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Abstract
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1 Introduction

A great deal of attention has recently been devoted to the development of the no-
tion of effective bandwidth as a means to help resolve bandwidth allocation issues
in high speed networks. In this approach, the network is viewed as a collection
of interconnected nodes, each of them modelled as a discrete-time queue. Let
{az11, t = 0,1,...} denote a traffic stream into any one of the queues, with the
usual understanding that a;,q cells arrive into the node during time slot [t,t + 1).
To define the effective bandwidth of this arrival stream we offer it to a fictitious
single server queue with constant release rate r cells/slot. If the fictitious server
is equipped with an infinite buffer, the buffer content sequence {zy, t =0,1,...}

evolves according to
To =%, Tei1=|Zt+a—7t, t=0,1,.... (1.1)

If the arrival process {az41, t = 0,1,...} is stationary and ergodic, and ifE[a] <c,
then steady state is eventually reached in the sense that z; =t Zoo for some
R -valued rv zo. Several authors [4, 12, 10, 11, 16, 17] have shown that under

reasonably mild assumptions, the following buffer asymptotics

lim %lnP [Zoo > b] = —0% (1.2)

b—o0

hold for some positive constant 8%, i.e.,
Plzo > b ~exp(—b6%), b—o0. (1.3)

The constant * is an increasing function 8%(r) of the release rate r, and is determined
by the statistics of the arrival process {a;+1, t =0,1,.. .}. The effective bandwidth
a(-) is then simply

a(d) = inf{r € (0,E[a1]): § <0*(r)}, 6 >0. (1.4)

In view of (1.3), we can interpret (d) as the smallest release rate that supports the
QoS level characterized by

Pz, > b) ~exp(—bd), b—o0. (1.5)

The use of effective bandwidth for bandwidth allocation has been discussed in [14],
It is plain however that for this notion to be operationally useful, it is cru-

cial to understand how the effective bandwidth of a given stream is altered as the



stream traverses the network, through its interaction for network resources with
other streams at various nodes. The simplést possible situation that addresses this
issue is obtained when considering the output process from a single node network.

This has recently been addressed by several authors (3, 4, 5, 9, 15, 17]. The
difference between those treatments lie in the model chosen, e.g., discrete-time
vs. continuous—time single-server queues, constant vs. time—varying capacities, and
stationary vs. transient output processes. In what appears to be the first paper on
this issue, de Veciana et al. [17] study the large deviations behavior of the stationary
output process of a discrete-time G/D/1 queue. As pointed out in (3], the result
of [17] holds under certain technical assumptions on the arrival process which are
developped in [7]; however, the authors in [17] do not show that these technical
assumptions hold for the departure process, thereby precluding their result to be
applied inductively to networks of queues.

In [4], Chang derives closure properties (sum, reduction, composition and re-
flection mapping) for sample path large deviations. The model considered there is
still a discrete-time single-server queue with deterministic capacity, but the tran-
sient output process (output process resulting from a queue with empty initial buffer
content) is considered. Chang assumes that the arrival process is stationary, ergodic,
bounded (a very restricted assumption) and adapted to a filtration. The existence
and differentiability of a limiting log moment generating function are also assumed.
Under some technical assumptions, it is shown that the transient output process
satisfies a Sample Path Large Deviations Principle (SPLDP) and that the buffer
asymptotics (1.3) hold for the queue fed by the transient output process. In [5], the
effective bandwidth of the stationary output process of a discrete-time queue with
bounded arrivals and time—varying capacity is derived. However the argument does
not make use of the SPLDP and, as pointed out by the authors, cannot be used
inductively. An important point made in [5] is that, except when the queue has
constant capacity, the effective bandwidth of the stationary and transient output
processes are in general different.

In [3] Berstimas, Paschalidis and Tsitsiklis study the Large Deviations behavior
of networks of G/G/1 queues and establish, under some technical assumptions,
that the stationary output process of a continuous-time single server queue with
i.i.d. service times satisfies the Large Deviation Principle (LDP). They also show
that their assumptions are satisfied by the output process, a fact which allows them
to propagate the result. Finally, O’Connell and Duffield [10, 15] also study the large



deviations behavior of the transient output process of a single—server queue.

In this paper, we study sufficient conditions for the stationary and transient
output process of a G/G/1 queue to have the same effective bandwidth. Assum-
ing the statistics of the system to satisfy the LDP together with more technical
assumptions, we show that those processes satisfy the same LDP. We also show that
the initial queue length satisfies by itself a SP LDP provided it has an exponential
decay rate. We rely on results from [1, 2] where it is shown that in all cases where
a SPLDP hold for the arrival and capacity process, the transient and stationary
output process satisfy the same LDP; this contradicts the statement made in [5].

