WIENER AMALGAM SPACES IN GENERALIZED
HARMONIC ANALYSIS AND

WAVELET THEORY

by

Christopher Edward Heil

Dissertation submitted to the Faculty of the Graduate School
of The University of Maryland in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
1990
¢l Voo I McByland
:j
Advisory Committee: 31 7 l

Professor John Benedetto, Chairman/Advisor g M 17061
Visiting Professor Hans Feichtinger H ) '
Professor John Horvath ity
Professor Raymond Johnson :
Professor Perinkulam Krishnaprasad c ' E

Vol. |
Folio



AR ey - 7S en

e =

© Copyright by
Christopher Edward Heil

1990



ABSTRACT

Title of Dissertation: WIENER AMALGAM SPACES IN GENERALIZED
HARMONIC ANALYSIS AND WAVELET THEORY

Christopher Edward Heil, Doctor of Philosophy, 1990

Dissertation directed by: Professor John J. Benedetto,
Department of Mathematics

This thesis is divided into four parts. Part I, Introduction and Notation,
describes the results contained in the thesis and their background. Part II,
Wiener Amalgam Spaces, is an expository introduction to Feichtinger’s gen-
eral amalgam space theory, which is used in the remainder of the thesis to for-
mulate and prove results. Part III, Generalized Harmonic Analysis, presents
new results in that area. Part IV, Wavelet Theory, contains exposition and
miscellaneous results on Gabor (also known as Weyl-Heisenberg) wavelets.

Amalgam, or mixed-norm, spaces are Banach spaces of functions deter-
mined by a norm which distinguishes between local and global properties of
functions. Specific cases were introduced by Wiener. Feichtinger has devel-
oped a far-reaching generalization of amalgam spaces, which allows general
function spaces norms as local or global components. We use Feichtinger’s
amalgam theory, on d-dimensional Euclidean space under componentwise
multiplication, to prove that the Wiener transform (introduced by Wiener

to analyze the spectra of infinite-energy signals) is an invertible mapping of
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the amalgam space with local L? and global L? components onto an appropri-
ate space defined in terms of the variation of functions, for each ¢ between one
and infinity, As corollaries, we obtain results of Beurling on the Fourier trans-
form and results of Lau and Chen on the Wiener transform. Moreover, our
results are carried out in higher dimensions. In addition, we prove that the
higher-dimensional variation spaces are complete by using Masani’s helices;
this generalizes a one-dimensional result of Lau and Chen.

In wavelet theory, we present a survey of frames in Hilbert and Banach
SPaces and the use of the Zak transform in analyzing Gabor wavelets. Frames
are an alternative to unconditional bases in these spaces; like bases, they
Provide representations of each element of the space in terms of the frame
elements, and do so in a way in which the scalars in the representation are
explicitly known. However, unlike bases, the representations need not be
Unique. We then discuss the specific case of Gabor frames in the space of

SQuare-integrable functions, concentrating on the role of the Zak transform in

the analysis of such frames.
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PART I

INTRODUCTION AND NOTATION
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CHAPTER 0

INTRODUCTION

This thesis falls naturally into several parts.

Part I, Introduction and Notation, describes the results contained in this
thesis and their background, and lays out the notational scheme used through-
out. Part I consists of Chapters 0 and 1.

Part II, Wiener Amalgam Spaces, is an expository introduction to Fe-
ichtinger’s general amalgam space theory, which is used in the remainder of
the thesis to formulate and prove results. Part II consists of a single chapter,
Chapter 2.

Part III, Generalized Harmonic Analysis, contains new results in that area.
The results depend heavily on the use of amalgam spaces. Our major result
links and extends results of Wiener, Beurling, Lau and Chen, and Benedetto,
Benke, and Evans into a single isomorphism theorem. Part III consists of
Chapters 3 through 5.

Finally, Part IV, Wavelet Theory, contains exposition and miscellaneous
new results in that area. Part IV consists of Chapters 6 and 7.

We introduce each of Parts II, III, and IV below, in Sections 0.1, 0.2,

and 0.3, respectively.



Section 0.1. Amalgam spaces.

The classical LP spaces on the real line R consist of those functions f for

it = ([ scora)”

is finite. These spaces play a prominent role in modern analysis, yet often

which the norm

are difficult to use in applications because the LP norm does not distinguish
between local and global properties. For example, all rearrangements of a
given function have identical L? norms. Thus, it is not possible to recognize
from the norm of a function whether it is, say, the characteristic function
of an interval or the sum of many characteristic functions of small intervals
spread widely over R. As another example, “local” and “global” inclusions
in LP behave differently, with the result that there are no inclusion relations
for LP as a whole. To illustrate this, let K C R be a compact set, and let
P be the space of sequences {cx} which are p-summable, i.e., Y |ci|P < oo.

Define the following subspaces of LP(R):
LR X)) = {fELP(R):supp(f)CK},
GP = {f = ch x[k,k+1] - {ck} € ep},

where X[, r41) is the characteristic function of the interval [k, k+1]. Functions
in LP(K) have only “local” behavior, while functions in G? have only “global”

behavior, in some sense. “Local” inclusions behave as follows:

n2p2 = LPY(K)C LP*(K),

3



while “global” inclusions behave as:
q1 S q2 = 4N Ceth, Gt c G923,

No LP(R) is contained in any other LI(R).

Amalgam spaces decouple the connection between local and global proper-
ties which is inherent in the definition of LP spaces. Their first use was by
Norbert Wiener, in the formulation of his generalized harmonic analysis. In
the notation of this thesis, he defined the spaces W(L?, L?) and W (L?, L")
in (W4], and W(L!,L*) and W(L*>, L) in [W1; W2], where W(L?, L9) is

the standard amalgam space defined by the norm

1) Ilwaas = (X ([T vora) q/p)”q,

nEz

the usual adjustments being made if p or g is infinity. Amalgams have been
reinvented many times in the literature; the first systematic study appears to
have been undertaken by Holland in [Ho|; an excellent review article is [FS].

The amalgams W(L?, L?) distinguish between local L? and global L? prop-
erties of functions in the ways we expect. For example, rearrangements do

not have identical norms in general, and inclusions behave correctly:
p1>p, 1 <q = W(IP,L™)C W(LP, L%).

The dual space of W(L?, L9) is W(L?,L%), where 2 + L =1+ 1 =1. For

ql

1 < p, ¢ £ 2 we have a Hausdorff-Young property for the Fourier transform:

W(LP, L) C W(LY,LP);

4
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note that local and global properties are interchanged on the Fourier trans-
form side.

H. Feichtinger recently proposed a far-reaching generalization of amalgam
spaces to general topological groups and general local/global function spaces,
e.g., [F2; F8], cf., Chapter 2. Given Banach spaces B, C of functions on a
locally compact group G, he defines spaces W(B, C) of functions or distribu-
tions which are “locally in B” and “globally in C”. Moreover, his generaliza-
tion is powerful and natural. Some properties which follow immediately from
his theory are the following.

Inclusions. If By C By and C; C C, then W(B;,C;) C W(B,,C»).

Duality. If a space of test functions (e.g., the Schwartz space S(R) of
smooth, rapidly decreasing functions) is dense in B and C then W(B,C)' =
w(B',C").

Complex interpolation. Complex interpolation can be carried out in each
component of W (B, C) separately.

Pointwise multiplications. If By-B, C B3 and C;-C; C C3 then W(B,;,C,)-
W(B,,C2) C W(Bs3,Cs).

Convolutions. If By * B, C B3 and C; x C; C C; then W(B;,C,) *
W(B2,C2) C W(Bs,Cs).

Many other specific results follow immediately from Feichtinger’s theory
by choosing Sobolev spaces, Besov spaces, weighted LP spaces, the Fourier
algebra A, etc., as the local or global components, with various choices of

5



topological groups.

Feichtinger refers to his spaces W(B,C) as Wiener-type spaces; follow-
ing a suggestion of J. Benedetto, and in order to promote the link between
Feichtinger’s generalization and the amalgams previously defined in the lit-
erature, we call them Wiener amalgam spaces. Taking G to be the group R
under addition with Haar measure dt, the local component B to be LP(R),
and the global component C to be LI(R), results in a Wiener amalgam space

coinciding precisely with the standard amalgam space defined by (0.1.1).

In this thesis we obtain new results, and new proofs and generalizations of
previously known results, in generalized harmonic analysis (Part III) and in
wavelet theory (Part IV), by using amalgam spaces. Except for the amalgam
space connection, the results in the two parts are unrelated, although we
believe that the application of wavelets to generalized harmonic analysis could

produce new results in the future.

For the benefit of the reader, we present in Part II a self-contained intro-
duction to Feichtinger’s theory. Since his theory is not needed in the later
parts in its full generality, we present a simplified theory in which we allow
only weighted L? spaces as local or global components. This results in a
considerable technical simplification of the proofs without destroying their
essential flavor. Thus, Part II can be considered an elementary introduc-
tion to the general theory as presented in [F8]. In addition, we prove only
those results directly related to our needs in this thesis, e.g., completeness,

6



translation invariance, equivalence of discrete norms, inclusions, and duality.
Part II is purely expository, and it is not necessary to read Part II in order
to appreciate the results in Parts III and IV.

While Part II is written in terms of general topological groups, the results
in Parts IIT and IV use the Wiener amalgam spaces on two specific topological
groups. Part III uses the multiplicative group R? = {z € R? : z; # 0, all 5},
under componentwise multiplication, with Haar measure dt/|ty - - - t4|. Part IV
uses the additive group R?, under componentwise addition, with Haar mea-
sure dt. To clearly distinguish between amalgam spaces on these two groups,
we use the following notation in Parts IIT and IV (and in Sections 0.2 and 0.3

of this chapter):

(0.1.2) W(L?,L7) = W(LP(R?),LY(RY))
and
(0.1.3) W.(L?,L9) = W(LP(R?), LI(RY)).

The amalgam space W(LP,L?) on the group R? is precisely the higher-
dimensional analogue of the standard amalgam space defined in (0.1.1); the
intervals [n,n + 1] are simply replaced by cubes [ny,ny +1] X - -+ X [ng,nqg + 1]
for n € Z¢. We point out, however, that this norm is only equivalent to the
fundamental norms used by Feichtinger as the basic definition for W(L?, L9).
We refer to a norm such as (0.1.1) as a discrete-type norm for W(LP, L?);

the fundamental defining norm is instead a continuous-type norm (Definition

7



2.2.2). Such norms more clearly illustrate the local L? /global L9 features of
w(LP,L9).

For the one-dimensional case (d = 1), the discrete-type norm for W, (LP, L9)
on the group R, is

dt\ 1/P\ /4

1) Mwaas = (3 (L. v@5)")"
The higher-dimensional version of this norm is obtained by replacing the
intervals £[27, 2"*1] by rectangles £[2™1,2™ 1] x ... x £[2m¢ 2ma+1] and by
using the Haar measure dt/|t; - - - t4].

Special Acknowledgement. We thank Dr. Feichtinger for permission to use

several of his unpublished lecture notes in this section.



Section 0.2. Generalized harmonic analysis.

In this section we summarize and present background for results obtained
in Part III of this thesis. Items a-d below discuss the background of our
problems in generalized harmonic analysis, e-f discuss our results, g discusses
future research possibilities, and h outlines Part III by chapters.

a. The Wiener—Plancherel formula. The Fourier transform provides the

basic definition of spectrum for finite-energy functions on the real line. Central

to its definition is the Plancherel formula

[ iswra = [ i

—- 00

where the Fourier transform is defined by

#t7) = / " f() e ar,

cf., Section 1.8. In order to deal with infinite-energy but finite-power func-
tions, Wiener introduced what we now call the Wiener transform, and proved
the Wiener—Plancherel formula, e.g., [W1]. These are defined as follows.

Given a function f on the real line R, its Wiener transform is (formally)

—2miyt _ X[—l,l](t) ”

(0.2.1) wit) = [ )

—2mit
If f has bounded quadratic means, i.e., if
1 T
(0.2.2) sup — |F(2)|? dt < oo,
>0 2T J_ 1



then W f is well-defined (Theorem 4.1.7). The Wiener~Plancherel formula

states that for such f,

T

. 1 2 T 2 - 2
(0.2.3) Jim _T| fOF dt = lim < /_ wlAAWf(v)I dv,

meaning that if one limit exists then the other does also and they are equal,

and where A is the symmetric difference operator
ArF(y) = F(v+A) — F(v-)).

Note that if f has finite energy, i.e., if f € L*(R), then the left-hand side of
(0.2.3) is zero.

Wiener called the theory associated with (0.2.1) and (0.2.3) generalized
harmonic analysis as it generalizes the usual finite-energy harmonic analysis.
For background, perspective, and proof of (0.2.3) and associated subjects, see
(B7].

The Wiener—Plancherel formula has been extended to higher dimensions
in [BBE], [B1], and [Ben]. The paper [BBE] adopted a “rectangular” ap-
proach to higher dimensions, while [B1] and [Ben] adopted a “spherical”
approach. We prove our results in generalized harmonic analysis in higher
dimensions following the rectangular approach of [BBE]. For clarity, we con-
centrate in this introduction on one-dimensional statements, and summarize
higher-dimensional results in item f below.

b. Lau’s extension of the Wiener-Plancherel formula. K.-S. Lau and
J. K. Lee observed in [LL| that the space of functions f for which the limit

10



on the left-hand side of (0.2.3) exists is nonlinear, and, more generally, that
Y O ,
(0.2.4) B(p,lim) = {f € L (R) Th—l;%o o7 /:_T |F(2)[P dt exists}

is nonlinear (the case p = 2 had originally been proved in [HW]). Therefore
B(p,lim) cannot be dealt with using the methods of ordinary functional anal-
ysis. However, the Wiener transform W is defined for all f with bounded
quadratic means, hence for all f € B(2,limsup), where B(p,limsup) is the

space of functions f for which the norm

1/p
©025)  flsuman = tmeue (57 [ 150F )

is finite. Marcinkiewicz, in [Mar], proved that B(p,limsup) is a Banach
space once functions f, g € B(p,limsup) with ||f — g||B(p imsup) = O are
identified. Lau and Lee proved that the Wiener transform W is a topological
isomorphism of B(2,limsup) onto the space V(2,limsup), where

oo

. 2
(0.2.6) ||F||V(p,umsup) = limsup (—X/
A—0

1/p
|AAF(7)IP d'r) -
.

Since V(p,limsup) is not solid, i.e., |F| < |G| does not necessarily im-
ply ||Fllv(ptimsup) < ||G|lv(p imsup), the completeness of V(p,limsup) is a
difficult question. Using the helix techniques of Masani, Lau and Lee were
able to prove that V(p,limsup) is a Banach space (once functions F, G with
|F — G|lv(2,limsup) = O are identified), cf., [LL; M1; M3].

Following Lau and Lee’s work on B(p,limsup), Lau and Chen proved in

[CL1] that the Wiener transform W extends to a topological isomorphism of

11



the space B(2,00), where

T 1/p
(02.7) IS5y = su2 (57 [ 1ACOP L)

T>0 -T

onto V(2,00), where

9 poo 1/p
028 IFlvoe = me (5 [ 1awsaIra)

We reproduce the proof of this result in Section 4.4—4.5. Our results include
and generalize this result, both to a larger class of spaces and to higher di-
mensions.

It is clear that B(p, o) is a Banach space, without the need to form equiv-
alence classes other than the usual a.e. ones. Lau and Chen proved that
V(p,o0) is also a Banach space (after the formation of equivalence classes),
by using Masani’s helix techniques.

c. Beurling’s AP and BP spaces. In one of his deep investigations into

spectral synthesis, Beurling introduced the following spaces, e.g., [Bel]:

(0.2.9) B? = () I&(R)
wEA

and

(0.2.10) A = J IEm®),
wEA

where A is the class of even, positive, integrable weights which are decreasing

on (0, ), %+‘%_—: ;

U
,wl___wl p’

12



and L2 is defined by the norm

i1z = ([ If(t)l”w(t)dt)l/P.

-C0

Beurling proved the following facts.

AP and BP are Banach spaces.

AP C L}(R) and is a convolution algebra.
B? 5 L*(R).

(AP)' = BP', under the duality

(0.2.11) i = / " 1) 900 dt.

B? = B(p, ).

In addition, he proved that the Fourier transform on A? satisfies an isomor-
phism property similar to the one proved by Lau and Chen for the Wiener
transform on B(2,00) = B?. Recasting his result into our terminology, he
essentially proved that the Fourier transform is a topological isomorphism of
A? onto a space V(2,1) defined by the norm

o fo oo 172 0
(0.2.12) 1Fllva,ay = - |AAF(7)]? dv —.
1 X
0

— 00

The proof required tricky estimates involving the weights w; we reproduce it
in Section 4.4.

