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In this dissertation, we describe computational and theoretical study of back-

bone 15N chemical shieldings in peptides and proteins. Comprehensive density func-

tional calculations have been performed on systems of different complexity, ranging

from model dipeptides to real proteins and protein complexes.

We begin with examining the effects of solvation, hydrogen bonding, backbone

conformation, and the side chain identity on 15N chemical shielding in proteins by

density functional calculations. N-methylacetamide (NMA) and N-formyl-alanyl-X

(with X being one of the 19 naturally occurring amino acids excluding proline) were

used as model systems for this purpose. The conducting polarizable continuum

model was employed to include the effect of solvent in the calculations. We show

that the augmentation of the polarizable continuum model with the explicit water

molecules in the first solvation shell has a significant influence on isotropic 15N

chemical shift but not as much on the chemical shift anisotropy. The difference in

the isotropic chemical shift between the standard β-sheet and standard α-helical



conformations ranges from 0.8 ppm to 6.2 ppm depending on the residue type, with

the mean of 2.7 ppm. This is in good agreement with the experimental chemical

shifts averaged over a database of 36 proteins containing >6100 amino acid residues.

The orientation of the 15N chemical shielding tensor as well as its anisotropy and

asymmetry are also in the range of values experimentally observed for peptides and

proteins.

Having applied density functional calculation successfully to model peptides,

we develop a computationally efficient methodology to include most of the impor-

tant effects in the calculation of chemical shieldings of backbone 15N in a protein.

We present the application to selected α-helical and β-sheet residues of protein G.

The role of long-range intra-protein electrostatic interactions by comparing mod-

els with different complexity in vacuum and in charge field is analyzed. We show

that the dipole moment of the α-helix can cause significant deshielding of 15N ;

therefore, it needs to be considered when calculating 15N chemical shielding. We

emphasize the importance of including interactions with the side chains that are

close in space when the charged form for ionizable side chains is adopted in the cal-

culation. We also illustrate how the ionization state of these side chains can affect

the chemical shielding tensor elements. For α-helical residues, chemical shielding

calculations using a 8-residue fragment model in vacuum and adopting the charged

form of ionizable side chains yield a generally good agreement with experimental

data. We also performed computational modeling of the chemical shift perturba-

tions occurring upon protein-protein or protein-ligand binding. We show that the

chemical shift perturbations in ubiquitin upon dimer formation can be explained



qualitatively through computation.

This dissertation hence demonstrates that quantum chemical calculations can

be successfully used to obtain a fundamental understanding of the relationship be-

tween chemical shielding and the surrounding protein environment for the elusive

case of 15N and therefore enhance the role of 15N chemical shift measurements in

the analysis of protein structure and dynamics.
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Chapter 1

Introduction

1.1 Scope of the present work

Chemical shielding reflects electronic environment of nuclei under observation

and therefore contains important information about molecular structure and confor-

mational dynamics. Detailed understanding of the sources of various contributions

to chemical shielding in proteins is not only critical for our ability to predict chemi-

cal shifts and thus facilitate NMR signal assignment, but also potentially important

for improvement in structure characterization of proteins (Cornilescu et al., 1999;

Lipsitz and Tjandra, 2003; Shen and Bax, 2007; Shen et al., 2008, 2009) and analysis

of protein dynamics (Hall and Fushman 2006).

The past several decades of research have led to the development of accu-

rate theoretical methods and computational schemes for chemical shift calculations

in peptides and proteins (reviewed in (Shen and Bax 2007)). The computational

methods range from those that base on empirical shielding surface (Wishart and

Nip, 1998) or sequence homology (Shen and Bax, 2007; Wishart et al., 1997) to

those that use ab initio quantum mechanical (QM) calculations (de Dios et al.,

1993b; Oldfield, 1995; Xu and Case, 2001, 2002). The first-principles QM calcula-

tion is very accurate and has played an important role in understanding the relative

importance of various effects, such as backbone and side chain conformation, hy-
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drogen bonding, and protein electrostatics, on the chemical shielding of nuclei in

proteins. These calculations have also provided parameters and conceptual ideas

for the development of phenomenological models (Xu and Case 2001; Xu and Case

2002). Despite their contributions to our understanding of the chemical shielding

phenomena and to model-building efforts, first-principles quantum chemical calcu-

lation has not become a routine practice in predicting chemical shifts in proteins

because of several difficulties. First, chemical shifts could be influenced by a multi-

tude of factors. In general, the backbone torsion angles (Figure 1.1), the side chain

orientation, the hydrogen bonding and direct interactions with nearby side chains,

the long-range intra-protein electrostatics, and solvent effect can all contribute. It

is challenging to include all foreseeable effects and still be computationally efficient.

Second, any experimental protein structure we use for calculating chemical shifts

might require some geometry optimization in order to get an accurate prediction.

This is particularly true for α-carbons because their calculated chemical shielding

is very sensitive to bond lengths and bond angles (de Dios et al., 1993a). Third,

proteins rapidly sample the available conformational space, hence no single snapshot

(X-ray) or even a finite bundle of NMR structures of a given protein can fully repre-

sent the conformational ensemble (and dynamic ensemble averaging) for which the

experimental chemical shifts are measured. Moreover, when a solution structure is

chosen for calculations, one has to consider not only the structural ensemble but also

at what conditions (pH, temperature, etc) the structure was obtained. There can

be fluctuations which may not only affect some structural parameters but also alter

the ionization form of the side chains of Asp, Glu, Arg, and Lys (Vila and Scheraga
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2007). Fourth, there are systematic errors associated with the level of theory used

and the basis set chosen for calculating the electronic structure. In practice, an

offset may exist that will need to be corrected if an absolute isotropic chemical shift

prediction is the aim (Cai et al. 2008). An additional complication here is that this

correction should differ between various residue types (Xu and Case, 2001).

(a)

(b)

(c)

Figure 1.1: Illustration of protein backbone dihedral angles φ and ψ (Anonymous,
June 1, 2001). Shown here is the backbone of a protein fragment in its fully extended
conformation, with φ = 180◦ and ψ = 180◦ (a); and the rotation of the first peptide
plane along the N-Cα bond, characterized by φ = 0◦ (b), and along the Cα-C’ bond,
characterized by ψ = 0◦ (c).

Despite these difficulties, theoretical chemical shift tensors are valuable in pep-
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tide and protein structure validation and refinement (Wylie et al., 2009) and hence

worth exploring. In this dissertation, we chose to focus on amide 15N chemical

shielding tensor for several reasons: (i) it is influenced by numerous factors and,

therefore, is arguably the most difficult case for computational prediction (de Dios

et al., 1993b); (ii) perturbations in amide chemical shifts are often used for map-

ping protein-ligand interactions (Zuiderg 2002); and (iii) amide 15N chemical shift

tensor contributes to 15N spin relaxation rates that are widely used for analysis of

protein dynamics (Fushman and Cowburn 2001; Hall and Fushman 2006). Thus,

first-principles calculations may shed light onto the relationship between structural

changes in proteins upon ligand binding and the accompanying changes in their

chemical shifts. The quantum chemical calculations can also provide an understand-

ing of the structural basis for site-to-site variability in 15N chemical shift tensors

(Fushman et al. 1998; Hall and Fushman 2006).

Previous theoretical works (de Dios et al. 1993b; Le and Oldfield 1996; Xu and

Case 2002; Cai et al. 2008) have established that 15N chemical shielding depends

on the following factors with none seemingly dominating: φ, ψ, χ1, preceding side

chains identity and conformation, hydrogen bonding partners, electrostatic interac-

tions, and solvent effect. To our knowledge, bulk solvent effects have not been con-

sidered in chemical shielding calculations for proteins. This is part of the endeavor

in our present work. In addition, although short-range interaction with hydrogen-

bonding partners can be included explicitly and exactly, model treatment has been

required for long-range electrostatic interactions. Point charge representation can

be an option here. For example, in addition to the main fragment, charges can be

4



incorporated for the remaining atoms in the protein using some charge set. Thus,

it was found that if the charge field perturbation (CFP) effects are included in the

calculation of carbon chemical shielding in amino acids, the correlation between the

theory and experiment is slightly improved (de Dios et al., 1994). The improvement

is mainly for the sp2 carbonyl carbon, which is more sensitive to electrostatic field ef-

fects. The sp2-hybridized amide nitrogen shares this kind of sensitivity (Bader 2009)

and showed some prediction improvement with inclusion of charge field perturbation

in a dipeptide model (de Dios et al. 1993b). However, a later application to helical

residues (Le and Oldfield 1996) indicated that a static charge field is inadequate

to account for the long-range electrostatic field contribution to 15N shielding in an

α-helix. There are probably two reasons for this: (i) each type of residue has a fixed

set of approximated charges, which may not be accurate enough for the purpose of

calculating 15N chemical shifts because the multiple-bond character of the peptide

group makes the peptide nitrogen highly polarizable and hence very sensitive to the

electric field that the charges generate; and (ii) the ionization state of Asp, Glu, Arg,

and Lys is not well determined and can vary depending on the protein ensemble,

temperature, and pH; this renders representation of the side chains of these residues

as either neutral or charged somewhat arbitrary.

In this dissertation, we report our findings of the effect of solvent and elec-

trostatic interactions through density functional calculations. In the rest of this

chapter, we present the theoretical background which includes (i) quantum mechan-

ical treatment of chemical shielding phenomena and discussion of how it is defined

and computed theoretically and (ii) the method of treating solvent as a contin-

5



uum. In Ch. 2, solvent effect in the calculation of 15N chemical shielding is modeled

through two systems: NMA and Ala-X. Then the calculation of amide 15N chemical

shielding in a real protein, GB3, is explored in considering electrostatic effect. This

calculation was performed for both classical α-helical residues (presented in Ch. 3)

and β-sheet residues (presented in Ch. 4). Finally in Ch. 5, we report a prelimi-

nary computational study of 15N isotropic chemical shielding sensitivity in open and

closed conformation in the protein complex diubiquitin.

1.2 Theory and methods

1.2.1 Chemical shielding

Different groups of nuclei in a molecule have resonance frequencies that reflect

the fact that they experience different local magnetic fields, Hloc. The following

shows how molecular currents induced by the external field modify the local field and

hence give rise to the chemical shift (Atkins and Friedman, 1997). Let us consider a

molecule containing a single magnetic nucleus B (and any number of other nuclei).

The classical expression for the magnetic filed generated by a magnetic dipole is

Hnuc = − µ0

4πr3
{µ− 3r(r · µ)

r2
} (1.1)

where Hnuc is the magnetic field generated by the nucleus B with a magnetic moment

µ; r and r are distance vector and distance from the nucleus respectively; and µ0 is

the vacuum permeability. The corresponding vector potential is

Anuc =
(
µ0

4πr3

)
µ× r. (1.2)

6



The magnetic moment µ of a nucleus is related to its spin angular momentum I by

µ = γNI , where γN is gyromagnetic ratio, therefore, the vector potential can also

be written as

Anuc =
(
µ0γN
4πr3

)
I× r. (1.3)

Since the Hamiltonian for the molecule in a magnetic field is constructed in the

standard way by replacing momentum p by π = p− e
c
Anuc, the Hamiltonian is now

written as

H = H(0) +H(1) +H(2), (1.4)

with

H(0) =
p2

2me

+ V, (1.5)

H(1) = (−e/2mec)(p ·Anuc + Anuc · p), (1.6)

H(2) = (e2/2mec
2)A2

nuc. (1.7)

We now focus on the contribution to energy from the first-order term H(1).