The paper is organized as follows: The general setup of the G/G/1 queue
and the buffer asymptotics are recalled in Section 2, the effective bandwidth of a
stream is presented in Section 3, and the ouput process is studied in Section 4.
Next, conditions of existence of an effective bandwidth for the output process are
discussed in Sections 5 and 6. Finally conditions under which the stationary and
transient output process satisfy the same LDP are given in Section 7.

A few words on the notation and convention used in this paper: We denote the
set of non-negative integers by IN, and the set of all real (resp. non-negative real)
numbers by R (resp. R). All rvs are defined on some probability triple (Q, F,P),
and E denotes the corresponding expectation operator. For any random sequence
{z¢, t=0,1,...} on (Q,F,P), we define

t2

dSom if 1<ty
=t
0 otherwise

X(t1,t) = (1.6)

2 Asymptotics for Lindley processes

We begin with some general results concerning a class of processes often referred
to as Lindley processes: If {£;11, t =0,1,...} denotes a sequence of R—valued rvs,
then the corresponding Lindley process is the sequence of rvs {z¢, t =0,1,...}
generated through the recursion

g0 =2; Tga =T +En]T, t=01,..., (2.1)

where the initial condition z is some R ,—valued rv. Many instances of this recur-
sion, sometimes referred to as the Lindley recursion, occur in the study of queueing

systems.



Consider now a second process {&5,,, t = 0,1,...} which is also defined on
the same probability space (2, F,P) ag {¢.1, t = 0,1,...}. We say that the
process {&+41, t = 0,1,...} couples with the process {&,1, t =0,1,...} if there
exists an IN*~valued rv 7 such that 7 < oo a.s. and & = & for 7 < ¢ If the
process {é;41, t = 0,1,...} couples with each of the stationary and ergodic processes
{&,4,t=0,1,...} and {§7F, t=0,1,.. J, then {&f4, t=0,1,...} =t {§f51, t=
0,1,...}. In other words, if the process {{¢+1, t =0,1,.. .} couples with a stationary
and ergodic process {£f,,, t =0,1,...}, then the latter is essentially unique within
the class of stationary and ergodic processes, and {£f,1, t =0,1,...} can be viewed
as the stationary and ergodic version of {&41, t=0,1,...}.

The following result, which is originally due to Loynes, addresses the stability of
Lindley processes and is by now well known [13, 18, 19].

Proposition 2.1 Assume the driving sequence {&41, t=0,1,...} to couple with
a stationary and ergodic sequence {¢f.1, t =0,1,...}. IfE[£]] <0, then the system
is stable in the sense that £; =>; Too for some R —valued v Teo.

Under the stationarity assumption made above, the sequence {&1, t=0,1,.. .}
can always be embedded into a bi-infinite stationary sequence {&,t=0,£1,£2,...},
possibly by enlarging the original probability space (2, F,P). With this in mind, it
is easy to check that zo, =5t Tt where

+
syt = Lgéalifua*(*t,@)] (2.2)

and when z = z4 in the recursion (2.1), the sequence {z;, t = 0,1,...} is station-
ary. It is plain that the equilibrium rv z is determined solely by the stationary
version {£f,, t =0,1,...} of the original process {&11, t =0,1,...}. Therefore,
in studying the properties of Z, there is no loss of generality in assuming that the
driving sequence {£;41, t =0,1,...} is indeed stationary and ergodic.

Recently there has been considerable interest in estimating the tail probabilities
P [zoo > b] for large b. These asymptotics made use of the representation (2.2), and
relied on the existence of large deviations estimates for the driving sequence. The
main result along this line is summarized below, and was obtained in various degrees
of generality by several authors [4, 9, 11, 12, 16, 17]. We write

A0) = %lnE lexp(8(¢1 +... +&))], O€R (2.3)

foreacht=1,2,....



Proposition 2.2 Assume the sequence {{+1, t =0, 1,...} to be stationary and
ergodic, and to satisfy the following conditions:

1. The limit A(f) = lim; ,c0 A¢(6) exists (possibly as an extended real number)
for all 8 in R;

2. The set © = {# > 0: A(8) < 0} is non-empty, and A4(6) < oo for all @ in ©
andt=1,2,...;

3. The process {t '2(1,t), t = 1,2,...} satisfies the LDP with good rate func-

tion A*.