Many of Beurling’s results in [Bel] (with the exception of the Fourier
transform isomorphism theorem) were actually proved in higher dimensions,

13



but with a spherical approach, rather than the rectangular approach of this
thesis.

d. Feichtinger’s contribution. As discussed in Section 0.1, Feichtinger has
produced a general theory of amalgam spaces on topological groups. In [F4],

he characterized B(p,o0) as an amalgam space by proving that
(0.2.13) B(p, ) = Wa(I?,L%) = W(I*(R.),I=(R.)),

under equivalent norms. This insight provided us with a framework to link
Beurling’s and Lau’s isomorphism results, and to prove our own results. The
characterization as an amalgam space provided us with equivalent discrete-
type norms, which are the basic machinery we use to prove our major theo-
rems.

e. Our results. For clarity, we discuss one-dimensional versions of our
results first, and make remarks on the higher-dimensional formulations in
item f.

We generalize Feichtinger’s characterization of B(p,o0) as the amalgam
space W,(L?,L™) as follows. Define B(p,q) to be the space of functions f

for which the norm

(04814) 1fllBe = (/Dw<2iT‘/_i|f(t)I" dt)q/p ﬁ‘g)l/q

is finite, with the standard adjustments if p or ¢ is infinity. In Theorem 3.2.4

we prove that

(0.2.15) B(p,q) = W.(L*,L7),

14



with equivalent norms. This provides us with discrete-type norms for all
B(p, q), <f., (0.1.4).

Recall now that (AP)' = BP', with duality defined by (0.2.11). From
(0.2.13), we have B? = B(p',00) = W.(LP',L®). It follows immediately

from Feichtinger’s amalgam theory that
W.(LP, L) = W.(L*,L*).

However, these amalgam spaces are on the multiplicative group R., so the

duality is with respect to the Haar measure on R,, i.e., with

Ao A0
(fy9) =/ f(t)g(t) —-
R. ||
It therefore follows that
AP = tW, (L7, L),

ie.,

feA? &  tf(t) e W.(L?, L) = B(p,1).

Except for the convergence factor X[_; 3)(t), the Fourier transform of f € A

therefore corresponds to the Wiener transform of tf(t) € B(2,1), i.e.,

~

()

/‘°° f(@) e 2 I gt

) e—-21ri1t
= —2m tf(t dt
m/oo £#) —2mit

~ —2miW(tf)(7)-

15



Since the convergence factor is not needed to make the integral defining Wy
converge for ¢ € B(2,1), and is irrelevant once we compute A Wy, the
Beurling isomorphism theorem for the Fourier transform on 42 therefore im-
plies that the Wiener transform is a topological isomorphism of B(2,1) onto
V(2,1). Comparing this to the Lau result, that W is a topological isomor-
phism of B(2,00) onto V(2,0), we anticipate the major result of Part III,
namely, that W is a topological isomorphism of B(2,q) onto V(2,q) for each

1 < ¢ < oo (Theorem 4.5.5), where V(p, q) is defined by the norm

0218 1FIven = ([ (3 )7 marpan) " 2)"

We prove our isomorphism theorem directly, without interpolation. This
avoids lengthly technical details establishing the interpolation properties of
the non-solid spaces V(p,q). Moreover, our use of Wiener amalgam spaces
to prove this result gives new proofs of the Beurling and Lau results using a
single technique, rather than the very different techniques used by the original
authors.

Although not needed to prove our isomorphism theorem, we show in Sec-
tion 3.4 that B(p,q) can be written as a union or intersection of weighted L?
spaces, similar to the Beurling characterizations of AP, BP given in (0.2.9)
and (0.2.10), cf., Proposition 3.4.6. This characterization allows us to relate
the spaces B(p, q) to other spaces which have appeared in harmonic analysis,
cf., Remark 3.4.7.

f. Higher dimensions. Benedetto, Benke, and Evans, in [BBE], extended

16



the Wiener~Plancherel formula (0.2.3) to higher dimensions, in a “rectangu-
lar” way. This nontrivial task included the determination of correct higher-
dimensional analogues of limits, the Wiener transform W, and the symmetric
difference operators Ay, as well as the formulation and proof of new Taube-
rian theorems. The term “rectangular” stems from the fact that the intervals
[-T,T] in (0.2.3) are replaced by rectangular boxes Ry = H:=1[—Tj,Tj] for
T = (T1,...,T4) € R%. For example, the space B(p,o) is defined in higher

dimensions in a rectangular way by the norm

1 1/p
©0217)  fllage = s (7 [ 1f0Pa)
rert \|R7| Jr,
The rectangular higher-dimensional definitions of limits are given in Sec-
tion 3.1, of the Wiener transform in Section 4.1, and of the difference op-

erator in Section 4.2. Using those definitions, the Wiener-Plancherel formula

becomes the following: for f € B(2, ),

T— o0

d

0218) Jim = [ I d = Jim 18w s an.

We prove all our results in higher dimensions using the higher-dimensional
rectangular definitions. This includes the characterization of B(p,q) as an
amalgam space, the convergence of the Wiener transform on B(2,q), the
isomorphic nature of the Wiener transform as a mapping of B(2,q) onto
V(2,q), and the proof of the completeness of the higher-dimensional variation
spaces V(p, q).

The completeness of V(p, ¢) is proved in the final chapter of Part III. For one

dimension, the completeness follows as a corollary of results of Lau and Chen

17



based on Masani’s helix techniques. In higher dimensions, the proof requires
an iteration of those techniques (Theorem 5.2.3). We review the definitions
and basic properties of helices in that chapter, and, while not appropriate for
proving the completeness of V(p,q), we also indicate how to extend helices

directly to R4.

g. Future results. Benedetto has completed, and Benke is completing, work
on spherical higher-dimensional analogues of the Wiener—Plancherel formula,
cf., [B1] and [Ben)], spherical in the sense that the intervals [T, T] in (0.2.3)
are replaced by spheres of radius T'. The resulting spherical formulas appear
to be even more interesting than their rectangular counterparts. A major
goal for future research is therefore to determine the spherical analogues of
our isomorphism theorems. Another goal is to investigate higher-dimensional
analogues of the Lau and Lee isomorphism theorem on B(2,limsup), both in

rectangular and spherical settings.

A related area in which we expect our amalgam space methods to be of use
is the following. In [CL1]}, Lau and Chen proved modified Wiener-Plancherel
isomorphism theorems, obtained by replacing the factors 1/2T by 1/(2T)=.
Such results have applications to fractals, Hausdorff measures, etc., cf., [E2;
St1; St2]. A goal for future research is therefore to prove our isomorphism
theorem in such a setting. As a step in this direction, we prove in Section 3.5
that the spaces B,(p, ¢), obtained by replacing the factors 1/|Rr| in the def-
inition of the higher-dimensional B(p,q) by general functions p(T'), can be

18



s~ S S T A Sy e I e SR 2 e 8 S im g = ey e
el T i o B A BB T S e v Bl S —
- TS R XSRS

written as weighted Wiener amalgam spaces on the multiplicative group.

h. Outline. We outline Part III by chapters.

In Chapter 3 we present the definitions and fundamental characterizations
of the Besicovitch spaces B(p,q). We prove that B(p,q) coincides with the
Wiener amalgam space W,(LP?,L?) and prove bounds for the norm equiv-
alence. We discuss the relationship of B(p,¢) to unions or intersections of
weighted L? spaces. We discuss the effect of replacing the factor 1/2T in the
definition of B(p,q) (or 1/[Rr| in higher dimensions) by a general function
p(T'), and show that the resulting spaces are again Wiener amalgam spaces,
with weighted L? components.

In Chapter 4 we discuss the Wiener transform. We prove that it is defined
on each space B(2,q) for 1 < ¢ < o0, and determine the basic properties
of A\Wf. We reproduce the Beurling and Lau proofs of the isomorphic
nature of W on B(2,1) and B(2, o), respectively, and then prove, directly,
the continuity and invertibility of W on each of the spaces B(2,q) by using
the Wiener amalgam norms derived in Chapter 3.

In Chapter 5 we prove that the variation spaces V(p,q) are Banach spaces
by using an adaptation of Masani’s helix techniques. We review the basic def-
initions and properties of helices and give Lau and Chen’s proof that V(p, o)
is complete when d = 1, then extend this proof to higher dimensions by using

an iterated helix technique.
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Section 0.3. Wavelet theory.

Part IV of this thesis is a survey of results in wavelet theory, especially
frames, Gabor systems, and the Zak transform. Part IV is largely expository;
results of many authors have been combined with examples, remarks, and
minor results of our own into a survey of one portion of wavelet theory. Most
of the work on Part IV was completed prior to 1988, when we were hired by
The MITRE Corporation to pursue work in wavelets. After that point we
concentrated our thesis work on generalized harmonic analysis. Our work on
wavelets for MITRE has appeared under separate cover, e.g., [BHW; H1;
H2; HW1; HW2|. The paper [HW2] is a comprehensive introduction to

wavelet theory from the point of view of frames.

In item a below we discuss the basic problem of wavelet theory. Item b
discusses frames, which are an alternative to orthonormal or unconditional
bases. Items ¢ and d discuss Gabor and affine wavelets, respectively, and
item e discusses the general wavelet theory of Feichtinger and Grochenig.

Item f outlines Part IV by chapters.

a. Wavelet theory. The basic problem of wavelet theory is to find good
bases, or good substitutes for bases, for Banach function spaces, especially
L?(R?), the Hilbert space of square-integrable functions on d-dimensional
Euclidean space. The term “good” has, of course, many interpretations, in-
cluding, but not limited to, the following. The basis elements should be easily
generated from a single (or finitely many) functions through a combination
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of the fundamental operations of translation, modulation (translation in fre-
quency, i.e., multiplication by 2™, and dilation. The basis elements should
be well localized in time and frequency, i.e., both the basis elements and their
Fourier transforms should have good decay. Both the basis elements and their

Fourier transforms should be smooth, preferably infinitely differentiable.

Two basic approaches to constructing such systems have developed. These
are the Gabor (or Weyl-Heisenberg) wavelet systems and the affine wavelet
systems, discussed below in items ¢ and d. We point out that it has recently
become unfashionable to refer to Gabor systems as wavelets, the term wavelet

instead being reserved for affine systems.

b. Frames. Frames were invented by Duffin and Schaeffer, in the course
of an investigation into nonharmonic Fourier series, as an alternative to or-

thonormal bases in Hilbert spaces [DS].

A sequence {e,} of vectors in a Hilbert space H is an orthonormal basis if
the sequence is orthonormal, i.e., (e, en) = 0 if m # n and (en,en) = 1, and
the Plancherel formula holds, i.e., ¥ |(z, en)|? = ||z||? for allz € H. It follows
that if z € H then there exist unique scalars {c,} such that ¢ = ) chen. A
sequence {z,} in H is a frame if there exist numbers A, B > 0 such that
Allz|®? € Y l{=,€en)|* < Bl|z||?> for ¢ € H. The vectors {zn} need not be
orthogonal, yet it follows that given = € H there exist scalars {cn} such that
T = Y, cpn. Unlike orthonormal bases, these scalars need not be unique.
However, they are given explicitly, and the series ¢ = > cpzn converges
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unconditionally, i.e., all rearrangements converge (and converge to z), cf.,
Proposition 6.2.8. Frames which are ezact, i.e., for which the representations
£ = Y cpZn are unique, are bounded unconditional bases for the Hilbert
space, and vice versa (Proposition 6.3.3).

Frames thus provide representations of elements of a Hilbert space in terms
of the frame elements, like orthonormal bases. Since the definition of frame
is less restrictive than the definition of orthonormal bases, frames are usually
easier to construct in applications.

c. Gabor systems. A Gabor system is generated from a single function
(the mother wavelet) by translations and modulations; in particular, a Gabor

system for L?(R) has the form {gmn}m,nez, where
gmn(t) 5 eZm'mbt g(t = TLCL),

and g € L*(R) and a, b > 0 are fixed. Gabor systems have a long history and
are closely related to several well-known signal processing tools, e.g., the short-
time Fourier transform, the Wigner distribution, and the radar ambiguity
function, cf., [DeJ]. They have applications to many areas, e.g., quantum
mechanics [BZ; BZZ; Z1; Z2; Z3] and holography and optical computing
[Sch1; Sch2; Sch3]. We restrict our discussion here to one dimension; the
extension to higher dimensions is essentially trivial.

We concentrate in this thesis on the case of Gabor systems satisfying ab = 1.
This case is especially amenable to analysis through the use of the Zak trans-
form, a tool which has been reinvented many times in the literature. Accord-
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ing to Schempp, a discrete form of the Zak transform was used by Gauss.
Janssen, in [J1], lists some of the other occurances of the Zak transform. Zak
used the transform in quantum mechanics to study the Gabor system gener-
ated by the Gaussian function g(t) = e~™". Some of the earliest results on
the Zak transform were obtained by Auslander and Tolimieri by topological
methods, e.g., [AT2], cf., [AT1; AGT; AGTE]. Important new results on
the Zak transform have been obtained analytically by Janssen, e.g., [J2; J3;

J4).

The Zak transform is a unitary map of L?*(R) onto L?(Q), where Q =
[0,1] x [0,1] is the unit cube in R x R. The Zak transform of gmn has
a particularly simple form, namely, Zgmn(t,w) = e*™mt e27inw 74(¢ o). It
follows immediately from this formula that a Gabor system with ab = 1 is
complete if and only if Zg # 0 a.e., is an orthonormal basis if and only if
|Zg| = 1 a.e., and is a frame if and only if |Zg| is essentially constant, cf.,

Propsition 7.3.3.

The value ab = 1 has been shown to be a critical value for Gabor systems,
cf., [D1; Ri]. In particular, any Gabor system with ab > 1 must be incom-
plete, and any Gabor system with ab < 1 which is a frame must be inexact.
We prove in Proposition 7.3.3 that any Gabor system with ab = 1 which is
a frame must be exact, whence {g,,,} is a bounded unconditional basis for
L%(R). It has been shown that if a Gabor system with ab = 1 is a frame then
the mother wavelet g cannot be well localized both in time and frequency,
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in particular, ||tg(¢)||2 ||7d(7)ll2 = co. This is the Balian—Low theorem, cf.,
[Bal; Bat; BHW; D1; DJ; Low]. In this thesis we present a simple proof
of a related phenomenon, namely, that if g is the mother wavelet for a Gabor
frame with ab = 1 then either g is discontinuous or has poor decay at infinity,
precisely, g ¢ W(Cy, L"), the Wiener amalgam space on the real line with
local Cy and global L! components, cf., Corollary 7.5.3.

In summary, Gabor frames with ab = 1 are easily analyzed using the Zak
transform, but exhibit poor localization properties. It has been shown in
[DGM] (where the idea of considering Gabor or affine systems which are
frames instead of orthonormal bases was introduced) that the Balian—Low
phenomenon does not occur if ab < 1, i.e., Gabor systems which are inexact
frames can be generated by mother wavelets which are smooth (even infinitely
differentiable) and have good decay (even compact support). We mention
also that the Balian-Low phenomena is essentially nonexistent in a discrete
setting, i.e., when considering Gabor frames for discrete signals in £2(Z), cf.,
[H1].

d. Affine systems. An affine system has the form {Ymn}mnez, where
Pmn(t) = a~™? p(a""t — mb),

and the function ¢ and numbers @ > 1, b > 0 are fixed. Although affine
systems will not be discussed in the main part of the thesis, we include them
here for completeness and comparison. A classical example is the Haar system,
formed by taking ¢ = X[9,1/2] ~ X[1/2,1], @ = 2, and b = 1. The Haar system
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forms an orthonormal basis for L?(R).

In [FJ], Frazier and Jawerth introduced affine systems which are not bases,
but have properties similar to frames, i.e., any element in the space can be
written in terms of the affine system elements. They proved that such affine
frames can be constructed in a wide range of function spaces, including the
Besov and Triebel-Lizorkin spaces. Moreover, the space which the function
belongs to is characterized by the behavior of the coefficients needed to write

the function in terms of the affine frame elements.