The first-order perturbation energy can be written as

E(1) = 〈0|H(1)|0〉 = (−e/2mec)
∫

Anuc ·(ψ∗pψ+ψp∗ψ∗)dτ = −
∫

Anuc · j0dτ, (1.8)

with j0 being the current density. When the external field is applied, p in the above

expression needs to be replaced by p− e
c
Aex, resulting in the conversion of j0 to j,

the current density in the presence of the applied field. Then

E(1) = −
∫

Anuc · jdτ. (1.9)

This result shows very plainly the contribution to energy by the interaction of a

magnetic nucleus dipole moment (through the vector potential) with the electron
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currents which may have been induced by an external magnetic field. Inserting the

explicit form of the nuclear vector potential we will get

E(1) = −µ0γN
4π

∫ (I× r) · j
r3

dτ = −µ0γN
4π

I ·
∫ r× j

r3
dτ. (1.10)

Since the energy of a magnetic dipole in a magnetic field H is µ·H , we can interpret

this energy as the interaction of a nuclear dipole γNI with a local magnetic field,

which is solved to be

Hloc =
µ0

4π

∫ r× j

r3
dτ. (1.11)

An alternative way of expressing the total energy expanded as Taylor series

about the zero-field value is given by Ditchfield (1974):

E = E(0) −
∑
α

γαHα −
∑
α

µBαHα −
1

2

∑
α

∑
β

χαβHβHα +
∑
α

∑
β

µBασBαβHβ + . . . ,

(1.12)

where α and β indicate Cartesian coordinates x, y or z, and γα is a component of the

permanent magnetic moment of the molecule. The permanent magnetic moment is

zero for singlet state molecules with zero orbital angular momentum. The third term

represents the direct interaction between the nuclear magnetic moment and the ex-

ternal magnetic field. The fourth term describes the diamagnetic polarization of the

molecule; the total magnetic moment (in direction α) associated with the electronic

currents induced by the external magnetic field is
∑
β χαβHβ, where χαβ is a compo-

nent of the molecular diamagnetic susceptibility tensor χ. The secondary magnetic

field (in direction α) at nucleus B due to these electronic currents is
∑
β σBαβHβ

where σBαβ is a component of the magnetic shielding tensor σB. Thus the total

magnetic field experienced by the nucleus B that determines its NMR frequency is

8



given by

Hloc = (1− σB)H. (1.13)

1.2.2 Gauge invariant/including atomic orbitals

A common difficulty in the calculation of magnetic properties is that the usual

wave functions do not guarantee gauge invariance. One approach to overcome this

problem is to use very large basis sets (applicable for small molecules) since in the

limit of complete basis sets the results should be gauge independent (Wolinski et al.,

1990). For small- and medium-size systems, gauge invariant/including atomic or-

bitals (GIAO), first adapted by Ditchfield (1974), have been successful. In this

method, the basis functions are explicitly dependent on the magnetic field by inclu-

sion of a complex phase factor referring to the position of the basis function (usually

the position of the nucleus):

χµ = φµe
− ie
h̄c

Aµ·r. (1.14)

with

Aµ =
1

2
H× (Rµ −RG). (1.15)

Here, φµ is the atomic orbital with the nuclear position Rµ, RG is the origin of the

Coulomb gauge used, and so Aµ is the value of the vector potential at the nucleus

position Rµ. The effect is that the matrix elements involving GIAOs only contain a

difference in vector potentials, thereby removing the reference to an absolute gauge

origin. For the overlap and potential energy it is straightforward to see that matrix

elements become independent of the gauge origin because the term Aµ −Av does

9



not depend on RG:

〈χµ|χv〉 = 〈φµ|e
ie
h̄c

(Aµ−Av)r|φv〉 (1.16)

〈χµ|V|χv〉 = 〈φµ|e
ie
h̄c

(Aµ−Av)rV|φv〉 (1.17)

Aµ −Av =
1

2
H× (Rµ −Rv) (1.18)

The kinetic energy is slightly more complicated, but it can be shown that the fol-

lowing relation holds so it does not dependent on RG either:

〈χµ|π2|χv〉 = 〈χµ|(p−
e

c

1

2
H× (r−RG))2|χv〉

= 〈φµ|e
ie
h̄c

(Aµ−Aµ)r(p− e

2c
H× (r−Rv))

2|φv〉 (1.19)

The use of GIAOs as basis functions makes all matrix elements, and therefore

all properties, independent of the gauge origin (Jensen, 2007).

1.2.3 Self-consistent reaction field (SCRF) model

Figure 1.2: Reaction field model. Molecule M is placed in a cavity in the solvent,
which is treated as a polarizable continuum with a dielectric constant ε

SCRF model belongs to the family of continuum solvation models that treat

the solvent environment as a “reaction field” without considering the individual

10



solvent molecules explicitly. It considers the solvent as a uniform polarizable medium

with a dielectric constant of ε, with the solute M placed in a suitably shaped hole,

also called cavity, in the medium (Figure 1.2) (Cossi et al., 2003). The charge

distribution of the solute polarizes the solvent producing a reaction potential. Very

often, the apparent surface charge (ASC) approach is used so that the reaction

potential Vσ, everywhere in the space, can be described in terms of an apparent

charge distribution σ(rs) spread on the cavity surface.

Vσ(r) =
∮ σ(rs)

|r− rs|
drs. (1.20)

It can be shown from Gauss’s law at an electric field discontinuity that

4πεσ(rs) = (ε− 1)
∂(VM + Vσ)in

∂n
, (1.21)

where VM is the electric potential generated by the solute charge distribution; n

is the unit vector perpendicular to the cavity surface and pointing outward and

“in” designates the potential inside the cavity (Tomasi et al., 2005). Once σ(rs) is

determined, the associated potential Vσ is added to the Hamiltonian operator

H = H0 + Vσ, (1.22)

where H0 is the Hamiltonian without the presence of solvent. As we can see, the

potential Vσ from the surface charge is obtained by knowing the molecular charge

distribution through VM but also enters the Hamiltonian and thus influences the

molecular wave function, which determines VM . The procedure is therefore itera-

tive, leading to self-consistence between the solute wave function and the solvent

polarization.

11



Specifically, in the conducting polarizable continuum model (CPCM) imple-

mented in GAUSSIAN03 (Barone and Cossi, 1998; Cossi et al., 2003), the apparent

polarization charges distributed on the cavity surface are determined by imposing

the condition that the total electrostatic potential goes to zero on the surface. This

boundary condition, suited for cavities in the conducting media, can describe the

solvation in polar liquids. It is computationally simpler, especially for the expression

of the energy gradients, which can be efficient to allow geometry optimizations in

solution.

12



Chapter 2

Solvent modeling

To our knowledge, bulk solvent effects have not been considered in chemical

shielding calculations for proteins. It is acknowledged that since solution NMR

measurements in proteins are typically conducted in the presence of water, a highly

polar solvent, the effects of bulk solvent molecules can be crucial. To study solvent

effects on chemical shifts, one can utilize continuum models (discussed in detail in

the previous chapter). A recent review (Tomasi et al., 2005) points out two aspects

important for the applications of continuum models to QM studies of chemical shifts.

The first aspect is the perturbation effect of the solvent on the electronic wave func-

tion of the solute and the geometric distortion of the solute molecule. The second

aspect concerns the importance of both short-range and long-range solute-solvent

interactions in determining the solvent effect on the nuclear shieldings. The current

concept is that short-range interaction can be effectively handled by a number of

explicitly treated solvent molecules from the first solvation shell, while the long-

range effects can be described effectively by continuum methods. Tomasi et al. also

noted that because the characteristic time scale in NMR spectroscopy is milliseconds

and longer, whenever explicit solvent molecules are used, it is necessary to correctly

account for the statistical picture inherent in the dynamic nature of the solvation

shell (picosecond time scale). Recent years have seen continuum methods being ap-

13



plied to study the solvent effect on chemical shifts of small molecules (Aidas et al.,

2007; Mennucci and Martinez, 2005; Mennucci et al., 2001). For example, Mennucci

and Martinez (2005) compared continuum-only description, discrete description in

terms of solute-solvent clusters, and mixed discrete/continuum description in order

to identify and characterize different aspects of solvation.

In this chapter we report density-functional theory calculations for N-methylac-

etamide (NMA) to analyze in detail the specific and bulk effects of the solvent wa-

ter on 15N chemical shielding. Figure 2.1(a) shows the chemical structure of NMA.

We then apply the continuum model in both structure optimization and chemical

shielding calculations of N-formyl-alanyl-X amides, where X is one of the 19 nat-

urally occurring amino acids excluding proline. For each compound, calculations

were carried out for two backbone conformations, corresponding to a standard α-

helix (φ = − 58◦, ψ = − 47◦) and a standard β-sheet (φ = − 139◦, ψ = 135◦)

respectively, with the latter illustrated for N-formyl-alanyl-Ala in Figure 2.1(b). The

results are compared with the available experimental data as well as with the previ-

ous approach that does not account for solvent effects. We also compare the effect

of polarizable continuum and structure-related hydrogen bonding on 15N chemical

shielding for several residues from protein GB3.

2.1 Computational details

All calculations reported in this dissertation were performed using the GAUS-

SIAN03 suite of programs (Frisch et al., 2004). We use density-functional theory

14



(a) (b)

(c) (d)

Figure 2.1: Molecules considered in this study: (a) N-methylacetamide (NMA); (b)
N-formyl-alanyl-X amide (where X is alanine); (c) N-methylacetamide with three
water molecules from the first coordination shell; (d) Illustration of the structural
model of a β-sheet fragment (corresponding to Thr58 in 1IGD (Derrick and Wigley,
1994)) together with direct (D) and indirect (I) hydrogen-bonding partners, as well
as other hydrogen bonds in this cluster included in the 15N (Thr58) calculation.

(DFT) with three-parameter Becke-Lee-Yang-Parr (B3LYP) exchange-correlation

functional (Becke, 1988, 1993; Lee et al., 1988).

In this chapter where the solvent effect is considered, the solvent was taken into

account approximately, by employing the conducting polarized continuum model

(CPCM) (Barone and Cossi, 1998; Cossi et al., 2003). In this model, the solute
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molecule is placed into a cavity surrounded by the solvent considered as a contin-

uum medium with certain dielectric constant. The charge distribution of the solute

polarizes the dielectric medium, which generates surface charges around the cavity

and hence in turn polarizes the solute. In our calculations, the dielectric constant

of water (78.39) was used and the cavity was chosen to be built up by the simple

united atom topological model (UA0), in which the van der Waals surface was built

by placing a sphere around each solute heavy atom while hydrogen atoms were en-

closed in the sphere of the atom to which they are bonded. The number of surface

elements for each sphere was 60, and an area of 0.2 Å2 was set for each surface

element. Gauge-invariant atomic orbitals (GIAO) were employed to compute NMR

properties (Ditchfield, 1974; Wolinski et al., 1990) as implemented in Gaussian03.

We used the 6-311+G(2d,p) basis set for all our calculations except for the geometry

optimization of the dipeptides which was performed with the 6-31+G(d) basis set.

2.2 Results and discussion

2.2.1 NMA calculations: disentangling solvent contributions

NMA serves as a simple model representing the amide linkage in proteins. It

enables us to eliminate the conformational complexity of peptides and to concentrate

only on the solvent’s influence on 15N chemical shielding. To this end we performed

a series of calculations for gas phase, continuum-only model, and cluster-continuum

model. Figure 2.1(c) shows NMA with the first water coordination shell represented

by three water molecules that make direct hydrogen bonds with NMA. The param-
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eters used for these models are shown in Table 2.1, and the results are presented in

Table 2.2.

Table 2.1: Bond lengths (in Å) used for calculations in gas phase (in vacuo),
continuum-only, and cluster/continuum models for N-methylacetamide

NMA vac1 NMA cont2 NMA+ 3w3

NH bond 1.00 1.02 1.02
CN bond 1.36 1.35 1.33
CO bond 1.22 1.24 1.25

1. NMA vac refers to the NMA’s molecule structure optimized in vacuo.
2. NMA cont refers to NMA’s molecular structure optimized in continuum-only model.
3. NMA+ 3w refers to the optimized structure of NMA and three water molecules from the

first coordination shell within the polarized continuum model.

To elucidate the role of various solvent effects we define the following differences

of the various chemical shieldings:

4σNgeom = σNNMA∗/vac − σNNMA vac/vac (2.1)

4σNsolv = σNNMA+3w/cont − σNNMA∗/vac (2.2)

4σNtotal = σNNMA+3w/cont − σNNMA vac/vac (2.3)

4σN1
cont = σNNMA∗/cont − σNNMA∗/vac (2.4)

4σN1
3w = σNNMA+3w/cont − σNNMA∗/cont (2.5)

4σN2
3w = σNNMA+3w/vac − σNNMA∗/vac (2.6)

4σN2
cont = σNNMA+3w/cont − σNNMA+3w/vac (2.7)

Here the subscripts in chemical shieldings consist of two parts separated by a

slash. The first part refers to the geometry of the model and the second part in-

dicates if the chemical shift calculation for the given geometry is performed in gas
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Figure 2.2: Partitioning of the 15N chemical shielding in NMA into various contri-
butions. The numbers 1-7 on the x-axis refer to Eqs. 2.1-2.7,respectively.

phase (vac) or in polarizable continuum (cont). Three geometries have been em-

ployed in this analysis: NMA vac refers to the NMA molecule structure optimized

in vacuo; NMA + 3w refers to the optimized structure of NMA and three water

molecules from the first coordination shell within the polarized continuum model;

NMA* refers to the molecular geometry obtained by extracting NMA atoms from

the NMA+ 3w structure. These 4σ terms partition the solvent effects into several

important contributions. The first difference, 4σNgeom, shows how the shielding con-

stant calculated in vacuum is changed due to the distortions in the geometry of NMA

caused by its aggregation with three water molecules in continuum. 4σNsolv repre-

sents the effect of solvation of NMA by the hydrogen-bonded water molecules and

by more distant water surrounding modeled by a continuum reaction field. 4σNtotal

accounts for the total shift due to both the geometrical distortions and the solvation.

Our results (Figure 2.2) show that 4σNgeom, being -0.65 ppm as a deshielding effect,

is small compared to the deshielding effect of solvation, 4σNsolv, which came out to
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be -19.38 ppm. Thus we conclude that the solvation is the dominating solvent effect

in 15N chemical shielding in NMA. To further analyze the roles played by the three

hydrogen-bonded water molecules and the more distant water reaction field, we tried

to partition the solvation shift,4σNsolv, as4σNsolv = 4σN1
cont+4σN1

3w = 4σN2
3w +4σN2

cont,

with the superscripts “1” and “2” representing two artificial paths to account for

the two sources of contributions. The two paths differ in the order in which the

contributions from explicit and continuum waters are taken into account (see Eqs.

