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ABSTRACT 

Title of Dissertation: WIENER AMALGAM SPACES IN GENERALIZED 
HARMONIC ANALYSIS AND WAVELET THEORY 

Christopher Edward Heil, Doctor of Philosophy, 1990 

Dissertation directed by: Professor John J. Benedetto, 
Department of Mathematics 

This thesis is divided into four parts. Part I, Introduction and Notation, 

describes the results contained in the thesis and their background. Part II, 

Wiener Amalgam Spaces, is an expository introduction to Feichtinger's gen­

eral amalgam space theory, which is used in the remainder of the thesis to for­

mulate and prove results. Part III, Generalized Harmonic Analysis, presents 

new results in that area. Part IV, Wavelet Theory, contains exposition and 

miscellaneous results on Gabor ( also known as Weyl-Heisenberg) wavelets. 

Amalgam, or mixed-norm, spaces are Banach spaces of functions deter­

mined by a norm which distinguishes between local and global properties of 

functions. Specific cases were introduced by Wiener. Feichtinger has devel­

oped a far-reaching generalization of amalgam spaces, which allows general 

function spaces norms as local or global components. We use Feichtinger's 

amalgam theory, on d-dimensional Euclidean space under componentwise 

multiplication, to prove that the Wiener transform (introduced by Wiener 

to analyze the spectra of infinite-energy signals) is an invertible mapping of 



-- _______ _. .......... _.,... . .....,.~~~~-

the amalgam space with local L2 and global LtJ. components onto an appropri­

ate space defined in terms of the variation of functions, for each q between one 

and infinity. As corollaries, we obtain results of Beurling on the Fourier trans­

form and results of Lau and Chen on the Wiener transform. Moreover, our 

results are carried out in higher dimensions. In addition, we prove that the 

higher-dimensional variation spaces are complete by using Masani's helices; 

this generalizes a one-dimensional result of Lau and Chen. 

In wavelet theory, we present a survey of frames in Hilbert and Banach 

spaces and the use of the Zak transform in analyzing Gabor wavelets. Frames 

are an alternative to unconditional bases in these spaces; like bases, they 

Provide representations of each element of the space in terms of the frame 

elements, and do so in a way in which the scalars in the representation are 

explicitly known. However, unlike bases, the representations need not be 

unique. We then discuss the specific case of Gabor frames in the space of 

square-integrable functions, concentrating on the role of the Zak transform in 

the analysis of such frames. 
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PART I 

INTRODUCTION AND NOTATION 
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CHAPTER 0 

INTRODUCTION 

This thesis falls naturally into several parts. 

Part I, Introduction and Notation, describes the results contained in this 

thesis and their background, and lays out the notational scheme used through­

out. Part I consists of Chapters O and 1. 

Part II, Wiener Amalgam Spaces, is an expository introduction to Fe­

ichtinger's general amalgam space theory, which is used in the remainder of 

the thesis to formulate and prove results. Part II consists of a single chapter, 

Chapter 2. 

Part III, Generalized Harmonic Analysis, contains new results in that area. 

The results depend heavily on the use of amalgam spaces. Our major result 

links and extends results of Wiener, Beurling, Lau and Chen, and Benedetto, 

Benke, and Evans into a single isomorphism theorem. Part III consists of 

Chapters 3 through 5. 

Finally, Part IV, Wavelet Theory, contains exposition and miscellaneous 

new results in that area. Part IV consists of Chapters 6 and 7. 

We introduce each of Parts II, III, and IV below, in Sections 0.1, 0.2, 

and 0.3, respectively. 
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Section 0.1. Amalgam spaces. 

The classical LP spaces on the real line R consist of those functions f for 

which the norm 

(1
00 )1/p 

IIJIIP = -= lf(t)IP dt 

is finite. These spaces play a prominent role in modern analysis, yet often 

are difficult to use in applications because the LP norm does not distinguish 

between local and global properties. For example, all rearrangements of a 

given function have identical LP norms. Thus, it is not possible to recognize 

from the norm of a function whether it is, say, the characteristic function 

of an interval or the sum of many characteristic functions of small intervals 

spread widely over R. As another example, "local" and "global" inclusions 

in LP behave differently, with the result that there are no inclusion relations 

for LP as a whole. To illustrate this, let K C R be a compact set, and let 

f_P be the space of sequences {ck} which are p-summable, i.e., ~ icklP < oo. 

Define the following subspaces of LP(R): 

LP(K) - {f E LP(R) : supp(!) CK}, 

where X[k,k+I] is the characteristic function of the interval [k, k+ 1]. Functions 

in LP(K) have only "local" behavior, while functions in GP have only "global" 

behavior, in some sense. "Local" inclusions behave as follows: 
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while "global" inclusions behave as: 

No LP(R) is contained in any other Lq(R). 

Amalgam spaces decouple the connection between local and global proper­

ties which is inherent in the definition of LP spaces. Their first use was by 

Norbert Wiener, in the formulation of his generalized harmonic analysis. In 

the notation of this thesis, he defined the spaces W(L1, L 2 ) and W(L 2 , L 1 ) 

in (W4], and W(L 1 ,L00
) and W(L 00 ,L1

) in (Wl; W2], where W(LP,Lq) is 

the standard amalgam space defined by the norm 

(0.1.1) ( (1
n+I ) q/p) 1/q 

11/llw(LP,Lv) = ~ n lf(t)jP dt , 

the usual adjustments being made if p or q is infinity. Amalgams have been 

reinvented many times in the literature; the first systematic study appears to 

have been undertaken by Holland in (Ho]; an excellent review article is (FS]. 

The amalgams W(LP, Lq) distinguish between local LP and global Lq prop-

erties of functions in the ways we expect. For example, rearrangements do 

not have identical norms in general, and inclusions behave correctly: 

The dual space of W(LP,Lq) is W(LP' ,Lq'), where l +-.!, = l +-.!, = 1. For p p q q 

1 ~ p, q ~ 2 we have a Hausdorff-Young property for the Fourier transform: 
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note that local and global properties are interchanged on the Fourier trans­

form side. 

H. Feichtinger recently proposed a far-reaching generalization of amalgam 

spaces to general topological groups and general local/global function spaces, 

e.g., [F2; F8], cf., Chapter 2. Given Banach spaces B, C of functions on a 

locally compact group G, he defines spaces W(B, C) of functions or distribu­

tions which are "locally in B" and "globally in C". Moreover, his generaliza­

tion is powerful and natural. Some properties which follow immediately from 

his theory are the following. 

Inclusions. If B1 C B2 and C1 C C2 then W(B1,C1) C W(B2,C2). 

Duality. If a space of test functions (e.g., the Schwartz space S(R) of 

smooth, rapidly decreasing functions) is dense in Band C then W(B, C)' = 

W(B',C'). 

Complex interpolation. Complex interpolation can be carried out in each 

component of W(B, C) separately. 

Pointwise multiplications. If B1 ·B2 C B3 and C1 -C2 C C3 then W(B1, C1 )· 

W(B2, C2) C W(B3, C3). 

Convolutions. If B1 * B2 C B3 and C1 * C2 C C3 then W(B1, C1) * 

W(B2, C2) C W(B3, C3). 

Many other specific results follow immediately from Feichtinger's theory 

by choosing Sobolev spaces, Besov spaces, weighted LP spaces, the Fourier 

algebra A, etc., as the local or global components, with various choices of 
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topological groups. 

Feichtinger refers to his spaces W(B, C) as Wiener-type spaces; follow­

ing a suggestion of J. Benedetto, and in order to promote the link between 

Feichtinger's generalization and the amalgams previously defined in the lit­

erature, we call them Wiener amalgam spaces. Taking G to be the group R 

under addition with Haar measure dt, the local component B to be LP(R), 

and the global component C to be Lq(R), results in a Wiener amalgam space 

coinciding precisely with the standard amalgam space defined by (0.1.1). 

In this thesis we obtain new results, and new proofs and generalizations of 

previously known results, in generalized harmonic analysis (Part III) and in 

wavelet theory (Part IV), by using amalgam spaces. Except for the amalgam 

space connection, the results in the two parts are unrelated, although we 

believe that the application of wavelets to generalized harmonic analysis could 

produce new results in the future. 

For the benefit of the reader, we present in Part II a self-contained intro­

duction to Feichtinger's theory. Since his theory is not needed in the later 

parts in its full generality, we present a simplified theory in which we allow 

only weighted LP spaces as local or global components. This results in a 

considerable technical simplification of the proofs without destroying their 

essential flavor. Thus, Part II can be considered an elementary introduc­

tion to the general theory as presented in [F8]. In addition, we prove only 

those results directly related to our needs in this thesis, e.g., completeness, 
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translation invariance, equivalence of discrete norms, inclusions, and duality. 

Part II is purely expository, and it is not necessary to read Part II in order 

to appreciate the results in Parts III and IV. 

While Part II is written in terms of general topological groups, the results 

in Parts III and IV use the Wiener amalgam spaces on two specific topological 

groups. Part III uses the multiplicative group R~ = {x E Rd : Xj f=. 0, all j}, 

under componentwise multiplication, with Haar measure dt/lt 1 • • • tdl• Part IV 

uses the additive group Rd, under component wise addition, with Haar mea­

sure dt. To clearly distinguish between amalgam spaces on these two groups, 

we use the following notation in Parts III and IV ( and in Sections 0.2 and 0.3 

of this chapter): 

(0.1.2) 

and 

(0.1.3) 

The amalgam space W(LP,Lq) on the group Rd is precisely the higher­

dimensional analogue of the standard amalgam space defined in (0.1.1); the 

intervals [n,n+l] are simply replaced by cubes [n 1 ,n1 +1] x •·· x [nd,nd+l] 

for n E zd. We point out, however, that this norm is only equivalent to the 

fundamental norms used by Feichtinger as the basic definition for W(LP, Lq). 

We refer to a norm such as (0.1.1) as a discrete-type norm for W(LP, Lq); 

the fundamental defining norm is instead a continuous-type norm (Definition 
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2.2.2). Such norms more clearly illustrate the local LP /global Lq features of 

For the one-dimensional case ( d = 1), the discrete-type norm for W.(LP, Lq) 

on the group R. is 

(0.1.4) ( (1 dt)q/p)l/q 
llfllw.(LP,L9 ) = L IJ(t)l -ltl · 

nEZ,± ±[2",2a+1] 

The higher-dimensional version of this norm is obtained by replacing the 

using the Haar measure dt/lt1 · · · tdl• 

Special Acknowledgement. We thank Dr. Feichtinger for permission to use 

several of his unpublished lecture notes in this section. 
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Section 0.2. Generalized harmonic analysis. 

In this section we summarize and present background for results obtained 

in Part III of this thesis. Items a-d below discuss the background of our 

problems in generalized harmonic analysis, e-f discuss our results, g discusses 

future research possibilities, and h outlines Part III by chapters. 

a. The Wiener-Plancherel formula. The Fourier transform provides the 

basic definition of spectrum for finite-energy functions on the real line. Central 

to its definition is the Plancherel formula 

1-: l/(t)l 2 
dt = 1_: lib)l2 

d-y, 

where the Fourier transform is defined by 

cf., Section 1.8. In order to deal with infinite-energy but finite-power func­

tions, Wiener introduced what we now call the Wiener transform, and proved 

the Wiener-Plancherel formula, e.g., (Wl]. These are defined as follows. 

Given a function f on the real line R, its Wiener transform is (formally) 

(0.2.1) W f(-y) = f(t) _[-i,iJ dt. J
oo e-21"i-yt _ X (t) 

-oo -21rit 

If f has bounded quadratic means, i.e., if 

(0.2.2) l 1T sup 
2

T lf(t)l 2 dt < oo, 
T>O -T 
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then W f is well-defined (Theorem 4.1. 7). The Wiener-Plancherel formula 

states that for such f, 

(0.2.3) 1 1T 2100 

lim - lf(t)l 2 dt = lim - 16..\Wf(,)12 d,, 
T-oo 2T -T .\-,Q ). -oo 

meaning that if one limit exists then the other does also and they are equal, 

and where 6..\ is the symmetric difference operator 

Note that if f has finite energy, i.e ., if f E L2 (R), then the left-hand side of 

(0.2.3) is zero. 

Wiener called the theory associated with (0.2.1) and (0.2.3) generalized 

harmonic analysis as it generalizes the usual finite-energy harmonic analysis. 

For background, perspective, and proof of (0.2.3) and associated subjects, see 

[B7]. 

The Wiener-Plancherel formula has been extended to higher dimensions 

in [BBE], [Bl], and [Ben]. The paper [BBE] adopted a "rectangular" ap­

proach to higher dimensions, while [Bl] and [Ben] adopted a "spherical" 

approach. We prove our results in generalized harmonic analysis in higher 

dimensions following the rectangular approach of [BBE]. For clarity, we con-

centrate in this introduction on one-dimensional statements, and summarize 

higher-dimensional results in item f below. 

b. Lau 's extension of the Wiener-Plancherel formula . K.-S. Lau and 

J. K. Lee observed in [LL] that the space of functions f for which the limit 

10 



on the left-hand side of (0.2.3) exists is nonlinear, and, more generally, that 

(0.2.4) B(p, lim) = {f E Lf
0
c(R) : lim 2._ JT lf(t)jP dt exists} 

T-+oo 2T -T 

is nonlinear (the case p = 2 had originally been proved in [HW]). Therefore 

B(p,lim) cannot be dealt with using the methods of ordinary functional anal­

ysis. However, the Wiener transform W is defined for all f with bounded 

quadratic means, hence for all f E B(2,limsup), where B(p,limsup) is the 

space of functions f for which the norm 

(0.2.5) ( 
1 1T )1/p 

IIJIIB(p,limsup) = li~_:;P 2T -T lf(t)IP dt 

is finite. Marcinkiewicz, in [Mar], proved that B(p, lim sup) is a Banach 

space once functions f, g E B(p,limsup) with II/ - YIIB(p,limsup) = 0 are 

identified. Lau and Lee proved that the Wiener transform W is a topological 

isomorphism of B(2,limsup) onto the space V(2,limsup), where 

(0.2.6) (2100 ) l/p 
IIFllv(p,limsup) = limsup , jA,xF(--y)jP d--y • 

>.--o I\ -oo 

Since V(p,limsup) is not solid, i.e., IFI ::; IGI does not necessarily im­

ply l!Fllv(p,limsup) ::; IIGllv(p,limsup), the completeness of V(p,limsup) is a 

difficult question. Using the helix techniques of Masani, Lau and Lee were 

able to prove that V(p,limsup) is a Banach space (once functions F, G with 

IIF - Gllv(2,limsup) = 0 are identified), cf., [LL; Ml; M3]. 

Following Lau and Lee's work on B(p, lim sup), Lau and Chen proved in 

(CLl] that the Wiener transform W extends to a topological isomorphism of 

11 



the space B(2, oo ), where 

(0.2.7) llf llB(p,oo) 

onto V(2, oo ), where 

(0.2.8) (2100 )1/p IIFllv(p,oo) = sup >." l~~Wf(-y)jPd-y . 
~>O -oo 

We reproduce the proof of this result in Section 4.4-4.5. Our results include 

and generalize this result, both to a larger class of spaces and to higher di-

mens1ons. 

It is clear that B(p, oo) is a Banach space, without the need to form equiv­

alence classes other than the usual a.e. ones. Lau and Chen proved that 

V(p, oo) is also a Banach space (after the formation of equivalence classes), 

by using Masani 's helix techniques. 

c. Beurling's AP and BP spaces. In one of his deep investigations into 

spectral synthesis, Beurling introduced the following spaces, e.g., [Bel]: 

(0.2.9) BP - n Li(R) 
wEA. 

and 

(0.2.10) AP' u p' Lw,(R), 
wEA. 

where A is the class of even, positive, integrable weights which are decreasing 

on (0,oo), i + J, = 1, 

W
t 1-p' 

- w ' 
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and L{:, is defined by the norm 

(1
00 ) 1/p 

IJJIILt = _
00 

lf(t)IP w(t) dt . 

Beurling proved the following facts. 

AP and BP are Banach spaces. 

AP C L 1 (R) and is a convolution algebra. 

(AP)' = BP', under the duality 

(0.2.11) (f, g) - 1-: f(t) g(t) dt. 

BP= B(p,oo). 

In addition, he proved that the Fourier transform on A2 satisfies an isomor­

phism property similar to the one proved by Lau and Chen for the Wiener 

transform on B(2, oo) = B 2 • Recasting his result into our terminology, he 

essentially proved that the Fourier transform is a topological isomorphism of 

A2 onto a space V(2, 1) defined by the norm 

(0.2.12) 1= (21-oo )1/2 d>. IIFllvc2,1) = Jo :X- _
00 

l~.xF("Y)l2 
d1 T· 

The proof required tricky estimates involving the weights w; we reproduce it 

in Section 4.4. 

Many of Beurling's results in [Bel) (with the exception of the Fourier 

transform isomorphism theorem) were actually proved in higher dimensions, 
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but with a spherical approach, rather than the rectangular approach of this 

thesis. 

d. Feichtinger's contribution. As discussed in Section 0.1, Feichtinger has 

produced a general theory of amalgam spaces on topological groups. In [F4], 

he characterized B(p, oo) as an amalgam space by proving that 

(0.2.13) B(p,oo) = W.(V,L 00
) = W(LP(R.),L 00 (R.)), 

under equivalent norms. This insight provided us with a framework to link 

Beurling's and Lau's isomorphism results, and to prove our own results. The 

characterization as an amalgam space provided us with equivalent discrete-

type norms, which are the basic machinery we use to prove our major thee-

rems. 

e. Our results. For clarity, we discuss one-dimensional versions of our 

results first, and make remarks on the higher-dimensional formulations in 

item f. 

We generalize Feichtinger's characterization of B(p, oo) as the amalgam 

space W.(LP, L 00
) as follows. Define B(p, q) to be the space of functions f 

for which the norm 

(0.2.14) 
( 

/
00

( 1 JT )q/p dT)l/q 
11/IIB(p,q) = Jo 2T -T lf(t)IP dt T 

is finite, with the standard adjustments if p or q is infinity. In Theorem 3.2.4 

we prove that 

(0.2.15) 
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with equivalent norms. This provides us with discrete-type norms for all 

B(p, q), cf., (0.1.4). 

I 

Recall now that (AP)' = BP , with duality defined by (0.2.11). From 

(0.2.13), we have BP' = B(p',oo) = W.(LP
1

,L00
). It follows immediately 

from Feichtinger's amalgam theory that 

W.(LP', L00
). 

However, these amalgam spaces are on the multiplicative group R., so the 

duality is with respect to the Haar measure on R., i.e., with 

It therefore follows that 

i.e., 

/ E AP 

I - dt 
(f,g) = la.t(t )g(t) itT 

¢:> tf(t) E w.(LP, L1
) = B(p, 1). 

Except for the convergence factor X[-l,l](t), the Fourier transform off E A2 

therefore corresponds to the Wiener transform of tf(t) E B(2, 1), i.e., 

~ -271"i W(tf)(--y). 

15 
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Since the convergence factor is not needed to make the integral defining W g 

converge for g E B(2,l), and is irrelevant once we compute A>.Wg, the 

Beurling isomorphism theorem for the Fourier transform on A2 therefore im­

plies that the Wiener transform is a topological isomorphism of B(2, 1) onto 

V(2, 1). Campa.ring this to the Lau result, that Wis a topological isomor­

phism of B(2,oo) onto V(2,oo), we anticipate the major result of Pa.rt III, 

namely, that W is a topological isomorphism of B(2, q) onto V(2, q) for each 

1 $; q < oo (Theorem 4.5.5), where V(p, q) is defined by the norm 

(0.2.16) 
( 

(

00 (2 !00 )q/p d>.)1/q 
IIFllv(p,q) = Jo >. _

00

16.>.F("Y)IPd'Y T . 

We prove our isomorphism theorem directly, without interpolation. This 

avoids lengthly technical details establishing the interpolation properties of 

the non-solid spaces V(p, q). Moreover, our use of Wiener amalgam spaces 

to prove this result gives new proofs of the Beurling and Lau results using a 

single technique, rather than the very different techniques used by the original 

authors. 

Although not needed to prove our isomorphism theorem, we show in Sec­

tion 3.4 that B(p, q) can be written as a union or intersection of weighted V 

spaces, simila.r to the Beurling characterizations of AP, BP given in (0.2.9) 

and (0.2.10), cf., Proposition 3.4.6. This characterization allows us to relate 

the spaces B(p, q) to other spaces which have appeared in ha.rmonic analysis, 

cf., Remark 3.4.7. 

f. Higher dimensions. Benedetto, Benke, and Evans, in [BBE), extended 
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the Wiener-Plancherel formula (0.2.3) to higher dimensions, in a "rectangu­

lar" way. This nontrivial task included the determination of correct higher­

dimensional analogues oflimits, the Wiener transform W, and the symmetric 

difference operators ~>., as well as the formulation and proof of new Taube­

rian theorems. The term "rectangular" stems from the fact that the intervals 

[-T, T] in (0.2.3) are replaced by rectangular boxes RT= IT1=1[-T;, T;] for 

T = (T1, ... , Td) E Ri. For example, the space B(p, oo) is defined in higher 

dimensions in a rectangular way by the norm 

(0.2.17) 11/IIB(p,oo) = sup ( 
1
; I / 1/(t)IP dt) l/p. 

TERt T }RT 
The rectangular higher-dimensional definitions of limits are given in Sec-

tion 3.1, of the Wiener transform in Section 4.1, and of the difference op­

erator in Section 4.2. Using those definitions, the Wiener-Plancherel formula 

becomes the following: for/ E B(2, oo ), 

(0.2.18) lim IRl I r lf(t)12 dt = lim l>i 2d A I / ,~>.WJ(-y)l2 d,y. 
T-+oo T J RT >.--o 1 • • · d ]a,t1. 

We prove all our results in higher dimensions using the higher-dimensional 

rectangular definitions. This includes the characterization of B(p, q) as an 

amalgam space, the convergence of the Wiener transform on B(2, q), the 

isomorphic nature of the Wiener transform as a mapping of B(2, q) onto 

V(2, q), and the proof of the completeness of the higher-dimensional variation 

spaces V(p, q). 

The completeness of V(p, q) is proved in the final chapter of Part III. For one 

dimension, the completeness follows as a corollary of results of Lau and Chen 
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based on Masani's helix techniques. In higher dimensions, the proof requires 

an iteration of those techniques (Theorem 5.2.3). We review the definitions 

and basic properties of helices in that chapter, and, while not appropriate for 

proving the completeness of V (p, q), we also indicate how to extend helices 

directly to Rd. 

g. Future results. Benedetto has completed, and Benke is completing, work 

on spherical higher-dimensional analogues of the Wiener-Plancherel formula, 

cf., [Bl] and [Ben], spherical in the sense that the intervals [-T, T] in (0.2.3) 

are replaced by spheres of radius T. The resulting spherical formulas appear 

to be even more interesting than their rectangular counterparts. A major 

goal for future research is therefore to determine the spherical analogues of 

our isomorphism theorems. Another goal is to investigate higher-dimensional 

analogues of the Lau and Lee isomorphism theorem on B(2,limsup), both in 

rectangular and spherical settings. 

A related area in which we expect our amalgam space methods to be of use 

is the following. In [CLl], Lau and Chen proved modified Wiener-Plancherel 

isomorphism theorems, obtained by replacing the factors 1/2T by 1/(2Tt. 

Such results have applications to fractals, Hausdorff measures, etc., cf., [E2; 

Stl; St2]. A goal for future research is therefore to prove our isomorphism 

theorem in such a setting. As a step in this direction, we prove in Section 3.5 

that the spaces Bp(p, q), obtained by replacing the factors 1/IRTI in the def­

inition of the higher-dimensional B(p, q) by general functions p(T), can be 
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written as weighted Wiener amalgam spaces on the multiplicative group. 

h. Outline. We outline Part III by chapters. 

In Chapter 3 we present the definitions and fundamental characterizations 

of the Besicovitch spaces B(p, q). We prove that B(p, q) coincides with the 

Wiener amalgam space W..,(LP, Lq) and prove bounds for the norm equiv­

alence. We discuss the relationship of B(p, q) to unions or intersections of 

weighted LP spaces. We discuss the effect of replacing the factor 1/2T in the 

definition of B(p, q) (or 1/IRTI in higher dimensions) by a general function 

p(T), and show that the resulting spaces are again Wiener amalgam spaces, 

with weighted LP components. 

In Chapter 4 we discuss the Wiener transform. We prove that it is defined 

on each space B(2, q) for 1 :5 q :5 oo, and determine the basic properties 

of A.\ W f. We reproduce the Beurling and Lau proofs of the isomorphic 

nature of W on B(2, 1) and B(2, oo ), respectively, and then prove, directly, 

the continuity and invertibility of W on each of the spaces B(2, q) by using 

the Wiener amalgam norms derived in Chapter 3. 

In Chapter 5 we prove that the variation spaces V(p, q) are Banach spaces 

by using an adaptation of Masani 's helix techniques. We review the basic def­

initions and properties of helices and give Lau and Chen's proof that V(p, oo) 

is complete when d = 1, then extend this proof to higher dimensions by using 

an iterated helix technique. 

19 
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Section 0.3. Wavelet theory. 

Part IV of this thesis is a survey of results in wavelet theory, especially 

frames, Gabor systems, and the Zak transform. Part IV is largely expository; 

results of many authors have been combined with examples, remarks, and 

minor results of our own into a survey of one portion of wavelet theory. Most 

of the work on Part IV was completed prior to 1988, when we were hired by 

The MITRE Corporation to pursue work in wavelets. After that point we 

concentrated our thesis work on generalized harmonic analysis. Our work on 

wavelets for MITRE has appeared under separate cover, e.g., [BHW; Hl; 

H2; HWl; HW2]. The paper [HW2] is a comprehensive introduction to 

wavelet theory from the point of view of frames. 

In item a below we discuss the basic problem of wavelet theory. Item b 

discusses frames, which are an alternative to orthonormal or unconditional 

bases. Items c and d discuss Gabor and affine wavelets, respectively, and 

item e discusses the general wavelet theory of Feichtinger and Grochenig. 

Item f outlines Part IV by chapters. 

a. Wavelet theory. The basic problem of wavelet theory is to find good 

bases, or good substitutes for bases, for Banach function spaces, especially 

L2 (Rd), the Hilbert space of square-integrable functions on d-dimensional 

Euclidean space. The term "good" has, of course, many interpretations, in-

eluding, but not limited to, the following. The basis elements should be easily 

generated from a single ( or finitely many) functions through a combination 
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of the fundamental operations of translation, modulation (translation in fre­

quency, i.e., multiplication by e21•+r•t), and dilation. The basis elements should 

be well localized in time and frequency, i.e., both the basis elements and their 

Fourier transforms should have good decay. Both the basis elements and their 

Fourier transforms should be smooth, preferably infinitely differentiable. 

Two basic approaches to constructing such systems have developed. These 

are the Gabor ( or Weyl-Heisenberg) wavelet systems and the affine wavelet 

systems, discussed below in items c and d. We point out that it has recently 

become unfashionable to refer to Gabor systems as wavelets, the term wavelet 

instead being reserved for affine systems. 

b. Frames. Frames were invented by Duffin and Schaeffer, in the course 

of an investigation into nonharmonic Fourier series, as an alternative to or-

thonormal bases in Hilbert spaces [DS]. 

A sequence { en} of vectors in a Hilbert space H is an orthonormal basis if 

the sequence is orthonormal, i.e., (em, en) = 0 if m-=/:- n and (en, en) = 1, and 

the Plancherel formula holds, i.e., r: l(x, en)l 2 = llxll 2 for all x EH. It follows 

that if x E H then there exist unique scalars {en} such that x = r: enen, A 

sequence {xn} in H is a frame if there exist numbers A, B > 0 such that 

A llxll 2 
:::; r: l(x, en)l 2 

:::; B llxll 2 for x E H. The vectors {xn} need not be 

orthogonal, yet it follows that given x E H there exist scalars {en} such that 

x = r: enXn· Unlike orthonormal bases, these scalars need not be unique. 

However, they are given explicitly, and the series x = I: enXn converges 
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unconditionally, i.e., all rearrangements converge (and converge to x ), cf., 

Proposition 6.2.8. Frames which are ezact, i.e., for which the representations 

x = ~ CnXn are unique, are bounded unconditional bases for the Hilbert 

space, and vice versa (Proposition 6.3.3). 

Frames thus provide representations of elements of a Hilbert space in terms 

of the frame elements, like orthonormal bases. Since the definition of frame 

is less restrictive than the definition of orthonormal bases, frames are usually 

easier to construct in applications. 

c. Gabor systems. A Gabor system is generated from a single function 

( the mother wavelet) by translations and modulations; in particular, a Gabor 

system for L2 (R) has the form {9mn}m,nEZ, where 

9mn(t) = e2 ff'imbt g(t - na), 

and g E L 2 (R) and a, b > 0 are fixed. Gabor systems have a long history and 

are closely related to several well-known signal processing tools, e.g., the short­

time Fourier transform, the Wigner distribution, and the radar ambiguity 

function, cf., [DeJ]. They have applications to many areas, e.g., quantum 

mechanics [BZ; BZZ; Zl; Z2; Z3] and holography and optical computing 

[Sehl; Sch2; Sch3]. We restrict our discussion here to one dimension; the 

extension to higher dimensions is essentially trivial. 

We concentrate in this thesis on the case of Gabor systems satisfying ab = 1. 

This case is especially amenable to analysis through the use of the Zak trans­

form, a tool which has been reinvented many times in the literature. Accord-
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ing to Schempp, a discrete form of the Zak transform was used by Gauss. 

Janssen, in [Jl], lists some of the other occurances of the Zak transform. Zak 

used the transform in quantum mechanics to study the Gabor system gener­

ated by the Gaussian function g( t) = e-71't
2

• Some of the earliest results on 

the Zak transform were obtained by Auslander and Tolimieri by topological 

methods, e.g., [AT2], cf., [ATl; AGT; AGTE]. Important new results on 

the Zak transform have been obtained analytically by Janssen, e.g., [J2; J3; 

J4]. 

The Zak transform is a unitary map of L2 (R) onto L2 ( Q), where Q = 

[O, 1] X [O, 1] is the unit cube in R x R. The Zak transform of 9mn has 

a particularly simple form, namely, Z9mn(t,w) = e2 71'i1nte271'inw Z9(t,w). It 

follows immediately from this formula that a Gabor system with ab = 1 is 

complete if and only if Z 9 =/ 0 a.e., is an orthonormal basis if and only if 

IZ 91 = 1 a.e., and is a frame if and only if IZ 91 is essentially constant, cf., 

Propsition 7.3.3. 

The value ab = 1 has been shown to be a critical value for Gabor systems, 

cf., [D1; Ri]. In particular, any Gabor system with ab> 1 must be incom­

plete, and any Gabor system with ab < 1 which is a frame must be inexact. 

We prove in Proposition 7 .3.3 that any Gabor system with ab = 1 which is 

a frame must be exact, whence {9mn} is a bounded unconditional basis for 

L2 (R). It has been shown that if a Gabor system with ab= 1 is a frame then 

the mother wavelet 9 cannot be well localized both in time and frequency, 
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in particular, lltg(t)ll2 ll-r.§("Y)ll2 = oo. This is the Balian-Low theorem, cf., 

[Bal; Bat; BHW; DI; DJ; Low]. In this thesis we present a simple proof 

of a related phenomenon, namely, that if g is the mother wavelet for a Gabor 

frame with ab = 1 then either g is discontinuous or has poor decay at infinity, 

precisely, g (/:. W( C0 , £ 1 
), the Wiener amalgam space on the real line with 

local C0 and global £ 1 components, cf., Corollary 7.5.3. 

In summary, Gabor frames with ab = 1 are easily analyzed using the Zak 

transform, but exhibit poor localization properties. It has been shown in 

[DGM] (where the idea of considering Gabor or affine systems which are 

frames instead of orthonormal bases was introduced) that the Balian-Low 

phenomenon does not occur if ab < 1, i.e., Gabor systems which are inexact 

frames can be generated by mother wavelets which are smooth (even infinitely 

differentiable) and have good decay ( even compact support). We mention 

also that the Balian-Low phenomena is essentially nonexistent in a discrete 

setting, i.e., when considering Gabor frames for discrete signals in L2 (Z), cf., 

[Hl]. 

d. Affine systems. An affine system has the form {',Omn}m,nEZ, where 

and the function ',O and numbers a > 1, b > 0 are fixed. Although affine 

systems will not be discussed in the main part of the thesis, we include them 

here for completeness and comparison. A classical example is the Haar sy1tem, 

formed by taking ',O = X[o,1; 2] - X[1; 2 ,1], a = 2, and b = 1. The Haar system 
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forms an orthonormal basis for L2(R). 

In [FJ], Frazier and Jawerth introduced affine systems which are not bases, 

but have properties similar to frames, i.e., any element in the space can be 

written in terms of the affine system elements. They proved that such affine 

frames can be constructed in a wide range of function spaces, including the 

Besov and Triebel-Lizorkin spaces. Moreover, the space which the function 

belongs to is characterized by the behavior of the coefficients needed to write 

the function in terms of the affine frame elements. 

Later, Daubechies, Grossmann, and Meyer used Hilbert space methods 

to construct affine frames in L2(R), cf., [DGM]. Daubechies, Mallat, and 

Meyer have recently shown that it is possible to find affine systems in L2 (R) 

which are orthonormal bases, and which are generated by functions which are 

smooth and localized ( unlike the Haar system). For example, it is possible to 

construct a mother wavelet c.p which generates an affine orthonormal basis and 

which is compactly supported and k ( < oo) times differentiable, or is infinitely 

supported, infinitely differentiable, and exponentially decaying both in time 

and frequency, or is infinitely differentiable and has a compactly supported 

Fourier transform, cf., [D2; Mal; Mel]. Thus affine systems do not display 

the Balian-Low phenomenon. The existence of affine orthonormal bases has 

led to the introduction of fast (order N) algorithms for signal analysis, cf., 

[D2; Mal]. These algorithms have applications in signal processing, image 

processing, edge detection, etc., e.g., [Gr; KMG]. The algorithms are fast 
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and easy to implement; we have used them at The MITRE Corporation for 

signal analysis. 

e. Feichtinger and Grochenig's unified theory. A Gabor system {9mn} can 

be viewed as the orbit of the function g under the Schroedinger represen­

tation of the Heisenberg group on a function space (see [HW) for details). 

An affine system { 'Pmn} can similarly be viewed as the orbit of cp under the 

translation/ dilation representation of the ax + b group on a function space. 

Thus Gabor and affine systems are structurally similar from the group repre­

sentation point of view. Feichtinger and Grochenig have developed a general 

wavelet theory from this group representation viewpoint, e.g., [F3; F5; F6; 

FG2; FG3; FG4). Roughly stated, given a general representation on a gen­

eral function space (satisfying certain conditions), they have shown that for 

a large class of mother wavelets g, any orbit {9mn} which is "dense enough" 

will induce representations of the functions in the function space in terms of 

the {9mn}- Moreover, the function space is characterized by the coefficients 

needed to represent functions in terms of the {9mn}• The techniques they 

developed to prove this general theory have also been applicable to other ar­

eas, in particular, to the problem of reconstructing a band-limited signal from 

irregularly sampled data, e.g., [FGl]. 

f. Outline. In Chapter 6 we present a survey of frames ( and a dual con­

cept known as sets of atoms) in Hilbert spaces, with some remarks on the 

extension of these concepts to Banach spaces. We discuss the representa-
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tions of elements in the space provided by frames, and characterize when the 

representations will be unique, i.e, when the frame is exact. We determine 

the exact relationship between frames and sets of atoms, showing that while 

atoms are more general, in practice the two concepts will be equivalent. We 

prove a general stability theorem for atoms in Banach spaces, showing that 

the elements of a set of atoms may be perturbed by a small amount without 

destroying the atomic properties. 

In Chapter 7 we discuss Gabor systems and the Zak transform. We show 

that Gabor systems with ab = l can be analyzed through the use of the Zak 

transform. We analyze the structure of the Zak transform, and prove that 

it is a continuous mapping of the Wiener amalgam space W( LP, L 1 ) into the 

Lebesgue space LP( Q). We use this to prove a variant of the Balian-Low 

theorem, that a mother wavelet for a Gabor frame with ab = l cannot be 

continuous and have good decay at infinity, in particular, g ~ W( Co, L 1 
). 

We conclude by discussing some questions similar to ones which arise from 

the application of the Zak transform to Gabor frames. In particular, we 

generalize slightly a result of Boas and Pollard which shows that if finitely 

many elements are removed from an orthonormal basis for L2 (X) then it is 

always possible to find a single function to multiply the remaining elements 

by so that the resulting sequence is complete. We show this need not be true 

if infinitely many elements are deleted, and discuss some related results by 

other authors. 
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CHAPTER 1 

NOTATION AND DEFINITIONS 

Section 1.1. Basic symbols. 

a. C is the set of complex numbers. The modulus or absolute value of 

z E C is denoted by Jzl, the complex conjugate by z. 

R is the real line thought of as the time axis, and R is its dual group, the 

real line as the frequency axis. Rd is d-dimensional Euclidean space, the set 

of d-tuples of real numbers, and Rd is its dual group. 

Z is the set of integers, and zd the set of d-tuples of integers. 

b. An element :c E Rd is written in terms of its components as :,; -

( zi, ... , :,;d). Given a, b E Rd we define 

All other operations on elements of Rd are to be interpreted componentwise, 

including logical operations. For example, if a, b E Rd then 

a+b - ( a1 + b1, . .. , ad + bd), 

ab ( a1 b1, ... , adbd), 

a/b (a1/b1,.,,,ad/bd), 

ab - ( fl1 6.i) a1 , ••• ,ad , 
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cos a = (cosa1,,,. ,cos ad), 

a > b <=> ai > bi for j = 1, ... , d. 

An operation between a E Rd and c E R is treated by identifying c E R with 

( c, ... , c) E Rd, e.g., 

a + c ( a1 + c, . .. , ad + c ), 

c/a - (c/a1, ... ,c/ad), 

a > c <=> ai > c for j = 1, ... , d. 

c. The concatenation of a E Rd, b E R k is ( a, b) = ( a1, ... , ad, b1, ... , b1;) E 

Rd+k. 
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Section 1.2. Special sets. 

a. The coordinate axes, or more precisely, the coordinate hyper­

planes, in Rd are 

Ad= {xERd:II(x)=O}. 

b. The d-dimensional multiplicative group is 

under componentwise multiplication. The identity element of R~ is ( 1, ... , 1 ). 

c. The unit sphere in Rd is 

sd-1 - {x E Rd: lx l = 1}. 

d. The set of signs in Rd is 

{ u E Rd : u i = ± 1 for j = 1, ... , d}. 

e. If EC Rd then 

E+ E+ - {x E E: x > O}. 

f. A rectangle in Rd is a rectangular box whose sides are parallel to 

the coordinate axes. Given a, b E Rd with a s; b, the open rectangle 

determined by a, b is 

d 

( a, b) IT(aj,bj) {x E Rd: a< x < b}. 
j==l 
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We similarly define the closed rectangle [a, b] and the half-open rectangles 

[ a, b) and ( a, bJ. The side lengths of any such rectangle are the components 

of the d-tuple b - a. We allow a or b to be scalars, identifying a E R with 

(a, ... , a) E Rd. For example, [O, b) is the rectangle with one vertex at the 

origin and the other at b. If both a and b are scalars then some dimensional 

confusion could result; however, the dimension should always be clear from 

context. For example, [O, 1] is a cube in Rd for any d. 

Given T E Rt we define 

[-T,T]. 
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Section 1.3. Functions. 

a. The characteristic function of a set Eis XE(x) = { l, 
o, 

{ 
1, if X = y, 

The Kronecker delta is Dzy = 
0, if X =F y. 

if XE E, 

if X ¢ E. 

b. A real-valued function f on a set Eis positive if f(t) > 0 fort EE. It 

is nonnegative if f(t) 2: 0 fort EE. 

c. A function f:Rd---+ C is P-periodic, where PE Rd, if f(t+P) = J(t) 

d. A function f:Rd---+ C is symmetric if f(t) = f(-t) fort E Rd, radial 

if J(s) = f(t) whenever isl = !ti, and even if J(ut) = f(t) fort E Rd and 

u E nd. These three notions are equivalent if d = 1 but not if d > 1. Every 

radial function is even, and every even function is symmetric. If d > 1 then 

the function f ( t) = I II( t) I is even but not radial, and f ( t) = sign( t 1 ) • sign( t2) 

is symmetric but not even. 

e. A function f: Rd ---+ C is rectangular if there exist functions Ji: R---+ C 

such that 
d 

J(t) II 1;(t1) 
j=l 

f. A real-valued function f is (rectangularly) decreasing on a set EC Rd 

if givens, t E E, 

s < t => f(s) 2: J(t). 