Later, Daubechies, Grossmann, and Meyer used Hilbert space methods
to construct affine frames in L?(R), cf., [DGM]. Daubechies, Mallat, and
Meyer have recently shown that it is possible to find affine systems in L*(R)
which are orthonormal bases, and which are generated by functions which are
smooth and localized (unlike the Haar system). For example, it is possible to
construct a mother wavelet ¢ which generates an affine orthonormal basis and
which is compactly supported and k (< oo) times differentiable, or is infinitely
supported, infinitely differentiable, and exponentially decaying both in time
and frequency, or is infinitely differentiable and has a compactly supported
Fourier transform, cf., [D2; Mal; Mel]. Thus affine systems do not display
the Balian—Low phenomenon. The existence of affine orthonormal bases has
led to the introduction of fast (order V) algorithms for signal analysis, cf.,
[D2; Mal|. These algorithms have applications in signal processing, image
processing, edge detection, etc., e.g., [Gr; KMG]. The algorithms are fast
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and easy to implement; we have used them at The MITRE Corporation for

signal analysis.

e. Feichtinger and Gréchenig’s unified theory. A Gabor system {gmn} can
be viewed as the orbit of the function g under the Schroedinger represen-
tation of the Heisenberg group on a function space (see [HW] for details).
An affine system {¢mn} can similarly be viewed as the orbit of ¢ under the
translation/dilation representation of the az + b group on a function space.
Thus Gabor and affine systems are structurally similar from the group repre-
sentation point of view. Feichtinger and Grochenig have developed a general
wavelet theory from this group representation viewpoint, e.g., [F3; F5; F6;
FG2; FG3; FG4|. Roughly stated, given a general representation on a gen-
eral function space (satisfying certain conditions), they have shown that for
a large class of mother wavelets g, any orbit {g,,n} Which is “dense enough”
will induce representations of the functions in the function space in terms of
the {gmn}. Moreover, the function space is characterized by the coefficients
needed to represent functions in terms of the {gmn}. The techniques they
developed to prove this general theory have also been applicable to other ar-
eas, in particular, to the problem of reconstructing a band-limited signal from

irregularly sampled data, e.g., [FG1].

f. Outline. In Chapter 6 we present a survey of frames (and a dual con-
cept known as sets of atoms) in Hilbert spaces, with some remarks on the
extension of these concepts to Banach spaces. We discuss the representa-
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tions of elements in the space provided by frames, and characterize when the
representations will be unique, i.e, when the frame is exact. We determine
the exact relationship between frames and sets of atoms, showing that while
atoms are more general, in practice the two concepts will be equivalent. We
prove a general stability theorem for atoms in Banach spaces, showing that
the elements of a set of atoms may be perturbed by a small amount without
destroying the atomic properties.

In Chapter 7 we discuss Gabor systems and the Zak transform. We show
that Gabor systems with ab = 1 can be analyzed through the use of the Zak
transform. We analyze the structure of the Zak transform, and prove that
it is a continuous mapping of the Wiener amalgam space W(L?, L) into the
Lebesgue space LP(Q). We use this to prove a variant of the Balian—Low
theorem, that a mother wavelet for a Gabor frame with ab = 1 cannot be
continuous and have good decay at infinity, in particular, g ¢ W(Cy, L').
We conclude by discussing some questions similar to ones which arise from
the application of the Zak transform to Gabor frames. In particular, we
generalize slightly a result of Boas and Pollard which shows that if finitely
many elements are removed from an orthonormal basis for L?(X) then it is
always possible to find a single function to multiply the remaining elements
by so that the resulting sequence is complete. We show this need not be true
if infinitely many elements are deleted, and discuss some related results by

other authors.
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CHAPTER 1

NOTATION AND DEFINITIONS

Section 1.1. Basic symbols.

a. C is the set of complex numbers. The modulus or absolute value of
z € C is denoted by |z|, the complex conjugate by z.

R is the real line thought of as the time axis, and R is its dual group, the
real line as the frequency axis. R? is d-dimensional Euclidean space, the set
of d-tuples of real numbers, and R is its dual group.

Z is the set of integers, and Z9 the set of d-tuples of integers.

b. An element z € R? is written in terms of its components as z =

(21,-..,2a). Given a, b € R? we define
a-b = a1by +:.-+ aqbq,
lal = (@ +++- +aa?)",
O(a) = a1---aq.
All other operations on elements of R? are to be interpreted componentwise,
including logical operations. For example, if a, b € R? then
a+b = (ay +b1,...,aq + ba),
ab = (ajby,...,aqaba),
a/b = (a1/b1,...,aa/ba),

ol = (albla-“aadbd);
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An operation between a € R? and ¢ € R is treated by identifying ¢ € R with

(¢,...,c) € R4, e.g.,

c. The concatenation of « € R4, b € R* is (a,b) = (ai,...

Rtk

cosa = (cosay,...,cosay),

a>b & a;>bjforj=1,...,d.

atc = (a1+¢...,aqa+c),

c/a‘ = (c/a'la---ac/a‘d)a
8* = (8™ e 8™,

43>8 & o >elorf=1;..,4d
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Section 1.2. Special sets.
a. The coordinate axes, or more precisely, the coordinate hyper-

planes, in R? are

Ag; = {z € R?:1(z) = 0}.

b. The d-dimensional multiplicative group is

R = RY\Ay,

»*

under componentwise multiplication. The identity element of R? is (1,...,1).

c. The unit sphere in R? is
Se-1 = {z€R?:|e| =1}
d. The set of signs in R is
Q¢ = {-1,1}¢ = {ceR¥:0;=%1forj=1,...,d}.
e. If E C R9 then
E, = Et = {z€E:z>0}.

f. A rectangle in R? is a rectangular box whose sides are parallel to
the coordinate axes. Given a, b € R?% with a < b, the open rectangle
determined by a, b is

(a,b) = H(aj,b]') = {xERd:a<az<b}.

j=1
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We similarly define the closed rectangle [a,b] and the half-open rectangles
[a,b) and (a,b]. The side lengths of any such rectangle are the components
of the d-tuple b — a. We allow a or b to be scalars, identifying a € R with
(a,...,a) € R% For example, [0,d) is the rectangle with one vertex at the
origin and the other at b. If both a and b are scalars then some dimensional
confusion could result; however, the dimension should always be clear from
context. For example, [0,1] is a cube in R? for any d.

Given T' € R4 we define

Ry = [-T,T].
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Section 1.3. Functions.

1, if E
a. The characteristic function of a set E is Xg(z) = 8 1 e
0, ifz¢E.
1, fz=
The Kronecker delta is §,, = { ’ l =il
0, ey

b. A real-valued function f on a set E is positive if f(t) >0fort € E. It
is nonnegative if f(1) > 0fort € E.

c. A function f:R? — C is P-periodic, where P € R?, if f(t 4+ P) = f(t)
for t € R4,

d. A function f:R? — C is symmetric if f(t) = f(—t) for t € R?, radial
if f(s) = f(t) whenever |s| = |¢|, and even if f(ot) = f(¢) for t € R? and
o € Q2. These three notions are equivalent if d = 1 but not if d > 1. Every
radial function is even, and every even function is symmetric. If d > 1 then
the function f(¢) = |II(¢)| is even but not radial, and f(t) = sign(t,) - sign(t2)
is symmetric but not even.

e. A function f: R? — C is rectangular if there exist functions f;: R — C

such that
d

F&) = I £i(t)

=1
for all ¢ € R¢.
f. A real-valued function f is (rectangularly) decreasing on a set E C R?
if given 5,1 € E,

s<t = f(s)> f(2).

In other words, f is decreasing in each component. f is strictly decreasing
if f(s) > f(t) when s < t. We similarly define increasing and strictly
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increasing.

g. Given a real-valued function f on Ri, its least decreasing majorant
f* is
f*(t) = sup f(s).
s>t

Its greatest decreasing minorant fy is
t) = i .
i) = inf f(s)

Clearly fx < f < f*, and f is decreasing if and only if f = f* = fx. If f is
rectangular then f*(t) = I f;*(¢;) and fi(2) = [I? Fo.lts )
h. The following function spaces are defined specifically for functions on

R4; other function spaces are defined in Section 1.7. Given k € Z¢ with k > 0

we define
C(R?%) = {f: fis continuous},
Ce(R?) = {f € C(RY) : supp(f) is compact},
C*R?) = {f:6%f € C(R?) for @ € 22,0 < a < k},
Ci(RTY) = CHRY) n C(RY),
where

olel

@" = (81)% -+~ (8g)¢

C*(R?) and C*(R?) are defined analogously. The Schwartz space of

rapidly decreasing functions is
S(R?Y) = {f € C®(R?): sup |I(t*) 8. f(t)| < oo for k,a € Z% k,a > 0}.
teRd
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The space of tempered distributions, denoted S'(R?), is the topological

dual of S.
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Section 1.4. Convergence.
Given a normed linear space X and a sequence {zn}nez, of elements of

X, we say that the series ) z,, converges to z € X, and write ¥,y =,
if sy — z, where sy = Z,I:;l z,. The series converges unconditionally if
3" zg(n) converges for every permutation 8 of Zy. It converges absolutely
if 37 ||zn]| < co. Absolute convergence implies unconditional convergence. If

X is finite-dimensional, the converse is also true.

LEMMA 1.4.1. Given a normed linear space X, the following statements are

equivalent.

a. X is complete.

b. If {zn}nez, C X and ), ||zx|| < co then ) z, converges in X.

LEMMA 1.4.2 [S]. Given a sequence {Zn}nez, in a Banach space X, the

following statements are equivalent.

a. Y.z, converges unconditionally.

b. 2 = imFp ) Tn exists, where the limit is with respect to the net
of finite subsets of Z; ordered by inclusion. In other words, for every
e > 0 there is a finite set G C Z, such that ||z — 3  p2a| < € for
every finite F C Z with F D G.

c. For each € > 0 there is an N € Z such that for each finite F C Z
with min(F) > N we have ||}, cp2al <e.

d. Y Tn,; converges for every increasing sequence 0 < nj < nz < ....
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e. Y, onZn converges for every choice of signs oy, = £1.

f. 3 cnzn converges for every bounded sequence of scalars {cp}.

In case these hold, ) zg(n) = Y Tn for every permutation 8 of Z ..

LEMMA 1.4.3. Given a Banach space X and a sequence {Zp}nez, C X.
a. If ¢ = Y =, converges then ||z|| < Y ||zx|| < oo.

b. If Y ||zn|| < oo then z = Y &» converges unconditionally.

PROOF: a. Given ¢ > 0, there exists by definition an N > 0 such that

||z — Ziv zn|| < €. Therefore,

el < |

N N N )
2= 2zl + [ Len] <+ Xllenl < &+ 3 fonll

Letting € — 0 gives the result.

b. Follows immediately from the triangle inequality and Lemma 1.4.2. |
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Section 1.5. Operators.

a. Assume X and Y are Banach spaces, and that S: X — Y.

S is linear if S(az + by) = aSz + bSyfor z,y € X and a, b € C.

S is injective if Sz # Sy whenever z # y.

The range of S is Range(S) = {Sz:z € X}.

S is surjective if Range(S) =Y.

S is bijective if it is both injective and surjective.

The norm of S is ||S|| = sup {||Sz|ly : = € X, ||z||x = 1}.

S is bounded if ||S|| < co. A linear operator is bounded if and only if it
is continuous, i.e., if z, — z implies Sz, — Sz.

The adjoint of S is the unique operator S":Y' — X' such that (Sz,y') =
(z,S8'y') for all z € X and y' € Y', where X', Y' are the Banach space duals
of X, Y, respectively.

S is invertible, or a topological isomorphism, if S is linear, bijective,
continuous, and S™!:Y — X is continuous.

S is an isometry if ||Sz||y = ||z||x for all z € X.

S is unitary if it is a linear bijective isometry.

L(X,Y)={S:X — Y : S is linear and continuous}.

L(X) = L(X,X).

b. Assume H is a Hilbert space and S, T:H — H.

S is self-adjoint if (Sz,y) = (z, Sy) for z,y € H.

S is positive, denoted S > 0, if (Sz,z) > 0 for ¢ € H. All positive
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operators are self-adjoint.
S>Tif ST >0.

¢. For functions f on R? we define the following operators.

Translation: .73) = flt—u, for a € RY,
Modulation:  E.f(t) = e*™atf(t), for a € RY,
Dilation: D.f(t) = f(t/a); for a € RY.

We also use the symbol E, to refer to the exponential function E,(t) =

e2™iet where a, t € R%.
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Section 1.86. Topological groups.

Although some sections of this thesis are written in terms of abstract topo-
logical groups, in practice we use only the additive and multiplicative groups
on R4.

a. The set R? is a topological group under componentwise addition, with
Haar measure equaling Lebesgue measure dt. The set R% will always be
assumed to have this operation and measure. The group translation operator
is ordinary translation: T, f(t) = f(t —a). The measure of a set E C R with
respect to Lebesgue measure is denoted by |E|.

The sets R? and Ri are topological groups under componentwise multi-
plication, with Haar measure dt/|II(t)|. The sets R and R4 will always be
assumed to have this operation and measure. The group translation operator
for these groups is dilation: D, f(t) = f(t/a). The measure of a set E C R?

with respect to this Haar measure is denoted by |E|.

Integrals with unspecified limits are assumed to be over R¥ with respect to
Lebesgue measure dt.

b. We point out the following facts about the multiplicative group R4,

Compact sets in R? are bounded away from both co and the coordinate
axes. A connected compact set is entirely contained in one quadrant of RY.

Haar measure dt/|II(t)| is dilation invariant.

Given E C RY, |E|, = 0 if and only if |E| = 0. Therefore the term almost

everywhere (a.e.) has the same meaning in the additive and multiplicative
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groups. To see this, assume E C R? with |E| = 0 is compact and contained

in one quadrant of R¢, say Rd Then E C [a,b] C R+, so

B = [ < e -

The general case follows since R? is o-finite, and the converse is similar.
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Section 1.7. Function spaces.

Let G be a o-finite, locally compact group with left Haar measure dz. A
positive function w on G, i.e., w: G — Ry, is a weight on G. In this thesis,
all functions defined on topological groups or measure spaces are assumed to
be measurable.

a. Given 1 < p € oo and a weight w on G, we define the weighted
LP-space

LI(G) = {f:G - C:|fllz(e) < o}

where

1/p
([rePeee) ", i<
1fllzz ey = @
ess sup |f(z)|w(z), if p = oo.
z€@

If w =1 then we write LP(G) = LE(G). When G is understood we write
L2 or LP, Welet || - ||, = || - ||z». When G is countable and dz is counting
measure we write ¢£,(G) instead of L% (G).

L?(G) is a Banach space for 1 < p < co. The dual index to p is p' =
p/(p — 1), i.e., 1—19- + pl,- = 1. The dual weight to w is w' = w'~?'. We have
(L2) = qul, for 1 < p < 00, where the prime denotes the Banach space dual

and the duality is defined by

(f,9) = /G £(2) 9(z) da

for f € LE(G), g € LZ:'(G)' Note that L?*(G) is a Hilbert space under this
inner product.
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b. We define the following additional spaces of functions on G.

L} (G) {f:G—>C: f.Xg € LP(@), all compact K C G},

il

C(G) = {f:G — C: f is continuous},
C.(G) = {f € C(G) : supp(f) is compact},
Co(G) = {f € C(@): f is bounded},

Co(G) = {f € C(G) : f vanishes at infinity},

where vanishing at infinity means that for each € > 0 there exists a compact
K C G such that |f(z)| <eforall z ¢ K.

(Cu(G),]| - lloo) and (Co(G),|| - llo) are Banach spaces; C.(G) is dense in
(L7(G), | - ) for 1 < p < o0, and in (Co(G), | - [e).

c. A Banach function space, or BF-space, on G is a Banach space B
continuously embedded into L}, (@), i.e., for each compact K C G there is a
Ck > 0 such that ||f - Xk||11(¢) < Ck || f||B for each f € B.

A BF-space B is solid if given f, g € B with [f| < |g| a.e. we have
IflB < |lgllB. The spaces L2 (G) and Co(G) are solid. L2 (G) possesses the
stronger property that if f € LL,.(G) and g € B = L5(G) with |f] < g
a.e. then f € B and ||f||z < ||gllB- Co(G) need not satisfy this, e.g., take
& =R4.

d. Given a € G, the left and right group translation operators are

L,f(z) = f(a™'2) and R.f(z) = f(za™').

e. Let B be a Banach function space on G.
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B is closed under left translations if Ly(B) C B for each a € G.

B is left translation invariant if it is closed under left translations and
L,: B — B is continuous for each a € G. If each L, is an isometry then B is
left translation isometric.

Translation is strongly continuous in B if limg 4 ||Lef — Ly f||g = 0 for
all f € B and b € G, where the limit is taken in the group topology sense, i.e.,
for each € > 0 there is a neighborhood U of b such that ||Lof — Lo f||p < ¢
for a € U, cf., Section 1.9a.

B is left homogeneous if it is left translation isometric and translation is
strongly continuous in B.

B is a left Segal algebra if it is left homogeneous and is dense in L!(G)
in the L!-norm.