Then )
lim ~InP[ze > b = —6* (2.4)
booo b
where A
6* = sup{f > 0 : A(f) < 0} = inf W (2.5)
y>0 Y

3 Effective bandwidth

This last result paves the way for the definition of the effective bandwidth of a
source or traffic stream: Consider the traffic stream {a;1, t = 0,1,...}, with the
usual interpretation that a;4q cells arrive at a network node during time slot [t, t+1),
t =0,1,.... We offer this arrival stream to a fictitious work—conserving single server
queue with constant release rate of r cells/slot and infinite buffer capacity. Under
these operational assumptions, the buffer content sequence {z¢, t=0,1,...} evolves

according to the Lindley recursion
o =2, Ti+l :[a:t+at+1—r]+, t“—‘O,l,... . (31)

This recursion is of the form (2.1) with driving sequence {a;11 —7, t =0,1,.. -}
By Proposition 2.1, if the arrival process {at41, t = 0,1,...} is stationary and
ergodic, and if E [a1] < ¢, then steady state is eventually reached in the sense that
T, =5t Too for some IR —valued rv zo. Specializing Proposition 2.2 to this setup,

under appropriate conditions we can obtain the buffer asymptotics
.1 "
lim = InP [z > b = -0 (3.2)
b—oo b
for some positive constant 6%. More precisely, we write

A%(6) = %mE [exp(8(ar + ... +ar))], O€ER. (3.3)



Proposition 3.1 Assume the sequence {a;1, t = 0, 1,...} to be stationary and
ergodic, and to satisfy the following conditions:
1. The limit Ag(6) = lim;_,00 A%(8) exists (possibly as an extended real number)
for all 8 in R;
2. The set ©, = {0 > 0: Ay(f) < r6} is non-empty, and A¢(0) < oo for all § in
©,andt=1,2,...;
3. The process {t 1A(1,t), t = 1,2,...} satisfies the LDP with good rate
function A}.
Then, the buffer asymptotics (3.2) hold with 6} given by
6* = sup{f > 0: A,(f) < r0} = inf w (3.4)
y>0 Y
The constant 8% is an increasing function 6*(r) of the release rate r, and is
determined by the statistics of the arrival process {az41, t = 0,1,...}. Informally,

we can rewrite (3.2) in the form
Plze > b ~exp(—b;), b—o0. (3.5)

With this in mind, the effective bandwidth a,(-) of the traffic stream {a¢+1, t =
0,1,...} is then simply

aqg(8) = inf{r € (0,B[a1]) : 6<65(r)}, 6>0 (3.6)

so that «(d) represents the smallest release rate that supports the QoS level char-
acterized by
Plzo > b ~exp(—bs), b—oo. (3.7)

To the best of our knowledge, and with the exception of [4], Proposition 2.2
has only been established for stationary and ergodic sequences, or for sequences
which couple with stationary and ergodic ones, satisfying the assumption of the

proposition.

4 The output process of a discrete—time G/G/1 queue

With these preliminaries now out of the way, we consider a discrete-time G/G /1
queue with arrival and capacity sequences {as41, t = 0,1,...} and {ct41, t =
0,1,...}, where az41 (resp. ¢;41) denotes the number of arrivals (resp. capacity) in



the time interval [t,t+1), t =0,1,.... The queue length sequence {a, t=0,1,...}
is then generated through the Lindley recursion

Qo=q qu=[g+&al, t=01,..., (4.1)

where we have set
§t+1 = a¢+1 — Ct+1, t= 0, 1, e (42)

The motivation for considering time-varying single-server queues comes from the
possible application of this model to satellite links or impaired wireless channels.
Throughout the discussion the R —valued process {(a¢t1,¢41), t=0,1,.. .}is
assumed to be (jointly) stationary and ergodic, and can thus be embedded into a bi-
infinite stationary and ergodic sequence {(a¢,ct), t = 0,£1,%2,...}. The queueing
system (4.1) is stable if E[a; — ¢;] < 0, a condition enforced thereafter, in which
case g =>¢ oo for some R —valued rv go. Note from (2.2) that geo =5t gs¢t With

a5t = [ max A(-4,0) - 0(—t,0)] (4.3)

and that with ¢ = g in the recursion (4.1), the process {(gs, az+1,¢t+1), t =0,1,.. .}
is jointly stationary.

The problem considered in this paper is that of characterizing the effective band-
width of the output process {b;+1, t = 0,1,...}, where the number b1 of departures
in the time interval [t,t + 1) is given by

biv1 = a1 — (@er1 — ), t=0,1,.... (4.4)

Naturally we have in mind to apply Proposition 3.1, to the sequence {bt+1, t =
0,1,...}. To help pinpoint the difficulties associated with this approach, we begin
by developing a representation of the output process in terms of the basic input rvs
of the model: First, upon iterating (4.1) it is easy to see that for each t = 0,1,...,
the relations

@ = max {o, g+ A(L1) — C(1,1), max (A(s,t) - C(s,t))}

Ly

— A8 —C(1,8) + ¢ — min {0, 0+ min (A(Ls) - 0(1,3))}

—=1y.eey

hold, and simple algebra then readily shows that

B(1,1) = C(l,t)-l—min{(], g+ min (A(L9) —0(1,3))} . (45)

