0
2𝑧𝑧 (1−𝑚𝑚)𝜌𝜌12𝑒𝑒

𝑗𝑗𝑘𝑘0𝑚𝑚
2𝑧𝑧 �𝜌𝜌��⃑ 2𝑚𝑚−𝜌𝜌��⃑ 1�

2∞

−∞

𝑈𝑈(𝜌⃑𝜌1, 0)𝑑𝑑𝜌⃑𝜌1 

(1-34) 
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 In order to use the Fourier Convolution Theorem, we wish to rewrite (1-34) 

in terms of a convolutional integral.  First, we define: 

 
𝑈𝑈′(𝜌⃑𝜌1, 0) ≡

1
𝑚𝑚
𝑈𝑈(𝜌⃑𝜌1, 0)𝑒𝑒

𝑗𝑗𝑘𝑘0
2𝑧𝑧 (1−𝑚𝑚)𝜌𝜌��⃑ 1

2
 (1-35) 

The above allows us to write (1-34) as: 

 
𝑈𝑈(𝜌⃑𝜌2, 𝑧𝑧) ≅

𝑒𝑒
−𝑗𝑗𝑘𝑘0
2𝑧𝑧 �1−𝑚𝑚𝑚𝑚 �𝜌𝜌22

𝑗𝑗𝑗𝑗𝑗𝑗
�𝑚𝑚𝑈𝑈′(𝜌⃑𝜌1, 0)𝑒𝑒

𝑗𝑗𝑘𝑘0𝑚𝑚
2𝑧𝑧 �𝜌𝜌��⃑ 2𝑚𝑚−𝜌𝜌��⃑ 1�

2∞

−∞

𝑑𝑑𝜌⃑𝜌1 (1-36) 

We now introduce the scaled coordinates: 

 𝜌⃑𝜌2
′ =

𝜌⃑𝜌2
𝑚𝑚

, 𝜌𝜌2′ =
𝜌𝜌2
𝑚𝑚

 
 

(1-37) 

 𝑧𝑧′ =
𝑧𝑧
𝑚𝑚

 (1-38) 

Use of (1-37) and (1-38) yields in (1-36): 

 
𝑈𝑈(𝑚𝑚𝜌⃑𝜌2′, 𝑧𝑧) ≅

𝑒𝑒
−𝑗𝑗𝑘𝑘0
2𝑧𝑧′ (1−𝑚𝑚)𝜌𝜌2′

2

𝑗𝑗𝑗𝑗𝑧𝑧′
�𝑈𝑈′(𝜌⃑𝜌1, 0)𝑒𝑒

𝑗𝑗𝑘𝑘0
2𝑧𝑧′�𝜌𝜌��⃑ 2

′−𝜌𝜌��⃑ 1�
2

∞

−∞

𝑑𝑑𝜌⃑𝜌1 (1-39) 

(1-39) is now in the form of a convolutional integral, with kernel 𝐻𝐻(𝜌⃑𝜌2
′ − 𝜌⃑𝜌1, 𝑧𝑧′): 

 
𝐻𝐻�𝜌⃑𝜌2

′ − 𝜌⃑𝜌1, 𝑧𝑧′� ≡
𝑒𝑒
𝑗𝑗𝑘𝑘0
2𝑧𝑧′�𝜌𝜌��⃑ 2

′−𝜌𝜌��⃑ 1�
2

𝑗𝑗𝑗𝑗𝑗𝑗′
 

(1-40) 

 𝑈𝑈(𝑚𝑚𝜌⃑𝜌2′, 𝑧𝑧) ≅ 𝑒𝑒
−𝑗𝑗𝑘𝑘0
2𝑧𝑧′ (1−𝑚𝑚)𝜌𝜌2′

2

�𝑈𝑈′(𝜌⃑𝜌1, 0)𝐻𝐻(𝜌⃑𝜌2
′ − 𝜌⃑𝜌1, 𝑧𝑧′)

∞

−∞

𝑑𝑑𝜌⃑𝜌1 (1-41) 

The Fourier transform of the kernel, 𝐻𝐻�(𝑞⃑𝑞1, 𝑧𝑧′), which using 𝜌⃑𝜌 = 𝑥𝑥𝑒̂𝑒1 + 𝑦𝑦𝑒̂𝑒2 as a 

dummy variable of integration, is given by: 
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𝐻𝐻�(𝑞⃑𝑞1, 𝑧𝑧′) = �𝐻𝐻(𝜌⃑𝜌, 𝑧𝑧′)
∞

−∞

exp(−2𝜋𝜋𝜋𝜋𝜌⃑𝜌 ∙ 𝑞⃑𝑞1)𝑑𝑑𝜌⃑𝜌 

                   = �
exp �𝜋𝜋𝜋𝜋 � 𝜌𝜌

2

𝑧𝑧′𝜆𝜆 − 2𝜌⃑𝜌 ∙ 𝑞⃑𝑞1��

𝑗𝑗𝑗𝑗𝑗𝑗′

∞

−∞

𝑑𝑑𝜌⃑𝜌   

 

(1-42) 

We have written (1-42) in terms of a spatial frequency vector, 𝑞⃑𝑞1 = 𝑞𝑞1,𝑥𝑥𝑒̂𝑒1 + 𝑞𝑞1,𝑦𝑦𝑒̂𝑒2, 

as opposed to a spatial angular frequency (e.g. a 𝜅𝜅1), because ultimately we are 

deriving these expressions for use with the FFT, which is not implemented using 

angular frequencies.  We continue: 

𝐻𝐻�(𝑞⃑𝑞1, 𝑧𝑧′) = 𝑒𝑒−𝜋𝜋𝜋𝜋𝑧𝑧′𝜆𝜆𝑞𝑞12 �
𝑒𝑒𝜋𝜋𝜋𝜋�

𝜌𝜌2
𝑧𝑧′𝜆𝜆−2𝜌𝜌��⃑ ∙𝑞𝑞�⃑ 1+𝑧𝑧

′𝜆𝜆𝑞𝑞12�

𝑗𝑗𝑗𝑗𝑧𝑧′

∞

−∞

𝑑𝑑𝜌⃑𝜌   

 

=
𝑒𝑒−𝜋𝜋𝜋𝜋𝑧𝑧′𝜆𝜆𝑞𝑞12

𝑗𝑗𝑗𝑗𝑧𝑧′
� 𝑒𝑒𝜋𝜋𝜋𝜋�

𝑥𝑥2
𝑧𝑧′𝜆𝜆−2𝑥𝑥𝑞𝑞1,𝑥𝑥+𝑧𝑧′𝜆𝜆𝑞𝑞1,𝑥𝑥

2�
∞

−∞

𝑑𝑑𝑑𝑑 � 𝑒𝑒𝜋𝜋𝜋𝜋�
𝑦𝑦2
𝑧𝑧′𝜆𝜆−2𝑦𝑦𝑞𝑞1,𝑦𝑦+𝑧𝑧′𝜆𝜆𝑞𝑞1,𝑦𝑦

2�
∞

−∞

𝑑𝑑𝑦𝑦      

 

=
𝑒𝑒−𝜋𝜋𝜋𝜋𝑧𝑧′𝜆𝜆𝑞𝑞12

𝑗𝑗𝑗𝑗𝑧𝑧′
� 𝑒𝑒

𝜋𝜋𝜋𝜋� 𝑥𝑥
√𝜆𝜆𝑧𝑧′

−𝑞𝑞1,𝑥𝑥√𝜆𝜆𝑧𝑧′�
2∞

−∞

𝑑𝑑𝑑𝑑 � 𝑒𝑒
𝜋𝜋𝜋𝜋� 𝑦𝑦

√𝜆𝜆𝑧𝑧′
−𝑞𝑞1,𝑦𝑦√𝜆𝜆𝑧𝑧′�

2∞

−∞

𝑑𝑑𝑑𝑑 

(1-43) 

We now examine the first integral in the final form of (1-43).  We note that through 

a change of variables to 𝑥𝑥′ = 𝑥𝑥 − 𝑞𝑞1,𝑥𝑥𝜆𝜆𝑧𝑧′ we can write: 

� 𝑒𝑒
𝜋𝜋𝜋𝜋� 𝑥𝑥

√𝜆𝜆𝑧𝑧′
−𝑞𝑞1,𝑥𝑥√𝜆𝜆𝑧𝑧′�

2∞

−∞

𝑑𝑑𝑑𝑑 = � 𝑒𝑒
−𝜋𝜋𝑥𝑥′2

𝑗𝑗𝑗𝑗𝑧𝑧′

∞+𝑞𝑞1,𝑥𝑥𝜆𝜆𝑧𝑧′

−∞+𝑞𝑞1,𝑥𝑥𝜆𝜆𝑧𝑧′

𝑑𝑑𝑥𝑥′ = � 𝑒𝑒
−𝜋𝜋𝑥𝑥′2

𝑗𝑗𝑗𝑗𝑧𝑧′
∞

−∞

𝑑𝑑𝑥𝑥′ 
(1-44) 

The Gaussian integral identity given by (1-44) is readily generalizable as (1-45), 

given below using 𝑟𝑟′=𝑟𝑟
2

2
, 𝑑𝑑𝑑𝑑′ = 𝑟𝑟𝑟𝑟𝑟𝑟, 𝑥𝑥′=√𝑎𝑎𝑥𝑥, and 𝑑𝑑𝑑𝑑′=√𝑎𝑎𝑑𝑑𝑑𝑑: 
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� 𝑒𝑒
−𝑥𝑥2
2

∞

−∞

𝑑𝑑𝑑𝑑 = � � 𝑒𝑒
−𝑥𝑥2
2

∞

−∞

𝑑𝑑𝑑𝑑 � 𝑒𝑒
−𝑦𝑦2
2

∞

−∞

𝑑𝑑𝑑𝑑 = �2𝜋𝜋� 𝑟𝑟𝑒𝑒
−𝑟𝑟2
2

∞

0

𝑑𝑑𝑑𝑑 

= �2𝜋𝜋� 𝑒𝑒−𝑟𝑟′
∞

0

𝑑𝑑𝑟𝑟′ = √2𝜋𝜋                    

(1-45) 

 � 𝑒𝑒
−𝑎𝑎𝑎𝑎2
2

∞

−∞

𝑑𝑑𝑑𝑑 =
1
√𝑎𝑎

� 𝑒𝑒
−𝑥𝑥′2

2

∞

−∞

𝑑𝑑𝑥𝑥′ = �2𝜋𝜋
𝑎𝑎

 (1-46) 

Substituting 2𝜋𝜋
𝑗𝑗𝑗𝑗𝑧𝑧′

 for 𝑎𝑎 in (1-46) allows us to write (1-44) as: 

 

 
� 𝑒𝑒

𝜋𝜋𝜋𝜋� 𝑥𝑥
√𝜆𝜆𝑧𝑧′

−𝑞𝑞1,𝑥𝑥√𝜆𝜆𝑧𝑧′�
2∞

−∞

𝑑𝑑𝑑𝑑 = � 𝑒𝑒
−𝜋𝜋𝑥𝑥′2

𝑗𝑗𝑗𝑗𝑧𝑧′
∞

−∞

𝑑𝑑𝑥𝑥′ = �𝑗𝑗𝑗𝑗𝑧𝑧′ (1-47) 

Noting that, in reality, both integrals in the final form of Equation (1-43) are 

equivalent yields our optical transfer function: 

 

 

𝐻𝐻�(𝑞⃑𝑞1, 𝑧𝑧′) =
𝑒𝑒−𝜋𝜋𝜋𝜋𝑧𝑧′𝜆𝜆𝑞𝑞12

𝑗𝑗𝑗𝑗𝑧𝑧′
� � 𝑒𝑒

𝜋𝜋𝜋𝜋� 𝑥𝑥
√𝜆𝜆𝑧𝑧′

−𝑞𝑞1,𝑥𝑥√𝜆𝜆𝑧𝑧′�
2∞

−∞

𝑑𝑑𝑑𝑑�

2

 

 
=   𝑒𝑒−𝜋𝜋𝜋𝜋𝑧𝑧′𝜆𝜆𝑞𝑞12                                    

(1-48) 

Using the Fourier Convolution Theorem, we can now write (1-39) as: 

 

𝑈𝑈(𝑚𝑚𝜌⃑𝜌2′, 𝑧𝑧) ≅
𝑒𝑒
−𝑗𝑗𝑘𝑘0
2𝑧𝑧′ (1−𝑚𝑚)𝜌𝜌2′

2

𝑗𝑗𝑗𝑗𝑧𝑧′
 

(1-49) 
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× �𝐻𝐻�(𝑞⃑𝑞1, 𝑧𝑧′)
∞

−∞

��𝑈𝑈′(𝜌⃑𝜌1, 0)
∞

−∞

𝑒𝑒2𝜋𝜋𝜋𝜋𝜌𝜌��⃑ 1∙𝑞𝑞�⃑ 1𝑑𝑑𝜌⃑𝜌1� 𝑒𝑒2𝜋𝜋𝜋𝜋𝜌𝜌��⃑ 2
′∙𝑞𝑞�⃑ 1𝑑𝑑𝑞⃑𝑞1 

 
For discretized simulations, this can be implemented using FFTs by defining the 

following matrices: 

 𝐫𝐫𝟏𝟏,𝑙𝑙𝑙𝑙
2 = (𝑙𝑙𝛥𝛥𝛥𝛥1)2 + (𝑘𝑘𝛥𝛥𝛥𝛥1)2 (1-50) 

 𝐫𝐫𝟐𝟐,𝑙𝑙𝑙𝑙
2 = (𝑙𝑙𝛥𝛥𝛥𝛥2)2 + (𝑘𝑘𝛥𝛥𝛥𝛥2)2 (1-51) 

 𝐪𝐪𝟏𝟏,𝑙𝑙𝑙𝑙
2 = �𝑙𝑙𝛥𝛥𝛥𝛥1,𝑥𝑥�

2
+ �𝑘𝑘𝛥𝛥𝛥𝛥1,𝑦𝑦�

2
 (1-52) 

 𝐐𝐐𝟏𝟏,𝑙𝑙𝑙𝑙 = exp �
𝑗𝑗𝑘𝑘0(1 −𝑚𝑚)

2∆𝑧𝑧
𝐫𝐫1,𝑙𝑙𝑙𝑙
2 � 

 

(1-53) 

 𝐐𝐐𝟐𝟐,𝑙𝑙𝑙𝑙 = fftshift �exp �
−2𝑗𝑗𝜋𝜋2∆𝑧𝑧
𝑚𝑚𝑘𝑘0

𝐪𝐪1,𝑙𝑙𝑙𝑙
2 �� 

 

(1-54) 

 𝐐𝐐𝟑𝟑,𝑙𝑙𝑙𝑙 = exp �
𝑗𝑗𝑘𝑘0(𝑚𝑚− 1)

2𝑚𝑚∆𝑧𝑧
𝐫𝐫2,𝑙𝑙𝑙𝑙
2 � 

 

(1-55) 

 𝐔𝐔𝐨𝐨𝐨𝐨𝐨𝐨,𝑙𝑙𝑙𝑙 = 𝐐𝐐𝟑𝟑,𝑙𝑙𝑙𝑙 ∙ IFFT2 �𝐐𝐐𝟐𝟐,𝑙𝑙𝑙𝑙 ∙ FFT2 �𝐐𝐐𝟏𝟏,𝑙𝑙𝑙𝑙 ∙
𝐔𝐔𝐢𝐢𝐢𝐢,𝑙𝑙𝑙𝑙

𝑚𝑚
�� 

 

(1-56) 

where 𝛥𝛥𝛥𝛥1, 𝛥𝛥𝛥𝛥1 are the simulated spatial domain spacing in the input plane, 𝛥𝛥𝛥𝛥1,𝑥𝑥 =

1
𝑀𝑀𝛥𝛥𝛥𝛥1

, 𝛥𝛥𝛥𝛥1,𝑦𝑦 = 1
𝑁𝑁𝛥𝛥𝛥𝛥1

 are the frequency domain grid spacings with 𝑀𝑀, 𝑁𝑁 the number 

of grid points in the x- and y-directions (respectively), 𝛥𝛥𝛥𝛥1,𝑦𝑦 are the , 𝛥𝛥𝛥𝛥2, 𝛥𝛥𝛥𝛥2 are 

the simulated spatial domain spacing in the output plane.  Note that for 𝑚𝑚 = 1, 

𝐐𝐐𝟏𝟏,𝑙𝑙𝑙𝑙 and 𝐐𝐐𝟑𝟑,𝑙𝑙𝑙𝑙 are always one at all points in the matrix, and  𝐐𝐐𝟐𝟐,𝑙𝑙𝑙𝑙 simplifies to 

the traditional Fresnel transfer function given by other sources [31].  (1-56) is the 

method of propagation used for all computational work in this thesis.   
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1.4:  Theoretical Considerations for Propagation through Anisotropic, Non-

Kolmogorov Turbulence 

The theory derived in Section 1.2 has interesting repercussions when 

applied to the theory of optical propagation.  In this section, we largely follow the 

approach give in [9] which is most applicable to this proposal.  An important 

quantity in the study of propagation through isotropic turbulence is the Rytov 

variance [9], 𝜎𝜎𝑅𝑅2 = 1.23𝐶𝐶𝑛𝑛2𝑘𝑘0
7/6𝐿𝐿11/6, where 𝑘𝑘0 = 2𝜋𝜋

𝜆𝜆
 is the optical wavenumber, 

and L is the propagation distance.  The Rytov variance physically represents the 

normalized irradiance fluctuations, or scintillation index, 𝜎𝜎𝐼𝐼2, of an unbounded plain 

wave traveling through isotropic, Kolmogorov turbulence.  Theorists have 

developed a generalized form of the Rytov variance applicable to anisotropic, non-

Kolmogorov turbulence as [23]: 

𝜎𝜎�𝑅𝑅2�𝐿𝐿,𝛼𝛼, 𝜇𝜇𝑥𝑥, 𝜇𝜇𝑦𝑦� = 

−𝛤𝛤(𝛼𝛼 − 1)
𝛼𝛼𝛼𝛼

𝛤𝛤 �1 −
𝛼𝛼
2
� sin �

𝜋𝜋𝜋𝜋
4
� cos �

𝜋𝜋𝜋𝜋
2
� 𝐶̃𝐶𝑛𝑛

2𝑘𝑘0
3−𝛼𝛼2𝐿𝐿

𝛼𝛼
2 � �

cos2 𝜑𝜑
𝜇𝜇𝑥𝑥2

+
sin2 𝜑𝜑
𝜇𝜇𝑦𝑦2

�

𝛼𝛼
2−1

𝑑𝑑𝑑𝑑
2𝜋𝜋

0
 

(1-57) 

where the combined factors 1
2𝜋𝜋 ∫ �cos

2 𝜑𝜑
𝜇𝜇𝑦𝑦2

+ sin2 𝜑𝜑
𝜇𝜇𝑦𝑦2

�
𝛼𝛼
2−1

𝑑𝑑𝑑𝑑2𝜋𝜋
0  are sometimes [24] 

referred to as the multiplicative anisotropy factor.  Equation (1-57) gives the 

scintillation index of an unbounded plane wave propagating through anisotropic, 

non-Kolmogorov turbulence, with scintillation index defined by: 
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𝜎𝜎𝐼𝐼2 ≡

〈(𝐼𝐼 − 〈𝐼𝐼〉)2〉
〈𝐼𝐼〉2

=
〈𝐼𝐼2〉 − 〈𝐼𝐼〉2

〈𝐼𝐼〉2
 (1-58) 

where because 𝜎𝜎𝐼𝐼2 is normalized, and therefore unitless, and I can be either the 

irradiance with units W∙m-2  or the electric field intensity (E2) with units V2∙m-2.  

Both choices of units are related by a constant, the impedance of the medium, 

Z=Z0/n, where Z0 is the vacuum impedance of the medium, and n is the refractive 

index.  Also of interest is the scintillation index of a spherical wave propagating 

though anisotropic, non-Kolmogorov in the weak fluctuation regime, i.e. the 

generalized Rytov variance for a spherical wave, which is given by the below 

expression [24]: 

𝜎𝜎�𝑅𝑅,𝑠𝑠
2 �𝐿𝐿,𝛼𝛼, 𝜇𝜇𝑥𝑥, 𝜇𝜇𝑦𝑦� 

=
−𝛤𝛤(𝛼𝛼 − 1)𝛤𝛤 �1 − 𝛼𝛼

2�𝛤𝛤
2 �𝛼𝛼2�

2𝜋𝜋𝜋𝜋(𝛼𝛼) cos �
𝜋𝜋𝜋𝜋
2
� cos �

𝜋𝜋(𝛼𝛼 − 2)
4

� 𝐶̃𝐶𝑛𝑛
2𝑘𝑘0

3−𝛼𝛼2𝐿𝐿
𝛼𝛼
2  

× � �
cos2 𝜑𝜑
𝜇𝜇𝑥𝑥2

+
sin2 𝜑𝜑
𝜇𝜇𝑦𝑦2

�

𝛼𝛼
2−1

𝑑𝑑𝑑𝑑
2𝜋𝜋

0
 

=
𝛼𝛼 ∙ 𝜎𝜎�𝑅𝑅2�𝐿𝐿,𝛼𝛼, 𝜇𝜇𝑥𝑥, 𝜇𝜇𝑦𝑦� ∙ 𝛤𝛤2 �

𝛼𝛼
2�

2 ∙ sin �𝜋𝜋𝜋𝜋4 � ∙ 𝛤𝛤(𝛼𝛼)
cos �

𝜋𝜋(𝛼𝛼 − 2)
4

�                                            

(1-59) 

The most widely accepted method of analyzing the statistical nature of the 

propagation of light through optical turbulence, at least for Rytov variances less 

than or equal to unity, is the Rytov Method, which assumes that the long term 

statistics of turbulence can be modeled as a modulating function affecting the mean 

field of the otherwise vacuum diffracted light, 𝑈𝑈0(𝜌⃑𝜌, 𝐿𝐿), with 𝑈𝑈0(𝜌⃑𝜌, 0) being the 



22 
 

undiffracted complex field.  A rigorous examination of the two point mutual 

coherence function (MCF) at a given propagation distance [9]: 

 Γ2(𝜌⃑𝜌1, 𝜌⃑𝜌2, 𝐿𝐿) = 〈𝑈𝑈(𝜌⃑𝜌1,𝐿𝐿)𝑈𝑈∗(𝜌⃑𝜌2, 𝐿𝐿)〉 (1-60) 

where the 2 subscript of Γ2 denotes that this is the 2nd order moment of the field, U 

is the true field propagating through turbulence, and * denotes complex 

conjugation.  This method predicts the long term mean irradiance via: 

 〈|𝑈𝑈(𝜌⃑𝜌1, 𝐿𝐿)|2〉 = Γ2(𝜌⃑𝜌1, 𝜌⃑𝜌1,𝐿𝐿) (1-61) 

Although there is more than one manner to express the behavior of a Gaussian beam 

diffracting in vacuum [34], we use a convention associated with the derivation of 

diffractive behavior in the paraxial approximation, defining behavior in terms of 

non-dimensional beam parameters.  That is, the input plane curvature parameter 

and Fresnel ratio, Θ0 and Λ0, respectively, and the output plane curvature parameter 

and Fresnel ratio, Θ and Λ, as [9]: 

Θ0 = 1 −
𝑧𝑧
𝐹𝐹0

, Λ0 =
2𝑧𝑧

𝑘𝑘0𝑊𝑊0
2 ,        Θ�0 =

𝑧𝑧
𝐹𝐹0

 (1-62) 

Θ =
Θ0

Θ02 + Λ02
, Λ =

Λ0
Θ02 + Λ02

,         Θ� = 1 − Θ (1-63) 

𝑈𝑈0(𝜌𝜌, 𝑧𝑧) = �Θ2 + Λ2 exp�−
𝑘𝑘0𝛬𝛬𝑟𝑟2

2𝑧𝑧 � exp�𝑗𝑗 �𝑘𝑘0𝑧𝑧 − tan−1 �
𝛬𝛬0
𝛩𝛩0
� +

𝑘𝑘0Θ�𝑟𝑟2

2𝑧𝑧 �� (1-64) 

where 𝑊𝑊0 is the initial spot size (radius of 𝑒𝑒−1 field magnitude relative to the 

maximum) and 𝐹𝐹0 is the initial beam radius of curvature.  The diffracted spot size, 

W, and radius of curvature, F, are given by [9]: 
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𝑊𝑊 = �

2𝑧𝑧
𝑘𝑘0Λ

, 𝐹𝐹 = −
Θ�
𝑧𝑧

 (1-65) 

Equation (27) is consistent with a Green’s function for propagation given by [30]: 

 
𝐺𝐺(𝑟𝑟, 𝑟𝑟′) =

exp(𝑗𝑗𝑘𝑘0|𝑟𝑟 − 𝑟𝑟′|)
4𝜋𝜋|𝑟𝑟 − 𝑟𝑟′|

                                                                  

≅
1

4𝜋𝜋(𝑧𝑧 − 𝑧𝑧′)
exp �𝑗𝑗𝑘𝑘0 �𝑧𝑧 − 𝑧𝑧′ +

|𝜌⃑𝜌 − 𝜌⃑𝜌′|2

2(𝑧𝑧 − 𝑧𝑧′)
��  

(1-66) 

The approximation in the last step of (1-66) is the paraxial approximation as applied 

to the Green’s function.   

Next, we consider the Born Approximation [9]: 

 𝑛𝑛2(𝜌⃑𝜌, 𝑧𝑧) = �𝑛𝑛0(𝜌⃑𝜌, 𝑧𝑧) + 𝑛𝑛1(𝜌⃑𝜌, 𝑧𝑧)�
2

              

≅ 𝑛𝑛0(𝜌⃑𝜌, 𝑧𝑧) + 2𝑛𝑛1(𝜌⃑𝜌, 𝑧𝑧) 
(1-67) 

 𝑈𝑈(𝜌⃑𝜌, 𝐿𝐿) ≅ 𝑈𝑈0(|𝜌⃑𝜌|,𝐿𝐿) + � 𝑈𝑈𝑚𝑚(𝜌⃑𝜌, 𝐿𝐿)
∞

𝑚𝑚=1
 (1-68) 

Where we have already defined 𝑈𝑈0, and the 𝑈𝑈𝑚𝑚’s are given by: 

𝑈𝑈𝑚𝑚(𝜌⃑𝜌, 𝐿𝐿) = 

𝑘𝑘0
2𝜋𝜋

�𝑑𝑑𝑑𝑑′ �𝑑𝑑𝜌⃑𝜌′
∞

−∞

𝐿𝐿

0

exp�𝑗𝑗𝑘𝑘0 �𝐿𝐿 − 𝑧𝑧′ +
|𝜌⃑𝜌 − 𝜌⃑𝜌′|2

2(𝐿𝐿 − 𝑧𝑧′)
��𝑈𝑈𝑚𝑚−1(𝜌⃑𝜌′, 𝑧𝑧)

𝑛𝑛1(𝜌⃑𝜌, 𝑧𝑧′)
𝐿𝐿 − 𝑧𝑧′

 
(1-69) 

As previously referred to, the Rytov Method assumes that turbulence acts as a 

modulating function on the beam, via the Rytov Approximation: 

 𝑈𝑈(𝜌⃑𝜌, 𝐿𝐿) ≅ 𝑈𝑈0(|𝜌⃑𝜌|,𝐿𝐿) exp�𝜓𝜓(𝜌⃑𝜌, 𝐿𝐿)�                             (1-70) 
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     = 𝑈𝑈0(|𝜌⃑𝜌|,𝐿𝐿) exp �� 𝜓𝜓𝑚𝑚(𝜌⃑𝜌, 𝐿𝐿)
∞

𝑚𝑚=1
� 

It is noteworthy what the Born and Rytov approximations can be shown to be by 

introducing the normalized Born perturbations, Φ𝑚𝑚: 

 
Φ𝑚𝑚(𝜌⃑𝜌, 𝐿𝐿) =

𝑈𝑈𝑚𝑚(𝜌⃑𝜌, 𝐿𝐿)
𝑈𝑈0(𝜌⃑𝜌, 𝐿𝐿)  (1-71) 

 
� 𝜓𝜓𝑚𝑚(𝜌⃑𝜌, 𝐿𝐿)
∞

𝑚𝑚=1

= ln�1 + �Φ𝑚𝑚(𝜌⃑𝜌, 𝐿𝐿)
∞

𝑚𝑚=1

� (1-72) 

In looking for the 1st and 2nd order terms in the Rytov approximation, taking the 

Maclaurin series around the right side of Equation (1-73) and keeping the 1st and 

2nd order terms yields the relation: 

 
𝜓𝜓1(𝜌⃑𝜌, 𝐿𝐿) + 𝜓𝜓2(𝜌⃑𝜌, 𝐿𝐿) ≅ Φ1(𝜌⃑𝜌,𝐿𝐿) + �Φ2(𝜌⃑𝜌, 𝐿𝐿) +

1
2
Φ1

2(𝜌⃑𝜌, 𝐿𝐿)� (1-73) 

Where we will equate the bracketed terms with 𝜓𝜓2(𝜌⃑𝜌, 𝐿𝐿).  As it has been shown [9] 

that the mean field, 〈𝑈𝑈(𝜌⃑𝜌, 𝐿𝐿)〉, goes rapidly to zero propagating any distance beyond 

a few meters in even weak turbulence, and because we are typically interested in 

the field intensity and fluctuations thereof, we ignore the 1st order moment, and 

begin in looking at the second previously given in (1-60): 

Γ2(𝜌⃑𝜌1, 𝜌⃑𝜌2, 𝐿𝐿) = 𝑈𝑈0(|𝜌⃑𝜌1|,𝐿𝐿)𝑈𝑈0∗(|𝜌⃑𝜌2|, 𝐿𝐿)〈exp�𝜓𝜓(𝜌⃑𝜌1, 𝐿𝐿) + 𝜓𝜓∗(𝜌⃑𝜌2, 𝐿𝐿)�〉 

    = Γ20(𝜌⃑𝜌1, 𝜌⃑𝜌2, 𝐿𝐿)〈exp�𝜓𝜓(𝜌⃑𝜌1,𝐿𝐿) + 𝜓𝜓∗(𝜌⃑𝜌2, 𝐿𝐿)�〉 
(1-74) 

Where Γ20(𝜌⃑𝜌1, 𝜌⃑𝜌2, 𝐿𝐿) is the mutual coherence function of the unperturbed field. 
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Evaluation of the exponent requires us to borrow from the method of 

cumulants [9, 35]: 

 
〈exp(ψ)〉 = exp��

𝐾𝐾𝑚𝑚
𝑚𝑚!

∞

𝑚𝑚=1

� (1-75) 

 𝐾𝐾1 = 〈ψ〉,         𝐾𝐾𝑚𝑚 = 〈(ψ − 〈ψ〉)𝑚𝑚〉 (1-76) 

Therefore, to second order: 

〈exp�𝜓𝜓(𝜌⃑𝜌1, 𝐿𝐿) + 𝜓𝜓∗(𝜌⃑𝜌2,𝐿𝐿)�〉

≅ exp �
〈𝜓𝜓(𝜌⃑𝜌1, 𝐿𝐿) + 𝜓𝜓∗(𝜌⃑𝜌2, 𝐿𝐿)〉

+
1
2
�〈�𝜓𝜓(𝜌⃑𝜌1,𝐿𝐿) + 𝜓𝜓∗(𝜌⃑𝜌2, 𝐿𝐿)�

2〉 − 〈𝜓𝜓(𝜌⃑𝜌1,𝐿𝐿) + 𝜓𝜓∗(𝜌⃑𝜌2, 𝐿𝐿)〉2�
� 

(1-77) 

Applying (1-73), along with the assumption 〈Φ1(𝜌⃑𝜌, 𝐿𝐿)〉 = 0 due to the mean field 

approaching zero, and then dropping all terms smaller than 〈𝜓𝜓1
2〉, 〈𝜓𝜓1𝜓𝜓1

∗〉, 〈𝜓𝜓2〉 

yields [9]: 

 〈exp�𝜓𝜓(𝜌⃑𝜌1,𝐿𝐿) + 𝜓𝜓∗(𝜌⃑𝜌2, 𝐿𝐿)�〉 

≅ exp(2〈𝜓𝜓2(0, 𝐿𝐿)〉 + 〈𝜓𝜓1(0, 𝐿𝐿)2〉 + 〈𝜓𝜓1(𝜌⃑𝜌1, 𝐿𝐿)𝜓𝜓1(𝜌⃑𝜌2, 𝐿𝐿)∗〉) 
(1-78) 

where 0’s now appear in some of the function arguments by virtue of an assumption 

of homogeneity of turbulence (not isotropy, necessarily).   

Equation (1-78) applied to (1-74) allows an approximation to the mean field 

having propagated through turbulence: 
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 〈𝐼𝐼〉 = 〈𝑈𝑈(|𝜌⃑𝜌|, 𝐿𝐿)𝑈𝑈(|𝜌⃑𝜌|, 𝐿𝐿)∗〉 = Γ2(𝜌⃑𝜌, 𝜌⃑𝜌, 𝐿𝐿) 

      = |𝑈𝑈0(|𝜌⃑𝜌|, 𝐿𝐿)|2 exp(2〈𝜓𝜓2(0, 𝐿𝐿)〉 + 〈𝜓𝜓1(0, 𝐿𝐿)2〉

+ 〈𝜓𝜓1(𝜌⃑𝜌1, 𝐿𝐿)𝜓𝜓1(𝜌⃑𝜌2, 𝐿𝐿)∗〉) 

      =
𝑊𝑊0

2

𝑊𝑊2 exp(
−2|𝜌⃑𝜌|2

𝑊𝑊2 )exp(2〈𝜓𝜓2(0, 𝐿𝐿)〉 + 〈𝜓𝜓1(0, 𝐿𝐿)2〉

+ 〈𝜓𝜓1(𝜌⃑𝜌1, 𝐿𝐿)𝜓𝜓1(𝜌⃑𝜌2, 𝐿𝐿)∗〉) 

(1-79) 

For Kolmogorov turbulence, examination of the above leads to [9]: 

〈𝐼𝐼(𝜌𝜌, 𝐿𝐿)〉 =
𝑊𝑊0

2

𝑊𝑊2 exp �
−2𝜌𝜌2

𝑊𝑊2 + 1.32𝜎𝜎𝑅𝑅2Λ
5
6 �1 − 𝐹𝐹1 1 �−

5
6

; 1;
2𝜌𝜌2

𝑊𝑊2�� − 1.33𝜎𝜎𝑅𝑅2Λ
5
6� 

≅
𝑊𝑊0

2

𝑊𝑊2 exp �
−2𝜌𝜌2

𝑊𝑊2 � exp �2.22𝜎𝜎𝑅𝑅2Λ
5
6
𝜌𝜌2

𝑊𝑊2 − 1.33𝜎𝜎𝑅𝑅2Λ
5
6�       

(1-80) 

where 𝐹𝐹1 1 represents the confluent hypergeometric function [36].  To simplify, we 

define T as per (1-81) and make the approximations given in (1-82), (1-83), and 

(1-84) yields the final weak fluctuation theory mean irradiance approximation, 

(1-85): 

 𝑇𝑇 = 1.33𝜎𝜎𝑅𝑅2Λ
5
6 (1-81) 

 
2.22𝜎𝜎𝑅𝑅2Λ

5
6
𝜌𝜌2

𝑊𝑊2 = 1.67 ∙ 𝑇𝑇
𝜌𝜌2

𝑊𝑊2 ≅ 2 ∙ 𝑇𝑇
𝜌𝜌2

𝑊𝑊2   (1-82) 

 
𝑒𝑒−𝑇𝑇 =

1
1 + 𝑇𝑇

 (1-83) 

 −2𝜌𝜌2

𝑊𝑊2 + 2 ∙ 𝑇𝑇
𝜌𝜌2

𝑊𝑊2 =
−2𝜌𝜌2

𝑊𝑊2 (1 − 𝑇𝑇) ≅
−2𝜌𝜌2

𝑊𝑊2(1 + 𝑇𝑇) (1-84) 
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〈𝐼𝐼(𝜌𝜌, 𝐿𝐿)〉 ≅

𝑊𝑊0
2

𝑊𝑊2(1 + 𝑇𝑇)
exp�

−2𝜌𝜌2

𝑊𝑊2(1 + 𝑇𝑇)� (1-85) 

Clearly, the perturbation theory based derivation for Kolmogorov turbulence 

predicts the long term spot size, 𝑊𝑊𝐿𝐿𝐿𝐿, can be approximated by: 

 
𝑊𝑊𝐿𝐿𝐿𝐿 ≅ 𝑊𝑊�1 + 1.33𝜎𝜎𝑅𝑅2Λ

5
6 = 𝑊𝑊√1 + 𝑇𝑇 

(1-86) 

In the course of this derivation, we started with the Born approximation and 

made further approximations based upon keeping only leading order non-zero-

mean terms in the exponential functions.  These approximations as applied to the 

Born and Rytov approximations constitute the Weak Fluctuation Regime, which is 

assumed valid for 𝜎𝜎𝑅𝑅2 ≪ 1.  Given the number of approximations that have been 

made in the process of deriving (47), it is not surprising that pragmatic adjustments 

have been made to the theoretical prediction [23]: 

 
𝑊𝑊𝐿𝐿𝐿𝐿 ≅ 𝑊𝑊 �1 + 1.33𝜎𝜎𝑅𝑅2Λ

5
6�

3/5
= 𝑊𝑊(1 + 𝑇𝑇)3/5 (1-87) 

This has been extended to anisotropic, non-Kolmogorov turbulence as [23, 24]:  

𝑊𝑊𝐿𝐿𝐿𝐿,𝑥𝑥 ≅ 𝑊𝑊 �1 + 𝑇𝑇𝑥𝑥�𝛼𝛼, 𝜇𝜇𝑥𝑥, 𝜇𝜇𝑦𝑦��
3
5 ,        𝑊𝑊𝐿𝐿𝐿𝐿,𝑦𝑦 ≅ 𝑊𝑊 �1 + 𝑇𝑇𝑦𝑦�𝛼𝛼, 𝜇𝜇𝑥𝑥, 𝜇𝜇𝑦𝑦��

3
5 (1-88) 

𝑇𝑇𝑥𝑥�𝛼𝛼, 𝜇𝜇𝑥𝑥, 𝜇𝜇𝑦𝑦� = 2𝜋𝜋
𝛤𝛤 �2 − 𝛼𝛼

2�
(𝛼𝛼 − 1)𝜇𝜇𝑥𝑥2

A(𝛼𝛼) 𝐶̃𝐶𝑛𝑛
2𝑘𝑘0

3−𝛼𝛼2𝐿𝐿
𝛼𝛼
2Λ

𝛼𝛼
2−1 

∙ � cos2 𝜑𝜑 �
cos2 𝜑𝜑
𝜇𝜇𝑦𝑦2

+
sin2 𝜑𝜑
𝜇𝜇𝑦𝑦2

�

𝛼𝛼
2−2

𝑑𝑑𝑑𝑑
2𝜋𝜋

0
 

(1-89) 
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𝑇𝑇𝑦𝑦�𝛼𝛼, 𝜇𝜇𝑥𝑥, 𝜇𝜇𝑦𝑦� = 2𝜋𝜋
𝛤𝛤 �2 − 𝛼𝛼

2�
(𝛼𝛼 − 1)𝜇𝜇𝑦𝑦2

A(𝛼𝛼) 𝐶̃𝐶𝑛𝑛
2𝑘𝑘0

3−𝛼𝛼2𝐿𝐿
𝛼𝛼
2Λ

𝛼𝛼
2−1 

∙ � sin2 𝜑𝜑 �
cos2 𝜑𝜑
𝜇𝜇𝑦𝑦2

+
sin2 𝜑𝜑
𝜇𝜇𝑦𝑦2

�

𝛼𝛼
2−2

𝑑𝑑𝑑𝑑
2𝜋𝜋

0
 

(1-90) 

Note that the 𝐶̃𝐶𝑛𝑛, 𝑘𝑘0, and 𝐿𝐿 dependences of  are identical to the generalized Rytov 

variance of (1-89) and (1-90), and the Λ dependence is the same as the T in (1-81).  

Because of the connection with Equation (1-87), later in this proposal we will refer 

to the use of Equation (1-88) a Rytov variance based approach.  In order to estimate 

the fluctuations of the intensity of light, theorists analyzed the 4th moment of the 

field, given by: 

Γ2(𝜌⃑𝜌1, 𝜌⃑𝜌2, 𝜌⃑𝜌3, 𝜌⃑𝜌4, 𝐿𝐿) = 〈𝑈𝑈(|𝜌⃑𝜌1|, 𝐿𝐿)𝑈𝑈∗(|𝜌⃑𝜌2|, 𝐿𝐿)𝑈𝑈(|𝜌⃑𝜌3|, 𝐿𝐿)𝑈𝑈∗(|𝜌⃑𝜌4|, 𝐿𝐿)〉 

          = 𝑈𝑈0(|𝜌⃑𝜌1|,𝐿𝐿)𝑈𝑈0∗(|𝜌⃑𝜌2|,𝐿𝐿)𝑈𝑈0(|𝜌⃑𝜌3|,𝐿𝐿)𝑈𝑈0∗(|𝜌⃑𝜌4|, 𝐿𝐿) 

∙ 〈exp�𝜓𝜓(𝜌⃑𝜌1, 𝐿𝐿) + 𝜓𝜓∗(𝜌⃑𝜌2, 𝐿𝐿) + 𝜓𝜓(𝜌⃑𝜌3,𝐿𝐿) + 𝜓𝜓∗(𝜌⃑𝜌4, 𝐿𝐿)�〉 

(1-91) 

Investigation using (1-91) yields an on-axis scintillation index of [9]: 

𝜎𝜎𝐼𝐼2�0,𝛼𝛼, 𝜇𝜇𝑥𝑥, 𝜇𝜇𝑦𝑦� = 

𝜎𝜎�𝑅𝑅2�𝛼𝛼, 𝜇𝜇𝑥𝑥, 𝜇𝜇𝑦𝑦�
sin�𝛼𝛼𝛼𝛼 4� �

𝑅𝑅𝑅𝑅 �𝑗𝑗
𝛼𝛼
2−1 𝐹𝐹2 1 �1 −

𝛼𝛼
2

,
𝛼𝛼
2

; 1 +
𝛼𝛼
2

;Θ� + 𝑗𝑗Λ� −
𝛼𝛼Λ

𝛼𝛼
2−1

2(𝛼𝛼 − 1)� 
(1-92) 

where 𝐹𝐹2 1 is the Gaussian hypergeometric function [36]. 