In other words, f is decreasing in each component. f is strictly decreasing 

if f(s) > f(t) when s < t. We similarly define increasing and strictly 

32 

~I 
~: 
'I' 

I • 
JI 

Ji! 
-· 



,, 

increasing. 

g. Given a real-valued function f on Ri, its least decreasing majorant 

f* is 

J*(t) = sup f(s). 
s>t 

Its greatest decreasing minorant f* is 

Clearly f* ~ f ::; J*, and f is decreasing if and only if f = f* = f*• If f is 

rectangular then f*(t) = IT~ f/(t;) and f*(t) = rr: J;*(t;). 

h. The following function spaces are defined specifically for functions on 

Rd; other function spaces are defined in Section 1.7. Given k E zd with k ~ 0 
I 
I 

we define J .. 

C(Rd) {f : f is continuous}, 

Cc(Rd) - {f E C(Rd) : supp(!) is compact}, 

where 

C00 (Rd) and C~(Rd) are defined analogously. The Schwartz space of 

rapidly decreasing functions is 

S(Rd) = {! E C 00(Rd): sup IIT(tk)8af(t)1 < 00 for k,a E zd,k,a ~ o}. 
tER4 
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The space of tempered distributions, denoted S'(Rd), is the topological 

dual of S. 
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Section 1.4. Convergence. 

Given a normed linear space X and a sequence {xn}nez+ of elements of 

X, we say that the series E Xn converges to x E X, and write E Xn = x, 

if SN -. x, where SN = E:=I Xn- The series converges unconditionally if 

E Xt3(n) converges for every permutation /3 of Z+. It converges absolutely 

if E llxn/1 < oo. Absolute convergence implies unconditional convergence. If 

X is finite-dimensional, the converse is also true. 

LEMMA 1.4.1. Given a no1·med linear space X, the following statements are 

equivalent. 

a. X is complete. 

b. If {xn}nEZ+ C X and :E llxnll < oo then E Xn converges in X. 

LEMMA 1.4.2 [S]. Given a sequence {xn}nEZ+ m a Banach space X, the 

following statements are equivalent. 

a. E Xn converges unconditionally. 

b. x = limF EneF Xn exists, where the limit is with respect to the net 

of finite subsets of Z+ ordered by inclusion. In other words, for every 

e > 0 there is a finite set G C Z+ such that llx - EneF xnll < e for 

every finite F C Z+ with F :::> G. 

c. For each e > 0 there is an N E Z+ such that for each finite F C Z+ 

with min(F) > N we have II EneF xnll < e, 

d. E Xni converges fo1· every increasing sequence O < n1 < n 2 < .... 
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e. ~ O"n:Z:n converges for every choice of signs O"n = ±1. 

f. E CnXn converges for every bounded sequence of scalars {en}, 

In ca.se these hold, E Xf3(n) = E Xn for every permutation /3 of Z+. 

LEMMA 1.4.3. Given a Banach space X a.nd a sequence {xn}nEZ+ C X . 

a. If x = E Xn converges then !!xii $ E llxnll $ oo. 

b. If E llxnll < oo then x = E Xn converges unconditionally. 

PROOF: a. Given e > O, there exists by definition an N > 0 such that 

!Ix - E~ xnll $ e. Therefore, 

N N N CXl 

llxll $ llx - L :Z:nll + IIL :Z:nll < e + L llxnll < e + L 11:z:nll• 
1 1 1 1 

Letting e -+ 0 gives the result. 

b. Follows immediately from the triangle inequality and Lemma 1.4.2. I 
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Section 1.5. Operators. 

a. Assume X and Y are Banach spaces, and that S: X--+ Y. 

Sis linear if S(ax +by)= aSx + bSy for x, y EX and a, b EC. 

S is injective if Sx =f. Sy whenever x =f. y. 

The range of Sis Range(S) = {Sx: x EX}. 

S is surjective if Range( S) = Y. 

S is bijective if it is both injective and surjective. 

The norm of S is IJSII = sup {1/SxllY : x EX, llxllx = I}. 

S is bounded if I/SIi < oo. A linear operator is bounded if and only if it 

is continuous, i.e., if Xn --+ x implies Sxn --+ Sx. 

The adjoint of S is the unique operator S': Y' --+ X' such that (Sx, y') = 

(x,S'y') for all x EX and y' E Y', where X', Y' are the Banach space duals 

of X, Y, respectively. 

S is invertible, or a topological isomorphism, if S is linear, bijective, 

continuous, and s-1
: Y --+ X is continuous. 

Sis an isometry if //Sxlly = /Ix/Ix for all x EX. 

S is unitary if it is a linear bijective isometry. 

L(X, Y) = {S:X--+ Y: Sis linear and continuous}. 

L(X) = L(X,X). 

b. Assume H is a Hilbert space and S, T: H ---+ H. 

S is self-adjoint if (Sx, y) = (x, Sy) for x, y E H. 

S is positive, denoted S ~ O, if (Sx, x) > 0 for x E H. All positive 
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operators are self-adjoint. 

S ~ T if S - T ~ o. 

c. For functions f on Rd we define the following operators. 

Translation: 

Modulation: 

Dilation: 

Taf(t) - f(t - a), 

Eaf(t) - e2wia•t f(t), 

Daf(t) - f(t/a), 

for a E Rd, 

for a E Rd, 

for a ER~. 

We also use the symbol Ea to refer to the exponential function Ea(t) = 

e2wia•t, where a, t E Rd. 
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Section 1.6. Topological groups. 

Although some sections of this thesis are written in terms of abstract topo­

logical groups, in practice we use only the additive and multiplicative groups 

on Rd. 

a. The set Rd is a topological group under componentwise addition, with 

Haar measure equaling Lebesgue measure dt. The set Rd will always be 

assumed to have this operation and measure. The group translation operator 

is ordinary translation: T0 f(t) = f(t - a). The measure of a set EC Rd with 

respect to Lebesgue measure is denoted by IEI, 

The sets R~ and Ri are topological groups under componentwise multi­

plication, with Haar measure dt/lII(t)I, The sets R~ and Ri will always be 

assumed to have this operation and measure. The group translation operator 

for these groups is dilation: D0 f(t) = f(t/a). The measure of a set EC R~ 

with respect to this Haar measure is denoted by IEI, 

Integrals with unspecified limits are assumed to be over Rd with respect to 

Lebesgue measure dt. 

b. We point out the following facts about the multiplicative group R~. 

Compact sets in R~ are bounded away from both oo and the coordinate 

axes. A connected compact set is entirely contained in one quadrant of R~. 

Haar measure dt/lII(t)I is dilation invariant. 

Given EC R~, IEI .. = 0 if and only if IEI = 0. Therefore the term almo8t 

everywhere (a.e.) has the same meaning in the additive and multiplicative 
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groups. To see this, assume EC R: with jEI = 0 is compact and contained 

in one quadrant of Rd, say Ri. Then E C [ a, b] C Ri, so 

f dt 1 / 
jEj. = JE IIT(t)l ~ IIT(a)I JE dt = O. 

The general case follows since R: is u-finite, and the converse is similar. 
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Section 1. 7. Function spaces. 

Let G be a u-finite, locally compact group with left Haar measure dx. A 

positive function w on G, i.e., w: G ---+ R+, is a weight on G. In this thesis, 

all functions defined on topological groups or measure spaces are assumed to 

be measurable. 

a. Given 1 < p < oo and a weight w on G, we define the weighted 

LP-space 

Lt(G) - {/: G---+ C: llfl!L~(G) < oo}, 

where 

{ 
(11/(x)IP w(x) dx) I/p, if 1 $ p < oo, 

11/IIL~(G) = a 
ess sup 1/(x)I w(x), if p = oo. 

:i:EG 

If w = 1 then we write LP ( G) = Li ( G). When G is understood we write 

Lt or LP. We let II · IIP = II · JILP. When G is countable and dx is counting 

measure we write ft( G) instead of Lt( G). 

Lt( G) is a Banach space for 1 $ p $ oo. The dual index to p is p' = 

p/(p -1), i.e.,½+;, = 1. The dual weight tow is w' = w 1
-P'. We have 

I 

(Lt)'= L~, for 1 ~ p < oo, where the prime denotes the Banach space dual 

and the duality is defined by 

(f,g) = Lf(x)g(x)dx 

) 
p' 2 for f E Lt(G , g E Lw,(G). Note that L (G) is a Hilbert space under this 

inner product. 
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b. We define the following additional spaces of functions on G. 

Lfoc(G) - {i: G --t C: i · XK E LP(G), all compact KC G}, 

C(G) - {i: G --t C : i is continuous}, 

Cc(G) - {i E C( G) : supp(!) is compact}, 

Cb(G) {i E C( G) : i is bounded}, 

Co(G) - {i E C( G) : i vanishes at infinity}, 

where vanishing at infinity means that for each E: > 0 there exists a compact 

KC G such that li(x)I < E: for all x (J. K. 

(Cb(G), 11 · lloo) and (Co(G), II· lloo) are Banach spaces; Cc(G) is dense in 

(LP( G), II • lip) for 1 $ p < oo, and in ( Co( G), II · lloo), 

c. A Banach function space, or BF-space, on G is a Banach space B 

continuously embedded into Lloc(G), i.e., for each compact KC G there is a 

CK > 0 such that Iii· XKIIL1(G) S CK lli!IB for each i E B. 

A BF-space B is solid if given i, g E B with Iii s; IYI a.e. we have 

llillB $ IIYIIB• The spaces Lt(G) and Co(G) are solid. Lt(G) possesses the 

stronger property that if i E Lf
0
J G) and g E B = L~( G) with Iii $ Jgl 

a.e. then i E B and lli llB $ IIYIIB- Co(G) need not satisfy this, e.g., take 

G=Rd. 

d. Given a E G, the left and right group translation operators are 

and 

e. Let B be a Banach function space on G. 
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B is closed under left translations if La(B) CB for each a E G. 

B is left translation invariant if it is closed under left translations and 

La: B --+ B is continuous for each a E G. If each La is an isometry then B is 

left translation isometric. 

Translation is strongly continuous in B if lima--+b \\Laf - Lbfl\B = 0 for 

all f E Band b E G, where the limit is taken in the group topology sense, i.e., 

for each e; > 0 there is a neighborhood U of b such that \\Laf - Lb/1\B < e: 

for a E U, cf., Section 1.9a. 

B is left homogeneous if it is left translation isometric and translation is 

strongly continuous in B. 

B is a left Segal algebra if it is left homogeneous and is dense in L 1 ( G) 

in the L 1-norm. 

Similar definitions are made with right in place of left. If the term left or 

right is omitted, it is assumed that both hold, for example, if G is abelian. 

f. The following inclusions hold for fP. If O < p ~ q ~ oo then fP C fq, 

with II · \\tP ~ II · \\tq • 

For O < p < 1, fP is not a Banach space, but is a complete metric space 

with distance defined by d(f,g) = \If - gl\~. The triangle inequality for this 

distance is equivalent to the estimate 

g. If EC G has finite measure and 1 ~ p ~ q < oo then 
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This also holds for 1 :S p < q = oo if the right-hand side is replaced by 

ess suptEE lf(t)I- Equivalently, 

for all 1 :Sp '.Sq '.S oo, with the interpretation 1/oo = 0. 
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Section 1.8. The Fourier transform. 

a. The Fourier transform of a function f E L1 (Rd) is 

}(-r) = J f(t) e-21ri-,•t dt, 

defined for "Y E Rd. The inverse Fourier transform is 

](-r) = f(--y) = jJ(t)e21ri-,-tdt. 

The Fourier transform of J E L2 (Rd) is J = limn-oo (J • XR,. )J\, where 

the limit is in the L2-norm. 

b. The Plancherel formula is IIJIIL2(a.t) = IVIIL2(:fl..t) = II/IIL2(:fl..t)• 

The Parseval formula is (f,g) = (f,g) = (/,g), where(·,•) is the L2(Rd) 

inner product. 

The inversion formula is f = JJ\V = rJ\ for f E L2 (Rd). 

If f E S(Rd) then we have the Poisson summation formula 

L f(k) - L f(k). 
kEZ.t kEZ.t 

c. We have the formulas 

and 
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Section 1.9. Group representations. 

Let G be a locally compact group and X a Banach space. 

a. A representation of G on Xis a homomorphism of G into L(X), i.e., 

a mapping U: G--+ L(X) such that 

for x,y E G. 

U is unitary if each Uz: X --+ X is a unitary operator. 

U is strongly continuous if limz-+y Uz = Uy, where the limit is taken in 

the strong operator topology. That is, 

for all / EX, where this limit is in the group topology. 

b. If X = H, a Hilbert space, then we make the following additional 

definitions. 

A element g EH is admissible if fa l(Uzg,g}l 2 dx < oo. 

g is cyclic if span{Uzg }zeG is dense in H. 

U is square-integrable if there exists an admissible g E H\{0}. 

U is irreducible if every g E H\{O} is cyclic. 

c. The following result is well-known, e.g., [GMP]. 

PROPOSITION 1.9.1. If U is a square-integrable and irreducible representa­

tion of a locally compact group G on a Hilbert space H then there exists a 
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unique self-adjoint positive operator C: Domain(C) ~ H such that 

a. Domain{ C) = {9 E H : 9 is admissible}, 

b. given any / 1, /2 E H and any admissible 91, 92 E H, 

Moreover, if G is unimodular then C is a multiple of the identity. 

Setting Ji = /2 = 91 = 92 = 9 in Proposition 1.9.1, we obtain 

Setting Ji = /2 = f and 91 = 92 = 9, we obtain 
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CHAPTER 2 

WIENER AMALGAM SPACES 

In this chapter we discuss the far-reaching generalization of amalgam spaces 

derived by Feichtinger, e.g., [F2; F8]. Given Banach function spaces B, C 

on a locally compact group G, satisfying certain conditions, he defined spaces 

W(B, C) of distributions which are, roughly speaking, locally in Bin globally 

in 0. The space W(LP(R),Lq(R)) coincides with the standard amalgam 

space defined in (0.1.1). While each W(B, C) can be described in terms 

of a discrete-type norm like (0.1.1), the fundamental norm describing the 

local/global properties is a continuous-type norm (cf., Sections 2.2 and 2.4). 

These equivalent continuous and discrete norms provide flexibility in using 

the W(B, C) in applications. 

Feichtinger calls the spaces W(B, C) Wiener-type spaces; following a sug­

gestion of J. Benedetto, and in order to promote the link between Feichtinger's 

generalization and amalgams occuring previously in the literature, we call 

them Wiener amalgam spaces. 

Wiener amalgam spaces lie at the heart of many of the main results of 

this thesis, especially those in Part III (Generalized Harmonic Analysis). In 

those chapters, we use the Wiener amalgam spaces W(LP(R:), Lq(R:)), on 

the multiplicative d-dimensional group R:. It is the discrete-type norms on 

this space which provide the machinery for our major results. Amalgams play 
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a smaller, but still important role in Part IV (Wavelet Theory). There we use 

the standard amalgam spaces W(LP(Rd),Lq(Rd)) on the additive group Rd. 

The purpose of this chapter is to review fundamental facts about the Wiener 

amalgams W(B, C). As noted above, the main results in this thesis use only 

the cases B = LP(G), C •= Lq(G); some minor results use B = L~(G) or 

C = 0 0 ( G). We therefore present the Feichtinger theory only for the spaces 

W(L!(G),Li(G)). This results in a considerable technical simplification of 

the general W(B, C) theory. This chapter can therefore be regarded as an 

elementary introduction to the general theory presented in [F8]. 

The results in this chapter are known; we have collected results and proofs 

from many sources, including [Fl-F8; FG; Ho; FS; Wa] and others. The 

credit for this chapter therefore belongs primarily to Feichtinger and secon­

darily to others; we have synthesized their results into a single expository 

chapter. 

We now outline this chapter by sections. 

In Section 2.1 we characterize those weights w for which the weighted LP 

space Lt( G) is translation invariant. 

Section 2.2 contains the basic definitions of the Wiener amalgam spaces in 

terms of continuous-type norms, and proofs of fundamental properties such 

as completeness and translation invariance. 

In Section 2.3 we determine various inclusion relations between the spaces 

W(L~(G), Li(G)). 
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In Section 2.4 we derive equivalent discrete norms for Wiener amalgam 

spaces. These norms are the ones which will be used in the proofs of the 

major results in Parts III and IV. 

Finally, in Section 2.5 we prove duality relationships between the amalgam 

spaces. 

We assume throughout this chapter that G is a u-fi.nite, locally compact 

group. Since in later chapters we use only G = Rd or G = R~, we assume for 

simplicity that G is unimodular, i.e., left and right Haar measure coincide. 

We denote this Haar measure by dz, the identity element bye, the left group 

translation operator by Laf(z) = /(a-1 z), and the right group translation 

operator by Raf(z) = /(za-1 ), cf., Section 1.7. The measure of a set ECG 

with respect to Haar measure is denoted by !El. A positive function w: G-+ 

R+ is called a weight. 
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Section 2.1. Moderate weights. 

In this section we characterize the class of weights w for which the Banach 

function space Lt( G) is translation invariant. The results in this section are 

known. In particular, the proofs given here are extensions to locally compact 

groups of Walnut's proofs on the additive group Rd (Wa]. See also the original 

results in [Ed; Gau]. 

DEFINITION 2 .1.1. a. A weight m: G ---+ R+ is submultiplicative if m( e) = 

1 and m(xy) ~ m(x)m(y) for x, y E G. 

b. A weight w: G---+ R+ is right moderate if there exists a submultiplica­

tive function m such that w(xy) ~ w(x)m(y) for x, y E G. 

Corresponding definitions and theorems for left moderate weights are as­

sumed throughout this section. If the term left or right is omitted, it is 

assumed that both hold. 

PROPOSITION 2.1.2. If w is right moderate with associated submultiplicative 

function m then w(e)/m(x- 1 ) ~ w(x) ~ w(e)m(x) for all x E G. 

PROOF: We compute w(x) = w(ex) ~ w(e)m(x) and w(e) = w(xx-1 ) < 

PROPOSITION 2.1.3. Given wright moderate with associated submultiplica-

function m"". 
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b. If r < 0 then wr is right moderate with associated submultiplicative 

function mr, where m(x) = m(:z:-1 ). 

PROOF: Part a is clear, and therefore for part b we need only consider r = -1. 

That m is submultiplicative is also clear, and that w-1 is right moderate 

follows immediately from the computation 

THEOREM 2 .1.4. Submultiplicative functions are locally bounded. 

PROOF: Assume mis submultiplicative. We claim first that if mis bounded 

on any open neighborhood of the identity then it is bounded on every compact 

set. To see this, assume mis bounded on some open U containing e, and let 

K be a compact set. Then K C LJf x1cU for some z1, ... , :z:N E G. Let 

R = max{m(:z:k)}, If :z: E K then :z: = :z:,ey for some k and some y E U, so 

m(:z:) = m(:z:1cy) ~ m(xk)m(y) ~ Rllm · Xulloo• Therefore mis bounded on 

K, as claimed. 

Now suppose that m was unbounded on every open neighborhood of e. Let 

U be an open neighborhood of e with compact closure, such that U = u-1 • 

Since 

laU ~ UI = L IXau - Xul = IILaXu - Xullu(G) 

and left translation is strongly continuous in L 1 ( G), there exists a neighbor­

hood V of e such that 

(2.1.1) laU ~UI < ½IUI 
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for a EV. 

Now, for each N E Z+ there exists by assumption an z N E V such that 

m(xN) ~ N 2. Therefore, given x E G we have 

so either m(:z:Nx-1 ) >Nor m(x) ~ N. Defining 

AN = {x EU: m(x) ~ N}, 

we therefore have 

(2.1.2) 

since if y E U and y = XNX- 1 for some x E U\AN then m(x) < N, so 

m(y) = m(:z:Nz-1) ~ N, whence y E AN. Since 

and 

it follows that 

(2.1.3) 

X\Y:) X\Z => X n Z ::, X\Y 

xN (U\AN )- 1 nu 

:) XN(U\ANr 1 \(xNu-1 \U) 

XN (U\AN)-1 
\ (xNU\U) 

:) ZN (U\AN )-1 
\ (xNU AU). 
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Since XN E V we therefore have from (2.1.1), (2.1.2), and (2.1.3) that 

IANI > lxN (U\AN )-1 n UI 

> lxN (U\AN )-1 
\ (xNU L\. U)I 

> lxN(U\AN)-1
1 - lxNU L\.UI 

IU\ANI - lxNU L\.UI 

> IUI - IANI - ½IUI, 

whence 

IANI ~ ¼IUI. 

Since the sets AN are nested in U, this implies In ANI ~ ¼IUI > O. However 
' 

m is finite-valued, so nAN = 0, a contradiction. I 

COROLLARY 2.1.5. Every right moderate function is locally bounded. 

PROOF: Assume w was right moderate but unbounded on some compact set 

K, and fix any :z: E G. Let m be the submultiplicative function associated 

with w. By Theorem 2.1.4, mis locally bounded, so M = llm•Xz-1Klloo < 00 • 

Now, given R > 0 there exists y EK such that w(y) > RM. Therefore, 

RM < w(y) $ w(x)m(x-1 y) $ w(x)M. 

As x and R are arbitrary, this is a contradiction. I 

THEOREM 2.1.6. Given a positive w E L:0 c(G), the following statements are 

equivalent. 

a. w is right moderate. 
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b. Li(G) is closed under right translations for some (and therefore every) 

1 ::; p:::; 00. 

c. Li(G) is right translation invariant for some (and therefore every) 

1 ~ p:::; 00. 

d. For each compact K C G, 

A(K) 
w(:z:y) 

sup ( ) < oo. 
zEG,yEK W Z 

e. Given any compact set KC G there exists a constant B = B(K) such 

that 

sup w < B inf w 
zK zK 

for every :z: E G. 

f. Given any compact set K C G there exist constants C = C(K), D = 

D(K) such that 

Cw(y) < ( w(t)dt < Dw(y) 
fzK 

for al.l y E :z:K. 

g. Given any compact set KC G and given k EK there exist constants 

E = E(K,k), F = F(K,k) such that 

for al.l :z: E G. 

Ew(xk) < ( w(t)dt < Fw(xk) 
JzK 
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PROOF: a=> c. Assume w is right moderate with associated sub ult" Ii . 
Ill: 1p cative 

function m. Given 1 < p < oo, f E Yw, and a E G, we then have 

L lf(z)IPw(:z:a)dz 

< m(a) L lf(z)IPw(x) dz 

< m(a) llfllf,. • 
"' 

Thus Ra maps L~ into itself, and does so continuously, with IIRall < m(a)l/p_ 

The case p = oo is similar, with the result IIRall $ m(a). 

c => a. Assume that c holds, and fix 1 $ P < oo. For a E G define 

m(a) = IIRallP, Note that m(e) = IIIIIP = 1 and 

so m is submultiplicative. 

We show now that w is right moderate with mas associated submultiplica­

tive function. Fix any a E G and f E Yu,. Then 

$ m(a) II/lift 

= m(a) L 1/(:z:)IP w(x) d:z:. 
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Since this is true for every I E Lt, we have w( :z:a) $ w( :z:) m( a) for a.e. :z: E G , 

sow is moderate. The case p = oo is similar (set m(a) = IIRal!). 

b => c. Assume ~ is closed under right translations for some 1 $ p $ 
00

• 

Given a E G, assume In E Yw are such that In__. IE~ and Rain__. 
9 

E y 
1D 

as n __. oo. Then we can find a subsequence {/n•} where both convergences 

are pointwise a.e. Then Rain,. __. Raf, 9 pointwise a.e., whence Ra/= g a.e. 

Ra is therefore continuous by the closed graph theorem. 

a => d. Assume w is right moderate with associated submultiplicative 

function m. By Theorem 2.1.4 we have m E L:c, so if y EK, a compact set 

in G, and :z: E G then 

w(:z:y) $ w(x)m(y) < w(:z:) !Im· XKll(X)• 

Thus A(K) $ llm · XK\10() < oo. 

d => c. Assumed holds, and let K C G be compact. Given a E K and 

I E Lt( G), where 1 < p < oo, we have 

L 11(:z:)IP ~~i w(:z:)d:z: 

$_ A(K) L 11(:z:)jPw(:z:)dz 

- A(K) lllllti · 

Therefore Ra maps ~ into itself, and does so continuously, with IIRall < 

A(K) 1IP. The case p = oo is similar. 
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d => e. Assume d holds, and let K C G be a compact set and x any element 

of G. Set L = KU x-1
, and note that L is both compact and symmetric 

(i.e., L-1 = L). If y E xK then x- 1 y EK CL, so y-1 x EL. Hence, 

( ) w(xx-
1 y) ( ) ( ) 

w Y - w(x) w x < A(L)w x 

and 

( ) w(yy-l X) ( ) ( ) ( 
w x w(y) w y $ A L w y), 

so 

e => d. Assume e holds, and let K C G be compact. Let L :) K be 

compact, with e E L. Given x E Gandy EK we then have 

w(xy) < sup w < sup w < B(L) inf w < B(L)w(xe) 
zK zL zL 

B(L)w(x) 

since e E L. Therefore, A(K) $ B(L) < oo. 

e ⇒ f. Assume e holds, let K C G be compact, and let x be any element 

of G. Then 

1f1) s
2

uKp w ~ lxKI inf w $ 1 w $ lxKI sup w $ IKI B(K) inf w. 
zK zK zK zK 

g => e. Assume g holds, and let K C G be compact and x any element 

of G. Then L = K U x-1 u { e }, L' = LL, and L" = L' L' are all compact 

symmetric sets containing e. The symmetry implies that xL C yL' C xL" 
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and yL C xL' C yL" for y E xL. Therefore, 

< F(L",e) 

F(L" e) 
E(L':e) E(L',e) 

F(L",e) 1 f 
< E(L',e) w(x)}zL'w, 

F(L" e) 
so w(x) ~ E(L,,'e) w(y) for y E xL. Similarly, 

> _1 r w 
- w(y) }yL 

> E(L, e) F(L' ) 
F(L',e) ,e 

> E(L, e) 1 f 
F(L',e) w(x) JzL' w. 

Th ( ) E(L,e) ( ) .c L us w x ~ F(L' ,e) w y ior y E x , so 

sup w < sup w 
zK zL 

< F(L',e) w(x) 
E(L,e) 

F(L', e) F(L", e) . f < -----,----,- Ill W 
E(L,e)E(L',e) zL 

F(L', e) F(L", e) . < --"----- mf w. I 
E(L,e)E(L',e) zK 

PROPOSITION 2.1. 7. Every right moderate weight is equivalent to a continu­

ous right moderate weigl1t in the sense that if w is right moderate then there 

exists a continuous right moderate v and constants A, B > 0 such that 

Av(x) ~ w(x) ~ Bv(x) 
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for all z E G. 

PROOF: Assume w is right moderate, and let k E Oc(G) be any function 

such that k > 0 and JG k = 1. Let K ::) supp( k) be a compact symmetric 

neighborhood of e. Since w is locally bounded, we can define 

Clearly v is positive and continuous, and 

v(xy) = la w(t:cy)k(r1 )dt =::; m(y) la w(t:c)k(t-1 )dt = v(x)m(y), 

so v is right moderate. Also, 

v(x) - L w(t:i:) k(r 1
) dt 

< sup w • l k( t-1
) dt 

zK K 

< B(K) inf w 
zK 

< B(K)w(:c), 

where B(K) is as in Theorem 2.1.6e. Similarly, v(x) ~ B(Kt1 w(x), so we 

are done. I 
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Section 2.2. Definition and basic properties. 

In this section we define and derive basic properties of the spaces W ( B, C). 

Our proofs will hold when B, C are weighted £P spaces L{:,(G), where 1 ::::; 

p ::::; oo and w: G -----t R+· For these spaces, integrability (local and global) is 

the only defining factor. This simplifies the proofs from the general abstract 

case; we attempt to indicate what technical modifications are necessary to 

cover the general case. Note that £{:,( G) is solid in the sense of Section 1. 7 c, 

and is right translation invariant if and only if w is right moderate (Theorem 

2.1.6c). The primary space we are interested in other than the weighted £P 

spaces is C0 ( G), the continuous functions on G vanishing at infinity. 

With the weighted LP spaces as a model, we define 

B1oc {f: G -----t C: f · XK EB for every compact KC G}. 

REMARK 2.2.1. This definition is not the proper one to make if B has prop­

erties other than integrability, e.g., smoothness. For B = C0 (G) it would be 

appropriate to take 

B10 c {f E M(G) = Cc(G)': fcp EB for every cp E Cc(G)}, 

with corresponding technical difficulties added to the proofs. For the general 

case we would assume that there is a homogeneous Banach space A such that: 

a. A is continuously embedded into (Cb(G), II· lloo). 

b. A is a regular Banach algebra under pointwise multiplication. 

c. A is closed under complex conjugation. 
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d. B is continuously contained in Ac', where 

Ac = {f E A : supp(!) is compact}. 

e. A is a Banach module over B with respect to pointwise multiplication, 

i.e., if f E A and g E B then Jg EB with 1/fgl/B :$ llfllA ll91/B• 

Then we would define 

B1oc = {! E Ac': fcp EB for cp E Ac}, 

This can be shown to be independent of the choice of A. 

DEFINITION 2.2.2. Fix a compact set Q C G with nonempty interior. For 

f E B1oc and X E G define 

The Wiener amalgam space W(B,C) is 

W(B, C) = {! E B1oc: F1 EC}, 

with norm 

We refer to B as the local component and C as the global con1ponent of 

W(B,C). 

REMARK 2.2 .3 . For the general case, we would define 

F1(x) = inf {1/gl/B: g EB and gcp = fcp for cp E Ac with supp(cp) C xQ}, 

and again set /lf/lw(B,C) = I/F1//c. 

EXAMPLE 2.2.4. We compare W(L 00 ,L1 ) to W(C0 ,L1 ) . 

63 

' ; 

I . 
,• 



Since both L
00 

and Co are equipped with the L=-norm, W(L 00 , L1 ) and 

W(Co,L
1

) have the same norm. However, the definitions of (L00 )1oc and 

(Co)loc differ, so they are distinct spaces. In fact, 

W(Co,L
1

) = {/ E W(L00 ,L1 ): f is continuous}. 

THEOREM 2.2.5. a. W(B, C) is a Banach space. 

b. If C is solid and right translation invariant then W(B, C) is independent 

of the choice of Q, i.e., different choices of Q define the same space with 

equivalent norms. 

PROOF: a. That II· \\w(B,C) is a norm is clear, so we prove that W(B,C) is 

complete in this norm. Assume {fn}neZ+ C W(B, C) with}:: llfnllW(B,C) < 

oo. By Lemma 1.4.1 it suffices to prove that }:: fn converges to an element 

of W(B,C). Now,}:: llfn\\w(B,O) =}:: \\Ftn\lo and C is complete, so }::F/n 

must converge to an element of C. Therefore, 

for a.e. :c E G. Since B is also complete, 1: fn • Xzq must converge to an 

element 9z E B. Clearly 9:i: = g11 a.e. on xQ n yQ, so we can define a function 

g a.e. by g(t) = 9:i:(t) fort E xQ, i.e., g • Xzq = 9z· Applying Lemma 1.4.3 

twice, we have 

\\g\\w(B,O) - 111\g · Xzq IIB lie 
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< LIi llfn • XzQIIB lie 

- L llfnllW(B,C) 

< oo, 

so g E W(B, C). A similar computation shows 

N 

llo - ~ fnllw(B,c)-+ O as N-+ oo, 

so Lin converges in W(B,C) tog. Therefore W(B,O) is complete. 

b. Assume that O is solid and right translation invariant, and let Q
1

, q
2 

be 

two compact subsets of G with nonempty interiors. Then we can find points 

:z: 1 , ••• , :z: N E G such that 

For :z: E G we therefore have 

Ff2(:z:) - II/· XzQ2 lls 

< Iii· Xuzzr.Q1 lls 
N 

< IIJ . ~ Xzzr.Qi 11B 

N 

< L llf •Xzzr.Q1IIB 
l 

N 

- L F?l ( :Z::Z:Js) 

l 

N 

- L (Rz;1Ff1 )(:z:). 
1 
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Since both FJ 1 and :E R'J)-;;1FJ1 are elements of C and C is solid, we have 

N 

IIFJ2 llo $ II~ Rz-;;1FJ1 Ila 
1 

N 

< ~ IIRz; 1 FJ
1 lie 

1 

N 

$ ~ M IIFJ
1 lie 

1 

- MN IIFJ
1 lie, 

where M = max{IIRz;1ll0} < oo by the translation invariance of C. A 

symmetric argument gives the reverse inequality and completes the proof. I 

REMARK 2.2.6. General amalgams W(B, C) can be shown to be also inde­

pendent of the choice of Banach algebra A ( cf., Remark 2.2.1 ). 

We assume from now onwards that C is solid and right translation invariant. 

LEMMA 2.2.7. LaXE = XaE, RaXE = XEa• 

PROOF: 

The second statement is similar. I 

PROPOSITION 2.2.8. If B and C are left translation invariant then so is 

W(B, C), with 

If B, Care left translation isometric then so is W(B,C). 
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PROOF: Assume f E W(B, C). As B is left translation invari .. T'Ot h 
-u we ave 

La.f EB, so FLa.l EC. Now, 

(2.2.1) 

- IILa(f • Xa.-1.q)lls 

< IILallB llf · Xa.-iaqllB 

= IILcallB Fi(a-1 :z:) 

Since C is left translation invariant, LaFJ E C. Therefore, since C is solid 

IILcafllw(B,C) = IIFLa.Jllc 

$ II LallB IILaF1llc 

The translation isometric case is similar. I 

' 

PROPOSITION 2.2.9. Ifleft translation is strongly continuous in B, C is trans­

lation invariant, and Cc( G) is dense in C, then left translation is strongly 

continuous in W(B, C). 

PROOF: Fix f E W(B,C) and e > 0. Then there exists a k E Cc(G) such 

that IIF1 • (1 - k)llc < e. Let K = supp(k). For a E G We then have 

(2.2.2) 
IILcaFJ • (1 - k)llc 

< IILa(F1 · (1 - k))llc 

+ ll(LaFJ) · (1 - k) - La(FJ • (1- k))llo 
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< IILallc IIF1 · (1 - k)llc 

+ IILallc IIF1 · La-1(1- k) - Fi• (1- k)llc 

::; £ IILallc + IILallc IIF1 · (La-ik - k)llc 

::; £ IILa lie + II La lie IIF1llc l!La-1k - kll 00 , 

where the last inequality follows from the fact that C is solid and both F 
I 

and Fi . (L11 -1k - k) E C. Since IILa-ik - klloo ----1- 0 as a ----1- e, we can find a 

neighborhood U of e ( with compact closure) such that 

(2.2.3) 

for all a E U. Now, IILallB and IILallc are locally bounded as functions of a 

since they are submultiplicative functions on G (Theorem 2.1.4). Therefore, 

M = supaEU IILallB, IILallc < oo, which, combined with (2.2.2) and (2.2.3), 

gives 

(2.2.4) 

for a E U. Combining (2.2.4) with (2.2.1), we have 

IIFL .. J · (1 - k)llc ::; IILallB IILaFJ · (1 - k)llc 

::; £ M 2 (1 + IIF1ll0) 

for a E U. Since FL.J-J ~ FLa.l + Fi and supp(k) = K, we therefore have 

for a EU that 
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! • 

IILaf - fllw(B,C) 

< IIFL,.f-1 · (1 - k)llc + IIFL.f-1 · kilo 

< IIFL,.f · (1 - k)llc + IIF1 · (1 - k)llc + llkllc sup FL,.f-1(x) 
zEK 

< Re + e + llkllc sup ll(Laf - f) · XzqllB• 
zEK 

The result now follows from the fact that K is compact and left translation 

is strongly continuous in B. I 

COROLLARY 2.2.10. If Bis left homogeneous, C is translation isometric, and 

Cc(G) is dense in C, then W(B,C) is left homogeneous. 

EXAMPLE 2.2.11. W(B,LP(G)) is left homogeneous for 1::; p < oo. 
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Section 2.3. Inclusion relations. 

In this section we derive some inclusion relations between the amalgams 

W(L~, Li). We assume throughout the remainder ofthis chapter that v, ware 

weights on G with wright moderate (so, in particular, Li is right translation 

invariant by Theorem 2.1.6). 

Note that 

This expression is sometimes used as the defining norm for Lt, rather than 

L!:,,,, as we use it. Some of the results in this section would be easier to 

state if we adopted this alternate definition of~, but it will be convenient 

in the main part of the thesis to keep the w's on the "outside". Recall from 

Proposition 2.1.3 that wP is right moderate if and only if w is. 

For simplicity and consistency in dealing with the case p = oo we let w 00 = 

A moderate weight can be transferred between the local and global com­

ponents, as follows. 

PROPOSITION 2.3.1. Given 1 Sp, q S oo, 

PROOF: Assume 1 S p, q < oo. Since w is right moderate, there exists by 

Theorem 2.1.6e a constant B such that B-1w(t) S w(a::) S Bw(t) for all 
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x E G a.nd t E zQ. Therefore, 

ll/llw(L1'p,L9 
9 ) 1111/ •XzqllLPP IIL" 

11 W II w9 

- (L (t IJ(t)v(t)I' dt) q/p w(~)• d~) 11
' 

< (L (/.Q If ( t) v( t) B w(t) 1· dt r· u r· 
The opposite inequality, and the rema.ining cases, are similar. I 

When the local and global components are comparable, we have the follow-

mg. 

PROPOSITION 2.3.2. Given 1 ~ p ~ co, 

W(~, L~) = L~10 , 

with equivalence of norms. If e E Q and IQI = 1 then 

II· llw(L!,LP) - 11 • IILt• 

PROOF: Without loss of generality assume e E Q. For 1 < p < co we have 

11/ll~(LP LP) = f f lf(t)JPv(t)dt w(x)dx 
v, '" Ja Jzq 

= LLIJ(t)jPTJ(t)Xzq(t)w(z)dtdx 

- L 1/(t)jP v(t) L w(x) X,q-1(:i:) dx dt. 
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Since w is right moderate, there exist by Theorem 2.1.6£ constants C, D > 
0 

such that 

Cw(t) $ f w(x)dx $ Dw(t) 
ltq- 1 

fort E G (note that if w = 1 then C = D = IQ-1 I = !QI). Thus, 

llfll~(L! ,L!,) $ D l lf(t)IP v(t) w(t) dt = D llfllf:,.,. 

The opposite inequality, and the case p = oo, are similar. I 

One simple inclusion relation is the following. 

PROPOSITION 2.3.3. Assume Bis solid. If 1 $ p < oo and w E L 1(G), or jf 

p = oo and w E L 00(G), then W(B,~) :J B. 

PROOF: Assume 1 $ p < oo and w E L1
• If f EB then 

(L II!· x.qll';, w(x)d,:) •I• 

< (L II/II':. w( x) dx )'1' 
llfllB llwl!L 1 • 

The remaining case is similar. I 

The standard inclusion relations for LP spaces on compact sets imply in­

clusion relations with respect to the local components of Wiener spaces. 

PROPOSITION 2.3.4. Given 1 $ p $ q $ oo, 

W(L!P, C) :) W(L!11 l C) 
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r ' J J 

with 

1 1 

II· llw(LJJp,C) ~ !QI,-, II· llw(L' C)· 
V ~• 

PROOF: From Section 1.7g, 

The result now follows from the solidity of C. I 

The following lemma is an integral version of Minkowski's inequality, e.g., 

[WZ, p. 143]. 

LEMMA 2.3.5. Given measure spaces (X,µ) and(Y,11), and given 1 ~ p < oo. 

If Fis measurable and nonnegative on Xx Y then 

([ (L F( z, y) dµ.( z >)' dv(y) )"' 5 L ([ F( z, y 'f dv(y >)"' dµ.( z ). 

PROPOSITION 2.3.6. 

a. Ill ~ p < q < oo then W(L!.,L~,) :J L(vw)• U L(vw)•· 

b. Ill 5 q ~ p 5 oo then W(L!.,L~,) C L(vw)11 nL(vw)•· 

PROOF: Assume 1 ~ p ~ q < oo. By Propositions 2.3.2 and 2.3.4, 

llfllw(LJJ L' ) ~ IQI¼-¼ llfllwcL' L' ) ~ IQli-¼ llfllL• · v' 1 w' v•' w' (1110)9 

Thus W(L!JJ,L~,) :J L(vw)•· 
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' ) , 

For the second containment we use the Minkowski integral inequality. First, 

write 

(2.3.1) 

llfllwcLP p ,L'l q) 
II W 

(L (L lf(t)I' x.q(t)v(t)• dt) •I• w(x)• dx) •I• 

(L (L IF(x, t)l'v(t)• dt )"' w(x)• dx )" ', 

where 

F( x, t) = f(t) • X:i:q(t). 