8



In order to write this last expression more compactly, we define the rvs {m(1,%), t =
0,1,...} by
m(l,t) = glint(A(l,s) -C(l,s), t=12,... (4.6)

and note that
B(1,t) = F(C(1,t),q + m(l,t)), t=1,2,... 4.7

where the continuous mapping F : R? — IR is given by

F(z,y) = z+min(0,y), =z, y€R. (4.8)

5 On applying Proposition 3.1 to {b1, t=0,1,...}

We now discuss some of the difficulties in applying Proposition 3.1 to the output
process {bs11, t = 0,1,...}, and we do so under a set of assumptions which naturally
imply those of Proposition 2.2 in the context of the discrete-time G /G/1 (4.1)
with time-varying capacity: As said before, we assume the ]R%r—valued process
{(atz1,¢141), t = 0,1,...} to be (jointly) stationary and ergodic. In addition, we

assume the following conditions: Set
1
AP(a,) = 5 InE [exp(ad(1,) +7C (L D)1, (@,7) € R? (5.1)

foreacht=1,2,....

1. The limit Ag o(@, ) = lim¢ 00 Af**(c,y) exists (possibly as an extended real
number) for all (@, 7) in R?;

2. The process {t 1(A(1,t),C(1,t)), t = 1,2,...} satisfies the LDP with good
rate function A} ..

Obviously, for all 6 in R and t = 1,2,..., we have A{"°(8) = AP¢(6,—6) and
A%(0) = AP°(0,0). The existence of the limits

Aoc(0) = tlg& AE(0) = Ay o(6,-0), R (5.2)
and
Aa(6) = lim AZ(0) = Aac(6,0), OER (5.3)

is now immediate. It also plain that the processes {t71(A(1,t) — C(L,1)), t =
1,2,...} and {t TA(1,t), t = 1,2,...} each satisfy the LDP with good rate functions
A%_. and A%, respectively, which can easily obtained from the Contraction Principle



[7). Furthermore, we assume the set O, = {6 > 0 : Ae_c(8) < 0} to be non-

empty, and A{"¢(#) < oo for all § in O, .and t = 1,2,.... Similarly, we assume
that ©, = {6 > 0: A,(f) < r8} is non-empty, and AZ(f) < oo for all § in O, and
t = 1,2,.... Under these assumptions, both Proposition 2.2 and Proposition 3.1
hold.

In order to apply Proposition 3.1 to the output process {b;+1, t =0,1,.. .} we
need to check several assumptions:

a. The first requirement is that the output process {b;y1, t = 0,1,.. .} be sta-
tionary and ergodic. It should be clear that this process is not necessarily stationary,
not to say ergodic, even though the process {(as+1,¢t4+1), t = 0,1,...} has been as-
sumed (jointly) stationary and ergodic. Only when the system is in statistical equi-
librium or steady-state, i.e., when q = gy, is the output process {btz1, t=0,1,...}
stationary as can be seen from (4.4).

b. With ¢ = g5, we now set
Aﬂmz%mE@mwB@nm feR (5.4)
for all t = 1,2,.... The limit
Ay(0) = lim Ab(8), 6€R (5.5)
t—o0

needs to exist.

c. Next, the set ©, = {6 > 0: Ay(#) < 0} should be non-empty, and Ab(9) < o0
forall#in Oy andallt=1,2,....

d. Finally, we need to establish that the process {t 'B(1,t), t = 1,2,...}
satisfies a LDP with good rate function Af. That such a property holds is far from
obvious as the process {B(1,t), t = 1,2,...} is a complicated function of the process
{(as,c;), t=0,£1,+2,...}. However, one possible avenue of progress on this issue
is to observe from (4.7) that

c(1,1)
t

m(1,t)
t

= F(

,%+ ), t=1,2.... (5.6)

Therefore, if the process {t 1(C(1,t),m(1,t),q), t=1,2,...} satisfies a joint LDP
with good rate function J : R? — [0, 00], then by the Contraction Principle, so does
{t"1B(1,t), t=1,2,...} with good rate function J : R = [0, 00] given by

Jy(z)= inf {J(c,qym): z=F(c,q+m)}, z€R . (5.7)
(e:q,m)€R?

10



Of course, this approach still leaves unanswered whether the good rate function Jp
is indeed A}, the Legendre-Fenchel transform of A,. We should also point out that
b. and c. do not appear to be simple consequences of the enforced assumptions.
Moreover, obtaining the LDP for {t"'m(1,t), t =1,2,...}, whence a fortiori jointly
for {t~1(C(1,t),m(1,1),q), t = 1,2,...}, is not an easy task, and to our knowledge,
has been done only through sample path Large Deviations arguments [4, 17].

This suggests that an approach at the sample path level might be more promis-
ing, with all discrete—time processes of interest being embedded into continuous-time

ones.