For 𝜎𝜎𝑅𝑅2 ≫ 1, theorists have applied similar methods to the parabolic 

equation method.  Chernov [5] gives the stochastic wave equation as: 
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 ∇2𝐸𝐸�⃑ (𝑟𝑟) + 𝑘𝑘0
2𝑛𝑛1(𝑟𝑟)𝐸𝐸�⃑ (𝑟𝑟) + 2∇�𝐸𝐸�⃑ (𝑟𝑟) ∙ ∇ log�𝑛𝑛(𝑟𝑟)�� = 0 (1-93) 

Where 𝐸𝐸�⃑  is the electric vector field.  The last term on the right hand side results in 

and is related to changes in the polarization state of the light, and is typically 

ignored [5, 9].  For a plane wave, the substitution of any transverse component of 

the field as 𝑈𝑈(𝑟𝑟) = 𝑉𝑉(𝑟𝑟)𝑒𝑒𝑗𝑗𝑘𝑘0𝑧𝑧 yields the parabolic equation: 

 
2𝑗𝑗𝑘𝑘0

𝜕𝜕𝜕𝜕(𝑟𝑟)
𝜕𝜕𝜕𝜕

+ ∇𝑇𝑇2𝑉𝑉(𝑟𝑟) + 2𝑘𝑘0
2𝑛𝑛1(𝑟𝑟)𝑉𝑉(𝑟𝑟) = 0 

(1-94) 

 
2𝑗𝑗𝑘𝑘0 〈

𝜕𝜕𝜕𝜕(𝑟𝑟)
𝜕𝜕𝜕𝜕

〉 + ∇𝑇𝑇2〈𝑉𝑉(𝑟𝑟)〉 + 2𝑘𝑘0
2〈𝑛𝑛1(𝑟𝑟)𝑉𝑉(𝑟𝑟)〉 = 0 

(1-95) 

with ∇𝑇𝑇2= 𝜕𝜕2

𝜕𝜕𝜕𝜕2
+ 𝜕𝜕2

𝜕𝜕𝜕𝜕2
.  Tatarskii suggested the approximation [37]: 

 〈𝑛𝑛1(𝑟𝑟)𝑉𝑉(𝑟𝑟)〉 =
𝑗𝑗𝑘𝑘0
2
𝐴𝐴𝑛𝑛(0)〈𝑉𝑉(𝜌⃑𝜌, 𝑧𝑧)〉 

(1-96) 

 
𝐴𝐴𝑛𝑛(𝜌⃑𝜌) = 2𝜋𝜋� Ф𝑛𝑛��𝜅𝜅𝜌𝜌�� exp�𝑗𝑗𝜅𝜅𝜌𝜌 ∙ 𝜌⃑𝜌� 𝑑𝑑𝜅𝜅𝜌𝜌

∞

−∞
 

         = 4𝜋𝜋2 � 𝜅𝜅𝜌𝜌Ф𝑛𝑛�𝜅𝜅𝜌𝜌�𝐽𝐽0�𝜅𝜅𝜌𝜌|𝜌⃑𝜌|�
∞

0
𝑑𝑑𝜅𝜅𝜌𝜌 

(1-97) 

Equation (1-95) then becomes: 

 
�2𝑗𝑗𝑘𝑘0

𝜕𝜕
𝜕𝜕𝜕𝜕

+ ∇𝑇𝑇2 + 𝑗𝑗𝑘𝑘0
3𝐴𝐴𝑛𝑛(0)� 〈𝑉𝑉(𝜌⃑𝜌, 𝑧𝑧)〉 = 0 (1-98) 

Following an approach similar to that done in the weak fluctuation regime 

eventually leads to, for plane waves of initial field magnitude of 1: 

Γ2(𝜌⃑𝜌1, 𝜌⃑𝜌2, 𝐿𝐿) = exp�−𝑘𝑘0
2𝑧𝑧[𝐴𝐴𝑛𝑛(0) − 𝐴𝐴𝑛𝑛(𝜌⃑𝜌1 − 𝜌⃑𝜌2)]� (1-99) 
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     = exp�−4𝜋𝜋2𝑘𝑘0
2𝑧𝑧� 𝜅𝜅𝜌𝜌Ф𝑛𝑛�𝜅𝜅𝜌𝜌� �1 − 𝐽𝐽0�𝜅𝜅𝜌𝜌|𝜌⃑𝜌1 − 𝜌⃑𝜌2|��

∞

0
𝑑𝑑𝜅𝜅𝜌𝜌� 

For Gaussian beam waves, in the strong fluctuation regime, we look for solutions 

of the form: 

𝑈𝑈(𝜌⃑𝜌, 𝐿𝐿) =
−𝑗𝑗𝑘𝑘0
2𝜋𝜋𝜋𝜋

�𝑑𝑑𝜌⃑𝜌′
∞

−∞

𝑈𝑈0(𝜌⃑𝜌′, 0)exp�
𝑗𝑗𝑘𝑘0|𝜌⃑𝜌 − 𝜌⃑𝜌′|2

2𝐿𝐿
+ 𝜓𝜓(𝜌⃑𝜌, 𝜌⃑𝜌′) � (1-100) 

Then, again following similar methods as in earlier in this section [9]: 

〈𝐼𝐼(𝜌⃑𝜌, 𝐿𝐿)〉 = Γ2(𝜌⃑𝜌, 𝜌⃑𝜌, 𝐿𝐿) 

= �
𝑘𝑘0

2𝜋𝜋𝜋𝜋
�
2

�𝑑𝑑𝜌⃑𝜌1
′

∞

−∞

�𝑑𝑑𝜌⃑𝜌2
′

∞

−∞

exp�−
2�𝜌⃑𝜌1

′�
2

𝑊𝑊0
2 −

�𝜌⃑𝜌2
′�
2

𝑊𝑊0
2 � 

∙ exp�
𝑗𝑗𝑘𝑘0
𝐿𝐿
��1 −

𝐿𝐿
𝐹𝐹0
� 𝜌⃑𝜌1

′ ∙ 𝜌⃑𝜌2
′ − 𝜌⃑𝜌 ∙ 𝜌⃑𝜌1

′�� 

∙ exp�−4𝜋𝜋2𝑘𝑘0
2𝐿𝐿�� 𝜅𝜅𝜌𝜌Ф𝑛𝑛�𝜅𝜅𝜌𝜌�(1 − 𝐽𝐽0�𝜅𝜅𝜌𝜌|𝜌⃑𝜌2|𝜉𝜉�)𝑑𝑑𝜅𝜅𝜌𝜌

∞

0

𝑑𝑑𝑑𝑑
1

0

� 

(1-101) 

Further approximations lead to: 

 
𝑊𝑊𝐿𝐿𝐿𝐿 ≅ 𝑊𝑊�1 + 1.63𝜎𝜎𝑅𝑅

12
5 Λ (1-102) 

Equation (1-102) can be modified and extended to anisotropic, non-Kolmogorov 

turbulence, however for examples of interest (1-102) yields similar results to the 

method described below.   
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An alternative expression for the long term spot size which, as we will 

examine later sections, seems appropriate in deep turbulence, 𝜎𝜎𝑅𝑅2 ≫ 1, is derived 

from the spatial coherence radius.  The wave structure function (WSF) for a 

spherical wave is given by [23]: 

𝐷𝐷(𝜌⃑𝜌1, 𝜌⃑𝜌2, 𝐿𝐿) 

= 8𝜋𝜋2𝐴𝐴(𝛼𝛼)𝐶̃𝐶𝑛𝑛
2𝑘𝑘0

2𝐿𝐿��

1 − 𝐽𝐽0 �𝜅𝜅𝜌𝜌𝜉𝜉��
𝑥𝑥1 − 𝑥𝑥2
𝜇𝜇𝑥𝑥

�
2
− �𝑦𝑦1 − 𝑦𝑦2

𝜇𝜇𝑦𝑦
�
2
�

𝜅𝜅𝜌𝜌𝛼𝛼−1
𝑑𝑑𝑑𝑑𝜌𝜌𝑑𝑑𝑑𝑑

∞

0

1

0

 

= 𝐶̃𝐶𝑛𝑛
2𝑘𝑘0

2𝐿𝐿
𝛼𝛼 𝛤𝛤(𝛼𝛼 − 1)𝛤𝛤 �−𝛼𝛼2�

(𝛼𝛼 − 1) 2𝛼𝛼−1 𝛤𝛤 �𝛼𝛼2�
cos �

𝛼𝛼𝛼𝛼
2
���

𝑥𝑥1 − 𝑥𝑥2
𝜇𝜇𝑥𝑥

�
2
− �

𝑦𝑦1 − 𝑦𝑦2
𝜇𝜇𝑦𝑦

�
2

�

𝛼𝛼−2
2

 

(1-103) 

Note the emergence of the 𝜉𝜉 symbol is due to the change of variables, 𝜉𝜉 = 1 − 𝑧𝑧
𝐿𝐿
, 

to an integral originally over z.  The spatial coherence radius, 𝜌𝜌�𝑠𝑠, in the x- and y-

directions is given by solving  

𝐷𝐷(𝜌⃑𝜌0, 𝜌⃑𝜌0, 𝐿𝐿) = 𝐷𝐷(0,0,𝐿𝐿)
2

, and setting 𝜌𝜌�𝑠𝑠 = |𝜌⃑𝜌0|.  For isotropic turbulence, we have: 

 

𝜌𝜌�𝑠𝑠 = �𝐶̃𝐶𝑛𝑛
2𝑘𝑘0

2𝐿𝐿
𝛼𝛼 𝛤𝛤(𝛼𝛼 − 1)𝛤𝛤 �−𝛼𝛼2�

(𝛼𝛼 − 1) 2𝛼𝛼 𝛤𝛤 �𝛼𝛼2�
cos �

𝛼𝛼𝛼𝛼
2
��

1
2−𝛼𝛼

 (1-104) 

Solving Equation (1-103) with 𝜌𝜌�𝑠𝑠 = � 𝑥𝑥2

𝜇𝜇𝑥𝑥2
− 𝑦𝑦2

𝜇𝜇𝑦𝑦2
 for 𝑥𝑥 = 0 and 𝑦𝑦 = 0 then  predicts 

the x-, y-coherence lengths 𝜌𝜌𝑠𝑠,𝑥𝑥 = 𝜇𝜇𝑥𝑥𝜌𝜌�𝑠𝑠, 𝜌𝜌𝑠𝑠,𝑦𝑦 = 𝜇𝜇𝑦𝑦𝜌𝜌�𝑠𝑠 giving the spatial coherence 

ratios in the x- and y-directions: 
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𝜌𝜌𝑠𝑠,𝑥𝑥 = 𝜇𝜇𝑥𝑥 �𝐶̃𝐶𝑛𝑛
2𝑘𝑘0

2𝐿𝐿
𝛼𝛼 𝛤𝛤(𝛼𝛼 − 1)𝛤𝛤 �−𝛼𝛼2�

(𝛼𝛼 − 1) 2𝛼𝛼 𝛤𝛤 �𝛼𝛼2�
cos �

𝛼𝛼𝛼𝛼
2
��

1
2−𝛼𝛼

 (1-105) 

 

𝜌𝜌𝑠𝑠,𝑦𝑦 = 𝜇𝜇𝑦𝑦 �𝐶̃𝐶𝑛𝑛
2𝑘𝑘0

2𝐿𝐿
𝛼𝛼 𝛤𝛤(𝛼𝛼 − 1)𝛤𝛤 �−𝛼𝛼2�

(𝛼𝛼 − 1) 2𝛼𝛼 𝛤𝛤 �𝛼𝛼2�
cos �

𝛼𝛼𝛼𝛼
2
��

1
2−𝛼𝛼

 (1-106) 

Xiao and Voelz [38] give an estimate for the long term x- and y-spot size as: 

 
𝑊𝑊𝐿𝐿𝐿𝐿,𝑥𝑥(𝑧𝑧) ≅ 𝑊𝑊0��1 −

𝑧𝑧
𝐹𝐹
�
2

+ �1 +
2𝑊𝑊0

2

𝜌𝜌𝑠𝑠,𝑥𝑥
2 � �

2𝑧𝑧
𝑘𝑘0𝑊𝑊0

2�
2

 

= 𝑊𝑊0�Θ02 + �1 +
2𝑊𝑊0

2

𝜌𝜌𝑠𝑠,𝑥𝑥
2 � Λ0

2      

(1-107) 

 
𝑊𝑊𝐿𝐿𝐿𝐿,𝑦𝑦(𝑧𝑧) ≅ 𝑊𝑊0��1 −

𝑧𝑧
𝐹𝐹
�
2

+ �1 +
2𝑊𝑊0

2

𝜌𝜌𝑠𝑠,𝑦𝑦
2 � �

2𝑧𝑧
𝑘𝑘0𝑊𝑊0

2�
2

 

= 𝑊𝑊0�Θ02 + �1 +
2𝑊𝑊0

2

𝜌𝜌𝑠𝑠,𝑦𝑦
2 �Λ0

2      

(1-108) 

Note that for 𝐶̃𝐶𝑛𝑛
2 = 0, 𝜌𝜌𝑠𝑠,𝑥𝑥 = 𝜌𝜌𝑠𝑠,𝑦𝑦 = ∞: 

 
𝑊𝑊𝐿𝐿𝐿𝐿(𝑧𝑧) = 𝑊𝑊(𝑧𝑧) = 𝑊𝑊0��1 −

𝑧𝑧
𝐹𝐹
�
2

+ �
2𝑧𝑧

𝑘𝑘0𝑊𝑊0
2�

2

 

 = �
2𝑧𝑧
𝑘𝑘0Λ0

�Θ02 + Λ02� = �
2𝑧𝑧
𝑘𝑘0Λ

 

(1-109) 
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which is consistent with earlier equations for free space beam propagation.  This 

completes the background knowledge necessary to understand the proposed areas 

of study detailed in the rest of this proposal. 

1.5:  A Note Regarding Alternatives to the Paraxial Approximations 

We now examine the Green’s function for optical propagation given by 

[30]:  

 
𝐺𝐺(𝑟𝑟) =

exp (𝑗𝑗𝑘𝑘0𝑟𝑟)
4𝜋𝜋𝜋𝜋

  (1-110) 

Taking the Fourier transform: 

𝐺𝐺�(𝜅𝜅) = �
exp(𝑗𝑗𝑘𝑘0𝑟𝑟)

4𝜋𝜋𝜋𝜋
exp(−𝑗𝑗𝑗𝑗𝑗𝑗 cos𝜃𝜃)𝑟𝑟2 sin 𝜃𝜃 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

∞

−∞

 

= �
exp(𝑗𝑗𝑘𝑘0𝑟𝑟) sin(𝜅𝜅𝜅𝜅)

𝜅𝜅
𝑑𝑑𝑑𝑑

∞

0

                                  

      =
𝑗𝑗

2𝜅𝜅
� exp(𝑗𝑗(𝑘𝑘0 − 𝜅𝜅)𝑟𝑟) − exp(𝑗𝑗(𝑘𝑘0 + 𝜅𝜅)𝑟𝑟)𝑑𝑑𝑑𝑑
∞

0

 

               =
𝑗𝑗

2𝜅𝜅
�
− exp(𝑗𝑗(𝑘𝑘0 − 𝜅𝜅)𝑟𝑟)

𝑗𝑗(𝜅𝜅 − 𝑘𝑘0) |0∞ −
exp(𝑗𝑗(𝑘𝑘0 + 𝜅𝜅)𝑟𝑟)

𝑗𝑗(𝜅𝜅 + 𝑘𝑘0) |0∞� 

(1-111) 

If we assume either that 𝑘𝑘0 has a small imaginary part (there is some small 

attenuation in propagation) or that exp(𝑗𝑗(𝑘𝑘0 − 𝜅𝜅)𝑟𝑟) , exp(𝑗𝑗(𝑘𝑘0 + 𝜅𝜅)𝑟𝑟) equal their 

average value (of 0) at 𝑟𝑟 = ∞, we have: 
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𝐺𝐺�(𝜅𝜅) =
𝑗𝑗

2𝜅𝜅
�

1
𝑗𝑗(𝜅𝜅 − 𝑘𝑘0) +

1
𝑗𝑗(𝜅𝜅 + 𝑘𝑘0)� =

𝜅𝜅 + 𝑘𝑘0 + 𝜅𝜅 − 𝑘𝑘0
2𝜅𝜅�𝜅𝜅2 − 𝑘𝑘0

2�
=

1
𝜅𝜅2 − 𝑘𝑘0

2 (1-112) 

In order for this to be useful to us, as we will see shortly, we need to inverse 

transform this in 𝜅𝜅𝑧𝑧: 

 
𝐺𝐺��𝜅𝜅𝜌𝜌, 𝑧𝑧� =

1
2𝜋𝜋

�
exp(𝑗𝑗𝜅𝜅𝑧𝑧𝑧𝑧)

𝜅𝜅𝜌𝜌2 + 𝜅𝜅𝑧𝑧2 − 𝑘𝑘0
2

∞

−∞

𝑑𝑑𝑑𝑑𝑧𝑧 (1-113) 

The integrand is analytic on the real line, and has first order poles at 𝜅𝜅𝑧𝑧 =

± �𝑘𝑘0
2 − 𝜅𝜅𝜌𝜌2.  Assuming 𝑅𝑅𝑅𝑅(𝑘𝑘0) > 𝜅𝜅𝜌𝜌, (which will be a good approximation for 

the grids used in our simulations of optical phenomena), and that 𝑘𝑘0 has a small 

and positive imaginary part, 𝑘𝑘0,𝑖𝑖, such that 𝑘𝑘0 = 𝑘𝑘0,𝑟𝑟 + 𝑗𝑗 ∙ 𝑘𝑘0,𝑖𝑖 closing the contour 

of (1-113) upwards leads to: 

𝐺𝐺��𝜅𝜅𝜌𝜌, 𝑧𝑧� =
1

2𝜋𝜋
�

exp(𝑗𝑗𝜅𝜅𝑧𝑧𝑧𝑧)
𝜅𝜅𝜌𝜌2 + 𝜅𝜅𝑧𝑧2 − 𝑘𝑘0

2 𝑑𝑑𝑑𝑑𝑧𝑧 =
𝑗𝑗 exp �𝑗𝑗𝑗𝑗�𝑘𝑘0

2 − 𝜅𝜅𝜌𝜌2�

2�𝑘𝑘0
2 − 𝜅𝜅𝜌𝜌2

 (1-114) 

Taking the limit as 𝑘𝑘0,𝑖𝑖 → 0, 𝑘𝑘0 → 𝑘𝑘0,𝑟𝑟 demonstrates that this equation is valid for 

vacuum propagation.   

 It is interesting to note that although typically the paraxial approximation is 

used for studies of laser propagation, by noting �𝑘𝑘0
2 − 𝜅𝜅𝜌𝜌2 = 𝑘𝑘0�1 − 𝜅𝜅𝜌𝜌2

𝑘𝑘02
 and 

taking advantage of the Taylor series for √1 + 𝑥𝑥 we achieve:  
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�𝑘𝑘0
2 − 𝜅𝜅𝜌𝜌2 = 𝑘𝑘0 �1 + �

(−1)𝑛𝑛(2𝑛𝑛)!
4𝑛𝑛(𝑛𝑛!)2(2𝑛𝑛 − 1)

∞

𝑛𝑛=1

�
𝜅𝜅𝜌𝜌
𝑘𝑘0
�
2𝑛𝑛
� , �

𝜅𝜅𝜌𝜌
𝑘𝑘0
� < 1 (1-115) 

one this allows us to write 𝐺𝐺��𝜅𝜅𝜌𝜌, 𝑧𝑧� as: 

𝐺𝐺��𝜅𝜅𝜌𝜌, 𝑧𝑧� =
𝑗𝑗 exp(𝑗𝑗𝑗𝑗𝑘𝑘0)

2�𝑘𝑘0
2 − 𝜅𝜅𝜌𝜌2

exp�𝑗𝑗𝑗𝑗𝑘𝑘0�
(−1)𝑛𝑛(2𝑛𝑛)!

4𝑛𝑛(𝑛𝑛!)2(2𝑛𝑛 − 1)

∞

𝑛𝑛=1

�
𝜅𝜅𝜌𝜌
𝑘𝑘0
�
2𝑛𝑛
� (1-116) 

The above expression is valid for �𝜅𝜅𝜌𝜌
𝑘𝑘0
� < 1.  We have written 𝐺𝐺��𝜅𝜅𝜌𝜌, 𝑧𝑧� in this form, 

with two exponentials function, for reasons related to computing 𝐺𝐺��𝜅𝜅𝜌𝜌, 𝑧𝑧� for use 

in simulation.  Because the 𝑗𝑗𝑗𝑗𝑘𝑘0 term in the 1st exponential is expected to be very 

large compared to the non-constant phase terms given by the rest of the series, we 

have noted when this form of 𝐺𝐺��𝜅𝜅𝜌𝜌, 𝑧𝑧� is used to compute the effective Green’s 

function (or point spread function) for the simulation of optical propagation 

quantization errors can become significant leading to error in the relative phase 

between points in 𝜅𝜅𝜌𝜌-space.  For simulations of complex optical fields bandlimited 

by �𝜅𝜅𝜌𝜌� < 𝑘𝑘0, Equation (1-116) provides a method of performing non-paraxial 

propagations.  By noting that the exp(𝑗𝑗𝑗𝑗𝑘𝑘0) contributes only to the constant phase 

term of the propagated wave, and noting that the infinite summation in Equation 

(1-116) cannot be computed, we note that an approximation for non-paraxial 

propagation is given by: 
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𝐺𝐺��𝜅𝜅𝜌𝜌, 𝑧𝑧� ≅
𝑗𝑗

2�𝑘𝑘0
2 − 𝜅𝜅𝜌𝜌2

exp�𝑗𝑗𝑗𝑗𝑘𝑘0�
(−1)𝑛𝑛(2𝑛𝑛)!

4𝑛𝑛(𝑛𝑛!)2(2𝑛𝑛 − 1)

𝑁𝑁

𝑛𝑛=1

�
𝜅𝜅𝜌𝜌
𝑘𝑘0
�
2𝑛𝑛
� (1-117) 

where 𝑁𝑁, the number of terms, should be larger than 1 for non-paraxial simulations.  

For paraxial simulations, 𝑁𝑁 = 1 as we will demonstrate.  We note, however, that in 

paraxial simulations, there is no harm in using more than just the 1st series term 

aside from increases in computation time. 

The Huygen-Fresnel integral [9, 39] gives the propagated, 𝑈𝑈(𝜌⃑𝜌, 𝑧𝑧), field at 

distance 𝑧𝑧, in terms of the Green’s function for propagation, 𝐺𝐺(𝜌⃑𝜌, 𝑧𝑧), and the initial 

field in the 𝑧𝑧 = 0 plane, 𝑈𝑈(𝜌⃑𝜌, 0), as per: 

 
𝑈𝑈(𝜌⃑𝜌, 𝑧𝑧) = −2𝑗𝑗𝑘𝑘0 �𝐺𝐺(𝜌⃑𝜌 − 𝜌⃑𝜌′, 𝑧𝑧)

∞

−∞

𝑈𝑈(𝜌⃑𝜌′, 0)𝑑𝑑𝜌⃑𝜌′ (1-118) 

As (1-118) contains a convolutional integral, we can use the Fourier Convolution 

Theorem which equates convolution in the spatial domain as equivalent to 

multiplication in the frequency domain.  This allows us to write: 

 𝑈𝑈��𝜅𝜅𝜌𝜌, 𝑧𝑧� = −2𝑗𝑗𝑘𝑘0𝐺𝐺��𝜅𝜅𝜌𝜌, 𝑧𝑧�𝑈𝑈��𝜅𝜅𝜌𝜌, 0� (1-119) 

 
𝑈𝑈(𝜌⃑𝜌, 𝑧𝑧) =

−𝑗𝑗
𝜋𝜋𝜋𝜋

�𝐺𝐺��𝜅𝜅𝜌𝜌, 𝑧𝑧�
∞

−∞

𝑈𝑈��𝜅𝜅𝜌𝜌, 0� exp�𝑗𝑗𝜌⃑𝜌 ∙ 𝜅𝜅𝜌𝜌� 𝑑𝑑𝜅𝜅𝜌𝜌 

          = (2𝜋𝜋)−2 �𝐺𝐺�′�𝜅𝜅𝜌𝜌, 𝑧𝑧�
∞

−∞

𝑈𝑈��𝜅𝜅𝜌𝜌, 0� exp�𝑗𝑗𝜌⃑𝜌 ∙ 𝜅𝜅𝜌𝜌� 𝑑𝑑𝜅𝜅𝜌𝜌 

(1-120) 
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where we dub 𝐺𝐺�′�𝜅𝜅𝜌𝜌, 𝑧𝑧� in (1-120) as the Fourier transform of the effective Green’s 

function for propagation.  For paraxial propagation,  𝐺𝐺�′�𝜅𝜅𝜌𝜌, 𝑧𝑧� is determined from 

the 𝐺𝐺��𝜅𝜅𝜌𝜌, 𝑧𝑧� of (1-117) as per: 

 

 𝐺𝐺�′�𝜅𝜅𝜌𝜌, 𝑧𝑧� ≅ −2𝑗𝑗𝑘𝑘0𝐺𝐺��𝜅𝜅𝜌𝜌, 𝑧𝑧� 

 =
𝑘𝑘0

�𝑘𝑘0
2 − 𝜅𝜅𝜌𝜌2

exp�𝑗𝑗𝑗𝑗𝑘𝑘0�
(−1)𝑛𝑛(2𝑛𝑛)!

4𝑛𝑛(𝑛𝑛!)2(2𝑛𝑛 − 1)

𝑁𝑁

𝑛𝑛=1

�
𝜅𝜅𝜌𝜌
𝑘𝑘0
�
2𝑛𝑛
� 

(1-121) 

By approximating (1-121) and as per [33, 40] we confirm that we recover a paraxial 

approximation form of the Green’s function: 

 
𝐺𝐺�′�𝑛𝑛∆𝜅𝜅𝑥𝑥,𝑚𝑚∆𝜅𝜅𝑦𝑦,∆𝑧𝑧� ≅ exp �−𝑗𝑗∆𝑧𝑧

𝑛𝑛2∆𝜅𝜅𝑥𝑥2 + 𝑚𝑚2∆𝜅𝜅𝑦𝑦2

2𝑘𝑘0
� (1-122) 

where N, M are the number of grid points in the x-, y-directions, ∆𝑧𝑧 is the 

propagation distance, ∆𝑥𝑥, ∆𝑦𝑦 are the x-, y- grid resolutions, and ∆𝜅𝜅𝑥𝑥, ∆𝜅𝜅𝑦𝑦 are the 

spatial angular frequency resolutions.  The act of propagating takes advantage of 

the convolution / multiplication equivalence in the space and spatial frequency 

domains, respectively, and we may propagate distorted beams via inverse FFT 

(IFFT) as per: 

𝑈𝑈(𝑛𝑛∆𝑥𝑥,𝑚𝑚∆𝑦𝑦, 𝑧𝑧) = 

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼�𝑈𝑈��𝑛𝑛∆𝜅𝜅𝑥𝑥,𝑚𝑚∆𝜅𝜅𝑦𝑦, 𝑧𝑧 − ∆𝑧𝑧� ∙ 𝐺𝐺�′�𝑛𝑛∆𝜅𝜅𝑥𝑥,𝑚𝑚∆𝜅𝜅𝑦𝑦,∆𝑧𝑧�𝑁𝑁∆𝜅𝜅𝑥𝑥𝑀𝑀∆𝜅𝜅𝑦𝑦� 
(1-123) 
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where 𝑈𝑈� is the Fast Fourier Transform (FFT) of the electric field, U, and the 

𝑁𝑁∆𝜅𝜅𝑥𝑥𝑀𝑀∆𝜅𝜅𝑦𝑦 factor implements a change of variables to normalize the spatial 

frequencies in the discrete approximation to the Fourier integral.  We also note that 

as per computational conventions involving FFTs, there is also a circular shift 

necessary of the spatial frequency domain Green’s function which is not include in 

the above equation for clarity and consistency with continuous space integrals.
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Chapter 2 : A Revised Method for Simulation of Atmospheric 
Turbulence 
 

2.1:  Background 

 The split-step propagation method for modeling optical propagation through 

atmospheric turbulence has been widely used in statistical analysis of beam propagation 

since its introduction by Fleck et al. [40, 41].  This method remains popular in simulations 

of long-range, linear optical propagation due to computation time advantages associated 

with using the fast FFT algorithm to compute the DFT, which are used in both the optical 

propagation and atmospheric distortion algorithms of the cited method. In simulations of 

nonlinear optical propagation, phase screens are also widely used [42, 43, 44, 45], 

including when supporting studies centering on filamentation [46, 47, 48, 49, 50, 51]. 

However, due to periodicity and aliasing effects associated with the DFT, significant effort 

has gone into the development of computational methods that add subharmonic, low-

spatial-frequency components to the atmospheric screens [52, 53]. Additionally, Zernike-

polynomial-based methods [54] and other creative methods [55] have been pioneered 

partly to address this issue, including methods using randomized sampling of the 

turbulence energy spectrum introduced by Charnotskii [56].  However, due to the 

computational efficiency of leveraging the FFT algorithm, DFT-based methods for phase 

screen generation remain popular [33, 38, 57, 58, 59, 60].  
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In this section, we present a modified method that exploits the Fourier 

transform shift theorem [39], which also extends to the DFT [61], in order to 

include low-frequency components in an FFT-centric method in a straightforward 

manner.  For many applications, this method may provide sufficient phase screen 

accuracy relative to theory without additional computational penalty associated 

with subharmonics and other methods. Additionally the method can be combined 

with the subharmonic method of Lane et al. [52] in order to give very accurate 

results across a range of spectral models of practical and theoretical importance.   

2.2:  Overview of the Split Step Algorithm for Simulation of Optical Propagation 

through Atmospheric Turbulence 

The split step algorithm for simulations of optical propagation through 

turbulence was first pioneered by Fleck, et. al, in order to study the time-dependent 

propagation of lasers through the atmosphere [40, 41].  Since that time, significant 

effort has been devoted by the computational optics community to increasing the 

fidelity of phase screen statistics [52, 53, 54, 55, 56, 62, 63], as well as providing 

modifications to the vacuum propagation algorithm [33].  In most implementations 

of the split step algorithm, FFT’s are utilized for the purposes of both propagating 

the beam and for creating the simulated atmospheric distortion.  We note, however, 

in certain implementations [54, 56, 62] phase screens may be produced without use 

of the FFT.  Propagation is typically performed using an optical transfer function 

[31] derived from a point spread function derived from the paraxial approximation 
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to the Green’s function for propagation, given by (1-122).  In order to simulate 

optical atmospheric turbulence distortions a refractive index energy spectrum, 

similar to (1-20), defines a noise filter which is used to create a random phase screen 

with the correct spectral energy statistics.  Both the propagation and distortion steps 

both provide approximate solutions via inverse FFT, and as such are pseudo-

spectral methods [64].  The typical implementation of algorithm alternates the 

propagation and distortion steps as per Figure 2-1, although we note that partial 

propagations may be used between atmospheric distortion steps [33].   

 

 
Figure 2-1:  Illustration of a generic phase screen simulation using five screens. The beam 
is propagated a distance of Δz/2 or Δz using the FFT-based angular spectrum propagation 
algorithm.  After all but the final propagation step, a random phase screen is applied as a 
phase modulation of the propagating wave. 
 

Optical propagation may be performed simply, without changes in grid 

spacings between steps, by using the method outlined in Equation (1-56).  The 

atmospheric optical turbulence phase screens used to modulate the propagating 

wave have traditionally been created by defining a noise filter using the three 

dimensional energy spectrum of turbulence (see Section 2), and using that filter to 
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shape complex noise in the frequency domain.  The output of this noise filtering 

process is given by: 

𝜃𝜃(𝑚𝑚,𝑛𝑛) = 𝑘𝑘0 �∆𝜅𝜅𝑥𝑥∆𝜅𝜅𝑦𝑦  � � 𝑐̃𝑐�𝑚𝑚∆𝜅𝜅𝑥𝑥,𝑛𝑛∆𝜅𝜅𝑦𝑦�𝑒𝑒𝑗𝑗�𝑚𝑚∆𝑥𝑥𝑘𝑘∆𝜅𝜅𝑥𝑥+𝑛𝑛∆𝑦𝑦𝑦𝑦∆𝜅𝜅𝑦𝑦�

𝑁𝑁
2−1

𝑙𝑙=−𝑁𝑁2

𝑀𝑀
2−1

𝑘𝑘=−𝑀𝑀2

 

= 𝑘𝑘0 �∆𝜅𝜅𝑥𝑥∆𝜅𝜅𝑦𝑦  � � 𝑐̃𝑐�𝑚𝑚∆𝜅𝜅𝑥𝑥,𝑚𝑚∆𝜅𝜅𝑦𝑦� exp �2𝜋𝜋𝜋𝜋 �
𝑚𝑚𝑚𝑚
𝑀𝑀

+
𝑛𝑛𝑛𝑛
𝑀𝑀
��

𝑁𝑁
2−1

𝑙𝑙=−𝑁𝑁2

𝑀𝑀
2−1

𝑘𝑘=−𝑀𝑀2

   

(2-1) 

where N, M are the number of grid points in the x, y directions, ∆𝜅𝜅𝑥𝑥 = 2𝜋𝜋
𝑀𝑀∆𝑥𝑥

= 2𝜋𝜋
𝐿𝐿𝑥𝑥

, ∆𝜅𝜅𝑦𝑦 =

2𝜋𝜋
𝑁𝑁∆𝑦𝑦

= 2𝜋𝜋
𝐿𝐿𝑦𝑦

, with 𝐿𝐿𝑥𝑥, 𝐿𝐿𝑦𝑦 being the x-, y-direction screen lengths, ∆𝑥𝑥 = 𝐿𝐿𝑥𝑥
𝑁𝑁

, ∆𝑦𝑦 = 𝐿𝐿𝑦𝑦
𝑀𝑀

, and 𝑐̃𝑐 

is a random variable given by: 

𝑐̃𝑐�𝑘𝑘∆𝜅𝜅𝑥𝑥, 𝑙𝑙∆𝜅𝜅𝑦𝑦� = (𝑎𝑎 + 𝑗𝑗𝑗𝑗) ∙ �2𝜋𝜋∆𝑧𝑧Ф𝑛𝑛�𝑘𝑘∆𝜅𝜅𝑥𝑥, 𝑙𝑙∆𝜅𝜅𝑦𝑦�, (𝑘𝑘, 𝑙𝑙) ≠ (0,0) (2-2) 

where 𝑎𝑎, 𝑏𝑏 are Gaussian random variables with variance 1.  𝑐̃𝑐(0,0) is typically set to 0 as 

it represents a constant phase factor, and only relative phase differences in x, y should affect 

propagation.  The 2𝜋𝜋 factor appears under the square root in the expression representing 

our noise filter due to the approximation of the refractive index correlation function given 

by (1-21).   

 Equation (2-1) produces a finite grid of random complex variables, and each real 

and imaginary part of 𝜃𝜃(𝑚𝑚, 𝑛𝑛) may be taken as an independent phase screen.  The author 

has been careful to give two forms of equation (2-1) as, while the first form is somewhat 
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intuitive relative to the previous calculus expressions given in regards to atmospheric 

turbulence statistics, the second form demonstrates clearly that the phase screen algorithm 

is readily implementable via the inverse FFT.  By allowing the random function 

𝑐̃𝑐�𝑘𝑘∆𝜅𝜅𝑥𝑥, 𝑙𝑙∆𝜅𝜅𝑦𝑦� to define a random matrix, 𝐜𝐜�𝑘𝑘𝑘𝑘, as per: 

 𝛉𝛉𝑚𝑚𝑚𝑚 = 𝑘𝑘0 �∆𝜅𝜅𝑥𝑥∆𝜅𝜅𝑦𝑦 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼2{𝐜𝐜�𝑘𝑘𝑘𝑘} (2-3) 

In order to assess the accuracy of this phase screen method, as well as those not yet 

discussed, it is helpful to derive the theoretical structure function, denoted as 𝐷𝐷𝜃𝜃, of three 

dimensional turbulence collapsed into two dimensions. 𝐷𝐷𝜃𝜃 is given by [53]: 

 
𝐷𝐷𝜃𝜃(𝜌⃑𝜌,∆𝑧𝑧) = 4𝜋𝜋𝑘𝑘2∆𝑧𝑧 ��1 − cos�𝜌⃑𝜌 ∙ 𝜅𝜅𝜌𝜌�� Ф𝑛𝑛�𝜅𝜅𝜌𝜌� 𝑑𝑑𝜅𝜅𝜌𝜌

∞

−∞

 (2-4) 

Writing 𝜌⃑𝜌 = 𝜌𝜌 cos𝜙𝜙 𝑒̂𝑒𝑥𝑥 + 𝜌𝜌 sin𝜙𝜙 𝑒̂𝑒𝑦𝑦, and 𝜅𝜅𝜌𝜌 = 𝜅𝜅𝜌𝜌 cos𝜙𝜙𝜅𝜅 𝑒̂𝑒x + 𝜅𝜅𝜌𝜌 sin𝜙𝜙𝜅𝜅 𝑒̂𝑒y, for 

isotropic turbulence we can re-write as: 

𝐷𝐷𝜃𝜃(𝜌⃑𝜌,∆𝑧𝑧) = 4𝜋𝜋𝑘𝑘2∆𝑧𝑧� � �1 − cos�𝜌𝜌𝜅𝜅𝜌𝜌 cos(φ)��
2𝜋𝜋

0

Ф𝑛𝑛�𝜅𝜅𝜌𝜌� 𝜅𝜅𝜌𝜌 𝑑𝑑𝑑𝑑 𝑑𝑑𝜅𝜅𝜌𝜌

∞

0

 

= 8𝜋𝜋2𝑘𝑘2∆𝑧𝑧� �1 − 𝐽𝐽0�𝜌𝜌𝜅𝜅𝜌𝜌��  Ф𝑛𝑛�𝜅𝜅𝜌𝜌� 𝜅𝜅𝜌𝜌 𝑑𝑑𝜅𝜅𝜌𝜌

∞

0

     

(2-5) 

where 𝜌𝜌 = |𝜌⃑𝜌 − 𝜌𝜌0|, 𝜑𝜑 is the angle between 𝜌⃑𝜌 and 𝜅𝜅𝜌𝜌, and 𝐽𝐽0 is the 0th order Bessel 

function of the first kind.  In later sections, we shall use (2-5) directly for numerical 

calculations of the theoretic structure function associated with spectral models including 

inner and outer scales.   
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 For the general models of isotropic turbulence discussed in Section 1.4, in the 

absence of scale sizes, we have a structure function: 

 
𝐷𝐷𝜃𝜃(𝜌⃑𝜌,∆𝑧𝑧) = 8π2 ∙ A(𝛼𝛼) ∙ 𝑘𝑘02∆𝑧𝑧𝐶̃𝐶𝑛𝑛2 �

1 − 𝐽𝐽0�𝜌𝜌𝜅𝜅𝜌𝜌�
𝜅𝜅𝜌𝜌𝛼𝛼−1

𝑑𝑑𝜅𝜅𝜌𝜌

∞

0

 (2-6) 

After using the identity given in [65], ∫ 1−𝐽𝐽0(𝑡𝑡)
t𝜇𝜇

𝑑𝑑t∞
0 = −

𝜋𝜋sec�𝜇𝜇𝜇𝜇2 �

2𝜇𝜇𝛤𝛤2�𝜇𝜇+12 �
, 1 < 𝜇𝜇 < 3, and 

change of variables from 𝜌𝜌𝜅𝜅𝜌𝜌 → 𝜅𝜅𝜌𝜌′, we arrive at: 

 
𝐷𝐷𝜃𝜃(𝜌𝜌,∆𝑧𝑧) =

8π3 ∙ A(𝛼𝛼) ∙ 𝑘𝑘02∆𝑧𝑧𝐶̃𝐶𝑛𝑛2

2𝛼𝛼−1 cos (𝛼𝛼 − 3)𝜋𝜋
2 𝛤𝛤2 �𝛼𝛼2�

𝜌𝜌𝛼𝛼−2 

                             =
𝜋𝜋2 𝛤𝛤(𝛼𝛼 − 1) ∙ cos𝛼𝛼𝛼𝛼2 ∙ 𝑘𝑘02∆𝑧𝑧𝐶̃𝐶𝑛𝑛2

2𝛼𝛼−2 cos (𝛼𝛼 − 3)𝜋𝜋
2 𝛤𝛤2 �𝛼𝛼2�

𝜌𝜌𝛼𝛼−2 

(2-7) 

For anisotropic turbulence: 

𝐷𝐷𝜃𝜃(𝑥𝑥,𝑦𝑦,∆𝑧𝑧) = 4𝜋𝜋2A(𝛼𝛼)𝑘𝑘02∆𝑧𝑧𝐶̃𝐶𝑛𝑛2 𝜇𝜇𝑥𝑥𝜇𝜇𝑦𝑦 �
1 − cos�𝑥𝑥𝜅𝜅𝑥𝑥 + 𝑦𝑦𝜅𝜅𝑦𝑦�

(𝜇𝜇𝑥𝑥2𝜅𝜅𝑥𝑥2 + 𝜇𝜇𝑦𝑦2𝜅𝜅𝑦𝑦2)𝛼𝛼/2 𝑑𝑑𝜅𝜅
∞

−∞

 

= 4𝜋𝜋2A(𝛼𝛼)𝑘𝑘02∆𝑧𝑧𝐶̃𝐶𝑛𝑛2 �
1 − cos � 𝑥𝑥𝜇𝜇𝑥𝑥

𝜅𝜅𝑥𝑥′ + 𝑦𝑦
𝜇𝜇𝑦𝑦
𝜅𝜅𝑦𝑦′�

�𝜅𝜅𝑥𝑥′2 + 𝜅𝜅𝑦𝑦′2�
𝛼𝛼
2

𝑑𝑑𝜅𝜅′
∞

−∞

                                 

= 4𝜋𝜋2A(𝛼𝛼)𝑘𝑘02∆𝑧𝑧𝐶̃𝐶𝑛𝑛2 � �

1 − cos�𝜌𝜌�cos2 𝜃𝜃
𝜇𝜇𝑥𝑥2

+ sin2 𝜃𝜃
𝜇𝜇𝑦𝑦2

𝜅𝜅𝜌𝜌′ cos𝜙𝜙𝜅𝜅�

𝜅𝜅𝜌𝜌′
𝛼𝛼−1 𝑑𝑑𝜑𝜑𝜅𝜅 𝑑𝑑𝜅𝜅𝜌𝜌′

2𝜋𝜋

0

∞

0

 

(2-8) 
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= 4π2A(𝛼𝛼)𝑘𝑘02∆𝑧𝑧𝐶̃𝐶𝑛𝑛2 �𝜌𝜌�
cos2 𝜃𝜃
𝜇𝜇𝑥𝑥2

+
sin2 𝜃𝜃
𝜇𝜇𝑦𝑦2

�

𝛼𝛼−2

�
1 − 𝐽𝐽0�𝜅𝜅𝜌𝜌′ �
𝜅𝜅𝜌𝜌′ 𝛼𝛼−1

 𝑑𝑑𝜅𝜅𝜌𝜌′
∞

0

          

=
𝜋𝜋2𝛤𝛤(𝛼𝛼 − 1) ∙ cos𝛼𝛼𝛼𝛼2 ∙ 𝑘𝑘02∆𝑧𝑧𝐶̃𝐶𝑛𝑛2

2𝛼𝛼−2 cos (𝛼𝛼 − 3)𝜋𝜋
2 𝛤𝛤2 �𝛼𝛼2�

��
𝑥𝑥2

𝜇𝜇𝑥𝑥2
+
𝑦𝑦2

𝜇𝜇𝑦𝑦2
�

𝛼𝛼−2

                                  

The above expressions give the theoretical structure functions in continuous space 

for phase screen distortions applied to optical paraxial waves, where we have made 

the substitutions: 

• 𝜅𝜅′ = 𝜇𝜇𝑥𝑥𝜅𝜅𝑥𝑥𝑒̂𝑒𝑥𝑥 + 𝜇𝜇𝑦𝑦𝜅𝜅𝑦𝑦𝑒̂𝑒𝑦𝑦 = 𝜅𝜅𝑥𝑥′𝑒̂𝑒𝑥𝑥 + 𝜅𝜅𝑦𝑦′𝑒̂𝑒𝑦𝑦 

• 𝜅𝜅𝑥𝑥′ = 𝜅𝜅𝜌𝜌′cos 𝜑𝜑𝜅𝜅 ,  𝜅𝜅𝑦𝑦′ = 𝜅𝜅𝜌𝜌′sin 𝜑𝜑𝜅𝜅 

• 𝜌𝜌 = �𝑥𝑥2 + 𝑦𝑦2 

• 𝜃𝜃 = ∠(𝑥𝑥 + 𝑗𝑗𝑗𝑗) 

• 𝜙𝜙𝜅𝜅 =  𝜑𝜑𝜅𝜅 − 𝜃𝜃 

We note that the distance power law in expressions (2-7) and (2-8) is lower 

by 1 from the three dimension structure function predicted by (1-19) of 𝛼𝛼 − 3.  This 

is consistent, however, because when a three dimensional volume is summed, or 

integrated across, assuming the z-dependence is expressible via Fourier series, only 

the 0-frequency (constant) term survives, which is why 𝜅𝜅𝑧𝑧 can be set to 0 in (1-20).  