2.3-2.7). For either path, the two contributions are additive. As calculated, it is

not possible to quantitatively separate the contributions this way as 4σN1
cont (-10.21

ppm) and 4σN2
cont(-7.08 ppm) are not equal, and by definition neither are 4σN1

3w

(-9.17 ppm) and 4σN1
3w (-12.30 ppm). Although 4σN3w takes on different values de-

pending on which water molecules (hydrogen-bonded or distant) are considered first,

it is qualitatively clear that the effect of the bound water molecules on 15N chemical

shielding in NMA is at least as important as, if not more important than the effect of

the more distant water molecules. This is understandable since hydrogen bonding is

expected to influence the electronic environment of 15N greatly in the case of NMA

with saturated hydrogen bonds. We also applied a similar analysis to 15N chemical

shielding anisotropy (CSA) values obtained from NMA calculations, namely:

4CSANsolv = 4CSAN1
cont +4CSAN1

3w = 4CSAN2
3w +4CSAN2

cont (2.8)

with 4CSAN1
cont being -23.24 ppm, 4CSAN1

3w -3.29 ppm, 4CSAN2
3w -15.85 ppm, and

4CSAN2
cont -10.69 ppm. This clearly shows that the continuum-only model calcu-

lation for NMA* yields 15N CSA value that is already very close to that for NMA
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clustered with three explicit waters in continuum, since a further correction of -3.29

ppm appears minor compared to -23.24 ppm. This suggests that the continuum-only

model will produce a smaller relative error in the CSA values than in the isotropic

chemical shift.

(a)

(b)

Figure 2.3: Isotropic 15N chemical shielding in NMA as a function of (a) the NH
bond length and (b) the CO bond length

We notice that in solvent, the NH bond (in the peptide plane) and CO bond

tend to stretch while the CN bond becomes shorter (Table 2.1). This agrees with

recent ab initio and DFT calculations (Selvarengan and Kolandaivel, 2004). When

21



the NH bond length was varied between its value in vacuum and in NMA+3w struc-

ture, with the other structural parameters being optimized in the continuum-only

model, the 15N chemical shielding decreased as the bond stretches (Figure 2.3(a)),

indicating a deshielding effect of bulk water which tends to correlate well with the

NH bond length (Pearson’s |r| ≈ 1.00). A similar linear correlation exists between

the 15N chemical shielding and CO bond length in the continuum-only model (Fig-

ure 2.3(b)). This is similar to previously found correlations of 13C and 17O chemical

shielding with bond length (Aidas et al., 2007; Oldfield, 2002). Our continuum-only

calculations for NMA showed that elongation of the NH bond by 0.02 Å results in

reduction of 15N chemical shielding by 2.33 ppm (∼ 1.8%), and the elongation of

the CO bond by 0.03 Å reduces this shielding by 3.92 ppm (∼ 3.1%). The variation

of 15N chemical shielding with the NH and CO bond lengths (accompanied by cor-

responding changes in the optimized geometry) is small compared to other nuclei

(Aidas et al., 2007) or 15N in a different chemical environment (Manalo and de Dios,

2002).

2.2.2 N-formyl-alanyl-X dipeptide calculations

All dipeptide structures, where appropriate, adopted χ1 angles close to 180◦

after the geometry optimization, provided that the optimization started with such

conformation. This might not represent the global energy minimum of the dipeptide

though, since the energy barriers between the rotameric conformations could hinder

the side chain’s rotation to its energy minimum during optimization. The calculated
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15N shielding tensors are shown in Tables 2.3 and 2.4.

We assume that the differences between the DFT-calculated 15N chemical shift

and its true value are systematic and depend only on the local electron density

around the nitrogen. Therefore these deviations should be the same for all nitro-

gens in the similar chemical environment. We chose methylamine (CH3NH2) as a

reference compound, because it is the simplest molecule that has similar chemical

bonding structure for the amide nitrogen, and reliable experimental 15N chemical

shielding in methylamine is available. Then to cancel out possible systematic errors,

the chemical shift sample is computed as (Benzi et al., 2004)

δsample = σ0 − (σcompsample − σ
comp
ref + σexpref ), (2.9)

where δsample, σ
comp
sample refer to the N-formyl-alanyl-X amides under study; σ0 = 244.6

ppm is the absolute 15N chemical shielding of liquid ammonia at 25◦C (Jameson

et al., 1981); σexpref is the experimental 15N chemical shielding for methylamine, re-

ported to be 249.5 ppm (Cramer, 2004) and σcompref = 237.9 ppm is the corresponding

theoretical chemical shielding computed at B3LYP/6-311+G(2d,p) level of theory.

Figure 2.4(a)-(b) shows the values of 15N chemical shift as a function of

the residue type for the β-sheet and α-helical conformations of N-formyl-alanyl-

X. The profile of 15N chemical shift as a function of residue type (Figure 2.4(a)-(b))

agrees well with the statistically averaged experimental 15N chemical shifts in the

α-helices and β-sheets in proteins (Wang and Jardetzky, 2002). This indicates that a

geometry-optimized structure in a water continuum provides a good model for chem-

ical shifts in solution and the dynamics of local waters are effectively averaged out.
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If we assume that the available protein chemical shift database samples all possible

configurations, then a particular residue type in a particular secondary structure,

averaged over the database, ought to produce a reasonable mean isotropic chemical

shift for that residue in that secondary structure. Since our calculation used stan-

dard α-helical and β-sheet conformations, the isotropic chemical shifts we obtained

may represent a mean as well. In fact, by comparison, our calculations overestimate

the isotropic chemical shift by 2-3 ppm (on average) for the α-helical conformation

for most N-formyl-alanyl-X amides (Figure 2.4(a)), but no over- or underestimation

is obvious for the β-sheet conformation (Figure 2.4(b)). Considering the standard

error associated with the statistical average, this overestimation may be even less

significant.

Now we turn our attention to the overall difference between 15N chemical shifts

for α-helical and β-sheet conformations. We define the difference in 15N chemical

shifts between the standard β-sheet and α-helical conformations as

4δXstruc = δXsheet − δXhelix, (2.10)

where X refers to one of the 19 amino acid residues. This difference in our calcu-

lation ranges from 0.76 ppm to 6.19 ppm with an average of 2.74 ppm. Now we

would like to compare our results with the gas phase calculations of Poon et al.

(2004) who used the same dipeptide model but without structure optimization and

solvent consideration. Their gas phase calculations indicated that the difference in

15N chemical shifts between the standard β-sheet and α-helix varies between 13.2

ppm and 24 ppm, with the average value of 15.8 ppm. Our calculation resulted in a
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(a)

(b)

(c)

Figure 2.4: Comparison of the isotropic 15N chemical shifts calculated in this study
(red) with gas phase calculations (black) (Poon et al., 2004) and statistically averaged
experimental data (blue) (Wang and Jardetzky, 2002) for each residue type. Panels
(a) and (b) correspond to the α-helix and β-sheet conformations,respectively. (c)
4δXstruc, the difference of the chemical shift values between the β-sheet and α-helix
conformations
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greatly reduced chemical shielding difference between the β-sheet and α-helix, (Fig-

ure 2.4(c)), which is now in agreement with the results from the statistical analysis

of a database containing more than 6100 amino acid residues in proteins, where this

difference ranged from 2.66 ppm to 5.80 ppm with an average of 3.74 ppm (Wang and

Jardetzky, 2002). A close examination shows that the biggest discrepancy between

our values and the experimental data is for threonine (about 3.4 ppm, see Figure

2.4(c)). However, it is well within the range of statistical uncertainty in the protein

database, and we note that a variation in chemical shift due to side-chain conforma-

tion can be up to ∼5 ppm according to statistical analysis for amino acids Val, Ile,

Thr, Phe, His, Tyr, and Trp (Wang and Jardetzky, 2004) (see also our calculations

below). This discrepancy may be well due to the fact that side-chain configuration

averaging is not considered in our calculation. Figure 2.4(c) demonstrates that by

applying the continuum-only model the magnitude of 4δXstruc is reduced by ∼13

ppm from that of Poon et al. (2004). This reduction in the difference in shielding

between the two secondary structures is due to the different deshielding effects the

bulk water has for the two backbone conformations: the bulk water deshields 15N

by ∼18 ppm in the α-helical conformation but only by ∼5 ppm in the extended

conformation of the β-sheet. This can be qualitatively understood based upon the

following consideration. We considered the solvated dipeptide as a molecule embed-

ded in a cavity in bulk dielectric with the dielectric constant of liquid water. The

polarization of the surrounding dielectric continuum by the electrostatic potential

of the dipeptide induces electric charges, which are distributed on the surface of the

cavity. The dipeptide in the α-helical conformation is more “globular” and compact
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than the dipeptide in the extended β-sheet conformation. Therefore, there are more

cavity surface charges in proximity to the amide nitrogen in the helical conformation

of the dipeptide than in the β-sheet conformation.

As noted above in continuum-only calculation of NMA, neglecting close-contact

solvent can result in underestimation by about 9 ppm of the deshielding effect of

solvent in the NMA model with saturated hydrogen bonds. Since secondary struc-

ture elements in proteins are often hydrogen-bonded, it is important to know the

magnitude of possible underestimation for the 15N chemical shielding in dipeptide

caused by ignoring these (specific) interactions. In order to assess this effect, we

performed 15N chemical shielding calculations for selected residues from protein

GB3. In these calculations, a fragment, C-Y-X-N, containing the residue of interest

(X) and its preceding residue (Y) was taken directly from the crystal structure of

GB3 (PDB code 1IGD) (Derrick and Wigley, 1994) and modified by replacing the

end atoms to become N-formyl-Y-X-NH2 (see Figure 2.1(d)). In addition, in the

case of α-helix, the side chain of the residue preceding X was replaced with CH3.

The hydrogen-bonded residues (through the NH group of X and, where applicable,

CO group of the preceding residue) were also taken from the GB3 structure (Fig-

ure 2.1(d)) and modified to become either CH3-CO-NH-CH(CH3)-CO-NH-CH3 or

CH3-CO-NH-CH(CH3)-CO-NH-CH(CH3)-CO-NH-CH3 (as detailed in Table 2.5).

We then performed chemical shift calculations in vacuum and in continuum for the

dipeptide alone and for this hydrogen-bonded cluster. The results (Table 5) show

that the dipeptide in continuum model yields deshielding up to 15.3 ppm for α-helix

and 9.5 ppm for β-sheet. Depending on the hydrogen bonding geometry, the clus-
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Table 2.5: Isotropic 15N chemical shielding (in ppm) calculated for selected residues
in GB3 using dipeptide in gas phase (in vacuo), dipeptide in continuum-only, cluster
in gas phase (in vacuo), and cluster in continuum models

Dipeptide Dipeptide Cluster Cluster
Residue X Conformation in vacuum in continuum in vacuum in continuum

Thr16 β-sheet 133.20 123.74 133.292,4 122.602,4

Thr18 β-sheet 127.58 122.68 128.142,4 121.292,4

Thr44 β-sheet 139.14 133.96 136.552,4 129.862,4

Thr53 β-sheet 124.78 118.73 122.273,4,6 114.563,4

Lys28 α-helix 144.84 129.52 / 125.853,5

Ala29 α-helix 135.51 125.88 128.683,5 123.493,5

Gln32 α-helix 134.33 125.21 125.733,5 121.373,5

1. Residue numbering here corresponds to GB3 crystal structure (1IGD).
2. Only direct hydrogen-bonding partner exists
3. Both direct and indirect hydrogen-bonding partners exist
4. Hydrogen-bonding partner was modeled as CH3-CO-NH-CH(CH3)-CO-NH-CH3

5. Side chain of the previous residue was replaced by −CH3; the direct hydrogen-bonding part-
ner was models as CH3-CO-NH-CH(CH3)-CO-NH-CH3 and the indirect hydrogen-bonding partner
as CH3-CO-NH(∗)-CH(CH3)-CO-NH-CH(CH3)-CO-NH-CH3 (with NH(∗) hydrogen bonded to the
CO group of the residue preceding X in the dipeptide)

6. This calculation was performed only with direct hydrogen-bonding partner

ter in continuum calculation can further deshield 15N by about 1 to 4 ppm. This

suggests that the polarizable continuum model can account for hydrogen bonding

in a realistic protein secondary structure and, therefore, might be a reasonable first

approximation for computing 15N chemical shielding.

The chemical shielding tensor contains a wealth of potentially useful structural

information, which could be lost when the tensor is reduced to isotropic shielding.