Similar definitions are made with right in place of left. If the term left or
right is omitted, it is assumed that both hold, for example, if G is abelian.

f. The following inclusions hold for 7. If 0 < p < g < oo then ¢ C #9,
with |- [lee = || - lles-

For 0 < p < 1, P is not a Banach space, but is a complete metric space
with distance defined by d(f,g) = ||f — ¢||b. The triangle inequality for this

distance is equivalent to the estimate

If+gly < WA + lgll3.

g. If E C G has finite measure and 1 < p < ¢ < oo then
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(ﬁ /[ If(t)l"dt)l/p < (|—;—| /[ If(t)lth)l/q-

This also holds for 1 < p < ¢ = oo if the right-hand side is replaced by

ess sup,cg |f(t)|. Equivalently,
Lo i
If-Xellee < |E[77%||f - XpllLe

for all 1 < p < g < oo, with the interpretation 1/c0 = 0.
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Section 1.8. The Fourier transform.

a. The Fourier transform of a function f € L*(R9) is

f(’)’) - /f(t) e-—21ri-y.t dt,

defined for v € R%. The inverse Fourier transform is
f = fen = [rwemra

The Fourier transform of f € L*(R¥) is f = limneo (f - Xg, )", where
the limit is in the L?-norm.
b. The Plancherel formula s ||f|zame) = | fll sz ey = 1 Fll L2 ey
The Parseval formula is (f,g) = (f,g) = (f,§), where (,+) is the L2(R4)
inner product.
The inversion formulais f = f*¥ = f¥* for f € L*(R?).
If f € S(R?) then we have the Poisson summation formula
D fky = D f(k).
keZd kEZ4

¢. We have the formulas

s

(Taf)" = E_af and  (Euf)" = Ta
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Section 1.9. Group representations.
Let G be a locally compact group and X a Banach space.
a. A representation of G on X is a homomorphism of G into L(X), i.e.,

a mapping U: G — L(X) such that
Uy = U U,

for z,y € G.
U is unitary if each U,: X — X is a unitary operator.

U is strongly continuous if lim._,, U, = U,, where the limit is taken in

the strong operator topology. That is,
lim ||U.f-U,f|| = 0
z—y

for all f € X, where this limit is in the group topology.

b. If X = H, a Hilbert space, then we make the following additional
definitions.

A element g € H is admissible if [ [(U.g,9)|* dz < oo.

g is cyclic if span{U,g}.eq is dense in H.

U is square-integrable if there exists an admissible g € H\{0}.

U is irreducible if every g € H\{0} is cyclic.

c. The following result is well-known, e.g., [GMP].

PROPOSITION 1.9.1. If U is a square-integrable and irreducible representa-
tion of a locally compact group G on a Hilbert space H then there exists a
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unique self-adjoint positive operator C: Domain(C) — H such that

a. Domain(C) = {g € H : g is admissible},

b. given any f,, fo € H and any admissible g,, g2 € H,
(Ve Wega, )b = (1, £2)(Con, Con).

Moreover, if G is unimodular then C is a multiple of the identity.

Setting f1 = f2 = g1 = g2 = ¢ in Proposition 1.9.1, we obtain

[ e, 00} d =Ygl lcal?
G

Setting fi = f» = f and g; = g2 = g, we obtain

U T "
/G (.00 d= = WA ICeI* = th jG g, Usg)[? de.
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PART 11

WIENER AMALGAM SPACES
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CHAPTER 2

WIENER AMALGAM SPACES

In this chapter we discuss the far-reaching generalization of amalgam spaces
derived by Feichtinger, e.g., [F2; F8]. Given Banach function spaces B, C
on a locally compact group G, satisfying certain conditions, he defined spaces
W(B, C) of distributions which are, roughly speaking, locally in B in globally
in C. The space W(LP(R),L%(R)) coincides with the standard amalgam
space defined in (0.1.1). While each W(B,C) can be described in terms
of a discrete-type norm like (0.1.1), the fundamental norm describing the
local /global properties is a continuous-type norm (cf., Sections 2.2 and 2.4).

These equivalent continuous and discrete norms provide flexibility in using

the W (B, C) in applications.

Feichtinger calls the spaces W(B,C) Wiener-type spaces; following a sug-
gestion of J. Benedetto, and in order to promote the link between Feichtinger’s

generalization and amalgams occuring previously in the literature, we call

them Wiener amalgam spaces.

Wiener amalgam spaces lie at the heart of many of the main results of
this thesis, especially those in Part III (Generalized Harmonic Analysis). In
those chapters, we use the Wiener amalgam spaces W(LP(R?), LY(R%)), on
the multiplicative d-dimensional group R2. It is the discrete-type norms on
this space which provide the machinery for our major results. Amalgams play
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a smaller, but still important role in Part IV (Wavelet Theory). There we use
the standard amalgam spaces W(LP(R?), L9(R?)) on the additive group R4,

The purpose of this chapter is to review fundamental facts about the Wiener
amalgams W(B,C). As noted above, the main results in this thesis use only
the cases B = LP(G), C = L%(QG); some minor results use B = LP?(G) or
C = Co(G). We therefore present the Feichtinger theory only for the spaces
W(L2(G),L%(G)). This results in a considerable technical simplification of
the general W (B, C) theory. This chapter can therefore be regarded as an
elementary introduction to th‘e general theory presented in [F8].

The results in this chapter are known; we have collected results and proofs
from many sources, including [F1-F8; FG; Ho; FS; Wa] and others. The
credit for this chapter therefore belongs primarily to Feichtinger and secon-
darily to others; we have synthesized their results into a single expository
chapter.

We now outline this chapter by sections.

In Section 2.1 we characterize those weights w for which the weighted L?
space L2 (@) is translation invariant.

Section 2.2 contains the basic definitions of the Wiener amalgam spaces in
terms of continuous-type norms, and proofs of fundamental properties such

as completeness and translation invariance.

In Section 2.3 we determine various inclusion relations between the spaces
W(L3(G), LL(G))-

50



In Section 2.4 we derive equivalent discrete norms for Wiener amalgam
spaces. These norms are the ones which will be used in the proofs of the

major results in Parts III and IV.

Finally, in St?ction 2.5 we prove duality relationships between the amalgam
spaces.

We assume throughout this chapter that G is a o-finite, locally compact
group. Since in later chapters we use only G = R% or G = R%, we assume for
simplicity that G is unimodular, i.e., left and right Haar measure coincide.
We denote this Haar measure by dz, the identity element by e, the left group
translation operator by L,f(z) = f(a™'z), and the right group translation
operator by R, f(z) = f(za™!), cf., Section 1.7. The measure of a set E C G

with respect to Haar measure is denoted by |E|. A positive function w: G —

R is called a weight.
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Section 2.1. Moderate weights.

In this section we characterize the class of weights w for which the Banach
function space L2 (@) is translation invariant. The results in this section are
known. In particular, the proofs given here are extensions to locally compact

groups of Walnut’s proofs on the additive group R [Wa). See also the original
results in [Ed; Gaul.
DEFINITION 2.1.1. a. A weight m: G — Ry is submultiplicative if m(e) =

1 and m(zy) < m(z) m(y) for z, y € G.

b. A weight w: G — R is right moderate if there exists a submultiplica-
tive function m such that w(zy) < w(z)m(y) for z, y € G.

Corresponding definitions and theorems for left moderate weights are as-

sumed throughout this section. If the term left or right is omitted, it is

assumed that both hold.

PROPOSITION 2.1.2. Ifw is right moderate with associated submultiplicative

function m then w(e)/m(z!) < w(z) < w(e)m(z) for all z € G.
PrOOF: We compute w(z) = w(ez) < w(e)m(z) and w(e) = w(zz™?) <
w(z)m(z™1). 1
PROPOSITION 2.1.3. Given w right moderate with associated submultiplica-
tive fiuscticn m, ahd given r € R.

a. Xr > 0 then w' is right moderate with associated sabrealiiplcative

function m”.
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b. If r < 0 then w” is right moderate with associated submultiplicative

function ", where m(z) = m(z~1).

PROOF: Part ais clear, and therefore for part b we need only consider » = —1.
That 7 is submultiplicative is also clear, and that w=? is right moderate

follows immediately from the computation
w(zy)m(y™) 2 w(zyy™) =w(z). I

THEOREM 2.1.4. Submultiplicative functions are locally bounded.

PROOF: Assume m is submultiplicative. We claim first that if m is bounded
on any open neighborhood of the identity then it is bounded on every compact
set. To see this, assume m is bounded on some open U containing e, and let
K be a compact set. Then K C Uiv zxU for some z;,...,zy € G. Let
R = max{m(zr)}. If z € K then z = zxy for some k and some y € U, so
m(z) = m(zry) < m(zr)m(y) < R||m - Xy||co. Therefore m is bounded on
K, as claimed.

Now suppose that m was unbounded on every open neighborhood of e. Let
U be an open neighborhood of e with compact closure, such that U = U1,
Since

160 A B = / Kot = | Batn = Kelleia
G

and left translation is strongly continuous in L!(G), there exists a neighbor-

hood V of e such that

(2.1.1) laU AU| < 1|U|
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foracV.

Now, for each N € Z; there exists by assumption an ) € V such that

m(zn) > N?. Therefore, given =z € G we have
N? < m(zn) = m(enz'z) < m(zne™)m(z),
so either m(znyz~!) > N or m(z) > N. Defining
AN = {z € U :m(z) > N},
we therefore have
(2.1.2) AN D zn(U\AN)INT,

since if y € U and y = zyz™" for some ¢ € U\An then m(z) < N, so

m(y) = m(znz~!) > N, whence y € An. Since

X\Y>X\Z => XnZoX\Y

and
enU~'\U D zn (U\AN)"'\U,

it follows that

(2.1.3) zn (U\AN)"' N U
D an (U\AN)" \ (enU\D)
= zn (U\AN)"\ (znU\D)

> zn (U\AN)"1\ (nU A D).
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Since zn € V we therefore have from (2.1.1), (2.1.2), and (2.1.3) that
|An| > |zn (U\AN)T' NT|

> [en (UNAN)' \ (28U A D))

v

lzn (U\AN)"Y| — |2nU AT

= |[U\AN| — |znU AU

v

U| — |An| - 31U,

whence B
|[An| > $IUL.

Since the sets AN are nested in U, this implies |N An| > %|U| > 0. However,

m is finite-valued, so NAy = 0, a contradiction. | .

COROLLARY 2.1.5. Every right moderate function is locally bounded. :

PROOF: Assume w was right moderate but unbounded on some compact set
K, and fix any ¢ € G. Let m be the submultiplicative function associated
with w. By Theorem 2.1.4, m is locally bounded, so M = M Xa-1 k0o < o0.

Now, given R > 0 there exists y € K such that w(y) > RM. Therefore,
RM < w(y) < w(z)m(z"'y) < w(z) M.
As z and R are arbitrary, this is a contradiction. 1

THEOREM 2.1.6. Given a positive w € Llloc(G’), the following statements are

equivalent.

a. w is right moderate.
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. L? (G) is closed under right translations for some (and therefore every)
1<p< oo

. L?(QG) is right translation invariant for some (and therefore every)
1<p< oo

. For each compact K C G,

A(K) = sup EU—(—‘BL) < o©
zeG,yek w(z)

. Given any compact set K C G there exists a constant B = B(K) such

that

supw < Binfw
zK zK

for every z € G.
. Given any compact set K C G there exist constants C = C(K), D =

D(K) such that

Culy) < / _w(®)dt < Du(y)

for ally € zK.

. Given any compact set K C G and given k € K there exist constants

E = E(K,k), F = F(K,k) such that

Ew(zk) < / w(t)dt < Fw(zk)

zK

for all z € G.
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PROOF: a = c. Assume w is right moderate with associateq submlﬂtipli cati
ive
function m. Given 1 < p < o0, f € L%, and a € G, we then have
IRafly, = [ 1f0a™)P w(e) de
. / \F(2)[P w(za) dz
G
< m(a) [ 1f@)F uz)ds
G

IA

m(a) || FlIZz -

Thus R, maps L2, into itself, and does so continuously, with | Ra|l < m(a)l/?,
The case p = oo is similar, with the result || R, < m(a).
¢ = a. Assume that ¢ holds, and fix 1 < p < c0. For q € @ define

m(a) = ||R,||?. Note that m(e) = |||’ =1 and
m(ab) = |[Ras|® = ||Rs Rall” < [RsliP||Rall® = m(b)m(a),

so m is submultiplicative.
We show now that w is right moderate with m as associated submultiplica-

tive function. Fix any a € G and f € LE,. Then

[ 1P utea)ie = [ 1faa)P uie)de
= IRAIE,
< mla) £1%,

= m(a) /G ()P w(z) dz.

57



Since this is true for every f € Lf,, we have w(za) < w(z) m(a) for a.e. » €G,
so w is moderate. The case p = oo is similar (set m(a) = | Ra])).

b = c. Assume L%, is closed under right translations for some 1 <p< oo.
Given a € G, assume f,, € L}, aresuch that f, — f € IL? and Rofn > g€ Iz
as n — co. Then we can find a subsequence {f,,} where both convergences
are pointwise a.e. Then R, fn, — Raf, g pointwise a.e., whence R.f =gae.
R, is therefore continuous by the closed graph theorem.

a = d. Assume w is right moderate with associated submultiplicative

function m. By Theorem 2.1.4 we havem € Ly, soify € K, a compact set

in G, and z € G then

w(zy) < w(z)m(y) < w(z) |lm - Xkl oo.

Thus A(K) < ||m - Xklleo < 0.
d = c. Assume d holds, and let K C G be compact. Given a € K and

f € L2 (@), where 1 < p < o0, we have

IRafllz, = /G |f(za™?)IP w(z) dz

— z"w(ma)wz ®
= [ e ue)

IA

AK) [ )P o) ds
= A(K)|IfIIZ2 -
Therefore R, maps L%, into itself, and does so continuously, with ||R,|| <

A(K)'/P. The case p = o is similar.
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d = e. Assume d holds, and let K C @ be a compact set and = any element
of G. Set L = K UK™!, and note that L is both compact and symmetric

(i.e., L7 = L). If y € 2K then " lye K C L,soy~ 'z € L. Hence,

o) = T o) < aE)ule)

and
wz) = Y20 < AD)u)
Cw(y) % ’

2 .
szuI?w < A(L)w(z) < A(L) E}g w.

e = d. Assume e holds, and let K C G be compact. Let L O K be

compact, with e € L. Given z € G and y € K we then have
w(zy) < supw < supw < B(L) inf w < B(L)w(ze) = B(L)w(z)
zK zL z

since e € L. Therefore, A(K) < B(L) < oo.

e = f. Assume e holds, let K C G be compact, and let z be any element

of G. Then
K] supw < |zK|inf w < / w < |zK|sup w < |K|B(K) inf w.
B(K) zK - zK = sk zK zK

g = e. Assume g holds, and let K C G be compact and = any element
of G. Then L = KUK 1uU{e}, L' = LL, and L" = L'L' are all compact
symmetric sets containing e. The symmetry implies that zL C yL' C zL"
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and yL C zL' C yL" for y € zL. Therefore,

Lo S w0 L

F(L",e)

IA

_ F(L",e) .
T BT

F(L",e) 1 /
< w,
T E(Lye) w(z) Jor
so w(z) < I;(g,l”:) w(y) for y € L. Similarly,

Sl S

E(L,e)
F(L'e)

E(L,e) 1
F(L', ) w(z) / v

Thus w(z) > %%)7 w(y) for y € zL, so

F(L')e)

Vv

supw < supw
zK z2L

F(L')e)

E(L,e) wig)
F(L',e) F(L",e)
E(Lye)

F(L' e)
E(L,e)

IA

IA

inf w

(

(L 8) zL
(L",e) .
(

IN

F

E

F
f

7 m w. |

PROPOSITION 2.1.7. Every right moderate weight is equivalent to a continu-

ous right moderate weight in the sense that if w is right moderate then there

exists a continuous right moderate v and constants A, B > 0 such that

Av(z) € w(z) < Bo(z)
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for all z € G.

PROOF: Assume w is right moderate, and let k € C.(G) be any function

such that £ > 0 and ka = 1. Let K D supp(k) be a compact symmetric

neighborhood of e. Since w is locally bounded, we can define

v(z) = (wxk)(z) = ‘/.Gw(t)k(zt"l)dt = Lw(tz)k(t”l)dt-

Clearly v is positive and continuous, and

v(zy) = /;;w(t:cy) k(t~1)dt < m(y)fa'w(tw)k(t_l)dt = v(z)m(y),

so v is right moderate. Also,

v(z) = Lw(tz)k(t'l)dt
< s;xI?w-/Kk(t‘l)dt

< B(K)inf w
zK

& B(K) w(w)a

where B(K) is as in Theorem 2.1.6e. Similarly, v(z) > B(K)™* w(z), so we

are done. I
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Section 2.2. Definition and basic properties.

In this section we define and derive basic properties of the spaces W(B, C).
Our proofs will hold when B, C are weighted L? spaces L2 (G), where 1 <
p < oo and w: G — R,. For these spaces, integrability (local and global) is
the only defining factor. This simplifies the proofs from the general abstract
case; we attempt to indicate what technical modifications are necessary to
cover the general case. Note that L?(G) is solid in the sense of Section 1.7c,
and is right translation invariant if and only if w is right moderate (Theorem
2.1.6¢). The primary space we are interested in other than the weighted L?
spaces is Cy(G), the continuous functions on G vanishing at infinity.

With the weighted L? spaces as a model, we define

Bioe = {f:G — C: f-Xg € B for every compact K C G}.