Another way to look at this is that the statistic of sums of line segments with the 

same z-bounds and directions should not be expected to have the same statistics as 

the statistics between points.  As we can only perform discretized simulations with 
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computer technology, we seek to approximate these expressions in creating our 

phase screens for distorting propagating beams and will later use these expressions 

to generate root mean square (RMS) error statistics. 

Returning to the pragmatic discussion of phase screen creation, We note the 

expression given in Equation (2-1) is typically achieved via FFT, however because 

a large amount of the distortion energy spectrum is represented around the 

�𝜅𝜅𝑥𝑥, 𝜅𝜅𝑦𝑦� = (0,0) grid point, Lane, Glindemann, and Dainty [52] suggested that 

convergence with theory could be improved by partitioning the (0,0) section of the 

grid up into subsections, and adding so-called subharmonic frequency components 

to the traditional phase screen, as per: 

𝜃𝜃𝑆𝑆𝑆𝑆(𝑚𝑚,𝑛𝑛) = �
�∆𝜅𝜅𝑥𝑥∆𝜅𝜅𝑦𝑦

3𝑝𝑝
� � 𝑐̃𝑐 �𝑘𝑘

∆𝜅𝜅𝑥𝑥
3𝑝𝑝

, 𝑙𝑙
∆𝜅𝜅𝑦𝑦
3𝑝𝑝

�
1

𝑙𝑙=−1

1

𝑘𝑘=−1

𝑁𝑁𝑝𝑝

𝑝𝑝=1

∙ 𝑒𝑒𝑗𝑗�
(𝑘𝑘∆𝜅𝜅𝑥𝑥𝑚𝑚∆𝑥𝑥

3𝑝𝑝𝑀𝑀 +
𝑙𝑙∆𝜅𝜅𝑦𝑦𝑛𝑛∆𝑦𝑦
3𝑝𝑝𝑁𝑁 � (2-9) 

The subharmonic method summarized by Equation (2-9) is referred to throughout 

the remainder of this work as the Lane subharmonic method.  Figure 2-2, taken 

from [52], illustrates the manner in which the method partitions the frequency 

domain in a fractal manor around the �𝜅𝜅𝑥𝑥, 𝜅𝜅𝑦𝑦� = (0,0) point. 
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Figure 2-2:  Visual aid demonstrating fractal nature of the subharmonic expansion, taken 
from [52]. 

Frehlich created an algorithm designed to improve convergence in scenarios 

of interest via [53]: 

𝜃𝜃𝑆𝑆𝑆𝑆,𝑓𝑓(𝑚𝑚,𝑛𝑛) = � � � 𝑐̃𝑐′ �𝑘𝑘, 𝑙𝑙,
∆𝜅𝜅𝑥𝑥
3𝑝𝑝

,
∆𝜅𝜅𝑦𝑦
3𝑝𝑝

�
1

𝑙𝑙=−1

1

𝑘𝑘=−1

𝑁𝑁𝑝𝑝

𝑝𝑝=1

∙ 𝑒𝑒𝑗𝑗�
(𝑘𝑘∆𝜅𝜅𝑥𝑥𝑚𝑚∆𝑥𝑥

3𝑝𝑝𝑀𝑀 +
𝑙𝑙∆𝜅𝜅𝑦𝑦𝑛𝑛∆𝑦𝑦
3𝑝𝑝𝑁𝑁 � (2-10) 

𝑐̃𝑐′ �𝑘𝑘, 𝑙𝑙,
∆𝜅𝜅𝑥𝑥
3𝑝𝑝

,
∆𝜅𝜅𝑦𝑦
3𝑝𝑝

� = (𝑎𝑎 + 𝑗𝑗𝑗𝑗)𝑘𝑘�2𝜋𝜋∆𝑧𝑧 ∙ 𝐼𝐼𝑓𝑓 �𝑘𝑘, 𝑙𝑙,
∆𝜅𝜅𝑥𝑥
3𝑝𝑝

,
∆𝜅𝜅𝑦𝑦
3𝑝𝑝

� , (𝑘𝑘, 𝑙𝑙) ≠ (0,0) (2-11) 

𝐼𝐼𝑓𝑓 �𝑘𝑘, 𝑙𝑙,
∆𝜅𝜅𝑥𝑥
3𝑝𝑝

,
∆𝜅𝜅𝑦𝑦
3𝑝𝑝

� = � � Ф𝑛𝑛�𝜅𝜅𝑥𝑥, 𝜅𝜅𝑦𝑦�

�𝑙𝑙+12�
∆𝜅𝜅𝑦𝑦
3𝑝𝑝

�𝑙𝑙−12�
∆𝜅𝜅𝑦𝑦
3𝑝𝑝

�𝑘𝑘+12�
∆𝜅𝜅𝑥𝑥
3𝑝𝑝

�𝑘𝑘−12�
∆𝜅𝜅𝑥𝑥
3𝑝𝑝

 𝑑𝑑𝜅𝜅𝑥𝑥𝑑𝑑𝜅𝜅𝑦𝑦 (2-12) 

The subharmonic method summarized by Equations (2-10) - (2-12) is referred to 

throughout the remainder of this work as the Frehlich subharmonic method.  These 
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equations summarize what we will generally refer to as traditional subharmonic 

methods in the later sections of this thesis. 

2.3:  Motivation for a New Method 

The randomized spectral sampling algorithm was originally motivated by 

investigation of the three dimensional structure function integrand vs the ideal 

structure function of a phase screen (which is analogous and equal to the wave 

structure function of a plane wave [9]).  For anisotropic optical turbulence, 

analyzing the first equality of (1-19) under a change of variables, we are able to 

write the three dimensional structure function of the refractive index in terms of a 

sinc transform [6] relation as: 

𝐷𝐷𝑛𝑛(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) = 8𝜋𝜋𝜋𝜋(𝛼𝛼)𝐶̃𝐶𝑛𝑛2 ��
𝑥𝑥2

𝜇𝜇𝑥𝑥2
+
𝑦𝑦2

𝜇𝜇𝑦𝑦2
+ 𝑧𝑧2�

𝛼𝛼−3

� [1 − sin (𝜅𝜅′)]𝜅𝜅′2−𝛼𝛼𝑑𝑑𝜅𝜅′
∞

0

 (2-13) 

We note the following features of the integral of Equation (2-13): 

1. For small 𝜅𝜅′, the integrand behaves like 𝜅𝜅′4−𝛼𝛼 

2. The integrand is finite over all 𝜅𝜅′ for 𝛼𝛼 ≤ 4 

3. The integrand approaches zero as 𝜅𝜅′ approaches zero, for 𝛼𝛼 < 4 

4. The integral converges to [8𝜋𝜋 ∙ 𝐴𝐴(𝛼𝛼)]−1 for 3 <  𝛼𝛼 <  5 

On the other hand, the desired structure function for a phase screen is given by an 

integral of the form: 
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𝐷𝐷𝜃𝜃(𝑥𝑥,𝑦𝑦) = 8𝜋𝜋2𝐴𝐴(𝛼𝛼)𝑘𝑘02∆𝑧𝑧𝐶̃𝐶𝑛𝑛2 ��
𝑥𝑥2

𝜇𝜇𝑥𝑥2
+
𝑦𝑦2

𝜇𝜇𝑦𝑦2
�

𝛼𝛼−2

��1 − 𝐽𝐽0 (𝜅𝜅𝜌𝜌′ )�𝜅𝜅𝜌𝜌′
1−𝛼𝛼𝑑𝑑𝜅𝜅𝜌𝜌′

∞

0

 (2-14) 

An important aspect of Equation (2-14) relative to Equation (2-13) is that the spatial 

power law has increased from 𝛼𝛼 − 3 to 𝛼𝛼 − 2, which is related to the discussion of 

the Fourier series in Section 2. We note the following features of the integral of 

equation (2-14): 

1. For small 𝜅𝜅𝜌𝜌′ , the integrand behaves like 𝜅𝜅𝜌𝜌′
3−𝛼𝛼 

2. The integrand diverges at 𝜅𝜅𝜌𝜌′ = 0 for 𝛼𝛼 > 3 

3. The integral converges for 2 < 𝛼𝛼 < 4 to [65]: 

 

��1 − 𝐽𝐽0 (𝜅𝜅𝜌𝜌′ )�𝜅𝜅𝜌𝜌′
1−𝛼𝛼𝑑𝑑𝜅𝜅𝜌𝜌′

∞

0

=
𝜋𝜋 sec �(𝛼𝛼 − 3)𝜋𝜋

2 �

2𝛼𝛼−1Γ2 �𝛼𝛼2�
 (2-15) 

Additionally, due to our formation of the 𝐴𝐴 function in (1-17), equation (2-14) gives 

a positive and finite two dimensional structure for alphas between 3 < α < 4, and 

other power laws produce integrals that are either divergent or unphysical (e.g. 

structure functions with negative power law). 

With regards to using phase screens to perform optical propagation 

simulations, it is very important to note that, unlike the three dimension 𝜅𝜅-space 

integrand in (2-13), the contributions of the integrand in equation (2-15) grow 

without bound as the normalized wavenumber approaches zero.  Additionally, as 

the spectral power law, α, approaches 4, more and more of the integrand’s total 
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contribution to structure is attributable to low wavenumber spectral components.  

This implies that for non-Kolmogorov turbulence, higher α’s will require more care 

in modeling low frequency components, and lower α’s may be modeled with 

relaxed simulation constraints relative to Kolmogorov turbulence. 

 
Figure 2-3:  Demonstration of the traditional FFT phase screen method’s observed 
structure function’s agreement with theory degrading as the three dimensional spectral 
power law, 𝜶𝜶, increases. 

The above point is best demonstrated by investigating the accuracy of the 

simulated structure function over many trials vs the desired theory for the phase 

screen structure function.  Using the traditional FFT-based method of Fleck, Figure 

2-3 demonstrates how the phase screen structure function diverges from theory as 
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more and more of the total spectral energy becomes concentrated at low spatial 

frequencies with increasing 𝛼𝛼. Sections to follow will expand upon the relationship 

between low frequency optical turbulence spectral energy and convergence with 

theory in phase screen modeling.  

2.4:  Randomized FFT-based Spectral Sampling, Core Algorithm 

Traditional phase screen simulations using square grids [33, 40, 41, 52, 53] 

approximate the continuous energy spectrum as discrete, and generate complex 

screens as per (2-1).  Equation (2-1) represents a Fourier series using elements that 

are all harmonic across the spatial domain, creating screens that are periodic [52].  

Investigating the effect the 𝑐̃𝑐(0,0) term has on the summation in (2-1), we note that 

it results in only the addition of a constant phase, piston term across all of 𝜃𝜃(𝑚𝑚,𝑛𝑛).  

This piston term does not contribute tip, tilt, focus, or defocus effects at any scale, 

or otherwise contribute to the behavior of the propagating field. Should 𝑐̃𝑐(0,0) have 

a large enough value, a quantization error [61] will result. 𝑐̃𝑐(0,0) is commonly set 

to zero in practice [33, 53], which avoids these issues. 

In defining a new type of complex phase screen, 𝜃𝜃𝑅𝑅, we propose a more 

meaningful use of the point closest to the -space origin by virtue of: 
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𝜃𝜃𝑅𝑅(𝑚𝑚,𝑛𝑛) = � � 𝑐̃𝑐�𝑘𝑘∆𝜅𝜅𝑥𝑥 + 𝛿𝛿𝜅𝜅𝑥𝑥, 𝑙𝑙∆𝜅𝜅𝑦𝑦 + 𝛿𝛿𝜅𝜅𝑦𝑦�

𝑀𝑀
2−1

𝑙𝑙=−𝑀𝑀2

𝑀𝑀
2−1

𝑘𝑘=−𝑀𝑀2

 

∙ exp �𝑗𝑗 �𝑚𝑚∆𝑥𝑥(𝑘𝑘∆𝜅𝜅𝑥𝑥 + 𝛿𝛿𝜅𝜅𝑥𝑥) + 𝑛𝑛∆𝑦𝑦�𝑙𝑙∆𝜅𝜅𝑦𝑦 + 𝛿𝛿𝜅𝜅𝑦𝑦��� 

(2-16) 

where 𝛿𝛿𝜅𝜅𝑥𝑥 and 𝛿𝛿𝜅𝜅𝑦𝑦 are random variables described by a uniform distribution bound 

by 𝛿𝛿𝜅𝜅𝑥𝑥 = ∆𝜅𝜅𝑥𝑥/2 and 𝛿𝛿𝜅𝜅𝑦𝑦 = ∆𝜅𝜅𝑦𝑦/2, respectively. This offsets the lowest 

wavenumber grid point away from the origin, along with also translating the rest of 

the sampling grid in the frequency domain. By allowing 𝑐̃𝑐�𝑘𝑘∆𝜅𝜅𝑥𝑥 + 𝛿𝛿𝜅𝜅𝑥𝑥, 𝑙𝑙∆𝜅𝜅𝑦𝑦 +

𝛿𝛿𝜅𝜅𝑦𝑦� to define the elements of a matrix, 𝐜𝐜�𝑘𝑘𝑘𝑘,𝑅𝑅, we find that Equation (2-16) is 

implementable via inverse FFT as per: 

 𝐜𝐜𝑚𝑚𝑚𝑚,𝑅𝑅 = 𝑀𝑀2 ∙ 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼2�𝐜𝐜�𝑗𝑗𝑗𝑗,𝑅𝑅� (2-17) 

 𝜃𝜃𝑅𝑅(𝑚𝑚,𝑛𝑛) = exp�𝑗𝑗�𝑚𝑚∆𝑥𝑥𝑥𝑥𝜅𝜅𝑥𝑥 + 𝑚𝑚∆𝑦𝑦𝑦𝑦𝜅𝜅𝑦𝑦�� ∙ 𝐜𝐜𝑚𝑚𝑚𝑚,𝑅𝑅 (2-18) 

We note that the FFT can be used in place of the IFFT in Equation (2-17) by 

appropriate conditioning of the 𝐜𝐜�𝑘𝑘𝑘𝑘,𝑅𝑅 matrix. 

Figure 2-4 juxtaposes the sampling methods discussed, where the 

convention of setting 𝑐̃𝑐(0,0) to zero is reflected by the lack of a traditional spectral 

sampling grid point at the origin. 𝜃𝜃𝑅𝑅(𝑚𝑚,𝑛𝑛) represents a single complex-number-

valued phase screen, with the real and imaginary parts therein defining a pair of 

real-number-valued phase screens. Simulated atmospheric turbulence distortion is 

applied via multiplication of our complex propagating beam or wave by 
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exp [𝑗𝑗 ∙ 𝑅𝑅𝑅𝑅(𝜃𝜃𝑅𝑅(𝑚𝑚,𝑛𝑛))] or exp [𝑗𝑗 ∙ 𝐼𝐼𝐼𝐼(𝜃𝜃𝑅𝑅(𝑚𝑚,𝑛𝑛))], where the 𝑅𝑅𝑅𝑅 and 𝐼𝐼𝐼𝐼 functions 

represent taking the real and imaginary parts of an array, respectively. 

 
Figure 2-4:  Example 𝜿𝜿-space grid partitioning and sampling showing traditional spectral 
sampling approach versus randomized spectral sampling approach. Black dots represent 
traditional sampling points, red dots represent one realization of the randomized sampling 
approach, and the blue grid lines demarcate the sampling boundaries for the randomized 
method. 

𝜃𝜃𝑅𝑅(𝑚𝑚,𝑛𝑛) and the real-valued phase screens it produces no longer exhibit 

periodicity, and will have domain-wide low spatial-frequency distortions. 
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Additionally, we find the increase in computational delays associated with the use 

of the algorithm given in Equation (2-16) relative to Equation (2-1), in the context 

of split-step wave optics simulations, to be only 25.4% – 28.5% for grid sizes 

between 512 × 512 and 2048 × 2048. The phase screens shown in Figure 2-5 

were generated using the Kolmogorov spectrum (𝛼𝛼 = 11/3).  Note that tip and tilt 

components can be seen across the x- and y-axes, respectively, in the screen shown 

in Figure 2-5c. Additionally, Figure 2-5a displays periodicity [52], in that should 

one circularly shift [61] the phase screen in either or both directions, no sharp 

discontinuities would be apparent within the boundaries of the screen. To help 

visualize this, we have added Figure 2-5b and Figure 2-5d to illustrate the presence 

and lack of periodicity resulting from the relevant algorithms, respectively.  
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Figure 2-5:  a) Phase screen produced using traditional FFT-based algorithm on a 1024×1024 grid; b) same phase screen as 
previous, repeated four times and placed adjacent to itself in order to illustrate the periodicity associated with traditional FFT-
based screens; c) phase screen produced using modified FFT-based algorithm on a 1024×1024 grid; d) same phase screen as 
directly previous, repeated four times and placed adjacent to itself in order to illustrate the lack of periodicity associated the 
modified randomized FFT-based algorithm. The colors shown denote the phase shift of the screen in radians on the simulated 
propagating wave, as per the colorbar.  
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2.5:  Core Algorithm Results for Anisotropic, non-Kolmogorov Spectral Models 

 To assess the accuracy of the revised method, we must designate our metrics 

of interest. We had previously defined the refractive index three-dimensional 

structure function, 𝐷𝐷𝑛𝑛(𝑟𝑟), via the spectral model of interest in Equation (1-3). The 

structure function we are interested in, however, is that of an atmospheric phase 

screen that approximates the cumulative effects of optical propagation through a 

finite propagation distance, ∆𝑧𝑧.  By substituting Equation (2-15) into Equation 

(2-14), we are able to produce an equation for the ideal theoretical phase screen 

structure function as per [66]: 

𝐷𝐷𝜃𝜃(𝑥𝑥,𝑦𝑦) = 

∆𝑧𝑧𝑧𝑧(𝛼𝛼)𝐶𝐶𝑛𝑛224−𝛼𝛼𝜋𝜋3𝑘𝑘02 sec �
(𝛼𝛼 − 3)𝜋𝜋

2
� �Γ �

𝛼𝛼
2
��
−2
��

𝑥𝑥2

𝜇𝜇𝑥𝑥2
+
𝑦𝑦2

𝜇𝜇𝑦𝑦2
�

𝛼𝛼−2

 
(2-19) 

It is well documented that aliasing effects associated with the FFT-based 

propagation step of the split-step algorithm make parts of the simulation domain 

unusable [33, 40, 67, 68]. For this reason, a region of interest must be defined, 

which drives properties of the simulation. Number of grid points, simulated 

resolution, as well as the propagation distance between screens must be chosen 

carefully [33]. This requires consideration of many factors, including wavelength, 

coherence lengths, aperture sizes, etc. As a practical matter, many studies explicitly 

dedicate half of the x- and y-domains of simulation as guard bands to protect against 
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edge effect aliasing [69, 70]. Additionally, the requirement of grid sizes greater than 

or equal to twice the size of the limiting apertures (or regions of interest) is explicit 

in some analyses of simulated propagation using changes of scale between the 

source and observation planes [67, 68]. In our own simulations of Gaussian beam 

propagation [57, 63, 71], we typically constrain the beam diameter to half the 

domain of simulation in each x- and y-direction in order to avoid edge aliasing 

effects. In order to present our results in a simple fashion, we assume that most 

users would have a region of interest defined by approximately this inner portion 

of the simulation domain. 

 Defining the measured x-direction structure function along the 𝑀𝑀/2th row 

from the 𝑀𝑀/4th point to the 𝑀𝑀/4 +  𝑚𝑚th point as 𝐷𝐷𝑥𝑥(𝑚𝑚∆𝑥𝑥), and y-direction 

structure function along the 𝑀𝑀/2th column for its corresponding points as 

𝐷𝐷𝑦𝑦(𝑛𝑛∆𝑦𝑦), we can define our percent root mean square (RMS) error metric, ℇ𝑀𝑀/2 , 

in terms of the 𝐷𝐷𝜃𝜃 defined by Equation (2-32) via the equations: 

 

ℇ𝑀𝑀/2,𝑥𝑥 = �2
𝑀𝑀
� �𝐷𝐷𝑥𝑥(𝑚𝑚∆𝑥𝑥)−𝐷𝐷𝜃𝜃(𝑚𝑚∆𝑥𝑥)

𝐷𝐷𝜃𝜃(𝑚𝑚∆𝑥𝑥) �
2

𝑀𝑀/2 

𝑚𝑚=1

 (2-20) 

 

ℇ𝑀𝑀/2,𝑦𝑦 = �2
𝑀𝑀
� �𝐷𝐷𝑦𝑦(𝑛𝑛∆𝑦𝑦)−𝐷𝐷𝜃𝜃(𝑛𝑛∆𝑦𝑦)

𝐷𝐷𝜃𝜃(𝑛𝑛∆𝑦𝑦) �
2

𝑀𝑀/2 

𝑛𝑛=1

 (2-21) 

 
ℇ𝑀𝑀/2 = 100% ×

ℇ𝑀𝑀/2,𝑥𝑥 + ℇ𝑀𝑀/2,𝑦𝑦

2
 (2-22) 
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It should also be noted that as part of this study, the diagonal direction structure 

function was also assessed, with similar results. However, because the grid 

diagonals are not orthogonal to the x- and y- directions, those metrics are not 

included in our overall statistics as they are not independent. 

 We have found that for the range of outer scale values from one to 1000 

times the domain of simulation, the RMS error as a percent assessed over half the 

simulation domain is constrained to less than 4%. More precisely, errors observed 

over the range 1 ≤ 𝐿𝐿0/(𝑀𝑀∆𝑥𝑥) ≤ 103  range from 0.34% to 3.79%. For the non-

randomized grid, errors range from 2.57% to 61.51% over the same region. 

  
Figure 2-6:  RMS error as a percent relative to theory over 50,000 phase screen trials for 
the simulated domain region of interest as parameterized by the three dimensional 



59 
 

spectral power law, 𝜶𝜶.  512 × 512, 1024 × 1024, 2048 × 2048 grid results are shown for 
randomized method. For the traditional method, the 2048 × 2048 grid is shown.  Other 
grid sizes are not shown for the traditional method because the results appear to 
completely overlap at this scale.   

Figure 2-6 displays the Monte Carlo simulation results over 25,000 complex 

phase screens. All data in this study were collected using MATLAB. Because each 

complex screen contains a real and imaginary component, and structure function is 

computed over orthogonal x- and y-directions, this simulation set contains 100,000 

independent samples per point. Results are not shown for 512 × 512 or 1024 ×

1024 traditional grids due to overlap of the plotted results, i.e., the results are 

largely indiscernible from the 2048 × 2048 traditional grid results. Additionally, 

in order to impress a sense of proportionality upon the reader, we have included 

Figure 2-7, which is parameterized by the grid size, outer scale, inner scale, and 

effective coherence lengths, 𝜌𝜌0,𝑥𝑥 and 𝜌𝜌0,𝑦𝑦, given for non-Kolmogorv turbulence as 

[59]: 

 

𝜌𝜌0,𝑥𝑥 = 𝜇𝜇𝑥𝑥 �𝐴𝐴(𝛼𝛼)𝐶̃𝐶𝑛𝑛2𝑘𝑘02𝑧𝑧
−23−𝛼𝛼𝜋𝜋2Γ �1 − 𝛼𝛼

2�

(𝛼𝛼 − 1)Γ �𝛼𝛼2�
�

1
2−𝛼𝛼

 

𝜌𝜌0,𝑦𝑦 = 𝜇𝜇𝑦𝑦 �𝐴𝐴(𝛼𝛼)𝐶̃𝐶𝑛𝑛2𝑘𝑘02𝑧𝑧
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(2-23) 

On the logarithmic scale, the randomized method follows the theoretical structure 

function very closely, relative to the traditional method for 𝛼𝛼’s at or below the 

Kolmogorov turbulence power law, 11/3.   
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In general we note that for these 𝛼𝛼’s the RMS error over the region of 

interest using the randomized method appears to be constrained below 15%, 

however for the traditional method errors range from 32.73% - 65.76% over this 

range.  In general, lower 𝛼𝛼’s perform closer to theory for either method.  In later 

sections we shall verify that this is because more and more of the spectral energy is 

concentrated around the origin in frequency space for higher 𝛼𝛼’s, which will require 

better resolution sampling via use of a non-uniform Fourier series around the origin 

in κ-space to complement the uniformly sampled IFFT.   

During the peer review process which led to the publication of the new 

method, it became apparent that reviewers had concerns regarding the probability 

distribution of absolute phase produced by the screens.  For small variations in 

temperature, the relationship between refractive index and temperature is 

approximately linear [see Equation (1-12)], and as such it is seen as a desirable 

property that the phase of the screens be approximately distributed according to a 

Gaussian distribution.  Confirming the reviewers’ concerns, we have found that the 

randomized sampling technique produces approximately log-normally distributed 

statistics, as displayed in Figure 2-8. Although a log-normal characteristic of 

absolute phase may seem undesirable, we do not believe this to be a significant 

issue with the randomized method, as the phase difference histograms maintain 

approximately zero mean Gaussian distributed characteristics.  Results from the 

trials for several spectral power laws are shown in Figure 2-7.  We note that the 
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relative phase statistics in the x and y directions were combined to create the plots 

of Figure 2-8.  Additionally, we remind the reader that the assumption that only 

relative phase statistics meaningfully affect the wave statistics of interest, as 

absolute phase associated with each screen only affect the constant phase rotation 

of the wave.   
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Figure 2-7:  Phase screen structure function produced by the randomized and traditional methods compared to theory over x- and y-
directions over 25,000 phase screen for several values of the three dimensional spectral power law, 𝛼𝛼, 1024 × 1024 grid results.  The 
coherence length used to produce the screens was ρ0,x = ρ0,y = 0.05 cm for all α’s.  
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Figure 2-8:  Histogram plots of probability density for: a) natural logarithm of the 
magnitude of phase at phase screen center using the randomized method for various 
values of the three dimension spectral power law, α; b) relative phase difference across 
the region of interest using the randomized method for various values of the three 
dimension spectral power law, α.  For each subplot, the probability densities were 
collected over 5,000 phase screens using a 2048 × 2048 grid created using the 
randomized method. 

In order to demonstrate that the refinement in structure function accuracy 

using the randomized method reliably improves statistics of propagating light, we 

have performed wave optics simulations quantifying the angle of arrival (AoA) 

fluctuations of plane waves propagating through optical turbulence using both our 

randomized method and the traditional FFT-based method.  Closely following the 

methodology used by Voelz, et al. [60], we have simulated 500 nm plane waves 
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propagating through multiple phase screens, using a number of Rytov variances, 

and collected the aperture averaged AoA’s for each trial by focusing the light 

collected over varying aperture sizes and examining the location of the centroid in 

the focal plane.  We have deviated from Voelz’s method, however, in that instead 

of fixing the relationship between the propagating plane wave’s spatial domain size 

and aperture diameter, 𝐷𝐷, such that 𝐷𝐷/(𝑀𝑀∆𝑥𝑥) = .4 , we have always chosen a 

spatial domain of 𝑀𝑀∆𝑥𝑥 = 1 m prior to aperturing. Once the propagating light 

reaches the aperture plane, a focusing transmittance function [31] is applied, 

followed by circular aperture functions of several diameters ranging from .5 cm to 

50 cm. The resulting waves from each aperture function are separately propagated 

to the focal plane using the angular spectrum propagation method discussed by 

Schmidt [33] in order to allow for differing spatial domain sizes between the 

aperture and focal planes. 

In Voelz’s method, a constraint on the number of phase screens, 𝑁𝑁𝑠𝑠, as well 

as propagation distance  associated with each screen, i.e. ∆𝑧𝑧 = 𝑧𝑧/𝑁𝑁𝑠𝑠, is that the 

associated Rytov variance associated with each phase screen application and 

propagation remains approximated by weak fluctuation regime statistics.  For our 

application, this boils down to the following constraint: 

 𝜎𝜎�𝑅𝑅2�∆𝑧𝑧,𝛼𝛼, 𝜇𝜇𝑥𝑥,𝜇𝜇𝑦𝑦� ≤ 0.1 (2-24) 

Analyzing (1-57) with 𝑧𝑧 = ∆𝑧𝑧𝑁𝑁𝑠𝑠 and 𝜇𝜇𝑥𝑥 = 𝜇𝜇𝑦𝑦 = 1: 
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−2𝛼𝛼
 (2-25) 

Alternatively, because we have function handles to calculate the generalized Rytov 

variance, we choose to actually use the equivalent constraint: 

 
𝑁𝑁𝑠𝑠 =

𝑧𝑧
∆𝑧𝑧

≥ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ��10 ∙ 𝜎𝜎�𝑅𝑅2�𝑧𝑧,𝛼𝛼, 𝜇𝜇𝑥𝑥,𝜇𝜇𝑦𝑦��
2
𝛼𝛼� (2-26) 

where the ceil operator reflects rounding up to the nearest integer.  If one wishes to 

verify this is correct, note that insertion of ∆𝑧𝑧 ≤ 𝑧𝑧 ∙ �10 ∙ 𝜎𝜎�𝑅𝑅2�𝑧𝑧,𝛼𝛼, 𝜇𝜇𝑥𝑥, 𝜇𝜇𝑦𝑦��
−2𝛼𝛼 for L 

in Equation (1-57) ensures that 𝜎𝜎�𝑅𝑅2�𝐿𝐿 = ∆𝑧𝑧,𝛼𝛼, 𝜇𝜇𝑥𝑥, 𝜇𝜇𝑦𝑦� ≤ 10−1.  For the range 3.1 ≤

𝛼𝛼 ≤ 3.9, 𝛼𝛼 = 3.9 requires the most screens to meet this constraint, at 20.  

Therefore, we have elected to use 20 screens for all simulations in this set.  We note 

that this range of 𝛼𝛼’s was chosen because for any non-zero 𝐶̃𝐶𝑛𝑛2 the weak fluctuation 

theory wave structure function, which has values identical to those given in 

Equation (1-14),  only converges to a non-zero, non-negative values for 𝛼𝛼 = (0,2) 

and (2n - 1, 2n), with n any integer greater than 1.  Given that turbulence has been 

famously observed displaying a three dimensional structure function with power 

law 𝛼𝛼 − 3 ≈ 11/3, which is justified by Kolmogorov’s theoretical work [2, 3], for 

these reasons alpha’s below or equal to 3 and above or equal to 4 are ruled out as 

unphysical.  

A theoretical expression for the variance of AoA for apertured plane waves 

for isotropic turbulence is given by Cheon [72] as: 
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〈𝜃̅𝜃2〉 = 𝜋𝜋2𝐿𝐿� 𝜅𝜅3Ф𝑛𝑛(𝜅𝜅) �1 +
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 (2-27) 

where 𝑓𝑓 = √𝜆𝜆𝜆𝜆 is the Fresnel length, and 𝐴𝐴𝑓𝑓(𝑥𝑥) = �2𝐽𝐽1(𝑥𝑥)
𝑥𝑥

�
2
 is the Airy function 

with 𝐽𝐽1 denoting the first-order Bessel function of the first kind. We note that we 

believe there may have been a typo in [72], and have added a factor of 𝜋𝜋 to Equation 

(5) in the reference in order to make the equation compatible with later derivations 

therein. This theoretical metric has been compared to the results of the wave optics 

simulations in Figure 2-9. In general, we find a marked improvement of results 

relative to theory when the randomized method is in use for all Rytov variances and 

aperture sizes. 
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Figure 2-9:  a) AoA variance averaged over a 40 cm diameter aperture of a plane wave 
propagating through Kolmogorov turbulence plotted as a function of Rytov variance for 
wave optics simulations using the randomized method and the traditional method 
compared to theory for Rytov variance 0.1; b) aperture averaged AoA variance of a plane 
wave propagating through turbulence plotted as a function of aperture diameter for wave 
optics simulations using the randomized method and the traditional method compared to 
theory Kolmogorov spectrum and Rytov variance 0.1; c) aperture averaged AoA variance 
of a plane wave propagating through turbulence plotted as a function of the three 
dimensional spectral power law for wave optics simulations using the randomized 
method and the traditional method compared to theory for Rytov variance 0.1 and 
aperture size 40 cm.  All simulations were performed using a 1024 × 1024 grid and 20 
equally spaced phase screens over a 2 km propagation distance. 
  

To summarize the results in this section, we have noted a marked 

improvement in the results relative to theory for both raw structure function 

measurements and wave optics metrics.  Though, the accuracy of our method still 

does not always converge closely with theory, especially for higher α’s when 
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viewing the raw statistics.  The wave optics simulations still show substantial 

disagreements across all alphas.  Luckily, we are aware of methods to improve the 

accuracy of the traditional method, which we shall again modify and apply in later 

sections.  Although originally conceived for application of non-Kolmogorov and 

anisotropic turbulence, our intuition is that when applied to other spectral models 

of interest, specifically ones which band limit the inertial range of turbulence using 

finite inner and outer scales, this method may perform better relative to theory and 

does not have complications associated with having infinite spectral energy.  In the 

next section, we consider additional spectral models and demonstrate that our 

intuition is correct.   

2.6:  Core Algorithm Results for Bounded Spectral Models 

The most widely used three-dimensional spectral model of atmospheric 

turbulence is derived from A. Kolmogorov’s famous 2/3 law as [6, 9]: 

 Ф𝑛𝑛(𝜅𝜅) = 𝐴𝐴�11
3� � ∙ 𝐶𝐶𝑛𝑛2 ∙ |𝜅𝜅|−

11
3 = 0.0330 ∙ 𝐶𝐶𝑛𝑛2 ∙ |𝜅𝜅|−

11
3  (2-28) 

This model is popular due to its simple formulation and approximate accuracy when 

the beam statistics of interest are within the inertial subrange of turbulence. 

However, this spectrum diverges at the κ-space origin leading to unphysical 

properties such as containing infinite energy, divergent covariances, lack of a 

viscosity-driven minimum feature size, and lack of a maximum feature size [9]. For 

these reasons, we refer to this type of spectral model as unbounded. As we alluded 
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to in the previous section and will demonstrate in the next section, additional 

modifications to the FFT-based algorithm may be required to accurately model 

unbounded spectral models using phase screens, as is the case for Kolmogorov 

turbulence. 

 We turn our attention to a practical atmospheric turbulence spectral model 

that accounts for inner scale, 𝑙𝑙0, and outer scale, 𝐿𝐿0, bounds on the inertial subrange, 

as well as intricacies of the experimentally observed energy spectra at higher spatial 

frequencies [26, 29, 73]. The modified atmospheric spectrum is given by Andrews 

[9, 74]: 

 
Ф𝑛𝑛(𝜅𝜅) = 0.0330 ∙ 𝐶𝐶𝑛𝑛2 ∙ 𝑓𝑓𝑛𝑛 �

𝜅𝜅
𝜅𝜅𝑙𝑙
� ∙

exp (−𝜅𝜅2/𝜅𝜅𝑙𝑙2)
(𝜅𝜅2 + 𝜅𝜅02)11/6  (2-29) 

where 𝜅𝜅𝑙𝑙 = 3.3/𝑙𝑙0, 𝜅𝜅0 = 2𝜋𝜋/𝐿𝐿0, 𝜅𝜅 = |𝜅𝜅|, and we define the function 𝑓𝑓𝑛𝑛 as: 

 𝑓𝑓𝑛𝑛(𝑥𝑥) = 1 + 1.802𝑥𝑥 − 0.254𝑥𝑥7/6 (2-30) 

The 𝑓𝑓𝑛𝑛 function serves to implement a spectral rise at higher wave numbers 

observed by Hill [26], and which we note will have a marked effect on the 

scintillation index of the propagating beam [9].  This spectral model can be thought 

of as a modification to the von Kármán Spectrum [9], which includes the Hill Bump.  As 

this spectral model does not present the same complications as that of Equation 

(2-28), we refer to this as a bounded spectral model.   

 To assess the accuracy of the revised method, we again must designate our 

metrics of interest. We, again, assume that the phase screen structure function is of 
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primary importance and will compare simulation results with the theoretical ideal, 

𝐷𝐷𝜃𝜃(𝜌⃑𝜌). 𝐷𝐷𝜃𝜃(𝜌⃑𝜌) is defined by the two-dimensional integral over all 𝜅𝜅𝜌𝜌 = 𝜅𝜅𝑥𝑥𝑒̂𝑒𝑥𝑥 +

𝜅𝜅𝑦𝑦𝑒̂𝑒𝑦𝑦 as per [53]: 

 
𝐷𝐷𝜃𝜃(𝜌⃑𝜌) = 4𝜋𝜋𝑘𝑘02∆𝑧𝑧 �Ф𝑛𝑛�𝜅𝜅𝜌𝜌��1 − cos (𝜌⃑𝜌 ∙ 𝜅𝜅𝜌𝜌)�𝑑𝑑2𝜅𝜅𝜌𝜌

∞

−∞

 (2-31) 

For the modified atmospheric spectrum, though we are aware of closed-form 

approximations of turbulent structure functions for plane waves applicable to our 

analysis [75], we have instead developed our theoretical structure function via 

numerical integration of the equivalent form for isotropic turbulence: 

 
𝐷𝐷𝜃𝜃(𝜌𝜌) = 8𝜋𝜋2𝑘𝑘02∆𝑧𝑧 � 𝜅𝜅𝜌𝜌Ф𝑛𝑛�𝜅𝜅𝜌𝜌��1− 𝐽𝐽0 (𝜌𝜌𝜅𝜅𝜌𝜌)�𝑑𝑑𝜅𝜅𝜌𝜌

∞

−∞

 (2-32) 

where 𝜌𝜌 = |𝜌⃑𝜌|, 𝜅𝜅𝜌𝜌 = �𝜅𝜅𝜌𝜌�, and 𝐽𝐽0 denotes the zeroth-order Bessel function of the 

first kind.  We will again be primarily interested in the RMS error of different 

approaches over the region of interest (the inner quarter by area of the simulation 

domain) as defined by Equations (1-20) - (1-22).  It should also be noted that as 

part of this study, the diagonal direction structure function was also assessed, with 

similar results. However, because the grid diagonals are not orthogonal to the x and 

y directions, those metrics are not included in our overall statistics. 