As q/p 2:'. 1 we can apply Lemma 2.3.5, using the measuresµ= v(t)P dt and 

-v = w( x )q dx, to obtain 

11/ll~(L:,L:,) = (L (L IF(x, t)l'v(t)• dt)"' w(x)• dx )"' 

< L (L IF(x,t)l•·•l•w(x)• dx )''' v(t)" dt 

L (L lf(;)I' X.q(t) w(x )• dx) •I• v(t)• di 

L lf(t)I' (L X,q-,(x)w(x)• dx )''' v(t)" dt. 

Without loss of generality, assume e E Q. Then since wq is right moderate, 

there exist by Theorem 2.1.6g constants C, D > 0 such that 

for all t E G. Thus, 

as desired. The remaining cases are similar, with 1 :S: q :S: p < oo following 
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by applying the Minkowski integral inequality to (2.3.1), but in the opposite 

direction. I 

The following theorem, a Holder's inequality for Wiener amalgams, can be 

extended to a duality theorem. However, we delay consideration of duality 

until after we develop equivalent discrete norms, cf., Theorem 2.5.1. 

PROPOSITION 2.3.7. Given 1 ~ p, q ~ oo, 

where l + ..!.. = l + .!. = 1 v' = v 1-P
1

, and w' = w 1-q' 
p p' q q' ' 

, , 
PROOF: Since (L~)' = L!, and (L~)' = L~,, we have 

REMARK 2.3.8. From Proposition 2.3.2, llfYllwcL1,L1) ~ ll!YIIL1, and is 

equality if we chose Q so that e E Q and IQI = 1. 
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Section 2.4. Discrete norms. 

In this section we derive equivalent discrete-type norms for the Wiener 

amalgam spaces, analogous to the equivalent norms (0.1.1) for the amalgams 

We continue to assume throughout this section that C is solid and right 

translation invariant. 

DEFINITION 2.4.1. A set of functions {'1h}ieJ on G is a bounded uniform 

partition of unity, or BUPU, if 

a. LV'i = 1, 

b. sup !!V'ill= < oo, 

c. there exists a compact set UC G (with nonempty interior) and points 

Yi E G such that supp(-ipi) C YiU for all i, 

d. for each compact KC G, 

sup #{i: x E YiK} = sup #{j: YiK n y3K -:p 0} < oo. 
zEG i 

We say that the BUPU has size U, and call {yi} the associated points. 

It has been shown in [F7] that it is possible to find BUPU's of any pre-

scribed size in any homogeneous Banach space. 

THEOREM 2.4.2. If { v,i} is a BUPU of size U with associated points {yi}, 

then 

(2.4.1) 

for every compact set V :) U. 
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PROOF: For simplicity, denote the right-side norm of (2.4.1) by II• llv, This 

clearly is a norm, so we first show that it is independent of V in the sense 

that different choices of V give equivalent norms. Fix f, and let V1 , V2 :::> U 

be compact sets with nonempty interiors. Then we can find :z: 1 , ••• , XN such 

that 

Defining G v = 'E II f"Pi II B X y; v, we therefore have for x E G that 

Gv2 (x) L llf"PillB x,uv,(x) 

< L llf"PillB Xu1liV1:i:,.(x) 
i 

N 

< L llf"P,IIB LX11,V1:i:,.(x) 
i k=l 
N 

= LL llf"Pi IIB X11, V1 ( xx; 1
) 

k=l i 

N 

- L Gv1(xx;1
) 

k=l 
N 

- L (Rz;iGvJ(x). 
k=l 

Since C is solid and right translation invariant, this implies 

ll!llv, IIGv, lie 
N 

< 11:E R:i:;iGv1 lie 
k=l 

N 

< L IIR:i:; 1 lie IIGv1 lie 
k = 1 
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= MNllfllvu 

where M = max { II Rz-1 11 e} < oo. A symmetric argument gives the reverse ,. 

inequality, so II • II is in fact independent of V. 

Now we show that the left- and right-hand sides of (2.4.1) are equivalent. 

Fix Q large enough that u-1 U C Q. If :c E YiU then Yi E :cU-1
, so YiU C 

where M = sup ll1Pi\l 00 < oo. Hence, 

Gu(:c) - I,: 11/"Pi IIB X1uu(z) 

I.: 1\/1/,i \IB 
{i:zEy;U} 

< #{i: :c E YiU}M llf · Xzql\B 

< Cu M \If· Xzql\B, 

where Cu= supzEG #{i: :c E YiU} < oo. Since C is solid, this implies 

(2.4.2) 11/llu = \\Guile ~ CuM 1111/ · Xzq\\B lie = CuM 11/llw(B,e)• 

To prove the opposite inequality, let V :::> Ube such that V:::, UQ- 1 • Given 

:c E G, define 

Mz {i: YiU n :cQ f= 0}. 
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If i E Mz then y,u = xq for some u E U and q E Q, so x = y,uq-1 E y, V. 

Therefore, 

iEM. 

iEM. 

iEM. 

~ 1:: llf,J,.IIB X11;v(x) 
i 

= Gv(x). 

Since C is solid, we therefore have 

(2.4.3) llfllw(B,c) = 11 llf · XzqllB lie ~ IIGvllc = llfllv-

From (2.4.2), (2.4.3), and the fact that II • llv is independent of V, we 

conclude that 11 • llv ~ 11 • llw(B,C)• I 

EXAMPLE 2.4.3. Assume {y.} and U are such that {y.U} is a partition of G. 

Then {X 11;u} is a BUPU of size U, so 

llfllw(L~ 1Lt) ~ II~ II!· Xv,ullL~ Xv,ullLP .. 
- (L IDIJ · x,,ullv. x.,u(xll' w(x) dx) ,,, 

- ( L, /.,)l · x.,ull1: w( x) dx )"' 

- ( L, II!· x.,ullii f..u w(x) dx )"', 

79 



where the interchange of summation and integration is justified by the fact 

that {yiU} is a partition of G. Since w is right moderate we have by Theorem 

2.1.6e, f that the values f,
11

u w are uniformly equivalent to the values of w at 

any point in Yiu or to its supremum or infimum on YiU. Thus, for example, 

where Zi E YiU is any set of fixed vectors, and w is the weight on the index 

set J defined by w(i) = w(z,). 

EXAMPLE 2.4.4. Set G = Rd, U = (0, 1] (the unit cube in R"), and Yn = n 

for n E zd. Then, by Example 2.4.3, the norm for W(.LP(R"), L'(R")) is 

equivalent to the discrete norm 

Thus W( LP(R ), L' (R)) is identical with the standard amalgam spaces defined 

in (0.1.1). 

EXAMPLE 2.4.5. "Dyadic amalgams" dyad(LP ,l'), considered by some au­

thors, are defined by the norms 

e.g., (FS]. The sets {±[2n, 2n+ 1]} form a dyadic partition of R., and are 

group translates in R. of the compact set [1, 2] since ±[2n, 2n+I] = ±2n •[l, 2]. 

However, the dyadic amalgam spaces are not Wiener amalgam spaces on the 
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multiplicative group R., because of the use of Lebesgue measure dt rather than 

the Haar measure dt/ltl for R.,. For example, by Example 2.4.3, a discrete 

IS 

llfllw.(L•,L•J ~ ( :E Iii· X±12•,2•+•1111.(a.J)''', 
nEZ,± 

where we recall that when dealing with the groups Rd and R: we use the 

notations 

and 

cf., (0.1.2) and (0.1.3). Since 

11 ltl 11
P u(t)IIL,ca.> - llullL,ca>, 

it follows that 

EXAMPLE 2.4.6. A d-dimensional discrete norm for the amalgam spaces 

W.,(LP,Lq) = W(V(R:),Lq(R:)) on the multiplicative group R: would be 

the following. Let G = R: and U = [I, 2] C R:. Recall the defintion fid == 

{-1, l}d, i.e., nd is the set of d-tuples of ±l's. Then {u2n[1, 2]}nezc1,o-enc1 is 

a partition of R:, where 2n = ( 2n1 , ••• , 2nd
) as usual. Therefore, 
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REMARK 2.4.7. In Example 2.4.3 we assumed that we could :find a BUPU 

{ 7/,i} such that the supports of the -,J,i were disjoint. This may not be possible, 

or even desirable, in general. However, we have by definition that the supports 

of any BUPU { 7/,i} do not overlap "too much", i.e., 

s~p #{j: I supp(-,J,i) n supp(-,J,i)I > O} < oo. 
I 

This allows us to prove that W(B,Li) has an equivalent discrete-type norm 

based on any BUPU (Theorem 2.4.11). 

DEFINTION 2.4.8. A family {EihEJ of subsets of a measure space (X, µ) has 

a bounded number of overlaps if 

K - sup #{j: µ(Ei n E;) > O} < oo . 
i 

We call K the maximum number of overlaps since no E;, can intersect 

more than K of the E;, Note that K = II I: XE; 110()• 

LEMMA 2.4.9. Given a measure space (X,µ) and a family {E;,}nEJ with 

maximum number of overlaps K. Then there is a finite partition { lr }~1 of 

J such that 

{2.4.4) i =/:- j E lr => µ(E;, n E;) = 0. 

PROOF: Let 1 1 be a maximal subset of J with respect to (2.4.4) for r = 1. 

Inductively define lr for r ~ 2 as a maximal subset of J \ U~-i J, having 

property (2.4.4). Suppose i E J \ Uf lr, Then given 1 $ r $ K, we have 
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i E J \ u;-1 J. and i rt. Jr. Since Jr is maximal in J \ u;-1 J. with respect to 

(2.4.4), JrU{i} cannot satisfy (2.4.4). That means there is ajr E Jr such that 

µ(Ei n E; .. ) > 0. Hence, for each l E {i,ii, ... ,jK} we have µ(Ei n Ez) > 0. 

However, the Jr are disjoint, so i,ii, ... ,jK are distinct, which contradicts 

the definition of K. Therefore J = LJf Jr. I 

PROPOSITION 2.4.10. Given a measure space (X,µ) and given 1 ::; p::; oo. 

Assume {fn}nEJ C LP(X, dµ) are nonnegative functions such that {supp(fn)} 

has a maximum of K overlaps. 

a. If 1 ::; p < oo then for each E.ni te set F C J we have 

(2.4.5) (L IIJnll:)l/p $ II L fnll $ Klfp' (L llfnll:)l/p• 
nEF nEF P nEF 

Therefore, I:llfnll~ < oo if and only ifI:fn converges in LP(X,dµ). In this 

case the convergence is unconditional, and we can replace F by Jin (2.4.5). 

b. If p = oo then for each E.nite set F C J we have 

(2.4.6) sup llfnlloo $ II L fnll $ K sup llfnlloo• 
nEF nEF oo nEF 

Therefore, sup llfnlloo < oo if and only if I:fn converges in L00 (X,dµ). In 

this case the convergence is unconditional, and we can replace F by J in 

(2.4.6). 

PROOF: We prove only a as bis similar. By Lemma 2.4.9, we can partitition J 

as J = LJf Jr, with the property that µ(supp(/m) n supp(/n)) = 0 whenever 

m =J- n E Jr. Recall now that for any Cn ~ 0 we have 

(t Cnp) l/p $ t Cn $ K'fp' ( t c.• )'1'. 
1 1 1 
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Therefore 
' 

11~,-11: = 11~,-rdµ 
= / /t L f n/p dµ 

j X r=l nEFnJ. 

~ x•I•' t Ix I L ,.rdµ 
r=l nEFnJ. 

N 

= KPIP' L L L I/nip dµ 
r=l nEFnJ,,. 

= KPIP' L //fn/1:, 
nEF 

where the next-t<rlast equality follows from the fact that the supports of the 

f,.,, for n E F n J,. are all disjoint. The opposite inequality is similar, and the 

sta.tements about convergence follow directly from Lemma 1.4.2. I 

THEOREM 2.4.11. Given 1 $ q $ oo. Let {?/Ji} be a BUPU of size U with 

associated points {y,}, a.nd fix a.ny Zi E Yiu. Then 

where w(i) = w(z.). 

PROOF: Assume 1 < q < oo; the case q = oo is similar. By Theorem 2.4.2 

We have 

1/fllwcs,L~) ~ 1/L 1111/Jdls x.,,uJIL~ · 

Since {x.,,u. wlfq} satisfies the hypotheses of Proposition 2.4.10, 
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III: IIN,[IB x.,uti ~ (L II IIN,[IB x.,u[l;_i) 'i• 

= ( I; IIN,111. nx .. u[lii f' · 
Finally, by Theorem 2.l.6f, 

-1 w ~ w(zi), 
y,U 

which completes the proof. I 

COROLLARY 2.4.12. Given 1 ::-; p ::-; q ::-; oo, 

PROOF: Fixing any BUPU {iJ,i}, we have by Theorem 2.4.11 that 

llfllw(B,L" ,,) ~ 
w 

II {lifv,dlB} lie 
wl' 

- ll{llfV'illB w(i)}lll" 

> ll{llfV'iliB w(i)}lllq 

- II { II !V'i II B} II lq 
wq 

~ llfllw(B,L9 
9 )• I 

w 

From Proposition 2.3.4 and Corollary 2.4.12 we obtain the following. 

COROLLARY 2.4.13. Given 1 ~ P2 ::-; p1 ~ oo and 1 ::-; q1 ::-; q2 ::-; oo, 
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REMARK 2.4.14. Propositions 2.3.1 and 2.3.4 and Corollary 2.4.12 combine 

to give a simple proof of Proposition 2.3.6. For, if p ~ q then, by Propositions 

2.3.1 and 2.3.4, 

and, by Corollary 2.4.12 and Proposition 2.3.1, 
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Section 2.5. Duality. 

In this section we prove, using the discrete norms obtained in Section 2.4, 

that W(B,C)' = W(B',C'). 

THEOREM 2.5.1. Given 1 :5 p, q < oo, 

W(L!,L~)' = W(L!:,L~,), 

where ¼ + '¾r = ¼ + ;, = 1, v' = v1-p', w' = w 1-t/, and the duality is given 

by 

(f,g) = L f(t) g(t) dt 

PROOF: We assume for simplicity that {X11iu} is a BUPU for G, so by The-

orem 2.4.11, 

(2.5.1) 

and 

(2.5.2) 

where Zi E YiU is any fixed choice of vectors and w(i) = w(z,), w'(i) 

w'(z,). The case of a genera.I BUPU {¢,} is similar, with some added technical 

complications. 

I I 

a. Given f E W(L!,L?i,) and g E W(L!,,L~,) we have 

L lf(t) g(t)I dt = L J.,;U lf(t) g(t)I dt 

< L Iii· x.,,ullLt lln · x.,iullL,' .,, 
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Therefore f Of g is well-defined, and 

so g determines a continuous linear functional on W(~,L~). 

b. We show now that 

IIYllwcL::,L~,) = sup{l(f,g)I: llfllwcL!,Li) = 1}. 

I I 

To see this, assume for simplicity that 1 < p, q < oo, fix g E W( L!,, L!, ), and 

define 9i = 9 • X11,u. Let 

fi(t) = { l9i(t)IP' v'(t) / 9i(t), 9i(t) # O, 
o, 9i(t) = 0. 

Then supp(J.) C Yiu, and 

lh(t)IP v(t) = l9i(t)lp(p'-l) v(t)P(l-p') v(t) = lg,(t)lp' v'(t), 

I 

so IIJ.lli11 = IIYillJ> 11, < oo. Moreover, • L., 

(2.5.3) 

(f.,gi) = LJ.(t)gi(t)dt 

= L l9i(t)jP' v'(t) dt 

(L lg;(t)i'' v'( t) dt )''' (L lg,(t)i'' v'(t) dt )'''' 
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( / )1/p (1 )1/p' = Jo 1/i(t)IP v(t) dt G l9i(t)IP' v'(t) dt 

Define 

Ci = { b/ w'(i) / (ai bi), aibi :/= O, 
0, a,b, = 0. 

Then 

( Ci ai)q w(i) = b,q(q' -l) w(i)q(l-q') w(i) = b/ w'(i), 

(2.5.4) 

Note that 

(2.5.5) 

and define f = Z: Ci Iii this is possible as {X,,u} is a BUPU. We have 
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so f E W(L~, Lt). And, from (2.5.3), (2.5.4), (2.5.5), and (2.5.6) we have 

which completes the claim. 

c. Finally, assume that µ, E W(L~, Lt)' is given. Fix i, and note that 

{h E L~(G): supp(h) C YiU}, 

since, by (2.5.1), 

Therefore µ, restricted to L~(yiU), defines a continuous linear functional on 

I 

L~(yiU), so there exists a 9i E L~(yiU)' = L:,(yiU) such that (h,µ,) = (h,gi) 

for h E L~(yiU). Since supp(gi) C Yiu and {yiU} is a partition of G, we can 

define g = ~ 9i• 

To show that g E W(L:'.,L~,), we first claim that {ll9illL,'} E Lt,. Given .. , 
{ci} E £i and e > 0, choose /i E L~(yiU) such that llfillL! ~ 1 and 

Note that f = ~cdi E W(L~,Li) since 

ll/llwcL~,L:,,) ( ) 

1/q 

L llcddl1! w(i) < 
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Hence, 

(2.5.6) \Lci(/i,gi)\ = II:ci(fi,µ)I 

= \(I:cdi, µ)I 

= \(!,µ)I 

Without loss of generality, fix the phase of Ci so that Ci (/i,gi) ~ 0. Then, 

using (2.5.6), 

L lei\ \l9i IIL:: '.5 L lcil (1(/i, 9i) \ + 2i\ci\) 

= \L ci(fi,gi) \ + e 

~ II { Ci} II lq llµ\I + e . .., 

, 
Thus { ll9i I\ LP' } E (it)' = f~,, as claimed. Hence, 

v' 

< oo, 

I I 

so g E W(L!,,L~,). Clearly (/,g) =(!,µ)for all/ E W(~,L~), so we are 

done. I 

91 



PART III 

GENERALIZED HARMONIC ANALYSIS 
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CHAPTER 3 

BESICOVITCH SPACES 

In this chapter we establish the basic properties of the Besicovitch spaces 

B(p, q). These space were defined, for the one-dimensional case, in (0.2.14); 

the general definition is given in Definition 3.2.1. Our main result, Theorem 

3.2.4, is that B(p, q) coincides with the Wiener amalgam space W.(LP, Lq), 

where we recall that for notational simplicity, and to avoid confusion between 

amalgams on the additive and multiplicative groups, we adopted the notations 

and 

cf., (0.1.2) and (0.1.3). 

Our identification of B(p, q) as W.(LP, Lq) immediately provides us with 

equivalent discrete norms for B(p, q), and implies duality and inclusion re­

lations. These basic properties provide the machinery for our results on the 

Wiener transform in Chapter 4. Although not pursued in this thesis, the 

Wiener space identification implies other properties as well, e.g., convolution 

relations on the multiplicative group. 

We begin in Section 3.1 by considering higher-dimensional analogues of the 

nonlinear spaces B(p,lim) defined, for one-dimension, by (0.2.4). We review 
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the definitions of higher-dimensional limits from [BBE] (needed to define 

B(p, lim)) and prove the nonlinearity of B(p, lim) in higher dimensions. 

In Section 3.2 we prove the fundamental equality B(p, q) = W*(LP, Lq) and 

establish bounds for the norm equivalence. We do this in terms of the discrete 

norm for W*(LP, Lq), as it is this norm that we use to prove our results in 

later chapters. We also discuss the inclusion and duality relations that follow 

from this identification. 

In Section 3.3 we prove a higher-dimensional analogue of a theorem due 

to Beurling, which characterizes B(p, oo) as an intersection of weighted £P_ 

spaces. We give Beurling's proof, for d = 1, and two new proofs for d ~ 1. 

One proof uses the Wiener amalgam norms, and is generalized in the following 

section to a larger class of spaces, while the other proof is valid only for 

B(p, oo). 

In Section 3.4 we attempt to characterize B(p, q) as an appropriate union 

or intersection of weighted LP-spaces. This reveals links between B(p, q) and 

other function spaces which have arisen in harmonic analysis. 

Finally, in Section 3.5 we examine the effect of replacing the factors 1/IRTI 

in the definition of B(p, q) by general functions p(T). We show that the result­

ing spaces B p(p, q) are weighted Wiener amalgam spaces on the multiplicative 

group. 
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~ DBS 2 - ..AZSC-::::is.ZZ:x jp! 

Section 3.1. Rectangular limits. 

The paper [BBE) extended the Wiener-Plancherel formula (0.2.3) to higher 

dimensions. The higher-dimensional version, (0.2.18), requires the use of 

special d-dimensional rectangular limits. It is the purpose of this section 

to define these rectangular limits, and to show that the spaces B(p, lim), 

consisting of functions for which the left-hand limit of (0.2.18) exists, are 

nonlinear, and therefore not conducive to the usual methods of functional 

analysis. 

DEFINITION 3.1.1 [BBE]. Given a function f: Rd~ C and given z EC. 

a. We write lim, ..... 00 f(t) = z if limreB.,r--too f(rc) = z for every c E 

Sd-1 \Ad. That is, f(t) converges to z along every ray from the origin to 

infinity except for those rays which lie in the coordinate hyperplanes. 

b. We write Glim, ..... 00 f( t) = z if for ea.ch e > 0 there exists a T E Ri such 

that lz- f(t)I < e for all t r/:. RT• This is the natural definition of convergence 

for Rd considered as a locally compact group, and indicates convergence to z 

along every path whose points are eventually arbitrarily far from the origin. 

c. We write Ulim, ..... 00 f ( t) = z if for each e > 0 there exists a T E Rt such 

that jz - f(t)I < e for all t E Rd such that jt;j > T; for each j. The letter U 

stands for "unrestricted"; this notion plays a role in multi-dimensional Fourier 

series, cf., [A; Zy). 

We make corresponding definitions for the limits as t ~ O, and make the 

obvious adjustments for f defined only on Rt. For real-valued f we allow 
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z = ±oo. 

It is clear that if Glimf(t) exists then Ulimf(t) will exist also, and if 

Ulim f(t) exists then limf(t) exists also. In one dimension, the three limits 

are identical. The following example shows they are distinct for d ~ 2. 

EXAMPLE 3.1.2. Parts a and bare from [BBE]. 

a. Set d = 2 and f = Xs, where 

E {(u,v) ER~: 0 < v < u 112
}. 

Given c E S1 we have limrER,r-+oo f(rc) = O, so limt-+oo J(t) exists and is 

zero. However, Ulimt-+oo f(t) does not exist. In fact, given T E Rt we can 

finds, t E R 2 withs, t > T such that f(s) = 0 while J(t) = 1. 

b. Set f = Xs where 

E { t E Rd : It j I > 1 for all j}. 

Then Ulimt-+oo J(t) = 1 although Glimt-+oo J(t) does not exist, 

c. Set f = Xs, where 

E {t E Rd: 0 < t1 < 1}. 

Then Ulimt-+oo J(t) = 0 although Glimt-+oo J(t) does not exist. 

DEFINITION 3.1.3. Given f E Lf
0
c(Rd) and a set E C Rd with finite mea­

sure, the mean off on E is 

Ms(f) l~I L f(t) dt. 
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Hit exists, the (rectangular) mean off is 

EXAMPLE 3.1.4. We give examples of functions which do or do not possess 

means. One-dimensional versions of parts d and e appeared in [Bal], of part 

fin [HW], and of part gin [LL]. 

a. If f E L1 (Rd) then M(f) exists and is zero. For, given TE Ri we have 

b. If f E Lf
0
c(Rd) is P-periodic, where PE Ri, then 

M(f) = l~I 1 f(t) dt, 

where IC Rd is any rectangle with side lengths P. 

To see this, fix TE Ri, and let N = N(T) E Zi be the unique vector such 

that NP~ T < (N + I)P. Note that 

since f is P-periodic. Therefore, 

1
1 1 1 

11 - f- - f 
\RTI RT III I 
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IR(N+l)PI - IRNPI IR(N+i)PI 1 ( Iii 
IRNPI IRNPI IR(N+i)PI JR(N+1)P 

+ IRcN+l)PI 1 r 111 1 r 111 
IRNPI IR(N+l)PI JR(N+1)P IRNPI JRNP 

- C IR(N+l)PI - IRNPI IR(N+l)PI + C IR(N+i)PI C 
IRNPI IRNPI IRNPI 

C II(N + 1) - II{N) II{N + 1) + C II(N + 1) - II(N) 
II( N) II( N) II( N) ' 

where c = m Ir 111. Since 

Glim II(N + 1) - II(N) = 0 
N-+oo II(N) 

and Glim II(N + l) _ 1, 
N-+oo IT(N) 

the result follows. 

c. From part b and the fact that Eb(t) = e21rib•t is 1/b-periodic, we have 

M(Eb) = III(b)I r Eb = Dob• 
J(o,1/b] 

d. The function J(t) = III(t)I does not have a mean, since liTI JRT f = 

III(T /2)1. 

e. The function J(t) = III(t)li is bounded, yet does not possess a mean, 

since iixl fRx J = III(T)li /(i + l)d. Note, however, that M(IJIP) does exist 

for all p > 0 since If I = 1. 
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f. By part b, any / E Lf0 c(Rd) which is periodic possesses a mean, even 

though it need not be bounded. All bounded periodic functions possess means. 

g. Let { tn}neZ be any sequence of positive real numbers strictly increasing 

to infinity which satisfies 

- 0. 

Set t 0 = 0 and let 

Then the function f = 'XE does not possess a mean, despite the fact that it 

is bounded and takes only the values O and 1. 

To see this, fix c E S!_1 and define Tn = tnc, Note that RT1 C RT2 C ... , 

and \RT .. \ = (2tn)d \II(c)\. Therefore, 

However, 

-+ 0 as n -+ co. 

1 / / > 1 /, l 
\RT:,,.+1 \ j RT 2n+i IRT2n+i \ RT:,,.+i \RT2,. 

IRT2 .. +il - \RT2 .. I 
IRT2 .. +1I 
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-1- 1 as n -1- oo. 

Therefore M(f) does not exist. Also, M(IJIP) does not exist for any p since 

Iii= f. 

h. Let f be as in part g, and set h = l /2 and g = f - h. Since M is linear 

and M(h) exists while M(f) does not, we conclude that M(g) does not exist. 

However, IYI = 1/2, so M(jglP) exists for all p, even though M(IJIP) does not. 

EXAMPLE 3.1.5. We show that 

B(p,lim) = {f E Lf
0
c(Rd) : lim -

1 

l I / Jf(t)IP dt exists} 
T-+oo RT }RT 

is nonlinear. 

a. Let f, g, and h be as in Example 3.1.4g. Since !YI = lhl = 1/2 we have 

g, h E B(p,lim). However, M(f) = M(IJIP) does not exist, so f = g + h 1 

B(p,lim). 

b. For p = 2 we give another example, whose one-dimensional version 

appeared in [Bal] and [HW]. 

Let f E B(2,lim) be any function such that M(f) does not exist (see 

Example 3.1.4e for a complex-valued example, or Example 3.1.4g for a real­

valued example). Given any TE Ri we have 

Now, M(l) and M(l/12
) both exist while M(f) does not. Therefore 1 + f 1 

B(2,lim) even though 1, f E B(2,lim). 
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Although nonlinear, B(p, lim) is a large space. For example, it contains 

V(Rd) and all periodic functions which are integrable over their periods, 

including all constant functions. Examples 3.1.4e and f show that B(p, lim) \ 

L 00 (Rd) -f- 0 and L 00 (Rd) \ B(p,lim) -::/- 0. 

REMARK 3.1.6. The original Wiener-Plancherel formula, (0.2.3), was proved 

by Wiener for functions in B(p,lim), in one dimension. Because B(p,lim) is 

nonlinear, Lau and his colleagues extended the Wiener transform to larger 

spaces. In [LL], where they proved that B(p,lim) is nonlinear, Lau and Lee 

proved ( also for d = 1) that the Wiener transform W is a topological iso­

morphism of the Marcinkiewicz space B(2,limsup) onto the variation space 

V(2,limsup), where B(p,limsup) and V(p,limsup) are as defined in (0.2.5) 

and (0.2.6), respectively. Of course, B(2, lim sup) ::> B(2, lim), and, by the 

Wiener-Plancherel formula, the Wiener transform is an isometry when re­

stricted to B(2,lim). However, Lau and Lee proved that Wis not an isometry 

on all of B(2,limsup), not even on the linear span of B(2,lim) in B(2,limsup). 

Following the Lau and Lee results in [LL], Lau and Chen proved in [CLI] 

that it is also possible to extend the Wiener transform W from B(2, lim) to 

B(2,oo), and that Wis a topological isomorphism of B(2,oo) onto V(2,oo), 

where B(p, oo) and V(p, oo) are as defined in (0.2.7) and (0.2.8), respectively. 

This result forms one cornerstone for our results in Chapter 4, for we prove 

there that W is in fact a topological isomorphism of a whole range of spaces 

B ( 2, q) onto V ( 2, q) for 1 ~ q ~ oo. Moreover, we do this in higher dimensions. 
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A goal for future research is to extend the Lau and Lee results for B(2, lim sup) 

to higher dimensions as well. As a step in this direction, we make a few 

remarks on the definition of d-dimensional rectangular limsups. 

DEFINITION 3.1.7. Given a real-valued function f:Rd--+ R. 

a. limsupt-+oo J(t) = supcESc1_ 1 limsuprER,r-+oo J(rc). 

b. Glimsupt-+oo J(t) = infTeRt supttRx f(t). 

c. Ulimsupt-+oo J(t) = infTeRt suptER",lt; l>T; f(t). 

We make corresponding definitions for liminfs, for t --+ O, for f: Ri --+ R, 

etc. 

Note that the numbers defined above always exist in the extended real 

sense, i.e., -oo::; limsupf ~ oo. Given J:Rd--+ R we have 

Gliminf f < Uliminf f < liminf f 

< limsup f < Ulimsup f < Glimsup J. 

However, these are not equalities in general, cf., Example 3.1.8. Also, it is 

clear that 

lim J(t) exists {} liminf J(t) = limsup J(t), 
t-+OO t-+oo t-+oo 

Glim J(t) exists {} Gliminf J(t) = Glimsup J(t), 
t-+oo t-+OO t-+OO 

Ulim J(t) exists {} Uliminf J(t) = Ulimsup f(t). 
t-+oo t-+oo t-+oo 

EXAMPLE 3.1.8. a. Let f be as in Example 3.1.2a. Then liminf f = 

limsupf = O, Uliminff = O, Ulimsupf = 1, Gliminff = O, Glimsupf = 1. 
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b. Let f be as in Example 3.1.2b. Then liminf f = limsupf - 1, 

Uliminff = Ulimsupf = 1, Gliminff = O, Glimsupf = 1. 

c. Let f be as in Example 3. 1.2c. Then lim inf f = lim sup f - 0, 

Uliminf/ = Ulimsupf = o, Gliminff = O, Glimsupf = 1. 
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Section 3.2. Equivalence with Wiener amalgam spaces. 

In [F4), Feichtinger derived an equivalent norm for B(p, oo) based on dyadic 

decompositions of R (in fact, this was done in higher dimensions, but with 

a spherical approach, rather than the rectangular approach of this thesis). 

Essentially, he proved that B(p, oo) = W.(LP, L 00
), under equivalent norms. 

We prove and extend this equality in this section, namely, we show that 

B(p, q) = W.(LP, Lq) for all p, q, and do this in higher dimensions with a 

rectangular approach. 

We adopt the discrete norm for W.(LP,Lq) defined in Example 2.4.6 as 

standard, i.e., we take {Xo-[2 n 12 ,.+1]}nEzci,o-EOci as a standard BUPU, with the 

result that 

(3.2.1) ( ( 
/ dt )q/p)l/q 

llfllw.(LP,Lq) = L },. n n+l lf(t)IP IIT(t)I ' 
nEZd ,o-EOd u(2 ,2 ] 

the standard adjustments being made if p or q is infinity. 

DEFINITION 3.2.1. Given 1:::; p, q < oo, the Besicovitch space B(p,q) is 

the space of functions f: Rd----+ C for which the norm 

( 
/ ( 1 / ) q IP dT ) 

1 
/ q 

11!11B(p,q) = }Rt IRTI }RT lf(t)IP dt IT(T) 

is finite. The standard adjustments are made if p or q is infinity, namely, 

IIJIIB(p,oo) ( 
1 1 ) l/p 

ess sup -\R I lf(t)IP dt , 
TERt T RT 

llfllB(oo,q) (Lt (·:~:~p[f(t)1r n~~if ·, 
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llfllB(oo,oo) = ess sup ( ess sup IJ(t)I). 
TEB.i tERT 

That II · IIB(p,q) is a norm is evident. It follows from Theorem 3.2.4 that 

B(p, q) is a Banach space. 

Our characterization of B(p, q) as a Wiener amalgam space begins with the 

easiest case, namely, p = q. 

PROPOSITION 3.2.2. Given 1 $ p $ oo, 

with 

PROOF: The case p = oo is clear, so assume 1 $ p < oo. The second equality 

is trivia.I, since 

llfllw.(LP,LP) (L (1 lf(t)IP ~)p/p)l/p 
n,u o-(2" ,2"+1] III( t) I 

(L, IJ(t)IP 1n~:i1) •IP . 
= ll!IILP• 

For the first equality, compute 
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LEMMA 3.2.3. Given a E Rt. 

a. L rr(2-ka) = rr(2a 1_ 1)· 
kEZi 

b. L rr(2-(k-l)a) = rr(2}~1)· 
kEZi 

PROOF: We compute 

L ... L 2-k1a1 ... 2-kdad 
kdEZ+ k1EZ+ 

d 

II L 2-k;a; 

j=l k;EZ+ 

d 1 
- II 2a; -1 · 

j=l 

The second statement is similar. I 

The following is the main result of this chapter, in which we characterize 

B(p, q) as a Wiener amalgam space. The bounds given for the norm equiva­

lence in Theorem 3.2.4 are not sharp, cf., Remark 3.2.5. 

THEOREM 3.2.4. Given 1 ~ p < oo and 1 ~ q ~ oo, 
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with equivalence of norms given by 

(3.2.2) 

where 

C II· llw.(LP,Lq) :S 11 · IIB(p,q) < D 11 · llw.(LP,Lq), 

p < q, 

p '2:. q. 

PROOF: Assume for simplicity that 1 :Sp, q < oo (the q = oo case is similar). 

a. Fix any u E nd. Then we compute 

/ ( 1 / )q/p dT 
llflliJ(p,q) = lat !RT! }RT IJ(t)jP dt IT(T) 

= L 1 ( 1 
/ IJ(t)IP dt)q/p __!!__ 

n [2",2n+l) 2d Il(T) }RT II(T) 

where the summations inn run over zd. Therefore, 

> (log 2)d 2-ldq/p L (1 IJ(t)jP __!!!:._) q/p 
n,u u[2n-1,2nJ jTI(t)j 
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= (log 2)d 2-3dq/p IIJll~.(L•,L•)' 

from which the first inequality in (3.2.2) follows. 

b. Note that 

u 
Therefore, 

11111i(p,q) 

= L/ ,;T, 1, \f(t)\• dr· II~~) 

= L r ( 1 r lt(t)IP dt)q/p dT 
n J[2n,2n+1] 2d IT(T) )RT II(T) 

< L r ( 1 r 11(t)1P dt)q/p _!!__ 
- n 112n ,2"+1) 2d II(2n) J R2 .. +1 II(T) 

= ~ (log 2)• (11(2~+1) L, .• , \f(t)\' dtr • 
( 

1 1 )q/p = (log 2)d L II( n+l) L IJ(t)IP dt 
2 T[2"-m+12,.-m+J] n m,T , 

( 
II(2n-m+2) 1 dt ) q/p 

< (log 2)d IJ(t)IP --
- ~ ~ II(2n+l) T[2"-m+1,2 .. -m+2] III(t)I 

( 
1 1 dt )q/p = (log 2)d L t 1/(t)IP --

n ~ II(2m- ) T[2"-m+1,2,.-mH] IIT(t)I 

I l

q/p 
= (log 2)d L L Fm,T(n) 

n m,T 

= (log2)d !IL Fm,T11::;P, 
ffl 1T 
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where Fm,r is the sequence 

1 1 dt Fm,r(n) = m 1 lf(t)IP --. 
Il(2 - ) r[2n--+1,2n- ... +2] jll(t)I 

c. Assume p :5 q, i.e., q/p 2:: 1. Then we may apply Minkowski's inequality 

in the Banach space l,qf p to the calculation in part b. The summations in the 

following calculation are over m E Zi, n E zd, and u, -r E nd. 

m,r 

m,r 

( )

p/q 
~ ~ \Fm,r(n)\qfp 
m,r n 

~ (~ (rr(2:-,l f.12•--+',2•--+>1 l/(t)I' III~:lr•r • 

- ~ IJ(2:_, l (~ (!.,,.,,.+,] l/(t)I' 1~!iir'T'' 
< L II(2:-1) (~ ( / ,. •+1 lf(t)IP IITd(!)1)q/p)p/q 

m,r n,.,. J 0'[2 ,2 ] 

since the summation in mis over Zi, The second inequality in (3.2.2) there­

fore follows for this case. 

d. F inally, assume q :5 p. Since O < q/p :5 1, we may apply the triangle in­

equality in the metric space l,q/p to the calculation in part b ( cf., Section 1.7f). 
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The summations in the following calculation are over m E Zi, n E zd, and 

ni,r 

ni,r 

rn,r n 

where the last equality follows from Lemma 3.2.3 and the fact that the sum­

mation in m is over Zi. The second inequality in (3.2.2) therefore follows for 

this case. I 

REMARK 3.2.5. The bounds for the norm equivalence given in Theorem 3.2.4 

are, in general, not the best possible. 

For example, for the case p = q we can compare the exact bounds deter-

110 



mined in Proposition 3.2.2, namely, 

to the approximate bounds given in Theorem 3.2.4, i.e., 

(2-c log2)'IP 11 · llw.cL,,LP) $ II· lls(p,p) ~ (2 log2)"/P 11 · /lw.(L',L')• 

Since 

we conclude that the bounds in Theorem 3.2.4 are not best possible. 

REMARK 3.2.6. Our recognition of B(p,q) as the Wiener space W,..(LP,£9 ) 

immediately provides us with inclusion and duality relations. 

a. Incl.usion.s. From Corollary 2.4.13, 

From Proposition 2.3.2 ( cf., Proposition 3.2.2), 

B(p,p) = W,..(LP,£P) = £P(R!). 

Therefore, 

and 

cf., Proposition 2.3.6. 
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b. Dilation invariance. By Proposition 2.2.8, W..,(LP,Lq) is dilation invari-

. ~ ch ). E Rd where D>.. is the 
ant, i.e., IID>../llw.(LP,Lt) ~ llfllw.(L•,L') ior ea. "'' 

dilation operator D>.J(t) = f(t/>.). In fa.ct, B(p, q) is dilation isometric, since 

( 
1 I )q/p dT 

IID»flltcp,q) - J.." IRxl la-r lf(t/>.)IP dt II(T) 
+ 

dt )q/p dT 
- J.." c;TI L,.,r lf(t)jP III(>.)I II(T) 

+ 

( 
t / )q/p dT 

- L_.,. IR»TI lau~ lf(t)IP dt II(T) 
+ 

Ii ( t 1 )q/p dT 
- - 1/(t)IP dt II(T) 

R" IRxl R-r 
+ 

c. Duality. From Theorem 2.5.1, if 1 < p, q < oo then 

B(p,q)' - B(p',q'), 

with duality given by 

f - dt 
(/,g) = J .. " J(t)g(t) III(t)I" 

• 

Since the norm in B(p, q) is only equivalent to the norm in W..,(V, Lq), we can 

conclude only that the norm in B(p, q)' is equivalent to the norm in B(p', q'). 

The following computation shows that the canonical norm for B(p, q )' is a. 

consta.nt multiple of the norm for B(p' ,q'). Given f E B(p,q) and g E 

B(p'' q'), 
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IIJIIB(p,q) ll9IIB(p',q') 

(Lt c~TI L, 11<t)l•dtt· IT~~)t· 
X (Li c~TI L, lg(t)I•' dtt•' IT~~i) ,,,. 

> t c~I JR, 1/(t)I• dtf • c~TI L, lg(t)1•· dr·· IT~~) 
> Lt l~TI L lf(t)g(t)ldt IT~~) 

llfgllB(l,1) 

> 2-d IL: f(t) g(t) 1rr~:)1 I 
- 2-d 1(1,g)I, 

The norm for B(p, q)' would be equal to the norm for B(p', q') if we defined 

the duality by 

fl{ -dT 
(f,g) = JRt IRTI }RT f(t)g(t) dt IT(T)' 

i.e., duality according to the norm for B(l, 1). 

REMARK 3.2.7. Although the sets W.(LP,Lq) and B(p,q) coincide by The-

orem 3.2.4, they have distinct, albeit equivalent, norms. We retain this dis-

tinction in the remainder of this thesis, stating results in terms of W.(LP, Lq) 

when we intend to use the discrete norm, or in terms of B(p, q) when we 

intend to use the norm for that space. If the norm is not important, we refer 

to the space as B(p, q). 
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We close this section with a few remarks about the space B(p, oo ). 