6 A sample path approach to effective bandwidth

Let (D[0,1],dw) denote the space of right—continuous functions on [0,1] with left—
hand limits, endowed with the uniform norm, and for any sequence {z¢, t=0,1,...},
define the rv X, (-) on (D[0,1],dx) by setting

X, () = %X(l, nt))

| lnt!
- . 1 >
= { n=" i )21 e, n=1,2.... (6.1)
0 otherwise

Following [7], we refer to X,(-) = {Xn(t), t € [0,1]} as the partial sum process
associated with {z;, t =0,1,...}. We can then use (4.7) to write

Bllnt) _ pOlnt) ¢, miLlnt), ooy 62
where
___m(l, [nt)) min (n7! s} — s
n N s:l,.,.,LntJ( (4(1,5) - C (1L, )))
- Oisngt(n—l(Au,s)—0(1,5))), te(0,1] . (6.3)

As usual, the minimum over the empty set is taken to be 0o, a convention which is
consistent with our earlier definitions.

Therefore, defining the families of random processes {g.(-), n = 1,2,.. .} and
{mn(), n=1,2,...} by

@ = 2 and  ma(H) = inf (An(s) —Cal(s), te€[01),  (6:4)

n 0<s<t

11



we can rewrite (6.2) as
where the (continuous) mapping F: D[0,1]2 = D[0,1] is defined by

F(r,1) = o1 +min{0,4}, 1,92 € D[0,1] .

In principle, the sample path LDP for the transient output process (g = 0) as well
as for its stationary version (¢ = gs;) can now be derived from the joint LDP for
the family of partial sum processes {(Cp(-),mn(-),qn(-)), n = 1,2,...} through a
simple application of the Contraction Principle [7].

In the sequel we will often require the sequences {a;y1 : t = 1,2,...0} and
{cgp1: t=1,2,...} to satisfy a SPLDP: Let AC)[0, 1] denote the space of functions
¢ : [0,1] = R which are absolutely continuous and such that ¢(0) = 0.

Assumption (E) The partial sum processes {An(-), n=1,2,...} and {Cn(-), n =
1,2,...} satisfy the LDP on (D[0, 1], do) with good rate functions given respectively
by

Lig) = {fo‘Az(s'a(t))dt, @ € ACO[0, 1] (6.6)
00 otherwise
and
lo(y) = {f&A*c(c'p(t))dt, v € AGD, 1 (6.7
00 otherwise

where A% and A}, are the convex good rate functions associated with the LDP sat-
isfied by {t 1A(1,t), t=1,2,...} and {t7'c(1,t), t = 1,2,...}, respectively.

Conditions for this assumption to hold are presented in [8]. Although the con-
ditions there do not cover all the cases where a stationary sequence satisfy a LDP,
they are quite general.

The following result from [1, 2] shows that a sample path approach would also
yield directly the buffer asymptotics and the effective bandwidth, bypassing Propo-
sition 2.2 and 3.1

Proposition 6.1 Under Assumption (E) we have

1
lim ~logP g0 > 0] = —0", (6.8)
b—oo b

12



where .
6 = gx;g i inf {A%(z) + AL(z —0) : z € R}.

The next result shows that (6.8) is enough to ensure the existence of a LDP for
the sequence {gn(-), n =1,2,...}; its proof is given in Section 8. This assumption
is satisfied in most cases of interest, as shown by Proposition 2.2 and 6.1.

Let C denote the subset of C[0, 1] consisting of all non-negative constant func-
tions, and denote by cy its generic element, i.e., cpr(t) = M for all ¢ in [0, 1].

Proposition 6.2 Under (6.8), the sequence {gn(-), n =1,2,...} satisfies the LDP
on (D[0, 1), dw) with good rate function I, : D[0,1] — [0, cc] given by

Mo* if p=cy, M >0

. (6.9)
o0 otherwise.

Ii(p) = {

It is actually shown in [1] that under Assumption (E) (6.8) is equivalent to the
existence of the LDP for {g,(-) : n =1,2,...}. We point out that the existence of
a LDP for {(Cpn(-),mn(")) : n=1,2,...} together with that of {gn(), n=1,2,.. 3
is not enough, in general, to yield the joint LDP for {(Cr(:)ymn(),an(-), n =
1,2,...}. From [7, Exercise 4.2.7 p. 106], it does so for i.i.d. arrivals and capacities.
It turns out that the joint LDP for {(Cn(-),mn(*),qn(")); n = 1,2,...} also holds
under the much broader Assumption (E). A proof of this result as well as a detailed
account of this sample path approach can be found in [1] and in the forthcoming

paper [2].

7 Stationary vs. Transient

Let {B*(1,t), t =1,2,...} and {B"(1,t), t =1,2,...} denote the stationary (¢ =
gs:) and transient (¢ = 0) output sequences. As seen from (4.3), the rv g5, hence
Bst(1,t), depend on the entire past of the driving sequence {&, t =0,%1,£2,...},
whereas the expression for B (1,t) depends only on the driving sequence through
{&,...,&}. Tt is thus in general much easier to obtain the LDP and to compute the
associated rate function and effective bandwidth for the transient output process,
than for the stationary one. Relatively simple expressions for the effective bandwidth

of the transient output process can be found in [4, 10, 15].