 We have found that for the range of outer scale values from one to 1,000 

times the domain of simulation, the RMS error as a percent assessed over half the 

simulation domain is constrained to less than 4%. More precisely, errors observed 
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over the range 1 ≤ 𝐿𝐿0/(𝑀𝑀∆𝑥𝑥) ≤ 103  range from 0.34% to 3.79%. For the non-

randomized grid, errors range from 2.57% to 61.51% over the same region. Figure 

2-11 displays the Monte Carlo simulation results over 25,000 complex phase 

screens. All data in this study were collected using MATLAB. Because each 

complex screen contains a real and imaginary component, and structure function is 

computed over orthogonal x and y directions, this simulation set contains 100,000 

independent samples per point. Results are not shown for 512 × 512 or 1024 ×

1024 traditional grids due to overlap of the plotted results, i.e., the results are 

largely indiscernible from the 2048 × 2048 traditional grid results. Additionally, 

in order to impress a sense of proportionality upon the reader, we have included 

Figure 2-11, which is parameterized by the grid size, outer scale, inner scale, and 

effective coherence length, 𝜌𝜌0, given for isotropic turbulence and Kolmogorov’s 

11/3rds spectral power laws as [33]: 

 𝜌𝜌0 = (1.46𝑘𝑘02∆𝑧𝑧𝐶𝐶𝑛𝑛2)−3/5 (2-33) 

On the logarithmic scale, the randomized method follows the theoretical structure 

function very closely relative to the traditional method as displayed in Figure 2-10. 
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Figure 2-10:  Comparison of phase screen structure function versus theory using 2048 × 
2048 grid, inner scale 1 cm, outer scale 100 km, and effective coherence length of ρ0 = 5 
cm. 
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Figure 2-11:  RMS error as a percent relative to theory over 50,000 phase screen trials for 
the simulated domain region of interest as parameterized by the three dimensional 
spectral power law, α.  512 × 512, 1024 × 1024, 2048 × 2048 grid results are shown for 
randomized method.  The outer scale has been normalized by the domain width, 𝑀𝑀∆𝑥𝑥 
(m), to make the results applicable for any domain size.  For the traditional method only 
the 2048 × 2048 grid is shown due to significant overlap of the RMS error metric. 

Histogram analysis of the phase screen statistics has been performed in a 

manner similar to the previous section based on peer reviewer comments.  The 

histograms of results showed some interesting characteristics of the collected 

samples. For small 𝐿𝐿0’s, the probability density of the absolute phase was clearly 

Gaussian in nature; however, as 𝐿𝐿0 was increased, this property quickly faded.  

Analysis of the natural logarithm of |𝜃𝜃𝑅𝑅(𝑀𝑀/2,𝑀𝑀/2)| showed a clear log-normal 

characteristic as 𝐿𝐿0 was increased beyond 𝑀𝑀∆𝑥𝑥 = 10 m.  As discussed in the 
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previous section, though a log-normal characteristic of absolute phase may seem 

undesirable we do not believe this to be a significant issue with the randomized 

method as the phase difference histograms maintain approximately zero mean 

Gaussian distributed characteristics.  Results for several L0’s are shown in Fig. 6.  

We note that the relative phase statistics in the x- and y-directions were combined 

to create the plots on the right-hand side of Figure 2-12.  Repeating this exercise 

over several different grid sizes, as well as different separations over which the 

phase differences were measured, yielded qualitatively similar results.  Since the 

statistical fluctuations of interest (e.g., scintillation, beam wander, etc.) of the light 

undergoing atmospheric turbulence distortion are induced by relative phase, we do 

not believe that the log-normal characteristic of the absolute phase measured will 

harm the overall statistical properties of the simulated light, provided the relative 

phase maintains zero mean Gaussian characteristics. 
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Figure 2-12:  Histogram plots of probability density for:  a) absolute phase using outer 
scale 𝑳𝑳𝟎𝟎 = 𝟏𝟏 ∙ 𝑴𝑴∆𝒙𝒙; b) relative phase over region of interest using outer scale 𝑳𝑳𝟎𝟎 = 𝟏𝟏 ∙
𝑴𝑴∆𝒙𝒙; c) natural logarithm of the magnitude of absolute phase using outer scale 𝑳𝑳𝟎𝟎 =
𝟏𝟏𝟏𝟏𝟐𝟐 ∙ 𝑴𝑴∆𝒙𝒙; d) relative phase over region of interest using outer scale 𝑳𝑳𝟎𝟎 = 𝟏𝟏𝟏𝟏𝟐𝟐 ∙ 𝑴𝑴∆𝒙𝒙; 
e) natural logarithm of the magnitude of absolute phase using outer scale 𝑳𝑳𝟎𝟎 = 𝟏𝟏𝟏𝟏𝟒𝟒 ∙
𝑴𝑴∆𝒙𝒙; f ) relative phase over region of interest using outer scale 𝑳𝑳𝟎𝟎 = 𝟏𝟏𝟏𝟏𝟒𝟒 ∙ 𝑴𝑴∆𝒙𝒙. For 
each subplot, the probability densities collected over 5000 phase screens using a 2048 × 
2048 grid created using the randomized algorithm and modified spectrum. 

In order to demonstrate efficacy of the revised method in reliably improving 

statistics of propagating light, we have performed wave optics simulations 

quantifying the AoA fluctuations of plane waves propagating through optical 

turbulence using both our randomized method and the traditional FFT-based 

method in a manor analogous to what was done in the previous section, but 
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parametrized by outer scale length as opposed to spectral power law, α, which is 

fixed at 11/3 for the results in this section.  For all simulation results and theoretical 

curves shown, the modified spectrum with inner scale 𝑙𝑙0 = 1 cm and outer scale 𝐿𝐿0 

= 100 m was used.  A 2 km propagation distance and Rytov variances between .001 

and 10 were used.  In order for the Rytov variance associated with each ∆𝑧𝑧 

propagation and phase screen application to meet weak fluctuation regime criteria, 

13 phase screens were used for each simulation run as an outcome of using 

Equation (2-26) and Rytov variance 10, i.e. 𝑁𝑁𝑠𝑠 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 �[10 ∙ 10]
6
11� = 13.   

 
Figure 2-13:  a) AoA variance averaged over a 40 cm diameter aperture of a plane wave 
propagating through turbulence plotted as a function of Rytov variance for wave optics 
simulations using the randomized method and the traditional method compared to theory; 
b) aperture averaged AoA variance of a plane wave propagating through turbulence 
plotted as a function of aperture diameter for wave optics simulations using the 
randomized method and the traditional method compared to theory. All simulations were 
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performed using a 1024 × 1024 grid and 13 equally spaced phase screens over a 2 km 
propagation distance.  

2.7:  Hybrid Algorithm Including Subharmonics 

 The modified algorithm discussed in previous sections was first 

investigated with regards to unbounded, anisotropic, non- Kolmogorov spectral 

models [63]. Therein it was discovered that for structure function power laws 

greater than the 2/3 of Kolmogorov, the randomized algorithm alone was not 

sufficient to ensure accurate statistics of observed simulated structure functions. 

For this reason, we have developed an algorithm utilizing both FFT-based 

frequency sampling randomization and subharmonic frequency sampling 

randomization.  We define the following: 

𝜃𝜃𝑅𝑅(𝑚𝑚,𝑛𝑛) = � (1 − 𝛿𝛿[𝑘𝑘, 𝑙𝑙]) ∙ 𝑐̃𝑐�𝑘𝑘∆𝜅𝜅𝑥𝑥 + 𝛿𝛿𝜅𝜅𝑥𝑥, 𝑙𝑙∆𝜅𝜅𝑦𝑦 + 𝛿𝛿𝜅𝜅𝑦𝑦�

𝑀𝑀
2−1

𝑘𝑘,𝑙𝑙=−𝑀𝑀2

 

∙ 𝑒𝑒𝑒𝑒𝑒𝑒�𝑗𝑗�𝑚𝑚∆𝑥𝑥(𝑘𝑘∆𝜅𝜅𝑥𝑥 + 𝛿𝛿𝜅𝜅𝑥𝑥) + 𝑛𝑛∆𝑦𝑦�𝑙𝑙∆𝜅𝜅𝑦𝑦 + 𝛿𝛿𝜅𝜅𝑦𝑦��� 

(2-34) 

𝜃𝜃𝑜𝑜𝑜𝑜𝑜𝑜(𝑚𝑚,𝑛𝑛,𝑝𝑝) = 3−𝑝𝑝 � (1 − 𝛿𝛿[𝑘𝑘, 𝑙𝑙]) ∙ 𝑐̃𝑐 �
𝑘𝑘∆𝜅𝜅𝑥𝑥 + 𝛿𝛿𝜅𝜅𝑥𝑥

3𝑝𝑝
,
𝑙𝑙∆𝜅𝜅𝑦𝑦 + 𝛿𝛿𝜅𝜅𝑦𝑦

3𝑝𝑝
�

1

𝑘𝑘,𝑙𝑙=−1

 

∙ 𝑒𝑒𝑒𝑒𝑒𝑒 �𝑗𝑗 �𝑚𝑚∆𝑥𝑥
𝑘𝑘∆𝜅𝜅𝑥𝑥 + 𝛿𝛿𝜅𝜅𝑥𝑥

3𝑝𝑝
+ 𝑛𝑛∆𝑦𝑦

𝑙𝑙∆𝜅𝜅𝑦𝑦 + 𝛿𝛿𝜅𝜅𝑦𝑦
3𝑝𝑝

�� 

(2-35) 
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𝜃𝜃𝑖𝑖𝑖𝑖(𝑚𝑚,𝑛𝑛) = 3−𝑁𝑁𝑝𝑝−1 ∙ 𝑐̃𝑐 �
𝑘𝑘∆𝜅𝜅𝑥𝑥 + 𝛿𝛿𝜅𝜅𝑥𝑥

3𝑁𝑁𝑝𝑝+1
,
𝑙𝑙∆𝜅𝜅𝑦𝑦 + 𝛿𝛿𝜅𝜅𝑦𝑦

3𝑁𝑁𝑝𝑝+1
� 

∙ 𝑒𝑒𝑒𝑒𝑒𝑒 �𝑗𝑗 �𝑚𝑚∆𝑥𝑥
𝑘𝑘∆𝜅𝜅𝑥𝑥 + 𝛿𝛿𝜅𝜅𝑥𝑥

3𝑁𝑁𝑝𝑝+1
+ 𝑛𝑛∆𝑦𝑦

𝑙𝑙∆𝜅𝜅𝑦𝑦 + 𝛿𝛿𝜅𝜅𝑦𝑦
3𝑁𝑁𝑝𝑝+1

�� 

(2-36) 

In Equation (2-36), 𝑁𝑁𝑝𝑝 is the number of subharmonic constellations of sampled 

frequencies (groups of eight subharmonics chosen from common subgrid 

boundaries), and 𝛿𝛿[𝑘𝑘, 𝑙𝑙] is the two dimensional discrete Dirac delta function 

(𝛿𝛿[𝑘𝑘, 𝑙𝑙] = 1 for 𝑘𝑘 = 𝑙𝑙 = 0, otherwise 𝛿𝛿[𝑘𝑘, 𝑙𝑙] = 0), which we use to ignore the DFT 

frequency domain origin and the central point of each constellation.  It is very 

important to note that in Equations (2-35) and (2-36), we choose a different 𝛿𝛿𝜅𝜅𝑥𝑥, 

𝛿𝛿𝜅𝜅𝑦𝑦 for each element of the summation (see Figure 2-14). That is, for any index (n, 

m) change in Equation (18) or (19), we choose a new 𝛿𝛿𝜅𝜅𝑥𝑥, 𝛿𝛿𝜅𝜅𝑦𝑦 according to a 

uniform distribution.  This is not done for Equation (2-34), because it is 

implemented using an FFT.   

 The final hybrid phase screen, 𝜃𝜃𝐻𝐻, is given by: 

 
𝜃𝜃𝐻𝐻(𝑚𝑚, 𝑛𝑛) = 𝜃𝜃𝑅𝑅(𝑚𝑚,𝑛𝑛) + �𝜃𝜃𝑜𝑜𝑜𝑜𝑜𝑜(𝑚𝑚,𝑛𝑛,𝑝𝑝)

𝑁𝑁𝑝𝑝

𝑝𝑝=1

+ 𝜃𝜃𝑖𝑖𝑖𝑖(𝑚𝑚, 𝑛𝑛) (2-37) 

In Equation (2-37), the summation over 𝜃𝜃𝑜𝑜𝑜𝑜𝑜𝑜 represents the contributions of each 

of the 𝑁𝑁𝑝𝑝 subharmonic constellations to the phase screen, and 𝜃𝜃𝑖𝑖𝑖𝑖 in provides the 

final low-frequency contribution to the phase screen from a spectral sample closest 

to the origin in 𝜅𝜅-space. The sampling approach described by Equation (2-37) is 
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shown in Figure 2-14 for 𝑁𝑁𝑝𝑝 = 1. In Figure 2-14, the red dot closest to the origin 

represents the 𝜃𝜃𝑖𝑖𝑖𝑖 in spectral sample, and the red dots in the surrounding eight grid 

partitions represent the 𝜃𝜃𝑜𝑜𝑜𝑜𝑜𝑜 spectral samples associated with the subharmonic 

constellation. We have found by choosing the correct number of subharmonic 

constellations, 𝑁𝑁𝑝𝑝, Equation (2-37) yields very accurate results for any reasonable 

spectral model. We shall demonstrate results for both bounded and unbounded 

spectral models later in this section. 
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Figure 2-14:  Example κ-space grid partitioning and sampling showing traditional 
subharmonic sampling approach versus hybrid randomized spectral sampling approach 
for Np = 1. Black dots represent traditional sampling points (including subharmonic 
expansion), red dots represent one realization of the randomized sampling approach, and 
the blue grid lines demarcate the sampling boundaries for the randomized method. 
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2.8:  Addition of White Noise to Phase Screens to Support Subresolution Inner 

Scales 

Since the introduction of generalized spectral models by Kon [19], much 

theoretical work has gone into the study of wave propagation through anisotropic, 

non-Kolmogorov turbulence defined by unbounded refractive index spectra [22, 

23, 59, 76, 77, 78, 79]. These spectral models are derived from the structure 

function of refractive index of the form: 

  
𝐷𝐷𝑛𝑛(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) = 𝐶̃𝐶𝑛𝑛2 �

𝑥𝑥2

𝜇𝜇𝑥𝑥2
+ 𝑦𝑦2

𝜇𝜇𝑦𝑦2
+ 𝑧𝑧2�

𝛼𝛼−3
2

  (2-38) 

where 𝜇𝜇𝑥𝑥, 𝜇𝜇𝑦𝑦 are the anisotropy parameters in the x- and y-directions, respectively,  

 is the three-dimensional spectral power law, and 𝐶̃𝐶𝑛𝑛2 is the generalized refractive 

index structure function constant with units 𝑚𝑚3−𝛼𝛼. Although occasionally studies 

state that this structure function model is valid only for 𝑙𝑙0 ≪ �𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2 ≪ 𝐿𝐿0 

[77], as applied to integrals for calculating second- and fourth-order beam statistics, 

the inner and outer scales appear as zero and infinity, respectively. In order for the 

phase structure function integral definitions of Equations (1-19), (2-4), and (2-5) to 

converge to positive quantities is typically limited to the range 3 < 𝛼𝛼 < 4.  Also 

note that for 𝛼𝛼 = 11/3 and 𝜇𝜇𝑥𝑥 = 𝜇𝜇𝑦𝑦 = 1, Equation (2-38) simplifies to the 2/3 law 

of Kolmogorov. It can be shown [22] that Equation (2-38) corresponds to a three-

dimensional energy spectrum given by: 
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Ф𝑛𝑛�𝜅𝜅𝑥𝑥, 𝜅𝜅𝑦𝑦, 𝜅𝜅𝑧𝑧� =

𝐶̃𝐶𝑛𝑛
2𝐴𝐴(𝛼𝛼)𝜇𝜇𝑥𝑥𝜇𝜇𝑦𝑦

(𝜇𝜇𝑥𝑥2𝜅𝜅𝑥𝑥2 + 𝜇𝜇𝑦𝑦2𝜅𝜅𝑦𝑦2 + 𝜅𝜅𝑧𝑧2)𝛼𝛼 2�
 (2-39) 

  These spectral models do not address practical matters of maximum feature 

sizes (outer scales) or Kolmogorov microscales (inner scales), where the internal 

subrange ends and dissipation is the primary form of energy transfer [80, 81].  

However, these models are useful for studies of non-classical turbulence when the 

inertial subrange can be approximated as infinite.  For these unbounded cases, great 

attention has so far been devoted to modeling low spatial frequency components.  

In order to explain why this is necessary, we note that insertion of the energy 

spectrum Ф𝑛𝑛�𝜅𝜅𝑥𝑥, 𝜅𝜅𝑦𝑦, 0� given by Equation (2-39) into the structure function 

identity given in Equation (2-31) results in an integrand that diverges as the 

magnitude of 𝜅𝜅𝜌𝜌 = 𝜅𝜅𝑥𝑥𝑒̂𝑒𝑥𝑥 + 𝜅𝜅𝑦𝑦𝑒̂𝑒𝑦𝑦 approaches zero.  For a more thorough 

explanation of issues involving use of spectral models that diverge at the zero-

frequency point, please see [63]. 

 Very little emphasis, however, has been placed on high frequency 

components outside of the simulated κ-space.  As demonstrated in Figure 2-15 and 

Figure 2-16, this results in a sag of the phase screen structure function relative to 

theory over small distances. In order to explain why this sag occurs, we note that 

the DFT formation of the phase screen algorithm given by Equations (2-1), (2-16), 

and (2-34) includes spectral energy contributions only within its frequency domain 

sample space, which we later define explicitly as 𝐾𝐾𝑖𝑖𝑖𝑖.  Spectral energy outside this 
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sample space, 𝐾𝐾𝑜𝑜𝑜𝑜𝑜𝑜, is not typically included in the discretized simulations, 

although the structure function integral definition given by Equation (2-4) includes 

spectral energy across all κ-space.  We attempt to resolve this problem via addition 

of white noise to the screen, in order to simulate spectral energy not included in the 

κ-space sampling grid or subharmonic subgrids. Recalling the formation of the 

structure function in Equation (2-4), we calculate the variance of the white noise to 

be added to the screen as per the set of area integrals:  

σ𝑥𝑥2 = 2𝜋𝜋∆𝑧𝑧𝑘𝑘02 × � Ф𝑛𝑛�𝜅𝜅𝑥𝑥, 𝜅𝜅𝑦𝑦, 0�[1 − cos (∆𝑥𝑥 ∙ 𝜅𝜅𝑥𝑥)]𝑑𝑑𝜅𝜅𝑥𝑥𝑑𝑑𝜅𝜅𝑦𝑦
 

𝐾𝐾𝑜𝑜𝑜𝑜𝑜𝑜
 (2-40) 

σ𝑦𝑦2 = 2𝜋𝜋∆𝑧𝑧𝑘𝑘02 × � Ф𝑛𝑛�𝜅𝜅𝑥𝑥, 𝜅𝜅𝑦𝑦, 0�[1 − cos (∆𝑦𝑦 ∙ 𝜅𝜅𝑦𝑦)]𝑑𝑑𝜅𝜅𝑥𝑥𝑑𝑑𝜅𝜅𝑦𝑦
 

𝐾𝐾𝑜𝑜𝑜𝑜𝑜𝑜
 (2-41) 

where 𝐾𝐾𝑜𝑜𝑜𝑜𝑜𝑜 represents the region spanning all of the 𝜅𝜅𝑧𝑧 = 0 plane, which we define 

unambiguously via: 

 
𝐾𝐾 = ��𝜅𝜅𝑥𝑥, 𝜅𝜅𝑦𝑦�:−∞ < 𝜅𝜅𝑥𝑥 < ∞,

                −∞ < 𝜅𝜅𝑦𝑦 < ∞ � (2-42) 

 

𝐾𝐾𝑖𝑖𝑖𝑖 = �
�𝜅𝜅𝑥𝑥, 𝜅𝜅𝑦𝑦�:−∆𝜅𝜅𝑥𝑥

𝑀𝑀
2

< 𝜅𝜅𝑥𝑥 < ∆𝜅𝜅𝑥𝑥
𝑀𝑀 − 1

2
,

                −∆𝜅𝜅𝑦𝑦
𝑀𝑀
2

< 𝜅𝜅𝑦𝑦 < ∆𝜅𝜅𝑦𝑦
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2

� (2-43) 

 𝐾𝐾𝑜𝑜𝑜𝑜𝑜𝑜 = ��𝜅𝜅𝑥𝑥, 𝜅𝜅𝑦𝑦�: �𝜅𝜅𝑥𝑥, 𝜅𝜅𝑦𝑦� ∈ 𝐾𝐾|�𝜅𝜅𝑥𝑥, 𝜅𝜅𝑦𝑦� ∉ 𝐾𝐾𝑖𝑖𝑖𝑖� (2-44) 

In practice, the variances of Equations (2-40) and (2-41) can be evaluated 

numerically as the sum of several integrals. For the data sets in this paper, four 

integrals per parameter set were used for spanning from each corner of 𝐾𝐾𝑖𝑖𝑖𝑖 to a 
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|𝜅𝜅𝑥𝑥| = �𝜅𝜅𝑦𝑦� = ∞ point in an adjacent quadrant of κ-space. Finally, the variances of 

two white noise processes are calculated as: 

 𝜎𝜎12 = Minimum�σ𝑥𝑥2 ,σ𝑦𝑦2� (2-45) 

 𝜎𝜎12 = �σ𝑥𝑥2 − σ𝑦𝑦2� (2-46) 

In order to whiten our phase screens, a 𝑀𝑀 × 𝑀𝑀 matrix of white-noise-generated 

variance 𝜎𝜎12 is added to the screen, and is followed by addition of a random number 

with variance 𝜎𝜎22 across each column (if 𝜎𝜎𝑥𝑥2 > 𝜎𝜎𝑦𝑦2) or row (if 𝜎𝜎𝑦𝑦2 > 𝜎𝜎𝑥𝑥2) of the grid. 

For isotropic turbulence 𝜎𝜎𝑥𝑥2 = 𝜎𝜎𝑦𝑦2, 𝜎𝜎22 = 0, and the second step can be negated. This 

method ensures the small-scale structure function across the x, y, and diagonal 

directions is improved relative to theory. All random elements pertaining to white 

noise are generated using a zero-mean Gaussian distribution. 

 Figure 2-15 and Figure 2-16 show qualitative results of using this method. 

As lower power law values place a higher portion of their spectral energy at high 

frequencies, we have chosen to display a power law of 𝛼𝛼 = 3.1. In order to reduce 

the number of independent variables specifying each plot, Figure 2-15 has been 

given in terms of effective coherence length, 𝜌𝜌0,𝑥𝑥 = 5 cm, which for non-

Kolmogorov, anisotropic turbulence is given by Equation (2-23).  Additionally, we 

have included a curve in Figure 2-16 showing the phase screen structure function, 

normalized by theory, produced using the hybrid method but without the addition 

of white noise. This is intended to demonstrate the positive effects of our white 
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noise algorithm on the relative error at small separations (i.e., near 1% of the spatial 

domain and below). The following sections will characterize the performance 

associated with this addition combined with the subharmonic method described in 

the previous section. 
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Figure 2-15:  X-axis structure function of phase screens made with the randomized, hybrid 
subharmonic algorithm and white noise added, as well as screens using the traditional 
subharmonic method. Parameters for the screens are 1024 × 1024 grid, Np = 1, and 
effective coherence length ρ0,x = 5 cm. 
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Figure 2-16:  X-axis structure function normalized by theory of phase screens produced 
with the randomized, hybrid subharmonic algorithm both with and without white noise 
added, as well as screens using the traditional subharmonic method. The parameters used 
to create this figure are identical to those in Figure 2-15.  
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2.9:  Hybrid Algorithm Results for Unbounded Spectral Models 

We wish to assess the accuracy of our revised algorithm for the cases of 

generalized anisotropic, non-Kolmogorov turbulence spectra discussed.  Due to the 

combination of our assessment of error as a ratio relative to a theory, as well as the 

scale invariance [52] of this section’s turbulence models, the specific 𝐶̃𝐶𝑛𝑛2’s and 

domain lengths, 𝑀𝑀∆𝑥𝑥 and 𝑀𝑀∆𝑦𝑦, do not affect results. The results are, however, 

sensitive to the number of grid points in use and the number of subharmonic 

constellations.  Figure 12 displays a comparison of the hybrid method, including 

the addition of white noise, versus the Frehlich subharmonic method for multiple 

𝛼𝛼’s over 5,000 independent phase screens using various numbers of subharmonic 

constellations.  The tables of Appendix A summarize the errors observed in testing 

for both schemes, as well as associated 𝑁𝑁𝑝𝑝.  We have observed that our hybrid 

method outperforms the Frehlich subharmonic method on any grid size for any 

number of subharmonic constellations, except for 𝛼𝛼 = 3.7 and 3.9 with the 512 ×

512 grid.  Comparing the minimum RMS error observed using each method for 

𝛼𝛼 = 3.1 to 3.9, we note that the average ratio of our Frehlich method’s minimum 

ℇ𝑀𝑀/2 to that of the hybrid method is 4.77 for the 512 × 512 grid, 11.13 for the 

1024 × 1024 grid, and 7.00 for the 2048 × 2048 grid.  For the 512 × 512 grid, 

statistics were also collected for the Lane subharmonic method [52] and the error 

ratio between the Lane and hybrid method over all 𝛼𝛼’s under test was 16.89.  In 

general, as previously stated in the literature [53] the Frehlich method outperforms 
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the Lane method with the choice of an optimum 𝑁𝑁𝑝𝑝.  The ratio of minimum ℇ𝑀𝑀/2 

between Lane vs Frelich’s method was 5.32. 
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Figure 2-17:  RMS error over region of interest computed along x and y directions of 50,000 phase screens for 512 × 512 grid 
using various spectral power laws (α’s) and number of subharmonic constellations, Np.  μx = μy = 1 for all data points.  The 
randomized hybrid method (green), Frehlich subharmonic method (black), and Lane subharmonic method (magenta) are shown.  
Full results for all grid sizes and spectra under test are given in Appendix A.. 
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Figure 2-18:  RMS error over region of interest computed along x and y directions of 50,000 phase screens for 1024 × 1024 grid 
using various spectral power laws (α’s) and number of subharmonic constellations, Np.  μx = 1, μy = 2 for all data points.  The 
randomized hybrid method (blue) and Frehlich subharmonic method (black) are shown. 
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Figure 2-19:  RMS error over region of interest computed along x and y directions of 5,000 phase screens for 2048 × 2048 grid 
using various spectral power laws (α’s) and number of subharmonic constellations, Np.  μx = 1, μy = 2 for all data points.  The 
randomized hybrid method (red) and Frehlich subharmonic method (black) are shown.
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2.10:  Hybrid Algorithm Results for Bounded Spectral Models 

Returning to the modified atmospheric spectrum discussed in Section 2.6, 

we observe a marked difference in accuracy of the hybrid method versus the 

subharmonic method of Frehlich [53], which we refer to interchangeably as the 

traditional subharmonic method.  We have chosen to compare with this specific 

subharmonic method, as opposed to other candidates [82], due to its improved 

convergence with theory [53] by virtue of weighting the subharmonic amplitude 

variances using area integrals of spectral models of interest, as opposed to 

(nonrandomized) spectral samplings.  Results for various values of the outer scale, 

𝐿𝐿0, are shown in Figure 4-20 through Figure 4-22, for grid sizes of 512 × 512 

through 2048 × 2048 with full results given in Appendices A and C.  For each case, 

the size of the outer scale has been set as a factor of the total simulated x-, y-domain, 

which was always 1 m for this simulation set (i.e., 𝑀𝑀∆𝑥𝑥 = 1 m for all bounded 

spectrum data sets). The inner scale for the simulations of this section was fixed at 

𝑙𝑙0 = 𝑀𝑀∆𝑥𝑥 = 1 cm. Because the inner scale of interest was many times larger than 

the resolution of the grid, we elected not to include the white noise algorithm in the 

results of this section.
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Figure 2-20:  RMS error over region of interest computed along x- and y-directions for 5000 phase screens using modified 
spectrum, with 𝑙𝑙0 = 𝑀𝑀∆𝑥𝑥/100 and 𝑀𝑀 = 512 (i.e. grid size 512 × 512).  Complete tables of results for all grid sizes and spectra 
under test can be found in Appendix A. 
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Figure 2-21:  RMS error over region of interest computed along x- and y-directions for 5000 phase screens using modified 
spectrum, with 𝑙𝑙0 = 𝑀𝑀∆𝑥𝑥/100 and 𝑀𝑀 = 1024 (i.e. grid size 1024 × 1024). 
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Figure 2-22:  RMS error over region of interest computed along x- and y-directions for 5000 phase screens using modified 
spectrum, with 𝑙𝑙0 = 𝑀𝑀∆𝑥𝑥/100 and 𝑀𝑀 = 2048 (i.e. grid size 2048 × 2048). 
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The data in this section represent statistics taken from a large sampling of 

phase screens, along the number 𝑀𝑀/2 + 1 ordered row and column of each screen. 

Because the sampling directions are orthogonal, the sample set sizes are, 

essentially, 10,000 trials. We find that for each case, the hybrid method outperforms 

the traditional subharmonic method, which can be verified by close inspection of 

the tables in the appendices.  Comparing the minimum RMS error observed using 

each method for 𝐿𝐿0 = 1 to 105, we note that the average ratio of our Frehlich 

method’s minimum ℇ𝑀𝑀/2 to that of the hybrid method is 2.54 for the 512 × 512 

grid, 2.76 for the 1024 × 1024 grid, and 3.13 for the 2048 × 2048 grid.  For the 

512 × 512 grid, statistics were also collected for the Lane subharmonic method 

[52] and the error ratio between the Lane and hybrid method over all 𝐿𝐿0’s under 

test was 5.63.  In general, as previously stated in the literature [53] the Frehlich 

method outperforms the Lane method with the choice of an optimum 𝑁𝑁𝑝𝑝.  The ratio 

of minimum ℇ𝑀𝑀/2 between Lane vs Frehlich’s method was 2.21. 
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Chapter 3 : Numerical Verification of the Statistical Theories 
of Propagation of Optical Beams through Anisotropic, Non-
Kolmogorov Turbulence 
 

3.1:  Background 
 

Other the past year, we have performed a large number of simulations of 

anisotropic and non-Kolmogorov turbulence.  During this time, careful review of 

the theoretical literature [22, 23, 25, 59] showed various expressions for predicted 

spot sizes and scintillations indices in the presence of anisotropic turbulence. We 

have compared these theoretical predictions with simulation in order to determine 

which expressions to use in beam profiling-based turbulence analysis [83].  

Although it is not possible to convey all that we have learned, the following sections 

are intended to convey the most important points of interest.  All cases used the 

split-step method, and the angular spectrum propagation algorithm [33].  With 

regards to number of subharmonic groups added to phase screens, for each test a 

calibration was done to determine the minimum RMS percent error over the strong 

fluctuation theory beam diameter, with the best performing configuration chosen. 

3.2:  Spot Size Predictions in the Presence of Non-Kolmogorov Turbulence 

Several expressions exist in the literature for the long-term beam radii (spot 

sizes) for Gaussian beams propagating in non-Kolmogorov turbulence, within the 

deep fluctuation regime (Rytov variance much greater than one).  Before moving 
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on, we will introduce the non-dimensional curvature parameter and Fresnel 

parameter for the input and output planes, respectively, as: 

 
Θ0 = 1 −

𝐿𝐿
𝐹𝐹

 (3-1) 

 
Λ0 =

2𝐿𝐿
𝑘𝑘0𝑊𝑊0

2 (3-2) 

 
Θ =

Θ0
Θ02 + Λ02

 (3-3) 

 
Λ =

Λ0
Θ02 + Λ02

 (3-4) 

 

𝑊𝑊 = �
2𝐿𝐿
𝑘𝑘0Λ

 (3-5) 

with 𝑘𝑘0 the optical wavenumber, 𝐹𝐹 the radius of curvature in the transmit plane, 𝑊𝑊0 

the beam spot size in the transmit plane, 𝐿𝐿 the propagation distance, and 𝑊𝑊 the 

diffraction limited spot size.  It has been implied, that the weak fluctuation regime 

prediction, based upon the Rytov method, can be extended to the strong fluctuation 

regime with reasonable accuracy [25].  In terms of the diffraction limited spot size, 

W, and the output plane Fresnel parameter, the prediction is given by [25]:  

 𝑊𝑊𝐿𝐿𝐿𝐿,𝑥𝑥 ≅ 𝑊𝑊(1 + 𝑇𝑇𝑥𝑥)3 5�  (3-6) 
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(3-8) 
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(3-9) 

We shall refer to this method as the Rytov variance based method, because it is 

derived using the same technique as the expression for Kolmogorov turbulence, 

WLT ≅ W (1+1.33σR
2Λ5/6)3/5, in which the perturbation term is proportional to the 

Rytov variance. 

Perhaps of greater interest, there are two expressions in the strong 

fluctuation regime that are derived from the concept of coherence width.  We define 

the inverse spatial coherence method 1 using the coherence width of a plane wave, 

𝜌𝜌0, as [25]:  

 

𝑊𝑊𝐿𝐿𝐿𝐿,𝑥𝑥 ≅ �𝑊𝑊2 +
8𝐿𝐿2
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 (3-13) 

We define inverse spatial coherence method 2 using the coherence width of a 

spherical wave, ρs, as [59]:  
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In order to test the validity of the above equations, we ran 1,000 independent 

propagation simulations using nine α’s between 3.1 and 3.9, in steps of .1, as well 

as a Kolmogorov turbulence case.  Trials were performed with 10 evenly spaced 

phase screens each, and 5 km propagation distance using a collimated, 50 cm 

diameter, 1060 nm beam.  Phase screens were 2048 × 2048 with 0.5 mm grid 

spacing for α’s below 3.8, however a 4096 × 4096 grid with .25 mm spacing was 

used for α’s of 3.8 and 3.9 to avoid aliasing effects during propagation.  The 

generalized Rytov variance [23] was held at 10 for all cases.  As in two of the 

theoretical predictions of interest the anisotropy factor in one direction had no effect 

on the spot size in the orthogonal direction, we chose to simulate isotropic 

turbulence (μx = 1, μy = 1) for this example. As is evident in Figure 3-1, Equations 

(3-14) and (3-15) which makes use of the spherical wave coherence length produces 

the best agreement with theory across the span of α’s of interest. 
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Figure 3-1:  Beam diameter theoretical predictions vs simulation result across various α’s, with the Rytov variance held at 10 and 
i.e. grid size 2048 × 2048.  Trials were performed with 10 evenly spaced phase screens each, and 5 km propagation distance using 
a collimated, 50 cm diameter, 1060 nm beam.  Phase screens were 2048 × 2048 with 0.5 mm grid spacing for α’s below 3.8, 
however a 4096 × 4096 grid with .25 mm spacing was used for α’s of 3.8 and 3.9 to avoid aliasing effects during propagation.  
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3.3:  Focused Beams in Non-Kolmogorov Turbulence 

After reading comments from Xiao and Voelz [38] regarding the superior 

accuracy of the inverse spherical wave coherence width based method, shown in 

Equations (3-14) and (3-15) for focused beams, we investigated for several 

wavelengths, μy values, and propagation distances.  Specifically, Figure 3-2 shows 

the result for an initially 50 cm diameter, 632.8 nm beam propagating through 5 km 

of 𝐶̃𝐶𝑛𝑛2 = 10-14 m3-α anisotropic turbulence with μx = 1 and μy = 3.  Phase screens were 

2048 × 2048 with 0.5 mm grid spacing.  Although Equations (3-14) and (3-15) does 

appear to trend best with simulation results, agreement is not as good as in the 

collimated beam case of Figure 3-1.  Additionally, when running additional 

simulations with increased wavelength and increased μy, in order to lower the 

generalized Rytov variance, the undershooting of the simulation beam diameters 

relative to theory was sustained, suggesting it is not an artifact of different 

turbulence regimes being applicable to differing values of α. Perhaps the most 

interesting feature in Figure 3-2 is the Rytov variance based method’s differing 

shape relative to all the other curves and simulation trends shown.  This may be 

related to the manner in which the perturbation term is applied in Equations (3-6) 

and (3-7), vs Equations (3-10), (3-11), (3-14), and (3-15).   
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Figure 3-2:  Measured beam diameter results for an initially 50 cm diameter, 632.8 nm focused beam propagating through 5 
km of of 𝐶̃𝐶𝑛𝑛2 = 10-14 m3-α anisotropic turbulence with μx = 1 and μy = 3.  Phase screens were 2048 × 2048 with 0.5 mm grid 
spacing.  
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The on-axis scintillation indices of focused beams in non-Kolmogorov, 

anisotropic turbulence were analyzed in various configurations during the course 

of this study.  Although we note very good agreement with theory for collimated 

beams, even with effective beam parameters considered [84] the results do not trend 

well, as shown in Figure 3-3 which we feel is representative of many of the 

simulations run.  The configuration used for generation of Figure 3-3 was similar 

to that of Figure 3-2, however we used a 1060 nm beam in isotropic turbulence (μx 

= μy = 1).  We should note that simulations in the weak fluctuation regime were not 

run, as extreme contracting the grid spacing of simulation during each propagation 

step would most likely be necessary to get accurate estimates.  Although we later 

altered our propagation algorithm in order to allow for this adjustment [33], a more 

detailed method of choosing the best configuration for the phase screens would 

need to be considered, as we assumed a constant basis of simulation in our 

calibration for optimum number of subharmonics groups to be added for each value 

of α.   
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Figure 3-3:  Simulation results vs theory for on-axis scintillation index, 𝜎𝜎𝐼𝐼2(0,0), of 
focused 1060 nm beam propagating through 5 km of anisotropic turbulence.  Simulation 
results do not trend well with theoretical predictions.   

3.4:  Weak Turbulence Regime Predictions of Spot Size 

Equations (3-6) though (3-9) were initially derived using weak fluctuation 

theory assumptions [23].  An interesting feature of Equations (3-6) though (3-9) is 

that as μx is held constant, and μy increases, the spot size in the x-direction is 

predicted to slightly increase, and the y-direction spot size decrease, for valid values 

of α.  We found this surprising, as the generalized Rytov variance is expected to 
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decrease as μy increases [23], indicating less optical turbulence.  Other similarly 

derived equations [76] predict no change in the x-direction spot size, or a radially 

symmetric beam [23].  In order to test this, a simulation was carried out for an 

initially 10 cm diameter beam propagating across a 2 km path in 𝐶̃𝐶𝑛𝑛2 = 10-14 m-7/10 

of turbulence, with α = 3.7.  These values were chosen such that the highest 

generalized Rytov variance under test was just under one, placing us squarely 

outside the strong fluctuation regime for collimated beams [9].  As shown in Figure 

8, the x-direction spot size does not show good agreement with theory.  On a 

positive note, this test does in-fact demonstrate that in the weak turbulence regime 

the x- and y-direction spot sizes are not independent of the anisotropy parameter in 

the orthogonal direction, as predicted by the coherence radius predictions of 

Equations (3-10), (3-11), (3-14), and (3-15). 
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Figure 3-4:  Simulation results for long term beam diameters in anisotropic turbulence versus theory  as μx is held at one, and μy is 
swept from one to ten, for an initially 10 cm diameter beam propagating across a 2 km path in 𝐶̃𝐶𝑛𝑛2 = 10-14 m-7/10 of turbulence, with 
α = 3.7.  The x-direction spot size does not trend well with theory, though the simulation does show that the x- and y-direction spot 
sizes are not independent of the anisotropy parameter in the orthogonal direction. 
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3.5:  Scintillation Index and Aperture Averaging of Scintillation in the Presence of 

Optical Turbulence and Refractivity Distortions 

During the course of performing the research relevant to this thesis, 

concerns began to grow within the atmospheric modelling community that the 

effects of non-turbulent optical refractivity were non-negligible [85, 86, 87].  In 

addition to a renewed focus on the models used for the optical refractive index in 

the atmosphere [85, 86], researchers have also generalized the weak fluctuation 

regime predictions associated with propagation through non-Kolmogorov, 

anisotropic turbulence to encompass non-turbulence spot size asymmetries in the 

receiver plane.  To analyze these predictions using the phase screen Monte Carlo 

methods, we define the following: 

 Θ0,𝑥𝑥 = 1 −
𝑧𝑧
𝐹𝐹0,𝑥𝑥

,     Θ0,𝑦𝑦 = 1 −
𝑧𝑧
𝐹𝐹0,𝑦𝑦

 (3-18) 

 Λ𝑥𝑥 =
Λ0

Λ02 + Θ0,𝑥𝑥
2 ,     Λ𝑦𝑦 =

Λ0
Λ02 + Θ0,𝑦𝑦

2  (3-19) 

 
Θ𝑥𝑥 =

Θ0,𝑥𝑥

Λ02 + Θ0,𝑥𝑥
2 ,     Θ𝑦𝑦 =

Θ0,𝑦𝑦

Λ02 + Θ0,𝑦𝑦
2  

(3-20) 

 Θ𝑥𝑥 = 1 − Θ𝑥𝑥 ,     Θ𝑦𝑦 = 1 − Θ𝑦𝑦 (3-21) 

 
𝑊𝑊𝑥𝑥 = �

2𝐿𝐿
𝑘𝑘0Λ𝑥𝑥

,     𝑊𝑊𝑦𝑦 = �
2𝐿𝐿
𝑘𝑘0Λ𝑦𝑦

 (3-22) 

where Θ0,𝑥𝑥 and Θ0,𝑦𝑦 are the transmit plane curvature beam parameters in the x- and 

y-directions, Λ𝑥𝑥 and Λ𝑦𝑦 transmit plane Fresnel beam parameters in the x- and y-
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directions, Θ𝑥𝑥 and Θ𝑦𝑦 are the receive plane curvature beam parameters in the x- and 

y-directions, and 𝑊𝑊𝑥𝑥 and 𝑊𝑊𝑦𝑦 are the receive plane diffraction limited spot sizes x- 

and y-directions.  In the weak fluctuation regime, the scintillation index at any point 

can be expressed at the sum of off-axis and axial contributions [9, 24], i.e.: 

 𝜎𝜎𝐼𝐼2(𝑥𝑥,𝑦𝑦, 𝐿𝐿) = 𝜎𝜎𝐼𝐼,𝑟𝑟2 (𝑥𝑥,𝑦𝑦, 𝐿𝐿) + 𝜎𝜎𝐼𝐼,𝑙𝑙2 (𝐿𝐿) (3-23) 

The off-axis contribution, 𝜎𝜎𝐼𝐼,𝑟𝑟2 , axial contributions, 𝜎𝜎𝐼𝐼,𝑙𝑙2 , and mean intensity, I, 

according to weak fluctuation regime approximations are given by: 

𝜎𝜎𝐼𝐼,𝑟𝑟
2 (𝑥𝑥, 𝑦𝑦, 𝐿𝐿) = 4𝜋𝜋𝑘𝑘02𝐿𝐿�𝑑𝑑𝑑𝑑

1

0

� 𝑑𝑑𝜅𝜅𝑥𝑥

∞

−∞

� 𝑑𝑑𝜅𝜅𝑦𝑦

∞

−∞

Ф𝑛𝑛�𝜅𝜅𝑥𝑥 , 𝜅𝜅𝑦𝑦� exp �−
𝐿𝐿𝜉𝜉2

𝑘𝑘0
�𝜅𝜅𝑥𝑥2Λ𝑥𝑥 + 𝜅𝜅𝑦𝑦2Λ𝑦𝑦�� 

× �exp�2𝜉𝜉�𝜅𝜅𝑥𝑥Λ𝑥𝑥𝑥𝑥 + 𝜅𝜅𝑦𝑦Λ𝑦𝑦𝑦𝑦�� − 1� 

(3-24) 

𝜎𝜎𝐼𝐼,𝑙𝑙
2 (𝐿𝐿) = 4𝜋𝜋𝑘𝑘02𝐿𝐿�𝑑𝑑𝑑𝑑

1

0

� 𝑑𝑑𝜅𝜅𝑥𝑥

∞

−∞

� 𝑑𝑑𝜅𝜅𝑦𝑦

∞

−∞

Ф𝑛𝑛�𝜅𝜅𝑥𝑥, 𝜅𝜅𝑦𝑦� exp �−
𝐿𝐿𝜉𝜉2

𝑘𝑘0
�𝜅𝜅𝑥𝑥2Λ𝑥𝑥 + 𝜅𝜅𝑦𝑦2Λ𝑦𝑦�� 

× �1 − cos �
𝐿𝐿𝐿𝐿
𝑘𝑘0
��1 − Θ𝑥𝑥𝜉𝜉�𝜅𝜅𝑥𝑥2 + �1 − Θ𝑦𝑦𝜉𝜉�𝜅𝜅𝑦𝑦2��� 

(3-25) 

 
𝐼𝐼(𝑥𝑥,𝑦𝑦, 𝐿𝐿) ∝ exp �−

𝑘𝑘02�𝑥𝑥2Λ𝑥𝑥 + 𝑦𝑦2Λ𝑦𝑦�
2𝐿𝐿2

� × exp �
𝜎𝜎𝐼𝐼,𝑟𝑟2 (𝑥𝑥,𝑦𝑦, 𝐿𝐿)

2
� 

= exp �−�
2𝑥𝑥2

𝑊𝑊𝑥𝑥
2 +

2𝑦𝑦2

𝑊𝑊𝑦𝑦
2�+

𝜎𝜎𝐼𝐼,𝑟𝑟2 (𝑥𝑥,𝑦𝑦, 𝐿𝐿)
2

�   

(3-26) 

 In order to check the reliability of the above expressions, phase screen 

simulations were performed using the hybrid method discussed in Chapter 2.  Based 

on observations from experiments which will be discussed in the next chapter, a 

two to one ratio of the x- and y-axis diffraction limited spot sizes was chosen as a 

worst case for examination.  Simulations were performed for a range of 𝜇𝜇𝑦𝑦 values, 
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generalized Rytov variances, and input plane beam parameters.  𝜇𝜇𝑥𝑥 and the 

propagation distance were held constant at 1 and 530 m, respectively.  For weak 

fluctuation regime experiments, we have been mainly interested in the study of 

divergent beams in because we generally needed to defocus the beam expander 

calibration away from collimated in order to fully illuminate the instrument 

collecting apertures.  All cases shown used 1,000 trials, 10 phase screens and 

propagations, and 4 subharmonic constellations (𝑁𝑁𝑝𝑝 = 4).  In this section, only 

Kolmogorov (𝛼𝛼 = 11/3) turbulence has been considered.  For the below three 

figures, the elliptical diffraction limited beam was achieved by warping the input 

plane radius of curvature such that 𝐹𝐹0,𝑥𝑥 = −54.63 m and 𝐹𝐹0,𝑦𝑦 = −122.42 m.  