REMARK 2.2.1. This definition is not the proper one to make if B has prop-

erties other than integrability, e.g., smoothness. For B = Cy(G) it would be

appropriate to take

Bioe = {f € M(G) = Cc(G)' : f‘P € B for every p € CC(G)}a

with corresponding technical difficulties added to the proofs. For the general
case we would assume that there is a homogeneous Banach space A such that:
a. A is continuously embedded into (C3(G), || - ||oo)-

b. A is a regular Banach algebra under pointwise multiplication.

c. A is closed under complex conjugation.
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d. B is continuously contained in A.', where
Ac = {f € A : supp(f) is compact}.

e. Ais a Banach module over B with respect to pointwise multiplication,

ie.,if f € A and g € B then fg € B with |fg|la < || flla llgllB.
Then we would define

Bloc = {fEAcIIf¢EBfOI'¢€Ac}-

-~ ian

This can be shown to be independent of the choice of A.

DEFINITION 2.2.2. Fix a compact set @ C G with nonempty interior. For

€ . umen

f € Bioc and = € G define
Fi(z) = Ff(2) = |If -Xaclls- i
The Wiener amalgam space W(B,C) is
W(B,C) = {f € Bw.: Fs € C},
with norm
Hf”W(B,c) = ”Ff”C = ” ”f 'X=Q“B ”c
We refer to B as the local component and C as the global component of
W(B,C).
REMARK 2.2.3. For the general case, we would define

Fy(z) = inf{||g]ls : g € B and gy = fy for p € A, with supp(p) C 2Q},

and again set || f||w(s,c) = || F¥llc-

EXAMPLE 2.2.4. We compare W(L*, L) to W(C,, L}).
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Since both L™ and Cy are equipped with the L*-norm, W(L*, L) and

W(Co, L) have the same norm. However, the definitions of (L®)j0c and

(Co)oc differ, so they are distinct spaces. In fact,

W(Co, L) = {fe W(L*,L'): f is continuous}.
THEOREM 2.2.5. a. W(B,C) is a Banach space.

b. If C is solid and right translation invariant then W(B,C) is independent

of the choice of Q, i.e., different choices of Q define the same space with

equivalent norms.

ProoF: a. That |- {lw(s,c) is a norm is clear, so we prove that W(B,C) is
complete in this norm. Assume {f.}nez, C W(B,C) with ¥ || fallw(z,c) <
oo. By Lemma 1.4.1 it suffices to prove that ) f, converges to an element

of W(B,C). Now, Y ||fallws,c) = X |Ft.llc and C is complete, so ) Fy,

must converge to an element of C. Therefore,

Y Fs(2) = Y llfa-Xeglls < 0

for a.e. ¢ € G. Since B is also complete, Y fn - X,@ must converge to an
element g, € B. Clearly g = g, a.e. on zQ NyQ, so we can define a function

g a.e. by g(t) = g=(t) for t € zQ, i.e., g-XzQ = g=- Applying Lemma 1.4.3

twice, we have

lgllwes,cy = ||llg-Xe@llz ||6

[13 - %ecls |,
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< Z” "fn d sz"B “0
= Z | fallwa,c)

so g € W(B,C). A similar computation shows

— 0 as N — 0o,
wW(B,C)

o3

$0 ) fn converges in W(B,C) to g. Therefore W(B,C) is complete,
b. Assume that C is solid and right translation invariant, and let Q1, @; be
two compact subsets of G with nonempty interiors. Then we can find points

Z1y...,ZN € G such that

N
Q2 C Uszl-
1
For z € G we therefore have
FP*(z) = ||If -XaqillB

< [If - Xuamaan

N
< ”f . zl:xanl

B

N
< Z ”f . xuan "B
1

N

= Y FP(zza)

1

N
= E (Rz;-lFfQI )(2:).
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Since both FfQ1 and Y, Rz_foQ‘ are elements of C and C is solid, we have

N
||FfQ=“C < nz Rz;lF‘fQIHC
1
N
< Y IR FP o
1

N
<Y M|FP|e
1

MN |[Ff*|lo,

where M = max{||R_-1|lc} < oo by the translation invariance of C. A
k

symmetric argument gives the reverse inequality and completes the proof. §

REMARK 2.2.6. General amalgams W(B,C) can be shown to be also inde-

pendent of the choice of Banach algebra A (cf., Remark 2.2.1).

We assume from now onwards that C is solid and right translation invariant.
LEMMA 2.2.7. LoXg = Xq, ReXE = XEq-

PRroOF:

LXg(z) =1 & Xg(a™'z)=1 & a7 '2€E & z€aE & X p(z) =1.
The second statement is similar. |

PROPOSITION 2.2.8. If B and C are left translation invariant then so is

W(B,C), with
\Lallw(s,c)y < l|LallB ||Lallc-

If B, C are left translation isometric then so is W(B, C).
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PROOF: Assume f € W(B,C). As B is left translation invariant we h
ave

Lof € B,so Fr 5 € C. Now,
(2:2.1) Fr.#(z) = ||Laf-XaqllB

= |ILa(f - Xa-12q)ll5

S “LGHB “f'xa"'"=Q"B

]

[ Zalle Fs(a™z)
= ||LallB (LaFy)(2).

Since C is left translation invariant, LaFy € C. Therefore, since C is solid
?

|Lafllws,c) = |FL.tlle
< || Lallz | LaFyllo
< || LallB I Lallc | fliw(a,c)-
The translation isometric case is similar. |

PROPOSITION 2.2.9. Ifleft translation is strongly continuous in B, C is trans.

lation invariant, and C.(G) is dense in C, then left translation is strongly

continuous in W(B,C).

PROOF: Fix f € W(B,C) and ¢ > 0. Then there exists a k ¢ C¢(G) such

that ||Fy - (1 — k)|lc < €. Let K = supp(k). For a € G we then have
(2.2.2)
| LaFs - (1 —k)llc

< [[La(Fy - (1 = k))llc

+ (LaFy) - (1 — k) = La(Fy - (1 = k))|lc
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< |IZLalle |1Fy - (1 = k)lle
+ [l Zallc |Fs - La-2(1 — k) — Fy - (1 — k)||

< elLallc + ILallc IFs - (La-sk — k)|o

< e||Lallc + I Zallc I Ftlic |La-1k — k|o,

where the last inequality follows from the fact that C is solid and both F;

and Fy - (Ly-1k — k) € C. Since |[Lg-1k — k|joc — 0 as a — ¢, we can find a

neighborhood U of e (with compact closure) such that
(2.2.3) | Lo-1k — klleo < €

for all a € U. Now, ||La||p and || La||c are locally bounded as functions of q

since they are submultiplicative functions on G (Theorem 2.1.4). Therefore,

M = sup,cy ||LallB, || Lallc < o0, which, combined with (2.2.2) and (2.2.8),

gives
(2.2.4) |LaFy-(1—k)[lc < M + eM||Fy|ce

for a € U. Combining (2.2.4) with (2.2.1), we have

|Frs- (1= k)llc < |LallB ||LaFy- (1 - k)|
< eM?*(1+ || Fylle)

= Re

for a € U. Since Fy 55 < Fr 5+ Fy and supp(k) = K, we therefore have
for a € U that
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ILaf — fliws,c)
= |Fr.s-slle
S W Foas—s-(1=Fk)lle + [1Fpas-1 - kllc
S Fros-(A—Fk)lle + [|1Fy-(1 = k)lle + [lklo Fup Fp 5-1(2)
S Re + ¢ + |kllo sup[l(Zaf - £) - Xagll5-
The result now follows from the fact that K is compact and left translation
is strongly continuous in B. §

COROLLARY 2.2.10. If B is left homogeneous, C is translation isometric, and

C.(@) is dense in C, then W(B, C) is left homogeneous.

EXAMPLE 2.2.11. W(B, L?(@)) is left homogeneous for 1 < p < oo.

69

RS = e



Section 2.3. Inclusion relations.

In this section we derive some inclusion relations between the amalgams
W(L?,L%). We assume throughout the remainder of this chapter that v, w are

weights on G with w right moderate (so, in particular, L% is right translation

invariant by Theorem 2.1.6).

Note that

e, = ([ If(t)w(t)l”dt)l/p = |l fwls.

This expression is sometimes used as the defining norm for L%, rather than
Lﬁ,,, as we use it. Some of the results in this section would be easier to
state if we adopted this alternate definition of L?, but it will be convenient
in the main part of the thesis to keep the w’s on the “outside”. Recall from
Proposition 2.1.3 that w? is right moderate if and only if w is.

For simplicity and consistency in dealing with the case p = oo we let w™ =
w, 50 ||fllsz = Ifllzz...

A moderate weight can be transferred between the local and global com-

ponents, as follows.

PROPOSITION 2.3.1. Given 1 < p, q < o0,

W(L?,,L%,) = W(LZ, ., L9).

(vw)??

PROOF: Assume 1 < p, ¢ < oo. Since w is right moderate, there exists by
Theorem 2.1.6e a constant B such that B~lw(t) < w(z) < Bw(t) for all
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z € G and t € zQ. Therefore,

fllwezz, ze gy = I -Xaqllzz, ”LLv

(L) ere)”
. (./; (,/;Q [£()v(t) B w(t)]” dt)“/" dz)l/q

= B||fllwz,,,,L0):

The opposite inequality, and the remaining cases, are similar. J

When the local and global components are comparable, we have the follow-

ing.
PROPOSITION 2.3.2. Given1l <p < oo,
W(L’U,’Lﬁ!) = Lﬁwi

with equivalence of norms. Ife € Q and |Q| =1 then

I lNweez,eey = I+ liez-

ProOOF: Without loss of generality assume e € Q. For 1 < p < 0o we have

fBvazey = [, [ 1FOF )@ w(z)as
= [ [ 110F o) Xaot) w(e) de o
GJG
= /Glf(t)F’v(t) ‘/Gw(z)xtq-:(z)dzdt.
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Since w is right moderate, there exist by Theorem 2.1.6f constants C, D > ¢

such that
Cuw(t) < / w(z)dz < Dw(t)
t -1
for t € G (note that if w =1 then C =D = Q7| = |Q)). Thus,
£z < D [ ISP o@u@ = g,
The opposite inequality, and the case p = co, are similar. J

One simple inclusion relation is the following.

PROPOSITION 2.3.3. Assume B is solid. If 1 < p < 00 and w € Ll(g), or if

p= oo and w € L*(G), then W(B,LE) D B.

PROOF: Assume 1< p < oo and w € L. If f € B then

| fllwes,zy = | If - Xzllm ”L’

(L1 xealt w(w)dm)
(f uanw@)dz)

= |Ifllz llwllz:

IA

The remaining case is similar. II

The standard inclusion relations for L? spaces on compact sets imply in-

clusion relations with respect to the local components of Wiener spaces.

PROPOSITION 2.3.4. Given1<p< ¢ < oo,

W(L.,C) D W(L5,C)
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i)

with
I Iwzz,.0r < 1QIF7H - lwezs, o0

PRrOOF: From Section 1.7g,

If - Xagllzz, = [Ifv-Xaqzs
< [2Q|* 77 ||fv - XaqllLe

i1
= Q3% £ - Xagllzs,

The result now follows from the solidity of C. 1

The following lemma is an integral version of Minkowski’s inequality, e.g.,

[WZ, p. 143].

LEMMA 2.3.5. Given measure spaces (X, u) and (Y,v), and given1 < p < co.

If F is measurable and nonnegative on X x Y then

(/y (/x Fisdl d"("’))Pdv(y))l/P < /X ( /Y F(z,y) du(y))llpdp(:c).

PRoPOSITION 2.3.6.
a. If1 <p < g < oo then W(L5»,L%e) D Liyyyr Y Liyuye

b. If1 < ¢ < p < oo then W(L%,,L1,) C L‘(’w), N L(qw),.

PROOF: Assume 1 < p < ¢ < co. By Propositions 2.3.2 and 2.3.4,
i1 11
Ifllwizzezee < 1@ Mfllws, iy ~ Q7% I1llzgy,-

Thus W(L2, L) D L, 40
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For the second containment we use the Minkowski integral inequality. First,

write
(2.3.1)

Ihweaz, a0 = (f ([, |f(t)|psz(t)v(t)”dt)q/pw(m)qdm)llq

= |F(z,1)[P v(t)P dt q/pw(:c)qdm I/q,
(L(f I eierac)

P(e,8) = £(2) - Xaqlt)

where

As ¢/p > 1 we can apply Lemma 2.3.5, using the measures g = v(¢)? dt and

v = w(z)? dz, to obtain

g 2e) = ( /G ( /G |F(w,t)|”v(t)”dt)q/pw(w)q dm),/q

L ([ 1re e wters dw)p/q o1)

= | ( J |f(;)|qxzq<t)w(m)qdw)p/qvu)Pdt

- /G FOP ( /G Xsg-1(z) w(z)? dz)P/qv(t)”dt.

A

Without loss of generality, assume e € Q. Then since w? is right moderate,
there exist by Theorem 2.1.6g constants C, D > 0 such that
Cw(t)? < / w(z)?dz < Dw(t)?
t ~1

for all t € G. Thus,

Wlwzz, 0 = fG'f“)l” (Dw(t)) o(t)Pdt = D/ f|pn

(vw)?
as desired. The remaining cases are similar, with 1 < ¢ < p < oo following
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by applying the Minkowski integral inequality to (2.3.1), but in the opposite

direction. J

The following theorem, a Hélder’s inequality for Wiener amalgams, can be
extended to a duality theorem. However, we delay consideration of duality

until after we develop equivalent discrete norms, cf., Theorem 2.5.1.

PRroPOSITION 2.3.7. Given 1 < p, ¢ < o0,

Ifallwezsony < IFlwez oe) ol oot

1 1 1 ] —p' ! 1—g'
+or=gt+o=Lw =9'"P, and w' = w' "7,

1
where =
P

PROOF: Since (L2) = Lﬁ: and (L)' = LZ:,, we have

£l weez,ce) Nollweest coy = [1f - Xaallez g |9 Xaall s llzs,
2 |[1f - Xagllzz llg - Xaell s [l
2 || Ifg - XzellLs || .

= || follwer,Lry- 1

REMARK 2.3.8. From Proposition 2.3.2, | fgllw(r:,zry ~ |fgllz:, and is

equality if we chose @ so that e € Q and |Q| = 1.
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Section 2.4. Discrete norms.

In this section we derive equivalent discrete-type norms for the Wiener
amalgam spaces, analogous to the equivalent norms (0.1.1) for the amalgams
W(L?(R), LI(R)).

We continue to assume throughout this section that C is solid and right

translation invariant.

DEFINITION 2.4.1. A set of functions {#;}:;es on G is a bounded uniform
partition of unity, or BUPU, if
a. Y Pi=1,
b, wtip ikl 5 o,
c. there exists a compact set U C G (with nonempty interior) and points
¥i € G such that supp(¢;) C y;U for all 4,

d. for each compact K C G,

sup #{i:z € y;K} = sup #{j: viK Ny; K # 0} < oo.
zEG 1

We say that the BUPU has size U, and call {y;} the associated points.

It has been shown in [F7] that it is possible to find BUPU’s of any pre-

scribed size in any homogeneous Banach space.

THEOREM 2.4.2. If {4} is a BUPU of size U with associated points {y;},
then

(24.1) Iflwes.or ~ |3 I56ilm Xyv]|

for every compact set V O U.
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PROOF: For simplicity, denote the right-side norm of (2.4.1) by || - ||v. This
clearly is a norm, so we first show that it is independent of V in the sense
that different choices of V give equivalent norms. Fix f, and let V;, V; D U
be compact sets with nonempty interiors. Then we can find z,,...,zy5 such

that

N
V2 C UVlmk.
1

Defining Gv = 3 || fvillB Xy;v, we therefore have for z € G that

Gv(z) = lef%billB Xy:va()

< 3 1#¥ills Xouvan(@)

N
< Z IFbillB D Xyviz(2)
N

> > Ifbills Xywi(z2i )

k=1 1

N
= Z Gv,(zz;1)
k=1

N
= Y (R,-16w)(=).

k=1

Since C is solid and right translation invariant, this implies

Ifllvs = lIGwlle

N
“Z R,-1Gv,
k=1

IA

(o)

N
< Y IRalleliGwlle

(i



< MN ”GV1”C

= MN|/fllw,

where M = max{“Rz;ch} < 0o. A symmetric argument gives the reverse

inequality, so || - || is in fact independent of V.
Now we show that the left- and right-hand sides of (2.4.1) are equivalent.
Fix Q large enough that U-'U C Q. If ¢ € y;U then y; € zU™?, so ;U C

gU~1U C 2Q. Therefore fi); = f1;X.q since supp(v¥;) C y:U C zQ, so

Iféille = lIftiXzqlle < [[¥illoo If - Xaqlls £ M||f - XeqllB,

where M = sup ||%i||coc < co. Hence,

Gu(z) = ZIIJ‘%HB Xyu(2)
= >, lfils
{i:z€y: U}

< #iiz euUL M ||f-XaqllB

< CuM||f-XzqllB,
where Cy = sup,cq #{i:z € y;U} < co. Since C is solid, this implies
(24.2) |lflv = lGulle < CuM|||If-Xzqlle|o = CuM|flw,o)

To prove the opposite inequality, let V' O U be such that V O UQ~!. Given
z € G, define
M, = {i:y.UnzQ # 0}.
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If i € M, then y;u = zq for some u € U and ¢ € Q, so z = y;uqg™? € y;V.