Knowledge of individual components and orientation of 15N shielding tensor could

be important for many NMR applications, including accurate analysis of protein

dynamics from 15N relaxation data (e.g. (Fushman and Cowburn, 2001; Hall and

Fushman, 2006)), TROSY-based experiments, cross-correlation effects involving 15N
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CSA, and the use of residual 15N chemical shift anisotropy upon molecular align-

ment (e.g. (Lipsitz and Tjandra, 2003)) as restraints for structure refinement. It

is therefore important to understand the dependence of particular components of

the 15N chemical shielding tensor on solvent, side chain, and conformation. In our

calculations, the 15N CSA values (Tables 2.3 and 2.4) fall in the range of experimen-

tal values reported for proteins (Cornilescu and Bax, 2000; Fushman et al., 1998,

1999; Kroenke et al., 1999; Kurita et al., 2003; Loth et al., 2005; Tjandra et al., 1996;

Wylie et al., 2006; Wylie and Rienstra, 2008). The difference in CSA values between

the α-helix and β-sheet (mean CSA’s of -164.3 ppm and -160.0 ppm, respectively) is

consistent with the observations for ubiquitin (Cornilescu and Bax, 2000) and GB1

(Wylie and Rienstra, 2008). It is worth pointing out that in our data this difference

arises primarily from σ22, which is systematically higher in α-helix (by 7.8 ppm on

average), while the other two components of the 15N shielding tensor (particularly

σ11) show a considerably smaller and less systematic difference between the β-sheet

and α-helix conformations (see Tables 2.3 and 2.4). The calculated 15N CSA values

also agree with the solid state NMR measurements in short peptides (Hartzell et al.,

1987; Hiyama et al., 1988; Mai et al., 1993; Oas et al., 1987; Shoji et al., 1989; Wu

et al., 1995). A good agreement with the experimental data is also found for the

angle between the least shielded component (σ11) of the 15N shielding tensor and

the NH bond. The values of β obtained here, from 13.5◦ to 19.8◦, are well in the

range of the experimental values (12◦-24◦) obtained by different NMR techniques,

both solution and solid-state (Cornilescu and Bax, 2000; Fushman et al., 1998; Hall

and Fushman, 2006; Hartzell et al., 1987; Hiyama et al., 1988; Kurita et al., 2003;
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Loth et al., 2005; Mai et al., 1993; Oas et al., 1987; Shoji et al., 1989; Vasos et al.,

2006). There seems to be a weak correlation between the β angle and secondary

structure, with slightly smaller angles for the β-sheet than for the α-helix (mean

β angles are 14.8◦ and 16.5◦, respectively). This also agrees with the experimental

findings in GB3 (Hall and Fushman 2006) and ubiquitin (Fushman et al. 1998).

Our calculations show a considerable spread in 15N CSA values, from -154.7

ppm to -168.4 ppm, depending on the residue type and the backbone conformation.

This range, however, is smaller than the 15N CSA dispersion observed by solution

NMR in ubiquitin and GB3 (Fushman et al., 1998, 1999; Hall and Fushman, 2006;

Kover and Batta, 2001) and by solid-state NMR in GB1(Wylie et al. 2006; Wylie

and Rienstra 2008). This likely reflects the fact that these calculations do not take

into account the complexity of local electronic environment in proteins, including in-

teractions with neighboring atoms (e.g. hydrogen bonding, charge and ring-current

effects), deviations of the backbone and side chain conformations from those con-

sidered here, averaging by anisotropic dynamics etc. Note, for example, that while

the type of amino acid residue X varied in our calculations, the torsion angle χ1

was close to 180◦ (where applicable) for both backbone conformations. In order to

explore the effect of side chain’s rotameric state on the 15N chemical shielding ten-

sor, we performed a set of calculations for glutamate (X=Glu) in N-formyl-alanyl-X

in the β-sheet conformation, in which the angle χ1 was fixed at -180◦, -150◦, 60◦,

-6◦ in the geometry optimization. The results showed a significant variation in the

anisotropy of the shielding tensor (CSA = -161.38, -165.29, -164.94, and -153.98

ppm, respectively), which is bigger than for the isotropic shielding (107.96, 105.91,
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114.05, and 111.18 ppm, respectively). These results emphasize the importance of

side-chain conformation for the calculation of the 15N shielding tensor, which could

be one of the reasons for the wider spread in the experimental 15N CSA values than

that calculated here.

Also we notice that in the α-helical conformation, valine, isoleucine, and threo-

nine have particularly low absolute 15N CSA values. This can be due to the presence

of branched side chains in these residues that disturbed the structure by tilting the

NH bond out of the peptide plane by about 13◦. The effect could result from a

particular combination of the torsion angles (φ, ψ, χ1) as it is not observed in the

β-sheet conformation.

It is instructive to discuss the orientation of the individual components of the

15N chemical shielding tensor. The expectation from solid state NMR measurements

and planar symmetry of the peptide bond (see e.g. (Oas et al. 1987)) is that the

least shielded component (σ11) is lying in the peptide plane and tilted by a small

angle (see Figure 2.5) from the NH-bond, while the intermediate component, σ22, is

orthogonal to the peptide plane. Interestingly, while the least shielded component

σ11 of our calculated 15N chemical shielding tensor lies almost in the peptide plane

for all residues, independent of the backbone conformation, the orientations of the

other two components differ between the two conformations (Tables 2.3 and 2.4 ).

Our calculations show that, in the β-sheet, σ22 is almost orthogonal to the peptide

plane (the biggest tilt is ∼ 9◦ for valine), which automatically places the most

shielded component, σ33, close to the peptide plane. The deviations from “ideal”

picture are more dramatic for the α-helix. Here the σ22 component is tilted by as
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Figure 2.5: Schematic illustration of the orientation of the principal components
of the 15N chemical shielding tensor with respect to the peptide plane defined by
C′ − N− Cα. σ11 is the least shielded component, tilting out of the peptide plane by
an angle γ and forming an angle β with the NH bond. σ22 is the next least shielded
component and stands roughly perpendicular to the peptide plane. σ33 is the most
shielded component and lies approximately in the peptide plane; the projection of
NH bond onto the plane of σ22 and σ33 forms an angle α with σ33. This definition
of the angles is taken from Brender et al. (2001).

much as 32◦ for glycine and 24◦ for valine and isoleucine, and the σ33 component is

also significantly tilted away from the peptide plane. These results demonstrate the

effect of the backbone conformation on the orientation of the 15N shielding tensor.

Another important aspect is the asymmetry of the shielding tensor, as it is

often assumed (e.g. in 15N relaxation analysis) that the tensor is axially symmetric,

although solid state NMR data on short peptides indicated that deviations from

axial symmetry could be substantial (Hiyama et al., 1988; Oas et al., 1987). For

the N-formyl-alanyl-X examples considered here the asymmetry of the 15N shielding

tensor, defined as

η = (σ22 − σ33)/(σ11 − σiso), (2.11)

ranges from 0.43 to 0.56 for the β-sheet and from 0.22 to 0.43 for the α-helix.
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The higher 15N shielding asymmetry in the β-sheet conformation is consistent with

the data reported for ubiquitin (Cornilescu and Bax, 2000). These differences in

the asymmetry of 15N shielding between the two backbone conformations could be

related to the differences in the orientation of the tensor. The absolute values of

the asymmetry are somewhat higher than the experimentally observed in solution

(Cornilescu and Bax, 2000; Loth et al., 2005) but comparable to solid-state NMR

data (Wylie et al., 2006), which likely reflects motional averaging expected to be

more pronounced in proteins in solution.

2.3 Summary and conclusions

To examine the effects of solvation, backbone conformation, and the side chain

on 15N chemical shielding in proteins, we performed density-functional theory calcu-

lations with the polarizable continuum solvent model for NMA and N-formyl-alanyl-

X amides, where X is one of the 19 naturally occurring amino acids excluding proline.

The main results of our calculations can be summarized as follows:

1) Solvent considered as the polarizable continuum model with the explicit water

molecules in the first solvation shell has a considerable effect on the isotropic chem-

ical shift but not as much on the anisotropy of the chemical shielding tensor.

2) The calculations for the dipeptides demonstrated that the averaged over all 19

types of residues difference in isotropic 15N chemical shifts between the standard

β-sheet and α-helical conformations is 2.7 ppm, in good agreement with the exper-

imentally observed difference of 3-4 ppm in proteins.
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3) The orientation of the 15N chemical shielding tensor as well as its anisotropy and

asymmetry are overall in the range observed for peptides and proteins. Our calcu-

lations show that for both backbone conformations, the least shielded component,

σ11, of the tensor lies approximately in the peptide plane and makes an angle of

13.5◦ to 19.8◦ with the NH bond. In the β-sheet, the intermediate component, σ22,

is almost orthogonal to the peptide plane and the most shielded component, σ33,

lies almost in the peptide plane. However, in the α-helix the σ22 component is tilted

by as much as 32◦ for Gly and 24◦ for valine and isoleucine, and the σ33 component

is also significantly tilted away from the peptide plane.

4) The anisotropy of the 15N chemical shielding tensor varies among amino acids in

the range from -154.7 ppm to -168.4 ppm with the mean value of -160 ppm.

5) The asymmetry of 15N chemical shielding tensor varies from 0.43 to 0.56 for the

β-sheet and from 0.22 to 0.43 for the α-helix.

6) Our calculations for selected fragments from protein GB3 suggest that the polar-

izable continuum model could serve as a reasonable approximation for the effect of

protein environment on 15N chemical shielding.
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Chapter 3

Chemical shielding calculations of 15N in real proteins: classical

α-helical residues

3.1 Computational details

All calculations reported in this chapter were performed using the GAUS-

SIAN03 suite of programs (Frisch et al., 2004). We used density-functional theory

(DFT) with three-parameter Becke-Lee-Yang-Parr (B3LYP) exchange-correlation

functional (Becke, 1988, 1993; Lee et al., 1988). The atom coordinates were taken

from the best representative conformer (PDB code: 2OED) of the ensemble of GB3

solution NMR structures (Ulmer et al., 2003). The bond lengths were used directly

from the experimental structure without geometry optimization.

Only “classical” helical residues, A26 through Y33, of GB3’s α-helix (that

spans residues D22-N37) are examined in this disseration. According to the def-

inition used here, a classical helical residue i is hydrogen bonded through its NH

group to residue i-4 and through its CO group to residue i+4. Thus the backbone

nitrogen of residue i has a direct hydrogen bonding partner i-4 and an indirect hy-

drogen bonding partner i+3 (Figure 3.1). To avoid terminal artifacts, four residues

at either end of the α-helix were not examined here because they are missing either

a direct or an indirect hydrogen bonding partner.
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Several models with different levels of complexity are investigated here (illus-

trated in Figure 3.1(b) for the case of amide nitrogen of K28):

Model A: a simple dipeptide Model containing only residues i and i-1. If not indi-

cated directly, the ionizable side chains are assumed to be in their charged state.

In some cases, as indicated in the text, the ionizable side chains were altered to be

neutral.

Model B: a main fragment containing residues i and i-1 (as in Model A) and two ad-

ditional fragments of the hydrogen bonding partners, both direct and indirect. This

results in a “three-fragment” model. In some cases, as specified in the text, the side

chains of the hydrogen bonding partners were altered to be neutral or modified to

be −CH3.

Model C: a “long-chain” Model containing a stretch of residues from the direct

hydrogen bonding partner to the indirect hydrogen bonding partner as one main

fragment. That is, for classical helical residues the “long chain” includes residues

from i-4 to i+3. In some cases, as specified in the text, some side chains of the

“long chain” were altered to be neutral or changed to −CH3, or the “long chain”

was extended to include an additional residue at one end.

In our calculations, the main fragments in various models had the N-terminus

capped by a formyl group (-COH) and the C-terminus capped by an amino group

(−NH2), and the hydrogen bonding partners in Model B were modified to be CH3-

CO-(NH-CH(R)-CO)-NH-CH3. When the charges from the atoms of the rest of the

protein were included in the calculation, we refer to it as Charge Field Perturbation

(CFP) calculation. If the charges are not included, we call it “vacuum” calculation.
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(a) (b)

Figure 3.1: (a) Illustration of the basis set assignment. The dashed lines represent
the direct (D) and indirect (I) hydrogen bonds for the peptide plane containing the
amide group of residue i. (b) Illustration of various peptide fragment models used
in the calculations. In the case of amide nitrogen of K28 shown here, Model A (a
dipeptide model) includes E27 and K28 (thick sticks); Model B includes residues
from Model A (thick sticks) and the two hydrogen bonding partners (ball-and-stick);
Model C includes all residues from E24 to K31 (ribbon). Residues shown in thin-line
representation are included in Model C but not in Model B. The molecular image
was generated using VMD (Humphrey et al., 1996). The arrow points to the amide
nitrogen whose chemical shielding is being calculated.

In CFP calculations, the point charges were all taken from AMBER charge set

(Cornell et al., 1995) with the overall non-zero charge for ionizable residues. The

calculations were performed using local dense basis sets (Chesnut et al., 1993).

For the residue of interest i, we applied a 6-311+G(2d,p) basis set for the Ni, Hi,

Cαi, Ci−1, and Oi−1 atoms (shown in bold in Figure 3.1(a)). Where applicable,

the 6-311+G(2d,p) basis set was also applied to similar atoms of its direct and

indirect hydrogen bonding partners (shown in blue in Figure 3.1(a)), as well as the

second pair (Xu and Case, 2002) of hydrogen bonding partners (shown in red in

Figure 3.1(a)). A 4-21G basis set was applied to the remaining atoms in the model.
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The charge field perturbation gauge-including atomic orbital method (de Dios and

Oldfield, 1993; Ditchfield, 1974; Wolinski et al., 1990) was used.

3.2 Results and discussion

3.2.1 Model Building

Fragment Size. It was suggested (Xu and Case, 2002) that a 7-9 residue

sequence should be used for chemical shift calculations in the α-helix conformation

in order to eliminate the terminal artifacts. The terminal effects may be due to

(i) the lack of hydrogen bonding partners for the residues at either end; or (ii)

the underestimation of the interaction with the dipole moment of the helix. In

order to analyze the magnitude of the hydrogen bonding and helical dipole effects

without side chains complicating the picture, all non-alanine residues other than

residues i and i-1 were altered to be alanine (See Table 3.1), and we compared

isotropic chemical shieldings from Model A to Model C vacuum calculations. As

shown in Figure 3.2(a), the first pair of hydrogen bonding partners deshield 15N .