These values were chosen in order to achieve diffraction limited spot sizes of 𝑊𝑊𝑥𝑥 =

15 cm and 𝑊𝑊𝑦𝑦 = 7.5 cm. 
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Figure 3-5:  Output plane scintillation index in decibels for 𝜇𝜇𝑥𝑥 = 𝜇𝜇𝑦𝑦 = 1, 𝑊𝑊0 = 1.4 cm, 
𝑊𝑊𝑥𝑥 = 15 cm, 𝑊𝑊𝑦𝑦 = 7.5 cm, L = 530 m, spherical wave Rytov variance of .1 case. 
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Figure 3-6:  Comparison of observed and theoretically predicted scintillation 
indices in for 𝜇𝜇𝑥𝑥 = 𝜇𝜇𝑦𝑦 = 1, 𝑊𝑊0 = 1.4 cm, 𝑊𝑊𝑥𝑥 = 15 cm, 𝑊𝑊𝑦𝑦 = 7.5 cm, L = 530 
m, spherical wave Rytov variance of .1 case. 
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Figure 3-7:  Output plane aperture averaged scintillation index in decibels for 𝜇𝜇𝑥𝑥 = 𝜇𝜇𝑦𝑦 =
1, 𝑊𝑊0 = 1.4 cm, 𝑊𝑊𝑥𝑥 = 15 cm, 𝑊𝑊𝑦𝑦 = 7.5 cm, L = 530 m, spherical wave Rytov variance 
of .1 case.  Beam intensity was averaged over a 2.5 cm diameter aperture for this trial.   

 Figure 3-6 underscores problems with the theoretical predictions from the 

weak fluctuation theory.  We make the following observations: 

1. The on-axis scintillation index is roughly accurate, but overestimates 

turbulence at the beam’s long term center. 

2. The scintillation index prediction trends well with theory along the semi-

major axis of the spot ellipse. 

3. The scintillation index prediction trends very poorly with theory along the 

semi-minor axis of the spot ellipse. 
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4. The scintillation index produced from the phase screen simulation 

observations near the diffraction limited spot radii are approximately equal. 

5. Use of a 2.5 cm aperture provides significant attenuation of the observed 

scintillation index. 

6. The on-axis scintillation index is better approximated by the spherical wave 

Rytov variance (0.1) than the theoretical prediction. 

Regarding observations number 2 and 3, in order to sanity check the results we have 

also included simulation results for a symmetric divergent beams, below. 

A second run of simulation set was performed using a beam with 𝑊𝑊0 = 1.4 

cm, 𝑊𝑊𝑥𝑥 = 15 cm, and 𝐹𝐹0,𝑥𝑥 = −54.63 m.  We believed that this step was necessary 

because weak fluctuation theory predictions for scintillation index have been 

present in the literature for quite some time [9], and off-axis scintillation index 

predictions have been compared to theoretical predictions.  In light of that, we have 

included results for the 15 cm and 7.5 cm diffraction limited spot size cases in 

Figure 3-8 and Figure 3-9, respectively.  As Figure 3-8 and Figure 3-9 demonstrate, 

for symmetric input beam parameters the theory appears to work quite well.  

Additionally, the attenuation of scintillation index via aperture averaging for this 

case is roughly the same as for asymmetric beam case with an identical turbulence 

profile. 
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Figure 3-8:  Comparison of observed and theoretically predicted scintillation indices in 
for 𝜇𝜇𝑥𝑥 = 𝜇𝜇𝑦𝑦 = 1, 𝑊𝑊0 = 1.4 cm, 𝑊𝑊 = 15 cm, L = 530 m, spherical wave Rytov variance 
of .1 case. 
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Figure 3-9:  Comparison of observed and theoretically predicted scintillation indices 
in for 𝜇𝜇𝑥𝑥 = 𝜇𝜇𝑦𝑦 = 1, 𝑊𝑊0 = 1.4 cm, 𝑊𝑊 = 7.5 cm, L = 530 m, spherical wave Rytov 
variance of .1 case. 

 Given the issues observed with the theoretical predictions we use an 

approximation aimed at better estimating the scintillation index within the spot 

ellipse, which will be of key importance in our experimental results presented in 

the next chapter.  Noting that the radial component of scintillation index along the 

beam’s semi-major axis is approximated quite well by Equation (3-24), we build a 

new approximation based on the following: 

1. The radial component of the scintillation index is approximately parabolic 

within the diffraction limited spot ellipse [9, 24]. 
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2. The on-axis component of scintillation index for divergent beams is better 

approximated by the spherical wave Rytov variance than Equation (3-23).  

3. The scintillation index along the semi-minor axis is better approximated by 

scaling the semi-major axis prediction such that the scintillation index at the 

spot radius of the semi-minor axis equals the corresponding scintillation 

index at the spot radius of the semi-major axis. 

In order to explicitly demonstrate observation number two we have included 

Figure 2-10 which shows that, for a divergent beam case, this observation is 

robust across a number of 𝜇𝜇𝑦𝑦 values.  In Figure 2-10 we have provided some 

averaging of the scintillation index around the beam centroid using the 

following methods: 

a) Using the point estimate as the beam center (0,0). 

b) Averaging those factors collected within a 1 cm radius around the beam 

center. 

c) Averaging the factors collected from points within half the spot radius for a 

given transverse angle across the receive plane (i.e. �𝑥𝑥2/𝑊𝑊𝑥𝑥
2 + 𝑦𝑦2/𝑊𝑊𝑦𝑦

2 ≤

.5), which we dub the half spot average method. 

d) Averaging the factors collected from points within the spot radius for a 

given transverse angle across the receive plane (i.e. �𝑥𝑥2/𝑊𝑊𝑥𝑥
2 + 𝑦𝑦2/𝑊𝑊𝑦𝑦

2 ≤

1), which we dub the full spot average method. 
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Figure 3-10:  Comparison of observed and theoretically predicted scintillation indices 
plotted as functions of the spherical wave Rytov variance for an asymmetric beam in 
isotropic turbulence for a range of 𝜇𝜇𝑦𝑦’s with 𝜇𝜇𝑥𝑥 = 1, 𝑊𝑊0 = 1.4 cm, 𝑊𝑊𝑥𝑥 = 15 cm, 𝑊𝑊𝑦𝑦 =
11.25 cm, L = 530 m. 

In order to deal with these observations as well as the issue of anisotropy 

(i.e. the faster rise of scintillation index along the axis of lower 𝜇𝜇), we investigate 

an approximation provided by Beason [87] for symmetric beams in the presence of 

anisotropic turbulence, assuming 𝐶̃𝐶𝑛𝑛2 has been calibrated such that 𝜇𝜇𝑥𝑥 = 1: 

𝜎𝜎𝐼𝐼,𝑟𝑟2 (𝑥𝑥,𝑦𝑦, 𝐿𝐿) ≅
𝜋𝜋Γ �2 − 𝛼𝛼

2�
𝛼𝛼 − 1

𝐴𝐴(𝛼𝛼)𝐶̃𝐶𝑛𝑛2𝑘𝑘0
4−𝛼𝛼2𝐿𝐿

𝛼𝛼
2−1𝛬𝛬

𝛼𝛼
2  

× � �𝑥𝑥 cos𝜑𝜑 +
𝑦𝑦 sin𝜑𝜑
𝜇𝜇𝑦𝑦

�
2

�cos2 𝜑𝜑 +
sin2 𝜑𝜑
𝜇𝜇𝑦𝑦2

�

𝛼𝛼
2−2

𝑑𝑑𝑑𝑑
2𝜋𝜋

0

 

(3-27) 
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For the isotropic turbulence case (𝜇𝜇𝑥𝑥 = 𝜇𝜇𝑦𝑦 = 1), clearly the issue regarding 

equalizing the scintillation index at the spot radii can be achieved via the revised 

radial scintillation index approximation: 

𝜎𝜎�𝐼𝐼,𝑟𝑟2 (𝑥𝑥,𝑦𝑦, 𝐿𝐿) ≅
𝜋𝜋Γ �2 − 𝛼𝛼

2�
𝛼𝛼 − 1

𝐴𝐴(𝛼𝛼)𝐶̃𝐶𝑛𝑛2𝑘𝑘0
4−𝛼𝛼2𝐿𝐿

𝛼𝛼
2−1 ∙ �𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝛬𝛬𝑥𝑥,𝛬𝛬𝑦𝑦)�

𝛼𝛼
2  

× �cos2[∠(𝑥𝑥 + 𝑗𝑗𝑗𝑗)] +
𝛬𝛬𝑦𝑦
𝛬𝛬𝑥𝑥

sin2[∠(𝑥𝑥 + 𝑗𝑗𝑗𝑗)]� 

× � �𝑥𝑥 cos𝜑𝜑 +
𝑦𝑦 sin𝜑𝜑
𝜇𝜇𝑦𝑦

�
2

�cos2 𝜑𝜑 +
sin2 𝜑𝜑
𝜇𝜇𝑦𝑦2

�

𝛼𝛼
2−2

𝑑𝑑𝑑𝑑
2𝜋𝜋

0

 

(3-28) 

We note that for Equation (3-28) yields, 𝜎𝜎�𝐼𝐼,𝑟𝑟2 (𝑥𝑥, 0, 𝐿𝐿) = 𝜎𝜎𝐼𝐼,𝑟𝑟2 (𝑥𝑥, 0, 𝐿𝐿), where 

𝜎𝜎𝐼𝐼,𝑟𝑟2 (𝑥𝑥, 0, 𝐿𝐿) is given by Equation (3-27).  However for isotropic turbulence (𝜇𝜇𝑦𝑦 =

1), for 𝑦𝑦 = 𝑊𝑊𝑦𝑦, Equation (3-28) yields 𝜎𝜎�𝐼𝐼,𝑟𝑟2 �0,𝑊𝑊𝑦𝑦,𝐿𝐿� = 𝜎𝜎𝐼𝐼,𝑟𝑟2 (𝑊𝑊𝑥𝑥, 0, 𝐿𝐿) by virtue of 

the factor �𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝛬𝛬𝑥𝑥, 𝛬𝛬𝑦𝑦)�
𝛼𝛼
2 × cos2[∠(𝑥𝑥 + 𝑗𝑗𝑗𝑗)] +

𝛬𝛬𝑦𝑦

𝛬𝛬𝑥𝑥
sin2[∠(𝑥𝑥 + 𝑗𝑗𝑗𝑗)].  This is 

because of the following relationship: 

𝜎𝜎�𝐼𝐼,𝑟𝑟2 �0,𝑊𝑊𝑦𝑦, 𝐿𝐿� ≅
4𝜋𝜋2Γ �2 − 𝛼𝛼

2�
𝛼𝛼 − 1

𝐴𝐴(𝛼𝛼)𝐶̃𝐶𝑛𝑛2𝑘𝑘0
4−𝛼𝛼2𝐿𝐿

𝛼𝛼
2−1 ∙ 𝛬𝛬𝑥𝑥

𝛼𝛼
2 ∙
𝛬𝛬𝑦𝑦
𝛬𝛬𝑥𝑥

∙ 𝑊𝑊𝑦𝑦
2 

                              =
4𝜋𝜋2Γ �2 − 𝛼𝛼

2�
𝛼𝛼 − 1

𝐴𝐴(𝛼𝛼)𝐶̃𝐶𝑛𝑛2𝑘𝑘0
4−𝛼𝛼2𝐿𝐿

𝛼𝛼
2−1 ∙ 𝛬𝛬𝑥𝑥

𝛼𝛼
2 ∙
𝑊𝑊𝑥𝑥

2

𝑊𝑊𝑦𝑦
2 ∙ 𝑊𝑊𝑦𝑦

2 

                                 = 𝜎𝜎�𝐼𝐼,𝑟𝑟2 (𝑊𝑊𝑥𝑥, 0, 𝐿𝐿) 

(3-29) 
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The results using this revise approximation are shown below.  Although we 

acknowledge that the revision is not perfect, the results within the diffraction 

limited ellipse are much improved as compared to Figure 3-6.  
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Figure 3-11:  Comparison of observed and theoretically predicted scintillation indices for 
an asymmetric beam in anisotropic turbulence for 𝜇𝜇𝑦𝑦 = 1/3, 𝑊𝑊0 = 1.4 cm, 𝑊𝑊 = 15 cm, 
L = 530 m, spherical wave Rytov variance of .01 case. 
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Figure 3-12:  Comparison of observed and theoretically predicted scintillation indices 
for an asymmetric beam in isotropic turbulence for 𝜇𝜇𝑥𝑥 = 𝜇𝜇𝑦𝑦 = 1, 𝑊𝑊0 = 1.4 cm, 
𝑊𝑊𝑥𝑥 = 15 cm, 𝑊𝑊𝑦𝑦 = 7.5 cm, L = 530 m, spherical wave Rytov variance of .01 case. 

In order to use the approximations in experiments using apertured receiver 

systems, we seek to also assess the aperture averaging factor associated with 

divergent beams in anisotropic turbulence.  Specifically, we are interested in the 

impact of a 2.5 cm circular aperture.  Prior to reviewing the simulation data, we 

review the theory of aperture averaging of scintillation with regards to a parameter 

we have so far ignored in this chapter, which is the inner scale.  The so called 

Kolmogorov microscale of turbulence is typically approximated by the expression 

[80]: 
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𝑙𝑙0 = �

𝜈𝜈3

𝜀𝜀
�
1
4�

 (3-30) 

where 𝜈𝜈 is the kinematic viscosity, with units of 𝑚𝑚2/𝑠𝑠 , and 𝜀𝜀 is the rate of 

kinematic energy dissipation, with units of watts per kilogram or 𝑚𝑚2/𝑠𝑠3.  In Section 

2.6 we discussed the modified atmospheric spectrum, which is dependent upon both 

inner and outer scale parameters.  Prior to work done by Andrews [74] and Frehlich 

[53] to approximate the spectral energy density near the spectral cutoff studied by 

Hill [26], it was common to account for inner and outer scale effects by using the 

von Karman spectrum given by [9]: 

 
Ф𝑛𝑛(𝜅𝜅) = 0.0330 ∙ 𝐶𝐶𝑛𝑛2 ∙

exp (−𝜅𝜅2/𝜅𝜅𝑙𝑙2)
(𝜅𝜅2 + 𝜅𝜅02)11/6  (3-31) 

 𝜅𝜅𝑙𝑙 =
3.3
𝑙𝑙0

,       𝜅𝜅0 =
2𝜋𝜋
𝐿𝐿0

 (3-32) 

This equation for the power spectrum is essentially identical to that of the modified 

spectrum, but without the f function factor given by Equation (2-30).  The plot 

below displays the effect of inner scale on the scintillation index for vary beam 

conditions. 
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Figure 3-13:  Theoretically predicted scintillation index as a function of inner scale, 𝑙𝑙0, 
for a variety of beams in isotropic turbulence:  1) Blue curves represent prediction for a 
beam with 𝑊𝑊0 = 50 cm; 2) Green curves represent prediction for an initially collimated 
beam with 𝑊𝑊0 = 1.4 cm and 𝐹𝐹0 = 120 m; 3) Red curves represent prediction for a beam 
with 𝑊𝑊0 = 50 μm and 𝐹𝐹0 = 530 m, which was the propagation distance for all curves.  
All results are for a wavelength of 632.8 μm and a plane wave Rytov variance of .05.   

Before looking at inner scale affects, we note that Figure 3-13 shows that 

for an initially very wide, collimated beam the on-axis scintillation index 

approaches the plane was Rytov variance very closely for small inner scales.  

Additionally, the initially very small with a divergence equal to the propagation 
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distance behaves approximately the same as a spherical wave in Kolmogorov 

turbulence for small inner scales.  These observations lend confidences that our 

numerical evaluations of the scintillation index integrals are correct. 

However, the theoretical dependency of scintillation index on inner scale 

for on scintillation for both the modified spectrum and von Karman spectrum are 

both quiet drastic.  Luckily, analysis of these effects when using an apertured 

receiver indicate the effects are tempered with large enough apertures, as we will 

demonstrate.  Sasiala [88] has provided an aperture averaging filter function, F, for 

use in spectral domain scintillation index equations, in this case Equation (3-25), 

using a normalized Airy function given by: 

 
𝐹𝐹(𝜅𝜅,𝐷𝐷) = �

2𝐽𝐽1(𝜅𝜅𝜅𝜅/2 )
𝜅𝜅𝜅𝜅/2 

�
2

 (3-33) 

where 𝐷𝐷 is the diameter of the aperture, 𝜅𝜅 = �𝜅𝜅𝑥𝑥2 + 𝜅𝜅𝑦𝑦2 is the radial wavenumber, 

and 𝐽𝐽1 is the first order Bessel function of the first kind.  Insertion of this filter 

function into Equation (3-25) yields the results below, demonstrating that 

aperturing tempers the results of the inner scale. 
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Figure 3-14:  Theoretically predicted 2.5 cm diameter aperture averaged scintillation 
index as a function of inner scale, 𝑙𝑙0, for a variety of beams in isotropic turbulence:  1) 
Blue curves represent prediction for a beam with 𝑊𝑊0 = 50 cm; 2) Green curves 
represent prediction for an initially collimated beam with 𝑊𝑊0 = 1.4 cm and 𝐹𝐹0 = 120 m; 
3) Red curves represent prediction for a beam with 𝑊𝑊0 = 50 μm and 𝐹𝐹0 = 530 m, which 
was the propagation distance for all curves.  All results are for a wavelength of 632.8 μm 
and a plane wave Rytov variance of .05. 

 Although weak fluctuation theory approximations for the aperture 

averaging factor are available, we choose to investigate the aperture averaging 

factor using our wave propagation simulations directly.  This is because all of the 

weak fluctuation theory filter functions for aperture averaging share the 

characteristic that they scale directly with the 𝐶𝐶𝑛𝑛2 (and therefore the Rytov 

variances) along the propagation path whereas, as we will demonstrate, we note a 



128 
 

slight increase in the aperture averaging factor as the Rytov variance (and therefore 

𝐶𝐶𝑛𝑛2) is increased, as we will demonstrate.  Before moving forward, we would like 

to discuss general trends of the aperture averaging function for asymmetric beams.  

The aperture averaging factor as a function of distance along the semi-major (x-) 

and semi-minor (y-) axes of the spot ellipse for a somewhat typical case is shown 

in Figure 3-15.  Having examined many such plots we have observed that within 

the diffraction limited spot ellipse, if one ignores the noisiness of observation, the 

aperture averaging factor is approximately constant. 

 In order to mitigate the noisiness of the aperture averaging factor estimates, 

we compare several methods for estimating the on-axis aperture averaging factor 

in light of all of the phase screen simulation data we’ve collected: 

1. Using the point estimate as the beam center (0,0). 

2. Averaging those factors collected within a 1 cm radius around the beam 

center. 

3. Averaging the factors collected from points within half the spot radius for a 

given transverse angle across the receive plane (i.e. �𝑥𝑥2/𝑊𝑊𝑥𝑥
2 + 𝑦𝑦2/𝑊𝑊𝑦𝑦

2 ≤

.5), which we dub the half spot average method. 

4. Averaging the factors collected from points within the spot radius for a 

given transverse angle across the receive plane (i.e. �𝑥𝑥2/𝑊𝑊𝑥𝑥
2 + 𝑦𝑦2/𝑊𝑊𝑦𝑦

2 ≤

1), which we dub the full spot average method. 
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Figure 3-16 and Figure 3-17 help visualize the impact of using the four cited 

methods.  We note that generally, the half spot ellipse method significantly reduces 

the noisiness of the estimates without significantly appearing to attenuate the 

aperture averaging factor away from the 1 cm or point estimates, which cannot be 

said for the full spot average method.   

 
Figure 3-15:  Aperture averaging factors along x- and y-axes  for 𝜇𝜇𝑥𝑥 = 𝜇𝜇𝑦𝑦 = 1, 𝑊𝑊0 =
1.4 cm, 𝑊𝑊𝑥𝑥 = 15 cm, 𝑊𝑊𝑦𝑦 = 11.25 cm, L = 530 m, spherical wave Rytov variance of .1 
case. 
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Figure 3-16:  Comparison of point vs 2.5 diameter aperture averaged scintillation indices 
for a variety of spherical wave Rytov variances and an asymmetric beam in isotropic 
turbulence using 𝜇𝜇𝑥𝑥 = 𝜇𝜇𝑦𝑦 = 1, 𝑊𝑊0 = 1.4 cm, 𝑊𝑊𝑥𝑥 = 15 cm, 𝑊𝑊𝑦𝑦 = 7.5 cm, L = 530 m. 
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Figure 3-17:  Comparison of 2.5 diameter aperture averaging factors for a variety of 
spherical wave Rytov variances for an asymmetric beam in isotropic turbulence using 
𝜇𝜇𝑥𝑥 = 𝜇𝜇𝑦𝑦 = 1, 𝑊𝑊0 = 1.4 cm, 𝑊𝑊𝑥𝑥 = 15 cm, 𝑊𝑊𝑦𝑦 = 7.5 cm, L = 530 m.  The results were 
further averaged using the following methods  

 Finally, in order to build confidence that the techniques discussed are 

correct for a range of anisotropy ratios, we have provided a plot of the half spot 

averaged aperture averaging factor across a number of 𝜇𝜇𝑦𝑦’s between 1/3rd and 3, 

while holding 𝜇𝜇𝑥𝑥 = 1.  Figure 3-18 demonstrates that for a wide range of anisotropy 

ratios, the aperture averaging factor as a function of the spherical wave Rytov 

variance is approximately constant over a wide range of 𝜇𝜇𝑦𝑦’s.  Additionally, we 

have performed the same analysis for a variety of symmetric and asymmetric beams 

with differing spot sizes, and noted that the aperture averaging factors collected are 

approximately the same. 
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Figure 3-18:  Aperture averaging factor for various values of 𝜇𝜇𝑦𝑦 plotted as a function of 
the spherical wave Rytov variances using an asymmetric beam in isotropic turbulence 
using 𝑊𝑊0 = 1.4 cm, 𝑊𝑊𝑥𝑥 = 15 cm, 𝑊𝑊𝑦𝑦 = 7.5 cm, L = 530 m. 

 In the next chapter, we will use the aperture averaging factor collected for 

divergent beams in order to estimate 𝐶𝐶𝑛𝑛2 over a long path in the weak fluctuation 

regime.  In order to do so, we have performed a fourth order polynomial fit of the 

aperture averaging factor, averaged across all 𝜇𝜇𝑦𝑦’s, as a function of the natural 

logarithm of the spherical wave Rytov variance.  Details regarding the fit plotted in 

Figure 3-18 are given in Equations (3-34) and (3-35).  We note that there is only a 

small error of the fit across all 𝜇𝜇𝑦𝑦 (1.28% standard deviation, and 3.47% maximum 

error).   

 
𝐹𝐹𝑎𝑎𝑎𝑎�𝜎𝜎𝑅𝑅,𝑠𝑠

2 ,𝐷𝐷� =
𝜎𝜎𝐼𝐼2(0)
𝜎𝜎𝐼𝐼2(𝐷𝐷) ≅�𝐴𝐴𝑛𝑛

4

𝑛𝑛=0

∙ �ln�𝜎𝜎𝑅𝑅,𝑠𝑠
2 ��

𝑛𝑛
 (3-34) 
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⎥
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⎥
⎤
 (3-35) 

 In conclusion, we have noted issues with the weak fluctuation theory 

predictions for the scintillation index of divergent and asymmetrical beams.  

However, the set of updated approximations developed in this section provide a 

good fit of the unexplained differences between the weak fluctuation theory results 

and the observed results from Monte-Carlo phase screen simulations of optical 

propagation through turbulence within the spot ellipse.  We remind the reader, that 

both the weak fluctuation theory and the phase screen codes use the Markov 

Approximation (see Section 1.2) and the Paraxial Approximation, so these 

discrepancies are somewhat unexpected.  Although it seems evident a thorough 

review of the mathematics and symmetry assumptions employed to develop the 

weak fluctuation theory predictions for beam waves needs to be performed, we 

leave these items as work to be performed in the future.
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Chapter 4 : Experimental Investigations Atmospheric 
Distortions Using a Multi-Aperture Transmissometer 

 
4.1:  Introduction 

Lasers transmissometers are devices used to estimate the absorption of light 

traveling through the atmosphere [89].  These devices have applications in 

monitoring visibility conditions [90], measuring concentrations of aerosols in the 

atmosphere [91], estimating concentrations of dissolved particles in media [92], and 

estimating predictions of thermal blooming [93].  Accurate monitoring of 

atmospheric absorption of light is highly desirable in free-space optical (FSO), 

directed energy (DE), and remote sensing (RS) applications, as alteration of system 

performance due to aerosol effects can lead to system degradations and failures 

[94].  

Transmissometers consist of transmitters and receivers, which are typically 

spaced at short distances so as to enable total collection of the transmitted laser 

beam at the receiving aperture in the presence of optical turbulence effects.  

Although other apparatus aimed at estimating extinction coefficients of the 

atmosphere over longer, multiple kilometer paths have been experimentally tested 

[95], devices typically produce useful extinction estimates below the strong 

turbulence regime.  With these considerations as motivating factors, the Maryland 

Optics Group (MOG) has designed a multi-aperture transmissometer (MAT) 
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capable of long-path extinction coefficient estimates, which uses beam profiling 

techniques robust to optical turbulence distortions [71].  In this paper, we will 

demonstrate the successful operation of the MOG MAT at estimating absorption in 

the strong turbulence regime, as well as in estimating turbulence strength by virtue 

of estimates of the turbulent beam spreading along long paths along with 

scintillation index profiling. 

4.2:  MOG MAT Fundamentals 

Laser transmissometers are devices traditionally used to measure the 

extinction coefficient of a medium by measuring the total intensity of light at a 

receiver larger in diameter than the diameter of the beam, and measuring the 

extinction coefficient as [83]: 

 
𝜎𝜎 = −

1
𝐿𝐿
𝑙𝑙𝑙𝑙 �

∫ 𝐼𝐼 𝑑𝑑𝑑𝑑
∫ 𝐼𝐼0𝑑𝑑𝑑𝑑

� (4-1) 

 
𝜎𝜎𝑑𝑑𝑑𝑑 = −

10
𝐿𝐿
𝑙𝑙𝑙𝑙𝑙𝑙10 �

∫ 𝐼𝐼 𝑑𝑑𝑑𝑑
∫ 𝐼𝐼0𝑑𝑑𝑑𝑑

� (4-2) 

Where L is the propagation length, I is the optical intensity at the receiver, 𝐼𝐼0 is the 

optical intensity at the transmitter, and ∫𝑑𝑑𝑑𝑑 is the area integral [94].  Due to beam 

spreading by optical turbulence effects, as well as diffractive effects, traditional 

transmissometer transmitters and receivers can only be spaced on the order of 10’s 

of meters apart.  In order to get an accurate measurement across, say, an airfield, 

transmissometers must be periodically spaced throughout the length of the field. 
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The multi-aperture, hexagonal transmissometer designed by the Maryland 

Optics Group utilizes an array of 13 point detectors, which sample incoming light 

at various positions.  The device also uses three retroreflecting dielectric corner 

cubes to aid in aligning the transmitter at long range.  Additionally, the device can 

be controlled using a touch screen or via a remote radio frequency link.  

 
Figure 4-1:  Juxtaposition of:  a) Traditional single aperture transmissometer used for 
making a short range extinction estimate in an airfield; b) Maryland Optics Group multi-
aperture transmissometer designed for estimating extinction coefficients over path 
lengths of the order of magnitude of a kilometer. 

 

 
Figure 4-2:  Pictures of the multi-aperture hexagonal transmissometer displacing: a) The 
thirteen detectors and corner cube reflectors; b) the local user interface.   
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The MOG MAT receiver utilizes an array of 13 point detectors that sample 

incoming light at various positions.  The device also utilizes three retroreflecting 

dielectric corner cubes to aid visual alignment of the laser transmitter at long range.  

Figure 4-1 shows a breakout diagram of the MOG MAT and its various 

subcomponents.  Typically, the transmitter is mounted on a stabilized tripod or 

optical table, and the receiver is mounted on a tripod.  Table 4-1 summarizes the 

nominal specifications of the transmissometer system.   

MOG Multi-Aperture Transmissometer Specifications 

Transmitter Receiver Detection 
632.8 nm HeNe Laser Source 13 sub-aperture detectors 
Greater than 95% TEM00 Mode Purity 60° angular spacing 
Beam expanded to 2.8 cm diameter 6.9 cm radial spacing 
10 Hz chopping frequency 25 mm diameter aspherical lenses 
 16 mm lens focal length 
Receiver Features 632nm bandpass filters, ±5nm FWHM 
Weatherized receiver housing 550 Hz read-out rate 
3 retroreflecting cubes to aid alignment  
Transimpedance amplifiers  

Table 4-1:  Nominal MOG MAT specifications 

Once the transmitter and receiver have been aligned, an optical chopping 

wheel is enabled at the transmitter, and the receiver is set to record.  Binary files 

documenting timestamps and values of detector readings are created locally on the 

transmissometer, to be analyzed in post-processing.  The optical intensity is 
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assumed to be directly proportional to the voltages recorded at each sub-aperture.  

Based upon sparse sampling techniques [96], the MOG MAT’s thirteen sub-

aperture detectors’ recorded samples enable beam profiling of the average intensity 

profile of the received signal. The averaging time should be chosen to be long 

enough to minimize receiver noise and scintillation variations, but short enough 

that a significant global change in atmospheric conditions does not occur.  

Previously, we presented several predictions of spot size as functions of 𝑊𝑊0, 

𝐹𝐹0, L, 𝐶𝐶𝑛𝑛2, µx, µy, and α, e.g. as per Equations (3-6) through (3-17).  We return to 

re-examine the spectral model as shown in (20) in order to make a point regarding 

degrees of freedom.  We can give a structure constant specific to the x-direction: 

 
Ф𝑛𝑛�𝜅𝜅𝜌𝜌, 0� =

𝐶̃𝐶𝑛𝑛
2𝐴𝐴(𝛼𝛼)𝜇𝜇𝑥𝑥𝜇𝜇𝑦𝑦

�𝜇𝜇𝑥𝑥2𝜅𝜅𝑥𝑥2 + 𝜇𝜇𝑦𝑦2𝜅𝜅𝑦𝑦2�
𝛼𝛼
2�

=
𝐶̃𝐶𝑛𝑛

2𝜇𝜇𝑥𝑥2−𝛼𝛼𝐴𝐴(𝛼𝛼)
𝜇𝜇𝑦𝑦
𝜇𝜇𝑥𝑥

�𝜅𝜅𝑥𝑥2 +
𝜇𝜇𝑦𝑦2
𝜇𝜇𝑥𝑥2

𝜅𝜅𝑦𝑦2�
𝛼𝛼
2�
 (4-3) 

We can write a similar form as (4-3) where 𝜅𝜅𝑦𝑦2 is not accompanied by any factors 

in the denominator.  For the purposes of evaluating the two dimensional integrals 

of interest for wave propagation through turbulence, we can define a 𝐶̃𝐶𝑛𝑛,𝑥𝑥
2 and a 

𝐶̃𝐶𝑛𝑛,𝑦𝑦
2as per: 

 𝐶̃𝐶𝑛𝑛,𝑥𝑥
2 = 𝐶̃𝐶𝑛𝑛

2𝜇𝜇𝑥𝑥2−𝛼𝛼,           𝐶̃𝐶𝑛𝑛,𝑦𝑦
2 = 𝐶̃𝐶𝑛𝑛

2𝜇𝜇𝑦𝑦2−𝛼𝛼 (4-4) 

Therefore, the three variables 𝐶̃𝐶𝑛𝑛
2, 𝜇𝜇𝑥𝑥, and 𝜇𝜇𝑦𝑦 represent only two degrees of 

freedom.  Note that power associated with 𝜇𝜇𝑥𝑥 and 𝜇𝜇𝑦𝑦 matches that given in Equation 
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(2-8).   Also note that increasing the anisotropy parameters decreases the structure 

constant in either direction.  Therefore, we may say that increasing the anisotropy 

parameters effectively decreases the level of turbulence.   

There is an issue, however, using (4-4) for comparison with point detectors 

which do not use optical propagation to estimate turbulence or anisotropy.  The 

three dimensional refractive index structure function is given by: 

 
𝐷𝐷𝑛𝑛(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = 𝐶̃𝐶𝑛𝑛2 ��

𝑥𝑥2

𝜇𝜇𝑥𝑥2
+
𝑦𝑦2

𝜇𝜇𝑦𝑦2
+ 𝑧𝑧�

𝛼𝛼−3

 (4-5) 

This equation suggests that we should set 𝐶̃𝐶𝑛𝑛,𝑥𝑥
2  and 𝐶̃𝐶𝑛𝑛,𝑦𝑦

2  as per:  

 𝐶̃𝐶𝑛𝑛,𝑥𝑥
2 = 𝐶̃𝐶𝑛𝑛2𝜇𝜇𝑥𝑥3−𝛼𝛼,           𝐶̃𝐶𝑛𝑛,𝑦𝑦

2 = 𝐶̃𝐶𝑛𝑛2𝜇𝜇𝑦𝑦3−𝛼𝛼 (4-6) 

We elect to adjust results as per Equation (4-6) for consistency with other 

equipment under test. 

4.2:  Synchronization of Transmitter and Receiver for Elimination of Background 

Light 

In order to measure light from a transmitting laser arriving at the 

transmissometer receiver, we estimate and remove background light by on / off 

modulating the beam with a chopping wheel, and subtracting the signal observed 

during the off period, from the on period [71].  In order to facilitate this, we must 

synchronize with the wheel, which we choose to run at 10 Hz, as the outer time 

scale is roughly .1 seconds [9], in order to generate approximately uncorrelated 
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samples, and the sampling frequency of recordings for each aperture is 250 Hz.  In 

order to facilitate this, a new algorithm has been developed consisting of the 

following steps: 

1. The transmissometer data is offloaded from the measurement device to a local 

computer. 

2. The data is broken up into between 100 and 1000 samples, typically, within a 

program and stored in memory structures internal to the routine. 

3. For each set of samples, a FFT is performed on the sum of the data from all 

detectors, and the peak frequency is assume to be the center frequency for 

synchronization, i.e. a rough frequency estimate. 

4. For each set of samples, a phase-frequency correlation matrix is constructed 

(more info on this below) based off the rough frequency estimate, and the 

reference clock phase and frequency is derived from the reference clock 

parameters. 

5. The sample sets are re-aligned in time, and the synchronization routine searches 

for sampling skips and repeats.  Skips are handled by inserting a sample at the 

mean time between adjacent samples.  Sample repeats are averaged into a 

common sample. 

6. On- and off-samples are collected mid on-, off-cycle, and two adjacent off-

samples values are averaged and subtracted from the straddled on-cycle in order 
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to generate the final approximately independent sample of the laser propagated 

through turbulence and absorbing atmosphere. 

7. Samples are averaged, and the scintillation index estimated, as an input to later 

fitting. 

To create the phase frequency correlation matrix, first a preliminary three 

dimensional data structure is created.  As a pre-requisite, the number of elements 

in the z-direction must be the same length as the time series you are attempting to 

correlate with, namely sum of voltages signal.  Along the z-direction of the data 

structure are a collection of reference clocks, with values +/- 1, which are running 

with difference frequencies, along the x-direction.  Usually, we use values between 

90% and 110% of the rough reference clock rate (from the FFT), and have on the 

order of 21 columns (for this example resolution is 1%).  The y-direction of the data 

structure represents clocks started with different phases (resolution 1/N cycles, with 

N the number of rows). 
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Figure 4-3:  Example phase frequency correlation matrix generated by summing the final 
three dimensional data structure described in the text along the z-direction.  Note, one 
cycle equals 2π radians. 

Another, secondary three dimensional data structure is created by first level 

shifting, and gain controlling the sum of all the time domain signals, such that it is 

approximately zero mean and approximately constant envelope.  This vector is then 

permuted such that it is z-directional, then replicated such that it has the same x- 

and y- dimensions as the primary three dimensional data structure.  The final data 

structure is created by multiplying element-by-element the primary and secondary 

three dimension data structures along the z-direction, and normalizing for the 

number if z-directional samples summed across.  These operations implement a 
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normalized cross-correlation of two signals, for each row / column pair.  In 

analyzing the cross correlation values across multiple data sets (e.g. a 100 chop run 

is one data set) for a given attenuation level at the transmitter and beam divergence, 

a clear correlation coefficient threshold should become obvious to detect correct 

clock sync.  Fig. 9 shows a representative example of a clock recovered from a data 

set. 

 
Figure 4-4:  Example juxtaposition of the 13 signals from each aperture of a test (dashed 
lines) and the replica chopping wheel clock (red square wave) and the sampling clock 
(blue dotted line), which both appear at or below 1 on the y-axis of the plot.  Sample 
clock values of 1 indicate that on-samples are taken and sample clock values of -1 
indicate that off-samples are taken. 
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4.3:  Estimates of Extinction Coefficient 

As all theoretical models of beam propagation through turbulence predict a 

Gaussian beam at the receive plane, the mean value of all the on-samples for a given 

sample set can be summed, and together with the x-, y-locations of the optical 

detectors, provide all the information necessary to do a fit to an elliptic Gaussian 

profile.  So far, we have generally assumed that the x-direction is the direction of 

the semi-major axis of the spot size ellipse, and the y-direction that of the semi-

minor axis.  However, relative to the transmissometer receiver alignment, we 

designate the relative angle between the transmissometer’s x-axis (normally tangent 

to the earth’s surface and perpendicular to the z-axis of propagation) as 𝜃𝜃.  In 

general, a received elliptic Gaussian beam will have an intensity of the form [71]: 

〈𝐼𝐼(𝑥𝑥,𝑦𝑦)〉 = 𝐴𝐴 ∙ exp[−𝑎𝑎(𝑥𝑥 − 𝑥𝑥0)2 + 𝑏𝑏(𝑥𝑥 − 𝑥𝑥0)(𝑦𝑦 − 𝑦𝑦0) − 𝑐𝑐(𝑦𝑦 − 𝑦𝑦0)2] (4-7) 

Where 𝑥𝑥0, 𝑦𝑦0 are the coordinates of the beam center at the receiver, and: 

 
𝐴𝐴 ≅ 𝐴𝐴0
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2  

(4-9) 

Where 𝐴𝐴0 in (4-8) is the peak intensity at the transmitter.  For a known propagation 

distance, L, it is therefore possible to estimate 𝜎𝜎, 𝑊𝑊𝐿𝐿𝐿𝐿,𝑥𝑥, 𝑊𝑊𝐿𝐿𝐿𝐿,𝑦𝑦, and 𝜃𝜃 

simultaneously.  We typically achieve this by performing a least squares best fit to 
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equation (4-7) using a numerical software such as MATLAB or Octave, and then 

we can also use the goodness of fit information returned by the software in order to 

provide thresholds for additional outlier removal.  Nonlinear equation solvers, such 

as those previously described, can be used to then retrieve the parameters of 

interest, 𝜎𝜎, 𝑊𝑊𝐿𝐿𝐿𝐿,𝑥𝑥, 𝑊𝑊𝐿𝐿𝐿𝐿,𝑦𝑦, and 𝜃𝜃. 

