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The Chesapeake Bay watershed has been affected by human activities for over
300 years, causing an increase in nutrients entering its coastal aquatic ecosystems. Yet
most of the efforts identifying the consequences of coastal eutrophication have not
observed its effects on the marginal tidal wetlands of the Bay. The tidal freshwater
marshes of Broad Creek and Marshyhope Creek, two tidal tributaries of the Nanticoke
River (Delmarva Peninsula, USA), have been exposed to different levels of nutrient
input, that appear to be adversely affecting Broad Creek. The Broad Creek watershed has
had historically higher fertilizer application rates and more animal production facilities

than Marshyhope Creek, both of which have been linked to increased availability of

nutrients in coastal ecosystems.

This study collected emergent macrophytes and aquatic macrofauna of tidal

freshwater marshes in these two creeks from 2000 through 2002. Analysis of plant



community composition indicated that Broad Creek had fewer plant species than
Marshyhope Creek, yet greater overall plant biomass. Comparisons of nekton in the two
creeks determined that there were more fish and macroinvertebrate species, individuals
and biomass in Marshyhope Creek. Multivariate analysis identified strong seasonal
patterns that extended across both creeks in floral and faunal distributions, but also
suggested that animal abundance patterns were related to the creeks. Ecological network
analysis suggested both creeks appear to be resistant to environmental stressors, but
probably lack resilience. Broad Creek, however, had higher levels of total ecosystem
activity than Marshyhope Creek, although ecosystem organization and development was
similar between both creeks, suggesting nutrient enrichment in Broad Creek but not
necessarily eutrophication. Stable isotope analysis indicated that the nitrogen circulating
through Broad Creek is more enriched in >N than Marshyhope Creek, although both
creeks have enriched nitrogen signatures. Nevertheless, the high 8'°N in Broad Creek is
indicative of larger nitrogen inputs to the system originating from animal waste. These
results, however, must be tempered by an acknowledgement of the effects of a severe
drought that caused an increase in salinity from October 2001 through August 2002,

affecting animal and plant abundance throughout 2002.
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