LEMMA 3.2.8. Given O < p < oo and b ER~, we have Eb - 1 E B(p,lim) C 

B(p,oo), with 

PROOF: Without loss of generality assume b E Ri, Since Eb - 1 is 1/b­

periodic and bounded it is an element of B(p, lim) by Example 3.1.4b. More­

over, that example also implies that 

llEb - 11\~( ) 2: lim IRl I / IEb(t) - lip dt 
p,oo T--+oo T j RT 

_ I[ 
1 
/bll r IEb(t) - 11P dt 

0, 1 J[0,1/b] 

r IE1(t) -11P dt 
J[o,1] 

- IT 11 le21rit; - 1 jP dt; 
j=l 0 

d 13/4 > IT lehit; - lip dt; 
j=l 1/4 

d (3/4 
2: !! 11/4 ( v'2Y dt; 

= 2<f - 1)d. I 

PROPOSITION 3. 2.9. B(p, oo) is not separable for 1 :5 p '.5 oo. 

PROOF: The case p = oo follows from the fact B( oo, oo) = L 00
• For p < oo, 

we have by Lemma 3.2.8 that 

II E II IIE 111 > 2d(½-}) > 0, Ea - b B(p,oo) = a-b - B(p,oo) 
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if a :/: b. Thus { EbheR" is an uncountable separated set in B(p, oo ). I 

The statement and proof of the following result is adapted from the one­

dimensional version presented in [Bal]. 

P1toP0s1TION 3.2.10. Given 1 ~ p < oo, B(p,lim) is a. proper, closed, non­

linea.r subset of B(p,oo). Moreover, if {ln}nEZ+ C B(p,lim), IE B(p,oo), 

a.nd In-+ I in B(p, oo), then IE B(p,lim) and 

M(/1/P) = lim M(lfn/P), n-+OO 

where M is the mean value opera.tor of Definition 3.1.3. 

P1tooF: Clearly B(p, lim) c B(p, oo ), and is nonlinear by Example 3.1.5. 

In Example 3.1.4 we showed that B(p,lim) \ L00(Rd) f= 0 and L00(Rd) \ 

B(p, lim) -f: 0. Since both B(p, lim) and L00(Rd) are contained in B(p, oo ), 

B(p, lim) must be a proper subset of B(p, 00 ). 

Now assume that In E B(p,lim) and In ~ I E B(p,oo). Set Mn -

M(lfn/P), and note that 

I
M _ M / < lim MR2'(/lm - ln/P) 

m n - T-+oo 

< sup MR2' (/Im - ln/P) 
- TERt 

- I/Im - ln/l~(p,oo) 

-+ O as m, n ~ oo, 

where MRT is the mean value on RT- Mn must therefore converge to some 

number M as n ~ oo. 
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By hypothesis, 

If f I
P) - llf - f nll~(n,00) --+ O as n-+ 00, 

€n = sup MR-r ( - n r 

Teat 

Therefore, for T E Ri, 

Thus, 

< limsup MRx(l/1"') 
- T-oo 

< limsup MRx(lfnl"') + €n 
- T-oo 

- Mn + en, 

where the liminfs and limsups are the d-dimensional versions defined in Sec­

tion 3.1. Letting n-+ oo, it follows that M(lfl"') = limT-00 MR-r (Iii"') exists 

EXAMPLE 3. 2 .11. Hartman and Wintner [HW] gave the following example 

(for d = 1) of functions {fn}neZ+ C B(2,lim) n L00(R) and f E B(2,lim) 

such that M(lf - fnl 2
) -t O as n-+ oo but f ~ L00 (R). 
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Fix any f E L2 [0, 1)\L00 [0, 1), and extend f periodically to R. Then 

f E B(2,lim) by Example 3.1.4b. Let SN be the N th partial sum of the 

Fourier series of f, i.e., 

N 

SN(t) - L Cne2,rint, 

n=-N 

where 

Cn = fol f(t) e-2,rint dt. 

Clearly SN E B(2,lim) n L00 (R), and, by Example 3.1.4b, 

--+ 0 as N --+ oo. 

This example extends trivially to higher dimensions as follows. Let f, SN 

be as above, and define g(t) = f(ti) and TN(t) = SN(t 1 ) fort E Rd. Then 

N --+ oo. 
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Section 3.3. Beurling's characterization of B(p, oo ). 

Wiener, in [Wl], proved that B(p,oo) is contained in a certain weighted 

LP space (for d = 1). This result has been generalized by Beurling, Lau, 

Benedetto, and others, and we generalize it in Section 3.4 to the B(p, q) 

spaces. In this section, we discuss the B(p, oo) case. 

We begin by proving and extending Wiener's result, which in its original 

form is the following theorem with d = 1 and a = 2. Lau and Lee generalized 

this to d = 1, a > 1 in [LL]. Benedetto, Benke, and Evans proved a d ~ 1, 

a = 2 result in [BBE]. Our proof is a combination of the [LL) and [BBE] 

results. The proof is essentially Wiener's, i.e., integration by parts. 

THEOREM 3.3.1. Given 1 :5 p < oo and a E Ri with a> 1, 

B(p, oo) C L!(R d) 

where 

d 1 
v(t) = }] 1 + jt;ja;. 

Moreover, the containment is proper. 

PROOF: a. For clarity in proving the containment we restrict ourselves to 

d = 2 (the general case being similar). Fix a, b > 0 and/ E B(p, oo ). Define 

<p(x, Y) = lf(x, Y)IP + 1/(:z:, -y)jP + 1/(-:z:, Y)IP + 1/(-:z:, -y)IP 

and 
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Then 

M = sup 
8
1
T ,p(S, T) = 411/ll~(p,oo) < oo. 

S,T>O 

We compute: 

(3.3.1) 

/T 1s ip(x, y) dx d 
Jo O (1 + x")(l + yb) y 

= IT Ls 1 1 h 8z 811 ,p(x, y) dx dy 
Jo O 1 + x" 1 + y 

- 1T 1 (ls 1 
az (8,,f,(x, y)) dx) dy 

o 1 + yh o 1 + z" 

1T 1 (811,p(S,y) ls a-1 ) .....;....-- + a 
O 

(lz+ ... a)l 8111/J(x,y)dx dy 
1 + yh 1 + Sa ... 

Before estimating [1 and [ 2 , note that 

IT 1 
Jo l+yh8111/J(x,y)dy 

and that 

and 
yh-1 1 
-~ < -l+if y 

for all z, y > 0. Therefore, 

(3.3.2) 

1 (1/J(S T) IT yh-1 ) 
- l+S" 1+

1

Th + b )
0 

(l+yh)21/J(S,y)dy 
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< S T 'if,(S, T) 
1 + sa 1 + Tb ST 

bS IT 1 'if,(S, y) 
+ 1 + sa lo 1 + yb Sy dy 

< s T M s bM IT 1 d 
l + Sa 1 + Tb + 1 + Sa j

0 
l + yb y. 

Similarly, 

(3.3.3) 

I,(S, T) a t (l ~::)' ([ 1 : y' &,,J,(x, y) dy) dz 

1s xa-1 ('if,(x, T) 1T yb-1 ) 
= a lo (1 + xa)2 1 + Tb + b o (1 + yb)2 'if,(x,y)dy dx 

< a T 1s 1 'if,(x, T) dx 
1 + Tb O 1 + xa xT 

+ ab l 5 IT 1 1 1/J(x,y) d dz 
lo lo 1 + za 1 + yb xy y 

< T aM1s 1 dx 
1 + Tb O 1 + xa 

+ abM Is 1 dx 1T 1 b dy. 
Jo 1 + z" o 1 + y 

Combining (3.3.1), (3.3.2), and (3.3.3), letting S, T ~ oo, and noting that 

lims-+oo S/(1 + sa) = limT-+oo T/(1 +Tb)= o, we obtain 

(3.3.4) llfllit = 1-:1-: lf(z,y)IPv(z,y)dxdy 

-100 loo cp(z,y) dxd 
- 0 Jo (l+z 0 )(l+yb) y 

~ abC(a)C(b)M 

= 4abC(a) C(b) llfll~(p,oo)' 
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where 

C(r) = /
00 1 

dx < f 1 dz + 100 
z-r dz _ Jo 1 + zr - Jo 

This completes prooi oi the containment. 

r 

r-1 
< 00, 

b. To see that the containment is proper, first assume that d = 1 and define 

{ 

tCa-1)/(2p} t > 1 
f(t) = ' - ' o, t < 1. 

Then 

r lf(t)IP dt = roo t<a-1)/2 dt < 100 t<a-1)/2 - 2 
la 1 + ta 11 1 + t" 1 t" dt a - 1 < oo, 

so f E L!(R). However, 

- lf(t)IP dt = - t<c:1-l)/2 dt = - -+ 00 
1 1T 1 1T T(c:1-1)/2 T-1 

2T -T 2T 1 a+ 1 

as T -+ oo, so f (/:. B(p, oo ). A higher-dimensional example iollows immedi­

ately by defining g(t) = II1=l J(t;) ior t E Rd. 

Another example is furnished by 

{ 
(logt)1IP 

f(t) = ' o, 

for t E R. Since 

t ~ 1, 
t < 1, 

1
T 1T lf(t)IP dt = _!._ (T logtdt = ~(T-1 

- 1 +logT) -+ oo 
2 -T 2T J1 

as T-+ oo, we have f ~ B(p, oo ). However, 

r lf(t)IP dt < 100 logt dt 
J ... 1 + t" - 1 t" 

1 

(a - 1)2 < oo, 
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so f E ~(R). The higher-dimensional case follows as before. I 

By Theorem 3.3.1, B(p, oo) is contained in a weighted LP space. Beurling 

Pro\red in [Bel] that B(p, oo) equals the intersection of all weighted LP spaces 

i{,(R) ov-er the class of weights w which are positive, even, integrable, and 

decreasing on R+. We reproduce his proof in Proposition 3.3.8 and Theo­

rem 3.3.9, as well as giving new proofs of our own. To be precise, Beurling 

actually proved this characterization in higher dimensions, but in a spheri­

cal setting, rather than the rectangular setting of this thesis. We prove our 

chara t · · b · t ul tt· c er1zat10n in higher dimensions, ut m a rec ang ar se mg. 

The higher-dimensional, rectangular analogue of the Beurling class is the 

following. 

DEFINITION 3.3.2. a. A = A(R) denotes the class of all positive, even, 

integrable (with respect to Lebesgue measure) weights w on R which are 

decreasing on R+. 

h. A == A(Rd) denotes the class of weights won Rd for which there exist 

ivi E A(R) such that 

(3.3.5) 
d 

w(t) - IJ w;(t;) 
j=l 

llEMAlll( 3.3.3. Given w E A(Rci). 

a · . bl nd even and is decreasing on Ri , 
· iv is rectangular, positive, mtegra e, a ' 

cf. Se t· j' t the fact that w has the form (3.3.5). 
' c 10n l.3d-f. Rectangular reiers 0 
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Even means that w(o-t) = w(t) for all t E Rd and u E fld. Decreasing means 

that if 8 ~ t E Rf then w(s) ~ w(t), i.e., w is decreasing in each component. 

b. As each w; is decreasing on R+ it must be continuous except at count­

ably many points. Therefore w is continuous a.e. 

EXAMPLE 3.3.4. a. The weight v appearing in Theorem 3.3.1 is an element 

of A(Rd). 

b. Set d = l, and define 

I sin 21rt /2 

k(t) = 1rt 

for t E R. Note that k is even and integrable, though not positive and not 

decreasing on R+, so k (j. A(R). 

Let k* be the least decreasing majorant of k on R+ and k* the greatest 

decreasing minorant of k on R+, cf., Section 1.3g. That is, fort ER+, 

k*(t) - sup k(s) 
s~t 

and 4(t) -

Extend k * and k* evenly to R. We clearly have 

inf k(s). 
O:S•:St 

Thus k* is even and integrable, and is decreasing on R+. Since k* is positive 

it is therefore an element of A(R). Numerically, 

1.- k*(t) dt a, 1.068 > I = 1.- k(t) dt. 
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L • al d • d · R Since k* is nonnega-
"'-k is so even and integrable, an 1s ecreasmg on +· 

tive, but not positive, k* is not an element of A(R). Note that~= k•X[o,1/2), 

so 

f."" k.,( t) dt = J.' I• k( t) dt "' 0.903 < 1 - f."" k(t) dt. 

c. For arbitrary d, define 

fort E Rd. Let K* be the least decreasing majorant of Kon Ri and K* the 

greatest decreasing minorant of k on R'.f.. That is, fort E Ri, 

and 

K*(t) sup K(s) 
,e{t,00) 

d 

- IT k*(t;) 
j=l 

d 

K*(t) = inf K(s) = IT k*(t;). 
•E{O,tj . 

1=1 

Extend K* and K* evenly to Rd. It follows from part b that K* E A(Rd) 

The functions k and K play an important role in Chapter 4. 

LEMMA 3.3.5. Given a nonnegative, even function w on Rd which is decrea.s-

. d mgon R+. 

a. supTea.t II(T) w(T) < fa., w(t) dt. 
+ 

b. supTEB.i II(T)w(T) < 2d supnEZ-' II(2n)w(2n). 

c. fa.t w(t) dt :5 Enez-' II(2n)w(2") :5 2d fa,. w(t) dt. 
+ 
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d. limT-0,00 Il(T) w(T) = 0. 

PROOF: a. As w is decreasing on Ri, 

( w(t)dt 2 f w(t)dt 2 ( w(T)dt = II(T)w(T). 
lat Jco,TJ lco,TJ 

b. If TE [2n, 2n+1J then II(T)w(T) :'.5 I1(2n+l )w(2n) since w is decreasing. 

c. Since w is decreasing on Ri, 

f w(t)dt = I: / w(t)dt 
lad. lc2•,2•+11 

+ 

< L f w(2n)dt 
Jc2 .. ,2 .. +11 

_ I: II(2n)w(2n) 

= L 24 f w(2n)dt 
Jr.,, .. -1 ,2" i 

_ 24 f w(t) dt. 
lat 

since w is decreasing on R+. This, combined with part c, gives the result. I 

The spaces AP, BP defined below are rectangular analogues of the spherical 

spaces defined in [Bel]. 

DEFINITION 3.3.6. Given 1 :'.5 p < oo. 

a. BP= nweA ~(R4 ), with norm 

( 

f ) 
1

tP JIJ 1/(t)IP w(t) dt 
sup llf llL~ = sup Rdl 
vEA, wEA ( )d UwHi•1 W t t 

R" 
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b. AP' - u LP' ( d 
- weA w' R ), where.!+ -1; = 1 and w' - w 1-P' wi"th p p - , norm 

/If/IA,' == inf I/Ill ,, 
WEA, LI 

f/w/11=1 "' 

(L 1 ) 1/p'(L ) 1/p = inf lf(t)/P w'(t)dt w(t)dt . 
wEA R" R" 

Note that Boo = Loo(Rd) and Al= Ll(Rd). 

REMARK 3 .3. 7. The following facts are proved by Beurling in [Bel] (in a 

spherical setting). 

a. AP BP B , are anach spaces. 

c. AP C L1(Rd) and is a convolution algebra. 

d. (AP)'== BP', under the duality (f,g) = JR,, f(t)g(t)dt. 

e. BP== B( ) p,oo . 

Each of these facts is proved in this thesis, some using Beurling's methods, 

some following from other results. We prove that BP = B(p, oo) in Theorem 

3·3·9, from which it follows that BP is a Banach space and contains L00(Rd). 

We Prove the dualty (AP)'= BP' in Proposition 3.3.10, and as an immediate 

corollary obtain that AP = ll(t)B(p, 1), from which it follows that AP is 

complete and is contained in Ll(Rd). We prove in Proposition 3.3.13 that AP 

lS a 
convolution algebra. 

In Theorem 3.3.9 we prove that BP = B(p, oo ). The key fact is given by the 

following proposition, for which we give three proofs. First, we give Beurling's 
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proof for the case d = I. This proof is essentially Wiener's integration by 

parts technique, adapted to cover general w E A(R) by using Riemann­

Stieltjes integration ( the technique can be extended to higher dimensions). 

Next we present a proof ford~ l which uses a method suggested to us by 

C. Neugebauer, who credited it to R. Bagby [Bag]. Finally, we present a 

simple proof based on discrete norm techniques, which proves the result but 

with bounds inferior to those obtained by the other techniques. 

PROPOSITION 3.3.8. Given a rectangular, nonnegative, integrable, decreas­

ing function w 011 Ri, i.e., assume there exist w;:R+ -+ [O,oo) which are 

integrable and deci·easfog Oll R+, such that w(t) = n: w;(t;) fort E Ri. 

Then for any nonnegative cp on Ri, 

f ip(t)w(t) dt ~ ( f w(t) dt) sup - (
1 f cp(t) dt. 

lat lat Teat II T) 110,T] 

PROOF: Set M = SUPTeRi nm lro,T] cp(t) dt and assume without loss of 

generality that M < oo. 

a. We begin with Beurling's proof, ford= 1. Define 

,p(T) = 1T ip(t) dt; 

then 

{3.3.6) 1 
M = sup T ,p(T) < oo. 

T>O 

As 'P E Lf0 c(R), ,P is locally absolutely continuous on R. Since w is decreas­

ing, positive, and integrable on {O, oo) it is of bounded variation on each finite 
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closed interval [a, b] c (0, 00 ). Therefore the Riemann-Stieltjes integral 

b Lb 1 w(t) d-,/,(t) = 
41 

ip(t) w(t) dt 

exists. Further, integration by parts, equation (3.3.6), and the fact that w is 

decreasing gives 

(3.3.7) 

1b w(t)d-ip(t) _ w(b),t,(b) - w(a),t,(a) - Lb ,t,(t)dw(t) 

< w(b)-ip(b) - w(a)-ip(a) - 1b Mtdw(t) 

- w(b)-,/,(b) - w(a),t,(a) 

- M(bw(b) - aw(a) - Lb w(t)dt). 

By Lemma. 3.3.5, limT-o,oo Tw(T) = 0. Therefore, by (3.3.6), we have 

limT-+0,00 -,/,(T) w(T) = 0 as well. Applying this to (3.3. 7), 

J.~ ,p(t)w(t)dt = ~!, { w(t)d,fo(t) $ M J.~ w(t)dt. 

b. We give a second proof for arbitrary d > 1. Define 

E = {(t,u) E Rt x Rt: u; < w;(t;), all j}. 

For u E Ri define 

a(u) = {t E Rt: (t,u) EE} = {t E Rt: w;(t;) > u;, all j}. 

Note tha.t, since ea.ch w; is decreasing, each a:(u) is a. (possibly empty) rect­

angle in Ri. Therefore, 

1 ip(t) dt $ M la:(u)I 
a(u) 
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for all u ER'.!-. Now, 

d 1w;(t;) IT duj 
j=l 0 

d 

IT Wj(ti) - w(t), 
j=l 

so 

- { w(t) dt. 
JR"+ 

Since E can also expressed as 

we have 

and therefore, 

E { ( t, u) E Rt x R! : t E a( u)}, 

{ <p(t) w(t) dt -
JRi 

- { dt 
la.cu> 

la(u)I, 

{ la(u)ldu. 
}Rd 

+ 

{ { <p(t)X.E(t,u)dtdu 
JR"+ JRi 

{ { <p(t) dt du 
JR"+ Ja.(u) 

< { M la(u)I du 
JR"+, 

M { w(t) dt. JR.,_ 
+ 
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c, Our third proof has the advantage of simplicity, but results in a constant 

larger than that obtained in parts a and b. We compute 

f <p(t)w(t)dt = L f <p(t)w(t)dt 
la"' lr2•,2•+11 + n 

< L w(2") f <p(t) dt 
n lr2•,2•+11 

< L w(2n) f <p(t) dt 
" lro,2•+11 

< ML I1(2n+l)w(2") 
n 

< 22d M f w(t) dt, 
lat 

where the last inequality follows as in Lemma 3.3.Sb. Note that this proof 

does not require that w be rectangular, only that w is decreasing on Ri, i.e., 

decreasing in each component. I 

THEOREM 3. 3. 9. B(p, oo) = BP, with equality of norms, for 1 ~ p ~ oo. 

PROOF: The case p = oo follows from the fact that B(oo,oo) = L00(Rd) = 

B 00
• Therefore, assume 1 < p < oo. 

a. Fix f E BP and T E Ri, and let Wn E A(Rd) be such that wn(t) \. 

XRT(t), pointwise, as n --+ oo. By the Monotone Convergence Theorem we 

then have J Wn-+ J 'XR'l' = IRxl- Hence, 

f lf(t)IP dt < f lf(t)IP Wn(t) dt < 11/11~, f Wn(t) dt --+ IRxl llfll~,. 1R7' la"' la"' 
Thus, 

- sup I; I f IJ(t)IP dt < llfllt,. 
Teai T )RT 
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b. To prove the opposite inequality, fix f E B(p, oo) and define 

<p(t) = L lf(ut)IP. 
o-EO" 

Given w E A(Rd), we then have from Proposition 3.3.8 that 

(3.3.8) f <p(t)w(t)dt s; ( / w(t)dt) sup II(lT) f ip(t)dt. 
JR" la" Tea" 11110 TJ + + + ' 

Now, 

(3.3.9) -- ip(t) dt 1 1 
IT(T) [o,TJ 

Also, since w is even, 

(3.3.10) 

and 

(3.3.11) 

f w(t) dt 
JR" + 

- 2-d f w(t) dt 
la" 

r ip(t) w(t) dt = r lf(t)\P w(t) dt. 
JR" JR" + 

Substituting (3.3.9), (3.3.10), and (3.3.11) into (3.3.8), we obtain 

\lf\l~P = sup fa" lf(t)jP w(t) dt 
wEA fa" w(t) dt 

< sup 
1

; I / \f(t)IP dt 
TERt T )RT 

llfll~<P,oor I 

Theorem 3.3.1 follows as an immediate corollary of Theorem 3.3.9 since v, 

as defined in Theorem 3.3.1, is an element of A(Rd). 

We complete this section by proving some facts about the space AP. First, 

we give Beurling's proof that (AP)' = BP'. As the completeness of AP will 

follow from results in the next section, we assume that AP is a Banach space. 
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PROPOSITION 3.3.10. Given 1 ::; p < oo, 

under the duality 

(/, g) = I f(t) g(t) dt. lad 
PROOF: Since (A1

)' = (L1
)' = L00 = B 00

, we assume that 1 < p < oo. For 

convenience of notation, we prove the equivalent statement (AP
1 

)' =BP. 

a. Fix / E AP', g E BP, and w E A(Rd) with llwlh = 1. Then since 

I 

(Lt)'= L!:,,, 

Taking the infimum over all such w we find that \(/,g)\::; 11/\\AP' \\9\IBP• Thus 

each g E BP determines a continuous linear functional on AP'. 

b. We show now that 

\\g\\BP = sup { \(/,g)\: \\/\\AP' = 1 }. 

To see this, fix 1:, < 1. Then there exists a w E A(R d) with l\w\\i = 1 such 

that \lg\\L~ 2:: 1:, \\g!IBP· Set 

f = { \g(t)\P w(t) / g(t), g(t) =I= O, 

o, g(t) = 0. 

Then 

f \f(t)IP' w'(t) dt lad 

I I 

Thus f EL!:,, CAP. Moreover, 

f lg(t)IP'(p-I) w(t)P' w(t)1 -p' dt 
lad 

f \g(t)\P w(t) dt. 
}Rd 
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l(f,g)I f f(t)g(t)dt 
}Rt1. 

r lg(t)IP w(t) dt 
}Rt1. 

- (L. Jg( t) 1· w( t) dt r·· (!,,_, Jg( t)j• w( t) dt )''' 

- (f,,_, !J(t)j•' w'(t)dt) l/p' (!,,_, jg(t)j•w(t)dt) l/p 

IIJIIL1'1 ll9IIL!:. ,.,, 

Since c is arbitarily close to 1, the claim follows. 

c. Finally, assume µ E (AP
1

)' is given. As AP' = UL~,, we have µ E 

(L~, )' = Lt for each w E A(Rd). Therefore, for each w there is a function 

9w E Li such that 

(3.3.12) 

I 

(f, µ) = (f,gw) = f f(t) 9w(t) dt JB.d. 

for all f E L!:,,. To see that 9w is independent of the choice of w, fix any two 

weights v, w E A(Rd) with llvlli = llwlli = 1. Recall that, by definition, 

d d 

v(t) = II v;(t;) and w(t) = II w;(t;) 
j=l j=l 

for some Vj, Wj E A(R). Define 

d 

( ) _ II v;(t;) + w;(t;) 
ut - -----. 

j=l llv; + w;lh 

Clearly U E A(Rd) and llulli = 1. Also U 2'. c-1v, c-1w, where C :: 

nd II + II '< c1-p' , c1-p' , Th £ LP' LP' LP' h 
1 v; w; 1 , so u _ v , w . ere ore u' :) 

11
, U w', w ence 
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--- - -

{f,9u.} = {f,gv} = {f,gw} for all f EL!:. Hence 9u. = 9v = 9w a.e., so 9w 

is independent of w, and is denoted hereafter by g. Since g E ~ for all w 

We have g E BP, and from (3.3.12), {f, µ,) = {f, g) for all / E AP'. Thus 

µ = g E BP. I 

COROLLARY 3.3.11. For 1 $ p < oo, 

AP = II(t) B(p, 1), 

i.e., 

f E AP ~ II(t) f(t) E B(p, 1), 

and 

PROOF: Given f E AP, we have 

llfllAP = sup {l(f,g)j: ll9IIBP' = 1} 

= sup {IL" f(t)g(t) dtj: ll9IIBP' = 1} 

= sup { IL" II(t) f(t)g(t) 1n~!)1 I : ll911B(p',oo) = 1} 
• 

= sup { l(II(t) f(t),g(t)}I : 11911B(p',oo) = 1} 

= 2d IIII(t) f(t)II B(p,I)' 

the last equality following by Remark 3.2.6c. I 

REMARK 3.3.12. AP= II(t)B(p,1) C II(t)L1 (R~) = £l(Rd). 
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We now give Beurling's proof that AP is a convolution algebra. It is inter­

esting to note that this does not follow immediately from the identification 

AP = IT(t) B(p, q) = IT(t) w.(LP, L 1 ). Feichtinger's Wiener amalgam theory 

does imply that W.(LP, L 1 ) satisfies certain convolution relations; however, 

those relations are with respect to the group operation in R!, i.e., they are 

multiplicative convolution relations rather than the ordinary additive ones 

which appear in the proposition. 

PROPOSITION 3.3.13. AP is a. convolution al.gebra for al.I 1 =:; p < oo. 

PROOF: The case p = 1 follows immediately since A 1 = L1 (Rd), so assume 

1 < P < oo. For convenience of notation, we will prove the equivalent state­

ment that AP' is a convolution algebra. 

Given /, g E AP' and given f: > 1, let v, w E A(Rd) be such that llv/1 1 = 

llwll1 = 1 and 

and 

As v, w E L1(Rd) we can define u = v * w. Note that llu/'1 = I/viii 1/wlli = 1 

. b d 
smce oth v, w > 0. Also, u(t) = IL (v; *w;)(t;) and v; *Wi E A(R) for all j, 

sou E A(Rd). Now,/* g exists and is integrable since/, g E AP' c L1(Rd). 

We compute 

l(f*g)(t)I - ILdf(t-s)g(s)dsl 

<(I IJ(t-s)g(s)/P' )l/p'(r )1/p 
Jad v(t - s)P'/Pw(s)P'/p ds Jad v(t - s)w(s)ds 
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( 

1/p' - l"' lf(t - s)g(s)IP' v'(t - s)w'(s)ds) u(t) 1 IP. 

Thus, 

II!* 9ll~P' = ( IU * g)(t)lp' u'(t) dt ,., JR"' 
~ r r lf(t - s)g(s)\P' v'(t - s)w'(s) u(t)P'IPu'(t)dsdt 

JR4 JR"' 
= r lg(s)IP' w'(s) r lf(t - s)\P' v'(t - s) dt ds 

JR"' JRd 

- (JR"' \g(s)IP' w'(s)ds) (ld lf(t)\P' v'(t)dt) 

- 119ll~p' 11/ll~P' 
w 1 11 1 

Let ting c -+ 1 therefore gives the result. I 
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Section 3.4. A characterization of B(p, q). 

In this section we attempt to characterize B(p, q) in a manner similar to 

Beurling's characterization of B(p, oo) given in Section 3.3, i.e., as a union or 

intersection of weighted LP spaces. 

DEFINITION 3.4.1. Given 1 $; p < oo and 1 $ q < oo. 

a. Given a weight w on R~ we define the weight Wpq on R~ by 

Wpq(t) - III(t)w(t)l1
-~. 

b. If p $; q then we define X(p, q) = nwEA Ltp/R~), with norm 

llfllxcp,q) - sup IIJIIL~ 
wEA, P'l 

llwlli=l 

- !~ll_ (fa. I/( t)I' III( t) w( t) \ •- ~ \II~:)\) t/p (J.., w( t) dt) H . 
• 

c. If q $; p then we define X(p, q) = UweA Ltn (R~), with norm 

ll!llxcp,q) inf 
wEA, 

llwll1= 1 

(
( dt ) 1/P(f ).1._.1 l~~ JatJ lf(t)IP III(t) w(t)l

1
-~ III(t)I Jat w(t) dt " P • . 

REMARK 3.4.2. a. Since fatJ w(t) dt = fa~ \II(t) w(t) \ in1~)I' the normal­

ization of w with respect to Lebesgue measure in Definition 3.4.1 can be 

considered a normalization of III(t) w(t)I with respect to the Haar measure 

dt/lII(t)\. 
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b. For q = oo, 

II /llxc,,=> = !~~ (L: If ( t)J• Ill( t) w( t)I Jn~: )I) •I• (J... w( t) dt )-' I• 

= sup (fa" lf(t)IP w(t) dt) 1/p 

wEA fa" w( t) dt 

= ll!IIBP• 

Thus X (p, oo) = BP = B(p, oo ), cf., Theorem 3.3.9. 

c. Since Wpp = 1, X(p,p) = V(R~) = B(p,p), cf., Proposition 3.2.2. 

d. For q = 1, 

. ( r dt ) l/p ( 1 ) 1-¼ llfllx(p,1) = !i~ JR: lf(t)IP III(t) w(t)l
1
-p IIT(t)I lad w(t) dt 

= !'t,. (la. I ~~?ii' w(t)'-• dr· u .... w( t) dt )"'' 

= llf(t)/II(t)II AP. 

Thus X(p,1) = Il(t) AP= B(p,1), cf., Corollary 3.3.11. 

q - p p' - q' 
LEMMA 3.4.3. If 1 < p, q < oo then -- = 1 , • - pq pq 

PROOF: We compute 

q - p 

pq 

p' - q' 

p'q' 

1 

p 

1 
q 

1 1 
- + - - 1 - 1 = o. I 
q' p' 

LEMMA 3.4.4. Given a weight w on R~ and given 1 :5 p < oo and 1 :5 q .$ oo, 
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P ffi h 1-p' w Assume first ROOF: By Section 1.7a it su ces to s ow Wpq = p'q'• 

that q < oo; then, with the help 0£ Lemma 3.4.3, we compute 

( q ~ p) ( 1 - p') = q ~ p 1 ~ p 

Therefore, 

- q-p _P_ 
pq 1-p 
I I 

- p -q (-p') 
p'q' 

q' -p' 

q' 

wpq(t) 1-P' _ III(t)w(t)l<1-p/q)(l-p') - III(t)w(t)l1-p'/q' = Wp 1q1(t). 

If q = oo then q' = 1, so 

1Dpoo(t)1-p' - III(t)w(t)l1-p' - Wp11(t). I 

REMARK 3.4.5. From Lemma 3.4.4 we can prove that X(p, q)' = X(p', q'), 

cf., Proposition 3.3.10. Note that B(p, q)' = B(p', q') by Remark 3.2.6c. 

PROPOSITION 3.4.6. 

a. lfl :$ p $ q $ oo then X(p,q)::, W.(LP,Lq). 

b. If 1 < q $ p < oo then X(p,q) C W.(LP,Lq). 

PROOF: a. For simplicity, assume q < oo as the case q = oo is similar. 

Fix f E W.(LP,Lq) and w E A(R"). Since (q - p)/q ~ O, w<q-p)/q is 

decreasing on Ri and II(t)<q-p)/q is increasing on Ri, These facts allow us 
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to compute 

111111;, • ••• 

( )

(q-p)/q 

< 11/111;.v.(LP,L•) 22d :E II(2") w(2") 
n 

( 
I )<q-p)fq 

:5 22c1(q-p)/q Jx,. w(t) dt llfll~.(L•,L•)' 

where we have used Holder's inequality on the summations (possible since 

q/p > 1), the fact that (q/p)' = q/(q - p), and Lemma 3.3.5c. Therefore, 

( 
r ) (p-q)/pq 

llfllLt.,.. Ja,. w(t)dt ~ 2
2

d(9.-p)/pq llfllw.(L",L•)· 

Taking the supremum over w E A(R cl) we obtain 

llfllx(p,q) :5 22d(q-p)/pq ll!llw.(LP,L•)· 

b. Fix/ E W.(LP,L") and w E A(Rc1). Since (q - p)/q :5 O, w<q-p)/q is 
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increasing on Ri and II(t)(q-p)/q is decreasing on Ri. Therefore, 

(3.4.1) 

11/11~. (LP,Lt) 

where we have used Holder's inequality (possible since p/q ~ 1) and the fact 

that (p/q)' = p/(p - q). Since p/q ~ I we have 

(3.4.2) 

( )

q~ L III(2"+ 1 )w(2")1p/q 5 L II(2n+I)w(2n) 
n,a- n,a-

= 22d L Il(2n) w(2n) 
n 

$ 224 1 w(t) dt, 
:a• 

the last line following from Lemma 3.3.Sc. Combining (3.4.1) and (3.4.2), 

llfllw.(LP,L•) 5 22d(p-q)/pqllfllL:, w(t)dt . (1 ) 
(p-q)/pq 

Pf :a,• 

Taking the in:fi.mum over w E A(R4 ) we obtain 

llfllw.(L,.,L•> 5 224CP-q)/pq llfllx(p,q)· ,II 
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REMARK 3.4. 7. a. From Remark 3.4.2, B(p, 1) = X(p, 1), B(p,p) = X(p,p), 

and B(p, co) = X(p, co). From Proposition 3.4.6, B(p, q) = W..,(V, Lq) C 

X(p,q) if p < q, and B(p,q) = W..,(V,Lq) ::J X(p,q) if p ~ q. We therefore 

strongly suspect, although we have not proved, that B(p, q) = X(p, q) for all 

P, q. 

b. In the deep paper [He], Herz introduced spaces related to X(p, q). Using 

the notation of [Jo), the Herz space pLq is defined as follows. Let cl> be the 

spherical analogue of A(Rd), i.e., cl> consists of all weights w on Rd which are 

positive, radial, integrable with respect to Lebesgue measure, and radially 

decreasing. Then 

sup / lf(t)IP ,p(t)1-~ dt ,p(t) dt v 
7

, ( )1/p(L ) .!._.!, 

cpE+ la., B." 
p :5 q, 

inf ( / IJ(t)IP ,p(t)1-~ dt) l/p ( f ,p(t) dt) ¼-½, 
~• ~ k, p~ q. 

The space K!q is defined by the norm 

llfllK0 = II jtjC;-¼)d f(t)jj L • 
JJ'l JJ 'l 

Since 

K!q is the analogue of X(p, q) obtained by using Lebesgue measure on Rd 

instead of Haar measure on R~, and using a spherical approach to higher 

dimensions rather than a rectangular approach. 
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The space K~ is defined by the norm 

lllllx:. = II 1w·1" f(t>llx: •. 

Therefore K-P = ltl-p/d K 0 is the exact spherical analogue of the rectangular pq pq 

X(p,q). 
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Section 3.5. Weighted Besicovitch spaces. 

In this section, we examine the effect of replacing the factor l/lRTI in the 

definition of II· IIB(p,q) by a general function p(T). We show that the resulting 

space, denoted Bp(p,q), equals a Wiener amalgam space W.(Vv,L9 ) for an 

appropriate weight v. 

The spaces Bp(p, q), especially Bp(p, oo ), have appeared in various places 

in the literature. For example, Wiener considered the one-dimensionsal case 

1/(2T)'\ e.g., [W3), as did Lau and Chen, e.g., [CLI]. Strichartz consid­

ered higher-dimensional spherical analogues of this, e.g., [Stl; St2]. Evans 

considered general functions, e.g., [E2]. 

DEFINITION 3.5.1. Given 1 ~ p, q < oo and a weight p: Ri -+ R+, the 

weighted Besicovitch space B p(P, q) is the space of functions /:Rd -+ C 

for which the norm 

( 
f ( f ) q/p dT ) i/q 

llfllBp(p,q) = J.a." p(T) }RT lf(t)IP dt II(T) 
+ 

is finite. The standard adjustments are made if p or q is infinity, cf., Definition 

3.2.1. 

The following result is similar to part of Theorem 3.2.4. 

PROPOSITION 3.5.2. Given 1 $ p < oo, 1 $ q $ oo, and an even, moderate 

weight v on R:. Define 

p(t) - v(t)/III(t)j. 
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Then there is a. constant C > 0 such that 

II · llsp(p,q) > C 11 · llw.(Lt,L•>· 

PROOF: Assume for simplicity that 1 ~ p, q < oo (the case q = oo is sim­

ilar). By Theorem 2.1.6e there is a constant B > 0 such that SUPt[l,2] v ~ 

B inft[1,2J v for t E R~. Therefore, if T E [2", 2n+i] then 

and 

v(T) > v(2") p(2") 
p(T) = II(T) B II(2n+i) - 2d B . 

Fix now any (T E nd. Then 

111111.,(.,.) = Lt (p(T) L. lf(t)I' dtt· II~) 

= L I (p(T) I 1/(t)IP dt)q/p IId(TT) 
n J[2•,2,.+1] }Rx 

> (log 2)d L (p~") 1 1/(t)IP dt) q/p 
n 2 B a-[2n-1,2aJ 

> (log2)d L (22lB21 1/(t)IP III(t)lp(t) IIId(tt)l)q/p, 
n a-[2•- 1 ,2"] 
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where the summations in n run over zd. Therefore, 

> (log2)d 2-2dq/p B-2q/p L (1 IJ(t)IP v(t) __!:!_)q/p 
n,o- o-[2•- 1 ,2•) III(t)I 

(log 2)d 2-2dq/p B-2q/p llillq ,. 
W.(Lv,L•)' 

from which the result follows. I 

REMARK 3.5.3. a. The opposite inequality to the one in Proposition 3.5.2 can 

be proven just as in Theorem 3.2.4. Precisely, given 1 < p < oo and 1 ~ q ~ 00 

and given an even moderate weight p: R~ ~ R+, define v(t) = III(t)I p(t). 

Then there exists a constant D > 0 such that II· IIBp(p,q) ~ D 11 · llw.(Lt,L•)• 

b. From Proposition 3.5.2 and part a we have Bp(p,q) = W.(Lf,Lq) with 

equivalent norms. 

c. By Theorem 2.3.1, if vis moderate then w.(L!,Lq) = w.(LP,L:.,,,,), 

i.e., the weight may be placed on either the local or global component. 
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CHAPTER 4 

THE WIENER TRANSFORM 

In this chapter, we prove that the Wiener transform W is a topological 

isomorphism of the Besicovitch space B{2, q) onto the variation space V{2, q) 

for each 1 :::; q :::; oo. 

The definition of the Wiener transform and the symmetric difference oper­

ator -6..x used in this thesis follow the higher-dimensional, rectangular defini­

tions of [BBE]. Many basic ideas in this chapter are from [BBE]; we thank 

those authors for making higher-dimensional calculations possible. In addi­

tion, the one-dimensional results of Beurling and Lau are critical in that they 

directly lead to our isomorphism theorem. Our method of proof includes new 

techniques based on amalgams, combined with the techniques of Beurling and 

Lau. 

We begin in Section 4.1 by defining the Wiener transform, and showing 

that its domain of definition includes the spaces B{2, q) for each 1 :::; q :::; oo. 

In Section 4.2 we define the symmetric difference operators -6..x, and com-

pute -6..x W f. 

In Section 4.3 we define the higher-dimensional variation spaces V(p, q). 

In Section 4.4 we prove that the Wiener transform maps B{2, q) continu­

ously into V{2, q). We prove this for the case q = oo using Lau's method, 

for q = l using Beurling's method, and for the general case using amalgam 
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spaces. 

In Section 4.5 we prove that the Wiener transform is invertible for each 

1 ~ q ~ oo. We prove this for 1 ~ q ~ oo by generalizing Lau's q = oo 

technique, and compare this to an amalgam space proof for 1 ~ q < oo. 