 
Figure 4-5:  Example output of elliptic Gaussian fitting as displayed in MATLAB. 

Once a fit has occurred, the estimated beam centroid at (x0, y0) is typically 

used for outlier removal.  Beams with centroids determined to be significantly 
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outside the polygon defined by the outer detectors of the transmissometer aperture 

are removed from consideration.  With the remaining fits, the total received 

integrated intensity can be estimated as: 

 𝑃𝑃𝑇𝑇𝑇𝑇𝑇𝑇,𝑅𝑅𝑅𝑅 = �〈𝐼𝐼(𝑥𝑥,𝑦𝑦, 𝐿𝐿)〉𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝐴𝐴
𝜋𝜋
2
𝑊𝑊𝐿𝐿𝐿𝐿,𝑥𝑥𝑊𝑊𝐿𝐿𝐿𝐿,𝑦𝑦 (4-10) 

The value of received power recovered using equation (4-10) is compared to 

previously determined calibrated value in order to estimate the extinction 

coefficient, in decibels per km, of the propagation path under test.   

In order to validate the operation and measurements of our device, we 

arrange for remote testing at a large outdoor range in Central Florida.  The Townes 

Institute Science and Technology Experimentation Facility (TISTEF) includes an 

approximately 1 km flat, outdoor range used for experiments regarding atmospheric 

optics, laser filamentation, and other wave propagation research.  The facility has 

access to various commercial equipment for atmospheric research, and as such we 

made arrangements for side by side testing with a point visibility meter [97] owned 

by the institute.   

To verify proof of concept, the MAT over a 980 m propagation path with a 

the commercial visibility meter from All Weather Inc (AWI) logging measurement 

simultaneously alongside the transmissometer in order to verify results.  Although 

visibility meters typically output a visibility measurement in terms of a visible 

range, 𝑅𝑅𝑣𝑣, defined by a contrast ratio, 𝐶𝐶𝑣𝑣, which is typically standardized at either 
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.02 or .05.  The extinction coefficient can be determined from visible range via the 

following relationships [97]: 

 
𝜎𝜎 =

−𝑙𝑙𝑙𝑙(𝐶𝐶𝑣𝑣)
𝑅𝑅𝑣𝑣

,          𝜎𝜎𝑑𝑑𝑑𝑑 =
−10 log10(𝐶𝐶𝑣𝑣)

𝑅𝑅𝑣𝑣
 (4-11) 

Additionally, the visibility meter under test provided a precipitation rate estimate.  

Using the described algorithms, we are able to compare the MOG MAT results with 

the commercial visibility meter as shown in Figure 4-6.  The overall test layout is 

shown in Figure 4-7. 

 
Figure 4-6:  Comparison of visibility meter and MAT metrics over 2 days: a) Extinction 
coefficient estimates from the MAT (red) vs the visibility meter (black), b) Precipitation 
rate estimates from the visibility meter (blue), c) another rendition of the top figure, with 
the axis zoomed in to demonstrate that overall trends, and small features, of both devices’ 
estimates of extinction correspond. 
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Figure 4-7:  Equipment locations over TISTEF range: a) Layout picture on the receiver 
end; b) overall view of the TISTEF range from the transmitter end.   

In general, the results of the transmissometer and visibility meter compare 

well during periods without significant precipitation.  The MAT, however, seems 
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to have a higher sensitivity to precipitation, especially during heavy periods (above 

8 mm/hour).  This may have been due to the transmissometers lower elevation 

(approximately one meter off the ground) relative to the visibility meter (above 2 

meters high), meaning the transmissometer may have observed both falling and 

“bouncing” rain drops during this period.  We also note that during the test period, 

the transmitted beam was diverged via adjustments to a sliding lens in the beam 

expander in order to guarantee that multiple detectors on the transmissometer 

receiver were illuminated.   

4.4:  An Iterative Beam Fitting Approach to Capture Refractivity and Turbulence 

Effects 

When the MOG experimental team first began performing beam profiling 

experiments using the MAT, based on the large volume of literature investigating 

and analyzing anisotropic optical turbulence effects [11, 18, 19, 23, 24, 25, 59, 76, 

78, 79] we had been under the assumption that turbulence was the primary cause of 

observations of initially symmetric beam observed as elliptical after propagating 

through atmospheric distortions.  During the course of our experimental campaign, 

through our own observation and more recent contributions to the literature [85, 86, 

87] indicated that non-turbulence optical refractivity effects may dominate under 

some scenarios.   
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Figure 4-8:  Simulation results illustrating differing scintillation index profiles despite 
comparable intensity profiles:  a) Scintillation index profile for an initially collimated 
beam propagating 530 m through Kolmogorov, anisotropic turbulence with μx = 1, μy= 
1/3, and spherical wave Rytov variance of 1; b) Mean intensity profile for an initially 
collimated beam propagating 530 m through Kolmogorov, anisotropic turbulence with μx 

= 1, μy = 1/3, and spherical wave Rytov variance of 1; c) Scintillation index profile 
approximating non-turbulent optical refractivity distortion using a beam which is initially 
collimated across the x-axis but with a radius of curvature of -4,142 m in the y-direction 
propagating through 530 m of Kolmogorov, isotropic turbulence with spherical wave 
Rytov variance of 1; d) Mean intensity profile approximating non-turbulent optical 
refractivity distortion using a beam which is initially collimated across the x-axis but with 
a radius of curvature of -4,142 m in the y-direction propagating through 530 m of 
Kolmogorov, isotropic turbulence with spherical wave Rytov variance of 1.  A 2.5 cm 
diameter aperturing filter was used to collect all results for comparison with the collected 
transmissometer data. 
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More specifically, the type of non-turbulent optical refractivity distortion 

we are referring to occurs when the refractive index gradient is not constant (i.e. 

simply leading to tip and tilt), and has a significant parabolic component.  As 

discussed in Section 3.5, and specifically displayed in Figure 3-6 and Figure 3-11, 

the hallmark feature distinguishing of non-turbulent optical refractivity distortion 

in contrast to anisotropic turbulence affects is that the scintillation index 

paraboloid’s semi-major axis is in the same direction as the semi-major axis of the 

elliptical Gaussian intensity profile.  For anisotropic turbulence alone, the inverse 

is the case.   In order to show this, we have also included Figure 4-8, which 

demonstrates this fact for two cases:  a) An initially collimated beam propagating 

530 m through Kolmogorov, anisotropic turbulence with 𝜇𝜇𝑥𝑥 = 1, 𝜇𝜇𝑦𝑦 = 1
3� , and 

spherical wave Rytov variance of 1; b) Simulation approximating non-turbulent 

optical refractivity distortion using a beam which is initially collimated across the 

x-axis but with a radius of curvature of -4,142 m in the y-direction propagating 

through 530 m of Kolmogorov, isotropic turbulence with spherical wave Rytov 

variance of 1. 

In field experiments, we have found the beam intensity and scintillation 

index profiles corresponding to non-turbulent optical refractivity distortion to be 

common.  Figure 4-9 shows a somewhat typical case observed at the 

transmissometer receiver when doing near ground turbulence profiling.  Note that, 

although there is a slight disagreement in the directionality of the intensity Gaussian 
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and scintillation index paraboloids, the fact that the semi-major axes are in 

approximately the same direction indicates that the non-turbulent refractivity 

distortion condition under discussion is clearly playing a role. 

 
Figure 4-9:  Example observed main intensity at the MAT receiver and from an outdoor 
field experiment.  The observation that the intensity spot ellipse and the scintillation 
index are pointing in approximately the same directions indicate that refractivity effects 
are dominating optical propagation distortions.  The subplots are:  a) Interpolated mean 
optical intensity profile; b) Detector-by-detector mean optical intensity; c) Interpolated 
scintillation index profile; d) Detector-by-detector scintillation index. 

 Seeking to mitigate the effects of the somewhat unexpected non-turbulence 

optical refractivity distortion on the turbulence estimate, we have developed an 
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iterative fitting scheme aimed at addressing both sets of effects.  In order to do so, 

we take advantage of the observations of Sections 3.2, 3.3, and 3.5.  Specifically, 

we note that Equations (3-14) and (3-15) indicate that the size of the spot ellipse in 

a given direction is perturbed in a given direction as per: 

𝑊𝑊𝐿𝐿𝐿𝐿�𝜃𝜃𝑅𝑅 ,𝜃𝜃𝑇𝑇 ,𝛬𝛬1,𝛬𝛬2,𝜌𝜌𝑠𝑠,𝑥𝑥,𝜌𝜌𝑠𝑠,𝑦𝑦� ≅ 

�
2 ∙ 𝐿𝐿
𝑘𝑘0𝛬𝛬1

cos2(𝜃𝜃𝑅𝑅) +
2𝐿𝐿
𝑘𝑘0𝛬𝛬2

sin2(𝜃𝜃𝑅𝑅) +
8𝐿𝐿2

𝑘𝑘0𝜌𝜌𝑠𝑠,𝑥𝑥
2 cos2(𝜃𝜃𝑅𝑅 − 𝜃𝜃𝑇𝑇) +

8𝐿𝐿2

𝑘𝑘0𝜌𝜌𝑠𝑠,𝑦𝑦
2 sin2(𝜃𝜃𝑅𝑅 − 𝜃𝜃𝑇𝑇) 

(4-12) 

Where 𝛬𝛬1 and 𝛬𝛬2 as the larger and smaller, respectively, Fresnel parameters [see 

Equations (3-19) and (3-22)] including diffractive and non-turbulent refractive 

effects, 𝜃𝜃𝑅𝑅 we dub the refractivity angle, 𝑊𝑊(𝜃𝜃𝑅𝑅) is the radius of the spot ellipse in 

the absence of turbulence in at a given angle, 𝜃𝜃𝑇𝑇 we dub the turbulence angle (the 

direction of higher turbulence), 𝜌𝜌𝑠𝑠,𝑥𝑥 and 𝜌𝜌𝑠𝑠,𝑦𝑦 are spherical wave coherence lengths 

along the major and minor axes of turbulence.  The observed scintillation index at 

is given by: 

𝜎𝜎�𝐼𝐼2�𝑟𝑟,𝜃𝜃𝑅𝑅,𝜃𝜃𝑇𝑇 , 𝐶̃𝐶𝑛𝑛2, 𝜇𝜇𝑦𝑦� ≅ 

𝜎𝜎�𝐼𝐼,𝑙𝑙
2 +  

𝜋𝜋Γ �2 − 𝛼𝛼
2�

𝛼𝛼 − 1
𝐴𝐴(𝛼𝛼) ∙ 𝐶̃𝐶𝑛𝑛2 ∙ 𝑘𝑘0

4−𝛼𝛼2𝐿𝐿
𝛼𝛼
2−1 ∙ 𝛬𝛬1

𝛼𝛼
2 × �cos2(𝜃𝜃𝑅𝑅) +

𝛬𝛬2
𝛬𝛬1

sin2(𝜃𝜃𝑅𝑅)� 

        × 𝑟𝑟2 � �cos(𝜃𝜃𝑅𝑅 − 𝜃𝜃𝑇𝑇) cos(𝜑𝜑 − 𝜃𝜃𝑇𝑇) +
sin(𝜃𝜃𝑅𝑅 − 𝜃𝜃𝑇𝑇) sin(𝜑𝜑 − 𝜃𝜃𝑇𝑇)

𝜇𝜇𝑦𝑦
�
22𝜋𝜋

0

 

× �cos2(𝜑𝜑 − 𝜃𝜃𝑇𝑇) +
sin2(𝜑𝜑 − 𝜃𝜃𝑇𝑇)

𝜇𝜇𝑦𝑦2
�

𝛼𝛼
2−2

𝑑𝑑𝑑𝑑 

(4-13) 

Equation (4-13) the leading term 𝜎𝜎�𝐼𝐼,𝑙𝑙2  is meant to allow for adjustments in the fit in 

order to capture both aperture averaging effects which may vary according to 
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distance across the receiver.  Additionally, this allows for operation in the deep 

fluctuation regime, where the on-axis scintillation index is expected to saturate.  

During iterative fitting, we all this factor to be a free parameter estimated by the 

fitting routine.     

Equation (4-13) is designed to generalize Equation (3-28) for the common 

case observed using the MAT system in which the direction of the refractivity 

distortion is not either in the same direction or at a right angle to the direction of 

higher turbulence.  For a given set of input Fresnel parameters, performing a best 

fit for 𝐶̃𝐶𝑛𝑛2, 𝜃𝜃𝑅𝑅, and 𝜇𝜇𝑦𝑦 using the detector-by-detector scintillation indices (after 

adjusting for offset of the beam centroid from center).  Given that we follow the 

conventions of setting 𝐶̃𝐶𝑛𝑛2 = 𝐶𝐶𝑛𝑛,𝑥𝑥
2 , 𝜇𝜇𝑦𝑦 = 1, once a fit has occurred we have an 

estimate of the x- and y-direction spherical wave coherences lengths as per: 

 

𝜌𝜌0,𝑥𝑥 = �𝐴𝐴(𝛼𝛼)𝐶̃𝐶𝑛𝑛2𝑘𝑘02𝐿𝐿
−𝜋𝜋2Γ �1 − 𝛼𝛼

2�

2𝛼𝛼−3Γ �𝛼𝛼2�
�

1
2−𝛼𝛼

 (4-14) 

 

𝜌𝜌0,𝑦𝑦 = 𝜇𝜇𝑦𝑦 �𝐴𝐴(𝛼𝛼)𝐶̃𝐶𝑛𝑛2𝑘𝑘02𝐿𝐿
−𝜋𝜋2Γ �1 − 𝛼𝛼

2�

2𝛼𝛼−3Γ �𝛼𝛼2�
�

1
2−𝛼𝛼

 (4-15) 

The coherence length determined by the fit can then be fed back into the spot size 

estimate of Equation (4-12).  In practice, in order to fit our spot size we make use 

of the equation: 
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〈𝐼𝐼�𝑟𝑟,𝜃𝜃𝑟𝑟 ,𝜃𝜃𝑡𝑡 ,𝛬𝛬1,𝛬𝛬1,𝜌𝜌𝑠𝑠,𝑥𝑥,𝜌𝜌𝑠𝑠,𝑦𝑦�〉 = 𝐴𝐴 exp �
−2𝑟𝑟2

𝑊𝑊𝐿𝐿𝐿𝐿�𝜃𝜃𝑟𝑟 ,𝜃𝜃𝑡𝑡 ,𝛬𝛬1,𝛬𝛬1,𝜌𝜌𝑠𝑠,𝑥𝑥,𝜌𝜌𝑠𝑠,𝑦𝑦�
� (4-16) 

where A is the long term beam intensity at the centroid.  Equations (4-12) through 

(4-16) provide a framework for iteratively fitting both turbulence-based and non-

turbulent refractivity distortion based beam spreading.  In order to limit the number 

of fit parameters, we will be holding the three dimensional power law, 𝛼𝛼, to the 

11/3rds law of the Kolmogorov.  We will later show additional justifications for 

this in the next section via frequency domain analysis using point detectors of 

turbulence (temperature probes). 

 Given the above analysis and observations, we have implemented an 

iterative fitting algorithm which can be summarized as follows.  Using the observed 

detector-by-detector scintillation indices and detector positions, we fit the 𝐶̃𝐶𝑛𝑛2, 𝜃𝜃𝑡𝑡, 

and 𝜇𝜇𝑦𝑦 using the best estimates of the beam centroid, 𝜃𝜃𝑟𝑟, 𝛬𝛬1, and 𝛬𝛬2.  Using the 

estimates of the three turbulence parameters from the previous fit as well as the 

derived 𝜌𝜌𝑠𝑠,𝑥𝑥 and 𝜌𝜌𝑠𝑠,𝑦𝑦, we then fit the intensity profile using Equation (4-16) in order 

to obtain new estimates for 𝜃𝜃𝑟𝑟, 𝛬𝛬1, and 𝛬𝛬2.  Figure 4-10 gives a high level visual 

summary of the iterative approach. 
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Figure 4-10:  High level visual summary of the iterative fitting approach.   

 In order to provide more details regarding the technique we provide a list of 

specific steps.  They are, as follows: 

1. Using the long term mean intensity data collected at each detector perform 

a best fit, without differentiating between non-turbulence refractivity and 

turbulence effects, in order determine the beam centroid (i.e. 𝑥𝑥0 and 𝑦𝑦0) as 

well as initial estimates of 𝜃𝜃𝑅𝑅, 𝛬𝛬1, and 𝛬𝛬2.  In order to achieve this, we 

perform a best fist for 𝑥𝑥0, 𝑦𝑦0, 𝜃𝜃𝑅𝑅, 𝛬𝛬1, and 𝛬𝛬2 while setting 𝜌𝜌𝑠𝑠,𝑥𝑥 and 𝜌𝜌𝑠𝑠,𝑦𝑦 to 

very long lengths (i.e. 106 m) such that the contribution of turbulence is 

negligible. 

2. Using the estimates of 𝑥𝑥0, 𝑦𝑦0, 𝜃𝜃𝑅𝑅, 𝛬𝛬1, and 𝛬𝛬2 from the previous step, fit the 

detector-by-detector scintillation indices using Equation (4-13) in order to 

provide updated estimates for 𝜎𝜎�𝐼𝐼,𝑙𝑙2 , 𝐶̃𝐶𝑛𝑛2, 𝜃𝜃𝑇𝑇, and 𝜇𝜇𝑦𝑦. 

3. Calculate estimates for 𝜌𝜌𝑠𝑠,𝑥𝑥 and 𝜌𝜌𝑠𝑠,𝑦𝑦 using the 𝐶̃𝐶𝑛𝑛2 estimate from the previous 

step and Equations (4-14) and (4-15). 
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4. Repeat the mean intensity best fit using updated values of 𝜌𝜌𝑠𝑠,𝑥𝑥 and 𝜌𝜌𝑠𝑠,𝑦𝑦 in 

order to produce updated estimates of 𝜃𝜃𝑅𝑅, 𝛬𝛬1, and 𝛬𝛬2. 

5. Repeat steps 2 through 4 a pre-determined number of times.  

We note that in step 5, an alternate approach would be to threshold the size of 

corrections wherein corrections below some predetermined value would signal to 

the iterative fitting loop to exit.  We have found, however, that in the majority of 

cases the fitting routine predictively converges and, as such, will count on other 

outlier removing techniques to be discussed in order to remove bad fits which do 

not trend well with the data from nearby times.  Results from a somewhat typical 

iterative fit are shown in Figure 4-11.  We note that although 50 iterations of the 

fitting routine were performed, we’ve truncated the x-axes in the respective 

subplots due to the fit converging around 12 or 13 iterations.  We chose 50 durations 

because after the algorithm initially converges, subsequent fits complete more 

quickly. 
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Figure 4-11:  Behavior of turbulence and beam parameter estimates during iterative 
fitting.  The subplots shown are as follows:  a) The estimated refractive index structure 
constant, Cn

2; The turbulent and refractivity angles, θR and θT, respectively; c) Fresnel 
parameters, Λ1 and Λ2, respectively; d) the anisotropy parameter, μy. 

While the iterative fitting routine reliably fits the data from the MAT 

receiver, we have noted that the turbulence estimates are typically above what is 

suggested by the observed on-axis scintillation index.  This is most likely due to 

the fact that the aperture averaging factor for scintillation index is not constant 

across the beam profile, and in fact varies by position as illustrated in Section 3.5.  

In order to mitigate this feature, the final estimates of 𝐶̃𝐶𝑛𝑛2 = 𝐶𝐶𝑛𝑛,𝑥𝑥
2 , 𝐶𝐶𝑛𝑛,𝑦𝑦

2 , and 𝜇𝜇𝑦𝑦 are 

determined by a combination of the scintillation indices observed at the 

transmissometer as well as the total change in the spot size estimates at the turbulent 

angles.  In order to estimate 𝐶̃𝐶𝑛𝑛2 using the observed on-axis scintillation index, we 
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first consider the approximation for the aperture averaging factor developed in 

Section 3.5.  Specifically, Equations (3-34) and (3-35) are used in order to facilitate 

the adjustment for aperture averaging factor.  Given the observation that the 

unapertured on-axis scintillation index for a divergent beam is well approximated 

by the spherical wave Rytov variance, we can also state that the spherical wave 

Rytov variance, 𝜎𝜎𝑅𝑅,𝑠𝑠
2 , on-axis aperture averaged scintillation index, 𝜎𝜎𝐼𝐼,𝑙𝑙2 (𝐷𝐷), 

multiplied by the aperture averaging factor, 𝐹𝐹𝑎𝑎𝑎𝑎�𝜎𝜎𝑅𝑅,𝑠𝑠
2 ,𝐷𝐷�.  In order to estimate the 

actual 𝜎𝜎𝑅𝑅,𝑠𝑠
2 , we create a vector of possible spherical wave Rytov variances from .001 

to 10 and using our approximation, and given by 𝝈𝝈𝑹𝑹,𝒔𝒔
𝟐𝟐 .  A corresponding vector for 

the aperture averaging factor associated with the values in 𝝈𝝈𝑹𝑹,𝒔𝒔
𝟐𝟐  is created, dubbed 

𝑭𝑭𝒂𝒂𝒂𝒂.  Finally a vector of expected, observed on-axis scintillations indices for a given 

Rytov variance, dubbed 𝝈𝝈𝑰𝑰,𝒍𝒍
𝟐𝟐 , is created using: 

 𝝈𝝈𝑰𝑰,𝒍𝒍
𝟐𝟐 = 𝝈𝝈𝑹𝑹,𝒔𝒔

𝟐𝟐 ∘ 𝑭𝑭𝒂𝒂𝒂𝒂 (4-17) 

where ∘ denotes element-by-element multiplication (the Hadamard product).  

Given that both 𝝈𝝈𝑰𝑰𝟐𝟐 and 𝝈𝝈𝑹𝑹,𝒔𝒔
𝟐𝟐  are monotonically increasing, the true spherical wave 

Rytov variance may be estimated using the statement (in MATLAB): 

 𝜎𝜎𝑅𝑅,𝑠𝑠
2 ≅ interp1 �𝝈𝝈𝑰𝑰,𝒍𝒍

𝟐𝟐 ,𝝈𝝈𝑹𝑹,𝒔𝒔
𝟐𝟐 ,𝜎𝜎𝐼𝐼2(𝐷𝐷)� (4-18) 

where the interp1 operator denotes one dimensional linear interpolation.  In 

practice, because the scintillation index is often observed varying log-normally we 

chose to perform the interpolation on the logarithmic scale, as per: 
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 𝜎𝜎𝑅𝑅,𝑠𝑠
2 ≅ exp�interp1�ln�𝝈𝝈𝑰𝑰,𝒍𝒍

𝟐𝟐 � , ln�𝝈𝝈𝑹𝑹,𝒔𝒔
𝟐𝟐 � , ln[𝜎𝜎𝐼𝐼2(𝐷𝐷)]�� (4-19) 

 In order to provide an updated estimate of the anisotropy parameter, 𝜇𝜇𝑦𝑦, we 

compare the change in the spot size prediction from the our initial beam fit, which 

has assumed negligible turbulent beam spreading, with the final output of the fit.  

The initial estimates for the Fresnel parameters we dub 𝛬𝛬1,0 and  𝛬𝛬2,0, with 𝛬𝛬1,0 

defined as the smaller of the two (corresponding to the larger spot size), and the 

initial angle for the fit is labeled 𝜃𝜃0.  Given the final fitting estimates for the 

diffraction and non-turbulent refractivity distortion Fresnel parameters along with 

the final estimated turbulence angle, 𝜃𝜃𝑇𝑇, we can calculate the estimated beam 

spreading due to optical turbulence effects along the major and minor axes of 

turbulence (x- and y-directions, respectively).  First, we note that the spot sizes 

along the semi-major and semi-minor axes of the long-term beam profile, 𝑊𝑊1,0 and 

𝑊𝑊2,0 respectively, are given by the initial fit are given by: 

 
𝑊𝑊1,0 = �

2𝐿𝐿
𝑘𝑘0𝛬𝛬1,0

,          𝑊𝑊2,0 = �
2𝐿𝐿

𝑘𝑘0𝛬𝛬2,0
 (4-20) 

Similarly, the final beam sizes after removing the effects of optical turbulence 

induced beam spreading are given by: 

 
𝑊𝑊𝑥𝑥 = �

2𝐿𝐿
𝑘𝑘0
�
cos2(𝜃𝜃𝑇𝑇 − 𝜃𝜃𝑅𝑅)

𝛬𝛬1
+

sin2(𝜃𝜃𝑇𝑇 − 𝜃𝜃𝑅𝑅)
𝛬𝛬2

� (4-21) 
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𝑊𝑊𝑦𝑦 = �

2𝐿𝐿
𝑘𝑘0
�
sin2(𝜃𝜃𝑇𝑇 − 𝜃𝜃𝑅𝑅)

𝛬𝛬1
+

cos2(𝜃𝜃𝑇𝑇 − 𝜃𝜃𝑅𝑅)
𝛬𝛬2

� (4-22) 

For reasons which will later become clear, we are interested in the square 

of the total deviation in spot sizes along our x- and y-axes, i.e. the major and minor 

axes of turbulence.  We calculate these deviations using the previously estimated 

parameters along with our formula for the long term spot given by Equation (4-12).  

We, therefore calculate these deviations, ∆𝑊𝑊𝑥𝑥
2 and ∆𝑊𝑊𝑥𝑥

2, via the equations: 

 ∆𝑊𝑊𝑥𝑥
2 = 𝑊𝑊1,0

2 cos2(𝜃𝜃𝑇𝑇 − 𝜃𝜃0) +𝑊𝑊2,0
2 sin2(𝜃𝜃𝑇𝑇 − 𝜃𝜃0) −𝑊𝑊𝑥𝑥

2 (4-23) 

 ∆𝑊𝑊𝑦𝑦
2 = 𝑊𝑊1,0

2 sin2(𝜃𝜃𝑇𝑇 − 𝜃𝜃0) +𝑊𝑊2,0
2 cos2(𝜃𝜃𝑇𝑇 − 𝜃𝜃0) −𝑊𝑊𝑦𝑦

2 (4-24) 

Based upon investigation of Equations (3-10) and (3-11) when the beam is not 

affected by non-turbulence refractivity distortion, and therefore has a diffraction 

limited spot size W, we make the observation: 

 8𝐿𝐿2

𝑘𝑘0𝜌𝜌𝑠𝑠,𝑥𝑥
2 ≅ 𝑊𝑊𝐿𝐿𝐿𝐿,𝑥𝑥

2 −𝑊𝑊2 (4-25) 

 8𝐿𝐿2

𝑘𝑘0𝜌𝜌𝑠𝑠,𝑦𝑦
2 ≅ 𝑊𝑊𝐿𝐿𝐿𝐿,𝑦𝑦

2 −𝑊𝑊2 (4-26) 

We assume that this relation still holds when turbulence is distorting an otherwise 

warped beam undergoing optical refractivity distortion.  Coupling this with an 

investigation of Equations (4-14) and (4-15) yields the following simple 

relationship: 



162 
 

 
𝜇𝜇𝑦𝑦 =

𝜌𝜌𝑠𝑠,𝑥𝑥

𝜌𝜌𝑠𝑠,𝑦𝑦
= �

∆𝑊𝑊𝑥𝑥
2

∆𝑊𝑊𝑦𝑦
2 (4-27) 

Equation (4-27) provides the final estimate for the anisotropy parameter, 𝜇𝜇𝑦𝑦. 

 Using this estimate for 𝜇𝜇𝑦𝑦, we may now turn the estimate of the spherical 

wave Rytov variance into estimates for 𝐶𝐶𝑛𝑛,𝑥𝑥
2  and 𝐶𝐶𝑛𝑛,𝑦𝑦

2 .  An expression for the 

generalized spherical wave Rytov variance is given by Equation (1-59), and we will 

note that the quantity is directly proportional to 𝐶̃𝐶𝑛𝑛2.  Because we have chosen to fix 

our three dimensional power law, 𝛼𝛼, to 11/3 we may then rewrite Equation (1-59) 

as: 
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7
6𝐿𝐿

11
6 ×

1
2𝜋𝜋

� �cos2 𝜑𝜑 +
sin2 𝜑𝜑
𝜇𝜇𝑦𝑦2

�

5
6
𝑑𝑑𝑑𝑑

2𝜋𝜋

0
 

(4-28) 

We have written Equation (4-28) in this form in order to demonstrate that for the 

case of 𝜇𝜇𝑦𝑦 = 1 this expression matches the Kolmogorov turbulence spherical wave 

Rytov variance given in [9].  Because we have set the convention that 𝐶̃𝐶𝑛𝑛2 = 𝐶𝐶𝑛𝑛,𝑥𝑥
2  

by virtue of setting 𝜇𝜇𝑥𝑥 = 1, we produce our final estimates of  𝐶𝐶𝑛𝑛,𝑥𝑥
2  and 𝐶𝐶𝑛𝑛,𝑦𝑦

2  using 

the equations: 
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𝐶𝐶𝑛𝑛,𝑥𝑥
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(4-29) 

 
𝐶𝐶𝑛𝑛,𝑦𝑦
2 =

𝐶𝐶𝑛𝑛,𝑥𝑥
2

𝜇𝜇𝑦𝑦2/3  (4-30) 

Figure 4-12 shows an example of results collected using this approach.  

These results were collected along an approximately flat path on an airfield in 

Southern Maryland with the MAT transmitter and receiver both at a central 

elevation of 1.5 m.  In order to stabilize the transmitter and receiver in order to 

mitigate the effects of vibrations, both pieces of equipment were placed in custom 

made racks of 80/20 T-slot structural framing with an approximately 1 m × 1 m 

square base.  Both cinderblocks and sandbags were placed leaning upon the base of 

the structural framing at the corners to provide further stabilization.  More details 

regarding the 80/20 racks will be provided in the next section.  The results of Figure 

4-12 show relatively stable fits for both the refractivity and turbulent angles, non-

turbulent spot size estimates, and relatively stable estimates for 𝐶𝐶𝑛𝑛,𝑥𝑥
2  and 𝐶𝐶𝑛𝑛,𝑦𝑦

2 .  The 

anisotropy estimates are somewhat sporadic, however they trend relatively stably 

when the 5 minute median is plotted.   



164 
 

 

 
Figure 4-12:  Output data from MAT experiment using the iterative fitting method:  a) Refractive and turbulent angle estimates, θR 
and θT, relative the an objective horizontal angle; b) Non-turbulence spot size estimate produced from best fits for Λ1 and Λ2; c) 
Estimates of the anisotropy parameter, μy, given as both as an instantaneous estimate and the five minute median; d) Estimates of 
the refractive index structure constants, Cn,x

2 and Cn,y
2, with the x-axis being along the turbulent angle.
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4.5:  Turbulence Profiling Results in the Weak Fluctuation Regime 

The MAT system was deployed in order to facilitate turbulence profiling 

alongside temperature probe based systems at a remote facility in Southern 

Maryland with access to a local airport which was able to provide a long, flat optical 

propagation path which is ideal for the study of approximately homogenous optical 

turbulence.  The University of Maryland (UMD) Unmanned Aerial System (UAS) 

test site is located in California, St. Mary's County, Maryland, and has a relationship 

with the St. Mary's County Regional Airport which permits them to perform testing 

of drone systems and other scientific test campaigns.  After a request was submitted 

to the UAS site and St. Mary's County Regional Airport, permission was granted 

in order to perform both MAT testing, as well as a vertical turbulence profiling test 

using a tethered weather balloon.   

 
Figure 4-13:  Approximate location of the Southern Maryland optical propagation path 
shown in  within the St. Mary’s County Airport complex light orange within the St. 
Mary’s County Regional Airport complex.  The MAT transmitter was in place on the east 
side, and the MAT receiver to the west.   
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Figure 4-14:  Images of the MAT transmitter breadboard:  a) Without markup labeling; b) 
With markup labeling.  In Image b) the labeled components are as follows:  1) Helium 
neon laser transmitter; 2) First redirection mirror; 3) Second redirection mirror; 4) Fixed 
magnification beam expander with adjustable sliding lens; 5) Steering mirror for 
downfield pointing.  Additionally, although obscured by the beam expander, an optical 
chopping wheel is in place between the two redirection mirrors on the breadboard.  A 
scope is placed on the breadboard adjacent to the steering mirror for alignment, however 
it is not a permanent component of the optical breadboard.  
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Figure 4-15:  Alternative view of the MAT transmitter optical breadboard with the illuminated retroreflectors of the MAT receiver 
shown in the background.  Note that the placement of the optical chopping wheel is shown more clearly in this figure.   
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Figure 4-16:  Overall view of the MAT transmitter rack.  Note that vibrational 
stabilization is applied using both sandbags and cinderblocks at the base.  A weather 
station is attached at the top of the rack. 
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Figure 4-17:  MAT receiver placed upon gimbal mount within structural framing rack and 
the operator shown during alignment.  Note that the operator is standing upon a 
weatherized pelican case housing the logging computer for the MAT receiver. 

 For the test campaign, the receiver was housed in a similar rack of structural 

framing.  Additionally, the MAT receiver was fastened to a gimbal mount which 

provide pitch, roll, and yaw adjustability enabling use to control for uneven ground 

conditions and keep the receiver oriented horizontally and in the direction of the 

target.  Although the MAT receiver features optical detector systems with wide 
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acceptable angle, a sun shield is present on the MAT receiver in order to block both 

incident light from the sun, as well as reflected off of (primarily) the ground within 

the MAT receiver’s view.   

Once a coarse alignment is performed by searching for and illuminating the 

MAT receiver retroreflectors using the MAT transmitter breadboard’s steering 

mirror, a fine alignment is performed with operators manning the transmitter and 

receiver while communicating over phone or radio.  The MAT receiver features a 

touchscreen display featuring a readout of the detector-by-detector electrical 

intensity measurements, and the operators can coordinate to provide fine tuning 

increments at the transmitter steering mirror such that the beam is approximately 

centered with regards to the MAT receiver optics at the beginning of the data 

collection period.  Additionally, in order to assure the detectors are not compressed, 

during this time neutral density (ND) filters are attached by the MAT transmitter 

operator such that the detected levels at the MAT receiver are below half of their 

maximum read-out level.  

 In addition to the MOG MAT, temperature based turbulence estimation 

devices were used for validation.  We have deployed horizontally and vertically 

oriented commercial resistance temperature detector (RTD) probe systems to 

simultaneously estimate both 𝐶𝐶𝑛𝑛2 and anisotropy [98].  The RTD systems are arrays 

of differential thermometer pairs used in order to infer parameters of the 

temperature structure function.  This method follows that of Lawrence, et al. [99], 
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which has been demonstrated to very accurately predict 𝐶𝐶𝑛𝑛2 relative to a large 

aperture scintillometer by Wang, et al. [100].  The RTD arrays each consist of eight 

non-uniformly placed probes, with probe pair separation distances between 2 and 

50 cm such that measurements span within the inertial range of turbulence.  Probes 

are polled by a data logging system once every 2 seconds, and a temperature 

structure function constant, 𝐶𝐶𝑇𝑇2, is estimated in post-processing.  As temperature 

fluctuations are the primary source of optical turbulence in the atmosphere [28], 𝐶𝐶𝑇𝑇2 

are 𝐶𝐶𝑛𝑛2 are approximately related by a factor [99], given by Equation (1-14), and the 

structure functions of temperature and refractive index display the same anisotropy 

parameters and power law indices [9].  Due to uniformity of ground conditions in 

our experiments, we’ve assumed local results from the RTD systems approximately 

represent the path-averaged statistics, for comparison. 

 
Figure 4-18:  View of two RTD arrays mounted using tripods:  1)  Horizontally oriented 
eight probe RTD array mounted to a tripod; 2)  Vertically oriented eight probe RTD array 
mounted to the base of a heavy-duty tripod. 
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 During the post-processing routine, 𝐶𝐶𝑇𝑇2’s for individual sets of probe pairs 

are computed using the equation: 

𝐶𝐶𝑇𝑇2(𝑛𝑛,𝑚𝑚, 𝑡𝑡) = 

var �∆𝑇𝑇𝑛𝑛,𝑚𝑚 �𝑡𝑡 −
∆𝑡𝑡
2 � ,∆𝑇𝑇𝑛𝑛,𝑚𝑚 �𝑡𝑡 −

∆𝑡𝑡
2 + 1� , … ,∆𝑇𝑇𝑛𝑛,𝑚𝑚 �𝑡𝑡 + ∆𝑡𝑡

2 ��
𝑟𝑟𝑛𝑛,𝑚𝑚
2  

(4-31) 

where 𝐶𝐶𝑇𝑇2(𝑛𝑛,𝑚𝑚, 𝑡𝑡) is the single 𝐶𝐶𝑇𝑇2 estimate for probes n and m, var is the variance 

operator, ∆𝑇𝑇𝑛𝑛,𝑚𝑚 is the Temperature difference between probes n and m, ∆𝑡𝑡 is the 

scan time associated with the variance, and 𝑟𝑟𝑛𝑛,𝑚𝑚 is the distance between probes n 

and m.  The final, average 𝐶𝐶𝑇𝑇2 estimate is produced via: 

 
𝐶𝐶𝑇̅𝑇2(𝑡𝑡) =

∑ ∑ 𝐶𝐶𝑇𝑇2(𝑛𝑛,𝑚𝑚, 𝑡𝑡)𝑁𝑁
𝑚𝑚=𝑛𝑛+1

𝑁𝑁−1
𝑛𝑛=1

𝑁𝑁(𝑁𝑁 − 1)/2
 (4-32) 

The final RTD 𝐶𝐶𝑛𝑛2 estimate is performed using [9]: 
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𝑇𝑇�2(𝑡𝑡)
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𝐶𝐶𝑇̅𝑇2(𝑡𝑡)                   

(4-33) 

where 𝑃𝑃� is the average pressure in millibar (mb), and 𝑇𝑇� is the average temperature 

in Kelvin (K). 

 During the testing at the UMD UAS site, RTD array systems were placed 

at distances of 130 m, 223 m, and 310 meters from the MAT transmitter and 

adjacent to the optical propagation path in order to provide 𝐶𝐶𝑛𝑛,𝑅𝑅𝑅𝑅𝑅𝑅
2  measurements 
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with comparison to the MAT turbulence estimates.  Additionally, for a subset of 

tests the 8-probe RTD array was put in place vertically for comparison with the 

horizontal detectors in order to provide an estimate of anisotropy via the equation: 

 
𝜇𝜇𝑦𝑦,𝑅𝑅𝑅𝑅𝑅𝑅(𝑡𝑡) = �

𝐶𝐶𝑛𝑛,𝑥𝑥,𝑅𝑅𝑅𝑅𝑅𝑅
2 (𝑡𝑡)

𝐶𝐶𝑛𝑛,𝑦𝑦,𝑅𝑅𝑅𝑅𝑅𝑅
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�

3
2
 (4-34) 

where 𝐶𝐶𝑛𝑛,𝑥𝑥,𝑅𝑅𝑅𝑅𝑅𝑅
2  is an average 𝐶𝐶𝑛𝑛2 estimate from the detectors oriented in the x-

direction and  𝐶𝐶𝑛𝑛,𝑦𝑦,𝑅𝑅𝑅𝑅𝑅𝑅
2  is an average 𝐶𝐶𝑛𝑛2 estimate from the detectors oriented in the 

y-direction.  We note that in the figures to follow, because the MAT anisotropy 

ratio is determined along the direction determined to have more turbulence (i.e. 𝜃𝜃𝑇𝑇), 

we have elected to define the x-direction as vertical for comparison with the MAT 

data. 

 
Figure 4-19:  Power law estimates from the RTD array systems:  a) Power law histogram 
in the spatial domain using a three minute variance scan time; b) Power law estimate in 
the time-frequency domain compared to the -5/3rds Law predicted by theory. 

Although in previous sections we performed rigorous studies of 

theoretically proposed non-Kolmogorov turbulence we have elected to only 

consider the 2/3rds law of Kolmogorov in this section based upon data collected 
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using the RTD array systems.  Histogram analysis of best fits for the RTD array 

data observed power law, shown in Figure 4-19a, shows a large amount of variation 

in the detected power law.  However, we note that the largest two values in the 

histogram occur between .64 and .77.  Additionally, we remind the reader that 

power law estimate above unity result in divergent wave structure functions, and 

so are considered unphysical.  Time-frequency domain analysis of the differential 

temperature readings from the detectors, shown in Figure 4-19b, suggests that 

within the inertial range a -5/3rds law is indeed followed.  Figure 4-19b plots the 

mean power spectrum from each probe pair’s differential temperature, normalized 

by distance between probes, and averaged on the logarithmic scale.  This matches 

the energy spectrum prediction of Kolmogorov [3] under the assumptions of 

Taylor’s frozen flow hypothesis.  In order to reduce the number of estimated 

parameters using fitting algorithms in this section, we have simply assumed a 2/3rds 

spatial law and -11/3rds three dimensional spatial spectrum law in this section based 

on the RTD array data. We also note that separate analysis of temperature 

fluctuations from sonic anemometer data analyzed during testing at UCF as well as 

MAT optical detector power spectra collected without a chopping wheel at the 

MAT transmitter showed similar time-frequency characteristics to the RTD array 

data.   