Proposition 7.1 IfE [egq”] < oo for all 8 > 0, then {B*%(1,t), t =1,2,...} and
{B"(1,t), t = 1,2,...} are exponentially equivalent. Thus, if one satisfies the LDP,
so does the other with the same rate function.

13



The condition on the exponential moment is quite strong and will not, in general,
be satisfied.

Proof. It is readily seen from (4.5) that
0 <B%(1,t) —B"(1,t) < qu, t=12,.... (7.1)
Thus, from Chebycheff inequality, for any § > 0, we have

P[l%BSt(l,t)—%Btr(l,tﬂ>5] < Plgs > td]

< et E [eeqst] 8>0. (1.2
Taking the log, dividing by ¢ and letting ¢t goes to infinity in the last inequality
yields
: 1 1 st 1 tr
limsup = logP ||5B*(1,t) — =B"(L,t)] > 4| < -6, 6>0, (7.3)
f—o00 t t t

where the last step is obtained from the finiteness of the exponential moment. The

result then follows easily upon letting 6 go to infinity in (7.3). [ |

As the next proposition shows, the existence of a joint LDP for the process
{t-1(C(1,t),m(1,t),q), t=1,2,.. .} is in some cases enough for the stationary and
transient output processes to satisfy the same LDP.

Proposition 7.2 For q = ¢s, assume {t71(C(1,t),m(L,1),q), t = 1,2,...} to
jointly satisfy a LDP on R® with good rate function J : R? — [0,00]. If the
relation

J(z,y — 2,2) = J(z,9,2), ©,9,z2€R, (7.4)
Bst(1,t) B (1,1)

holds, then the processes { "

satisfy the same LDP on R.

t =1,2,...} and { Ct=1,2..}

Proof. From the Contraction Principle (7] and expression (4.7), the transient and

stationary output processes satisfy the LDP with respective good rate functions

szr(-’ﬂ) = inf{J(ylay27 1/3) CrT=U +min{0,y2}, y; € R7 1= 132,3}
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and
JiHx) = inf{J(y1,y2,¥3): z=n + min{0,y3 + y2}, B €ER, 1 = 1,2,3}
and the proof is completed upon noting from (7.4) that
Jitz) = imf{J(y1,y2.¥3): 2=y + min{0,y3 + v2}, ¥ ER, 1 = 1,2,3}
— inf{J(y1,y2 — Y3 v) : z=y1 +min{0,92}, v € R, i=1,2,3}

= inf{‘](yhy?ay?)) CT=0 + min{o’y2}’ Y € ]R'7 1= 17273}
= Ji(z), zeR . (7.5)

This last result is preserved when a sample path Large Deviation is assumed to hold,

as shown below. We consider (D[0,1], dso)? endowed with the metric do given by
do((1, P2, Pa); (Y1, P2, 93) = max, do(i, i), pinthi € C[0,1] - (7.6)

Let BSt(:) and BY(-) denote the partial sum processes associated with the sta-
tionary and transient departure sequences, i.e. the processes obtained from (6.5)

with ¢ = qeo and ¢ =0, respectively.

Proposition 7.3 For q = s, assume {(Cr()ymn(-),gn (")), n=1,2,.. .} to jointly
satisfy a LDP on (D[0,1], doo)? with good rate function I : DI[0,1]* — [0,00]. Under
(6.8), if for all M > 0, the relation

I(SOI,SO2_CM,CM) :I((Pl,(PQ,CM), ‘Piec{o,ll, 7'=]-72 (77)

holds, then the families of partial sum processes (B(-), n=1,2,...Yand {BY (), n =
1,2,...} satisfy the same LDP on (D[0,1],dwo)-

Proof. Under the enforced assumptions, the Contraction Principle yields the LDP
for {qn(*), n=1,2,...} on (D0, 1], do) with good rate function

Iq(¢) = inf{1(¢1’¢27 1/)3) = 1[)37 1/)1: € D[O’ 1]7 1= 1a2a3} . (78)

Thus, Proposition 6.2 and the uniqueness of the rate function [7, p. 103] already
imply
I(¢15¢27¢3) = o0, d)i € D[Oa 1]’ i=12, '(/13 ¢ C+ . (79)
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Next, because BS!(-) = F(Cn(-),mn(-) +gn(-)) and B (-) = F(Cp(-),mn(-)), the
Contraction Principle yields the LDP for {Bg!(-), n = 1,2,...} and {B} (), n =
1,2,...} on (D[0,1],dwo), with good rate functions Is, Iy : D[0,1] — [0,00] given
respectively by

Ie(p) = inf {I(¢1,%2,93): ¢ =11 +min{0,¢2 + ¢3}}

1/)16D01]
1=1,2,3

and

Iir(p) = ¢égf(] 1]{1(1/11 o, P3) 1 @ =11 +min{0,¢2}} .