Throughout this chapter, k and K will be as in Example 3.3.4c. That is, 

k(t) = ((sin21rt)/(1rt))
2 

fort ER and 

K(t) = rr(sin21rt)
2 

= II(sin21rtj)2 
1rt 1rt,· 

j=l 

d 

II k(t;) 
j=l 

k * denotes the least decreasing majorant of k on R+, extended evenly to R, 

and k* the greatest decreasing minorant on R+, extended evenly to R. k* is 

even, positive, integrable, and decreasing on R+, and therefore is an element 

of A(R). k* is even, nonnegative, integrable, and decreasing on R+, but is 

not an element of A(R) as it has zeroes. In fact, k* = k-X[o,1; 21. Numerically, 

100 

k*(t) dt ~ 1.068, 100 

k(t) dt = 1, and 100 

k*(t) dt ~ 0.903. 

Similarly, K* denotes the least decreasing majorant of K on Ri, extended 

evenly to Rd, and K* the greatest decreasing minorant on Ri, extended 

evenly to Rd. K* is rectangular, even, positive, integrable, and decreasing 

on Ri, and therefore is an element of A(Rd). K* is rectangular, even, non­

negative, integrable, and decreasing on Ri, but is not an element of A(Rd). 
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Section 4.1. Definitions. 

In this section we define the Wiener transform and show that its domain 

of definition includes each Besicovitch space B(2, q) for 1 < q ~ oo. 

DEFINITION 4.1.1. Given t E Rd and -y E Rd we define 

t:(t,-y) 
d 

- II 
j=l 

-211'it·""· X (t ) 
e ' '' - (-1 ,1] j 

-21rit; 

Note that if lt;I > 1 for all j then £(t,-y) = E_7 (t)/II(-21rit). 

DEFINITION 4.1.2. Given a function /:Rd--+ C, its Wiener transform is 

(formally) 

Wf('Y) I f(t) t:(t,-y) dt, JR.,_ 

Wiener denoted Wf bys, a notation retained in [BBE], where it is called 

the Wieners-function. 

The integral defining the Wiener transform may converge in various senses, 

depending on the function/. For example, it may converge absolutely or only 

in mean, cf., Example 4.1.4 and the proof of Theorem 4.1.7. 

LEMMA 4.1.3. Given (t,-y) E Rd x Rd. 

a. III(t) £(t,-y)I ~ 11'-d. 

b. 1£(t,-y)I :S (21r)la(t)l-d IJ;Ea(t) 1-Y;I, where a(t) = {j: It;/~ 1}. 

c. SUPtE(-1,1] /t:(t,-y)/ '.S /II('Y)l-
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PROOF: a. We compute 

b. Fix t E Rd and, E ftd. If t; E (-1, 1] then 

I 
e-2,rit;-r; - 11 < 121rt;,; I = 

2 ·t 2 l,;I-- 7r1, j - 1rt; 

On the other hand, if t; (!. [-1, 1] then 

The result therefore follows by multiplication. 

-d 
7r 

c. Follows immediately from b since t E [-1, 1] implies a(t) = {1, ... , d}. I 

We give examples of the various senses in which the Wiener transform may 

converge. 

EXAMPLE 4.1.4. a. Given f E L1(R!), we have from Lemma 4.l.3a that 

Ld lf(t) t'(t,,)I dt $ 7f'-d L~ lf(t)I III~:)I = 7f'-d II/IIL1 (R~) < 00. 

Thus W f converges absolutely and IIW /11 00 $ 1r-d 11/11 1 , so Wis a continuous 

Note that since B(p, 1) C LP(R!)nL1 (R!), the Wiener transform converges 

absolutely for functions in B(p, 1 ). 

b. Set d = 1 and fix f E L00 (R). Since 

1
1 

jJ(t) e-
2

,rit-y __ 
1

1 dt $ hi [
1

1 

lf(t)I dt < 21,111/lloo, 
_ 1 -2nt 
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the integral 

(4.1.1) 1
1 e-21rit-y _ 1 

-1 f(t) -21rit dt 

converges absolutely. Now define 

Then 

g(t) J(t) X (t) 
2 ·t (-00,-l]U[l,00) · 

- ,ri 

100 lu(t)l2 dt ~ llfll~ /00 r2 dt < oo, 
-00 2,r 11 

so g E L 2 (R). Therefore, its Fourier transform g converges in mean. Evalu-

ating, 

( 4.1.2) 1 
e-21rit-y _ 1 

g(-y) = j(t) . dt. 
itl>l -2,rit 

The Wiener transform off is the sum of the two integrals ( 4.1.1) and ( 4.1.2), 

so is well-defined. Moreover, Wf E Li:c(:R) + L2(R) C Lf0 c(R). 

We partition Rd and zd into subsets R~ and Z~ as follows. 

DEFINITION 4.1.5. Given a subset a C {l, ... , d}. 

a. R~ = {t E Rd : It;! < 1 for j Ea, lt;I > 1 for j ft a}. 

b. Z ~ = { n E zd : n; < 0 for j E a, n; ;:::: 0 for j ft a}. 

REMARK 4.1.6. a. {R~} is a partition of Rd and {Z~} is a partition of zd. 

b. If a = {1, ... , d} then R~ = (-1, 1). All other R~ are unbounded and 

disconnected, consisting of 2d-Jal connected components. 
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THEOREM 4.1. 7. The Wiener transform is de-fined on W.(L 2 , L00
) and is a 

continuous linear map of W.(L 2 , L00
) into LfaJftd). 

PROOF: Fix f E W.(£2
, £ 00

). It suffices to show that 

Fa(,) = f J(t)£(t,,)dt 
la" a 

is well-defined and an element of Lf
0
cCR.d) for each a C {1, ... , d}, and that 

the mapping / i--+ Fa is continuous. Recall that 

(1 dt ) 
1

/
2 

llfllw.(L2,L 00
) = sup lf(t)l

2 
III(t)I 

nEZ", o-EO" o-(2" ,2"+ 1] 

a. Assume first that a = {1, ... , d}, and note the following facts. 

a2. t ER~ => l£(t,,)I ~ /II(,)/. 

a3. n E Z~ => ni < 0 for all j. 

a4. Z::neZ" II(2") = 1. 
a 

In the following calculation, the summations are over n E Z~ and <TE fld. 

/Fa(,)I < L! /f(t)£(t,,)ldt 

< III(-r)I [ f.12•,2•+•1 lf(t)ldt 

< III(,)I L (rr(2") 1 lf(t)l 2 dt) 
112 

o-[2" 2"+ 1] n,o- , 
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Therefore Fa converges absolutely and is an element of L~c(:Rd) C Lf
0
c(:Rd). 

The mapping / ....+ Fa is clearly continuous. 

b. Assume now that a = 0, and note the following facts. 

b2. t ER# => e(t,,) = E_.y(t)/II(-21rit). 

b3. n E Z# => n; ~ 0 for all j. 

In the following calculation, the summations are over n E z: and <r E nd. 

r I t(t) 12 dt - 1 lt(t)12 ~ 
la: II(t) - ~ u[2•,2•+11 III(t)I III(t)! 

< L l 1 lf(t)l2~ 
- n,u I1(2") u[2",2•+1] III(t)j 

< sup l/(t)12 --(1 dt ) 
- n,u u[2",2"+1] jTI(t)I 

~ 2
2

d llfll~.(L2,L-)· 

Therefore, 

G(t) f(t) X (t) E L2 (Rd). 
- II( -21rit) a: 
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The Fourier transform of G therefore converges in mean square. Moreover, 

G(-y) = I G(t)E_.,(t)dt 
la" 
I ( ) E_.,(t) 

= /a" f t IT(-21rit) dt 
• 

= I f(t)E(t,-y)dt 
la" • 

= Fe('Y ). 

Th z Ad us Fe converges in mean square, and Fe EL (R ). 

c. Finally, assume a is a proper, nonempty subset of {1, ... , d}. Without 

loss of generality, let a = {1, ... , k} and /3 = {k + 1, • • •, d}. For notational 

convenience, given t E Rd we write ta= (t1,,,.,t1:) and t13 = (tk+J,, .. ,td), 

sot = (ta, t13 ). Conversely, given ta E Rk and tt3 E Rd-i we understand that 

Note the following facts, cf., al-a4. 

c3. na E Z! =} (na); < 0 for j = 1,. • •, k. 

The following calculation is similar to the one in part a. Given t13 E R d-k 

and -Ya E R:\ 
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1 lf(t) £(ta,1'a)I dta 
R" a 

< III( 'Ya) I -~- Lr,·• ,2••+'] 1/(t)I dta 

< 111(-ya) I •~• ( 11(2"•) L ['"• ,,•• +'] I/( t) 1
2 

dta )'

1

' 

~ ( 1 dt )
1

1
2 

< III(,a)I ~ II(2"a )2 lf(t)]2 jII(t )I 
(T [2na 2na+lj a 

na,O"a a , 

Therefore, 

is well-defined a.e. Note the following facts, cf., bl-b4. 

c7. n13 E z:-k =} (n13); ~ 0 for j = k + 1, ... , d. 

The following calculation is similar to the one in part b. 

Ltl-11 IG'Ya(t/3)12 dtt3 

= Ltl-11 jII(-2~it13)j2 IL,. f(t) £(ta ,1'a) dta 12 dtt3 
e a 
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< (211')2(1:-d) 22k III('"Ya)l2 " ln / 
LI Il(2 /J) Jrs1J[2•1J 2•1J+11 

RfJ 1tlfJ I 

sup / lf(t)12 dta dtfJ 
Ra 1fla Jrsa[2•a,2•a+1) jll(ta)I III(ttJ)I 

::; (21r)2(1:-d) 2211 III('"Ya)l2 sup sup 1 
R(!, 1flfJ Ra 1fla tlf!,[2•/J ,2•1J+1 ] 

1 IJ(t)l2 dta dtfJ L 1 
rsa[2"a ,2"a+1] III(ta)I III(ttJ)I RfJ,fl(!, II(2RJI) 

= (21r)2(1:-d) 2211 22(d-A:) l1I("Ya)l2 sup / lf(t)l2 ~ 
n,o- Jo-[2" 12•+1] III(t)I 

Thus G'Ya E L2(Rd-l:). Its Fourier transform therefore converges in mean 

square, and we compute 

since R! = R! x R:-1:. Thus F0 is well-defined. Given "Y E Rd we have by 
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the Plancherel theorem that 

Therefore, if T E Ri then 

Thus Fa E Lf
0
c:(:fld), and the mapping/ 1---+ Fa is continuous. I 

REMARK 4.1.8. a. It is shown in [BBE) that W maps £!(Rd) into Lf
0
c:(:Rd), 

where v(t) = nt (1 + Jt;J)-2
' i.e., Vis as in Theorem 3.3.l with a= 2. From 

Theorems 3.2.4 and 3.3.1 (or 3.3.9), W.(£2 ,£00
) = B(2,oo) c £!(Rd). 

b. Since B(2, q) = W.(L2
, Lq) c W.(£2 , £ 00

) = B(2, oo ), the Wiener 

transform is well-defined on each B(2, q). It is not difficult to modify the 

proof of Theorem 4.1. 7 to show this directly. 

157 



Section 4.2. The symmetric difference operator. 

In this section we define the rectangular, higher-dimensional symmetric dif­

ference operators~,\, and compute ~,\Wf, where Wis the Wiener transform. 

DEFINITION 4.2.1. 

a. Given A E Rd, the symmetric difference operator ~,\ is 

~,\ 2-d L IT(a)T-u,\, 
uEOd 

where Tis the translation operator. That is, 

2-d L IT(a) F(, + aA). 
uEOd 

b. Given A E Rd, the one-sided difference operator ~ t is 

~t 2-d L IT(a) T-u.\• 
uE{O,l}d 

c. Given A E Rand 1 ::; j :=; d, the directional difference operator~{ 

IS 

where e; = (0, ... , 0, 1, 0, ... , 0) is the lh unit vector. 

d. Given A E R and 1 ::; j :=; d, the one-sided directional difference 

operator ~{+ is 

where I is the identity operator. 
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REMARK 4.2.2. a. Ford= 1, 

at F('Y) = ½ [ F( 1 + .X) - F('Y)] , 

and a1 = a~, ai+ = at, 

b. Ford= 2, 

atF('Y) - ¼[F('Y1+.X1,12+.X2) - F('Y1+.X1,12) 

- F( 11, 12 + .X2) + F('Yi, 12)] , 

for .X E ft 2 • Also, 

for.XE ft. 

c. The operators { a~} commute, since 

dµ a~ = 2-" 1: II(-r) T-rµ a~ 
rEO" 

= 2-" 1: Il(-r)T-rµ 2-" 1: Il(u)T-o-~ 
rEO" o-EO" 

== 2-" 1: II(u)T-o-~ 2-" I: II(-r)T-rµ 
o-EO" rEO" 
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Similarly, the operators {~f}, {~{}, and {~{+} commute. Moreover, all 

four types commute with each other. 

d. ~~ equals the composition of the operators ~t, ... , ~t and, similarly, 

A+ • h "t" f A 1+ Ad+ • ~~ 1s t e compos1 10n o ~~
1

, ••• , ~~", 1.e., 

A 1+ Ad+ ~, ···~, 
"'1 "'" ' 

and since these operators commute, the composition may be taken in any 

order. Ford = 2 this follows from the computation 

The general case is similar. 

e. For>. ER, 

~ d 
Therefore, for >. E R , 

A 1+ Ad+ 
~~l • • • ~~d 

f. Assume F is rectangular in the sense of Section 1.3d, 1.e., F(,) 

160 



il).F(,) 

d 

II Ll{j F;(,j) 
j=l 

d 

2-d II [F;(,j + Aj) - F;(,j - Aj)]. 
j=l 

g. Since il). is a sum of translation operators, it is a tempered distribution. 

Therefore, its Fourier transform exists and is a sum of modulation operators. 

I\ 

We denote this operator by il).. Since the act of modulation is multiplication 

I\ 

by an exponential, il). acts by multiplying by a function which is a sum of 

I\ 

exponentials. We denote this function by il)., i.e., 

V 

Similarly, il). is the function which is the inverse Fourier transform of b. ).. 

We evaluate these functions in Proposition 4.2.5. 

DEFINITION 4.2.3. Given A E ftd. 

a. The sine product function S). is 

II( sin 21r At) 

b. The Dirichlet kernel d). is 

REMARK 4.2.4. a. JJs).lloo = 1. 
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c. d>. E V(Rd) for 1 < p ~ oo, and d>. ~ L 1 (Rd). 

d. K(t) = ld1(t)l 2 and ld>.(t)l 2 = Il(~)2 K(~t). 

A V 

PROPOSITION 4.2.5 . .6.>.(t) = ids>.(t) and .6.>.(t) = (-i)ds>.(t). 

PROOF: We prove only the first statement as the second is similar. We com­

pute 

1>.(t) - (2-d L IT(u)T-u>.)A(t) 
uenc1 

2-d L IT(u)Eu>.(t) 
venc1 

v1E{-l,l} vc1E{-l,l} 

d 

- 2-d II 
j=l u;E{-1 11} 

d 

- 2-d II (e2'ri>.;t; -e-21ri>.;t;) 

j=l 

d 

_ 2-d II 2i sin 271" ~;t; 
j=l 

We characterize in the following proposition those functions F such that 

.6.>,.F(,) = 0 for all ~- For example, constant functions satisfy this condition. 

In one dimension there are no other examples. 

PROPOSITION 4.2.6. a. A function F: Rd-+ C with 

(4.2.1) 

is completely determined by its values on the coordinate hyperplanes Ad = 
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{ "'Y E Rd : II("'Y) = 0}. Conversely, every function F: Ad --+ C uniquely 

determines a function F on Rd which satisfies (4.2.1). 

b. Ford= 1, a function F satisfies (4.2.1) if and only if it is constant. 

c. Ford> 1, all constant functions satisfy (4.2.1), but they do not exhaust 

the class of F satisfying (4.2.1). 

PROOF: Assume first that d = 1, and recall that A~F("'Y) = ½ [F("'Y + A) -

F("'Y - A)]. Setting "'Y = A, we find 0 = 2A-yF("'Y) = F(2"'Y) - F(0). Thus 

F("'Y) = F(0) for all "'Y, so Fis constant. 

Now assume that d = 2 ( the general case is similar). Recall that 

A~F("'Y) = ¼ [F("'Y1 + A1,"'Y2 + A2) - F("'Y1 + A1,"'Y2 - A2) 

- F("'Y1 - A1,"'Y2 + A2) + F("'Y1 - A1,"'Y2 - A2)]. 

Setting "'Y = A, we find 

The last three terms of this expression lie on the coordinate axes, so the value 

of F(2"'Y1, 2...,,2) is completely determined by the values of F on the coordinate 

axes. 

Conversely, assume F: A 2 --+ C is given. Extend F to R 2 by defining 

F("'Y1,"'Y2) = F("'Y1, 0) + F(0,""12) - F(0, 0). 

Given any "'Y, A E R.2 , we then have 

4A~F("'Y) = F("'Y1 + A1,"'Y2 + A2) - F("'Y1 + A1,"'Y2 - A2) 

F("'Y1 - A1, "'Y2 + A2) + F("'Y1 - A1, "'Y2 - A2) 
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- F(0,,2+.X2) + F(0,0) 

+ F(0, ,2 - .X2) - F(0, 0) 

+ F(0,,2+.X2) - F(o,o) 

- F(0,,2 - .X2) + F(0,0) 

- 0. 

Thus F satisfies (4.2.1). I 

We apply the difference operator to t:(t, •). 

LEMMA 4.2.7 [BBE]. ~.\t:(t, 1 ) = 2-d E_-y(t)d.\(t). 

PROOF: By Remark 4.2.2d, it suffices to show ~{t:(t,,) = ½ E-'>'; (t;) d.\; (t; ). 

Since this calculation is the same as the one-dimensional case, we assume 

d = 1 and compute 

2~.\£(t,,) - £(t,,+.X) - t:(t,,-.X) 

e-21rlt{'>'+.\) - X[-1,1](t) - e-21rlt('>'-.\) + X[-1,1J(t) 

-21rit 
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= e-21rit-y sin21rAt 
1rt 

PROPOSITION 4.2.8. Given 1 ~ q ~ oo, f E B(2,q), and A E Ri, 

a. f · d>,. E L 2 (Rd). 

b. A>,.Wj = 2-d (f · d>,.)" E L 2 (Rd). 

PROOF: a. Since B(2, q) C B(2, oo) = W.(L 2
, L 00

), it suffices to prove the 

result for f E W.(L 2 ,L00
). 

Note that 

(4.2.2) 

Since K*(At) E A(Rd) for each fixed A, we have by Lemma 3.3.Sc that 

From (4.2.2), (4.2.3), and the fact that K* is even and decreasing on Ri, we 

therefore have 
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:::; 23
d IT(.\) II/II~. (L2,L"") I" K*(t) dt la+ 

< 00. 

b. Fix/ E B(2,q). From Theorem 4.1.7, Wf is well-defined and is an 

element of Lf
0
c(:Rd). Using part a and Lemma 4.2.7, we compute 

A.\Wf(-y) A.\ I f(t) t:(t,-y) dt 
la" 

I f(t)A.\t:(t,-y)dt 
la" 

The fact that A.\ can be interchanged with the integral in the above cal­

culation follows immediately from the fact that A.\ is a sum of translation 

operators acting only on -y. I 

REMARK 4.2.9. In [BBE], Proposition 4.2.8 is proved (using different esti­

mates) for all/ E L;(R) :) B(2,q), where vis as in Theorem 3.3.1 with 

a= 2. 
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Section 4.3. The variation spaces. 

In this section we define the variation spaces V(p, q). Definitions for d = 1 

were given in (0.2.16). 

DEFINITION 4.3.1. Given 1 ~ p, q < oo, the variation space V(p,q) is the 

space of functions F: ftd--+ C for which the seminorm 

is finite. The standard adjustments are made if p or q is infinity, namely, 

IIFl/v(p,oo) 

IIFllv(oo,q) 

IIFllv(oo,oo) 

We also define 

V(p,lim) = {F: lim 
2
(d) / l~-\F("Y)IP d"'f exists}, 

-\--+o rr -\ Ja, 

where the limit is the d-dimensional limit defined in Section 3.1. 

REMARK 4.3.2. 11 · llv(p,q) is not a norm, since IIFllv(p,q) = 0 implies only that 

~-\F(-y) = 0 for a.e. "Y and A. For example, all constant functions F satisfy 

IIFllv(p,q) = 0, cf., Proposition 4.2.6. However, II • llv(p,q) is a seminorm, and 

therefore becomes a norm once we identify functions F, G E V (p, q) such 

that IIF - Gllv(p,q) = 0. We adopt this convention for the remainder of this 
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- -"'::".:'' _.,_.,...,_ ..;: --• •....,dS 

thesis, so V(p, q) is at least a normed linear space. We prove in Theorem 

5,2.3 that V(p, q) is complete, hence a Banach space. The proof of this fact 

is complicated by the fact that V(p, q) is not solid, i.e., given F, GE V(p, q) 

with IFI < IGI a.e., we cannot conclude that 1/Fl/v(p,q) $ /IG/lv(p,q), cf., 

Example 4.3.3. We will not need the completeness of V(p, q) for any results 

in this chapter. 

EXAMPLE 4.3.3. Set d = 1, q = oo, F = X[o,1J, and G = 1. Then we have 

/IGllvcp,<x:>) = O, while IIFllv(p,oo) > 0 since d = 1 and F is not identically 

constant (Proposition 4.2.6). In fact, since 

We have 

whence 

_ { 4A, 
2, 

O <A~ 1/2, 

1/2 ~ A, 

Thus IF/ < jGj, but IIF/lv(p,oo) == 81
/P > 0 = IIGllv(p,oo)· 

REMARK 4.3.4. a. The Wiener-Plancherel formula, as proved by Benedetto, 

Benke, and Evans in higher-dimensions, states that the Wiener transform W 

is an isometry of the nonlinear space B(2, lim) onto V(2, Iim). 

b. Lau and Chen proved that, ford== 1, Wis a topological isomorphism 

of B(2, 00) onto V(2, 00 ). We discuss this result in Sections 4.4-4.5. 
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c. Beurling proved that, for d = l, the Fourier transform is a topological 

isomorphism of A2 onto V(2, 1). We show in Sections 4.4-4.5 that this implies 

that the Wiener transform W is a topological isomorphism of B(2, 1) onto 

V(2, 1). 

d. We prove in Sections 4.4-4.5, for arbitrary d ~ 1, that Wis a topological 

isomorphism of B(2, q) onto V(2, q), for ea.ch 1 ~ q ~ oo. 

EXAMPLE 4.3.5. Assume f is given and its Wiener transform W f is well-

defined, e.g., f E B(2,q). Note that ld.\(t)l 2 = II(>.)2 K(>.t). Therefore, by 

Proposition 4.2.8 and the Plancherel theorem, 

IIWfllv<2,,J - (fa/rr~:) k_, ld,W f(-r)I' d-y /' rr~1) f' 
(( ( II~:) k_, 1r' (f. d,)'(-r)I' d-y) q/2 rr~1)) 1/q 

(
/ ( 1 f )q/2 d>. )1/q 

lad 2d II(>.) JRtl lf(t) d.\(t)l2 dt IT(>.) 
+ 

( r (rr(>.) r )q/2 d). )1/q 
l"fl.tl 2£l JRtl lf(t)l2 K(>.t) dt IT(>.) . 

+ 

169 



Section 4.4. Continuity of the Wiener transform. 

In this section we prove that the Wiener transform is a continuous mapping 

of B(2, q) into V(2, q) for each 1 ::; q ::; oo. We begin by examining Lau's 

proof for the case q = oo. Next, we show that Beurling's proof that the 

Fourier transform is a continuous map of A2 into V(2, I) implies that the 

Wiener transform is a continuous linear map of B(2, 1) into V(2, I). Finally, 

we prove the general case by using amalgam space techniques. 

The following proposition, for the cased= 1, is due to Lau and Chen. 

PROPOSITION 4.4.1. Given a rectangular, positive, even function w, and 

given 1 ::; p < oo. Then 

sup II(;) f IJ(t)IP w(.Xt) dt < llfll~(p,oo) / w*(t) dt 
~ead 2 lad lad + + 

for all measurable functions f: Rd-+ C. 

PROOF: Assume without loss of generality that fad w*(t) dt < oo and that 
+ 

f E B(p, oo ). Extend w * evenly to Rd and note that 

(4.4.1) 

IT(;) f lf(t)IP w(.Xt) dt = 2-d f lf(t/ ;\)IP w(t) dt 
2 lad lad 

for all A E Ri, where D~ is the usual dilation operator. 

Recall from Theorem 3.3.9 that B(p, 00) =BP= nweA L~(Rd), with norm 

equality, i.e., 

fad lg(t)IP w(t) dt 
- !~~ fad w(t) dt · 

170 



Since B(p, oo) is dilation isometric and w* E A(R d), we therefore have 

( 4.4.2) 

r JD>.f(t)JP w*(t) dt ::; JID>./lltc =) r w*(t) dt Ja,J P, la,J 

The result follows upon combining (4.4.1) and (4.4.2). I 

REMARK 4.4.2. Lau and Chen prove in [CLl] that fa" w*(t) dt is the best 
+ 

possible constant in Proposition 4.4.1. Their proof of this fact is intricate, 

and will be omitted. We point out, however, that it carries over immediately 

to higher dimensions. 

COROLLARY 4.4.3. The Wiener transform Wis a continuous linear map of 

B(2, oo) into V(2, oo ), with 

IIWII = (/.~ k*(t)dt)''' "' (1.033)4 > 1. 

PROOF: From Example 4.3.5, 

IIW fllh2,=) = sup II(;) r lf(t)l2 K(.Xt) dt . 
.\ER,J 2 Ja,J 

+ 

The result therefore follows from Proposition 4.4.1, Remark 4.4.2, and the 

fact that fatJ K*(t)dt = (fo00 k*(t)dt)d. I 
+ 

We turn now to Beurling's proof that the Fourier transform is a continuous 

linear mapping of A2 into V(2, 1), which we recast as showing that the Wiener 

transform maps B(2, 1) continuously into V(2, 1). The critical fact, and our 

starting point, is the following nontrivial result, also due to Beurling, e.g., 

[Be2]. 
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LEMMA 4.4.4. Given w E A(R) and given O < a < 1 < b < oo, there exists 

a function w• such that 

a. w* ~ w, 

b. ta w*(t) is decreasing on R+, 

c. tb w*(t) is increasing on R+, 

d. J0

00 

w•(t) dt ~ (l-a)(b-l) f0

00 
w(t) dt. 

PROPOSITION 4.4.5. The Wiener transform Wis a continuous linear map of 

B(2, 1) into V(2, 1), with 

PROOF: Fix f E B(2, 1); then J(t)/IT(t) E A2 by Corollary 3.3.11, and 

llf llB(2,l) - 2-d IIJ(t)/Il(t)IIA2 

2 )1/2 (L )1/2 2-d inf ( f IJ(t)/II(t)I dt w(t) dt 
wEA JR" w(t) R" 

Fix any w E A(Rd) with llwll 1 = JR.t w(t) dt = 1. By definition, w(t) = 

Ilt w;(t;) for some w; E A(R). Let wj be the functions given by Lemma 

4.4.4 applied to w; with a = 1/2 and b = 3/2. Define w•(t) = IIt wj(t; ). 

Then 

( 4.4.3) f w*(t) dt 
}Rtt 

+ 

d foo 
IT Jo w;(t;) dt; 
j=l 0 

d 3/2 loo 
< ]l (1/2)(1/2) Jo w;(t;)dt; 

172 



= 6d f w(t)dt 
1a4 

+ 

Now, by Proposition 4.2.8 and the Plancherel theorem, 

(4.4.4) 77(.X) - II~:) l 
4 

IA.\ W fh')l 2 
d,y 

2d ~(.X) L4 lf(t) d.\(t)l
2 

dt 

- (21r2 )! II(.X) L
4 

js.\(t) f(t)/IT(t)l
2 

dt. 

Using ( 4.4.3) and ( 4.4.4) we therefore compute 

(4.4.5) 
( 1/2 d.X 

IIW fllv(2,1) = Ja.4 11(.X) TI(.X) 
+ 

= f ( 11P) ) 1/2 (w*(l/21r.X)) 1/2 d.X 
Ja.4 w•(t/21r.X) II(.X)2 

+ 

Now, t/l2wj(t;) is decreasing on R+ and t/l2wj(t;) is increasing on R+ for 

each j. Therefore, given t;, /3; E R+, 

0 < /3; ~ 1 => t/12 w;(t;) < (t;//3;)312 w;(t;//3;), 

1 ~ /3; => t/12 w;(t;) < (t;//3;) 112 wJ(t;//3;), 
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whence 

1 ~ /3j ⇒ wJ(tj//3j) 2'. f3/12 wJ(tJ). 

Therefore, 

( 4.4.6) 

/
00 

/sA; (ti)/ 2 d>.i 
lo wj(1/21r>.j) >.i 

1
00 sin2 21r>. ·t · d>. · - ) ) ) 

- 0 wj(I/21r>.i) >.i 

/
00 

sin
2 /Ji d/3i 

= lo wj(ti//3i) /Ji 

< /1 sin
2 

/Ji d/3i + 100 

sin
2 

/Ji d/3i 
- lo f3/12 wj(ti) /Ji 1 f3/ 12 wj(ti) /Ji 

1 [1 / sin/Ji /2 d/3i 1 100 

• 2 d/3j 
= wj(tJ) lo T; f3/12 + wj(ti) 1 sm /Ji /3//2 

< -- _fJ)_ + -- ) 1 11 da . 1 loo d/3· 
- Wi(ti) 0 /3//2 w;(ti) 1 /3//2 

4 

wi(ti)' 

from which it follows that 

( 4.4. 7) 

Substituting ( 4.4. 7) into ( 4.4.5), 

(12) d/2 (1 lf(t)/II(t)/2 ) 1/2 
//Wfl/v(21) ~ - () dt . 

' 7r R" W t 

Since this is true for all w E A(Rd) with //w/1 1 = 1, 

1/W fllv(2,1) ~ ( ~
2 
)'

12
1/J(t)/II(t)I/A• = (: )'

12
1/flls(2,1)• I 
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REMARK 4.4.6. a. If we repeat the calculations in the proof of Proposition 

4.4.5, keeping all estimates the same but not fixing a and b, we find that 

< ( 2b(2+a-b) )d/2 
IIW/llv(2,1) _ 1ra(b - l)(l _ a)(2 _ b) llflls(2,1)• 

The expression 

F b _ 2b (2 + a - b) 
(a,) - 1ra(b-1)(1-a)(2-b) 

is clearly is not minimized at a,= 1/2, b = 3/2, but at 

bo _ _ _ ---=--- _ -- + ---=--- - 2B2 - 2B1 
1 (9 -4-¾B1 ✓( 9 -4-}B1 )

2 

) 

2 2 B 2 2 B2 ' 

where 

4 208 (2971 ✓-6373)-l/3 
(2971 ✓-6373) 113 

3 + 9 27 + 3J3 + 27 + 3J3 

2 ✓-2+¼A1 2 , 

14 + 160 (- 1846 2J-6373)-l/
3 
+ (- 1846 + 2J-6373) l/

3 

3 9 27 + 3J3 27 3J3 

This follows from solving for the critical points of F, using that 

-4b + 8ab + 2a2 b + 2b2 
- 4ab2 

1ra2 (a -1)2 (2 - b)(b -1) ' 

8 + 4a - 8b + 2b2 - 2ab2 

1ra(a -1) (b - 2)2 (b -1)2 • 
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A 1 , A2, B 1 , and B 2 are real. Numerically, a0 ~ 0.352 and bo ~ 1.528, and 

F( ao, b0 ) ~ 43.904/71" < 48/71" F(l/2, 3/2). 

Therefore, 

IIWJ!lvc2,1) ~ (3.738)d ll!IIB(2,1)• 

b. If we repeat the calculations in the proof of Proposition 4.4.5 but without 

fixing a and band without approximating (sint)/t and sint in (4.4.6), we find 

that 

IIWfllvc2,1) < G(a,b)d12 IIJIIB(2,1), 

where 

G(a,b) -

Using numerical integration, we compute 

G(l/2, 3/2) ~ 36.85/7r and G(ao,bo) ~ 32.30/71", 

both of which improve on the estimates in part a. G is minimized at a1 ~ 0.30, 

b1 ~ 1.54, with G( a1 , b1 ) ~ 31.92/71". Thus, 

IIWJ!lv(2,1) < (3.19)d IIJIIB(2,1)• 

We do not know if this is the best possible constant. 

Beurling's and Lau's results establish the "endpoints" of our isomorphism 

theorem. The "midpoint" is proved in the following proposition. 
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PROPOSITION 4.4. 7. The Wiener transform is an isometry of B(2, 2) into 

V(2, 2). 

PROOF: We compute, with the help of Example 4.3.5 and Proposition 3.2.2, 

IIW//lh2,2) - I IT(A) I lf(t)l2 K(>.t) dt ~ 
ls." 2d JR,,. IT(>.) 

+ 

= 2-d f lf(t)l2 f K(>.t) d). dt JR,,. J'fLd. 
+ 

= 2-d L,,. lf(t)l2 fa,,. K(>.) d>. 1n~!)1 
+ 

-d I 2 dt 
= 2 JR,,. lf(t)I IIT(t)I 

- ll/111c2,2)· 1 

REMARK 4.4.8. W is surjective by Theorem 4.5.5, so is actually a unitary 

map of B(2, 2) onto V(2, 2). As II· llnc2,2) = 2-d/2 /I· llv(R~), Wis therefore 

a multiple of a unitary map of L2 (R~) onto V(2, 2). 

Next we prove the continuity of the Wiener transform on B(2,q) for 2 :s; 

q ~ oo by using amalgam space methods. The constants we obtain are not 

best possible, cf., Remark 4.4.16. 

PROPOSITION 4.4.9. Given 1 :s; p ~ q ~ oo with p f:. oo, and given a 

nonnegative, even function w on Rd. Then 
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(l.(rr~;) L, lf(t)I' w(>.t)dt)'1' rr~~)r q 

+ 

'.S (log 2)dfq 2••!• (L, w*(t) dt) l/p llfllw.(L•,L•) 
+ 

for all measurable functions f: Rd -----+ C (with the standard adjustments if 

q = oo). 

PROOF: Extend w* evenly to Rd and assume q < oo (the case q = oo is 

similar). The summations in the following calculation are over m, n E zd 

and u E _nd_ Using the fact that w* is even and decreasing on Ri, we 

compute 

( 4.4.8) 

/ (II(>.) / )q/p d>. lad ~ }Rd lf(t)IP w(>.t) dt IT(>.) 
+ 

< L I (IIC:~+1) L r IJ(t)IPw*(2m+n)dt)q/p ~ 
n J[2n,2n+l] :Z... m,17 J.,.[2m,2.,,,.+1] II().) 

(log 2)d L (L II(2") w*(2m+n) / lf(t)IP dt) q/p 
n m,17 } 17[2m ,2m+l] 

n m,17 

(log 2)d 2dq/p II L Fm,.,. 11:::P, 
m,17 
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where Frn,a- is the sequence 

Since q/p "2: 1, we can apply Minkowski's inequality in the Banach space fq/p 

to estimate III: Frn,a-lltq/p, i.e., 

( 4.4.9) 

IIL Fm,a-lL/p 
rn,a-

< ~ II(2m)w*(2m) (~ (1[,---,,--•+'] lf(t)l' 1rr~!i1) '''t. 
2d ~ II(2m)w*{2m) (~ (li,.,,..,] lf(t)J' JII~:)J) •i-r/• 

< 2
2

d (L" w*(t)dt) 11111~.(LP,Lq)' 
+ 

the last line following from Lemma 3.3.5c. 

The result follows upon combining (4.4.8) and (4.4.9). I 

COROLLARY 4.4.10. Given 2 ~ q ~ oo, the Wiener transform Wis a contin-

uous linear map of B(2, q) into V(2, q), with 
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PROOF: From Example 4.3.5 and Proposition 4.4.9, 

( 4.4.10) 

IIWfllv(2,q) 

Now, 

( 4.4.11) 

(l. (II~;) f,,_, lf(t)I' K(>.t)dt) •I' II~~)) •I• 
+ 

< (log 2)dfq 23
d/

2 (!,,_, K*( t) dt) 
112 

llfllw.(L',L•)· 
+ 

I K*(t) dt lad 
+ 

(t k*(t)dt) d, 

and, by Theorem 3.2.4, 

( 4.4.12) 

The result follows upon combining ( 4.4.10), ( 4.4.11), and ( 4.4.12). I 

REMARK 4.4.11. For q = 2 and q = oo we know the actual value of JJWII, 

which we can compare to the estimate for IIWII given by Corollary 4.4.10. 

For q = 2, JJWII = 1 by Proposition 4.4.7, while Corollary 4.4.10 implies 

only that !IWII _s; (27 fa°° k*(t) dt)d/2 ~ (11.69)d. 

For q = CX), II WII = (fa°° k *( t) dt) d/
2 ~ (1.03)d by Corollary 4.4.3, while 

Corollary 4.4.10 implies only that jjWjj :::; (26 f
0

00 k*(t) dt) d/
2 ~ (8.27)d. 

Finally, we prove the continuity of the Wiener transform on B(2, q) for 

1 < q :S: 2 using amalgam space methods. 

PROPOSITION 4.4.12. Given 1 :::; q :S: p < CX), and given a nonnegative, even 

function w on Rd. Then 
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:S (log 2)"/• 2•/• ( I; (II(2m) w*(2m))'1') l/q 11/llw.(L•,L•) 
mEZd 

for all measurable functions f: Rd ---+ C. 

PROOF: Extend w* evenly to Rd. Just as in (4.4.8), we have 

( 4.4.13) 

fa, (rr~;) !,)f(t)l'w(>.t)dr• II~~) 
+ 

< (log 2)d 2dq/p IIL Fm,u 11::;J>, 
m,u 

where Fm,u is the sequence 

and m, n range over zd while u ranges over nd. Since O < q/p ~ 1, we can ap­

ply the triangle inequality in the metric space p_q/p to estimate III: Fm,u lltg/p, 
1.e., 

( 4.4.14) 

III: Fm,u11::;J> 
m,u 

ffi 10' 

m,u n 

~ ~ ( rr(2m)w*(2m) f.1,--•,,--•+'11/(tll' 1rr~!i1) •I• 

L (II(2m) w*(2m)t/p L (1 lf(t)jP _.!!:!_) q/p 
m n,u u[2",2"+1] jII(t)j 

llfll~.(LJ>,Lq) L (II(2m) w*(2m)t/p. 
m 

The result follows upon combining ( 4.4.13) and ( 4.4.14). I 
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LEMMA 4.4.13. Given a nonnegative, decreasing function won R+ and given 

0 < p < 1, 

I: (2" w(2")Y < 
nEZ 

2
P ( sup w(t)P + f

1

00 

w(t)P dt). 
2P -1 099 11 

PROOF: Set M = sup099 w(t)P. Then 

L (2" w(2")Y ~ M L 2"P 
n::;o 

2P 
M--

2P - 1 

If n > 0 then 2"P ~ 2". Since w is decreasing, we therefore have 

I: (2"w(2")Y 
n>O 

2P 12np 
< -- L w(t)Pdt 

2P - 1 O 2(n-l)p 
n> 

2
P f

1

00 

w(t)Pdt. I 
2P -1 11 

LEMMA 4.4.14. Given 1/2 < p ~ 1, 

PROOF: First note that since p > 1/2, 

1 

< oo. 

71" 2P (1 - 2p) 
< 00. 

Also, 

Since 

sup k*(t)P 
099 

k*(o)P 

L (II{2m) K"(2m))P = ( L (2" k*(2"))" r 
mEZd nEZ 

the result follows from Lemma 4.4.13. I 
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COROLLARY 4.4.15. Given 1 < q::; 2, the Wiener transform Wis a contin-

uous linear map of B(2, q) into V(2, q), with 

PROOF: From Example 4.3.5 and Proposition 4.4.12, 

( 4.4.15) 

IIW fllv(2,,) U:e., C1!;i L IJ(t)I' K(>.t) di)"' II~~) r 
+ 

< (log 2)'1• 2•/2 ( I: (II(2m) K*(2m)) ,;, r/• llfll w.(L',L•)· 

mEZ" 

From Corollary 4.4.14, 

( 4.4.16) L (n(2m) K*(2m)) q/
2 

mEZ" 

< ( 2q/2 (2q + t'° k*(t)q/2 dt)) d 
2q/2 - 1 11 

And, by Theorem 3.2.4, 

(4.4.17) 

The result follows upon combining ( 4.4.15), ( 4.4.16), and ( 4.4.17). I 

REMARK 4.4.16. a. The combination of Corollary 4.4.3, Proposition 4.4.5, 

Corollary 4.4.10, and Corollary 4.4.15 establish that the Wiener transform W 

is a continuous linear mapping of B(2, q) into V(2, q) for each 1 ::; q ::; oo. In 

summary, we used techniques due to Beurling for the case q = 1, techniques 

due to Lau for q = oo, and amalgam space techniques for 1 < q ::; oo. Our 

amalgam space estimate for jjWIJ goes to infinity as q -+ 1, and is inferior 

to Lau's exact estimate at the other endpoint, q = oo. It is undoubtably 
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possible to improve the estimates for W which we derived using amalgam 

space methods. For 1 < q < 2, it is likely that there is an amalgam space 

proof which does not exhibit the "blowing up" effect of the norm as q ---+ 1. 

b. We do not believe that either Beurling's or Lau's methods can be adapted 

to prove that the Wiener transform is continuous when 1 < q < oo. In the 

next section, we prove the W is invertible and derive estimates for II w-1
11 

for each 1 _:::; q _:::; oo. Again, Beurling's methods suffice for q = 1, Lau's 

for q = oo, and amalgam spaces for 1 :::; q < oo. However, Lau's method 

generalizes easily to all 1 _:::; q _:::; oo. 
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Section 4.5. lnvertibility of the Wiener transform. 