 The results from testing with both the MAT transmitter and receiver at 150 

cm average height was conducted at the UMD UAS site between 10 AM and 5 PM.  



175 
 

During the extent of the testing, the temperature measurements polled from a 

weather station attached at the top of the MAT transmitter structural framing rack 

began at 26 °C and steadily rose to a peak of 28 °C at 2 PM, and then varied between 

27 °C and 28 °C for the rest of the testing.  The atmospheric pressure at the start of 

testing was polled at 1019.9 mb and declined steadily to 1016.1 mb during the 

testing.  Figure 4-20 and  

Figure 4-21 summarize the results of the testing.  Beginning with Figure 4-20, we 

note that the estimates of the refractivity angle and turbulence angle are at odds, 

however not orthogonal during the testing.  The mean refractivity angle estimate 

was -41.5° and the mean turbulence angle estimate was -89.0° on this day.  The 

median angles agreed with these metrics within 1.1°, and so were not significantly 

different.  The mean and median 𝜇𝜇𝑦𝑦’s were both 1.40.  The mean spot sizes 

(turbulent contribution removed) were 16.3 cm and 12.9 cm, with the medians 

agreeing to within 2 mm. 
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Figure 4-20:  Output data from MAT experiment using the iterative fitting method, as well as a comparison with the RTD array 
averaged Cn

2 estimate with both sets of systems configured for 150 cm average elevation:  a) Refractive and turbulent angle 
estimates, θR and θT, relative the an objective horizontal angle; b) Non-turbulence spot size estimate produced from best fits for Λ1 
and Λ2; c) Estimates of the anisotropy parameter, μy, given as both as an instantaneous estimate and the five minute median; d) 
Estimates of the refractive index structure constants, Cn,x

2 and Cn,y
2, with the x-axis being along the turbulent angle, as well as the 

Cn
2 estimate from the RTD arrays averaged across all three systems.
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Figure 4-21:  Anisotropy parameters using the MAT iterative fitting method compared with the estimate using the RTD array 
systems.  The MAT system’s instantaneous samples are computed using the normalized variance over one minute duration, with 
10 seconds resolution.  In addition to the instantaneous samples, a 5 minute median value is also shown.  The RTD array systems’ 
anisotropy parameter estimates are computed using temperature variances over three minutes duration, with 10 second resolution.  
Please note that the RTD array system’s anisotropy estimate has be produced along the approximate turbulent angle estimated for 
this test, i.e. the x-direction is vertical and the y-direction is horizontal in this figure.  
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Figure 4-21 presents a comparison of the MAT iterative fitting algorithm’s reported 

anisotropy parameter estimate versus the collected estimate from the RTD array 

systems.  Additionally, a 5 minute median MAT anisotropy estimate is included.  

The RTD-based estimate was collected by averaging 𝐶𝐶𝑛𝑛2 estimates from both 

horizontal systems and comparing with the estimates from the vertical system.  

While there is not complete agreement between MAT and RTD array system 

estimates, we note that rises in the anisotropy parameter appear to covary for the 

majority of occurrences.  The RTD systems, however, produce much higher peak 

anisotropy parameter estimates and occasionally dip below unity (i.e. detects the 

turbulence direction is horizontal), whereas outside of 12:00 and 13:00 the MAT 

estimates are steadily vertical.  Because the RTD probes were placed at different 

locations along the path and additionally are producing point estimates as opposed 

to path averages (the MAT system produces a weighted path average estimate) we 

assume the likely source of the discrepancy are inhomogeneities along the 

propagation path.  Additionally, we note that the MAT comparisons seem to be 

more reasonable when compare to other estimates of anisotropy produced over long 

propagation paths at similar elevations.  Beason, et al., [79] produced anisotropy 

parameter estimates at an elevation of 2 meters over a 1 km propagation path in 

January and February of 2017, and noted anisotropy estimates of 𝜇𝜇𝑦𝑦/𝜇𝜇𝑥𝑥 between 

1.05 and 1.67.  The turbulence directions were reported as both horizontal and 
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vertical in this study.  A similar study was performed in the summer by Wang, et 

al., [11] during which anisotropy estimates of 𝜇𝜇𝑦𝑦/𝜇𝜇𝑥𝑥 between 1.11 and 3, however 

these measurements were taken at elevations varying between 39 and 139 cm 

during the summer.  In Wang’s study, the turbulence direction was always 

approximately vertical. 

 The MOG field experiment team’s original plan for this test campaign was 

to test optical propagation path heights of 50, 100, and 150 cm sequentially in order 

to profiles turbulence and anisotropy at each height.  Due to problems encountered 

during testing, such as issues keeping the MAT transmitter steadily pointed near 

the center of the MAT receiver, we were not able to accomplish these goals in 

sequence.  Therefore, testing at 100 cm elevation was performed on October 1st, 

2018.  During this testing, the MAT system’s estimate of the refractive and 

turbulent angles vary widely in a manor much different from the October 2nd 150 

cm test.  Additionally, we note that the anisotropy parameter also varies widely.  

Due to a concurrent test using the RTD arrays to profile inhomogeneous horizontal 

turbulence, no RTD arrays were placed vertically to provide an independent 

anisotropy estimate.  Results from this testing are summarized in Figure 4-22.  The 

mean and median refractivity angle estimates were -4.10° and 1.86° respectively. 

The mean turbulence angle estimates were -7.33° and -12.8° respectively.  The 

mean and median 𝜇𝜇𝑦𝑦’s were 2.05 and 1.80.  The mean spot sizes (turbulent 

contribution removed) were 19.2 cm and 17.9 cm, with the medians being 19.0 cm 
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and 17.9.  Additionally, we note that the 𝐶𝐶𝑛𝑛,𝑥𝑥
2  and 𝐶𝐶𝑛𝑛,𝑦𝑦

2  estimates are relatively 

accurate relative to the average produced by the RTD array systems.  We note the 

temperature on this day was noted as 25° C and the pressure noted at 1024.7 mb at 

11:55 AM.  
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Figure 4-22:  Output data from MAT experiment using the iterative fitting method, as well as a comparison with the RTD array 
averaged Cn

2 estimate with both sets of systems configured for 100 cm average elevation:  a) Refractive and turbulent angle 
estimates, θR and θT, relative the an objective horizontal angle; b) Non-turbulence spot size estimate produced from best fits for Λ1 
and Λ2; c) Estimates of the anisotropy parameter, μy, given as both as an instantaneous estimate and the five minute median; d) 
Estimates of the refractive index structure constants, Cn,x

2 and Cn,y
2, with the x-axis being along the turbulent angle. 
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 Because the MAT anisotropy estimate seems to be performing poorly on 

October 1st, we sought to investigate possible reasons to explain our problems.  

Review of the individual intensity and scintillation index profiles from the testing 

indicated that atypical scintillation index profiles were at times accompanying the 

otherwise nominal intensity fits.  An example plot is shown in Figure 4-23.  

Because this type of a scintillation index profile has not been observed in phase 

screen simulations, we assume this type of a profile indicates an extreme refractive 

index profile is present, causing the laser to interact with itself in an atypical manor.  

In our testing with other research groups, we have been told that large aperture 

optical scintillometers will often report strange results relative to other equipment 

on particularly hot days when the scintillometers are placed at ground elevation.  

The UCF group, as an example, typically places there commercial large aperture 

scintillometer atop a trailer when testing at the Kennedy Space Center (KSC) 

Shuttle Landing Facility (SLF) runway.  Within our atmospheric testing 

community, this is sometimes referred to as a micro-mirage effect, because a mirage 

may not be visible when viewing incoherent light, however analysis of coherent 

light (which may interfere with itself) shows odd characteristics.  For this data set, 

another source of error may be that given the observed scintillation indices and 

computed aperture averaging factors given in Section 3.5, the true Rytov variance 

for the shown data sample is likely above 1, and therefore we are not approximately 

within the weak fluctuation regime.  However, phase screen simulations in the deep 
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fluctuation regime still show parabolic scintillation index profiles, and so we 

believe this is unlikely the major source of error.   

 
Figure 4-23:  Example observed main intensity at the MAT receiver and from an outdoor 
field experiment on October 1st, 2018 at 100 cm elevation.  The subplots are:  a) 
Interpolated mean optical intensity profile; b) Detector-by-detector mean optical 
intensity; c) Interpolated scintillation index profile; d) Detector-by-detector scintillation 
index. 

 Testing at 50 cm elevation was performed on September 27th and October 

3rd with mixed results.  On September 27th although the angle estimates appeared 

to be relatively stable, the anisotropy parameter varied widely.  The mean and 

median refractivity angle estimates were 70.0° and 67.7°, while the mean and 

median turbulence angles were -35.0° and -44.2°.  The mean and median anisotropy 
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estimates were 1.92 and 1.53.  The mean non-turbulent spot sizes were 21.3 cm and 

18.6, with the medians within 1 mm of the mean. 𝐶𝐶𝑛𝑛,𝑥𝑥
2  and 𝐶𝐶𝑛𝑛,𝑦𝑦

2  estimates are 

relatively accurate relative to the average produced by the RTD array systems.  The 

temperature and pressure for September 27th, 2018 were noted at 20° C and 1018.1 

mb at 10:08 AM. 

 Two datasets were collected using the MAT on October 3rd, 2018 with 

improved results.  Because the direction of greater turbulence seems to have 

switched between the collected data sets, we will present the relevant statistics 

separately beginning with the data set collected between 10:00 AM and 11:00 AM.  

Mean and median refractivity angle estimates were -17.7° and -18.6°, while the 

mean and median turbulence angles were 87.4° and 86.7°.  The mean and median 

anisotropy estimates were 1.69 and 1.49.  The mean non-turbulent spot sizes were 

14.9 cm and 12.7, with the medians within 1 mm of the mean. 𝐶𝐶𝑛𝑛,𝑥𝑥
2  and 𝐶𝐶𝑛𝑛,𝑦𝑦

2  

estimates are relatively accurate relative to the average produced by the RTD array 

systems. 

 For the second data set of October 3rd, 2018 which was collected between 

11:10 AM and 12:15 PM we note that the direction of turbulence notably changed 

to being approximately horizontal.  Mean and median refractivity angle estimates 

were -8.9° and -7.3°, while the mean and median turbulence angles were -15.7° and 

-22.5°.  The mean and median anisotropy estimates were 1.28 and 1.19.  The mean 

non-turbulent spot sizes were 14.5 cm and 12.5, with the medians within 1 mm of 
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the mean. 𝐶𝐶𝑛𝑛,𝑥𝑥
2  and 𝐶𝐶𝑛𝑛,𝑦𝑦

2  estimates are relatively accurate relative to the average 

produced by the RTD array systems. 
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Figure 4-24:  Output data from MAT experiment using the iterative fitting method, as well as a comparison with the RTD array 
averaged Cn

2 estimate with both sets of systems configured for 50 cm average elevation on September 27th, 2018:  a) Refractive 
and turbulent angle estimates, θR and θT, relative the an objective horizontal angle; b) Non-turbulence spot size estimate produced 
from best fits for Λ1 and Λ2; c) Estimates of the anisotropy parameter, μy, given as both as an instantaneous estimate and the five 
minute median; d) Estimates of the refractive index structure constants, Cn,x

2 and Cn,y
2, with the x-axis being along the turbulent 

angle. 
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Figure 4-25:  Output data from MAT experiment using the iterative fitting method, as well as a comparison with the RTD array 
averaged Cn

2  estimate with both sets of systems configured for 50 cm average elevation on October 3rd, 2018:  a) Refractive and 
turbulent angle estimates, θR and θT, relative the an objective horizontal angle; b) Non-turbulence spot size estimate produced from 
best fits for Λ1 and Λ2; c) Estimates of the anisotropy parameter, μy, given as both as an instantaneous estimate and the five minute 
median; d) Estimates of the refractive index structure constants, Cn,x

2 and Cn,y
2, with the x-axis being along the turbulent angle.
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Again, a possible explanation for the disconnect in results between the September 

27th and October 3rd data is the prevalence of odd scintillation index profiles seen in the 

September 27th data which is not prevalent in the October 3rd data set.  Figure 4-26 shows a 

capture of the September 27th data and Figure 4-27 displays a capture of the October 3rd 

data.  We note that the low scintillation indices observed on September 27th indicate that 

we are indeed within the weak fluctuation regime, supporting the micro-mirage effect 

hypothesis. 

 
Figure 4-26:  Example observed main intensity at the MAT receiver and from an outdoor 
field experiment on September 27th, 2018 at 50 cm elevation.  The subplots are:  a) 
Interpolated mean optical intensity profile; b) Detector-by-detector mean optical 
intensity; c) Interpolated scintillation index profile; d) Detector-by-detector scintillation 
index. 
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Figure 4-27:  Example observed main intensity at the MAT receiver and from an outdoor 
field experiment on October 3rd, 2018 at 50 cm elevation.  The subplots are:  a) 
Interpolated mean optical intensity profile; b) Detector-by-detector mean optical 
intensity; c) Interpolated scintillation index profile; d) Detector-by-detector scintillation 
index. 

 In conclusion, the MAT turbulence profiling experiment seems to be a 

partial success.  We see that at some times we produce anisotropy and turbulent 

angle estimates which seem to correlate with observations made using the RTD 

arrays.  However, during the one experiment where we had placed an RTD array in 

a vertical configuration for anisotropy profiling validation, only slightly more than 

half of the data seemed correlated well between systems.  We note also, that 

inhomogeneity of the turbulence profile in the propagation direction was most 
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likely playing a roll.  On the other hand we see good agreement between the 𝐶𝐶𝑛𝑛2 

estimates produced by the MAT and the RTD array systems in place along the path.  

Therefore, in the weak fluctuation regime the MAT seems to be operating as a 

reliable scintillometer.   Additionally, we have produced experimental observations 

of atypical scintillation index profiles which may spur additional study of refractive 

index affects affecting near surface coherent light propagation. 

4.6:  Simultaneous Extinction Rate and Turbulence Profiling in the Deep 

Fluctuation Regime 

Prior to the testing at the UMD UAS site, a conceptually simpler test was 

performed at the KSC SLF runway in Merritt Island, Florida in early May, 2018.  

The testing concept was to use an initially collimated beam, such that the initial 

beam parameters were well understood, over a long path such that significant beam 

expansion due to turbulence was observed.  In that manner, given the diffraction 

limited spot size, W, is well known 𝐶𝐶𝑛𝑛,𝑥𝑥
2  and 𝐶𝐶𝑛𝑛,𝑦𝑦

2  can be estimated using the below 

set of equations, assuming a -11/3rds spectral power law: 

 

𝜌𝜌𝑠𝑠,𝑥𝑥 ≅ �
8𝐿𝐿2

𝑘𝑘0
�𝑊𝑊𝐿𝐿𝐿𝐿,𝑥𝑥

2 −𝑊𝑊2� (4-35) 

 

𝜌𝜌𝑠𝑠,𝑦𝑦 ≅ �
8𝐿𝐿2

𝑘𝑘0
�𝑊𝑊𝐿𝐿𝐿𝐿,𝑦𝑦

2 −𝑊𝑊2� (4-36) 

 
𝐶𝐶𝑛𝑛,𝑥𝑥
2 =

1.8300
𝑘𝑘02 ∙ 𝐿𝐿 ∙ 𝜌𝜌𝑠𝑠,𝑥𝑥

5/3 (4-37) 
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𝜇𝜇𝑦𝑦 = �
𝑊𝑊𝐿𝐿𝐿𝐿,𝑥𝑥

2 −𝑊𝑊2

𝑊𝑊𝐿𝐿𝐿𝐿,𝑦𝑦
2 −𝑊𝑊2 (4-38) 

 
𝐶𝐶𝑛𝑛,𝑦𝑦
2 =

𝐶𝐶𝑛𝑛,𝑥𝑥
2

𝜇𝜇𝑦𝑦
2/3 (4-39) 

 In order to test this method, we performed testing over a 2 km propagation 

path at the KSC SLF.  The SLF features a roughly 5 km long runway with has been 

specially engineered to run tangent to the curvature of the earth, and as such is ideal 

for deep fluctuation regime experiments.  An aerial view of the KSC SLF is given 

in Figure 4-28a. 

 
Figure 4-28:  (a) Aerial view of the SLF site; (b) MAT receiver with a GPS receiver 
resting on the sun-shield.   
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Figure 4-29:  a) MAT receiver initial setup; (b) MAT receiver in operation partially under 
a canopy adjacent to a USC trailer with a scintillometer transmitter on the roof. 

In order to avoid vibrations and disturbances, the MAT transmitter was 

placed in a UCF trailer and all optics of the operational MAT system were mounted 

to an optics table.  A shearing interferometer was used in tandem with beam 

expander lens position adjustments in order to collimate the transmit beam.  Once 

again, an optical chopping wheel was in place to aid the removal of background 

light, and a large steering mirror was used for pointed at the target.  Additionally, 

the transmit spot size was measured at 1.4 cm and the transmitter wavelength was 

once again 632.8 nm. 
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Figure 4-30:  Images of the shearing interferometer hologram during collimation 
procedure, with the beam propagating from left to right:  a) Shearing interferometer 
readout for weakly divergent beam; b) Shearing interferometer readout for a collimated 
beam. 

 The biggest issue for the May 2018 testing was maintaining accurate 

pointing on the MAT receiver.  For that reason, there are large dropouts in the data.  

However, we believe the data collected is quite consistent during periods when the 

MAT is operating successfully.  Figure 4-31 displays comparisons between the 

MAT 𝐶𝐶𝑛𝑛2 estimates and those of RTD probes placed near the MAT transmitter at 

approximately 1 m (4-probe RTD array) and 1.5 m (8-probe RTD array) elevation.  

The MAT transmitter was at roughly 2 m elevation, and the receiver at roughly 1.5 

m elevation at the end of the 2 km propagation path. 
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Figure 4-31:  Cn

2 estimates from the MAT system as well as two RTD array systems from 
May, 2018 testing. 

 Figure 4-31 summarizes the MAT and RTD turbulence estimates over both 

days.  Individual plots are given below.  Along with the turbulence estimates, in 

order to demonstrate that the MAT system is able to estimate extinction coefficient 

accurately we have also included plots of comparisons between the MAT extinction 

rate estimate alongside those from UCF’s commercial visibility meter placed 

midway along the propagation path.  We believe the results match very well, given 

that the MAT produces a path averaged estimate and the visibility meter provides 

a point estimate. 
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Figure 4-32:  a) Extinction rate estimate from the MAT system on May 2nd, 2018; b) 
Extinction rate estimate from UCF’s commercial visibility meter on May 2nd, 2018. 
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Figure 4-33:  Cn

2 estimates from the MAT system as well as two RTD array systems from 
May 2nd, 2018 testing.  Please note that the x-direction for the MAT estimate is given by 
the beam angle in the next figure. 
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Figure 4-34:  a) Anisotropy parameter estimate from the MAT system from May 2nd, 2018 
testing; b) Beam angle estimate from the MAT system from May 2nd, 2018 testing, i.e. 
the major axis of turbulence under our assumptions. 
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Figure 4-35:  a) Extinction rate estimate from the MAT system on May 3rd, 2018; b) 
Extinction rate estimate from UCF’s commercial visibility meter on May 3rd, 2018. 
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Figure 4-36:  Cn

2 estimates from the MAT system as well as two RTD array systems from 
May 3rd, 2018 testing.  Please note that the x-direction for the MAT estimate is given by 
the beam angle in the next figure. 
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Figure 4-37:  a) Anisotropy parameter estimate from the MAT system from May 3rd, 2018 
testing; b) Beam angle estimate from the MAT system from May 3rd, 2018 testing, i.e. the 
major axis of turbulence under our assumptions. 

 The data collected during the early May 2018 testing is limited, but very 

interesting as compared to the data collected in the weak fluctuation regime at the 

UMD UAS test site.  Noting that some of the MAT turbulence estimates approach 

𝐶𝐶𝑛𝑛2’s of 5 × 10−13 𝑚𝑚−2/3, we first discuss the extinction coefficient estimates.  At 

the noted 𝐶𝐶𝑛𝑛2, along with the propagation lengths and wavenumbers under test, the 

Rytov variance is 100.78, putting our testing squarely within the strong fluctuation 

regime [9], or deep turbulence.  The transmissometer extinction rate estimates still 

compare very closely to the point visibility meter in spite of the optical turbulence 
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effects, although there are some clear spikes in extinction at low readings.  Given 

the complications of the testing, and the fact that others may have been working 

along the propagation path, the spikes in extinction estimates from the MAT system 

may have been due to exhaust fumes from portable generators or vehicles along the 

path blowing into the propagation path, or due to short duration pointing 

inaccuracies due to sudden changes in steady-state refraction along the path.  A 

cloud passing overhead can, for instance, cause a sudden dip of the beam centroid 

at the detector.  We also note low extinction reading, which may have been due to 

light pollution.  The transmissometer synchronization and background light remove 

routines work well for slow changes in background light, however if a blinking 

instrument light was captured by the transmissometer this type of light pollution 

would most likely not be successfully removed by our algorithms. 

 The turbulence estimates from the MAT system seem quite steady as 

compared to readings from the RTD array systems.  Given that our diffraction 

limited spot size for this test was 3.2 cm, and long term spot sizes upwards of 30 

cm were commonly observed, this indicates that the change in coherence length is 

the main driver of the long term spot size.  Given that the spherical wave coherence 

length in homogenous turbulence is dependent upon the propagation distance 

according to a -3/5 law [see Equations (3-16) and (3-17)], and the beam expansion 

used to estimate 𝐶𝐶𝑛𝑛2 is given by approximately �8𝐿𝐿2/(𝑘𝑘0𝜌𝜌𝑠𝑠2) , we assume the 

estimates weight inhomogeneities by a 2/3rds law of distance to the from the receiver 
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(integration of a 2/3rds law weighting over L yields a 5/3rds law).  Despite the 𝐶𝐶𝑛𝑛2 

estimates weighting turbulence near the transmitter higher, we still appear to get a 

very good average estimate with a low incidence of extreme fluctuations.   

 Given the work in the previous section, the estimates of anisotropy are 

somewhat surprising.  The spot size ratios in the deep turbulence regime appear to 

be closer than what was noted in the weak turbulence regime (see Figure 4-38), 

with a fit routine attempting to mitigate the effects of turbulence.  Additionally, we 

note that typical anisotropy estimates in the deep fluctuation regime seem to hover 

between 1 and 1.2.  Much of the weak fluctuation regime anisotropy readings were 

more extreme than this, with exceptions being parts of the days’ testing on Oct 2nd 

and Oct 3rd, 2018.  This may point to issues in the weak fluctuation regime iterative 

fitting method, the approximations used, or (perhaps) a problem with the optics in 

the weak fluctuation regime testing.  Alternatively, it may be the case that strong 

turbulence is simply more isotropic than weak turbulence.  Certainly, we can infer 

that any refractivity distortions observed in the weak fluctuation regime testing 

appear to be approximately negligible in our strong fluctuation regime testing.  This 

may, again, be a natural element of deep turbulence or point to the collimation of 

the laser in deep turbulence testing mitigated problems with transmitter optics, such 

as differing radii of curvature along different axes of the transmit beam.  

Regardless, we believe that in this section we have demonstrated a reliable 

approach for simultaneous estimating atmospheric turbulence and extinction rate in 
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a regime where the scintillation index is expected to saturate.  In the future, it is 

possible that this method could be made more reliable using automated transmitter 

pointing along with a control loop with a low enough bandwidth as to allow all the 

low temporal frequency contributions of turbulence to manifest, but still allow for 

accurate point over the long term.  The temporal frequency analysis in the previous 

section suggests that 1 mHz would likely be sufficient.  

 
Figure 4-38: MAT long term spot size estimates on:  a) May 2nd, 2018; b) May 3rd, 2018. 
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Chapter 5 : Summary and Future Work 

5.1:  Summary  

The work contained in this dissertation has demonstrated novel methods for 

both simulation and experimental characterization of atmospheric optical 

turbulence.  We have developed new method for performing computational optics 

simulations of wave propagation through novel forms of atmospheric turbulence, 

presented a thorough survey of performance of various theoretical predictions’ 

performance when tested using Monte-Carlo simulation methods.  These 

investigations of theoretical predictions using simulations have informed our 

experimental methods, and based on this we have developed new methods for the 

characterization of anisotropic turbulence in the weak and deep fluctuation regimes.   

In Chapter 2, recent theoretical investigations of non-Kolmogorov and 

anisotropic turbulence spawned an investigation regarding the convergence of 

statistical metrics of interest in the simulation of atmospheric optical turbulence 

under new symmetry and power law assumption.  This led us to augment standard 

algorithms to include randomized spectral sampling as well as new guidelines 

regarding the number of subharmonic frequency elements which should be added 

to the FFT-based phase screens in order to assure accurate statistics.  While the 

focus was initially on anisotropic, non-Kolmogorov spectral models, being aware 

of other widespread spectral models (i.e. the modified atmospheric spectrum) in 
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common use in the atmospheric optics community we began to investigate the 

impact of using the revised method on other spectral models, with positive results 

both with and without considering the effects of randomized subharmonic 

distortions.  Additionally, we have provided an abundance of data regarding the 

relationship between both power law (in the case of non-Kolmogorov turbulence) 

and outer scale (in the case of the modified atmospheric spectrum) and statistical 

accuracy parameterized by number of subharmonics added to the phase screens, 

which should be of great utility to researchers attempting to choose an ideal set of 

model parameters. 

Using the newly refined phase screen algorithm, in Chapter 3 we use the 

revised method to investigate the accuracy of theoretical predictions regarding both 

long term spot size and scintillation index statistics.  In Section 3.2, we have 

investigated several predictions regarding long term spot size of collimated 

Gaussian beams propagating through deep atmospheric turbulence.  We have 

demonstrated that extensions of the weak fluctuation regime predictions into the 

strong fluctuation regime are not accurate, and additionally that expressions 

depending upon an inverse relationship between the coherence length of a spherical 

wave and the spot size growth are more accurate than expressions based upon the 

coherence length of plane waves when the spot size results are parameterized 

according to the three dimensional spectral power law of turbulence, 𝛼𝛼, across 

reasonable values of 3 to 4.  We then continued with a similar analysis applied to 
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beams focused upon the receive plane propagating through anisotropic, non-

Kolmogorov turbulence.  We find that while the expressions which were determine 

to be very accurate for initially collimated beam were the most accurate predictors 

of long term spot size for focused beams, there was a non-negligible disagreement 

between predictions and results for low values of 𝛼𝛼.  The observation echoes 

sentiments in the literature that the behavior of focused beams propagation through 

turbulence are not completely understood.  Additionally, analysis of the 

scintillation index behavior of focused beams in Section 3.3 showed a stark 

disagreement with theoretical predictions.  Finally, in Section 3.5 we have 

demonstrated problems applying the weak fluctuation approximations to beams 

with initially circular Gaussian intensity but in which the initial radius of curvature 

varies with angle.  Having reviewed the Rytov method’s application in predicting 

weak fluctuation regime results [9], it is my feeling that this is mostly because 

extensions of the age-old analysis to more recent developments (such as the 

consideration of refractivity distortions) the statistical moments of the field need to 

be re-derived from first principles without the symmetry assumptions present in the 

original analysis.  Despite these issues, we have derived some useful 

approximations based upon the wave optics simulation results, and applied them to 

our experimental analysis. 

Chapter 4 describes a variety of experiments using the MAT system to 

profile both extinction rate and turbulence in outdoor field tests, as well as the 
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fundamental method of operation of MAT system.  As noted in Sections 4.3 and 

4.6, the system appears to very accurately estimate extinction coefficient in the 

weak and deep fluctuation regimes, provided the transmitter is accurately aligned 

with the receiver.  Additionally, we consider it quite impressive that the 

transmissometer extinction rate estimate appears to be accurate when tested in 

experiments featuring Rytov variances nearing 100.  In Section 4.4 we have 

outlined a method for iterative fitting refractivity and turbulence parameters in 

scenarios were the initial beam radius of curvature and steady-state atmospheric 

refractive affects are not understood, which is based partly upon observations from 

phase screen simulations in the previous chapter.   We consider this work to be 

partially successful.  Although we have not been able to observe high accuracy in 

comparison with point detectors extrapolating 𝐶𝐶𝑛𝑛2 estimates from observations of 

temperature fluctuations, we do find that in the weak fluctuation regime the 

transmissometer is working quite accurately as a scintillometer.  The turbulence 

results of Section 4.6 in the deep fluctuation regime are very encouraging, and quite 

stable when compared to point detectors.  However, the low anisotropy parameters 

measured in this test cause us to question some of the higher values (i.e. above 1.3) 

noted in Section 4.5.  While the results were encouraging, the major downside to 

testing in the deep fluctuation regime and over long propagation paths is the 

temperamental pointing accuracy associated with ranges nearing 2 km. 
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In final summary, in this thesis we have reviewed and augment simulation 

techniques for the study of optical propagation through atmospheric turbulence, and 

successfully demonstrated a revised simulation method.  These methods have been 

used to both confirm and draw skepticism upon various predictions regarding long 

term spot size and scintillation index of waves propagating through atmospheric 

turbulence.  Additionally, these methods were applied in order to inform 

atmospheric distortion testing in outdoor field experiments, and while not all the 

efforts have been completely successful, we have produced novel methods for 

estimating turbulence in the weak and strong fluctuation regimes.  Possible 

improvements to the methods given in this dissertation will be discussed in the next 

section.   

5.2:  Future Work 

During the course of performing research in support of this dissertation, we 

have gained a familiarity with the mathematics underlying theoretical 

investigations of optical wave propagation through atmospheric turbulence as well 

as methods for simulating these effects.  The stark difference between predicted 

and simulated scintillations index of beams with differing radii of curvature 

dependent upon the polar angle across the transmit beam profile highlights a major 

problem with the theoretical predictions appearing in the literature [87].  Therefore, 

a promising area of future work is to revisit the fundamental equations of weak 
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fluctuation theory, and attempt to repair problems in current derivations. 

Additionally, we believe that these so-called warped beams may have applications, 

such as in communications with low earth orbit satellites where a vehicle is moving 

quickly along a well-known orbital path.  In this field, along-track or time-bias 

prediction errors [101] are the major source of error, as opposed to predictions of 

the orbital path.  For that scenario, purposefully diverging the transmit beam along 

one axis in order to produce an elliptical diffraction pattern would seem to be 

beneficial in lowering the required output power of the transmitter.  Warped beams 

is one method of achieving this, as are anisotropic partially coherent beams.  We 

intend to study this topic further using phase screen simulations. 

Finally, given the issues observed when testing using a divergent beam in 

the weak fluctuation regime along with the newfound concerns regarding non-

turbulent refractivity distortions, we believe many of the problems observed in the 

UMD UAS site testing could be resolved by coordinating the testing of the MAT 

system in tandem with a wavefront sensor.  The MOG group has developed a 

configurable wavefront sensor capable of operating in both plenoptic sensor and 

light field (LCF) camera configurations.  In outdoor experiments, we have 

demonstrated direct detection of the wave structure function (WSF) of a received 

beam as well as the transverse mutual coherence function (MCF), and therefore 

also the anisotropy ratio.  A view of the experimental setup is shown in Figure 5-1, 
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and recovered WSF’s along the major and minor axes of turbulence are shown in 

Figure 5-2 (both taken from [102]). 

 
Figure 5-1:  View of test laser transmitter and LCF in October 2019 experiment. 

 
Figure 5-2:  Recovered WSF’s from the LFC October 2019 experiment:  a) Along the 
minor axis of turbulence; b) Along the major axis of turbulence. 
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 Fielding the light field camera in tandem with the MAT system would 

facilitate simultaneous estimates of optical turbulence, anisotropy ratios, and allow 

for any non-turbulent refractive effects (or problems with transmitter optics) to be 

estimated, as well.  The LFC system has the added feature that the WSF estimates 

are true path averages, and are not weighted towards the transmitter.  This would 

allow for the turbulence estimates derived from LFC observations to be equally 

valid if the propagation path was in the opposite direction of that of the MAT 

system.  Therefore, receivers and transmitters could be mounted on the same 

structural housing and beams propagated in opposing directions in order to avoid 

light pollution, although the MAT receiver’s retroreflecting corner cubes may need 

to be covered after alignment.  We believe a very fruitful experimental campaign 

would result from this joint testing approach.
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Appendix A:  Tables of RMS Error Statistics over Region of Interest 

 
  α 

Np 3.1 3.2 3.3 3.4 3.5 3.6 11/3 3.7 3.8 3.9 
0 0.69 1.21 1.48 1.05 6.35 4.17 8.23 12.59 9.31 55.33 
1 0.63 0.56 1.26 1.65 2.75 13.87 5.25 6.88 16.10 42.68 
2 0.60 0.55 0.87 1.19 1.93 1.92 3.33 3.62 99.54 33.01 
3 0.62 0.56 0.88 0.95 0.76 1.98 5.00 3.77 12.57 33.91 
4 0.65 0.55 0.93 0.96 0.86 1.89 3.06 2.46 12.78 24.91 
5 0.63 0.59 0.82 0.73 0.63 0.49 1.84 1.27 4.87 32.69 
6 0.61 0.55 0.81 0.76 0.60 0.71 1.84 0.91 5.82 28.33 
7 0.62 0.54 0.86 0.87 0.61 0.53 1.04 0.97 6.26 20.29 
8 0.62 0.53 0.84 0.84 0.50 1.01 0.76 0.94 4.83 21.54 
9 0.62 0.54 0.86 0.84 0.51 0.60 0.55 0.72 4.15 33.83 

10 0.62 0.54 0.86 0.86 0.46 0.59 0.91 0.56 2.43 16.74 
11 0.62 0.54 0.87 0.86 0.49 0.64 0.77 0.31 1.91 13.53 
12 0.62 0.54 0.88 0.87 0.50 0.67 0.83 0.30 2.02 7.79 
13 0.62 0.54 0.87 0.87 0.49 0.71 0.62 0.28 1.00 13.15 
14 0.62 0.54 0.87 0.87 0.49 0.70 0.64 0.28 1.51 6.99 
15 0.62 0.54 0.87 0.87 0.48 0.72 0.67 0.43 1.22 9.55 
16 0.62 0.54 0.87 0.87 0.48 0.74 0.67 0.26 0.83 6.09 
17 0.62 0.54 0.87 0.86 0.48 0.73 0.68 0.27 1.08 6.92 
18 0.62 0.54 0.87 0.86 0.48 0.73 0.68 0.29 0.69 5.54 
19 0.62 0.54 0.87 0.86 0.48 0.72 0.67 0.29 0.70 5.73 
20 0.62 0.54 0.87 0.86 0.47 0.72 0.68 0.29 0.57 5.35 
21 0.62 0.54 0.87 0.86 0.48 0.73 0.68 0.29 0.47 4.12 
22 0.62 0.54 0.87 0.86 0.48 0.73 0.68 0.30 0.54 3.57 
23 0.62 0.54 0.87 0.86 0.48 0.72 0.69 0.30 0.48 3.53 
24 0.62 0.54 0.87 0.86 0.48 0.72 0.68 0.30 0.50 3.60 
25 0.62 0.54 0.87 0.86 0.48 0.73 0.69 0.30 0.41 2.61 

Table A-1:  RMS error over region of interest computed using the randomized hybrid 
subharmonic method along x- and y-directions of 5,000 phase screens for 512 × 512 grid 
using various spectral power laws (α’s) and number of subharmonic constellations,  Np.  
μx = μy = 1 for all entries. 
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  α  
Np 3.1 3.2 3.3 3.4 3.5 3.6 11/3 3.7 3.8 3.9 
0 32.82 37.16 42.53 47.70 54.16 60.81 65.75 68.32 77.16 87.54 
1 9.51 11.93 15.29 18.96 25.17 32.44 38.71 42.20 55.71 74.51 
2 2.06 1.95 2.65 3.70 7.67 13.52 19.28 22.64 38.06 62.28 
3 3.65 4.31 4.03 4.67 2.96 1.60 5.80 8.56 24.02 51.25 
4 4.79 6.02 6.68 8.71 8.71 6.57 3.76 1.92 12.37 41.27 
5 5.25 6.72 8.03 11.05 12.00 11.77 10.08 8.99 3.24 32.59 
6 5.41 7.06 8.62 12.16 13.91 15.05 14.70 14.15 3.99 24.86 
7 5.46 7.16 8.92 12.77 15.03 17.21 17.98 17.87 9.87 17.84 
8 5.49 7.20 9.08 13.04 15.68 18.53 20.13 20.63 14.45 11.17 
9 5.50 7.21 9.13 13.17 16.06 19.36 21.58 22.59 18.47 5.73 

10 5.51 7.22 9.16 13.25 16.31 19.94 22.61 23.97 21.49 0.73 
11 5.51 7.23 9.15 13.31 16.41 20.37 23.36 24.95 23.94 3.63 
12 5.51 7.23 9.15 13.33 16.46 20.59 23.92 25.75 25.93 7.59 
13 5.51 7.23 9.16 13.35 16.49 20.78 24.28 26.34 27.40 11.27 
14 5.51 7.23 9.16 13.36 16.52 20.88 24.51 26.68 28.74 14.50 
15 5.51 7.23 9.16 13.36 16.53 20.93 24.68 26.93 29.72 17.21 
16 5.51 7.23 9.16 13.36 16.54 20.98 24.79 27.13 30.68 19.89 
17 5.51 7.23 9.16 13.36 16.55 20.99 24.86 27.30 31.41 22.38 
18 5.51 7.23 9.16 13.36 16.55 21.02 24.92 27.39 31.85 24.44 
19 5.51 7.23 9.16 13.36 16.55 21.03 24.95 27.44 32.24 26.32 
20 5.51 7.23 9.16 13.36 16.55 21.04 24.97 27.51 32.58 28.02 
21 5.51 7.23 9.16 13.36 16.55 21.04 24.98 27.55 32.79 29.49 
22 5.51 7.23 9.16 13.36 16.55 21.05 25.00 27.59 33.01 30.74 
23 5.51 7.23 9.16 13.36 16.55 21.05 25.02 27.63 33.13 32.04 
24 5.51 7.23 9.16 13.36 16.55 21.05 25.03 27.63 33.28 33.06 
25 5.51 7.23 9.16 13.36 16.55 21.05 25.03 27.64 33.39 34.02 

Table A-2:  RMS error over region of interest computed using the Frehlich subharmonic 
method along x- and y-directions of 5,000 phase screens for 512 × 512 grid using various 
spectral power laws (α’s) and number of subharmonic constellations,  Np.  μx = μy = 1 for 
all entries. 
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  α 

Np 3.1 3.2 3.3 3.4 3.5 3.6 11/3 3.7 3.8 3.9 
0 32.82 37.16 42.53 47.70 54.16 60.81 65.75 68.32 77.16 87.54 
1 16.19 19.37 23.61 28.83 35.59 42.97 49.04 52.62 64.37 79.83 
2 9.77 11.74 14.50 18.55 24.20 30.92 36.92 40.49 53.87 72.95 
3 7.47 8.60 10.24 13.25 17.68 23.15 28.62 31.99 45.48 66.55 
4 6.61 7.31 8.29 10.46 13.97 17.91 22.93 25.93 38.41 60.82 
5 6.28 6.81 7.41 9.08 11.82 14.67 18.75 21.58 33.05 55.71 
6 6.16 6.52 6.99 8.38 10.59 12.63 15.98 18.28 28.74 50.99 
7 6.13 6.44 6.80 7.98 9.90 11.30 14.04 15.93 25.23 47.02 
8 6.11 6.40 6.71 7.77 9.47 10.47 12.63 14.32 22.27 43.42 
9 6.11 6.39 6.66 7.66 9.22 9.93 11.62 13.21 20.04 40.22 

10 6.11 6.38 6.63 7.64 9.10 9.61 11.01 12.29 18.17 37.21 
11 6.11 6.38 6.63 7.61 9.03 9.36 10.52 11.72 16.71 34.59 
12 6.11 6.39 6.63 7.59 8.98 9.19 10.21 11.25 15.60 32.20 
13 6.10 6.39 6.63 7.58 8.96 9.10 10.03 10.96 14.68 30.15 
14 6.10 6.39 6.63 7.58 8.94 9.08 9.88 10.69 13.95 28.25 
15 6.11 6.39 6.63 7.58 8.94 9.05 9.78 10.53 13.32 26.44 
16 6.10 6.39 6.63 7.58 8.94 9.03 9.69 10.41 12.87 24.84 
17 6.10 6.39 6.63 7.58 8.93 9.01 9.64 10.32 12.49 23.41 
18 6.10 6.39 6.63 7.58 8.93 9.00 9.60 10.24 12.16 22.19 
19 6.10 6.39 6.63 7.58 8.93 9.00 9.59 10.22 11.97 21.17 
20 6.10 6.39 6.63 7.58 8.93 8.99 9.55 10.19 11.71 20.14 
21 6.10 6.39 6.63 7.58 8.93 8.98 9.54 10.16 11.55 19.27 
22 6.10 6.39 6.63 7.58 8.93 8.99 9.55 10.15 11.43 18.50 
23 6.10 6.39 6.63 7.58 8.93 8.98 9.54 10.14 11.33 17.76 
24 6.10 6.39 6.63 7.58 8.93 8.98 9.54 10.13 11.26 17.07 
25 6.10 6.39 6.63 7.58 8.93 8.98 9.54 10.12 11.17 16.50 

Table A-3:  RMS error over region of interest computed using the Lane subharmonic 
method along x- and y-directions of 50,000 phase screens for 512 × 512 grid using 
various spectral power laws (α’s) and number of subharmonic constellations,  Np.  μx = μy 
= 1 for all entries. 
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  α 
Np 3.1 3.2 3.3 3.4 3.5 3.6 11/3 3.7 3.8 3.9 
0 0.88 1.58 0.98 3.04 10.59 10.92 8.59 11.76 4.30 51.95 
1 0.94 0.81 0.97 2.44 1.51 8.00 6.93 8.01 25.56 29.46 
2 0.65 0.41 1.03 0.93 4.97 4.06 5.44 2.35 2089.99 45.20 
3 0.79 0.33 1.01 0.86 0.89 0.99 2.85 6.27 7.21 34.02 
4 0.73 0.36 0.82 0.98 1.01 1.20 2.87 3.74 6.63 36.21 
5 0.72 0.39 0.98 0.93 0.39 0.69 0.72 2.89 10.05 31.62 
6 0.75 0.43 0.97 0.96 0.27 0.54 0.58 2.76 8.97 23.55 
7 0.75 0.38 0.92 1.00 0.26 0.47 1.58 1.24 6.17 23.03 
8 0.76 0.39 0.91 1.00 0.32 0.50 5.27 0.56 70.46 21.88 
9 0.76 0.40 0.91 0.99 0.32 0.52 0.48 1.15 4.51 16.12 