Therefore,

If -Xaglls = |30 (F - Xa0) s

B

< Y ftixaqlls

iEM,

> lfils

tEM,

= Z | f¥illB Xy;v (=)

tEM,

Z | féillB Xyiv ()

INA

IA

= Gv(z).
Since C is solid, we therefore have

(2.4.3) Iflwe,cy = ||If - XzqllB |l < IGVIe = |fllv.

From (2.4.2), (2.4.3), and the fact that || . ||v is independent of V, we

conclude that || - ||v ~ || - |lw(z,c)- I

EXAMPLE 2.4.3. Assume {y;} and U are such that {y;U} is a partition of G.

Then {X,,y} is a BUPU of size U, so

I waazaey ~ 15 - Xwllez X

Ly

YIS - Xywllze Xyu(e) S e 1/g
(L i
k (Z L‘U I - Xywllz wl=) dz) K
" (lef.x,,.-uu;z /yiuw(m)dm)l,q,
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where the interchange of summation and integration is justified by the fact
that {y;U} is a partition of G. Since w is right moderate we have by Theorem
2.1.6e, f that the values fy‘U w are uniformly equivalent to the values of w at

any point in ;U or to its supremum or infimum on y;U. Thus, for example,

1/q
||f||W(L:,L:',) =~ (E \f -val|'£n,- w(z.-)) &= "{"f 'xu.-U||L£}"z:,’

where z; € y;U is any set of fixed vectors, and w is the weight on the index

set J defined by w(i) = w(z;).

EXAMPLE 2.4.4. Set G = R4, U = [0,1] (the unit cube in R%), and y, = n

for n € Z%. Then, by Example 2.4.3, the norm for W(LP(R%), LI(R?%)) is

equivalent to the discrete norm
1/9
”f”W(LP,L«) & (z ||f‘x[n,n+1]lli,(n¢)) .
nezZd

Thus W(L?P(R), L9(R)) is identical with the standard amalgam spaces defined

in (0.1.1).

EXAMPLE 2.4.5. “Dyadic amalgams” dyad(L?,£?), considered by some au-

thors, are defined by the norms
1/q
Hf”dyad(br Wy = ( E ”f ) x:l:[z".z"“]”%,r(n,)) )
neZ,+
e.g., [F'S]. The sets {£[2",2"T!]} form a dyadic partition of R., and are
group translates in R, of the compact set [1,2] since +[27,2"*1] = +2".[1,2].
However, the dyadic amalgam spaces are not Wiener amalgam spaces on the
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multiplicative group R, because of the use of Lebesgue measure dt rather than
the Haar measure dt/|t| for R,.. For example, by Example 2.4.3, a discrete
norm for W.(L*, L?) = W(LP(R.), LI(R.)) based on the BUPU {X[zn 2n+1)}
is

1/q
"f"W-(L’,L') e ( z “f'xi[zn,z-H]”%r(n_)) ’

nez,t+
where we recall that when dealing with the groups R4 and R? we use the
notations

W(L?,L%) = W(LP(RY), LY(R"))

and

W.(IF,L%) = W(IP(RI), L*(RY)),

cf., (0.1.2) and (0.1.3). Since

7% 9Ol o gy = llgllzemy,
it follows that
dyad(L?,¢?) = |t|*/? W,(LP,L9),
i.e., f € dyad(L?,£7) if and only if |¢[*/?f € W.(L?, L9).

EXAMPLE 2.4.6. A d-dimensional discrete norm for the amalgam spaces
W.(L?, L?) = W(LP(R%), LI(R?)) on the multiplicative group R would be
the following. Let G = RY and U = [1,2] C RY. Recall the defintion Q¢ =
{—1,1}4, i.e., Q% is the set of d-tuples of £1’s. Then {02"[1,2]},¢z¢ 0rcqe is

a partition of R¢, where 2 = (2™,...,2™) as usual. Therefore,

1/q
| Fllw. (L2 L9) ~( > of 'xvlz'-z'“l"%r(nf)) :

neZd,cend
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REMARK 2.4.7. In Example 2.4.3 we assumed that we could find a BUPU
{#:} such that the supports of the ; were disjoint. This may not be possible,

or even desirable, in general. However, we have by definition that the supports

of any BUPU {4:} do not overlap “too much?”, i.e.,

sup #{j : | supp(¥:) N supp(:)| > 0} < oo.

This allows us to prove that W (B, L%,) has an equivalent discrete-type norm

based on any BUPU (Theorem 2.4.11).

DEFINTION 2.4.8. A family {E;}ics of subsets of a measure space (X, ) has

a bounded number of overlaps if

K = sup #{7 :n(E;N E;) >0} < oo.

We call K the maximum number of overlaps since no E; can intersect

more than K of the E;. Note that K = ||} Xg, || co-

LEMMA 2.4.9. Given a measure space (X,u) and a family {E;}necs with

maximum number of overlaps K. Then there is a finite partition {J,}, of

J such that

(2.4.4) i#jed, = wE;NE;)=0.

PROOF: Let J; be a maximal subset of J with respect to (2.4.4) for r = 1.
Inductively define J, for » > 2 as a maximal subset of J\ U1—1 J, having
property (2.4.4). Suppose i € J\ Ui{ Jr. Then given 1 < r < K, we have
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i€ J\U;‘"1 J, and i ¢ J,. Since J, is maximal in J \ |J] ™" J, with respect to
(2.4.4), J,U{i} cannot satisfy (2.4.4). That means there is a j» € J such that
u(E; N Ej,) > 0. Hence, for each I € {i,71,...,jk} we have u(E; N E) > 0.
However, the J, are disjoint, so %,7;,...,jx are distinct, which contradicts

the definition of K. Therefore J = J& J,.. 1

PROPOSITION 2.4.10. Given a measure space (X, ) and given 1 < p < .
Assume {fn}nes C LP(X,dp) are nonnegative functions such that {supp(f»)}
has a maximum of K overlaps.

a. If 1 < p < oo then for each finite set F C J we have

l/p ; l/P
(2.4.5) (an,,ll;) < “Z fn] < Kr (Z anllﬁ) .
neFr ner P nckF

Therefore, 3, || fn||} < 0o if and only if 3, f, converges in LF(X, dw). In this

case the convergence is unconditional, and we can replace F by J in (2.4.5).

b. If p = oo then for each finite set F C J we have

(2.46) sup | folle < || o

neEFr
Therefore, sup || fnlleo < oo if and only if Y, fn converges in L°(X,du). In

< K sup || falloo-
oo ner

this case the convergence is unconditional, and we can replace F by J in

(2.4.6).

PROOF: We prove only a as b is similar. By Lemma 2.4.9, we can partitition J
as J = Uf{ J,, with the property that u(supp(fm) N supp(fn)) = 0 whenever

m # n € J. Recall now that for any ¢, > 0 we have
K 1/p K K 1/p
(Z cnp> < ch g KV (Z cnp) 5
1 1 1
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Thel‘efore,

P
du

IS A= [|2

K

LI X e

r=1 n€FnJ,
P
Z fnl du

N
< ge/? Z /
X lneFnd,

r=1

, N
=Ky Y /J;lfn"dﬂ

r=1 n€FnJ,

N

ner

1l

Where the next-to-last equality follows from the fact that the supports of the
faforne pn J, are all disjoint. The opposite inequality is similar, and the

statements about convergence follow directly from Lemma 1.4.2. |
THEOREM 2.4.11. Given 1 < ¢ < oo. Let {¢;} be a BUPU of size U with

Associated points {y;}, and fix any z € y:U. Then

1/q
1lws,Lg) ~ (}: ::f¢.-tt%w(za)) = [[{I7%llz}H]g

Where w(i) = w(z;).

Proop: Assume 1 < g < oo; the case ¢ = is similar. By Theorem 2.4.2

we have

I fllwes,ze) ~ ”Z”ﬂ'i”s me”L.’,'

Since { XU - wllq} satisfies the hypotheses of Proposition 2.4.10,
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1/q

o (Z 17115 x,,;Un;;,”)
1/q
(Swits oty

Il

Finally, by Theorem 2.1.6f,

yolly = [ w~ i)
w ‘y,U
which completes the proof. |

COROLLARY 2.4.12. Given1l < p < g < o0,
W(B, L%,) C W(B, L3,q)-
PrOOF: Fixing any BUPU {%;}, we have by Theorem 2.4.11 that

HfHW(B,Lf”,,) ~ ||{||f‘/’i|l13}l|t;p

= |[{iif¢illz @@}

\Y

I {17illz @()} e
= [{i9illz} s,

~ [Ifllwes,Le - B

From Proposition 2.3.4 and Corollary 2.4.12 we obtain the following.

COROLLARY 2.4.13. Given1 <p; <p; < oo and1< ¢ < ¢ < oo,

W(LP, L%) C W(LP*,L%).
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REMARK 2.4.14. Propositions 2.3.1 and 2.3.4 and Corollary 2.4.12 combine
to give a simple proof of Proposition 2.3.6. For, if p < ¢ then, by Propositions

2.3.1 and 2.3.4,

W(L%,,L%.) D> W(L%,L,) = L¢

(vw)a?

and, by Corollary 2.4.12 and Proposition 2.3.1,

W(L%,, L% D W(LE,,Ih,) = LF

(vw)?’
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Section 2.5. Duality.
In this section we prove, using the discrete norms obtained in Section 2.4,
that W(B,C)' = W(B',C").

THEOREM 2.5.1. Given1l < p, ¢ < o0,

W(LE, L) = W(LZ,L%,),

v

where 3 + ;1,- = % +1 =1,v' =v'?, w' = w!~7, and the duality is given

(f.9) = /G (5300 dt

for f € W(L2,L%) and g € W(L%,LY,).

v

PROOF: We assume for simplicity that {X,,u} is a BUPU for G, so by The-

orem 2.4.11,
1/q
(2.5.1) ez zay = (17 Xaolly 00)
and
; 1/4¢'
@5 lolwagar, = (Zloxuolly ¢@)

where z; € y;U is any fixed choice of vectors and w(i) = w(z), w'(3) =

w'(2;). The case of a general BUPU {#;} is similar, with some added technical

complications.

a. Given f € W(L2,L%) and g € W(L”I L?‘:,) we have

v

/G FHg@ld = 3 f REOFCL

< YoIF - xuullz: ll9 - Xl o
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= “f“W(Lﬂ,L?,,) “g”W(L’:,Lq',)'

Therefore fa fg is well-defined, and

|<f’g)| = “f”W(Lf,,LZ,) ”g“W(L::,L:"',)’

so g determines a continuous linear functional on W( L2, L1).

b. We show now that

HQHW(L",,L"‘,) = sup{[(f,9) : | Fllw(zz,ey = 1}-

To see this, assume for simplicity that 1 < p,q < o0, fixg € W(L

v"

define g; = g - Xy;u. Let

, _ Ig.(t)l’ '(t)/g,(t), 9i(t) #0,
w0 = {g ai(t) =o0.

Then supp(f;) C y:U, and
(@) o(t) = lgi(®)PE D o(tPPu(t) = |gi(e) o'(2),

so “fiup “9.”’,, < oco. Moreover,

(2.5.3)
fngl /f:(t g,(t)dt

- / g )P v'(t) dt
G

([ toor vy &5 ([ o ”'(t)dt>] ”
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= (/(;‘fi(tﬂ? v(t)dt)llP (/a .gi(t”p' o'(t) dt)llp’
= [ fillzz llgill .=

= a;b;.

Define

[ 6@ (k) b,
e 0, agb; = 0.
Then
(ciai)w(i) = 6,40~V () = b7 w' (1),

so ||{c a.}”t. = H{b;}“:;:’. Moreover,

(2.5.4)

PILLLEDIALLL
- (Datww) " (T urwe)”
(Z Gl ) (Z bt '(,))
= |{eiablly {8},

Note that

(2.5.5) R lI{:}| P
and define f = Y ¢; f;; this is possible as {Xy,u} is a BUPU. We have

(2.5.6) HfHW(LP a4y = H{c,—a;}”iz = H{bi}“% < oo,
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so f € W(LP,L%). And, from (2.5.3), (2.5.4), (2.5.5), and (2.5.6) we have

(f,9) = D cilfing) = D eiabi = |flwez,zg ol ze ret s,

which completes the claim.

c. Finally, assume that u € W(L5, L) is given. Fix 4, and note that

L2(y,U) C W(LE,L%), where

L3(y;U) = {h € LE(G) : supp(h) C y;U},

since, by (2.5.1),

he Li(yiU) = |hllwez,re) = |h-XyullLe w(@).

Therefore u, restricted to LP(y;U), defines a continuous linear functional on
L2(y;U), so there exists a g; € L2(y;U) = Lﬁﬁ(y.-U) such that (h, p) = (h, g;)
for h € LE(y;U). Since supp(gi) C y:U and {y:;U} is a partition of G, we can
define g = 3 gi.

To show that g € W(L?,,LY,), we first claim that {lgill o } € £2,. Given

{ci} € £ and € > 0, choose f; € LE(y;U) such that || fi||;> <1 and

I(fi,9:) 2 HgiHL:" - _ZTTc_J

Note that f =3 ¢;fi € W(LE, L) since

lwezzny = (T uc;-fl-nzgwm)llq < (T lc.'l"w(z'))l/q < 5%
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Hence,

(2.5.6) ‘Z c; (fi,gi)l = lZce (f;,;u)’
= ‘(Z cifi, M>|

= [(f,m)

< I fllweze, gy el

< [[eiHlyg Il

Without loss of generality, fix the phase of ¢; so that c¢; (fi,g:) > 0. Then,

using (2.5.6),

Sledloily < 3 led (190 + 5=)
= !Zcz‘(fi,gi)l +e
< ety Dol + e

Thus {||g,'”L,:} € () = ZZ:,, as claimed. Hence,

, 1/q'
I9lwazazy = (3 lo- %ol o'6)

{lgstl .z Hleet,

i

< 00,

so g € W(L2,,L2,). Clearly (f,g) = (f,n) for all f € W(L?,L1), so we are

done. 1
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PART III

GENERALIZED HARMONIC ANALYSIS
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CHAPTER 3

BESICOVITCH SPACES

In this chapter we establish the basic properties of the Besicovitch spaces
B(p,q). These space were defined, for the one-dimensional case, in (0.2.14);
the general definition is given in Definition 3.2.1. Our main result, Theorem
3.2.4, is that B(p,q) coincides with the Wiener amalgam space W.(L?, L9),
where we recall that for notational simplicity, and to avoid confusion between

amalgams on the additive and multiplicative groups, we adopted the notations
W(L?,L7) = W(LP(R?), LU(R?))

and
W.(L?,L7) = W(L(RJ), LU(RS)),
cf., (0.1.2) and (0.1.3).

Our identification of B(p,q) as W,(L?,L?) immediately provides us with
equivalent discrete norms for B(p,q), and implies duality and inclusion re-
lations. These basic properties provide the machinery for our results on the
Wiener transform in Chapter 4. Although not pursued in this thesis, the
Wiener space identification implies other properties as well, e.g., convolution
relations on the multiplicative group.

We begin in Section 3.1 by considering higher-dimensional analogues of the
nonlinear spaces B(p,lim) defined, for one-dimension, by (0.2.4). We review
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the definitions of higher-dimensional limits from [BBE] (needed to define
B(p,lim)) and prove the nonlinearity of B(p,lim) in higher dimensions.

In Section 3.2 we prove the fundamental equality B(p, q) = W.(L?, L?) and
establish bounds for the norm equivalence. We do this in terms of the discrete
norm for W,(L?,L?), as it is this norm that we use to prove our results in
later chapters. We also discuss the inclusion and duality relations that follow
from this identification.

In Section 3.3 we prove a higher-dimensional analogue of a theorem due
to Beurling, which characterizes B(p,00) as an intersection of weighted LP-
spaces. We give Beurling’s proof, for d = 1, and two new proofs for d > 1.
One proof uses the Wiener amalgam norms, and is generalized in the following
section to a larger class of spaces, while the other proof is valid only for
B(p, ).

In Section 3.4 we attempt to characterize B(p, ¢) as an appropriate union
or intersection of weighted LP-spaces. This reveals links between B(p,q) and
other function spaces which have arisen in harmonic analysis.

Finally, in Section 3.5 we examine the effect of replacing the factors 1/|Rr|
in the definition of B(p, q) by general functions p(T'). We show that the result-
ing spaces B,(p, q) are weighted Wiener amalgam spaces on the multiplicative

group.
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Section 3.1. Rectangular limits.

The paper [BBE] extended the Wiener—Plancherel formula (0.2.3) to higher
dimensions. The higher-dimensional version, (0.2.18), requires the use of
special d-dimensional rectangular limits. It is the purpose of this section
to define these rectangular limits, and to show that the spaces B(p,lim),
consisting of functions for which the left-hand limit of (0.2.18) exists, are
nonlinear, and therefore not conducive to the usual methods of functional

analysis.