In the preceding section, we proved that the Wiener transform W is a 

continuous linear map of B(2, q) into V(2, q) for each 1 S q S oo. We proved 

this for q = l using a technique due to Beurling, for q = oo using a technique 

due to Lau and Chen, and for 1 < q S oo using amalgam space techniques. 

Lau's method for q = oo gave the exact value of IIWJJ, while the amalgam 

space method for q = oo gave an inferior estimate. 

In this section we prove that W is invertible, and estimate JI w-1 1J for each 

1 S q S oo. Again, Beurling's method would suffice for q = l and amalgam 

spaces for 1 S q < oo; instead we generalize a variant of Lau's method to all 

1 S q S oo. We prove the surjectivity of W for 1 S q S oo using the same 

method Beurling used for q = l and Lau for q = oo. 

The following proposition is similar to one proved by Lau and Chen for the 

special case d = l and q = oo. They did not make use of the minorant w*, 

but rather assumed that w itself was decreasing on some interval [O, b]. 

PROPOSITION 4.5.1 [CLl]. Given 1 Sp< oo and 1 S q S oo, and given a 

nonnegative, even function w on Rd. Then 

( ) 

1/p 

sup II(T) w*(T) 11/IIB(p,q) 
TERd 

+ 

( 
{ (II(A) f ) q/p dA ) l/q 

S lad ~ }Rd lf(t)IP w(At) dt II(A) , 
+ 

for all measurable functions f; Rd -l- C ( with the standard adjustments if 

q = 00 ). 
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PROOF: Assume q < oo, the q = oo case being similar. Given b, TE Ri, we 

compute 

II(b)w*(b) II(lT) f lf(t)jPdt = ~(~) f lf(t)jPw*(b)dt 
J[o,TJ J[o,TJ 

:S II(b/T) f lf(t)IP w*(bt/T) dt, 
J[o,TJ 

since bt/T :S b for t E [O, T] and w* is decreasing on Ri. Combining this 

with similar inequalities for the other quadrants (possible since w is even), 

we have 

Therefore, 

:S 2-d L IT(b/T) 1 lf(t)IP w*(bt/T) dt 
a-E0 4 a-[O,Tj 

= 2-d IT(b/T) f lf(t)IP w*(bt/T) dt 
)RT 

:S 2-d IT(b/T) f lf(t)IP w*(bt/T) dt. 
la" 

(II(b)w*(b))1fp IIJIIB(p,q) 

- (Lt ( II(b)w*(b) l;TI L, 1/(t)J• dt)"' II~~i)''' 

< (L. (II(!~T) l_. If (t) 1• '°*( bt/T) dt )"' II~~))"• 
+ 
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(
/ (II(.~) f )q/p d>. )1/q 

< lad ~ }Rd lf(t)IP w(>.t) dt II(>.) ' 
+ 

where we have made the substitution>. = b/T and used the fact that dT /II(T) 

is dilation invariant. Taking the supremum over all b E Ri therefore gives 

the desired inequality. I 

REMARK 4.5.2. For the case d = l and q = oo, Lau and Chen prove that 

if suptER+ tw(t) = suptER+ tw*(t) then the constant in Proposition 4.5.1 is 

best possible. We extend this to higher dimensions as follows. 

Fix c: > l. It suffices to show that there exists an f E B(p, oo) with 

llfllB(p,=) = 1 such that 

sup II(;) r lf(t)IPw(>.t)dt ~ c:C, 
AE:il.d 2 }Rd 

+ 

where C = supTERd II(T) w(T). Fix b E (0, 1) C Ri and define 
+ 

f = (n%))'\,_,,,1· 
For each j = 1, ... ,d we have 

1. 

Therefore, 

llfllit<p,=) 

1. 
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Now let the components of h be small enough that 1/II(l - h) :s; e:. Then 

II(;) r lf(t)IP w(.~t) dt = IIII((;)) r w(>.t) dt 
2 lad. 0 lr1-6,11 

1 f II(>.t)w(>.t) d 
II(h) lr1-6,1J II(t) t 

< _1_ f C dt 
II( h) lr1-6,11 II( 1 - h) 

C 

II(l - h) 

< e:C. 

EXAMPLE 4.5.3. a. The function tk(t) is continuous on R. If t 2: 1/4 then 

Therefore tk(t) achieves its maximum somewhere in the interval [O, 1/4]. We 

compute 

k'(t) 
2 sin 21rt . 

2 3 
( 21rt cos 21rt - sm 21rt) 

7r t 

and 

sin 21rt . 
[tk(t)]' = k(t)+tk'(t) = 

22 
(41rtcos21rt - sm21rt). 

7r t 

The maximum of tk(t) therefore occurs at the point b E (0, 1/4) such that 

tan 21rb = 41rb. There is a unique such point in the interval (0, 1/4); nu­

merically, b :=:::: 0.186 and bk(b) ~ 0.461. Since k* = k • X[o,1; 21, we have 

suptER+ tk*(t) = bk(b) = suptER+ tk(t). 

b. Let b be as in part a. Since K(t) = fif k(ti), it follows from part a that 
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COROLLARY 4.5.4. Given 1 ~ q ~ oo, the Wiener transform Wis an injective 

mapping of B(2, q) into V(2, q), and the inverse mapping w-1 : Range(W) .­

B(2, q) is continuous, with 

( 4.5.1) ( )

-d/2 

sup t k(t) 
tER+ 

If q = oo then ( 4.5.1) is equality. 

PROOF: From Example 4.3.5 and Proposition 4.5.1, 

I/Wfl/v(2,q) (h. t (n;;) !,)f(t)/' K(>.t)dtt' II~~ir/• 
> ( sup II(T) K*(T)) 

112 

l/fl/B(2,q)· 
TERt 

From Example 4.5.3b, 

sup II(T) K*(T) = ( sup t k(t)) d. 
TER" tER+ + 

Therefore Wis injective, and IIW-1 1/ ~ (suptER+ tk(t))-d12, which from 

Example 4.5.3a is approximately (1.472)d. It follows from Remark 4.5.2 that 

this is equality if q = oo. I 

We now complete the proof of the major result of this thesis. 

THEOREM 4.5.5. Given 1 ~ q ~ oo, the Wiener transform Wis a topological 

isomorphism of B(2, q) onto V(w, q). 

PROOF: The combination of Corollary 4.4.3, Proposition 4.4.5, Corollary 

4.4.10, and Corollary 4.4.15 establish that the Wiener transform is a con­

tinuous linear mapping of B(2, q) into V(2, q) for each 1 ~ q ~ oo. Corollary 
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4.5.4 establishes that W is injective, and that w-1 : Range(W) -+ B(2, q) is 

continuous for each 1 ~ q ~ oo. It therefore remains only to show that Wis 

surjective. 

V 

Fix any e E V(2, q). Then !:l.J..e E L2 (Rd) for a.e. ,\. Since !:l.J..(t) 

(-i)d SJ..(t) f:. 0 a.e. (Proposition 4.2.5), we can define a function /J.. by 

4.2.2g, 

V V V 

fl.µ . fl.). . /J.. - fl.µ . (!:l.J..er 

- ( !:l.µ!:l.). er 

( /:l.J,..!:l.µ er 

V 

- !:l.J.. . (!:l.µer 

V V 

- !:l.J.. ·fl.µ· fw 

V V 

As fl.µ • !:l.J.. f:. 0 a.e., it follows that /J.. is independent of ,\, and is therefore 

denoted hereafter by /. Now, 

(4.5.2) (!:l.J..e)v (t) 
V 

!:l.J,..(t) f(t) 

(-i)d SJ..(t) f(t) 

IT(-1rit) dJ..(t) f(t). 
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By Proposition 4.2.8, if h E B(2, q) then h · d'). E L2 (Rd), and 

(4.5.3) 

Comparing ( 4.5.2) and ( 4.5.3) we therefore define 

g(t) = II(-21rit) f(t). 

Using the Plancherel theorem, the fact that ld').(t)l2 = II(~)2 KPt), and 

Proposition 4.5.1, we compute 

(fa., (II~;> l. lg(t)I' K(>.t)dt) .,, II~~i) .,. 
+ 

Since 11Gllvc2,q) < oo, it follows that g E B(2,q), and therefore Wg E V(2,q). 

Finally, 

V 

A'). W g = 2-d (g · d').)" = (A'). · !)" = A').G 

for a.e. ~, so IIG- W 9llv(2,q) = 0. Since we identify functions in V(2, q) whose 

difference has zero norm, W g = Gin V(2, q), and therefore Wis surjective. 'I 
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Since the Wiener transform is a topological isomorphism of the Banach 

space B(2, q) onto the normed linear space V(2, q), it follows that V(2, q) 

is complete. We prove this in detail in the following corollary. We devote 

Chapter 5 to proving that V(p, q) is complete for all p, q. 

COROLLARY 4.5.6. V(2, q) is a Banach space for each 1 ::; q:::; oo. 

PROOF: Fix 1 ::; q :::; oo. By Theorem 4.5.5, the Wiener transform W 

is a topological isomorphism of the Banach space B(2, q) onto the normed 

linear space V(2, q). Assume { Gn}nEZ+ is a Cauchy sequence in V(2, q). 

a Cauchy sequence in B(2, q). Therefore, w-1 Gn -+ g in B(2, q) for some 

g E B(2, q). The continuity of W implies then that Gn = ww-1Gn-+ W g 

in V(2, q), so V(2, q) is complete. I 

We illustrate now that the value supTERd II(T) w*(T) appearing in Propo­
+ 

sition 4.5.1 also arises naturally when amalgam space methods are used. How-

ever, the conversion from the continuous norm to a discrete approximation in 

the proof results, as usual, in an inferior estimate. 

PROPOSITION 4.5. 7. Given 1 ::; p, q < oo and a nonnegative, even function 
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for all measurable functions f: Rd --+ C. 

PROOF: Fix any <T E n". The summations in the following calculation are 

over m, n E z". Using the fa.ct that w* is even and decreasing, we compute 

J... (n~;) L. If( t) I' w( >.t) dt )"' n~~) 
+ 

> L ( (II(!n) E 1 lf(t)jPw*(2m+n+2)dt)q/p ~ 
n lc2•,2•+1) 2 m o-[2-,2-+i] II(.~) 

> (log2)d L (:E 11(2m+n-l)w*(2m+n+2) 1 /f(t)IP _i::_)q/p 
o-(2"' 2-+11 III(t)l n m , 

= (Jog 2)' ~ ( ~ Il(2m-S) "'*(2m) 11,----• ..--•-•1 If ( t) I' 1n~!)1) .,, 

= (log 2)"2-Sdq/p LIE Fn,o-(mf1qr'p, 
n m 

where Fn,o- is the sequence 

Therefore, 

(4.5.4) 

= 2-• .'fo. t ( n!;) L. If ( t)I' w( >.t) dt )"' n~~) 
~ 2-d (log2)" LIE Fn,O"(m)P/qr/p 

n,o- m 

n,O" 

193 

I' ,l .:: 
.-1 
IICI , .. , 
<r 
• 

t 

j 

I 
.I 
;j ,. ,, 



Since O < p/q < oo, we have 11 · lltP/t > 11 • lltoo. Therefore, 

( 4.5.5) 

L IIFn,o-lltPlt 
n,o-

n,o-

= L sup Fn,o-(m) 
m n,o-

> sup L Fn,o-(m) 
m n,o-

(s!p II(2m)w*(2m)) q/p llfllw.(LP,Lt) 

> (2-d sup II(T)w*(T)) v/p llfllw.(L,.,L.,), 
Teat 

the last inequality following from Lemma 3.3.5b. 

The result follows upon combining ( 4.5,4) and ( 4.5.5). I 
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CHAPTER 5 

COMPLETENESS OF THE VARIATION SPACES 

In this chapter, we prove that the higher-dimensional variation spaces 

V(p, q) defined in Section 4.3 are complete. Because these spaces are not 

solid, the completeness is difficult to prove by ordinary techniques. Lau and 

Chen overcame this difficulty in the one dimensional V(p, oo) case by using 

helices, a concept developed by Masani. Lau and Chen's proof generalizes 

immediately to the one dimensional V(p, q) case. We prove the completeness 

in higher dimensions by using an iterated helix technique. 

In Section 5.1 we review the basic definitions and properties of helices, first 

on abstract topological groups and then specifically on the real line. 

In Section 5.2 we prove that V(p, q) is complete. We review Lau and Chen's 

proof for one dimension, then extend it to higher dimensions by using an 

iterated helix technique. 

Throughout this chapter, we make use of the symmetric, one-sided, di-

rectional, and one-sided directional difference operators defined in Definition 

4.2.1. We let e3 = (0, ... , 0, 1, 0, ... , 0) denote the lh unit vector in Rd. We 

make use of the group representation definitions given in Section 1.9, and 

use vector-valued integration, following the definitions in [HP). We use the 

shorthand notation of writing U(t) as Ut for representations U and related 

maps. 
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Section 5.1. Helices. 

In this section we define helices and derive their basic properties. We begin 

with the general definition on abstract topological groups, then turn to the 

specific case of helices on the real line. The results in this section are taken 

directly from [Ml] and [M3], and therefore the credit for this section is due 

to Masani, except for some remarks and examples. 

We let G denote an arbitrary locally compact abelian group, written addi­

tively with identity element O, and let X be an arbitrary Banach space. 

DEFINITION 5.1.1 [Ml]. A continuous function,: G-+ Xis a variety in X 

parameterized by G. Given such a variety we define the following terms. 

a. , is a curve in X if G = R. 1 is a surface in X if G = Rd. 

b. Given a, b E G, ,b - 'Ya is a chord of,. 

c. The chordal length function of, is L,y(a) = 11,a - ,oil for a E G. 

d. The subspace generated by , is S( 1 ) = span { ,a : a E G}. 

e. The chordal subspace generated by, is OS(,) = span{,b - ,a 

a,b E G}. 

f. 1 is stationary if there exists a strongly continuous unitary representa-

tion U of G on M-y such that Ut,a = ,a+t for a, t E G. U is the shift group 

of,. 

g. 1 is a helix if there exists a strongly continuous unitary representation 

U of G on S(,) such that Ut(,b - ,a) = ,b+t - ,a+t for a, t E G. U is the 

shift group of 1 . Helices will usually be denoted by the symbol h. 
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h. A function c.p: G ---t R is a screw function if it is the chordal length 

function of some helix in X. 

1 A 

EXAMPLE 5 .1. 2. a. Set d = 1 and let X C L10c (R) be a homogeneous Banach 

function space. Assume F: R ---t C is such that ~ t F E X for all ). E R, and 

define Ii: R ---t X by 

Then Ii is a helix in X, parameterized by R, with shift group {T -.\}.\ER" 

To see this, first note that 

since translation is strongly continuous in X. Thus Ii is continuous. Since 

it remains only to show that {T-.\} is a unitary, strongly continuous repre­

sentation of R on X. It clearly is a representation, and the unitarity follows 

from the fact that X is translation isometric. The strong continuity of the 

representation follows from the fact that translation is strongly continuous in 

X, i.e., limb--+a l!Tbg - TaYII = 0 for all g EX. 

b. Let d = 1 and X = LP(R) and fix F E V(p, q). Then, by part a, 

Ii.\ = ~ t Fis a helix in LP(R) since LP(R) is homogeneous and~ t F E LP(R) 

for a.e. >.. 
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c. Let d ~ l be arbitrary, and let X C Lf0 c(:R.d) be a homogeneous Banach 

function space. Fix 1 ~ j ~ d, and assume F: R,d -+ C is such that~{+ FE X 

for >. E R. Define h: R -+ X by 

.i,, _ A t+F - l (T p F) n,,. u,,. 2 -.\e; - . 

Then, just as in part a, his a helix in X, parameterized by R, with shift group 

{T-.\e;} .\ER. As in part b, a typical example is formed by taking X = LP(R. d) 

and FE V(p, q). 

d. Set d = 2, fix F E V(p, q), and define h.\ ::::: ~t F for >. E R.2 • Given a, 

b, >. E R.2 , we compute 

while 
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Thus, in general, hb+>. - ha+>. f. T_>.(hb - ha), so his not a helix. The same 

considerations hold for any d > 1, i.e., h>. =~IF is not a helix over Jld when 

d > 1. 

LEMMA 5.1.3 [Ml]. 

a. The shift group of a stationary variety I is unique (on S(,)). 

b. The shift group of a helix his unique (on CS(h)). 

PROOF: We prove only a as bis similar. Assume U, V are two shift groups 

for a stationary variety 1 . Then Ut,a = 'Ya+t = Vi,a for all a, t E G. By 

linearity and continuity we therefore have Utf = Vi/ for every f E S( 1 ) = 

span{,a: a E G}, so U =Von S(,). I 

LEMMA 5.1.4 [Ml]. Given a helix h, the chordal length function Lt,, is sym­

metric, subadditive, and continuous. Further, L1,,(0) = O, and llhb - hall = 

L1,,(b - a) for a, b E G. 

PROOF: Recall that L1,,(a) = llha -holl- Lt,, is therefore continuous since his 

continuous. 

Given a E G we have 

Lt,, (a) = 11 ha - ho I/ L1,,(-a), 
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since the shift group U is unitary. Thus h is symmetric. 

Given a, b E G we compute 

Therefore, 

so Lt,, is subadditive and Lt,,(0) = 0. I 

We turn now to the specific case of helices parameterized by R. We assume 

for the remainder of this section that all helices are over R. The following 

proposition limits the growth of a screw function. 

PROPOSITION 5.1.5 [Ml). Given a helix h and a ER, 

PROOF: Set M = max:099 Lt,,(t). Given N E Z+, note that 

Given a 2: 0 let N = la J, the largest integer N ~ a. Since O ~ a - N < l, 

If a< 0 then, by the symmetry of Lt,,, 
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PROPOSITION 5.1.6 [Ml]. Given a helix Ii. 

b. e-t (ho - lit) is Lebesgue-Bochner integrable on R+· 

PROOF: a. From Proposition 5.1.5, 

10C) e-t \\ho - litl\ dt = 10C) e-t Lh(t) dt 

< Lh(l) 10C) t e-t dt + M 1
00 

e-t dt 

Lh(l) + M 

< oo, 

where M = maxo<t<1 Lh(t) < oo. 

b, c. Follow immediately from a and [HP, Theorem 3.7.4]. I 

DEFINITION 5 .1. 7 [Ml]. Given a helix Ii, the vector 

is the average vector of Ii. 

Let U be the shift group of a helix Ii. Then, by definition, U: R -+ L(X) 

is continuous in the strong topology of L(X). Therefore, by [HP, Theorem 

3.3.4], J: Ua ds exists as a Riemann integral in the strong topology of L(X) 

for each a ::;_ b. We use the following notation: 

Tu(a, b) 
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PROPOSITION 5.1.8 [Ml). Given a helix h, 

10C) e-t Tu(O, t) dt = -I. 

PROOF: First note that e-t Tu(O, t): R --+ L(X) is strongly continuous and 

therefore Riemann integrable on every finite interval by [HP, Theorem 3.3.4]. 

Since 

the integral J
0
0C) e-t Tu(O, t) dt exists as an improper Riemann integral. Eval-

uating, 

10C) e-t ( Ut - Uo - 1t U11 ds) dt 

10C) e-t Ut dt I 10C) e-t dt - 10C) 1t e-t U
11 

ds dt 

10C) e-t Ut dt - I - 10C) U
11 

J.OC) e-t dt ds 

10C) e-t Ut dt - I - 10C) U
11 
e- 11 ds 

-I. I 

LEMMA 5.1.9. Given f E Lf
0
c(R) and a~ b, c ~ d, 

1b+d 1b+c lb+d 1a+d 
f(t) dt - f(t) dt = f(t) dt - f(t) dt. 

a+d a+c b+c a+c 

PROOF: There are only two possibilities: either a+ c ~a+ d ~ b + c ~ b + d 

or a+ c ~ b + c ~ a+ d ~ b + d. The result follows immediately in either 

case. I 

The following is known as the Switching Lemma. 
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PROPOSITION 5.1.10 [Ml]. Given a helix Ii, 

Tu(a,b)(lid - lie) = Tu(c,d)(lir, - lio) 

for every a, b, c, d E R. 

PROOF: By definition of Tu, 

(5.1.1) Tu(a, b)(li4 -A,) = ( U• - u. - 1• U, ds) (A, -A,), 

and 

(5.I.2) Tu(c,d)(A, -A.) = (u, - U, - 1• U. ds) (A, -A.). 

Since Ii is a helix 
' 

(5.I.3) 

Fro:rn Lemma 5.1.9, 

(5.1.4) 

([ U, ds) (A,, - A,) = [ U,(A, - lie) d• 

= l'<A•+• - llc+,)d, 

= / Ii, ds - Ii, ds 
b+d Lb+c 

/o+d o+c 

= f Ii, ds - Ii, ds 
r,+d Lo+d 

/1,+c a+c 
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- 1d (hb+• - ha+•) ds 

1d Ua(hb - ha) ds 

(1d U. ds) (hb - ha). 

The result follows upon combining (5.1.1) through (5.1.4). I 

The following proposition shows that the chords of a helix can be recovered 

from knowledge of the average vector. 

PROPOSITION 5.1.11 [Ml]. Given a helix hand given a, b ER, 

PROOF: From the switching lemma (Proposition 5.1.10) and Proposition 

5.1.8, 

Tu(a, b) (100 

e-t (ho - ht) dt) 

-100 

e-tTu(a,b)(h, -ho)dt 

-100 

e-t Tu(0, t)(hb - ha) dt 

-(100 

e-t Tu(0, t) dt) (hb - ha) 

-(-I) (hb - ha) 

REMARK 5.1.12. It is not difficult to extend Masani's results on helices over 

R (Proposition 5.1.5 through Proposition 5.1.11) to higher dimensions, i.e., 

to helices over Rd. 
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In particular, given a helix 1i parameterized by Rd, the chordal length 

function will satisfy the growth condition 

where R = max{ Lti.( e1 ), ••• , Lti.( ed)} and M = maxte[o,i] Lti.( t), cf., Proposi-

tion 5.1.5. The average vector 

will converge to an element of C S(n), cf., Proposition 5.1.6 and Definition 

5.1.7. Defining 

Tu(a,b) - ub - Ua - I u. ds, 
lra,b) 

we have 

f II(e-t) Tu(0, t) dt = -I, Ja, 
+ 

cf., Proposition 5.1.8. The switching lemma takes the form 

for a, b, c, d E Rd, cf., Proposition 5.1.10. And, finally, given a, b E Rd, we 

can recover the chords of the helix from the average vector by 

cf., Proposition 5.1.11. 
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Section 5.2. Completeness. 

In this section we prove that each of the variation spaces V(p, q) is complete. 

We begin by presenting a theorem due to Lau and Chen (Theorem 5.2.1) 

from which they derived the completeness of the one dimensional V(p, oo ), 

cf., Example 5.2.2a. The completeness of V(p, q) for one dimension follows 

immediately from that theorem as well, cf., Example 5.2.2b. 

Lau and Chen's theorem takes advantage of the fact that h>.. = ~t Fis a 

helix when d = 1, cf., Example 5.1.2a. The existence of the helix average vec­

tor allows a Cauchy sequence to be "pulled back" from V(p, oo) to LP, where 

it will converge. A candidate limit vector for the original Cauchy sequence is 

then constructed using the fact that helix chords are determined by the aver­

age vector (Proposition 5.1.11). Masani's results on helices parameterized by 

R, Proposition 5.1.5 through Proposition 5.1.11, are the critical facts which 

make Lau and Chen's proof possibile. 

As mentioned in Remark 5.1.12, Masani's results on helices over R can be 

extended to helices over Rd. However, by Example 5.1.2d, h>.. = ~t Fis 

not a helix when d > l. Therefore, helices over Rd are not appropriate for 

proving the completeness of V(p, q) in higher dimensions. Instead, we use 

the fact that n>..; = ~{:Fis a helix over R for each j = 1, ... , d, and that , 

~ t = ~ l~ · · · ~ i1. An iterated averaging technique allows us to "pull back" 

a Cauchy sequence from V(p, q) to LP. An iterated chord reconstruction then 

gives the candidate limit vector for the Cauchy sequence. 
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THEOREM 5.2.1 [CLI]. Given a homogeneous Banach function space X C 

Lf
0
c('R) and given l :=:; q :s; oo. Assume cp:R+---+ R+ satisfies >i.e-A/cp(>i.) E 

Lq' (R+), where this space is taken with the Haar measure d>i./>i. for R+· Let 

Y be the space of functions F such that 

Then Y is a Banach space, once we identify functions F, G E Y such that 

1/F-Gl/y = 0. 

PROOF: The seminorm properties of II • IIY are evident, so Y is a normed 

linear space once we make the identification of functions whose difference has 

zero norm. It remains to show that Y is complete. 

Assume that { Gn}nEZ+ is a Cauchy sequence in Y. 

a. Given n E Z+, define Ii": R---+ X by 

By Example 5.1.2a, Ii" is a helix in X, parameterized by R, with shift group 

{T-AhE11.· This helix has an average vector defined by 

an = 100 

e-A (n; - Ii~) d)i. = -100 

e-A Lit Gn d>i.. 

By Proposition 5.1.6, an E CS(h") C X. The sequence {an} is Cauchy in X 

since 

11am - anllx 

111
00 

e-A Lit(Gm - Gn)d>i.llx 

207 



) } 

/oo .\ + d). 
< Jo ). e- Ill\.\ (Gm - Gn)l/x T 

~ (f \Q(A)• ll~t(Gm - G.)llk ~A),,. ([ I ~c:; I" ~A) 1/r' 

= CI/Gm - GnllY 

--+ 0 as m, n --+ oo 

(the cases q = I, oo are similar). Therefore, an--+ a {or some a EX. 

By Proposition 5.1.11, 

(5.2.1) 

= T_.\an - Toan - L.\ T_.an ds 

= 2L\! an - L.\ T_.ands. 

Since a EX C Lfoc(:R), we can define 

We compute 

(5.2.2) 
L\f G(-y) = ½ [G(-y + >.) - G(-y)] 

= a(,+>.) - L-,+J.. a(s) ds - a(,) + L"' a(s) ds 

1
-,+J.. 

- a(,+>.) - a(-y) - .., a(s)ds 
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J , 

= 2~ta(,) - L)t. a(, +s)ds 

= (2~ta - l)t. T_.ads)(,). 

From (5.2.1) and (5.2.2), 

ll~t(G - Gn)llx 

= //2~f(a - an) - L)t. T_.(a - an)dsl/x 

$ /IT-}t.(a - an)Jlx + Ila - anllx + 1). jjT_.(a - an)Jlx ds 

= (2 + A) Ila - anllx-

Therefore, for each :fixed A, 

(5.2.3) 

--+ 0 as n --+ oo. 

b. We show now that GEY. Define 

By definition, G E Y if and only if f3 E Lq(R+)- Now, Gn E Y, so f3n E 

Lq(R+ ). By the triangle inequality and (5.2.3), 

(5.2.4) 

Moreover, 
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(5.2.5) 

IIPm - Pnll: = L00

cp(A)'1 111~tGmllx - u~tGmllxlq ~).. 

~ L00 

cp(>-.)q u~t(Gm - Gn)ll1 ~).. 

= I/Gm - Gnl/i 

--+ 0 as m, n --+ oo. 

Thus {Pn} forms a Cauchy sequence in Lq(R+), so must converge to some 

element of Lq(.R+)- Since Pn--+ p pointwise by (5.2.4) we must have Pn--+ P 

in Lq(.R+)- Thus p E Lq(R+), so GEY. 

c. We show now that Gn --+ G in Y for the case 1 < q < oo. Since 

Bn(>-.) = cp(>-.) 1/~t(G - Gn)llx, it suffices to show that 1/Bnl/q--+ 0 as n--+ oo. 

By (5.2.3), On --+ 0 pointwise, and, by (5.2.4) and (5.2.5), Pn --+ P both 

pointwise and in Lq(.R+ ). Also, 8n ~ Pn + P, so 

Thus 2q P(>-.)q + 2q Pn(>-.)q - Bn(>-.)q ~ O, so we can apply Fubini's thoerem 

in the following calculation: 

L
oo d).. Loo d).. Loo d).. = 29 p(>-.)9 - + 2q P(>-.)9 - - limsup Bn(>-.)9 -. 

O ).. 0 ).. n-+oo O ).. 
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fore Gn -+ G in Y. 

d. Finally, we show that Gn -t G in Y for the case q = oo. Fix e > 0. 

Then there exists an N > 0 such tha.t 

Also, by definition of II • IIY when q = oo, there must exist a.~ > 0 such that 

From (5.2.3), there then exists an M 2'.: N such that 

'f'(~) ll.6.t(G - Gn)llx ~ e for n ~ M. 

Therefore, 

< 4e 

for n ~ M. Thus Gn -t Gin Y. I 

EXAMPLE 5.2 .2. a. Set X = LP(R), <p(~) = ( 4/ ~)1/P, and q = oo. Since 
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5.2.1 is complete. To evaluate II • IIY, recall from Remark 4.2.2e that dt = 

= IIFllv(p,00)• 

Thus V(p, oo) is complete (ford= 1). 

b. The completeness of V(p, q) follows exactly as in part a.. Set X = 

.V(R), <p(A) = (4/A)1/P, and fix 1 $ q < oo. We have Ae->./<p(A) -

4-l/p A(p+l)/pe->. E Lq'(R+), so Y is complete. Evaluating, 

IIFlly - ll'f'(A) · lldt FIIL•(i.) ''L•(B.+) 

- (t G 1: ILl,;2Fh)I' d-r)' /p ~~ )". 

- (f ( X 1: ILl,F(-r)I' d-y t· ~ )". 
- IIFllv(p,q), 

so V(p, q) is complete (ford= 1). 

We now extend Theorem 5.2.1 to higher dimensions. 

THEOREM 5.2.3. GivenahomogeneousBanachfunctionspaceX C .Lf
0
c(Rc1) 

and given 1 ~ q ~ oo. Assume <p:Rt -. R+ satisfi.es II(Ae->.)/c,o(A) E 
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Lq' (Ri), where this space is taken with the Haar measure d>./II(>.) for ft'.!-. 

Let Y be the space of functions F such that 

Then Y is a Banach space, once we identify functions F, G E Y such that 

!IF - Gj[y = 0. 

PROOF: The seminorm properties of II · jjy are evident, so Y is a normed 

linear space once we make the identification of functions whose difference has 

zero norm. It remains to show that Y is complete. 

Assume that { Gn}nEZ+ is a Cauchy sequence in Y. Fix n E Z+, let aon = 
1 A 

Gn, and define Ii n: R-+ X by 

for >.1 E R. By Example 5.1.2c, 1i1n is a helix in X, parameterized by R, 

with shift group U 1 = {T-~1 e1 h 1
ER.· This helix has an average vector a1n 

defined by 

By Proposition 5.1.6, a1n E CS(1i1n) C X. 

Since X is closed under translations, ~i~ a 1n EX for >. 2 E R. Therefore 

is also a helix in X, parameterized by R, with shift group U2 = {T-~2 e2 h 2
ER.· 

This helix has an average vector a2n defined by 

/

00 

-~, A 
2+ d' E CS(.z, 2n) C X a2n = - Jo e u~2 a1n "'2 " . 
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Continuing in this way we obtain helices li1n, ... , lidn and average vectors 

a1 n, , , . , Qdn such that 

and 

Define 

Then 

= -100 

e-.\• d~! a(d-I)n dAd 

= -100 

e-.\• d~; (- Loo e-.\•- 1 d~~=:)+ a(d-2)n dAd-1) dA,1. 

(-1)2100 Loo e-.\• e-.\•- 1 d1; d~~=!)+ O:(d-2)n dAd-1 dAd 

- (-l)d [
00 

... Loo e-.\• •••e-.\1 d~; .. ,di1aondA1 ... dAd 

= (-l)d f II(e-.\)dIGndA. 
lat 

11am - anllx = 11.l_., II(e-.\)dI(Gm - Gn)dAllx 
+ 

I -.\ + )II dA < Jj_• Il(A e ) !Id.\ (Gm - Gn x Il(A) 
+ 

$ /l<i"(A) · lldI(Gm - Gn)llxl/11 IIII(Ae-.\)/<p(A)ll111 

-+ 0 as m,n-+ oo. 
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Thus {an} forms a Cauchy sequence in X, and therefore an --+ a for some 

oEX. 

By Proposition 5.1.11, 

;+ 
A>..; ac;-1)n -

;,/n 
>..; 

Therefore 
' 

(5.2.6) 

AfGn = 

- -1:.in -1:.in 
- ''>..; no 

- T , "" · - a
3
·n - {

0
>..

1 

T-a,· e; a 3·n ds3• 
- _,.1e1 ..... ,n lo 

Ad+ A 1+ ~>..., ·••.£.l,>..1aon 

Ad+ A 2+ (2 A 1+ - ~>..., • • • .U.>..2 .U>,.1 

- (2 Al"; - t• T_.,., ds,) A~°;·· -A~"; "'1• 

= ( 2 Al;" - t• T_.,., d•1) · .. (2 A'J:; - t• T-•••• ds,) "'•· 

Since a E X C L1 (Rd) we can, by Fubini's the0rem, define 
loc ' 

Fo(1) == a(,y) 

F,(-y) = 2 (Fn(-Y) - f."' Fo(si,-Y2,·•·,"Y•)cls1), 
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We compute 

~{: F;(-r) 
1 

rrJ+}l,; 
F;-1(-r+>i;e;) - Jo F,_1 (-y1, ... ,-y,_1,s,,-y;+1,••·,'Yi)ds; 

/'Yi 
- F;-1(-r) + Jo F;-1("Y1,•••,"Y;-1,s,,"Y;+1,•• · ,"Yi)ds; 

L
"f;+}l,; 

- F,-1 ( ""(1, ••• , 'Yi-I, s;, "Y;+I, ... , 'Yi) ds; 
'Yi 

Therefore, just as in (5.2.6), 

(5.2.7) 

.1.f G = (2 n.{; - [' T_.,,, ds, )-- · (2 .1.~"'; - t• T_.,., ds,) a. 
Define Ho = a - an and, for j = 1, ... , d, 
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J I 

Then, 

(5.2.8) 

IIH;llx = //(26{; -1>.1

T-.1e1 ds;)H;-1//x 

= (2 + >.;) IIH;-1 llx-

Combining (5.2.6), (5.2.7), and (5.2.8), 

= II(2 +>.)Ila - an/IX• 

Hence, for each fixed >., 

~ II(2 + >.) cp(>.) jja - anl/x 

--+ 0 as n--+ oo. 

The remainder of the proof is now precisely similar to parts b, c, and d of the 

proof of Theorem 5.2.1. I 

217 

.,, ,, 

I 

J 
ll 
•' 

,, ,. ,, 
, ... 
, .. 
,f, 
~ ... 

,, "' 



I 

PART IV 

WAVELET THEORY 

218 

·•· .. 

.. .. 

J, i 



CHAPTER 6 

FRAMES 

Frames were invented by Duffin and Schaeffer in their work on nonharmonic 

Fourier series as an alternative to orthonormal bases in Hilbert spaces, cf., 

[DS]. They were later used by Daubechies, Grossmann, and Meyer to formu­

late wavelet theory in £ 2 (R), cf., [DGM; D1]. Grochenig has extended the 

notion of frames ( and the related concept of sets of atoms) to Banach spaces, 

cf., [G]. This chapter is an essentially expository review of basic results on 

frames and sets of atoms, especially in Hilbert spaces. We have combined 

results from many sources, including [D1; DGM; DS; G; GK; Y], with re­

marks, examples, and minor results of our own, into a single survey chapter. 

In Section 6.1 we recall the definitions and basic properties of bases in 

Banach and Hilbert spaces. 

In Section 6.2 we define frames for Hilbert spaces and discuss their basic 

properties. The primary result is that given a frame {xn}, any element x E H 

can be written as :z: = ~ CnXn, where the scalars {en} are explicitly known 

( although not necessarily unique), and the series converges unconditionally. 

In Section 6.3 we characterize those frames which are bases, i.e., those 

frames for which the representations :z: = ~ Cn:Z:n are unique for all :z:. 

In Section 6.4 we discuss sets of atoms, which are a dual concept to frames. 

The term atoms is an unfortunate terminology, since this word is heavily 
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overused in the literature. In particular, the sets of atoms discussed here are 

not related to the atoms and atomic decompositions appearing in Littlewood­

Paley theory. We discuss in this section the exact relationship between frames 

and sets of atoms, and show that, while atoms are a more general concept, in 

most practical applications atoms and frames in Hilbert spaces are equivalent. 

In Section 6.5 we discuss the formulation of frames and sets of atoms in 

Banach spaces. 

Finally, in Section 6.6 we prove a stability result for sets of atoms in Banach 

spaces. In particular, we prove that the elements of a set of atoms may be 

perturbed by a small amount without destroying the atomic properties. 
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Section 6.1. Bases. 

In this section we review the basic definitions and properties of bases in 

Banach and Hilbert spaces. 

DEFINITION 6.1.1. Given a sequence {xn}neZ+ of elements of a Banach 

space X. 

a. The span of {xn}, denoted span{xn}, is the set of finite linear com­

binations of elements of {xn}- The closed linear span of {xn}, denoted 

span{xn}, is the closure in X of span{xn}-

b. {xn} is complete if span{xn} = X, or, equivalently, ifµ E X' and 

µ(xn) = 0 for all n impliesµ= 0. 

c. {xn} is minimal if Xm-=/:- span{xn}n~m for each m. 

d. { x n} is a basis if for each x E X there exist unique scalars an ( x) such 

that x = I;an(x)xn. The basis is unconditional if the series I;an(x)xn 

converges unconditionally for each x, cf., Section 1.4. The basis is bounded 

if O < inf llxnll ~ sup llxnll < oo. 

REMARK 6 .1. 2. a. Bases are complete and minimal, but the reverse need 

not be true. 

b. Every basis is a Schauder basis, i.e., each coefficient functional an is 

continuous and therefore an element of X'. 

c. If {xn} is a basis then {xn} and {an} are biorthonormal,i.e., am(xn) = 

Dmn. The following proposition states that the existence of a biorthonormal 

sequence is equivalent to minimality. 
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PROPOSITION 6.1.3 [SJ. Given a sequence {xn}nEZ+ in a Banach space X. 

a. { xn} is minimal if and only if there exists a sequence { an} C X' which 

is biorthonormal to {xn}-

b. { xn} is minimal and complete if and only ifthere exists a unique sequence 

{an} C X' which is biorthonormal to {xn}-

PROPOSITION 6.1.4 [SJ. Given a complete sequence {xn}nEZ+ in a Banach 

space X with every Xn -=f- O, the following statements are equivalent. 

a. { xn} is an unconditional basis for X. 

b. There exists C 1 > 0 such that for all scalars c1, .. . , CN and all signs 

0-1, ••• ,0"N = ±1, 

c. There exists C 2 > 0 such that for all scalars b1, ... , b N and c1, ... , c N 

d. There exist C 3 , C4 > 0 such that for all scalars ci, ... , CN, 

N 

C4 IIL lcnl Xnll• 
1 

DEFINITION 6.1.5. Two bases {xn} and {Yn} for a Banach space X are 

equivalent if there exists a topological isomorphism U: X -+ X such that 
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U Xn = Yn for all n, or, equivalently, if E CnXn converges if and only if E CnYn 

converges. 

We list some additional facts about bases in Hilbert spaces. The inner 

' product in a Hilbert space His written (·, •}. 

DEFINITION 6.1.6. A sequence {en} of elements of a Hilbert space His an 

orthonormal basis if 

a. { en} is orthonormal, i.e., (em, en} = 5mn, 

b. the Plancherel formula holds, i.e., E l(x,en}l 2 = llxll 2 for x EH. 

All orthonormal bases are bases (in the sense of Definition 6.1.1), with 

x = I: { x, en} en for x E H. 

DEFINITION 6.1. 7. A basis for a Hilbert space H is a Riesz basis if it is 

equivalent to some orthonormal basis for H. 