10 0.75 0.41 0.91 0.99 0.35 0.46 0.54 0.68 3.47 17.30 
11 - - - - - - 0.51 0.48 4.92 16.14 
12 - - - - - - 0.47 0.52 1.07 14.04 
13 - - - - - - 0.48 0.43 1.23 9.73 
14 - - - - - - 0.49 3.86 1.56 9.63 
15 - - - - - - 0.49 0.34 0.62 8.38 
16 - - - - - - 0.52 0.33 0.93 8.11 
17 - - - - - - 0.46 0.32 0.96 5.01 
18 - - - - - - 0.48 0.33 0.87 6.07 
19 - - - - - - 0.52 0.32 0.62 5.35 
20 - - - - - - 0.51 0.32 1.14 3.94 

Table A-4:  RMS error over region of interest computed using the randomized hybrid subharmonic method along x- and y-
directions of 5,000 phase screens for 1024 × 1024 grid using various spectral power laws (α’s) and number of subharmonic 
constellations,  Np.  μx = 1, μy = 2 for all entries.  Hyphen ( - ) entries indicate no RMS error was computed for this entry. 
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  α 

Np 3.1 3.2 3.3 3.4 3.5 3.6 11/3 3.7 3.8 3.9 
0 29.13 33.66 38.75 44.12 50.49 57.65 62.98 65.60 75.01 86.31 
1 8.45 10.35 13.09 17.71 23.29 30.72 37.27 40.86 54.78 73.88 
2 8.88 9.69 9.57 9.47 10.06 13.16 19.03 22.38 38.00 62.32 
3 9.44 10.50 10.23 10.57 10.64 9.95 9.88 10.38 24.47 51.83 
4 9.67 10.84 10.62 11.07 11.44 10.78 10.50 10.76 13.76 42.46 
5 9.76 11.00 10.98 11.63 12.31 11.50 11.14 11.48 10.19 34.27 
6 9.78 11.01 11.19 12.25 13.70 13.95 13.00 12.21 10.84 26.83 
7 9.78 11.04 11.30 12.73 14.71 15.88 15.74 15.30 11.17 19.97 
8 9.79 11.05 11.33 13.03 15.26 17.23 17.80 17.77 12.01 13.96 
9 9.79 11.06 11.34 13.16 15.55 18.07 19.30 19.56 15.31 9.50 

10 9.78 11.06 11.36 13.22 15.76 18.62 20.19 20.89 18.25 9.67 
11 - - - - - - 20.85 21.77 20.57 10.02 
12 - - - - - - 21.34 22.53 22.53 10.38 
13 - - - - - - 21.63 23.00 23.91 10.87 
14 - - - - - - 21.85 23.38 25.08 11.34 
15 - - - - - - 22.03 23.62 26.06 14.05 
16 - - - - - - 22.14 23.83 26.80 16.80 
17 - - - - - - 22.23 23.95 27.48 19.10 
18 - - - - - - 22.27 24.05 27.96 21.08 
19 - - - - - - 22.28 24.13 28.36 22.74 
20 - - - - - - 22.33 24.19 28.72 24.16 

Table A-5:  RMS error over region of interest computed using the Frehlich subharmonic method along x- and y-directions of 5,000 
phase screens for 1024 × 1024 grid using various spectral power laws (α’s) and number of subharmonic constellations, Np.  μx = 1, 
μy = 2 for all entries.  Hyphen ( - ) entries indicate no RMS error was computed for this entry. 
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  α 
Np 3.1 3.2 3.3 3.4 3.5 3.6 11/3 3.7 3.8 3.9 
0 4.06 2.17 1.11 14.06 5.60 4.69 9.75 17.79 46.46 48.45 
1 1.47 3.00 2.81 2.64 4.92 3.46 24.36 17.49 24.18 56.47 
2 1.68 2.94 1.40 2.63 4.49 4.48 10.50 10.48 26.66 48.96 
3 1.61 1.34 1.13 2.44 3.21 7.16 1.97 3.47 15.62 25.81 
4 1.39 1.61 1.08 1.47 1.38 1.33 2.01 6.58 15.45 36.92 
5 1.61 1.82 1.22 1.87 1.30 5.20 2.49 3.95 27.76 16.82 
6 1.73 1.51 1.19 1.92 1.63 0.96 1.98 1.48 6.37 31.25 
7 1.75 1.64 1.24 2.03 1.65 0.95 1.52 2.79 4.86 26.08 
8 1.72 1.61 1.23 1.77 1.51 1.21 1.48 1.20 5.57 23.56 
9 1.73 1.66 1.25 1.88 1.61 1.45 1.77 1.48 3.81 18.55 

10 1.73 1.65 1.24 1.98 1.58 1.26 1.65 2.64 3.00 20.05 
11 - - - - - - 1.58 1.47 2.12 11.43 
12 - - - - - - 1.47 1.51 3.55 14.99 
13 - - - - - - 1.83 1.42 1.65 13.16 
14 - - - - - - 1.78 1.85 1.45 11.92 
15 - - - - - - 1.66 1.67 2.27 6.82 
16 - - - - - - 1.65 1.66 1.40 10.23 
17 - - - - - - 1.58 1.62 1.31 4.01 
18 - - - - - - 1.68 1.65 1.63 10.09 
19 - - - - - - 1.72 1.67 1.68 7.16 
20 - - - - - - 1.71 1.77 1.68 9.09 

Table A-6:  RMS error over region of interest computed using the randomized hybrid subharmonic method along x- and y-
directions of 5,000 phase screens for 2048 × 2048 grid using various spectral power laws (α’s) and number of subharmonic 
constellations, Np.  μx = 1, μy = 2 for all entries.  Hyphen ( - ) entries indicate no RMS error was computed for this entry. 
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  α 
Np 3.1 3.2 3.3 3.4 3.5 3.6 11/3 3.7 3.8 3.9 
0 29.42 33.40 39.23 43.60 50.96 57.19 62.52 65.32 74.43 86.02 
1 10.54 11.74 13.03 16.50 25.08 30.29 36.80 41.16 54.30 73.44 
2 11.62 11.40 11.45 8.24 9.49 13.85 17.76 24.07 37.29 61.71 
3 11.93 11.98 11.63 9.67 10.13 13.16 11.82 11.33 23.73 51.42 
4 12.26 12.42 12.59 11.48 10.05 13.46 12.59 10.74 13.90 42.08 
5 12.44 12.49 12.31 13.27 10.55 14.18 12.92 11.51 12.77 33.85 
6 12.51 12.57 12.33 14.09 12.11 14.90 14.99 12.03 12.95 27.03 
7 12.58 12.63 12.28 14.49 12.95 16.12 17.84 13.45 13.10 20.53 
8 12.55 12.63 12.19 14.73 13.56 17.53 20.25 15.89 13.48 15.14 
9 12.55 12.68 12.24 14.83 13.97 18.48 22.20 17.38 14.85 10.59 

10 12.56 12.69 12.26 14.85 14.21 19.05 23.39 18.49 17.70 9.08 
11 - - - - - - 24.42 19.31 20.20 10.22 
12 - - - - - - 24.86 20.02 22.14 10.75 
13 - - - - - - 25.18 20.71 23.92 10.54 
14 - - - - - - 25.39 21.15 25.32 10.19 
15 - - - - - - 25.48 21.20 26.53 11.73 
16 - - - - - - 25.48 21.51 27.40 14.22 
17 - - - - - - 25.51 21.62 27.98 16.22 
18 - - - - - - 25.55 21.69 28.33 17.93 
19 - - - - - - 25.60 21.83 28.81 19.49 
20 - - - - - - 25.59 21.92 29.05 21.16 

Table A-7:  RMS error over region of interest computed using the Frehlich subharmonic method along x- and y-directions of 5,000 
phase screens for 2048 × 2048 grid using various spectral power laws (α’s) and number of subharmonic constellations,  Np.  μx = 
1, μy = 2 for all entries.  Hyphen ( - ) entries indicate no RMS error was computed for this entry. 
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  L0 

Np 100 100.5 101 101.5 102 101.5 103 103.5 104 104.5 105 
0 1.16 1.40 1.53 1.71 2.88 31.31 12.94 12.91 6.16 17.46 12.26 
1 1.39 1.33 2.18 2.10 1.49 2.81 20.22 18.76 9.81 6.23 10.45 
2 1.42 1.25 2.20 1.82 1.36 1.80 2.25 5.34 2.68 3.76 3.15 
3 1.42 1.26 2.22 1.37 1.97 2.73 2.96 7.14 3.28 2.95 4.24 
4 1.42 1.26 2.23 1.38 1.44 2.08 1.13 2.04 2.07 1.84 1.59 
5 1.42 1.26 2.23 1.36 1.37 1.86 0.85 2.42 1.39 2.47 2.67 
6 1.42 1.26 2.23 1.36 1.36 1.80 0.96 2.31 1.73 1.90 3.33 
7 1.42 1.26 2.23 1.36 1.35 1.80 0.95 2.46 1.80 2.09 2.67 
8 1.42 1.26 2.23 1.36 1.36 1.80 0.95 2.50 1.93 2.21 2.79 
9 1.42 1.26 2.23 1.36 1.36 1.80 0.95 2.50 1.91 2.19 2.98 

10 1.42 1.26 2.23 1.36 1.36 1.80 0.95 2.50 1.91 2.27 2.95 
11 1.42 1.26 2.23 1.36 1.36 1.80 0.95 2.50 1.91 2.27 2.96 
12 1.42 1.26 2.23 1.36 1.36 1.80 0.95 2.50 1.91 2.27 2.96 
13 1.42 1.26 2.23 1.36 1.36 1.80 0.95 2.50 1.91 2.27 2.96 
14 1.42 1.26 2.23 1.36 1.36 1.80 0.95 2.50 1.91 2.27 2.96 
15 1.42 1.26 2.23 1.36 1.36 1.80 0.95 2.50 1.91 2.27 2.96 
16 1.42 1.26 2.23 1.36 1.36 1.80 0.95 2.50 1.91 2.27 2.96 
17 1.42 1.26 2.23 1.36 1.36 1.80 0.95 2.50 1.91 2.27 2.96 
18 1.42 1.26 2.23 1.36 1.36 1.80 0.95 2.50 1.91 2.27 2.96 
19 1.42 1.26 2.23 1.36 1.36 1.80 0.95 2.50 1.91 2.27 2.96 
20 1.42 1.26 2.23 1.36 1.36 1.80 0.95 2.50 1.91 2.27 2.96 

Table A-8:  RMS error over region of interest computed along x- and y-directions for 5000 phase screens using the hybrid method 
and the modified spectrum, with l0 = M∆x/100 and M = 512 (i.e. grid size 512 × 512). 
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  L0 

Np 100 100.5 101 101.5 102 101.5 103 103.5 104 104.5 105 
0 2.70 24.92 44.52 53.06 57.41 59.17 61.49 62.42 64.16 62.92 63.61 
1 1.90 4.96 6.39 14.30 24.19 27.55 30.90 33.88 36.28 35.67 35.91 
2 1.94 4.23 3.43 7.73 1.55 5.19 8.60 12.25 16.95 16.32 16.04 
3 1.95 4.23 3.93 13.86 12.56 8.81 5.24 2.67 3.20 3.21 2.75 
4 1.95 4.23 3.92 14.08 16.27 17.84 14.83 11.39 7.51 7.39 7.27 
5 1.95 4.23 3.92 14.07 16.47 20.05 21.15 17.46 14.37 14.77 14.49 
6 1.95 4.23 3.92 14.07 16.48 20.26 23.01 21.55 19.41 19.60 18.90 
7 1.95 4.23 3.92 14.07 16.48 20.26 23.25 22.58 21.81 22.44 21.53 
8 1.95 4.23 3.92 14.07 16.48 20.26 23.25 22.58 22.61 24.20 23.46 
9 1.95 4.23 3.92 14.07 16.48 20.26 23.25 22.59 22.67 24.80 24.77 

10 1.95 4.23 3.92 14.07 16.48 20.26 23.25 22.59 22.65 24.85 25.21 
11 1.95 4.23 3.92 14.07 16.48 20.26 23.25 22.59 22.65 24.83 25.25 
12 1.95 4.23 3.92 14.07 16.48 20.26 23.25 22.59 22.65 24.83 25.26 
13 1.95 4.23 3.92 14.07 16.48 20.26 23.25 22.59 22.65 24.83 25.26 
14 1.95 4.23 3.92 14.07 16.48 20.26 23.25 22.59 22.65 24.83 25.26 
15 1.95 4.23 3.92 14.07 16.48 20.26 23.25 22.59 22.65 24.83 25.26 
16 1.95 4.23 3.92 14.07 16.48 20.26 23.25 22.59 22.65 24.83 25.26 
17 1.95 4.23 3.92 14.07 16.48 20.26 23.25 22.59 22.65 24.83 25.26 
18 1.95 4.23 3.92 14.07 16.48 20.26 23.25 22.59 22.65 24.83 25.26 
19 1.95 4.23 3.92 14.07 16.48 20.26 23.25 22.59 22.65 24.83 25.26 
20 1.95 4.23 3.92 14.07 16.48 20.26 23.25 22.59 22.65 24.83 25.26 

Table A-9:  RMS error over region of interest computed along x- and y-directions for 5000 phase screens using the Frehlich 
subharmonic method and the modified spectrum, with l0 = M∆x/100 and M = 512 (i.e. grid size 512 × 512). 
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  L0 

Np 100 100.5 101 101.5 102 101.5 103 103.5 104 104.5 105 
0 2.70 24.92 44.52 53.06 57.41 59.17 61.49 62.42 64.16 62.92 63.61 
1 2.28 6.72 17.35 29.58 35.49 39.85 44.10 44.58 46.91 45.35 46.65 
2 2.29 5.64 9.02 13.55 20.67 26.74 30.43 32.64 34.52 33.07 35.55 
3 2.30 5.61 8.54 8.63 11.13 17.82 21.65 23.84 25.84 24.91 27.72 
4 2.30 5.61 8.55 8.28 7.91 11.75 15.54 17.62 20.27 18.79 22.37 
5 2.30 5.61 8.55 8.29 7.64 9.58 11.85 13.54 15.97 14.57 18.50 
6 2.30 5.61 8.55 8.29 7.64 9.43 9.89 11.02 12.61 12.02 15.78 
7 2.30 5.61 8.55 8.29 7.64 9.44 9.82 9.86 10.60 10.23 13.81 
8 2.30 5.61 8.55 8.29 7.64 9.44 9.82 9.86 9.85 8.95 12.79 
9 2.30 5.61 8.55 8.29 7.64 9.44 9.82 9.86 9.78 8.17 12.08 

10 2.30 5.61 8.55 8.29 7.64 9.44 9.82 9.85 9.77 8.19 11.57 
11 2.30 5.61 8.55 8.29 7.64 9.44 9.82 9.85 9.77 8.19 11.57 
12 2.30 5.61 8.55 8.29 7.64 9.44 9.82 9.85 9.77 8.19 11.57 
13 2.30 5.61 8.55 8.29 7.64 9.44 9.82 9.85 9.77 8.19 11.57 
14 2.30 5.61 8.55 8.29 7.64 9.44 9.82 9.85 9.77 8.19 11.57 
15 2.30 5.61 8.55 8.29 7.64 9.44 9.82 9.85 9.77 8.19 11.57 
16 2.30 5.61 8.55 8.29 7.64 9.44 9.82 9.85 9.77 8.19 11.57 
17 2.30 5.61 8.55 8.29 7.64 9.44 9.82 9.85 9.77 8.19 11.57 
18 2.30 5.61 8.55 8.29 7.64 9.44 9.82 9.85 9.77 8.19 11.57 
19 2.30 5.61 8.55 8.29 7.64 9.44 9.82 9.85 9.77 8.19 11.57 
20 2.30 5.61 8.55 8.29 7.64 9.44 9.82 9.85 9.77 8.19 11.57 

Table A-10:  RMS error over region of interest computed along x- and y-directions for 5000 phase screens using the Lane 
subharmonic method and the modified spectrum, with l0 = M∆x/100 and M = 512 (i.e. grid size 512 × 512). 
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  L0 

Np 100 100.5 101 101.5 102 101.5 103 103.5 104 104.5 105 
0 1.21 1.44 1.89 3.36 9.18 11.03 6.15 6.22 14.61 19.50 29.15 
1 1.03 0.92 3.14 2.78 4.85 1.25 7.06 7.37 7.15 10.51 16.78 
2 1.04 0.91 1.71 2.59 1.36 2.77 3.96 3.60 6.09 3.86 5.74 
3 1.04 0.90 2.08 2.61 2.70 1.44 1.31 2.68 2.60 4.20 5.91 
4 1.04 0.90 2.07 2.73 2.43 1.31 1.25 2.06 3.03 6.84 2.23 
5 1.04 0.90 2.07 2.73 2.57 1.36 1.83 1.17 1.64 1.27 4.02 
6 1.04 0.90 2.07 2.74 2.57 1.46 1.50 1.37 1.59 0.92 1.13 
7 1.04 0.90 2.07 2.74 2.57 1.47 1.55 1.24 1.33 1.50 1.26 
8 1.04 0.90 2.07 2.74 2.57 1.47 1.55 1.28 1.37 1.33 1.20 
9 1.04 0.90 2.07 2.74 2.57 1.47 1.55 1.28 1.37 1.39 1.38 

10 1.04 0.90 2.07 2.74 2.57 1.47 1.55 1.28 1.36 1.34 1.12 
Table A-11:  RMS error over region of interest computed along x- and y-directions for 5000 phase screens using the hybrid method 
and the modified spectrum, with l0 = M∆x/100 and M = 1024 (i.e. grid size 1024 × 1024). 
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  L0 

Np 100 100.5 101 101.5 102 101.5 103 103.5 104 104.5 105 
0 3.20 24.54 43.89 51.83 57.69 60.35 61.92 62.51 63.15 63.31 63.88 
1 1.27 4.86 5.18 13.93 24.33 29.36 34.35 35.32 35.42 35.93 36.80 
2 1.25 4.08 4.15 9.66 1.36 7.56 13.18 16.00 15.03 15.07 16.39 
3 1.25 4.07 4.60 15.45 13.30 7.28 1.55 3.41 1.09 3.38 3.22 
4 1.25 4.06 4.62 16.02 17.01 16.93 10.75 7.04 9.75 7.33 6.01 
5 1.25 4.06 4.62 16.03 17.14 18.96 17.14 14.09 16.32 14.13 11.18 
6 1.25 4.06 4.62 16.03 17.16 18.98 18.95 18.05 20.62 19.02 15.00 
7 1.25 4.06 4.62 16.03 17.16 18.97 18.97 19.59 23.89 22.71 17.83 
8 1.25 4.06 4.62 16.03 17.16 18.97 18.99 19.78 24.89 24.70 19.74 
9 1.25 4.06 4.62 16.03 17.16 18.97 18.99 19.77 25.07 25.21 21.44 

10 1.25 4.06 4.62 16.03 17.16 18.97 18.99 19.77 25.08 25.26 21.81 
Table A-12:  RMS error over region of interest computed along x- and y-directions for 5000 phase screens using the Frehlich 
subharmonic method and the modified spectrum, with l0 = M∆x/100 and M = 1024 (i.e. grid size 1024 × 1024). 
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  L0 

Np 100 100.5 101 101.5 102 101.5 103 103.5 104 104.5 105 
0 2.00 1.45 2.85 1.73 2.71 4.88 14.90 40.83 13.39 7.63 20.21 
1 1.67 2.79 2.42 2.81 2.48 2.55 7.48 10.41 13.92 7.38 13.85 
2 1.70 3.01 2.67 3.41 1.08 1.05 5.29 1.59 1.83 6.98 6.35 
3 1.70 2.99 2.66 2.89 1.37 1.34 1.45 1.51 1.80 1.85 2.96 
4 1.70 2.99 2.64 2.71 1.25 1.11 1.64 1.50 0.81 1.63 1.44 
5 1.70 2.99 2.65 2.66 1.25 1.26 1.51 1.08 0.88 1.89 1.41 
6 1.70 2.99 2.65 2.66 1.26 1.28 1.55 1.32 0.94 1.89 2.01 
7 1.70 2.99 2.65 2.66 1.26 1.27 1.51 1.36 1.02 1.47 2.36 
8 1.70 2.99 2.65 2.66 1.26 1.28 1.52 1.34 1.25 1.54 2.52 
9 1.70 2.99 2.65 2.66 1.26 1.28 1.52 1.34 1.15 1.58 2.43 

10 1.70 2.99 2.65 2.66 1.26 1.28 1.52 1.34 1.14 1.56 2.63 
Table A-13:  RMS error over region of interest computed along x- and y-directions for 5000 phase screens using the hybrid 
subharmonic method and the modified spectrum, with l0 = M∆x/100 and M = 2048 (i.e. grid size 2048 × 2048). 
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  L0 

Np 100 100.5 101 101.5 102 101.5 103 103.5 104 104.5 105 
0 2.40 25.64 44.36 52.02 57.11 60.46 61.43 62.33 62.87 63.10 63.74 
1 2.12 5.86 5.35 14.39 24.44 29.58 31.35 34.58 35.67 35.66 37.39 
2 2.16 4.84 4.50 7.57 3.31 7.92 9.68 14.75 15.45 15.90 17.69 
3 2.16 4.83 4.86 13.43 11.28 8.46 6.07 2.56 2.25 2.73 5.01 
4 2.16 4.83 4.85 13.75 15.36 17.15 15.87 8.84 8.16 7.61 5.28 
5 2.16 4.83 4.85 13.74 15.83 19.90 22.01 16.95 15.14 13.90 11.99 
6 2.16 4.83 4.85 13.74 15.85 19.97 23.72 21.79 20.02 18.91 16.28 
7 2.16 4.83 4.85 13.74 15.85 19.98 23.77 23.17 23.04 22.48 19.40 
8 2.16 4.83 4.85 13.74 15.85 19.98 23.79 23.33 24.13 23.89 21.75 
9 2.16 4.83 4.85 13.74 15.85 19.98 23.79 23.34 24.12 24.56 23.40 

10 2.16 4.83 4.85 13.74 15.85 19.98 23.79 23.34 24.12 24.64 24.06 
Table A-14:  RMS error over region of interest computed along x- and y-directions for 5000 phase screens using the Frehlich 
subharmonic method and the modified spectrum, with l0 = M∆x/100 and M = 2048 (i.e. grid size 2048 × 2048). 
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Appendix B:  Charts of RMS Error Statistics over Entire Domain 

 
Figure B-1:  RMS error as a percent relative to theory over 50,000 phase screen trials over the entire simulated domain as 
parameterized by the three dimensional spectral power law, 𝜶𝜶.  512 × 512, 1024 × 1024, 2048 × 2048 grid results are shown for 
randomized method. For the traditional method, the 2048 × 2048 grid is shown.  Other grid sizes are not shown for the traditional 
method because the results appear to completely overlap at this scale.  No subharmonics were used in the phase screens used to 
generate statistics in this chart.   
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Figure B-2:  RMS error as a percent relative to theory for the modified spectrum over 50,000 phase screen trials for the entire 
domain region of interest as parameterized by the three dimensional spectral power law, α.  512 × 512, 1024 × 1024, 2048 × 2048 
grid results are shown for randomized method.  The outer scale has been normalized by the domain width, 𝑀𝑀∆𝑥𝑥 (m), to make the 
results applicable for any domain size.  For the traditional method only the 2048 × 2048 grid is shown due to significant overlap of 
the RMS error metric. 
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Figure B-3:  RMS error over entire domain computed along x- and y-directions of 50,000 phase screens for 512 × 512 grid using 
various spectral power laws (α’s) and number of subharmonic constellations,  Np.  μx = μy = 1 for all data points.  The randomized 
hybrid method (green), Frehlich subharmonic method (black), and Lane subharmonic method (magenta) are shown. 



230 
 

 
Figure B-4:  RMS error over entire domain computed along x- and y-directions of 50,000 phase screens for 1024 × 1024 grid using 
various spectral power laws (α’s) and number of subharmonic constellations,  Np.  μx = 1, μy = 2 for all data points.  The 
randomized hybrid method (blue) and Frehlich subharmonic method (black) are shown. 
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Figure B-5:  RMS error over entire domain computed along x- and y-directions of 5,000 phase screens for 2048 × 2048 grid using 
various spectral power laws (α’s) and number of subharmonic constellations,  Np.  μx = 1, μy = 2 for all data points.  The 
randomized hybrid method (red) and Frehlich subharmonic method (black) are shown. 
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Figure B-6: RMS error over entire domain for the modified spectrum computed along x- and y-directions for 5,000 phase screens 
using modified spectrum, with l0 = M∆x/100 and M = 512 (i.e. grid size 512 × 512). 
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Figure B-7:  RMS error over entire domain computed along x- and y-directions for 5000 phase screens using modified spectrum, 
with l0 =M∆x/100 and M = 1024 (i.e. grid size 1024 × 1024). 
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Figure B-8:  RMS error over entire domain computed along x- and y-directions for 5000 phase screens using modified spectrum, 
with l0 =M∆x/100 and M = 2048 (i.e. grid size 2048 × 2048). 
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Appendix C:  Tables of Non-Kolmogorov RMS Error Statistics over Entire Domain 

 
  α 

Np 3.1 3.2 3.3 3.4 3.5 3.6 11/3 3.7 3.8 3.9 
0 2.24 2.33 6.37 2.40 5.31 15.08 24.92 29.87 36.12 60.02 
1 2.09 2.69 4.46 3.61 9.77 6.51 14.32 4.11 34.06 54.30 
2 2.05 2.52 3.47 1.77 54.07 9.01 4.71 16.80 29.89 40.97 
3 2.72 2.35 1.76 2.92 2.72 5.96 4.10 7.76 14.78 45.58 
4 2.64 2.22 1.69 2.56 3.65 2.89 2.47 10.06 18.26 39.54 
5 2.87 2.23 1.68 2.16 1.89 1.96 4.47 2.40 10.77 39.29 
6 2.84 2.27 1.63 2.18 2.10 1.36 1.52 6.45 10.17 28.35 
7 2.93 2.24 1.75 2.23 1.92 1.13 7.74 4.15 8.42 13.49 
8 2.99 2.21 1.72 2.35 1.74 1.06 1.58 3.69 7.21 20.94 
9 3.00 2.25 1.73 2.09 1.75 1.09 1.18 3.11 5.24 19.09 

10 2.99 2.24 1.69 2.23 1.64 1.14 1.44 3.97 3.64 23.16 
11 3.00 2.24 1.65 2.22 1.63 1.00 1.33 2.96 3.80 17.92 
12 2.99 2.25 1.67 2.27 1.69 0.98 1.71 2.44 2.24 17.93 
13 2.99 2.24 1.69 2.26 1.75 1.04 1.64 2.92 2.55 15.50 
14 3.00 2.25 1.68 2.29 1.71 1.12 1.63 3.16 2.98 11.43 
15 2.99 2.25 1.67 2.27 1.74 1.04 1.79 3.00 3.16 10.07 
16 3.00 2.25 1.67 2.25 1.72 1.07 1.68 2.84 2.26 10.76 
17 2.99 2.25 1.67 2.27 1.71 1.05 1.71 3.08 2.23 10.81 
18 2.99 2.25 1.67 2.27 1.72 1.08 1.67 2.92 3.35 9.80 
19 2.99 2.25 1.67 2.27 1.72 1.07 1.67 2.88 2.63 13.37 
20 2.99 2.25 1.67 2.27 1.73 1.06 1.63 2.73 2.62 7.46 

Table C-1:  RMS error over entire domain computed using the randomized hybrid subharmonic method along x- and y-directions 
of 50,000 phase screens for 512 × 512 grid using various spectral power laws (α’s) and number of subharmonic constellations,  Np.  
μx = μy = 1 for all entries. 
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  α 

Np 3.1 3.2 3.3 3.4 3.5 3.6 11/3 3.7 3.8 3.9 
0 61.06 63.93 67.56 70.85 74.26 78.44 81.17 82.83 87.55 93.00 
1 23.65 24.96 29.84 33.54 38.31 45.63 51.29 54.34 65.85 80.21 
2 7.72 7.38 8.30 10.61 14.20 21.59 26.79 30.38 45.64 67.56 
3 3.04 6.35 4.44 3.39 2.71 5.28 9.87 13.43 28.98 55.81 
4 3.46 8.66 8.01 7.62 9.16 5.93 2.85 2.33 16.74 45.86 
5 3.83 9.92 10.04 11.29 13.62 12.54 10.55 8.74 7.56 37.50 
6 4.00 10.20 10.99 12.88 16.03 17.33 15.56 15.81 2.63 29.16 
7 4.11 10.30 11.25 13.76 17.44 20.26 19.36 20.54 8.59 22.11 
8 4.14 10.39 11.50 14.16 18.71 21.72 22.65 25.21 14.22 15.51 
9 4.13 10.46 11.65 14.33 19.40 22.71 24.73 27.72 19.21 9.54 

10 4.13 10.49 11.69 14.47 19.56 23.38 26.20 29.40 23.19 2.97 
11 4.13 10.50 11.71 14.58 19.71 23.96 27.32 30.92 26.20 2.25 
12 4.12 10.50 11.69 14.59 19.79 24.48 27.85 31.79 28.26 6.45 
13 4.12 10.50 11.70 14.56 19.89 24.84 28.24 32.37 30.10 10.65 
14 4.13 10.50 11.70 14.58 19.89 25.09 28.69 33.01 31.76 14.24 
15 4.13 10.50 11.69 14.57 19.88 25.19 28.94 33.05 32.98 17.56 
16 4.13 10.50 11.69 14.57 19.89 25.28 29.02 33.23 33.95 20.65 
17 4.13 10.50 11.70 14.57 19.91 25.35 29.11 33.18 34.83 23.50 
18 4.13 10.50 11.69 14.58 19.93 25.41 29.20 33.16 35.41 26.07 
19 4.13 10.50 11.69 14.58 19.94 25.42 29.27 33.21 35.79 28.45 
20 4.13 10.50 11.69 14.58 19.94 25.43 29.31 33.30 36.05 30.77 

Table C-2:  RMS error over entire domain computed using the Frehlich subharmonic method along x- and y-directions of 50,000 
phase screens for 512 × 512 grid using various spectral power laws (α’s) and number of subharmonic constellations, Np.  μx = μy = 
1 for all entries. 
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  α 
Np 3.1 3.2 3.3 3.4 3.5 3.6 11/3 3.7 3.8 3.9 
0 61.06 63.93 67.56 70.85 74.26 78.44 81.17 82.83 87.55 93.00 
1 32.70 33.33 38.75 41.82 47.70 54.22 59.85 62.00 72.08 84.23 
2 19.37 18.95 22.88 24.29 29.63 37.54 42.76 44.17 58.29 75.22 
3 14.74 12.51 15.07 16.20 20.02 27.10 30.83 31.45 47.39 67.53 
4 12.94 10.51 11.16 11.98 13.35 19.79 22.47 22.77 38.38 60.62 
5 12.58 9.92 9.81 9.93 10.25 15.15 16.87 17.19 31.05 54.84 
6 12.21 9.77 9.38 8.87 9.17 12.57 13.04 12.16 24.66 49.26 
7 12.14 9.73 9.15 8.47 8.82 11.42 10.20 10.87 19.69 43.92 
8 12.11 9.70 9.06 8.24 8.82 11.23 10.05 11.37 15.68 39.49 
9 12.12 9.72 9.04 8.16 8.94 11.03 10.47 11.58 12.37 34.96 

10 12.12 9.73 9.02 8.15 9.07 11.03 10.69 11.60 12.52 30.74 
11 12.13 9.74 9.02 8.13 9.04 11.24 11.01 12.24 12.92 28.04 
12 12.14 9.75 9.01 8.10 9.07 11.19 11.21 12.34 13.06 24.83 
13 12.14 9.75 9.02 8.11 9.05 11.31 11.27 12.47 13.33 22.07 
14 12.14 9.75 9.01 8.10 9.09 11.36 11.32 12.39 13.21 19.64 
15 12.14 9.75 9.01 8.10 9.04 11.36 11.36 12.36 13.63 17.34 
16 12.14 9.75 9.01 8.10 9.03 11.38 11.38 12.48 13.77 15.09 
17 12.14 9.75 9.00 8.09 9.04 11.37 11.33 12.48 13.72 13.57 
18 12.14 9.75 9.00 8.09 9.04 11.36 11.36 12.43 13.76 13.15 
19 12.14 9.75 9.00 8.09 9.04 11.37 11.31 12.47 13.87 13.00 
20 12.14 9.75 9.00 8.09 9.04 11.39 11.32 12.52 13.97 13.05 

Table C-3:  RMS error over entire domain computed using the Lane subharmonic method along x- and y-directions of 50,000 
phase screens for 512 × 512 grid using various spectral power laws (α’s) and number of subharmonic constellations,  Np.  μx = μy = 
1 for all entries. 
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  α 
Np 3.1 3.2 3.3 3.4 3.5 3.6 11/3 3.7 3.8 3.9 
0 1.24 2.42 1.93 4.63 14.96 14.56 11.18 14.72 4.92 55.72 
1 0.89 1.45 1.00 2.83 2.04 10.53 8.65 9.71 29.37 31.70 
2 0.49 0.91 0.97 0.78 7.19 5.60 6.68 2.96 2401.99 48.54 
3 0.60 0.58 0.88 0.73 1.24 1.27 3.70 7.57 8.17 36.55 
4 0.54 0.34 0.67 0.79 1.36 1.62 3.54 4.53 7.56 38.82 
5 0.54 0.34 0.78 0.69 0.54 0.74 0.77 3.66 11.20 34.04 
6 0.56 0.36 0.78 0.69 0.39 0.49 0.55 3.46 10.10 25.29 
7 0.57 0.32 0.69 0.77 0.45 0.48 1.86 1.54 6.93 24.77 
8 0.57 0.32 0.68 0.75 0.47 0.38 6.70 0.71 81.45 23.48 
9 0.57 0.32 0.68 0.73 0.47 0.39 0.39 1.47 4.94 17.32 

10 0.57 0.33 0.69 0.73 0.54 0.43 0.51 0.83 3.78 18.58 
11 - - - - - - 0.45 0.57 5.70 17.30 
12 - - - - - - 0.41 0.65 0.97 15.12 
13 - - - - - - 0.42 0.50 1.21 10.46 
14 - - - - - - 0.41 4.62 1.56 10.33 
15 - - - - - - 0.45 0.35 0.53 8.98 
16 - - - - - - 0.46 0.38 0.83 8.70 
17 - - - - - - 0.38 0.38 0.87 5.32 
18 - - - - - - 0.39 0.38 0.76 6.56 
19 - - - - - - 0.44 0.35 0.54 5.80 
20 - - - - - - 0.43 0.35 1.38 4.27 

Table C-4:  RMS error over entire domain computed using the randomized hybrid subharmonic method along x- and y-directions 
of 50,000 phase screens for 1024 × 1024 grid using various spectral power laws (α’s) and number of subharmonic constellations, 
Np.  μx = 1, μy = 2 for all entries.  Hyphen ( - ) entries indicate no RMS error was computed for this entry. 
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  α 
Np 3.1 3.2 3.3 3.4 3.5 3.6 11/3 3.7 3.8 3.9 
0 59.08 62.33 65.64 69.03 72.73 76.73 79.70 81.17 86.30 92.46 
1 25.01 27.26 30.04 34.45 39.19 45.76 51.23 54.21 65.60 80.38 
2 13.67 13.89 13.98 14.67 17.38 22.90 28.59 31.90 46.69 68.11 
3 12.85 13.46 12.74 12.45 12.06 11.82 13.85 16.21 31.19 56.90 
4 12.94 13.65 12.95 12.89 12.59 11.71 11.15 11.44 19.05 46.87 
5 12.98 13.77 13.22 13.28 13.33 12.37 11.72 11.92 11.54 38.05 
6 13.00 13.72 13.39 13.51 14.15 13.87 12.91 12.58 11.00 30.04 
7 13.00 13.74 13.45 13.79 15.11 16.10 15.95 15.13 11.23 22.74 
8 13.00 13.76 13.46 14.00 15.77 17.85 18.45 18.09 11.97 16.33 
9 13.00 13.76 13.45 14.09 16.16 18.92 20.26 20.28 14.76 11.04 

10 12.99 13.76 13.46 14.14 16.42 19.65 21.39 21.91 18.08 9.80 
11 - - - - - - 22.20 23.00 20.72 10.06 
12 - - - - - - 22.81 23.95 22.95 10.41 
13 - - - - - - 23.17 24.51 24.50 10.90 
14 - - - - - - 23.46 24.98 25.84 11.34 
15 - - - - - - 23.67 25.28 27.01 13.84 
16 - - - - - - 23.82 25.52 27.87 16.74 
17 - - - - - - 23.92 25.68 28.65 19.20 
18 - - - - - - 23.99 25.80 29.22 21.33 
19 - - - - - - 24.00 25.88 29.68 23.12 
20 - - - - - - 24.06 25.95 30.10 24.63 

Table C-5:  RMS error over entire domain computed using the Frehlich subharmonic method along x and y directions of 50,000 
phase screens for 1024 × 1024 grid using various spectral power laws (α’s) and number of subharmonic constellations, Np.  μx = 1,  
μy = 2 for all entries.  Hyphen ( - ) entries indicate no RMS error was computed for this entry. 
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  α 
Np 3.1 3.2 3.3 3.4 3.5 3.6 11/3 3.7 3.8 3.9 
0 5.11 3.56 1.19 21.50 7.47 6.66 13.72 21.82 53.72 52.02 
1 1.38 3.02 4.04 4.38 7.02 3.12 29.55 22.56 28.40 60.73 
2 1.92 3.08 1.24 2.24 5.14 6.39 13.54 13.51 31.17 52.60 
3 2.24 1.10 1.54 2.15 3.21 10.12 2.74 3.40 18.67 28.16 
4 1.61 1.36 1.63 1.63 1.27 3.25 2.19 8.63 18.37 39.70 
5 2.01 1.45 1.52 1.69 1.33 5.94 2.57 5.12 31.11 17.73 
6 2.25 1.17 1.57 2.12 1.65 1.44 1.50 2.47 8.19 33.84 
7 2.31 1.30 1.58 1.84 1.55 1.89 1.30 2.18 6.40 28.22 
8 2.27 1.26 1.65 1.79 1.63 1.48 1.14 1.70 7.56 25.55 
9 2.26 1.31 1.71 1.76 1.64 1.35 1.97 1.76 5.48 20.31 

10 2.28 1.31 1.63 1.83 1.67 1.43 1.39 3.34 4.82 21.94 
11 - - - - - - 1.42 1.56 3.56 12.61 
12 - - - - - - 1.32 1.28 3.54 16.41 
13 - - - - - - 1.64 1.61 2.35 14.38 
14 - - - - - - 1.60 2.15 1.63 13.13 
15 - - - - - - 1.53 1.80 2.47 7.59 
16 - - - - - - 1.54 1.70 1.80 11.30 
17 - - - - - - 1.43 1.81 1.86 4.41 
18 - - - - - - 1.52 1.84 2.21 11.00 
19 - - - - - - 1.56 1.79 2.25 7.81 
20 - - - - - - 1.54 2.00 2.16 9.95 

Table C-6:  RMS error over entire domain computed using the randomized hybrid subharmonic method along x- and y-directions 
of 5,000 phase screens for 2048 × 2048 grid using various spectral power laws (α’s) and number of subharmonic constellations, 
Np.  μx = 1, μy = 2 for all entries.  Hyphen ( - ) entries indicate no RMS error was computed for this entry. 
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  α 
Np 3.1 3.2 3.3 3.4 3.5 3.6 11/3 3.7 3.8 3.9 
0 59.36 62.17 65.71 68.72 72.81 76.57 79.48 80.96 86.00 92.30 
1 24.48 28.38 29.79 33.75 40.16 45.30 51.10 54.63 65.08 80.17 
2 15.07 15.08 14.60 13.98 17.67 23.08 27.99 33.37 45.88 67.70 
3 14.45 14.15 12.62 12.17 11.67 13.85 14.84 17.95 30.20 56.85 
4 14.50 14.50 13.62 13.43 10.87 13.44 13.41 11.83 18.56 46.82 
5 14.68 14.40 13.38 14.16 11.06 14.31 13.43 12.22 12.91 37.93 
6 14.73 14.41 13.33 14.78 12.14 15.38 14.57 12.72 12.51 30.32 
7 14.81 14.45 13.29 15.21 13.26 16.77 17.44 13.69 12.61 23.27 
8 14.79 14.45 13.26 15.51 14.15 18.64 20.30 16.30 13.06 17.49 
9 14.79 14.51 13.32 15.67 14.65 19.83 22.51 18.24 15.07 12.67 

10 14.79 14.51 13.36 15.68 14.98 20.54 24.05 19.60 18.43 9.37 
11 - - - - - - 25.27 20.66 21.23 10.17 
12 - - - - - - 25.84 21.44 23.53 10.69 
13 - - - - - - 26.20 22.27 25.56 10.58 
14 - - - - - - 26.50 22.85 27.06 10.33 
15 - - - - - - 26.68 22.92 28.51 11.38 
16 - - - - - - 26.72 23.26 29.50 13.90 
17 - - - - - - 26.78 23.40 30.23 15.99 
18 - - - - - - 26.85 23.52 30.59 17.74 
19 - - - - - - 26.92 23.67 31.12 19.46 
20 - - - - - - 26.90 23.75 31.40 21.24 

Table C-7:  RMS error over entire domain computed using the Frehlich subharmonic method along x and y directions of 5,000 
phase screens for 2048 × 2048 grid using various spectral power laws (α’s) and number of subharmonic constellations, Np.  μx = 1, 
μy = 2 for all entries.  Hyphen ( - ) entries indicate no RMS error was computed for this entry.
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