To complete the proof, we note from (7.7), (7.9) and from the expressions above
that

Lalp) = inf {T(by,¥n,0m) 0 =1 + min {0, + M}}
s
= elgfo I {I(3p1,2 — epyem) 2 @ = 1 + min{0,93 + M}}
i= 21 2, M>0
= inf  {I(¢1,%2,¢cm) 0 =1 + min{0,Yo}}
IlJieD[O,ll
1=1,2, M>0
= elll[fm {I(3h1,%2,%3) : ¢ = 1 + min{0,%2}}
: 1,2,3
= I.(p), v € D0,1] . (7.10)

As would be expected, by the Contraction Principle and simple algebra, the
assumptions of Proposition 7.3 implies that of Proposition 7.2.
We conclude with some comments as to when the conditions of Proposition 7.3

are indeed satisfied:

7.1 GI/GI/1 queue

Let d; denote the Skorohod metric which makes D[0, 1] into a Polish space; a detailed
account of the properties of this topology can be found in [6].

The GI/GI/1 queue is characterized by the sequences {as+1, t =0,1,...} and
{ct41, t = 0,1,...} being independent i.i.d. sequences. In that case, it is easily
seen [7, Exercise 4.2.7 p. 106] that, the partial sum processes gn(-) and mn(-) being
independent, the LDP for the joint family of processes {(Cn(),mn(-),qn(")), n =
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1,2,...} follows from that of {(Cn(:),mn()), n = 1,2,...} and Proposition 6.2.
Indeed, under suitable conditions on {at_’_]., t=0,1,...} and {¢;+1, t =0,1,...},
the family of partial sum processes {A,(-), n =1,2,...} and {Cn(:), n=1,2,...}
satisfy the LDP on (D0, 1],dw ) and thus on (D0, 1], d;). Then, a simple application
of [7, exercise 4.2.7 p. 106] and of the Contraction Principle yields the joint LDP
for {(Cn(-),mn(*)), n = 1,2,...} on (D[0,1],d1)®. The use of the metric space
(D[0,1],d;) rather than (D[0,1],dw) is motivated by the separability requirement
in Exercise 4.2.7 of [7]. However, this is not at all restrictive, as it is shown in [1]
how to go from one space to the other.

Because the rate function associated with the LDP of {(Cr(-),mn(-),qn()), n =
1,2,...} can be expressed as ([1])

1 Ay . . . -
(1, o, ths) = {i A* (61 (8), a8, s () dt if i € DO, 1], i =1,2,3

b

otherwise

for some good rate function A* : IR — [0, o], assumption (7.7) holds and Proposi-
tion 7.3 yields the result.

7.2 Sample Path Large Deviations approach

As mentioned earlier, it is shown in [1, 2] that under Asumption (E) the sequence
{(Cn(5),mn("),an (")), n = 1,2,...} with ¢ = gy satisfies the LDP on (DI0, 1],d;)?
with good rate function satisfying (7.7). Therefore, by Propositions 6.1, 6.2 and
7.3 the stationary and transient output process satisfy the same sample path LDP,
whence the same LDP. The generality of the assumptions under which this result
holds allows its propagation along G/G/1 queues in series.

Noteworthy is the fact (shown in [1, 2]) that the expression obtained for the rate
function associated with the LDP of {(Cn(:),mn(-),qn(-)), n = 1,2,...} yields a
direct proof of Proposition 6.2.

8 A proof of Proposition 6.2

The proof of Proposition 6.2 passes through a series of easy Lemmas. Let B, (y) de-
note the open ball of radius o centered at ¢, i.e. Bo(p) = {9 € C[0,1] : doo(p, %) <

al.
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Lemma 8.1 For 0 < z_ < z, we have

1
nh%ngo;; InPlg<nzry)=0 (8.1)
and )
lim —InPnz < qg<nzy=—-0_. (8.2)

n—o0on

The limits (8.1)~(8.2) are simple consequences of (6.8) and of the elementary
fact .
lim =In(l-e™)=0, z>0. (8.3)

n—oo 7
The arguments are elementary and are omitted for the sake of brevity; details are

available in [1].