PROPOSITION 6.1.8 [Y; GK]. Given a sequence {zn}nEZ+ in a. Hilbert space 

H, the following statements are equivalent. 

a. { Xn} is a. Riesz basis for H. 

b. {xn} is a. bounded unconditional basis for H. 

c. {zn} is a. basis for H, and 

d. {zn} is complete and there exist A, B > 0 such that for all sea.la.rs 
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N N N 

AL lc..12 < ll:Ec..zn/1 < B Llc..12
-

1 1 1 

The following is known as Orlicz' Theorem. 

PROPOSITION 6.1.9 [O; LT; SJ. Given a sequence {zn} in a Hilbert space H. 

If .E Zn converges unconditionally then ~ llznll2 < oo. 

The converse of Proposition 6.1.9 is not true. 
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6.2 Frames in Hilbert Spaces. 

In this section we define and describe the basic properties of frames in 

Hilbert spaces. 

DEFINITION 6.2.1. A sequence {zn}neJ in a Hilbert space His a frame if 

there exist A, B > 0 such that for all z E H, 

(6.2.1) Ajjzll2 < L l{z,zn)l2 < B llzl12. 
nEJ 

The numbers A, B are the frame bounds, A being the lower bound and 

B the upper bound. The frame is tight if A= B. The frame is exact if it 

ceases to be a frame whenever any single element is deleted from the sequence. 

REMARK 6.2.2. a. Asequence{xn}forwhich}:j(z,zn)l2 < ooforallz EH 

is a Bessel sequence (cf., [Y]). By the Uniform Boundedness Principle, a 

Bessel sequence will possess an upper frame bound B > O, i.e., L l(z, zn)l2 ~ 

Bllzll 2 for z E H. In applications, a sequence which is a frame is often easily 

shown to be a Bessel sequence, while the lower frame bound is more difficult 

to establish. 

b. From the Plancherel formula, every orthonormal basis is a frame with 

A = B = 1. Any orthonormal sequence which satisfies the Plancherel formula 

is an orthonormal basis, and therefore gives a decomposition of the Hilbert 

space in terms of the basis elements. The pseudo-Plancherel formula (6.2.1) 

for frames also implies a decomposition in terms of the frame elements, al­

though the representations induced need not be unique (Proposition 6.2.Sc). 
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c. Since LI (x, xn) l2 is a series of nonnegative real numbers, it converges 

absolutely, hence unconditionally. That is, every rearrangement of the sum 

also converges, and converges to the same value. Thus, every rearrangement 

of a frame is also a frame, and all sums involving frames converge uncondi­

tionally. Therefore, we can use any countable index set to specify a frame. 

For this reason we suppress the index set in the remainder of this chapter. 

d. Frames are complete, for if x E H and (x, xn) = 0 for all n, then 

A /lxll 2 
::; L l(x,xn)l 2 = O, so x = 0. Therefore, any Hilbert space which 

possesses a frame must be separable, for the set of finite linear combinations 

of { xn}' with rational coefficients (i.e., rational real and imaginary parts) is 

a countable dense subset of H. Every separable Hilbert spaces does possess 

frames since it possesses orthonormal bases. 

e. Frames were introduced in 1952 by Duffin and Schaeffer in connection 

with nonharmonic Fourier series [DSJ. Much of the general theory of frames 

was laid out in that paper, although frames were apparently not used in any 

other context until the paper [DGMJ by Daubechies, Grossmann, and Meyer. 

The following example shows that tightness and exactness are not related. 

EXAMPLE 6.2.3. Given an orthonormal basis {en}nEZ+ for a Hilbert space H. 

a. { en} is a tight exact frame for H with bounds A = B = 1. 

b. { e1, e1, e2, e2, e3, e3, ... } is a tight inexact frame with bounds A = B = 2 

but is not orthogonal and is not a basis, although it contains an orthonormal 

basis. 
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c. { e1, e2/2, e3/3, ... } is a complete orthogonal sequence and is a basis, but 

is not a frame. 

with bounds A= B = 1, and no nonredundant subsequence is a frame. 

e. {2e1, e2, e3, ... } is a non tight exact frame with bounds A = 1, B = 2. 

EXAMPLE 6.2.4. The frames used in wavelet theory (e.g., [DGM]) are co­

herent state frames, i.e., they are generated from a single fixed element by 

the action of a group representation. Precisely, they have the form {U-y,.g}, 

where g E H is fixed, U is a representation of a locally compact group G 

on H, and {,n} C G. Typically, 'Yn will be a regular lattice of points in 

G, though this is not necessary. For example, in Chapter 7 we discuss the 

situation H = L 2(R d), G is the Heisenberg group, U is the Schroedinger 

representation, and U-y,,.,.9 = TnaEm1,g form, n E zd. 

The structure inherent in coherent state frames provides a means for an-

alyzing them. For example, assume that G is compact, U is unitary and 

square-integrable, and {U-y,.9}neJ is a Bessel sequence in H. By definition of 

square-integrability, there then exists an admissible vector/, i.e., an element 

/EH such that fa /(U-yf,f)/ 2 d, < oo, where d, is the left Haar measure on 

G. Since {U-y,. g} is a Bessel sequence, we therefore have 

LL /(U-yf, U-y,.9)1 2 
d, = LL /(U-yf, U-y,.g)j 2 

d, 

~ LB //U-yf//
2 
d, 
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= B 11111 2 IGI, 

Note that IGI < oo since G is compact. By Proposition 1.9.1, 

independent of n. Therefore J must be finite, and hence H must be finite-

dimensional. 

We now prove some basic properties of frames. Part a of the following 

lemma is proved in [DS]. 

LEMMA 6.2.5. Given a Bessel sequence {xn} with upper bound B. 

a. ~ CnXn converges unconditionally in H for every { en} E l 2
, and 

b. Define Ux = {(x,xn)} for x EH. Then U:H -t f.2 continuously, and 

its adjoint U*:l2 
-t His given by U*{cn} = }: cnXn, 

c. If { xn} is a frame then U is injective and u• surjective. 

PROOF: a. Let F be any finite subset of the index set J. Then 

(6.2.2) 

sup l(L CnXn, Y)l 2 

111111=1 nEF 

sup IL Cn (xn,Y}j2 
111111=1 nEF 
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< sup (I: icni
2

) (I: l(xn,Y}1 2
) 

IIYll=l nEF nEF 

< sup (I: lcnl 2
) BIIYll 2 

IIYll=l nEF 

BI: lcnl 2
, 

nEF 

Since I: icnl 2 converges absolutely and unconditionally, it follows from (6.2.2) 

that I: CnXn converges unconditionally in H, cf., Lemma 1.4.2c. Therefore 

we can replace F by J in (6.2.2), i.e., II I: Cn:Z:n 11 2 s; BI: icnl 2
• 

b. That U is well-defined and continuous follows from the definition of 

Bessel sequence, for IIUxll~ = I: l(x,xn}l 2 s; B 11:z:ll 2
, Its adjoint U*:f2 ---+ H 

is therefore well-defined and continuous, so we need only verify that it has 

the correct form. If { en} E f 2 then I: CnXn converges to an element of H by 

part a, so given :z: EH we can compute 

(x, U*{cn}} - (Ux,{cn}} 

c. Follows from the fact that frames are complete. I 

PROPOSITION 6.2.6 [DS]. Given a sequence {xn} in a Hilbert space H, the 

following statements are equivalent. 

a. {xn} is a frame with bounds A, B. 
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b. Sx = I::(x,xn)Xn is a bounded linear operator with AI :s; S :s; BI. 

In case these hold, the series in b converge unconditionally. 

PROOF: b ⇒ a.If b holds then (Aix,x) :s; (Sx,x) :s; (Bix,x) for x EH. As 

(Jx,x) = jjxjj 2 and (Sx,x) = I: j(x,xn)l2
, it follows that {xn} is a frame. 

a ⇒ b. Assume {xn} is a frame and fix x EH. Then I::l(x,xn)l 2 < oo, 

so Sx = I::(x,xn)Xn converges unconditionally by Lemma 6.2.5. The lemma 

also implies that jjSxjj 2 :s; BI: l(x,xn)l 2 :s; B 2 jjxll 2
, so Sis bounded with 

jjSjj :s; B. The relations AI :s; S :s; BI follow immediately from the definition 

of frame. I 

DEFINITION 6.2. 7. Given a frame { xn}, the operator Sx = I::(x, xn)Xn is 

the frame operator for {xn}• 

From AI :s; S :s; BI it follows that A jjxjj :s; jjSxjj :s; B jjxjj for x E H. 

S is therefore continuous and injective, and s-1 : Range( S) ----+ H is continu-

ous. The following proposition shows that Sis surjective, hence a topological 

isomorphism of H. 

PROPOSITION 6.2.8 [DS]. Given a frame {xn}. 

a. S is invertible and B-1 I :s; s-1 :s; A-1 I. 

b. { s-1 xn} is a frame with bounds B-1 , A- 1 . 

c. Given x EH, 

and these series converge unconditionally. 

230 

I 
!, 



PROOF: a. Note that O 5 I - B-1 S :::; I - jI = ¥I since AI < S < BI. 

Therefore III - B-1s11 < ll 8 iAIII = B;A < 1, whence B-1s, and therefore 

S, is invertible. The operator s-1 is positive since 

As s-1 commutes with both I and S we can therefore multiply through by 

s-1 in the equation AI 5 S 5 BI, obtaining B-1 I 5 s-1 5 A-1 I, cf., [Heu, 

p. 269]. 

b. The operator s-1 is self-adjoint since it is positive. Therefore, 

= s-l (I: (S-l z, Zn} Zn) 

That {S-1zn} is a frame now follows from part a and Proposition 6.2.6. 

c. We compute 

and 

The unconditionality of the convergence follows from the fact that { Zn} and 

{S-1zn} are both frames. I 
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DEFINITION 6.2.9. Given a frame {zn} with frame operator S, the frame 

{S-1 zn} is the dual frame of {zn}. 

REMARK 6.2.10. a. The expressions in Proposition 6.2.Bc are what we mean 

when we informally say that a frame {zn} gives a decomposition of the Hilbert 

space. 

b. In case {zn} is a tight frame, i.e., A= B, the conclusions of Proposition 

6.2.8 reduce to s = AI, s-1 = A-1 I, and z = A-1 :E (z, Zn)Zn for z E H. 

We now prove some results relating to the uniqueness of the decomposition 

given by a frame. The following proposition shows that the scalars given in 

Proposition 6.2.8c have the minimal l.2 norm among all choices of scalars { en} 

for which z = I; CnZn• 

PROPOSITION 6.2.11 [DS]. Given a frame {zn} and given z E H. If z = 

E CnZn for some scalars {en}, then 

PROOF: Define an= (z,s-1 zn); then z = :EanZn by Proposition 6.2.Bc. 

Since E Ian j2 < oo, assume without loss of generality that I; lcnl2 = oo. 

Then 

(z, s-1 :c) - \L an:cn, s-1z) 

- Lan (S-1 zn,:c) 
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- Lanan 

({an}, {an}) 

and 

(x, s-1 x} - \L CnXn, 5-lx) 

- L Cn (s- 1 xn, x} 

- LCnan 

= ({en}, {an}). 

Therefore { Cn - an} is orthogonal to {an} in l 2, whence 

PROPOSITION 6.2.12 [DS]. The removal of a vector from a frame leaves 

either a frame or an incomplete set. Precisely, 

(xm, s-1 xm} = 1 ⇒ {xn}n#m is incomplete. 

PROOF: a. Fix m and define an = (xm, s-1xn}- By Proposition 6.2.Sc, 

Xm = E anXn, However, Xm = E c5mnXn as well, so by Proposition 6.2.11, 

n n n 

n#m n#m 
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Therefore, 

b. Suppose that am = l. Then Ln#m lanl 2 = o, so an = (s- 1 xm, Xn) = 0 

for n =I=- m. Thus s-1 xm is orthogonal to Xn for n =I=- m. However, s-1xm =I=- 0 

since (S-1 xm,xm) =am= 1 =/=- 0. Therefore {xn}n#m is incomplete in this 

case. 

c. On the other hand, suppose am =/=- l. Then Xm = l-~m Ln#m anXn, so 

for x EH, 

where C = 11 - am 1-2 Ln#m lanl 2
• Therefore, 

n 

whence 

Thus {xn}n#m is a frame with bounds A/(1 + C), B. I 

In the course of the proof of Proposition 6.2.12 we proved the following. 

COROLLARY 6.2.13. Given a frame {xn} and given m, 

L l(xm,s-1 xn)l 2 

n#m 

1 - l(xm, s-1 xm)l 2 
- 11 - (xm, s-1 xm)l2 

2 
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In particular, if (xrn, s-1 x,n) = 1 then (xrn, s-1 xn) = 0 for n -=I=- m. 

COROLLARY 6.2.14. Given a frame {xn}, the following three statements are 

equivalent. 

a. { Xn} is exact. 

b. {xn} and {S- 1 xn} are biorthonormal. 

c. (xn, s-1 xn) = 1 for all n. 

PROOF: a::::} c. If { Xn} is exact, then, by definition, { Xn}n:;t:rn is not a frame 

for any m. Therefore, by Proposition 6.2.12, (xrn, s-1 xrn) = 1 for every m. 

c ::::} a. If (xrn, s-1 xrn) = 1 then {xn}n:;t:rn is not a frame by Proposition 

6.2.12. By definition, {xn} is exact if this is true for all m. 

c ::::} b. Follows from Corollary 6.2.13. I 

COROLLARY 6.2.15. Given a tight frame {xn} with bounds A 

following statements are equivalent. 

a. { Xn} is exact. 

b. { xn} is an orthogonal sequence. 

c. llxnll 2 = A for all n. 

PROOF: Follows from Corollary 6.2.14 and the fact that S = AI. I 

PROPOSITION 6.2.16. 

a. Frames are norm bounded above, with sup llxn!l 2 ~ B. 

b. Exact frames are norm bounded below, with A~ inf llxnll 2 • 
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PROOF: a. Fix m; then 

n 

b. If {zn} is an exact frame then {zn} and {S-1 zn} are biorthonormal by 

Corollary 6.2.14. Therefore, for m :fixed, 

A lls- 1 "'mll 2 < ~ I(s-1 )12 .., L.J Zm,Zn 

n 

As { :en} is exact we have Zm -=/= O, so s-1zm -=/= 0 and the result follows. I 

REMARK 6.2.17. Example 6.2.3d shows that inexact frames need not be 

bounded below. 

We collect now some remarks on the convergence of E CnZn for arbitrary 

sequences of scalars. 

EXAMPLE 6.2.18. In general, it is not true that :z: = E CnZn implies that 

E lcnl2 < oo. For example, let {zn} be any frame which includes infinitely 

many zero elements and talce the coefficients of the zero elements to be 1. Less 

trivially, let {en}neZ+ be an orthonormal basis for Hand define In = n-1 en 

and 9n = (1 - n-2 ) 112 en, Then {ln,9n} is a tight frame with A = B = 1. 

Now consider the element z = E n-1 en; we have :z: = E (l •In+ 0 • 9n) while 
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PROPOSITION 6.2.19. Given a frame {:t:n} which is norm bounded below, 

~ lcnl 2 < oo {:} ~ Cn:t:n converges unconditionally. 

PROOF: Assume I: Cn:t:n converges unconditionally. Then, by Proposition 

6.1.9, I: lcnl2 llznll 2 = I: llcn:t:nll 2 < oo. Since {:t:n} is norm bounded below 

it follows that I: !cnl2 < oo. The converse is Lemma 6.2.5. I 

EXAMPLE 6.2.20. There exist frames {:t:n} which are norm bounded below 

and scalars { en} such that I: Cn:t:n converges but I: lcnl2 = oo. 

Let { en}nEZ+ be an orthonormal basis for H, and consider the frame 

{e1,e1,e2,e2,••·}, which is norm bounded below. The series 

(6.2.3) 

converges strongly to 0. However, the series 

does not converge. Therefore the series (6.2.3) converges conditionally, cf., 

Lemma 1.4.2e. Since {n-112} ~ P.2, the conditionality of the convergence also 

follows from Proposition 6.2.19. 
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Section 6.3. Frames and bases. 

In this section we determine the exact relationship between frames and 

bases in Hilbert spaces. 

PROPOSITION 6.3.1. Inexact frames are not bases. 

PROOF: Assume {xn} is an inexact frame, with frame operator S. Then, by 

definition, {xn}n:;cm is a frame for some m, and is therefore complete, while 

no subset of a basis can be complete. In particular, define an= (xm,S-1 :z:n)i 

then ~ c5mnXn = Xm = I; anXn (Proposition 6.2.8c). Since am -=/- 1 by 

Proposition 6.2.12, these are two different representations of Xm• I 

LEMMA 6.3.2. Frames a.re preserved by topological isomorphisms. Precisely, 

we have the following. Let H1 , H2 be Hilbert spaces, and let {xn} be a 

frame for H1 with bounds A, B and frame operator S. Assume T: H1 -+ H2 

is a topological isomorphism. Then {Txn} is a frame for H2 with bounds 

AIIT-1 1!-2
, B IITll 2 and frame operator TST*. Moreover, {Txn} is exact if 

and only if {xn} is exact. 

PROOF: First note that for each y E H2, 

By Proposition 6.2.6, it therefore suffices to show that A I/T-1 11-2 I:$ T ST* :$ 

B IITll 2 I. Given y E H we have (T ST*y, y) = (S(T*y), (T*y)), so 

(6.3.1) A I/T*yl/ 2 < (T ST*y, y) < B IIT*yl/ 2
, 
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since AI :s; S :s; BI. Since T is a topological isomorphism, 

(6.3.2) IIYII 
JIT-111 

Combining (6.3.1) and (6.3.2), 

Allyll2 • 
IIT-1112 :s; (T ST Y, y) :s; B IITll2 IIYll2, 

as desired. The statement about exactness follows immediately from the fact 

that topological isomorphisms preserve complete and incomplete sequences. I 

The statement and a different proof of the following can be found in [Y]. 

PROPOSITION 6.3.3. A sequence {xn} in a Hilbert space His an exact frame 

if and only if it is a bounded unconditional basis. 

PROOF: =}. Assume {xn} is an exact frame. Then {xn} is bounded in norm 

by Proposition 6.2.16. By Proposition 6.2.Sc, x = I:(:z:, s-1 :z:n) :Z:n for all :z:, 

and this series converges unconditionally. This representation is unique, for 

if :z: = E Cn:Z:n then 

since {:z:n} and {S-1:z:n} are biorthonormal (Corollary 2.3.14). Thus {:z:n} is 

a bounded unconditional basis. 

{::::. Assume {:z:n} is a bounded unconditional basis for H. Then by Propo­

sition 6.1.8, { :z:n} is equivalent to an orthonormal basis for H, i.e., there exists 

an orthonormal basis { en} and a topological isomorphism U: H -4 H such 

that U en = :Z:n for all n. Since { en} is an exact frame, { :z:n} must also be an 

exact frame by Lemma 6.3.2. I 
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REMARK 6.3.4. We can exhibit directly the topological isomorphism U used 

in the proof of Proposition 6.3.3. First note that 5-1/ 2 exists and is a positive 

topological isomorphism of H since both 8 and 5-1 are positive topologi­

cal · Isomorphisms, e.g., [We, Theorem 7.20}. Since {zn} is exact, {zn} and 

{s-1 } 
:Z:n are biorthonormal. Therefore, 

(s-112 8 -1/2 ) ( 8 -1128 -112 ) ( 8 -1 ) c Zm, Zn = Zm, Zn = Zm, Zn = Omn• 

Thus { s-112:cn} is orthonormal. It is complete since topological isomorphisms 

Preserve complete sequences. Thus, {8-112:cn} is an orthonormal basis for 

ll, and the topological isomorphism U = 8 112 maps this orthonormal basis 

onto the frame {zn}, 

For inexact frames, {5-1/2zn} will not be an orthonormal basis, but will 

he a tight frame. 

COROLLARY 6.3.5. Any frame in a Hilbert space is equivalent to a tight 

f.razne. Precisely, if {zn} is 8 frame with frame opera.tor 8 then 5-
1

/
2 is a 

Positive topological isomorphism of H and {5-1/2zn} is a tight frame with 

bounds A = B = 1. 

PROOF· It ti 11 fr L 6 3 2 that {s-112zn} is a frame. Since • o ows om emma . • 

the frame is tight by Proposition 6.2.6. I 
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EXAMPLE 6.3.6. From Propositions 6.1.8 and 6.3.3, if {xn} is an exact frame 

then 

(6.3 .3) 

L CnXn converges 

# L CnXn converges unconditionally. 

Now let { en}nEZ+ be an orthonormal basis for H, and consider the frame 

{xn} = {e1,e1,e2,e3, ... }. The series LCnXn will converge if and only if 

L lcnl2 < oo since {xn} is obtained from an orthonormal basis by the ad­

dition of a single element. Since {xn} is norm bounded below, it follows 

from Proposition 6.2.19 that L lcnl2 < oo if and only if L CnXn converges 

unconditionally. Therefore (6.3.3) holds for this nontight, inexact frame. 
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Section 6.4. Atoms in Hilbert spaces. 

By definition, a sequence { Xn} is a frame if there exists a norm equivalence 

between llxllH and II{ (x, xn)}//l 2 (Definition 2.3.1). Given such a frame, it 

follows that there exist coefficients { an( x)} such that x = Lan( x) Xn, in 

particular, an(x) = (x,S-1:z:n) (Proposition 6.2.8). Since {S-1:z:n} is also 

a frame, there is also a norm equivalence between 1/x/lH and //{an(x)}//l 2 • 

In this section, we examine a dual concept to frames, due to Grochenig, 

which begins from the existence of coefficients { an( x)} which reproduce x and 

satisfy a norm equivalence. We establish in this section the exact relationship 

between frames and Grochenig's sets of atoms, in the Hilbert space setting. 

DEFINITION 6.4.1 [G]. Given a sequence {xn} in a Hilbert space H, and 

given a sequence { an} of linear functionals on H. If 

a. x = L an(x) Xn for every x EH, 

b. there exist constants A, B > 0 such that for each x E H, 

then {xn; an} is a set of atoms for H. A, Bare the atomic bounds, and 

the functionals {an} are the atomic coefficient functionals. 

REMARK 6.4.2. a. We do not assume that the representation x = L an(x) Xn 

in Definition 6.4.1 is unique, i.e., {xn} need not be a basis for H. 

b. Since !am(:z:)1 2 ~ 1: jan(x)j2 ~ B llx112, each functional am is continuous, 

and is therefore given by the inner product with a unique Ym E H, 1.e., 
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am ( ·) = ( ·, Ym). We identify the functional am with the element Ym, and refer 

to {yn} as the atomic coefficients. 

c. If {:z:n} is a frame, then {:en; s-1:z:n} is a set of atoms by Proposition 

6.2.8, where Sis the frame operator for {:en}- We establish a partial converse 

to this result in this section (Proposition 6.4.5). 

From Definition 6.4.1 and Remark 6.4.2b we immediately obtain the fol­

lowing. 

PROPOSITION 6.4.3. If {:i:n; Yn} is a set of atoms with atomic bounds A, B 

then {Yn} is a frame with frame bounds A, B. 

EXAMPLE 6.4.4. It need not be true that {:en} is a frame for H if {:z:n; Yn} is 

a set of atoms. For example, if { en}nEZ+ is an orthonormal basis for H then 

{ en, nen} is not a frame since it is not bounded in norm. However, it does 

form a set of atoms for H if we define the atomic coefficents to be { en, O} or 

PROPOSITION 6.4.5. Given a set of atoms {:z:n; Yn}, with atomic bounds A, B. 

a. {:i:n} satisfies a lower frame bound of B-1 , i.e., B- 1 11:z:ll 2 
::; :E l(:z:, :i:n)l2 

for all :z: EH. 

b. If {:z:n} is a Bessel sequence with upper bound C then it is a frame, with 

frame bounds B-1
, C. Moreover, {Yni:Z:n} is in this case a set of atoms, with 

atomic bounds B-1 , C. 

PROOF: a. Assume {:i:n; Yn} is a set of atoms. Given :z:, y EH we have 
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, 

Therefore, 

l(x,y)/
2 = /(x, L(Y,Yn)xn)/2 

- /L (x,xn) (Y,Yn)/2 

< (L /(x,xn)l 2
) (L /(Y,Yn)/ 2

) 

llx// 2 = sup /(x,y)/ 2 ~ BL /(x,xn)/2, 
IIYll=I 

so {xn} possesses a lower frame bound of B-1 • 

b. Assume { Xn} is also a Bessel sequence. Then, by definition, it possesses 

an upper frame bound. Since it possesses a lower frame bound by part a, 

{xn} is a frame. 

It remains to show that {Yni xn} is a set of atoms. The norm equivalence 

is satisfied since {xn} is a frame, so we need only show that x = L(x, Xn) Yn 

for all x. Now, both {xn} and {Yn} are Bessel sequences (by assumption for 

{xn} and by Propostion 6.4.3 for {Yn} ), so by Lemma 6.2.5 the mappings 

U, V:H--+ l 2 defined by Ux = {(z,xn)} and Vx = {(x,yn)} are linear and 

continuous, with adjoints U"', V"':l2 --+ H given by U"'{cn} = LCnXn and 

V"'{ en} = L CnYn• Since {Yni xn} is a set of atoms we have by definition that 

i.e., U*V = I. Therefore, V"'U = (U"'V)* = r = I, whence 

x = V*Ux = L (x,xn) Yn· I 
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REMARK 6.4.6. a. In summary, by Remark 6.4.2c all frames are sets of 

atoms, while by Proposition 6.4.5b all atoms which are also Bessel sequences 

are frames. By Example 6.4.4, atoms which are not Bessel sequences need 

not be frames. 

b. In practice, most sets of atoms are clearly Bessel sequences and therefore 

are frames. 

c. Given a set of atoms { Xni Yn} such that { xn} is a Bessel sequence, we 

have by Proposition 6.4.5 that { xn} is a frame. We also have from Proposition 

6.4.3 that {yn} is a frame. However, it need not be true that {Yn} is the dual 

frame of {xn} or vice versa, as this would imply that atomic coefficients are 

umque. 

We gave an example of nonunique coefficient functions in Example 6.4.4; 

however, that example did not satisfy the Bessel condition. An example in 

which the Bessel condition is satisfied is the following. Let { en}nEZ+ be an 

orthonormal basis for H. Then {en, en} is a frame with bounds A= B = 2, 

and is therefore a Bessel sequence. The dual frame { en/2, en/2} gives one 

immediate choice for atomic coefficients. However, we can also define atomic 

coefficients by { en, O}, so they are not unique. 

d. Nonuniqueness of the atomic coefficients means more than nonunique­

ness of the individual representations x = I:(x, Yn} Xn• Nonuniqueness of 

the individual representations means only that given x there exist some other 

scalars {en} such that x = L CnXn, Nonuniqueness of the atomic coefficients 
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means that there exists another entire fixed set of vectors {zn} such that 

x = ~(x, Zn) Xn for all x, moreover, with norm equivalence between 11 • IIH 

e. There are a few remarks to be made about the history of Proposition 

6.4.5. It was originally believed by Grochenig that all atoms in Hilbert spaces 

were frames, and he communicated privately a proof of this result to Walnut. 

We realized that Grochenig's proof implied that the atomic coefficients {yn} 

are the dual frame of {xn}, and therefore are unique. These results were 

reported in [Wa], where they are used in a noncritical way for some minor 

results. Feichtinger later pointed out to us by example that atomic coefficients 

are not unique. We therefore re-examined Grochenig's proof, and isolated the 

subtle error. Walnut then gave examples of atoms which were not frames, 

and suggested the independence of the assumption of the upper frame bound. 

Finally, we proved Proposition 6.4.5. A special case of Proposition 6.4.5 is 

proved in [Wa, Theorem 2.6.1]. 

The following proposition gives a condition under which the atomic coeffi-

cient functionals {Yn} will be the dual frame of { xn}, 

PROPOSITION 6.4.7. Given a set of atoms {xn;Yn} such that {xn} is a Bessel 

sequence. Define U, V:H---+ £2 by Ux = {(x,xn)} and Vx = {(x,yn)}. If 

Range(U) = Range(V) then {yn} is the dual frame of {xn}, 

PROOF: As is the proof of Proposition 6.4.5 we have U*V = V*U = I, the 

identity map on H. Let K = Range(U) = Range(V). Since UV*U = UI = 
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U, we have (UV*)IK = IIK- Since Range(U) = Range(V) = K this implies 

uv·v = IIKV = V. Now, V*V:z: = I: (:z:,yn) Yn = S:z:, wheres is the frame 

operator for the frame {Yn}• Therefore, given :z: EH, 

{ (:z:, Yn)} V:z: - UV*V:z: - US:z: 

Since this is true for all z we have Yn = S:z:n, i.e., Zn = s-1Yn• Thus {:z:n} is 

the dual frame of {Yn}• I 
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Section 6.5. Frames and atoms in Banach spaces. 

In this section we extend the notions of frames and atoms to Banach spaces, 

following the ideas of Grochenig, e.g., [G]. 

DEFINITION 6.5.1 [G]. Given a Banach space X and a related Banach space 

Xd of sequences of scalars. Let {xn} be a sequence of elements of X, and let 

{ an} be a sequence of linear functionals on X such that 

a. X=~an(x)xnforallxEX, 

b. there exist A, B > 0 such that for all x E X, 

Then {xn; an} is a set of (Banach) atoms for (X, Xd). A, Bare the atomic 

bounds, and { an} are the atomic coefficient functionals. 

REMARK 6.5.2. a. Often the sequence space Xd will be understood and 

therefore not specifically mentioned. 

b. We assume for the remainder of this chapter that each an is continuous, 

i.e., an EX', and therefore write an(x) = (x,an)• 

This is true, for example, if Xd is solid and contains each of the sequences 

{h'rnn}n, for then 

so arn is continuous on X. 

c. If {xn} is a basis then {xn} and {an} are biorthonormal, i.e., arn(xn) = 
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DEFINITION 6.5.3. Given a Banach space X and a related Banach space Xd 

of sequences of scalars. A sequence {Yn} of elements of X' is a (Banach) 

frame for X if there exist A, B > 0 such that 

for x E X. A, B are the frame bounds. If only the upper bound holds then 

the sequence is a (Banach) Bessel sequence. 

REMARK 6.5.4. a. Definitions 6.5.1 and 6.5.3 for frames and atoms in Banach 

spaces are consistent with Definitions 6.2.1 and 6.4.1 for frames and atoms in 

Hilbert spaces. For, the Hilbert space definitions are the special cases of the 

Banach space definitions obtained by taking X = H and Xd = 1.2 
( except for 

a square-root factor in the bounds). 

b. Walnut, in [Wa], discussed the existence of Banach atoms in L~(Rd), 

where w is a moderate weight. Although L~(Rd) is a Hilbert space, his 

Banach atoms are not Hilbert atoms since the sequence space is not 1.2 but 

rather an appropriate weighted£!. 

Comparing Definitions 6.5.1 and 6.5.3, we obtain the following. 

PROPOSITION 6.5.5. If {xn; Yn} is a set of atoms for a Banach space X then 

{Yn} C X' is a Banach frame for X. 

REMARK 6. 5. 6. Given a set of atoms { x n; Yn} for a Banach space X. As 

usual, we identify X with its canonical embedding in X", i.e., X C X". 

Therefore, it possible for { xn} to be a Banach frame for X. The following 
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results give conditions under which this will be true. The situation is similar 

to the Hilbert space case, in particular, the same considerations about upper 

and lower frame bounds apply. 

We assume for the remainder of this chapter that Xd is such that X~ is also 

a sequence space, with duality between Xd and X~ given by {{bn}, {en}) = 

:E bncn, This is true, for example, if Xd is a weighted £P-space. 

PROPOSITION 6.5.7. Given a set of atoms {:i:niYn} for (X,Xd), with atomic 

bounds A, B. 

a. {zn} satisfies a lower frame bound for X of B- 1 • 

b. If { :i:n} is a Bessel sequence for X with upper bound C then it is a 

Banach frame for X', with frame bounds B-1 , C. 

PROOF: a. Assume {:i:niYn} is a set of atoms. Given :i: EX and y EX' we 

compute 

Therefore, 

I {:i:, y) I l(~{:i:,yn}Zn, y)I 

I~ {:i:, Yn} {:i:n, Y}I 

< 11{{:i:,yn)}llx" 11{{:i:n,Y)}llx~ 

< B llxllx ll{(zn,Y)}llx~-

l1Yllx1 - sup l{:i:,y)I ::; Bll{(:i:n,Y)}llx~-
llzll=l 
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This establishes the lower frame bound for { z,,}. 

b. Follows immediately from a. I 
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Section 6.6. Stability of atoms. 

There are many results on the stability of bases in Banach spaces, e.g., 

[DE; GK; PW; Po]. Typically, these give conditions on the amounts the 

elements of a basis may be perturbed without affecting the basis property. 

We formulate in this section an analogous stability theorem for atoms. 

We continue to assume that X~ is a sequence space of scalars, with duality 

between xd and x~ given by ({bn},{cn}) = ~bnCn, 

PROPOSITION 6.6.1. Given a set of atoms { Xni Yn} for (X, Xd), with atomic 

bounds A, B. Assume Wn E X satisfy 

R - ll{llxn - Wnll}llx, < s-1
. 

d 

Then there exist Zn E X' such that { Wni Zn} is a set of atoms for (X, Xd) 

with atomic bounds A/(1 + RB), B/(1- RB). Moreover, {wn} is a basis if 

and only if { Xn} is a basis. 

PROOF: Given x E X, 

(6.6.1) 

< RBllxll• 

Thus ~ (x, Yn) (xn - wn) converges absolutely in X. Since x = ~ (x, Yn) Xn 

also converges in X, the series Tx = ~(x,yn) Wn must therefore converge. 
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Clearly T is linear, and, by (6.6.1), III - TII ::; RB < l. Therefore T is 

invertible, whence 

for x E X. By definition of atoms, 

A 
A IIT-1xllx (6.6.2) IITll llxllx < 

< II{ (T-1x, Yn) }llxd 

< B IIT-1xllx 

< B IIT-111 llxllx-

Define the functional Zn E X' by Zn = T- 1Yn, i.e., (x, Zn) = (T-1x, Yn) for 

x EX. By (6.6.2), 

so {wn;zn} is a set of atoms for (X,Xd)- Since 

IITII ::; 11111 + IIT - Ill ::; 1 + RB 

and 

1 
IIT-111 ::; 1 - II 

the bounds are as claimed. 

< 
1 

l-RB' 

Finally, assume {xn} is a basis for X. Then {xn} and {Yn} are biorthonor-

mal, so 
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Since topological isomorphisms preserve bases, { wn} must therefore be a ba­

sis. Conversely, if {wn} is a basis then T-1 is a topological isomorphism 

which maps {wn} onto {zn}, so {zn} must be a basis. I 
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CHAPTER 7 

GABOR SYSTEMS AND THE ZAK TRANSFORM 

This chapter is an essentially expository survey of results obtained by using 

the Zak transform to analyze Gabor systems. We have combined results from 

(D1; DGM; J2] and others with remarks, examples, and results of our own. 

In Section 7.1 we define Gabor systems, and give necessary and sufficient 

conditions under which a Gabor system will be a frame, if the mother wavelet 

has compact support. 

In Section 7.2 we define the Zak transform and prove that it is a unitary 

map of L2 (Rd) onto L 2 (Q), where Q is any unit cube in Rd x Rd. 

In Section 7.3 we analyze Gabor systems at the critical value ab= l through 

the use of the Zak transform. We characterize those systems which are frames 

by a condition on the Zak transform of the mother wavelet. 

In Section 7.4 we prove that the Zak transform maps LP(R d) into LP( Q) 

for 1 ::; p :=; 2 but cannot be defined on LP(Rd) if p > 2. 

In Section 7 .5 we prove that the Zak transform maps the Wiener amalgam 

space W(LP,L 1 ) into LP(Q) for each 1::; p:::; oo. As a corollary, we obtain 

a variant of the Balian-Low theorem: if (g,a,b) generates a Gabor frame at 

the critical value ab = l then g is either not smooth or does not decay quickly 

at infinity. 

Finally, in Section 7.6 we address some questions similar to ones which arise 
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in Section 7 .3 from the application of the Zak transform to Gabor frames. In 

particular, we generalize slightly a result of Boas and Pollard which shows that 

if finitely many elements are removed from an orthonormal basis for L2 (X) 

then it is always possible to find a single function to multiply the remaining 

elements by so that the resulting sequence is complete. We show this need 

not be true if infinitely many elements are deleted, and discuss some related 

results by other authors. 
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Section 7.1. Gabor systems. 

In this section we define Gabor systems in L2 (Rd), and prove an ex1s­

tence theorem for Gabor frames generated by compactly supported mother 

wavelets. 

DEFINITION 7.1.1. Given g E L2 (Rd) and given a, b E Ri, the Gabor 

system generated by (g, a, b) is {TnaEmb9}m,nEZ"• The function g is the 

mother wavelet and the vectors a, b are the system parameters. The set 

of points { ( na, mb) }m,nEZ" is the system lattice. When a, b are understood 

we use the abbreviation 9mn = TnaEmb9· 

REMARK 7.1.2. a. Since TnaEmb = e-2,rinamb EmbTna, we also refer to 

{EmbTna9}m,nEZ" as a Gabor system. 

b. Since (TnaEmb9)" = E-naTmb9, the Gabor system generated by (g,b,a) 

consists of the Fourier transforms of the elements of the Gabor system gener­

ated by (g,a,b). Since the Fourier transform is a unitary mapping of L2 (Rd) 

onto L2 (R d) there is a duality between properties held by the system gener­

ated by (g, a, b) and the system generated by (g, b, a). 

c. Assume that the Gabor system generated by (g, a, b) is a frame. The 

frame operator is then, by definition, Sf= ~(/,9mn) 9mn, and the dual frame 

is {S-19mn}- A stra.ightforwardcalculationshowsthat STnaEmb = TnaEmbS, 

whence s-19mn = ( s-1 g )mn• Therefore the dual frame is also a Gabor frame, 

generated by (s- 19,a,b). 

The following is an elaboration of a basic result from [DGM). 
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PROPOSITION 7.1.3. Given g E L2(Rd) with compact support and given 

a E Ri. Let I :) supp(g) be any compact rectangle, and let l/b be the side 

lengths of I. Define 

A(t) L lg(t - na)l2' 
nEZ" 

A - ess inf A( t), 
tER" 

and B - ess sup A( t). 
tER" 

Then (g, a, b) generates a Gabor frame if and only if A > 0 and B < oo. In 

this case, the following also hold. 

a. The bounds for the frame are II(l/b)A, II(l/b)B. 

b. The frame opera.tor is Sf= II(l/b) Af. 

c. o <ab~ l. 

d. The frame is exact if and only if ab = 1. 

e. If ab I- 1 then the frame has infinite excess, i.e., there exist finite sets 

F C zd X zd of arbitrarily large cardinality such that {Ymn}cm,n)~F is B. 

frame. 

PROOF: We use a Fourier series argument. Set In = I+ na for n E zd. Then 

{II(b)1 l 2 Em1,X1,JmeZ" is an orthonormal basis for L2(In) = {f E L2(Rd) : 

supp(!) C In}• Given f E L2(Rd) we have f • Tno.9 E L1(In), so 

m m 

- II(l/b) llf · Tno.YII~ 

- II(l/b) 1 lf(t)g(t - na)l2 dt, 
R" 
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where either both sides are finite and equal or both sides are infinite. Thus 

(7.1.1) L l(f,gmn)l2 = II(l/b) 1 lf(t)I 2 >..(t)dt, 
m,n R" 

so (g, a, b) forms a frame if and only if).. is essentially constant. 

Assume now that (g, a, b) generates a frame. 

a. Follows from (7.1.1). 

b. For each f E L2(Rd) we have 

{Sf,f) = ~ l{J,gmn)l2 = JI{l/b) L, lf(t)12 >.(t)dt - JI(l/b) (>.J,J). 

It follows immediately from elementary Hilbert space results that Sf 

IT(l/b) >..J. 

c. If ajbj > l for some j then {In}, and therefore {supp(9mn)}, does not 

cover Rd. Hence {9mn} is incomplete and therefore not a frame. 

d. Assume ab = l. In this case the sets { In} are disjoint. Therefore 

A(t) = lg(t - na)l 2 if t E In, whence ITna9I is bounded above and below on 

In, As {Il(b)112 EmbXr,.}m forms an orthonormal basis for L2 (In), it follows 

that {EmbTna9}m is a bounded unconditional basis for L2 (Jn), Since {In} is 

a partition of Rd, it follows that {EmbTna9}m,n is a bounded unconditional 

basis, and hence an exact frame, for L2(Rd). 

Conversely, assume ab f:. l. From part c, every coordinate of ab is at most 1. 