The deshielding ranges from 4.75 ppm to 9.89 ppm depending on the strength of

hydrogen bonding. The effect is the strongest for K31 because the peptide plane

containing the amide group of K31 makes the strongest hydrogen bonds. In fact,

the distance between K31’s amide proton and E27’s carbonyl oxygen is 1.83 Å,

compared to the 1.89 to 2.86 Å range for the rest of the hydrogen bonds in the GB3

helix. In addition, the O-H distance for the corresponding indirect hydrogen bond is

1.89 Å. Model C deshields 15N further from Model B, ranging from 4.10 ppm to 6.59
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ppm (Figure 3.2(a)). This is due to the inclusion of atoms from residues i-3, i-2,

i+1, and i+2 in Model C, which introduced new aligned NH and CO groups, namely

NH groups from residues i-2 and i+2, and CO groups from residues i-3 and i+1 (see

Figure 3.1). These groups contribute to the helical dipole moment and bring about

electrostatic field contribution to 15N chemical shielding, in agreement with previous

findings (Le and Oldfield, 1996; Xu and Case, 2002). In fact, our calculation showed

on average an increase of 18.5 Debye in dipole moment from “Model A neutral”

to “Model B neutral −CH3”; and on average an additional increase of 10.2 Debye

from “Model B neutral −CH3” to “Model C neutral −CH3” (Table 3.2). Since the

“long chain” model further deshields the 15N comparing to the “three-fragment”

model and this deshielding differs for different residues (Table 3.1), we conclude

that the “long chain” model includes some new nontrivial contributions, which are

not present in the simpler models.

We note here that in the calculations with charged ionizable side chains (Fig-

ure 3.2(b)), the contributions from the first pair of hydrogen bonds and from the

additional helical dipole are similar to those in the calculations with neutral ioniz-

able side chains (Figure 3.2(a)). This indicates that the side chain charges do not

interfere with hydrogen bonding effects and helical dipole effects.

Charged or neutral side chain? Previously, when building the database

for SHIFTS (Xu and Case, 2002), all ionizable amino acids took neutral forms

because it appeared that in gas-phase calculations, neutral side chains provided a

better model for solution chemical shifts than the charged side chains did. More

recently, it was suggested (Vila and Scheraga, 2007) that the whole protein and
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Figure 3.2: Isotropic chemical shieldings for selected α-helical residues calculated
using various models. Where applicable, the ionizable side chains of residues i and
i -1 are neutral in (a) but charged in (b).

its chemical environment should be taken into account by considering the proton

binding/release equilibria and then the chemical shifts should be calculated as a

weighted average. That study also found that for Cα the results obtained for Asp

and Glu are almost systematically worse when using charged rather than neutral side

chains, presumably because these two amino acids have much shorter side chains

compared to Arg and Lys. When charged, these side chains may have a bigger

influence on the Cα chemical shielding. Here we explore how the 15N chemical shift

can be affected by the ionization form of the side chains.

As shown in Table 3.1, the side chain charge on the residue of interest has

an apparent effect on its 15N chemical shielding (compare the results from “Model

A” and “Model A neutral” calculations for E27 and K31). Deprotonation of the

side chains introduces deshielding while protonation introduces shielding, similarly

to what was observed for Cα (Vila and Scheraga 2007). Thus, the negative charge
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on the side chain of E27 deshields its 15N by 11.74 ppm while the positive charge

on the side chain of K31 shields its 15N by 6.34 ppm in Model A.

Unlike Cα, surrounding side chain charges on other residues can influence

amide nitrogen chemical shielding. Take K31 as an example. Its “Model B −CH3”

calculation (130.10 ppm) yields a more shielded value than its “Model B neutral

−CH3” calculation (124.33 ppm) for 15N . This shielding effect of 5.77 ppm is due

to the charge on K31. In the Model B calculation where K31’s hydrogen bonding

partner E27 is also charged, the amide nitrogen of K31 has a chemical shielding of

125.80 ppm. This 4.3 ppm deshielding from the “Model B −CH3” calculation is

mainly due to the charge on E27. This example illustrates that the charges on other

side chains can make 15N chemical shielding calculation more interesting but also

more challenging because it introduces another source of variation. In the case of

neutral side chains, on the contrary, their identity does not play a significant role,

such that they can be safely replaced by a − CH3 group. This is supported by

the close resemblance of the results from ”Model B neutral” and “Model B neutral

−CH3” calculations and, likewise, of the results from “Model C neutral” and “Model

C neutral −CH3” calculations.

We used two approaches when calculating 15N chemical shielding with Model

C. The first approach makes all ionizable side chains neutral in the Model C vacuum

calculation. The comparison between experimental solid-state chemical shifts and

the calculated chemical shieldings is shown in Figure 3.3(a). The correlation is poor

(|r| = 0.52), and the regression line has an intercept of 181.00 ± 41.00 ppm and a

slope of −0.49±0.33. The slope is far from the ideal value of -1. No obvious outlier is
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Figure 3.3: Comparison of the calculated isotropic 15N chemical shieldings with
experimental data for GB3. (a) “Model C neutral” and (b) Model C versus solid-
state NMR data (BioMagResBank accession number 15283 (Nadaud et al., 2007) ).
(c) Model C versus solution NMR data (Gronenborn et al., 1991).

identified. The second approach represents all ionizable side chains in their charged

states. This yields an obvious outlier, E27 (see Figure 3.4(a)). By excluding E27, a

better correlation is achieved (|r| = 0.93) and the linear regression yields a slope of

−0.84± 0.15 and an intercept of 224.91± 18.83 ppm (Figure 3.3(b)). A comparison

with solution NMR data yields similar results: |r| = 0.91, slope = −0.98±0.20, and

45



intercept = 242.87± 24.70 ppm (Figure 3.3(c)). In this approach it is important to

include all charges that are close to the 15N site of interest (Bader, 2009). Consider

E27 as an example. In the Model C vacuum calculation that includes residues from

A23 to F30, we obtained an isotropic chemical shielding of 113.98 ppm for the amide

nitrogen. This calculation did not include K31, which makes a salt bridge with the

side chain of E27. However, extending the long chain to include K31 in the Model C

vacuum calculation yielded a more shielded value of 117.94 ppm, bringing it closer

to the experimental value (Figure 3.4(a)). This shielding effect of 3.96 ppm is due to

the charge on K31’s side chain. In comparison, a proton unit charge placed on the ε-

amine of K31 produced a 4.77 ppm shielding effect with Model A vacuum calculation

(Table 3.4). Interestingly, having E27 in its neutral form can significantly shield its

amide nitrogen, as suggested by the difference (11.74 ppm) between its Model A

and “Model A neutral” calculations (Table 3.1). Indeed, making E27 neutral while

keeping other ionizable side chains charged (in Model C) yields an isotropic chemical

shielding of 124.25 ppm. Thus, protonation of the side chain can make E27 not an

outlier.

In principle, there can be other possible combinations of ionization states of

D22, D24, D27, K28, K31, and D36 that are involved here (Table 3.1). The two

approaches shown here emphasize the complexity of calculating backbone 15N chem-

ical shielding when dealing with uncertainties of the charge states of ionizable side

chains. On the other hand, a detailed comparison with experimental NMR data

might provide useful information on the ionization state of these residues.

Counterions were not explicitly included in our calculations, primarily because
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Figure 3.4: (a) Comparison of the isotropic chemical shielding from Model C vacuum
(solid circles) and Model C CFP (empty circles) calculations with experimental
(solution NMR) data. Note that the E27 data in this plot represent the results from
Model C extended to include K31.(b) Comparison of the isotropic 15N chemical
shieldings for selected α-helical residues calculated using various models considered
in this study.

the amino acid composition and the structure of GB3’s α-helix are such that every

charged side chain (except for D22 at the very N-terminus and D36 at the very

C-terminus) has a salt-bridge partner (K31-E27, K28-E24), which could naturally

balance its charge effect. Of the long-chain fragments used in Model C calculations,

the one for K28 was neutral (as was the extended fragment for E27, see above),

while the rest of the fragments had one or two unbalanced charges. Including the

extra residues necessary for charge balancing would have further increased the size

of the fragment. However, the effect of those unbalanced charges is generally small,

as can be seen from Table 1 (compare, for example, Model C with Model C -CH3),

perhaps because of the rather long distances from the charged groups to the amide

nitrogen. To explore this effect further, we performed a dipeptide-model calculation
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in which we included point charges mimicking the side chains that could serve as

“counterions” but were not present in the corresponding Model C fragments. The

results (Table 3.4) show that the effect of these additional charges on 15N chemical

shielding is generally small, except for E27, where including the side chain charge

of K31 introduces a significant shift in the shielding, as discussed above.

3.2.2 The tensor

Comparing the shielding tensor’s principal values between the calculations

with “Model C neutral” and “Model C” (Table 3.3), the variation mainly exits in the

least and most shielded components, σ11 and σ33, while the intermediate component,

σ22, appears less susceptible to model selection. Residue E27 showed the biggest

difference in all three principal components between these two calculations, with

a 20 ppm difference in σ11. There is a generally good agreement between these

two models in the orientation of the principal components of the shielding tensor

(Table 3.3). Experimental data for all three principal components of GB3’s 15N

chemical shift tensors are not available. However, these data exist for most residues

of protein GB1 (Wylie et al., 2007), which is highly homologous to GB3. In fact,

all helical residues of GB3 are present in GB1, except for A29, which is a valine in

GB1. Therefore we compared our calculated principal values of the 15N chemical

shielding tensor for A26, E27, K28, K31, and Y33 in GB3 with the corresponding

components of the chemical shift tensor of these residues in GB1, obtained by solid-

state NMR measurements (Figure 3.5). We found that the individual components of
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the calculated chemical shielding tensor are in good agreement with the experimental

data. Over the whole range of variation in the tensor’s principal components, the

difference between using “Model C neutral” and “Model C” is small (Figure 3.5).

(a) (b)

Figure 3.5: Comparison of the principal components of the calculated chemical
shielding tensor for GB3 with the corresponding components of the experimental
chemical shift tensor for GB1 (from solid-state NMR measurements, kindly provided
by Chad Rienstra and Benjamin Wylie (Wylie et al., 2007)).The model used and the
parameters of the regression line are as follows: (a) Model C, intercept = 250.88±
2.24 ppm, slope = −1.07± 0.02; (b) “Model C neutral”, intercept = 249.98± 4.11
pp m, slope = −1.07± 0.03.

3.2.3 CFP calculations

The difference between a vacuum calculation and a CFP calculation is a useful

indicator of whether all necessary electrostatic effects are taken into account in the

vacuum calculation. For example, when using a “three-fragment” model (Model B)

there are large differences between the CFP calculation and the vacuum calculation

(Table 3.1). This suggests that the fragment that is used in the vacuum calculation

is too small. When using Model C which includes every residue from the direct

49



hydrogen bonding partner to the indirect hydrogen bonding partner, not only the

difference between vacuum and CFP calculations becomes smaller in general (Table

3.1 and Figure 3.4(b)) but also the correlation between the vacuum calculation

and the experiment becomes better with a |r| value of 0.93, compared to 0.68 for

Model B vacuum calculation and 0.54 for “Model B CFP” calculation (E27 was

not included in this analysis). From Table 3.1 and Figure 3.4(b), we observe that

a simple CFP calculation for one model is close to a vacuum calculation for the

next-complexity-level model. That is, Model A CFP calculation is very similar to

Model B vacuum calculation and, likewise, Model B CFP is in general very close

to Model C vacuum calculation. Although the CFP calculations include all point

charges representing the atoms from the rest of the protein, only certain charges that

are close enough to the fragment under consideration can influence the distribution

of the electrons by perturbing the wave function and hence potentially affect the

15N chemical shielding. For example, Model B CFP calculation shows on average

∼7 ppm deshielding of 15N compared to the Model B calculation, but including only

point charges for the remaining helical residues in Model C yields similar deshielding

effect already (see “Model B partial CFP” calculation in Table 3.1).

3.3 Summary and conclusions

We performed density functional calculations of backbone 15N chemical shield-

ing tensor for selected α-helical residues in protein G (GB3) and compared the

isotropic chemical shielding and the principal values of the shielding tensor with ex-

50



perimental chemical shift data. We explored the effect of electrostatic interactions

in a protein on the calculated 15N chemical shielding and found that :

1) To calculate the chemical shielding of backbone 15N on residue i, the hydrogen

bonding partners and the residues that contribute to the helical dipole need to be

included. Their side chains, when not charged, do not influence much the chemical

shielding of 15N of interest; when charged, however, they can introduce an additional

source of variation to the calculated 15N chemical shielding.

2) To accurately predict 15N chemical shielding when adopting charged forms of

the ionizable side chains, it is important to include all charges that can potentially

influence the 15N chemical shielding.

3) Tensor elements calculation yields a good correlation with experiments in general

and the slope is close to the ideal of -1. The variation exists mainly in the σ11 and

σ33 components while σ22 is less affected by the charge states of the ionizable side

chains that surround the amide nitrogen site.

4) CFP calculation can serve as an indicator of whether all reasonable long range

electrostatic effects have been taken into consideration in the vacuum calculation. In

the example of GB3, the rest of the protein does not seem to exert much effect, and

the “long chain” model (Model C) in vacuum seems to be adequate for computing

15N chemical shielding in the α-helix.

Note that this study focused on an α-helix, where the spatial relationship

between various atoms is different from that in, for example, extended conformation.