Lemma 8.2 The sequence {gn(-), n = 1,2,...} is exponentially tight in (C[0,1],dw)-

Proof. We define
K,=B,(0)nCy, a>0 (8.4)

and note that [g,(-) € K] = [¢ > na] U [g.(-) & C.]. Hence, under (6.8),

limsup= InPlga() € K5 < lim L in[Plg> na] + P lga() £C4])

n—»00 n—oo 7

= lim llnP[q > naf

n—oo n

= —6q, (8.5)

and the exponential tightness follows once it is seen that the set K, is homeomor-
phic to the compact interval [0, M], thus compact in (C [0,1], doo ). [

For ¢ in C[0,1] and 0 > 0, we set

6 _ 5
= inf @({t)+4§ and ° = su t) -6 . 8.6
v = dnf ¢(t) @ te[oﬁ]w( ) (8.6)

Lemma 8.3 For ¢ in C[0,1] and § > 0, we have
. g*p°  if 0< b <’
L(Bs()) = = lim —InP[ga() € Bs(0)] = 4 0 if o <0<¢f (87

o0 otherwise

with ©? and ¢’ defined by (8.6).
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Proof. Using the continuity of ¢, we note the equality

[ () € Bs(9)] = [n’. < g < nepl] (8.8)

for each n =1,2,..., so that

0 if 3 <0
0 if 0<¢f <¢d
P )€ B = 8.
Pn(p‘i<q<n<pi] if 0<¢® <o .
By letting n go to infinity in (8.9), we readily obtain (8.7) from Lemma 8.1. [ |

Proof of Proposition 6.2. Clearly, B = {Bs(p) : ¢ € C[0,1],6 > 0} is a
base for (C[0,1],dw). Therefore, by Theorem 4.1.11 of [7, p. 106] and Lemma 8.3,
the sequence {g,(-), n =1,2,...} satisfies the weak LDP on (C[0, 1], dw) with rate
function

Io(p) = sup{L(Bs(¥)) : ¢ € Bs(¥),¥ € C[0,1],6 > 0} (8.10)
where £(Bj(v)) is given by (8.6). In computing I (y) for each ¢ in C[0, 1], several
cases arise:

1. ¢ >0, ie., @(t) >0 for all ¢ in [0,1]: In that case, whenever ¢ lies in the
open ball Bs(v) for some ¢ in C[0,1] and & > 0, we find ¥ (t) — § < p(t) < ¥(t) + 4
for all ¢ in [0, 1], so that by continuity,

§ — .
= b >0. .
¥ telféfuw(t) +4> téﬁlﬂ] p(t) 20 (8.11)

Two sub-cases then arise:
L.a. infycp19(t) < supyeo,) ¢(?); 1-e., @ is not a constant: If we take ¥ = ¢
and § such that 0 < & < 3 (supte[o,l] @(t) — infepo,) <p(t)), then ¢ belongs to Bs(1),

and we have

> = sup P(t) -9

t€(0,1]
= sup o(t)—4¢
te€(0,1]
. s
> 26+t€1[%’fl]<p(t) § =9l (8.12)
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Therefore, 1. < PP, so that L£(Bs(y)) = oo by Lemma 8.3, and I,(¢p) = oo follows.
1.b. infycpo1)¢(t) = Subse(o,1) o(t), i.e., p = M > 0: In that case, whenever ¢ lies
in the open ball B;(t) for some 1 in C[0,1] and § > 0, we find M-8 < () < M+4
for all ¢ in [0, 1], whence by continuity, we see that
W8 = sup Y(t) — 8 < M < inf $(t) + =95 (8.13)
t€f0,1] te[0,1]
In short, ¥® < 4%, so that L(Bs(¥)) = 6*(¢* )+ by Lemma 8.3, and (8.10) reduces
to

I,() = sup{6* ()" : ¢ € Bs(¥), 4 € C[0,1],6 > 0} (814)
)

It is now plain from (8.13) and (8.14) that I(p) < 6*M. On the other hand, upon
taking 9 = ¢ = M in (8.13), we get ()" = (M — §)* for all ¢ > 0, so that
I,(p) > 6*M, and we conclude I(p) = 6" M.

2. (s) < 0 for some s in [0,1]: If we take ¥ = ¢, then ¢ lies in Bs(p) and
infyep0 ¥(t) < 0. Upon selecting > 0 such that P = infyepo9(t) +90 <0, we
get L(Bs(3)) = oo by Lemma 8.3, whence I,(p) = 0.

The expression (6.9) for I, is obtained by combining the various cases. To con-
clude, we recall that do is the induced metric on the closed set (C[0,1],doo) of
(D[0,1],ds) (or for that matter, d; or dso). The sequence {gn(-), n =1,2,.. }is
exponentially tight by Lemma 8.2, and therefore it satisfies the (strong) LDP with
good rate function I, on (C[0,1],ds) [7, Lemma 1.2.18, p. 8]. Therefore, C[0,1]
being a closed measurable subset of (D0, 1], doo) with P [gn(-) € C[0,1]] =1 for all
n=1,2,... and Dy, C C[0,1], the desired result follows from Lemma 4.1.5 of [7, p.
104]. n
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