There are two possibilities: either supp(g) #- I or supp(g) n supp(Tka9) f-: 0 

for some k E zd. We claim that in either case it is possible to remove one 
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element from the frame {9mn} and retain a complete set, from which it follows 

that the frame is inexact. In particular, we remove the element g = g00 • 

To show that {9mn}cm,n)#(o,o) is complete, assume f E L2(Rd) satisfies 

(/,9mn) = 0 for (m,n) #- (0,0). Note that supp(!• g) C I and that 

(/ •g, Em,b) = (/,9mo) = 0 form-=/:- 0. As {II(b)1l 2 EmbXI}m is an orthonormal 

basis for L 2 (1), it follows that f • g = cE0 = c for some constant c. 

If supp(g) -=f:. I then c = 0 since f • g = 0 on I\ supp(g ). 

On the other hand, assume supp(g) n supp(T1:0 g) -=f:. 0 for some k. Then 

(/ · Tka9, Emb) = (/,9mk) = 0 for all m, whence f • T1: 0 g = 0 on h, Therefore 

f = 0 on supp(Tka9)::) supp(g) n supp(Tka9), so again c = 0. 

Thus, in any case, f • g = 0 on I, whence (/,g) = 0 since supp(g) C I. 

Thus f is orthogonal to every element of {Ymn}• As this set is complete, it 

follows that f = O, and therefore {9mn}cm,n)#(o,o) is complete. 

Alternatively, recall from Corollary 6.2.14 that the frame {Ymn} is exact if 

and only if (9mn, s-19mn) = 1 for all m, n. By part b, 

(7.1.2) {9mn, s-19mn) = II(b) {9mn,9mn(>..) 

- II(b) r lg(t - na)l2 dt. 
Jad I:1: lg(t - ka)l 2 

Now, 

(7.1.3) 
lg(t - na)l 2 

E1: jg(t - ka)j2 ~ X1,.(t). 

If ab= 1 then there is equality in (7.1.3), and therefore (Ymn, s-19mn) = 1 

by (7.1.2). This is true for all m, n, so the frame is exact. 
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Assume, on the other hand, that ab=/=- 1, and set m = n = O. If supp(g) =f=. I 

then g(t) = 0 fort EE= I\supp(g). If supp(g) n supp(T1:0 g) =/=- 0 for some 

k E zd then lg(t)l 2 < lg(t)l 2 + lg(t - ka)l 2 fort EE= supp(g) n supp(T1:ag). 

In either case there is strict inequality in (7.1.3) for t E E. As IEI > O, it 

follows that (g, s-1 g} < 1, whence {9mn} is inexact. 

e. Assume ab=/=- l. From part d, {9mn}cm,n)¥(o,o) is complete, and therefore 

is~ frame (Proposition 6.2.12). The argument in part d used only the function 

g and those 9mn whose support intersected that of g. Therefore the argument 

can be repeated using some 9kl whose support is far distant from that of g 

and its immediate neighbors, i.e., we can remove some a second function from 

the frame and still have a complete set and therefore a frame. This process 

can be repeated arbitrarily many times, so the frame has infinite excess. I 

EXAMPLE 7 .1 .4. Functions in Cc(R d) satisfy the hypothesis of Proposition 

7.1.3 for all a and b whose components are small enough. Therefore, any 

function in Cc(R d) will generate a Gabor frame for some choice of a and b. 

It is possible to prove sufficient conditions under which functions without 

compact support will generate Gabor frames, e.g., [D1; HW; Wa]. 
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Section 7 .2. The Zak transform. 

In this section we define the Zak transform and prove that it is a unitary 

mapping of L2 (Rd) onto L2 (Q), where Q is any unit cube in Rd x Rd. 

DEFINITION 7.2.1. The Zak transform of a function f: Rd -. C is (for­

mally) 

ZJ(t,w) - L J(t+k)E1c(w) 
l:EZ4 

The series defining Z f may converge in various senses, e.g., pointwise, Lf
0
c, 

etc. 

Formally, Z f is quasi periodic, in the following sense. 

DEFINITION 7.2.2. A function F: Rd X Rd-. C is quasiperiodic if 

F(t + j,w + k) = E_;(w)F(t,w) = e-21rij,w F(t,w) 

d Ad 
forj,kEZdand(t,w)ER xR. 

REMARK 7.2.3. a. A quasiperiodic function is completely determined by its 

values on any unit cube Qin Rd x Rd. 

b. If F, G are quasiperiodic then FG is 1-periodic. 

c. If F is quasiperiodic then the norm 

is independent of the unit cube Q. Hence 

{F:Q-. C: IIFll2,Q < oo} 
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can be identified with 

{F: Rd x Rd-+ C: Fis quasiperiodic and IIFll2,Q < oo} 

via quasi periodic extension. We refer to both of these spaces as .LP( Q). 

Without loss of generality, we let Q = [O, 1] x [O, 1] C Rd x Rd for the 

remainder of this chapter. 

d. {E(m,n)}m,nEZ,. is an orthonormal basis for the Hilbert space L2( Q), 

where 

E (t w) _ e2n(m,n) •(t,"') _ e2nm•t e2,rin•w 
(m,n) , - - • 

e. Quasiperiodicity is not a translation invariant property. For example, 

set d = 1 and assume F is quasiperiodic. If b is not an integer then 

(Tco,r.)F)(t + 1,w) - F(t + 1,w - b) 

_ e-211-i(w-r.) F(t,w - b) 

Thus Tco,r.)F is not quasiperiodic. 

The following proposition and its proof is a generalization to higher dimen­

sions of a result appearing in [J2]. 

PROPOSITION 7.2.4. The Zak transform is a unitary map of L2 (Rd) onto 
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PROOF: Fix f E L2(Rd). Fork E zd define Fk(t,w) = J(t + k)Ek(w). Since 

IIFkll~ = jrf lf(t+k)Ek(w)l2 dwdt = f IJ(t+k)l2 dt < oo, 
)q Jro,1) 

we have Fk E L2 ( Q) for each k. The sequence {FA:} is orthogonal, for if k # l 

then 

{Fk, Fi) = f J(t + k) J(t + l) ( f Ek-1(w) dw) dt - 0. 
Jro,1] Jro,1) 

Given a finite subset F C zd we therefore have 

Since 

L f IJ(t + k)l2 dt = L IJ(t)l2 dt = IIJII~ < oo, 
kEZ" J[o,l] B." 

it follows that ZJ = }:Fk converges in L2(Q) and IIZ/112 = 11/112, so Z is 

continuous and norm-preserving. 

Now define g = Xro,iJ and set a = b = 1. The Gabor system {Ymn} is 

then an orthonormal basis for L2(Rd), We easily compute Zgmn = E(m,n)• 

Thus Z maps the orthonormal basis {Ymn} for L2(Rd) onto the orthonormal 

basis {E(m,n)} for L2(Q). As Z is continuous, it follows immediately that Z 

is unitary. I 

PROPOSITION 7.2.5. Given f E L2 (Rd), 

Zf(t,w) - e-l,rit•w Z}(w,-t). 
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PROOF: a. Fix cp in the Schwartz space S(Rd); then we can apply the Poisson 

summation formula in the calculation below, cf., Section 1.8b. 

Zcp(t,w) - L cp(t + k)Ek(w) 

- L T_,cp(k) Ew(k) 

- L (EwT-tcp)(k) 

L(EwT-tcp)"(k) 

- L TwEtcj,(k) 

- L E,cj,(k -w) 

- Et(-w) L cj,(k - w) Et(k) 

- -2,rit•W z A ( - t) e cp w, . 

b. Now fix / E L2(Rd). Then there exist 'Pn E S(Rd) such that 'Pn -+ f 

in L2(Rd). By the Plancherel formula, 'Pn -+ j in L2(Rd). By Proposition 

7.2.4, it follows that Zcpn-+ Zf and Zcj,n-+ zj in L2(Q). By passing to 

subsequences if necessary we may assume that all four of these convergences 

hold pointwise a.e. Therefore, pointwise a.e., 

Zf(t,w) lim Zcpn(t,w) 
n-+oo 

l o -2,rit•w z A ( t) 1m e 'Pn -w, 
n-+oo 

- e-2w-it-w zf(-w,t). I 
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EXAMPLE 7.2.6 [DGM]. Set d = 1. We compute the Zak transform of the 

Gaussian g(t) = e-rt
2

, where r > 0. 

We make use of the Jacobi theta function 93. There are four Jacobi theta 

functions, defined by 

00 

2 L (-lt q<•+1l2>
2 

sin 21r(2k + l)z 
•=o 

00 

-i L (-lt qC•+1/2)2 
e2,ri(211+i).c, 

•=-co 
00 

92(z, q) - 2 L q<•+1l2>
3 

cos 21r(2k + l)z 
•=o 
00 L (-ll q<•+1/2)2 e2,ri(21i+I)•, 

k=-oo 

00 

( ) ~ .2 
93 z,q - 1 + 2 L..J q cos 41rkz 

00 L q•, e •ri••, 
•=-00 

00 

1 + 2 L (-1)" q•
2 

cos 41rkz 

•=l 
00 L (-1)• q•:a e411"ih' 

k = -oo 

for O :5 q < 1 and z E C, cf., (Ra]. We compute 

Zg(t,w) L g(t + k) e211"••"' 

~ -rt3 -2rt• -r•3 2n•w L..Je e e e 

e-rt2 9 (.!!!. + irt e-r) 
- 3 2 2,r' ' 
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Zg is therefore continuous. The zeroes of 83(•,q) occur precisely at the points 

1 T m nr 
Zmn 4 + 4 + 2 + 2' 

where q = e'lfiT, Im(r) > 0. Since e-r = e'lfi{ir), it follows that Zg(t,w) = 0 if 

and only if 

w irt 
2 + 21r 

1 ir m irn 

4 + 47r + 2 + 27r ' 

i.e., (t,w) = (n + 1/2,m + 1/2). Thus Zg has a single zero in any unit cube 
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Section 7.3. Gabor systems and the Zak transform. 

In this section we use the Zak transform to analyze Gabor systems satisfying 

ab= 1. 

REMARK 7.3.1. Let Da. denote the dilation operator which is isometric on 

L2 (Rd), i.e., Da.f(t) = III(a)l-1 / 2 f(t/a), and assume ab= 1. Then 

Since dilation is a unitary operator on L2 (Rd) it therefore suffices to consider 

Gabor systems satisfying a = b = 1. We assume these values for the remainder 

of this chapter, i.e., 9mn = TnEm9• 

LEMMA 7.3.2. Given a function g on Rd and a= b = 1, 

Zgmn - Ecm,n) Zg. 

PROOF: We compute 

Zgmn(t,w) - L 9mn(t + k)E1c(w) 

- L TnEmg(t + k)E1c(w) 

- L Em(t + k - n)g(t + k - n)E1c(w) 

Em(t) L g(t + k)E1c+n(w) 

- Em(t) En(w) Zg(t,w) 

- Ecm,n)(t,w )Zg(t,w). I 
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REMARK 7.3.3. Since the Zak transform is a unitary map of L2(Rd) onto 

L2 ( Q), the Gabor system {9mn} will form a frame for L2(Rd) if and only 

if {Z9mn} forms a frame for L2(Q). By Lemma 7.3.2, Zgmn = E(m,n)Zg. 

Since {E(m,n)} forms an orthonormal basis for L2 (Q), the requirement that 

{E(m,n) Zg} be a frame therefore places severe restrictions on Zg, which we 

examine in the following proposition. 

The study of Gabor systems satisfying ab = 1 is thus reduced via the Zak 

transform to the study of the effect of multiplying the elements of a particular 

orthonormal basis, {E(m,n)}, by a single fixed function, Zg. There are many 

related questions which have appeared in the literature; we discuss some of 

these in Section 7.6. 

Parts a and d and the frame statement of part c of the following proposition 

have appeared in print several times, e.g., [DGM]. 

PROPOSITION 7.3.4. Given g E L2(Rd) and a= b = 1. 

a. {9mn} is complete in L2(R d) if and only if Z g =/. 0 a.e. 

b. {9mn} is minimal and complete in L2(Rd) if and onlyifl/Zg E L2 (Q). 

c. {9mn} is a frame for L2 (Rd) (with frame bounds A, B) if and only if 

0 < A < IZgl 2 < B < oo a.e. 

In this case the frame is exact. 

d. {9mn} is an orthonormal basis for L2(Rd) if and only if jZgj = 1 a.e. 

PROOF: a. Assume that {9mn} is complete in L2(Rd); then {Z9mn} is com-
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plete in L 2 (Q) by the unitarity of Z. Define Fon Q by 

F(t,w) = { 
1, 

o, 

Then, by Lemma 7.3.2, form, n E zd, 

Zg(t,w) = O, 

Zg(t,w) =/= 0. 

(F,Zgmn) = (F,E(m,n)Zg) = (F · Zg,E(m,n)) = 0. 

Therefore F = 0 a.e. since { Z 9mn} is complete, whence Z g =/= 0 a.e. 

Conversely, assume Zg =/= 0 a.e. Assume that F E L2 (Q) is such that 

(F, Z 9mn) = 0 for all m, n. Then (F · Z g, E(m,n)) = (F, Z 9mn) = 0 for all 

m, n, so F • Zg = 0 a.e. since F · Zg E L1(Q) and {E(m,n)} is complete in 

L 1 (Q). As Zg =/= 0 a.e., this implies F = 0 a.e., so {Z9mn} is complete. 

b. Assume {9mn} is minimal and complete in L2 (Rd); then the same is 

true of {Z9mn} in L2 (Q). By part a, Zg =/= 0 a.e. By Proposition 6.1.3, the 

minimality of {Z9mn} implies that there exist functions Fmn E L2 (Q) which 

are biorthonormal to { Z 9mn}, i.e., (F mn, Z 9m'n') = imm' inn'. Thus 

(Fmn • Zg,E(m',n')) = (Fmn,Z9m 1n1 ) = imm' Onn' = (E(m,n),E(m',n')), 

Since Fmn•Zg E L 1(Q) and {E(m',n')} is complete in L1(Q), Fmn•Zg = E(m,n) 

a.e. for all m, n. Thus E(m,n)/Zg = Fmn E L2(Q) for all m, n; in particular, 

1/Zg E L 2 (Q). 

Conversely, assume 1/Zg E L2 (Q). Then Zg =/= 0 a.e., so {9mn} is complete 

by part a. Let g = z-1(1/Zg) E L2 (Rd). Then 

(9mn,9m'n') = (Zgmn, Zgm'n') 

270 



- (E(m,n), E(m',n')} 

Thus {9mn} and {§mn} are biorthonormal. The existence of a biorthonormal 

sequence implies by Proposition 6.1.3 that {9mn} is minimal. 

c. Assume {9mn} is a frame for L2 (Rd) with frame bounds A, B; then the 

same is true of { Z 9mn} in L2
( Q). Therefore, by definition, 

for FE L 2 (Q). Since {E(m,n)} is an orthonormal basis for L 2(Q), 

It follows immediately that A :5 inf jZgj 2 and B 2=: sup jZgj 2 • 

Conversely, assume Zg is essentially constant, i.e., A :5 jZgj2 :5 B a.e. 

Then the mapping U F = F • Zg is a topological isomorphism of L2(Q) 

onto itself. Since {E(m,n)} is an exact frame for L2
( Q) and exact frames 

are preserved by topological isomorphisms (Lemma 6.3.2), it follows that 

{U E(m,n)} = {Zgmn} is an exact frame for L2 (Q), whence {9mn} is an exact 

d. Follows immediately from c. I 

EXAMPLE 7.3.5. Set d = 1. In Example 7.2.6 we determined that the Zak 

2 
transform of the Gaussian g( t) = e-rt is continuous and has a zero. Therefore 

IZ gj is not bounded below a.e., so by Proposition 7.3.4 and Remark 7.3.1, 
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{9rnn} is not a frame for L2(Rd) when ab= 1. However, as Zg is nonzero a.e., 

this Gabor system is complete. The question of the completeness of this Gabor 

system was Zak's original motivation for introducing the Zak transform. 

We prove now that Z g must have a zero if it is continuous. Therefore, by 

Proposition 7.3.3, no function with a continuous Zak transform can generate 

a Gabor frame at the critical value ab = 1. By saying Zg is continuous we 

mean that Zg is continuous on all of Rd x ftd, not just inside a unit cube 

Q. Equivalently, we require continuity both inside and at the edges of Q. 

The proof of the following proposition is adapted from the one-dimensional 

version found in [J2]. The first published proofs were [AT2; BZ]. 

PROPOSITION 7.3.6. Every continuous quasiperiodic function has a zero. 

Precisely, given a continuous quasiperiodic function F, fix any j = 1, ... , d, 

TE Rd, and OE ftd and define 

T(t) (T1, ... ,Ti-1,t,Ti+1,, .. ,Td), 

Then there exist t E Rand w ER such that F(T(t), il(w )) = 0. 

PROOF: Assume F is continuous, quasiperiodic, and nonvanishing. Then 

f(t,w) = F(T(t),il(w)) is continuous and nonvanishing on Rx ft, so by 

[RR, Lemma Vl.1. 7] there is a continuous real-valued function '{) such that 

f ( t, w) = If( t, w) I eic,o(t,w) for (t , w) E [0, 1] x [0, 1 ]. It follows immediately from 
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the quasiperiodicity of F that 

f(t, 1) = f(t, 0) and f(l,w) - e-21riwf(O,w). 

Therefore, for t, w E (0, 1], 

lf(t,l)jeiip(t,I) - f(t,1) 

- f(t,0) 

lf(t,0)I eiip(t,o) 

- lf(t,l)leirp(t,o) 

and 

lf(l,w)jeirp(l,w) - f(l,w) 

- e-271'iw f(0,w) 

- e-271'iw 1/(0,w )I eiip(O,w) 

- e-271'iw 1/(1,w)leicp(O,w). 

As f is nonvanishing, it follows that 

and 

Therefore, for each t, w E [0, 1] there exist integers kt and lw such that 

<,0(t, 1) = <,0(t, 0) + 21rkt and <p(l,w) = <,0(0,w) - 21rw + 21rlw, 

The functions <p(t, 1) - <p(t,0) and <,0(1,w) - <,0(0,w) + 21rw are continuous 

functions oft and w, respectively. Therefore, the integers kt must equal a 
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single integer le, a.nd the integers l,., must equal a single integer l. That is, 

cp(t,1) = cp(t,0)+211"k and cp(l,w) = cp(O,w)-211"w+211"l. 

Therefore, 

0 = (cp(0,0)-cp(l,O)) + (cp(l,0)-cp(l,1)) 

+ (cp(l,1)-cp(0,1)) + (cp(0,1)-cp(O,O)) 

= (-21rl) + (-21rk) + (-21r + 211"1) + (27rk) 

= -271" 

=I= o. I 
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Section 7.4. The Zak transform on LP(R11 ). 

In this section we consider the convergence of the Zak transform on LP(R11 ) 

for 1 < p 5 oo, extending one-dimensional results of Janssen to higher di­

mensions. Janssen observes that the Zak transform is well-defined on L1(R) 

and L2{R), and therefore by interpolation on .LP(R) for 1 5 p ~ 2. He also 

proves that the Zak transform cannot be defined on LP(R) for p > 2. 

PROPOSITION 7.4.1. The Zak transform is a linear, continuous, injective 

mapping of L 1(R11 ) into L1(Q) with IIZII = 1. Moreover, Range(Z) is dense 

in L 1( Q) but Z is not surjective, and z-1: Range(Z) _. L1(R11) is not con-

tinuous. 

PROOF: Fix f E L 1(R11 ). Fork E zc1 define Fk(t,w) = f(t+k)Ek(w). Since 

IIFA:111 = !~ r IFk(t,w)I dw dt = r lf(t + k)I dt < oo, Jq lro,11 

Fk E L1{Q). Moreover, ~ IIFA:lli = ll!ll1, so Zf converges absolutely and 

JJZJll1 < ~ IIFA:111 = IIJll1, Thus Z is continuous and IIZII 5 1. If g = X[o,l] 

then Zg,nn = E(m,n), SO IIZII = 1 since IIZBmnl11 = IIE{m,n)lli = 1 = !IBmnlll• 

Also, Range(Z) is dense since {E{m,n)} is complete in L1(Q). 

For a.e. t E Rd, 

r z f(t,w) CUA) 
lro,11 

f Lf(t + k)Ek(w)<UAJ 
J[o,1] 

Lf(t+k) r E1c(w)<UAJ 
J[o,1] 

L f(t + k) Dok 

- f(t), 
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the interchange of summation and integration is justified by the fact that 

L f IJ(t+k)E.(w)ldw = Llf(t+k)I < ooa.e. 
J[o,1] 

Therefore, Z f = 0 a.e. implies f = 0 a.e., so Z is injective. 

If Z was surjective then Z(L1(R')) = L1(Q) :> L2(Q) = Z(L2 (R')), which 

implies L1 (R') :> L2(R'), a contradiction. Therefore Z is not surjective. 

Finally, we show z-1 is not continuous. Given R > 0 there exists a 

bounded, I-periodic function g E L00 [0, 1) such that ll9lloo ::; 1 and R ~ 

E l§(k)I < oo, e.g., [K, p. 99J, where {g(k)} are the Fourier coefficients of g, 

i.e., g(k) = ~o,i)g(t)E-•(t)dt fork E zd. Define f = Eb(k)X[l,l+l]i then 

11/111 = E jg(k )I < oo. Since g has an absolutely convergent Fourier series, 

Zf(t,w) = Lf(t + k)E.(w) = Lg(k)E.(w) = g(w) a.e. 

Thus IIZ /Iii = IIYll1 ~ ll9lloo ~ 1 while II/Iii > R. As R is arbitrary, this 

implies z-1 is unbounded and therefore not continuous. I 

In the course of the proof of Proposition 7 .4.1 we proved the following, cf., 

[.J2]. 

COROLLARY 7.4.2. Hf E L1(R') then 

for a.e. t ER'. 

f(t) = f Zf(t,w)dw 
J[o,1] 

COROLLARY 7.4.3. H / E L1(R') and Zf is continuous then f is continuous. 
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PROOF: If Z f is continuous then it is uniformly continuous on Q, so 

lf(t)-f(s)I < r IZJ(t,w)-Zf(s,w)ldw 
J[o,1] 

< sup IZ f(t,w) - Z f(s,w )I 
"'E[D,1] 

-+ 0 as s -+ t. I 

EXAMPLE 7.4.4. The converse of Corollary 7.4.3 does not hold. 

To see this, set d = 1 and let <p be a continuous, !-periodic function on R 

whose Fourier series does not converge at zero, e.g., [K, p. 99]. For k E Z 

define 

f(k) = cp(k) = 11 cp(t) e-2wikt dt. 

Let f(t) = 0 for t (j. LJ[k - ek, k + ek], and let f be linear on [k - ek, k] and 

[k, k + ek], Then f is continuous and integrable if the ek are small enough. 

Since <p E L1 [O, 1 ), it follows from the Riemann-Lebesgue lemma that cp( k) -+ 

0 ask-+ ±oo, so f E Co(R) n L 1 (R). We have Zf(O,w) = :Ecp(k)e2,rik"'. 

Since this series does not converge for w = O, Z f cannot be continuous at 

(o, o). 

LEMMA 7.4.5. Let {:z:n} be a basis for a Banach space X and {Yn} a basis 

for a Banach space Y. If S: X -+ Y is continuous and linear, and S:z:n = Yn 

for all n, then S is injective and Range( S) is dense in Y. If, in addition, 

s-1
: Range( S) -+ X is continuous then S is surjective and hence a topological 

isomorphism of X onto Y. 
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PROOF: Since Range(S) ::) {Yn}, a complete set, it must be dense in Y. 

Assume :z: EX and S:z: = O. By definition there exist unique scalars Cn such 

that :z: = ~ Cn:Z:n, As Sis continuous we therefore have 

As {Yn} is a basis, it follows that c,. = 0 for every n. Thus :z: = O, so S is 

injective. 

Assume now that s-1 is continuous. We claim then that Range(S) is closed. 

To see this, assume Zn E Range(S) and z E Y with Zn--+ z in Y. Then {zn} 

is a Cauchy sequence in Y, whence {S-1zn} is a Cauchy sequence in X, so 

must converge to some w EX. Therefore Sw = limzn = z, so z E Range(S) 

and therefore Range(S) is closed. As it is also dense, it must be all of Y, and 

therefore S is surjective. I 

PROPOSITION 7.4.6. Given 1 < p < 2, the Zak transform is a linear, con­

tinuous, injective mapping of £P(R") into LP(Q) with IIZII = 1. Moreover, 

Range(Z) is dense in LP(Q), but Z is not surjective, and z-1:Range(Z)--+ 

LP(R d) is not continuous. 

PROOF: By Propositions 7.2.4 and 7.4.1, Z maps L2(R") onto L2(Q) and 

L 1(Rd) into L1(Q), both with IIZII = 1. Standard interpolation results there­

fore imply that Z maps V(R") into LP(Q) with IIZII < 1 for 1 $ p $ 2. 

Fix 1 < p < 2 and set g = X[o,1]• Then {Ymn}m is a basis for V[n,n + 1), 

cf., [Ma, p. 51] or [K, p. 50]. Therefore the Gabor system {Ymn} is a basis 
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for LP(Rd). Moreover, Zgmn = E(m,n) and {E(m,n)} is a basis for V(Q). 

Therefore IIZII = 1, and, by Lemma 7.4.5, Z is injective and its range is 

dense. If Z was surjective then Z(LP(Rd)) = V(Q) :::> L2 (Q) = Z(L2 (Rd)), 

whence LP(Rd) :::> L2(Rd), a contradiction. Therefore Z is not surjective, and 

hence z-1 is not continuous by Lemma 7.4.5. I 

Since {E(m,n)} is not a basis for L 1 (Q), the method of Proposition 7.4.6 

cannot directly be used to prove Proposition 7.4.1. 

EXAMPLE 7.4.7. The Zak transform cannot be defined as a map of Lq(Rd) 

onto any Lr( Q) when q > 2. For example, by [K, p. 100], there exist scalars 

{en} such that I: JCA1lq < oo for every q > 2 but I: c1cE1c is not a Fourier series. 

Define f = I:c1cX[1c,1c+1]; then/ E Lq(Rd) but Zf(t,w) = I:f(t+k)E1c(w) = 

I:c1cE1:(w) does not converge in any Lr(Q). 
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Section 7.5. Amalgam spaces and the Zak transform. 

In this section we examine the convergence of the Zak transform on Wiener 

amalgam spaces, in particular, on the amalgam space W (LP, L 1 ) on the ad­

ditive group Rd. We prove that the Zak transform maps W(LP,L1 ) into 

LP( Q) for each 1 ~ p ~ oo, and maps W( Co, L1
) into the space of continuous 

quasiperiodic functions. This gives us a variant of the Balian-Low theorem, 

i.e., if (g, a, b) generates a Gabor frame at the critical value ab = 1 then 

g ¢_ W(C0 ,L1 ), whence g is either not continuous or decays slowly at infinity. 

From Example 2.4.4, the Wiener amalgam space W(LP,L 1 ) is defined by 

the norm 

We adopt this as the standard norm for W(LP, L 1 ). Also, from Example 2.2.4, 

W(Co,L 1
) = {f E W(L 00 ,L1

): f is continuous}, 

with the W(L 00
, L 1

) norm. 

PROPOSITION 7.5.1. Given 1 ~ p::; oo, the Zak transform is a continuous, 

linear, injective map ofW(LP,L1
) into LP(Q), with IIZII = 1. 

PROOF: Fix f E W(LP,L1 ). Fork E zd define Fk(t,w) = f(t + k)Ek(w). 

Then Fk E LP(Q) since IIFA:IIP = llf · X[k,k+1JIIP < oo. Moreover, 

L IIFkllp = L llf · X[k,k+i]IIP = llfllw(v•,L1 ) < oo, 

so Zf = EFk converges absolutely in W(LP,L1
), and IIZII ~ 1. We have 

IIZII = 1 as IIZ9mnllP = IIE(m,n)IIP = 1 = l!Bmnllw(L,,L1), where g = X[o,1]• 
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Z is injective as W(D',L1
) C L 1(R') and Z is injective on L1(Rci) (Propo­

sition 7.4.1 ). I 

COROLLARY 7.5.2. If f E W(Co,L1
) then Zf is continuous on Rei X ftci. 

PROOF: If/ E W(Co,L1 ) then the series defining Zf converges in L00(Q), 

i.e., uniformly on Q, by Proposition 7.5.1, since W(C0 ,L1 ) C W(L 00 ,L1 ). As 

each term f(t + k)E1,(w) in the series defining Zf is continuous, it follows 

that the series must converge to a function which is continuous on Q, and 

therefore, by quasiperiodicity, on all of Rei X ftci. 11 

Corollary 7 .5.2 can a.lso be proved by noting that translation and modula­

tion are both strongly continuous in W(C0 ,L1 ). 

The following is a variant of the Balian-Low theorem. 

COROLLARY 7.5.3. Given g E L2(Rci) and a= b = 1. If (g,a,b) generates a 

Gabor frame for L2 (Rci) then g, g ~ W(C0 ,L1 ). 

PROOF: If g E W(Co, L1
) then Zg is continuous by Corollary 7.5.2. By 

Proposition 7.3.5, Zg therefore has a zero, so IZgl is not bounded below a.e. 

Therefore (g, a, b) cannot generate a frame (Proposition 7.3.3c). 

Similarly, if g E W(C0 ,L1
) then (g,b,a) cannot generate a frame for 

L2 (Rci), and therefore, by Remark 7.1.2b, (g,a,b) cannot generate a frame 

for L2 (Rc1). I 

REMARK 7.5.4. The usual Balian-Low theorem states that if (g,a,b) gener­

ates a Gabor frame for L2(R) and ab = 1 then lltg(t)ll2 ll-r§(,)ll2 = oo, cf., 
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[Bal; Bat; BHW; D1; DJ; Low]. 

EXAMPLE 7.5.5. The Gaussian function g(t) = e-rt•t, t E Ref, is an element 

of W(C0 ,L1
), therefore does not generate a Gabor frame a.t the critical value 

ab= 1. We proved this directly (ford= 1) in Example 7.3.4, 

EXAMPLE 7.5.6. Note that W(Co,L1
) c 0 0(Rcf)nL1 (Rc1). Although the Zak 

transform of any element of W( Co, L1
) is continuous by Corollary 7.5.3, there 

exist elements of O0 (Rcf) n L1(Rcf) whose Zak transform is not continuous. 

We constructed an example in Example 7 .4.4. 
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Section 1.6. Multiplicative completion. 

In this section we address some questions similar to ones which arose during 

our study of Gabor frames and the Zak transform, cf., Remark 7.3.3. Our 

motivation is the following question asked by Boas and Pollard, e.g., [BPo). 

Given an incomplete sequence {fn} of functions in L2(a,b), where (a,b) is 

an interval in R, when is it possible or impossible to find a function m such 

that {m • fn} is complete in L2(a, b)? They proved that if {fn} is obtained by 

deleting finitely many elements from an orthonormal basis for L2(a,b) then 

it is always possible to find such a function m, while for the orthonormal 

sequence {E2n}nez in L2 (0, 1) it is impossible to find such a function m. 

We elaborate on these two results, then comment on related work by other 

authors. 

In this section we use the following definition of &olid, which differs slightly 

from the one in Section 1.7c. Given a measure space (X,µ), a Banach space 

A of functions on X is solid if g E A and If I :5 19 I a.e. implies f E A and 

IIJIIA :5 ll9IIA• 

LEMMA 7.6.1. Given a measure space (X,µ) and given a solid Banach space 

A of functions on X. Assume that for any set E C X there exists a functfon 

.,;, on X such that supp(.,;,) C E, 'Ip is finite a.e., and 'Ip ¢ A. Then, given any 

Ji, ... , f N E A there exists a function g E L00(X) with g -:/: 0 a.e. such that 

f /g fl_ A if f E span{f1,••· ,JN} \ {O}. 

PROOF: Without loss of generality we assume fn -:/: 0 for all n. We proceed 
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by induction. 

a. Set N = I, and assume / = c/i, where c -=I= 0. As f -=I= 0, there exists 

a set E C X with positive measure such that lf(t)I 2: e > 0 for a.e. t E E. 

By hypothesis there then exists a function VJ ~ A with supp( 1P) C E which 

is finite a.e. Set ip(t) = max{l¢(t)1, I}, and let g = I/ip. Then g =5 I a.e. 

as ip > I a.e., and g -=I= 0 a.e. as ip is finite a.e. Moreover, if t E E then 

lf(t)/g(t)I 2: eip(t) 2: e 1¢(t)/. This also holds fort~ E since supp(¢) CE. 

As VJ ~ A and A is solid, it follows that / / g ~ A. 

b. Assume now that the conclusion of the lemma holds for some N 2: I, and 

let /1, ... , /N+I E A be fixed. Then, by hypothesis, there exists a function 

g E L 00(X) with g # 0 a.e. such that 

SN - {f E span{/i, ... ,/N} \ {0}: / /g EA} - 0. 

Define 

SN+l = {/Espan{fi, .. ,,/N+1}\{o}://gEA}. 

If SN+1 = 0 then the proof is complete, so assume F = Ef +l cnfn E 

SN+1• Note that CN+l -=I= 0, for otherwise F E SN, Assume also that 

G = I:f +l bnfn E SN+1i then bN+1 -=I= 0 for the same reason. Clearly, 

H - - 1-F - -b 
1 G E span{fi, ... ,/N}, 

CN+l N+l 

Moreover, H/g E A as both F/g, G/g E A. As SN = 0, it follows that 

H = 0. Thus G is a multiple of F, so SN C {cF: c -=I= 0}. Now, F -=I= 0 since 
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F E SN+I• Therefore there exists a set E C X with positive measure such 

that IF(t)I ~ e > o for a.e. t E E. By hypothesis there then exists a function 

'IP ff. A with supp(¢) c E which is finite a.e. Set cp(t) = max{l¢(t)j,1/jg(t)j} 

and define h = 1/cp. Then h is finite a.e. since g I O a.e., and h ~ 191 so 

h E L 00{X). Moreover, if t E E then IF(t)/h(t)I 2: e cp(t) ~ e 11/J(t)j. This 

also holds for t ff. E since supp( 'If') C E. As 'If' (/. A and A is solid, it follows 

that F/h (/. A. 

Finally, to finish the proof, assume that f E span{/1, ... , /N+1} \ {O} is 

given. If f /h EA then f Jg EA since h ~ 191• Therefore f E SN+t, so f = cF 

for some c 'I 0. However, F / h ~ A, a contradiction. Therefore f / h ~ A, so 

the result follows. I 

PROPOSITION 7.6.2. Given a measure space (X,µ) and a solid Banach space 

B of functions on X. Assume that B' is also a. solid Banach function space 

on X which satisfies the hypotheses of Lemma. 7.6.1. Given SC B, defi.ne 

5.l. = {g EB': (f,g} = 0 for f ES}. 

Assume {fn}nEZ+ CB and g1 , ••• ,9N EB' satisfy 

{f n}J. C span{g1,, •,, 9N }. 

Then there exists a. function m E L00 (X) with m f= 0 a..e. such that {m. fn} 

is complete in B. 

PROOF: By Lemma. 7.6.1 there exists a function m E L 00(X) with m f= O a.e. 

such that 
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(7.6.1) g E span{g1,•••,9N} \ {O} ⇒ g/in ft. B'. 

Assume h E B' satisfies (m · in, h) = 0 for all n. Since m E L 00 (X) we have 

h • in EB'. Since (in, h ·in)= 0 for all n, h • in E {in}.1 C span{g1, ... ,9N}. 

If h • in =f:. 0 then h = (h · in)/in ~ B', a contradiction. Therefore h. in= O, 

which implies h = 0 a.e. as m =/. 0 a.e., so {m • in} is complete in B by 

Definition 6.1.lb. I 

EXAMPLE 7.6.3. a. Assume {in} CB and {gn} CB' satisfy g = E(g, in) 9n 

for g E B' (not necessarily uniquely), and fix N > 0. If g E {in};>N then 

9 = Ef {9,in)9n E span{g1,•••,9N}. 

b. If {i n}nEZ+ is a basis for B and B is reflexive, then there exists a dual 

ba&is {gn}neZ+ C B', i.e., g = "£(g, in) 9n, uniquely, for all g E B', e.g., 

[S], cf., Remark 6.1.2. Therefore, by part a and Proposition 7.6.2, given any 

N > 0 there exists a function m E L 00 (X) such that {m • in}n>N is complete 

in B. 

c. If {gn}nEZ+ is a frame for B = L2 (X) and {in}nEZ+ is its dual frame, 

then g = E(g, in) 9n for all g E L2(X). Therefore, by part a and Proposi­

tion 7 .6.2, given any N > 0 there exists a function m E L00(X) such that 

{m • in}n>N is complete in L 2 (X). 

d. Let X be a finite set and let µ be counting measure on X. Given 

0 =/.EC X and any finite function VJ on X with supp(VJ) CE, 

ll1Pll1P(X) - I: IVJ(t)IP < 00 , 

tEE 
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since X is finite. Thus A = .LP(X) does not satisfy the hypotheses of Lemma 

7.6.1. 

By Remark 7.6.3b, if finitely many elements are removed from a basis 

( thereby leaving an incomplete set) then it is possible to :find a single func­

tion m to multiply the remaining elements by to obtain a complete set. We 

now show by example this need not be true if infinitely many elements are 

removed, cf., [BPo]. 

We assume d = l in Lemma 7.6.4 and Proposition 7.6.5. Functions in 

£
2 
(0, 1) are considered to be extended I-periodically to the entire real line. 

LEMMA 7.6.4. If f E £ 2 (0,1) is l/N-periodic, whereN E Z+, then (!,En)= 

0 for al.I n E Z such that N does not divide n. 

PROOF: If/ is 1/N-periodic then 

(I, En) LI f(t) e-2,rint dt 

N-1 /1/N 
~ Jo f(t + k/N) e-2,rin(t+lc/N) dt 

N-1 1/N L 1 f(t) e-2,rint e-2,rinlc/N dt 
lc==O O 

( 
/1/N ) (N-1 = Jo f(t) ,-••int dt ~ ,-2mn>/N) 

Let z = e-
2
,rin/N and w = ~{:'-1 

zlc. Then wz = w - l + zN = w. If N does 

not divide n then z # l, sow= 0 and therefore(/, En) = O. I 

PROPOSITION 7.6.5. If S C Z contains an arithmetic progression then the 
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---- __,__ ___ 
1 t d · L"O 1) by multipli­

orthononna.J sequence { En}n;s cannot be comp e e m L ' 

cation by an integrable function. 

PROOF: Without loss of generality, assume S = {nN}neZ for some NEZ+. 

Fix any m E L 1 (0, 1). If the measure of the zero set of mis positive then 

{m · Era}rafS is incomplete, so assume m :/: 0 a.e. Then there exiSts a set 

E1 C (O, 1/N) on which /m/ is hounded above and below, and then a set 

E2 C E1 + 1/N on which /m/ is bounded above and below, and so forth ' 

Define 

Then F+ 1/N = F (mod 1). Moreover, F C ENU• • -UEi, so /m/ is bounded 

above and below on F. Therefore, 

f(t) = { 1/m(t), t E F, 
o, t (/. F, 

IS an nonzero element of L 2[o, 1). Further,/. m = XF is 1/N-periodic, so 

(/, m · Era) = (/ • m, En) = 0 for all n (/. S by Lemma 7.6.4. Thus { m · Era}n;s 

is incomplete. I 

REMARK 7.6.6. Given a sequence {/n}neZ+ C L 2(X), where (X,µ.) is a finite 

separable measure space with µ.(X) = 1, Ta1a1yan proved that the following 

statements are equivalent, e.g., [Ta]. 

a. Given t > 0 there exists Ss C X such that µ(Ss) > 1-t and {/n ,Xs.} 

is complete in L 2(Ss)• 
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b. For every function f on X which is finite a.e. and every e > 0 there 

exists Se C X andg E span{fn} such that µ(Se)> 1-e and 1/-gj < e 

on Se, 

Price and Zink proved that a and b are also equivalent to the following, 

seemingly unrelated, Boas-Pollard property, e.g., [Pr; PZ]. 

c. There exists a bounded, nonnegative function m such that { m • /n} is 

complete in L2 (X). 

REMARK 7.6.7. In [Byl; By2; BN], Byrnes and Newman consider a prob­

lem similar to the one addressed by Boas and Pollard. Instead of deleting ele­

ments from a sequence and then multiplying the remaining elements by a func­

tion, they retain all elements of the sequence and multiply only a portion of the 

sequence by a function. In particular, they show in [BN] that if {/n}nEZ is an 

orthonormal basis for L 2 [0, 1) and SC Z, then {fn}nesU{m•fn}n~S is com­

plete in L 2 [O, 1) if and only if there exists an o E C such that Re( om) ~ O a.e. 

and either Im( om) > 0 a.e. or Im( om) < 0 a.e. on the zero set of Re( om). 
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