Therefore these conclusions apply specifically to helical residues and may or may not

be applicable to other secondary structures. Similar calculations (see next chapter)
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for the other parts of the protein are expected to address this issue. Although this

study covered different residues in the helix, it is inevitably limited by the amino

acid composition of GB3. Comparison with experimental data for a broad range of

proteins is required in order to reach a better understanding of the accuracy of the

computational approaches used here and the ways to improve them.

Table 3.2: Computed dipole moments (in Debye) for various models in the vacuum
calculation

Residue Model A neutral Model B neutral −CH3 Model C neutral −CH3

A26 10.47 21.67 31.26
E27 10.40 29.41 41.95
K28 11.28 29.55 39.49
A29 9.10 28.52 39.04
F30 9.73 29.40 39.32
K31 8.22 28.52 38.58
Q32 5.73 26.24 36.86
Y33 5.71 25.23 33.98
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Table 3.3: Characteristics of the calculated 15N chemical shielding tensor for selected
residues. The definitions of the Euler angles α, β, γ and A1, A2, A3 are in (Cai et al.,
2008). The principal values of the tensor are in ppm and the angels are in degrees.

Using Model C neutral
Residue σ11 σ22 σ33 α β γ A1 A2 A3

A26 14.14 155.28 197.2 -4.42 15.06 -3.19 86.81 12.83 77.58
E27 21.57 162.81 191.13 -7.67 17.16 -2.74 87.26 15.65 74.61
K28 19.52 160.76 194.91 -7.63 17.19 -0.35 89.65 7.67 82.34
A29 19.64 161.51 196.08 -14.22 14.97 -3.48 86.52 12.38 78.14
F30 25.06 160.73 193.85 -9.48 19.04 0.51 89.49 15.48 74.53
K31 7.59 163.19 187.04 -8.93 18.10 -1.69 88.31 24.32 65.75
Q32 19.23 160.88 196.49 0.02 15.73 -1.71 88.29 18.67 71.41
Y33 13.61 160.89 188.36 -6.12 17.22 -1.80 88.20 11.95 78.19

Using Model C
Residue σ11 σ22 σ33 α β γ A1 A2 A3

A26 8.60 158.04 193.56 -11.27 15.17 -2.55 87.45 17.03 73.17
E27 1.53 159.82 180.58 -17.78 16.26 -2.38 87.62 24.82 65.31
K28 26.40 160.47 198.37 -5.28 18.16 -0.42 89.58 5.53 84.49
A29 13.18 161.31 192.12 -17.44 15.04 -3.58 86.42 15.87 74.56
F30 23.32 160.14 191.58 -10.35 18.50 0.81 89.19 15.63 74.39
K31 15.74 163.45 190.33 -6.32 18.74 -1.38 88.62 20.20 69.85
Q32 14.80 159.47 193.82 -1.56 15.81 -2.29 87.71 22.35 67.78
Y33 22.96 159.13 192.26 -4.68 16.28 -1.29 88.71 9.06 81.03
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Table 3.4: The effect of the side chain charges on the chemical shielding of the amide
nitrogens of interest in GB3. Shown are the distances (in Å) between the center of
the side chain charge (Cγ of Asp, Cδ of Glu, ε-amine N of Lys) of all ionizable helical
residues in GB3 (indicated in the left column for each row) and the amide nitrogens
of the residues under examination (A26 to Y33, indicated on top of each column).
Highlighted in blue for each amide is the distance to the charge (two for Q32) that
was not included in the corresponding 8-residue long-chain fragment but would be
necessary in order to neutralize the charge of its salt-bridge partner. The bottom
row shows the change in 15N chemical shielding (in ppm) caused by the inclusion of
such charges into a dipeptide model calculation. The fragment used for K28 already
was neutral. Point charges of -1 (for Asp and Glu) or 1 (for Lys) were placed at the
coordinate of the charge center atom in the dipeptide model. Doing so allowed us to
estimate the effect of these side-chain counterions on the chemical shielding of the
amide nitrogen of interest. As discussed in the main text, no significant effect was
observed except for E27, in which case K31 was finally included in the (extended)
Model C calculation

A26 E27 K28 A29 F30 K31 Q32 Y33
D22 5.74 7.59 8.83 10.04 11.79 13.29 14.66 16.09
E24 7.45 7.95 7.70 9.79 11.85 12.28 13.35 15.51
E27 7.3 0 4.97 4.82 7.45 7.73 6.83 8.84 10.99
K28 7.44 7.72 6.18 7.77 10.24 10.45 10.80 13.07
K31 10.41 7.82 6.87 8.84 8.49 6.36 7.95 10.17
D36 14.91 13.90 12.15 10.14 9.4 8.81 6.46 4.88

4δ, ppm 0.21 4.77 N/A 1.08 0.12 -0.89 1.96 0.2
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Chapter 4
Chemical shielding calculations of 15N in real proteins: β-sheet
residues
4.1 Computational details

The twenty-four β-sheet residues of GB3 that are under consideration were

divided into three groups according to how many hydrogen bonding partners they

have (see Figure 4.1). To calculate the 15N chemical shielding of residue i, we

included the main fragment consisting of residues i and i-1. The HB partners, both

direct and indirect if applicable, were included as well. The modification of the

end groups of the main fragment and the HB partners were the same as specified

for α-helical residues in Ch. 3. The assignments of the basis sets1 were the same

too. We also used the same exchange-correlation functional (B3LYP) and the same

atomic charges (AMBER) as in the calculations of α-helical residues in Ch. 3.

4.2 Results and discussion

Overall, the calculated chemical shielding is slightly better correlated with

solid state NMR data than with solution NMR data (Figure 4.2). This can be ex-

plained by the residues whose chemical shifts differ by more than 2 ppm between

solid state NMR and solution NMR measurements. The calculated isotropic chem-

ical shielding of these residues correlate much better with solid state NMR data

1An exception is made for the calculation for Q2 where a 6-311+G(2d,p) basis set was used
for all atoms because a sulfur atom was involved that can not be assigned a 4-21G basis set in
GAUSSIAN03. For T51, since the calculation with both direct and indirect HB partners could not
be completed, we omit this residue in the study

55



Figure 4.1: Schematic drawing of β-sheet residues in GB3 to illustrate the hydrogen
bonding network. The arrows indicate the direction of each β-strand. The residues
highlighted in yellow have a direct HB partner only; those highlighted in green have
an indirect HB partner only; those not highlighted have both a direct and an indirect
hydrogen bonding partner. Each empty box represents a hydrogen bonding partner
that is not in β-sheet conformation and not included in this part of study.
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Figure 4.2: Comparison between experimental chemical shifts and calculated chem-
ical shieldings for the β-sheet residues. The regressed line of the least squares
regression is shown along with its intercept and slope in the legend box; the third
number in the legend box is the absolute value of Pearson’s correlation |r|.

(Figure 4.3 (b)) than with the solution NMR data (Figure 4.3(a)). There probably

exits a more profound structural perturbation of these residues in solution so that

the coordinates taken from X-ray structure provide a less valid representation of

structure in solution. The complementary subset of residues do not show this kind
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of differential correlation (Figure 4.3 (c) and (d)).
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Figure 4.3: Comparison between calculated chemical shieldings and experimental
chemical shifts for subsets of β-sheet residues in GB3: residues that have > 2 ppm
difference ((a) and (b)) and that have < 2 ppm difference ((c) and (d)) between
solid and solution NMR measurements.

We also look at the residues whose difference between vacuum and CFT calcu-

lation is smaller than 3 ppm (Figure 4.4 (a) and (b)) and the complementary subset

separately (Figure 4.4 (c) and (d)). As discussed with α-helical residues, a smaller

difference between vacuum and CFT calculation is a good indication that we have
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Figure 4.4: Comparison between calculated chemical shieldings and experimental
chemical shifts for subsets of β-sheet residues in GB3: residues that have < 3 ppm
difference ((a) and (b)) and that have > 3 ppm difference ((c) and (d)) between
vacuum and CFP NMR calculations.

included enough close groups in calculation and hence gives us more confidence in

the results. As shown in Figure 4.4, a better correlation is indeed obtained with

these residues whose difference between vacuum and CFP calculations is small.

We do notice that the slope and intercept of the regression lines are much

different from what we obtained with the helix analysis. Nominally this is due to
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a bigger range produced by calculation than by experiments for the residues under

consideration. The structure that we take from X-ray structure is probably not

a good average structure and are not able to represent well the thermal mobility

of atoms (even in solid state). Whether this mobility is correlated with secondary

structure may be worthy of further investigation. It has been previously suggested

by many researchers that the poorly described χ torsion angles of the side chains

are responsible for less satisfactory agreement between experimental and quantum

mechanical theoretical chemical shifts for 13C (Villegas et al., 2007). The arguments

hold similarly for 15N as Le and Oldfield (1996) demonstrated the effects of torsion

angles of the residues i and i-1 on the 15N chemical shielding of residue i.

Another reason that the sheet structure does not produce a more accurate

agreement is probably because the model has not included enough close contacts. In

an earlier paper (Xu and Case, 2002), when building a model for calculating residues

in β-sheet structure, a system was designed as a 3-5 residue sequence along with

their duplex (with one β-strand running on one side) and triplex forms (with two

β-strands running on both sides). This is reasonable because usually one β-strand

is accompanied by other β-strands in parallel and/or antiparallel fashion (also see

Figure 4.1). Apparently this design of model would have more electrostatic effects

taken into account. As demonstrated in our calculation for T17, after bringing

another residue K4 into calculation, a deshielding of 6 ppm was induced. In this

case, K4 is neither directly or indirectly hydrogen bonded with T17 but rather

opposing T17 from another sheet strand. Modifying the side chain of K4 to be

neutral yields similar results so it was not the charge of K4 that was causing this
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effect.

4.2.1 The tensor

The principal chemical shielding components of the β-sheet residues were also

plotted against the experimental chemical shift counterparts. The overall agreement

with the GB1 data is still good (Figure 4.5). The regression line has a slope close to

an ideal of -1 and the intercept is about 10 ppm less than what was obtained above

for α-helical residues.
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Figure 4.5: Comparison of the principal components of the calculated chemical
shielding tensor for GB3 with the corresponding components of the experimental
chemical shift tensor for GB1 (Wylie et al., 2007). Squares, circles, and triangles
are for the principal elements σ11, σ22 and σ33 respectively. The parameters of the
regression line are: intercept = 241.43 ± 4.32 ppm, slope = −0.98 ± 0.03. Plotted
here are residues L5, G14-T18, W43-D46 and F52-T55 for which GB1 shares the
sequence and meanwhile the experimental data for GB1 is available
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4.3 Summary and conclusions

We performed calculations for twenty-three β-sheet residues of the protein

GB3 both in vacuum and using CFP. Comparing the isotropic chemical shieldings

with experimental chemical shifts, we found that overall, the calculated chemical

shielding is slightly better correlated with solid state NMR data than with solution

NMR data. It is informative to divide these β-sheet residues in subsets and then

compare their corresponding correlations between experiments. Hence it was found

that the subset of residues whose experimental shift difference between solid-state

and solution is significant tends to correlate better with solid-state NMR data. Ar-

guably this is because these residues undergo more profound structural perturbation

in solution. Also it was found that the subset of residues whose vacuum calculation

has a smaller difference from its CFP calculation tends to have a better correla-

tion with experimental data when using the vacuum results. This reinforces the

message that the CFP calculation can help to determine whether or not enough

electrostatic interactions have been taken into account. Lastly, we showed that the

tensor elements correlate very well with the experimental counterparts. The regres-

sion slope is close to ideal, although the intercept is a little different than what we

obtained from α-helical residues in the previous chapter. Statistics are necessary to

get calibrated slope and intercept for the purpose of converting chemical shieldings

to chemical shifts.
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Chapter 5

Modeling chemical shift perturbations in diubiquitin

In this chapter, we study protein complexes. Since proteins perform their

function via interaction with other molecules, structures and dynamics of protein

complexes can greatly enhance our knowledge about the biological function of pro-

teins. While x-ray crystallography is a very powerful tool for solving structures

of monomeric proteins and tightly bound complexes, this method has very limited

applicability in the case of weak interactions and transient complexes (Dominguez

et al., 2003; McCoy and Wyss, 2000), which are however at the heart of a variety of

cellular processes. In fact, these transient complexes are often not even amenable

to crystallization. Traditionally, NMR approach to solve protein-protein complex

requires the collection of intermolecular nuclear Overhauser effect (NOE) distances

(Dominguez et al., 2003). This process is usually long and can be difficult in many

unfavorable cases. In these difficult situations, chemical shift perturbation (CSP)

data has long been a unique source of information because of the sensitivity of NMR

chemical shifts to local electronic changes. Experimentally for example (McCoy and

Wyss, 2000), amide proton and nitrogen chemical shift perturbations can be easily

detected in heteronuclear single quantum coherence (HSQC) spectra of 15N -labeled

proteins interacting with unlabeled ligands or proteins. Chemical shift differences

between free and bound protein are quantified as a weighed average of 1HN and
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15N chemical shift perturbations. The precise value of these normalization factors

(weights) is immaterial and we should view the quantitation as a statistical measure

only: the results are most significant when a contiguous surface patch of shifting

perturbation is obtained (Zuiderweg, 2002).