DEFINITION 3.1.1 [BBE]. Given a function f: R? — C and given z € C.

a. We write im;_,o f(t) = z if limyer,roo0 f(rc) = z for every ¢ €
Sa—1\A4. That is, f(t) converges to z along every ray from the origin to
infinity except for those rays which lie in the coordinate hyperplanes.

b. We write Glim,_, o f(t) = z if for each € > 0 there exists a T € R§ such
that |z — f(t)| < e for all t ¢ Rp. Thisis the natural definition of convergence
for R? considered as a locally compact group, and indicates convergence to z
along every path whose points are eventually arbitrarily far from the origin.

c. We write Ulim;_, o f(t) = z if for each € > 0 there exists a T' € Rf"_ such
that |z — f(¢)| < e for all t € R? such that |¢;| > T} for each j. The letter U

stands for “unrestricted”; this notion plays a role in multi-dimensional Fourier

series, cf., [A; Zy].

We make corresponding definitions for the limits as ¢ — 0, and make the
obvious adjustments for f defined only on R‘j_. For real-valued f we allow
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z = oo,
It is clear that if Glim f(t) exists then Ulim f(¢) will exist also, and if

Ulim f(t) exists then lim f(t) exists also. In one dimension, the three limits

are identical. The following example shows they are distinct for d > 2.

EXAMPLE 3.1.2. Parts a and b are from [BBE].

a. Set d = 2 and f = Xg, where
E = {(u,v) € RL:0 <v < u'/?}.

Given ¢ € S; we have limrer,rmoo f(rc) = 0, so lim, o f(2) exists and is
zero. However, Ulim;_,o f(t) does not exist. In fact, given T € R4 we can
find s, t € R? with s, ¢ > T such that f(s) = 0 while f(t) = 1.

b. Set f = Xg where
E = {teR%:|t;| > 1 for all 5}.

Then Ulim;—, o f(t) = 1 although Glim;_, f(t) does not exist,

c. Set f = Xg, where
E = {teR*:0<t <1}.
Then Ulim;—, o f(t) = 0 although Glim;_. f(t) does not exist.

DEFINITION 3.1.3. Given f € L} _(R?) and a set E C R? with finite mea-

loc

sure, the mean of f on E is

Ms(f) = |_,13| /E £(t) dt.
96



If it exists, the (rectangular) mean of f is
M(f) = Jim Mp,(f).

EXAMPLE 3.1.4. We give examples of functions which do or do not possess

means. One-dimensional versions of parts d and e appeared in [Bal], of part
fin [HW], and of part g in [LL].

a. If f € L*(RY) then M(f) exists and is zero. For, given T € R3. we have

Mar(f) < 1y [ 101 < {2,

whence Glimr oo Mr,(f) = 0.

b. If f € L} (R?) is P-periodic, where P € R4, then

M(f) = Tlﬂ /I (8 &,

where I C RY is any rectangle with side lengths P.
To see this, fix T € R4, and let N = N(T') € Z% be the unique vector such

that NP < T < (N + 1)P. Note that

1
Werlde.s” = T / f

since f is P-periodic. Therefore,

Lt - m
1 1
Bz Jo,©  1Bwel Jrs
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|_1_ ox _1___ _f + l 1 1
~ ||Rr| Jrs |Rnp| JRy |Rne| Jry |Rne| JRyp
el [+ e [
IRTI IRNPI Ry IRNP| Rr\Rnp
|R(n+1)p| — |BNP| 1
T Il + e i
|Rnp||Rnp] R(ny1)p |Rnpl R(n41)p\Rnp
5 |R(~v+1)P| — |RNP| |R(N+1)P| 1 T
|Rnpl |IRnpl  [Rvinpl JRpe e
| R(N+1)P] il 1
1 (R J = Il - m— [ I
|Bnp|  |R(N+1)Pl IRy sy |RNp| JRyr
_c |R(n+1)p| — |BRNP| |R(N+1)P] a |[Rv+yypl .
|Rnp| |Rnp| |Rnp|
_oIWH+)-IM IW+1) I+ 1) - I()
= TI(V) TI(V) oy
where C = ﬁ[j} |f|. Since
_I(N +1)~T(N) _ . O(N+1)
Y (V) =0 asd D TI(N) L

the result follows.
c. From part b and the fact that Ey(t) = 2% is 1/b-periodic, we have

M(Ep) = |II(d)| Ey = 6gp-
[0,1/8)

d. The function f(t) = |II(¢)| does not have a mean, since TRI_T[fRT f =
mT/2)l

e. The function f(t) = |II(¢)|* is bounded, yet does not possess a mean,
since |_121T—| S, f = [I(T)}*/(i + 1)%. Note, however, that M(|f|?) does exist
for all p > 0 since |f| = 1.
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f. By part b, any f € L} .(R?) which is periodic possesses a mean, even

though it need not be bounded. All bounded periodic functions possess means.

g. Let {tn}nez be any sequence of positive real numbers strictly increasing

to infinity which satisfies

lim tn

n—oo t‘n-l-l

= 0.

Set g = 0 and let

E = {z¢€ Ri :tan < 21 < tan4 for some n > 0}.

Then the function f = Xg does not possess a mean, despite the fact that it

is bounded and takes only the values 0 and 1.

To see this, fix ¢ € SI_] and define T, = t,c. Note that R, C R, C ...,

and |RT,| = (2tn)? |II(c)|. Therefore,

b F o A
lRTZn ‘ RTZn lRTZn I RT:n— 1

- lRTZn—-l‘
lRTIn‘

d
(t2n—1)
t2n

— 0 asn — oo.

1

However,

T o 2T
‘RTZn-{-I‘ Rr,, i |RTzn+1| Rr,, .1 \R7,,
- lRT:n+1| i IRTInl
|'RT3n+1l

1
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i
— 4 — ( t2n >
tant

— 1 asn— oo.

Therefore M(f) does not exist. Also, M(]f|P) does not exist for any p since
fl=1.

h. Let f be as in part g, and set h =1/2 and g = f — h. Since M is linear
and M(h) exists while M(f) does not, we conclude that M(g) does not exist.
However, |g| = 1/2, so M(|g|P) exists for all p, even though M(|f|?) does not.

EXAMPLE 3.1.5. We show that

: . 1 .
B(p,lim) = {f ¢ L2 _(R%): lim |_R_T|/I;T | £(t)[P dt exists}

T—o00

i1s nonlinear.

a. Let f, g, and h be as in Example 3.1.4g. Since |g| = |h| = 1/2 we have
g, h € B(p,lim). However, M(f) = M(|f|?) does not exist,so f = g+h ¢
B(p,lim).

b. For p = 2 we give another example, whose one-dimensional version
appeared in [Bal] and [HW].

Let f € B(2,lim) be any function such that M(f) does not exist (see
Example 3.1.4e for a complex-valued example, or Example 3.1.4g for a real-

valued example). Given any T € R4 we have

MRT(|1+f|2) = MRT(]') £y 2Re(MRT(f)) '3 MRT('f‘z)'

Now, M (1) and M(|f|?) both exist while M(f) does not. Therefore 1 + f ¢
B(2,lim) even though 1, f € B(2,lim).
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Although nonlinear, B(p,lim) is a large space. For example, it contains
LP(R?) and all periodic functions which are integrable over their periods,

including all constant functions. Examples 3.1.4e and f show that B(p,lim)\

L®(R?) # 0 and L*(R¢) \ B(p,lim) # 0.

REMARK 3.1.6. The original Wiener—Plancherel formula, (0.2.3), was proved
by Wiener for functions in B(p,lim), in one dimension. Because B(p,lim) is
nonlinear, Lau and his colleagues extended the Wiener transform to larger
spaces. In [LL], where they proved that B(p,lim) is nonlinear, Lau and Lee
proved (also for d = 1) that the Wiener transform W is a topological iso-
morphism of the Marcinkiewicz space B(2,limsup) onto the variation space
V(2,limsup), where B(p,limsup) and V(p,limsup) are as defined in (0.2.5)
and (0.2.6), respectively. Of course, B(2,limsup) O B(2,lim), and, by the
Wiener—Plancherel formula, the Wiener transform is an isometry when re-
stricted to B(2,lim). However, Lau and Lee proved that W is not an isometry
on all of B(2,lim sup), not even on the linear span of B(2,lim) in B(2,lim sup).

Following the Lau and Lee results in [LL], Lau and Chen proved in [CL1]
that it is also possible to extend the Wiener transform W from B(2,lim) to
B(2,0), and that W is a topological isomorphism of B(2, ) onto V(2,0),
where B(p, 00) and V(p, ) are as defined in (0.2.7) and (0.2.8), respectively.
This result forms one cornerstone for our results in Chapter 4, for we prove
there that W is in fact a topological isomorphism of a whole range of spaces
B(2,q) onto V(2,q) for 1 < g < 0o. Moreover, we do this in higher dimensions.
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A goal for future research is to extend the Lau and Lee results for B(2,lim sup)
to higher dimensions as well. As a step in this direction, we make a few

remarks on the definition of d-dimensional rectangular limsups.

DEFINITION 3.1.7. Given a real-valued function f:R% — R.
a. limsup,_, ., f(t) = sup.eg, , lim SUPeR rooo (7€)
b. Glimsup,_,., f(t) =infTeRi SUpyggr, f(t).
c. Ulimsup,_,, f(t) =infTeRi SUPyerd,|t;>1; f(t)-
We make corresponding definitions for liminfs, for ¢ — 0, for f: R‘i - R,

etc.

Note that the numbers defined above always exist in the extended real

sense, i.e., —0o < limsup f < co. Given f:R? — R we have

Gliminf f < Uliminf f < liminf f

< limsup f € Ulimsup f < Glimsup f.

However, these are not equalities in general, cf., Example 3.1.8. Also, it is

clear that

tlim f(t) exists & litminf f(t) = limsup f(t),

t—o0

9lim f(t) exists & thiminf f(t) = Glimsup f(t),
~RHOO) —200 t-—+00

ItJlim f(t) exists & U}iminf f(t) = Ulimsup f().
— 00 —ro0o t-—00

EXAMPLE 3.1.8. a. Let f be as in Example 3.1.2a. Then liminf f =

limsup f = 0, Uliminf f = 0, Ulimsup f = 1, Gliminf f = 0, Glimsup f = 1.
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b. Let f be as in Example 3.1.2b. Then liminff = limsupf = 1,
Uliminf f — Ulimsup f = 1, Gliminf f = 0, Glimsup f = 1.
&

Let f be as in Example 3.1.2¢c. Then liminf f = limsupf = o,

Uliminf f Ulimsup f = 0, Gliminf f = 0, Glimsup f = 1.
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Section 3.2. Equivalence with Wiener amalgam spaces.

In [F4], Feichtinger derived an equivalent norm for B(p, o) based on dyadic
decompositions of R (in fact, this was done in higher dimensions, but with
a spherical approach, rather than the rectangular approach of this thesis).
Essentially, he proved that B(p,00) = W,(LP,L*), under equivalent norms.
We prove and extend this equality in this section, namely, we show that
B(p,q) = W.(L?,L9) for all p, g, and do this in higher dimensions with a
rectangular approach.

We adopt the discrete norm for W,(LP, L?) defined in Example 2.4.6 as

standard, i.e., we take {X,[3n yn+1]}nez4,0cqe¢ as a standard BUPU, with the

result that

ncZ4,0 €N

the standard adjustments being made if p or g is infinity.

DEFINITION 3.2.1. Given 1 < p, ¢ < oo, the Besicovitch space B(p,q) is

the space of functions f: R? — C for which the norm

e (/R (g7 [ v dt)‘”" Ly &

is finite. The standard adjustments are made if p or g is infinity, namely,

1 l/P
oo = ess up (2 [ 1P at)
“ “B(P ) TERi ‘RT| R )

" 1/q
I fllB(ooy = (/Rd (estselg;lplf(t)!) %) ,

+
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| fllB(co,00) = ess sup (ess suplf(t)l).
TEB.:_ tERp

That || - || B(p,q) i & norm is evident. It follows from Theorem 3.2.4 that

B(p, q) is a Banach space.

Our characterization of B(p,g) as a Wiener amalgam space begins with the

easiest case, namely, p = q.

PROPOSITION 3.2.2. Given1 < p < oo,

B(p,p) = LP(R) = W.(L?,LP),
with
|- 8pe = 24P |lLersy = 272 || - llw. (L2 Lo)-

PrOOF: The case p = oo is clear, so assume 1 < p < co. The second equality

is trivial, since

dt \P/P\1/P
Ilhw.qao iy = (X (/,p,,m 1O ) )

n,o

- ([ 1o m%‘l)/

= || fllzs.
For the first equality, compute

1 plp g
e = [, (a1 [, 170 )

1 var 4T
= Jo ey [, VO ¢

©0 oo Ta T .
[T [T [P e T T
0 0 —~Ty ~Ty Tl T,
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o0 o0 aT dT.

2—'1/ / t)|P/ f e 2 dty---dty
— " |tal |t T1

z—d/ / tP_---—dt---dt
o LRI AL

o dt
=2 / P 5y

Il

= & fliE,

LEMMA 3.2.3. Given a € R4.

>, WE=) = H(zal—1)'

kezd

b 3, R e Ol

kezd

ProoF: We compute

Z H(Z"’ko‘) = Z Z o—kic1 g—kaay

kEZ‘i ki€Z ki€Z

d
11 3 e
j=1 k; €Z4
d

1
=11 205 _1'

i=1

The second statement is similar. |

The following is the main result of this chapter, in which we characterize

B(p, q) as a Wiener amalgam space. The bounds given for the norm equiva-

lence in Theorem 3.2.4 are not sharp, cf., Remark 3.2.5.

THEOREM 3.2.4. Givenl < p< oo and1 < ¢ < oo,

B(p,q) = W.(L*,L7),
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with equivalence of norms given by

(3.2.2) Cll - Nw.zozey < - lIBrg) < DI+ llwe(ze,Ley,

where

C = (log2)%/e 2~ (G+3)d,

e, P<gq,
D = (log2)d/q

d/q

29/?

(W?"_T) y P24

PROOF: Assume for simplicity that 1 < p, ¢ < co (the ¢ = oo case is similar).

a. Fix any o € Q9. Then we compute

19180 = [, 1 (i [ v dt)"“’ i
== [ G [, o )"
S fon s [, OP 41) =
= 2 (log2)" (7w . _lfp ) N
2 (1og2)"27%% 3 ([ . 1 -ﬁ(z‘ii)’

[2n—1 ’2n]

> (log2)d 273de/r ; (/; P md(tt)l)q/P,

[2n—1 ,21;]

v

where the summations in n run over Z9. Therefore,

2° ||f||3(p,q) = Z “quB(p,q)

occqd

a/
> (10g2)d2—3dq/PZ(/ FiOLs dt ) ik

[27-1,27] ITI(2)|
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= (108 2)d 2-3da/p “f“q . (L?,L9))

from which the first inequality in (3.2.2) follows.

b. Note that
Ryeyr = U ,,.[2n——m+1’2n-m+2]'
mEZi,rEﬂ‘
Therefore,
151 B(p,0

= [, G [, o )" 2L

= % ooy (e [, 0P ) iy

. Z/ S (75 /;+ )P dt)m T

= X o2y’ (ﬁ@};ﬁ) /R i dt)"’ P

= (log2)* zﬂ: (ﬁ-(-zi—Jrl—); / B P dt>q/v

= el 2, (; e AN . m‘ﬁj)l)m

a/p
= (log2)* Z (Z n(z~-1) / rlan-mt1 gn-mia) A 'H(t“)
= (o8 L[S Fme)"”

q/p

= (log2)? ”Z .

ulr’
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where Fy, , is the sequence

1 L dt

) = FGTY g e men O TG

c. Assume p < g, i.e., ¢/p > 1. Then we may apply Minkowski’s inequality
in the Banach space £9/P to the calculation in part b. The summations in the

following calculation are over m € Z%, n € Z9, and o, T € Q.

“; Fm,e Lal»

< ) 1P llenrs
m,r

= ¥ (Z \Fm,,(n)quv)p/q

m,T

= Z(% (77 Locenpeen O ) )

n

= g,; ﬁﬁ (Zn: (/;’[2",2”1] F)P %ﬂ)!/p)p/q
% 157 (2 e P 7))

n,o

IA

1
= ¥ = Mo

= ”f“}l’v,(z,p,}:,q)v

since the summation in m is over Z%. The second inequality in (3.2.2) there-
fore follows for this case.

d. Finally, assume ¢ < p. Since 0 < ¢/p < 1, we may apply the triangle in-
equality in the metric space £9/P to the calculation in part b (cf., Section 1.7f).
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The summations in the following calculation are over m € Zi, n € Z4, and

o, T € Q4

a/p

e
tal»
m,T
£ 3 Bnsie
m,T

= 55 el

= 55 () [ P )
= 25 (5 Ly MO )
=Y e 2/ for )™

m o \Jr2nmms gnemtd) 0l
q/p
N ______;E_______ (:j/‘ .f )P __1££._j)
£ TJ(om=TTulp nz,‘r r[z",'/z"Jr‘]l a ()|
1 q

24/p d .
- (g MW ony

where the last equality follows from Lemma 3.2.3 and the fact that the sum-

mation in m is over Z%. The second inequality in (3.2.2) therefore follows for

this case. 1

REMARK 3.2.5. The bounds for the norm equivalence given in Theorem 3.2.4

are, in general, not the best possible.