The so-called chemical shift perturbation mapping of the interaction inter-

faces not only allows mapping of the molecular surfaces involved in protein-ligand

interactions, but also provides a means of quantifying the affinity of binding. A

recent application of CSP data includes molecular docking based on the ambiguous

constraints derived from CSP mapping (Dominguez et al., 2003) which offers un-

precedented ability to determine structures of protein complexes in those cases (weak

interactions) when traditional, NOE-based information on intermolecular contacts

is scarce or even unavailable. More interestingly in terms of the quantitative use

of CSP’s, we have seen applications in the docking of protein-ligand complex using

CSP’s alone (McCoy and Wyss, 2000) and of protein-protein complex in combina-

tions with residual dipolar coupling data (McCoy and Wyss, 2001). In these two

situations, the proton differences between experimental and simulated CSP’s were

minimized to produce ligand alignment or to restrain protein-protein complex. The

simulated proton chemical shifts were obtained by SHIFTS (David Case, Scripps),

which computes proton chemical shifts from empirical formulas. Even though exper-

imental 15N CSP’s can be large, it was not yet used in such procedures due to limited

understanding of 15N chemical shifts. Our ability to fully understand and accurately

model the relationship between the structure and chemical shift will dramatically

improve the use of chemical shifts and their changes upon forming complexes for
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structure determination purposes.

In this chapter, we try to model 15N chemical shift perturbations of the protein

ubiquitin, which can be linked with another ubiquitin by forming an isopeptide

linkage between the C-terminus of one ubiquitin and a specific lysine in the other

ubiqutin. Here we study the K48-linked diubiquitin. The second ubiquitin has a

free C-terminus and is called the proximal domain, while the first ubiquitin is called

the distal domain.

The backbone amide chemical shifts for monomeric Ub1 and dimeric Ub2 from

the 1H-15N HSQC spectra were used to compute, for each residue, the combined

amide chemical shift difference between Ub1 and Ub2:

δ4 σ = [(4δH)2 + (4δN/5)2]1/2, (5.1)

where4δH = δH(Ub2)− δH(Ub1) and4δN = δN(Ub2)− δN(Ub1) are the correspond-

ing 1H and 15N chemical shift perturbations (plotted in Figure 5.1). This is the

length of the vector that connects the two-dimentional end points on the 1H-15N

HSQC spectra for each residue, normalized by typical 1H and 15N chemical shift

range. The easily spotted contiguous surface patch around residues L8, I44 and V70

for both domains is significant (Figure 5.1(a)). These residues are also hypothesized

to form hydrophobic interactions in the closed dimer form as illustrated in Figure

5.2.

The solution NMR study of Varadan et al. (2002) showed that the ubiquitin

dimer conformation is dynamic and pH sensitive. It can switch from open state to

closed state with increasing pH. At pH 4.5 the open conformation is fully populated,
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Figure 5.1: The chemical shift differences (a), 15N (b) and 1H (c) chemical shift
perturbations between dimeric and monomer ubiquitin for all residues. The exper-
imental NMR data for both the monomer and the K48-linked dimer was obtained
in pH 6.8 solution and provided kindly by Ming-Yi Lai. Please note: the data for:
P19, E24, P37, P38 and G53 are not available.
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Figure 5.2: Hydrophobic interface of 1AAR. The blue ribbon represents the distal
domain while the red one represents the proximal domain.
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and at pH 7.5 the closed conformation is almost fully populated. The chemical shift

perturbations near the hydrophobic residues L8, I44 and V70 are bigger in neutral

to basic solution where closed conformation is supposed to dominate (Ryabov and

Fushman, 2006; Varadan et al., 2002). It was also estimated that the population of

the open conformation obtained for the individual amide groups at pH 6.8 ranges

from less than 1% to 25% (Varadan et al., 2002).

Currently, one cannot use chemical shift changes to predict what exactly hap-

pens at the interface, but with theoretical calculations, one may hope to gain some

perspective. To be able to calculate the chemical shift perturbation at pH 6.8, ide-

ally we should take structures of monomer ubiquitin and dimeric ubiquitin obtained

at the same pH condition and then compute 15N chemical shielding differences using

these structures. Instead, we only have them from different pH: the crystal structure

of monomer ubiquitin 1UBQ from pH 5.2-5.8 and the crystal structure of dimeric

ubiquitin 1AAR from pH 4.0-4.4 (Table 5.1). On the other hand, there are related

tetraubiqutin structures available (Table 5.1). Among them, 2O6V can be viewed

as a dimer of diubiquitin and each of the “diubiquitin” is nearly identical to the

structure of 1AAR with hydrophobic patches buried in the same fashion. Other

tetramer structures, 1F9J and 1TBE, were both obtained at acidic pH. For 1TBE,

the hydrophobic patches are exposed while for 1F9J, the hydrophobic patches are

buried in a different arrangement than 2O6V.
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Table 5.1: The available PDB entries of monomeric, dimeric and tetrameric ubiqui-
tin

PDB ID Resolution(Å) pH State Reference
1UBQ 1.8 5.2-5.8 monomer Vijay-Kumar et al. (1987)
1D3Z N/A 6.6 monomer Cornilescu et al. (1998)
1AAR 2.3 4.0-4.4 dimer(closed) Cook et al. (1992)
1TBE 2.4 5.0 tetramer(open) Cook et al. (1994)
1F9J 2.7 4.8 tetramer(closed) Phillips et al. (2001)
2O6V 2.2 6.7 tetramer(closed) Eddins et al. (2007)

5.1 Computational details

Here, we try to model the 15N chemical shift perturbations using density func-

tional theory. The computational methods are the same as in previous chapters Ch.

3 and Ch. 4. Only vacuum calculations were performed.

Calculations were performed for the α-helical residues from A26 to D32 in

both monomer and dimeric ubiquitin. The monomer crystal structure of 1UBQ and

the dimer crystal structure of 1AAR were used.

Calculations were also performed for residues L8, I44 and V70 from both

domains of 1AAR. A dipeptide model calculation was performed, along with a more

complex model calculation that includes not only the dipeptide but also fragments

of some residues from the hydrophobic pocket. The residues whose closest side chain

heavy atoms are within 4.5 Å range of at least one side chain heavy atom of the

residue of interest are included. The details of what residues are included in the

model calculation for L8, I44 and V70 are listed in Table 5.2.
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Table 5.2: The diagonal matrix designating the residues (other than the residue of
interest itself) included as extra fragments in addition to the dipeptide fragment
for the calculation of the hydrophobic residues in the closed form of diubiquitin. 1
represents inclusion while 0 the opposite.

D:L8 D:I44 D:V70 P:L8 P:I44 P:V70
D:L8 0 0 1 1 1 0
D:I44 0 0 1 1 0 1
D:V70 1 1 0 0 1 0
P:L8 1 1 0 0 0 1
P:I44 1 0 1 0 0 1
P:V70 0 1 0 1 1 0

5.2 Results and discussion

5.2.1 α-helical residues

Monomer ubiquitin. The correlation of calculated chemical shieldings with

solution NMR data from either pH 5.7 or pH 4.5 is good when excluding D32, an

obvious outlier (see Figure 5.3(a) and (b)). But the slope of the regression line is far

from the ideal of -1. The comparison with the solid state NMR data identifies two

outliers of D32 and K27. Otherwise, the rest of residues show a good correlation

(|r| = 0.95) and the slope of regression is improved to be -0.67 (Figure 5.3(c)). This

improvement in slope is due to a wider range (by ∼ 3 ppm) of isotropic chemical

shifts in solid state NMR over these α-helical residues (see Table 5.3 and Figure 5.3).

In solid state, protein motions are more restricted while in solution, there is the effect

of protein dynamics that may somehow average out the solution chemical shifts. It

is worth noting, however, that over all the residues of ubiquitin, the shielding ranges

obtained by solution and solid state NMR are comparable (Figure 5.3(d)).
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Figure 5.3: Comparison of experimental 15N chemical shifts for ubiquitin measured
in: (a) pH 5.7, (b) pH 4.5 and (c) solid state vs calculated chemical shieldings. The
regressed line of the least squares regression is shown along with its intercept and
slope in the legend box. In panel (d) is shown the comparison of the 15N solid state
NMR and solution NMR at pH 4.5. The diagonal line is plotted to guide the eye.
The α-helical residues from A26 to D32 are plotted with solid circles.

Diubiquitin. Although experimentally, the measured 15N chemical differ-

ences between the distal and proximal domain are quite small for the six α-helical

residues in consideration (see Figure 5.1), the difference can be as big as 7 ppm

for calculations (Table 5.3). This is probably because the crystal structure is not
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representative of the ensemble in solution.

Table 5.3: Calculated isotropic chemical shiedings and various experimental
isotropic chemical shifts for selected α-helical residues (in ppm).

Calculated results Experimental data for monomer
1AAR 1AAR Solution Solution

Residue 1UBQ (Distal) (Proximal) Solid (pH5.7) (pH4.5)
V26 115.08 113.95 111.88 118.1 123.6 121.6
K27 117.25 109.13 109.39 116.4 120.4 118.9
A28 108.55 99.33 96.23 124.5 124.9 123.4
K29 120.05 122.52 125.34 121.0 121.7 119.9
I30 111.33 105.03 110.40 120.9 122.8 121.1
Q31 104.16 104.33 111.48 124.5 125.1 123.4
D32 101.83 107.15 113.09 117.7 121.2 119.3

5.2.2 The hydrophobic residues: L8, I44 and V70

Upon dimerization, the solvent effect on the interface residues may be attenu-

ated as the water environment is replaced by the residues from the other ubiquitin.

Since water usually deshields 15N , as we discussed in Ch. 2, the replacement of

the solvent will cause shielding of 15N for these interface residues. This may be the

reason that the interface residues near L8, I44 and V70 are more shielded (with a

smaller chemical shift value) upon dimer formation (see Figure 5.1).

Generally, when we compare the results from the dipeptide model and the

more complex model with selected surrounding hydrophobic residues, the difference

is small, indicating that the hydrophobic residues in the pocket does not seem to

affect the 15N isotropic chemical shielding much. However, the exception is for

P:V70 where the 3 ppm deshielding effect induced by the nearby residues of D:I44,
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P:L8 and P:I44 stands out (Table 5.4)1. If we look closely at the 15N chemical shift

perturbations, P:V70 has the biggest absolute CSP among the six (while D:I44 and

P:I44 have the smallest absolute CSP). This may be not a coincidence. There could

be one reason for both.

Table 5.4: Calculated chemical shieldings (ppm) for the residues in the hydrophobic
patch.

Residues Dipeptide plus more residues
D:L8 111.75 112.49
P:L8 106.91 106.75
D:I44 121.41 120.84
P:I44 131.85 131.36
D:V70 115.22 113.05
P:V70 129.70 126.57

The big calculated difference between D:V70 and P:V70 as seen from Table

(5.4) is mainly due to different χ1 angles. In 1AAR, the χ1 angle of V70 is 152.07◦

in the distal domain and −67.09◦ in the proximal domain. Using a dipeptide model

and modifying the χ1 angle of D:V70 to be the same as P:V70 introduces about 17

ppm shielding and brings the isotropic chemical shielding closer to that of P:V70.

The χ1 angle effect calculated here is much bigger than the previous report of about

7 ppm by Le and Oldfield (1996).

In all ubiquitin crystal structures that we worked with, be it monomer, dimer

or tetramer, V70’s side chain adopts only two conformations (see Figure 5.4): (i)

the favorable conformation where Cγ1 is in trans position and Cγ2 in the gauche(+)

position; (ii) one unfavorable conformation where Cγ1 is in gauche(+) and Cγ2 is in

1P and D denotes proximal and distal domain respectively. Hence the notation P:V70 designates
the residue V70 from the proximal domain; similarly, D:I44 designates the residue I44 from the
distal domain
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the gauche(−) position. The second conformation is not stable because the atom

Cγ2 is in close contact with the main chain CO and NH groups. The favorable con-

formation is observed in monomer ubiquitin structure (1UBQ and 1D3Z), tetramer

open conformation structure (1TBE) and the distal domains of the closed dimer

(1AAR) and closed tetramer (2O6V and 1F9J) structures. Interestingly, the un-

favorable conformation is also observed. But it is only observed in the proximal

domains of closed dimer (1AAR) and closed tetramer (2O6V and 1F9J) structures.

It is hardly simply by chance to observe such unfavorable conformation in three

crystal domains. A closer look into the structures reveals that the conformations

which D:V70 and P:V70 adopt differentially actually enable both side chains to

be better buried in the hydrophobic pocket. It is very likely that the unfavorable

conformation of P:V70 is compensated by hydrophobic interaction.

(a) (b)

Figure 5.4: The favorable (a) and unfavorable (b) side chain conformations observed
for V70 in monomeric, dimeric and tetrameric ubiquitin.

Taking into account protein dynamics, it is reasonable to think that in closed
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conformation, D:V70 on average spends more time in the favorable conformation

and P:V70, on the contrary, spends more time in the unfavorable conformation.

The unfavorable conformation seems to have an effect of shielding the 15N atom

of V70 when we take the tetramer structure 2O6V for calculation (See Table 5.5),

consistent with the calculation with 1AAR as discussed above. Even the closed

form of diubiquitin is not 100% populated, we would still expect P:V70 to have a

smaller shift value than D:V70 and this is indeed in accordance with the solution

experimental data (See Figure 5.1). There is no significant difference between 15N

shielding calculations for D:I44 and P:I44 (Table 5.5), agreeing with experiment

qualitatively as well.

Table 5.5: Calculated chemical shieldings (ppm) for I44 and V70 using 2O6V

Residues1 First dimer Second dimer
D:V70 117.11 116.51
P:V70 123.95 125.10
D:I44 123.24 122.49
P:I44 120.26 121.78

1. The calculation was performed using a dipeptide and a fragment from the direct HB partner

5.2.3 New hydrogen bonds upon dimerization

One structural change upon dimerization is that of forming hydrogen bonds

between the two domains. Observing the structure of 1AAR, we found some inter-

domain hydrogen bonds and illustrate them in Figure 5.5. For example, Q49 is

directly hydrogen bonded to L71 of the other domain, which makes it an indirect

HB partner of R72.
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Figure 5.5: Schematic drawing for the hydrogen bonding network between the the
distal and proximal domains in closed form diubiqutin. Shown in bold are the
residues whose 15N chemical shieldings were calculated.

The calculated results of Q49 and L71 with and without their direct HB part-

ners L71 and G47 respectively from the other domain are shown in Table 5.6, along

with the calculations of K48 and R72 with and without their indirect HB partners

L71 and Q49 respectively from the other domain. The HB deshielding effect is most

notable for P:K48 (about 7ppm). Meanwhile, the difference between P:K48 and

D:K48 is as big as 18.92 ppm. From Figure 5.1(b), we can see that the experimental

difference between the K48’s from the two domains are also notable but at a signif-

icantly smaller scale. This is hard to interpret as some solvent is replaced by weak

hydrogen bonding as the dimer opens and closes.

Table 5.6: Calculated chemical shieldings (ppm) for the residues that are hydrogen
bonded with the other domain

Residue dipeptide with direct HB Residue dipeptide with indirect HB
D:Q49 106.42 106.08 D:K48 119.14 118.45
D:L71 107.57 107.07 D:R72 118.38 114.88
P:Q49 106.06 104.52 P:K48 106.78 99.53
P:L71 114.19 113.44 P:R72 127.35 122.23
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5.3 Summary and conclusions

In this chapter, we try to account for the 15N chemical shift difference between

monomer and dimeric ubiquitin. As the monomer and dimer structures used were

obtained from different pH conditions, we feel that it makes better sense to look at

chemical shift differences between the distal and proximal domains. We learned the

following:

1) Although solid-state NMR and solution NMR of ubiquitin covers the same shield-

ing range over all residues, zooming in on the classical α-helical residue region (from

A26 to D32), we observed the shift range is shortened in solution NMR measure-

ments and hence a poorer correlation to theoretical calculations resulted.

2) Calculations were not able to reproduce 15N chemical shift differences between

monomer and dimeric ubiquitin for the α-helical residues, by using the crystal struc-

tures 1UBQ and 1AAR.

3) Among the residues in the hydrophobic interface L8, I44 and V70, V70 from the

proximal domain seems to sense the presence of other hydrophobic residues on the

interface most strongly. It also happens to be the one with the biggest 15N chemical

shift perturbation.

4) Calculations were not quite able to reproduce the chemical shift differences be-

tween the distal and proximal domains by using static crystal structures. In addition,

the nature of the protein being dynamic makes occupancy of certain conformations

a problem as well. However, the chemical shift difference between the two do-

mains for the residues investigated here quantitatively agrees with the experiment
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in some cases even though they are significantly larger than what were observed

experimentally. This can help to understand the reason underlying chemical shift

perturbations, such as flexible side chain orientation or formation of inter-domain

hydrogen bonds.
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Appendix A

Ring effects

In assessing the potential ring effect that can be exerted on 15N chemical

shielding, we can work with a model of NMA and benzene cluster. First, we can

perform a chemical shielding calculation with an optimized geometry of the clus-

ter, then we can isolate the NMA molecule from the cluster and perform another

chemical shielding calculation on the NMA molecule only. The difference of the two

calculations for 15N isotropic chemical shielding is assumed to be caused by the ring

effect.

Two optimized cluster geometries (Bendova et al., 2007) were considered here,

with starting geometries to be T-shaped and stacked respectively. The optimized

geometry are presented in Figure A.1.

(a) (b)

Figure A.1: Optimized geometries of NMA+Benzene clusters. The starting geome-
try for (a) was T-shape orientation and that for (b) was stack orientation

In each optimized geometry, the amide nitrogen is located right above the

center of the benzene molecule. In the T-shape orientation, the peptide plan is
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almost perpendicular to the benzene ring while in the “stack” orientation (which

is not stacked any more after geometry optimization), the peptide plan is slightly

tilted. The distance of the nitrogen atom to the center of the benzene ring is 3.23 Å

and 3.19 Å respectively for the two orientations. Since the two geometries are very

similar, we present here only the calculations for the T-shape oriented cluster.

We performed calculations with different levels of theory (see Table A.1). Al-

though MP2 calculations for the clusters using bigger basis sets were not able to

be carried out on our computing facility due to memory limits, it was however easy

to induce from the calculations which did carry out, that the ring effect on 15N

isotropic shielding is marginal, regardless of the level of theory used (see also Figure

A.2).

Table A.1: Calculated 15N chemical shieldings (ppm) for NMA and NMA+benzene
from various levels of thoery

NMA NMA+Benzene (T-shape)
Basis sets HF B3LYP MP2 HF B3LYP MP2
1). 6-31G 181.00 158.79 194.01 183.18 159.47 194.57
2). 6-31G(d) 182.19 159.37 190.7 184.74 160.16 191.23
3). 6-31G(d,p) 183.95 161.41 191.05 186.13 161.93 NA
4). 6-31+G(d,p) 182.67 160.76 190.31 184.87 161.13 NA
5). 6-311+G(d,p) 165.94 142.78 171.76 167.79 142.48 NA
6). 6-311+G(2d,p) 164.59 141.75 169.02 166.42 141.49 NA
7). 6-311++G(2d,p) 164.62 141.88 169.10 166.48 141.58 NA

In GB3, we take the peptide plane that the amide nitrogen of E27 belongs

to and modified it to be a NMA molecule; and take the benzene group of residue

F52’s side chain to build a benzene molecule. This way, we formed a new cluster

and examined the ring effect. In this case, the amide nitrogen is 4.91 Å away from

the center of the benzene ring. One would not anticipate any ring effect on amide
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Figure A.2: Calculated 15N isotropic chemical shieldings in NMA and
NMA+Benzene cluster from various levels of theory

nitrogen from a benzene ring at such distance based on the model calculations listed

above. Indeed, the calculation of an isolated NMA molecule and of a NMA+Benzene

cluster yielded almost identical isotropic chemical shielding for the amide nitrogen.

Furthermore, statistics show that in GB3, any amide nitrogen that is adjacent to

the side chain of either a Phe or a Trp and hence potentially subject to ring effect,

has a distance further away (usually >4 Å) from the ring center. Based on this, we

can safely ignore the ring effect when calculating amide nitrogen chemical shielding

in protein GB3.

This theoretical calculation supports the common treatment where ring effect

was not considered (de Dios et al., 1993b). On a side note, an observed 2.7 ppm

shielding effect from the ring was observed for amide hydrogens, which are about

2.3 Å away from the center of the benzene ring. No ring effect was observed for

hydrogens from the two methyl groups of the NMA molecule, which are further out.
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Appendix B

MATLAB code

The following is the MATLAB code that we wrote for calculating Euler angles

as defined in (Brender et al. 2001) and some characteristic angles as defined in (Cai

et al. 2008).

% Calculating the tensor priciple components:

sym = (tensor + tensor’)/2; % Symmetrize the calculated tensor

[V,D] = eig(sym);

% Sxx > Syy > Szz in chemical shielding:

Sxx = V(:,3); Syy= V(:,2); Szz= V(:,1);

% Define vectors with N, H, CA, CO being coordinates for N, H, alpha-

% carbon and CO respectively:

NH = H - N;

NCA = CA - N;

NCO = CO - N;

norm = cross(NCA,NCO); % The normal to the peptide plane.

% Make the principle directions comply to that defined in

% (Brender et al. 2001),reversing vector direction if necessary

if dot(norm,Syy)<0
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Syy = -1*Syy;

end

if dot(Sxx,NCO)>0

Sxx = -1*Sxx;

end

% The third axis is defined after the first two principle axes:

Szz = cross(Sxx,Syy);

% Euler angels defined as in (Brender et al. 2001):

beta = angle1_ref(Szz,NH,norm);

gamma = angle2(NCA,NCO,Szz);

alpha = angle3(Sxx,Syy,NH);

% Characteristic angles defined as in (Cai et al. 2008)

A1 = angle1(norm,Szz);

A2 = angle1(norm,Syy);

A3 = angle1(norm,Sxx);

function ang = angle1(x,y) % output range is [0,90] degrees for the

% angle between the two lines defined by the two vectors x and y

a = 180/pi* acos (dot(x,y)/dot(x,x).^0.5/dot(y,y).^0.5);

if a > 90

ang = 180 - a;

elseif a <= 90

ang = a;

end
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function ang=angle2(x,y,z) % output range is [-90,90] degrees for the

% angle between vector z and the plane defined by vectors x and y.

% If above the plane, output is positive; otherwise, output is negative.

norm = cross(x,y);

ang = 90 - angle1(norm,z);

if dot(norm,z) < 0

ang = -1* ang;

end

function ang = angle3(x,y,z) % Orthogonal vectors x and y define a

% plane XY. This function returns the angle that the projection of

% vector z onto the plane XY need to turn clockwise in order to overlap

% with the axis x. The projection must be in either the first or fourth

% quadrant for this particular Euler angle calculation: if first

% quadrant, the output angle is positive; if fourth quadrant, the

% output angle is negative

norm = cross(x,y);

proj = z - dot(z,norm)/dot(norm,norm)*norm;

a = dot(proj,x); b = dot(proj,y);

if sign(a)>0

ang = sign(b)*angle1(x,proj);

else ang=0; % giving an error message signaled by a zero value

% if projection is not in the first or fourth quadrant

end
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function ang = angle1_ref(x,y,ref) % The angle vector x will

% turn clockwise to overlap with vector y if seen from the end of

% vector ref

ang = 180/pi* acos (dot(x,y)/dot(x,x).^0.5/dot(y,y).^0.5);

if dot(cross(x,y),ref) < 0

ang = -1*ang;

end
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Appendix C

E27 in GB3: a difficult case for DFT calculations

It is observed from Figure C.1 that with a dipeptide model, for Lys (K) and Arg

(R), the shielding effect of protonation is apparent (about 6 to 7 ppm) in the vacuum

calculation but not in the continuum-only calculation; for Asp (D) and Glu (E), the

deshielding effect of deprotonation is profound in the vacuum calculation (with effect

in D >E), and yet the continuum-only calulation still shows such deshielding effect

(with the effect in D > E as well). In vaccum, the deshielding effect of the negative

charges on Asp and Glu are bigger than the shielding effects of the positive charges

of Lys and Arg; in the continuum, the charge effects from Lys and Arg’s side chains

are more effectively screened by the solvent water. These are all probably due to

the longer side chain of Lys and Arg which makes the charge center and their amide

nitrogen further away from each other.

Since there is only a slight shielding effect due to the solvent when the Glu’s

side chain is in the charged state (compare “charged vacuum” and “charged contin-

uum” calculations in Figure C.1), it is probably unrealistic to expect E27 in GB3

to be charged while counting on the solvent to counteract the deshielding effect of

its negative charge. However as shown in Ch. 3, the residue E27 needs about 10

ppm more shielding to be not outlying. This analysis hence also suggests that E27

in GB3 take on a neutral side chain.
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Figure C.1: Calculated isotropic chemical shieldings for each residue type in vacuum
and continuum with a dipeptide model. (a) is for α-helix conformation and (b) is
for β-sheet conformation. In red are calculated results with ionizable side chains
charged. The dipeptide geometry is the same as used in Ch. 2.

Although here it shows that Lys and Arg’s charges are screened effectively by

solvent in the continuum calculation, this is an extreme case where Lys and Arg, in

a small dipeptide, are fully exposed to solvent with dielectric constant ε=80. The

analysis here is not contradicting K28 and K31 being charged in GB3. In the protein

environment of GB3, these two residues are probably not as effectively screened by

solvent.

However, if we believe that E27 is neutral and modify it to be so in our

calculations, it affects some helical residues whose “long-chain” fragment inevitably

includes E27. The calculated 15N isotropic chemical shieldings of residues A26-Y33,

then, would not correlate well with the experimental data. A consistent picture so

far is not available.
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Appendix D

A helical calculation illustrated with 1CEX

The crystal structure 1CEX (Longhi et al., 1997) with good resolution (1.0 Å)

for cutinase is another good example of illustrating the α-helical residue calculation.

The sequence of classical residues from G36 to S45 was considered. This sequence

was selected also because that it only has one ionizable residue, which is E44. So

only E44’s charge state has to be considered. In Model C, E44 is involved in the

calculations of residues from S41 to S45. It is noted that with E44 neutral, we get

a slightly better correlation, intercept and slope (see Figure D.1).
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Figure D.1: The comparison of calculated chemical shieldings (using model C) and
experimental chemical shifts for selected helical residues from 1CEX when (a) mak-
ing E44 charged and (b) making E44 neutral. The regressed line of the least squares
regression is shown along with its intercept and slope in the legend box; the third
number in the legend box is the absolute value of Pearson’s correlation |r|. P37 is
not plotted because of missing experimental data.
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