For example, for the case p = ¢ we can compare the exact bounds deter-
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mined in Proposition 3.2.2, namely,
I UBee) = 27421 llw.(ze,L9)>

to the approximate bounds given in Theorem 3.2.4, i.e.,

4P || Nlw, (22 .L7)-
@™ 1o 2) 7 ||, (1 1y < |- oy < (21082)72 |- w2 29)

Since
(27 log2)?/P < 2797 < (210g2)%/?,
we conclude that the bounds in Theorem 3.2.4 are not best possible.

: P I9
REMARK 3.2.6. Our recognition of B(p,q) as the Wiener space W, (L?, L9)
immediately Provides us with inclusion and duality relations.

a. Inclusions. From Corollary 2.4.13,
P12P:y<q: = B(pi,a1) C B(pay2)-
From Proposition 2.3.2 (cf., Proposition 3.2.2),
B(p,p) = W.(L?,L?) = LP(R?).

Therefore,

P<q¢ = B(pg) D (RN LYRY)

and

p2q = B(P}Q) e LP(Rf)ULq(Rf)’

cf., Proposition 2.3.6.
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b. Dilation invariance. By Proposition 2.2.8, w.(L?, L9) is dilation invari-

ant! i-e-, "Dx-f"W.(LP,LG) ~ ”.f“W.(L’,L") for ea.ch A (S Rg, where DA is the

dilation operator Dy f(t) = f(¢/)). In fact, B(p, q) is dilation isometric, since

1 a/p gr
1Dy = /Ri (l—R;I e [F(/A)P dt) D)

1 ) di Q/Pi
= L;(TR—T—I _ wo) T
1

- [ ror#)” st

1 q/P d
- L[ |Pdt)
/;.i(IRTl er ® I

= 5.

5

~~

T)

c. Duality. From Theorem 2.5.1, if 1 £ p, ¢ < oo then

B(p,q)' = B(?',¢'),

with duality given by

MU
tho) = [, FOF ez
Since the norm in B(p, ¢) is only equivalent to the norm in W,(L?, L?), we can
conclude only that the norm in B(p,q)' is equivalent to the norm in B(p',q').
The following computation shows that the canonical norm for B(p,q)' is a
constant multiple of the norm for B(p',q'). Given f € B(p,q) and g €
B(¢',q"),
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| fll Bp.a) “9“3(?',4')

- (U (i [ vor )™ o)™
(g G wor )™ )™

= /1;1 (|_R%‘_| Ry L dt)llp (|_R1_T| Ry st dt)w’ ﬁd%

1 dT
> “/R,i & L @ s0ld o

= ”fg”B(l,l)
= 27| fgll1(me

> 24| | f(t)TT——)—l

= 27((f,9)|.

The norm for B(p, ¢)' would be equal to the norm for B(p', ¢') if we defined

the duality by

aT

1
<f7g) - -/;.j_l-_R—’l-:‘- f(t) (t)dt H(T)

i.e., duality according to the norm for B(1,1).

REMARK 3.2.7. Although the sets W,(L?,L?) and B(p,q) coincide by The-
orem 3.2.4, they have distinct, albeit equivalent, norms. We retain this dis-
tinction in the remainder of this thesis, stating results in terms of W, (LP, L9)
when we intend to use the discrete norm, or in terms of B(p,q) when we
intend to use the norm for that space. If the norm is not important, we refer

to the space as B(p, q).
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We close this section with a few remarks about the space B(p, ).

LEMMA 3.2.8. Given 0 < p < o0 and b € R?, we have E — 1 € B(p,lim) C

B(p,00), with
1B — 1| Bp,o0) = 2957,

PRrOOF: Without loss of generality assume b € R%. Since Ep — 1 is 1/b-

periodic and bounded it is an element of B(p,lim) by Example 3.1.4b. More-

over, that example also implies that

p
1B~ W > Jim e [ 1Bu(D) -1P
1

= — Ey(t) — 1P dt
01780 Sy 2o~ U

s / |Ey(t) — 1P dt
(0,1

11 / e i _ 1P

j=1

d 3/4 )
j 1/4

I [ 2

j=1

= 2(5-1)d o

v

v

PROPOSITION 3.2.9. B(p, o) is not separable for 1 < p < oo.

PROOF: The case p = oo follows from the fact B(o0,00) = L*°. For p < oo,

we have by Lemma 3.2.8 that

d(i-1
IBa — EbllB(pio0y = I Bab— 1B(pio) = 24377 > 0,

114



ifa # b. Thus {Es}pcpe is an uncountable separated set in B(p, o). I

The statement and proof of the following result is adapted from the one-

dimensional version presented in [Bal].

P ROPOSITION 3.2.10. Given 1 < p < o, B(p,lim) is a proper, closed, non-
linear subset of B(p,c0). Moreover, if {fa}nez, C Blp,lim), f € B(p,0),
and f,, — f in B(p,o0), then f € B(p,lim) and

M(fP) = lim M(Ifal?),

Where M is the mean value operator of Definition 3.1.3.

Proor; Clearly B(p,lim) C B(p, ), and is nonlinear by Example 3.1.5.

In EX&mPle 3.1.4 we showed that B(p,lim) \ Lm(Rd) # 0 and Lw(Rd) \

B(p, lim) # 0. Since both B(p,ﬁm) and L°°(Rd) are contained in B(p, c0),

B(p,lim) must be a proper subset of B(p, 00).
Now assume that f, € B(p,lim) and fo = § & Blgy0). Set My =

M(,f" ,P)a and note that
My~ Ma| < Jim Mz ((fm = FoP)
< sup Mpy([fm = fal?)
TERY
= |[fm - f"”};(moo)

— 0 asm,n——’w’

where Mp. . is the mean value on Rr. M, must therefore converge to some
T

Number M as n — co.
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By hypothesis,

- — fal? — 0 asn )
en = sup May(|f = fal?) = IIf = FollB(pc0) —
Ten.j_

Therefore, for T € R4,

MRr(lfnlp) — &n S MRT(lflp) < MRT(Ifnlp) + en.
Thus,

My — &n = M([fal?) — &n
= l%zx‘ninf MRT(IntP) — &n
< liminf Mg, (|fIP)
~ T-o0

< limsup Mg, (|f[F)

T—o0

< limsup Mg, (|fal?) + €a

T =00

M(|fal?) + en

- Mn + sn,

where the liminfs and limsups are the d-dimensional versions defined in Sec-
tion 3.1. Letting n — oo, it follows that M(|f|P) = limr_,oq MR, (|f[P) exists

and equals M = lim,,_,oc My = limp—oo M(|falP). 1

EXAMPLE 3.2.11. Hartman and Wintner [HW] gave the following example
(for d = 1) of functions {fn}nez, C B(2,lim) N L*(R) and f € B(2,lim)
such that M(|f — fn]|?) = 0 as n — oo but f ¢ L=(R).

116



Fix any f € L?[0,1)\L*°[0,1), and extend f periodically to R. Then
f € B(2,lim) by Example 3.1.4b. Let Sy be the N*® partial sum of the

Fourier series of f, i.e.,

N

SN(t) — Z Cnezm'nt’

n=-N

where
1
Cn = / f(t) e—21rint di.
0
Clearly Sy € B(2,lim) N L*°(R), and, by Example 3.1.4b,

T

M(1f - SvP) = Jim o [ 15) - Sw()P a

1
= [ 1w - swp a
0
— 0 as N — oo,
This example extends trivially to higher dimensions as follows. Let f, Sn
be as above, and define g(t) = f(¢1) and T (t) = Sn(t1) for t € R%, Then

g € B(2,lim)\ L*(R?), Ty € B(2,lim) N L*®(R?), and M(|g — Tw|?) — 0 as

N — oo.
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Section 3.3. Beurling’s characterization of B(p, ).

Wiener, in [W1], proved that B(p,o0) is contained in a certain weighted
L? space (for d = 1). This result has been generalized by Beurling, Lau,
Benedetto, and others, and we generalize it in Section 3.4 to the B(p,q)
spaces. In this section, we discuss the B(p,c0) case.

We begin by proving and extending Wiener’s result, which in its original
form is the following theorem with d = 1 and a = 2. Lau and Lee generalized
thistod=1,a > 11in [LL]. Benedetto, Benke, and Evans proved a d > 1,
@ = 2 result in [BBE]. Our proof is a combination of the [LL] and [BBE]

results. The proof is essentially Wiener’s, i.e., integration by parts.

THEOREM 3.3.1. Given1<p < oo anda € RS witha > 1,
B(p,00) C LE(RY)

where
d

1
o(t) = [[ ——-
j=1 1+ [t5]®

Moreover, the containment is proper.

PROOF: a. For clarity in proving the containment we restrict ourselves to

d = 2 (the general case being similar). Fix a, b > 0 and f € B(p, ). Define
‘P(w’ y) = |f(il’3, y)lp + 'f(:t, _y)lp ki lf(_z’ y)lp + lf(—'a:, -y)lp

and

¥(S,T) = / i /  paideRy s /TT / Sslf(z,y)l"dwdy-
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Then

M = sup -L¢(S,T) = 4"f”%(p,co) 5. w5
sr>0 ST

We compute:

(3.3.1)
i lp(Z,y) z
[ [ sy dea

T pS
= L 6. 0y%(z,y) dedy
0 0 1 + ¢ 1 + Yy

= /T -1_:1? (/05 _1_"_-1;_; 8z (8y¥(=, v)) dz) dy

T 1 (8,%(59) I | d)d
=/o 1+y"(i+5" te ), Trey WWele)d

= (S, T) + L(S,T).

Before estimating I; and I, note that

T T b1
1 ¥=T) ., /' . i d
[ mposeva = R+ [ fopseos

and that

za___l yb—-l 1

e d £ -

1+ 2z - T s 1+‘y” Yy
for all z, y > 0. Therefore,
(3.3.2)

LiBT) = < /T = 8,%(5,v) dy
’ 14852/, 1442 Y

1 (4(S,T) T g )
=5 1+S¢(1+T5 + b/o. m?ﬁ(sm)dy
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< _S _T ST
~ 148%14+T% ST

s (T 1 S
" / $(S,y) dy
1482/, 1+y® Sy

S T £ q
< M .
= 148514 7T? +1+S“bM/0 1+ybdy

Similarly,

(3.3.3) e i
Li(S,T) = a./o (11#)2 (/o 1-:yb ay'tb(z,y)dy) de

S zﬂ—l 1/)(:1:,T) T y"‘l
i a./o (1+22)? (1+T” i b/o m'ﬁ(w,y)dy) dz

s
wo / 1 $T)
1+T%J, 1+2z* 2T

S T
1 1 (=)
+ ab/; /0 Ttz 1+s oy dydz
T 9l
—— d
1+T*"‘M/0 1+ze

s 1 . |
bM d — dy.
+ a /) 1720 zA 1+yb (]

Combining (3.3.1), (3.3.2), and (3.3.3), letting S, T — oo, and noting that

IA

IA

lims_.oo S/(1 + %) = limr_,o0 T/(1 + T?) = 0, we obtain

(3.3.4) 19, = [ [ e oe ) dedy

A e

abCa)C(b) M

IN

= 4abC(a) C(b) ”f”%(p,oo)’
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where

o0 1 d 1d 0 o
C = / r < / T +/ -rd = v

This completes proof of the containment.

b. To see that the containment is proper, first assume that d = 1 and define

f(t) = {*‘““”""’, £>1,

0, t<1.
Then
|f(t) Ip fw t(a—l)/ﬂ /00 t(a—l)/2
—dt = —dt < =
Rl+ta’ 1 1+ta i 1 ie dt a—-—1 < .

so f € L?(R). However,

g 1 (T Tl(a-1)/2 _ p-1
£ WPdt = — [ D124 =
o [ 15 | T .

as T — o0, so f ¢ B(p,00). A higher-dimensional example follows immedi-
ately by defining g(t) = H;’=1 f(¢;) for t € R,
Another example is furnished by
0 - T 12
for t € R. Since
1 T

T
1 1
— P == — 1 dt = - s

as T — oo, we have f ¢ B(p,c0). However,

r1+1° N 5%

P (- <]
FOPF 4, s/ lot 1
1t (@ —1)
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foferr (R). The higher-dimensional case follows as before. J

By Theorem 3.3.1, B(p,c0) is contained in a weighted L? space. Beurling
Proved jn [Be 1] that B(p, ) equals the intersection of all weighted L? spaces
LfL(R) over the class of weights w which are positive, even, integrable, and
decreasing on R;. We reproduce his proof in Proposition 3.3.8 and Theo-
Tem 3.3.9, as well as giving new proofs of our own. To be precise, Beurling
&tually proved this characterization in higher dimensions, but in a spheri-
cal Setting, rather than the rectangular setting of this thesis. We prove our

Chara.cteriza.tion in higher dimensions, but in a rectangular setting.
The higher-dimensional, rectangular analogue of the Beurling class is the
fouowing.

Der INITION 3.3.2. a. A = A(R) denotes the class of all positive, even,

Integraple (with respect to Lebesgue measure) weights w on R which are

decreasing on R..

b. A = A(R?) denotes the class of weights w on R for which there exist

w; g A(R) such that

d
(3-3.5) w(t) = H w;(t;)

i=1

for ¢ € RY.

REMARK 3.3.3. Givenw € A(Rd)'
and is decreasing on R4,

: e en
& wis rectangular, positive, integrable, and even,

cf,, Section 1.34.f Rectangular refers to the fact that w has the form (3.3.5).
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Even means that w(ot) = w(t) for all L € RY and o € Q4. Decreasing means
that if s > ¢ ¢ R4 then w(s) £ w(t), i.e., w is decreasing in each component,

b. As each w; is decreasing on Ry it must lae- continuoas ExeEph #t sonpt

ably many points. Therefore w is continuous a.e.

EXAMPLE 3.3.4. a. The weight v appearing in Theorem 3.3.1 is an element
of A(R%),
b. Set d = 1, and define

sin 27t |2

it

k(t) =

for £ € R. Note that k is even and integrable, though not positive and not
decreasing on R, so k ¢ A(R).
Let k* be the least decreasing majorant of k on Ry and ky the greatest

decreasing minora\nt of k on R+, Cf., Section 1.3g- That iS, for t € R+,

k*(t) = ey aod M) s B ).

Extend k* and k. evenly to R. We clearly have

oo 1 00
/ E*(t)dt < /4dt +/ (t)"%dt < oo.
0 0 1

Thus k* is even and integrable, and is decreasing on R.. Since k* is positive

it is therefore an element of A(R). Numerically,

oo ©o
/ E*(t)dt ~ 1.068 > 1 = / k(t) dt.
0 0

123



k« is also even and integrable, and is decreasing on R.;. Since kx is nonnega-

tive, but not positive, k« is not an element of A(R). Note that ke = k-Xjo,1/2]s

SO
0 1/2 oo
_/ ki(t)dt = f k(t)dt =~ 0.903 < 1 = /o k(t) dt.
0 0

c. For arbitrary d, define

d
sin2'rrt,-l2 - H k(t;)
e v T i
j=1 ntj j=1

K(t) = H(sin27rt)2 =3 f{

nt

for t € R9. Let K™ be the least decreasing majorant of K on RZ and Ky the
greatest decreasing minorant of k on Rf. That is, for t € R4,
d
K*(t) = sup K(s) = [[ ¥*(t5)
lE{‘|w) j=1

and

d
inf K(s) = H kx(25).

Kx(?) o€{0,4

il

i=1

Extend K* and Ky evenly to RY. It follows from part b that K * ¢ A(R9)
while K, K, ¢ A(RY).

The functions k and K play an important role in Chapter 4.
LEMMA 3.3.5. Given a nonnegative, even function w on R? which is decreas-
ing on R‘_f,.

3. SUPTeRY I(T)w(T) < fn’i w(t) dt.

b. SUPreR¢ I(T)w(T) < 2% sup,cze O(2")w(2").

% fni w(t)dt < ¥ ez M(2%)w(2") < 24 jni w(t)dt.
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d. limT—»O,eo H(T)w(T) = 0.

PROOF: a. As w is decreasing on Ri,

T)dt = I(T)w(T).
Loeoaz [ woa > [ o =0
b. If T € [27,2°+1] then II(T) w(T) < H(2"**)w(2") since w is decreasing.

c. Since w is decreasing on R4,

fn w(t)dt<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>